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Abstract

Heritage3DMtl: A Multi-modal UAV Dataset of Heritage Buildings

for Digital Preservation

Rucha Shende

Unmanned Aerial Vehicle (UAV) technology has emerged as a transformative tool

for 3D reconstruction, offering diverse applications in urban planning, heritage

studies, infrastructure monitoring, and emergency response. Despite considerable

progress, the Ąeld of heritage studies faces challenges due to the scarcity of real-

world data tailored for heritage preservation. To address this gap, this thesis presents

Heritage3DMtl, an extensive multi-modal dataset comprising 17 heritage buildings

in Montreal, acquired using a UAV. The dataset includes images, estimated camera

poses, and reconstructed 3D data (point clouds and meshes), providing great detail

and diversity.

A Standard Operating Procedure (SOP) for data collection is provided, demonstrating

the efficient use of low-cost consumer-grade UAVs to capture heritage buildings.

This SOP serves as a replicable blueprint for future similar efforts. Various 3D

reconstruction techniques are explored and experimented with using the dataset.

Additionally, the datasetŠs applicability is showcased through the reconstruction of

Level of Detail (LOD) models in alignment with the CityGML standard.

Furthermore, the integration of advanced reconstruction techniques, such as NeRF

and Gaussian Splatting, has revolutionized the way we visualize and interact with

building sites in digital environments. These techniques enable the generation of

photorealistic renderings as well as interactive 3D models, enhancing our ability to

study and interpret heritage buildings with unprecedented Ądelity and detail.

In summary, this work contributes to the discourse on 3D heritage reconstruction by

introducing an open-source dataset that enhances resources available to researchers

and practitioners. Heritage3DMtl facilitates advancements in the Ąeld and serves as

a valuable asset for digital preservation efforts, providing a comprehensive foundation

for future research and innovation in heritage documentation and 3D reconstruction.
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Chapter 1

Introduction

1.1 Overview

Recent advancements in computer vision, fueled by the rapid expansion of aerial

digital imagery, have expanded the scope of 3D reconstruction research [6Ű8].

Unmanned Aerial Vehicles (UAVs) have played a pivotal role in this transformation,

facilitating applications in building and infrastructure monitoring, urban planning,

heritage preservation, and the integration of Geographic Information Systems (GIS)

with virtual and augmented reality. UAVs are particularly valuable in scenarios where

access to structures is limited and/or hazardous, such as post-natural disaster damage

assessment [9, 10], bridge crack detection [11, 12], coastal environment mapping [13],

survey of the coastal cliff faces [14], and autonomous drone delivery [15].

The adoption of photogrammetry and Neural Radiance Fields (NeRF) based scene

3D reconstruction has garnered signiĄcant attention in recent years, [16Ű20]. These

techniques play a crucial role in preserving historic buildings, enabling visualization,

reconstruction, as well as structural analysis [21Ű23]. By leveraging 2D images, these

methods produce detailed and accurate 3D representations that capture the intricate

details and semantic information of buildings.

Despite the immense progress in 3D reconstruction, there is a shortage of real-world

data tailored for 3D heritage research. Existing datasets are either synthetic or are

designed for large-scale city scene reconstruction. As a result, they do not contain the

level of detail necessary for reconstructing individual buildings. Although aerial Light

Detection and Ranging (LiDAR) data is increasingly available for urban scenarios, it is
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not suitable for structure-speciĄc scenarios where images are intentionally captured to

preserve geometric details. Our research addresses this gap. The fusion of integrating

ground-based camera data with aerial LiDAR data is an approach that Ąrst comes

to mind. This fusion is, however, challenging owing to the differences in perspective

as well as scale. Although terrestrial laser scanning (TLS) provides high-resolution

ground data, its deployment is constrained by high costs and logistical challenges.

In this work, we advocate for UAVs as an accessible and cost-effective solution for

3D reconstruction of heritage buildings without compromising on data quality and

detail.

In this work, we introduce Heritage3DMtl, an extensive dataset of heritage buildings

in Montreal, Canada, acquired using a drone. This dataset is meticulously collected,

capturing architectural features, intricate designs, and structural elements to provide

comprehensive representations of the buildingsŠ exteriors. It includes UAV images,

camera poses, point clouds, and meshes, making it a valuable resource for research in

vision, graphics, and structural analysis.

To facilitate the storage and exchange of virtual 3D city models, the City Geography

Markup Language (CityGML) [24] has emerged as an open standardized international

data model and exchange format. It deĄnes four different levels of detail (LOD) 0-3

models. LOD3 model, in particular, captures detailed architectural elements (such

as windows, doors, etc.) as well as semantics, making it suitable for cultural heritage

reconstruction, documentation, architecture, and urban planning. We propose a novel

component in existing workĆows for automatic generation of LOD3 models of these

heritage structures. Through this work, our goal is to encourage additional research

in the realms of 3D heritage reconstruction and preservation.

1.2 Contributions and Outline

To summarize, our main contributions include:

1. Heritage3DMtl Dataset: A comprehensive and open-source dataset containing

exterior appearance and geometric data of 17 heritage buildings in Montreal,

Canada. This dataset, captured using a low-cost UAV, represents numerous

architectural styles and offers detailed representations. It contains acquired

UAV images, camera poses, point clouds as well as meshes of each building. To

our knowledge, this dataset stands as the Ąrst such extensive data set to date in
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this domain and aims to foster further research in digital heritage preservation

and reconstruction.

2. Low-Cost Capture Process: We present an effective capture process for detailed

structures, emphasizing the advantages of UAV-based data collection over

ground cameras and/or LiDAR data. We discuss the design evolution of our

acquisition method and the subsequent data processing pipeline.

3. Utility Demonstrations: We showcase the utility of both image and geometric

representations in the dataset by generating novel views using NeRF and

Gaussian Splatting techniques. Additionally, we propose a workĆow for

generating LOD3 models using open vocabulary zero-shot detection and

segmentation.

The thesis is structured as follows: Chapter 2 provides background information

and a review of the related work. Chapter 3 outlines the Standard Operating

Procedure (SOP) we developed for data acquisition and provides details of the

captured buildings. Chapter 4 presents experimental results and discusses the

datasetŠs applicability in reconstructing lightweight polygonal LOD models. Finally,

Chapter 5 presents our conclusions and outlines avenues for future research.
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Chapter 2

Background and Related Work

In this chapter, we provide a brief overview of the background material related to

this manuscript and review work related to 3D reconstruction and representation of

the buildings, with emphasis on geometric representations. Additionally, we provide

a comprehensive overview of existing datasets, focusing on imagery of buildings in

heritage or urban scenarios captured for reconstruction purposes.

2.1 3D Reconstruction Stages

The process of converting 2D or 3D data of individual buildings or entire cities into

digital formats suitable for different applications involves three primary stages:

1. Capture Modality and Planning: This stage entails choosing a collection

of cameras and sensors to capture and digitize the physical environment at

speciĄc points in space. The sensors may comprise aerial or ground cameras for

photogrammetry, LiDAR for precise distance measurements, or other specialized

equipment designed to capture the shape, colour, and texture of environments.

The choice of sensor affects the quality, type, and usability of the captured data.

Planning involves deciding on sensor placements, the extent of coverage, and

the resolution needed to adequately represent the target environment.

2. A Representation Model: This stage involves building a coherent and

consistent model from sensed data. There exist various forms of representations,

including point clouds, triangle meshes, parametric models from computer-aided

design (CAD), or newer methods like NeRF [25] or 3D Gaussian Splatting

4



Figure 1: Modalities/ Representations/ Applications

[26]. The chosen representation signiĄcantly inĆuences the Ądelity, realism,

and usability of the digital model. For instance, point clouds and triangle

meshes provide geometric representations of the surface of objects, suitable for

applications requiring accurate physical dimensions. On the other hand, NeRFs

and 3D Gaussian Splatting offer volumetric scene reconstruction, which is better

for capturing complex light interactions and textures in a scene. The intended

purpose impacts the selection of a representation model, whether thatŠs for

visualization, simulation, or analysis.

3. An Application Layer: This stage focuses on utilizing the data across a broad

spectrum of applications, including engineering for structural analysis, digital

twinning, digital preservation, rendering, urban planning, architectural design,

cultural heritage preservation, disaster management, real estate visualization,

and the development of autonomous vehicles. These digital models are crucial

in boosting efficiency, aiding sustainability initiatives, and offering immersive

educational and entertainment experiences.

In todayŠs rapidly evolving technological landscape, the array of available options

for data capture, representation, and application is vast, as illustrated in Fig. 1.

Given this complexity, it is crucial for modern heritage and building datasets to

possess a high degree of versatility, capable of accommodating various representations

and serving a wide range of applications. In Chapter 4, we provide comprehensive

insights into our methodology for processing the acquired data, employing multiple

representations to ensure thorough coverage. Additionally, we present the outcomes

of experiments conducted to showcase the diverse applications of our dataset.
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2.2 Geometric Representations

Point clouds and dense triangle meshes are two important structures for representing

3D geometry of objects and scenes, and techniques for deriving such structures from

images have reached signiĄcant maturity.

2.2.1 Point Cloud

A point cloud represents a collection of data points in 3D space, where each point

is deĄned by its cartesian coordinates (X, Y, Z). These points collectively depict

the external surfaces of objects or scenes in three dimensions. While point clouds

offer direct visualization and inspection of object shapes in 3D, they are often

converted into more practical formats, such as polygon mesh models or CAD models

through a process known as surface reconstruction. Point clouds play a pivotal role

in building modelling by utilizing technologies like LiDAR, photogrammetry, and

Building Information Modeling (BIM) [27Ű29].

2.2.2 Mesh

A mesh is composed of vertices (points in space), edges (line segments connecting pairs

of vertices), and faces (polygons enclosed by edges). Meshes describe the surfaces of

objects more completely by detailing their geometric and topological properties. They

provide a more structured representation than point clouds, offering information on

the connectivity between points. They accurately represent the physical dimensions of

objects and environments, making them ideal for applications requiring high-Ądelity

models [30]. In the context of building reconstruction, mesh models are utilized to

create water-tight representations of buildings with precise shapes and scales [31,32].

2.3 Photogrammetry

Photogrammetry is a technique used to derive 3D geometric data from a given set

of unordered 2D images or videos. It essentially reverses the process of photography,

where depth information is lost because a 3D scene is projected onto a 2D plane.

Photogrammetry extracts 3D measurements and spatial data from images using

various software tools, both open-source and commercial. Examples of open-source

software include Meshroom [33], COLMAP [34], OpenMVG [35], 3DF Zephyr Free,

among others. In this work, we extensively employed Meshroom to estimate camera

6



Figure 2: Point Cloud vs Mesh

poses and generate point clouds, dense meshes, and textured meshes. Meshroom

offers a node-based graph editor and facilitates adjustment and visualization at each

processing step. A typical photogrammetry pipeline for extracting point clouds and

meshes works as below:

• Feature Extraction: This identiĄes and describes distinctive points or areas

within each image, which can be accurately located across different images.

These features are usually points of high contrast, edges, corners, or other

signiĄcant visual markers within the image. Scale-invariant feature transform

(SIFT) [36] is a common algorithm used, which extracts distinctive patches in

an image with corresponding patches in another image irrespective of rotation,

scale, or translation, and the output is a set of feature points for each image,

each described by a unique descriptor (a vector of values). These features serve

as reference points for comparing images to understand how they relate to each

other in 3D space.

• Image Matching: Image matching refers to the process of identifying which

images depict the same area or object from different viewpoints. This step

organizes images into groups to enhance feature matching efficiency, particularly

when reconstructing a large number of images. Identifying overlapping images

reduces computational load during the next feature matching step.

• Feature Matching: Feature matching is the process of Ąnding correspon-

dences between the feature points extracted from different images. It involves

comparing the feature descriptors to identify the same point in two different
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Figure 3: 3D Point Triangulation across multiple images (source: [1])

viewpoints. Algorithms, like nearest neighbour search, are used to Ąnd matches

based on the similarity of descriptors. Robust methods, such as Random

Sample Consensus (RANSAC), are then applied to eliminate outliersŮincorrect

matches likely due to repetitive patterns, changes in lighting, or occlusions.

Accurate feature matches play a crucial role in precisely estimating the sceneŠs

geometry and the relative positions and orientations of the cameras, thereby

enabling precise 3D reconstruction.

• Structure from Motion (SfM): It entails camera pose estimation and 3D

point triangulation to create a sparse point cloud. Prior determines the position

and orientation of each camera, while the latter calculates 3D coordinates of

scene points observed across multiple images.

Camera Pose Estimation: This process determines the extrinsic parameters

- position and orientation (pose) of each camera when its corresponding image

is taken. It determines the cameraŠs placement and viewing direction in the 3D

space for each image. Extrinsic parameters are mathematically represented by a

transformation matrix combining a rotation matrix and a translation vector as

shown in Eq. (1), which together describe the cameraŠs placement and viewing

direction in relation to a world coordinate system. Perspective-n-Point (PnP)

algorithm [37], implemented within a RANSAC framework, is used to robustly

8



estimate the camera pose, and also to handle outliers in the feature matching

process.

Extrinsics =





R t

0 1



 (1)

3D Point Triangulation: Triangulation involves using the matched features

(correspondences) between points across different images to 3D coordinates of

these points in the scene. This is illustrated in Fig. 3. It uses camera projection

matrices P and P ′ derived from camera poses estimated earlier. This method

is based on epipolar geometry whose key components include epipolar lines,

epipolar planes, and the epipole. An epipolar plane is deĄned by a 3D point

and the centers of two cameras capturing the scene. The intersections of this

plane with image planes produce epipolar lines, along which the corresponding

image point must lie. The epipoles are intersection points of the line connecting

the two camera centers (the baseline) with the image planes. To compute the

3D coordinate X of a point observed in two images, Eq. (2) is solved using

singular value decomposition (SVD) [38].





P x 0

P ′ 0 x′















X

λ

λ′











= 0 (2)

where x, x′ are 2D projections of X and λ, λ′ are constants representing

the pointŠs position along the rays from the cameras. A sparse point cloud is

obtained after all the 3D points in the scene are calculated. This serves as an

initial, yet geometrically precise depiction of the sceneŠs structure.

• Multi-View Stereo (MVS): MVS is a technique that uses the principles of

triangulation to retrieve the depth value of each pixel for all cameras resolved

by SfM. MVS algorithms generate a dense point cloud that represents the scene

with greater detail compared to the sparse cloud from SfM. The dense point

cloud and depth maps serve as a foundation for creating a 3D mesh. Lastly,

textures are extracted from the original images and applied to the mesh. This

involves unwrapping the mesh to create a 2D representation, onto which the

photographic textures are projected and stitched together to maintain visual

consistency and detail.
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Figure 4: Overview of NeRF training differentiable rendering approach. (source: [2])

2.4 Neural Radiance Fields (NeRF)

NeRF, introduced in [2], represents a novel approach for synthesizing highly realistic

images from new viewpoints based on a sparse set of input images of a scene. This

technique optimizes a continuous, high-dimensional function that models the sceneŠs

radiance and density at any point in space. NeRF parameterizes this function using a

multi-layer perceptron (MLP) network, which maps 5D coordinates (spatial location

x, y, z and viewing direction (θ, ϕ) to colour (r, g, b) and density (σ). This allows for

coherent renderings of complex scenes from viewpoints absent in the initial image set.

How do NeRFs differ from the classical 3D representation?

NeRF is a continuous, implicit representation that captures both the geometry (shape

and structure) and appearance of the scene (colour and texture) within the networkŠs

weights. It, therefore, avoids the need for explicit geometric structures such as points

or meshes. One key advantage of NeRFs is their ability to capture complex optical

phenomena like occlusions, soft shadows, and scattering with photorealistic quality.

These are aspects that classical representations, such as point clouds, often struggle to

depict convincingly. However, itŠs worth noting that certain NeRF implementations

do offer options for mesh recovery and export, bridging the gap between implicit and

explicit representations.

2.5 3D Gaussian Splatting

Another innovative technique in 3D scene representation is 3D Gaussian Splatting

[26]. Unlike NeRFs, which rely on volumetric rendering, Gaussian Splatting utilizes

a novel approach based on 3D Gaussians or "splats." These splats, essentially 3D

ellipsoids, can be rotated and stretched along any direction in space to capture the

radiance and appearance of a scene efficiently (see Fig. 5). This method offers an
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Figure 5: Conceptual difference between NeRF and Gaussian Splatting (source: [3])

alternative to NeRF, diverging signiĄcantly, offering a more efficient way towards real-

time rendering at high quality, while maintaining competitive optimization times. It

beneĄts from both explicit point-based representations and differentiable volumetric

rendering. It begins by initializing 3D Gaussians from sparse point clouds (without

normals) obtained via SfM. The Gaussians are described by their position (µ), a

covariance matrix (Σ), opacity (α), and color (r, g, b) through spherical harmonics

(SH). The formation of the radiance Ąeld representation is achieved through successive

optimization steps (done using Stochastic Gradient Descent (SGD)) of the Gaussian

parameters 3D Guassians were opted by the authors owing to their differentiability

and ease of projection to 2D for rapid rendering. The optimization takes advantage

of standard GPU-accelerated frameworks and custom CUDA kernels for efficient

rasterization. By leveraging differentiable 3D Gaussian splatting and adaptive density

control, this method achieves real-time rendering speeds signiĄcantly higher than

existing NeRF implementations, without compromising on the visual quality.

In Chapter 4, we use both NeRF and Gaussian Splatting to generate novel views of the

captured buildings. We compare mesh reconstruction quality with photogrammetry

generated meshes.

2.6 CityGML LOD Models

CityGML, an open data model and XML-based format, serves as a standardized

framework for storing and exchanging virtual 3D city models. It facilitates integration

of various geospatial information about urban environments, including buildings,

terrain, vegetation, and roads, among others. Through the utilization of CityGML,

diverse stakeholders and software applications can effortlessly integrate multiple data

sources, facilitating interoperability across various systems. One of the key features of
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Figure 6: Level of Detail (LOD) 0-3 models represented in CityGML 3.0 (source: [4])

CityGML is the concept of LOD models. LOD models in CityGML refer to different

representations of a 3D city model at varying levels of detail. These levels range from

LOD0 to LOD3, each representing a different degree of complexity and accuracy in

terms of geometry, semantics, and appearance. As we ascend the LOD hierarchy, the

level of detail escalates.

• At the lowest level, LOD0 models consist of simple mass models with no

geometric detail. It offers a fundamental depiction of the cityŠs layout without

speciĄc details about buildings or other elements within the urban landscape.

• LOD1 model represents a rough block model without roof structures, suitable

for general city models. This includes the representation of building footprints

and the extrusion of these footprints to indicate building heights. This model

provides a more realistic depiction of the cityŠs structures, allowing for basic

visualization and analysis.

• As we progress to LOD2, additional details are incorporated into the city model.

In addition to building footprints and heights, LOD2 models include basic roof

structures, such as simple gabled or hipped roofs. This level of detail enhances

the visual realism of the city model and enables more advanced analysis, such

as solar potential assessments.

• Advancing up the hierarchy, LOD3 models incorporate geometric, topological,

and semantic elements. These models are vital for capturing intricate features

of heritage structures, including the architectural details, windows, doors, and

textures. Such details are crucial for preservation and documentation [39].

LOD models prove especially beneĄcial in depicting heritage buildings during risk and
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Figure 7: Pipeline of PolyFit: (a) Input point cloud (b) Planar segments (c)
Supporting planes of the initial planar segments (d) Supporting planes of the reĄned
planar segments. (e) Candidate faces. (f) Reconstructed model (source: [5])

damage assessments. They enable the incorporation of macro-elements and various

feature types associated with damage mechanisms, thereby enriching the description

and analysis of structural conditions [40]. Additionally, integrating Heritage Building

Information Modeling (HBIM) with CityGML standards facilitates a multiscale 3D

GIS approach for damaged cultural heritage. Furthermore, this integration enables a

uniĄed representation of building elements across various LODs [41]. In Chapter 4,

we demonstrate a pipeline for generating LOD2 and LOD3 models from point clouds

generated from our dataset.

2.7 Polygonal Surface Reconstruction

The reconstruction of 3D models from noisy or incomplete point clouds to achieve

high-Ądelity representations remains a signiĄcant challenge in computer vision and

graphics. PolyFit: Polygonal Surface Reconstruction from Point Clouds [5] introduces

a novel framework for reconstructing lightweight, polygonal surfaces from point

clouds. It is based on hypothesizing and selection strategy and focuses on obtaining

piecewise planar objects speciĄcally for man-made objects such as buildings.

The framework begins by generating candidate faces from the point cloud. This

process involves plane extraction using a RANSAC-based primitive detection method

proposed in [42], which identiĄes initial planar segments. These segments undergo a

reĄnement step aimed at merging similar planar segments to address issues caused

by noise and outliers, thereby reducing computational complexity and avoiding thin,

non-manifold, and degenerate faces in the Ąnal model.

Once reĄned, the supporting planes are pairwise intersected to generate a large set

of candidate faces, encompassing potential parts of the Ąnal polygonal model. The
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subsequent step involves selecting the optimal subset of candidate faces to form the

Ąnal model. This selection process is formulated as a binary linear programming

problem, with the objective function comprising three energy terms: data-Ątting,

model complexity, and point coverage.

The data-Ątting term ensures that selected faces closely match the input point cloud,

while the model complexity term encourages simpler models with fewer sharp edges.

Additionally, the point coverage term aims to minimize uncovered regions on the

model. Hard constraints are enforced to ensure that the chosen subset of faces forms

a manifold and watertight model.

Through this optimization process, the framework produces a polygonal surface that

accurately represents the geometry of the object while remaining lightweight and free

of gaps or unnecessary complexity. Given its effectiveness with building point clouds,

we leverage this framework to generate LOD2 models, as described in Chapter 4.

2.8 Relevant Computer Vision Techniques Used in

our LOD Pipeline

2.8.1 Use of Vision-Language Models (VLMs)

Vision-language models (VLMs) represent a crucial example of multimodal artiĄcial

intelligence (AI), facilitating the interpretation and generation of information by

combining visual (images) and natural language (textual) data. This sophisticated

approach involves the modelŠs vision component recognizing visual elements in images,

while the language segment processes textual information. Both the aspects, including

object identiĄcation and the imageŠs geometric conĄguration, are intricately mapped

to each other. For instance, upon detecting an apple in a photograph, the model

associates this visual element with corresponding terms found in textual descriptions.

Typically, VLMs are initially trained on extensive multimodal datasets gathered from

the web, comprising matching pairs of images/videos and text. They excel at tasks

demanding an understanding of both images and text, such as object detection based

on a text prompt, image captioning, visual question answering, and text-to-image

generation. In our LOD3 construction pipeline, we employ pre-trained VLMs to

identify and segment substructures such as windows and doors in buildings, utilizing

zero-shot and open-set concept generalization methods, as further described below.
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2.8.2 Zero Shot Learning

Traditional machine learning approaches heavily rely on extensive labelled datasets

for model training, which becomes impractical or impossible when such labels are

scarce or unavailable. Zero Shot Learning (ZSL) overcomes this limitation by enabling

models to recognize objects or patterns they have never encountered during training.

ZSL utilizes transfer learning to glean knowledge from one domain (seen classes)

to another (unseen classes). The essence of ZSL lies in its capability to leverage the

semantic relationships between known and unknown categories, often using attributes

or descriptions to bridge the gap. This approach not only mitigates the challenge

of data scarcity but also enhances the modelŠs generalization capabilities, proving

instrumental in solving problems within the domains of image and pattern recognition.

2.8.3 Zero Shot Image Segmentation

Zero-Shot Image Segmentation denotes the capability of a model to segment images

into meaningful parts or categories it has never seen during training. Developed by

Meta AI, Segment Anything Model (SAM) [43] serves as a foundational model for

image segmentation, facilitating zero-shot transfer to new image distributions and

tasks by interpreting prompts specifying what to segment within an image. SAM

achieves this by comprehending the context and attributes of objects through their

visual features and associated textual descriptions, allowing it to segment images with

objects it has never explicitly been trained on. Trained on a diverse dataset of over

one billion masks, SAM generalizes well to new types of objects and images without

requiring additional training.

2.8.4 Open-Set Object Detection

Open-set concept generalization refers to a modelŠs ability to recognize and classify

inputs belonging to classes not seen during training, categorizing them as either

unknown or belonging to a novel category. Open-Set Object Detection extends this

capability to detecting and localizing objects within images or video frames, while also

recognizing when detected objects belong to classes absent from the training dataset.

Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object

Detection [44] is a novel open-set object detection model that integrates DINO [45],

a Transformer-based detector, with grounded pre-training. This enables it to detect

objects described by textual inputs in human language, including category names
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and referring expressions. Grounding DINO uses pre-trained VLMs to realize complex

scenes and detect objects by grounding textual descriptions to visual elements. VLMs

play a vital role in training Grounding DINO, providing semantic understanding

key to link visual data with textual descriptions, thereby enabling open-set object

detection.

In Chapter 4, we demonstrate how we utilize a combination of SAM and Grounding

DINO to improve our workĆow for reconstructing LOD3 models.

2.9 Related Work on Heritage Dataset Creation

In this section, we review available datasets and case studies aimed at reconstructing

heritage or urban buildings. We organize the discussion into subsections based on

the type of data acquisition method: LiDAR-based datasets, image-based datasets,

UAV-based datasets, and synthetic datasets.

2.9.1 LiDAR-Based Datasets

LiDAR Airborne Laser Scanner (ALS) data has been extensively used for 3D building

reconstruction for the past two decades [46Ű48]. Yet, it has limitations in capturing

detailed facade information and complex roof structures. For instance, Building3D

[49] is the largest building modelling urban-scale dataset, consisting of point clouds,

meshes, and wireframe models generated from LiDAR data but does not provide the

level of geometric detail required for accurate reconstruction of building exteriors.

2.9.2 Image-Based Datasets

Recent research trends show an increased use of aerial images or images captured from

mobile devices for structure-aware 3D reconstruction of buildings. [50Ű53]. However,

to our knowledge, there is a lack of publicly available large datasets speciĄcally

captured for the reconstruction of heritage buildings or even modern buildings.

2.9.3 UAV-Based Datasets

Numerous studies have explored heritage structures using UAVs and other methods.

However, these studies often focus on data acquisition from only one or two sites.

For instance, Kyriou et al. [54] showcase the synergistic use of UAV and TLS data

for documenting cultural heritage sites affected by geo-hazards, but they cover only a
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Table 1: A comparative analysis of various studies that have undertaken data
collection for the purpose of reconstructing heritage buildings.

Reference Type Diversity

Klapa et al. [58] UAV+TLS+GNSS 2 buildings
Xu et al. [55] UAV+TLS 1 building
Kyriou et al. [54] UAV+TLS 1 building
Jo et al. [56] UAV+TLS 1 building
Andaru et al. [57] UAV + TLS 2 buildings
Luhmann, et al. [59] UAV + TLS 2 buildings
Mwangangi et al. [29] UAV 2 small scenes + 1 building
Themistocleous, Kyriacos, et al. [60] UAV 1 building
Samadzadegan, et al. [61] UAV 1 building
Karachaliou, Eleni, et al. [62] UAV 1 building
Murtiyoso, et al. [63] UAV 2 buildings

Heritage3DMtl(Ours) UAV 17 buildings

single site, the hanging Holy Monastery in Greece. Xu et al. [55] present just a single

case study of the Liao Family Temple in China with only 45 images captured via UAV.

A similar study by Jo et al. [56] applied TLS and UAV for digital documentation,

again of only a single temple, the Magoksa Temple in Gongju, Republic of Korea.

Mwangangi et al. [29] explore the potential of UAV photogrammetric point clouds for

building facade detection and 3D reconstruction with data captured in three European

countries with two areas covering multiple buildings, typically urban, but with respect

to heritage buildings, only a city hall building was captured with overlapping oblique

and nadir views. Andaru et al. [57] collected the data for two architectural heritage

buildings in Indonesia. Tab. 1 summarizes different heritage-related case studies using

multi-sensor data acquisition reported in the literature.

2.9.4 Synthetic Datasets

While various large-scale synthetic datasets like Syndrone [64] and Airloc [65] are

available, they lack the Ądelity to real-world data essential for heritage research.

While one cannot ignore other huge datasets like the OMMO [19], MegaNeRF [53],

MatrixCity [20], UrbanScene3D [66], UAVStereo [67], Mid-Air [68], STPLS3D [69]

and SensatUrban [70], even if these contain a wide range of scenes and objects,

they are really not suitable for the speciĄc and detailed reconstruction of individual

buildings with complex external structures.
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While existing datasets offer valuable insights, there remains a need for large-scale,

publicly available datasets speciĄcally tailored for heritage building reconstruction.

Such datasets would facilitate the development and evaluation of novel reconstruction

algorithms and contribute to the preservation of cultural heritage.
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Chapter 3

Dataset Acquisition

Figure 8: Westmount City Hall: A sample from our dataset.

In this chapter, we discuss the motivation behind creating Heritage3DMtl, our dataset

and the choice of UAV as our data capture modality. Further, we delve deeper into

the details of the image-capture process by laying out an SOP. This SOP allowed us

to control the quality of our dataset. We also provide a safety brief and discuss the

challenges faced during data collection. Further, we provide details of the buildings

captured within our dataset. Fig. 8 illustrates the content of our Heritage3DMtl.

Finally, we compare point clouds obtained on our data with publicly available LiDAR

point cloud data to justify the choice of UAV as an ideal candidate for data acquisition.
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3.1 Motivation

Montreal is renowned for its blend of classic and modern architecture. Yet, despite

its wealth of architectural legacy, there remains a signiĄcant dearth of 3D datasets

dedicated to heritage documentation and preservation.

Modern high-resolution and user-friendly smartphone cameras offer exceptional image

capture capabilities in various conditions, making them a top choice for acquisition

tasks. They excel particularly in capturing heritage artifacts, such as small statues

when individuals have ample ground space to take photographs from optimal distances

and angles [71]. However, many heritage buildings present a challenge owing to their

height and limited available ground space, obstructed by structures, foliage, or water

bodies.

While Terrestrial Laser Scanning (TLS) is a highly accurate method for obtaining

detailed 3D data, it is hindered by two signiĄcant constraints. Firstly, the high cost

associated with specialized equipment and expertise needed to operate it. Secondly,

the logistical challenge related to the deployment of physical markers needed for

data integration [72]. These markers demand considerable time and effort to set

up, especially in large or complex sites. Furthermore, placing these markers can be

impractical or restricted in environments with difficult terrain or sensitive historical

locations, complicating the scanning process and adding to the complexity of aligning

and integrating the scanned data [73,74]. These factors make TLS less accessible for

projects with limited budgets or those situated in challenging environments.

On the other hand, city-wide public data captured using LiDAR, satellite imagery,

or aerial data from airplanes is available. While LiDAR yields point cloud data, it

lacks colour and texture, necessitating the fusion of data from other aerial imagery.

However, it introduces its own challenges, especially the absence of necessary facade

details of heritage sites. Satellite or aerial images often lack detail, offer limited

perspectives, and are prone to strong shadows due to their top-down view and distant

range.

UAVs, notably mini-drones, are ideal devices for medium-sized buildings. They

are low-cost, simple to operate, and loosely regulated in most jurisdictions. They

can capture images from different altitudes, positions, lighting/weather conditions,

and camera orientations. Integrating UAV technology in generating datasets of

architectural heritage thus stands as an effective approach, combining detailed data
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capture with cost efficiency and operational Ćexibility.

Given the scarcity of available data, our work aims to bridge this gap by generating

an extensive multi-modal dataset of MontrealŠs heritage buildings captured using a

UAV. Such datasets, which include both 2D and 3D data, contribute greatly to the

documentation, preservation, analysis, and modelling of historic structures.

3.2 UAV Data Collection

3.2.1 Equipment and Setup

We used two different consumer-grade UAVs, DJI Mini 21 and DJI Mini 3 Pro2 for data

capture. Both UAVs are categorized as mini-drones and are known for their compact

size making them highly portable and easy to maneuver. They weigh less than 250

grams and do not need to be registered or need a pilot license to Ćy in Canada. The

DJI Mini 2 is equipped with a 1/2.3 inch CMOS sensor capable of capturing 12MP

effective pixels, while the DJI Mini 3 Pro features a 1/1.3-inch CMOS sensor capable

of producing superior High Dynamic Range (HDR) images of up to 48MP. At the time

of purchase, the DJI Mini 3 Pro stood out as the most advanced mini-drone model,

featuring multi-direction obstacle sensing capabilities and a focus track functionality.

We used the Mini 2 to capture three of the total seventeen buildings, while the rest

were captured using the Mini 3 Pro.

3.2.2 Selection of Buildings

To ensure a representative dataset, we aimed to select heritage buildings with diverse

architectural styles. We conducted a thorough evaluation of potential buildings,

considering factors such as historical signiĄcance and architectural uniqueness.

Additionally, we used Google Earth to assess occlusions surrounding the buildings.

This step was crucial in identifying and excluding buildings where dense foliage or

adjacent structures might obscure the views of the facades.

1https://www.dji.com/ca/mini-2
2https://www.dji.com/ca/mini-3-pro
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3.2.3 Standard Operating Procedure (SOP) for Flight

Planning and Control

Upon arriving at the location, we conduct a comprehensive on-site inspection to

identify obstacles near each facade that may interfere with the image acquisition

process. The home location with the fewest obstacles is then selected. Prior to

takeoff, all necessary technical checks and calibrations are performed following the

UAV user manual to guarantee a safe operation.

Capturing Nadir Images: We Ćy the UAV to the top of the building and set the

gimbalŠs pitch angle to -90° while adjusting the yaw angle accordingly. We then rotate

the UAV in 90° increments to capture images from four different perspectives at the

same height. Due to height-restricted zones, we are not able to capture nadir images

for some buildings. For such buildings, one possible solution is to fuse LiDAR point

cloud data with the point cloud obtained on our UAV data.

Capturing Oblique Images: We Ćy the UAV above the highest obstacle, typically

a tree, and position it to capture oblique images of the entire building. We adjust the

gimbal angle between 0 and -90° to achieve an optimal perspective. The focus track

functionality is activated, with the entire building selected as the point of interest

(POI) as illustrated in Fig. 9. We then maneuver the UAV in a circular motion

around the building at a suitable speed, capturing images with a 70-80% overlap

between consecutive frames. This process is repeated multiple times with variations

in height and angles to capture the building comprehensively.

Capturing Facade Images: We carefully descend the UAV to an appropriate

distance from each facade, ensuring that the front exterior of the building is within

the frame. We adjust the gimbal angle as necessary to capture images at different

heights, maximizing the coverage of architectural details. This process is repeated for

all accessible facades of the building. Although tree occlusions sometimes disrupted

full facade captures, we focused on obtaining a higher number of oblique images by

Ćying the UAV at varying altitudes to maximize the collection of oblique perspectives.

3.2.4 Quality Control

In order to ensure a more accurate and robust reconstruction of all the architectural

facades, images must be captured with higher overlap and at different altitudes.

[75Ű77]. The FocusTrack feature set is leveraged for intelligent tracking of the
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Figure 9: Screenshot depicting POI selection of Maison Shaughnessy using the
FocusTrack feature of DJI Mini 3 Pro.

building structures, facilitating the capture of a substantial number of images with

increased overlap. Fig. 9 depicts how a POI is selected to track a building. The

UAV automatically Ćies around the selected POI, allowing the Ćyer to capture shots

at regular intervals at the same height. We employed the image capture process at

varied distances and captured a wide array of nadir, oblique, and orthographic images,

thereby augmenting the accuracy of the intrinsic and extrinsic camera parameters

crucial for the reconstruction process. Fig. 10 illustrates a collection of images

showcasing various perspectives of three buildings.

Nadir images, captured directly overhead, offer views of the buildingŠs roof, layout,

and surface details. When stitched together with other images, they provide a

consistent base for aligning and orienting other imagery, contributing to the accuracy

and precision of reconstruction. Oblique images captured from various angles around

the structure provide a more comprehensive view of the building, revealing intricate

surface textures and elements that might not be fully captured in nadir shots. Facade

view images facilitate the documentation of architectural features, such as windows,

doors, and other structural elements. They facilitate generation of high-resolution

texture maps for the surfaces of 3D models.

Data Preview and Assessment: We preview the collected data for image quality

and comprehensiveness of coverage. Structures, regions, UAV locations and angles

are identiĄed as needed for additional captures. This is repeated until we are satisĄed
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Figure 10: Sample images captured (left to right) in nadir, oblique and facade views.

that the UAV has covered all accessible regions of the buildingŠs exteriors. In practice,

this step was only needed in 3 of the 17 captures that we did. All acquisition sessions

took between 30 and 40 minutes.

3.2.5 Limitations

During the dataset collection process, we encountered various environmental and

natural challenges like high winds, varying lighting conditions, shadows, temperature
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extremes, visitor crowds, regulatory restrictions, battery life, power lines and tree

occlusions. To navigate through these obstacles, we strategically scheduled shoots

during periods of calmer weather and low crowd conditions. Although tree occlusions

disrupted facade image capture often, we focused on obtaining a higher number of

oblique images by Ćying the UAV at varying altitudes to maximize the collection of

oblique perspectives. Despite these challenges, the Ćexibility in our approach enabled

us to preserve the datasetŠs integrity and comprehensiveness.

3.3 Safety Brief

Despite their advanced capabilities, UAVs can still pose a danger to human life and

property, so we took great care to safeguard our acquisition sessions. We always

conduct a thorough assessment of the weather conditions for the entire week; days

with either sunny or cloudy weather are chosen. We also take into consideration

the wind speed, preferring days with wind speeds up to 10 km/h and wind gusts

not exceeding 25 km/h. These thresholds result from careful observation to ensure

stable images despite the DJI Mini 3 ProŠs wind resistance of up to 57 km/h. On

sunny days, we plan the shoot around noon to avoid shadows and maintain consistent

lighting conditions across all facades. Since heritage buildings are often also tourist

attractions, we conduct visitor logistics to select dates and times when not many

people are around.

We adhered to the regulations that govern the Ćight heights of UAVs. These

regulations determine the altitudes at which UAVs can operate and impact the

viewpoints from which buildings can be captured. Simultaneously, in strict observance

of safety and legal guidelines, we ensured that our UAV operations were conducted

at a safe distance from restricted zones, such as airports. Thus we guaranteed that

our data collection process was legally compliant.

3.4 Dataset Diversity and Characteristics

Our meticulous data collection process involved systematic UAV Ćyovers, ensuring

thorough coverage and capturing the intricate details and structural elements of each

building from various angles. To the best of our knowledge, our dataset is the largest

real-world UAV dataset of heritage buildings. It encompasses a total of 17 buildings

from mid-19th to early 20th-century heritage structures in Montreal that represent a
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range of architectural styles, from Neo-Gothic churches and Victorian-era mansions to

Beaux-Arts structures. Additionally, it includes intricately designed Hindu, Sikh, and

Jewish temples and a Mosque, reĆecting the cityŠs historical, cultural, and religious

evolution. These structures are detailed in Tab. 3. The dataset statistics with the

total number of UAV images, number of vertices in reconstructed dense point clouds

and number of faces in reconstructed meshes is given in Tab. 2. It stands as a

valuable asset for research and applications in structural engineering, cultural heritage

preservation, and city modelling, among others.

Table 2: Heritage3DMtl Dataset Statistics: Total UAV Images, Point Cloud Vertices,
and Mesh Faces by Building

Building # Images # Vertices # Faces

Montreal City Hall 247 791 K 1.60 M
Clock Tower 219 234 K 528 K
Saint JosephŠs Oratory 243 549 K 1.09 M
Loyola Chapel 181 438 K 874 K
Holy Ghost Ukrainian Catholic Church 101 378 K 755 K
Westmount City Hall 65 1.01 M 2.02 M
St. George Antiochian Orthodox Church 66 740 K 1.48 M
Maisonneuve Market 394 914 K 1.34 M
Maison Louis-Hippolyte Lafontaine 236 972 K 1.94 M
Shaughnessy Mansion 150 687 K 1.37 M
St. Thomas More Church 156 827 K 1.39 M
Resurrection Chapel 301 657 K 1.39 M
Murugan Temple 202 741 K 1.63 M
Hindu Mandir 246 647 K 1.29 M
Gurdwara Guru Nanak Darbar, LaSalle 170 1.06 M 2.11 M
Congregation Shaar Hashomayim 117 800 K 1.67 M
Islamic Center of Quebec - El Markaz Islami 174 555 K 1.26 M

3.5 Comparison of Proposed UAV Modality with

Aerial LiDAR and Ground Data

We compare the UAV modality against publicly available aerial LiDAR data and

ground-level smartphone images. For this experiment, we select three buildings

with distinct architectural styles: Saint JosephŠs Oratory, Montreal City Hall and

Gurdwara Gurunanak Darbar.

The LiDAR data for Montreal is available as LAZ tiles for individual neighbourhoods
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Figure 11: Comparison of point clouds obtained from fusing LiDAR + Ground photos
with those from UAV data.

and boroughs. For data processing, we use CloudCompare, an open-source 3D point

cloud processing software. We utilize its zooming, panning and rotation functionalities

to navigate precisely to our target site. Then, we crop and reĄne the data with noise

reduction to obtain a point cloud of a building without colour/texture information.

To obtain the ground-level images, we use an iPhone 13 Pro equipped with a 12 MP

sensor, 1.9µm pixels, and a 26 mm equivalent f/1.5-aperture lens. Although the device

also features a LiDAR scanner, it can only detect objects up to 5 meters. It is worth

noting that capturing images from unreachable ground locations, such as behind the

Saint JosephŠs Oratory, is not possible. However, we capture an equivalent number

of images to those obtained by UAV, with an overlap of ≈ 70 − 80%. We generate

point clouds using Meshroom. Despite the signiĄcant overlap, SfM has difficulty

properly aligning multiple cameras and estimating accurate camera orientation for

several images, resulting in incomplete and inaccurate reconstructions.

Finally, we align and merge these point clouds with LiDAR point clouds in

CloudCompare. The resulting point clouds are qualitatively compared, and it is

evident that even after the fusion, signiĄcant information is missed in the facade

regions. In comparison, by carefully choosing the Ćight paths for the UAV,

the resulting point clouds are more complete and visually better. A qualitative

comparison is shown in Fig. 11.
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3.6 Conclusion

In this chapter, we embarked on a comprehensive exploration of UAV data collection

methodologies for capturing heritage buildings in Montreal, addressing the limitations

of existing data acquisition techniques, and the unique challenges posed by heritage

structures. Our motivation stemmed from the scarcity of dedicated 3D datasets for

heritage documentation and preservation, particularly considering MontrealŠs rich

architectural heritage.

We commenced our endeavour by meticulously selecting heritage buildings with

diverse architectural styles, considering factors such as historical signiĄcance and

architectural uniqueness. Leveraging consumer-grade UAVs, namely the DJI Mini 2

and DJI Mini 3 Pro, equipped with advanced imaging capabilities, we devised an

SOP for Ćight planning and control.

Throughout the data collection process, we encountered various challenges. Safety

remained paramount throughout our UAV operations, with stringent adherence to

regulations governing Ćight heights and proximity to restricted zones. We conducted

thorough assessments of weather conditions and visitor logistics to mitigate potential

risks to human life and property.

The resulting dataset, Heritage3DMtl, comprising 17 heritage buildings from mid-19th

to early 20th-century structures in Montreal, stands as one of the largest real-world

UAV datasets of its kind. Encompassing a range of architectural styles and cultural

inĆuences, it serves as a valuable resource for research and applications in structural

engineering, cultural heritage preservation, and urban modelling.

Furthermore, our comparative analysis with aerial LiDAR and ground-level

smartphone images highlighted the superiority of UAV data in capturing detailed

architectural features and structural elements. Despite challenges such as occlusions

and varying viewpoints, UAV data exhibited superior completeness and visual Ądelity,

showcasing its potential as a primary modality for heritage documentation and

preservation efforts.

In conclusion, our study underscores the efficacy of UAV technology in generating

multi-modal datasets for heritage buildings, offering unprecedented insights into

MontrealŠs architectural legacy. By bridging the gap in 3D data availability, our work

paves the way for enhanced documentation, preservation, and analysis of historical

structures.
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Table 3: Year of establishment and a brief description of the buildings captured

Sr.

No.
Building Name

Year

Estab-

lished

Architecture

Style
Description

1 Montreal City Hall 1878 Beaux-Arts A National Historic Site of Canada, it is the

Ąrst city hall to be constructed in the country.

2 Clock Tower 1922 Beaux-Arts A ClassiĄed Federal Heritage Building whose

construction was dedicated to commemorate

the sailors who died during the Ąrst World

War.

3 Saint JosephŠs Oratory 1904
Italian

Renaissance
A National Historic Site of Canada and is

CanadaŠs largest church, attracting millions

of pilgrims and visitors every year.

4 Loyola Chapel 1933 Gothic Revival A Roman Catholic church multi-faith com-

munity space located on Concordia Univer-

sityŠs Loyola campus.

5
Holy Ghost Ukrainian

Catholic Church
1947 Kievan Rus An onion-domed church that features Russian

architecture.

6 Westmount City Hall 1922 Tudor Revival A local government building, built in Neo-

Tudor style is a reminiscent of Scottish

castles.

7
St. George Antiochian

Orthodox Church
1940

Predominantly

Byzantine
A designated a National Historic Site of

Canada as an important symbol of the

history and traditions of the Syrian Orthodox

community in Canada.

8 Maisonneuve Market 1912 Beaux-Arts A public market that follows Beaux-Arts

architectural style.

9
Maison Louis-Hippolyte

Lafontaine

mid-

1840s

Neoclassical

Victorian
Once home to the Ąrst Prime Minister of

the United Canadas, stands as a signiĄcant

monument of Canadian political history and

heritage.

10 Shaughnessy Mansion 1874
Second Empire

style
An elegant house recognized as a National

Historic Site for exemplifying the architec-

tural style of its era and MontrealŠs greystone

tradition.

11 St. Thomas More Church 1951 Modernist A simple yet unique 5-facade church featuring

steeple.

12 Resurrection Chapel -
Victorian

Gothic Revival
A chapel in Notre-Dame-des-Neiges ceme-

tery, which is the largest cemetery in Canada;

established in 1854, and has been recognized

as a national historic site.

13 Murugan Temple 1983 Saivaite This Hindu temple is the Ąrst Saivite

temple in Quebec, and features the Saivaite

Architectural design.

14 Hindu Mandir 1990 Hindu This Hindu temple was built to serve the

Indo-Canadian community in Montreal.

15
Gurdwara Guru Nanak

Darbar, LaSalle
2001 Sikh A Sikh temple that combines elements of his-

toric Sikh design with Western postmodernist

aesthetics. It stands at 172 feet high and is

unique because it is one of only 12 worldwide.

16
Congregation Shaar

Hashomayim
1922

Byzantine

Revival
It is the oldest Ashkenazi synagogue and the

largest traditional synagogue in Canada.

17
Islamic Center of Quebec -

El Markaz Islami
1965 Islamic It is the oldest mosque in Quebec and the

second oldest in Canada.
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Chapter 4

Experiments: Dataset Processing

and Applications

In this chapter, we discuss how we processed our collected data to generate multiple

geometric representations using different 3D reconstruction techniques. We further

demonstrate the compliance and utility of our dataset by generating LOD models.

We also introduce a novel component to existing workĆows for LOD3 generation using

zero-shot capabilities of vision-language models.

4.1 SfM + MVS Reconstruction

Point clouds and meshes derived from UAVs or other data modalities play a central

role in classical 3D building modelling [78Ű80]. Photogrammetry, combining SfM and

MVS techniques, is a widely adopted method for generating these 3D representations.

In our study, we employ Meshroom to create point clouds and meshes for each

building from the images captured in our dataset. Meshroom offers an intuitive node-

based interface for managing the reconstruction process. Each node corresponds to a

particular task, interconnected by edges.

Our reconstruction pipeline begins with importing the images and initiating the

computation. The Ąrst node,CameraInit, initializes cameraŠs intrinsic and image

metadata. Next, the FeatureExtraction node detects feature points in the images,

providing raw data for matching. Subsequently, the ImageMatching node identiĄes

which images capture the same region, and the FeatureMatching node precisely aligns
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Figure 12: Examples of camera locations estimated by Meshroom

corresponding points across these pairs. Utilizing this data, the StructureFromMotion

node estimates camera poses and reconstructs a sparse point cloud (see Fig. 12).

Subsequently, we export the camera pose data (intrinsics + extrinsics) in a JSON

format. The PrepareDenseScene node then prepares the data for a denser point

cloud creation, followed by the DepthMap node, which calculates depth information

for each image. The DepthMapFilter node reĄnes these depth maps, Ąltering out the

noise and inconsistencies. The Meshing node generates a 3D mesh from these reĄned

depth maps, which is later textured by the Texturing node to provide a realistic

surface appearance.

The resulting point clouds and meshes often encompass more than just the target

building. Therefore, we export them to Meshlab for further processing. Using the

selection tool, we highlight the areas not belonging to the building structure and

remove them. This step Ąlters out noise, reduces the number of points, enhances

clarity and reduces Ąle size. This also ensures that the representations are optimized

for subsequent applications.
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4.2 Scene Representation

4.2.1 Background and Related Work

In Chapter 2, we discussed how NeRFs utilize ray marching techniques to determine

the position along the viewing angle [25], enabling the reconstruction of 3D scenes.

NeRF learns the scene from images and represents it as a function of 3D space. 3D

Gaussian Splatting [26] employs a cloud of 3D Gaussians optimized through SGD

for real-time, photorealistic volume rendering from any viewpoint. Recent research

has investigated the effectiveness of NeRF and Gaussian Splatting for heritage 3D

reconstruction, highlighting their effectiveness in describing material characteristics

and reducing processing times compared to the traditional MVS techniques [71,81,82].

Both techniques are capable of handling challenging lighting conditions, occlusions,

and complex surface textures, resulting in accurate and immersive visualizations. In

our experiments, we aim to evaluate and compare the effectiveness of these techniques

in accurately reconstructing heritage buildings. Our focus lies on assessing geometric

Ądelity by reconstructing mesh models and the quality of novel-view synthesis to

identify the most effective methods for the digital preservation and visualization of

cultural heritage sites.

4.2.2 Implementation Details

Nerstudio [83] is a modular PyTorch framework that provides a simple API that

allows for a simpliĄed end-to-end process of creating, training, and testing NeRFs.

The frameworkŠs modular design supports real-time visualization tools, streamlined

pipelines for importing real-world data, and tools for exporting to video, point cloud,

and mesh formats. Nerfacto is a method implemented by Nerstudio, which leverages

the modular design of the framework to combine components from recent NeRF

implementations and achieve a balance of speed and quality. This approach aims to

achieve a balance between speed and quality in NeRF models, maintaining Ćexibility

for future modiĄcations. The nerfacto method incorporates optimized camera views,

ray generation and sampling strategies, and scene contraction techniques to efficiently

and effectively process and render 3D scenes. In our experiments, we use nerfacto

to generate novel views and export meshes. Because the 3D Gaussian splats are

not necessarily aligned with the surface, the original Gaussian Splatting method

does not allow for a good mesh reconstruction. Therefore, for mesh generation,

we use a variation of the original method: Surface-Aligned Gaussian Splatting
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(SuGaR) [84], which enables a better mesh reconstruction. The key to better mesh

reconstruction in SuGaR is the introduction of a regularization term designed to

align the splats/gaussians closely with the surface geometry of the scene. This

regularization term encourages the Gaussians to align with and accurately capture

the geometry of the scene, thus facilitating a better mesh reconstruction process.

4.2.3 Results and Discussion

We compare the three approaches for the Ądelity of the reconstructed geometry as

well as novel-view synthesis applications. The qualitative results comparing mesh

reconstructions from our experiments are illustrated in Fig. 13. We observe that

SuGaR is able to preserve surface textures and capture Ąne-scale geometric features

with higher Ądelity better than nerfacto. Overall, photogrammetry still excels in

geometric accuracy and detailed surface structure. In terms of novel view synthesis,

both Gaussian Splatting and nerfacto exhibited the ability to create highly realistic

scenes with impressive visual coherence across different viewpoints. However, nerfacto

was observed to exhibit a higher tendency to produce artifacts and blurriness,

particularly in areas with sparse or inconsistent image coverage. This suggests that

NeRF encounters challenges in interpolating scene structure and lighting in areas with

Figure 13: Meshes generated from Meshroom (MVS), nerfacto and Surface-Aligned
Guassian Splatting (SuGaR)
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Figure 14: Novel views generated by 3D Gaussian Splatting and NeRF (nerfacto)

insufficient data, resulting in diminished visual quality. On the other hand, Gaussian

Splatting results show higher sharpness and realistic shadows, leading to more photo-

realistic results. Representative samples that illustrate these differences in synthesis

quality are displayed in Fig. 14, which showcase the comparative renderings from

similar novel viewpoints. Since Gaussian Splatting achieves high-quality renderings

at high frame rates, it holds signiĄcant potential for applications such as real-time

visualization and virtual tourism. This technique could be instrumental in delivering

immersive experiences of heritage sites, enhancing user engagement.

4.3 Level of Detail 3 (LOD3) Modelling

4.3.1 Background and Related Work

BIM Ąnds extensive use in architecture, structural engineering, and construction

industries for 3D digital representations of buildings. However, BIM modelling

frameworks often require signiĄcant time and effort, leading to various errors and

necessitating manual inspection or rule set development [85].

In contrast, CityGML 3.0 deĄnes four levels of abstraction, ranging from LOD 0-3,

as discussed in Chapter 2, providing a standardized approach to represent buildings

and city-scale data. It facilitates the classiĄcation of computational building models

for various applications, from urban planning to structural analysis. While detailed

models derived from BIM or from techniques like MVS are essential for certain

applications, others beneĄt from the simpliĄed geometric primitives of LOD models.
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Figure 15: Result of Grounding DINO + SAM with text prompt: domes

However, existing methodologies for automated 3D reconstruction often face

challenges at higher LODs, lacking robustness and semantic understanding or

requiring manual intervention [86]. The choice of LOD depends on the speciĄc

requirements of the application or use case. For instance, urban planners may prefer

LOD2 models to visualize and analyze the general layout of a city.

In the context of heritage buildings, LOD3 models hold signiĄcance as they capture

building semantics, enable abstract representation, and facilitate documentation,

structural analysis, and integration into digital urban models [87, 88].

4.3.2 Implementation Details

In our extended workĆow for LOD3 construction, we enhance the pipeline initially

proposed in [86], which aims to generate LOD3 models of stone masonry buildings

automatically.

We introduce the use of zero-shot approach that integrates the SAM [43] and

Grounding DINO [44] for the detection and generation of 2D masks of architectural

features in facade images, which are further used for automated generation of

LOD3 models. Integration of SAM and Grounding DINO allows for detecting and

segmenting objects or regions in images based on arbitrary text inputs. This approach

was proposed in Grounded SAM [89]. It is effective for a wide array of tasks, across

both common and long-tail object categories. It Ąrst uses Grounding DINO to

identify objects with text and then applies SAM for mask generation. As discussed
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Figure 16: Matching Ąltered key points across two views

earlier, SAM is a foundation model for image segmentation that enables zero-shot

transfer to new image distributions and tasks by interpreting prompts that specify

what to segment within an image. Grounding DINO is an open-set object detector

that employs a transformer-based architecture and enables the detection of arbitrary

objects by processing text input. The combination of these two models signiĄcantly

streamlines our workĆow, does semantic feature extraction enabling us to identify

objects of interest in the image like, like windows, doors, stairs, domes, pillars, frames,

etc., as depicted in Fig. 15 and eliminates the need for manual image annotations,

which are often expensive and labour-intensive to create and also does not require

further training of the network.

To construct a LOD2 model, we utilize point clouds generated from Meshroom

and employ the PolyĄt framework [5]. This method starts with the extraction of

planar primitives from the point cloud using RANSAC. These are further reĄned

through merging and Ątting new planes, coupled with computing intersections to

propose candidate faces. An optimal subset of faces is chosen through binary linear

programming optimization, ensuring the resulting polygonal surface model is both

manifold and watertight. We use the Gurobi optimizer in our experiments. This

resulting reconstruction is the LOD2 model, a lightweight polygonal surface model

that preserves sharp features and is resilient against noise and outliers.

Further, we generate segmented masks for doors and windows in all captured facade

images of the building using SAM + Grounding DINO. [90]. To further elevate

the LOD2 models to LOD3, we integrate the boundaries of the openings (windows,

doors) detected by triangulating them. The triangulation is achieved through a series

36



of steps starting with the detection and matching of key points between two views

using the SIFT algorithm [91]. The detected key points undergo a Ąltering process,

ensuring that only those on the same plane (the building facade) are considered for

further processing. The correspondence between these Ąltered points across views is

established through their SIFT descriptors, further which homography matrix H is

computed using the Direct Linear Transformation (DLT) algorithm [38] which maps

points xi in one plane to corresponding points x
′

i
in another plane. This is depicted

in Fig. 16. The correspondences relate to H as Eq. (3).

x′

i
= Hxi (3)

Subsequently, the process of triangulating these point correspondences to 3D space is

based on epipolar geometry, using the camera projection matrices derived from SfM

camera poses, as discussed in Chapter 2.

Finally, these openings are geometrically subtracted from the LOD2 models to obtain

LOD3 models using implementation from FreeCAD library [92]. Our entire workĆow

for generating LOD3 from UAV images is depicted in Fig. 17.

Figure 17: Overview of the workĆow for LOD3 generation
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4.3.3 Results and Discussion

Figure 18: Sample results of generated LOD2 and LOD3 models on our dataset.

Our approach in utilizing open-vocabulary detection and segmentation works well

for extracting building semantics like different architectural elements heavily present

in heritage buildings. We have successfully demonstrated its use to elevate LOD2

models to LOD3 models in an automated manner, signiĄcantly streamlining existing

pipelines. Visual comparison of MVS mesh, LOD2 and LOD3 results from our

experiments for three buildings in our dataset are depicted in Fig. 18. Statistics

of some results are given in Tab. 2.
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Table 4: Statistics of reconstructed LOD models

Building # Vertices

in input

Point Cloud

# Faces in

LOD2

# Faces in

LOD3

Maison Louis-Hippolyte Lafontaine 972 K 1092 1366
St. Thomas More Church 827 K 462 322
Gurdwara Guru Nanak Darbar 1.06 M 1180 1579
Westmount City Hall 1.01 M 364 861
Resurrection Chapel 656 K 2342 1297

4.4 Conclusion

In this chapter, we have explored various methods and techniques for reconstructing

and modelling heritage buildings at different LODs. By leveraging advancements in

computer vision, machine learning, and geometric modelling, we aimed to address the

challenges associated with capturing, representing, and preserving cultural sites.

First, we discussed scene representation techniques, including SfM, MVS, and

recent advancements such as NeRFs and Gaussian Splatting. Moving on to LOD

modelling, we presented an extended workĆow that integrates semantic segmentation

models with geometric reconstruction techniques to automatically generate detailed

representations of heritage buildings. By integrating SAM and Grounding DINO

for object detection and segmentation, we showcased the ability to derive building

semantics and upgrade LOD2 models to LOD3 models automatically.

Our results indicate that the proposed approaches offer signiĄcant advancements

in the Ąeld of heritage building reconstruction. Photogrammetry techniques excel

in geometric accuracy and surface structure detailing, while NeRFs and Gaussian

Splatting show promise in novel view synthesis applications. Furthermore, integration

of semantic segmentation models streamlines the process of generating detailed LOD3

models, providing valuable insights for documentation, preservation, and analysis of

cultural heritage sites.

In conclusion, the methodologies presented in this chapter contribute towards

the advancement of digital preservation and visualization of heritage buildings.

Combining state-of-the-art reconstruction techniques with semantic understanding,

we pave the way for more efficient and accurate representations of cultural heritage,

fostering greater accessibility and appreciation of our architectural legacy.
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Chapter 5

Conclusions and Future Work

5.1 Introduction

Preserving and documenting cultural heritage is a multifaceted endeavour that

requires the integration of diverse technologies and methodologies. Over the years,

advancements in Ąelds such as computer vision, remote sensing, and UAV technology

have reshaped our approach to heritage preservation. These technologies present

unprecedented opportunities to capture, analyze, and interpret heritage sites in three

dimensions, providing valuable insights into our shared history and cultural identity.

In recent years, the adoption of UAVs has emerged as a game-changer in heritage

documentation. Equipped with high-resolution cameras and LiDAR sensors, UAVs

enable researchers to capture detailed aerial imagery and generate precise 3D models

of heritage structures. This aerial perspective not only facilitates the identiĄcation

of structural vulnerabilities and preservation needs but also allows for the creation of

immersive virtual experiences that engage audiences in exploration and appreciation

of cultural heritage.

Furthermore, the integration of advanced reconstruction techniques, such as NeRF

and Gaussian Splatting, has revolutionized the way we visualize and interact with

heritage sites in digital environments. These techniques enable the generation of

photorealistic renderings as well as interactive 3D models, enhancing our ability to

study and interpret heritage buildings with unprecedented Ądelity and detail. This

fusion of cutting-edge technologies empowers researchers and preservationists to delve

deeper into the architectural intricacies and historical signiĄcance of heritage sites.
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In this thesis, we have embarked on a journey to explore the intersection of UAV-based

data collection and advanced reconstruction methodologies for heritage preservation.

Through the meticulous documentation of 17 heritage buildings in Montreal, Canada,

using low-cost UAVs, we have created the Heritage3DMtl datasetŮa comprehensive

resource for researchers and practitioners in the Ąeld of heritage studies. By

leveraging UAV-derived data and state-of-the-art reconstruction techniques, we have

demonstrated the transformative potential of these technologies in the preservation

and interpretation of cultural heritage.

5.2 Contributions

The research presented in this thesis contributes signiĄcantly to the advancement of

3D heritage reconstruction and preservation through the following key contributions:

1. Heritage3DMtl Dataset: The Heritage3DMtl dataset democratizes access

to high-quality 3D data for heritage buildings. By capturing detailed geometric

information and visual representations of 17 heritage buildings in Montreal,

Canada, using UAVs, this dataset provides a valuable resource for researchers

and practitioners in the Ąelds of computer vision, remote sensing, and heritage

studies.

2. Low-Cost Capture Process: The development of an effective capture process

for detailed structures utilizing UAV-based data collection underscores the

cost-effectiveness and scalability of this approach. By leveraging consumer-

grade UAV platforms equipped with cameras, researchers can gather data with

minimal upfront investment, facilitating large-scale data acquisition for heritage

reconstruction projects.

3. Advancements in Reconstruction Techniques: The exploration and

demonstration of state-of-the-art reconstruction techniques, including NeRF

and Gaussian Splatting, highlight their efficacy in generating realistic and

detailed renderings of heritage buildings. Additionally, the investigation of LOD

modelling using open vocabulary zero-shot detection and segmentation show-

cases the potential for semantic understanding to enhance the interpretability

and utility of reconstructed models.

41



5.3 Future Work

While this research represents a signiĄcant step forward in 3D heritage reconstruction

and preservation, several avenues for future work warrant exploration:

1. Integration of Semantic Segmentation: We aim to explore the integration

of semantic segmentation techniques to enhance LOD3 models beyond doors

and window openings. By incorporating intricate surface structures such as

walls, roofs, and window/door frames, we can create more comprehensive and

detailed 3D models of heritage buildings, capturing their architectural richness

and complexity in greater detail.

2. Multi-Modal Integration: Exploring the integration of multi-modal data

sources, such as UAV imagery, LiDAR, and ground-based photographs, could

enhance the accuracy and completeness of reconstructed models.

3. Real-Time Visualization: Investigating real-time visualization techniques

for heritage preservation and education purposes could enable immersive and

interactive experiences for stakeholders and the public.

In conclusion, the Ąndings presented in this thesis underscore the transformative

potential of UAV-based data collection and advanced reconstruction techniques in

the domain of 3D heritage reconstruction and preservation. By leveraging these

technologies responsibly and collaboratively, researchers can contribute to the digital

documentation, preservation, and interpretation of our shared cultural heritage for

future generations.
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Appendix

Paper Submission to ECCV 2024: This work has resulted in a research paper

that has been submitted to the European Conference on Computer Vision (ECCV)

2024 and is currently under review. Below is the abstract of the submitted paper:

Abstract: We present an extensive real-world, multi-view UAV dataset of 17

architecturally diverse heritage buildings in Montreal, along with estimated camera

poses, point clouds, and dense triangle meshes reconstructed using open-source

photogrammetry tools. This dataset not only includes Level of Detail 2 (LOD2)

and Level of Detail 3 (LOD3) models in alignment with the CityGML standard

but is also openly available to foster further research in 3D heritage reconstruction,

structural analysis, and cultural heritage preservation, among other areas. Our

discussion emphasizes the efficient and effective use of low-cost consumer-grade UAVs

and the meticulous capture process employed. After careful consideration, we opted

for UAVs over available LiDAR technology or the more accessible smartphone cameras

due to the comprehensive reach that UAVs can provide. This choice enabled us to

create detailed 3D geometric representations covering regions and details not easily

achievable with other modalities. Furthermore, as a demonstration of its applicability,

we reconstruct LOD3 models using our dataset. We also test the dataset with

Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting for novel view generation,

showcasing its versatility. Compared to many other heritage datasets, which are often

quite small and cover only one or two monuments, our dataset stands out for its

extensive scope, diversity, and detail.
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