
Multi-Valued Model Checking IoT and Intelligent
Systems with Trust and Commitment Protocols

Ghalya Alwhishi

A Thesis

In the Concordia Institute

for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy (Information Systems Engineering) at

Concordia University

Montréal, Québec, Canada

April 2024

© Ghalya Alwhishi, 2024



Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Ghalya Alwhishi

Entitled: Multi-Valued Model Checking IoT and Intelligent Systems

with Trust and Commitment Protocols

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Information Systems Engineering)

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Fariborz Haghighat

External Examiner
Dr. Raphaël Khoury

Internal Program Examiner
Dr. Juergen Rilling

Examiner
Dr. Roch Glitho

Examiner
Dr. Rachida Dssouli

Supervisor
Dr. Jamal Bentahar

Approved by
Dr. Jun Yan, Graduate Program Director

February 8, 2024

Date of Defense
Dr. Mourad Debbabi , Dean
Faculty of Engineering and Computer Science



Abstract

Multi-Valued Model Checking IoT and Intelligent Systems with Trust and
Commitment Protocols

Ghalya Alwhishi, Ph.D.

Concordia University, 2024

In the era of connectivity, numerous domains utilize multi-sensor Internet of Things

(IoT) and Intelligent Systems (IS) applications, which involve complex interactions among

numerous components in open environments. This complexity challenges the verification of

these systems’ reliability and efficiency. This study pioneers the verification of IoT applica-

tions and intelligent systems within multi-source data environments, employing multi-agent

commitment and trust protocols, particularly in uncertain and inconsistent settings.

Our research introduces efficient frameworks to model and verify these systems, in-

corporating commitment and trust protocols in settings characterized by uncertainty and

inconsistency. We extend existing logics of commitment CTLcc and CTLc and the logic of

trust TCTL to multi-valued cases for reasoning about uncertainty and inconsistency. We

introduce 3v-CTLc and 3v-CTLcc, three-valued logics of commitment for reasoning about

uncertainty, and 4v-CTLc and 4v-CTLcc, four-valued logics of commitment for reasoning

about inconsistency. In the context of trust, we introduce 3v-TCTL and 4v-TCTL, multi-

valued logics for reasoning about uncertainty and inconsistency over systems with trust

protocols.

To address the complexity and time needed for developing direct algorithms, coupled

with the scarcity of multi-valued model checking tools, we developed reduction algorithms.

These algorithms transform the introduced multi-valued logics of commitment and trust

into their classical case or into CTL, facilitating interaction with efficient model checkers

such as MCMAS+ and MCMASt, and NuSMV, respectively.

iii



To demonstrate the practicality and applicability of the tool in real settings, we presented

and reported experimental results over multiple IoT and IS applications in healthcare,

finance, and smart buildings. Our findings indicate that the proposed approaches and the

MV-Checker tool are highly efficient and scalable, providing accurate results under varying

conditions.

iv



Acknowledgments
First and foremost, I offer my deepest thanks to Allah Almighty, who said in the Holy Book:

؜ޙَ٭ًِ݄؇) ༟َܹ٭۹ََْ ِ Մ ّ֟ ՃՂا ڣݯَْܭُ وႤَ၍َنَ ۚ ُ ᕡَّأَْ޺ ّܝَُ݆ ᕤَْረ ؇َ݁ ۹ََగ ّ֟ ఒَ༟َو) (”And He taught you that which you knew not, and

the bounty of Allah to you has been great.”).

At the end of this stage in my research journey, I find myself overwhelmed with gratitude

for the unwavering support, invaluable guidance and feedback provided by my supervisor,

Dr. Jamal Bentahar, during my research work. I am thankful for his belief in me and for

introducing me to the attractive and challenging topic of Multi-valued Model Checking. His

boundless expertise has enriched this research with valuable contributions.

I am indebted to my esteemed research committee members Dr. Rachida Dssouli, Dr. Roch

Glitho, and Dr.Olga Ormandjieva, for their invaluable guidance and support. Their exper-

tise and guidance greatly enhanced my research.

Special thanks to the Ministry of Higher Education, Libya, and Concordia University for the

financial support. Big thanks to my father-in-law for following up on my study file.

I want to thank my colleagues Dr. Nagat Drawel for her great support in the early stages

of my study and Narges Bahrloo for sharing her research interest and valuable insights. I

am grateful to the researchers whose valuable work formed the foundation of my research,

Amine Laarj, Dr. Chechik, Dr. Elkholy and Dr. Drawel. To my dear brother, Dr. Ahmed

Elwhishi, your support during all the phases of my study has been invaluable.

For their endless encouragement, my heartfelt thanks to my parents, brothers, and sisters.

An extraordinary thanks, filled with love, to my husband, Najeh, and my children, Batool,

Adam, and Ibrahim. To my little ones, Ahmed and Elias, more playtime awaits, and rest

assured that when you wake up at night, I’ll be by your side, not at my desk. Love you all!

v



To my late father’s soul, my mother and my family,

with eternally love and gratitude.

To my teachers who taught me throughout my studies from primary school to

doctorate, with my deepest thanks and appreciation.

vi



Contents

List of Figures xiii

List of Tables xvi

1 Introduction 1

1.1 Context of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The Internet of Things (IoT) . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Intelligent Systems (IS) . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Trust and Commitment in IoT/IS . . . . . . . . . . . . . . . . . . . 6

1.1.4 Model Checking Trust and Commitment Systems . . . . . . . . . . . 7

1.1.5 Multi-Valued Model Checking . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Problems and Research Questions . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6 Overview of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Background 27

2.1 Computation Tree Logic (CTL) . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 CTL model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.3 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vii



2.2 Computational Logic of Social Conditional Commitments (CTLcc) . . . . . 29

2.2.1 CTLcc model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.3 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Computational Logic of Social Unconditional Commitments (CTLc) . . . . 31

2.3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Computational Logics of Trust (TCTL) . . . . . . . . . . . . . . . . . . . . 32

2.4.1 TCTL model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.3 Semantics: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Lattice Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.1 Three-Valued Lattice Logic (3v-Logic) . . . . . . . . . . . . . . . . . 35

2.5.2 Four-Valued Lattice Logic (4v-Logic) . . . . . . . . . . . . . . . . . . 35

2.5.3 Join-Irreducible Elements . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Multi-Valued CTL (mv-CTL) . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6.1 mv-CTL model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6.3 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7.1 Classical Model Checking . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7.2 Multi-Valued Model Checking . . . . . . . . . . . . . . . . . . . . . . 41

3 Applying mv-CTL to IoT Domain 43

3.1 Motivation and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Modeling Uncertainty in IoT Systems with 3v-CTL . . . . . . . . . . . . . . 44

3.3 Modeling Inconsistency in IoT Systems with 4v-CTL . . . . . . . . . . . . . 45

3.4 Reduction Algorithm of 3v-CTL into CTL . . . . . . . . . . . . . . . . . . . 48

3.4.1 Soundness of Algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . 53

viii



4 Modeling and Verifying IoT/IS Systems with mv-Commitment Logics 55

4.1 Overview and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Modeling Uncertainty in IoT Systems with Three-Valued Conditional Com-

mitments (3v-CTLcc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 3v-CTLcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.2 3v-CTLcc IoT model . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.3 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.4 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Modeling Inconsistency in IoT/IS Systems with Four-Valued Conditional

Commitments (4v-CTLcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 4v-CTLcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.2 4v-CTLcc IoT model . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.3 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.4 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Modeling Uncertainty in IoT/IS with Three-Valued Unconditional Commit-

ments (3v-CTLc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.1 3v-CTLc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.2 3v-CTLc IS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.3 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.4 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Modeling Inconsistency in IS/IoT with Four-Valued Unconditional Commit-

ments (4v-CTLc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.1 4v-CTLc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.2 4v-CTLc IS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.3 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.4 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Reduction-Based Multi-Valued Model Checking mv-CTLcc and mv-CTLc . 66

4.6.1 Reduction Algorithm from 3v-CTLcc to CTLcc . . . . . . . . . . . 66

4.6.2 Soundness of Algorithm 2 . . . . . . . . . . . . . . . . . . . . . . . . 69

ix



4.6.3 Reduction Algorithm from 4v-CTLcc to CTLcc . . . . . . . . . . . 70

4.6.4 Soundness of Algorithm 3 . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6.5 Reduction Algorithm from 3v-CTLc to CTL . . . . . . . . . . . . . . 74

4.6.6 Soundness of Algorithm 4 . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6.7 Reducing 4v-CTLc to CTL . . . . . . . . . . . . . . . . . . . . . . . 80

4.6.8 Soundness of Algorithm 5 . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7 Computational Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . 82

4.7.1 Time Complexity of Model Checking 3v-CTLcc through Transforma-

tion to CTLcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.7.2 Space Complexity of Model Checking 3v-CTLcc through Transfor-

mation to CTLcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.7.3 Time Complexity of Model Checking 3v-CTLc through Transforma-

tion to CTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7.4 Space Complexity of of Model Checking 3v-CTLc through Transfor-

mation to CTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Modeling and Verifying IoT/IS Systems with mv-Trust Logics 89

5.1 Overview and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Modelling Uncertainty over IS/IoT with mv-Trust) . . . . . . . . . . . . . . 90

5.2.1 3v-TCTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.2 Model of 3v-TCTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.3 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.4 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Modelling Inconsistency over IoT/IS with mv-Trust) . . . . . . . . . . . . . 91

5.3.1 4v-TCTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.2 Model of 4v-TCTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.3 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.4 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Reduction-Based Multi-Valued Model Checking mv-TCTL . . . . . . . . . . 93

x



5.4.1 Reducing Algorithm of 3v-TCTL to TCTL . . . . . . . . . . . . . . 93

5.4.2 Soundness of Algorithm 6 . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.3 Reducing Algorithm of 3v-TCTL to CTL . . . . . . . . . . . . . . . 95

5.5 Computational Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . 97

5.5.1 Time Complexity of Model Checking 3v-TCTL through Transforma-

tion to TCTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5.2 Space Complexity of Model Checking 3v-TCTL through Transfor-

mation to TCTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5.3 Time Complexity of Model Checking 3v-TCTL through Transforma-

tion to CTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5.4 Space Complexity of Model Checking 3v-TCTL through Transfor-

mation to CTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 MV-Checker: A Software Tool for Multi-Valued Model Checking 103

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 MV-Checker Tool: Internal Design . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.1 Use Case Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3.2 Sequence Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3.3 Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4 MV-Checker Interface (Main Screen) . . . . . . . . . . . . . . . . . . . . . 116

7 Application Domains and Case Studies 118

7.1 Modeling and Verifying 3v-CTL and Commitment Systems with Uncertainty 119

7.1.1 Case study 1: A 3v-CTL Smart Home System with Uncertainty . . 119

7.1.2 Case study 2: A 3v-CTLcc Smart Hospital System with Uncertainty 125

7.1.3 Case Study 3: A 3v-CTLc Intelligent Mortgage System with Uncer-

tainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.1.4 Comparison with the Reduction Approach Using MCMAS+ and NuSMV134

7.2 Modeling and Verifying Commitment Systems with Inconsistency . . . . . . 137

xi



7.2.1 Case Study 4: A 4v-CTLc Smart Mortgage System with Inconsistency 137

7.3 Modeling and Verifying Trust Systems with Uncertainty . . . . . . . . . . . 139

7.3.1 Case Study 5: A 3v-TCTL Blockchain-Based Drug Traceability Sys-

tem under Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.3.2 Case study 6: Re-Verifying the Blockchain-Based Drug Traceability

System by Launching NuSMV . . . . . . . . . . . . . . . . . . . . . 146

7.4 Modeling and Verifying Trust Systems with Inconsistency . . . . . . . . . . 149

7.4.1 Case Study 7: A 4v-TCTL Blockchain-Based Health Record System

with Inconsistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.5 Comparing MV-Checker Performance with the BT Tool for Verifying TCTL

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8 Conclusion and Future Work 156

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Bibliography 162

xii



List of Figures

Figure 1.1 Overview of the dissertation . . . . . . . . . . . . . . . . . . . . . . 25

Figure 2.1 An example of the CTLcc model . . . . . . . . . . . . . . . . . . . . 32

Figure 2.2 Types of lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 2.3 (a) The truth table of three-valued lattice; (b) Three-valued lattice L3 36

Figure 2.4 (a) The truth values taken from the product algebra 2× 2; (b) Four-

valued lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 2.5 An example of an mv-CTL model mapped to a three-valued lattice . 38

Figure 3.1 A scenario of a 3-valued smart coffee machine model . . . . . . . . . 45

Figure 3.2 4v-CTL model of a Smart Glucose Monitoring system (A) . . . . . . 46

Figure 3.3 (a) 4v-sets of variable InfoSend; (b) 4v-sets of variable Alarm; (c)

4v-sets of (∥InfoSend ∥ ⊓ ∥ Alarm∥) . . . . . . . . . . . . . . . . . . . . . . 47

Figure 3.4 4v-relation of model A . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 3.5 Transforming the 3v-model DM into two two-valued models DT and

DF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 3.6 (a) The truth table of algorithm 1 when it starts by verifying DT and

(b) the truth table when it starts by verifying DF . . . . . . . . . . . . . . 54

Figure 4.1 The chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 4.2 An example of conditional commitment model with uncertainty . . . 59

Figure 4.3 A scenario of a Smart Daisies Diagnoses system . . . . . . . . . . . . 61

Figure 4.4 The truth table from Algorithm 2 . . . . . . . . . . . . . . . . . . . 70

xiii



Figure 4.5 Transforming the 4v-model UM into two two-valued models KT and

KF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 4.6 The truth table from Algorithm 3 . . . . . . . . . . . . . . . . . . . 74

Figure 4.7 Transformation example from 3v-CTLc to CTL (only the models con-

sider M as true). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 5.1 Transformation example from mv-TCTL to CTL (the model considers

M as true) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 6.1 A use case diagram of the MV-Checker software tool interacts with

MCMAS+ for commitment and MCMAST for trust . . . . . . . . . . . . . 109

Figure 6.2 A use case diagram of the MV-Checker software tool interacts with

NuSMV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure 6.3 A sequence diagram of the MV-Checker software tool (the additional

functionalities of verifying the classical CTLC, TCTL and CTL directly or

after transforming it from 3v/4v-CTL) . . . . . . . . . . . . . . . . . . . . . 112

Figure 6.4 A sequence diagram of the MV-Checker software tool (data exchange

between the user, MV-Checker and MCMASs) . . . . . . . . . . . . . . . . 113

Figure 6.5 A sequence diagram of the MV-Checker software tool (data exchange

between the user, MV-Checker and NuSMV) . . . . . . . . . . . . . . . . . 114

Figure 6.6 A class diagram of the MV-Checker software tool(Main classes) . . . 115

Figure 6.7 The main screen shows the uploading of the 3v-TCTL model encoded

in 3v-VISPL as an input language . . . . . . . . . . . . . . . . . . . . . . . 117

Figure 7.1 3v-ISPL+ and 4v-VISPL input languages . . . . . . . . . . . . . . . 119

Figure 7.2 A Smart Home system scenario . . . . . . . . . . . . . . . . . . . . 120

Figure 7.3 Uploading 3v-CTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Figure 7.4 The positive and negative cuts derived from the 3v-CTL model . . 123

Figure 7.5 The verification results of the positive and negative cuts . . . . . . 123

Figure 7.6 Example of a scenario in a Smart Hospital system . . . . . . . . . . 126

Figure 7.7 Uploading 3v-CTLcc model . . . . . . . . . . . . . . . . . . . . . . . 128

Figure 7.8 Verification results of the two-valued models derived from 3v-CTLcc 128

xiv



Figure 7.9 A Smart Mortgage system based on a smart contract . . . . . . . . . 131

Figure 7.10 Uploading 3v-CTLc model . . . . . . . . . . . . . . . . . . . . . . . 133

Figure 7.11 The verification results of the two models after calling NuSMV . . . 133

Figure 7.12 The verification results of the two CTLc models after calling MCMAS 135

Figure 7.13 Comparison between the two transformation methods of 3v − CTLc,

the blue results for CTLc and the brown for CTL. . . . . . . . . . . . . . . 136

Figure 7.14 Upload the 4v-CTLc and generate the two-valued models . . . . . . 138

Figure 7.15 The two-valued CTLc models and the results after launching NuSMV 138

Figure 7.16 A Blockchain-Based Drug Traceability model with 3v-TCTL under

uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Figure 7.17 The two classical TCTL obtained from the transformation of the 3v-

TCTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Figure 7.18 The verification results over the two transformed classical TCTL models144

Figure 7.19 Screen shows the transforming of 3v-TCTL model with the formulae

to TCTL and then to CTL to launch NuSMV . . . . . . . . . . . . . . . . . 147

Figure 7.20 Verification results of verifying the transformed 3v-TCTL model to

CTL using NuSMV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Figure 7.21 Comparison between the results of the 3v-TCTL verification ap-

proaches, the blue results using MCMASt and the brown results using NuSMV.148

Figure 7.22 A Blockchain-Based Health Record system with 4v-TCTL under in-

consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Figure 7.23 Comparing the performance of MV-Checker with the BT Java toolkit 155

xv



List of Tables

Table 1.1 Comparison between the list of publications reviewed for this proposal

with respect to the proposed criteria . . . . . . . . . . . . . . . . . . . . . . 12

Table 1.2 Our methodology steps with contributions . . . . . . . . . . . . . . . 19

Table 6.1 Comparison between the features of the proposed tool and other tools

with respect to the proposed criteria . . . . . . . . . . . . . . . . . . . . . . 106

Table 7.1 The verification results of the Smart Home model . . . . . . . . . . . 124

Table 7.2 The results of scalability after running the tool over the positive and

negative models ten times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Table 7.3 The verification results of the Smart Hospital model . . . . . . . . . . 129

Table 7.4 Scalability results of running the tool ten times, starting with seven

and ending with 70 agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Table 7.5 The results of verifying the 3v-Smart Mortgage system . . . . . . . . 134

Table 7.6 Scalability results of running the MV-Checker tool six times over the

two CTL models The times reported are the average of the models and for-

mulae transformation times and the verification times. . . . . . . . . . . . 135

Table 7.7 The scalability results of running the tool over two two-valued CTLc

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Table 7.8 The results of verifying the 4v-Smart Mortgage system . . . . . . . . 139

Table 7.9 Verification results of the Smart Drug Traceability system . . . . . . 145

Table 7.10 Results of scalability after running the tool over the positive and neg-

ative models ten times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xvi



Table 7.11 Scalability results of running the MV-Checker six times over the two

transformed CTL models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Table 7.12 Verification results of the Blockchain-Based Health Record System with

4v-TCTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Table 7.13 Scalability results after running the MV-Checker over the classical

models seven times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xvii



Chapter 1

Introduction

This chapter covers:

• Context of Research

• Motivations

• Problems and Research Questions

• Objectives

• Contributions

• Overview of the Dissertation

1.1 Context of Research

As the research focuses on the agent’s communications in IS and IoT, we start by providing

a comprehensive understanding of the interactions and behaviors within IoT and IS systems.

We commence by precisely delineating IoT and IS, illuminating their distinctive features

and functionalities. Then, we explain how IoT and IS are considered multi-agent systems

(MAS).

1



1.1.1 The Internet of Things (IoT)

The Internet of Things (IoT) [72, 56, 65] refers to a network of interconnected devices or

things that can communicate and share data over the Internet. These devices can range

from everyday objects like smartphones, watches, and home appliances to more specialized

equipment in industries like healthcare, transportation, and manufacturing. An IoT system

typically consists of the following components:

• Things or Devices: These are the physical objects or devices that are equipped with

sensors, actuators, and communication hardware to collect and transmit data. Exam-

ples include sensors in a smart thermostat, a fitness tracker, or a smart refrigerator.

• Sensors and Actuators: Sensors gather data from the environment, such as tempera-

ture, humidity, light, motion, etc. Actuators, on the other hand, can perform actions

based on received data, like adjusting the temperature, locking a door, or turning on

a light.

• Connectivity: This refers to the network that allows the devices to communicate with

each other and with external systems. This can be achieved through Wi-Fi, Bluetooth,

cellular networks, or other wireless technologies.

• Data Processing and Storage: Once the data is collected, it needs to be processed and

sometimes stored for further analysis or action. This can be done on the device itself,

on a local gateway, or in the cloud.

• User Interface: This is how users interact with the IoT system. It can be through a

mobile app, a web interface, voice commands, or other means.

• Applications and Services: These are the software applications or services that provide

the logic and functionality for the IoT system. They may analyze the data, trigger

actions, or provide insights based on the collected information.

• Security and Privacy: IoT systems need to have robust security measures in place to

protect the data and ensure the integrity of the devices. This includes authentication,

encryption, and secure update mechanisms.

2



• Analytics and Machine Learning: These technologies can be used to extract meaning-

ful insights from the vast amounts of data generated by IoT devices. This can lead to

improved decision-making and automation.

IoT technology has proved its efficiency and importance in different domains. For instance,

IoT in healthcare has the potential to revolutionize patient care, enhance healthcare de-

livery, and improve outcomes [68, 1]. In the supply chain, IoT is revolutionizing supply

chain management by providing unprecedented visibility and control over the entire pro-

cess. It enables businesses to make data-driven decisions, reduce costs, improve efficiency,

and enhance customer satisfaction.[69, 63]

1.1.2 Intelligent Systems (IS)

Intelligent Systems (IS) refers to computer-based systems that are designed to mimic

human-like intelligence and perform tasks that typically require human intelligence. These

systems are capable of learning, reasoning, problem-solving, and making decisions based on

data and algorithms [48, 16]. Below are some of the key components and characteristics of

IS:

• Learning Capability: Intelligent systems have the ability to learn from data. This

can be through supervised learning, where they are trained on labeled examples, or

through unsupervised learning, where they discover patterns and relationships in data

without explicit guidance.

• Reasoning and Problem-Solving: These systems can analyze information, make infer-

ences, and solve complex problems. They can follow logical rules and make decisions

based on available information.

• Adaptability: Intelligent systems are designed to adapt and evolve over time. They

can adjust their behavior based on changing circumstances or new data.

• Autonomy: Intelligent systems can operate with a degree of autonomy, making deci-

sions and taking actions without constant human intervention.

3



• Data-Driven Decision Making: Intelligent systems rely heavily on data to make in-

formed decisions. They can process large volumes of data to identify patterns, trends,

and anomalies.

IoT and IS are Multi-agent Systems

Multi-Agent Systems (MAS) is a field of artificial intelligence and computer science that

deals with systems composed of multiple interacting intelligent agents. An agent refers to a

computational entity or software program that can perceive its environment, reason about

it, make decisions, and take actions to achieve specific goals [83, 61].

The Internet of Things (IoT) and Information Systems (IS) can be considered Multi-

Agent Systems based on the following:

IoT as a Multi-Agent System:

• Agents (Things): In an IoT environment, the “things” are the agents. These can be

any physical device with sensors and actuators, such as smartphones, smart home

appliances, industrial machines, etc.

• Interaction and Communication: IoT devices interact with each other and with hu-

mans through various communication protocols (like Wi-Fi, Bluetooth, Zigbee, etc.).

They can share information, receive commands, and coordinate actions.

• Autonomous Decision-Making: IoT devices often have some level of decision-making

capabilities. For example, a smart thermostat can autonomously adjust the temper-

ature based on the preferences and detected occupancy.

• Goal-Oriented Behavior: Each IoT device is designed with specific goals or tasks in

mind. For instance, a smart fridge’s goal might be to maintain a certain temperature

and notify when supplies are running low.

(IS) as a Multi-Agent System:

An intelligent system can be considered a multi-agent system (MAS) when it is designed to

consist of multiple autonomous agents that interact with each other and the environment

to achieve specific goals.

4



In both cases, the key elements that define IoT and IS as Multi-Agent Systems include

agents, interaction and communication, autonomous decision-making, and goal-oriented

behavior when multiple agents interact.

Agents in IoT and IS

In an IoT context, agents are software entities that perform tasks autonomously, interact

with other agents or devices, and make decisions based on information they gather [80, 75].

Here are examples of the elements that can play the role of an agent in an IoT system:

• Sensor Agents: These agents collect data from sensors deployed in the IoT network.

They gather information on various environmental parameters such as temperature,

humidity, light levels, etc.

• Actuator Agents: Actuator agents receive instructions or commands from other agents

or systems and take actions in the physical world. For example, they might control

actuators like motors, valves, or switches.

• Communication Agents: Communication agents facilitate the exchange of information

between different devices, sensors, actuators, or other agents in the IoT network. They

handle protocols and data formatting and ensure reliable data transmission.

• Decision-Making Agents: These agents are responsible for making decisions based

on the information they receive. They may use predefined rules, machine learning

models, or other algorithms to determine appropriate actions.

• Security Agents: These agents focus on ensuring the security and integrity of data

and communications within the IoT network. They may handle tasks such as authen-

tication, encryption, and access control.

• User Interface Agents: These agents provide a means for users or other systems to

interact with the IoT network. They might handle tasks like displaying information,

receiving user inputs, or providing notifications.

5



In the context of intelligent systems, an “agent” refers to a component or entity that

is capable of perceiving its environment, making decisions, and taking actions to achieve

specific goals or objectives [70]. Here are examples of elements that can play the role of an

agent in an intelligent system:

• Perception Agents: Responsible for collecting data and perceiving information from

various sources. For example, image recognition software that processes visual data

to identify objects.

• Communication Agents: Facilitate the exchange of information between different com-

ponents or entities within the intelligent system. For example, message-passing pro-

tocols in a distributed computing system.

• Execution Agents: Responsible for executing actions or tasks based on instructions

or commands. For example, robotic arms in a manufacturing plant perform specific

tasks like welding or assembling.

• Decision-Making Agents: Make decisions based on available information and pre-

defined rules or algorithms. For example, autonomous vehicles make decisions on

navigation, speed, and lane changes based on sensor data.

In fact, IoT and IS concepts are often integrated. For instance, an intelligent system

might be a component of an IoT system, providing the decision-making and intelligence

layer for processing the data collected by IoT devices [62].

1.1.3 Trust and Commitment in IoT/IS

Trust and commitment protocols play a pivotal role in ensuring the reliability and security

of IoT/IS systems. The main role of commitment and trust in such systems lies in providing

social control that regulates the interactions and relationships among agents. Many for-

malisms and approaches that provide social modelling for commitments and trust in open

systems have been introduced and can be found in literature, [38, 39, 32, 40, 41, 34, 37, 35]

for commitment and [82, 22, 26, 21, 23, 29, 24, 28, 25, 27] for trust. For example, in [27],

6



trust is modeled from a high-level abstraction based on the social behaviors of agents, and

in [35], social commitments are modeled as agreements between two intelligent components,

and they result from communicative actions between their interactions.

1.1.4 Model Checking Trust and Commitment Systems

Model checking systems involving social commitments or trust remains a significant ongoing

challenge across various research domains. This technique generally models the system as

a finite state machine and expresses the formula in the form of a temporal logic formula.

Then, it verifies the model against the formula using a model checker and gives a verification

answer: True (the system satisfied the formula) or False (the system satisfied the formula).

Employing model checking proves to be an effective technique in verifying such systems and

has been used in diverse domains.

In the context of trust, notable efforts have been made. For instance, in [12], an approach

was introduced to model and verify trust models specified in a Colored Petri Net (CPN).

This work presented TCPN, a new modeling formalism enabling evaluating such models

from simulation and model checking perspectives. However, it did not offer a dedicated

model checking technique for verifying trust-based models.

The work in [42] presented a model checking framework specifically designed to verify

trust-based models against both regular and non-regular specifications. The authors mod-

eled their system by introducing an algorithm generating a configuration graph of deter-

ministic pushdown automata (PDA). They employed observation sequences to capture trust

behaviors related to interactions between services and users. Nevertheless, this approach

lacked formal semantics for trust, relying instead on trust pattern languages’ context-free

grammar to infer trust formulae. Furthermore, it proved incapable of formalizing and veri-

fying trust-based autonomous MASs (Multi-Agent Systems).

Recent contributions addressed these limitations by providing efficient frameworks for

modeling and verifying trust-based systems through direct and reduction model checking

techniques. In [22, 29], authors introduced Trust Computation Tree Logic TCTL, a novel

logic for trust incorporating preconditions. They also developed a transformation-based

7



algorithm implemented in a Java toolkit that interacts automatically with the NuSMV

model checker. Another proposal in [24] offered a formal model checking technique focusing

on reasoning about trust relationships among groups of agents and other agents in multi-

agent systems. This technique relied on a newly introduced logic named branching-time

temporal logic (BT). In [26], authors introduced a model checking approach for assessing

degrees of trust among agents in multi-agent systems, introducing a novel logic named

TCTLG.

In the context of commitments, model checking techniques have been instrumen-

tal in validating commitments-based systems. For instance, in [20], authors developed a

framework that extends OWL-P, a language and toolset for protocols, into an ontology

expressed in the Web Ontology Language (OWL). This extension supports the specification

and composition of business protocols entailing commitments. Their framework facilitated

model-checking composite protocols using the SPIN model checker.

In [35], a unified semantic model for social commitments and their operations was in-

troduced. They proposed CTL∗sc, a logic extends CTL∗ by incorporating commitment

modalities alongside a novel definition for assignment and delegation operations. Demon-

strating their model’s efficacy, they showcased automatic verification using NuSMV and

MCMAS symbolic model checkers, utilizing the NetBill protocol as an illustrative case.

Authors in [36] proposed a new logic called CTLC, by extending the temporal logic CTL

with a new modality for social commitments. The proposed approach has shown that the

problem of model checking CTLC can be reduced to the problems of model checking CTLK

(a logic of time and knowledge) or ARCT (Action Restricted CTL). The authors proved the

efficiency of their approach by implementing a verification of Contract Net Protocol modeled

in terms of commitments and associated actions using NuSMV and MCMAS model checkers.

Later in [38], authors modified their CTLC, a temporal logic of commitments for agent

communication by introducing a new logic called CTL+ for reasoning about communicating

commitments and their fulfilment. Moreover, the authors introduced a reduction-based

verification technique to reduce the problem of model checking CTL+ into the problem of

model checking ARCTL (the combination of CTL with action formulae) and the problem

8



of model checking GCTL∗ (a generalized version of CTL∗ with action formulae) to use the

extended NuSMV and the CWB-NC automata-based model checkers.

In [33, 31], authors proposed a new logic named CTLcc, which extends CTL with modal-

ities to represent conditional commitments and their fulfilment over the formalism of in-

terpreted systems. They presented weak (strong) conditional commitment modalities to

capture the different interactions between agents. The difference between these two modal-

ities (weak and strong) is that strong conditional commitments are only established when

there is a possibility to satisfy their conditions, while weak conditional commitments can be

established even if the condition is never satisfied. The authors of this work analyzed the

computational complexity of their approach and conducted the full implementation on top

of the MCMAS model checker. Latter in [32], CTLcc was expanded to encompass additional

actions related to multiagent-based web services, like cancel and delegate, broadening its

applicability to diverse business scenarios.

1.1.5 Multi-Valued Model Checking

As discussed earlier, the proposed classical model checking techniques generate only True

or False answers. These techniques, in many cases, are insufficient to express and verify

models’ behaviors designed under multiple data source settings. In particular, in the case of

uncertainty, inconsistency and multiple degrees of importance. Therefore, model checking

techniques with multiple logics are needed to capture these settings. Multi-valued model

checking has been proposed in several studies [17, 76, 77, 57, 50, 49, 78, 73, 66]. In [17],

the authors proposed a direct multi-valued symbolic model checking technique to reason

about uncertainty and inconsistency in the atomic propositions assigned to the states of

the system and in the transitions between these states. They proposed a new logic called

mv-CTL by extending the logic of CTL by multi-valued modalities that mainly rely on

mutli-valued sets and multi-valued relations. This technique takes as inputs a multi-valued

model and formulae and generates satisfaction degrees (T,M,F ) or (TT, FF, FT, TF ). The

value M refers to “Maybe” as uncertain information. The values FT and TF refer to the

inconsistency or conflict viewpoints between two designers about transitions between states

9



or atomic propositions in particular system states. The values TT and FF refer to the

agreement between the designers about the system transitions and atomic propositions.

Moreover, the authors developed a multi-valued model checker called χCheck and applied

their approach using this tool. The work in [13] introduced a model checking partial state

spaces with 3-valued temporal logics to reason about partial or incomplete systems. The

main idea behind this technique is to add the value ⊥, which represents the incomplete

information in the partial state space under investigation. The authors proposed a reduction

algorithm which generates optimistic and pessimistic cuts from the three-valued system.

The optimistic cut considers the value ⊥ as “True”, and the pessimistic cut considers the

same value as “False”. If the verification of the optimistic cut yields F , then the result is

“False”. If not, then check the pessimistic cut. If the latter yields “T” then the result is

“True”. If not, the result is “F”, and this means we have True and False from both cuts,

which confirms the uncertainty. In [53], the authors proposed a multi-valued version of

(CTL∗) named (mv-CTL*). In this logic, both the propositions and the transitions are

taking values over a finite quasi-Boolean algebra. To implement the proposed method,

a reduction approach was produced to reduce mv-CTL* to CTL∗. In [15], Bruns and

Godefroid show how to reduce multi-valued model checking with any distributive DeMorgan

lattice to two-valued model checking. The logic used in this work is the modal mu-calculus,

which is a propositional modal logic extended with Fixed-point operators [54]. The idea

behind this technique is to use the distributive lattice L to define a set of “experts” with the

same number of the join-irreducible elements in the lattice and then to derive from the multi-

valued Kripke structure a standard Kripke structure for each expert to recall an existing

model checker tool. Recently, in [58], the authors proposed their method, computation

tree logic model checking based on multi-valued possibility measures. They modeled the

multi-valued logic systems by multi-valued Kripke structures and introduced a new logic

named (MvCTL) based on generalized possibility and necessity measures. This logic is

more general than mv-CTL and addresses some of the latter’s deficiencies but cannot be

reduced to the classical CTL. In [50], the authors introduced a multi-valued logic named

multi-valued alternating-time temporal logic (mv-ATL∗
→) by extending the logic of ATL∗

10



to specify strategic abilities in multi-agent systems. The proposed approach is a reduction-

based model checking that enables the use of the existing model checkers.

In summary, we compare the aforementioned existing approaches by taking into con-

sideration the following criteria: Formalization, Underlying Modeling Framework,

Explicit Notion of Trust, Explicit Notion of Commitment, Verification Method,

Use of Multi-logics, Applicability for Model Checking, Applicability for Multi-

valued Model Checking.

Formalization reflects using formal logics such as TCTL, CTLC and mv-CTL to rep-

resent and specify the commitments and trust. The Underlying Modeling Framework

reflects the underlying models used for modeling the systems. Explicit Notion of Trust

and Explicit Notion of Commitment show the possibility of expressing trust or com-

mitments by explicit modalities. The Verification Method reflects the use of a formal

verification technique to verify the proposed approach. The Use of Multi-logics shows

if the underlying logic of the proposed approach is presented in the form of multi-valued

logic that considers more than True or False truth values. Finally, Applicability for

Model Checking and Applicability for Multi-valued Model Checking reflect the

applicability of these two techniques for verifying the proposed approach.

Table 1.1 compares the existing approaches based on the aforementioned criteria. The

table clearly demonstrates the limitations of the existing trust and commitment-based ver-

ification approaches in providing practical and formal frameworks that handle multi-valued

cases. The table is divided into two parts representing our review: The first part is for

model checking the two common multi-agent systems protocols, trust and commitment; the

second part is for multi-valued model checking systems with uncertainty and inconsistency

without involving trust or commitments.

More specifically, the last two columns of the first part of the table show the gap between

these approaches and the use of multi-valued logic, which is essential for reasoning about

important concepts such as uncertainty and inconsistency in trust and commitment-based

systems. Inversely, The fourth and the fifth columns of the second part show the gap

between the multi-valued approaches and the use of commitment and trust notions. Our

11



Table 1.1: Comparison between the list of publications reviewed for this proposal with
respect to the proposed criteria

Approach Formal Underlying
Modeling
Framework

Notion
of Trust

Notion of
Commit-
ments

Verification Method Applicable
for
Model
Check-
ing

Multi-
logic

Applicable
for mv-Model
Checking

Bidgoly et al.
[12]

Colored Petri
Net (CPN)

✓ –– –– –– ––

El-Qurna et al.
[42]

✓ Deterministic
pushdown au-
tomata (PDA)

✓ –– FLC model checking ✓ –– ––

Drawel et al.
[22, 29]

✓ Vector-based
interpreted
systems

✓ –– Model Checking
TCTL

✓ –– ––

Drawel et al.
[26]

✓ Vector-based
interpreted
systems

✓ –– Model Checking
TCTLG

✓ –– ––

Drawel et al.
[24]

✓ Vector-based
interpreted
systems

✓ –– Model checking BT ✓ –– ––

Desai et al.
[20]

✓ Web Ontol-
ogy Language
(OWL)

–– ✓ Model Checking
Commitment Pro-
tocols and their
Compositions

✓ –– ––

El-Menshawy
et al. [35]

✓ Kripke-like
structure

–– ✓ Model checking
CTL∗sc

✓ –– ––

El-Menshawy
et al. [36]

✓ Interpreted sys-
tem

–– ✓ Model Checking
CTLC

✓ –– ––

El-Menshawy
et al.[38]

✓ Interpreted sys-
tem

–– ✓ Model checking
CTLC+

✓ –– ––

E. Kholy et al.
[31, 38]

✓ Interpreted sys-
tem

–– ✓ Model checking
CTLCcc

✓ –– ––

Chechik et al.
[17]

✓ Multi-valued
Kripke struc-
ture

–– –– Multi-valued Model
Checking

–– ✓ ✓

Bruns et al.
[13]

✓ Partial Kripke
structure

–– –– Model Checking 3-
Valued CTL

✓ ✓ ✓

Konikowska et
al [53]

✓ Multi-valued fi-
nite state model

–– –– Model checking for
mv − CTL∗

✓ ✓ ✓

Bruns et al.
[15]

✓ Multi-valued
Kripke struc-
ture

–– –– Multi-valued model
checking µL

✓ ✓ ✓

Y.Li et al. [58] ✓ Multi-valued
Kripke struc-
ture

–– –– Model checking mv-
CTL

–– ✓ ✓

Jamroga et al.
[50]

✓ Multi-valued
concurrent
game structure
(CGS)

–– –– Model Checking
ATL∗

→

✓ ✓ ✓

work fills these gaps in this research.

1.2 Motivations

Although model checking techniques have proven their efficiency in verifying systems with

different communication protocols [81, 27, 31, 45], they still face significant challenges in

verifying multi-source data systems under uncertain or inconsistent settings, especially when

multi-agent commitment and trust protocols are involved. More specifically, the existing

12



model checking techniques for verifying the commitment and trust systems give only abso-

lute (True) or (False) verification results and cannot interpret the presence of uncertainty or

inconsistency in the system’s behaviors. Therefore, modelling and verifying these systems

in the context of uncertainty or inconsistency raises the need for richer domains of truth

values used to interpret the systems’ behaviors and properties’ satisfaction.

It is worth mentioning that multi-source data IoT and IS applications are highly suscep-

tible to uncertainty and inconsistency because of their complexity, whether in their internal

communications or the open environments in which they operate. This complexity that

results from the existence of multiple sources of information makes modeling and verify-

ing these kinds of systems a challenging task. Uncertainty occurs when there is missing

information about a specific behaviour of the system under investigation, while inconsis-

tency occurs when we have different viewpoints about a particular system’s behaviour. For

example, when two experts design the same system and disagree about some properties.

Therefore, our motivation in this research is to provide effective approaches for verifying

MAS focusing on IoT and IS systems with commitment and trust protocols under uncertain

or inconsistent settings where multiple data sources are involved [59] and multiple truth

values can model the system. As argued in [49, 17, 58, 76], multi-valued model checking is

a suitable technique for handling these types of models, but without involving the concepts

of commitment and trust.

In this research, our starting point is intensively studying an efficient multi-valued model

checking technique based on a multi-valued temporal logic that was initiated in [17]. The

underlying logic of this technique, named mv-CTL is an extension of the two-valued CTL

logic that generates satisfaction results beyond True or False. In particular, by using the

multi-valued model checking, we can measure how close we are to true or false by considering

multiple truth values mapped to a given lattice [84, 71]. Based on this, we generally planned

to conduct the following scenarios: in reasoning about uncertainty over a multi-source data

IoT/IS system with commitments and trust, the model checker should provide verification

answers for commitment or trust formula among three values (T,M,F ) based on the three-

valued logic. The truth value M stands for unknown and is assigned to a given information

13



that cannot be specified in the system under investigation. On the other hand, when

reasoning about inconsistency, the model checker should give answers among (TT, FF, TF,

FT) based on the four-valued logic, where TT means that there is an agreement between

two parties about the satisfaction of a given property in a particular state of the system,

FF denotes the agreement about the dissatisfaction and TF (resp. FT) means that the first

party says “Yes” (resp. “No” ), and the second party says “No” (resp. “Yes”) about the

same property. These solutions lead to new and effective contributions to the field of system

verification, where they overcome the shortcomings with the current related techniques

explained in Table 1.1.

1.3 Problems and Research Questions

Our comprehensive analysis of commitment and trust within open systems has illuminated

critical shortcomings stemming from the challenge of reasoning in the presence of incomplete

or inconsistent information about system behaviors. Open systems, particularly within the

realm of IoT/IS, entail a multitude of interacting components in dynamic environments,

rendering them susceptible to uncertainties and inconsistencies in modelling their infor-

mation. The prevailing methods for modeling commitments and trust consider only the

absolute True or False for deciding the existence of system information. This limitation

hinders their capacity to grapple with systems harbouring information with varying degrees

of truth, thereby presenting a formidable verification obstacle. As a result, there arises an

imperative for the development of efficient methodologies capable of autonomously assessing

whether the behavior of IoT/IS systems aligns with their specifications.

So far, there is no approach for verifying IoT/IS systems with respect to certain proper-

ties related to commitments and trust under uncertain or inconsistent settings. Thus, our

goal in this research is to deal with such an issue as a multi-valued model checking problems.

In order to do so, our first step is to answer different important research questions.

14



Question 1. How can we define a temporal logic that is capable of specify-

ing the commitments and trust properties from social prospective viewpoints

with the presence of uncertainty or inconsistency?

To address this question, we started by studying and investigating the possibility of using

the existing commitment and trust logics [31, 27]. Our study revealed that these logics

are incapable of modeling commitments and trust interactions of autonomous agents under

uncertain or inconsistent settings. Therefore, we proposed to extend the existing logics of

commitments called Computation Tree Logic for Conditional Commitments (CTLcc) and

Unconditional Commitment (CTLc), and the logic of trust called Computation Tree Logic

of Trust (TCTL) to the multi-valued versions. We mainly rely on the multi-valued logic

introduced in [17]. Unlike the classical commitments and trust logics, in our produced log-

ics, the modalities of commitments and trust are defined over multiple truth degrees based

on given lattices, which give more expressive modelling language that enables us to express

our models under uncertain and inconsistent settings.

Question 2. On which base do we make the new logics deal with multiple truth

values for modelling and verifying IoT/IS systems?

In formulating our new logics to accommodate multiple truth values for modeling and veri-

fying IoT/IS systems, we anchored our approach in the foundations of lattice theory. This

choice was instrumental in establishing the syntax and semantics of our logics and also in

adeptly capturing the nuances of uncertainty and inconsistency inherent in these systems.

By mapping the satisfaction degree of a formula onto a specific lattice, we gained a power-

ful framework for representing and evaluating uncertain and inconsistent information. This

method yielded results characterized by precision, reliability, and a high degree of accuracy.

This utilization of lattice theory forms a cornerstone of our methodology, providing a robust

foundation for reasoning about complex IoT/IS systems.

Question 3. How can we formally verify the developed multi-valued temporal

logics?

In order to ensure that our approach increases confidence in reliability, safety and efficiency,

15



we have put forward two main verification techniques:

- Direct algorithms that handle the multi-valued structure without reduction. The

labelling of states and/or transitions is interpreted as elements from a lattice. After

extensive study of these algorithms, we concluded that developing direct algorithms

is harder than developing reduction ones. They require a lot of effort and time to be

done, which makes it an inappropriate choice because of the time limitation assigned

to finish this research.

- Reduction algorithms that reduce the multi-valued model checking problems to clas-

sical (two-valued) ones. The advantages of these algorithms are the ability to reuse

efficient existing model checkers and their efficiency in dealing with the state explosion

problem. In addition, they are not as complex as the direct ones. These algorithms

enabled us to develop efficient and effective reduction-based multi-valued model check-

ing techniques and opened a wide range of possibilities for verifying IoT/IS systems

with different protocols within open environments.

Question 4 . How can we evaluate the proposed solution for the multi-valued

model checking problem of the developed multi-valued logic?

We applied two evaluation methods: (1) Empirical, which is evaluated by applying the

proposed algorithms to multiple real-world case studies and reporting the experimental

results, and (2) Theoretical, which handles the theoretical analysis by providing computa-

tional complexity analysis and soundness proofs for all our algorithms.

1.4 Methodology

The methodology we’ve outlined is encapsulated and substantiated by contributions in Table

1.2. At the beginning of this dissertation, we reviewed and evaluated relevant approaches

that use computational CTL trust logic TCTL and commitment logic CTLC, including

conditional and unconditional cases. In addition, we reviewed and evaluated the multi-

valued case of CTL (mv-CTL). Our intensive review and evaluation of these logics showed

16



that the existing approaches based on logics of trust and commitment are effectively used to

capture, model and reason about trust and commitment protocols in multi-agent systems

(MAS). However, these approaches cannot deal with systems designed with missing or

inconsistent information where this kind of information is highly likely to exist in widespread

MASs such as IoT and intelligent systems. The reason is that commitment and trust

logics are based on the classical CTL logic, which uses only the absolute truth values True

and False. To start solving this problem and find an appropriate solution, we looked for

approaches based on logics that consider multiple truth values. We found the multi-valued

case of CTL (mv-CTL) is effectively used for designing and reasoning about systems with

uncertainty and inconsistency using multi-valued model checking technique. In Contribution

1 , (Section 1.5), we applied this logic to a new domain and designed and verified an IoT

system with missing information. We provided a mathematical representation and full

implementation of the reduction-based multi-valued model checking algorithm.

However, since our focus is on open systems with uncertainty and inconsistency that

involve trust and commitment protocols, mv-CTL doesn’t include the modalities of trust

and commitment, which makes it incapable of dealing with these kinds of critical systems.

Therefore, we concluded that filling the gap between mv-CTL and the logics of trust and

commitment is the appropriate way to have a complete logics that can be an efficient and

effective solution to solve the problem. To do so, we extended the mv-CTL with the modal-

ities of commitment [31] in Contributions 2 and 3 , and introduced the new logic named

multi-valued commitment logic (mv-CTLC), including its versions explained in the next

section. This logic is effectively used for reasoning about uncertainty and inconsistency

over IoT/IS systems with commitment protocols. Then, in Contributions 4 , we followed

similar strategies to produce the multi-valued logic of trust mv-TCTL by extending the mv-

CTL with the modalities of trust logic [24]. The new logic mv-TCTL proved its efficiency

and practicability in verifying IoT/IS systems with trust protocols. Simultaneously with

producing these logics, we developed reduction approaches that reduce the multi-valued

logics to their classical case to take advantage of reusing the existing model-checking tools.

We chose to apply the reduction approaches, not the direct ones, because of the latter’s

17



complexity and the long time and effort needed to develop them in a specific period de-

termined for this research. Sequentially, to implement our approaches, we developed two

tools that transform our logics to their classical cases and automatically interact with the

well-known checkers NuSMV and MCMAS. These two tools are integrated and improved

to be one tool called MV-Checker. The MV-Checker developed in Contribution 5 . It

streamlines the process of verifying the properties of MAS, including IoT/IS systems, with

trust and commitment within uncertain and inconsistent environments.

Finally, we modelled and verified multiple IoT/IS systems and conducted 12 verification

experiments used to evaluate our approaches. We also compared the MV-Checker with

another tool in the same field regarding performance and reliability.

1.5 Contributions

This thesis provides the following contributions:

Contribution 1

Our first contribution [2] focuses on conducting a practical experiment using the already

exciting mv-CTL logic in dealing with verifying systems with uncertainty. In specific, we

applied this logic to a new domain by modeling an IoT system called Smart Home with

missing information in some states and specified a set of properties to be checked against

this system. Moreover, we used a reduction algorithm to transform the 3v-CTL to CTL and

verified our system over NuSMV checker. Our findings reported that the 3v-model checking

approach based on 3v-CTL is efficient and effective in verifying these systems. However,

this approach cannot deal with systems emphasizing trust and commitment protocols, which

strongly exist in IoT/IS systems. We therefore planned to conduct Contribution 2 .

Contribution 2

In the second contribution [3], we introduced our first three-valued unconditional commit-

ment logic named 3v-CTLc. Specifically, we introduced a scalable verification approach for

IoT/IS applications in uncertainty-characterised settings with timed commitments using

18



Step Description Input Output and contribution

1 reviewing and evalu-
ating

Current methods
and evaluation crite-
ria

• Limitations

2 Selecting a suitable
logic

Ability to capture
trust and com-
mitment protocol-
s/uncertainty and
inconsistency

• CTLc/CTLcc, TCTL
and mv-CTL

3 Applying 3v-CTL on
a new domain/pro-
viding a new imple-
mentation algorithm

3v-CTL/theoretical
algorithm

• Verifying IoT/IS sys-
tems with implementa-
tion

• Contribution 1

4 Extending CTLc with
3v-CTLc

CTLc with new
modalities with their
semantics rules

• 3v-CTLc

• Contribution 2

5 Extending CTLcc

with 3v-CTLcc
CTLcc with new
modalities with their
semantics rules

• 3v-CTLcc

• Contribution 2

5 Extending CTLc with
4v-CTLc

CTLc with new
modalities with their
semantics rules

• 4v-CTLc

• Contribution 3

7 Extending CTLcc

with 4v-CTLcc
CTLcc with new
modalities with their
semantics rules

• 4v-CTLcc

• Contribution 3

8 Extending TCTL
with 3v-TCTL

TCTL with new
modalities with their
semantics rules

• 3v-TCTL
• Contribution 4

9 Extending TCTL
with 4v-TCTL

TCTL with new
modalities with their
semantics rules

• 4v-TCTL
• Contribution 4

10 Selecting approaches Direct/Reduction • Reduction
• Contribution 3 and 5

11 Applying the new
mv-logics on IS/IoT
domains

mv-TCTL/mvCTLC • Choosing systems,
modeling and encoding

• Contribution 2 - 5

12 Implementation: De-
veloping an mv-model
checker

Coding/Testing/Verification • MV-Checker
• Verification, results,

comparison and future
work

• Contribution 5

Table 1.2: Our methodology steps with contributions

19



three-valued model checking. This logic covers the commitment protocols that do not em-

phasize the conditional action needed to satisfy the desired action in the previous conditional

commitment logic.

We used the new logic for reasoning about uncertainty in commitment protocols, mod-

eled a smart contract-based IoT mortgage system with commitments under uncertain set-

tings, introduced a set of specifications, produced an input formal language named 3v-

ISPL+, and implemented a verification framework of our model against its specifications

using a transformation algorithm and the MCMAS+ model checker. Finally, we reported

and discussed our experimental results, which proved the scalability and efficiency of our

approach.

Later in [8], we started by proposing 3v-CTLcc, a new modeling language that extrap-

olates the classical timed conditional commitment logic CTLcc to the three-value case. We

defined new semantics of the conditional commitment modality in this new logic. We also

simulated and modeled a scenario of A Smart Hospital system and introduced a set of

specifications. We verify the system model against these specifications using a reduction-

based multi-valued model checking approach. The effectiveness of the proposed approach

was evaluated by implementing it on the MCMAS-SC model checker. Next, we recognized

the need for reasoning bout inconsistency over the systems under investigation as they are

highly subject to inconsistency due to their rabid growth and complexity. Therefore, we

presented Contribution 3 .

Contribution 3

In this work [7], we provided enhancements to our previous approaches and presented the

following original contributions:

• Introducing two new logics, namely (4v-CTLc) and (4v-CTLcc) for modelling and

reasoning about multi-agent and multi-source data systems with conditional and un-

conditional commitment protocols under inconsistent settings. Particularly, we apply

these logics over IoT and IS, where the underlying multi-source data environments are

subject to inconsistency due to the extensibility and complexity of their interactions.

Moreover, we presented the corresponding input formal language 4v-ISPL+ and used

20



a new model checking technique, four-valued model checking.

• Providing a formal representation (Algorithm 1) and full implementation of a pre-

liminary reduction algorithm described by [14] that transforms the multi-valued CTL

(mv-CTL) introduced in [17] to CTL.

• Producing four new reduction algorithms: Algorithm 2, Algorithm 3, Algorithm

4, and Algorithm 5. Algorithm 2 transforms our recently produced three-valued

conditional commitment logic (3v-CTLcc) [8], and three-valued unconditional commit-

ment logic (3v-CTLc) [3] to CTLcc and CTLc respectively. Algorithm 3 transforms

the new 4v-CTLcc and 4v-CTLc to CTLcc and CTLc. Algorithm 4 transforms our re-

cently produced three-valued unconditional commitment logic (3v-CTLc) [3] to CTL.

While Algorithm 5 transforms the new four-valued unconditional commitment logic

4v-CTLc to CTL. The implementation of these algorithms allows us to reuse the ex-

isting model checking tools NuSMV and MCMAS+ to verify IoT and IS applications

in multi-source data settings, which has not yet been attempted in the literature.

• Developing two Java-based tools for implementing our algorithms: NuSMV-interactor

for the transformation to CTL and MCMAS-interactor for the transformation to

the two-valued versions of the multi-valued logics.

• Performing multiple verification experiments to check the scalability of our approaches.

• Providing comparisons between the reduction approaches that reduce the multi-valued

logics to CTL and the ones that reduce these logics to the two-valued versions. Based

on these comparisons, we concluded that the reduction to CTL for using NuSMV

checker is less scalable and takes more time than the reduction to the classical com-

mitment logics and use MCMAS checker. Therefore, this opened a new future work

direction, and we set a plan for improving NuSMV to handle commitment scenarios

directly and produce a more efficient version of this checker.

As trust protocols are also important and widely used in IoT/IS and are subject to be

designed with missing and inconsistent information, we decided in Contribution 4 to

produce the three-valued and four-valued cases of the classical trust logic TCTL.

Contribution 4

21



In this contribution [5], we presented a new framework for verifying open systems with

trust under uncertainty. Specifically, we addressed the problem using three-valued model

checking. We introduced a new logic by extending the recently proposed Computation

Tree Logic of Trust (TCTL) to the three-valued case(3v-TCTL) to reason about trust with

uncertainty over smart contract-based systems. We also propose a new transformation

approach to reduce the 3v-TCTL model checking problem to the classical case. Moreover,

we presented a new formal input language 3v-VISPL. We apply our approach to a Smart

Contract-based Drug Traceability system in the healthcare supply chain. The approach

is implemented using a Java toolkit that automatically interacts with the NuSMV model

checker. We verify this system against a set of specifications and report the results of our

experiments.

Sequentially, in [4], we introduced a new framework for modelling and verifying IoT

applications in the healthcare domain using four-valued model checking. We focused on

applications that involve interactions based on trust protocols under inconsistency. Specif-

ically, we introduced a new logic of trust called 4v-TCTL to reason about the inconsistency

between designers over IoT systems. We used a Smart Glucose Monitoring System as a

case study. We modeled our system and assigned a set of trust properties to be checked

against this system. We introduced a new reduction algorithm for reducing our four-valued

model checking problem to the two-valued version to reuse an existing model checker called

MCMASt. Moreover, we presented a new formal input language 4v-VISPL. We verified our

system using our approach and reported the experimental results.

Contribution 5

At this research stage, we focused on the implementation part and developed a general

verification tool to transform all our new logics to CTL and their classical cases and interact

with several model checkers [6].

• Our main motivation is developing a Java-based tool named MV-Checker, which

streamlines the process of verifying the properties of MAS, including IoT/IS systems

with trust and commitment within uncertain and inconsistent environments. The tool

is a large extension to the tool developed in [23] and designed to perform the following

22



functions: (1) Transforms our multi-valued logics of trust (3v-TCTL and 4v-TCTL)

into TCTL and automatically interacts with the MCMSAt model checker. (2) Trans-

forms our multi-valued logics of commitment (3v-CTLC and 4v-CTLC) into CTLC

and automatically interacts with the MCMSA+ model checker. (3) Additionally, the

tool can transform these logics and mv-CTL logic into CTL and automatically inter-

act with the NuSMV model checker. (4) Moreover, it allows directly verifying the

classical CTL, CTLC and TCTL models. These functions make the MV-Checker

an essential tool that efficiently and accurately verifies complex systems modeled in

multi-valued logics of trust and commitment under uncertain and inconsistent envi-

ronments.

• Technical contributions:

– We develop two new reduction algorithms. The first algorithm transforms the

3v-TCTL logic to its classical counterpart, TCTL. The second algorithm trans-

forms the 4v-TCTL logic to CTL. These new algorithms allow for more flexible

and expressive representations of the systems under investigation and extensive

comparisons between the algorithms that convert mv-TCTL to TCTL and the

algorithms that transform this logic into CTL.

– To check the effectiveness and efficiency of the proposed tool, we perform multi-

ple verification experiments by modelling several IoT and intelligent applications.

We include in this study two blockchain-based applications in the healthcare do-

main: Smart Drug Traceability and Smart Health Record Management systems.

We model these applications with mv-TCTL of trust for reasoning about un-

certainty and inconsistency and 4v-CTLC of commitment for reasoning about

inconsistency.

– We conduct various experiments to compare the approaches developed. The

comparisons are between the results obtained from transforming the mv-TCTL

to CTL and classical TCTL regarding scalability and accuracy. We also com-

pared the performance of our tool with the performance of another tool already

23



developed in the same domain.

– We provide the packages of all our previous and recent case studies containing

eleven experiments with SMV, ISPL+, VISPL, mv-ISPL+ and mv-VISPL files.

Additionally, we provide the source code, the Jar file of the tool, and the user

manual document explaining the use of the proposed tool.

1.6 Overview of the Dissertation

This section provides an overview of the dissertation and describes the content of its chap-

ters. The chapters of this dissertation are classified into three main parts:

Part I: lays the groundwork, introducing and solidifying the core concept around which

the entirety of the thesis revolves. It consists of Chapter 1 and Chapter 2.

• Chapter 1: introduces the context of the research and its motivations. It also gives

an overview of our methodologies and contributions with a general overview of the

dissertation.

• Chapter 2: provide a background which recalls the concepts and topics that are the

basis for our research. These concepts are the base logics used to build our new logics,

lattice theory, and model checking techniques.

Part II: is about our contributions and covers the following chapters:

• Chapter 3: covers our evaluations and testing of the existing multi-valued logic and

its capability to deal with a new domain, which is verifying IoT systems.

• Chapter 4: introduces the first framework for modelling and verifying IoT/IS systems

with our new logic of multi-valued commitment. It also covers our newly developed

reduction algorithms with their soundness proofs and computational complexity anal-

ysis for each algorithm.

• Chapter 5: introduces the second framework for modelling and verifying IoT/IS sys-

tems with our new logic of multi-valued trust. It also covers the newly developed

24



Figure 1.1: Overview of the dissertation

25



reduction algorithms with their soundness proofs and computational complexity anal-

ysis for each algorithm.

• Chapter 6: covers the implementation part and gives a deep picture of our new model

checker. It explains the internal design of our tool and its interfaces.

• Chapter 7: covers our case studies and provides full modeling and verification of the

systems on hand using the newly developed checker.

Part III: provides a deep analysis and discussions about our findings and the future work

plan based on these discussions. Figure 1.1 gives an overview of the complete work done in

this dissertation.

26



Chapter 2

Background

2.1 Computation Tree Logic (CTL)

Clarke and Emerson introduced Computation Tree Logic (CTL) in the early 1980s for

systems specification and verification [67]. The idea behind CTL is that the underline

modeling time in this logic is assumed to have a tree-like structure where each moment in

time can be divided into different possible paths in the future.

2.1.1 CTL model

The model of CTL is a system model represented by a Kripke structure, which is a finite

directed graph consisting of nodes representing states and edges that represent transitions

and are used for describing systems’ behaviors. Formally, Kripke structure is a tuple D =

(AP, S, S0, LF,R) where AP is a finite set of atomic propositions, S is a finite set of states,

S0 ⊆ S is a set of initial states, LF : S → 2AP is a labelling function that maps a set

of propositional variables to states where these variables hold. R ⊆ S×S is a transition

relation between states.

2.1.2 Syntax

Let AP be a set of atomic propositions, then:

• ⊤,⊥ and every atomic proposition a ∈ AP are formulae;

27



• If ϕ and ψ are formulae then so are ¬ϕ, ϕ∧ψ, ϕ∨ψ, EXϕ, AXϕ, EFϕ, AFϕ, E[ϕ∪ψ],

A[ϕ ∪ ψ], EGϕ, AGϕ.

where A and E are universal and existential path quantifiers. The state quantifier

operators are F, which represents “sometime in the future”, X means “in the next

state”, ¬ represents the negation, G means globally along the system path, and ∪

means “until”.

2.1.3 Semantics

Let a system model represented as a Kripke structure D = (AP, S, S0, L,R). Let a satis-

faction relation (D, s) |= ϕ, which means the formula ϕ holds at state s in model K. The

symbols |= and ̸|= represent satisfaction and dissatisfaction, respectively. Let ϕ1, ϕ2, ψ be

formulae then:

• (D, s0) |= a iff a ∈ L(s0) means state s0 satisfies an atomic proposition a if a is in the

labelling set of state s0;

• (D, s0) |= ¬ϕ1 iff (D, s0) ̸|= ϕ1;

• (D, s0) |= ϕ1 ∨ ϕ2 iff (D, s0) |= ϕ1 or (D, s0) |= ϕ2;

• (D, s0) |= ϕ1 ∧ ϕ2 iff (D, s0) |= ϕ1 and (D, s0) |= ϕ2;

• (D, s0) |= EXψ iff ∃ state t: (s0, t) ∈ R and (D, t) |= ψ;

• (D, s0) |= AXψ iff ∀ state t, if (s0, t) ∈ R then, (D, t) |= ψ;

• (D, s0) |= A[ϕ1 ∪ ϕ2] iff for every path s0, s1, . . . ∃i ≥ 0: (D, si) |= ϕ2 and ∀ 0≤j<i,

(D, sj) |= ϕ1;

• (D, s0) |= E[ϕ1 ∪ ϕ2] iff for some path s0, s1, . . . ∃i ≥ 0: (D, si) |= ϕ2 and ∀ 0≤j<i,

(D, sj) |= ϕ1;

• (D, s0) |= EGϕ iff there exists a path π = s0, s1, . . . in D starting from s0 such that

∀i ≥ 0, π(i) |= ϕ;

28



• (D, s0) |= AGϕ iff for all paths π = s0, s1, . . . in D starting from s0, we have π(i) |= ϕ

for all i ≥ 0

2.2 Computational Logic of Social Conditional Commitments

(CTLcc)

The concept of social commitments effectively applies to classical (no missing or incon-

sistent information) IoT/IS models where their intelligent agents commit to performing a

particular action towards another agent when the latter fulfils a particular condition. In

this section, we recall the conditional commitment logic produced in [31] and used for cap-

turing commitment protocols within multi-agent systems. For example, In the context of

conditional commitment logic, in a smart home scenario, this logic enables the capture of

a property that states, “When the user sets a specific washing time, the smart washing

machine commits to washing the clothes within this specified time” . The condition in

this scenario is “ specifying the time by the user” to make the smart machine commit to

washing clothes within this time. Below, we define an IoT-based system with conditional

commitment protocols.

2.2.1 CTLcc model

IoT Model of CTLcc: an IoT model with timed conditional commitments is a tuple K =

(S,R, {∼i→j | (i, j) ∈ A2}, I, V ) where:

• A is a set of system agents;

• S is a set of global states of the IoT system;

• R ⊆ S × S is a total transition relation for the IoT dynamics;

• I ⊆ S is a set of initial global states;

• V:AP→ 2S is a valuation function that maps every atomic proposition a ∈ AP to a

set of states;

29



• For each pair of agents (i, j) ∈ A2,∼i→j⊆ S×S is a social accessibility relation defined

by s ∼i→j s
′ iff:

(1) li(s) = li(s
′
), where li(s) and li(s

′
) represent the local states of agent i in the

global states s and s
′ , where a global state signifies the instantaneous configu-

ration or current status of all agents within the multi-agent system at a specific

moment;

(2) (s, s
′
) ∈ R is a transition relation;

(3) V ari ∩ V arj ̸= ∅ and ∀x ∈ V ari ∩ V arj we have lxi (s) = lxj (s
′
), where V ari

and V arj are local variables and x is the shared variable that represents the

communication channel between i and j; and

(4) ∀y ∈ V arj − V ari we have lyj (s) = lyj (s
′
) where y is the variable of agent j and

unshared with agent i.

In summary, the commitment accessibility relation is introduced to indicate in which

states of the system the commitment takes place among the system’s agents. The shared

variable is used as a tag to move from the current state to a state where the commitment

holds. Every communication channel is indicated by one shared variable between two agents.

For example, the communication between agents i and j is captured by one shared variable,

x = 1, for instance. If there is another communication between i and another agent z, then

another shared variable should be assigned between these two agents.

2.2.2 Syntax

The syntax of CTLcc is defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EGϕ | EXϕ | E(ϕ ∪ ϕ) | CC,

CC ::= CCi→j(ϕ, ϕ)

where ¬, E,A,∪ are as defined in Definition 2.1.2 and i and j ∈ A are two agents; CC

represent the conditional commitments.

The syntax of the formula CCi→j(ψ, ϕ) means “agent i commits towards agent j to

bring about ϕ if the condition ψ holds”.

30



2.2.3 Semantics

The semantics of this logic extend the semantics of CTL by adding the commitment modality

CCi→j(ψ,φ). The satisfaction relation represented by (K, s) |= CCi→j(ψ,φ) where K is an

IoT commitment model, s is a global state and CCi→j(ψ,φ) is a conditional commitment

formula is defined as follows:

• (K, s) |= CCi→j(ψ,φ) iff (1) ∃s′ ∈ S s.t. s ∼i→j s
′ and (K, s

′
) |= ψ and

(2) ∀s′ ∈ S s.t. s ∼i→j s
′
and (K, s

′
) |= ψ, we have (K, s

′
) |= φ.

This semantic means the conditional commitment formula “agent i commits to bring

about φ for responding to agent j after fulfilling the condition ψ” is satisfied in state s of

the IoT commitment model K if and only if there is at least one accessible state s′ where

ψ holds and whenever the latter holds, φ as well holds in the same state.

Example 1. To explain the idea of the commitment accessibility relation and the

semantics of this logic, consider the system model in Figure 2.1. In this model, according

to the semantics, state s0 satisfies the given commitment formula where the following two

conditions hold:

• There is at least one accessible state, s1, accessible from s0. This commitment ac-

cessibility relation is represented by the shared variable x, which has the same value

(x=1) associated with the two variables Vari in s0 and Varj in s1.

• In this accessible state, the condition of “whenever ψ holds in an accessible states, φ

holds as well in the same state” is satisfied in s1.

2.3 Computational Logic of Social Unconditional Commit-

ments (CTLc)

The model of this logic is defined as the model of the conditional commitment logic. Bellow

we explain the syntax and semantics of this logic

31



Figure 2.1: An example of the CTLcc model

2.3.1 Syntax

The syntax of CTLc is similar to CTLcc with one difference in the commitment formula

where this formula is denoted by C ::= Ci→j(φ). Meaning that agent i commits towards

agent j to bring about φ.

2.3.2 Semantics

Let U is a CTLc model, then (U, s) |= Ci→j(φ) iff ∀s′ ∈ S s.t. s ∼i→j s
′ we have

(U, s
′
) |= φ. This semantics means state s of the IoT/IS commitment model U satisfies

the commitment formula “agent i commits towards agent j to bring about φ ” if and only

if all the accessible states s′ hold the formula φ.

2.4 Computational Logics of Trust (TCTL)

This logic expands the Computation Tree Logic (CTL) established by Clarke and Emerson

in the 1980s [67] to TCTL by adding trust modalities to capture the trust protocols among

agents over global states of the system.

2.4.1 TCTL model

The model of TCTL is a tuple (D) = (S,R, {∼i→j | (i, j) ∈ A2}, I, Fn) where:

• A is a set of system agents;

32



• S is a set of reachable global states;

• R ⊆ S × S is a transition relation that covers all possible states;

• I ⊆ S represents a collection of initial global states;

• Fn : S → 2A is a valuation function relates the atomic propositions in A to a given

state;

• For each pair agents (i, j) ∈ A2,∼i→j⊆ S×S represents the vector-based trust acces-

sibility relation denoted by s ∼i→j s
′ and defined in [29]. These accessibility relations

define states that are compatible respectively with the trust vision fulfilment vision

of the agents with respect to each other.

2.4.2 Syntax

: ϕ ::= a | ¬ψ | ψ ∨ ψ | EGψ | EXψ | E(ϕUψ) | T (i, j, ϕ)

where a is an atomic proposition and, ψ and ψ are formulae. The syntax EGψ means

“a path exists in the system where the formula ψ holds in all the states”. The formula

T (i, j, ϕ) represents “agent i trusts agent j to bring about formula ϕ .

2.4.3 Semantics:

The semantics of this logic extend the CTL’s semantics by adding the trust modalities.

Given that, D is a trust model, s is a global state, and ψ is a trust formula, The satisfaction

relation represented by (D, s) |= ψ is defined as: (D, s) |= T (i, j, ϕ) iff s ̸|= ϕ and ∀s′ ̸= s

such that s ∼i→j s
′ , we have (D, s′) |= ϕ. This semantic means the state s in the trust model

D satisfies the trust formula that says “agent i trusts agent j to bring about formula ϕ” if

the current state doesn’t satisfy formula ϕ and this formula is satisfied in all the trusted,

accessible states that cannot be the current state.

33



2.5 Lattice Theory

It is known that reasoning based on certain information depends on two-valued, two-valued

logic. The need to reason about uncertain or inconsistent information is increasing with the

rapid growth of IoT and IS components and their complex communications. Therefore, we

need a logic that considers several levels of truth degrees that are decided depending on the

application on hand. This new logic has truth values over a lattice [19, 60] and produces

one kind of many-valued logic called lattice–valued logic [84, 71].

A lattice is a structure (L,⊔,⊓). Every two elements x and y in this structure have a

join denoted by (x ⊔ y) and a meet denoted by (x ⊓ y). This structure satisfies important

laws such as identity, commutativity and distributivity.

The concept of the lattice is used to establish the lattice-valued logic, which is commonly

referred to as multi-valued logic. Below, we illustrate various types of lattices and their

association with multi-valued logics.

• A two-valued logic, which is also called the classical logic, is given in the lattice in

Figure 2.2 (a), with ¬T = F and ¬F = T. This logic used for modelling systems when

the atomic propositions in states take truth values with absolute true or false.

• The lattice in Figure 2.2 (b) gives three-valued logic. T stands for true, F stands for

false, and M stands for maybe, where ¬T = F, ¬F = T, ¬M = M. This logic is known

as Kleene’s strong 3-valued logic [51]. It is effectively employed for reasoning about

abstracted or partial models [18] and serves as an effective technique to address state

explosion problems. In terms of abstraction, this is achieved by approximating sets of

realistic states with abstract states and/or approximating sets of realistic transitions

with abstract transitions. The lattice has two join-irreducible elements T and M

where. These elements are used in the reduction algorithm, as explained in the coming

chapters.

• The lattice in Figure 2.2 (c) gives Belnap’s 4-valued logic, T: true, F: false, N: neither

true nor false, and B: both true and false, where ¬N = N and ¬B = B. This logic can

34



be used to reason about inconsistent information stored in a computer database [11].

• The lattice in Figure 2.2 (d) gives the product algebra 2×2 and takes truth values TT,

FF, TF and FT where ¬TF = FT and ¬FT = TF. This logic is effectively employed

for reasons about disagreements between two knowledge sources[17]. The meaning of

the truth values of this logic can be understood by taking an example of two opposing

parties where TF indicates that the first party says that the specification is true

(satisfied) while the second says it is false (not satisfied).

The join-irreducible elements of the lattice in (c) and (d) are (B,N) and (TF ,FT ), respec-

tively.

Figure 2.2: Types of lattices

2.5.1 Three-Valued Lattice Logic (3v-Logic)

This logic relies on the implication of the 3v-valued lattice (L3). This lattice has truth

values similar to Kleene’s logic [84, 71], which has three truth values (T,M,F ). T mans

True, M to present the uncertain or messing information, and F means False. Figure 2.3

(b) shows the three-valued lattice, while Figure 2.3 (a) shows the truth values of this lattice.

The operators ⊔ and ⊓ work as (AND) and (OR) operators in Kleene’s logic.

2.5.2 Four-Valued Lattice Logic (4v-Logic)

This logic is based on the four-valued lattice shown in Figure 2.4 (b) with truth values

taken from the product lattice 2× 2 where these values are TT, FF, TF and FT. This logic

can be used to reason about disagreements between two knowledge sources or conflicting

viewpoints [17, 44]. Figure 2.4 (a) shows the truth values of this lattice.

35



Figure 2.3: (a) The truth table of three-valued lattice; (b) Three-valued lattice L3

Figure 2.4: (a) The truth values taken from the product algebra 2 × 2; (b) Four-valued
lattice

2.5.3 Join-Irreducible Elements

Definition 1. A join-irreducible element in lattice L is an element z ∈ L where z ̸=⊥ and

for any x, y ∈ L, if z = x ⊔ y, then either z = x or z = y. ⊥, in our case, represents the

value FF. Let L be a partial order (L,≤). An element x ∈ L is called a join-irreducible

element iff x ̸=⊥ and , for any a, b ∈ L, if x = a ⊔ b, then either x = a or x = y. The set

of the join-irreducible elements of a given lattice is denoted by J I(L).

Intuitively, the Join-irreducible elements cannot be ⊥ or decomposed into two other

elements. In lattice L3, the Join-irreducible elements are T and M ; in lattice L4 the Join-

irreducible elements are TF and FT with color blue in Figure 2.4, (b). Every element a ̸=⊥

of a finite distributive lattice can be uniquely decomposed into the join of all join-irreducible

elements in its downward closure [19]. Formally, a =
∪
(J I(L)∩ ↓ a). These elements, with

their useful properties, will be the base of our reduction approaches from the multi-valued

to the two-valued model checking problems.

36



2.6 Multi-Valued CTL (mv-CTL)

Multi-valued CTL denoted by mv-CTL is an extension of CTL where the atomic propo-

sitions and/or transitions between states take truth values over a lattice [17]. Our work

focuses on the three-valued propositional logic based on the three-valued lattice (3v−lattice)

and four-valued propositional logic based on the four-valued lattice (4v − lattice) that are

explained in the previous section.

2.6.1 mv-CTL model

The mv-CTL IoT/IS model is a tuple D = (AP, S,R, I,O) where:

• AP is a set of atomic propositions;

• S is a set of global states for the system;

• R ⊆ S × S is a total transition relation denoted by (s, s
′
) ∈ R and takes truth values

over lattice L;

• I ⊆ S is a set of initial global states;

• O : S → (AP → L) is a total labeling function that maps every atomic proposition

x ∈ AP in s ∈ S to a value in lattice L. Lattice L here can be L3 or L4 depending on

the logic used.

Figure 2.5 shows an example of an mv-CTL model mapped to a three-valued lattice. The

model is designed under uncertainty or missing information in states and in the transition

between states where some formulae (atomic propositions) and transitions take truth values

M, which captures the presence of missing information.

2.6.2 Syntax

The syntax is the same as the CTL syntax, except formulae are evaluated over a given

lattice.

37



Figure 2.5: An example of an mv-CTL model mapped to a three-valued lattice

2.6.3 Semantics

The semantics of this logic extends the semantics of CTL as follows. In this semantic, the

formulae are between double lines to indicate that we no longer consider the absolute true

or false, but we consider how close we are to true or false.

Given a mv-CTL IoT/IS model D and a formula, the truth degree of the satisfaction of

this formula is defined as follows:

• ∥ a ∥ (s) = (O(s))(a) where a ∈ AP and O : S → (AP → L) is a total labeling

function that maps states in S into L on a set of atomic propositions AP ;

• ∥ φ∨ψ ∥ (s) =∥ φ ∥ (s)⊔ ∥ ψ ∥ (s) means in which truth degree, φ or ψ holds in state

s;

• ∥ φ ∧ ψ ∥ (s) =∥ φ ∥ (s)⊓ ∥ ψ ∥ (s) means in which truth degree, φ and ψ holds in

state s;

• ∥ ¬φ ∥ (s) = ∥ φ ∥(s) means in which truth degree, φ doesn’t hold in state s;

• ∥EXφ ∥ (s) = preR∃ (∥φ ∥)(s) =
⊔
t∈S

(
∥ φ ∥(t)⊓R(s,t)

)
where preR∃ (∥ φ ∥)(s) denotes

the backward image of state s that determines the value of φ in the next state. The

semantics means in which truth degree there exists a path in the system where φ

holds in the next state;

38



• ∥AXφ∥ (s) = preR∀ (∥φ∥)(s) =
d
t∈S

(
∥φ∥(t)⊔¬R(s,t)

)
where preR∀ (∥ φ ∥)(s) denotes

the backward image of state s that determines the value of φ in the next state of all

paths;

• ∥EGφ ∥= νZ. ∥ φ ∥ ∩L ∥EXZ ∥where νZ stands for the greatest fixed point of the

globally operator G. The semantics expresses in which truth degree there exists a

path in the system where φ globally holds;

• ∥E[φ ∪ ψ]∥= µZ. ∥ ψ ∥ ∪L(∥ φ ∥ ∩L ∥EXZ ∥) where µZ represents the smallest fix

point of the formula φ∪ψ. The semantics define in which truth degree there is a path

where φ holds until ψ holds using the smallest fix point of φ ∪ ψ.

Why multi-valued logic for IoT and IS in multi-source data settings?

IoT and IS in multi-source data environments are considered expanded systems because of

their rapid growth and the large number of communicating and interacting intelligent agents

within these systems in open settings. This makes the systems vulnerable to uncertainty

and inconsistency regarding the system’s interactions or the methods used to design these

systems. Inconsistencies can occur during the design phase when system designers have

conflicting views about some of the system’s behaviors. This could stem from multiple

reasons:

• Ambiguity: The system requirements or specifications may be ambiguous or open to

interpretation. Different designers may interpret the requirements differently, leading

to different views on the system’s behaviors.

• Subjectivity: Designers may have different subjective opinions, perspectives, or pref-

erences that influence their understanding of the system’s behaviors. This can result

in varying viewpoints and interpretations.

• Expertise and background: Designers may come from diverse backgrounds and have

different levels of expertise or experience. Their knowledge, skills, and past experiences

can shape their understanding of the system, leading to different viewpoints.

39



• Design constraints: Designers may face various constraints, such as time, budget, or

technological limitations. These constraints can influence their design decisions and

perspectives on the system’s behaviors.

• Stakeholder perspectives: Different stakeholders, such as clients, end-users, or reg-

ulatory bodies, may have conflicting requirements or expectations for the system.

Designers may need to consider these perspectives, which can lead to different views

on the system’s behaviors.

On the other hand, uncertainty can occur for the following reasons:

• Partial state space of IoT/IS models - some behaviours are unknown [13, 14].

• IoT/IS systems abstraction techniques to reduce the system state space [17].

• Open IoT/IS systems - external components determine some behaviours.

• Uncertain IoT/IS systems - some behaviors report conflicting information.

2.7 Model Checking

Model-checking [43] is a formal automated verification method used to assess the correctness

of both hardware and software systems. Initially developed in the 1980s by Allen Emerson

and Clarke, as well as by Sifakis and Queille, it plays a crucial role in ensuring system

reliability. Model checking techniques can be classified into two groups: classical and multi-

valued model checking. These groups are explained below.

2.7.1 Classical Model Checking

Classical model checking systematically examines a model’s possible states or paths to verify

if it adheres to a desired specification. Model checking is widely applied in hardware and

software verification to ensure the correctness and reliability of systems. The output of

the model checker can be one of three possibilities: a) Property Satisfied (T). b) Property

Unsatisfied (F), accompanied by the generation of a counterexample that elucidates the

40



cause of the satisfaction failure. c) State Explosion, which results from the exponential

growth of the system state space due to an increase in state variables. The process of this

method can be succinctly represented by the formula: M |= ϕ where M is a model and

ϕ is a given formula. System specifications typically comprise propositional connectives

(∨,∧,¬,→), temporal connectives, and primitive properties of individual states.

Various types of logic are employed in model checking techniques, contingent on the

specific model checking tool and the application in question. These logics are categorized

based on how they handle time. As such, logical formulas may be written in linear temporal

logic (LTL), computation tree logic (CTL), µ-calculus, or monitor automata.

A range of model checking tools has been developed, each with distinctive features such

as programming, modeling, and property languages, as well as graphical user interfaces

(GUIs). Some notable tools include SPIN, UPPAAL, and NuSMV.

2.7.2 Multi-Valued Model Checking

Model-checking, in some cases, is insufficient to verify models with inconsistency, incomplete

information or behaviors expressed in multiple truth values. Therefore, multi-valued model

checking methods with many values logic are generated from classical model checking to

deal with the following cases [44]:

• For reasoning about very large (or even infinite) state spaces [13].

• Disagreement and inconsistencies. This occurs during the software engineering pro-

cess, where stakeholders may disagree about how the systems should behave during

the design and implementation phase [30, 17].

• Uncertainty, when we have incomplete information about the real system, usually

during the requirements analysis phase. Uncertainty occurs after removing some in-

formation during system abstraction or in case of an incomplete understanding of

system properties.

• Relative importance: when we want to classify some behaviors as essential and others

may or may not be considered to be implemented [17].

41



• Temporal logic query checking: to discover properties of systems. For example, a

query on a system of the form AX?φ, means what is the property that holds on all

paths and at the next states starting from a state s?

In this method, the system model and its specifications take truth values over a lattice,

and we no longer consider the truth values as True or False; instead, we measure how

close to being true or False [15]. Deciding how many values of logic to consider depends

on how we wish to combine information from individual viewpoints. The ranking on

the elements of the lattice can be interpreted according to the application on hand,

for example, in case we want to preserve information about which party said True

and which party said False; in case we want to allow viewpoints to say ”don’t know”

for some propositions as in three-valued logic. In this approach, the temporal logic

formula is interpreted on a multi-valued system model where the atomic proposition

in every state is interpreted as an element in a lattice [44].

Generally, multi-valued model checking algorithms can be classified into two groups:

- Reduction algorithms that reduce the multi-valued model checking problems to clas-

sical ones. Using these algorithms sometimes leads to losing some information in the

system under investigation. However, the advantage of these algorithms is the ability

to reuse existing model checkers for verifying IoT system models [52, 46, 50, 8, 5, 3, 2]

- Direct algorithms that handle the multi-valued structure without reduction. The

labelling of states and/or transitions is interpreted as elements from a lattice. Devel-

oping direct algorithms is harder than developing reduction ones. However, direct al-

gorithms are more general and can adapt to various scenarios and settings [17, 58, 77].

42



Chapter 3

Applying mv-CTL to IoT Domain

3.1 Motivation and Contribution

The surge in the adoption of IoT (Internet of Things) technology [74] has led to the develop-

ment of expansive systems interconnecting numerous smart components. These components

interact within a network to execute various functions. However, uncertain and inconsistent

information becomes pervasive within this intricate web of connectivity. As the number of

interconnected devices grows, so does the prevalence and impact of these factors, amplifying

the complexity and challenges inherent in managing and ensuring the reliability of these

systems[79]. Using classical model checking in Verifying large IoT systems under uncer-

tain or inconsistent settings is inefficient . The reason is that, as we mentioned earlier, we

need a logic with additional truth value to capture the presence of uncertainty in a system.

Therefore, we prove in this chapter that using the three-valued case of mv-CTL, 3v-CTL,

is the appropriate solution. This logic is based on the three-valued lattice (L3) with truth

values (T,M,F ). The value M is used to represent uncertain information in the system.

We also show that 4v-CTL effectively applies to model and verifying such systems with

inconsistency between system designers using the truth values (TF, FT, TT, FF).

This chapter explains the mv-CTL logic and applies it to a new domain, IoT systems.

Particularly, we contribute by applying a practical reduction-based 3-valued model checking

technique to verify IoT under uncertain settings. 3v-valued model checking is a particular

43



case of multi-valued model checking proposed in [17]. We provide, for the first time, a

mathematical and practical representation of the reduction algorithm produced in [13].

Moreover, we provide a full implementation of this algorithm.

3.2 Modeling Uncertainty in IoT Systems with 3v-CTL

This logic is efficient for reasoning about the uncertainty that stems from:

• Partial IoT models - some behaviours are unknown. This occurs when we have a big

open system that needs to be verified, and we miss some parts or behaviors of this

system.

• Abstracted IoT systems - some behaviours are disregarded to reduce the state space.

This occurs when we abstract the system states and relations to overcome the state

explosion problem.

• Open IoT systems - some behaviours are defined by other components or features.

• Uncertain IoT models - some behaviors are conflicting or reporting conflicting infor-

mation at a specific phase of the IoT system life cycle or missing information about

the behaviors of a given system.

Example 2. Consider a 3-valued model of an IoT system scenario where the formulae

encoding the requirements take truth values over the lattice L3 (see Figure 3.1). The

variables a and b represent a specific position of an IoT component, for example, a smart

coffee machine and a cup, respectively. a = F in s1 stands for: “it is false that the machine

is ready” and a =M in s0 stands for “it is unknown whether the machine is ready or not”.

b = T in the same state stands for “the cup is ready”. The transition from s2 to s1 takes

the value M because “it is unknown whether this transition exists or not in the system”.

44



Figure 3.1: A scenario of a 3-valued smart coffee machine model

3.3 Modeling Inconsistency in IoT Systems with 4v-CTL

Below, we describe how we model our systems using 4v-CTL and how this logic relies on

the multi-valued sets and relations to compute satisfactory results.

Example 3. Modeling a scenario of Smart Glucose Monitoring system with 4v-CTL

Consider the 4v-CTL model (Definition 2.6.1) of a Smart Glucose Monitoring system

(denoted here by A) depicted in Figure 3.2, which describes a specific scenario that shows

how data transform from wearable devices used by a diabetic for monitoring the levels of

glucose and temperature in his/her body. The truth values (TT, FT, FF, TF) are assigned

to the atomic propositions as specified by the function O in the definition. We assume two

designers designed the system based on different points of view and have disagreements

about some of the system’s behaviors. The system contains four states with variables that

take truth values mapped to the four-valued lattice. The system starts when the glucose

and temperature sensors read and send data to a related smart application installed on

the patient’s smartphone. In s0, the variable “PatCon: TT” means there is an agreement

(both say true) between the designers in this state about the patient being connected to the

sensors and the smartphone. In s1, the variable “InfoSend: TT” represents the agreement

about the sensor sends the read data to the smartphone and “Alarm: FT” represents the

disagreement (the first designer says false and the second says true) about the sensor sends

an alarm to the patient’s smartphone when the first reads a high glucose level. The variable

“InfoSned: TT” in s1 represents the agreement about the temperature sensor sends data

45



to the patient’s smartphone. The same applies to “SmPHRecive: TT” in s3 where this

variable stands for the patient’s smartphone receives the data read by the sensors. The

variable “SendAppReq: TF” represents the disagreement (the first designer says true and

the second says false) about the application sends an approval request to the user before

the collected data is shared with the hospital. For simplicity, we omitted the values FF

representing the agreement (both designers say no) about the variables and transitions.

Since this work focuses on the uncertain or inconsistent information in the states (atomic

propositions), we assume the relations between states are true or false in our systems.

Therefore, all the relations between the states in this system are mapped to TT, and to

simplify, we neglected the relations with values FF.

InfoSend:TT
Alarm:FT

InfoSend:TT

Sensors send the
information to the
smart phone

PatCon:TT

glucose level sensor

temperature sensor

SmPhReciv:TT
sendAppReq:TF

S0

S1

S2
S3

TT

TTTT

TT

TT

Patient with
wearable
devices

Figure 3.2: 4v-CTL model of a Smart Glucose Monitoring system (A)

A. Four-Valued Sets (4v-sets)

A 4v-set is a function (O : S → L4) where S is a set of elements and L4 is a four-valued

lattice. Thus, O(a) stands for the degree of membership of a in the function O. The 4v-sets

of the variables InfoSend and Alarm represented by ∥InfoSend ∥ and ∥ Alarm ∥ respectively

and the multi-valued sets of the meet of these variables (∥ InfoSend ∥ ⊓ ∥ Alarm∥) are

46



shown in Figure 3.3. In (a), ∥InfoSend ∥ is obtained as follows: s1 and s2 are mapped to

the truth value TT in the four-valued lattice because the variable “InfoSend” has the value

TT in these states. The same variable doesn’t have the value TF or FT in the system;

therefore, no state is mapped to these values in the lattice. While it has the value FF in

states s0 and s3, these states are mapped to the value FF in the lattice. The same applies

to the mv-set of variable “Alaram” (∥ Alarm ∥) in (b) where state s1 is mapped to FT

because the variable “Alram” has the same values in this state. The mv-set (∥ InfoSend

∥ ⊓ ∥ Alarm∥) in (c) is obtained from taking the meet of the values assigned to the states

in (a) and (b) according to the truth table to the four-valued lattice in Figure 2.4.

Figure 3.3: (a) 4v-sets of variable InfoSend; (b) 4v-sets of variable Alarm; (c) 4v-sets of
(∥InfoSend ∥ ⊓ ∥ Alarm∥)

B. Four-Valued Relations (4v-relations)

A 4v-relation R on two sets X and Y is a 4v-set on X×Y . Figure 3.4 shows the 4v-relations

of model A. The relation from s0 to s1 (s0, s1) and the other relations are mapped to TT

because these relations have the same values in the system. The relation from s0 to s3

(s0, s3) and the other relations are mapped to FF because these relations have the same

values in the system (the relations do not exist). On the other hand, there are no relations

with values TF or FT in the system; therefore, these values are mapped with empty sets.

Example 4. To determine the degree of property satisfaction in the 4v-CTL model

shown in Figure 3.2 using the multi-valued sets and relations, consider the formula that

states “there exists a path in the system where the formula (InfoSend) holds in the next

state”. Formally, ∥ EX (InfoSend)∥s0 where the formula is checked in s0. By applying the

47



Figure 3.4: 4v-relation of model A

semantics of ∥EXφ ∥ (s) presented in Definition 2.6.3, we conduct the flowing calculation:

we take the value of the relation (s0, s1) which is TT, meet (⊓) with the values of (InfoSend)

in s1 which is TT, then the value of the relation (s0, s2) which is TT, meet with the values

of (InfoSend) in s2 which is TT. After that, we take the join (⊔) of the obtained results

as follows: (TT ⊓ TT ) ⊔ (TT ⊓ TT ) = TT ⊔ TT = TT . It is evident that the result is as

expected where the formula (InfoSend) holds with the two designers’ agreement in the next

states s1 and s2. Overall, the result states that the two designers agree that there is at least

one next state where the formula holds in the system.

3.4 Reduction Algorithm of 3v-CTL into CTL

As mentioned earlier, we chose the reduction approach to benefit from its advantage of

reusing the existing model checkers. We leverage the reduction approach described in [13].

We introduce the formal representation of the algorithm and explain its functionalities.

The reduction algorithm is shown in (Algorithm 1). In this algorithm, the input is the

three-valued model (DM ), and the outputs are the two-valued models DT , which considers

M as True and DF considers M as False. It gives each two-valued model the same number

of states in the original model (line 3 ) and the same initial state (line 4). In line 5, the

state’s relations RT and RF are initialized by the empty sets so that the algorithm will

add these relations as the relations in DM . In line 6, the algorithm assigns every atomic

48



proposition x in DM to the same corresponding state in DT . Line 7 checks the truth values

of x. If it is M, remove x and add two fresh atomic propositions x− and x+ with truth

values T. Line 8 checks the truth values of x. If it is T, add a fresh atomic proposition

x− with truth value F. Line 9 checks the truth values of x. If it is F, add a fresh atomic

proposition x− with truth value T.

The same strategy is applied in lines 10-13, but here, every x with value “M” is replaced

by two fresh atomic propositions x− and x+ with truth values F. Then, in lines 14 to 18,

the algorithm gives relations between states (RT ) in the system DT where these relations

are as in system DM . The same strategy is applied in lines 19 to 23 for assigning the

relations between states (RF ) in DF . Line 24 calls Procedure 1. This procedure converter

the input formula ϕ into the positive normal form by pushing all negations to the level of

atomic propositions and replacing each negated atomic proposition x in ϕ by x−, which

is equal to ¬x. The procedure then returns the transformed formula ϕ. In lines 25 to 35,

the algorithm calls the NuSMV model checker over each two-valued model, and then we

compare the results. starting by verifying DT , if the result is T then check the DF . If the

latter gives T, the final result is T. If it gives F, then the final result is Maybe. If DT gives

F, then the final result is False.

Example 5. In Figure 3.5, the three-valued model DM consists of three states with

atomic propositions that take truth values over lattice L3. We need to verify the formulae

(a ∧ ¬b ∨ c) and (EX(a ∧ ¬b ∨ c)) starting from s0 over this model using the reduction

algorithm. The main idea is to add an extra variable x− for each atomic proposition x,

such that in each state of the model, x− equals ¬x. The formula to be verified is converted

into the positive normal form by pushing all negations to the level of atomic propositions

and replacing each negated atomic proposition x (¬x) with the corresponding proposition

(x−). Following the algorithm, DM is decomposed into two two-valued models. The first

is DT , where atomic proposition b in s0 is replaced by two atomic propositions b and b−,

both with truth values T (as b= M and the negation of M is M in DM ). With the atomic

proposition a, another atomic proposition is added named a− with value F. For the atomic

proposition c, another atomic variable is added named c− with value T. The same strategies

49



are applied to the atomic propositions in states s1 and s2. On the other hand, in DF , the

same atomic proposition b in s0 is replaced by two atomic propositions b and b− both with

truth values F ( here we consider M as false). The atomic propositions a and c are treated

as in DT . The same strategies are applied to the atomic propositions in states s1 and s2

from DF . By doing so, we obtain two-valued models with truth values T and F, which

make them suitable to be verified by NuSMV checker. In DM , it is unknown whether the

two formulae are satisfied because we don’t know about b and c in s0 and s1. We can derive

and prove the verification results after transforming DM to CTL models and replacing every

negated proposition ¬x in the formula by x−, it is evident that the first formula is verified

by value T and the other by F. Therefore, the final result is Maybe. The second formula is

verified by T in both models. Therefore, the final result is True.

50



Figure 3.5: Transforming the 3v-model DM into two two-valued models DT and DF

51



Algorithm 1 Transform DM = (SM , RM , IM , APM ,OM ) into two-valued DT =
(ST , RT , IT , APT , LT ) and two-valued DF = (SF , RF , IF , APF , LF )

1: Input the model DM and ϕ.
2: Output the models DT , DF and a formula ϕ1
3: ST = SM and SF = SM
4: IT = IM and IF = IM
5: Initialize RT = ∅ and RF = ∅
6: Initialize (LT (ST ))(x) = (OM (SM ))(x)
7: For every (LT (ST ))(x) = M ⇒ replace (LT (ST ))(x) by (LT (ST ))(x) = T and add

(LT (ST ))(x−) = T
8: For every (LT (ST ))(x) = T ⇒ add (LT (ST ))(x−) = F
9: For every (LT (ST ))(x) = F ⇒ add (LT (ST ))(x−) = T

10: Initialize (LF (SF ))(x) = (OM (SM ))(x)
11: For every (LF (SF ))(x) = M ⇒ replace (LF (SF ))(x) by (LF (SF ))(x) = F and add

(LF (SF ))(x−) = F
12: For every (LF (SF ))(x) = T ⇒ add (LF (SF ))(x−) = F
13: For every (LF (SF ))(x) = F ⇒ add (LF (SF ))(x−) = T
14: for each (sM , s

′
M ) ∈ S2

M do
15: if (sM , s

′
M ) ∈ RM then

16: RT := RT ∪ {(sT , s
′
T )}

17: end if
18: end for
19: for each (sM , s

′
M ) ∈ S2

M do
20: if (sM , s

′
M ) ∈ RM then

21: RF := RF ∪ {(sF , s
′
F )}

22: end if
23: end for
24: (ϕ1)← TRANSFORMULA(ϕ)
25: Call NuSMV on DT

26: if DT ̸|= ϕ1 then
27: “Formula is False”
28: else
29: Call NuSMV on DF

30: if DF |= ϕ1 then
31: “Formula is True”
32: else
33: “Formula is M”
34: end if
35: end if

52



Procedure 1 Transform formula ϕ

1: procedure TRANSFORMULA(ϕ)
2: Transform ϕ to the positive normal form
3: for each x do
4: if ¬x then
5: ¬x = x−
6: end if
7: end for
8: ϕ1 = ϕ
9: Return ϕ1

10: end procedure

3.4.1 Soundness of Algorithm 1

Theorem 1. (Soundness of Algorithm 1): Let DM and ϕ be a 3v-CTL model and a formula

to be verified over this model. Also, let DT and DF be the corresponding CTL models, and

ϕ1 be the transformed formula to be verified over both models.

We have:

1. ∥ ϕ ∥DM
= T iff DT |= ϕ1 and DF |= ϕ1, means the satisfaction degree of ϕ in the

three-valued model DM is true iff the corresponding formula is satisfied in both models.

2. ∥ ϕ ∥DM
= F iff DT ̸|= ϕ1 and DF ̸|= ϕ1, means the satisfaction degree of ϕ in DM is

false iff the corresponding formula is unsatisfied in both models.

3. ∥ ϕ ∥DM
=M iff DT |= ϕ1 and DF ̸|= ϕ1, means the satisfaction degree of ϕ in DM is

uncertain iff the corresponding formula is satisfied in the first model and not satisfied

in the second one.

Proof. The proof of this theorem is straightforward, using induction with respect to the

formula. Let’s prove these statements one by one:

1. According to the truth table (Figure 3.6, (a)) built from our algorithm (lines 25-35),

if ϕ1 is satisfied in DT and DF then ϕ (the original formula) will be assigned the truth

value “true” in DM . This proves the first point.

53



2. Let the same formula ϕ1 be verified on DT and DF . According to the same truth

table, if ϕ1 is not satisfied in DT and DF then ϕ (the original formula) will not be

satisfied by taking the truth value “false” in DM . This proves the second point.

3. On the other hand, if ϕ1 is satisfied in DT and not satisfied in DF , then the original

formula ϕ will be assigned the truth value “Maybe”. This proves the third point.

The same applies to the three points if the algorithm starts by verifying DF where we have

the truth table shown in Figure 3.6(b).

Figure 3.6: (a) The truth table of algorithm 1 when it starts by verifying DT and (b) the
truth table when it starts by verifying DF

54



Chapter 4

Modeling and Verifying IoT/IS

Systems with mv-Commitment

Logics

4.1 Overview and Motivation

Figure 4.1 gives the overview of the work performed on multi-valued commitment logics. The

main goal is to provide practical and reliable approaches for model-checking IoT and IS with

flexible commitment protocols under uncertain or inconsistent settings. We start by showing

that the main base of our logic is the Computational Tree logic (CTL) presented in [43].

CTL was extended in [31] to the logic of commitment CTLcc and in [17] to the mv-CTL mv-

CTL. Based on these logics, we extended the mv-CTL logic to 3v-CTLcc, the three-valued

logic of conditional commitment in [8], and unconditional commitment 3v-CTLc in [3]. We

are motivated to present effective approaches to reason about uncertainty over IoT/IS with

commitment protocols. Moreover, we expanded these logics to new versions named 4v-

CTLcc and 4v-CTLc to represent affective approaches to reason about inconsistency over

the systems under consideration.

55



Figure 4.1: The chapter overview

56



The multi-valued logics presented in this work effectively apply to any commitment-

based multi-agent system with uncertainty or inconsistency. However, we focus on applying

these logics over IS and IoT systems because of their high susceptibility to uncertainty

and inconsistency. We model a specific scenario of a Smart Daisies Diagnosis application

and a Smart Hospital application using our 3v-CTLcc and 4v-CTLcc. Furthermore, we

model A Smart Mortgage application using both 3v-CTLc and 4v-CTLc for reasoning about

uncertainty and inconsistency.

To the best of our knowledge, there are no tools that directly deal with the multi-

valued CTL model checking problems. Motivated by the advantages of reusing the existing

model checking tools, we choose the reduction techniques for transforming the multi-valued

commitment logics to their two-valued versions and CTL. We introduce new reduction

algorithms. Algorithm 2 transforms 3v-CTLc and 3v-CTLcc to their two-valued versions

CTLc and CTLcc respectively. Similarly, Algorithm 3 transforms 4v-CTLc and 4v-CTLcc

to their respective two-valued versions. Algorithm 4 transforms 3v-CTLc to CTL and

Algorithm 5 transforms the 4v-CTLc to CTL. For each algorithm, we provide soundness

proofs and intensive computational complexity analysis.

We develop two new Java-based tools named MV-Checker for implementing the al-

gorithms. The tool transforms the multi-valued logics to CTL and automatically interacts

with the NuSMV model checker. It also transforms these logics into their two-valued cases

and automatically interacts with the MCMAS+ model checker used for multi-agent sys-

tems with commitment protocols. The tool is built on top of the tool developed by [25].

Finally, we report and compare our findings with detailed discussions in four different cases

studies to show that our logics and model checking algorithms apply to various multi-agent

commitment systems.

57



4.2 Modeling Uncertainty in IoT Systems with Three-Valued

Conditional Commitments (3v-CTLcc)

4.2.1 3v-CTLcc

In this section, we recall our work in [8], where we introduced a new logic named 3v-

CTLcc for modeling and verifying IoT applications with timed conditional commitment

protocols under uncertainty. This logic is an extension to the three-valued case of mv-CTL

explained in Section 2.6 where it is based on the three-valued lattice with truth values

(T, M, F) explained in Section 2.5.1. Our logic is produced for capturing the conditional

commitment, explained in Section 2.2, among the system’s agents, but here we deal with

missing information about some system’s behaviors. In this logic, the system is modeled

based on the 3v-CTLcc where the atomic promotions (formulae) take truth values T, M or

F. The value M presents the messing or uncertain information. For example, consider the

system model shown in Figure 4.2. This model represents the same scenario of a smart home

explained in Section 2.2. Assume we have the conditional commitment formula “When the

user sets a specific washing time, the smart washing machine commits to washing the clothes

within this specified time”. The first part of this formula represents the condition ψ in the

accessible state s1 with the assumption that the system designer misses information about

this condition, whether it holds in s1 or not. The second part represents ϕ, which is true

in the same state. Based on this, the satisfaction degree of the formula ∥ CCi→j(ψ,φ) ∥

(s0) re-expressed by ∥ CCwashingmachine→user(UserSetsTime,Washing) ∥ (s0) is computed

as M ⊓ T = M . According to the semantics, ψ and ϕ should hold together in the same

accessible state.

4.2.2 3v-CTLcc IoT model

The model is obtained from the two-valued model of CTLcc by extending the latter with

the lattice L3 and replacing the valuation function V by the multi-valuation function O :

S → (AP → L3), a total labeling function which maps every atomic proposition a ∈ AP in

58



Figure 4.2: An example of conditional commitment model with uncertainty

s ∈ S to L3. Thus, (O(s))(a) = l means the atomic variable a has value l from L3 in state

s where a ∈ AP.

4.2.3 Syntax

The syntax of 3v-CTLcc is equivalent to CTLcc, except that formulae are evaluated over

the three-valued lattice.

4.2.4 Semantics

The semantics of this logic is an extension to (mv-CTL) considering that we deal with L3.

Below, we add our semantics of the 3v-CTLcc.

Given a model of 3v-CTLcc (KM ) and a conditional commitment formula, the satisfac-

tion degree of this formula is defined as:

• ∥CCi→j(ψ,φ)∥ (s) = T iff (1) ∃s′ ∈ S s.t. s ∼i→j s
′
and ∥ ψ ∥ (s′) = T and

(2) ∀s′ ∈ Ss.t. s ∼i→j s
′
and ∥ ψ ∥ (s′) = T we have ∥ ϕ ∥ (s′) = T . Which means,

the satisfaction degree of the formula CCi→j(ψ,φ) in state s is “true” if the truth

degree of ψ and ϕ in the accessible state s′ is T ;

• ∥ CCi→j(ψ,φ) ∥ (s) =M iff

- (1) ∃s′ ∈ Ss.t. s ∼i→j s
′
and ∥ ψ ∥ (s′) =M and

(2) ∀s′ ∈ Ss.t. s ∼i→j s
′
and ∥ ψ ∥ (s

′
) = M we have∥ ϕ ∥ (s

′
) = M ∨ T

59



This means the satisfaction degree of the given conditional commitment formula

CCi→j(ψ,φ) in state s is M if the truth degree of ψ in the s′ is M and the truth

degree of ϕ is M or T as M ⊓M =M and M ⊓ T =M ;

OR

- (1) ∃s′ ∈ Ss.t. s ∼i→j s
′
and ∥ ψ ∥ (s′) = T and

(2) ∀s′ ∈ Ss.t. s ∼i→j s
′
and ∥ ψ ∥ (s′) = T we have∥ ϕ ∥ (s′) =M . This means

the satisfaction degree of the conditional commitment formula CCi→j(ψ,φ) in

state s is M if the truth degree of ψ in the s′ is T and the truth degree of ϕ is

M as T ⊓M =M .

Example 6. Modeling a scenario of a Smart Daisies Diagnosis system with

3v-CTLcc: Consider the simple scenario of a Smart Daisies Diagnoses system shown in

Figure 4.3. The system starts at state s0 where the symptoms (SympCol) are collected

using an intelligent algorithm that sends the diagnosis (Diag) to state s1 for performing a

smart diagnosis process. Then, the application displays at states s2 and s3 multiple dis-

eases (Dise1 and Dise2) according to the generated diagnosis. The atomic propositions over

this system take truth values over lattice L3 for interpreting the uncertainty. This system

contains a conditional commitment interaction between the application and the physician.

This interaction is captured by the commitment accessibility relation from s1 to s2 indi-

cated by color red. Focusing on conditional commitment, the proposition Dise1 in s2 has

uncertain information because we miss information about the Dise1. This missing infor-

mation could be occurred because of system abstraction or partition. Therefore, we have

uncertainty regarding the satisfaction of the conditional commitment formula “The smart

system commits to displaying disease 1 for the physician when the diagnosis is received”,

logically expressed by CCSystem→Physician(Diag, dise1).

60



SympCol:T Diag: T

Diag: T
Dise1: M

Diag: T
Dise2: T

S0
S1

S2

S3

Figure 4.3: A scenario of a Smart Daisies Diagnoses system

4.3 Modeling Inconsistency in IoT/IS Systems with Four-

Valued Conditional Commitments (4v-CTLcc

4.3.1 4v-CTLcc

We introduce this logic to facilitate the modeling and verification of IoT and IS applications

with commitment, especially when the same system is designed by multiple designers with

different viewpoints regarding system behaviors. Specifically, this logic allows the verifi-

cation results to indicate who asserts what regarding specific commitment formulae. The

logic is based on the four-valued lattice (L4) explained in Section 2.5.2, where the system

under investigation is modeled, and the atomic propositions in corresponding states take

truth values TT, FF, FT or TF, following the same strategy applied in Example 2, Section

3.

4.3.2 4v-CTLcc IoT model

The model is obtained from the two-valued model of CTLcc by extending the latter with

the lattice L4 and replacing the valuation function V by the multi-valuation function O :

S → (AP → L4), a total labeling function which maps every atomic proposition a ∈ AP in

s ∈ S to L4.

61



4.3.3 Syntax

The syntax of 4v-CTLcc is equivalent to CTLcc, except that formulae are evaluated over

the four-valued lattice.

4.3.4 Semantics

The semantics of this logic is an extension to (mv-CTL) considering that we deal with L4.

Below, we add our semantics of the 4v-CTLcc.

Given a model of 4v-CTLcc (Hc) and a conditional commitment formula, the satisfaction

degree of this formula is defined as:

• ∥CCi→j(ψ,φ)∥ (s) = TT iff (1) ∃s′ ∈ S s.t. s ∼i→j s
′
and ∥ ψ ∥ (s′) = TT and

(2) ∀s′ ∈ Ss.t. s ∼i→j s
′
and ∥ ψ ∥ (s′) = TT we have ∥ ϕ ∥ (s′) = TT . This means

the satisfaction degree of the formula CCi→j(ψ,φ) in state s is “true, true” (positive

agreement) if the truth degree of ψ and ϕ in the accessible state s′ is TT ;

• ∥ CCi→j(ψ,φ) ∥ (s) = TF iff

- (1) ∃s′ ∈ Ss.t. s ∼i→j s
′
and ∥ ψ ∥ (s′) =TF and

(2) ∀s′ ∈ Ss.t. s ∼i→j s
′
and ∥ ψ ∥ (s

′
) = TF we have∥ ϕ ∥ (s

′
) =TF ∨ TT

This means the satisfaction degree of the given conditional commitment formula

CCi→j(ψ,φ) in state s is TF if and only if the truth degree of ψ in the s′ is TF

and the truth degree of ϕ is TF or TT as TF ⊓ TT =TF and TF ⊓ TF=TF ;

OR

- (1) ∃s′ ∈ Ss.t. s ∼i→j s
′
and ∥ ψ ∥ (s′) = TT and

(2) ∀s′ ∈ Ss.t. s ∼i→j s
′
and ∥ ψ ∥ (s

′
) = TT we have∥ ϕ ∥ (s

′
) =TF. This

means the satisfaction degree of the conditional commitment formula CCi→j(ψ,φ)

in state s is TF if the truth degree of ψ in the s′ is TT and the truth degree of

ϕ is TF as TT ⊓ TF =TF;

• ∥ CCi→j(ψ,φ) ∥ (s) = FT iff

62



- (1) ∃s′ ∈ Ss.t. s ∼i→j s
′
and ∥ ψ ∥ (s′) =FT and

(2) ∀s′ ∈ Ss.t. s ∼i→j s
′
and ∥ ψ ∥ (s

′
) = FT we have∥ ϕ ∥ (s

′
) =TF ∨ TT

This means the satisfaction degree of the given conditional commitment formula

CCi→j(ψ,φ) in state s is FT if and only if the truth degree of ψ in the s′ is FT

and the truth degree of ϕ is FT or TT as FT ⊓ TT =FT and FT⊓ FT=FT

OR

- (1) ∃s′ ∈ Ss.t. s ∼i→j s
′
and ∥ ψ ∥ (s′) = TT and

(2) ∀s′ ∈ Ss.t. s ∼i→j s
′
and ∥ ψ ∥ (s

′
) = TT we have∥ ϕ ∥ (s

′
) =FT. This

means the satisfaction degree of the conditional commitment formula CCi→j(ψ,φ)

in state s is FT if the truth degree of ψ in the s′ is TT and the truth degree of

ϕ is FT as TT ⊓ FT =FT.

Example 7. Modeling a scenario of Smart Diagnosis system with 4v-CTLcc:

Considering the same system in Figure 4.3. We assume two experts design the system;

therefore, the state variables take truth values between TT, FF, TF and FT. For example,

in state s2 Dise1: TF means, the first expert says “yes” and the second says “no” about

holding this atomic proposition in this state. In this case, we have inconsistency in verifying

the same commitment formula CCSystem→Physician(Diag,Dise1).

4.4 Modeling Uncertainty in IoT/IS with Three-Valued Un-

conditional Commitments (3v-CTLc)

4.4.1 3v-CTLc

This section presents the 3v-CTLc, our logic for verifying IoT/IS applications with timed

unconditional commitment protocols under uncertainty settings introduced in [3]. It differs

from the three-valued conditional commitment explained in Section 4.2, where the focus is on

systems with missing information when the commitment between agents does not emphasize

the condition ψ. In other words, agent i commits to bringing about a particular formula ϕ for

agent j, without any specific condition that must be satisfied by the latter. For example, in

63



a smart health monitoring system, we need to verify an unconditional commitment formula

stating that “the temperature sensor commits to sending information to the patient via

an application installed on their smartphone.” We assume that it is uncertain whether the

formula “sending information” holds in a particular state in the system. The verification of

such a formula cannot be performed with the two-valued unconditional commitment logic.

Therefore the 3v-CTLc is developed.

4.4.2 3v-CTLc IS model

The model extends from the CTLc by considering the lattice structure (L3,⊔,⊓). In this

model, the valuation V is replaced by O : S → (AP → L3) defined as in the previous

section.

4.4.3 Syntax

The syntax of this logic is defined as the syntax of CTLc, except that formulae are evaluated

over the three-valued lattice.

4.4.4 Semantics

Following the same strategy with 3v-CTLcc, we add our three-valued modalities for the

unconditional commitment logic:

• ∥ Ci→j(φ) ∥U (s) = T iff ∀s′ ∈ S s.t. s ∼i→j s
′ we have ∥ φ ∥U (s

′
) = T ;

This means the satisfaction degree of the unconditional formula Ci→j(φ) in state s of

the system U is “true” if and only if the truth degree of formula φ in all the accessible

states s′ is T ;

• ∥ Ci→j(φ) ∥U (s) =M iff

∀s′ ∈ S s.t. s ∼i→j s
′ we have ∥ φ ∥U (s

′
) ̸= F and ∃s′ ∈ S s.t. s ∼i→j s

′ and

∥ φ ∥U (s
′
) =M .

This means the satisfaction degree of the unconditional commitment formula is M if

and only if the truth degree of formula φ in every s′ is not equal to F and there is at

64



least one s′ which holds φ with M . In other words, the φ in all the accessible states

must be T or M because T ⊓M =M and must not be F where F ⊓M ⊓ T = F .

4.5 Modeling Inconsistency in IS/IoT with Four-Valued Un-

conditional Commitments (4v-CTLc)

4.5.1 4v-CTLc)

This section introduces a new modality for unconditional commitment logic under incon-

sistency settings. We follow the same strategy applied to the four-valued conditional com-

mitment in Section 4.3, except here we do not empathize on the condition ψ. In particular,

this logic deals with systems with inconsistency where the commitment among the system’s

agents i and j is expressed as agent i commits to bringing about ϕ for agent j without a

condition must be satisfied by the latter.

4.5.2 4v-CTLc IS model

The model extends from the CTLc by considering the lattice structure (L4,⊔,⊓). In this

model, the valuation V is replaced by O : S → (AP → L4) defined as in the previous

section.

4.5.3 Syntax

The syntax of this logic is defined as the syntax of CTLc, except that formulae are evaluated

over the four-valued lattice.

4.5.4 Semantics

The semantics of this logic is an extension to the four-valued case of mv-CTL. Below, we

added our four-valued modalities for the unconditional commitment logic: Let Yc be a

4v-CTLc model, then:

65



• ∥ Ci→j(φ) ∥Yc (s) = TT iff ∀s′ ∈ S s.t. s ∼i→j s
′ we have ∥ φ ∥Yc (s

′
) = TT ;

This means the satisfaction degree of the unconditional commitment formula Ci→j(φ)

in state s of the 4v-system Yc is TT if and only if the truth degree of the formula φ

in all s′ is TT . i.e there is agreement about the satisfaction of the formula;

• ∥ Ci→j(φ) ∥Yc (s) = TF iff ∀s′ ∈ S s.t. s ∼i→j s
′ we have ∥ φ ∥Yc (s

′
) ̸= FF and

∃s′ ∈ S s.t. s ∼i→j s
′ and ∥ φ ∥Yc (s

′
) = TF ;

This means the satisfaction degree of the commitment formula is TF if and only if

the truth degree of φ in all s′ is not equal to FF and there is at least one s′ that

holds φ with the value TF . in other words, the values of φ in all s′ must be at least

TF as TT ⊓ TF = TF and must not include FF as FF ⊓ TF ⊓ TT = FF ;

• ∥ Ci→j(φ) ∥Yc (s) = FT iff ∀s′ ∈ S s.t. s ∼i→j s
′ we have ∥ φ ∥Yc (s

′
) ̸= FF and

∃s′ ∈ S s.t. s ∼i→j s
′ and ∥ φ ∥Yc (s

′
) = FT .

This semantics means the satisfaction degree of the formula Ci→j(φ) in state s of the

system Yc is FT if and only if the truth degree of φ in all the accessible states s′ is

not equal to FF and there at least one accessible state s′ that holds φ with the value

FT . Intuitively, the values of φ in the accessible states must include at least FT as

TT ⊓ FT = FT and must not include FF as FF ⊓ FT ⊓ TT = FF .

4.6 Reduction-Based Multi-Valued Model Checking mv-CTLcc

and mv-CTLc

4.6.1 Reduction Algorithm from 3v-CTLcc to CTLcc

We introduce a new algorithm (Algorithm 2) for transforming our logic 3v-CTLcc to its

two-valued version CTLcc to reuse the existing model checker MCMAS+. Algorithm 2

starts by taking the 3v-CTLcc model (KM ) and the commitment formula as inputs in line

1. Line 2, call Procedure 1 to convert the negation of the formula into the level of an

atomic proposition as explained in Example 5. Line 3 shows that the algorithm outputs

two two-valued CTLcc modelsKT andKF . Line 4 gives the two two-valued models the same

66



number of states and initial states as the 3v-model. Line 5 initializes the transitions and

commitment accessibility relations by empty sets to start assigning the same transitions and

relations to the two-valued models. RT and ART represent the transitions and commitment

accessibility relations (explained in Example1) in KT , respectively. RF and ARF represent

the transitions and commitment accessibility relations in KF , respectively. Line 6 gives

the same atomic positions in KM to the two models. Line 7 replaces every proposition x

with value M by x = T and adds a fresh atomic proposition x− = T . Line 8 adds for

every atomic proposition x = T another atomic position x− = F . Line 9 adds for every

atomic proposition x = F another atomic position x− = T . The same strategy is applied

in lines 10-13, but here, it replaces every proposition x with value M by x = F and adds

a fresh atomic proposition x− = F . Line 14 gets the set of states for each model with

the transformed atomic propositions. Through lines (15-22), the algorithm starts, through

the procedure TRANSFORM, to relate the states of the two-valued model KT similar to

the transition and accessibility relations in the 3v-model. The same applies to KF through

lines (23-29). Line 30 returns the two complete two-valued models, and line 31 ends the

procedure. The algorithm calls MCMAS+ over the two-valued CTLcc models and the input

formula in lines (32-33) and saves the results in z and y in line 34. Then, through lines

(35-42), applies the approximation based on the join-irreducible elements in L3 by taking

the join of the verification results where the result (False) is considered ∅. We change the

value F to an empty set because the final result is computed by taking into consideration

only the two-valued model with the verification result True. Otherwise, we exclude the

model. Specifically, M ⊔∅ = Maybe means we take the verification result of the model that

considers M as True (M and T are true) and exclude the result of the model that considers

M as False (only T is true).

67



Algorithm 2 Transform KM = (SM , RM , {∼i→j | (i, j) ∈ A2}, IM ,OM ) into two-valued
KT = (ST , RT , {∼i→j | (i, j) ∈ A2}, IT , LT ) and two-valued KF = (SF , RF , {∼i→j | (i, j) ∈
A2}, IF , LF )

1: Input the mv-model KM and a commitment formula ϕ = CCi→j(ψ,φ)
2: ϕ1 ← TRANSFORMULA(ϕ)
3: Output the two-valued models KT and KF

4: ST = SM , SF = SM , IT = IM and IF = IM
5: Initialize RT = ∅, RF = ∅, ART = ∅ and ARF = ∅
6: Initialize (LT (ST ))(x) = (OM (SM ))(x)
7: For every (LT (ST ))(x) = M ⇒ replace (LT (ST ))(x) by (LT (ST ))(x) = T and add

(LT (ST ))(x−) = T
8: For every (LT (ST ))(x) = T ⇒ add (LT (ST ))(x−) = F
9: For every (LT (ST ))(x) = F ⇒ add (LT (ST ))(x−) = T

10: Initialize (LF (SF ))(x) = (OM (SM ))(x)
11: For every (LF (SF ))(x) = M ⇒ replace (LF (SF ))(x) by (LF (SF ))(x) = F and add

(LF (SF ))(x−) = F
12: For every (LT (ST ))(x) = T ⇒ add (LT (ST ))(x−) = F
13: For every (LT (ST ))(x) = F ⇒ add (LT (ST ))(x−) = T
14: Get the sets ST and SF
15: procedure TRANSFORM (ST , SF ,KM )
16: for each (sM , s

′
M ) ∈ S2

M do
17: if (sM , s

′
M ) ∈ RM then

18: RT := RT ∪ {(sM , s
′
M )}

19: if sM ∼i→j s
′
M then ART =ART ∪ {sM ∼i→j s

′
M}

20: end if
21: end if
22: end for
23: for each (sM , s

′
M ) ∈ S2

M do
24: if (sM , s

′
M ) ∈ RM then

25: RF := RF ∪ {(sM , s
′
M )}

26: if sM ∼i→j s
′
M then ARF =ARF ∪ {sM ∼i→j s

′
M}

27: end if
28: end if
29: end for
30: Return (KT ,KF )
31: EndProcedure
32: Call MCMAS+ on KT and ϕ1
33: Call MCMAS+ on KF and ϕ1
34: z := MCMAS result on KT and ϕ1 and y := MCMAS result on KF and ϕ1
35: if z = True and y = True then the final result: M ⊔ T = True
36: else
37: if z = True and y = False then the final result: M ⊔ ∅ =Maybe
38: else
39: if z = False and y = False then the final result: ∅ ⊔ ∅ = ∅ = False
40: end if
41: end if
42: end if

68



4.6.2 Soundness of Algorithm 2

Soundness of Algorithm 2

Theorem 2. (Soundness of Algorithm 2) Let KM be a 3v-CTLcc model and CCi→j(ψ,φ)

a conditional commitment formula to be verified over this model. Also, let KT and KF

be the corresponding two-valued CTLcc models, and ϕ1 be the transformed formula to be

verified over both models.

We have:

1. ∥ CCi→j(ψ,φ) ∥KM
= T iff KT |= ϕ1 and KF |= ϕ1, means the satisfaction degree

of the formula in the three-valued model KM is true iff the transformed formula is

satisfied in both models.

2. ∥ CCi→j(ψ,φ) ∥KM
= F iff KT ̸|= ϕ1 and KF ̸|= ϕ1, means the satisfaction degree of

the formula in KM is false iff the transformed formula is not satisfied in both models.

3. ∥ CCi→j(ψ,φ)∥KM
= M iff KT |= ϕ1 and KF ̸|= ϕ1, means the satisfaction degree of

the formula in KM is uncertain iff the transformed formula is satisfied in KT and not

satisfied in Kf .

Before we start the proof, let us build the truth table from the algorithm. Figure 4.4

shows this truth table as built from Algorithm 2 (lines 34-42). It indicates that if KT

(with M=T) gives true, we take the corresponding join-irreducible element M. If it gives

false, we ignore this element. Similarly, if KF (with only T=T) gives true, we take the

corresponding join-irreducible element T. If it gives false, we ignore this element. The final

result is determined by taking the join of the individual results.

Proof. The proof of the theorem is straightforward, using induction with respect to the

formula. Let’s prove the theorem’s statements one by one:

1. According to the truth table (Figure 4.4), if ϕ1 is satisfied in KT and KF , then ϕ

(the original formula which represents the commitment formula CCi→j(ψ,φ)) will be

assigned the truth value “T” in KM . This proves the first point.

69



2. According to the same truth table, if ϕ1 is not satisfied in KT and KF , then ϕ (the

original commitment formula) will not be satisfied by taking the truth value “false”

in KM . This proves the second point.

3. Finally, if ϕ1 is satisfied in KT and not satisfied in KF , then as shown by the truth

table, ϕ will be assigned the truth value “Maybe”. This proves the third point.

Figure 4.4: The truth table from Algorithm 2

4.6.3 Reduction Algorithm from 4v-CTLcc to CTLcc

Algorithm 3 generates two two-valued CTLcc models KT and KF from the 4v-CTLcc model

Hc. The lines from 1 to 6 function as in Algorithm 2. Here, RT and ART represent

the transitions and commitment accessibility relations (explained in Example 1) in KT ,

respectively. RF and ARF represent the transitions and commitment accessibility relations

in KF , respectively. Lines 7 and 8 give the same state variables with their truth values in Hc

to two sets ST and SF . Lines 9 and 10 build the set of states ST considering every variable

with the values TF or TT as True and the ones with the values FT and FF as False. Line 11

uses the function (get) to obtain the set ST that includes all the states in this model. Lines

12 and 13 build the set of states SF considering every variable with the values FT or TT

as True and the ones with TF and FF as False. Line 14 gets the set SF . Line 15 calls the

procedure TRANSFORM from Algorithm 2 with the parameters (ST , SF ,Hc) to establish

the commitment and transition relations between states in ST and SF as in Hc in order to

get the complete two-valued models KT and KF . Then, in lines 16 and 17, the algorithm

calls the model checker MCMAS+ on each model with the input formula and saves the

70



result in x and y. Finally, based on the results in line 18, we apply the approximations in

lines 19-22 to get the final results.

Algorithm 3 Transform Hc = (Sc, Rc, {∼i→j | (i, j) ∈ A2}, IT ,OT ) into into two-valued
KT = (ST , RT , {∼i→j | (i, j) ∈ A2}, IT , LT ) and two-valued KF = (SF , RF , {∼i→j | (i, j) ∈
A2}, IF , LF )

1: Input the mv-model Hc and formula ϕ = CCi→j(ψ,φ)
2: Output the two-valued models KT and KF

3: ST = Sc and SF = Sc
4: IT = Ic and IF = Ic
5: Initialize RT = ∅ and RF = ∅
6: Initialize ART = ∅ and ARF = ∅
7: Initialize (VT (ST ))(x) = (Oc(Sc)(x)
8: Initialize (VF (SF ))(x) = (Oc(Sc)(x)
9: For every (VT (ST ))(x) = TF ∨ TT ⇒ (VT (ST ))(x) = T

10: For every (VT (ST ))(x) = FT ∨ FF ⇒ (VT (ST ))(x) = F
11: Get ST
12: For every (VF (SF ))(x) = FT ∨ TT ⇒ (VF (SF ))(x) = T
13: For every (VF (SF ))(x) = TF ∨ FF ⇒ (VF (SF ))(x) = F
14: Get SF
15: (KT ,KF )← Transform(ST , SF ,Hc)
16: Call MCMAS+ on KT and ϕ
17: Call MCMAS+ on KF and ϕ
18: x := MCMAS result on KT and ϕ and y := MCMAS result on KF and ϕ
19: If x = True and y = True then, the final result: TF ⊔ FT = TT
20: If x = False and y =True then, the final result: ∅ ⊔ FT = FT
21: If x =True and y = False then, the final result: TF ⊔ ∅ = TF
22: If x = False and y = False then, the final result: ∅ ⊔ ∅ = FF

Example 8. In Figure 4.5, the four-valued commitment model (Hc) consists of three

states with transitions and commitment accessibility relations. The model is designed by

two experts having different points of view (disagreement) about the system’s behavior.

This disagreement is captured using the truth values over the four-valued lattice L4. The

formula CCi→j(ψ, ϕ) shown in the figure is verified over this model after they transformed

into two two-valued commitment models, KT considers TF as T and FT as F, and KF

considers FT as T and TF as F. The reason it transformed into two models is that the

number of transformed models depends on the number of the join-irreducible elements

in the used lattice, which is L4 in our case. The formula is verified by TF as there are

conflicting viewpoints about ψ in state s1. After model transformation, the commitment

71



formula is verified by the result True in KT (with TF true). This means we consider the

element TF for the final result. The same formula is verified by the value Flase in KF (FT

true). Therefore we ignore the corresponding element FT for the final result and assign an

empty set instead. The final result is TF. This gives us information that the first expert

says yes, and the second says no about the same formula.

Figure 4.5: Transforming the 4v-model UM into two two-valued models KT and KF

4.6.4 Soundness of Algorithm 3

Theorem 3. (Soundness of Algorithm 3) Let Hc be a 4v-CTLcc model and ϕ = CCi→j(ψ,φ)

be a conditional commitment formula to be verified over this model. Also, let KT and KF

be the corresponding two-valued CTLcc models.

We have:

72



1. ∥ ϕ ∥Hc= TT iff KT |= ϕ and KF |= ϕ, means the satisfaction degree of the formula

in the four-valued model Hc is TT (agreement) iff the formula ϕ is satisfied in both

transformed models.

2. ∥ ϕ ∥Hc= FF iff KT ̸|= ϕ and KF ̸|= ϕ, means the satisfaction degree of the formula

in Hc is FF (agreement) iff the formula ϕ is not satisfied in both transformed models.

3. ∥ ϕ ∥Hc= TF iff KT |= ϕ and KF ̸|= ϕ, means the satisfaction degree of the formula

in Hc is TF (disagreement) iff ϕ is satisfied in the first model and not satisfied in the

second one.

4. ∥ ϕ ∥Hc= FT iff KT ̸|= ϕ and KF |= ϕ, means the satisfaction degree of the formula

in Hc is FT (disagreement) iff ϕ is not satisfied in the first model and satisfied in the

second one.

To prove this theorem, we first build a truth table from the algorithm. Figure 4.6

shows this truth table as built from Algorithm 3 (lines 18-22). It says if KT (with TF=T)

gives true, we take the corresponding join-irreducible element TF. If it is false, then we

ignore this element. Similarly, if KF (with FT=T) gives true, we take the corresponding

join-irreducible element FT. If it is false, then we ignore this element. The final result is

determined by taking the join of the individual results.

Proof. The proof of this theorem is straightforward using induction. Let’s prove these

statements one by one:

1. According to the truth table (Figure 4.6), if ϕ is satisfied in KT and KF then ϕ will

be assigned the truth value “TT” in Hc. This proves the first point.

2. According to the same truth table, if ϕ is not satisfied in KT and KF , then ϕ will be

assigned the truth value “FF” in Hc. This proves the second point.

3. Finally, if ϕ is satisfied in KT and is not satisfied in KF , then ϕ will be assigned the

truth value “TF”. This proves the third point.

73



4. If ϕ is not satisfied in KT and satisfied in KF , then ϕ will be assigned the truth value

“FT”. This proves the fourth point.

Figure 4.6: The truth table from Algorithm 3

4.6.5 Reduction Algorithm from 3v-CTLc to CTL

Since Algorithm 2 is applicable to transform 3v-CTLc to CTLc, we produce a new reduction

algorithm for reducing the problem of model checking 3v-CTLc to CTL using our new tool

NuSMV-interactor and compare the results obtained from the two algorithms. The

algorithm depends on the join-irreducible elements in a given lattice. The general idea of

this algorithm is to transform the 3v-CTLc into two CTLc, and then each model transforms

to a CTL model. By doing so, we become able to use another efficient checker, which is

NuSMV.

The complete procedure is shown in Algorithm 4 where the input is the three-valued

model UM , and the formula ψ represents the commitment formula Ci→j(φ) in 3v-CTLc. The

outputs are the transformed two-valued models DT and DF and a CTL formula ϕ1 defined

as in Algorithm 1. Line 3 transforms the commitment formula to CTL via calling Procedure

2. Following the transformation strategy in [28], in this procedure, to preserve the CTL

semantics, it is crucial to ensure that the transformation does not impact the temporal

operators. Specifically, when introducing new states and transitions (that represent the

commitment content) to the corresponding CTL models DT and DF , we must verify that

the path through which the formula is satisfied in the original model UM remains satisfied

in the corresponding path of the translated models. Therefore, the fresh atomic proposition

χ with negation is added to the transformed formula to show that the new state and

74



relation added to present the commitment accessibility relation are not counted in the CTL

model verification. The atomic proposition αij is introduced to represent the presence of an

accessible state. Along each path, if the subsequent state on that path satisfies the atomic

proposition αij , then the subsequent of this state also satisfies the transformed commitment

formula ψ. After transforming the commitment formula to CTL, line 4 calls Procedure 1

to get the formula ϕ1 as explained in Algorithm 1. Line 5 assigns the same states and

initial states in UM to each two-valued model. Lines from 6-14 function as lines 6-13 in

Algorithm 1. Line 15 gets the complete sets of states for the two models. Line 16 calls

Procedure 3 to build the relations of the two CTL models. In this procedure, every set

of states is linked by the original relations and the new relations are added to present the

commitment content on the CTL model. More specifically, the algorithm checks if there is

a commitment accessibility relation between two states in UM , then an intermediate state

will be added with two fresh atomic propositions (αij) and (χ) where the first represents

the commitment accessibility relation between two intelligent agents i and j. The second

is to know that the intermediate state is new and not included in the original commitment

model. The same line (16) returns the transformed models DT and DF . Then, From lines

17 to 27, the algorithm calls NuSMV over these models with the formula ϕ1 and gets the

final results as explained in Algorithm 1.

75



Algorithm 4 Transform UM = (SM , RM , {∼i→j | (i, j) ∈ A2}, IM ,OM ) into DT =
(ST , RT , IT , VT ) and DF = (SF , RF , IF , VF )

1: Input the mv- model UM and formula ϕ = Ci→j(φ)
2: Output the CTL models DT , DF and ϕ1
3: ϕ′ ← TRANSFORCOMMMULA(ϕ)
4: ϕ1 ← TRANSFORMULA(ϕ′)
5: (ST = SM and SF = SM ) and (IT = IM and IF = IM )
6: Initialize RT = ∅ and Initialize RF = ∅
7: Initialize (LT (ST ))(x) = (OM (SM ))(x)
8: For every (LT (ST ))(x) = M ⇒ replace (LT (ST ))(x) by (LT (ST ))(x) = T and add

(LT (ST ))(x−) = T
9: For every (LT (ST ))(x) = T ⇒ add (LT (ST ))(x−) = F

10: For every (LT (ST ))(x) = F ⇒ add (LT (ST ))(x−) = T
11: Initialize (LF (SF ))(x) = (OM (SM ))(x)
12: For every (LF (SF ))(x) = M ⇒ replace (LF (SF ))(x) by (LF (SF ))(x) = F and add

(LF (SF ))(x−) = F
13: For every (LT (ST ))(x) = T ⇒ add (LT (ST ))(x−) = F
14: For every (LT (ST ))(x) = F ⇒ add (LT (ST ))(x−) = T
15: Get sets ST and SF
16: (DT , DF )← TranfToCTL(ST , SF ,UM )
17: Call NuSMV on DT

18: if DT ̸|= ϕ1 then
19: “Formula is False”
20: else
21: Call NuSMV on DF

22: if DF |= ϕ1 then
23: “Formula is True”
24: else
25: “Formula is uncertain (M)”
26: end if
27: end if

76



Procedure 2 Transform CTLc formula ψ into CTL formula f(ψ)

1: procedure TRANSFORCOMMMULA(ψ)
2: f(x) = x if x ∈ AP
3: f(¬ψ) = ¬f(ψ)
4: f(ϕ ∨ ψ) = f(ϕ) ∨ f(ψ)
5: f(EXψ) = EXf(ϕ) ∧ ¬χ)
6: f(E(ϕ ∪ ψ)) = E((f(ϕ) ∧ ¬χ) ∪ (f(ψ) ∧ ¬χ))
7: f(EGψ) = EG(f(ϕ) ∧ ¬χ)
8: f(Ci→j(ψ)) = AX(αij → AXf(ψ))
9: Return: f(ψ)

10: end procedure

77



Procedure 3 Build the state’s relations of the CTL models
1: procedure TranfToCTL(ST , SF ,UM )
2: for each (sM , s

′
M ) ∈ S2

M do
3: if (sM , s

′
M ) ∈ RM then

4: RT := RT ∪ {(sM , s
′
M )}

5: if sM ∼i→j s
′
M for all (i, j) ∈ A2 then

6: if ∃s′′ such that ((s, s′′), (s′′ , s′) ∈ RT and χ ∈ VT (s
′′
) then

7: VT (s
′′
) := VT (s

′′
) ∪ {αij}

8: else
9: ST := ST ∪ {s

′′}
10: RT := RT ∪ {(s, s

′′
), (s

′′
, s

′
)} and VT (s

′′
) := {χ, α}

11: end if
12: end if
13: end if
14: end for
15: return t
16: for each (sM , s

′
M ) ∈ S2

M do
17: if (sM , s

′
M ) ∈ RM then

18: RF := RF ∪ {(sM , s
′
M )}

19: if sM ∼i→j s
′
M for all (i, j) ∈ A2 then

20: if ∃s′′M such that ((sM , s
′′
M ), (s

′′
, s

′
) ∈ RF and χ ∈ VF (s

′′
) then

21: VF (s
′′
) := VF (s

′′
) ∪ {αij}

22: else
23: SF := SF ∪ {s

′′}
24: RF := RF ∪ {(s, s

′′
), (s

′′
, s

′
)} and VF (s

′′
) := {χ, α}

25: end if
26: end if
27: end if
28: end for
29: return (DT , DF )
30: end procedure

Example 9. The algorithm is exemplified in Figure 4.7. In this figure, starting with the

3v-CTLc model of unconditional commitment (UM ), the algorithm takes this model and

transforms it into two two-valued CTLc models (here we include only the positive model,

which considers M as true) and then the obtained models are transformed into two CTL

models DT and DF . To simplify the example, we include only DT . The CTLc model

is included implicitly in the algorithm. As shown in the figure, the model DT includes

a new state s01 added between s0 and the accessible state s1. This state represents the

commitment content in this CTL model captured by αij . In addition, a fresh atomic

78



proposition χ is added to this state to capture the fact that the state does not exist in the

original commitment model. By doing so, a CTL-based model checker such as NuSMV can

deal with a CTL system with the presence of commitment.

Figure 4.7: Transformation example from 3v-CTLc to CTL (only the models consider M as
true).

4.6.6 Soundness of Algorithm 4

Theorem 4. (Soundness of Algorithm 4) Let UM be a 3v-CTLc model and Ci→j(φ) be

an unconditional commitment formula to be verified over this model. Also, let DT , DF and

ϕ1 be the corresponding two-valued models and formulae in CTL.

We have:

1. ∥ Ci→j(φ) ∥UM
= T iff DT |= ϕ1 and DF |= ϕ1, means the satisfaction degree of the

commitment formula in the three-valued model UM is true iff the CTL formula ϕ1 is

true in both CTL models.

2. ∥ Ci→j(φ) ∥UM
= F iff DT ̸|= ϕ1 and DF ̸|= ϕ1, means the satisfaction degree of the

formula in UM is false iff the CTL formula ϕ1 is false in both CTL models.

79



3. ∥ Ci→j(φ) ∥UM
= M iff DT |= ϕ1 and DF ̸|= ϕ1, means the satisfaction degree of the

formula in UM is uncertain iff the CTL formula ϕ1 is true in CTL model Df and

false in DT .

Proof. The proof of this theorem is similar to the proof of Theorem 1.

1. According to the truth table (Figure 3.6, (a)) that can be built from Algorithm 4

(lines 18-27), if ϕ1 is satisfied in DT and DF then ϕ (the original formula) will be

satisfied by truth value “true” in UM . This proves the first point.

2. According to the same truth table, if ϕ1 is not satisfied in DT and DF then ϕ (the

original formula) will not be satisfied by taking the truth value “false” in UM . This

proves the second point.

3. Finally, if ϕ1 is satisfied in DT and didn’t satisfy in DF , then the original formula ϕ

will be verified by truth value “Maybe”. This proves the third point.

4.6.7 Reducing 4v-CTLc to CTL

We introduce Algorithm 5 to reduce 4v-CTLc to CTL. The algorithm inputs a 4v-CTLc

model (Yc) and the commitment formula and outputs two CTL models in lines 1 and 2.

Line 3 calls Procedure 2 to transform the commitment formula into CTL. Line 4 assigns

two sets of states ST and SF with the same number of states in Yc. Line 5 assigns the same

initial states as well. Line 6 initializes the relations between states by empty sets. Line 7

gives the same state variables with their truth values in Yc to two sets ST and SF . Line 8

considers the variables of the states in ST with truth values TT and TF as T, and line 9

considers the ones with FF and FT as F. The opposite applies to lines 10 and 11 for the set

SF . Line 12 gets the sets ST and SF containing the states with the changed truth values

variables and without transition relations. Line 13 calls procedure 3 with the parameters

(ST , SF , Yc) to establish the new transition relations between states in ST and SF in order

to get the complete CTL models DT and DF . Lines 14 and 15 call the NuSMV over each

80



CTL model and the CTL formula. Line 16 saves the results in the variables z and y to apply

the comparisons and approximations in 4.6.3 as the underlying lattice in this algorithm is

the four-valued lattice.

Algorithm 5 Transform Yc = (Sc, Rc, {∼i→j | (i, j) ∈ A2}, Ic,Oc) into DT =
(ST , RT , IT , LT ) and DF = (SF , RF , IF , LF )

1: Input the 4v- model Yc and formula ϕ = Ci→j(φ)
2: Output the CTL models DT , DF and ϕ1
3: ϕ1 ← TRANSFORCOMMMULA(ϕ)
4: ST = Sc and SF = Sc
5: IT = Ic and IF = Ic
6: Initialize RT = ∅ and RF = ∅
7: Initialize (LT (ST ))(x) = (Oc(Sc)(x) and (LF (SF ))(x) = (Oc(Sc)(x)
8: (LT (ST ))(x) = TF ∨ TT ⇒ (LT (ST ))(x) = T for each sT ∈ ST and sc ∈ ST such that
sT = sc

9: (LT (ST ))(x) = FT ∨ FF ⇒ (LT (ST ))(x) = F for each sT ∈ ST and sc ∈ Sc such that
sT = sc

10: (LF (SF ))(x) = FT ∨ TT ⇒ (LF (SF ))(x) = T for each sF ∈ SF and s∈Sc such that
sF = sc

11: (LF (SF ))(x) = TF ∨ FF ⇒ (LF (SF ))(x) = F for each sF ∈ SF and sT ∈ Sc such that
sF = sc

12: Get sets ST and SF
13: (DT , DF )← TranToCTL(ST , SF ,Yc)
14: Call NuSMV on DT and ϕ1
15: Call NuSMV on DF and ϕ1
16: z := NuSMV result on DT and ϕ1 and y := NuSMV result on DF and ϕ1
17: If z = True and y = True then, the final result: TF ⊔ FT = TT
18: If z = False and y =True then, the final result: ∅ ⊔ FT = FT
19: If z =True and y = False then, the final result: TF ⊔ ∅ = TF
20: If z = False and y = False then, the final result: ∅ ⊔ ∅ = FF

4.6.8 Soundness of Algorithm 5

Theorem 5. (Soundness of Algorithm 5) Let Yc and Ci→j(φ) be a 4v-CTLc model and an

unconditional commitment formula to be verified over this model. Also, let DT , DF and ϕ1

be the corresponding two-valued models and formulae in CTL.

We have:

1. ∥ Ci→j(φ) ∥Yc= TT iff DT |= ϕ1 and DF |= ϕ1, means the satisfaction degree of the

formula in the three-valued model Yc is (true, true) if the CTL formula ϕ1 is true in

81



both CTL models.

2. ∥ Ci→j(φ) ∥Yc= FF iff DT ̸|= ϕ1 and DF ̸|= ϕ1, means the satisfaction degree of the

formula in Yc is (false,false) if the CTL formula ϕ1 is false in both CTL models.

3. ∥ Ci→j(φ) ∥Yc= TF iff DT |= ϕ1 and DF ̸|= ϕ1, means the satisfaction degree of the

formula in Yc is (true, false) if the CTL formula ϕ1 is true in CTL model Dt and

false in Df .

4. ∥ Ci→j(φ) ∥Yc= FT iff DT ̸|= ϕ1 and DF |= ϕ1, means the satisfaction degree of the

formula in Uc is (false, true) if the CTL formula ϕ1 is false in CTL model DT and

true in Df .

Proof. Similar to Algorithm 4, the transformation from 4v-CTLc to CTL is done in two

steps. The first is transforming 4v-CTLc to CTLc and then transforming to CTL. The proof

of the soundness of transforming CTLc to CTL can be derived from Theorem 4. Based on

the truth table from Algorithm 3, which can be obtained from lines 17 to 20, the proof of

this theorem is straightforward as in Algorithm 3.

4.7 Computational Complexity Analysis

The reasons for delving into the computational complexity of the model checking problem

encompass the following objectives: 1) Establish a formal rationale demonstrating the ef-

ficacy of the proposed approach. 2) Determine the computational resources necessary to

handle all instances of the problem, including the most challenging scenarios. 3) Provide

a lucid understanding of the genuine computational challenge underlying the problem. 4)

Conduct a comparative assessment of various model checking techniques. The hierarchical

relationship between the common complexity classes is determined by the subset relation ⊆

as follows: L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXPTIME ⊆ EXPSPACE. These

classes can be read from bottom to up as logarithmic space, nondeterministic logarithmic

space, polynomial time, nondeterministic polynomial time, polynomial space, nondetermin-

istic polynomial space, exponential time and exponential space. In this section, we provide

82



the complexity analysis for our algorithms. As mentioned, our reduction algorithms basi-

cally transform the multi-valued model into two two-valued models. The two models exhibit

similarities and solely differ in the truth values of atomic propositions. Because these trans-

formations are similar and can be performed in parallel, it is enough to consider only one

transformation for the complexity analysis. Therefore, our analysis centres on the model

with uncertainty in which M is considered true.

The computational analysis of the algorithms that are handling models with inconsis-

tency is performed following the same strategies applied in this section with models with

uncertainty.

4.7.1 Time Complexity of Model Checking 3v-CTLcc through Transfor-

mation to CTLcc

In this subsection, we will prove that the problem of model checking 3v-CTLcc through

the transformation to CTLcc is P-complete in time. Generally, a problem is classified as

P-complete if it is solvable in polynomial time, and any problem in P can be reduced to it

in polynomial time. The assessment of model checking complexity is contingent upon the

scale of both the model and the representation of the formula employed. Consequently, it is

imperative to elucidate the chosen input representation and state how we measure its size.

Proposition 1. (Boundedness of atomic propositions). Let KT be the positive CTLcc

model obtained from KM in Algorithm 2. Moreover, let Atom(KT ) be the number of atomic

propositions in the model KT and Atom(KM ) be the number of atomic propositions in model

KM . We have: Atom(KT ) = 2×Atom(KM )

Proof. The proof is straightforward from steps 7-9 in Algorithm 2. These steps introduce

an additional atomic proposition in the model KT for each atomic proposition. Thus, the

number of atomic propositions in KT , Atom(KT ), is proportional to the number of atomic

propositions in KM , Atom(KM ), with a scaling factor of 2.

Proposition 2. (Boundedness of model transformation). Let |KT | and |KM | be the size of

KT and KM respectively. |KT | is linear with |KM |.

83



Proof. As shown in Algorithm 2, the model KT has the same number of states and relations

as the model KM . The results flow then from Proposition 1.

Theorem 6. (Explicit 3v-CTLcc model checking: upper bound). The model checking prob-

lem of 3v-CTLcc through transformation to CTLcc can be solved in time O(|KM | × |ϕ|).

Where |KM | and |ϕ| are the size of the model and length of the formula, respectively.

Proof. 3v-CTLcc extends CTLcc. It is known from [31] that the model checking problem

for CTLcc is linear in the size of the model and the length of the formula. From Proposition

2, |KT | = 2|KM | considering atomic variables as part of the state space. Moreover, from

Procedure 1, it is evident that the length of the transformed formula ϕ1 equals the original

formula ϕ where the procedure only replaces each negated proposition ¬x by x−, so the

result.

Theorem 7. (Explicit 3v-CTLcc model checking: completeness) The model checking problem

of 3v-CTLcc through transformation to CTLcc is P-complete.

Proof. Membership in P (i.e., upper bound) follows from Theorem 6. Hardness in P (i.e.,

lower bound) followed by a reduction from model checking CTLcc proved to be P-complete

in [31].

4.7.2 Space Complexity of Model Checking 3v-CTLcc through Transfor-

mation to CTLcc

Here, we prove that the complexity of 3v-CTLcc model checking, through the transformation

to CTLcc, for concurrent programs [55] is PSPACE-complete. This finding indicates that

there exists an algorithm capable of solving the problem within polynomial space relative to

the size of the components comprising concurrent programs and the length of the formula

undergoing model checking.

Theorem 8. (Polynomial reduction of 3v-CTLcc model checking: upper bound) Let ⊑psr

denote the polynomial-space reduction. The problem of mv-model checking 3v-CTLcc can

84



be reduced to the problem of model checking CTLcc in a polynomial space. Formally, mv-

MC(3v-CTLcc) ⊑psr MC(CTLcc).

Proof. Transforming the 3v-CTLcc model and a CTLcc formula into the corresponding

CTLcc model and formula could be computed by a deterministic Turing Machine (TM)

in space O(log n) where n is the size of the input 3v-CTLcc model and polynomial space

with regard to the length of the input formula. TM performs one-by-one the following

steps: (1) reads in the input tape a model of 3v-CTLcc; (2) for each model, TM sequentially

generates on the output tape the same states and the same valuations (mapping of atomic

propositions); (3) replaces the value of any atomic proposition x equal to M (x =M) with

T (x = T ); (4) adds a fresh negotiation version for every atomic proposition in every state;

(5) build the transitions between the obtained states where for the transitions (s, s′) in

the 3v-CTLcc (input model), it writes the transitions in the set RT . The same applies to

the commitment accessibility relations (ART ) in the input model. The performed writing

operations are clearly logarithmic in space as this transformation is conducted on-the-fly

and step-by-step. Furthermore, as shown in the proof of Theorem 6 any CTLcc formula

is transformable into a nun-negated CTLcc formula where its length equals the length of

the input formula. Based on this analysis, it is clear that all these transformations are

polynomial spaces in the size of the input formula.

Theorem 9. 3v-CTLcc Model Checking for Concurrent Programs: Completeness). The

space complexity of the 3v-CTLcc model checking through transformation to CTLcc for

concurrent programs is PSPACE-complete with respect to both the size of the program com-

ponents and the length of the formula.

Proof. Given that model checking CTLcc is proved PSPACE-complete for concurrent pro-

grams [31], it sets a lower bound for model checking 3v-CTLcc at PSPACE. Notably,

3v-CTLcc encompasses CTLcc by incorporating both 3v-CTL modalities and commitment

modalities. The upper bound within PSPACE is given by Theorem 8, thereby affirming the

result.

85



4.7.3 Time Complexity of Model Checking 3v-CTLc through Transfor-

mation to CTL

In this subsection, we will prove that model checking 3v-CTLc through transformation to

CTL is also P-complete. We transform the 3v-CTLc logic into CTL in two steps. The

first is from 3v-CTLc into CTLc, and this is addressed in the previous subsection. The

second is from CTLc into CTL following the same strategy as in [24] and in[31] excluding

the condition ψ in the commitment formula.

Proposition 3. (Boundedness of model transformation). Let DT be a positive CTL model

obtained from the 3v-CTLc model UM in Algorithm 4. Let |DT | and |UM | be the size of DT

and UM , respectively. |DT | < 3|UM |. We have |DT | ≤ 3|UM |.

Proof. Let |AM | be the number of commitment accessibility relations in UM . We have

|UM | = |RM | + |SM | + |AM | and |DT | = |ST | + |RT |. As explained, each accessibility

relation is translated into one additional state and two transitions in DT . Based on this,

and using the same argument as in Proposition 1 (considering the atomic propositions part

of the state space), we obtain |DT | ≤ |RM |+2|SM |+3|AM |. In a typical scenario, multiple

reachable states could exist between any given pair of states. Indeed, the other accessibility

relations can be established by the already added states and transitions, which gives the

result: |DT | ≤ 3(|RM |+ |SM |+ |AM |).

Theorem 10. (Explicit 3v-CTLcc model checking: upper bound) The 3v-CTLc model check-

ing problem can be solved in in time O(|UM | × |ϕ|). Where |UM | is the size of the model,

and |ϕ| is the length of the formula.

Proof. 3v-CTLc can be reduced to CTL. From [43], it is known that the model checking

problem for CTL is linear in the size of the model and the length of the formula. From

Proposition 3, |DT | ≤ 3|UM |. The result follows from the fact that the length of the trans-

formed CTL formula ϕ1 from Algorithm 4 is linear with the length of the input commitment

formula ϕ as proved in Proposition 2 and Theorem 4 in [24].

86



Theorem 11. (Explicit 3v-CTLc model checking: completeness). The model checking

problem of 3v-CTLc through transformation to CTL is P-complete.

Proof. Membership in P (i.e., upper bound) follows from Theorem 10. Hardness in P (i.e.,

lower bound) follows from the P-completeness of explicit model checking CTL [10].

4.7.4 Space Complexity of of Model Checking 3v-CTLc through Trans-

formation to CTL

We prove in this subsection that the complexity of 3v-CTLc model checking through the

transformation to CTL for concurrent programs is also PSPACE-complete.

Theorem 12. (Polynomial reduction of 3v-CTLc model checking: upper bound) Let ⊑psr

denote the polynomial-space reduction. The problem of mv-model checking 3v-CTLc can be

reduced to the problem of model checking CTL in a polynomial space. Formally, mv-MC(3v-

CTLc) ⊑psr MC(CTL).

Proof. The transformation of the 3v-CTLc model and CTLc formula into the corresponding

CTL model and formula could be computed by a deterministic Turing Machine (TM) in

space O(log n), where n is the size of the input 3v-CTLc model, and polynomial space con-

cerning the length of the CTLc formula. Regarding the two transformed CTL models, for

DT , TM performs the following one-by-one steps: (1) reads in the input tape a model of 3v-

CTLc; (2) generates in the output tape the same states with the same atomic propositions;

(3) replaces the value of any atomic proposition x equal to M (x =M) with T (x = T ); (4)

adds a fresh negotiation version for every atomic proposition in every state; (5) build the

transitions between the obtained states (RT ). For the commitment accessibility relations

∼i→j , TM reads the relations between two given states in the input model, and for each one,

it adds an intermediate state to the set of states (ST ). Each intermediate state is labeled

with two fresh propositional variables: 1) αij presents the commitment accessibility relation

between agents i and j, and 2) χ , indicates that the two transitions with the corresponding

state do not already exist in the original model (3v-CTLc). All of the performed writing

operations exhibit a clear logarithmic space complexity due to the on-the-fly, step-by-step

87



nature of the transformation. Additionally, according to Proposition 2 in [24], it is demon-

strated that any CTLc formula can be converted into a CTL formula with a length that is

linearly bounded by that of the original input formula. These recursive transformations are

evidently polynomial in space concerning the length of the input formula, thus establishing

the theorem.

Theorem 13. 3v-CTLc Model Checking for Concurrent Programs: Completeness). The

space complexity of the 3v-CTLc model checking through transformation to CTL for concur-

rent programs is PSPACE-complete with respect to both the size of the program components

and the length of the formula.

Proof. Given that model checking CTL is PSPACE-complete for concurrent programs [43],

it sets a lower bound for model checking 3v-CTLc at PSPACE-complete. Notably, 3v-CTLc

encompasses CTL through CTLc by incorporating both 3v-CTL modalities and commit-

ment modalities. The upper bound within PSPACE is supported by Theorem 12, thereby

affirming the result.

The problem of mv-model checking 4v-CTLc, 4v-CTLcc and 3v-CTLcc is decided to

be P-complete as the proofs can be obtained following the same strategies applied in this

section.

88



Chapter 5

Modeling and Verifying IoT/IS

Systems with mv-Trust Logics

5.1 Overview and Motivation

Expanding on the strategies employed to broaden the scope of commitment logic, we likewise

extend the ambit of trust logic to encompass its multi-valued versions. Trust logic, denoted

as TCTL, constitutes a natural expansion of the well-established CTL, integrating trust

modalities while introducing novel syntax and semantics [21]. Subsequently, we further

refine this framework into the multi-valued TCTL (mv-TCTL).

This newly formulated logic segregates into two distinct branches: firstly, the three-

valued TCTL (3v-TCTL), tailored for addressing uncertainty within IoT/IS systems; sec-

ondly, the four-valued TCTL (4v-TCTL), geared towards handling inconsistencies within

the same systems. To validate the effectiveness of these developments, we applied these

logics to model various IoT and IS systems.

In tandem with these advancements, we have devised two transformation algorithms ca-

pable of converting mv-TCTL into both TCTL and CTL. Crucially, we employ our state-of-

the-art model checker, MV-Checker, to seamlessly apply these transformation algorithms.

This facilitates a rigorous and automated verification process as we engage with MCMASt

for comprehensive analysis.

89



5.2 Modelling Uncertainty over IS/IoT with mv-Trust)

5.2.1 3v-TCTL

In this section, we introduce our three-valued logic of trust named 3v-TCTL [5]. This logic

is used to reason about uncertainty over Iot/IS systems with trust protocols. In particular,

3v-TCTL is an extension to the multi-valued CTL (mv-CTL) presented in section 2.6 by

adding the trust modalities to this logic. As mentioned, the multi-valued logic can be used

for reasoning about uncertainty when the used underlying lattice is the three-valued lattice

(L3). In the 3v-TCTL, the lattice L3 is the base of this logic, where the third truth value,

“M”, is used to capture the missing or uncertain information in trust models. For example,

when we need to verify whether the trust formula T (i, j, ϕ) holds in the system and at the

same time we miss information about ϕ, we can capture this uncertainty by giving the value

“M” to ϕ.

5.2.2 Model of 3v-TCTL

The 3v-TCTL model expressed by (TM ) is an extension of the TCTL model explained in

2.4 where the lattice structure (L3,⊔,⊓) is used for extending this model. We replaced the

valuation function Fn by O defined in mv-CTL.

5.2.3 Syntax

The 3v-TCTL is essentially the same as TCTL in terms of syntax, except that formulas are

evaluated over lattice L3.

5.2.4 Semantics

The semantics of this logic is based on the three-valued case of mv-CTL. This semantic relies

mainly on the concept of multi-valued sets and multi-valued relations that are explained in

detail in [17, 2, 3]. Bellow is the extension of mv-CTL semantic by the three-valued semantic

of the 3v-TCTL.

90



• ∥ T (i, j, ϕ) ∥TM
(s) = T iff s ̸|= ϕ and ∀s′ ̸= s such that s ∼i→j s

′ , we have

∥ φ ∥TM
(s

′
) = T .

According to this semantics, the satisfaction degree of the trust formula T (i, j, ϕ) in

state s of the model TM is evaluated to “true” if and only if in all the accessible states

s
′ the truth degree of φ is T .

• ∥ T (i, j, ϕ) ∥TM
(s) = M iff s ̸|= ϕ and ∀s′ ̸= s such that s ∼i→j s

′ ,we have ∥ φ ∥TM

(s
′
) ̸= F and ∃s′ ∈ S such that s ∼i→j s

′ and ∥ φ ∥TM
(s

′
) =M .

According to this semantics, the satisfaction degree of the trust formula T (i, j, ϕ) in

the system state s of TM is M if and only if in all the states s′ that are accessible, the

truth degree of the content ϕ is not equal to F and there exists at least one accessible

state s′ where ϕ is evaluated to M .

5.3 Modelling Inconsistency over IoT/IS with mv-Trust)

5.3.1 4v-TCTL

This section introduces the new four-valued trust logic named (4v-TCTL) [4]. This logic is

used to reason about inconsistency over IoT/IS with trust protocols. This logic is an ex-

tension of the multi-valued CTL mv-CTL introduced in Section 2.6, where trust modalities

are seamlessly integrated. The foundation of 4v-TCTL lies in the four-valued lattice (L4).

Within this lattice, four distinct truth values are defined: TT and FF signify unanimous

agreement among designers regarding the satisfaction or dissatisfaction of a formula in a

specific state, respectively. The values TF and FT, conversely, represent disagreement.

Specifically, TF indicates that the first designer asserts “true” while the second asserts

“false” concerning the satisfaction of a formula in a given state. Conversely, FT signifies

that the first designer argues “false” while the second contends “true.” To illustrate, consider

the scenario where we seek to verify the trust formula T (i, j, ϕ) in the system while simul-

taneously encountering differing opinions from two designers regarding the satisfaction of

ϕ. In this case, with the first designer asserting “true” and the second asserting “false,” we

91



encapsulate this disagreement by assigning the value “TF” to ϕ . This approach, grounded

in 4v-TCTL and the associated L4 lattice, offers a precise and robust method for handling

inconsistencies within IoT/IS with trust, providing a foundation for effective reasoning and

decision-making.

5.3.2 Model of 4v-TCTL

The 4v-TCTL model expressed by (T) is an extension of the TCTL model explained in 2.4

where the lattice structure (L4,⊔,⊓) is used for extending this model. We replaced the

valuation function Fn by O defined in mv-CTL.

5.3.3 Syntax

The 4v-TCTL is essentially the same as TCTL in terms of syntax, except that formulas are

evaluated over lattice L4.

5.3.4 Semantics

Consider T is a 4v-TCTL model and T (i, j, φ) is a trusted formula to be verified over this

model then:

• ∥ T (i, j, φ) ∥T (s) = TT iff s ̸|= ϕ and ∀s′ ∈ S s.t. s ∼i→j s
′ we have ∥ φ ∥T (s

′
) =

TT .

In this semantics, the degree to which the trust formula T (i, j, φ) is satisfied in state s

of the four-valued system T is TT when formula φ is not satisfied in the current state

s, and in all accessible states s′, the degree of satisfaction of formula φ is “true, true”.

• ∥ T (i, j, φ) ∥T (s) = TF iff s ̸|= ϕ and ∀s′ ∈ S s.t. s ∼i→j s
′ we have ∥ φ ∥T (s

′
) ̸= FF

and ∃s′ ∈ S s.t. s ∼i→j s
′ and ∥ φ ∥T (s

′
) = TF .

This implies that the trust formula’s satisfaction degree is “TF” only when formula φ

is not satisfied in the current state s, and the satisfaction degree of formula φ in all the

accessible states s′ is not “FF”, at the same time, there exists at least one accessible

state s′ holds φ with the value “TF”. In other words, the values of φ in the accessible

92



states must include at least “TF” as “TT ⊓ TF = TF” and must not include “FF” as

“FF ⊓ TF ⊓ TT = FF”

• ∥ T (i, j, φ) ∥T (s) = FT iff s ̸|= ϕ and ∀s′ ∈ S s.t. s ∼i→j s
′ we have ∥ φ ∥T (s

′
) ̸= FF

and ∃s′ ∈ S s.t. s ∼i→j s
′ and ∥ φ ∥T (s

′
) = FT . This semantics implies that the

trust formula’s satisfaction degree is “FT” only when formula φ is not satisfied in the

current state s, and the truth degree of φ in all accessible states s′ is not equal to

“FF”, and there exists at least one accessible state s′ in which φ holds with a value

of “FT”. Essentially, the accessible states must include at least “FT” as one of the

possible truth values for φ, since “TT ⊓FT = FT”, while it should not include “FF”,

as “FF ⊓ FT ⊓ TT = FF”.

5.4 Reduction-Based Multi-Valued Model Checking mv-TCTL

5.4.1 Reducing Algorithm of 3v-TCTL to TCTL

Algorithm 6 performs as Algorithm 2 except the input model and formula are a 3v-TCTL

model and trust formula T (i, j, ϕ) in lines 1 and 2 and in lines 32 and 33 the tool interacts

with MCMASt for trust.

93



Algorithm 6 Transform TM = (SM , RM , {∼i→j | (i, j) ∈ A2}, IM ,OM ) into two-valued
DT = (ST , RT , {∼i→j | (i, j) ∈ A2}, IT , LT ) and two-valued DF = (SF , RF , {∼i→j | (i, j) ∈
A2}, IF , LF )

1: Input the mv-model TM and a commitment formula ϕ = T (i, j, φ)
2: ϕ1 ← TRANSFORMULA(ϕ)
3: Output the two-valued trust models DT and DF

4: ST = SM , SF = SM , IT = IM and IF = IM
5: Initialize RT = ∅, RF = ∅, ART = ∅ and ARF = ∅
6: Initialize (LT (ST ))(x) = (OM (SM ))(x)
7: For every (LT (ST ))(x) = M ⇒ replace (LT (ST ))(x) by (LT (ST ))(x) = T and add

(LT (ST ))(x−) = T
8: For every (LT (ST ))(x) = T ⇒ add (LT (ST ))(x−) = F
9: For every (LT (ST ))(x) = F ⇒ add (LT (ST ))(x−) = T

10: Initialize (LF (SF ))(x) = (OM (SM ))(x)
11: For every (LF (SF ))(x) = M ⇒ replace (LF (SF ))(x) by (LF (SF ))(x) = F and add

(LF (SF ))(x−) = F
12: For every (LT (ST ))(x) = T ⇒ add (LT (ST ))(x−) = F
13: For every (LT (ST ))(x) = F ⇒ add (LT (ST ))(x−) = T
14: Get the sets ST and SF
15: procedure TRANSFORM (ST , SF ,TM )
16: for each (sM , s

′
M ) ∈ S2

M do
17: if (sM , s

′
M ) ∈ RM then

18: RT := RT ∪ {(sM , s
′
M )}

19: if sM ∼i→j s
′
M then ART =ART ∪ {sM ∼i→j s

′
M}

20: end if
21: end if
22: end for
23: for each (sM , s

′
M ) ∈ S2

M do
24: if (sM , s

′
M ) ∈ RM then

25: RF := RF ∪ {(sM , s
′
M )}

26: if sM ∼i→j s
′
M then ARF =ARF ∪ {sM ∼i→j s

′
M}

27: end if
28: end if
29: end for
30: Return (DT ,DF )
31: EndProcedure
32: Call MCMASt on DT and ϕ1
33: Call MCMASt on DF and ϕ1

94



5.4.2 Soundness of Algorithm 6

Since the truth table of this algorithm is similar to the one obtained from Algorithm 2, the

soundness proof of Algorithm 6 is straightforward.

5.4.3 Reducing Algorithm of 3v-TCTL to CTL

Algorithm 7 transforms the 3v-TCTL into CTL in order to use NuSMV checker. In line

1, the algorithm inputs the 3v-TCTL model and a trust formula and performs the same

steps of Algorithm 4. Figure 5.1 explains the reduction process from 3v-TCTL into CTL.

In particular, the algorithm starts by inputting a 3v-TCTL model. In this model, we must

verify whether state s0 satisfies the trust formula T (i, j, ϕ). We assume it is uncertain if

ϕ holds in s1. The main idea is to generate two TCTL models from the 3v-TCTL model.

The first considers M as true (T), and the other considers M as false (F). To simplify the

figure, we only show the TCTL model that considers M true. The next step transforms

the two obtained models to CTL following the algorithm recently presented in [24]. To

do so, a new state is added to the CTL model ( the state in color orange, s01, in the

figure). The reason for adding this state is that CTL doesn’t include the modality of trust

in its syntax and semantics, and as a sequence, NuSMV checker will not recognize the trust

relations between agents in the model. More specifically, the state s01 in the middle of s0

and s1 presents the trust between agents i and j in state s1 where the atomic proposition

χ indicates that this state is not within the original model’s states and αij presents the

trust between i and j. If these two atomic propositions hold in a state, this means a trust

relation exists in the next state. The trust formula is also transformed into CTL formula

as follows: f(T (i, j, ϕ)) = AX(αij → AXf(ϕ)).

95



Algorithm 7 Transform TM = (SM , RM , {∼i→j | (i, j) ∈ A2}, IM ,OM ) into DT =
(ST , RT , IT , VT ) and DF = (SF , RF , IF , VF )

1: Input the mv- model TM and formula ϕ = T (i, j, φ)
2: Output the CTL models DT , DF and ϕ1
3: ϕ′ ← TRANSFORCOMMMULA(ϕ)
4: ϕ1 ← TRANSFORMULA(ϕ′)
5: (ST = SM and SF = SM ) and (IT = IM and IF = IM )
6: Initialize RT = ∅ and Initialize RF = ∅
7: Initialize (LT (ST ))(x) = (OM (SM ))(x)
8: For every (LT (ST ))(x) = M ⇒ replace (LT (ST ))(x) by (LT (ST ))(x) = T and add

(LT (ST ))(x−) = T
9: For every (LT (ST ))(x) = T ⇒ add (LT (ST ))(x−) = F

10: For every (LT (ST ))(x) = F ⇒ add (LT (ST ))(x−) = T
11: Initialize (LF (SF ))(x) = (OM (SM ))(x)
12: For every (LF (SF ))(x) = M ⇒ replace (LF (SF ))(x) by (LF (SF ))(x) = F and add

(LF (SF ))(x−) = F
13: For every (LT (ST ))(x) = T ⇒ add (LT (ST ))(x−) = F
14: For every (LT (ST ))(x) = F ⇒ add (LT (ST ))(x−) = T
15: Get sets ST and SF
16: (DT , DF )← TranfToCTL(ST , SF ,TM )
17: Call NuSMV on DT

18: if DT ̸|= ϕ1 then
19: “Formula is False”
20: else
21: Call NuSMV on DF

22: if DF |= ϕ1 then
23: “Formula is True”
24: else
25: “Formula is uncertain (M)”
26: end if
27: end if

96



Figure 5.1: Transformation example from mv-TCTL to CTL (the model considers M as
true)

5.5 Computational Complexity Analysis

5.5.1 Time Complexity of Model Checking 3v-TCTL through Transfor-

mation to TCTL

In this subsection, we will prove that the problem of model checking 3v-TCTL through

the transformation to TCTL is P-complete in time. Generally, a problem is classified as

P-complete if it is solvable in polynomial time, and any problem in P can be reduced to it

in polynomial time. The assessment of model checking complexity is contingent upon the

scale of both the model and the representation of the formula employed. Consequently, it is

imperative to elucidate the chosen input representation and state how we measure its size.

Proposition 4. (Boundedness of atomic propositions). Let DT be the positive TCTL

model obtained from TM in Algorithm 6. Moreover, let Atom(DT ) be the number of atomic

propositions in the model DT and Atom(TM ) be the number of atomic propositions in model

TM . We have: Atom(DT ) = 2×Atom(TM ).

Proof. The proof is straightforward from steps 7-9 in Algorithm 6. These steps introduce

an additional atomic proposition in the model DT for each atomic proposition. Thus, the

97



number of atomic propositions in DT , Atom(DT ), is proportional to the number of atomic

propositions in TM , Atom(TM ), with a scaling factor of 2.

Proposition 5. (Boundedness of model transformation). Let |DT | and |TM | be the size of

DT and TM respectively. |DT | is linear with |TM |.

Proof. As shown in Algorithm 6, the model DT has the same number of states and relations

as the model TM . The results flow then from Proposition 4.

Theorem 14. (Explicit 3v-TCTL model checking: upper bound). The model checking

problem of 3v-TCTL through transformation to TCTL can be solved in time O(|TM | × |ϕ|),

where |TM | and |ϕ| are the size of the model and length of the formula, respectively.

Proof. 3v-TCTL extends TCTL. It is known from [24] that the model checking problem for

TCTL is linear in the size of the model DT and the length of the formula ψ. From Proposi-

tion 2, |DT | = 2|TM | considering atomic variables as part of the state space. Moreover, from

Procedure 1 explained with Algorithm 1, it is evident that the length of the transformed

formula ψ equals the length of the original formula ϕ where the procedure only replaces

each negated proposition ¬x by x−, so the result.

Theorem 15. (Explicit 3v-TCTL model checking: completeness). The model checking

problem of 3v-TCTL through transformation to TCTL is P-complete.

Proof. Membership in P (i.e., upper bound) follows from Theorem 14. Hardness in P (i.e.,

lower bound) follows by a reduction from model checking TCTL proved to be P-complete

in [24].

5.5.2 Space Complexity of Model Checking 3v-TCTL through Transfor-

mation to TCTL

Here, we prove that the complexity of 3v-TCTL model checking through the transformation

to TCTL for concurrent programs [55] is PSPACE-complete. This finding indicates that

there exists an algorithm capable of solving the problem within polynomial space relative to

98



the size of the components comprising concurrent programs and the length of the formula

undergoing model checking.

Theorem 16. (Polynomial reduction of 3v-TCTL model checking: upper bound) Let ⊑psr

denote the polynomial-space reduction. The problem of mv-model checking 3v-TCTL can

be reduced to the problem of model checking TCTL in a polynomial space. Formally, mv-

MC(3v-TCTL) ⊑psr MC(TCTL).

Proof. Transforming the 3v-TCTL model and formula into the corresponding TCTL model

and formula could be computed by a deterministic Turing Machine (TM) in space O(log n)

where n is the size of the input 3v-TCTL model, and polynomial space with regard to the

length of the input formula. We used this notion to determine the upper bound of space

complexity and indicate that the algorithm space increases logarithmically with the size of

the input model.

TM performs one-by-one the following steps: (1) reads in the input tape a model of

3v-TCTL; (2) for each model, TM sequentially generates on the output tape the same

states and the same valuations (mapping of atomic propositions); (3) replaces the value of

any atomic proposition x equal to M (x = M) with T (x = T ); (4) adds a fresh negation

version for every atomic proposition in every state; (5) build the transitions between the

obtained states where for the transitions (s, s′) in the 3v-TCTL (input model), it writes

the transitions in the set RT . The same applies to the trust accessibility relations (ART )

in the input model. The performed writing operations are clearly logarithmic in space as

this transformation is conducted on-the-fly and step-by-step. Furthermore, as shown in the

proof of Theorem 14, any TCTL formula is transformable into a non-negated TCTL formula

with the same length. Based on this analysis, it is clear that all these transformations are

polynomial spaces in the size of the inputs, so the result.

Theorem 17. 3v-TCTL Model Checking for Concurrent Programs: Completeness). The

space complexity of the 3v-TCTL model checking through transformation to TCTL for

concurrent programs is PSPACE-complete with respect to both the size of the program com-

ponents and the length of the formula.

99



Proof. Given that model checking TCTL is proved PSPACE-complete for concurrent pro-

grams [24], it sets a lower bound for model checking 3v-TCTL at PSPACE. Notably, 3v-

TCTL encompasses TCTL by incorporating both 3v-CTL modalities and trust modalities.

The upper bound within PSPACE is given by Theorem 16, thereby affirming the result.

5.5.3 Time Complexity of Model Checking 3v-TCTL through Transfor-

mation to CTL

In this subsection, we will prove that model checking 3v-TCTL through transformation to

CTL is also P-complete in explicit models. We transform the 3v-TCTL logic into CTL in

two steps. The first is from 3v-TCTL into TCTL, and this is addressed in the previous

subsection. The second is from TCTL into CTL following the same strategy as in [24].

Proposition 6. (Boundedness of model transformation). Let DT be a positive CTL model

obtained from the 3v-TCTL model TM in Algorithm 7. Let |DT | and |TM | be the size of

DT and TM , respectively. We have |DT | ≤ 3|TM |.

Proof. Let |AM | be the number of trust accessibility relations in TM . We have |TM | =

|RM | + |SM | + |AM | and |DT | = |ST | + |RT |. As explained, each accessibility relation is

translated into one additional state and two additional transitions in DT . Based on this

and using the same argument as in Proposition 4 (considering the atomic propositions part

of the state space), we obtain |DT | ≤ |RM |+2|SM |+3|AM |. In a typical scenario, multiple

reachable states could exist between any given pair of states. Indeed, the other accessibility

relations can be established by the already added states and transitions, which gives the

result: |DT | ≤ 3(|RM |+ |SM |+ |AM |).

Theorem 18. (Explicit 3v-TCTL model checking: upper bound) The 3v-TCTL model check-

ing problem can be solved in time O(|TM | × |ϕ|). Where |TM | is the size of the model, and

|ϕ| is the length of the formula.

Proof. 3v-TCTL can be reduced to CTL. From [43], it is known that the model checking

problem for CTL is linear in the size of the model and the length of the formula. From

100



Proposition 6, |DT | ≤ 3|TM |. The result follows from the fact that the length of the

transformed CTL formula ϕ1 from Algorithm 2 is linear with the length of the input trust

formula ϕ as proved in Proposition 2 and Theorem 4 in [24].

Theorem 19. (Explicit 3v-TCTL model checking: completeness). The model checking

problem of 3v-TCTL through transformation to CTL is P-complete.

Proof. Membership in P (i.e., upper bound) follows from Theorem 18. Hardness in P (i.e.,

lower bound) follows from the P-completeness of explicit model checking CTL [10].

5.5.4 Space Complexity of Model Checking 3v-TCTL through Transfor-

mation to CTL

We prove in this subsection that the complexity of 3v-TCTL model checking through the

transformation to CTL for concurrent programs [55] is also PSPACE-complete.

Theorem 20. (Polynomial reduction of 3v-TCTL model checking: upper bound) Let ⊑psr

denote the polynomial-space reduction. The problem of mv-model checking 3v-TCTL can be

reduced to the problem of model checking CTL in a polynomial space. Formally, mv-MC(3v-

TCTL) ⊑psr MC(CTL).

Proof. The transformation of the 3v-TCTL model and TCTL formula into the correspond-

ing CTL model and formula could be computed by a deterministic Turing Machine (TM) in

space O(log n), where n is the size of the input 3v-TCTL model, and polynomial space con-

cerning the length of the TCTL formula. Regarding the two transformed CTL models, for

DT , TM performs the following one-by-one steps: (1) reads in the input tape a model of 3v-

TCTL; (2) generates in the output tape the same states with the same atomic propositions;

(3) replaces the value of any atomic proposition x equal to M (x = M) with T (x = T );

(4) adds a fresh negation version for every atomic proposition in every state; (5) build the

transitions between the obtained states (RT ). For the trust accessibility relations ∼i→j ,

TM reads the relations between two given states in the input model, and for each one, it

adds an intermediate state to the set of states (ST ). Each intermediate state is labeled with

101



two fresh propositional variables: 1) αij presents the trust accessibility relation between

agents i and j, and 2) χ indicates that the two transitions with the corresponding state do

not already exist in the original model (3v-TCTL). All of the performed writing operations

exhibit a clear logarithmic space complexity thanks to the on-the-fly, step-by-step nature

of the transformation. Additionally, according to Proposition 2 in [24], it is demonstrated

that any TCTL formula can be converted into a CTL formula with a length that is lin-

early bounded by that of the original input formula. These recursive transformations are

evidently polynomial in space concerning the length of the input formula, thus establishing

the theorem.

Theorem 21. 3v-TCTL Model Checking for Concurrent Programs: Completeness). The

space complexity of the 3v-TCTL model checking through transformation to CTL for concur-

rent programs is PSPACE-complete with respect to both the size of the program components

and the length of the formula.

Proof. Given that model checking CTL is PSPACE-complete for concurrent programs [43],

it sets a lower bound for model checking 3v-TCTL at PSPACE-complete. Notably, 3v-

TCTL encompasses CTL through TCTL by incorporating both 3v-CTL modalities and

trust modalities. The upper bound within PSPACE is supported by Theorem 20, thereby

affirming the result.

102



Chapter 6

MV-Checker: A Software Tool for

Multi-Valued Model Checking

This chapter presents the design and implementation of a new open-source and scalable soft-

ware tool for modelling and verifying MAS, including IoT and IS systems with commitment

and trust protocols under both uncertainty and inconsistency settings, using reduction-

based multi-valued model checking techniques. The proposed tool is equipped with original

and novel algorithms that transform our logics of multi-valued commitment (mv-CTLC)

and multi-value trust (mv-TCTL) that we recently introduced to their classical two-valued

commitment (CTLC) and trust (TCTL) logic versions as well as to Computational Tree

Logic (CTL). Moreover, the tool transforms the mv-CTL to CTL, and it is applicable for

the classical model checking by transforming the classical logics of trust and commitment

to CTL.

6.1 Contributions

• Our main motivation is developing a Java-based tool named MV-Checker, which

streamlines the process of verifying the properties of MAS, including IoT and IS sys-

tems, with trust and commitment within uncertain and inconsistent environments.

103



The tool is designed to perform the following functions: (1) Transforms our multi-

valued logics of trust (3v-TCTL and 4v-TCTL) into TCTL and automatically inter-

acts with the MCMSAt model checker. (2) Transforms our multi-valued logics of

commitment (3v-CTLC and 4v-CTLC) into CTLC and automatically interacts with

the MCMSA+ model checker. (3) Additionally, the tool can transform these log-

ics and mv-CTL logic into CTL and automatically interact with the NuSMV model

checker. (4) Moreover, it allows directly verifying the classical CTL, CTLC and

TCTL models. These functions make the MV-Checker an essential tool that effi-

ciently and accurately verifies complex systems modeled in multi-valued logics of trust

and commitment under uncertain and inconsistent environments.

• Technical contributions:

– To check the effectiveness and efficiency of the proposed tool, we performed multi-

ple verification experiments by modelling several IoT and intelligent applications

involving trust and commitment protocols within uncertain and inconsistent en-

vironments.

– We compared the developed approaches using the results obtained from trans-

forming the mv-TCTL to CTL and classical TCTL. Additionally, we compared

the results obtained from transforming the mv-CTLC to CTL and classical CTLC

regarding scalability and accuracy.

– We provide the packages of all our case studies containing 12 experiments with

SMV, ISPL+, VISPL, mv-ISPL+ and mv-VISPL files. Additionally, we provide

the source code, the Jar file of the tool, and the user manual document explaining

the use of the proposed tool.

6.2 Comparative Analysis

We conduct comparative analyses with tools developed in prior related research studies to

assess the proposed tool’s performance and significant contributions to multi-valued model

104



checking. The comparisons are based on several essential criteria, including (1) Underlying

Modeling Framework, (2) Developed tool for implementing the proposed approach, (3)

Notion of trust, (4) Notion of commitment, (5) Verification method, (6) Applicability to

classical model checking, (7) Embedding of the multi-valued logic and (8) Applicability

to multi-valued model checking. In Table 6.1, the first part presents an overview of tools

developed in previous studies addressing the notion of trust and commitment. Some authors

directly developed tools that handle trust and commitment logic modalities, while others

devised tools that reduce their logics to CTL, CTL logic of time and knowledge (CTLK),

and Action Restricted CTL (ARCTL). However, these tools are incapable of handling multi-

valued logics. Additionally, the tools designed for trust-based models and formulae cannot

be applied to commitment-based ones, and vice versa. In the second part of the table,

we highlight proposed studies focusing on multi-valued model checking. Unfortunately,

practical tools for applying this technique to system verification with multiple truth values

are still limited. Moreover, these studies don’t address the notion of trust and commitment

in their logics. The last part of the table presents our tool, which is named MV-Checker.

The checked criteria show that the tool fills the gap between the works presented in the

first and the second parts. Our work applies to both the classical and multi-valued model

checking techniques. Moreover, it handles verifying systems with CTL, mv-CTL, TCTL

and mv-TCTL for trust, CTLC and mv-CTLC for commitment.

6.3 MV-Checker Tool: Internal Design

In this section, we produce a new verification tool named MV-Checker 1. This tool is

developed in Java for verifying multi-agent systems, including large and complex intelligent

systems with trust and commitment protocols under uncertainty and inconsistency settings.

The tool extends the Java toolkit developed by [24] for transforming the logic of trust

(TCTL) to CTL for reusing the NuSMV model checker and automatically verifying multi-

agent systems with trust protocols. More specifically, we produce a new software tool
1The tool and the case studies are available online at: https://github.com/MV-checker/MV-Checker

105

https://github.com/MV-checker/MV-Checker


Table 6.1: Comparison between the features of the proposed tool and other tools with
respect to the proposed criteria

Approach Underlying
Modeling
Framework

Imp.(Tool) Notion
of
Trust

Notion
of
Comm.

Verification Method Applicable
for MC

Multi-
logic

Applicable
for
MV-
MC

[29] Vector-based
interpreted
systems

MCMASt ✓ –– Model Checking
TCTL

✓ –– ––

[22] Vector-based
interpreted
systems

Reduction
Java Toolkit
(to CTL)

✓ –– Model Checking
TCTLG

✓ –– ––

[24] Vector-based
interpreted
systems

Reduction
Java Toolkit
(to CTL)

✓ –– Model checking BT ✓ –– ––

[36] Interpreted sys-
tem

Reduction
Com-2-CWB
tool (to
CTLK and
ARCTL)

–– ✓ Model Checking
CTLC

✓ –– ––

[38] Interpreted sys-
tem

Reduction
Com-2-CWB
to ARCTL

–– ✓ Model checking
CTLC+

✓ –– ––

[31] Interpreted sys-
tem

MCMAS+ –– ✓ Model checking
CTLCcc

✓ –– ––

[17] Multi-valued
Kripke struc-
ture

–– –– –– Multi-valued Model
Checking for mv-
CTL

✓ ✓ ✓

[53] Multi-valued fi-
nite state model

–– –– –– Model checking for
mv − CTL∗

✓ ✓ ✓

[58] Multi-valued
Kripke struc-
ture

–– –– –– Model checking mv-
CTL

✓ ✓ ✓

[50] Multi-valued
concurrent
game structure
(CGS)

STV –– –– Model Checking
ATL∗

→

✓ ✓ ✓

Our work classical and
Multi-valued
interpreted
system

mv-Checker
(atomically
interacts with
MCMAS and
NuSMV)

✓ ✓ Multi-valued Model
Checking for
CTL,mv-CTL,
TCTL, mv-TCTL,
CTLC and mv-
CTLC

✓ ✓ ✓

that verifies multi-valued trust and commitment systems models designed under uncertain

or inconsistent sources of knowledge. The models are formally written in new languages

named mv-ISPL+ for commitment and mv-VISPL for trust. In these models, the atomic

propositions in states take truth values over a given lattice depending on the purpose of

verifying the system under investigation. The tool transforms the multi-valued models

to their classical counterparts and automatically calls MCMAS+ for commitments and

MCMASt for trust. Additionally, it transforms these models to CTL and automatically

calls NuSMV checker. Furthermore, the tool transforms the mv-CTL to CTL, and also

allows direct and semi-direct ( from classical commitment and trust to CTL) verification of

classical trust and commitment models.

106



6.3.1 Use Case Diagrams

The use case diagram of MV-Checker is divided into two main use cases. Figure 6.1 shows

the tool’s functions interacting with MCMAS+ for commitment and MCMASt for trust. In

this figure, the user starts by choosing to upload one of the following files:

1. Upload ISPL+ for classical CTLC of commitment, then launch MCMAS+ to verify

the uploaded model (direct verification).

2. Upload VISPL for classical TCTL of trust, then launch MCMAST to verify the up-

loaded model (direct verification).

3. Upload 3v-ISPL+ for 3v-CTLC of commitment to reason about uncertainty. Then,

the tool transforms this model into two ISPL+ for classical CTLC models. One

replaces the value M of every atomic proposition with the value T, and the other

replaces it with the value F. Finally, launch MCMAS+ over each model to have the

verification results.

4. Upload 4v-ISPL+ for 4v-CTLC of commitment to reason about inconsistency. Then,

the tool transforms this model into two ISPL+ for classical CTLC models. One

replaces the values FT and FF of every atomic proposition with the value F and

replaces the values TT and TF with T. The other model replaces the value TF and

FF of every atomic proposition with the value F and replaces the values TT and FT

with T. Finally, launch MCMAS+ over each model to have the verification results.

5. Upload 3v-VISPL for 3v-TCTL of trust to reason about uncertainty. Then the tool

applies the same strategy in 2 by transforming the uploaded model into two classical

VISPL models and launches MCMASt over each model.

6. Upload 4v-VISPL for 4v-TCTL of trust to reason about inconsistency. Then the tool

applies the same strategy in 3 by transforming the uploaded model into two classical

VISPL models and launches MCMAST over each model.

107



Figure 6.2 shows the second main use case. In this figure, the tool transforms the uploaded

files into CTL and automatically calls NuSMV checker. The functions of this part are as

follows:

1. Upload 3v-ISPL+ for 3v-CTLC of commitment to reason about uncertainty. Then, the

tool transforms this model into two ISPL+ for classical CTLC models. One replaces

the value M of every atomic proposition with the value T, and the other replaces it

with the value F. Next, the tool transforms each model into SMV model (CTL model).

Finally, launches NuSMV over each CTL model to obtain the verification results.

2. Upload 4v-ISPL+ for 4v-CTLC of commitment to reason about inconsistency. Then,

the tool transforms this model into two ISPL+ for classical CTLC models. One

replaces the values FT and FF of every atomic proposition with the value F and

replaces the values TT and TF with T. The other model replaces the value TF and

FF of every atomic proposition with the value F and replaces the values TT and FT

with T. Next, the tool transforms each model into SMV model (CTL model). Finally,

launches NuSMV over each CTL model to have the verification results.

3. Upload 3v-VISPL for 3v-TCTL of trust to reason about uncertainty. Then, the tool

applies the same strategy in 1 by transforming the uploaded model into two classical

VISPL models. Then, it transforms each model into CTL model and launches NuSMV

over each.

4. Upload 4v-VISPL for 4v-TCTL of trust to reason about inconsistency. Then, the tool

applies the same strategy in 2 by transforming the uploaded model into two classical

VISPL models. Then, it transforms each model into CTL model and launches NuSMV

over each.

5. The tool also allows the transformation of the 3v-CTL and 4v-CTL to the classical

versions. This transformation is used when reasoning about uncertainty or inconsis-

tency over systems where trust and commitment protocols are not considered in the

system’s behaviors.

108



6. Additionally, the tool is capable of performing the direct verification of CTL models.

Figure 6.1: A use case diagram of the MV-Checker software tool interacts with MCMAS+
for commitment and MCMAST for trust

109



Figure 6.2: A use case diagram of the MV-Checker software tool interacts with NuSMV

110



6.3.2 Sequence Diagrams

To have a deeper insight into the proposed system functions and determine the classes of its

code, we need to have a close picture of the data exchange between the user, MV-Checker,

MCMAS+, MCMASt and NuSMV. The sequence diagram allows an internal view of the

data flow during the system usage. We divide the sequence diagram of the system into

three main parts. The first (Figure 6.4) shows the data exchange among the user, MV-

Checker, and MCMAS+ and MCMASt while transforming the mv-CTLC and mv-TCTL

models to their classical counterparts to be verified using the two checkers. The second

(Figure 6.5) shows the data exchange among the user, MV-Checker, and NuSMV while

transforming these logics to CTL to be verified using NuSMV. The third part (Figure 6.3)

shows the additional functionalities of verifying the classical CTLC and TCTL using the

related versions of MCMAS, in addition to verifying the classical CTL directly or after

transforming it from 3v/4v-CTL.

111



Figure 6.3: A sequence diagram of the MV-Checker software tool (the additional function-
alities of verifying the classical CTLC, TCTL and CTL directly or after transforming it
from 3v/4v-CTL)

112



Figure 6.4: A sequence diagram of the MV-Checker software tool (data exchange between
the user, MV-Checker and MCMASs)

113



Figure 6.5: A sequence diagram of the MV-Checker software tool (data exchange between
the user, MV-Checker and NuSMV)

114



6.3.3 Class Diagram

Figure 6.6: A class diagram of the MV-Checker software tool(Main classes)

The MV-Checker tool, implemented in Java, is composed of 48 distinct classes that

comprise its code. In this section, we include and explain 14 main classes linked by com-

position relations. In Figure 6.6, class Cl1 calls class Cl3 to establish the transformation of

the classical model of CTLC for commitment to SMV. The same class calls Cl9 to establish

the names of states and agent variables. The class also adds the new accessibility relations

after translating to CTL. After transforming the 3v-TCTL of trust to two classical TCTL

models, class Cl2 and Cl10 call Cl3 and Cl9 to transform the TCTL model that considers

M as F and the one that considers M as T, respectively, to CTL. Class Cl4 performs similar

functions after transforming the 4v-TCTL model to classical TCTL, which considers only

115



FT and TT as T. Then, it transforms this model to CTL. As well, Cl5 calls Cl3 and Cl9 to

transform the classical TCTL (obtained from the 4v-TCTL), which considers only TF and

TT as T, to CTL. Cl6 directly transforms the classical TCTL to CTL through Cl3 and Cl9.

Classes Cl7 and Cl11 call Cl8 and Cl12 to transform the two classical CTLC commitment

models generated from the 4v-CTLC to CTL. Classes Cl13 and Cl14 call Cl8 and Cl12

to transform the two classical CTLC commitment models generated from the 3v-CTLC to

CTL. Cl13 and Cl14 call the same last two classes (Cl8 and Cl12) to transform the classical

two CTLC models obtained from the 3v-CTLC, to CTL.

6.4 MV-Checker Interface (Main Screen)

Figure 6.7 shows the main screen of the MV-Checker2. As shown in the figure, the screen

contains seven buttons on the upper part for transforming the mv-CTLC of commitment to

CTLC and CTL, and the other seven buttons are for transforming the mv-TCTL of trust

to TCTL and CTL, in addition to a text area. These buttons perform the following tasks:

The “Upload 3v-CTLC model” button allows uploading the corresponding 3v-ISPL+ file,

where the content of this file will appear in the text area. If the uploaded file is incorrect,

a separate screen will prompt the user to upload the appropriate file. The other “Upload”

buttons (distinguished by their Gray color) perform similar functions to uploading the

desired versions of the ISPL files. The two buttons, “Generate Pos-CTLC model” and

“Generate Neg-CTLC model”, generate two separate screens to transform the 3v-CTLC

model to two classical CTLCs to be verified by MCMAS+. Similarly, the two buttons,

“Generate TF-CTLC” and “Generate FT-CTLC”, facilitate the transformation of the 4v-

CTLC to its classical versions. The “mv-CTLC to CTL” button generates another main

screen containing all the functions to transform the 3v/4v-CTLC models to CTL models

to be verified by NuSMV. The remaining buttons for trust function in a similar way to

transfer the models with mv-logic of trust to their classical versions and to CTL to be

verified by MCMASt and NuSMV, respectively. More explanation of the tool interfaces will
2The tool and the case studies are available online at: https://github.com/MV-checker/MV-Checker

116

https://github.com/MV-checker/MV-Checker


be provided in the next section.

Figure 6.7: The main screen shows the uploading of the 3v-TCTL model encoded in 3v-
VISPL as an input language

117



Chapter 7

Application Domains and Case

Studies

In this chapter, we present our experiments applied to multiple case studies covering IoT and

IS systems with trust and commitment protocols. We model the systems under investigation

using our logics to capture the presence of uncertainty and inconsistency in these models.

Then, we assign for each model a set of specifications to be checked and verify whether

the system satisfies its specifications or not. Next, we translate the models and their

specifications into formal multi-valued ISPL language files mv-ISPL+ for commitment and

mv-VISPL for trust, as shown in Figures 7.1, (a) and (b), respectively. In (a), the atomic

propositions take truth values over lattice L3, which means we miss information about the

ones with M. In (b), the atomic propositions take truth values over lattice L4, which means

we have inconsistency about the ones with TF and FT and agreement about the ones with

values TT and FF.

Finally, we call these files through the new tool MV-Checker and perform the verifica-

tion processes. Ultimately, we report our results and make multiple comparison analyses

regarding the execution times and memory in use. The comparison analysis allows us to

evaluate the efficiency of our approaches and the performance of our tool, where we compare

its performance with another tool in the same field. Based on the final results, we set our

118



(a) 3v-ISPL+ (b) 4v-VISPL

Figure 7.1: 3v-ISPL+ and 4v-VISPL input languages

future work directions to improve the recent work and come out with future studies. 1.

7.1 Modeling and Verifying 3v-CTL and Commitment Sys-

tems with Uncertainty

7.1.1 Case study 1: A 3v-CTL Smart Home System with Uncertainty

We model a Smart Home system with multi-source data as shown in Figure 7.2. This model

shows a smart home system’s behaviours where the user has control via smartphone over

smart devices: a washing machine, thermostat, door-lock, doorbell, motion detector, front-

door lighting, smog alarm and fire alarm connected with a Fire department. The system

generally functions as follows: The user has control over the mentioned smart devices

through an application installed in a smartphone. When the smart fire alarm detects a

fire, it sends a signal to the user and the fire department. At the same time, in case of

an emergency, the application sends an alert to the fire department. Moreover, the smart

washing machine sends a reminder at a specific time scheduled by the user for loading

the machine with clothes. The system is also connected to a security camera and motion

sensor installed on the front door. When the sensor detects a motion, the security camera

imminently opens and sends a picture to the user. In addition, the front light should turn

on according to the darkness level in the home area. Then, the user decides whether to open
1The tool and the case studies are available online at:

https://github.com/MV-checker/MV-Checker

119

https://github.com/MV-checker/MV-Checker


the door or not. Furthermore, the system is connected to a smart thermostat that opens

or closes the air conditioner or the heater based on the room temperature. From Figure

7.2, it is notable that the system has uncertainty on the atomic propositions (frontlight,

load, voiceRec, Above, Below and DoorBell) which means we miss information about these

atomic propositions in their states. At the same time, we have certain information about

the ones with absolute T and F values. We excluded the variables with the value F to

simplify the system.

System

SysReady:T
WMRemConn:T
VoiceReco:M
SCamConn:T

MotionSenConn:T
DoorBellConn:T
DoorLockConn:T
FireDepConn:T
FireAlarmConn:T
SmogAlarmConn:T
ThermConn:T

ThermOFF

Above: M
Below: M
NotHeat: T

Idle

ThRunning: T
Above: M
Below: M
NotHeat: T

AC

ThRunning: T
Above: T
AC:T

NotHeat: T

Heater

ThRunning: T
Below: T
Heat: T

SC

CamPic: T
Motion: T

FrontLight:M
DoorBell:M

MotionSen

On: T
Motion: T

FrontLight:M

DoorBell

DoorBell: T
Motion: T

FrontLight:M

WMachine

RemindSent: T
Load: M

FireAlarm

FireDet: T
SmogDet: T
UserNot: T

FireDepNot: T

FireDep

SegRec: T
SigSentUser: T

SmogAlarm

FireDet: T
SmogDet: T
UserNot: T

DoorOpen

CamPicReci:T
VoiceRec: M
DoorOpen:T

DoorClosed

VoiceRec: M

WMUserAc

RemindReci: T
Load: M

Figure 7.2: A Smart Home system scenario

System Specifications

We check seven properties in our system: (1) safety, meaning that no bad situations will

happen while executing the system (φ1 and φ2 in the following list). We expressed these

properties in two different ways to check the accuracy of our results and the efficiency of

our algorithm. In φ1, we check a weak safety, so we use the quantifiers AF for checking a

condition that needs to hold in the future (in all future paths) and not necessarily for the

entire global behavior of the system. In other words, this safety property is concerned with

what happens eventually (in the future) and not throughout all possible system paths. In φ2,

120



we check the strong safety, so we use the quantifiers AG to check for a condition that should

hold true for every possible path in the system, from the initial state to all future states.

The property aims to ensure that in every execution of the system, there is no scenario

where a fire signal is received, but the fire department fails to connect to the system. (2)

Reachability expresses that the system will eventually reach a particular state during its

execution (φ3, φ4 and φ5). The formula φ3 expresses the usual (unconditional) reachability

with the operator EF . It checks that there exists at least one path in the system’s behavior

where the system will reach a particular situation, and this must hold true for all possible

paths globally. The formulas φ4 and φ5 express a conditional reachability with the operator

AX. They check that a situation is reachable in all next states if a condition holds. (3)

Liveness, expresses that something good will eventually happen (φ6 and φ7. The property

φ6 asserts that there is a possible execution in the future where the desired conditions are

met. The property φ7 describes a desirable behavior that should happen in all possible

system behaviors. It ensures that the camera’s response to the doorbell is prompt and

timely, making it a liveness property. Below is the list of properties where the meanings

of the atomic propositions in the logic formula are indicated in bold in the corresponding

formulae explanations.

• φ1 = AF¬(NotCamrec∧DoorOpen) means it is not the case that the user doesn’t

receive the security camera picture when the door opens.

• φ2 = AG¬(SigRec ∧ EX(NotF ireDpartConn)) means it is not the case that a fire

signal is received but the fire department doesn’t connect to the system.

• φ3 = AG(EF (SysReady)) means in all paths globally, the system will be ready.

• φ4 = AG(Motion =⇒ AX(FrontLight)) means whenever a motion is detected,

the front light immediately opens.

• φ5 = AG(SmogDet =⇒ AX(FireDet)) means whenever the smog alarm detects a

smog, it immediately alerts the fire department.

121



• φ6 = EF (above∧(ThRunning∧NotHeat)) means there is a possible execution where

the temperature is above the desired threshold while the thermostat is ON and

the heater is Off.

• φ7 = AG(DoorBell =⇒ EX(CamPic)) means whenever the doorbell rings, the

security camera immediately takes a picture.

System Verification

We use our new tool MV-Checker to implement the reduction approach. This tool allowed

for the first full implementation of the reduction algorithm (Algorithm 1). Technically, from

a 3-valued Smart Home model uploaded in Figure 7.3, the tool derives 2-valued models as

shown in Figure 7.4: a classical CTL model called positive cut, considers M as True; and

a classical CTL model called negative cut, considers M as False. Then, the tool calls

NusMV model checker over each model and checks if the positive cut yields F then, the

result returns “False”; if not, it checks the negative cut, if yields T , the result is “True”;

otherwise, the result will be “Maybe”. For example, the verification result of property φ4 =

AG(Motion =⇒ AX(FrontLight)) is obtained as follows: calling NuSMV model checker

over the negative cut gave (False) for this formula, then we checked the positive cut that

gave the result (True) as shown in Figure 7.5. From these results, we conclude that it is

uncertain whether this formula is satisfied in the system. This is evident because we lack

information about the automatic proposition “FrontLight” in the original 3v-CTL model.

Verification Results

Table 7.1 illustrates the verification results using the reduction approach implemented by the

new tool. The table shows that properties (φ1, φ2, φ3) are satisfied in the model because the

verification of two two-valued models gave us (T ). In contrast, the properties (φ4, φ6, φ7)

have uncertainty in their satisfaction as of the conflicting results over the two models.

Finally, property (φ5) is not satisfied in the model as of the similar result with value

(F ) obtained from the two two-valued models. To check the scalability of our approach,

122



Figure 7.3: Uploading 3v-CTL

Figure 7.4: The positive and negative cuts derived from the 3v-CTL model

Figure 7.5: The verification results of the positive and negative cuts

123



Table 7.1: The verification results of the Smart Home model

Pro. Pos. Neg. Result

φ1 T T T

φ2 T T T

φ3 T T T

φ4 T F M

φ5 F F F

φ6 T F M

φ7 T F M

Table 7.2: The results of scalability after running the tool over the positive and negative
models ten times

Exp.# Age.# St.# T.time(ms) M.time(ms)

1 11 14 7.6 5.9

2 22 196 09.8 11.4

3 33 2744 16.2 12.2

4 44 38416 81.2 24.4

5 55 537824 35.9 29.2

6 66 7.52954e+006 49.2 40.8

7 77 1.05414e+008 77.11 65.03

8 88 1.47579e+009 110.44 124.90

9 99 2.0661e+010 132.36 126.97

10 110 2.89255e+011 377.09 323.26

124



we conducted ten experiments; the first started with 11, and the last ended with 110

agents. In each experiment, we added one instance for each agent, and by reaching the

last experiment, we had 10 instances for each agent. Our tool ran on a machine with the

following specifications: 12th Gen Intel(R) Core(TM) i5-1235U, with 1300 Mhz, 10Core and

12 Logical processors. Table 7.2 shows the logarithmic relationship between the number of

agents (Age.#) and the verification time of the two models (T.time(ms)) and (M.time(ms)).

Moreover, the table shows the exponential increase in the number of states (St.#) according

to the increase in agents.

7.1.2 Case study 2: A 3v-CTLcc Smart Hospital System with Uncertainty

We consider a specific scenario of a Smart Hospital system with multi-source data as an

example. The scenario is described in [8], where most of the interactions between agents are

based on conditional commitment protocols. The scenario is depicted in Figure 7.6. The

figure illustrates a particular path or sequence of events rather than capturing the entire

system’s complexity. The scenario serves as an abstraction of the larger system. It highlights

critical interactions and behaviors related to the commitment protocols while omitting some

intricacies of the full system for clarity and conciseness. The scenario contains multiple

agents: Nurse, System, Robot, Patient, Physician, and Sensors. These agents interact as

follows: (1) the patient arrives at the hospital and automatically checks-in; (2) the GPS

installed on the patient’s smartphone commits to showing the directions to the reception

room; (3) the system then commits to notifying the nurse to meet the patient, which in turn,

commits to meeting the patient; (4) the system notifies the bed washer robot to disinfect

and prepare the bed, and the robot commits to doing so; (5) after the diagnosis, the patient

arrives at the room for hospitalization; (6) then, the smart sensors and devices connect to

the patient’s body and bed to read the required health information; (7) when the blood

pressure sensor reads a high-level pressure, it sends an alert to the nurse and physician,

and the latter commits to assigning a treatment for the patient; (8) the system commits to

showing a list of meals to the patient, which then commits to reviewing and choosing the

125



check-in using
smart phone

system notifies
the nurse to meet
patient.

bed washing robot
disinfects the bed
and make it ready
on time

digital room display
shows the admitted
patient

EHR received data collected
by different sensors

smart wristband enabled
with indoor GPS and
by smart bed send
patient info

ML algorithm uses the info
to send signal when a patient
needs help or not doing will

sensor reads high
blood pressure and
sends note to the
physician

physician
recommends
a treatment

patient request meal system provide a meal
suitable to dietary restrictions

system reminds
the nurse about
medicin time

nurse provides
the patient by
medicin

patient follows
the system
directions or nurse

S0

notSent=T
NurMetPat=M

HbloodP=T
treatment= T

remidSent=T
medicinProv=T

HbloodP=T
SmarSsent= T

SmartAla=T
NurAns= T

BedRead=T
NotSys=T

NurCon=T
SysReady=M

RopNot=T
BedWash=T

ViewMea=TMealRec=T
SysProvM=T

S1 S2
S3

S4

S5

S6S7S8S9S10

S11

S12

S13

S14 S15 S16 S17 S18

GPS=FPatArr=T ScanSuce=T

Pat follow local GPS
if he/she can

nurse connects to
the sys and notifies
bed washer
robot

patIn=TpatIn=TpatIn=TpatIn=T

nurse check the patient

Figure 7.6: Example of a scenario in a Smart Hospital system

desired meal; and (9) the nurse commits to providing the patient with medicine when the

system sends a reminder.

The system is modeled so that some atomic propositions in states are assigned with

absolute (true) or (false). For example, “NurCon=T” stands for it is true that the nurse is

connected to the system in S3. Some atomic propositions take the value (maybe), such as

“SysReady=M”, which means It is uncertain that the system is ready in state s4.

System Specifications

In this section, as in the previous case study, we verify ten properties, including Safety,

Liveness and Reachability properties. In these properties, n1 stands for agent Nurse, s1 for

System, r1 for Robot, p1 for Patient, ph1 for Physician and sen1 for agent Sensor.

• φ1 = ¬ EF CCn1→s1(SmartAla,¬NurAnswer)means there is no possible execution

where the system sends a signal through the smart alarm to the nurse but the

nurse commits to not responding.

• φ2 = ¬ EF CCr1→s1(¬BedRead,NotSys)means there is no possible execution where

126



the bed is not ready, but the washer robot commits to notifying the system of

the bed availability.

• φ3 = AF CCn1→p1(remindSent,midicinProv) means when the system sends a

reminder to the nurse, the latter commits to providing medicine to the patient.

• φ4 = AF CCs1→n1(NurCon, SysReady) means when the nurse needs to

connect, the system commits to be ready.

• φ5 = EF CCn1→s1(notSent,NurMetPat)means when the system sends a patent’s

arriving notification to the nurse, the latter commits to meeting the patient.

• φ6 = EF CCr1→s1(RobNot,BedWash) means when the system notifies the robot

to prepare the bed, the robot commits to washing and preparing the bed.

• φ7 = EF CCph1→p1(HbloodP, treatment) means when the patient has high blood

pressure, the physician commits to recommend the required treatment.

• φ8 = EF CCsen1→p1(HbloodP, SmartSsent) means when the patient has high

blood pressure, the sensor commits to send alert to the nurse to see the patient.

• φ9 = EF CCn1→s1(SmartAla,NurAns) means when the system sends an alert

to the nurse, the latter commits to answering the alert call.

• φ10 = EF CCp1→s1(viewMea,Answer) means when the system sends the meal

list to be viewed by the patient, the latter commits to answering by choosing a

meal or refusing.

System Verification

We check the model by fully implementing our new reduction algorithm (Algorithm 2)

using the new tool MV-Checker which automatically translates 3v-CTLcc to the two-valued

CTLcc logic and automatically interacts with the MCMAS+ model checker developed for

multi-agent social commitments [31]. Figure 7.7 shows the first step of the implementation,

which is the uploading of the 3v-CTLcc model. Then, after pressing on “Generate Positive

127



Figure 7.7: Uploading 3v-CTLcc model

Figure 7.8: Verification results of the two-valued models derived from 3v-CTLcc

CTLC” and “Generate Negative CTLC” buttons, we get the two two-valued CTLcc models

in Figure 7.8. The last step is to press “Launch mcmas” over each model to have the

verification results.

Verification Results

We performed our experiments using the same machine in the previous section. Table 7.3

shows the obtained results: the safety properties φ1 and φ2 are satisfied, the reachabil-

ity properties φ6, φ7, φ8 and φ9, and the liveness property φ3, as well are also satisfied.

However, the property φ10 is not satisfied in the model. Moreover, it is unknown whether

128



properties φ4 and φ5 are satisfied because of the conflicting results. For example, in Figure

7.8, the property “φ5 = EF CCn1→s1(notSent,NurMetPat)” has the value M because

the negative and the positive cuts yield different answers. We performed ten experiments

to check the scalability of our proposed approach. The results are reported in Table 7.4.

We started with seven agents and ended with 70. The table shows the number of agents

(#Age), the number of reachable states (#States), the average of the verification times and

the memory in use in megabytes for the two two-valued models. The results reflect that

the number of reachable states increases exponentially with the increase in the number of

agents, while the memory in use and the verification time increases logarithmically.

Table 7.3: The verification results of the Smart Hospital model

Pro. M.T M.F Result

φ1 T T T

φ2 T T T

φ3 T T T

φ4 T F M

φ5 T F M

φ6 T T T

φ7 T T T

φ8 T T T

φ9 T T T

φ10 F F F

7.1.3 Case Study 3: A 3v-CTLc Intelligent Mortgage System with Un-

certainty

We perform our experiments with an Intelligent Contract Mortgage system scenario with

multi-source data described in [3]. The system is intelligent because it has the following

characteristics: (1) Data Classification: The scenario involves the handling of various types

129



Table 7.4: Scalability results of running the tool ten times, starting with seven and ending
with 70 agents.

#Age. #St Ave.(MB) Ave.time(ms)

7 174 11.937 0.024

14 2668 13.779 0.380

21 44856 18.409 1.427

28 779440 24.120 4.026

35 1.37423e+07 30.590 10.95

42 2.44159e+08 32.594 13.34

49 4.3578e+09 62.485 16.729

56 7.80032e+10 42.401 25.243

63 1.39886e+12 101.637 43.945

70 2.51172e+13 109.071 69.281

of data, including property valuation reports, validation reports, municipality reports, and

title search reports. Each type of data is processed and classified according to its nature

and purpose in the mortgage application process. (2) Smart Decisions: The use of smart

contracts enables automated decision-making based on predefined conditions. For example,

the smart contract checks the validation reports to determine if they meet the required

criteria before proceeding. Similarly, the buyer’s bank uses automated decision-making to

approve the loan if all conditions are satisfied. These elements contribute to the intelli-

gence of the mortgage system by incorporating automation, predefined criteria, and data

processing into the workflow. This improves efficiency, accuracy, and transparency in the

mortgage application process.

The system’s functionalities are based on unconditional commitment protocols under

uncertainty. The scenario starts when a buyer applies for property valuation to the mortgage

solutions firm remotely through a smartphone. Then the property valuation firm commits

to submitting the application to the broker firm for validation which, in turn, commits

to validating the report via a smart contract. After validation, the broker firm commits

130



S0

Mrt.Solu
ApRecive: T
RepValRec:T

Repsub:T

BuyerSmPh
Conn:T

SmartC
App:T

BReqRep:T
RevRePs:T
Subm:M

S3

Municipality
ReqRecive:M

Tit.Search.C
ReqRecive:T

Broker F.
RepReci:T

Tit.Search.C
TitRep:T

Broker F
RepValid:T

Municipality
TaxRepGen: 

T

Mrt.Solu
TaxRepReci:T

Mrt.Solu
TitRepReci:T

Mrt.Solu
ValRepReci:T

B.Bank
BuyerApl:T

RevRepsReci:T

S.Bank
Loan:T

ReciInfo: T
CreditAcc:T

SellerSmPh
Conn:T

SellSig:M
BuySig:T

BuyerSmPh
Conn:T

LoanApr:T
BuyNot:T

S1

S2

S4 S5 RepStat
RepValid:T
SmRVal:T

AppStat.
AllConMet:T
LoanApr:T

B.Bank
AgrSig:T

Sendinfo: T

S6

S7

S8 S9 S10

S11 S12 S13

S14

S15

S16
S17

S18

Figure 7.9: A Smart Mortgage system based on a smart contract

to resubmitting the report to the mortgage solutions firm. Then, the latter commits to

approving the request and notifying the buyer. When a smart contract checks all the

conditions, the buyer applies for a loan. At the same time, the buyer’s bank requests

a report generation from the municipality and title search. Next, the latter commits to

generating and submitting their reports to the mortgage solutions firm. The smart contract

then commits to checking the reports and forwarding them to the buyer’s bank. The

buyer’s bank commits to approving the loan if all the conditions are satisfied. At the

same time, the buyer’s bank commits to automatically notifying the buyer of the new

information. Thereafter, the seller and buyer commit to signing the agreement. After

signing the agreement, the buyer’s bank commits to updating the seller’s bank with the

new information through a smart contract. Figure 7.9 shows the system model where the

red dashed lines indicate the commitment relations and the atomic propositions take truth

values among T , F , and M .

131



System Specifications

We checked the following nine unconditional commitment properties over this system as

follows:

• φ1 = ¬EF (¬RepV al ∧ CSmCon1→BFm1(SmRV al)) means there is no possible ex-

ecution where the broker firm doesn’t validate the submitted report, and the

smart contract commits to updating the report’s status to valid.

• φ2 = ¬EF ¬CBBuy1→Buyer1(BuyNot)) means there is no possible execution where

the buyer’s bank doesn’t commit to sending a notification to the buyer after each

file update.

• φ3 = EF CSmCont1→MortS1(Repsub) means the smart contract commits to submit-

ting the validated report to the mortgage solution.

• φ4 = CMuni1→SmCont1(TaxRepGen) means the municipality commits to generating

a tax report after the generating request is sent by the smart contract.

• φ5 = EF CBBuy1→BSell1(Sendinfo)means the Bank of the buyer commits to sending

information to the seller’s bank.

• φ6 = EF CBFm1→SmCont1(RepV alid) means the broker firm commits to validating

the submitted report.

• φ7 = EF (BuyerApl ∧ AX(CMortS1→Buyr1(Subm))) means after the buyer applies

for a mortgage, the mortgage solution immediately commits to submitting the

report for validation.

• φ8 = EF LoanApr ∧ AX(CSeller1→BBuy1(SellSig)) means after the loan is ap-

proved, the seller immediately commits to signing the agreement with the

buyer.

• φ9 = EF CSmCont1→BFm1(SmRV al) means the smart contract commits to submit-

ting the application to the broker firm for validation.

132



System Verification

We use the same machine in the previous sections for conducting our experiments. Fig-

ure 7.10 shows uploading the 3v-CTLc model. Figure 7.11 shows the final results after

generating the two-valued models and calling NuSMV over each model.

Verification Results

Table 7.5 shows the final results in column (Results) after comparing the verification results

of the two-valued models Mm, which considers M as true and MT , which considers only

the value T as true. The results show that the properties φ1, φ3, φ4, φ5, φ6 and φ9 are

satisfied. The φ7 and φ8 are uncertain if they are satisfied in the system, while φ2 is not.

Figure 7.10: Uploading 3v-CTLc model

Figure 7.11: The verification results of the two models after calling NuSMV

133



To ensure the effectiveness of our approach, we ran our tool six times over multiple

experiments. We started with ten and increased this number to 60 agents. Table 7.6 shows

the results of our experiment where (#St.) and (#Age) represent the number of reachable

states and the number of agents, respectively. The table shows the exponential increase in

the number of reachable states according to the increase in the number of agents. As well

as the average of the verification times (Verification(ms)) for the two models. The table

also reports the average of the transformation times in milliseconds for transforming the

two models (Models(ms)) and the formulae (formulae (ms)).

Table 7.5: The results of verifying the 3v-Smart Mortgage system

Pro. Mm MT Result

φ1 T T T

φ2 F F F

φ3 T T T

φ4 T T T

φ5 T T T

φ6 T T T

φ7 T F M

φ8 T F M

φ9 T T T

7.1.4 Comparison with the Reduction Approach Using MCMAS+ and

NuSMV

In this section, we implement our verification of the same Smart Mortgage system using our

new algorithm (Algorithm 2), which translates 3v-CTLc to CTLc and then calls MCMAS+

to compare the new results the ones obtained using NuSMV in terms of scalability. Figure

7.12 shows the verification results after applying the reduction algorithm using MV-Checker

interacting with MCMAS+. The verification results obtained using the first approach are

134



Table 7.6: Scalability results of running the MV-Checker tool six times over the two CTL
models The times reported are the average of the models and formulae transformation times
and the verification times.

#Age. #St. Models (ms) Formulae (ms) Verification(ms)

10 2226 10.622 1.153 1145

20 4955076 65.520 2.075 5224

30 1.103e+10 215.244 4.246 19801

40 2.45528e+13 640.358 4.901 406133

50 5.46545e+16 927.520 6.225 591204

60 1.21661e+20 1315.688 9.065 713551

Figure 7.12: The verification results of the two CTLc models after calling MCMAS

135



the same as the ones obtained by interacting with NuSMV through the MV-Checker. Ta-

ble 7.7 illustrates the results of the scalability to be compared with the results in Table

7.6. Figure 7.13 graphically shows the difference between the two algorithms regarding the

number of agents and verification times. The brown color is assigned for the results of in-

teracting MV-Checker with NuSMV, and the blue color is for the results of interacting with

MCMAS+. The brown results show the exponential increase in the verification time with

regard to the number of agents using the first tool. In contrast, the blue results show that

the verification time increases logarithmically using the second tool. The letter tool enabled

adding agents up to 90 agents, while the first tool reached up to 60 agents. Although both

approaches gave reliable and accurate results, the graphical results reflect that, in terms

of the verification time and the number of agents, the reduction approach based on using

MCMAs+ required less time, and it is more scalable than the reduction one using NuSMV.

Figure 7.13: Comparison between the two transformation methods of 3v − CTLc, the blue
results for CTLc and the brown for CTL.

136



Table 7.7: The scalability results of running the tool over two two-valued CTLc models

#Age. #States Ave.(MB) Ave.Time(ms)

10 402 12.316 284

20 147606 22.479 764

30 5.66248e+07 57.248 1850

40 2.17433e+10 28.426 7531

50 8.34942e+12 33.142 6579

60 3.20618e+15 38.054 12209

70 1.23117e+18 49.890 25974

80 4.7277e+20 59.201 44547

90 7.3272e+21 75.013 103357

7.2 Modeling and Verifying Commitment Systems with In-

consistency

7.2.1 Case Study 4: A 4v-CTLc Smart Mortgage System with Inconsis-

tency

We use the same Smart Mortgage system with changing the variable truth values in the

states to take truth values between (TT, FF, FT or TF). We assume that the system

is designed by two experts with different viewpoints about the system’s atomic proposi-

tions. For example, the atomic propositions SellSig =TF, BuyerApl=FT, SmCVal=TT

and BuyNot=FF. We apply our new reduction approach to transform the 4v-CTLc model

to CTLc by considering the join-irreducible elements of the 4v-lattice (TF and FT). We

verify the system against the properties (φ1, φ2, φ3, φ7, φ8 and φ9 assigned for the sys-

tem in the previous section. From our results, we find that there are positive agreements

(both designers say yes) about the satisfaction of the formulae φ1, φ3 and φ9 and also a

negative agreement (both designers say no) about the formula φ2. The result FT shows

137



the disagreement with information about “who said what” for the formula φ7 where the

first designer said “no” while the second said “yes”. The opposite applies to φ8 where the

final result is TF. The obtained results are as expected, and we conclude that 4v-CTLc is

highly applicable for verifying IoTs and IS systems in terms of capturing the agreement and

disagreement between the designers bout the system’s behaviors.

Figure 7.14: Upload the 4v-CTLc and generate the two-valued models

Figure 7.15: The two-valued CTLc models and the results after launching NuSMV

It is worth clarifying that, in terms of the comparison with other related existing re-

search, the work provided in this research is the first to extend CTL-based commitment

logics to multi-valued versions and address the model checking problem of these logics.

Therefore, our approaches cannot be compared with those related to other studies in simi-

lar frameworks. Moreover, the addressed applications used in this chapter are modeled and

verified for the first time within the framework of commitment protocols with uncertainty

or inconsistency using our logics. This led to several significant advantages, including the

flexibility in describing their actual behaviours using multiple truth values and capturing

138



Table 7.8: The results of verifying the 4v-Smart Mortgage system

Pro. (TT-TF) (TT-FT) Result

φ1 T T TT

φ2 F F FF

φ3 T T TT

φ7 F T FT

φ8 T F TF

φ9 T T TT

the commitment protocol, an essential communication protocol used in these applications.

Furthermore, our work provides practical approaches for ensuring the reliability of the ad-

dressed applications.

7.3 Modeling and Verifying Trust Systems with Uncertainty

In this section, we multi-valued model check IS systems focusing on blockchain-based health-

care systems where trust occurs among the system’s agents during their interactions. The

system is considered intelligent based on the following characteristics: (1) Agent Collabo-

ration: The system involves multiple intelligent agents (manufacturers, FDA, IPFS, smart

contracts, distributors, patients, and pharmacies) working together to carry out a com-

plex process. This collaborative effort reflects a form of artificial intelligence where agents

interact based on predefined rules and conditions. (2)Smart Contracts and Blockchain Tech-

nology: The use of smart contracts and the IPFS (Interplanetary File System) demonstrates

the application of advanced technology in the system. Smart contracts enable self-executing

agreements based on predefined conditions, while the IPFS provides a decentralized and

secure way to store and access data. Overall, the intelligence of the system lies in its ability

to autonomously manage a complex process involving multiple stakeholders, make decisions

based on predefined conditions, adapt to uncertainty, and utilize advanced technologies for

139



secure and efficient operations.

7.3.1 Case Study 5: A 3v-TCTL Blockchain-Based Drug Traceability Sys-

tem under Uncertainty

The fifth case study is A blockchain-based system for drug traceability presented in [64].

We modelled the system as shown in Figure 7.16, where trust relations between agents are

captured by Red-dashed lines and the uncertainty about holding some atomic propositions

in states represented by value M.

System Functionalities

Seven primary agents operate within the system: (1) manufacturers; (2) FDA, which stands

for the Food and Drug Administration; (3) IPFS, which stands for the Interplanetary File

System; (4) smart contracts; (5) distributors; (6) patients; and (7) pharmacies. These

agents interact with each other to carry out the system functions as follows. The system

starts in state S0. In S1, it is (True) that a manufacturer does submit a request to the

FDA for approval before commencing the drug Lot manufacturing. In S2, it is (True) that

the FDA approves the valid request. In S3, it is (True) that the manufacturer initiates

the manufacturing process. S4 shows that it is (True) that images of the drug Lot are

uploaded to the IPFS by the manufacturer. In S5, it is (true) that the IPFS provides a

hash saved in the smart contract, which allows authorized participants to access the images.

It is (Uncertain) in S6 whether the drug is submitted to the distributor and whether a hash

has already been sent. In S7, it is (True) that the distributor starts the drug distribution

process, while in the same state, it is (Uncertain) that the drug is delivered simultaneously.

In S8, it is (True) that the distributor uploads the package image to the IPFS. In S9, it is

(True) that the IPFS sends a hash to the smart contract. as well as in S10, it is (True) that

the drug packages are delivered to pharmacies. It is also (True) in S11 that the pharmacy

begins selling the drug, and all supply chain participants be notified accordingly. In S12,

it is (Uncertain) whether the image of the sold drug is uploaded by the pharmacy to the

IPFS. In S13, it is (true) that the IPFS sends a hash to the smart contract. It is (True) in

140



S14 that the patient requests drugs, and in S15, the drug will be sold to the patient. To

simplify the system, We eliminate the atomic propositions with the value False. The red

dashed lines represent the trust accessibility relations between the system agents over the

global system states.

ApReqSent =T ReqApprov=T MProcInit=T
SmCtUpdate=T

DrugImUp=THashSent=T

S0 S1 S2

S7 S6 S5

manufacturer 
send a request 
for approval 
from the FDA

FDA approves 
the request

the manufacturer 
initiates the 
manufacturing 
process

The manufacturer
upload  images
of  the drug Lot 
to
the  IPFS,

IPFS send a hash to 
the smart contract so 
that the images can be 
accessed
later by authorized participants

DrugDel=M 
Hashsent=M

PackageImUp=T

the drug Lot delivered 

to the distributor for
packaging concluding 
the manufacturing 
process.

the distributor packs 
the drug Lot, and 
an image of the 
package
will  be uploaded 
to  the IPFS

HashSent=T

IPFS send a hash to
the smart contract

the drug Lot packages
will be delivered to 
pharmacies

PackageDel=T

the pharmacy initiate
the sale of drug Lot box
and it will be declared 
to the participants of 
the supply chain

PhrmProcInit=T

DrugImUp=M

an image of the sold drug
package will be uploaded 
to the IPFS

HashSent =T

a hash will be sent 
by the IPFS to
the  smart contract

DreqSent=TDrugSold=T

patient request drug

S3

S4

S8
S9 S10 S11

S12S13S14

DisProcInit=T 
DrugDel=M

Distributor 
initiates 
package 
distribution 
process

S15

Figure 7.16: A Blockchain-Based Drug Traceability model with 3v-TCTL under uncertainty

System Specifications

This section focuses on the properties expressed in the temporal trust logic. We have ver-

ified five properties over this system, which are categorized into three categories: Safety

properties convey the assurance that no undesirable outcomes will occur during the execu-

tion of the system. Liveness pertains to the eventual occurrence of favorable events, while

Reachability refers to the achievement of a predetermined state within the system. We

interpreted these properties in TCTL formal language and assigned atomic propositions as

141



follows: “ReqValid” means “ the request submitted by the manufacturer is valid ”, “Re-

qApprov” means “ FDA approve the request”, “DrugImUp” means “ drug package image is

uploaded”, “HashSent” means “the IPFS updates the smart contract by sending a hash”,

“DrugDel” means “ the drug package is delivered ”, “DrugDela” means “the drug package

delivering time will be delayed”. Below are the system properties :

(1) “In every conceivable scenario, it is false that the request is valid and the manufacturer

lacks trust in the FDA to approve the request for initiating the manufacturing process.”

φ1 = ¬ AF (ReqValid and ¬ (T((Manuf, FDA, EF ReqApprov)))

(2) “ Each time an image of a drug package is uploaded, the manufacturer trusts the

IPFS to update the smart contract using a hash”.

φ2 = AG (DrugImUp and AX (T(Manuf,IPFS, T, HashSent)))

(3) “ The existence of at least one possible execution guarantees that during the drug

delivery process, the IPFS trusts the manufacturer to upload the image of the drug

package. ”

φ3 = EF (DrugDel and (EF T(IPFS, Manuf, EF DrugImUp)))

(4) “There exists at least one possible execution where the manufacturer trusts the IPFS

to update the smart contract by a hash ”

φ4 = EF T(Manuf, IPFS, HashSent).

(5) “There at least one possible execution ensures that, when a hash sent, the distributor

trusts the manufacturer to send a notification in case of a delay in the drug package

delivering”

φ5 = EF (HashSent and (EF T(Dist, Manuf,EF DrugDela)))

142



System Verification

After modelling the system in Figure 7.16, we encoded this model into 3v-VISPL, presented

a set of specifications to be verified over this model, and saved the file. Then, we run

MV-Checker to verify the system following the next steps. (1) Upload the 3v-VISPL by

pressing the “ Upload 3v-TCTL model” button on the main screen, as shown in Figure 6.7.

(2) Transform the uploaded model into two classical TCTL models. The “Generate Pos.

TCTL model” button generates the model that considers M and T as T. The “ Generate

Neg. TCTL model” button generates the model that considers M and F as F (Figure 7.17).

(3) Call MCMASt over each model to get the verification results. Figure 7.18 shows that

the formulae φ1 and φ4 are true in both models. While the formula φ2 is false. The two

formulae φ3 and φ5 are verified with different answers. Finally, we determine the final

results based on the following approximation.

• Call MCMASt on the first model and save the result in x

• Call MCMASt on the second model and save the result in y

– If x = True and y = True then, the final result: T ⊔M = T

– If x = False and y = True then, the final result: ∅ ⊔M =M

– If x = True and y = False then, the final result: T ⊔ ∅ = T

– If x = False and y = False then, the final result: ∅ ⊔ ∅ = ∅ = F

143



Figure 7.17: The two classical TCTL obtained from the transformation of the 3v-TCTL

Figure 7.18: The verification results over the two transformed classical TCTL models

The final verification results are illustrated in table 7.9. The table shows that the

formulae φ1 and φ4 are true in the 3v-TCTL model, and the formula φ2 is false, while the

formulae φ3 and φ5 are verified with uncertainty. To check the scalability of the proposed

approach, we increase the number of agents and run the tool over the 3v model. Table

7.10 presents the results of conducting our experiments. The table presents how many

agents are included in each experiment (#Age), the number of the reachable states (#St),

the average of the memory in use in megabytes taken from running the tool over the two

144



generated classical models (Ave.(MB)), and the average of the verification time of each

classical model (Ave.time(ms)). The results demonstrate that the number of reachable

states increases exponentially with the number of agents, whereas the verification time

increases logarithmically. These findings serve as evidence of the scalability of the proposed

approach. We perform Our experiments over a machine with the following features: Intel(R)

Core(TM) i7-6500U CPU 2.5GHz, 2Cors, 4 logical processors with 16GB Ram.

Table 7.9: Verification results of the Smart Drug Traceability system

Pro. Pos. Neg. Result

φ1 T T T

φ2 F F F

φ3 T F M

φ4 T T T

φ5 T F M

Table 7.10: Results of scalability after running the tool over the positive and negative
models ten times

#Age. #St Ave.(MB) Ave.time(ms)

7 20 9.4602 0.023

14 304 14.6711 1.31

21 4976 33.9584 3.19

28 83776 46.5274 6.83

35 1.42088e+06 49.7757 5.24

42 2.41417e+07 40.5451 20.70

49 4.10355e+08 37.9456 33.55

56 6.97582e+09 204.4452 48.01

63 1.18588e+11 46.75216 58.68

70 2.01599e+12 51.981296 65.77

145



7.3.2 Case study 6: Re-Verifying the Blockchain-Based Drug Traceability

System by Launching NuSMV

Here, we perform the second part of the MV-Checker’s functions: launching an essential

model checker, NuSMV.

As known, NuSMV is effectively used in verifying CTL-based models. In this section, we

aim to investigate this tool’s ability to verify the multi-valued versions of TCTL and CTLC

logics. To do so, we implemented the reduction algorithms that transform the 3v-TCTL to

CTL (Algorithm 7).

The running steps are as follows. First, press the “ MV-TCTL to CTL” button from

the main screen. Second, the second main frame for mv-trust appears with options to

transfer the 3v-TCTL model to two TCTL models and then transfer these models to CTL.

This step allows launching NuSMV checker as shown in Figure 7.19. After completing the

transformation, we perform the third step, launching NuSMV checker to get the verification

results. Figure 7.20 shows the screen of the verification results of the transformed model

and the assigned formulae. In this screen, the tool provides for each CTL model time

calculations of transforming the model, transforming the formulae, the verification process,

and the total time.

After verifying the system using MV-Checker with launching NuSMV, we got the same

verification results in Table 7.1. Table 7.11 presents the scalability results of the second

experiment. This table shows the number of agents represented by (#Age.), the number of

reachable states (#St.), the average time in milliseconds of transforming the two classical

TCTL to CTL (Ave.Models (ms)), the average time of transforming the trust formula in

each model (Ave.Formulae (ms)) and the average of the verification time. Although we

got the same verification results in each experiment as we expected, Figure 7.21, which

graphically represents the relation between the number of agents and the verification time

for each experiment (Table 7.10 and Table 7.11) shows that transforming the 3v-TCTL to its

classical case is more efficient and scalable than transforming it to CTL. The figure proves

that verifying the transformed TCTL model using MCMASt took less time than verifying

146



Figure 7.19: Screen shows the transforming of 3v-TCTL model with the formulae to TCTL
and then to CTL to launch NuSMV

the transformed CTL using NuSMV. Moreover, the first is more scalable in increasing the

number of agents, where we could reach 70 agents with a short increase in the verification

time. On the other hand, with NuSMV, we reached six experiments with 56 agents and an

exponential increase in the verification time.

147



Figure 7.20: Verification results of verifying the transformed 3v-TCTL model to CTL using
NuSMV

Figure 7.21: Comparison between the results of the 3v-TCTL verification approaches, the
blue results using MCMASt and the brown results using NuSMV.

148



Table 7.11: Scalability results of running the MV-Checker six times over the two transformed
CTL models

#Age. #St. Ave.Models
(ms)

Ave.Formulae
(ms)

Ave.Verif(ms)

7 43 43.41 02.67 37.93

14 1849 83.37 03.34 139.90

21 79,507 233.88 12.11 566.08

28 3,418,801 656.21 80.09 1080.61

42 1.47008e+06 1022.33 133.02 1670.11

56 6.32136e+18 1715.09 189.66 1900.89

7.4 Modeling and Verifying Trust Systems with Inconsis-

tency

7.4.1 Case Study 7: A 4v-TCTL Blockchain-Based Health Record System

with Inconsistency

System Functionalities

We assume that the system is designed by two experts who have agreements and disagree-

ments about the behaviours of the system. The designers agree (both say true) that the

system starts at S0 when a patient creates a blockchain-based account. They also agree

that in S1, the system requires identity verification from the patient and medical history.

In S2 the designers agree that the patient’s medical information is encrypted and stored in

a block added to the blockchain. They also agree in S3 where the patents are given private

keys, enabling them to access their medical records on the blockchain anytime. Then is

S4, the designers disagree ( the first says false and the second says true) that in case the

patients visit another healthcare provider, they provide their private keys to the healthcare

for authorized purposes. Next, in S5, the designers disagree (the first says true and the

second says false) that the healthcare provider updates the patient’s medical records on the

149



blockchain as needed. The same in S6, the updated information becomes available to all au-

thorized patients. Then in S8, the two designers agree that the patient granted healthcare

providers access to their medical records on the blockchain. They also agree that in S7, pa-

tients can revoke access to their medical records on the blockchain. Then, in S9, they agree

that the blockchain system ensures the privacy and security of the patient’s medical records

by using Distributed Ledger Technology (DLT). Finally, the designers agree that at S10,

the system enables patients to control their data and participate in the decision-making

process about their healthcare.

From the system model depicted in Figure 7.22, the trust relations between the system’s

agents are indicated in Red-dashed lines.

S9

S10

CrAcc: TT IdVerif: TT

A Patient creates a 
blockchain-based 
account.

The system requires 
verification of identity 
and medical history.

EncrInfoT: 
TT

The patient's medical 
information is encrypted and 
stored in a block that is added to 
the blockchain.

The patients are given 
private keys that enable 
them to access their 
medical records on the 
blockchain anytime.

SubKey: FT

Patients visit another 
healthcare provider 
and provide their 
private key.

UpdRec: TF

The healthcare provider 
updates the patient's 
medical records on the 
blockchain as needed 

GrAcces: TT

Patients grant access to 
their medical records on 
the blockchain to health 
insurance. 

EnsureSec: 
TT

The blockchain 
system ensures the 
privacy and security 
of patients' medical 
records  using DLT

EnabCont: 
TT

The blockchain system   
enables patients to control 
their data and participate in the 
decision-making process about 
their healthcare 

InfoAval: TF

The updated 
information is 
available to all 
authorized parties.

Revoke: TT
Patients revoke access 
to their medical records 
on the blockchain to  
research institutions 

ProvdKey: 
TT

S0
S1

S2
S3

S4

S5

S7

S8
S6

Figure 7.22: A Blockchain-Based Health Record system with 4v-TCTL under inconsistency

System Specifications

We verify seven trust properties, including safety, reachability and liveness properties,

against the modelled system. The properties are interpreted in TCTL, and the atomic

propositions and agents are expressed as follows: Agent “Pat” means “patient ”, “BloCh”

150



means “Blochchain ”, “Hprov” means “ health provider”, “secHprov” means “ second health

provider visited by the patient”. The atomic proposition “EncryInfo” means “the blockchain

encrypts the received information ”, “ProvdKey” means “the health provider provides to the

patient the private key of the health record ”, “SubKey” means ”The patient shares their

private key with the second health provider in order to grant access to their health records

”, “UpdRec” means “the health provider update the patient’s health record when needed ”,

“InfoAval” means “ the blockchain makes the information available for access by the autho-

rised parties”, “Revoke” means “the patient’s information is revoked ”, “EnsureSec” means

“the blockchain secures the patient’s information ”, “EnabCont” means “ the blockchain

enables patients to control their data and participate in the decision-making process about

their healthcare ”

(1) “ There is at least one pathway within the system where the patient trusts the blockchain

to encrypt the received information. ”

φ1 = EF T((Pat1, BloCh1 ,EncryInfo)

(2) “There is at least one pathway within the system where the patient trusts the health

provider to provide the private key of his/her record”.

φ2 = EF T((Pat1, Hprov1, ProvdKey)

(3) “In all possible executions, the second health provider trusts the patient to provide the

private key to access the patient’s health record.”

φ3 = EF T((secHprov1, Pat1, SubKey)

(4) “There is at least one pathway within the system where the patient trusts the health

provider to update her/her health record when needed”

φ4 = EF T((Pat1, Hprov1, UpdRec)

(5) “There is at least one pathway within the system where the health provider trusts the

blockchain to make the information available for access”.

151



φ5 = EF T((Hprov1, BloCh1, InfoAval)

(6) “It is not the case that in all possible executions when the patient’s information is

revoked, the latter doesn’t trust the blockchain to secure this information ”.

φ6 = ¬ AF (Revoke and EF !T(Pat1, BloCh1, EnsureSec))

(7) “There is at least one pathway within the system where the patient trusts the blockchain

to enable information control by the patent”.

φ7 = EF T(Pat1, BloCh1, EnabCont)

System Verification

After modelling the system in Figure 7.22, we encoded this model into 4v-VISPLS, assigned

a set of seven properties to be checked over this model, and saved the file. Then, we run

MV-Checker to verify the system following similar steps and the same machine used in the

first experiment. The difference here is that we reason about inconsistency over 4v- TCTL

model encoded in 4v-ISPL. After verifying the two models using MCMASt, we determine

the final results based on the following approximations: Assume that we save the verification

result of each formula in the first classical model (considers TF is true) in x and the second

model (considers FT is true) in y, then

• If x = True and y = True then, the final result: TF ⊔ FT = TT

• If x = False and y = True then, the final result: ∅ ⊔ FT = FT

• If x = True and y = False then, the final result: TF ⊔ ∅ = TF

• If x = False and y = False then, the final result: ∅ ⊔ ∅ = FF

The final results in Table 7.3 show that there is an agreement of (true, true) about the

formulae φ1, φ3, φ6 and φ7. It also shows the disagreement about the formula φ2 where

the first designer said no and the other said yes (false, true). The opposite applies to the

formulae φ4 and φ5.

152



Table 7.12: Verification results of the Blockchain-Based Health Record System with 4v-
TCTL

Pro. TF FT Result

φ1 T T TT

φ2 F T FT

φ3 T T TT

φ4 T F TF

φ5 T F TF

φ6 T T TT

φ7 T T TT

We checked the scalability of the proposed approach for reasoning about inconsistency by

performing seven experiments, running the MV-Checker on top of MCMASt. The results in

Table 7.13 show the logarithmic increase in the verification time coinciding with adding five

agents in each experiment. The average memory usage in megabytes for the two transformed

classical models shows that the memory usage from the experiment with 20 agents and more

increases exponentially.

Table 7.13: Scalability results after running the MV-Checker over the classical models seven
times

#Age. #St Ave.(MB) Ave.time(ms)

5 17 11.10288 0.02

10 95 13.1937 0.13

15 761 26.8433 0.62

20 6647 122.1288 3.66

25 59297 130.2536 10.55

30 1.77891e+02 142.2055 12.02

35 3.47991e+05 150.4207 20.45

153



7.5 Comparing MV-Checker Performance with the BT Tool

for Verifying TCTL models

In this section, we compare the performance of MV-Checker with the BT tool introduced in

[24]. This tool transforms the Branching Trust Logic (BT) into CTL to reuse the NuSMV

checker. BT logic encompasses TCTL where the latter’s modality T (i, j, ϕ) is a part of the

firsts’ modalities. Below, we illustrate the results of verifying the same case study used

in the mentioned paper, which is a system of ordering protocol governing the interaction

between seller and buyer agents. The results obtained using MV-Checker are compared with

the ones obtained using the BT tool on the same machine with the following specifications:

Intel(R) Core(TM) i7-6500U CPU with 2.50GHz, 2.59 GHz Installed RAM 16.0 GB. Figure

7.23 presents the increase in the total time of transforming the model and formula and the

verification time regarding the increase in the number of agents. The experiments started

with 3 and ended with 15 agents. In each experiment, three agents are added regarding the

system and formula. The figure shows that the total time used in MV-Checker (indicated in

blue) is less than in the BT tool (indicated in brown). Although the difference in verification

time between the two tools is not substantial, MV-Checker demonstrated its proficiency in

handling various types of logic, as detailed in Table 6.1. Furthermore, the checker boasts

user-friendly interfaces, supplemented with a user-guide, further enhancing its usability.

154



Figure 7.23: Comparing the performance of MV-Checker with the BT Java toolkit

155



Chapter 8

Conclusion and Future Work

8.1 Conclusion

Intelligent systems (IS) and IoTs are highly susceptible to uncertainty and inconsistency due

to the intense and intricate interactions among their autonomous components (or agents).

This makes their verification theoretically and practically challenging, especially when these

applications involve essential protocols such as trust and commitment. The primary con-

tributions combined with this research are addressing the following problems: (1) defining

a computationally grounded semantics for agent communication regarding social commit-

ments and trust under uncertainty and inconsistency; (2) producing multi-valued model

checking MAS techniques with focus on IoT and IS systems with commitment-based and

trust-based protocols; (3) developing an efficient model checking tool that implements these

techniques.

In summary, building upon the technical background introduced in Chapter 2, our

initial step was to delve into the cutting-edge research regarding the application of compu-

tational logics in formulating formal semantics for agent communication, leveraging social

commitments and trust and their associated actions. We focused on the recently intro-

duced logics of commitment CTLC and trust TCTL. We conducted an in-depth examina-

tion of methodologies addressing the challenges of verifying Multi-Agent Systems (MAS)

156



amidst inconsistency and uncertainty, employing multi-valued logic mv-CTL. We system-

atically evaluated various prominent proposals against eight crucial criteria, highlighting

their strengths and limitations.

Subsequently, in Chapter 3, we provided a new practical experiment of applying mv-

CTL to modelling and verifying the IoT systems with missing information. From this

experiment, we found that the existing approach has high efficiency in verifying open IoT

systems. However, this approach deals only with systems that do not involve commitment

or trust protocols. Based on these limitations, in Chapter 4, we started to produce new

frameworks that integrate the mv-CTL with CTLC logic of commitment and introduced

frameworks for Modeling and Verifying IoT and IS systems with mv-Commitment Logics.

Specifically, we presented our new multi-valued logics of commitment: (1) 3v-CTLcc and

(2) 4v-CTLcc for reasoning about uncertainty and inconsistency, respectively, over MAS,

focusing on IoT/IS, with conditional commitment protocols. (3) 3v-CTLc and (4) 4v-CTLc

for reasoning about uncertainty and inconsistency, respectively, over the same systems with

unconditional commitment protocols. Using the new logic, we modelled several IoT and IS

systems and assigned sets of commitment specifications to be checked against these systems.

Moreover, we introduced a formal input language of the multi-valued models named mv-

ISPL+. Then, because of the high complexity of the direct multi-valued model checking

algorithms and to take advantage of the reduction ones by reusing the existing efficient model

checking tools NuSMV and MCMAS+, we developed new reduction algorithms. These

algorithms reduce the multi-valued logic of commitment to its classical case (CTLC) and

to CTL. Moreover, we developed a new Java toolkit that implements these algorithms and

automatically interacts with NuSMV and MCAMS+. Furthermore, we provided soundness

proofs for our algorithms with comprehensive computational complexity analysis.

Sequentially, in Chapter 5, we presented our new multi-valued logics of trust: (5) 3v-

TCTL and (6) 4v-TCTL for reasoning about uncertainty and inconsistency, respectively,

over the systems under consideration with trust protocols. Following the same strategies

with the multi-valued commitment logic, we modelled several IoT and IS systems with trust

using our new logics. We introduced a new formal input language of the multi-valued trust

157



models named mv-VISPL. Moreover, we developed reduction algorithms to model-check

our systems against sets of trust specifications. These algorithms transform mv-TCTL into

TCTL and CTL and facilitate using NuSMV and MCMASt checkers. We also developed

a new tool to implement these algorithms and provided sound proofs and comprehensive

computational complexity analysis.

Our findings proved that all the presented algorithms are sound and the approaches

of the multi-valued model checking mv-CTLC and mv-TCTL are efficient as their time

complexity is P-complete and their space complexity is PSPACE-complete, which means

polynomial in both time and space.

Focusing on the implementation part, in Chapter 6, we enhanced the implementation

by developing a new general tool named MV-Checker, which effectively verifies both multi-

valued trust and commitment models designed under uncertain or inconsistent sources of

knowledge. We provided a detailed explanation of the internal design and the functionalities

of this tool with verification examples. Moreover, We provided the packages of all our case

studies containing 12 experiments with SMV, ISPL+, VISPL, mv-ISPL+ and mv-VISPL

files. Additionally, we provided the source code, the Jar file of the tool, and the user manual

document explaining the use of the proposed tool.

To evaluate the practicality, scalability and efficiency of our approaches and the per-

formance of our new checker, in Chapter 7, we applied them to several case studies that

cover modelling and verifying open and complex systems with uncertainty and inconsistency

settings in IoT and IS domains. The reliable and accurate results of all the experiments

performed in this research proved the scalability and the high practicality and efficiency of

our approaches. Moreover, we compared our results using the reduction algorithms from

the mv-CTLC and mv-TCTL to CTL and their classical cases. Based on these comparisons,

we found that, even though the two main reduction approaches gave accurate and reliable

results, reduction to the classical versions and using MCMAS is more scalable and takes

less verification time than reduction to CTL and using NuSMV checker. We also found

that this shortcoming resulted from the freshly added states and atomic propositions in the

transformation process explained in Algorithm 4. Based on this, we set plans for NuSMV

158



improvement in future work that will be explained in the following section.

For evaluating the performance of the developed MV-Checker, due to the lack of existing

model checkers that deal with multi-valued logics, we compared the performance of the

checker with another tool named BT checker by verifying a TCTL model using a reduction

algorithm over both tools. The results showed that the total time used in the verification

process over MV-Checker is less than with BT. Although the difference in the total time

was not initial, MV-Checker is still more efficient than the BT tool in terms of the number

of functions that can handle and the flexibility in dealing with different logics, including

the classical and the multi-valued ones.

8.2 Future Work

Finally, in this chapter, we set future work for extending our performed work and some

open issues that are not considered in this thesis:

Work extension:

• As we addressed verifying an open MAS with multiple data sources with the presence

of uncertainty or inconsistency separately, we plan to produce new logics with new

semantics to capture the presence of both uncertainty and inconsistency in the same

system. This logic depends on the underlying 9-valued lattice (L3×3). Analogous

to the 2x2 and 3v-logics we used for reasoning about inconsistency and uncertainty,

this nine-valued logic is derived from the product algebra 3x3. It can be used for

reasoning about disagreement between two sources and also allows missing information

(uncertainty) in each source within the same system.

• We plan to add more functionalities to the MV-Checker tool:

– verifying systems modelled with nine-valued logic.

– verifying systems modelled with the combined trust and commitment TCTLC

logic [9].

159



– transforming multi-valued models with multiple truth values over transitions

between states, not only in states.

– Adopting AI technology to facilitate the verification process by automatically

generating ISPL and mv-ISPL files from a given FSM. The general steps for this

technique are:

1. Image Recognition: The first step is to use an image recognition or computer

vision model to identify and extract the relevant information from the im-

age. In this case, the goal would be to recognize the FSM structure, states,

transitions, and connections.

2. Structure Extraction: Once the FSM structure is recognized, the AI model

needs to extract information about states, transitions, and their relation-

ships.

3. Model Representation: The extracted information then needs to be con-

verted into a format that can be used for model checking, such as ISPL.

This involves creating a text file that accurately represents the FSM.

4. Validation and Correction: It’s important to note that the AI-generated rep-

resentation may not always be perfect. There may be errors or ambiguities

in the extracted information. Therefore, a validation step may be neces-

sary to ensure the accuracy of the generated ISPL code. This could involve

human review or additional automated checks.

5. Model Checker Input: Finally, the generated ISPL code can be input into a

model checker for verification and analysis.

• We plan to develop a new version of NuSMV to deal directly with trust and commit-

ment syntax and semantics.

Open issues

• We plan to conduct a deep investigation from both conceptual and implementation

perspectives to take a new direction and extend the Alternating-time temporal logic

(ATL) with trust and commitment modalities considering the multi-valued settings.

160



• We also plan to conduct a deep investigation in producing a new multi-valued Logic of

Allies and Enemies [47]. This logic outlines the behavior of relationships within a social

network, assuming that agents tend to form more enduring connections with others

in the network. Producing the multi-valued version of this logic opens a wide door

for reasoning about social network graphs with missing and inconsistent information.

161



Bibliography

[1] Aghdam, Z.N., Rahmani, A.M., Hosseinzadeh, M.: The role of the internet of things

in healthcare: Future trends and challenges. Computer methods and programs in

biomedicine 199, 105903 (2021)

[2] Alwhishi, G., Bentahar, J., Drawel, N.: Reasoning about uncertainty over IoT systems.

In: 2022 International Wireless Communications and Mobile Computing (IWCMC),

pp. 306–311. IEEE (2022)

[3] Alwhishi, G., Bentahar, J., Elwhishi, A.: Verifying timed commitment specifications

for IoT-cloud systems with uncertainty. In: 2022 9th International Conference on

Future Internet of Things and Cloud (FiCloud), pp. 173–180. IEEE (2022)

[4] Alwhishi, G., Bentahar, J., Elwhishi, A.: Multi-valued model checking a smart glucose

monitoring system with trust. In: 2023 International Wireless Communications and

Mobile Computing (IWCMC), pp. 1697–1702. IEEE (2023)

[5] Alwhishi, G., Bentahar, J., Elwhishi, A.: Three-valued model checking smart con-

tract systems with trust under uncertainty. In: The International Conference on Deep

Learning, Big Data and Blockchain, pp. 119–133. Springer (2023)

[6] Alwhishi, G., Bentahar, J., Elwhishi, A., Pedrycz, W.: Mv-checker: A software tool

for multi-valued model checking intelligent applications with trust and commitment.

Available at SSRN 4505659 (2023)

162



[7] Alwhishi, G., Bentahar, J., Elwhishi, A., Pedrycz, W., Drawel, N.: Multi-valued model

checking iot and intelligent systems with commitment protocols in multi-source data

environments. Information Fusion p. 102048 (2023)

[8] Alwhishi, G., Drawel, N., Bentahar, J.: Model checking intelligent information systems

with 3-valued timed commitments. In: International Conference on Mobile Web and

Intelligent Information Systems, pp. 237–251. Springer (2022)

[9] Baharloo, N., Bentahar, J., Alwhishi, G., Drawel, N., Pedrycz, W.: Verifying trust over

iot-ad hoc network-based applications under uncertainty. Available at SSRN 4524628

[10] Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)

[11] Belnap Jr, N.D.: A useful four-valued logic. In: Modern uses of multiple-valued logic,

pp. 5–37. Springer (1977)

[12] Bidgoly, A.J., Ladani, B.T.: Trust modeling and verification using colored petri nets.

In: 2011 8th International ISC Conference on Information Security and Cryptology,

pp. 1–8. IEEE (2011)

[13] Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tempo-

ral logics. In: International conference on computer aided verification, pp. 274–287.

Springer (1999)

[14] Bruns, G., Godefroid, P.: Generalized model checking: Reasoning about partial state

spaces. In: International Conference on Concurrency Theory, pp. 168–182. Springer

(2000)

[15] Bruns, G., Godefroid, P.: Model checking with multi-valued logics. In: International

Colloquium on Automata, Languages, and Programming, pp. 281–293. Springer (2004)

[16] Carter, S.M., Rogers, W., Win, K.T., Frazer, H., Richards, B., Houssami, N.: The

ethical, legal and social implications of using artificial intelligence systems in breast

cancer care. The Breast 49, 25–32 (2020)

163



[17] Chechik, M., Devereux, B., Easterbrook, S., Gurfinkel, A.: Multi-valued sym-

bolic model-checking. ACM Transactions on Software Engineering and Methodology

(TOSEM) 12(4), 371–408 (2003)

[18] Chechik, M., Easterbrook, S., Petrovykh, V.: Model-checking over multi-valued logics.

In: FME 2001: Formal Methods for Increasing Software Productivity: International

Symposium of Formal Methods Europe Berlin, Germany, March 12–16, 2001 Proceed-

ings, pp. 72–98. Springer (2001)

[19] Davey, B.A., Priestley, H.A.: Introduction to lattices and order. Cambridge university

press (2002)

[20] Desai, N., Cheng, Z., Chopra, A.K., Singh, M.P.: Toward verification of commitment

protocols and their compositions. In: Proceedings of the 6th international joint con-

ference on Autonomous agents and multiagent systems, pp. 1–3 (2007)

[21] Drawel, N.: Model checking trust-based multi-agent systems. Ph.D. thesis, Concordia

University (2019)

[22] Drawel, N., Bentahar, J., El-Menshawy, M., Laarej, A.: Verifying temporal trust logic

using ctl model checking. In: TRUST@ AAMAS, pp. 62–74 (2018)

[23] Drawel, N., Bentahar, J., Laarej, A., Rjoub, G.: Formalizing group and propagated

trust in multi-agent systems. In: Proceedings of the Twenty-Ninth International Joint

Conference on Artificial Intelligence, IJCAI, pp. 60–66 (2020)

[24] Drawel, N., Bentahar, J., Laarej, A., Rjoub, G.: Formal verification of group and prop-

agated trust in multi-agent systems. Autonomous Agents and Multi-Agent Systems

36(1), 1–31 (2022)

[25] Drawel, N., Bentahar, J., Laarej, A., Rjoub, G.: Formal verification of group and

propagated trust in multi-agent systems. Autonumos Agents Multi-Agent Systmes

36(1), 19 (2022). DOI 10.1007/s10458-021-09542-6. URL https://doi.org/10.1007/

s10458-021-09542-6

164

https://doi.org/10.1007/s10458-021-09542-6
https://doi.org/10.1007/s10458-021-09542-6


[26] Drawel, N., Bentahar, J., Qu, H.: Degrees of trust: Temporal logic and model checking.

TRUST@ AAMAS pp. 62–74 (2019)

[27] Drawel, N., Bentahar, J., Shakshuki, E.: Reasoning about trust and time in a system

of agents. Procedia Computer Science 109, 632–639 (2017)

[28] Drawel, N., Laarej, A., Bentahar, J., El Menshawy, M.: Transformation-based model

checking temporal trust in multi-agent systems. Journal of Systems and Software p.

111383 (2022)

[29] Drawel, N., Qu, H., Bentahar, J., Shakshuki, E.: Specification and automatic verifica-

tion of trust-based multi-agent systems. Future Generation Computer Systems 107,

1047–1060 (2020)

[30] Easterbrook, S., Chechik, M.: A framework for multi-valued reasoning over inconsis-

tent viewpoints. In: Proceedings of the 23rd International Conference on Software

Engineering. ICSE 2001, vol. 1, pp. 411–420. Citeseer (2001)

[31] El Kholy, W., Bentahar, J., El-Menshawy, M., Qu, H., Dssouli, R.: Conditional com-

mitments: Reasoning and model checking. ACM Transactions on Software Engineering

and Methodology (TOSEM) 24(2), 1–49 (2014)

[32] El Kholy, W., Bentahar, J., El Menshawy, M., Qu, H., Dssouli, R.: Modeling and

verifying choreographed multi-agent-based web service compositions regulated by com-

mitment protocols. Expert systems with applications 41(16), 7478–7494 (2014)

[33] El Kholy, W., El Menshawy, M., Bentahar, J., Qu, H., Dssouli, R.: Representing and

reasoning about communicative conditional commitments. In: Proceedings of the 2013

international conference on Autonomous agents and multi-agent systems, pp. 1169–

1170 (2013)

[34] El Kholy, W., El Menshawy, M., Bentahar, J., Qu, H., Dssouli, R.: Verifying

multiagent-based web service compositions regulated by commitment protocols. In:

2014 IEEE International Conference on Web Services, pp. 49–56. IEEE (2014)

165



[35] El-Menshawy, M., Bentahar, J., Dssouli, R.: Verifiable semantic model for agent inter-

actions using social commitments. In: International Workshop on Languages, Method-

ologies and Development Tools for Multi-Agent Systems, pp. 128–152. Springer (2009)

[36] El-Menshawy, M., Bentahar, J., Dssouli, R.: Symbolic model checking commitment

protocols using reduction. In: International Workshop on Declarative Agent Languages

and Technologies, pp. 185–203. Springer (2010)

[37] El-Menshawy, M., Bentahar, J., Dssouli, R.: Model checking commitment protocols.

In: International Conference on Industrial, Engineering and Other Applications of

Applied Intelligent Systems, pp. 37–47. Springer (2011)

[38] El Menshawy, M., Bentahar, J., El Kholy, W., Dssouli, R.: Reducing model checking

commitments for agent communication to model checking arctl and gctl. Autonomous

agents and multi-agent systems 27(3), 375–418 (2013)

[39] El-Menshawy, M., Bentahar, J., El Kholy, W., Dssouli, R.: Verifying conformance of

multi-agent commitment-based protocols. Expert Systems with Applications 40(1),

122–138 (2013)

[40] El-Menshawy, M., Bentahar, J., El Kholy, W., Laarej, A.: Model checking real-time

conditional commitment logic using transformation. Journal of Systems and Software

138, 189–205 (2018)

[41] El Menshawy, M., Bentahar, J., El Kholy, W., Yolum, P., Dssouli, R.: Computational

logics and verification techniques of multi-agent commitments: survey. The Knowledge

Engineering Review 30(5), 564–606 (2015)

[42] El-Qurna, J., Yahyaoui, H., Almulla, M.: A new framework for the verification of

service trust behaviors. Knowledge-Based Systems 121, 7–22 (2017)

[43] Emerson, E.A.: Temporal and modal logic. In: J. van Leeuwen (ed.) Handbook of

Theoretical Computer Science, vol. B., pp. 955–1072. MIT Press (1990)

166



[44] Fainekos, G.E.: An introduction to multi-valued model checking. Tech. rep., University

of Pennsylvania, Department of Computer and Information Science, Technical Report

No. MS-CIS-05-16 (2005)

[45] Fang, Z., Fu, H., Gu, T., Qian, Z., Jaeger, T., Hu, P., Mohapatra, P.: A model checking-

based security analysis framework for IoT systems. High-Confidence Computing 1(1),

100004 (2021)

[46] Gurfinkel, A., Chechik, M.: Multi-valued model checking via classical model checking.

In: International conference on concurrency theory, pp. 266–280. Springer (2003)

[47] Van der Hoek, W., Kuijer, L., Wáng, Y.: Logics of allies and enemies: A formal

approach to the dynamics of social balance theory. In: proceedings of the twenty-ninth

international joint conference on artificial intelligence, vol. 2021, pp. 210–216 (2020)

[48] Hopgood, A.A.: Intelligent systems for engineers and scientists: a practical guide to

artificial intelligence. CRC press (2021)

[49] Jamroga, W., Konikowska, B., Kurpiewski, D., Penczek, W.: Multi-valued verification

of strategic ability. Fundamenta Informaticae 175(1-4), 207–251 (2020)

[50] Jamroga, W., Konikowska, B., Penczek, W.: Multi-valued verification of strategic

ability. In: Proceedings of the 2016 International Conference on Autonomous Agents

& Multiagent Systems, pp. 1180–1189 (2016)

[51] Kleene, S.C.: Introduction to metamathematics (1952)

[52] Konikowska, B., Penczek, W.: Reducing model checking from multi-valued ctl* to ctl.

In: International Conference on Concurrency Theory, pp. 226–239. Springer (2002)

[53] Konikowska, B., Penczek, W.: Model checking for multi-valued computation tree logics.

In: Beyond two: theory and applications of multiple-valued logic, pp. 193–210. Springer

(2003)

[54] Kozen, D.: Results on the propositional µ-calculus. Theoretical computer science

27(3), 333–354 (1983)

167



[55] Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to

branching-time model checking. Journal of the ACM (JACM) 47(2), 312–360 (2000)

[56] Laghari, A.A., Wu, K., Laghari, R.A., Ali, M., Khan, A.A.: A review and state of art

of internet of things (iot). Archives of Computational Methods in Engineering pp. 1–19

(2021)

[57] Li, Y., Droste, M., Lei, L.: Model checking of linear-time properties in multi-valued

systems. Information Sciences 377, 51–74 (2017)

[58] Li, Y., Lei, L., Li, S.: Computation tree logic model checking based on multi-valued

possibility measures. Information Sciences 485, 87–113 (2019)

[59] Li, Y., Yang, G., Su, Z., Li, S., Wang, Y.: Human activity recognition based on

multienvironment sensor data. Information Fusion 91, 47–63 (2023)

[60] McKenzie, R.N., McNulty, G.F., Taylor, W.F.: Algebras, lattices, varieties, vol. 383.

American Mathematical Soc. (2018)

[61] Michael, W.: An introduction to multiagent systems (2002)

[62] Mohamed, E.: The relation of artificial intelligence with internet of things: A survey.

Journal of Cybersecurity and Information Management 1(1), 30–24 (2020)

[63] Mostafa, N., Hamdy, W., Alawady, H.: Impacts of internet of things on supply chains:

a framework for warehousing. Social sciences 8(3), 84 (2019)

[64] Musamih, A., Salah, K., Jayaraman, R., Arshad, J., Debe, M., Al-Hammadi, Y.,

Ellahham, S.: A blockchain-based approach for drug traceability in healthcare supply

chain. IEEE access 9, 9728–9743 (2021)

[65] Nguyen, D.C., Ding, M., Pathirana, P.N., Seneviratne, A., Li, J., Niyato, D., Dobre,

O., Poor, H.V.: 6g internet of things: A comprehensive survey. IEEE Internet of

Things Journal 9(1), 359–383 (2021)

168



[66] Pan, H., Li, Y., Cao, Y., Ma, Z.: Model checking computation tree logic over finite

lattices. Theoretical computer science 612, 45–62 (2016)

[67] Peled, E.M.C.O.G.D.A.: Model Checking. Cyber Physical Systems Series. MIT Press

(1999)

[68] Ratta, P., Kaur, A., Sharma, S., Shabaz, M., Dhiman, G.: Application of blockchain

and internet of things in healthcare and medical sector: applications, challenges, and

future perspectives. Journal of Food Quality 2021, 1–20 (2021)

[69] Rejeb, A., Simske, S., Rejeb, K., Treiblmaier, H., Zailani, S.: Internet of things research

in supply chain management and logistics: A bibliometric analysis. Internet of Things

12, 100318 (2020)

[70] Riedl, M.O.: Human-centered artificial intelligence and machine learning. Human

behavior and emerging technologies 1(1), 33–36 (2019)

[71] Roman, S.: Lattices and ordered sets. Springer Science & Business Media (2008)

[72] Rose, K., Eldridge, S., Chapin, L.: The internet of things: An overview. The internet

society (ISOC) 80, 1–50 (2015)

[73] Rosenmann, A.: A multiple-valued logic approach to the design and verification of

hardware circuits. Journal of applied logic 15, 69–93 (2016)

[74] Sami, H., Otrok, H., Bentahar, J., Mourad, A.: AI-based resource provisioning of IoE

services in 6G: A deep reinforcement learning approach. IEEE Transactions on Network

and Service Management 18(3), 3527–3540 (2021)

[75] Savaglio, C., Ganzha, M., Paprzycki, M., Bădică, C., Ivanović, M., Fortino, G.: Agent-

based internet of things: State-of-the-art and research challenges. Future Generation

Computer Systems 102, 1038–1053 (2020)

[76] Shoham, S., Grumberg, O.: Multi-valued model checking games. In: International

Symposium on Automated Technology for Verification and Analysis, pp. 354–369.

Springer (2005)

169



[77] Shoham, S., Grumberg, O.: Multi-valued model checking games. Journal of Computer

and System Sciences 78(2), 414–429 (2012)

[78] Timm, N., Gruner, S.: Parameterised three-valued model checking. Science of Com-

puter Programming 126, 94–110 (2016)

[79] Tissaoui, A., Saidi, M.: Uncertainty in IoT for smart healthcare: Challenges and

opportunities. In: International Conference on Smart Homes and Health Telematics,

pp. 232–239. Springer (2020)

[80] Wang, J., Chen, M., Zhou, J., Li, P.: Data communication mechanism for green-

house environment monitoring and control: An agent-based iot system. Information

Processing in Agriculture 7(3), 444–455 (2020)

[81] Wang, X., Liu, J., Moore, S.J., Nugent, C.D., Xu, Y.: A behavioural hierarchical anal-

ysis framework in a smart home: Integrating HMM and probabilistic model checking.

Information Fusion (2023). DOI https://doi.org/10.1016/j.inffus.2023.02.025

[82] Wang, Y., Singh, M.P.: Formal trust model for multiagent systems. In: IJCAI, vol. 7,

pp. 1551–1556 (2007)

[83] Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. The knowl-

edge engineering review 10(2), 115–152 (1995)

[84] Xu, Y., Ruan, D., Qin, K., Liu, J.: Lattice-valued logic. Studies in fuzziness and soft

computing 132 (2003)

170


	List of Figures
	List of Tables
	Introduction
	 Context of Research
	The Internet of Things (IoT)
	Intelligent Systems (IS)
	Trust and Commitment in IoT/IS
	Model Checking Trust and Commitment Systems
	Multi-Valued Model Checking

	 Motivations
	 Problems and Research Questions
	Methodology
	Contributions
	Overview of the Dissertation

	 Background 
	Computation Tree Logic (CTL)
	CTL model
	 Syntax 
	Semantics

	Computational Logic of Social Conditional Commitments (CTLLg) 
	CTLLg model
	Syntax
	Semantics

	Computational Logic of Social Unconditional Commitments (CTLLg)
	Syntax
	Semantics

	Computational Logics of Trust (TCTL)
	TCTL model
	Syntax
	Semantics:

	Lattice Theory
	Three-Valued Lattice Logic (3v-Logic)
	Four-Valued Lattice Logic (4v-Logic)
	Join-Irreducible Elements

	Multi-Valued CTL (mv-CTL)
	mv-CTL model
	Syntax
	Semantics

	Model Checking
	Classical Model Checking
	Multi-Valued Model Checking


	 Applying mv-CTL to IoT Domain
	Motivation and Contribution
	Modeling Uncertainty in IoT Systems with 3v-CTL
	Modeling Inconsistency in IoT Systems with 4v-CTL
	Reduction Algorithm of 3v-CTL into CTL
	Soundness of Algorithm 1


	 Modeling and Verifying IoT/IS Systems with mv-Commitment Logics 
	Overview and Motivation
	 Modeling Uncertainty in IoT Systems with Three-Valued Conditional Commitments (3v-CTLLg)
	3v-CTLLg
	3v-CTLLg IoT model
	Syntax
	Semantics 

	Modeling Inconsistency in IoT/IS Systems with Four-Valued Conditional Commitments (4v-CTL)
	4v-CTLLg
	4v-CTLLg IoT model
	Syntax
	Semantics

	Modeling Uncertainty in IoT/IS with Three-Valued Unconditional Commitments (3v-CTLLg)
	3v-CTLLg
	3v-CTLLg IS model 
	Syntax
	Semantics

	Modeling Inconsistency in IS/IoT with Four-Valued Unconditional Commitments (4v-CTLLg)
	4v-CTLLg)
	4v-CTLLg IS model 
	Syntax
	Semantics

	Reduction-Based Multi-Valued Model Checking mv-CTLLg and mv-CTLLg
	 Reduction Algorithm from 3v-CTLLg to CTLLg 
	Soundness of Algorithm 2
	 Reduction Algorithm from 4v-CTLLg to CTLLg 
	Soundness of Algorithm 3
	Reduction Algorithm from 3v-CTLLg to CTL
	Soundness of Algorithm 4
	Reducing 4v-CTLLg to CTL
	Soundness of Algorithm 5

	Computational Complexity Analysis
	Time Complexity of Model Checking 3v-CTLLg through Transformation to CTLLg
	 Space Complexity of Model Checking 3v-CTLLg through Transformation to CTLLg
	Time Complexity of Model Checking 3v-CTLLg through Transformation to CTL 
	 Space Complexity of of Model Checking 3v-CTLLg through Transformation to CTL 


	Modeling and Verifying IoT/IS Systems with mv-Trust Logics
	Overview and Motivation
	Modelling Uncertainty over IS/IoT with mv-Trust)
	3v-TCTL
	Model of 3v-TCTL
	Syntax 
	Semantics 

	Modelling Inconsistency over IoT/IS with mv-Trust)
	4v-TCTL
	Model of 4v-TCTL
	Syntax 
	Semantics

	Reduction-Based Multi-Valued Model Checking mv-TCTL
	Reducing Algorithm of 3v-TCTL to TCTL
	Soundness of Algorithm 6
	Reducing Algorithm of 3v-TCTL to CTL

	Computational Complexity Analysis
	Time Complexity of Model Checking 3v-TCTL through Transformation to TCTL
	 Space Complexity of Model Checking 3v-TCTL through Transformation to TCTL
	Time Complexity of Model Checking 3v-TCTL through Transformation to CTL
	 Space Complexity of Model Checking 3v-TCTL through Transformation to CTL


	MV-Checker: A Software Tool for Multi-Valued Model Checking
	Contributions
	Comparative Analysis
	MV-Checker Tool: Internal Design
	Use Case Diagrams
	Sequence Diagrams
	Class Diagram

	MV-Checker Interface (Main Screen) 

	Application Domains and Case Studies
	Modeling and Verifying 3v-CTL and Commitment Systems with Uncertainty
	Case study 1: A 3v-CTL Smart Home System with Uncertainty 
	Case study 2: A 3v-CTLLg Smart Hospital System with Uncertainty 
	Case Study 3: A 3v-CTLLg Intelligent Mortgage System with Uncertainty 
	Comparison with the Reduction Approach Using MCMAS+ and NuSMV

	Modeling and Verifying Commitment Systems with Inconsistency
	Case Study 4: A 4v-CTLLg Smart Mortgage System with Inconsistency 

	Modeling and Verifying Trust Systems with Uncertainty
	Case Study 5: A 3v-TCTL Blockchain-Based Drug Traceability System under Uncertainty
	Case study 6: Re-Verifying the Blockchain-Based Drug Traceability System by Launching NuSMV

	Modeling and Verifying Trust Systems with Inconsistency
	Case Study 7: A 4v-TCTL Blockchain-Based Health Record System with Inconsistency

	Comparing MV-Checker Performance with the BT Tool for Verifying TCTL models

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

