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Abstract 

Free-Energy Based Modeling of Planar Dielectric Elastomer Actuators 

Jingyu Fan 

Dielectric elastomer actuators (DEAs) have gained increasing attention over the last decades and 

have been widely developed for applications fields such as robots, aerospace, biomedicine due to 

the fast response, high energy density, light weight, and low cost. However, the task of modeling 

of DEAs is typically challenged in the presence of the nonlinear features, time-independent 

viscoelastic behaviors, complex electromechanical coupling, etc. 

To address such a challenge, a free-energy based model for DEAs moving in vertical direction is 

proposed, in an effort to investigate the physical properties of DEAs in this research. The 

developed model is based on the principle of nonequilibrium thermodynamics, where the Gent 

model and generalized Maxwell model are applied to describe the free energy and viscoelastic 

behavior of DEA, respectively. Unlike the existing modeling methods, this research narrows the 

focus on the inertial force and viscoelasticity which leads to DEA’s instability. 

After that, the free-energy based model is simulated in MATLAB and the several sets of 

experiments are implemented by setting various driving voltage amplitudes and frequencies. 

According to the experimental data, the undetermined parameters of the model are identified by 

using differential evolutionary algorithm. The comparison of the model simulation and 

experimental results supports the validation of the proposed free-energy based model. 
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Chapter 1 

Introduction 

1.1 Motivation 

Over the last decade, dielectric elastomer (DE) materials characterized by flexible and deformable 

structures and low stiffness, have garnered significant attention from both the academic and 

industrial communities. Their unique physical characters present great potential in the application 

such as electronics, mechanics, biomedicine, aerospace, and thermodynamics, leading the way in 

the innovation of various fields[1][2]. In comparison to traditional rigid materials, DE materials can 

be applied to execute diverse tasks in complex and irregular working environments and possess 

higher adaptability and safety[3]. Hence, DEs are increasingly recognized as alternatives to 

traditional rigid materials[4]. The dielectric elastomer (DE) material, which is a typical type of 

electro-active polymer (EAP) materials can convert electrical energy into mechanical energy[5]. 

Nowadays, DEs are widely utilized as dielectric elastomer actuators (DEAs), dielectric elastomer 

generators (DEGs), and dielectric elastomer sensors (DESs) due to their properties such as electro-

induced stain, rapid response, lightweight, low cost, flexible motion, high energy density, and 

resistance to fatigue damage.  
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Meanwhile, DEAs are facing challenges in their complex nonlinear characteristics such as the 

inherent nonlinearity, time-dependent viscoelastic behaviors, hysteresis, creep, vibrational 

dynamics, and complicated electromechanical coupling[6]. Therefore, there is a growing effort to 

investigate and develop the dynamic model of DEAs. 

1.2 Objective of the thesis 

With the aim of understanding and controlling the performance of DEAs, as well as their feasibility 

in practical applications, many researchers have devoted their contributions to the mechanism 

modeling. However, most of the previous research focused on static or quasi-static models to 

explicate the behaviors of DEA, which also ignored the inertial force and time-dependent 

viscoelastic behavior[7].  

Besides, some scholars use Very High Bond (VHB) to fabricate DEA, which is a polyacrylate 

material produced by 3M and renowned for its outstanding adhesive strength. Nevertheless, the 

shortcomings of VHB are obvious, which has high viscoelasticity. As the other common class of 

DE materials, polydimethylsiloxane (PDMS) stands out as a promising substitute to address the 

significant viscoelastic challenges, with its potential largely unexplored in current research. 

The focus of this thesis is to develop a mechanism model of planar DEAs fabricated by PDMS 

material. Based on the free-energy method, the proposed model highlights the inertial force and 

nonlinear time-dependent viscoelastic behavior of DEA. Then, the differential evolutionary 

algorithm is employed to identify the undetermined model parameters under the experimental 

platform. Finally, the validity of the proposed model is demonstrated to test the effectiveness by 

setting various driving voltage amplitudes and frequencies.  
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1.3 Organization of the thesis 

This thesis consists of 5 chapters including the introduction in Chapter 1. The remaining part of 

this thesis is organized as follows. 

Chapter 2: 

Extensive literature review is presented, which encompasses soft materials, dielectric elastomers 

(DEs), and various modeling methodologies. 

Chapter 3: 

A free-energy based model of planar dielectric elastomer actuator (DEA) moving in vertical 

direction is developed. 

Chapter 4: 

The experimental setup, simulations, and data collection procedures used in this research are 

meticulously outlined. Additionally, it elucidates the validation process of the proposed model, 

engaging in both theoretical and experimental comparisons. Furthermore, the accuracy of the 

model is thoroughly addressed. 

Chapter 5: 

Summary of this research is presented and followed by concluding remarks. 
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Chapter 2 

Literature Review 

2.1 Soft materials 

The actuation of soft materials hinges predominantly on their distinctive properties and exhibit 

responsive behavior to various stimuli, encompassing electric fields, pressure, magnetic field, a 

change in pH, light, and temperature, enabling them to achieve versatile and agile movements[8]. 

Electro-active polymer (EAP), ionic polymer-metal composite (IPMC), liquid crystal elastomer 

(LCE), shape memory alloy/polymer (SMA/SMP), and others are currently well-known soft 

materials and widely researched[8]. To have an overview of the performances of different soft 

materials, the comparison with typical values is listed in Table 1. 
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Category Stimuli Strain  

(%) 

Stress 

(𝑴𝑷𝒂) 

Response 

speed  

(𝑯𝒛) 

Energy 

conversion 

efficiency (%) 

SMA Heat 10 200 < 1 10 

SMP Heat 400 4 < 0.5 10 

IPMC Electricity ~50 ~0.5 10 30 

DE Electricity 380 ~8 > 100 85 

Table 1: Comparison of different types of smart materials with typical values 

Among various soft materials, polymer-based smart materials have attracted widespread attention 

in the academic community due to their advantages such as lightweight, large deformation, good 

biocompatibility, excellent fatigue life, and low cost. In the category of polymer-based materials, 

electro-active polymer (EAP) is a novel and highly regarded functional material that has attracted 

the most significant attention. Under the excitation of external electric field, EAP materials can 

significantly alter their own shape and size. Once the external excitation is removed, they can 

return to their original shape and size. In addition, this effect is reversible, meaning that even if 

EAP materials deform under external forces, they can generate corresponding electric signals as 

output. Hence, EAP materials are a newly developed style of flexible soft materials with dual 

functions of sensing and actuation in recent years[9]. 

According to different actuation mechanisms, EAP materials are mainly divided into ionic 

polymer-metal composite (IPMC) and dielectric elastomer (DE)[11]. The driving voltage required 

for IPMC is relatively low, and its actuation principle involves significant deformation caused by 

the redistribution of ions and solvents within the film in response to an electric field. The 
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movement of ions requires to be assisted in a solution environment, so IPMC needs to maintain a 

wet surface while working. Compared to DE materials, IPMC generally exhibits slower response 

speed[12]. DE has no specific environmental requirements and can deform in the air, but it requires 

high driving voltage (or electric field strength). The actuation principle of DE involves the 

generation of electrostatic stress within the film in response to an electric field, causing a 

significant deformation inducing changes in molecular structure.  

 

Figure 1: The deformation characteristics of DE actuator and IPMC actuator 

Fig. 1 shows the deformation characteristics of DE actuator and IPMC actuator. It can be observed 

that with the stimuli of an electric field, DE undergoes compressive deformation in the direction 

consistent with the electric field and internal expansion deformation perpendicular to it. In contrast, 

IPMC undergoes bending deformation with the stimuli of an applied voltage[13]. 
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Dielectric elastomer actuators (DEAs) possess the advantages of high energy density, large strain, 

low cost, lightweight, and commercially available, rendering them the subject of extensive study 

and research[14]. Subsequent sections delve into further details about DEAs. 

2.2 Dielectric elastomer actuator  

The deformation scale of DE materials is remarkably large, typically reaching up to 380%. They 

exhibit millisecond-level response speed, with a maximum stress capacity of 3.2𝑀𝑃𝑎, an energy 

density of 3.4𝐽/𝑔 , and an impressive mechanical-to-electrical conversion efficiency of up to 

80%[15].  

2.2.1 DE materials 

According to the working principle of DEAs, any insulating polymer film can have deformation 

under the stimuli of an electrical field, with the physical properties of the film determining the 

scale of its deformation. In the past research, the results can be obtained that the deformation is 

small when the elastic modulus of DEAs is high[16][17]. And with the increase of voltage, the 

material would experience electrical breakdown before significant deformation occurs[18]. 

Therefore, with the purpose of being used as large deformation actuators, DE materials should 

possess low elastic modulus, low viscosity, high electrical breakdown strength, and high dielectric 

constant to achieve large-scale strain output. Researchers have discussed various DE materials, 

and the most frequently used materials are acrylics, silicones, and polyurethanes (PUs)[17]. 

Because acrylic polymers (VHB 4910 and VHB 4905, fabricated by 3M company) are readily 

available and inexpensive, they are the primary materials in the current research and application 
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fields of DEAs. From the prospective of performance, 3M VHB exhibits a larger area stain and a 

relatively high dielectric constant compared to other DE materials[19]. However, the disadvantage 

of 3M VHB is its high viscoelasticity which affects the stability of deformation[20]. To solve this 

problem, polydimethylsiloxane (PDMS) as the other class of DE materials has attracted 

researchers’ attention. In this study, we will investigate the mechanism modeling of DEA based 

on PDMS. 

2.2.2 Compliant electrodes 

Due to the flexible nature of DE materials, ideal electrodes should possess excellent conductivity 

and low resistance under large strain. Currently, commonly used compliant electrode materials 

include carbon grease, graphite powders, graphite spray, and thickened electrolyte [21]. Table 2 

provides a comparison of various options that can be used as compliant electrodes for DEAs. In 

practical use, carbon grease has the best adhesion characteristic, stable performance, and good 

conductivity, making it the most widely used electrode material[22]. The processing technology for 

other electrode materials is more intricated, with higher requirements and higher costs, resulting 

in limited applications. 
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Electrode Resistivity Application Advantages Disadvantages 

Carbon grease 50𝑘/𝑐𝑚 Thin film 

deposition 

High 

electromechanical 

coupling 

efficiency 

Uneven surface 

Graphite 

powders 

80𝑘/𝑐𝑚 Screen printing Stable 

performance 

Non-adhesive 

Graphite spray 20𝑘/𝑐𝑚 Spray Uniform surface Non-adhesive 

Thickened 

electrolyte 

15𝑘/𝑐𝑚 Thin film 

deposition 

Good 

performance at 

low voltages 

Easy to 

evaporate 

Silver paste 1.6/𝑐𝑚 Thin film 

deposition 

Good 

conductivity 

Easy to 

evaporate 

Conductive 

polymer 

51/𝑐𝑚 - Good compliance 

and elastic 

properties 

Poor 

performance and 

stability 

Table 2: Comparison of various compliant electrodes 
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2.2.3 Working principle 

As shown in Fig. 2, the structure of DEAs is sandwiched with a core layer of polymer film and 

compliant electrodes on both sides. The polymer film undergoes expansion in area and 

compression in thickness under the stimuli of an electric field, which can be perfectly explained 

by Maxwell’s stress theory[23]. The compliant electrodes transmit external voltage signals to the 

surface of DE film, serving as conductive function. Because the conversion between electrical 

energy and mechanical energy is reversible, DEs can be used as energy harvesters[24]. Clearly, the 

selections of DE material and compliant electrodes have an impact on the performance of DEAs.  

 

Figure 2: Working principle of planar DEA 

The initial dimension before deformation is 𝑎0 × 𝑏0 × 𝑐0. When the voltage Φ and mechanical 

forces in three directions 𝑃𝑎, 𝑃𝑏, 𝑃𝑐 are applied, the upper and bottom surfaces of DEA accumulate 

positive and negative charges ±𝑄 due to polarization. The electrostatic Coulomb forces generated 

by the attraction of these opposite charges cause DEA to decrease in thickness and expand in the 

plane area. Under the simultaneous action of external force and voltage load, the dimensions of 
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the structure after deformation are represented as 𝑎 × 𝑏 × 𝑐. Besides, the strain of each dimension 

can be expressed by 𝜆𝑎 =
𝑎

𝑎0
, 𝜆𝑏 =

𝑏

𝑏0
, and 𝜆𝑐 =

𝑐

𝑐0
, respectively. And DEAs are assumed as 

incompressible, which means the volume of the film maintain constant. Hence, we can obtain 

𝜆𝑎𝜆𝑏𝜆𝑐 = 1. 

2.2.4 Applications of DEAs 

Through a decade of sustained research on DE materials, their widespread applications have 

extended across diverse fields, such as healthcare, rescue operations, and human-robot 

collaboration[25]. Based on diverse configurations of DEAs, these applications aim to achieve 

complex tasks in uncertain environments. In the following section, some interesting applications 

are introduced. 

Swimming robots 

Deep-sea robots, as a crucial technology in current marine exploration, play a pivotal role in the 

fields of undersea exploration and rescue operations[26]. Positioned at the forefront of underwater 

equipment, soft swimming robots take soft bodied organisms as bionic prototypes, utilizing highly 

flexible and elastic materials. In terms of function, they are actuated or sensed by intelligent soft 

materials instead of traditional motors or sensors, hereby overcoming the challenges posed by 

extreme water pressure. Because of their unique strong adaption, high flexibility, self-awareness 

and other advantages, soft swimming robots have shown immense potential in the deep-sea field 

applications[27]. 
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A swimming robot featuring flapping fins fabricated by DEA was developed[28]. And it 

successfully descended the seabed of Mariana Trench, achieving a stable fluttering motion at a 

remarkable depth of 10, 900 meters. Additionally, through careful design, it achieved autonomous 

swimming at 3,224 meters in the South China Sea. A jellyfish robot powered by a DEA was 

designed[29], which can navigate efficiently in water. It has the capability to expel water for 

propulsion. Moreover, the muscle-like actuator functions as a deformable bladder, enabling the 

adjustment of the buoyant force acting on the soft robot[30]. 

Wall-climbing robot 

Wall-climbing robots represent an important advancement in mobile robotics by integrating 

traditional mobility with adsorption technology, thereby substantially broadening the spectrum of 

applications for robotics[31]. With scientists’ forward-thinking imagination and rapid abilities to 

learn from nature, the soft wall-climbing robots actuated by DEs were established, achieving stable 

wall-climbing, horizontal crawling, and in-situ turning through synergistical control mechanism 

that regulates the deformation of the DEA and the magnitude of the electrostatic adsorption force. 

The soft wall-climbing robot jointly developed by Shanghai Jiao Tong University and MIT is 

notable for its compact design, weighing only 2𝑔  and measuring 85𝑚𝑚  in length[32]. Its 

distinctive feature is the ability to complete wall climbing tasks while carrying certain heavy 

objects. This innovation demonstrates promising applications in detection, search, and rescue 

operations within vertical narrow spaces, as well as effective wall cleaning. 
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Soft tunable lenses 

Inspired by certain insects and human eyes, the development of soft tunable lenses has ushered in 

a new era for cameras, smartphones, and other optical devices. Unlike the traditional focus lens, 

tunable lenses can dynamically change the focal length driven by responsive materials[33]. In 

addition, they can fully leverage the compact characteristics of intelligent materials to reduce the 

weight of devices. 

The soft focus-tunable lenses were designed which consist of a zipping-shaped DEA to achieve 

the ability of tuning the focal length[34]. Under a driving voltage signal below 500𝑉, the focal 

length can be rapidly changed between 550 and 22𝑚𝑚 within milliseconds. Another research 

group successfully created a soft lens using a disk-type DEA pair[35]. And at the annular center of 

the DEA configuration, the soft lens with a 3𝑚𝑚 diameter undergo efficient stretching, resulting 

a remarkable change of 65.7% in focal length when applied a voltage. 

2.3 Modeling methods 

To better study the deformation mechanism of DEAs, it’s necessary to develop a reasonable and 

effective model. More and more scholars have established the dynamic models that are 

characterized by strong theoretical foundation, comprehensive descriptions of DEAs, and good 

applicability. In the early research, some static and quasi-static models were developed to explain 

the deformation of DEAs. For example, the quasi-static force-displacement relationship of a 

conical DEA was described by Cao[36]. And a quasi-static model was developed to characterize the 

performance of a double cone DEA[37]. From the modeling processes in previous research, it’s 

obvious that the inertial force was ignored, and the viscoelastic behavior wasn’t taken into 
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consideration. A dynamic model based on an equivalent slider-crank mechanism was presented[38], 

where the Lagrange equation was employed to describe both geometric and viscoelastic 

nonlinearities. Huang et al.[39] proposed a dynamic model of DEAs with a conical shape to describe 

the stress-strain relationship on the basis of nonequilibrium thermodynamics which is introduced 

in detail in the following section.  

Generally, the modeling methods of DEAs can be divided into two classes including general 

electromechanical modeling method and free-energy based modeling method. In the following 

sections, the details of these modeling methods are introduced. 

2.3.1 General modeling method 

Initially, the academic community believed that Maxwell stress was the primary factor causing 

deformation in DEAs[40]. Maxwell stress 𝑝 is described by an applied voltage Φ and film thickness 

𝑑 as 

𝑝 = 𝜀 (
Φ

𝑑
)
2

(1) 

where 𝜀  denotes the DEA’s permittivity. The results of Eq. (1) align well with experimental 

observations of electrostatically induced deformation stress in DEAs under direct current voltage. 

As research progressed, researchers found that, under the stimuli of electric field, the electrostatic 

forces in highly deformable DEAs should originate from two aspects: Maxwell stress and 

electrostriction stress. Both stresses are proportional to the square of the electric field. 

Comparatively, Maxwell stress is the main factor, constituting a significant proportion of the 

electrostatic stress. The accumulation of opposite charges on the surfaces of the DEAs on both 
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sides results in electrostatic Coulomb forces attracting each other. The electrostatic forces 

compress the materials in the thickness direction, causing a decrease and expansion in the plane 

direction of DEAs. This deformation is independent of the variation in the DEA’s permittivity. On 

the other hand, the generation of electrostriction stress is associated with changes in the DEA’s 

permittivity. 

DEAs’ ability of generating mechanical force by electrical field is referred to as electromechanical 

coupling. Pelrine et al. developed a physical model which explains the electromechanical coupling 

of DEAs in 1998[41]. The effective stress 𝑝𝑒𝑙  is described by an applied voltage Φ  and film 

thickness 𝑑 as 

𝑝𝑒𝑙  = 𝜀0𝜀𝑟 (
Φ

𝑑
)
2

= 𝜀0𝜀𝑟𝐸
2 (2) 

where 𝜀0 and 𝜀𝑟 denote the free-space permittivity (8.85 × 10−12 𝐹𝑚−1) and relative dielectric 

constant respectively, and 𝐸  is the electric field. Then Pelrine and his colleagues presented a 

straightforward approach for predicting DEA strains by applying Hooke’s laws to Eq. (2). 

𝑠𝑒𝑙 = −
𝑝𝑒𝑙
𝑌
= −𝜀0𝜀𝑟

𝐸2

𝑌
(3) 

where 𝑠𝑒𝑙 denotes the thickness strain and 𝑌 is the elastic modulus associated with the strain. 

However, based on detailed analysis, the instability exists at −33% thickness strain with free 

boundary conditions which could cause the collapse in thickness. For this reason, based on the 

structure of a parallel-plate capacitor, Wissler employed an electromechanical model of DEAs 

with large deformation [42]. When a voltage 𝑈 is applied to a parallel-plate capacitor with the 

capacitance 𝐶, the stored electrostatic energy 𝑊𝑒𝑙 is given by 
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𝑊𝑒𝑙 =
1

2
𝐶𝑈2 (4) 

When the capacitor undergoes deformation, the electrostatic energy 𝑊𝑒𝑙  is converted to 

mechanical energy 𝑊𝑚. At this point, for a thin film capacitor with an overall thickness 𝑍,the 

change in energy per unit thickness 𝑧 of the material is equal to the force 𝑃 generated by the 

voltage. Therefore, we have 

𝑃 =
𝑑𝑊𝑚
𝑑𝑧

=
𝑑𝑊𝑒𝑙

𝑑𝑧
(5) 

Dividing this force by the area 𝐴 of the capacitor, we obtain the stress as 

𝑝𝑧 =
𝑑𝑊𝑚
𝑑𝑧

1

𝐴
= 𝜀0𝜀𝑟 (

𝑈

𝑍
)
2

(6) 

where 𝜀0 and 𝜀𝑟 denote the free-space permittivity (8.85 × 10−12 𝐹𝑚−1) and relative dielectric 

constant respectively. And Eq. (6) is the expression for Maxwell stress. 

Due to the physical properties of DEAs, the internal stress after deformation is composed of 

multiple sources[41]. The stress in DEAs can be expressed as 

𝜎 = 𝜎𝐸 + 𝜎𝑀 (7) 

where 𝜎𝐸 and 𝜎𝑀 denote elastic stress and Maxwell stress, respectively. 

In the modeling, it’s assumed that the DEAs is a hyperplastic material, meaning the stress-strain 

relationship doesn’t follow the traditional Hooke’s law. However, the deformation can recover to 

its initial state once the load is removed. Additionally, it’s assumed to be homogeneous. The 
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expression can be represented through the deformation gradient tensor, and the total effective 

stress is given by 

𝜎 =
𝜌𝑚
𝜌0

𝜕Σ

𝜕𝐹
𝑭 + 𝑝𝑀𝑰 + 𝜎𝑀 (8) 

where 𝜌𝑚 and 𝜌0 denote the density after deformation and density before deformation. When the 

DEA is considered incompressible, 𝜌𝑚 = 𝜌0 and there exists constraint stress 𝑝𝑀; when the DEA 

is considered compressible, 𝜌𝑚 ≠ 𝜌0 and there doesn’t exist 𝑝𝑀 . 𝑭 is the deformation gradient 

tensor, 𝑰 is the unit tensor, and Σ is the internal energy of DEAs per unit volume. 

2.3.2 Free-energy based nonlinear modeling method 

In 2008, Suo utilizing the classic thermodynamics and the theory of Helmholtz free energy, derived 

a system of equations by analyzing the transformation between electrostatic energy and elastic 

strain energy in DEAs during the electromechanical coupling process[43]. 

Based on the framework of classic equilibrium thermodynamics, Suo assumed that the temperature 

remains the same before and after deformation of DEAs, and there is no heat exchange with the 

surroundings[43]. Moreover, only the elastic deformation of DEAs is considered, and the influence 

of viscoelasticity is neglected. 

In Fig. 2, mechanical forces in three directions and the applied voltage together constitute a 

thermodynamic system. The change of DEAs’ Helmholtz free energy is denoted as 𝛿Ψ, the work 

done by mechanical forces in three directions during the deformation process is denoted as 𝑃𝑎𝛿𝑎 +

𝑃𝑏𝛿𝑏 + 𝑃𝑐𝛿𝑐, and the work done by applied voltage is denoted as Φ𝛿𝑄. When DEAs are in the 

state of equilibrium with external mechanical forces and applied voltage, the change in free energy 
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is equal to the sum of the work done by the mechanical forces and by the applied voltage, yields 

to 

𝛿Ψ = 𝑃𝑎𝛿𝑎 + 𝑃𝑏𝛿𝑏 + 𝑃𝑐𝛿𝑐 + Φ𝛿𝑄 (9) 

where 𝛿𝑎, 𝛿𝑏, and 𝛿𝑐 represent the change in three directions of DEAs as shown in Fig. 2. 

Therefore, the density of the Helmholtz free energy 𝑊 is defined as 

𝑊 =
Ψ

𝑎0𝑏0𝑐0
(10) 

The stretches in three directions 𝜆𝑎, 𝜆𝑏, and 𝜆𝑐 are 

{
 
 

 
 𝜆𝑎 =

𝑎

𝑎0

𝜆𝑏 =
𝑏

𝑏0

𝜆𝑐 =
𝑐

𝑐0

(11) 

The true stresses in three directions 𝜎𝑎, 𝜎𝑏, and 𝜎𝑐 are 

{
 
 

 
 𝜎𝑎 =

𝑃𝑎
𝑏𝑐

𝜎𝑏 =
𝑃𝑏
𝑎𝑐

𝜎𝑐 =
𝑃𝑐
𝑎𝑏

(12) 

The true electric field 𝐸 is 

𝐸 =
Φ

𝑐
(13) 
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The true electric displacement 𝐷 is 

𝐷 =
𝑄

𝑎𝑏
(14) 

By combining Eqs. (12), (13), and (14), the change of charges 𝛿𝑄 can be obtained as 

𝛿𝑄 = Dbδa + Daδb + abδD (15) 

Due to the significant deformation of DEAs and the relatively small volume change, it can be 

ideally considered as incompressible. Hence, we can obtain 

𝜆𝑎𝜆𝑏𝜆𝑐 = 1 (16) 

From the Eq. (15), it’s indicated that the three variables in the electromechanical coupling of DEAs 

are not independent completely. So, 𝜆𝑐 can be expressed by 𝜆𝑎 and 𝜆𝑏 as 

𝜆𝑐 =
1

𝜆𝑎𝜆𝑏
(17) 

Then, the DEAs’ density of free energy 𝑊  can be expressed in terms of three independent 

variables, yields to 

𝑊 = 𝑊(𝜆𝑎 , 𝜆𝑏 , 𝐷) (18) 

Ideally, the relationship between the actual electric field and actual electric displacement is 

𝐸 =
𝐷

𝜀
(19) 

where 𝜀 denotes the permittivity constant of the DEAs and 𝜀 = 𝜀0𝜀𝑟. 
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By dividing Eq. (9) by the volume of DEAs 𝑎0𝑏0𝑐0 and combining Eq. (15), we can obtain 

𝛿𝑊 =
𝜎𝑎 − 𝜎𝑏 + 𝐷𝐸

𝜆𝑎
𝛿𝜆𝑎 +

𝜎𝑏 − 𝜎𝑐 + 𝐷𝐸

𝜆𝑏
𝛿𝜆𝑏 + 𝐸𝛿𝐷 (20) 

The density of free energy 𝑊 can be represented by the elastic strain energy 𝑊𝑠(𝜆𝑎 , 𝜆𝑏) which 

relates to the stretch of DEAs and Helmholtz free energy density 
𝐷2

2𝜀
 associated with electric 

polarization as 

𝑊(𝜆𝑎 , 𝜆𝑏 , 𝐷) = 𝑊𝑠(𝜆𝑎 , 𝜆𝑏) +
𝐷2

2𝜀
(21) 

In the end, for the ideally incompressible DEAs, the condition of equilibrium is equivalent to 

𝜎𝑎 − 𝜎𝑐 = 𝜆𝑎
𝜕𝑊𝑠(𝜆𝑎 , 𝜆𝑏)

𝜕𝜆𝑎
− 𝜀𝐸2 (22) 

𝜎𝑏 − 𝜎𝑐 = 𝜆𝑏
𝜕𝑊𝑠(𝜆𝑎 , 𝜆𝑏)

𝜕𝜆𝑏
− 𝜀𝐸2 (23) 

From the Eqs. (22) and (23), it’s observed that the elastic strain energy 𝑊𝑠(𝜆𝑎 , 𝜆𝑏)  directly 

influences the development of the model [44]. Some widely used elastic material models are 

introduced in the following part. 

2.3.3 Elastic material models 

For rubber-like materials which undergo large deformation, the stress-strain state during 

deformation is often characterized by strain energy functions from the theory of hyperelasticity. 

Currently, elastic models representing the strain energy functions 𝑊𝑠(𝜆𝑎 , 𝜆𝑏) of DEAs can be 
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divided into two overall classes: based on Gaussian distribution and based on non-Gaussian 

distribution hyperelastic strain energy models. Elastic models based on Gaussian distribution 

mainly include Neo-Hookean model, Yeoh model, Mooney-Rivlin model, and Ogden model[45]. 

What these elastic models have in common is the assumption that the responsive strain of 

hyperelastic materials is far from reaching the tensile strength limit of the materials during 

deformation[46]. And Neo-Hookean model serves as a typical representative in this regard. 

However, elastic models based on non-Gaussian distribution believe that the deformation range of 

hyperelastic materials is large and any potentially approach the maximum tensile limit of the 

materials, for example, Arruda-Boyce model[46]. 

Neo-Hookean model 

For incompressible hyperelastic materials, the Neo-Hookean model has the advantages of the 

minimum number of parameters and the simplest form[47]. However, from the perspective of 

experimental results, the relation between stress and strain could transfer linear to nonlinear when 

reaching a certain point. And the free energy density of Neo-Hookean model is given by 

𝑊𝑁𝑒𝑜(𝜆𝑎 , 𝜆𝑏) =
1

2
𝜇(𝜆𝑎

2 + 𝜆𝑏
2 + 𝜆𝑎

−2𝜆𝑏
−2 − 3) (24) 

where 𝜇 represents the strain shear modulus of the hyperelastic material and it’s constant; 𝜆𝑎 and 

𝜆𝑏 denote the stretches in directions of the length and width, respectively. 
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Arruda-Boyce model 

The advantage of Arruda-Boyce model lies in the introduction of molecular chain breakage 

parameters, enabling that it can perform statistical modeling of three-dimensional molecular chains 

on a microscopic scale[48]. And it can be expressed as 

𝑊𝐴−𝐵(𝜆𝑎 , 𝜆𝑏) = 𝜇√𝑛 [𝛽𝜆𝑐ℎ𝑎𝑖𝑛 − √𝑛 ln (
sin ℎ𝛽

𝛽
)] (25) 

where 𝑛 represents the number of blocks in a single molecular chain, 𝜆𝑐ℎ𝑎𝑖𝑛 =
1

3
(𝜆𝑎

2 + 𝜆𝑏
2 +

𝜆𝑎
−2𝜆𝑎

−2), 𝛽 = 𝐿−1 (
𝜆𝑐ℎ𝑎𝑖𝑛

√𝑛
), and 𝐿 is the Langevin function. 

Gent model 

Combining the elastic models based on Gaussian and non-Gaussian distribution, Gent[49] 

developed a model to describe the nonlinear constitutive properties of impressible hyperelastic 

materials in a simple mathematical form. Compared to other elastic models, Gent model has the 

physical description for materials[50]. And the Gent model of impressible hyperelastic materials 

can be expressed as 

𝑊𝐺𝑒𝑛𝑡(𝜆𝑎 , 𝜆𝑏) = −
1

2
𝜇𝐽𝑚 ln (1 −

𝜆𝑎
2 + 𝜆𝑏

2 + 𝜆𝑎
−2𝜆𝑏

−2 − 3

𝐽𝑚
) (26) 

where 𝜇 refers to the strain shear modulus and 𝐽𝑚 refers to the limiting stretch. When the parameter 

𝐽𝑚 approaches infinity, the Gent model is equivalent to the Neo-Hookean model, and when the 

parameter 𝐽𝑚 is not close to infinity, Gent model can describe a more complex constitutive model 

curve in the tensile state than Neo-Hookean model. 
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2.3.4 Viscoelastic material models 

In earlier research on DEAs, most scholars simplified DEAs’ deformation to ideal elastic behavior, 

assuming that their deformation process is independent of the time[16]. With the deepening research 

on DEAs, Pelrine[41] was the prominent researcher to find in experiments that although pre-

stretched DEAs could generate deformations greater than 100%, the deformation had a significant 

dependence on the rate of applied load according to the viscoelastic nature of the material. From 

plenty of previous experimental results, creep, hysteresis, and some other behaviors exist which 

leads that viscoelasticity cannot be neglect when modeling DEAs. The common viscoelastic 

models are made up of various connections of Hookean springs to represent elastic component and 

Newtonian dashpot to characterize the viscosity[51][52]. 

Rheological model 

The rheological model illustrated in Fig. 3(a), also known as generalized Maxwell model, is one 

of the most popular viscoelastic models which is of great use to describe many primary properties 

of DEAs[53]. Maxwell model as shown in Fig. 3(b) is composed of a spring 𝐸 and a dashpot 𝜂 

arranged in series to represent elastic and viscous elements respectively. Based on Maxwell model, 

rheological model includes an additional parallel spring 𝐸0, and as many Maxwell models are 

connected in parallel which can effectively describe multiple relaxation times exhibited by DEAs. 
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Figure 3: (a) Rheological model and (b) Maxwell model 

Generalized Kevin model 

The generalized Kevin model as shown in Fig. 4(a), provides a more complex approach to capture 

multiple relaxation time and is an extension format of Kevin-Voigt model which comprises a 

spring 𝐸 and dashpot 𝜂 in parallel as a pair. Based on the Kevin-Voigt model, an additional spring 

is included and as many Kevin-Voigt models are connected in series[54]. 

 

Figure 4: (a) Generalized Kevin model and (b) Kevin-Voigt model 
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2.2 Summary 

The literature review in this research reveals a comprehensive exploration of dielectric elastomer 

actuators (DEAs) including the working principle, wide applications in different fields, and the 

various compliant electrodes. Several mathematical models investigated by researchers are 

introduced, and the comparison between these models sets the foundation for the model selection 

in further research. In addition, the viscoelastic nature of DEAs is highlighted in this chapter, thus 

leading to viscoelastic material models which can accurately capture such a behavior. 
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Chapter 3 

Free-Energy Based Modeling of Planar 

Dielectric Elastomer Actuator 

As we learned from previous research, more and more dielectric elastomer actuators have been 

observed over the last decades. The selection of DEA’s configuration must also be considered, as 

it can significantly impact the strain rate and actuation performance. As it is introduced[17], the 

planar configuration has more chance to perform high strain rate. 

Therefore, in this chapter, a free-energy based model of planar DEA moving in vertical direction 

is developed to present its electromechanical response and describe its intricate nonlinear 

viscoelastic behavior. In addition, the Gent model is selected to explain the elastic energy and 

rheological model is employed to describe its viscoelasticity. 
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3.1 Model description 

Fig. 5 shows the schematic of a planar DEA moving in vertical direction and includes three states. 

The diagrams of the initial state, pre-stretched state and electro-deformed stated are illustrated in 

Fig. 5(a), Fig. 5(b), and Fig. 5(c), respectively. 

 

Figure 5: Schematic of the DEA, (a) Initial state, (b) Pre-stretching state, and (c) Electro-

deformed state 

In initial state, as shown in Fig. 5(a), 𝐿1, 𝐿2, and 𝑍 denote the length, width, and thickness of the 

planar DEA, respectively. In pre-stretching state, there places an object whose gravity is 𝐺 beneath 

the DEA with the purpose of better performing the DEA’s deformation. At the meantime, in Fig. 

5(b), 𝜆1𝑓 and 𝜆2𝑓 express the length and width stretches of DEA, respectively. Then, the length 

and width of DEA in pre-stretching state can be expressed as 𝐿1𝜆1𝑓 and 𝐿2𝜆2𝑓. Once the input 

voltage ∅ is applied to the DEA, it comes to the electro-deformed state. As shown in Fig. 5(c), the 

electric force leads to the mechanical deformation. Hence, the length, width, and thickness of DEA 
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in this state can be denoted as 𝑙1, 𝑙2 and, 𝑧, respectively. And the stretches in three dimensions of 

DEA can be expressed as 

{
 
 

 
 𝜆1 =

𝑙1
𝐿1

𝜆2 =
𝑙2
𝐿2

𝜆3 =
𝑧

𝑍

(27) 

Under the assumption that the DEA is incompressible, then 𝜆1𝜆2𝜆3 = 1. The true stresses in the 

length and width dimensions 𝜎1, 𝜎2 are denoted as 

{
 

 𝜎1 =
𝐹1
𝑙2𝑧

𝜎2 =
𝐹2
𝑙1𝑧

(28) 

where 𝐹1 and 𝐹2 represent the stresses in the directions of length and width, respectively. 

When there is an applied voltage ∅ in the thickness direction, the relationship between the charge 

𝑄 on the electrode and the voltage ∅ is 

𝑄 =
𝜀∅𝐿1𝐿2(𝜆1𝜆2)

2

𝑧
(29) 

where 𝜀 is the permittivity of the DEA. 

The true electric field 𝐸 is expressed as 

𝐸 =
∅

𝑧
(30) 
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And the electric displacement 𝐷 is defined as 

𝐷 =
𝑄

𝑙1𝑙2
(31) 

The free energy of the DEA system is expressed as 𝑅. And the total work done by mechanical 

force in length and width directions can be expressed as 𝐹1𝛿𝑙1 + 𝐹2𝛿𝑙2, where 𝛿𝑙1 and 𝛿𝑙2 denote 

the changes in the directions of DEA’s length and width. In the electro-deformed state, the variable 

of charge is denoted as 𝛿𝑄 and the work done by electric force is defined as ∅𝛿𝑄. 

3.2 Free-energy based model 

According to the nonequilibrium thermodynamics theory, the increase of the free energy 𝛿𝑅 is not 

supposed to exceed the total work done by electric force, mechanical force and inertial force 𝛿𝐻, 

as expressed 

𝛿𝑅 ≤ 𝐹1𝛿𝑙1 + 𝐹2𝛿𝑙2 + ∅𝛿𝑄 + 𝛿𝐻 (32) 

The Helmholtz free energy density of DEA 𝑊 is denoted as 

𝑊 =
𝑅

𝐿1𝐿2𝑍
(33) 

By combining Eqs. (32) and (33), the change of the Helmholtz free energy density 𝛿𝑊 can be 

obtained 

𝛿𝑊 ≤
𝜎1
𝜆1
𝛿𝜆1 +

𝜎2
𝜆2
𝛿𝜆2 + 2𝜀 (

∅

𝑍
)
2

(𝜆1𝜆2
2𝛿𝜆1 + 𝜆2𝜆1

2𝛿𝜆2) +
𝛿𝐻

𝐿1𝐿2𝑍
(34) 



 30 

In order to describe the viscoelasticity of DE material, we are supposed to select a mathematical 

model to characterize it. As it is discussed in the section 2.3.4 of viscoelastic material models, 

there are few options to choose. In this research, the generalized Maxwell model which is also 

known as rheological model is selected to describe its nonlinear viscoelastic behavior due to the 

advantage of common usage, flexibility, and simplicity in mechanism. The generalized Maxwell 

model is illustrated in Fig. 6 and there includes two parts (Part A and Part B). Part A consists of a 

single spring 𝛼0 and Part B contains several same units which are connected in parallel. And each 

unit include a spring 𝛼𝑖 and a dashpot 𝜂𝑖 connected in series, where 𝑖 = 1, 2, 3, 4, … , 𝑛. Meanwhile, 

𝜉𝑖𝑗 is the expression of the stretches of each dashpot, where 𝑗 = 1, 2 and represent the vertical and 

horizonal directions, respectively. From the organization of the generalized Maxwell model, we 

can obtain that stretches of each spring 𝛼𝑖 can be expressed as 𝜆𝑖1 =
𝜆1

𝜉𝑖1
 and 𝜆𝑖2 =

𝜆2

𝜉𝑖2
. 

 

Figure 6: The generalized Maxwell model 
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From Eq. (21), the free energy density 𝑊(𝐷, 𝜉11, 𝜉12, 𝜉21, 𝜉22, … )  of ideal DEA[43] can be 

presented as 

𝑊(𝐷, 𝜉11, 𝜉12, 𝜉21, 𝜉22, … ) = 𝑊𝑒𝑙𝑎(𝜉11, 𝜉12, 𝜉21, 𝜉22, … ) +
𝐷2

2𝜀
(35) 

where 𝑊𝑒𝑙𝑎(𝜉11, 𝜉12, 𝜉21, 𝜉22, … ) is the expression of elastic energy related to stretches of the DEA, 

𝜀 denotes DEA’s permittivity and 𝐷 is the electric displacement as it is described in Eq. (31). 

Here, the Gent model[49] is selected to present the elastic energy density 

𝑊𝑒𝑙𝑎(𝜉11, 𝜉12, 𝜉21, 𝜉22, … , 𝜉𝑛1, 𝜉𝑛2)  of the DEA. Based on the organization of the generalized 

Maxwell model, the free energy density of the DEA can be expressed as 

𝑊𝑒𝑙𝑎(𝜉11, 𝜉12, 𝜉21, 𝜉22, … , 𝜉𝑛1, 𝜉𝑛2) = −
𝜇0𝐽0
2
ln (1 −

𝜆1
2 + 𝜆2

2 + 𝜆1
−2𝜆2

−2 − 3

𝐽0
)

−∑
𝜇𝑖𝐽𝑖
2
ln (1 −

𝜆1
2𝜉𝑖1

−2 + 𝜆2
2𝜉𝑖2

−2 + 𝜆1
−2𝜆2

−2𝜉𝑖1
2 𝜉𝑖2

2 − 3

𝐽𝑖
)

𝑛

𝑖=1

(36)

 

where 𝜇𝑖 denotes shear modulus of the spring 𝛼𝑖 and 𝐽𝑖 is the deformation limit of the spring 𝛼𝑖 

respectively. 

Since the DEA is incompressible and the volume doesn’t change before or after deformation. And 

there is no pre-stretch in horizonal direction, which means 

{

𝑙2 = 𝐿2
𝜆1 = 𝜆1𝑓
𝜆2 = 𝜆2𝑓 = 1

(37) 
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By combining Eq. (37) into (36), we can obtain 

𝑊𝑒𝑙𝑎(𝜉11, 𝜉12, 𝜉21, 𝜉22, … , 𝜉𝑛1, 𝜉𝑛2) = −
𝜇0𝐽0
2
ln (1 −

𝜆1
2 + 𝜆1

−2 − 2

𝐽0
)

−∑
𝜇𝑖𝐽𝑖
2
ln (1 −

𝜆1
2𝜉𝑖1

−2 + 𝜉𝑖2
−2 + 𝜆1

−2𝜉𝑖1
2 𝜉𝑖2

2 − 3

𝐽𝑖
)

𝑛

𝑖=1

(38)

 

Based on the theory of Newton’s third law of motion, the true stresses in vertical and horizonal 

directions 𝜎1 and 𝜎2 can be expressed as 

{
 

 𝜎1 = −𝜉𝑖1
𝜕𝑊𝑒𝑙𝑎

𝜕𝜉𝑖1
= 𝜂𝑖

𝑑𝜉𝑖1
𝑑𝑡

𝜎2 = −𝜉𝑖2
𝜕𝑊𝑒𝑙𝑎

𝜕𝜉𝑖2
= 𝜂𝑖

𝑑𝜉𝑖2
𝑑𝑡

 (𝑖 = 1, 2, 3, … , 𝑛) (39) 

From Eqs. (36) and (39), the strain rate of the dashpot in the vertical direction can be obtained as 

𝑑𝜉𝑖1
𝑑𝑡

= −
𝜇𝑖
𝜂𝑖

−𝜆1
2𝜉𝑖1

−2 + 𝜆1
−2𝜉𝑖1

2 𝜉𝑖2
2

1 −
𝜆1
2𝜉𝑖1

−2 + 𝜉𝑖2
−2 + 𝜆1

−2𝜉𝑖1
2 𝜉𝑖2

2 − 3
𝐽𝑖

 (𝑖 = 1, 2, 3, … , 𝑛) (40)
 

As it is mentioned above, there is no pre-stretch in the horizonal direction. Hence, we can obtain 

the strain rate of the dashpot in the horizonal direction as 

𝑑𝜉𝑖2
𝑑𝑡

= 0 (𝑖 = 1, 2, 3, … , 𝑛) (41) 

According to Eqs. (29) and (37), we can get the charge on the electrode varies by  

𝛿𝑄 =
𝜀𝐿1𝐿2
𝑧

(𝜆1
2𝛿∅ + 2∅𝛿𝜆1) (42) 
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The work done by inertial forces in each material element along the 𝐿1-direction, 𝐿2-direction and 

Z-direction are 𝛿𝐻𝐿1, 0, and 0, respectively. Then the total work done by inertial work can be 

integrated along 𝐿1-direction as follows 

𝛿𝐻𝐿1 = 𝜌𝐿2𝑍
𝑑2𝜆1
𝑑𝑡2

𝛿𝜆1∫ 𝑙2𝑑𝑙 = −
𝜌𝐿1

3𝐿2𝑍

3

𝐿1

0

𝑑2𝜆1
𝑑𝑡2

𝛿𝜆1 (43) 

The change of the free energy of the DEA is equal to the sum of the works done by the applied 

voltage, the gravity of the load, and the inertial forces, which means 

𝐿1𝐿2𝐷𝛿𝑊 = ∅𝛿𝑄 + 𝐹1𝐿1𝛿𝜆1 + 𝛿𝐻𝐿1 (44) 

By submitting Eqs. (42) and (43) into (44), we can get the free energy 𝑊  

𝛿𝑊 =
∅𝜀(𝜆1

2𝛿∅ + 2∅𝛿𝜆1)

𝑍2
+
𝐹1𝛿𝜆1
𝐿2𝑍

−
𝜌𝐿1

2𝛿𝜆1
3

𝑑2𝜆1
𝑑𝑡2

(45) 

Hence, we can obtain 

𝜕𝑊

𝜕𝜆1
= 2𝜀 (

∅

𝑍
)
2

𝜆1 +
𝐹1
𝐿2𝑍

−
𝜌𝐿1

2

3

𝑑2𝜆1
𝑑𝑡2

(46) 

By submitting Eqs. (31), (35), and (36) into (46), we can get 

𝜌𝐿1
2

3

𝑑2𝜆1
𝑑𝑡2

=
𝐹1
𝐿2𝑍

+ 𝜀 (
∅

𝑍
)
2

𝜆1 − 𝜇0
𝜆1 − 𝜆1

−3

1 −
𝜆1 − 𝜆1

−2 − 2
𝐽𝑜

−∑𝜇𝑖
𝜆1𝜉𝑖1

−2 − 𝜆1
−3𝜉𝑖1

2 𝜉𝑖2
2

1 −
𝜆1
2𝜉𝑖1

−2 + 𝜉𝑖2
−2 + 𝜆1

−2𝜉𝑖1
2 𝜉𝑖2

2 − 3
𝐽𝑖

𝑛

𝑖=1

(47)
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3.3 Model summary 

Combining Eqs. (40), (41), and (47), the free-energy based model of planar DEA moving in 

vertical direction can be described as 

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑑𝜉𝑖1
𝑑𝑡

= −
𝜇𝑖
𝜂𝑖

−𝜆1
2𝜉𝑖1

−2 + 𝜆1
−2𝜉𝑖1

2 𝜉𝑖2
2

1 −
𝜆1
2𝜉𝑖1

−2 + 𝜉𝑖2
−2 + 𝜆1

−2𝜉𝑖1
2 𝜉𝑖2

2 − 3
𝐽𝑖

𝑑𝜉𝑖2
𝑑𝑡

= 0

𝜌𝐿1
2

3

𝑑2𝜆1
𝑑𝑡2

=
𝐹1
𝐿2𝑍

+ 𝜀 (
∅

𝑍
)
2

𝜆1 − 𝜇0
𝜆1 − 𝜆1

−3

1 −
𝜆1 − 𝜆1

−2 − 2
𝐽𝑜

−∑𝜇𝑖
𝜆1𝜉𝑖1

−2 − 𝜆1
−3𝜉𝑖1

2 𝜉𝑖2
2

1 −
𝜆1
2𝜉𝑖1

−2 + 𝜉𝑖2
−2 + 𝜆1

−2𝜉𝑖1
2 𝜉𝑖2

2 − 3
𝐽𝑖

𝑛

𝑖=1

(48) 

where 𝑖 = 1, 2, 3, 4, … , 𝑛. 

As stated above, the free-energy based model of planar DEA moving in vertical direction is 

developed. In the next chapter, the experiment is set up to validate the established model. By 

employing the differential evolutionary algorithm, the model parameters are identified. 
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Chapter 4 

Experimental Preparation and Model 

Validation 

4.1 Experimental preparation 

In this part, the setup process of planar DEA moving in vertical direction and the hardware 

experimental platform is introduced. Here, polydimethylsiloxane (PDMS) is selected to study and 

setup the DEA instead of VHB which possesses high viscoelasticity. 

4.1.1 DEA setup 

As shown in Fig. 7, the planar DEA moving in vertical direction is fabricated. The assembly mainly 

involves the following four steps: 

(1) A DE membrane made of Polydimethylsiloxane (PDMS) with the initial length 𝐿1 =

0.075𝑚, initial width 𝐿2 = 0.072𝑚, and initial thickness 𝑍 = 0.001𝑚 as shown in Fig. 

5(a), is manufactured by Wacker Chemie AG, Germany. 
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(2) Compliant electrodes with the material number DD-10 are daubed to the front and back 

sides of the DE membrane and manufactured by Saidi technology, China. 

(3) The load 𝐺 is measured at the mass 𝐺 = 200𝑔, hence, we can have 𝜆1𝑝𝐿1 = 0.082𝑚, and 

𝜆2𝑝𝐿2 = 0.072𝑚 when at the pre-stretching state as shown in Fig. 5(b). 

(4) Frame is made of Polymethyl methacrylate (PMMA). 

 

Figure 7: Structure of planar DEA 

4.1.2 Experimental platform 

The hardware experimental platform (displayed in Fig. 8) is mainly composed of the following 

five components: 

(1) The high voltage amplifier (model number: 10/40A-HS-H-CE) with a gain of 1000, 

manufactured by TREK, USA, provides the driving voltage for compliant electrodes on 

the DE membrane. 

(2) The laser distance sensor (model number: LK-H152), manufactured by Keyence, Japan, is 

employed to measure the output displacement of the DE membrane. 
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(3) The I/O module (model number: PCIe-6361), manufactured by National Instruments, USA, 

provides the functions of data transfer by generating the control signal for the high voltage 

amplifier and recording the output signal from the laser sensor. 

(4) The computer (CPU: i7-8700, memory: 16G), manufactured by Hewlett Packard, is 

utilized for date analysis. 

 

Figure 8: Block diagram of experimental platform 

4.2 Model identification 

In this section, the developed free-energy based model is characterized by identifying the model 

parameters and subsequently comparing the model simulation with the experimental results based 

on the experimental setup. The model parameters are identified through the utilization of 

differential evolutionary algorithm in MATLAB. Here, taking into account precision and hardware 

capabilities in the developed model (as shown in Fig. 6), only three spring-dashpot units in parallel 

connection are considered to characterize the viscoelastic behavior of the DEA. 
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4.2.1 Driving voltage 

The following periodical excitation voltage is applied in order to observe dynamic responses of 

the DEA. 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
𝑡𝑚 = 𝑟𝑒𝑚(𝑡,∑

1

𝑓𝑖

5

𝑖=1

)

𝑣(𝑡𝑚) = 𝑎1 sin(𝑓1𝜋𝑡𝑚) , 0 ≤ 𝑡𝑚 ≤
1

𝑓1

𝑣(𝑡𝑚) = 𝑎2 sin (𝑓2𝜋𝑡𝑚 −
𝑓2𝜋

𝑓1
) ,

1

𝑓1
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1

𝑓𝑖

2

𝑖=1
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1

𝑓𝑖

2

𝑖=1
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1
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2

𝑖=1
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1

𝑓𝑖

3

𝑖=1

𝑣(𝑡𝑚) = 𝑎4 sin (𝑓4𝜋𝑡𝑚 − 𝑓4𝜋∑
1

𝑓𝑖

3

𝑖=1
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1

𝑓𝑖

3

𝑖=1
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1

𝑓𝑖

4

𝑖=1

𝑣(𝑡𝑚) = 𝑎5 sin (𝑓5𝜋𝑡𝑚 − 𝑓5𝜋∑
1

𝑓𝑖

4

𝑖=1

) ,∑
1

𝑓𝑖

4

𝑖=1

≤ 𝑡𝑚 ≤∑
1

𝑓𝑖

5

𝑖=1

(49) 

where 𝑎𝑖  and 𝑓𝑖  (𝑖 = 1, 2, 3, 4, 5) are the amplitude and frequency, respectively, 𝑡𝑚 = 𝑟𝑒𝑚(𝑡,

∑
1

𝑓𝑖

5
𝑖=1 ) is the remainder of time 𝑡 and 𝑡 ∈ [0, +∞). When setting various values of 𝑎𝑖 and 𝑓𝑖, the 

driving voltages are generated with different amplitudes and frequencies within one period 𝑇 =

0.01 (𝑠). 

4.2.2 Parameters identification 

From the section 4.1.1 of DEA setup, the experiment parameters 𝐿1, 𝐿2, 𝑍, 𝐺, 𝐿1𝜆1𝑓, and 𝐿2𝜆2𝑓 

are given. Here, the value selection of driving voltage amplitudes 𝑎𝑖  and frequencies 𝑓𝑖  is 
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introduced first. And DEA’s viscoelastic relaxation time 𝑇𝑖(𝑖 = 1, 2, … , 𝑛) is defined as the ratio 

of 𝜂𝑖 to 𝜇𝑖, then we have 

𝑇𝑖 =
𝜂𝑖
𝜇𝑖

(50) 

Hence, 𝜇𝑖 , 𝐽𝑖 , and 𝑇𝑖  are the model undetermined parameters and are identified by utilizing 

differential evolutionary algorithm. Last, to achieve the performance of the model simulation 

results, the root-mean-square error 𝑒𝑟𝑚𝑠 and the maximum controlling error 𝑒𝑚 are discussed. 

The amplitude of the driving voltage is set to be 𝑎𝑖 = 5.5 + 0.5𝑖 (𝑘𝑉) and the frequency of the 

driving voltage to be 𝑓𝑖 = 0.2𝑖 (𝐻𝑧), (𝑖 = 1, 2, 3, 4, 5). And the diagram of the driving voltage is 

displayed in Fig. 9, while the sampling period is set as 𝑇 = 0.01 (𝑠). 

 

Figure 9: Diagram of driving voltage set for parameters identification 

Differential evolution method was first proposed by Storn and Price[55] and has the advantages 

such as with simple principles, few controlled parameters, and strong robustness. Hence, the 

differential evolution algorithm is selected to identify and optimise the model parameters in this 
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research[39][56]. The differential evolutionary algorithm for the identification of the model 

parameters is briefly listed in Algorithm 1. 

Algorithm 1: Differential evolution algorithm 

Input: Voltage signal, DE material and geometrical parameters. 

Output: Predictions of time-dependent response of DEA 

1 begin 

2 Input the search ranges of variables of the spring 𝝁𝒊, 𝑱𝒊(𝑖 = 0, 1, 2,… , 𝑛), and the relaxation 

time of the dashpots 𝑻𝒊 =
𝜼𝒊

𝝁𝒊
(i= 1, 2,… , 𝑛) as 𝐾𝜇, 𝐾𝐽, and 𝐾𝑇, Then initialize 𝑔 = 0 

3 Input the dielectric permittivity 𝜺 of DEA, geometrical parameters 𝑳𝟏, 𝑳𝟐, and 𝒁 

5 Input the voltage signal in Eq. (49) 

6 According to  𝐾𝜇, 𝐾𝐽, and 𝐾𝑇, randomly initialize the initial population as 𝑥𝑘(0)(𝑘 =

1,2,… ,𝑁), where 𝑥𝑘 = {𝜇̃𝑖
𝑘(0), 𝐽𝑖

𝑘(0), 𝑇̃𝑖
𝑘(0)} 

7 

8 

 

9 

For 𝑔 = 0:𝐴 do 

Substituting 𝑥𝑘(𝑔) into the system model in Eq. (48). Then, call the ode15s function to get 

𝜉𝑖1
𝑘 (𝑔) and 𝜉𝑖2

𝑘 (𝑔) by solving Eq. (48) 

According to the experimental data and 𝜉𝑖1
𝑘 (𝑔) and 𝜉𝑖2

𝑘 (𝑔), calculate Eq. (50) 

10  If 𝑒𝑟𝑚𝑠 < 𝛿 (𝛿 is a small positive constant), then 

11  The parameters in free-energy based model are obtained. That is, 𝝁𝒊 = 𝜇̃𝑖
𝑘(𝑔), 𝑱𝒊 =

𝐽𝑖
𝑘(𝑔), and 𝑻𝒊 = 𝑇̃𝑖

𝑘(𝑔) 

12  Break 

13 End if 

14 

 

15 

According to the mutation rate 𝑝𝑚 and the crossover 𝑝𝑐, update  𝑥𝑘(𝑔) by executing 

mutation operation, crossover operation, and selection operation in turn 

End For 
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Without prior knowledge about the values of model parameters 𝜇𝑖, 𝐽𝑖 and 𝑇𝑖, here we set the search 

range 𝐾𝜇 of 𝜇𝑖, 𝐾𝐽 of 𝐽𝑖  and 𝐾𝑇 of 𝑇𝑖 as 𝐾𝜇 ∈ (0, 8 × 106), 𝐾𝐽 ∈ (0, 9 × 108) and 𝐾𝑇 ∈ (0, 3 ×

106), respectively. The maximum number of evolutions 𝐴 is set as 150. The constant 𝛿 is set to 

be 0.001. The mutation time 𝑝𝑚  and crossover rate 𝑝𝑐  are set as 0.6 and 0.9, respectively. In 

addition, the dielectric permittivity 𝜀 of DEA is set as 4.7𝜖𝑎𝑖𝑟, where 𝜖𝑎𝑖𝑟 = 8.85 × 10
−2 is the 

permittivity of vacuum. 

The root-mean-square error 𝑒𝑟𝑚𝑠 and the maximum modeling error 𝑒𝑚 are discussed as follows to 

better explain the performance of the model simulation results. 

{
 
 

 
 
𝑒𝑟𝑚𝑠 = √

1

𝑛
∑(𝑧𝑒𝑖 − 𝑧𝑚𝑖)2
𝑛

𝑖=1

× 100%

𝑒𝑚 =
max(|𝑧𝑒𝑖 − 𝑧𝑚𝑖|)

max(𝑧𝑚𝑖) − min(𝑧𝑚𝑖)
× 100%

(50) 

where 𝑧𝑒𝑖  and 𝑧𝑚𝑖  denote the experimental data and the predicted displacement in the vertical 

direction, respectively; 𝑛 represents the total amount of data. Besides, the expression 𝑧𝑒𝑖 − 𝑧𝑚𝑖 is 

employed to describe the error between the model simulation and the experimental result.  

Based on that we select three spring-dashpot units in generalized Maxwell model for the 

experiment conduction, the root-mean-square error 𝑒𝑟𝑚𝑠 = 2.13% and the maximum modeling 

error 𝑒𝑚 = 4.07%. In this way, the comparison of the model simulation and experiment result 

with different amplitudes and frequencies of driving voltage is shown in Fig. 10. And all the 

identified parameters of the developed free-energy based model are listed in Table 3. 
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Figure 10: Comparison of model simulation and measured experimental data with different 

amplitudes and frequencies 
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 𝒊 = 𝟎 𝒊 = 𝟏 𝒊 = 𝟐 𝒊 = 𝟑 

𝝁𝒊 4.5772 × 104 4.0037 × 104 5.1736 × 104 2.3021 × 102 

𝑱𝒊 9.7749 × 103 4.2709 × 103 9.5677 × 103 7.2315 × 103 

𝑻𝒊 = 𝜼𝒊 𝝁𝒊⁄  N/A 3.9802 × 10−1 3.3969 × 10−1 8.3874 

Table 3: Identified parameters of free-energy based model 

4.3 Model validation 

After the model parameters are identified, the generalization ability of the developed model has to 

be validated. In this section, two groups of experiments are implemented including by setting 

different driving voltage amplitudes 𝑎𝑖 and different voltage frequencies 𝑓𝑖. 

4.3.1 Model validation with different driving voltage 

amplitudes 

By setting the amplitudes of the applied voltage as 𝑎𝑖 = 5.5 + 0.5𝑖 (𝑘𝑉) (𝑖 = 1, 2, 3, 4, 5) and 

setting the frequencies of the applied voltage as 𝑓𝑖 = 0.2, 0.4, 0.6, 0.8, 1.0 (𝐻𝑧), respectively. In 

this way, the driving voltage has various amplitudes but single frequency in each measured 

experiment. Figs. 11-13 illustrate the comparison of the model simulation output and measured 

experimental data under the driving voltage frequencies 𝑓𝑖  at 0.2 (𝐻𝑧), 0.4 (𝐻𝑧) and 0.8 (𝐻𝑧), 

respectively. Moreover, the modeling errors for these various measured experiments are displayed 

in Table 4. 
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Figure 11: Comparison of model simulation and measured experimental data with driving 

voltage frequency 𝑓𝑖 = 0.2 (𝐻𝑧) 
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Figure 12: Comparison of model simulation and measured experimental data with driving 

voltage frequency 𝑓𝑖 = 0.4 (𝐻𝑧) 
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Figure 13: Comparison of model simulation and measured experimental data with driving 

voltage frequency 𝑓𝑖 = 0.8 (𝐻𝑧) 
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 𝒆𝒓𝒎𝒔 𝒆𝒎 

𝒇 = 𝟎. 𝟐(𝑯𝒛) 5.8484% 6.9696% 

𝒇 = 𝟎. 𝟒 (𝑯𝒛) 8.8924% 2.4462% 

𝒇 = 𝟎. 𝟔 (𝑯𝒛) 5.8952% 3.8678% 

𝒇 = 𝟎. 𝟖 (𝑯𝒛) 8.7797% 5.8924% 

𝒇 = 𝟏. 𝟎 (𝑯𝒛) 5.9604% 3.8877% 

Table 4: Modeling errors with different driving voltage amplitudes 𝑎𝑖 

From the experimental results shown above, the root-mean-square error of the modeling for 

measured experiments with different driving voltage amplitudes 𝑎𝑖  is less than 8.9%. And the 

maximum modeling error for any collected experimental data is less than 7.0%. When the driving 

voltage frequency 𝑓𝑖 is set at 0.2 (𝐻𝑧), it’s obvious that the maximum modeling error is higher 

than other conditions. Based on the study of DEA’s nonlinearity, it figures out that there is external 

disturbance for the data collection when at a low driving voltage frequency. Nonetheless, the 

maximum modeling error tested when 𝑓𝑖 = 0.2 (𝐻𝑧) is still within the allowable range. Hence, the 

generalization ability of the developed model of DEA can reach the expectation. 
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4.3.2 Model validation with different driving voltage 

frequencies 

By setting the amplitudes of the applied voltage as 𝑎𝑖 = 6.0, 6.5, 7.0, 7.5, 8.0 (𝑘𝑉), respectively 

and setting the frequencies of the applied voltage as 𝑓𝑖 = 0.2𝑖 (𝐻𝑧). In this way, the driving 

voltage has various frequencies but single amplitude in each measured experiment. 

Figs. 14-16 illustrate the comparison of the model simulation output and measured experimental 

data under the driving voltage amplitudes 𝑎𝑖  at 6.0 (𝑘𝑉), 7.0 (𝑘𝑉) and 8.0 (𝑘𝑉), respectively. 

Moreover, the modeling errors for these various experiments are displayed in Table 5. 
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Figure 14: Comparison of model simulation and measured experimental data with driving 

voltage amplitude 𝑎𝑖 = 6.0 (𝑘𝑉) 
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Figure 15: Comparison of model simulation and measured experimental data with driving 

voltage amplitude 𝑎𝑖 = 7.0 (𝑘𝑉) 
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Figure 16: Comparison of model simulation and measured experimental data with driving 

voltage amplitudes 𝑎𝑖 = 8.0 (𝑘𝑉) 
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 𝒆𝒓𝒎𝒔 𝒆𝒎 

𝒂 = 𝟔. 𝟎 (𝒌𝑽) 2.4729% 7.4374% 

𝒂 = 𝟔. 𝟓 (𝒌𝑽) 2.9408% 6.7550% 

𝒂 = 𝟕. 𝟎 (𝒌𝑽) 3.5766% 7.0148% 

𝒂 = 𝟕. 𝟓 (𝒌𝑽) 7.7592% 5.6113% 

𝒂 = 𝟖. 𝟎 (𝒌𝑽) 8.6652% 4.6098% 

Table 5: Modeling errors with different driving voltage frequencies 𝑓𝑖 

From the experimental results shown above, the root-mean-square error of the modeling for 

measured experiments with different driving voltage frequencies 𝑓𝑖  is less than 8.7%. And the 

maximum modeling error for any collected experimental data is less than 7.5%. According to the 

results obtained from both groups of test experiments, the generalization of the developed free-

energy based model moving in vertical direction can be validated. 

4.4 Summary 

In this chapter, the meticulous process of setting up experiments to gather accurate data is 

introduced first, involving the assembly of DEA and instrumentation set up. By employing 

differential evolution algorithm, the model parameters  𝜇𝑖, 𝐽𝑖, and 𝑇𝑖 are determined. Furthermore, 

comparing simulation results with experimental data by varying different driving voltage 

amplitudes and frequencies supports the developed model’s accuracy and predictive capability. 
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Chapter 5 

Conclusion and Future Work 

5.1 Conclusion 

Herein, a free-energy based model to describe the deformation mechanism of dielectric elastomer 

actuators (DEAs) is proposed with a planar shape moving in vertical direction. First, the schematic 

and working principle of DEAs is discussed in the introductory sections. Learning from 

researchers’ contributions to modeling mythologies, the Gent model and generalized Maxwell 

model are selected to present the elastic energy and time-dependent viscoelastic behavior of DEA, 

respectively. Based on the theory of free energy and thermodynamic nonequilibrium, the 

relationship between the strain rates and time is found. After that, the parameters of the developed 

model are empirically identified by implementing differential evolutionary algorithm in MATLAB. 

Then, by setting different driving voltage amplitudes and frequencies, the comparisons of model 

simulation and experimental results are obtained. Hence, the generalization of the proposed model 

is demonstrated which is also able to explain the intricate nonlinear characteristics and complex 

electromechanical coupling of DEAs. 
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5.1 Future work 

The deformation of dielectric elastomer actuators (DEAs) is not only subject to various driving 

voltage amplitudes and frequencies, but also subject to the temperature and humidity of the 

working environment. In the future work, more experiments are planned to be implemented to 

investigate how DEAs perform when at different patterns of temperature and humidity. Also, from 

the experimental results, further studies can be pursed including developing a more precise model 

with higher accuracy by taking into consideration nonlinearities other than creep and hysteresis. 

Besides, inspired by the worm-like soft robot which could inspect, and repair on-wing aircraft 

engines built by GE Aerospace, USA, we will develop suitable controllers combining with the 

dynamic model to investigate the applications in aerospace industry. 
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