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Abstract
Understanding the Lifecycle of Flaky Tests and Identifying Flaky Failures

Samaneh Malmir

Software testing is a critical aspect of ensuring the quality of software. Ideally, tests should

produce consistent results when being executed repeatedly on the same version of the software.

However, certain tests may exhibit non-deterministic behavior, commonly known as “flaky tests”.

These tests can provide ambiguous signals to developers and make the test results unreliable.

Despite being a recognized phenomenon for decades, academic attention towards test flakiness

has only recently increased. The current dissertation aims to contribute to the advancement of

research in two directions. First, we focus on predicting the lifetime of a flaky test, an issue that

has been left unaddressed in the flaky tests research area. Secondly, we question the efficiency of

previous studies in discerning flaky failures from legitimate failures, focusing on the Chromium

build result as our dataset.

In our investigation of the historical patterns of flaky tests in Chrome, we identified that 40% of

flaky tests remain unresolved, while 38% are typically addressed within the initial 15 days of intro-

duction. Subsequently, we developed a predictive model focused on identifying tests with quicker

resolutions. Our model demonstrated a precision of 73% and a Matthews Correlation Coefficient

(MCC) approaching 0.39 in forecasting the lifespan class of flaky tests.

Furthermore, we discovered that current vocabulary-based flaky test detection approaches mis-

classify 78% of legitimate failures as flaky failures when applied to the Chromium dataset. The

results also revealed that the source code of tests is not enough indicator for predicting flaky fail-

ures, and other execution-related features must be contributed for better performance.
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Chapter 1

Introduction

Continuous Integration (CI) is a widely adopted software engineering process that streamlines

collaboration among developers by allowing them to frequently merge their changes into a shared

code repository. By automating various aspects of the development life cycle, CI enables faster and

more efficient software development. One crucial step in this process is regression testing, which

aims to ensure that new changes do not introduce errors or break existing functionalities. Test suites

are executed for every commit, and the test results serve as a signal for integrating the changes

into the codebase or identifying potential issues. Flaky tests are tests that pass and fail on different

executions of the same version of a code under test. However, as codebases grow and change

frequency increases, the effectiveness of traditional continuous integration systems diminishes. This

is especially true for large, fast-moving codebases like those at Google, which receive numerous

code changes per minute and experience significant file modifications each day [1]. Google has

tackled this issue by creating a unique continuous integration system that employs dependency

analysis to identify and execute only the tests affected by a code change.

While software testing has long acknowledged flakiness as a prominent issue, research on this

subject has only recently started to gain momentum over the past few years [2]. While most existing

studies concentrate on predicting flaky tests, our focus lies in identifying fault-triggering flaky tests

and also predicting the lifetime class of flaky tests, significantly aiding developers in the debugging

process. Furthermore, a limitation of previous research on flaky tests is its reliance on small datasets

containing only a few flaky tests, rendering the results less reliable in an industrial setting. In
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our research, we use the Chromium dataset of flaky tests, consisting of thousands of instances,

allowing for a thorough examination of their characteristics within a Continuous Integration (CI)-

based environment.

In the following, we will introduce our research questions for each of our research topics.

1.1 Predicting the Lifetime of Flaky Tests

RQ1: Descriptive Statistics: What is the frequency of each category of flaky test?

The Chrome project runs thousands of tests every day and publishes the result, analysis, bug-

fixing process, and flaky test data publicly, which makes it a great source for investigating flaky test

mitigation strategies and practices in a large-scale test environment. The primary function of the

web tests in Chrome is to serve as a regression test suite. In this context, the focus is placed not

only on the accurate rendering of a page but also on ensuring that the page conforms to the defined

expectations. Put differently, a greater emphasis is placed on detecting shifts in behavior rather than

solely on assessing correctness. All web tests have “expected results”, or “baselines”, which define

the expected result and may be one of several forms. This baseline file can be a text containing

JavaScript log messages, WAV files of the audio output for Web Audio tests, or a screen capture

of the rendered page as a PNG file. The baseline file lives alongside the origin test in the web test

directory.

The expected outcomes for each test are stored in the testExpectations file and possible

expectations are pass, fail, skip, crash, or timeout. Tests can have multiple outcomes, that is a

combination of these 5 categories. Developers manually update this file based on the results of tests

and available options for handling a failed test.

In order to prioritize tests for investigation, it is essential to understand the content of the

testExpectations file, the distribution of the test categories, and the time it takes for a flaky

test on Chrome to be resolved. Addressing this question is key to devising an effective framework

for approaching the problem.

Results summary. By analyzing the content of testExpectations file, we discover that

40% of the flaky tests are never fixed. Of the flaky tests that are fixed or removed, 38% are in less
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than 15 days.

RQ2: Flakiness Survival: How has the number of tracked flaky tests changed over time?

While existing studies have predominantly centered around investigating the root causes of flaky

tests [3–5] and enhancing flakiness detection mechanisms [6–8], our research takes a distinctive

approach. Rather than focusing on the origins or detection of flakiness, our objective is to establish

a comprehensive understanding of the temporal aspect, specifically, the duration for which tests

endure the flaky state.

To achieve this, we conduct an analysis spanning the entire history of changes made to the

testExpectations file in 3 years. This examination allows us to understand the temporal dy-

namics of flaky tests by tracking their insertion, removal, or alteration in the testExpectations

file.

Result summary. Our investigation yield noteworthy insights, indicating that except for two

transient spikes, the overall count of flaky tests remains relatively constant over the extensive 3-

year timeframe. Our historical analysis of flaky test occurrences provides valuable context for

understanding the persistent nature of flakiness within the Chrome testing environment.

RQ3: Flaky lifetime prediction: How accurately can we predict the lifetime of a flaky test

based on the issue description?

In this research question, our focus is on evaluating how effectively we can predict the duration

of a flaky test’s persistence within the Chrome testing environment. The manual investigation and

resolution of flaky tests by Chrome developers prompt our exploration into automatically suggesting

tests that have a higher probability of quick resolution, based on historical data.

To achieve this, we employ a Random Forest model, to classify the lifetime of a flaky test into

two categories: ‘quick to fix’ and ‘slow to fix/not worthy of investigation.’ The model’s outcome

provides valuable insights into identifying tests that are likely to be swiftly resolved, allowing de-

velopers to prioritize their efforts efficiently.

Result summary. Upon applying our model to the test data, we observe a precision rate of

73% in predicting these specific categories of flaky tests. This promising outcome highlights the

potential effectiveness of our approach in accurately predicting the lifespan of flaky tests based on
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the description of the test added upon insertion.

1.2 Discerning Flaky from Fault-triggering Test Failures

RQ1: How often does each test fail without identifying a fault?

Developers create tests to identify faults in software code. However, encountering failing tests

that don’t contribute to fixing a bug can be challenging for developers and a resource drain for a

company. This research question aims to provide insight into how common is this issue within

Chrome.

To assess the extent of test flakiness in Chrome, we utilize two metrics: flake rate and flip rate,

as introduced in a prior study [9]. Our analysis reveals that 50% of flaky tests have a flake rate below

0.09, indicating that half of them experience flakiness in less than 9% of their runs. Furthermore, in

our dataset, 84% of flaky tests have a flip rate exceeding 0.8, suggesting that a significant majority

of tests frequently alternate between two potential outcomes, indicating a high level of flakiness.

Results summary. In the study conducted by [9], flip rate was used as a metric for ranking flaky

tests. However, when applying this measure to the Chromium context, we found that the values

showed no significant variation. As a result, we concluded that this measure should not be relied

upon for ranking flaky tests.

RQ2: Can we propose a model to distinguish legitimate failures from flaky failures?

In this research question, we aim to replicate and improve a recent and notable study focused

on identifying fault-triggering flaky tests. Specifically, we refer to the work by Haben et al. [10] in

which they introduce a model designed to distinguish fault-triggering test failures from flaky fail-

ures. We selected this specific study as our foundational reference for several compelling reasons.

Firstly, it stands out due to its application within a large-scale industrial project, encompassing thou-

sands of flaky tests, which significantly elevates the reliability of the study’s findings. Furthermore,

the research conducts a crucial investigation in the field of flaky test research, focusing on a signifi-

cant aspect that has not received sufficient exploration in prior works. Rather than predicting flaky

tests, Haben et al. [10] employ failure-focused prediction methods focusing on discerning flaky
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failures from fault-triggering failures.

To begin, we replicate their study, where the authors claim their model can accurately distinguish

legitimate failures from false alarms, achieving a Matthews correlation coefficient (MCC) of up to

95%. However, our investigation reveals a notable inefficiency in their proposed methodology.

Specifically, the authors opt for a random approach to dataset splitting, a strategy that deviates from

prevalent real-world practices. In our empirical analysis, when we adopt a time-sensitive splitting

approach that aligns more closely with industry norms, the outcomes fail to yield promising results.

In our attempt to achieve satisfactory performance, we develop various models to address this

issue. Despite the comprehensive nature of our approach and the wide range of models developed,

the task of accurately predicting legitimate failures within the dynamic landscape of real-world

software development settings proves to be exceedingly challenging.

Result summary. Our models indicate that vocabulary-based methods cannot distinguish be-

tween flaky failures and fault-revealing ones, and other features need to be incorporated into the

model for better performance.

RQ3: Are some test suites easier to predict than others?

In this research question, our central focus is to test the performance of the previously estab-

lished models on a subset of data. This involves a comprehensive examination of the inherent

flakiness characteristics across various test suit categories, with a specific emphasis on exploring

the potential to predict faults from instances of unreliable behavior within each category.

Additionally, our investigation extends to analyzing the frequency of unreliable failures among

tests compared to fault-revealing failures within each category. The primary goal is to identify the

best threshold for classifying tests into distinct categories of unreliable or legitimate failures, based

on observed behavior patterns.

Result summary. We categorize tests into three groups based on their test suits: Layout Tests,

Browser Tests, and Unit Tests. Layout tests make up 80% of the dataset, and the ratio of flaky

failures to legitimate failures remains consistent across subcategories. Additionally, we observe that

Unit tests exhibit the highest flake rate among all categories. In terms of prediction, due to the

persisting challenge of an imbalanced dataset, the model struggles to accurately predict failures that
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reveal faults within each category.

The following sections of this theis are structured as follows: In Chapter 2, we present an

extensive literature review on flaky tests. Chapter 3 delves into our investigation on predicting the

lifespan of flaky tests. Our contributions to the challenge of distinguishing fault-revealing failures

from flaky failures and the corresponding research questions are addressed in Chapter 4. Lastly,

Chapter 5 outlines the research findings and discusses the encountered challenges throughout the

study.
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Chapter 2

Literature Review

Regression testing is a crucial step in the software development process that aims to validate

modifications made to a software system while ensuring that existing functionality remains in-

tact [4]. Despite the advancements in regression testing techniques, flaky tests remain a persistent

challenge. Flaky tests, as studied by Bell et al. [11], exhibit non-deterministic behavior and intro-

duce uncertainty into the regression testing process. The adoption of Continuous Integration (CI)

practices has revolutionized regression testing by introducing automated and frequent integration of

code changes, allowing developers to quickly detect and address potential regressions in software

systems.

This section provides a comprehensive literature review on regression testing, flaky tests, and

different approaches highlighting key concepts, challenges, and advancements in the field.

2.1 Detecting and root-causing flaky tests

Detection. At Facebook, Mateusz [12] proposes a predictive change-based test selection strat-

egy to mitigate the overall infrastructure cost associated with testing code changes and it involves

the selection of tests based on their dependencies on modified code. The results demonstrate that

implementing this strategy leads to a significant reduction in the total infrastructure cost of testing

code changes by a factor of two, while still ensuring that over 95% of individual test failures and

more than 99.9% of faulty changes are accurately identified and reported to developers.
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Lam et al. [6] introduce the iDFlakies framework, which identifies flaky tests through the re-

arrangement and re-execution of tests, categorizing them as either order-dependent or non-order-

dependent tests. The authors explore the effects of various test reordering strategies on the detection

of flaky tests. After applying the framework to 683 projects and pinpointing 422 flaky tests, they

found that executing tests under random orders detects the highest overall number of flaky tests.

Bell et al. [11] conducted a study where they employed code evolution and code coverage to

ascertain if new test failures between two commits were triggered by flaky tests. The authors mon-

itored the code coverage of recent alterations and automatically identified flaky tests that covered

unchanged sections of the code but exhibited different outcomes compared to prior executions. Eval-

uating their algorithm across 96 Java projects, they effectively detected flaky tests with a minimal

false alarm rate of 1.5

King et al. [8] aims to develop a static predictor for flaky tests. They propose a Bayesian

network model that utilizes static test properties and past test results. Flakiness symptoms such as

poor performance, poor maintainability, high failure rate, and high flip rate are considered features

for prediction. By applying this model, they achieve a 65.7% accuracy in predicting flaky tests.

Root Causing. The research conducted by Lam et al. [3] focuses on identifying the root causes

of flakiness. Their findings reveal that although the number of distinct flaky tests may be limited,

the proportion of failed builds attributable to flaky tests can be significant. To alleviate the burden

of flaky tests on developers, the authors present an end-to-end framework designed to identify flaky

tests and comprehend their underlying causes. They develop a framework to collect logs from both

passing and failing executions, allowing them to detect differences and pinpoint flaky tests along

with their underlying causes. This framework employs a preliminary tool called RootFinder to

detect differences in logs between passing and failing runs.

Another investigation conducted by Vahabzadeh et al. [13] delves into the origins of faulty tests

by analyzing the JIRA bug repository. Their findings reveal that 21% of false alarms stem from flaky

tests caused by issues such as Asynchronous Wait, Race Condition, or Concurrency Bugs. Similarly,

Thorve et al. [14] conducted an empirical study focusing on Android application projects to uncover

the underlying causes of flaky tests. They introduce three new factors contributing to flakiness—UI,
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dependency, and program logic—in addition to previously identified causes like concurrency and

network problems.

Furthermore, an empirical inquiry by Fabio et al [15] explored the correlation between flaky tests

and test smells. Test smells such as Resource Optimism, Indirect Testing, and Test Run War were

examined, revealing that 45% of the tests displayed some degree of flakiness, with 54% of these

flaky tests being associated with code smells potentially contributing to the flakiness. Moreover, the

study demonstrated the effectiveness of refactoring in resolving flaky tests.

2.2 Ranking Flaky Tests

While the majority of works focus on root causing and automated fixing [3,13,15], Kowalczyk et

al [9] at Apple evaluate the level of flakiness. They developed two models to measure test flakiness.

The first model assesses randomness using entropy, while the second model measures temporal

variation by comparing pass-to-fail and fail-to-pass transitions with all possible transitions. They

combined these metrics to calculate a test’s flakiness score and applied the models to labeled data

sets and Apple’s service tests. they achieved a 26% reduction in flakiness with a 2.19% decrease in

fault detection. However, the extent of improvement varied across different environments, reaching

up to 82% flakiness reduction with a mere 0.002% loss in fault detection. The research is limited by

its reliance on an artificially generated dataset with a deliberately high flakiness rate of 80%, which

does not accurately reflect real-world scenarios where flakiness is typically much lower. In the case

of the chromium project, the observed flakiness rate was less than 1%, highlighting the disparity

between the artificial dataset used in this research and the actual flakiness rates found in industrial

projects.

In the study conducted at Ericsson by Rehman and Rigby [16], the authors aim to quantify the

occurrence of test failures that do not identify faults (NFF) to optimize the unit test pipeline. They

calculated the NFF failure rate for each test and compared it to the stable NFF rate observed during

the stabilization period of the prior release. Utilizing a binomial distribution, tests with a higher

number of failures compared to the expected stable NFF rate were prioritized for re-run and further

investigation. The authors found that by focusing on tests showing a significant increase from the
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stable NFF rate, testers were able to reduce the number of tests investigated by 35% to 42%. This

research applies the methodology to a real-world project with a substantial number of flaky tests,

thus producing more reliable results that can be compared to a labeled dataset.

In recent years, there has been a significant amount of research exploring the application of

machine-learning techniques for test prioritization purposes in software testing. For instance, Spieker

et al. [17] propose a reinforcement learning approach that incorporates historical test information,

such as test duration, previous execution records, and failure history, to prioritize test cases. Their

findings indicate that after approximately 60 continuous integration (CI) cycles, their model dis-

covers a prioritization strategy that performs comparably to basic deterministic methods. Another

example of machine learning-based test prioritization is presented by Jahan et al. [18], who combine

artificial neural networks with test complexity information and software modification details. Their

proposed model exhibits improved fault detection rates when compared to existing prioritization

approaches. Clustering methods have also been employed for test prioritization purposes. In the

study described in [19], test cases are clustered based on their dynamic runtime behavior, aiming to

reduce the number of pairwise comparisons. Applying this technique to different test suites resulted

in enhanced fault detection capabilities compared to coverage-based techniques.

2.3 Vocabulary Based Methods

Pinto et al. [7] approach the problem of detecting flaky tests using information retrieval tech-

niques. They extract the vocabulary of flaky tests and classify tests as flaky or non-flaky based on

this vocabulary. Several machine learning techniques are employed, with Random Forest and Sup-

port Vector Machines demonstrating the best performance in predicting flaky tests based on source

code features. The authors report a high F-measure of 0.95 in the prediction of flaky tests. In their

study, Camara et al. [20] conduct a replication using diverse learning algorithms to evaluate the

effectiveness of code identifiers in predicting test flakiness across various datasets, considering both

intra- and inter-project contexts. The findings of their research highlight that the context of a project

significantly influences the vocabulary of flaky tests. Consequently, the defined vocabulary lacks the
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necessary level of generalization to reliably predict flaky tests in other contexts, potentially imped-

ing the widespread adoption of code identifiers for predicting test flakiness. Flakify, proposed by

Fatima et al. [21] is a black-box, language model-based predictor for flaky test cases. Flakify was

developed by fine-tuning CodeBert, a pre-trained language model, using solely the source code of

flaky tests. The research outcomes demonstrate that Flakify achieves promising F1 scores on both

the FlakeFlagger and IDoFT datasets, resulting in significant reductions in the costs associated with

debugging test cases and production code. Specifically, Flakify reduces the debugging cost by 25%

and 64% for the test cases and production code of FlakeFlagger, respectively.

The work of Pinto et al. [7] was further replicated by Haben et al. [22] across three distinct

dimensions. Firstly, they adopted a time-sensitive selection of training and test sets, aiming to

better align the study with real-world usage scenarios. Secondly, they experimented with a dataset

of flaky tests written in a different programming language, Python, instead of Java used in the

original study. Thirdly, they explored the impact of different features extracted from the Code Under

Test. The authors of the replication study found that the information present in the Code Under

Test had a limited influence on the performance of the vocabulary-based models. Additionally,

they observed that employing a more robust validation process consistently led to a decrease in

performance compared to the reported results. Nevertheless, they concluded that vocabulary-based

models can still be employed to predict test flakiness in other programming languages.

In the study by Aman et al. [23], a variety of Natural Language Processing (NLP) techniques

were employed, including topic modeling and Doc2Vec to transform test cases into vector repre-

sentations. These vectors were then utilized to measure the dissimilarity between pairs of test cases

using diverse distance metrics (Manhattan distance, Euclidean distance, and angular distance). The

test cases that exhibited the greatest dissimilarity were granted the highest priority. Subsequently,

the remaining test cases were ranked based on their proximity to this prioritized set.

Overall, despite the potential of NLP techniques, the current use of NLP in test selection and

prioritization context is very limited. [24]

Summary
Among the numerous methods for predicting flakiness, vocabulary-based approaches [7] - [22]
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Table 2.1: Overview of Studies on Flaky Test Prediction Based on Machine Learning Models

Study Model Feature category Features Year

King et al. [8] Bayesian network Static & dynamic Code metrics 2018

Pinto et al. [7] Random forest Static Vocabulary 2020

Bertolino et al. [25] KNN Static Vocabulary 2020

Haben et al. [22] Random forest Static Vocabulary 2021

Camara et al. [20] Random Forest Static Vocabulary 2021

Camara et al. [26] Random forest Static Vocabulary 2021

Alshammari et al. [27] Random forest Static & dynamic Code metrics & Smells 2021

Fatima et al. [21] Neural Network Static CodeBERT 2021

Pontillo et al. [28] Logistic regression Static Code metrics & Smells 2021

Qin et al. [29] Neural Network Static Dependency graph 2022

Olewicki et al. [30] XGBoost Static Vocabulary 2022

Ackli et al. [31] Siamese Networks Static CodeBERT 2023

[32] [30] stand out as the most widely adopted [2]. These methods rely on machine learning models

to forecast test flakiness by analyzing the occurrences of source code tokens within candidate tests.

Intriguingly, prior research has identified these approaches as remarkably accurate, with the current

state-of-the-art achieving accuracy levels surpassing 95% [7], [22], [20], [21], [26].

Simultaneously, vocabulary-based approaches possess characteristics of being both static and

text-based. Consequently, they exhibit traits of portability, meaning they are tailored to a specific

programming language, and interpretability, enabling users to discern the factors contributing to

flakiness based on the keywords influencing the model’s decisions. This combination of precision,

portability, and interpretability renders vocabulary-based approaches highly appealing, as they offer

flexibility and ease of practical application.
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Chapter 3

Predicting Lifetime of Flaky Tests

This chapter is an extended version of the paper that is accepted for publication in 2024

International Flaky Tests Workshop 2024 (FTW’24) [33], preserving the original content.

In Continuous Integration (CI) is a vital software engineering process that facilitates collabo-

ration by allowing frequent integration of code changes into a shared repository. By automating

various facets of the development life cycle, CI enhances the speed and efficiency of software de-

velopment [34]. An important aspect of this process is regression testing, where test suites are

systematically executed for each commit, ensuring that new changes do not introduce faults or dis-

rupt existing functionalities. However, the scalability and efficacy of traditional CI systems tend

to diminish as codebases expand and change frequency intensifies. This challenge is especially

notable in large, dynamic codebases like those at Google, which witness a high volume of code

changes per minute and substantial file modifications each month [4]. Google addresses this by

employing a unique CI system that uses dependency analysis to selectively execute tests affected by

code changes.

Estimating the time required to fix flaky tests represents a pivotal aspect of software develop-

ment and quality assurance. Flaky tests not only disrupt the testing process but can also introduce

significant delays in software release cycles, leading to increased costs and potential missed market

opportunities. The ability to predict the duration needed for fixing flaky tests can empower develop-

ment teams to allocate resources efficiently, prioritize bug fixes, and streamline the testing pipeline.
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Remarkably, despite the critical role that this estimation plays in software development, there is a

noticeable gap in the existing research literature. While numerous studies have delved into flaky

tests’ identification and root cause analysis, the specific task of estimating the time taken to re-

solve these issues remains unexplored. Bridging this gap is not only essential for enhancing testing

efficiency but also for optimizing resource allocation and project planning in software development.

In this paper, we study the Chrome project that runs thousands of tests every day and publishes

the result, analysis, bug-fixing process, and flaky test data publicly. The scale of this public data

makes it an excellent source for investigating flaky test mitigation strategies and practices in a large-

scale test environment.

In contrast to conventional testing approaches, Chrome employs a system with multiple “ex-

pected outcomes” for each test, documented in the testExpectations file. These anticipated

outcomes include pass, fail, skip, crash, and timeout. Developers manually adjust the test expecta-

tion file as they modify their expectations for a specific test. Our dataset for this research comprises

78,450 tests with manually assigned expectations, among which 8,279 are labeled as “flaky.” The

dataset is derived from the historical changes made to this file. It’s noteworthy that tests may have

multiple outcomes, such as failure or crash, and developers update the file based on test results and

their examination of failures.

In this chapter, we delve into Chromium’s approach to addressing flaky tests. We start by

presenting our dataset and conducting an in-depth analysis to gain a more profound understanding

of the data. Subsequently, we introduce our model, showcasing its performance and outcomes.

Furthermore, we engage in a thorough discussion regarding the performance of various models,

taking into account different features.

3.1 Chromium

3.1.1 Overview

Starting its journey in 2008, the Chromium web browser has grown into a significant open-

source project, with a vibrant community of over 2,000 contributors and a codebase spanning 25

million lines. Google is at the forefront of this effort, although collaboration with various companies
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and individual contributors fuels its progress. For its Continuous Integration (CI), the Chromium

project relies on the LuCI platform, employing more than 900 parallelized builders tailored to dif-

ferent variations of Chromium with diverse settings and operating system targets.

Builders manage builds initiated by project commits, sometimes encountering queues due to

their limited capacity. This dynamic approach accommodates the project’s swift development pace,

allowing multiple changes to be integrated into a single execution cycle. Each build encompasses

detailed information such as properties, start and end times, and overall status, all meticulously

recorded for future reference.

In its initial stages, the project employed a linear strategy for building and testing, resulting

in prolonged testing periods and constraints in cross-platform testing of Chromium. To address

these issues, a swarming infrastructure was introduced, involving 14,000 concurrent build bots.

This architecture minimizes delays, ensuring tests are executed promptly and efficiently despite the

substantial daily commit load. Currently, 47 testers manage Chromium test suites across distinct

operating system versions, collectively comprising around 200,000 tests. The most extensive suites

are blink web tests, which evaluate rendering engines, and base unittest, housing over

60,000 tests each. Test outcomes, whether passes, reruns due to failure, or intermittent flaky behav-

ior, are systematically documented. In the traditional approach, flaky failures, like other forms of

failures, are typically considered issues that need to be resolved before the code can proceed to the

next phase. However, in the case of Google Chrome, flaky failures do not halt the progression of

the code to the subsequent stages in the Continuous Integration (CI) pipeline.

3.1.2 Example of a Flaky Test

Figure 3.1 shows a flaky test found in build 119,0392 of the Linux Tester. This test, printing/webgl-

oversized-printing.html, ensures that no crash happens on the main thread of the rendering process

when using the system. During its initial run, the test failed after running for 31 seconds, and the

run status indicated a TIMEOUT error occurred. Upon its second execution, the test completed in

15 seconds but was labeled as unreliable due to its flakiness. Subsequently, a problem was reported

in Chromium’s bug tracking system regarding this issue. Developers clarified that the test, at times,

triggers significant memory allocation in the GPU process, leading to intermittent Out-Of-Memory
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(OOM) errors and GPU process crashes.

The TIMEOUT error, by its nature, raises concerns about potential test unreliability, as one

might reasonably expect other executions of the same test to finish within the specified time limit.

Moreover, we can also search for signs of test instability within the source code. Like many UI tests

in Chromium, this test is managed by the testRunner, which is responsible for its automated execu-

tion. In line 19, we observe the testRunner invoking the waitUntilDone() function. In Chromium’s

web tests, terminology related to waiting is commonplace. Such keywords, for instance, could

potentially be utilized by tools designed to detect test or failure flakiness.

3.1.3 Chrome Score System

Flaky tests waste developer resources and reduce the confidence developers have in tests. They

are often difficult to fix because of their non-deterministic behavior. All tests that fail are re-run

multiple times on Chrome, and if any of the re-runs is a pass, then the build can be integrated

and the test is labeled as flaky. Flaky tests are a substantial problem on Chrome, and developers

prioritized them for investigation. Equation 1 shows how the flaky score is calculated.

Score = Sum(flaketypeweight∗impactedCLs)+Sum(flaketypeweight∗totalflakes) (1)

In this equation, the impacted CLs are the number of builds that have experienced this flaky test,

the total flakes are the number of flaky test failures in the last week, and the weighted flake type is

defined by the severity/negative impact that a flake has on the CI system. Chromium has defined

different types of flakiness and assigns a weight to each type based on the severity and importance

of the failure type. In the following we briefly mention each type.

The “false rejection” flaky type has the greatest weight of 100 because it is an unexpected failure

that stops the build from being integrated. This type of flaky test can fail multiple times in a row

without revealing a fault. Figure 3.2 shows an example of the flaky score for a sample test. We see

that the sample test was a “false rejection” flake in 7 builds in the past 7 days and affected 7 Change

Lists (CLs).

“CQ step level retry” weighs 10 and is an unexpected failure that causes additional retry steps.
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Figure 3.1: An example of a flaky test caused by a timeout. The test consists of an HTML file
printing/webgl-oversized-printing.html, build 119,039 of the Linux Tester. The call to wait until
one() on line 19 is likely the reason for the failure.
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Figure 3.2: Flaky Score Sample

This type of test is categorized as Exonerated and will not block the build. We see in Figure 3.2 that

in the past 7 days, the sample test flaked as a “CQ step level retry” 268 times impacting 247 CLs.

“CQ hidden flake” has the lowest weight and is a test that failed and re-run with one of the

re-runs being a pass. This goal is to filter out noisy results. In Figure 3.2 the sample test was a “CQ

hidden flake” occurred 70 times and it affected 22 CLs. As the test flakes across more CLs, its score

increases, and it will eventually be investigated.

“CI failed step flake” is a rare type of test that involves the setup of the test failing. In Figure 3.2

the test has never flaked as ‘CI failed step flake”.

The tests with the largest impact and score are investigated, and a bug report is assigned to

them [35].

Flaky failures can significantly impact build speed by requiring re-runs, which consume ad-

ditional resources and may slow down the continuous integration process. Chrome experiences a

high volume of new flaky test failures daily, often exceeding the available resources for resolution.

For instance, as depicted in Figure 3.3, a single build may encounter as many as 212 flaky tests, a

common occurrence. Consequently, developers face the challenge of prioritizing fixes to minimize

resource consumption.

To address this issue, Chrome developers employ the testExpectations [36] file to temporar-

ily suppress flaky tests during the investigation, helping to alleviate the burden on the continuous
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Figure 3.3: An example of a build result on Chromium project
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integration system.

In the subsequent section, we delve deeper into this approach, examining various potential out-

comes and their frequencies.

3.2 Data

In the following sections, we describe our dataset, providing a comprehensive overview of the

primary data source used in the study, and offering critical insights into the information underpin-

ning the research findings.

We note that in prior work, the number of flaky tests per project was small. For example, Moritz

et al. [37], studied Mozilla, which has 100 to 150 new flaky tests every week. In comparison, there

are approximately 700 new flaky tests every day. This difference can be the result of the extensive

codebase and a large number of contributors to the Chromium project. Also, Chrome’s rapid release

cycle and continuous integration practices might introduce changes more frequently, increasing the

chances of test flakiness.

3.2.1 Determining Test Categories and Build Status

Figure 3.4 outlines the decision-making procedure employed by LuCI (Chromium CI platform)

to determine the result of a specific test within a build. A test is considered successful if it passes

without errors in a single execution. In case of failure, LuCI initiates automatic retesting, repeating

the test up to five times. If all reruns fail, the test is categorized as “unexpected”, leading to a build

failure. Furthermore, if a test succeeds despite having experienced one or more failed executions

within the same build, it is classified as “flaky.” However, this outcome does not hinder the overall

successful progression of the build [38].

3.2.2 Allowable Test Outcomes

The scale of flaky tests on Chrome forces developers to find new ways to reduce the impact of

flakiness on the CI environment. The testExpectations file is the solution. It records the expected,

i.e. allowed, verdicts for each test. The testExpectations is a way to suppress the effect of flaky
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Figure 3.4: Decision tree representing how test outcomes are determined in a build by the Chromium
CI. PASS depicts successful tests, FLAKY depicts tests that passed after failing at least once, while
UNEXPECTED depicts tests that persistently failed [10].
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tests on CI cycles for Blink LayoutTests while the tests are being investigated. On average, every

day, 10 tests (min 0 – max 583) are temporarily added to the testExpectations until they are fixed.

For example, The following line is an example of a test added to this file which allows the test to

fail or pass on Mac11-arm64 OS.

+crbug.com/1302856 [ Mac11-arm64 ] virtual/exotic-color-space/images/rgb-png-with-cmyk-

color-profile.html [ Failure Pass ]

By labeling a test as [pass failure] the test will only be run once and will be categorized as

“Expected”.

Five possible expected outcomes can be manually assigned to a test:

Pass: a test passes when its output matches the pre-defined expected results. By default, tests

are expected to pass. If a test is not named in the testExpectations file, then only Pass is an expected

outcome.

Failure: a test fails when the outcome of the test does not match the expected result defined as

a file that resides next to the test file in the directory.

Skip: Tests marked as Skip will not be run by default, generally because they cause some

intractable tool error. For example, Windows-specific tests are skipped on Linux or Mac builds.

Timeout: Tests that take longer than a certain amount of time to complete are aborted and

marked as “timed out”. For example, some tests can trigger significant memory allocation in the

GPU process, leading to intermittent Out-Of-Memory (OOM) errors and GPU process crashes

which yield a TIMEOUT outcome. Tests that commonly time out can be labeled and added to

the testExpectations file to reduce re-runs.

Crash: Tests that cause the test shell or browser to crash.

As another example, the following line has been added to the file to prevent crashing until it gets

fixed. For this change, developers added the following description:

“This CL introduces a change to the maxframes.https.html test that sets the ‘src‘ attribute on a

fenced frame element that is created in a page that has surpassed the subframe limit. The renderer

crashes in this case, so this CL adds TestExpectations to cater to that until the problem is fixed. “1

1https://chromium-review.googlesource.com/c/chromium/src/+/3501941
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+crbug.com/1123606 virtual/fenced-frame-mparch

/wpt_internal/fenced_frame/maxframes.https.html [ Crash ]

We mine the entire history of tests added and removed to the testExpectations file from Novem-

ber 2018 to March 2022 to understand how flakiness has affected Chrome over time. During this

time 78,452 changes were made to this file which included adding new tests, removing old tests,

and changing the expectation for a test. Even though the flaky tests do not stop the build, the tests

are examined in the Chromium Gerrit, Chromium code review system, and a bug report is created

for the flaky tests.

3.3 Metrics

Matthew’s correlation coefficient (MCC) is a measure of the quality of binary classification

models, particularly when dealing with imbalanced datasets. It was introduced by Brian W. Matthews

in 1975. MCC ranges between -1 and +1, with +1 representing a perfect prediction, 0 indicating a

random prediction, and -1 indicating a complete disagreement between the prediction and the actual

labels.

The formula for calculating MCC is as follows:

MCC =
TP × TN − FP × FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)

In this formula, TP represents true positives, TN represents true negatives, FP represents false

positives, and FN represents false negatives.

3.4 Research Questions

This section embarks on a comprehensive exploration of the research questions aimed at unrav-

eling the complexities surrounding flaky tests in the Chrome ecosystem. The primary objective is

to gain a profound understanding of the nature and criteria defining flakiness within the context of

Chrome testing. Research Question 1 (RQ1), “What is the frequency of each category of flaky

test?” drives our exploration to understand the contents of the testExpectations file and the
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distribution of test categories. This comprehension forms the foundation of our research, guiding us

in accurately framing the problem.

A temporal dimension is introduced through Research Question 2 (RQ2), “How has the num-

ber of tracked flaky tests changed over time?”. This research question focuses on the behavior

of tracked flaky tests over time. Understanding the temporal evolution of flakiness is crucial for

identifying patterns, trends, and potential contributing factors to changes in the number of flaky

tests.

Research Question 3 (RQ3), “How accurately can we predict the lifetime of a flaky test

based on the description” benefits from novel methodologies to identify patterns and features in

test descriptions that align with flaky test behavior over time. The goal is to develop a predictive

model to assist developers in prioritizing tests for investigation and debugging.

To understand these research questions, we use a combination of qualitative and quantitative

research methodologies, including text analysis, statistical modeling, and temporal trend analysis.

The following parts will give more details about the methods we use to answer each question,

making sure we thoroughly explore the research goals.

3.5 Objectives and Methodologies

3.5.1 RQ1: Descriptive Statistics - What is the Frequency of Each Category of Flaky

Test?

To fully understand the process of handling flaky tests at Chrome, we first need to look at the

information stored in the testExpectations file. Research Question 1 (RQ1) aims to enhance

the understanding of flaky tests in the Chromium dataset by looking at descriptive statistics. The

main goal is to figure out how often each type of flaky test occurs, revealing the different ways these

tests show instability. This exploration is crucial for creating a smart and well-informed plan to

decide which tests to investigate more deeply.

To answer this question, we initially group together all test outcome that involve a combination

of “pass” and any other outcome type under the flaky category. By mining the history of changes
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made to the testExpectations file, we have access to all the tests that have been added to the

file throughout the time. To address this research question, we count the number of tests added to

the file, including those that were subsequently removed.

RQ1 is about building solid strategies to handle test instability effectively. The results from this

research question will give us useful insights for prioritizing tests, which will further help allocate

resources wisely and improve processes in testing system of Chromium.

3.5.2 RQ2: Flakiness Survival: How has the number of tracked flaky tests changed

over time?

The primary goal of this research question is to explore the evolution of flaky tests over time,

investigating the patterns and trends associated with changes in their numbers. We seek to com-

prehend how the total count of flaky tests fluctuates as new instances emerge and existing ones are

resolved and removed from the file. Answering this question specifies the extent of the flaky test

issue in Chrome. For instance, if the trend shows consistent increase, it suggests that Chrome’s

resources, including developers’ time, might not be sufficient to effectively address the challenge of

investigating flaky tests.

To answer this research question, we start by arranging tests chronologically. The initial count

of flaky tests is determined by the number of tests presented on the earliest day available in the

changelog. Then for each subsequent day, we update this count by adding the number of new flay

tests and subtracting the number of fixed flaky tests on that particular day. Eventually, we generate

the accumulative chart for the number of existing flaky tests over a period of 3 years.

3.5.3 RQ3: Predicting Test Life Time: How accurately can we predict the lifetime of

a flaky test based on description

For our third research question, we strive to develop a predictive model hat can forecast the

duration of a flaky test’s persistence, termed its “lifetime,” within Chrome’s testing environment.

The lifetime of a flaky test is measured from its addition to the test expectation file until its resolution

and subsequent removal by developers. This temporal metric serves as a valuable indicator for

identifying tests that are likely to be promptly resolved, thereby aiding developers in optimizing
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their resource allocation. Tests labeled with a “1” by the model will be suggested to developers as

having a high probability of being easily addressed.

To develop our predictive model, we use the entire set of flaky tests as our dataset. We examine

the distribution shown in Section 3.6.2, and note that 40% of flaky tests never get fixed. Of the

remaining 60%, more than half are fixed within 10 to 15 days. We categorize tests into two classes

based on the duration it takes to resolve the flaky test: tests that will be fixed “quickly” and those

that will take a long time to fix or will never be fixed, i.e., fixed “slowly”. Our primary goal is to

develop a model that distinguishes the “quick” class from the “slow”.

We defined “quick10” to be tests that are fixed in ≤ 10 days, and “quick15” to be tests that are

fixed in ≤ 15 days. We developed two models: one to predict tests fixed within 10 days (referred

to as “quick10”) and another for tests resolved within 15 days (referred to as “quick15”). In both

cases, the categories the model predicts are that a flaky test will be fixed quickly or slowly. The

model demonstrating superior performance among the two settings was selected as our final model.

Our model comprises a pipeline featuring a column transformer for transforming textual data into

vectors and a feature selector that identifies the most significant K features using a Random Forest

Classifier.

For representing test descriptions, we employ CountVectorizer to convert texts into a matrix cap-

turing token counts. This “bag-of-words” approach has been widely used in previous vocabulary-

based methodologies, [7] [21] [30]. Initially, these vectors contain as many features as there are

words within the test descriptions, potentially resulting in a sizable dictionary. To address this, we

implement feature selection techniques to limit the dictionary’s size, eliminate irrelevant features,

and retain the most informative ones. Feature selection not only reduces model training time but

also enhances overall performance and interoperability.

The SelectKBest method [39], utilizing a univariate statistical test with χ2, is employed to

retain the top k features with the highest scores. Fine-tuning the hyperparameters involves adjusting

parameters such as the number of trees in the forest, the sampling strategy for SMOTE, and the

number of features to retain. After achieving optimal settings, we retrain the model on the entire

training set and evaluate its performance using the holdout dataset. This comprehensive approach

ensures the effectiveness of our model in accurately predicting the lifespan of flaky tests based on
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Figure 3.5: Model Architecture

their descriptive features.

Figure 3.5 shows the architecture of the final model after parameter tuning.

3.6 Experimental Results

3.6.1 RQ1: Descriptive Statistics

The goal of this research question is to understand the content of the testExpectations file and

investigate the distribution of expected outcomes.

What is the frequency of each category of flaky test?

Figure 3.6 demonstrates the frequency of different categories of expected outcomes in the test-

Expectations file. As we can see, “Failure” is the most occurring expected outcome, with 16K tests

accounting for 40% of tests in the file. Failures block the build and must be fixed before integrating

the change.

The Flaky category is an aggregated group of different test outcomes that include “Pass” and at

least one type of failure, including [failure pass], [pass timeout], [failure pass timeout], [crash pass],
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Figure 3.6: Frequency of different outcomes in test expectation file. Failed tests and flaky tests are
the most occurring categories with 40% and 30% of the tests in the file accordingly.

etc. In Figure 3.6 we can see that 30% of the added tests to the testExpectations file are flaky.

The next common category is “Timeout”. “Timeout” is the expected outcome for the tests that

take a long time to finish, so the test runner aborts them. Almost 8% of the tests added to the

testExpectations file expected to timeout.

When there is a test that developers want to be disabled temporarily, they add it to this file with

“Skip” outcome. According to Figure 3.6, 3.3k tests added to the testExpectations file with “Skip”

as expected outcome.

Table 3.1: Chromium Dataset Summary

Outcome Count Bug BugPercentage CrossPlatformPercentage

Failure 19,153 13,151 68% 68%

Flaky 12,693 10,306 81% 54%

Skip 4,171 3,881 93% 60%

Timeout 3,597 1,358 37% 25%

Crash 1,089 498 45% 38%
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Understanding the Connection Between Flaky Tests and Bug Reports

In our data analysis presented in Table 3.1, we investigate the correlation between test outcomes

and bug reports, aiming to understand the impact of flaky tests on the bug reporting scenario. We

note that 80% of flaky tests are linked to specific bug IDs, which suppress the connection observed

in other test failures. This observation highlights the complexity of addressing the nondeterministic

nature of flaky tests, which makes them more challenging to resolve compared to regular failures.

As a result, there is an increased number of bug reports, indicating the ongoing effort required to

track and resolve these tests over time.

We also explore the dynamics of platform-specific tests, where the expected outcome varies based

on the platform. For example, a test might be anticipated to fail only on Windows. Table 3.1 reveals

an interesting correlation between the percentage of cross-platform tests and the frequency of as-

signed bug IDs. This connection suggests that tests demonstrating unexpected behaviors on specific

platforms are more likely to attract bug IDs, indicating increased attention from developers. More-

over, our findings indicate that platform-specific failures, where tests exhibit unexpected behaviors

exclusively on a particular platform, tend to receive fewer bug IDs. This insight sheds light on a

trend where these specific failures may be more frequently overlooked or considered less critical in

the development process.

testExpectations file is the main test failure suppression method and is used for tem-

porarily marking tests as flaky until they get fixed. The two most occurring categories,

“Failure” and “Flaky,” account for a combined total of 70% of all tests.

3.6.2 RQ2: Flakiness Survival: How has the number of tracked flaky tests changed

over time?

Figure 3.7 illustrates the cumulative count of flaky tests over 3 years. The graph reveals no-

ticeable spikes and dips on specific dates, indicating substantial fluctuations. These variations align

with builds that introduce a considerable number of new flaky tests, attributed to the incorporation
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Figure 3.7: Accumulated Number of Flaky Tests Over Time. The steep rise in early January 2020 is
due to the visually-refreshed form controls feature activation, which led to the addition of 583 tests
to the file until their baseline was updated.

of additional, or removing a group of flaky tests due to enabling or disabling a feature on the plat-

form under study. For example, on January 3, 2020, 583 flaky tests were added to the file because

of enabling visually-refreshed form controls on Windows/ChromeOS/Linux. The developers com-

mented, “Because many layout tests use form controls, including tests that are not directly testing

form controls, this CL [pull-request] requires around 1200 tests to be rebaselined.” Then they create

different bug issues to track the process of cleaning these newly added tests and remove these new

lines from TestExpectations.

testExpectations file is the main test failure suppression file and is used for temporarily

marking tests as flaky until they get fixed. Our investigation reveals a consistent trend: Apart from

two notable spikes, there is a gradual rise in the number of flaky tests for the first part of the period.

However, towards the end, a significant number of flaky tests are resolved and subsequently removed

from the file, leading to a relatively stable count of existing flaky tests. This stability implies that

the number of resolved flaky tests is nearly equivalent to the number of newly identified flaky tests

introduced over time [40].
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Figure 3.8: Log Scale Survival Chart of Lifetime of Flaky Tests: Approximately 40% of tests get
fixed within 15 days. nearly 40% of the tests survive by the end of the period.

Survival Chart of Flaky Tests Lifetime

Figure 3.8 illustrates the survival probability of flaky tests over time. This chart displays the

proportion of subjects that have not experienced the event (in our case, the tests that have not been

fixed) up to a specific point in time. As time advances, the survival probability diminishes, indicating

the proportion of tests that have not survived (i.e., been fixed) by each time point.

Initially, on the first day of observation, we start with a total of 8,279 tests in our dataset. In

the initial phase, roughly spanning between 10 to 15 days, there is a noticeable and relatively steep

decline in the survival probability. This suggests a higher rate of tests being resolved or fixed within

this early timeframe. Upon closer examination, we find that approximately 33% of the tests are

resolved before the 10-day mark, with this figure slightly increasing to 38% before 15 days.

Following this initial decline, there is a period where the survival probability levels off at a

slower rate. This indicates that tests remaining unresolved beyond a certain point have a higher

likelihood of either being left unresolved or being fixed much later. It suggests that these tests may

not be considered high priority for developers. Subsequently, there is a secondary, more gradual

decline in survival probability starting around the 200th day, signaling that over a more extended
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period, additional tests are being resolved.

Towards the end of the observation period, the number of remaining unresolved tests does not

reach zero. Instead, it constitutes approximately 40% of all tests, indicating that a substantial portion

of tests remain unfixed.

The median survival time, which represents the point at which 50% of the tests have been fixed,

falls approximately between 100 and 200 days, with a more precise estimate at around day 122.

In summary, the overall trend demonstrates a decreasing pattern in the number of tests available

for debugging, with a more rapid decline observed in the first 15 days, followed by a more stable

trend after the 200th day.

Analyzing the evolution of changes in testExpectations file over time reveals that

except for two short-lived spikes in 3 years, the total number of flaky tests is roughly constant.

By studying the survival time of flaky tests, we find that 40% of flaky tests are never fixed.

Of the flaky tests that are fixed or removed, 38% are in less than 15 days.

3.6.3 RQ3: Predicting Test Life Time: How accurately can we predict the lifetime of

a flaky test based on description?

Outcome measures. We use the standard evaluation metrics precision, recall, F1 score, and

Matthews correlation coefficient (MCC) metrics to evaluate the performance of our model and com-

pare different classifiers. These metrics have been used to evaluate the performance of classifiers,

including binary classification of flaky tests [7] [21] [26]. Since our dataset is unbalanced, weighted

metrics are more suitable for our evaluation.

Training and test data. Our data division strategy involves partitioning the dataset into two

segments: The initial 80% of tests constitute our training set, while the remaining 20% form the

holdout set. This approach ensures that we maintain the temporal evolution of the text expectation

file over time and mitigates any potential data leakage issues that might arise from random selection.

Emphasizing this temporal aspect is crucial, as our observations indicate that failing to account for

this condition and training a model on a shuffled dataset would lead to a significant overestimation
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of performance.

Table 3.2 reports the obtained performance. We achieved a promising precision rate of 73.6%

when categorizing tests into two distinct classes: “quick to fix” and “slow to fix”, with “quick to fix”

being the tests fixed within 15 days. Within the scope of our research, precision holds paramount

significance, as it dictates the proportion of tests labeled for investigation that truly warrant priority

attention. A precision rate of 73% signifies that when we recommend a test for investigation, it

proves to be genuinely “quick to fix” approximately 73% of the time, ensuring that our suggestions

to developers are mostly accurate and avoid unnecessary investigations.

Table 3.2: Result of the model, predicting tests fixed in ≤ 15 days (quick15) and ≤ 10 day (quick10)

Model Precision Recall MCC F1-Score

quick15 73.6% 57.4% 0.39 64.5%

quick10 62.7% 40% 0.28 49%

Using only the description of a test, we can predict the lifetime of flaky tests with 73%

precision and MCC close to 0.4.

3.7 Discussion

3.7.1 Model Optimization Process

To optimize our model, we engaged in parameter tuning, which we will discuss in the following.

Table 3.3 presents a comprehensive overview of our predictive model’s performance, highlighting

the systematic adjustment and evaluation of various parameters and features. In the following, we

delve into a discussion of these outcomes to better understand the model’s behavior:

The base model achieved a decent level of precision (67%) and recall (62%), indicating that it

could effectively identify the target variable. The MCC score of 0.34 suggests a moderate level of
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Table 3.3: Result of using different configurations and features. The Base Model has 200 estimators
and a maximum feature count of 200 and has quick15 as the target class.

Model Precision Recall MCC F1-Score

Base Model (Max Feature = 200, N estimators = 200) 67% 62% 0.34 0.64

Base Model + Oversampling 67% 63% 0.34 0.64

Base Model + Oversampling + Feature Selection 67% 60% 0.34 0.64

A = Base Model with Expectation and Author features 63% 58% 0.27 0.61

Model A + Feature Selection 66% 62% 0.35 0.64

Base Model (Max Feature = 400) 68.8% 59.3% 0.35 63.7

B: Base Model (Max Feature = 400, N estimators = 400) 73.6% 57.4% 0.35 63.7

Final Model: Model B + oversampling rate = 0.8 73.6% 57.4% 0.39 64.5

agreement between predictions and actual outcomes. The F1 score of 0.64 demonstrates a balanced

performance in terms of both precision and recall.

However, the introduction of the Author and Expectation features adversely affected the model’s

performance, resulting in a decline across all four metrics. Although subsequent Feature Selection

implementation showed improvements, it only brought the performance up to the base model’s

levels, suggesting a limited contribution of these features to overall model performance.

By expanding the maximum number of features to 400, a marginal improvement in precision

was noted. Additionally, aligning the number of estimators with the maximum features resulted in a

notable precision of 73.6%, indicating an enhanced ability to identify positive cases. These findings

imply that a more extensive feature set led to improved model performance, which is reasonable

considering the textual nature of our data.

Finally, the application of oversampling resulted in substantial improvements, with the MCC

score reaching 0.397 and the F1 score demonstrating a notable increase to 64.5%.

To sum up the optimization process, in the following, we present our major findings:
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1. Parameter Tuning (Number of Features and Estimators):

In the first set of experiments, the model was trained with a maximum of 200 features and 200

estimators, accompanied by true self-oversampling at 80%. This configuration yielded the highest

precision at 73.6% and a relatively balanced F1 score of 64.5%. However, it’s important to note that

the recall metric was moderate at 57.4%, indicating a trade-off between precision and recall. The

MCC (Matthews Correlation Coefficient) of 0.397 demonstrates a reasonable level of classification

performance.

Reducing the number of maximum features to 200 resulted in a slight decrease in precision and

F1 score, highlighting the importance of feature selection. This adjustment may help reduce model

complexity and potential overfitting.

2. Handling of -1 Values:

Experiments involving the treatment of -1 values showed that dealing with these values directly

could improve model performance. Precision and recall generally improved when compared to

scenarios where -1 values were not explicitly addressed. This suggests that considering -1 values

as a separate category or applying specific imputation techniques can be beneficial for classification

tasks.

3. Feature Selection:

Introducing feature selection techniques enhanced model performance consistently. Precision,

recall, F1 score, and MCC improved across various experiments. This underscores the importance

of identifying and utilizing the most informative features, reducing noise in the data, and potentially

mitigating overfitting.

4. Oversampling:

Employing oversampling with a ratio of 0.8, regardless of other parameter settings, generally

improved recall but sometimes led to a slight decrease in precision. Oversampling can help ad-

dress class imbalance, which is often crucial in classification tasks with skewed class distributions.

However, it’s essential to strike a balance between improving recall and maintaining precision.

5. Additional Features:

Including additional features like “Expectation” and “Authur” resulted in improved MCC, F1

score, and recall. These features appear to carry valuable information that enhances the model’s
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ability to make accurate predictions.

In summary, the performance of the model is highly sensitive to parameter settings, feature

selection, and the handling of -1 values. The experimental variations in parameters and features

provided valuable insights into model performance. Feature selection appeared to positively impact

prediction accuracy, while an increased feature count contributed to higher precision and recall. The

combination of oversampling techniques and parameter tuning also led to notable improvements.

Achieving a balanced precision-recall trade-off is crucial, and this can be influenced by the

specific problem context and goals. The incorporation of relevant features and appropriate prepro-

cessing techniques can significantly impact model performance, ultimately leading to better predic-

tive accuracy. Further fine-tuning and experimentation may be necessary to optimize the model for

specific use cases.

3.7.2 Window Training

To explore the short-term relationship between lifetime and historical data, we implement a

window training strategy with two distinct setups. The first configuration utilizes the past six months

of data to predict the lifetime class for the subsequent month, while the second configuration reduces

the historical window to three months for predicting the following month. To maintain consistency,

we employ the same model in both scenarios, adjusting the oversampling rate from 0.8 to 1. The

rationale behind this adjustment lies in the reduced number of samples within the training set of the

new model. With fewer instances available, the oversampling rate of 0.8 forces the model to move

data points from the minority class.

The training process starts from the first day of the dataset, allocating the initial 6 months for

training while reserving the 7th month for testing. Subsequently, it assesses the model’s perfor-

mance, stores the outcomes in a list, and advances the training window by one month to iterate the

procedure. Ultimately, an average is computed over the list to determine the overall performance of

the model.

Table 3.4 summarizes the result of window training models. Although the minimum and maxi-

mum values for precision are similar in the two models, by looking at the mode we can see that the

model with longer history performed better.
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The model achieved an average precision of 59%, ranging from a minimum of 22% to a maxi-

mum of 92% across various data windows. Notably, the mode of precision stood at 72.6%, closely

aligning with our prediction based on the entire dataset.

Table 3.4: Result of the window training model, for window sizes of 6 months and 3 months

Model Precision Mean Precision Mode Min Precision Max Precision

6-month window 59.7% 72.6% 22.3% 92.3%

3-month window 53.1% 41.8% 21.7% 93.4%

3.7.3 5-fold Cross Validation

To explore the impact of random dataset splitting, we examined two configurations: one involv-

ing a temporal dataset split, where the initial 80% of the data served as the training set, and the

remaining portion as the test set, and the other utilizing a 5-fold cross-validation. In the first con-

figuration, we trained our model on 6,600 tests, then, we evaluated it on 1,650 tests. In the second

setting, we partitioned the dataset into five equally sized folds. The model is trained on four of the

folds and tested on the remaining fifth fold. This process is repeated five times, each time using a

different fold as the test set. We achieved 0.65% Precision, 0.25 MCC, 0.48 Recall, and an Accu-

racy of 0.62% using 5-fold cross-validation, on our best model. This suggests that considering the

temporal splitting preserves the nature of data, providing a more realistic evaluation of the model’s

performance.

3.8 Threats to Validity

3.8.1 Internal Validity.

It is crucial to recognize how human factors can affect the time it takes to fix flaky tests. Changes

in development teams and project management practices can impact how quickly issues, including

flaky tests, are addressed. Considering and understanding these human-related factors is essential
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for predicting fix times accurately. Researchers should be careful in their analysis to understand the

effects of these factors, which significantly impact the reliability of predictive models.

3.8.2 External Validity.

When predicting how long it takes to fix flaky tests based on past changes, it is important to

consider if the findings apply to different projects and how human factors may influence resolution

times. Project variations are significant, and what works for one may not work for others. Re-

searchers need to carefully explore if models from one dataset can be used for different projects,

and be transparent about any limitations in generalizing the results.

3.8.3 Construct Validity.

In our investigation, we made the assumption that the removal of a flaky test from the file

indicated that developers had addressed the issue, considering it as a sign of successful resolution.

However, it’s important to acknowledge that in certain cases, test removal could stem from changes

in the software’s features rather than direct fixes to the test itself. Therefore, the absence of a test in

the file doesn’t always imply that the flakiness has been effectively addressed.

3.9 Conclusion

While software testing has long acknowledged flakiness as a prominent issue, research on this

subject has rarely focused on classifying flaky tests for investigation in a large-scale industrial CI

setting. In this research, we collected the history of more than 8K flaky tests on the Chrome project

to be utilized for our lifetime classification model. We observe that 40% of the flaky tests remain

unresolved. Among the flaky tests that undergo resolution or removal, 33% are addressed within a

timeframe of fewer than 10 days. Identifying the appropriate tests to address is crucial, given that

we aim to avoid allocating developers’ time to the 40% of tests that may prove unsolvable. Our

preference lies in pinpointing tests that are both more manageable and hold greater importance for

timely resolution.

To effectively prioritize tests for investigation, it is crucial to analyze the distribution of the time
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it takes for a flaky test in Chrome to be resolved. This exploration is fundamental for establishing a

robust framework to address the underlying issues. By analyzing the distribution of fixing time of

flaky tests we observe that except for two brief spikes observed over a 3-year period, our analysis

indicates that the overall count of flaky tests remains relatively stable. This trend demonstrates that

while developers address flaky tests, new ones continue to arise, maintaining a relatively consistent

count of existing flaky tests. This shows the necessity for an efficient test prioritization method to

direct developers’ efforts towards reducing this trend.

We consider the lifetime of a test as a measure of the effort needed to address the test and its

priority for being investigated. By solely analyzing the test description, our model can accurately

predict the lifespan of flaky tests, achieving a precision of 73% and an MCC of 0.39. Analyzing

test descriptions alone yields a high-precision method for predicting flaky test lifespans, suggesting

a practical approach to test management.
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Chapter 4

Discerning Legitimate Failures from

Flaky Failures

Continuous Integration (CI) is a software engineering process that allows developers to fre-

quently merge their changes in a shared repository [41]. To ensure a fast and efficient collaboration,

the CI automates different parts of the development life cycle. Regression testing is an important as-

pect of CI as it ensures that new changes do not break existing functionality. Test suites are executed

for every commit and test result signals whether changes should be integrated into the operational

codebase or not.

Tests are an essential part of the CI as they prevent faults from entering the codebase, and they

ensure smooth code integration and overall good software function. Unfortunately, as flaky tests,

exhibit a non-deterministic behavior, they send false alerts to developers about the state of their

applications and the integration of their changes.

Indeed, developers spend time and effort investigating flaky failures, as they can be difficult

to reproduce, only to discover that they are false alerts [37]. These false alerts occur frequently

in open-source and industrial projects [6], [9], [11], [42] and make developers lose not only time

but also their trust in the test signals. This trust issue in turn introduces the risk of ignoring fault-

triggering test failures. This way, false alerts defy the purpose of software testing and hinder the

flow of the CI.
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To deal with test flakiness, many techniques aiming at detecting flaky tests have been introduced.

A basic approach is to rerun tests multiple times and observe their outcomes. While to some extent

effective, test reruns are extremely expensive [42], [43], and unsafe. To this end, researchers have

proposed several approaches relying on static (the test code) [7], [8], [21], [26], [42] or dynamic

(test executions) [6], [11], [44] information (or both) [27] to predict whether a given test is flaky.

Among the many flakiness prediction methods, the vocabulary-based ones [7] [20] [22] [25] [30]

are the most popular [2]. They rely on machine-learning models that predict test flakiness based on

the occurrences of source code tokens of the candidate tests. Interestingly, previous research has

found these approaches particularly precise, with current state-of-the-art achieving accuracy values

higher than 95% [7] [20] [21] [22] [26].

At the same time, vocabulary-based approaches are static and text-based, thus, they are both

portable, i.e. limited to a specific language, and interpretable, i.e. users may understand the cause

of flakiness based on the keywords that impact the model’s decisions. All these characteristics

(precision, portability, and interpretability) make vocabulary-based approaches appealing; they are

flexible and easy to use in practice. Because of this, we decided to replicate these techniques on

an industrial project (the Chromium project) and evaluated their ability to effectively support the

detection of flaky tests during the CI operation cycles.

In this chapter, we utilize the dataset provided by Haben et al. [10] to classify the dataset into

two categories: flaky failures and legitimate failures. This classification is accomplished through

the application of vocabulary-based methods. To define the scope of the problem, our initial step in-

volves understanding the process of labeling flaky tests on Chrome and conducting a comprehensive

analysis of the dataset.

The subsequent sections of this chapter are structured as follows. Initially, we provide an

overview of the Chrome Continuous Integration (CI) process and elaborate on the characteristics of

our dataset. Following this, we offer a concise introduction to the machine learning methodologies

employed in our study. Section 4 delves into the original study along with its associated limitations.

In Section 5, we outline our research objectives and present the research questions. Subsequently,

we present the outcomes of our analysis and address the research questions posed earlier. Lastly,

we engage in a comprehensive discussion of the findings and outline potential threats to the validity
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Figure 4.1: Decision tree representing how test outcomes are determined in a build by the Chromium
CI. PASS depicts successful tests, FLAKY depicts tests that passed after failing at least once, while
UNEXPECTED depicts tests that persistently failed. [38]

of the research. The concluding section compactly summarizes the entirety of the chapter.

4.1 Chrome Process

Chromium employs a distinctive approach to handle flaky tests, as depicted in Figure 4.1. The

decision-making process employed by LuCI (Logical Unit of Chromium Infrastructure) determines

the outcome of a specific test within a build. A test is deemed successful if it passes without any

errors during a single execution. However, in case of failure, LuCI initiates automatic retesting,

conducting the test up to five times. If all reruns yield failures, the test is labeled as “unexpected”,

resulting in a build failure. In the original study, such unexpected tests are referred to as “fault-

revealing” tests.

Moreover, if a test manages to succeed despite encountering one or more failed executions

within the same build, it is classified as “Flaky”. However, this classification does not hinder the

overall progression of the build, as it still proceeds as though there had been no failure.
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Figure 4.1 shows how tests are grouped into four categories, and we discuss the process below.

Expected. Tests can have five outcomes: pass, fail, abort, timeout and crash. Developers can

specify the acceptable outcomes in the testExpectations file. If no outcome is listed in the

file, then the only acceptable outcome is a pass. Consequently, when the test execution result aligns

with the expected outcome, the test is labeled as “Expected”.

Exonerated. When a test is expected to fail but passes, the test has an unexpected outcome,

but is categorized as Exonerated because tests are always initially designed to pass. Develop-

ers can optionally check the list of tests that were expected to fail but passed. In the figure 4.2

“compositing/gestures/gesture-tapHighlight-2-ifram-scrolled-inner.html” is an Exonerated test be-

cause it passed even though it was expected to fail.

Flaky. Tests that fail unexpectedly are re-run multiple times. If one of the re-runs passes, the

test is categorized as Flaky, and the build can still be integrated.

Unexpected. And Finally, if a test fails and none of the reruns pass, the test will be labeled as

“Unexpected”. Unexpected tests trigger a build failure. In this study, unexpected tests are referred

to as fault-revealing tests.

Figure 4.2 provides insight into a typical build result in the Chromium project. In this build,

one test exhibited an unexpected outcome, prompting 4 subsequent reruns to verify the outcome’s

reliability. We also can see that 212 tests were identified as flaky, highlighting instances where tests

transitioned from initial failures to subsequent passes. Moreover, the results reveal that 233 tests

passed despite their expected failure status, resulting in their classification as exonerated tests.

4.2 Data

In this chapter, we employ two datasets for our study. The initial dataset that is used for research

question 1 (RQ1) comprises the outcomes of all test runs on the Linux builder throughout January

2022. The second dataset is a subset of the initial dataset over a longer period and is used to answer

RQ2 and RQ3. This difference is motivated by the fact that gathering all the tests for nine months

would not be practical due to its substantial size. Table 4.1 provides statistical insights into the

extent of the flaky test challenge within the Chromium project. In the span of just one month,
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Figure 4.2: Sample Build Result in Chromium. This build had 212 flaky tests 233 exonerated and
one unexpected test.
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Chrome executed an immense volume of tests, totaling 27 million conducted across 99K distinct

tests. Among these test runs 820K instances resulted in test failures, highlighting the prevalence

of issues encountered during testing. Remarkably, a substantial portion of these failures, totaling

66,189, were identified as flaky test runs, indicating tests that exhibit inconsistent behavior across

multiple executions. These flaky tests were associated with 970 distinct test cases, reflecting the

diversity of scenarios where such unpredictability arises. Within these builds, a notable subset of

21,932 test cases were identified as contributing to flaky failures, underscoring the need for targeted

strategies to address these specific issues. These figures vividly illustrate the significant scale of the

flaky test issue within the Chromium project.

It is important to note that this dataset is utilized solely for illustrating the considerable scale of

flaky test occurrences in the Chrome environment. Subsequently, for the remainder of this paper,

we exclusively utilize the dataset introduced by Haben et al. [10]. This choice is motivated by our

objective to gather features such as test sources and test logs over an extended duration. The entire

set of tests within the Chrome project would be impractical to work with due to its substantial size.

Consequently, tests lacking essential features or those influenced by infrastructure issues are omitted

from our analysis to ensure a more manageable dataset for the proposed research.

Table 4.1: Chromium Dataset Summary for one month (January 2022)

Number of test runs 27,959,773

Number of distinct tests 99,723

Number of failed test runs 819,572

Number of builds 231

Number of flaky test runs 66,189

Number of distinct flaky tests 970

Number of builds with flaky failure 231

Number of flaky failure tests 21,932

Table 4.2 presents an in-depth analysis of the frequency distribution for each final status cate-

gory. Notably, the count of flaky tests in this table closely mirrors the figures previously outlined

in Table 4.1. However, it’s essential to clarify the inconsistency observed between the statistics
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presented in Tables 4.2 and 4.1 concerning failed tests. This difference arises from the classification

criteria employed, particularly in cases where tests encounter failures and undergo multiple reruns.

When a test fails and is subjected to four subsequent reruns, it’s classified as an unexpected out-

come, leading to a count of one unexpected outcome and five test failures. Additionally, it’s worth

noting that a subset of failed tests contributes to the category associated with flaky failures. An

important observation to highlight is that not every instance of test failure automatically results in

the test being labeled as unexpected.

Table 4.2: Number of Tests for each category of Final Status

Final Status Number of tests

Flaky 66,189

Exonerated 33,563

Unexpected 11,856

Table 4.3 compares flaky test occurrence to the whole dataset. Notably, flaky failures represent

only 2.6% of the total failures.

Table 4.3: Flakiness magnitude

Percentage of failures that are flaky 2.6%

Percentage of test runs that are flaky 0.23%

Percentage of unique tests that are flaky 0.9%

4.2.1 Dataset Features

Table 4.4 provides a comprehensive overview of key features associated with test executions in

the Chrome testing Environment.

buildId: The unique build number is linked to the respective test execution, providing a refer-

ence point for tracking and associating tests with specific builds.

flakeRate: The flake rate of the test over the last 35 builds, indicating the proportion of instances

where the test exhibited flakiness. This metric aids in assessing the stability of the test over time.
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runDuration: The duration of the test execution, represents the time taken for the test to com-

plete its run. This feature is crucial for analyzing the efficiency and performance of individual tests.

runStatus: A categorical feature capturing the status of the test execution. Possible values

include ABORT, FAIL, PASS, CRASH, and SKIP, providing insights into the outcome of each test

run.

runTagStatus: Another categorical feature denotes additional information about the test execu-

tion. Possible values encompass CRASH, PASS, FAIL, TIMEOUT, SUCCESS, FAILURE, FAIL-

URE ON EXIT, NOT RUN, SKIP, and UNKNOWN, offering a more detailed characterization of

the test’s status.

testSource: The source code associated with the test, facilitates a direct link to the codebase

and aids in debugging and analysis.

testSuite: The test suite to which the test belongs, providing context and grouping tests based

on their functional or logical associations.

testId: The unique identifier for the test, representing its name. This feature allows for individ-

ual test tracking and identification.

4.3 Background

Over the past few years, there have been significant advancements in machine-learning methods

applied to text analysis tasks and Natural Language Processing (NLP) models. In this section, we

mention three approaches that we utilize to solve the problem of flaky failure classification.

4.3.1 Bag of Words

In Natural Language Processing, the “Bag of Words” (BoW) model stands out as a fundamental

and influential concept. This model, rooted in linguistic theories, has played a pivotal role in shaping

the landscape of text representation and analysis. The foundational idea behind the Bag of Words

model is to treat a document as an unordered collection of words, dismissing the word order and

grammatical structure. Instead, it focuses solely on the occurrence and frequency of individual

words within a document. This abstraction facilitates a simplified yet effective representation of
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Table 4.4: Description of our features. Column Feature Name specifies the identifiers used in our
dataset, while Column Feature Description details the features

Feature Name Feature Description

buildId The build number associated with the test execution

flakeRate The flake rate of the test over the last 35 builds

runDuration The time spent for this test execution

runStatus

ABORT

FAIL

PASS

CRASH

SKIP

runTagStatus

CRASH

PASS

FAIL

TIMEOUT

SUCCESS

FAILURE

FAILURE ON EXIT

NOTRUN

SKIP

UNKNOWN

testSource The test source code

testSuite The test suite the test belongs to

testId The test name

textual data, offering a numerical and quantitative basis for further analysis.

In its computational manifestation, the BoW model involves constructing a “bag” or a vector

representation for each document, where the dimensions of the vector correspond to the unique
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words present in the entire corpus. The value in each dimension reflects the frequency of the corre-

sponding word in the document. Consequently, each document is represented as a high-dimensional

vector, and the entire corpus forms a matrix where each row corresponds to a document.

4.3.2 Word2Vec

Word2Vec is a popular natural language processing (NLP) technique that embeds words into

continuous vector spaces, capturing semantic relationships between words based on their contex-

tual usage. Developed by Mikolov et al. [45], Word2Vec represents words as dense vectors in a

high-dimensional space, where the distances and directions between vectors reflect the similarity

and analogy relationships between corresponding words. The model operates on the distributional

hypothesis, assuming that words with similar meanings tend to appear in similar contexts. The

resulting embeddings can be utilized for various NLP tasks such as sentiment analysis, machine

translation, and information retrieval.

In the context of our study, we leverage Word2Vec as part of our flaky test prediction method-

ology. By incorporating semantic information encoded in word embeddings, we aim to enhance

the understanding of the textual features associated with flaky tests. The model’s ability to capture

subtle relationships between words enables a more contextually informed analysis of test-related

text, potentially improving the accuracy of our flakiness prediction. We build upon previous stud-

ies that have successfully applied Word2Vec in software engineering contexts [7, 10, 20], adapting

its principles to the specific challenges posed by identifying and mitigating flaky tests in software

development environments.

4.3.3 BERT Model

Devlin. et al. [46] introduced Bidirectional Encoder Representations from Transformers (BERT),

a language model aiming to pre-train deep bidirectional representations from unlabeled text. BERT

achieves this by conditioning on both the left and right context in all layers. The pre-trained BERT

model can then be fine-tuned with only one additional output layer to achieve state-of-the-art per-

formance in various tasks, including question answering and language inference, without requiring

significant task-specific architecture adjustments.

49



Through masked language modeling, BERT learns to predict missing words in a sentence, con-

sidering the context of the surrounding words. This process equips BERT with a deep understanding

of the relationships between words and their contextual meanings. Fine-tuning on specific tasks,

such as sentiment analysis or named entity recognition, allows BERT to adapt its learned represen-

tations to perform well on a wide array of natural language processing tasks. BERT’s ability to

capture context, semantics, and relationships between words has led to its widespread adoption and

success in various language-related applications.

To be sure we are covering a variety of ML approaches with different levels of model com-

plexity and architecture, we apply a pre-trained Bert model to our dataset. Specifically, we adopt

DistilBERT, a lightweight variant of BERT to classify test failures into two groups legitimate fail-

ures and flaky failures. Our approach revolves around a text classification model architecture, where

we leverage the DistilBERT backbone pre-trained on extensive textual data to capture complex pat-

terns within test source code. The process begins by tokenizing the input text using the DistilBERT

tokenizer, which generates a numerical representation that maintains the contextual information of

words in the form of word embeddings. During the training process, the model is fine-tuned using

a cross-entropy loss function. The loss is computed by comparing the predicted labels against the

actual ones. This supervised learning approach allows the model to iteratively adjust its parameters

to minimize the prediction error. To assess the model’s performance, we utilize standard metrics

such as precision, recall, F1 score, and accuracy. These metrics provide a comprehensive evaluation

of the model’s performance. The implementation leverages the PyTorch library, which provides a

flexible and efficient platform for deep learning. Additionally, the transformers library is utilized

for seamlessly integrating the DistilBERT model and tokenizer into the architecture. The model

is trained over multiple epochs, each epoch involving a pass through the entire training dataset.

Throughout the training process, we monitor the model’s loss and performance on validation data.

The model’s robustness and generalization capabilities are crucial aspects evaluated during this

phase.
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4.4 Original Study

In the second chapter, we discovered the effectiveness of vocabulary-based techniques in pre-

dicting test flakiness. These techniques leverage machine learning to estimate the probability of a

test demonstrating flakiness by analyzing textual characteristics in the code. Remarkably, recent

progress has boosted the accuracy of these techniques to surpass 95%. Their simplicity and empha-

sis on textual analysis enable them to seamlessly integrate with specific programming languages and

are easily comprehensible. Their popularity stems from their precision, compatibility with various

languages, and practical usability.

On the other hand, the majority of studies on flaky tests focus on predicting flaky tests, and

the problem of predicting flaky test failures and discriminating between fault-triggering and flaky

failures has largely been ignored by previous research. To address the limitations of current meth-

ods, Haben et.al [10] focus on classifying test failures into false alerts and legitimate failures. The

authors reported that their approach can accurately distinguish legitimate failures from false alerts,

achieving a Matthews Correlation Coefficient (MCC) of up to 95%.

The study done by Haben et.al [10] highlights an important aspect of flaky tests and provides a

comprehensive dataset, which serves as a foundational resource for further exploration and analy-

sis in this field. However, it is essential to recognize and tackle certain inherent limitations within

their methodology. Upon examination of their proposed model, a notable vulnerability emerges,

stemming from the random allocation of data into training and testing sets. While such an approach

is widespread in machine learning, it exposes the study to the risk of data leakage, a phenomenon

wherein information from the testing set inadvertently influences the training process, thereby com-

promising the integrity and reliability of the results. Our hypothesis suggests that the performance

of the model will vary when employing a time-sensitive approach to splitting the dataset for training

and testing. This limitation provided valuable insights into areas of improvement and refinement

for our research. Overall, the strengths and constraints of this study motivated us to develop our

research based on its foundation.
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4.5 Objectives and Methodologies

4.5.1 RQ1:How often does each test fail without identifying a fault?

In our study, the primary focus revolves around identifying false alert test failures and con-

structing a framework to predict such occurrences. However, before delving into the development

of predictive models, it is crucial to understand the frequency of this phenomenon. To achieve this,

we embark on an analysis of a 30-day dataset of test results, where our objective is to identify

unique tests based on their distinctive identifiers and ascertain the occurrences of flaky failures. By

investigating how frequently individual tests fail without indicating a fault, we aim to gain insights

into the extent of flakiness within the testing environment. This analysis lays the groundwork for

identifying patterns and trends in test behavior, which, in turn, will facilitate the development of

strategies to mitigate the impact of flaky failures on software test quality.

The flake rate is determined by dividing the number of instances where a test exhibited flakiness

by the total number of test runs. To accomplish this, we first identify unique tests based on their

unique identifiers, counting those that experienced at least one flaky failure. For each of these unique

tests, we compute the corresponding flake rate.

We initiate our exploration of this research question by determining the count of unique tests

within a 30-day dataset of test results. Among the 99,000 distinct tests, we identified 970 unique

tests that experienced at least one instance of a flaky failure, which accounts for approximately one

percent of all unique tests. For each test result associated with a test Id we compute the flaky rate

using the following methodology:

FlakeRate =
NumberOfF lakyFailures

NumberOfAllTheTestRuns
(2)

The outcome reveals that 50% of flaky tests exhibit a flake rate lower than 0.09, indicating that

half of the flaky tests experience flakiness in less than 9% of their runs.

Additionally, we calculate the flip rate, as introduced in [9], for each version of a test. The

flip rate serves as a metric to approximate the degree of flakiness exhibited by a test. In our dataset,
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84% of flaky tests exhibit a flip rate exceeding 0.8, signifying that a great majority of tests frequently

transition between two possible outcomes, indicating a high degree of flakiness.

4.5.2 RQ2: Can we propose a model to discern legitimate failures from flaky tests?

In addressing the following research questions, we work on the dataset provided by Haben et

al. [10]. This study is the first to delve into the Chromium dataset, offering a practical perspective

on flaky tests within an industrial context. The researchers gathered test execution data from 10,000

consecutive builds facilitated by the Linux Tester, utilizing queries to the LuCI API. This dataset

spans nine months from March 2022 to December 2022. The study by Haben et al. [10] provides a

compelling exploration of flaky tests in a large-scale industrial setting, addressing real-world chal-

lenges. The significance of flaky tests becomes evident when examining the monthly test runs of

Chromium, where millions of tests are conducted, revealing a substantial occurrence of thousands

of flaky tests. This observation contrasts with prior works like [9], which predominantly relies on

synthetic data.

In prior investigations [20] [21] [22] a predictive analysis of test flakiness has been conducted

utilizing the source code of the tests and the code under examination. However, a limitation in

the majority of these studies lies in their application to relatively small datasets or their lack of

evaluation within the context of a continuous integration process, thereby diverging from real-world

scenarios. Consequently, we recognized the need to explore the applicability of using test sources

for predicting flakiness in a more practical context.

In this chapter, we apply state-of-the-art flakiness prediction methods to the Chromium dataset

and check their performance. Our investigation initiates with a straightforward bag-of-words and de-

cision tree methodology, progressively transitioning to more sophisticated approaches like Word2Vec

and the BERT language model. This comprehensive exploration includes a range of analytical

strategies to enhance our understanding of flakiness prediction in the context of large-scale test runs.

Bag of Words with Random Forest. In our initial methodology, we employ the bag of words
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technique to transform the textual data (test source code) into a vector, while utilizing OneHotEn-

coder to convert the categorical feature (test suite) into a vector representation. The remaining fea-

tures, such as flake rate and run duration, are numerical and are directly input into the model. Sub-

sequently, a random forest classifier is employed to categorize tests into two groups: flaky failures

and legitimate failures. In our pursuit of optimal performance, we explore additional techniques,

including oversampling and feature selection methods, the outcomes of which will be discussed in

the subsequent section.

Word2Vec with Weighted Logistic Regression. For our second method, we use Word2Vec to

convert textual data to vectors. We start our setting with a vector size of 100, an initial learning rate

of 0.025, and a min count equal to 2, which ignores all words with a total frequency lower than two.

Then we used a weighted Logistic Regression to reward the model minority class weight

times more when it predicts a sample of the minority class correctly. We use this setting because

almost 98% of our samples belong to the flaky tests class, which means if the model classifies all the

samples to class label 0 (flaky tests), it will achieve a 98% accuracy, with a very high false positive

rate. With the weighted model, we encourage the model to classify more samples into the target

class which is the samples with label 1 (legitimate failures).

BERT. In our pursuit of exploring diverse model types with varying complexities and meth-

ods for processing textual data, we introduce BERT, a groundbreaking natural language processing

model that has significantly impacted the field of language understanding. BERT, short for Bidi-

rectional Encoder Representations, leverages a transformer architecture, a neural network design

known for its proficiency in capturing intricate patterns and dependencies within data. The distin-

guishing feature of BERT lies in its bidirectional approach, enabling it to simultaneously consider

both the left and right context of a word, fostering a more holistic comprehension of the context in

which words are situated.

At the core of BERT’s functionality is its pre-training phase on vast corpora of text data, a pro-

cess that equips it with the ability to acquire contextualized embeddings for words. This pre-trained

BERT model can then be fine-tuned with the addition of only one extra output layer, showcasing its
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adaptability and efficiency in achieving state-of-the-art performance across various language-related

tasks. This approach ensures a robust exploration of different model complexities and textual data

processing methodologies, with BERT standing out as a versatile and powerful candidate in our

experimentation.

Figure 4.3 illustrates the architecture of the proposed model. As we can see It utilizes a Dis-

tilBERT model as its backbone, which is a variant of the BERT model specifically optimized for

lightweight and efficient performance. The DistilBERT model comprises several key components,

including embeddings, transformers, and classification layers.

The DistilBERT model comprises several key components, including embeddings, transformers,

and classification layers.

Embeddings: These components are responsible for converting input tokens into numerical

representations called embeddings. The word embeddings capture the semantic meaning of words,

while the position embeddings encode the positional information of tokens within the input se-

quence. These embeddings are processed through layer normalization and dropout operations to

enhance model performance and prevent overfitting.

Transformers: The transformer architecture is central to the DistilBERT model and consists of

multiple transformer blocks. Each transformer block contains self-attention mechanisms that allow

the model to weigh the importance of different words in the input sequence when making predic-

tions. These self-attention mechanisms are complemented by feed-forward neural networks (FFN)

and GELU activation functions, which facilitate non-linear transformations and feature extraction

from the input data.

Classifier: At the output layer, a linear classification layer is applied to the representations

learned by the DistilBERT backbone. This layer maps the high-dimensional feature vectors pro-

duced by the transformer blocks to the desired output classes, in this case, binary classes indicating

whether a test is flaky or not.

4.5.3 RQ3: Are some test suites easier to predict than others?

In the context of Research Question 3, our primary objective is to find out if the proposed

model performs better on a subset of data. This involves a detailed exploration of the flakiness
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Figure 4.3: Architecture of model developed based on Bert
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characteristics inherent in different test suit categories, specifically investigating the potential for

predicting faults from flaky failures within each category Additionally, we examine the distribution

of flake rates among tests demonstrating flaky behavior compared to those encountering legitimate

failures across various categories. The goal is to identify an optimal threshold for classifying tests

into the categories of flaky or legitimate failure, based on flake rates.

We classify the tests based on the test suit into three categories: Layout Tests, Browser Tests,

and Unit Tests.

Layout tests are used by Blink (browser engine) to test many components, including but not

limited to layout and rendering. Typically, these tests include loading pages in a test renderer and

then comparing the resulting output, either rendered content or JavaScript output, with an antici-

pated output file [47].

Browser Tests designed specifically for integration testing of Chrome features within the browser

process. The tests run after the browser process initializes and a window is created. To prevent in-

terference among tests, each test operates within its distinct browser process. Browser tests involve

the launch of a complete browser and subsequently execute the test within this instance.Typically,

files housing browser tests are identifiable by the suffix browsertest.cc [48] [49].

Unit Tests provide a mechanism for testing small sections of code in isolation from the rest of

the extensions, and outside of the browser. These tests aim to verify specific parts of the Chromium

codebase within a controlled and isolated testing environment. Typically, unit tests are contained in

files denoted by the suffix unittest.cc [48] [50].

4.6 Experimental Results

4.6.1 RQ1:How often does each test fail without identifying a fault?

Addressing this research inquiry starts with quantifying the number of unique tests within a 30-

day dataset of test results. Among the 99,000 unique tests, 970 exhibited at least one flaky failure,

counting for approximately one percent of all distinct tests.

In Figure 4.4, we depict the cumulative flake rate distribution for the 970 unique tests identified

57



Figure 4.4: Cumulative flake rate for the 970 unique flaky tests

with at least one instance of flaky failure. Notably, over 65% of these tests demonstrate a flake rate

below 0.2, indicating that more than half of the identified flaky tests experience flakiness in less

than 20% of instances. Moreover, the figure highlights that certain tests exhibit flakiness in more

than 70% of instances, emphasizing the significance of this phenomenon. The primary focus lies in

the first half of the spectrum, where tests exhibit flakiness only minimally, suggesting that failures

in these tests likely arise from code bugs rather than flakiness.

For each unique test ID, we consider every build of that test as a distinct version and compute the

number of re-runs for each version. In total, we observed 26,797 different versions that underwent

at least one transition from pass to fail or vice versa within the version. In the Chromium project,

when there are two different test results for a version, the practice is generally to avoid re-running

the test. This results in 66% of tests having a re-run number of one within each version, while 22%

have been run again two times, and the maximum number of re-runs is capped at 7.

To capture the temporal variability of test results, we count the number of flips in test outcomes,

representing the instances when a test result shifts from failed to pass or vice versa. By calculat-

ing the flip rate, as expressed in equation 3, we can determine how frequently flaky tests exhibit

flakiness. The flip rate is computed for each version (v) as follows:
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Figure 4.5: Distribution of flip rate values for versions

FlipRatev =
NumberOfF lipsv

NumberOfPossibleF lipsv
(3)

As previously noted, the limited number of runs, typically only 2, for the majority of flaky tests

implies an evident outcome – a high portion of versions will have a flip rate of 1. The surprising

result of the flip rate calculation for test versions reveals that 86% of versions indeed exhibit a flip

rate of 1. This suggests that the flip rate might not be a reliable metric for ranking flaky tests for

further investigation. Beyond the fact that 86% of versions share a similar value for this metric, the

overall variability in possible values is not substantially high. To be more precise, even within the

remaining 14% that do not have a flip rate of 1, 90% exhibit a flip rate of 0.5.

Figure 4.5 illustrates that most versions have a flake rate of 1, leading us to question the efficacy

of flip rate as a measure to capture the flakiness level of tests, at least within the Chromium dataset.

To validate this assumption, an aggregation of flip rates across all versions of a unique test is nec-

essary. Figure 4.6 presents a cumulative chart showcasing the distribution of flip rates for all tests.

According to this chart, the minimum value of the flip rate for a test is 0.5. Furthermore, 84% of

tests have a flip rate higher than 0.8, with 44% of tests having a flip rate equal to 1.
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Figure 4.6: Distribution of flip rate values for tests

Opting for a threshold of 0.8 would lead to flagging 16% of the tests for further investigation,

amounting to 110 tests out of the total 695 in this dataset. It’s worth noting that, as previously

mentioned in 4.1, we initially had 970 unique tests. However, 276 of them were excluded from the

analysis of flip rates for individual versions since they lacked either pass or fail results.

Almost 65% of the tests have a flake rate of less than 0.2 and 66% of tests have been rerun

only once after failure. The flip rate is not a helpful metric for evaluating the flakiness level

of tests in the Chromium project due to the overall invariability of its values.

4.6.2 RQ2: Can we discern legitimate failures from flaky tests?

To answer this research question, we apply a variety of machine-learning models to our dataset

to predict legitimate failures from flaky ones.

We trained our models on 1,264,973 flaky tests and 9,323 fault-revealing tests. Then, we evalu-

ated it on 217,503 failures caused by flaky tests and 2,320 fault-triggering failures caused by fault-

revealing tests.

Model A: Bag of Words with Random Forest. As we had success with our proposed model in

predicting the lifetime of flaky tests, we started our investigation with the same model. We applied a
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balanced random forest with CountVectorizer to classify the dataset into legitimate failures and flaky

failures. Table 4.5 reports the obtained performance. Similar to the performance achieved by pre-

vious vocabulary-based models on other datasets, our model was able to reach high accuracy with

a precision of 99.1% and a recall of 97.8%. However, a noteworthy concern arises from a substan-

tial false-positive rate, attributed to 80.2% of fault-triggering failures being erroneously classified

as flaky (FP). This misclassification is critical, particularly considering that fault-triggering fail-

ures inherently signify genuine faults. The overall Matthews Correlation Coefficient (MCC) value

stands at 0.13, indicating a relatively modest performance. This suggests that the model encounters

challenges, compared to random selection, in accurately identifying fault-triggering failures.

Table 4.5: Performance of Random Forest Model. When using only static features (source code)
model missed 77.4% of legitimate failures. Contribution of execution features improves the model
performance.

Feature Precision Recall MCC FPR

Test Source 99.3% 97.1% 0.10 77.4%

Test Source + Execution Features 99.3% 87.6% 0.13 52.4%

To further examine the performance of our model, we look into the confusion matrix depicted in

Figure 4.7. The x-axis reports the predicted label and the y-axis the actual label. Correct classifica-

tions are displayed in the top left (TN) and bottom right (TP). We observe that the model can detect

flaky failures with high precision. We also see that 1,228 flaky tests are classified as legitimate

failure (FN). This number is also important to consider: it translates in all cases where developers

will be required to investigate irrelevant failures.

It is important to consider the number of legitimate failures that are wrongly identified as flaky

(FP). Previous studies by researchers [7] [20] [21] have reported high precision, recall, and F1-

Score when predicting flaky tests. However, our findings suggest that although we achieved similar

performance, the high rate of false positives indicates that the model is biased towards the majority

class and is unable to accurately identify these samples.

Model B: Word2Vec with Weighted Logistic Regression.

Weighted LR is used in classification problems with unbalanced datasets to help the model
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Figure 4.7: Confusion matrix for the model trained on source code and dynamic features. High
accuracy is reached, similar to the performance reported in previous works. Nonetheless, 1,228
(52.9%) out of the 2,320 fault-triggering failures are mislabeled as flaky.
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generate more balanced predictions. In our case, we started by giving a weight of 100 to the minority

class and 1 to the majority class and increased this number to improve the results. Table 4.6 shows

the result of this model.

Table 4.6: Model B Performance: Word2Vec with Weighted Logistic Regression

Precision Recall MCC FPR

98% 98.9% 0.20 76.2%

Model C: BERT.

Table 4.7 represents the result of the Bert mode. Probably not very surprisingly, this model

completely fails to capture legitimate failures. This poor performance can be related to only relying

on the source code for prediction, the complexity of the model and the unbalanced nature of the

dataset.

Table 4.7: Model C Performance: BERT

Precision Recall MCC FPR

98.9% 100% 0 100%

The outcomes obtained from three distinct models, which fail to demonstrate promising results,

lead us to believe that discerning fault-triggering flaky failures from general flaky failures resembles

the search for a needle in a haystack.

Despite high precision and recall in predicting flaky failures, vocabulary-based models fail

to capture fault-revealing failures with an MCC value remaining below 0.2.

4.6.3 RQ3: Are some test suites easier to predict than others?

In our effort to enhance the performance of the model proposed in [10], we experimented with

a wide array of parameters. Our findings lead us to the conclusion that, given the highly unbalanced

nature of the dataset, distinguishing legitimate failures from flaky ones becomes akin to locating

a needle in a haystack. Different sampling techniques and the implementation of weighted classes
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were attempted to address the issue of an imbalanced dataset, but these strategies proved ineffective.

Table 4.8: Percentage of Test Suit Categories in Dataset. Layout tests constitute 80% of the dataset,
whereas unit tests account for a mere 8%. Across all three categories, legitimate failures are ap-
proximately one percent of the total tests.

Test Suit Percentage Of Dataset Legitimate Failures Percentage Mean Flake Rate

Layout Tests 80.75% 1% 0.2

Browser Tests 10.7% 1% 0.2

Unit Tests 8.2% 0.7% 0.8

The inherent challenge lies in effectively distinguishing between the various categories within

this imbalanced dataset. For all three categories, the ratio of legitimate failures is about 1% of

all the tests, which makes the problem of discerning legitimate failures from flaky failures very

challenging.

Table 4.8 outlines the distribution of test categories with Layout Tests comprising the majority

of the dataset at 80.75%, followed by Browser Tests at 10.7% and Unit Tests at 8.2%. Across all

categories, the occurrence of legitimate failures consistently hovers around one percent, indicating

a uniform prevalence of legitimate failures within the test suits. Furthermore, the mean flake rates

for Layout Tests and Browser Tests are recorded at 0.2, while Unit Tests exhibit a slightly higher

flake rate of 0.8. The slightly higher flake rates observed for Unit Tests compared to Layout and

Browser Tests imply that this category is more prone to flakiness. However, further investigation is

needed to understand the factors contributing to this difference in flake rates among different test

categories.

We use box plots to provide a more detailed analysis of the distribution of flake rates within test

suite categories. Box plots are valuable tools for summarizing statistical information and comparing

different groups of data. Figure 4.8 demonstrates the overall flake rate distribution of test suits. No-

tably, the box plots for Layout tests and Browser tests exhibit similar patterns, with approximately

50% of the tests showing a flake rate falling within the range of 0.1 to 0.5. Conversely, for Unit

tests, this number ranges between 0.2 and 1, indicating a comparatively higher flake rate for the unit

test category. Additionally, the median flake rate for Layout tests and Browser tests is observed to
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Figure 4.8: Box Plot of flake rate for different test suits. Unit tests have a higher flake rate with a
mean of 0.8, while browser tests and layout tests have a mean of 0.2.

be 0.2, while for Unit tests, this measure stands at 0.8.

Figure 4.9 compares the distribution of flake rate for flaky failures and legitimate failures within

each category.

We applied our models to these categories to see if the models could perform better within

each category but perhaps not very surprisingly we reached the same result as the challenge of an

unbalanced dataset still exists.

Layout tests embody 80% of the dataset and the ratio of flaky failures to legitimate failures

stays the same as the whole dataset in subcategories. Unit tests have the highest flake rate

among all the categories.

4.7 Threats to Validity

4.7.1 Internal Validity.

In this study, our objective was to leverage a dataset derived from an industrial project, specif-

ically one generated through Continuous Integration (CI) builds. Our selection of the Chromium

project was motivated by several factors, including its extensive test suite, open-source nature, and

adherence to CI/CD practices. However, this decision necessitated certain trade-offs, notably the

omission of certain features due to the project’s scale. For instance, features related to test smells or

test code coverage were absent from our dataset, which could have potentially enriched our predic-

tive models for flaky failures. Despite these limitations, the Chromium dataset provided valuable
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Figure 4.9: Box Plot of flake rate distribution for flaky failures vs. failed tests within each test suit.
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insights into the prevalence and characteristics of flaky tests within a real-world software develop-

ment environment. Going forward, it’s important to explore potential ways to incorporate additional

features and enhance the robustness of our predictive models.

4.7.2 External Validity.

In this study, our analysis focused on the dataset derived from the Chromium project. While

Chromium serves as a valuable case study, it’s essential to recognize that the generalizability of our

findings to other software projects may be limited. Variations in project structures, development

practices, and testing environments across different software systems could potentially influence

the performance of the models discussed in our study. Additionally, it’s important to note that our

dataset predominantly comprises web/GUI tests, which inherently differ in their nature and charac-

teristics from tests written in other programming languages. The unique intricacies and challenges

associated with HTML and JavaScript testing may not directly translate to testing scenarios in dif-

ferent programming paradigms. Therefore, while our study provides insights into flakiness within

the context of web/GUI testing, further research is needed to explore how these findings apply to

diverse software projects and testing contexts.

4.7.3 Construct Validity.

A notable concern regarding the robustness of our study lies in the definition and identification of

legitimate failures. The dataset utilized, as proposed by [10], relies on reruns as a means to classify

failures. It is assumed that all fault-revealing tests within our dataset accurately pinpoint one or

multiple issues within the codebase. However, it’s crucial to acknowledge that some fault-revealing

tests may exhibit flaky behavior due to factors such as insufficient execution time or the limited

number of reruns. Consequently, certain tests categorized as fault-revealing may actually be flaky

tests if they were subjected to additional reruns. Although efforts were made in the original study

to exclude builds that were failing consecutively, this concern regarding misclassification remains

valid.
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4.8 Conclusion

In this chapter, we investigated the performance of existing vocabulary-based flaky test predic-

tion methods in an industrial setting. We first used a dataset of 27 million tests with 21,932 flaky

failures over a period of 30 days to investigate the magnitude of flakiness in the chromium dataset.

We started our study by checking how often tests failed without any underlying issues within the

code. Out of the 99,723 unique tests we analyzed, we found that 970 of them failed inconsistently,

making up around 1% of all tests. Upon detailed examination of individual tests, it became evident

that over half of them displayed failure rates of less than 9%, indicating sporadic instances of flaki-

ness. However, a subset of tests demonstrated failure rates exceeding 70%, suggesting the presence

of more significant underlying issues.

Furthermore, our investigation into the temporal variability of test results uncovered insights into

the re-run behavior and flip rates of flaky tests. It is noteworthy that the majority of tests underwent

only a single rerun, highlighting the common practice of not repeating tests. Additionally, our

analysis of the frequency of transitions in test outcomes from failure to success or vice versa revealed

that 86% of tests consistently demonstrated such transitions. However, the adoption of this transition

rate as a reliable metric for ranking tests may be questionable, as a majority of tests exhibited similar

rates of transition.

In the second part of this chapter, we used a more detailed dataset of 23,374 flaky tests and

2,343 fault-revealing (legitimate failures) tests over a period of 9 months. Employing different ma-

chine learning models, we achieved similar performance compared to previous studies in terms of

precision and recall. However, a notable concern emerged regarding the substantial false-positive

rate, highlighting the challenge of accurately identifying fault-triggering failures. Despite attempts

to improve model performance through parameter optimization and sampling techniques, the inher-

ent imbalance in the dataset posed significant challenges. It is important to consider the number of

legitimate failures that are wrongly identified as flaky (FP). Previous vocabulary-based studies have

reported high precision, recall, and F1-Score when predicting flaky tests. However, our findings

suggest that although we achieved similar performance, the high rate of false positives indicates

that the model is biased towards the majority class and cannot accurately identify these samples.
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We also suggest that the source code of tests does not contain enough predictability power and

other dynamic features like runtime duration need to be integrated into the model for optimal re-

sults. Overall, our findings emphasize the complexity of distinguishing legitimate failures from

flaky ones, underscoring the need for further research and innovative approaches in this domain.

Looking forward, the findings of this study illuminate several avenues for future research and

advancement in the field of flaky test prediction. We suggest that researchers prioritize the seamless

integration of flaky test prediction mechanisms into established continuous integration and delivery

(CI/CD) pipelines for more reliable results. One pivotal area of focus lies in the exploration of novel

feature engineering techniques and model refinement strategies to enhance the predictive efficacy of

machine learning algorithms. By delving beyond the surface-level analysis of source code vocab-

ulary and incorporating more dynamic factors such as test dependencies, researchers can uncover

intricate patterns and correlations within the dataset. Addressing the challenge of class imbalance

through sophisticated sampling methods and ensemble learning approaches is another imperative

task for future investigations. By embracing these directions, researchers can contribute to the de-

velopment of more robust solutions, ultimately enhancing the reliability and quality of predictive

models.
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Chapter 5

Conclusion

The non-deterministic nature of flaky tests, characterized by unpredictable passing or failing

outcomes, instills a sense of mistrust in the reliability of test automation. Such unpredictability

poses a potential threat to the software development processes of numerous companies heavily

dependent on automated tests for sustaining a continuous integration and delivery environment.

Consequently, both industry practitioners and researchers are actively engaged in exploring strate-

gies for preventing and identifying potential flaky tests, recognizing the critical need to fortify the

robustness of automated testing frameworks in the realm of software development.

While software testing has long acknowledged flakiness as a prominent issue, research on this

subject has rarely focused on classifying flaky tests for investigation in a large-scale industrial CI

setting. In this research, we collected the history of more than 8K flaky tests on the Chrome project

to be utilized for our lifetime classification model. We observe that 40% of the flaky tests remain

unresolved. Among the flaky tests that undergo resolution or removal, 33% are addressed within a

timeframe of fewer than 10 days. Identifying the appropriate tests to address is crucial, given that

we aim to avoid allocating developers’ time to the 40% of tests that may prove unsolvable. Our x

preference lies in pinpointing tests that are both more manageable and hold greater importance for

timely resolution.

To effectively prioritize tests for investigation, it is crucial to analyze the distribution of the time

it takes for a flaky test in Chrome to be resolved. This exploration is fundamental for establishing a

robust framework to address the underlying issues. By analyzing the distribution of fixing time of
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flaky tests we observe that except for two brief spikes observed over a 3-year period, our analysis

indicates that the overall count of flaky tests remains relatively stable. This trend demonstrates that

while developers address flaky tests, new ones continue to arise, maintaining a relatively consistent

count of existing flaky tests. This shows the necessity for an efficient test prioritization method to

direct developers’ efforts towards reducing this trend.

We consider the lifetime of a test as a measure of the effort needed to address the test and its

priority for being investigated. By solely analyzing the test description, our model can accurately

predict the lifespan of flaky tests, achieving a precision of 73% and an MCC of 0.39. Analyzing

test descriptions alone yields a high-precision method for predicting flaky test lifespans, suggesting

a practical approach to test management.

To mitigate the effects of flakiness, both researchers and industrial experts proposed strategies

and tools to detect and isolate flaky tests. To aid with these tasks, we applied state-of-the-art flaki-

ness prediction methods at the Chromium CI and checked their performance. Perhaps surprisingly,

we find that the application of such methods led to numerous faults missed, which is approximately

3/4 of all regression faults. In the second part of this thesis, we studied the behavior of flaky tests in

a large-scale industrial setting. We used the results of Chromium CI builds to analyze the prevalence

and scale of flaky tests.

We started our investigation by evaluating the effectiveness of metrics such as flake rate and flip

rate in discerning different levels of flakiness. The result of our analysis showed that these measures

are ineffective in ranking flaky tests in the case of the Chromium project. However, they provide

insights into the flakiness scale of the Chromium project.

Subsequently, we directed our research efforts towards utilizing vocabulary-based approaches

to distinguish flaky failures from faults that trigger failures. We used a dataset of 1.8 million test

failures, representing the actual development process of more than 10,000 builds spanning a period

of 9 months.

We examined the effectiveness of prior studies in predicting and ranking flaky tests within a

large-scale CI/CD environment, specifically emphasizing vocabulary-based methods. To achieve

this objective, we assessed the performance of the leading vocabulary-based flaky test prediction

methods using 23,374 flaky tests and 2,343 fault-revealing (legitimate failures) tests.
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Our study results indicate that vocabulary-based methods are unable to identify fault-revealing

failures due to their sole reliance on source code and their lack of application in a large-scale in-

dustrial project within a CI setting. Additionally, we underscored the importance of prioritizing the

prediction of flaky failures over flaky tests.
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