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Abstract

Exact and Factor Two Algorithms for Broadcast Time

Narek Hovhannisyan, Ph.D.

Concordia University, 2024

Broadcasting is a fundamental information dissemination primitive in interconnection net-

works, where a message is passed from one node to all other nodes in the network. Following

the increasing interest in interconnection networks, extensive research was dedicated to broadcast-

ing. Two main research goals of this area are finding inexpensive network structures that maintain

efficient broadcasting and finding the broadcast time of a given network topology. In the scope of

this study, we will mainly focus on determining the broadcast time of a given network. The broad-

cast time problem on an arbitrary network is known to be NP-hard. We consider this problem on

different network topologies and settings.

We begin by studying the broadcast time problem on split graphs. First, we introduce a tight

polynomial-time constant approximation algorithm for broadcasting on split graphs. Then, we study

some important characteristics of an optimal broadcast scheme on split graphs and design a strategy

for generating optimal broadcast schemes. We apply our findings to devise an efficient broadcasting

heuristic on split graphs and on natural generalization of split graphs, called (k, l)-graphs.

Next, we study broadcasting on graphs that comprise some recursive structures. We introduce

an exact polynomial-time algorithm on closed chains of rings. A closed chain of rings is a sequence

of cycles, where every two consecutive cycles, and the first and the last cycles, share a common

vertex. Additionally, we initiate a novel direction to designing broadcasting algorithms on recur-

sively defined graphs. We provide a theoretical foundation for future broadcasting research, as well

as discuss several practical applications of the approach we introduce.

Last, we study the problem on k-path graphs, one of the simpler graph families with intersect-

ing cycles. To better understand the challenges of broadcasting on arbitrary graphs, families with
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intersecting cycles are crucial to study. We improve the current best approximation ratio for broad-

casting on k-path graphs by a multiplicative factor of two. Further, we propose a new optimization

problem called 3-LIST-SUB, helping us to design an optimal broadcasting algorithm on restricted

k-path graphs which was unsolved to date.
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Chapter 1

Introduction

As the complexity of modern computational problems grows, single-processor systems, even

with state-of-the-art technologies, start requiring a longer time to solve some of the arising large

problems serially. One of the most common solutions to this issue was the development of mul-

ticomputer and multiprocessor systems, which can solve the problem in parallel by breaking it

into smaller tasks. Parallel and distributed computing almost always contribute to achieving better

completion times for modern problems, potentially securing noticeable cost savings. However, to

leverage the advancements in the physical layer, it is required to devise parallel and distributed al-

gorithms that optimally distribute data and responsibility among all processing elements to achieve

better processing and communication times. After the task decomposition of the problem is deter-

mined, all processing units can execute their part of the algorithm simultaneously. However, in al-

most every case (other than some embarrassingly parallel problems1), in the course of the algorithm

execution, independent processing elements need to exchange data. This can be achieved either

through a shared memory or an interconnection network. Shared memory multicomputers (Shared

Memory Model) have a limitation on the number of processors that can be connected together.

Hence, it loses practicality as the number of processors grows. A more feasible approach to de-

signing multicomputers is to assign each processor a separate memory and facilitate data exchange
1An embarrassingly parallel problem (also called embarrassingly parallelizable or perfectly parallel) is one where

little or no effort is needed to separate the problem into several parallel tasks.
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between the processors through message passing. In the Message Passing Model, processors inter-

act by sending immutable messages to one another over communication channels. Interconnection

networks connect nodes with some topology and accommodate communication among the nodes

via communication links (channels). Each node comprises either a single or multiple processing

elements.

Over the last few decades, extensive research has been dedicated to studying the characteris-

tics of interconnection networks to determine the best communication structures for parallel and

distributed computing.

There are four main collective operations for information dissemination in interconnection net-

works that are studied in the literature.

• One-to-one routing: A node sends a message to another node in the network.

• One-to-many multicasting: A node sends a message to some of the nodes in the network.

• One-to-all broadcasting: A node sends a message to the rest of the nodes in the network.

• All-to-all gossiping: All nodes send messages to all other nodes in the network.

Broadcasting is one of the most important information dissemination processes in an intercon-

nected network that has been studied over the past decades. The broadcasting process starts from a

single network node (referred to as the originator) and ends when all nodes have the information.

Across the last four decades, a large number of research works have been published concerning

broadcasting in networks under different models. These models differ in the number of originators,

the number of receivers at each time unit, the distance of each call, the number of destinations,

and other characteristics of the network. In the context of this study, we are going to focus on the

classical model of broadcasting, which will be discussed in more detail in Chapter 2.

The rest of this thesis is organized as follows:

• In the next chapter, we present a literature review of some of the important results on broad-

casting in general and the different network classes that have been considered.

• In Chapter 3, we study the broadcasting problem on split graphs, which are the family of

graphs where the vertex set can be decomposed into a clique and an independent set. We

2



also extend our results on split graphs to (k, l)-graphs, which are the graphs comprising k

independent sets and l cliques.

• In Chapter 4, we delve into the broadcasting problem on graphs that follow some repetitive

topology patterns. We also propose a new approach for designing recursive broadcasting

algorithms.

• In Chapter 5, we focus on studying broadcasting on k-path graphs. A k-path graph consists of

two vertices that are connected via k internally vertex-disjoint paths. Additionally, we pose a

new problem and discuss its relation to the broadcast time problem on k-path graphs.

3



Chapter 2

Literature Review and Preliminaries

Over the last decades, various broadcasting models have emerged in the literature. These models

differ depending on the constraints placed on the originator, receiver, and message sets, as well as

the network topology, the regulations of message transmissions, and/or the information about the

network known to individual network members. Below is a non-exhaustive list of broadcasting

models:

• Models with constraints placed on the duration of each call:

◦ Constant model, where the time needed to send a message from one node to another

remains constant regardless of the size of the message (Fraigniaud & Lazard, 1994).

◦ Linear model, where the time required to communicate a message between two neigh-

boring nodes is a linear function of the size of the message (Beauquier, Perennes, &

Delmas, 2001; Fraigniaud & Lazard, 1994).

• Models with different directions of the calls: telephone and telegraph communication models

(Hedetniemi, Hedetniemi, & Liestman, 1988).

• Single-port or multi-port models discussed by Fraigniaud and Lazard (1994) and Harutyunyan

and Liestman (2001b).

• Models with long-distance calls: open-line and open-path models (Farley, 1980b).
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• Multiple message broadcasting (Bar-Noy & Kipnis, 1994; Bruck, Cypher, & Ho, 1992; Chinn,

Hedetniemi, & Mitchell, 1979; Farley, 1980a).

• Multiple originator broadcasting (Farley, 1980b; Farley & Proskurowski, 1981a; Hedetniemi

& Hedetniemi, 1979; Liestman, Richards, & Stacho, 2009).

• Fault-tolerant broadcasting (Ahlswede, Gargano, Haroutunian, & Khachatrian, 1996; Bien-

stock, 1988; Liestman, 1985; Pelc, 1996).

• Vertex-disjoint and edge-disjoint path models (Farley, 2004; Fraigniaud, 2001a, 2001b).

• Radio broadcasting and conference broadcasting (Alon, Bar-Noy, Linial, & Peleg, 1991;

Richards & Liestman, 1988).

• Weighted-vertex broadcasting (Harutyunyan & Kamali, 2008a, 2008b, 2010, 2017)

• Bounded-call broadcasting discussed by Farley and Proskurowski (1994).

• Universal lists broadcasting discussed by Diks and Pelc (1996).

• Messy broadcasting discussed by Ahlswede, Haroutunian, and Khachatrian (1994).

For a more detailed introduction to broadcasting (and gossiping) models, we recommend the

reader refers to (Hedetniemi et al., 1988).

In this study, we follow the definitions of the single-port, constant time model (Hedetniemi et al.,

1988), known as classical broadcasting, in which a node can communicate with a single neighbor

at a time, and the transmitting time is constant. Of course, in real-life networks, message spreading

takes place very differently from all these models, especially from the classical model. However,

from the perspective of research, these constraints help us understand the nature of the phenomenon

and achieve theoretical results that can be applied to real-life networks.

2.1 Classical broadcasting

In the context of broadcasting, the network is modeled as an undirected graph G = (V,E),

where the vertex set V (G) and the edge set E(G) represent the nodes and the interconnection links

5



of the network, respectively. Usually, the graph is assumed to be connected. The classical model

follows the below-mentioned basic assumptions:

(1) The broadcasting process is split into discrete time units.

(2) The only vertex that has the message at the first time unit is called originator.

(3) In each time unit, an informed vertex (sender, a vertex that has the message) can call at most

one uninformed neighbor (receiver).

(4) During one time unit, all calls are performed in parallel.

(5) The process halts as soon as all the vertices in the graph are informed.

We can represent each call in this process as an ordered pair of two vertices (u, v), where u is

the sender and v is the receiver.

Definition 2.1.1. Broadcast scheme is the order of calls made by each vertex during a broadcasting

process and can be represented as a sequence (C1, C2, ..., Ct), where Ci is the set of calls performed

in time unit i.

An informed vertex v is considered idle in time unit t if v does not make any calls in time t.

Given that every vertex, other than the originator, can be informed by exactly one vertex, the broad-

cast scheme forms a directed spanning tree (referred to as broadcast tree) rooted at the originator.

We are also free to omit the direction of each call in the broadcast tree. Note that if multiple vertices

independently inform the same vertex in the same time unit, one of them can be selected as a sender

to construct a broadcast tree.

Definition 2.1.2. The broadcast time for a vertex v in a given graph G, denoted by b(v,G), is the

minimum number of time units required for broadcasting in G if v is the originator. The broadcast

time for a given graph G is the maximum broadcast time from any originator in G, or formally

b(G) = maxv∈V (G){b(v,G)}.

A broadcast scheme for an originator v that uses b(v,G) time units is called optimal broadcast

scheme and is denoted by S(v,G). Obviously, by the assumption (3), the number of informed
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vertices after each time unit can be at most doubled. Meaning, in general, the number of informed

vertices after time unit i is upper bounded by 2i. Therefore, it is easy to see that b(v,G) ≥ ⌈log n⌉,

where n is the number of vertices in G. This implies that b(G) ≥ ⌈log n⌉.

Generally, one can distinguish two main research directions on broadcasting in graphs.

(1) Minimum broadcast graph problem: The goal is to design interconnection networks where

message broadcasting finishes as quickly as possible, regardless of the originator.

(2) Minimum broadcast time problem: The goal is to find the minimum broadcast time of a

network or a specific node.

For a more detailed introduction to broadcasting, we refer the reader to (Fraigniaud & Lazard,

1994; Harutyunyan, Liestman, Peters, & Richards, 2013; Hedetniemi et al., 1988; Hromkovič, Klas-

ing, Monien, & Peine, 1996).

2.2 Minimum broadcast graph problem

Definition 2.2.1. A graph G on n vertices is called broadcast graph if b(G) = ⌈log n⌉. A broadcast

graph G is referred to as a minimum broadcast graph (mbg) on n vertices if there does not exist

any other broadcast graph G′ of the same order as G, such that |E(G′)| < |E(G)|. The number of

edges in a minimum broadcast graph is called broadcast function and is denoted by B(n).

In other words, a broadcast graph is the topology structure supporting optimal broadcasting,

and a minimum broadcast graph has the lowest cost, in terms of the number of edges, among such

graphs. For a given integer n, the goal of the minimum broadcast graph problem is to find a mini-

mum broadcast graph on n vertices or determine the value of the broadcast function B(n).

The study of the minimum broadcast graph problem has a decades-long history. Minimum

broadcast graphs and the broadcast function were first introduced by Farley, Hedetniemi, Mitchell,

and Proskurowski (1979). In the same paper, the authors proved that hypercubes are minimum

broadcast graphs on 2k vertices. Currently, there are three known non-isomorphic infinite construc-

tions of minimum broadcast graphs. Hypercubes (Farley et al., 1979), Knödel graphs (Knödel,

1975), and recursive circulant graphs (Park & Chwa, 1994) are all shown to be non-isomorphic
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minimum broadcast graphs on 2k vertices. Knödel graphs are also shown to be minimum broadcast

graphs on n = 2k − 2 vertices by Khachatrian and Harutounian (1990) and Dinneen, Fellows, and

Faber (1991), independently.

Other than the above-mentioned graph families, minimum broadcast graphs or B(n) are known

for some specific values of n.

• n ≤ 16 (Farley, 1979)

• n = 17 (Mitchell & Hedetniemi, 1980)

• n = 18, 19 (Bermond, Hell, Liestman, & Peters, 1992b; Xiao & Wang, 1988)

• n = 20, 21, 22 (Maheo & Saclé, 1994),

• n = 26 (Saclé, 1996; Zhou & Zhang, 2001)

• n = 27, 28, 29 (Saclé, 1996)

• n = 30 (Bermond, Hell, Liestman, & Peters, 1992b)

• n = 58, 59, 61 (Saclé, 1996)

The values of B(n) are also known for some n = 2k − 1, such as

• n = 31 (Bermond, Hell, Liestman, & Peters, 1992b)

• n = 63 (Labahn, 1994)

• n = 127 (Harutyunyan, 2008)

• n = 1023, 4095 (Shao, 2006)

The values of B(n) for n = 23, 24, and 25 remain unknown.

Even though the minimum broadcast graph problem is widely believed to be “not easy”, for-

mally, the NP-hardness of this problem is not proven.

Despite the direct relevance of the minimum broadcast graph problem to the research area of

this study, we are not going to focus on minimum broadcast graphs any further.
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2.3 Minimum broadcast time problem

The general broadcast time decision problem is formally defined as follows:

Minimum Broadcast Time (MBT) from (Garey & Johnson, 1983) Problem [ND49]:

Given a graph G = (V,E) with a subset V0 ⊆ V , and a positive integer k. Can a

message be “broadcast” from the base set V0 to all other vertices in time k, i.e., is

there a sequence V0, E1, V1, E2, V2, · · · , Ek, Vk such that each Vi ⊆ V , each Ei ⊆ E

(1 ≤ i ≤ k), Vk = V , and, for 1 ≤ i ≤ k, (1) each edge in Ei has exactly one endpoint

in Vi−1, (2) no two edges in Ei share a common endpoint, and (3) Vi = Vi−1 ∪ {v :

{u, v} ∈ Ei}?

Here k is the total broadcast time, Vi is the set of informed vertices at round i, and Ei is the

set of edges used for placing calls at round i. It is obvious that when |V0| = 1 then this problem

becomes the single source broadcast problem of determining b(v,G) for an arbitrary vertex v in an

arbitrary graph G.

The study of broadcasting can be traced back to 1977 when Slater, Cockayne, and Hedetniemi

studied the problem of finding the broadcast time of a given graph (according to Hedetniemi et al.

(1988)). Slater, Cockayne, and Hedetniemi (1981) also defined the broadcast center, proposed a

linear algorithm to find the broadcast center of a tree, and devised a linear algorithm to find the

broadcast time of an arbitrary tree using its broadcast center. The broadcast center refers to the set

of vertices whose broadcast time is minimum in the given graph. In the same paper, the authors

also proved that the decision problem is NP-complete, which was previously mentioned by Garey

and Johnson (1983). The NP-hardness proof used a reduction from the three-dimensional matching

(3DM) problem.

The problem of finding b(v,G) and b(G) are both NP-hard for arbitrary graphs and origina-

tors (Garey & Johnson, 1983; Slater, Cockayne, & Hedetniemi, 1981). Later, Middendorf (1993)

showed by a reduction from 1-in-3-SAT (one-in-three SAT), that the minimum broadcast time prob-

lem remains NP-hard even for 3-regular planar graphs. A graph is said to be d-regular if all vertices

have a degree of exactly d. The problem is also NP-hard for other restricted graph families, such as

bounded degree graphs (Dinneen, 1994).
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Concerning the minimum broadcast time problem, like any other NP-hard problem, there are

three usual research directions:

• designing exact algorithms for restricted instances,

• devising heuristics that typically focus on empirical results,

• finding approximation algorithms with a theoretically proven guarantee on the worst-case

scenario outcome.

2.3.1 Exact algorithms

Firstly, some research was dedicated to formulating the optimization version of the problem

and solving it optimally. Dynamic programming approach was suggested by Scheuermann and

Wu (1984) and integer linear programming approach was proposed by de Sousa et al. (2018) and

Ivanova (2019).

There is a very limited number of graph families for which an exact algorithm with polynomial

time complexity is known for the broadcast time problem.

• Trees. As mentioned previously, the linear time algorithm for the broadcast time problem

in trees was introduced by Slater et al. (1981). One more linear time solution for the same

problem was shown by Proskurowski (1981), which finds the broadcast time of a vertex in a

given tree without using the broadcast center.

• Grids and Tori (Farley & Hedetniemi, 1978),

• Cube Connected Cycles (Liestman & Peters, 1988),

• Shuffle Exchange (Hromkovič, Jeschke, & Monien, 1993),

• Unicyclic graphs (graphs containing a single cycle) graphs (Harutyunyan & Maraachlian,

2007, 2008),

• Tree of cycles (Harutyunyan & Maraachlian, 2009b),

• Necklace graphs (Harutyunyan, Laza, & Maraachlian, 2009),
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• Tree of cliques (Maraachlian, 2010),

• Harary-like graphs (Bhabak, Harutyunyan, & Kropf, 2017; Bhabak, Harutyunyan, & Tanna,

2014),

• k-cacti with constant k (k restricted cactus graphs) (Čevnik & Žerovnik, 2017),

• Fully connected trees (Gholami, Harutyunyan, & Maraachlian, 2023).

2.3.2 Heuristics

One of the most important characteristics of the broadcasting process is the fact that in each

time unit of an optimal broadcast scheme, the edges that are used to transmit the message form a

maximum matching between informed and uninformed vertices. Given a graph G = (V,E), let

b(S,G) denote the minimum time required to pass the message from the informed set of vertices

S to all the other vertices in G. Scheuermann and Wu (1984) introduced the following recurrent

relation on b(S,G).

b(S,G) = 1 +min{b(S ∪M(S), G) |M is a maximum matching between S and V \S}

A backtracking algorithm with exponential run-time that is based on this relation was introduced

by Scheuermann and Edelberg (1981). However, the authors did not provide a complexity analysis

of the algorithm. Performing such an analysis would be challenging, as the original implementation

of the algorithm uses several optimization rules to reduce the run time of the algorithm. Based on

the above-mentioned relation, Scheuermann and Wu (1984) also devised three heuristic algorithms

for the broadcast time problem. Instead of choosing the maximum matching, all three algorithms

use some predefined rules for matching selection.

Harutyunyan and Shao (2006) proposed a heuristic tree-based algorithm (TBA) to solve the

problem of finding the optimal broadcast scheme of a given graph. They define the bright border of

the graph, as a subset of vertices that contains informed vertices which have uninformed neighbors.

They construct trees rooted at the bright border that contain uninformed vertices. Each uninformed

vertex is classified into a tree, based on its distance from other nodes in the bright border, and
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is assigned an estimated weight. The algorithm aims to find a specific-weight matching between

vertices on different sides of the bright border in each round. The heuristic achieves the running

time of O(R · |E|), where R is the broadcast time returned by the algorithm.

Another heuristic algorithm (Deep Heuristic) for finding a good broadcast scheme is introduced

by Harutyunyan, Hovhannisyan, and Magithiya (2022). The algorithm has a pattern similar to the

TBA and differs by the approach they use for finding the best border crossing. The algorithm is

devised based on the disadvantages of other existing heuristics. Specifically, the paper aims to

design an algorithm with improved behavior compared to other algorithms (particularly the TBA)

in several key scenarios. Comparing the algorithm with other existing alternatives, it was concluded

that Deep Heuristic is well-suitable for graphs where most vertices have a high degree, resulting in

a higher density of the graph. Deep Heuristic has the complexity of O(|E|+ |V | log |V |), which is

lower than that of many other existing heuristics.

For more information about broadcasting heuristics, we refer the reader to (Albin, Kottegoda,

& Poggi-Corradini, 2020; de Sousa et al., 2018, 2020; Fraigniaud & Vial, 1997, 1999; Gholami &

Harutyunyan, 2022c; Harutyunyan & Jimborean, 2014; Harutyunyan & Shao, 2006).

2.3.3 Approximation algorithms

Since exact algorithms for solving this problem are not feasible for large networks, heuristic

algorithms have been designed to overcome the performance bottleneck. However, there may al-

ways be network instances for which any heuristic algorithm will exhibit a significant error. Thus,

it is important to devise algorithms that guarantee a limited approximation ratio. It is easy to see

that a random broadcasting schedule maintains O( n−1
logn) approximation ratio. Kortsarz and Peleg

(1995) were one of the first to introduce better approximation algorithms. Two main results dis-

cussed in the paper are an O(
√
n) additive approximation algorithm on arbitrary networks in the

classical model, and an O( logn
log logn) multiplicative approximation algorithm for broadcasting in the

open-path model1. The latter is used to derive a broadcasting algorithm for random networks (in the

classical model) that with high probability provides O( logn
log logn) approximation ratio.

1The open-path model assumes calls can be carried via arbitrary long paths in the network. However, all paths used
for placing calls in the same round are vertex-disjoint. The open-line is similar to the open-path model, except that paths
used in the same round need to be edge-disjoint.
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Ravi (1994) also investigates the minimum broadcast time problem under the classical model.

The keystone of the research is the relation between the minimum broadcast time problem and the

poise of a graph1. In the paper, an algorithm for finding the spanning tree with approximately min-

imum poise is used to derive an O( log2 n
log logn)-approximation algorithm for the minimum broadcast

time problem of a n-node graph.

Further improvement on the approximation ratio was introduced by Bar-Noy, Guha, Naor, and

Schieber (1998). In that paper, the authors mainly investigate a more general multicast model, where

nodes can have different sending (switching) and receiving times, edges can have different delays,

and the message needs to be passed to only a subset of nodes. The nodes that need to be informed

are called terminal nodes. Assuming that U is the set of terminal nodes and |U | = k, the authors

devise an approximation algorithm with a multiplicative approximation ratio of O(log k) (hence,

O(log n)-approximation for broadcasting).

Current best approximation ratios for the classical broadcast and multicast problems are in-

troduced by Elkin and Kortsarz (2006). The authors devise an approximation algorithm for the

classical multicast problem with an approximation ratio of O( log k
log log k ), thus providing O( logn

log logn)

approximation ratio for the classical broadcast model. In fact, if b∗ is the optimum broadcast time,

the algorithm guarantees an approximation ratio of O( log k
log b∗ ). A ratio of O( log k

log log k ) follows from

the fact that b∗ ≥ log k.

2.3.4 Hardness of approximation

The hardness of approximation of the minimum broadcast time problem has always been an

intriguing problem for research. Schindelhauer (2000) investigated approximation algorithms for

the broadcasting time problem on undirected graphs. The paper mainly considers the classical

model for broadcasting. The author shows that there is no efficient approximation algorithm for

the single-source broadcast time problem. Formally, it is NP-hard to distinguish between graphs

G = (V,E) with broadcasting time smaller than b ∈ Θ(
√
|V |) and larger than (5756 − ϵ)b for any

ϵ > 0.
1The poise P (T ) of a tree T , is the sum of its diameter and its maximum degree. Whereas, the poise P (G) of a

graph G, is the minimum poise of all its spanning trees.
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A similar hardness of approximation was proved by Bar-Noy et al. (1998) for the more general

multicast model, with an inapproximability lower bound of 3 − ϵ for any ϵ > 0. In the multicast

model considered, only a subset of the network nodes needs to be informed, and delays, as well as

switching times, can be arbitrary. The authors prove the inapproximability using a reduction from

the set-cover problem.

The current best inapproximability lower bound was proved by Elkin and Kortsarz (2005a). For

the broadcast time problem on undirected graphs, they show that it is NP-hard to maintain a 3 − ϵ

approximation ratio for any ϵ > 0.

2.4 Broadcasting in different families of graphs

This section presents several widely used graph families, their properties, and classical broadcast

times.

2.4.1 Path graph Pn

A path Pn is a graph on n ≥ 1 vertices, V = {1, · · · , n}, and the following set of edges:

E = {(i, i+1)|1 ≤ i ≤ n−1}. A path Pn has n−1 edges, D(Pn) = n−1, and ∆(Pn) = 2 when

n ≥ 3. The first and the last vertices have a degree of 1 and all other vertices have a degree of 2.

The vertex with the minimum broadcast time in a path graph is the midpoint (either of the midpoints

if n is even), denoted by u, with b(u, Pn) = ⌈n2 ⌉ (when n ≥ 2). However, b(Pn) = n − 1. Path

graphs have the maximum sequential delay of broadcasting. Figure 2.1 demonstrates P6.

1 2 3 4 5 6

Figure 2.1: Path graph with n = 6

2.4.2 Cycle (Ring) Cn

A cycle Cn is a graph on n ≥ 3 vertices, V = {1, · · · , n}, and the edge set E = {(i, i +

1)|1 ≤ i ≤ n − 1} ∪ {(1, n)}. A cycle Cn has n edges, is a 2-regular graph, D(Cn) = ⌊n2 ⌋, and

b(Cn) = ⌈n2 ⌉. Figure 2.2 demonstrates C5.
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Figure 2.2: Cycle with n = 5

2.4.3 Star graph Sn

A star Sn is a graph on n ≥ 1 vertices, V = {1, · · · , n}, and the following set of edges:

E = {(1, i)|1 < i ≤ n}. A star Sn has n − 1 edges, ∆(Sn) = n − 1, b(Sn) = n − 1, and

D(Sn) = 2 when n ≥ 3. Star graphs have the maximum parallel delay of broadcasting. Figure 2.3

demonstrates S6.

6

5

4 3

2
1

Figure 2.3: Star graph with n = 6

2.4.4 Complete graph Kn

A complete graph (clique) Kn is a graph on n ≥ 1 vertices, V = {1, · · · , n}, and all possible

edges. A complete graph Kn has
(
n
2

)
= n(n−1)

2 edges, is an (n − 1)-regular graph, D(Kn) = 1,

and b(Kn) = ⌈log n⌉. Figure 2.4 demonstrates K5.

2.4.5 Complete bipartite graph Km,n

A complete bipartite graph Km,n consists of two partitions; bipartition P1 with m ≥ 1 vertices

and bipartition P2 with n ≥ 1 vertices. There are no edges between vertices from the same partition.

For any u ∈ P1 and v ∈ P2, (u, v) ∈ E(Km,n). Also, deg(u) = n, and deg(v) = m. Figure 2.5

demonstrates K3,4. The broadcast time from any originator v in a Km,n is given below:
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Figure 2.4: Complete graph with n = 5

• If ⌈log n⌉ = ⌈logm⌉,

b(v,Km,n) = 1 + ⌈logm⌉

• If ⌈log n⌉ > ⌈logm⌉,

b(v,Km,n) = 1 + ⌈logm⌉+

⌈
n− 2⌈logm⌉

m

⌉

• If ⌈log n⌉ < ⌈logm⌉,

b(v,Km,n) = 1 + ⌈log n⌉+

⌈
m− 2⌈logn⌉

n

⌉

4

3

2

1

7

6

5

Figure 2.5: Complete bipartite graph with m = 3, n = 4

16



2.4.6 Fork graph Fn,k

A Fork Fn,k, where 1 ≤ k < n, has n vertices and comprises a path on n− k vertices and a star

on k + 1, such that the center of the star is one of the endpoints of the path. A fork Fn,k has n− 1

edges, D(Fn,k) = n− k, and b(Fn,k) = n− 1. Figure 2.6 demonstrates F9,5.

1 7 8 9

5

4

3 2

6

Figure 2.6: Fork graph with n = 9 and k = 5

2.4.7 Wheel graph Wn

A wheel Wn is a graph on n ≥ 4 vertices, V = {1, · · · , n}, and the following set of edges:

E = {(1, i)|1 < i ≤ n} ∪ {(i, i + 1)|2 ≤ i ≤ n − 1} ∪ {(2, n)}. A wheel Wn has 2n − 1

edges, D(Wn) = 2 if n > 4. Whereas, ∆(Wn) = n − 1, and b(Wn) =
⌈√

4n−3+1
2

⌉
. Figure 2.7

demonstrates W6.

2

6

5 4

3
1

Figure 2.7: Wheel graph with n = 6

2.4.8 Grid Gm×n

A two-dimensional Grid (Lattice), Gm×n, is a graph on m × n vertices, where n ≥ 1 and

m ≥ 1. Each of the vertices is on integer coordinates of a Cartesian plane and there is an edge

between vertices if they have Euclidean distance one. A grid Gm×n has (m − 1)n + (n − 1)m =
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2mn − (m + n) edges, D(Gm×n) = m + n − 2, b(Gm×n) = m + n − 2 (Farley & Hedetniemi,

1978), and ∆(Gm×n) = 4 when n ≥ 3 and m ≥ 3. Figure 2.8 demonstrates G5×3.

1, 1

1, 2

1, 3

2, 1

2, 2

2, 3

3, 1

3, 2

3, 3

4, 1

4, 2

4, 3

5, 1

5, 2

5, 3

Figure 2.8: Grid with m = 5, n = 3

2.4.9 Torus Tm×n

A two-dimensional Toroidal Grid (Torus), Tm×n, is a graph on m × n vertices, where n ≥ 2

and m ≥ 2. It includes all edges of the grid and edges ((i, 1), (i, n)) and ((1, j), (m, j)), ∀i, j such

that 1 ≤ i ≤ m, 1 ≤ j ≤ n. Tori have 2mn edges, are 4-regular graphs, D(Tm×n) = ⌊n2 ⌋ + ⌊
m
2 ⌋.

If both m and n are even, then b(Tm×n) =
m+n
2 , otherwise, b(Tm×n) = ⌊m2 ⌋+ ⌊

n
2 ⌋+ 1 (Farley &

Hedetniemi, 1978). Figure 2.9 demonstrates T5×3.

1, 1

1, 2

1, 3

2, 1

2, 2

2, 3

3, 1

3, 2

3, 3

4, 1

4, 2

4, 3

5, 1

5, 2

5, 3

Figure 2.9: Torus with m = 5, n = 3

2.4.10 Hypercube Qd

The d-dimensional hypercube, Qd, is a graph on 2d vertices. Each vertex is a d-bit binary

string, and two vertices are adjacent if and only if they differ at only one bit. Alternatively, Qd
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can be defined recursively as a union of two copies of Qd−1, where the corresponding vertices in

two copies are connected by an edge. A hypercube Q1 is a single-edge graph on two vertices. A

hypercube Qd has d · 2d−1 edges, is d-regular, bipartite, and D(Qd) = d. Hypercube is one of the

infinite families of broadcast graphs: b(Qd) = ⌈log |Qd|⌉ = d. Figure 2.10 demonstrates Q3.

000 001

010 011

100 101

110 111

Figure 2.10: Hypercube with d = 3

2.4.11 Complete k-ary tree Tk,h

A k-ary tree is a rooted tree in which the number of children of each internal vertex is k. The

degree of the root is k, the degrees of internal vertices are k + 1, and the leaves’ degrees are 1.

A complete k-ary tree of height h, (denoted by Tk,h), is a rooted k-ary tree in which all leaves

are on the same level h. A tree Tk,h has kh+1−1
k−1 vertices, D(Tk,h) = 2h, ∆(Tk,h) = k + 1, and

b(Tk,h) = kh+ h− 1. Figure 2.11 demonstrates T5,2.

Figure 2.11: k-ary tree with k = 5, h = 2
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2.4.12 Binomial tree BTd

A binomial tree of dimension d is a rooted tree on 2d vertices with a recursive definition. The

binomial tree of dimension 0 (BT0) is a single vertex. A binomial tree BTd comprises two copies

of BTd−1, where the roots are connected by an edge. One of the roots is selected to be the root r

of the new tree. A tree BTd has 2d − 1 edges, D(BTd) = 2d− 1, ∆(BTd) = d, b(r,BTd) = d =

log |BTd|, and b(BTd) = 2d− 1. Figure 2.12 demonstrates BT4.

BT3

BT2

BT1

BT0

Figure 2.12: Binomial tree with d = 4

2.4.13 Recursive circulant graph G(n, d)

The recursive circulant graph, defined by Park and Chwa (1994), has n = cdm vertices labeled

from 0 to n − 1, where d ≥ 2, m ≥ 1, and 1 ≤ c < d. The edge set is defined as E = {(v, w)|

there exists i, 0 ≤ i ≤ ⌈logd n⌉ − 1, such that v + di ≡ w mod n}.

Interestingly, G(2m, 4) has the same number of nodes, edges (m · 2m−1), and the broadcast

time (b(G(2m, 4)) = ⌈log 2m⌉ = m) as the hypercube Qm. A recursive circulant graph G(n, d) is

m = ⌈log n⌉-regular, and D(G(n, d)) =
⌈
3m−1

4

⌉
. Figure 2.13 demonstrates G(23, 4).

2.4.14 Knödel graph KG∆,n

The Knödel graph KG∆,n is defined as a graph on n vertices labeled from 0 to n−1, where n ≥

6 and is even (Bermond, Harutyunyan, Liestman, & Pérennes, 1997; Khachatrian & Harutounian,
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Figure 2.13: Recursive Circulant graph with n = 8, d = 4

1990; Knödel, 1975). The edge set is defined as E = {(x, y)|x + y ≡ 2∆ − 1 mod n}, where

1 ≤ ∆ ≤ ⌊log n⌋. The Knödel graph KG∆,2∆ is a ∆-regular graph with diameter ⌈∆+2
2 ⌉.

As mentioned in Section 2.2.1, the family of KG∆,2∆ is one of the three known infinite families

of minimum broadcast graphs. This means that b(KG∆,2∆) = ∆ = log n. Additionally, it is known

that b(KG∆,2∆−2) = ∆ (∆ ≥ 2) (Dinneen, Fellows, & Faber, 1991). Figure 2.14 demonstrates

KG3,14.

5

0

6

1

7

2

8

39

4

10

11

Figure 2.14: Knödel graph with ∆ = 3, n = 14
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Chapter 3

Split Graphs

In this chapter, our contributions concerning split graphs are presented. We will devise an

approximation algorithm for the broadcast time problem in split graphs that guarantees an approx-

imation ratio of 2. We will also analyze the characteristics of an optimal broadcast scheme in split

graphs. After that, we will suggest a heuristic algorithm for the same problem and an empirical

analysis of the proposed heuristic. Lastly, we will introduce an algorithm for the broadcast time

problem in arbitrary graphs with a known partitioning.

3.1 Introduction

A split graph is a graph in which the vertices can be partitioned into a clique and an independent

set (Merris, 2003).

Definition 3.1.1. A graph SPn,m is a split graph if the vertex set can be partitioned into:

• A clique K of size n,

• And an independent set I of size m.

Figure 3.1 portrays an example of a split graph SP3,3.

Split graphs were first studied by Foldes and Hammer (1977) and independently introduced by

Tyshkevich and Chernyak (1979). An edge of a graph is a chord of a cycle if it joins two nodes of

the cycle but is not itself in the cycle. A graph is chordal if and only if every cycle of length greater
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Figure 3.1: Split graph SP3,3

than three has a chord. Split graphs are a subclass of chordal graphs and are exactly those chordal

graphs whose complement, i.e., the same graph in which edges and nonedges are swapped, is also

chordal (Golumbic, 2004). Therefore, all problems which are polynomial-time solvable for chordal

graphs are also solvable for split graphs (Garey & Johnson, 1983; Golumbic, 2004). Chordal graphs

play a central role in techniques for exploiting sparsity in large semidefinite optimization problems

(Zhang & Lavaei, 2018) and in related convex optimization problems involving sparse positive

semidefinite matrices. Chordal graph properties are also fundamental to several classical results

in combinatorial optimization, linear algebra, statistics, signal processing, machine learning, and

nonlinear optimization (Vandenberghe & Andersen, 2015; Zheng, 2019).

Bender, Richmond, and Wormald (1985) showed that in the limit as n goes to infinity, the

fraction of n-vertex chordal graphs that are split approaches one. Less formally, they showed that

almost all chordal graphs are split graphs, thus making split graphs an important area of research.

Moreover, split graphs are widely used as an interconnection network topology. Networks that have

an important group of tightly coupled nodes (or in other words the core of the network), and several

independent nodes that are only connected to the network core are often represented as split graphs.

The same structure is possible in dynamic networks, where nodes can join and leave the network

by connecting to the physically closest nodes in the core. In terms of social networks, split graphs

correspond to the variety of interpersonal and intergroup relations (Belik, 2016). The interaction
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between the cliques (socially strong and trusty groups) and the independent sets (fragmented and

non-connected groups of people) is naturally represented as a split graph. Different optimization

problems were studied in split graphs due to their various important characteristics (Belmonte et

al., 2021; Collins & Trenk, 2017a). Some of the problems that are NP-complete in the general case

are fairly trivial in split graphs. However, the tasks of finding a Hamiltonian cycle, a Minimum

Dominating Set, or a λ-coloring remain NP-complete on split graphs (Bertossi, 1984; Bodlaender,

Kloks, Tan, & van Leeuwen, 2000; Müller, 1996). Given all of the above, it is interesting to study

the problem of broadcasting in split graphs.

Jansen and Müller (1995) were one of the first to study the minimum broadcast time problem on

split graphs. In the paper, the authors prove that it is NP-complete to decide whether the broadcast

time from multiple originators in split graphs (and in chordal graphs) is equal to 2. In the same

paper, the authors also show that the minimum broadcast time problem from a single originator

in chordal graphs is NP-complete. Later, in (Tamura, Tasaki, Sengoku, & Shinoda, 2005), the

minimum broadcast and multicast time problems are considered for a subclass of split graphs where

the degree of all vertices in the independent set is one. The authors introduce a polynomial-time

exact algorithm for that restricted subclass of split graphs.

3.2 Broadcasting approximation in split graphs

Consider a split graph G = (V,E) such that the vertex set can be partitioned into a clique K

on n vertices and an independent set I on m vertices. Note that split graphs may have more than

one partitioning into a clique and an independent set. Clearly, we can assume that the clique K is

maximal, otherwise, we could change the partitioning by adding some vertices from I to K to make

it maximal. Given a connected split graph G with a clique partition K, an independent set partition

I , and an arbitrary originator v ∈ V (G) we consider the following two cases.

(1) The originator is from the clique: v ∈ K.

(2) The originator is from the independent set: v ∈ I .

Before proceeding to the actual algorithm we will discuss some results and definitions that will
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be helpful in our proof. First, let us introduce some definitions and consider a broadcasting problem

with multiple originators.

Definition 3.2.1 (Lin & Lam, 2009). For a positive integer t, a t-star-matching of graph G is a

collection of mutually vertex-disjoint subgraphs K1,i of G with 1 ≤ i ≤ t (sub-stars with maximum

t leaves (Section 2.4.3)) .

We extend the idea of a t-star-matching (Definition 3.2.1) to the following concepts.

Definition 3.2.2. For a positive integer t, a perfect t-star-matching of a graph G is a t-star-

matching that covers every vertex of graph G.

Definition 3.2.3. Let G be a split graph, K be the clique partition of G, and t be a positive integer.

A proper t-star-matching of a split graph G is a perfect t-star-matching such that any vertex v ∈ K

belongs to the smaller partition of a bipartite subgraph (is a center of a star).

Note that a proper star-matching may contain stars with no leaves (some clique vertices may not

have any incident edges in the matching). Figure 3.2 shows an example of proper 2-star-matching

on a SP4,4 split graph.

Figure 3.2: Example of a proper 2-star-matching of a SP4,4. Red edges form the star-matching.

Lemma 3.2.4. Consider a split graph G = (V,E) with a partitioning of a maximal clique K and

an independent set I , and a set of originators R such that R = K. For a positive integer t, there

exists a proper t-star-matching of G, if and only if b(K,G) ≤ t.
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Proof. We will prove this in two parts. First, assume b(K,G) ≤ t for an integer t > 0. Let S be

an optimal broadcast scheme for G originating from K. It is easy to see that in the case of multiple

originators, any broadcast scheme forms a directed spanning forest (broadcast forest), where each

tree in the forest is rooted at one of the originators. Note that any vertex u ∈ I , cannot inform any

other vertex after being informed, since all of its neighbors are in K and are initially informed. It

follows that any broadcast forest of a split graph has a depth of one. Hence, the broadcast scheme

will induce a set of stars, where the center of each star is one of the originators. Moreover, since the

broadcasting process takes b(K,G) ≤ t time units, none of the vertices in K can have more than t

neighbors in the broadcast forest. Thus, the broadcast forest of S is a proper t-star-matching of G.

Now, assume there exists a proper t-star-matching M of G. Consider the broadcast scheme S′

where the edges that form M are used to broadcast the message from K to I . Each vertex in K,

informs its neighbors in M in an arbitrary order. Let v be the last vertex in K that finished informing

its neighbors in the independent set. Since, degM (v) ≤ t, v will inform all of its neighbors by time

unit t. Thus, b(K,G) ≤ bS(K,G) ≤ t.

By Lemma 3.2.4, if we find the minimum positive integer t, for which there exists a proper

t-star-matching, we can claim that b(K,G) = t.

3.2.1 Finding a proper star-matching with minimum maxdegree

To find the minimum positive integer t, for which there exists a proper t-star-matching, we pose

the following decision problem.

Problem 3.2.1.1. Proper star-matching problem

Instance: (G,K, I, t), where G = (V,E) is a split graph, K is a clique in G, I is an independent

set in G, and t is a natural number.

Output: “Yes” if there exists a proper t-star-matching for graph G; “No” otherwise.

Next, we will reduce an instance of the above-defined problem to an instance of a maximum

flow problem (Fulkerson & Ford, 1962; Schrijver, 2002).

Problem 3.2.1.2. Maximum flow

Instance: (G, s, q,m), where G = (V,E) is a flow graph, s is the source vertex, q is the sink vertex,
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and m is a natural number.

Output: “Yes” if the maximum flow for graph G from s to q is greater than or equal to m; “No”

otherwise.

The reduction consists of the steps described in Algorithm 1, and an example of the reduction

is presented in Figure 3.3.

Algorithm 1 Reduction Algorithm
Input An instance of the proper star-matching problem (G,K, I, t)
Output An instance of the maximum flow problem (G, s, q,m)

1: procedure MAXFLOWREDUCTION

2: Create a copy G′ of graph G
3: Remove all edges between a pair of vertices u and v, where u, v ∈ K
4: Assign direction from u to v to each edge (u, v), where u ∈ K, v ∈ I
5: Assign capacity 1 to each edge (u, v), where u ∈ K, v ∈ I
6: Add a source vertex s and connect it by an outgoing edge to every vertex in K. Assign a

capacity of t to those edges
7: Add a sink vertex q and connect it by an ingoing edge to every vertex in I . Assign a capacity

of 1 to those edges
8: return (G′, s, q, |I|)
9: end procedure

Proposition 3.2.1.3. There exists a proper t-star-matching for a split graph G, if and only if the

maximum flow in graph G′ is m, where m is the cardinality of the independent set I .

Proof. It is easy to see that when there exists a proper t-star-matching, the same edges can be used

in graph G′ to achieve flow with value m. Similarly, if the maximum flow equals m, the paths used

to construct the flow can be used to find a proper star-matching for graph G. Since each vertex in

K has an incoming edge capacity of t, it will result in a proper t-star-matching for graph G.

Thus, we can use the output of the procedure MAXFLOWREDUCTION to devise a procedure

to check if there exists a proper t-star-matching of a split graph G for a given positive integer t

(Algorithm 2). In Algorithm 2, procedure CHECKMATCHING is used to execute a binary search to

find the minimum such value of t in the range 1 ≤ t ≤ m (procedure FINDMATCHING).

The procedure MAXFLOWREDUCTION (Algorithm 1) can be implemented with complexity

O(n) + O(m) = O(|V |). The time to find the maximum flow in a graph highly depends on the
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Figure 3.3: Example of a reduction in Algorithm 1. Subfigure (a) shows graph G before the reduc-
tion and subfigure (b) shows graph G′ after the reduction.

selected algorithm. One of the best algorithms for maximum flow has a complexity of O(|E||V |)

(Orlin, 2013). Thus, considering the binary search time, the overall time complexity of this algo-

rithm is O(|E||V | log |I|).

3.2.2 Broadcasting from a vertex in the clique

Consider a split graph G = (V,E) with a clique partition K, an independent set partition I , and

an originator v ∈ K. The algorithm consists of three major stages:

(1) Since v ∈ K and K is a clique (a complete graph), we can broadcast the message from v to all

other vertices of K using only vertices in K. This will take b(v,K) = ⌈log |K|⌉ = ⌈log n⌉

time units (Section 2.4.4).

(2) After all vertices in K are informed, we should proceed to inform the vertices in I . For that

purpose, we find a proper t-star-matching M of G with minimum t using the algorithms in

Section 3.2.1.

(3) Lastly, we use the edges that form M to broadcast the message to I . Each vertex in K,

informs its neighbors in M in an arbitrary order. This will take b(K,G) = t time units

(Lemma 3.2.4).
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Algorithm 2 Algorithm for finding a proper star-matching
Input A split graph G, a clique K, an independent set I
Output A proper t-star-matching M for G with minimum t

1: procedure FINDMATCHING(G)
2: for Binary search t on range [1, |I|] do
3: C ← CHECKMATCHING(t)
4: if C = NULL then
5: Search in the right half
6: else
7: M ← C
8: Search in the left half
9: end if

10: end for
11: return M
12: end procedure
13: procedure CHECKMATCHING(t)
14: Use MaxFlowReduction to create a flow graph G′

15: Run a maximum flow algorithm on G′

16: M ← the edges used in the maximum flow
17: V (M)← the maximum flow number
18: if V (M) = |I| then
19: return M
20: else
21: return NULL
22: end if
23: end procedure

Algorithm 3 formally presents the above-described steps. Clearly, after the algorithm halts, all

vertices of graph G are informed as the clique is informed in step 2, and the independent set is

informed in step 4.

Let bAlg(v,G) be the broadcast time returned by Algorithm 3. It is easy to see that it consists of

two components:

• the broadcast time of the clique K from a single originator,

• and the broadcast time in G with the vertices of K as originators.

Hence, for n = |K|, the following is evident.

bAlg(v,G) = b(Kn) + b(K,G) = ⌈log n⌉+ t (1)
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Algorithm 3 Approximation Algorithm
Input A split graph G, a clique K, an independent set I , and an originator v ∈ K
Output A broadcast scheme with time bAlg(v,G) for graph G and the originator v

1: procedure BROADCASTINGFROMCLIQUE

2: Broadcast in the clique K starting from the vertex v
3: Find a proper t-star-matching M with minimum t (Algorithm 2)
4: Use the edges of M to broadcast from K to I
5: end procedure

Recall that for any graph G, b(v,G) ≥ ⌈log |V (G)|⌉. As in our case |V (G)| = n + |I| ≥ n, then

b(v,G) ≥ ⌈log n⌉. Moreover, it is trivial that the broadcast time from a single originator in the

clique cannot be less than the broadcast time where all the vertices in the clique are originators.

Hence, b(v,G) ≥ b(K,G) = t. From the two lower bounds of the minimum broadcast time

described above, it follows that:

b(v,G) =
b(v,G)

2
+

b(v,G)

2
≥ ⌈log n⌉

2
+

t

2
(2)

Thus,
bAlg(v,G)

b(v,G)
≤ ⌈log n⌉+ t

⌈logn⌉+t
2

= 2 (3)

We can see that the broadcast process of Algorithm 3 is guaranteed to be at most twice as long

as the optimal broadcast process.

As steps 2 and 4 of Algorithm 3 have known broadcast times, they have O(1) time complexity.

Thus, the proposed algorithm has a complexity of O(|E||V | log |I|), making it a polynomial-time

2-approximation algorithm for the broadcast time problem in split graphs from an originator in the

clique.

3.2.3 Broadcasting from a vertex in the independent set

Consider a split graph G = (V,E) with a clique partition K, an independent set partition I , and

an originator v ∈ I . The algorithm consists of three major steps:

(1) In the first time unit, v informs an arbitrary neighbor u ∈ K.

(2) A new split graph G′ is constructed by copying graph G and removing vertex v.
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(3) Starting from the second time unit, the process of broadcasting in G′ originating from u is

executed following the Algorithm 3.

Algorithm 4 formally presents the steps of broadcasting from an originator in the independent

set. After the algorithm halts, all vertices of graph G are informed.

Algorithm 4 Approximation Algorithm
Input A split graph G, a clique K, an independent set I , and an originator v ∈ I
Output A broadcast scheme with time bAlg(v,G) for graph G and the originator v

1: procedure BROADCASTINGFROMINDEPENDENTSET

2: Pass the message to an arbitrary neighbor u ∈ K of v
3: Complete broadcasting in the clique K
4: Copy a graph G′ from G by removing the vertex v
5: Find a proper t-star-matching M with minimum t for split graph G′ (Algorithm 2)
6: Use the edges of M to broadcast from K to I
7: end procedure

Let bAlg(v,G) be the broadcast time generated by Algorithm 4. It is easy to see that it has three

components:

• the time to send the message from v to u,

• the broadcast time of the clique K with u as the originator,

• and the broadcast time in G′ with the vertices of K as originators.

Hence, we can claim that bAlg(v,G) = 1 + b(u,Kn) + b(K,G′), where n = |K|.

bAlg(v,G) = 1 + b(u,Kn) + b(K,G′) = 1 + ⌈log n⌉+ t (4)

Recall that for any graph G, b(v,G) ≥ ⌈log |V (G)|⌉. Since in our case n = |K| and m = |I|,

then b(v,G) ≥ ⌈log(n+m)⌉ ≥ ⌈log n⌉. Moreover, since in any broadcast scheme, v should inform

a vertex in K in the first time unit, the broadcast time from a single originator in the independent set

is greater by at least one than the broadcast time where all the vertices in the clique are originators

and the rest of the independent set should be informed. Hence, b(v,G) ≥ 1 + b(K,G′) = 1 + t.

From the two lower bounds of the minimum broadcast time described above, it follows that:

b(v,G) ≥ ⌈log n⌉+ t+ 1

2
(5)
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Thus,
bAlg(v,G)

b(v,G)
≤ ⌈log n⌉+ t+ 1

⌈logn⌉+t+1
2

= 2 (6)

Algorithm 4, similar to Algorithm 3, has a time complexity of O(|E||V | log |I|), rendering it a

polynomial-time 2-approximation algorithm for the broadcast time problem in split graphs from an

originator in the independent set.

3.2.4 Tightness of approximation

In this section, we will prove that the approximation ratio of 2 is tight for the approximation

algorithms introduced in Sections 3.2.2 and 3.2.3 (Algorithm 3 and 4). For that, we will construct

an infinite subfamily of split graphs, for which 2 is a tight approximation ratio when the originator

is in the clique or the independent set.

Claim 3.2.4.1. For every positive integer 0 < ϵ < 1, there exists a split graph instance G and

an originator v, for which bAlg(v,G) > (2 − ϵ) · b(v,G), where bAlg(v,G) is the broadcast time

returned by Algorithm 3 or Algorithm 4 (depending on the originator) and b(v,G) is the minimum

broadcast time.

Proof. Let G be a split graph with a clique partition K = {v1, v2, . . . , vn} and an independent set

partition I = {w1, w2, . . . , wm}, such that n = |K| = 2t + 1 and m = |I| = t for some positive

integer t. Assume vertex v1 ∈ K is adjacent to every vertex wi ∈ I , 1 ≤ i ≤ m, and there exist no

more edges between the clique and the independent set (Figure 3.4). We will analyze the broadcast

time in 2 cases: v1 is the originator and w1 is the originator.

Consider the following broadcast scheme S1 for originator v1.

(1) Place a call from v1 to v2 in the first time unit.

(2) In the next t time units

(a) v1 informs its neighbors in I ,

(b) vertices in K \ {v1} finish broadcasting in the clique with v2 as the originator.
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Figure 3.4: Example of a split graph with tight approximation ratio.

Clearly, the broadcast scheme S1 will have a broadcast time of bS1(v1, G) = t+1 = ⌈log n⌉ =

b(v1, G), which is the trivial lower bound. Whereas, Algorithm 3 will return a broadcast time

bAlg(v1, G), such that bAlg(v1, G) = ⌈log n⌉ +m = 2t + 1. Hence, after simple calculations, we

can show that for every 0 < ϵ < 1, bAlg(v1, G) > (2− ϵ) · b(v1, G), when t >
1− ϵ

ϵ
.

Next, consider the broadcast scheme S2 for originator w1.

(1) Place a call from w1 to v1 in the first time unit.

(2) Place a call from v1 to v2 in the second time unit.

(3) In the next t time units

(a) v1 informs its uninformed neighbors in I ,

(b) vertices in K \ {v1} finish broadcasting in the clique with v2 as the originator.

The broadcast scheme S2 will have a broadcast time of bS2(w1, G) = t + 2 = 1 + ⌈log n⌉ =

b(w1, G), which is again the trivial lower bound. Whereas, Algorithm 4 will return a broadcast time

bAlg(w1, G) = ⌈log n⌉+(m− 1)+1 = 2t+1. Hence, after simple calculations, we can show that

for every 0 < ϵ < 1, bAlg(w1, G) > (2− ϵ) · b(w1, G), when t >
3− 2ϵ

ϵ
.
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3.3 Analysis of an optimal broadcast scheme

In the context of this section, we will be focusing on the decision version of the broadcast time

problem (MBT). Before introducing the actual algorithm we will discuss some claims and notations

that will be used in it.

Lemma 3.3.1. Let G be a split graph, K be a clique partition of G, and I be an independent set

partition of G. There exists an optimal broadcast scheme S for graph G starting from an originator

in K, such that every vertex u ∈ I has no uninformed neighbors after the time unit when u gets

informed.

Proof. In other words, Lemma 3.3.1 claims that there exists an optimal broadcast scheme where

no calls are placed from a vertex in the independent set to a vertex in the clique. Let OPT be an

optimal broadcast scheme. If OPT does not contain any calls placed from the independent set to

the clique, then the lemma is proved. Assume in scheme OPT , a vertex u ∈ I is informed by a

vertex v ∈ K in time unit i, and in time units i ≤ t1 ≤ t2 ≤ ... ≤ tp, for some p > 0, u informs its

uninformed neighbors w1, w2, ..., wp ∈ K, respectively. Then we construct a new broadcast scheme

S by copying OPT with the following changes (depicted in Figure 3.5):

• In time unit i, v informs w1, instead of u, as they are both in the clique. In the rest of the

broadcasting process, v continues as in OPT .

• In time unit tj , vertex wj passes the message to wj+1, where 1 ≤ j ≤ p− 1. After time unit

tj , wj behaves as in OPT .

• In time unit tp, vertex u is informed by its neighbor wp. After time unit tp, all vertices behave

as in OPT .

This transformation is visualized in Figure 3.5, where subfigure (a) shows the order of calls in

scheme OPT and subfigure (b) shows the order of calls in scheme S. This shuffle will not affect

the broadcast time, as after time unit tp we will have the same set of vertices informed. The same

transformation can be applied to any other situation where a call is placed from the independent set

to the clique. Hence, the created broadcast scheme S will have a broadcast time equal to that of

OPT , thus becoming an optimal broadcast scheme that satisfies the conditions of the lemma.
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(a) (b)

Figure 3.5: Example of a transformation discussed in Lemma 3.3.1.

From Lemma 3.3.1, it is clear that any calls placed from a vertex v ∈ K to its neighbors in K

should be performed before calls towards its neighbors in I .

Lemma 3.3.2. Let G be a split graph, K be a clique partition of G, and I be an independent set

partition of G. There exists an optimal broadcast scheme S originating from a vertex in K and

satisfying the conditions of Lemma 3.3.1, such that no vertex u ∈ K informs a vertex w ∈ K after

a vertex v ∈ I .

Proof. In other words, vertices in the clique start placing calls to their neighbors in the independent

set after they are done informing their neighbors in the clique.

Let ((u, v), (u,w)) be a pair of calls (pair of directed edges), such that u,w ∈ K and v ∈ I .

We say that ((u, v), (u,w)) is a bad pair of calls in a broadcast scheme S if the call (u, v) was

placed before the call (u,w). Let OPT be an optimal broadcast scheme satisfying the conditions

of Lemma 3.3.1. It is clear that if OPT contains no bad pair of calls then it satisfies Lemma 3.3.2.

Otherwise, if the scheme OPT contains some bad pairs of calls, we create a scheme S by copying

OPT and applying the following changes (depicted in Figure 3.6).

(1) Select an arbitrary bad pair of calls ((u, v), (u,w)), where (u, v) was placed in time unit t1,

and (u,w) was placed in time unit t2 > t1.

(2) Swap the order of the calls in the pair: use the edge (u,w) in time unit t1 and the edge (u, v)

in time unit t2.
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(3) Leave the rest of the calls unchanged (even if it causes idling).

This transformation is visualized in Figure 3.6, where subfigure (a) shows the order of calls in

scheme OPT and subfigure (b) shows the order of calls in scheme S. After the modifications, the

scheme S will finish broadcasting in the same amount of time, because by Lemma 3.3.1, the vertex

v does not place any calls after being informed. Moreover, the above transformation will reduce the

number of bad pairs of calls in scheme S by at least 1. Hence, after a finite number of steps, scheme

S will have optimal broadcast time containing no bad pairs of calls, thus, proving the lemma.

(a) (b)

Figure 3.6: Example of a transformation discussed in Lemma 3.3.2.

Let M be a proper t-star-matching induced by an optimal broadcast scheme S satisfying the

conditions of Lemma 3.3.2 (as well as Lemma 3.3.1), and let Ni and di, 1 ≤ i ≤ n be the set and

the number of vertices covered by vi ∈ K in M , respectively. Also, let b(S) denote the broadcast

time achieved by scheme S. The following corollary follows from Lemma 3.3.2.

Corollary 3.3.3. In the optimal broadcast scheme S, a vertex vi ∈ K, starts placing calls to vertices

in Ni in time unit b(S)− di + 1. Additionally, the calls can be placed in an arbitrary order without

affecting the broadcast time.

Now we will analyze the broadcast time b(S) achieved by broadcast scheme S. It is obvious

that if no calls are placed from a vertex in the clique to the independent set then, theoretically, by

the time the broadcasting is over 2b(S) vertices could be informed in the clique (informed vertices
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are doubled every time unit). Now assume that a vertex u ∈ K spends the last p time units of the

broadcasting process placing calls to some vertices on the independent set I . Since, theoretically,

these p time units could be used to inform 2p − 1 vertices in the clique, then the overall number of

vertices that will be informed in the clique would be at most 2b(S) − 2p + 1. Thus, according to

Corollary 3.3.3, the following number is an upper bound on the number of informed vertices in the

clique after b(S) time units.

2b(S) − 2d1 + 1− 2d2 + 1− ...− 2dn + 1 = 2b(S) −
n∑

i=1

2di + n (7)

As the scheme S is a valid broadcast scheme and informs all the vertices in the graph within

b(S) time units, the following inequality is obvious.

2b(S) −
n∑

i=1

2di + n ≥ n (8)

2b(S) −
n∑

i=1

2di ≥ 0 (9)

2b(S) ≥
n∑

i=1

2di (10)

Definition 3.3.4. For a given proper t-star-matching M , let the cost of M , denoted by C(M), be

C(M) =
∑n

i=1 2
di , where di is the degree of vertex vi ∈ K in the subgraph induced by M .

Let M∗ be a proper t-star-matching that minimizes the cost C(M∗). We define the following

decision problem for the star-matching with minimum cost.

Problem 3.3.5. Minimum cost star-matching

Instance: (G, c), where G = (V,E) is a split graph, and c is a natural number.

Output: “Yes” if there exists a proper star-matching M∗ of G such that C(M∗) ≤ c; “No” other-

wise.

The below corollary follows from the Equation (10).

Corollary 3.3.6. The broadcast time of a split graph G from an originator v ∈ K is lower bounded

by b(v,G) ≥ ⌈log(C(M∗))⌉. Moreover, there exists an optimal broadcast scheme S, such that the
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edges between K and I in the broadcast tree of S exactly induce M∗.

Hence, the problem of finding the minimum broadcast time of a given split graph can be solved

if the minimum cost star-matching problem is solved. Based on everything discussed previously,

the following exact algorithm for the minimum broadcast time problem could be derived.

Algorithm 5 Exact Algorithm
Input A split graph G, a clique K, an independent set I , an originator v ∈ K, and a natural

number t
Output “Yes” if b(v,G) ≤ t; “No” otherwise.

1: procedure SPLITGRAPHBROADCAST

2: Find a proper t-star-matching M with minimum cost C(M)
3: if 2t ≤ C(M) then
4: return “No”
5: end if

6: d← []
7: d[i]← degree of vi ∈ K in M
8: Sort the degree array d in a non-increasing fashion
9: Broadcast in the clique prioritizing the vertices based on their order in d

10: if a vertex vi ∈ K is not informed in time unit t− di + 1 then
11: return “No”
12: else
13: Use the edges of vi in M in arbitrary order starting from time unit t− di + 1
14: end if
15: return “Yes”
16: end procedure

Algorithm 5 follows the claims made previously in this section. The only exception is the

conditional operation (if) on line 10. The statement checks if all the vertices that need to start

placing calls towards the independent set are informed before their determined time unit. If this is

not the case then the broadcasting cannot terminate within the given amount of time.

To sum up, Algorithm 5 gives a strategy that can generate an exact algorithm if the proper

star-matching with minimum cost can be found. However, for any selected matching strategy the

algorithm will produce a heuristic, the performance of which will only depend on the cost of the

selected matching. For instance, if we used the same proper star-matching with min maxdegree that

was used in the approximation algorithm introduced earlier in Sections 3.2.2 and 3.2.3, it would

generate a valid heuristic. Clearly, it is possible to have many idle vertices in the approximation
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algorithm that we discussed earlier, depending on the structure of the graph instance. Thus, the

heuristic will generate broadcast times not worse than those of the 2-approximation algorithm, as it

will have the same behavior without any vertex idling. However, we were unable to provide a better

approximation ratio for that algorithm. We will discuss the heuristic in detail further in this chapter.

3.3.1 Split graphs with known broadcast times

As mentioned in the previous section, Algorithm 5 will return the minimum broadcast time for

split graphs if the proper star-matching with minimum cost can be found. In this section we will

consider two subclasses of split graphs for which the proper star-matching with minimum cost is

known, hence, resulting in exact polynomial-time algorithms.

First, we consider split graphs where the degree of each vertex in the independent set is one. In

this case, each vertex in the independent set should be covered by the only adjacent vertex in the

clique. Hence, there exists only one proper star-matching for these split graphs.

Let G be a split graph with a clique partition K and an independent set partition I , such that

deg(u) = 1 for every u ∈ I , |K| = n, |I| = m. Assume K contains vertices v1, v2, . . . , vn. We

will consider two cases: the originator in K and I .

(1) Let some vj ∈ K be the originator. As argued above, there exists only one proper star-

matching M of G. Moreover, we know that each vertex vi ∈ K has degree di in the subgraph

induced by M , where di = deg(vi) − n + 1 is the number of vertices in the independent

set adjacent to vi. Clearly, by the Corollary 3.3.6, the broadcast time of graph G from the

originator v is equal to b(vj , G) = ⌈log(
∑n

i=1 2
di)⌉.

(2) Let w ∈ I be the originator. Since every vertex in the independent set has degree one, in

the first time unit the vertex w will pass the message to its only neighbor, say vj ∈ K,

and will be idle after that. Let G′ be a split graph resulting after removing the vertex w

from G. Obviously, b(w,G) = 1 + b(vj , G
′). Whereas, by the previous case, b(vj , G′) =

⌈log(
∑n

i=1 2
d′i)⌉, where d′i is the number of vertices in the independent set of G′ adjacent to

vi ∈ K. Hence, b(w,G) = 1 + ⌈log(
∑n

i=1 2
d′i)⌉.

Now, we consider split graphs where each vertex in the clique has at most one adjacent vertex
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in the independent set. In this case, there can exist several proper star-matchings. However, in the

subgraph induced by any proper star-matching, each vertex in the clique either has a degree 0 or 1.

Moreover, there exist exactly m vertices in the clique with degree 1, where m = |I|.

Let G be a split graph with a clique partition K and an independent set partition I , such that

|K| = n, |I| = m, and deg(u) ≤ n for every u ∈ K. Let v ∈ K be the originator. Let di be the

number of vertices in the independent set adjacent to vi ∈ K. From the above-mentioned argument,

the following equation is implied.

n∑
i=1

2di = m · 21 + (n−m) · 20 = n+m (11)

Hence, by the Corollary 3.3.6, the broadcast time of graph G from the originator v is equal to

b(v,G) = ⌈log(n+m)⌉.

3.3.2 Split graphs with achievable lower bound of the broadcast time

In this section, we will discuss an infinite subfamily of split graphs that have broadcast time

equal to the lower bound. As we mentioned earlier in this study, the broadcast time is lower bounded

by ⌈log n⌉, where n = |V |. So for a split graph G, with clique partition |K| = n and independent

set partition |I| = m, the broadcast time is lower bounded by ⌈log(n+m)⌉.

Assume that for a given graph G and an originator v ∈ K, b(v,G) = ⌈log(n+m)⌉. Let M be a

proper t-star-matching induced by an optimal broadcast scheme for G, and let Ni and di, 1 ≤ i ≤ n

be the set and the number of vertices covered by vi ∈ K in M , respectively. For any vertex vi,

d(vi) denotes the number of vertices in I adjacent to vi, or more formally, d(vi) = |N(vi) ∩ I|,

where N(vi) is the open neighborhood of vi. Note that 0 ≤ di ≤ d(vi) for any i. The following is

straightforward from the Equation (10).

2⌈log(n+m)⌉ ≥
n∑

i=1

2di (12)
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Since di ≤ d(vi), then we can claim that b(v,G) = ⌈log(n+m)⌉ if

2⌈log(n+m)⌉ ≥
n∑

i=1

2d(vi) (13)

Thus, any split graph satisfying the above-mentioned inequality will have a broadcast time equal

to the lower bound of ⌈log(n +m)⌉. For instance, let n = 2k, m = 2k + 1, for a positive integer

k, and let each vertex in the clique have at most 2 neighbors in the independent set (d(vi) ≤ 2, for

any 1 ≤ i ≤ n). In that case, we can see that 2⌈log(n+m)⌉ = 2k+2 and
∑n

i=1 2
d(vi) ≤ 4 · n = 2k+2.

Hence, Equation (13) holds for these graphs, and we can claim that they have broadcast time of

b(v,G) = ⌈log(n+m)⌉.

3.4 Broadcasting heuristic in split graphs

The heuristic, which we will introduce shortly, is based on the analysis conducted in the previous

section. Given a connected split graph G with a clique partition K, an independent set partition I ,

and an arbitrary originator v ∈ V (G) we can consider the following two cases.

(1) The originator is from the clique: v ∈ K.

(2) The originator is from the independent set: v ∈ I .

However, for both of these cases, the algorithm strategy is the same. The only difference is that

for an originator in the independent set, the originator will not be considered in the step of finding a

star-matching.

3.4.1 Algorithm description

The main goal of the algorithm is to avoid vertex idling. Moreover, the broadcast scheme also

prioritizes informing vertices in the clique and will start to broadcast to the independent set as late

as possible. The vertices in the clique will be given some priority based on their degree in the proper

star-matching. Vertices that have more neighbors to inform in the independent set will be informed

earlier. However, instead of directly finding a broadcast time for the given split graph, we will try
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to find an answer to the broadcast time decision problem. Given a graph G = (V,E), the originator

v ∈ V , and a natural number b, the broadcast time decision problem returns “Yes” if b(v,G) ≤ b

and “No” otherwise. The pseudocode for the algorithm that follows the analysis in Section 3.3 is

presented in Algorithm 6.

Algorithm 6 Heuristic for Broadcasting in Split Graphs
Input A split graph G, a clique K, an independent set I and an originator v ∈ V (G)
Output A broadcast time b.

1: procedure FINDBROADCASTTIME

2: G′ ← G
3: if v ∈ I then
4: Remove v from G′

5: end if
6: Find a star-matching M of G′ (Algorithm 2)
7: d← []
8: d[i]← degree of vi ∈ K in M
9: Sort the degree array d in a non-increasing order

10: Do a binary search on range [log |V |, |V | − 1] by invoking BROADCAST procedure
11: end procedure
12: procedure BROADCAST(d[], b) ▷ Input: sorted degree array d, natural number b
13: ▷ Output “Yes” if b(v,G) ≤ b; “No” otherwise
14: q ← v ▷ Set of informed vertices
15: i← 1
16: while i ≤ b do ▷ Iterate through rounds
17: Remove d[0, |q| − 1] from d ▷ Inform first |q| vertices in the list d
18: Add d[0, |q| − 1] to q
19: if a vertex vi ∈ K with di = t− i+ 1 is not informed then
20: return “No” ▷ Vertex vi fails to start broadcasting to I
21: else
22: Remove vi from q
23: end if
24: end while

25: if d is not empty then
26: return “No” ▷ Not all vertices of K are informed
27: end if
28: return “Yes”
29: end procedure

The time complexity of the FINDBROADCASTTIME procedure in Algorithm 6 consists of sev-

eral components. First, as we already discussed in Section 3.2.1, finding the star-matching will

have a complexity of O(|E||V | log |I|). Next, sorting of the degree array will have a complexity
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of O(|K| log |K|). Any operation in the sub-procedure BROADCAST can be implemented with

constant time complexity. Thus, overall, the procedure BROADCAST will have complexity O(b)

caused by the loop on line 16. Hence, overall complexity of the heuristic will beO(|E||V | log |I|)+

O(|K| log |K|)+ O(b log |V |) = O(|E||V | log |I|). Lastly, the Algorithm 6 will be invoked during

a binary search on range [log |V |, |V | − 1].

As per Section 3.3, the fact that Algorithm 6 uses a star-matching with minimum maxdegree

makes it a polynomial-time 2-approximation algorithm for broadcasting. Since Algorithm 6 avoids

idle vertices, it returns equally good or better broadcast times than the algorithms in Section 3.2. Un-

fortunately, we were unable to provide a better approximation ratio for the algorithm. The algorithm

will be empirically analyzed in Section 3.6.

3.5 Broadcasting in (k, l)-graphs

To understand if the strategies discussed in Sections 3.2 and 3.4 can be applied to other graph

families, we are going to consider a natural generalization of split graphs called (k, l)-graphs (Hell,

Klein, Protti, & Tito, 2001). In a (k, l)-graph (Brandstädt, 1996), the vertex set can be partitioned

into k independent sets and l cliques. Such partitioning is referred to as (k, l)-partition. Note that

split graphs are exactly (1, 1)-graphs. Currently, there exist efficient recognition algorithms for

split graphs (Golumbic, 2004), (2, 1)-graphs and (1, 2)-graphs (Brandstädt & Szymczak, 1998).

Moreover, for k ≥ 3 or l ≥ 3, recognizing (k, l)-graphs is shown to be NP-complete (Brandstädt,

1996, 1998). Note that the class of (k, 0)-graphs is precisely the class of k-colorable graphs.

Split graphs are particularly interesting for research because they are chordal, which is not true

for all (k, l)-graphs. Hence, chordal (k, l)-graphs are an interesting case of (k, l)-graphs. Hell,

Klein, Nogueira, and Protti (2004) particularly discussed the chordal (k, l)-graphs. They showed a

forbidden subgraph characterization of chordal (k, l)-graphs, as well as introduced a polynomial-

time recognition algorithm.

Further, we will introduce a heuristic for the broadcast time problem in (k, l)-graphs. Note that

every connected graph G = (V,E) is a (0, |V | − 1)-graph. Hence, even though we designed our

algorithm to target (k, l)-graphs with small k and l, it will still work for arbitrary graphs.
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Consider a connected graph G = (V,E) such that the vertex set can be partitioned into k

independent sets I1, I2, ..., Ik and l cliques K1,K2, ...,Kl. Let I = I1 ∪ I2 ∪ ... ∪ Ik be the set of

all vertices in the independent sets, and let K = K1 ∪K2 ∪ ... ∪Kl be the set of all clique vertices.

We occasionally may denote a (k, l)-graphs as G = (I,K, E). Before proceeding to the actual

algorithm, we will introduce several important tools that will be used as keystones.

3.5.1 Finding a tree-matching

Recall that a proper t-star-matching of a split graph G is a perfect t-star-matching such that

any vertex v ∈ K is a center of a star. We are going to use a natural generalization of a proper

t-star-matching for (k, l)-graphs.

Definition 3.5.1.1. A tree-matching of a (k, l)-graph G = (I,K, E) is a collection of mutually

vertex-disjoint subtrees of G (a forest), such that the root of each tree is from K, every vertex of

each tree other than the root is from I, and every vertex of G belongs to exactly one tree.

Note that a tree-matching of a split graph is a proper star-matching.

The goal is to find a tree-matching that can be used to induce an efficient broadcast scheme. For

that, we are going to introduce a mechanism that tries to ensure that vertices in K have mutually

balanced trees. We designed two recursive procedures to construct the tree-matching level by level.

Given a simple graph G = (V,E), a matching M is a set of pairwise non-adjacent edges in G,

i.e. none of the edges share a common vertex. A bipartite matching M(U,W ), on sets of vertices

U and W , is a matching where for every edge (u,w) ∈ M(U,W ), u ∈ U and w ∈ W . In other

words, M(U,W ) is a matching of the bipartite graph induced by the partitions U and W . If two

partitions are clear from the context we may sometimes refer to it as just M . A maximal matching

of G is a matching that is not a subset of another matching in G. For two sets of vertices, U and W ,

MM(U,W ) denotes a maximal bipartite matching. To find the next level of each tree we are going

to select multiple maximal bipartite matchings as long as such exist.

The procedure takes as an input a graph G = (V,E), a dominant set U ⊂ V , and a secondary

set W ⊂ V , such that U∩W = ∅. It keeps searching for maximal matchings between sets U and W

until every vertex in W is covered or is impossible to cover. The collection of all selected maximal
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matchings, referred to as a recursive maximal matching from U to W , is denoted by RMM(U,W )

(note that the notation takes an ordered pair). The procedure RECURSIVEMAXIMALMATCHING is

described in Algorithm 7. Figure 3.7 visualizes the procedure RECURSIVEMAXIMALMATCHING.

Figure 3.7: Example of a recursive maximal matching RMM(K, I). Red, blue, and green edges
are those selected in iterations one, two, and three, respectively.

The main algorithm for finding a tree-matching starts by finding a recursive maximal matching

R from K to I. It is clear that each vertex in I that is not covered by R is not adjacent to any

vertex in K. Hence, the vertices that are still not covered, participate in the next round of finding

a recursive maximal matching. This time, they will be covered by the vertices in I that were

previously selected into R. If we continue this process, eventually, every vertex will be covered and

all used recursive matchings together will induce a tree-matching. The algorithm TREEMATCHING

is formally presented in Algorithm 8. An example of a tree-matching returned by the Algorithm 8

is presented in Figure 3.8.

3.5.2 Broadcasting heursitic

Given a (k, l)-graph G = (V,E) with partitions I and K, let M be a tree-matching of G.

Below we introduce several variables that will be used to design the algorithm. The order of calls

will be based on the values of these variables. For a clique K, current time unit t, and an attempted

broadcast time b:

• X(K) denotes the set of informed vertices in K.
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Algorithm 7 Finding a recursive maximal matching
Input Graph G = (V,E), two sets U,W ⊂ V , U ∩W = ∅
Output RMM(U,W )

1: procedure RECUSRIVEMAXIMALMATCHING

2: R← {}
3: while W is not empty do
4: Find a maximal matching S = MM(U,W )
5: if S = ∅ then
6: return R
7: end if
8: R← R ∪ S
9: for each (u,w) ∈ S, where u ∈ U,w ∈W do

10: Remove w from W
11: end for
12: end while
13: return R
14: end procedure

• The estimated error of K, denoted by e(K), is the number of time units after b that K is

estimated to be fully informed, assuming that a call is placed to a vertex in K in time unit t.

e(K) = max

{
0, t+ 1 + log

(
|K|

1 + |X(K)|

)
− b

}

• The secondary error of K, denoted by e2(K), is the number of time units after b that K is

estimated to be fully informed, assuming that a call is placed to a vertex in K in time unit

t+ 1.

e2(K) = max

{
0, t+ 2 + log

(
|K|

1 + |X(K)|

)
− b

}

For a vertex v ∈ V , current time unit t, and an attempted broadcast time b:

• T (v) denotes the tree in M that v belongs to.

• Nk(v) is the set of cliques that v has a neighbor in (excluding the clique that v belongs to).

• UC(v) denotes the set of children of v in T (v) that are currently not informed.

• w(v) denotes the current weight of v in each time unit of the broadcasting process such that:

◦ if v is a leaf, w(v) = 0,
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Algorithm 8 Finding a tree-matching
Input (k, l)-graph G = (I,K, E)
Output A tree-matching M

1: procedure TREEMATCHING

2: M ← {}
3: U ← K
4: W ← I
5: while W is not empty do
6: Find R = RMM(U,W )
7: M ←M ∪R
8: U ← R ∩W
9: W ←W \R

10: end while
11: return M
12: end procedure

◦ otherwise, w(v) = max{i + w(ui)|ui ∈ UC(v)}, where UC(v) is sorted in non-

increasing order of children’s current weights.

• The deadline of v, denoted by f(v), is the largest number of time units v can wait before

starting to inform the vertices in UC(v). Clearly,

f(v) = b− w(v)− t+ 1

and v needs to inform vertices in UC(v) when f(v) = 0 as latest.

For a vertex v in some clique Ki, 1 ≤ i ≤ l, the cost of v, denoted by c(v), is the aggregation

between the deadline of v, the estimated error of Ki, and the secondary error of all neighboring

cliques.

c(v) =
f(v)

1 + e(Ki) +
max{e2(K)|K∈Nk(v)}

2

=
2f(v)

2 + 2e(Ki) + max{e2(K)|K ∈ Nk(v)}

(14)

It is easy to see that vertices with smaller deadlines should be informed earlier to finish broadcasting

in their uninformed subtrees on time. Similarly, cliques with higher errors are more likely to need

calls from outside the clique itself to finish the broadcast process on time. Hence, the cost of a
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Figure 3.8: Example of a tree-matching on a (2, 2)-graph. Red edges form the tree-matching, and
the labels represent the round when the edge was selected.

vertex v ∈ K defines the priority of v in comparison to other vertices in K, i.e., vertices with less

cost should be informed first. Whenever an informed vertex does not have an uninformed neighbor

in a clique, it places a call towards a neighbor in I with the smallest deadline. Overall, this greedy

strategy can be summarized with the following points.

In each time unit t ≤ b, an informed vertex u follows the greedy broadcast scheme below:

(1) If f(u) > 0:

(a) u informs its neighbor in K with the smallest cost. If two vertices in different cliques

have the same cost, select the one with a higher estimated error. If two vertices are

selected from the same clique, pick arbitrarily.

(b) If no such vertex is found, then u informs its neighbor in I with the smallest deadline

(with ties broken arbitrarily).

(2) If f(u) = 0:

(a) u informs its child in UC(u) with the smallest deadline.

The broadcasting algorithm for (k, l)-graphs is formally presented in Algorithm 9.

The time complexity of the Algorithm 9 consists of several components. First, finding the re-

cursive maximal matching will have a complexity of O(|E||V ||I|). Next, the main part of the
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Algorithm 9 Broadcasting (k, l)-graphs
Input (k, l)-graph G = (V,E), an originator v ∈ V , and a positive integer b
Output “Yes” if b(v,G) ≤ b; “No” otherwise

1: procedure BROADCAST

2: Find a tree-matching M of G (Algorithm 8)
3: t← 1
4: Z ← {v} ▷ The set of informed vertices
5: X ← V \ {v} ▷ The set of uninformed vertices
6: while t ≤ b do
7: for each u ∈ Z do
8: A← K ∩N(u) ∩X
9: B ← I ∩N(u) ∩X

10: if f(u) = 0 then
11: Select s ∈ UC(u) with the min f(s)
12: else if A ̸= ∅ then
13: Select s ∈ A with the min c(s) and max e(K)
14: else if B ̸= ∅ then
15: Select s ∈ B with the min f(s)
16: end if
17: X ← X \ s
18: Z ← Z ∪ {s}
19: end for
20: t← t+ 1
21: Update the deadlines and the costs
22: end while
23: if X is not empty then
24: return “No” ▷ Not all vertices of K are informed
25: end if
26: return “Yes”
27: end procedure

algorithm has O(|V |b) iterations. Whereas, each operation inside the loop itself, if carefully im-

plemented, can be executed in constant time. Hence, overall complexity of the heuristic will be

O(|E||V ||I|) +O(b|V |) = O(|E||V ||I|).

3.6 Experiments and results

In this section, we will discuss the results achieved after different experiments with the proposed

heuristics, as well as discuss some special cases of (k, l)-graphs.
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3.6.1 Fully Connected Trees

A fully connected tree (FCT) (Gholami et al., 2023) is a graph G = (V,E) which can be

partitioned into n rooted trees T1, T2, ..., Tn, such that the roots of the trees form a clique Kn.

Lemma 3.6.1.1. Any fully connected tree is a (2, 1)-graph.

Proof. It is easy to see that the vertex set of any tree T can be partitioned into 2 independent sets by

assigning the vertices on odd levels to the first set, and the vertices on even levels to the other set.

Moreover, since there are no edges between two trees in a fully connected tree (other than edges

between the roots), all of the trees can be partitioned into the same two independent sets. Hence, by

assigning the roots to a clique and the rest of the vertices to two independent sets, we can see that

any fully connected tree is a (2, 1)-graph.

Lemma 3.6.1.2. Algorithm 9 is a polynomial-time exact algorithm for broadcasting when applied

to fully connected trees.

Proof. Note that a fully connected tree does not contain a cycle going through a vertex in an inde-

pendent set, and hence, has a unique tree-matching. Moreover, since there is only one clique, the

vertices in the clique have the same estimated error factor. Thus, the cost of these vertices is only

defined by the deadline which is based on the broadcast time of the attached tree. Thus, we can

see that the proposed algorithm for (k, l)-graphs, when applied to fully connected trees, induces the

known polynomial-time exact algorithm (GFCT by Gholami et al. (2023)).

3.6.2 Split graphs

In the first group of experiments, we test the results of the algorithm devised in Section 3.4 on

random graphs with a somewhat balanced predefined structure. The goal of these experiments is

to validate the baseline against what we are going to compare the (k, l)-graph heuristic. The main

purpose of the second group of experiments is to validate the motivation of the heuristics by com-

paring the results of the algorithms devised in Sections 3.4 and 3.5. Lastly, we study the behavior of

the proposed heuristics on graph instances that were generated following some predefined structure.

We refer to the (k, l)-graph heuristic as RMM and to the split graphs heuristic as SMH.
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Bounded degree split graphs

First, we will present experimental results on split graphs where vertices in the independent

set have bounded degrees. We call such graphs d-restricted split graphs, where d is the maximum

degree out of all vertices in the independent set. This subfamily of graphs represents networks where

nodes have a limit on the number of connections to the network core. To simulate such networks,

we create split graph instances with a given number of vertices (N ), a predefined number of vertices

in the clique (n), and independent set (m) partitions. After the partition is defined, vertices in the

independent set are connected by edges to a randomly selected set of vertices in the clique, such that

the size of the set is limited by a given input value d (degree bound). Later, we run SMH heuristic

on these graph instances with random originators. The algorithm is executed on up to 50 generated

graph instances for each set of input parameters, and for each execution, the resulting broadcast

time is retrieved. We report the minimum (SMH: Min), the maximum (SMH: Max), and the average

(SMH: Avg) of all resulting broadcast times for each input parameter set. Tables 3.1 and 3.2 present

experimental results on 5-restricted and 15-restricted split graphs, respectively.

We can see that in some cases the average broadcast time is equal to the lower bound of the

broadcasting, which means that the algorithm found the minimum broadcast time in all executions.

Moreover, from the tables, it is clear that the average, minimum, and maximum broadcast times

grow as the size of the clique decreases while keeping the number of vertices constant. In the

majority of the cases when the clique and the independent set have almost equal cardinalities, the

algorithm correctly found a broadcast scheme with the optimal broadcast time, which could mean

that as the clique size decreases the optimal broadcast time of the graph is not equal to the lower

bound anymore. This is explained by the fact that a smaller clique size means a higher maximum

degree of star-matchings. Overall, we can conclude that the algorithm SMH performed very well

for k-restricted split graphs.

51



Unstructured graphs

For the second round of experiments, we create random split graphs with different densities.

Firstly, the vertex set of the graph is randomly divided into two partitions: the clique and the inde-

pendent set. After that, edges are added between every pair of clique vertices. Lastly, with a given

probability p (density parameter), an edge is added between every pair of vertices, where one vertex

is from the independent set and the other vertex is from the clique.

We run the algorithms for different graph sizes and three values of the density parameter: 0.2

(sparse graphs), 0.5 (dense graphs), and 0.9 (near-complete graphs). The broadcasting is initiated

from a randomly selected originator. The results for different values of the density parameter p

and different numbers of vertices N are presented in Table 3.3. The algorithm is executed on up

to 50 generated graph instances for each pair of input parameters (N, p), and for each execution,

the resulting broadcast time is retrieved. In Table 3.3, we present the maximums (RMM: Max and

SMH: Max), and the averages (RMM: Avg and SMH: Avg) of all resulting broadcast times.

We can see that RMM heuristic returns broadcast times that are rather close to the lower bound

of ⌈logN⌉. Moreover, we observe that RMM heuristic returns better average broadcast times than

the SMH heuristic in all cases. In some cases, RMM even results in better maximum broadcast

time than SMH. This means, that for randomly created split graphs or when the structure of the

split graph is unknown, the proposed heuristic RMM is preferable to SMH. Given that we do not

know the exact value of the minimum broadcast time, the results achieved by heuristic RMM are

considered successful.

Threshold graphs

In the case of random split graphs, vertices in the independent set are connected to their neigh-

bors with uniformly random probability and share the same set of limitations. Since these graphs

represent fairly balanced networks, it is still interesting to study graphs with imbalanced adjacency

between vertices.

Our next group of experiments was performed on threshold graphs (Hammer, 1977). Threshold

graphs are constructed from a single vertex graph by addition of vertices. Each added vertex is
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either not connected to any of the existing vertices (isolated) or is connected to all of the existing

vertices (dominating).

Claim 3.6.2.1. All threshold graphs split.

Proof. Let every vertex that was selected as isolated during the construction process be in the set I

and every vertex that was selected as dominating be in the set K. From the construction of graph G

we know that no pair of vertices in I is connected by an edge, hence, making it an independent set.

Now, let u, v ∈ K be an arbitrary pair of vertices in K, such that, without loss of generality (wlog),

v was added later than u. Since v was selected to be dominating, then it would be connected to every

vertex that was already in the graph, including u. Hence, K will be a clique in G. Thus, we showed

that for any threshold graph G, there exists a decomposition into a clique and an independent set,

making it a split graph.

For the sake of our experiments, we construct threshold graphs, where each added vertex is

randomly selected to be isolated or dominating with a uniform probability. However, the last added

vertex is always a dominating vertex, because otherwise the graph would not be connected. Notice

that this process will generate sparse graphs with an approximately equal number of vertices in two

partitions. Moreover, the process generates graphs with a wide distribution of vertex degrees, where

vertices in the independent set have more neighbors if added earlier, and vice versa for the vertices

in the clique. As an unbalanced subfamily of split graphs, threshold graphs are one of the worst

possible input graphs for our heuristic. Hence, we study the behavior of our algorithm on these

graphs to understand the worst-case scenario.

The results achieved by the heuristics from arbitrary originators are provided in Table 3.4. For

a given graph with N vertices, we analyze the broadcast time achieved by heuristic RMM by com-

paring it with the lower bounds of the minimum broadcast time and the broadcast time of algorithm

SMH. As we can see, in most of the cases RMM returns slightly worse broadcast times than those of

SMH. This means that in the case of split graphs which have a very unbalanced degree distribution

of the vertices in the clique, algorithm SMH is preferable to algorithm RMM.
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Table 3.1: Experimental results for 5-restricted split graphs of different number of vertices (N ),
different cardinalities of the clique (n) and the independent set (m).

N n m ⌈logN⌉ SMH: Min SMH: Max SMH: Avg

260 150 110 9 9 9 9.00

260 130 130 9 9 9 9.00

260 110 150 9 9 9 9.00

260 90 170 9 9 10 9.58

260 70 190 9 10 11 10.14

260 50 210 9 11 12 11.10

260 30 230 9 14 16 14.20

260 20 240 9 17 19 18.18

260 15 245 9 22 25 22.98

130 85 45 8 8 8 8.00

130 75 55 8 8 8 8.00

130 65 65 8 8 9 8.04

130 55 75 8 8 9 8.02

130 45 85 8 8 10 8.30

130 35 95 8 9 10 9.04

130 25 105 8 10 11 10.06

130 15 115 8 13 14 13.06

130 10 120 8 16 19 16.96

70 45 25 7 7 7 7.00

70 40 30 7 7 7 7.00

70 35 35 7 7 8 7.06

70 30 40 7 7 7 7.00

70 25 45 7 7 8 7.10

70 20 50 7 7 8 7.96

70 15 55 7 8 9 8.54

70 10 60 7 10 12 10.34

70 5 65 7 16 20 17.04

40 30 10 6 6 6 6.00

40 25 15 6 6 6 6.00

40 20 20 6 6 7 6.16

40 15 25 6 6 8 6.10

40 10 30 6 7 8 7.04

40 7 33 6 8 10 8.38

40 5 35 6 10 11 10.18
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Table 3.2: Experimental results for 15-restricted split graphs of different number of vertices (N ),
different cardinalities of the clique (n) and the independent set (m).

N n m ⌈logN⌉ SMH: Min SMH: Max SMH: Avg

1100 600 500 11 11 11 11.00

1100 500 600 11 11 11 11.00

1100 400 700 11 11 12 11.40

1100 300 800 11 12 12 12.00

1100 225 875 11 12 13 12.70

1100 150 950 11 15 15 15.00

1100 100 1000 11 18 19 18.06

1100 50 1050 11 28 31 29.70

550 300 250 10 10 10 10.00

550 250 300 10 10 10 10.00

550 220 330 10 10 10 10.00

550 190 360 10 10 11 10.00

550 180 370 10 10 11 10.45

550 150 400 10 11 11 11.00

550 100 450 10 12 12 12.00

550 75 475 10 14 14 14.00

550 50 500 10 16 18 16.80

550 25 525 10 27 32 27.62

260 170 90 9 9 9 9.00

260 150 110 9 9 9 9.00

260 130 130 9 9 9 9.00

260 110 150 9 9 9 9.00

260 90 170 9 9 10 9.04

260 70 190 9 9 10 9.74

260 50 210 9 11 11 11.00

260 30 230 9 13 14 13.26

130 75 55 8 8 8 8.00

130 65 65 8 8 8 8.00

130 55 75 8 8 8 8.00

130 45 85 8 8 8 8.00

130 30 100 8 9 9 9.00

130 22 108 8 10 10 10.00

130 15 115 8 12 13 12.32
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Table 3.3: Experimental results for random split graphs of different number of vertices (N ) and
density of edges (p).

N p ⌈logN⌉ RMM: Max SMH: Max RMM: Avg SMH: Avg

1000 0.2 10 11 11 10.30 10.50

500 0.2 9 10 10 9.30 9.60

100 0.2 7 8 8 7.05 7.20

80 0.2 7 7 8 7.00 7.20

50 0.2 6 7 8 6.20 6.50

32 0.2 5 7 8 5.55 6.00

1000 0.5 10 11 11 10.20 10.80

500 0.5 9 10 10 9.30 9.60

100 0.5 7 7 8 7.00 7.30

80 0.5 7 7 8 7.00 7.03

50 0.5 6 7 7 6.05 6.38

32 0.5 5 6 6 5.35 5.50

1000 0.9 10 11 11 10.20 10.70

500 0.9 9 10 10 9.20 9.30

100 0.9 7 7 8 7.00 7.40

80 0.9 7 7 8 7.00 7.03

50 0.9 6 7 7 6.10 6.43

32 0.9 5 6 6 5.45 5.50

Table 3.4: Experimental results for randomly generated threshold graphs on different number of
vertices N .

N ⌈logN⌉ RMM SMH

1280 11 21 13

1088 11 15 16

1040 11 18 13

1028 11 19 14

768 10 15 11

576 10 19 13

528 10 16 13

516 10 17 12

320 9 19 13

N ⌈logN⌉ RMM SMH

260 9 17 13

192 8 17 11

144 8 14 10

132 8 9 8

80 7 8 7

68 7 8 8

48 6 11 7

36 6 9 7

20 5 6 6
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Chapter 4

Recursively Decomposable Graphs

This chapter presents our contributions to broadcasting in networks with some recursive struc-

tures. We will introduce an exact polynomial-time algorithm on closed chains of rings. We will also

propose a new perspective to devising optimal broadcast schemes. Lastly, we will study how this

approach applies to different recursive structures.

4.1 Introduction

In literature, several compound structures of graphs were addressed in the context of both mini-

mum broadcast time and minimum broadcast graph problems.

Farley (1979) has constructed broadcast graphs recursively by combining two or three smaller

broadcast graphs and showed B(n) ≤ n
2 ⌈log n⌉. Chau and Liestman (1985) generalized this con-

struction by using up to seven small broadcast graphs. In (Khachatrian & Harutounian, 1990), a

compounding method has been introduced for constructing mbgs using vertex covers of graphs.

This method constructs new broadcast graphs by forming the compound of several known broad-

cast graphs. Further, Bermond, Fraigniaud, and Peters (1995) generalized the compounding method

to a unified way of constructing broadcast graphs for any n.

The minimum broadcast time problem was also addressed on some compound structures like

fully connected trees (Gholami, Harutyunyan, & Maraachlian, 2023), tree of cycles (Harutyunyan

& Maraachlian, 2009b), tree of cliques (Maraachlian, 2010), etc.
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If a graph G can be recursively defined as a compound of graphs G1, G2, . . . , Gp, for some

positive integer p, then we say that G is recursively decomposable. Note that this concept is different

from the idea of recursive graph families defined by Biggs, Damerell, and Sands (1972).

Definition 4.1.1. A cactus is a connected graph in which any two cycles have at most one vertex in

common. Equivalently, each edge in a cactus graph is on at most one cycle.

Cactus graphs are an interesting class of graphs, as reported in Čevnik and Žerovnik (2017),

they are a common generalization of trees and ring networks (Ben-Moshe, Dvir, Segal, & Tamir,

2012; Elenbogen & Fink, 2007). Moreover, cacti are recursively decomposable. If we consider any

cycle on a cactus, all subgraphs attached to that cycle are also cacti. The minimum broadcast time

problem is widely believed to be NP-hard on general cacti, but to the best of our knowledge, there is

no proof for that in the literature. Moreover, the minimum broadcast time problem is believed to be

NP-hard when restricted to some subfamilies of cactus graphs, e.g. flower (k-cycle) graphs. Bhabak

(2014) studied broadcasting on k-cycle graph where k cycles of arbitrary lengths are connected by

a central vertex. The author designed a constant approximation algorithm to find the broadcast time

of an arbitrary k-cycle graph. For some simpler cactus graphs there exist polynomial-time exact

broadcasting algorithms, e.g. unicyclic graphs (Harutyunyan & Maraachlian, 2007, 2008), tree of

cycles (Harutyunyan & Maraachlian, 2009b), necklace graphs; to be defined later (Harutyunyan,

Laza, & Maraachlian, 2009), and k-restricted cacti1 (Čevnik & Žerovnik, 2017).

A necklace graph is a collection of cycles, where each consecutive pair of cycles is connected by

one vertex. In (Harutyunyan et al., 2009), the authors devised an algorithm to solve the broadcasting

problem on an arbitrary necklace graph. Assuming that the originator is on cycle Ci and the end

cycles are cycles C1 and Ck, the authors split the necklace graphs into two necklace graphs: one

being the subgraph starting at cycle C1 and ending at cycle Ci, and the other one being the subgraph

starting at Ci and ending at Ck. After solving the problem on these two graphs, the solutions are put

together to construct the solution for the original graph. Another interesting case arises when the

two end cycles of the necklace graph get connected at a vertex. We call such graphs closed chains

of rings or closed necklace graphs.
1A k-restricted cactus (or simply k-cactus) graph is a cactus graph where each vertex belongs to at most k cycles.
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The algorithm in (Harutyunyan et al., 2009) is one of the few broadcasting algorithms in the

literature that is devised recursively. However, those algorithms are designed for simpler recursive

structures and are hard to adapt to other recursively decomposable graphs. The main contributions

of this chapter are an exact polynomial-time broadcasting algorithm on closed chains of rings and

a systematic approach to developing recursive broadcasting algorithms. For the sake of complete-

ness of this manuscript, Section 4.2 includes some auxiliary results by Harutyunyan, Laza, and

Maraachlian (2009) to study the limitations of the introduced recursive broadcasting strategy.

4.2 Cycle and an attached graph

Consider a graph G made up of a cycle CN and a graph G′, such that both graphs have a vertex

vc in common. The vertex vc is called the connecting vertex.

Theorem 4.2.1. For any originator v0 on CN , there exists an optimal broadcast scheme that first

sends the information along the shorter path towards vertex vc and then along the longer path.

Proof. Assume there does not exist any broadcast scheme that first sends the information along the

shorter path towards vc. Let S be an optimal broadcast scheme. We construct a broadcast scheme

S′ which sends the information along the shorter path in the first time unit. Clearly, using broadcast

scheme S′, vc will be informed at least a time unit earlier than in S. Assume that in S′, vc is

informed in time unit t. In time unit t + 1, vc can send the information to its uninformed neighbor

(if both neighbors are informed, then both paths from v0 to vc are equal) and start broadcasting in

G′ after time unit t + 2. This means that all vertices on CN will be informed after the minimum

amount of time (
⌈
N
2

⌉
), whereas G′ will be informed at least as early as in S. Hence, S′ is an optimal

broadcast scheme.

4.2.1 The broadcast time of a cycle with a tree

In this section, the goal is to calculate the broadcast time of the graph composed of a cycle with

a tree T attached to one of its vertices. In other words, the root of the tree T is a vertex on the

cycle. The analysis is limited to the case where the root of the tree has a degree of 2. Consider a

graph G made up of a cycle CN and a tree T connected to a vertex vm (see Figure 4.1). Let v0
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be the originator. According to Theorem 4.2.1, an optimum broadcast scheme can be obtained by

first informing the vertex on the shortest path from v0 to vm. After that, the broadcast scheme is

straightforward until vertex vm is informed, as every informed vertex informs its only uninformed

neighbor on the cycle. The only case when a vertex has more than one choice is when vm gets

informed. Let v′m be the other vertex that was informed at the same time as vm, and P be the

number of uninformed vertices on the cycle CN at the time vm was informed. Assume that the tree

T has a broadcast time of t, and let T1 and T2 be the two subtrees connected to vm with broadcast

times t1 and t2 respectively.

Figure 4.1: Example of a cycle CN and a tree attached to vertex vm.

Obviously, the broadcast time of G depends on the values of t, t1, t2 and P .

(1) t <
⌈
P
2

⌉
: An optimum broadcast scheme is obtained when vm first informs its neighbor on

CN and then starts broadcasting in the tree, resulting in broadcast time equal to that of CN .

(2) t >
⌈
P
2

⌉
: An optimum broadcast scheme is obtained when in the first two time units vm

informs its neighbors in the tree and then informs the neighbor on CN , hence, b(G) =

d(v0, vm) + t.

(3) t =
⌈
P
2

⌉
: This case requires careful observation of the structure of the tree. We are going to

discuss the following possible cases.

(a) P is even, t = P/2, t1 = t− 1, t2 ≤ t− 2.

(b) P is even, t = P/2, t1 = t− 2, t2 = t− 2.
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(c) P is odd, t = (P + 1)/2, t1 = t− 1, t2 = t− 2.

(d) P is odd, t = (P + 1)/2, t1 = t− 2, t2 = t− 2.

For all these cases, informing the vertex on the cycle first, then T1, and lastly T2 will

result in b(G) = d(v0, vm) + t + 1. The same broadcast time can be achieved when

the vertex on the cycle is informed after T1 and T2. However, the broadcast time of two

subtrees in the broadcast tree is important to consider. In the first case, the difference is

2 time units, in the second case it is 1.

(e) P is odd, t = (P + 1)/2, t1 = t− 2, t2 ≤ t− 3.

In this case, the optimum broadcast scheme informs the root of T1, then the vertex on

the cycle, and finally the root of the tree T2. The broadcast time of this scheme is

b(G) = d(v0, vm)+ t. The broadcast tree will have two subtrees, both having broadcast

time of d(v0, vm) + t− 2.

The following observations can be made based on the previous results.

Assume that we have a graph G made up of a cycle C and a graph G′, such that G′ is attached

to C at vc and the degree of vc in G′ is equal to 2. Assume that T is a broadcast tree of G′ for the

originator vc. Let r1 and r2 be the two children of vc and T1 and T2 be the two subtrees of T rooted

at r1 and r2 correspondingly.

Lemma 4.2.1.1. For an arbitrary given originator v0 on C, other than vc, the broadcast time

b(v0, G) = b(v0, GT ), where graph GT is made up of the cycle C and the broadcast tree T attached

at vc. If there are several broadcast trees, then the tree that has b(v1, T1) > b(v2, T2) + 2 must be

chosen.

Note that all the broadcast trees of a necklace graph have roots of degree 2, since they are on a

cycle where all vertices have degree 2.

4.3 Broadcasting in a closed chain of rings

A closed chain of rings is a chain of at least three rings (necklace) where the two end cycles

of the chain have a common vertex (Fig. 4.2). All vertices that belong to two cycles are said to be
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connecting, whereas vertices that are on exactly one cycle are non-connecting or internal. In this

section, we will use the results achieved in previous sections to introduce an exact polynomial-time

algorithm for the broadcast time problem in a closed chain of rings. This makes closed chains of

rings the first non-k-cacti graph family with intersecting cycles, for which an exact broadcasting

algorithm was devised.

4.3.1 Broadcasting from an internal vertex

Let G be a closed chain of rings, v be a non-connecting vertex in G, and T be a broadcast tree

that results in a minimum broadcast time in the graph G from the originator v. Graph G consists of

n cycles C1, C2, ..., Cn. Assume, wlog, that v ∈ C1. Let T1 and T2 be two subtrees of the tree T

rooted at two neighbors of v (v1 and v2, respectively).

It is easy to see that there exist either one or three vertices in T1, such that they have a neighbor

in T2. The case when there is only one such vertex is only possible if all vertices of T1 are on C1,

and none of the connecting vertices of C1 are in T1. The case when there are three such vertices is

possible if T1 contains one of the connecting vertices on C1. We will consider each case separately.

(1) There exists one vertex u ∈ T1 that has a neighbor w in T2. In this case, splitting the cycle

C1 by cutting the edge (u,w) will result in a graph G′, which will have the same broadcast

time as graph G. In G′, two disjoint subgraphs G′
1 and G′

2 correspond to the trees T1 and T2

and are connected to the originator v. Graph G′
1 is a path graph, whereas, graph G′

2 is a chain

of rings with a tree attached to the end cycle. Clearly, G′ is a 2-restricted cactus, and we can

find the broadcast time in linear time using the algorithm in (Čevnik & Žerovnik, 2017).

(2) There exist three vertices u1, u2, u3 ∈ T1 that have neighbors w1, w2, w3 in T2. This case

is only possible when two of the vertices are in the same cycle Ci, i ̸= 1, and the other

vertex is on cycle C1. Let u1 and u2 be in the same cycle Ci and u3 be on C1. Note that u1

and u2 may be adjacent to the same vertex in T2, i.e. w1 = w2. In this case, splitting the

cycle Ci by cutting the edges (u1, w1) and (u2, w2), and splitting the cycle C1 by cutting the

edge (u3, w3) will result in a graph G′ which will have the same broadcast time as graph G.

Similarly, G′ is a 2-restricted cactus.
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(a) (b)

Figure 4.2: Examples of subtrees of the broadcast three rooted at an internal originator (black star
vertex). The vertices of each subtree are marked with different colors and shapes. Numbered edges
are the edges that need to be cut.

Hence, given the vertex or the triplet of vertices that define an optimal broadcast tree, we can

construct the broadcast scheme in a bottom-up approach similar to broadcasting in the open chain

of rings. The set of possible split vertices is limited and can be considered exhaustively.

(1) Recall that in the first case, the vertex u was on the cycle C1. Hence, only |C1| vertices can

be considered.

(2) Whereas, in the second case, both vertices u1 and u2 belong to the same cycle Ci and u3 ∈ C1.

Thus, there exist |C1| ·
∑

1<i≤n

(|Ci|
2

)
possible pairs of vertices.

Fig. 4.2 shows examples of each possible case of two subtrees T1 and T2. Note that, the

examples do not represent an actual broadcast scheme and aim to visualize the possible cuts.

4.3.2 Broadcasting from a connecting vertex

Let G be a closed chain of rings, v be a connecting vertex in G, and T be a broadcast tree that

results in a minimum broadcast time in the graph G from the originator v. Graph G consists of n

cycles C1, C2, ..., Cn. Assume, wlog, that v is the connecting vertex between cycles C1 and C2. Let

T1, T2, T3 and T4 be four subtrees of the tree T rooted at four neighbors v1, v2, v3, v4 of v, such that

v1, v2 ∈ C1 and v3, v4 ∈ C2.
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Similar to the mechanism used in Section 4.3.1, we are going to find the possible number of

vertices that define the broadcast tree.

Other than v, the other connecting vertex on cycle C1 (as well as the one on C2) can belong to

only one of the subtrees, making the other subtree in that cycle a simple path. Assume, wlog, that

T1 and T3 are simple paths from v to u1 and u3, respectively. Both u1 and u3 have adjacent vertices

(w1 and w3) that can be either in T2 or T4. Whereas, the split between T2 and T4 can be defined

analogously to the way described in Section 4.3.1: there can exist either one or two vertices that

have a neighbor in the other subtree. We will consider each case separately.

(1) There exists one vertex u ∈ T2 that has a neighbor w in T4. This case is only possible

if u ∈ C1 or if w ∈ C2, are not a connecting vertex. In this case, cutting the edges

(u,w), (u1, w1), (u3, w3) will result in a graph G′ which will have the same broadcast time as

graph G. In G′, four disjoint subgraphs G′
1, G

′
2, G

′
3 and G′

4 correspond to the trees T1, T2, T3

and T4 and are connected to the originator v. Again, graph G′ is a 2-restricted cactus graph.

(2) There exist two vertices u2, u4 ∈ T2 that have neighbors w2, w4 in T4. Moreover, this case

is only possible when both u2 and u4 are in the same cycle Ci, i > 2. Recall that u2 and

u4 may be adjacent to the same vertex in T4, i.e. w2 = w4. In this case, cutting the edges

(u1, w1), (u2, w2), (u3, w3) and (u4, w4) will result in a 2-restricted cactus graph G′ which

will have the same broadcast time as graph G.

Hence, given 3 or 4 vertices that define an optimal broadcast tree, we can construct the broadcast

scheme in a bottom-up approach similar to broadcasting in the open chain of rings. The set of

possible split vertices is limited and can be considered exhaustively. Vertices u1 and u3 have |C1|

and |C3| possible cases respectively.

(1) Recall that in the first case, the vertex u was on cycle C1 or C2. Hence, only |C1| + |C2|

vertices can be considered.

(2) Whereas, in the second case, both vertices u2 and u4 belong to the same cycle Ci. Thus, there

exist
∑

2<i≤n

(|Ci|
2

)
possible pairs of vertices.

64



(a) (b)

Figure 4.3: Examples of subtrees of the broadcast three rooted at an internal originator (black star
vertex). The vertices of each subtree are marked with different colors and shapes. Numbered edges
are the edges that need to be cut.

Hence, it is possible to construct an optimal broadcast scheme for broadcasting in closed chains

of rings in polynomial time. Fig. 4.3 shows examples similar to the previous section.

4.4 Recursive broadcasting

In general, dividing a graph into smaller subgraphs, solving the broadcast problem in the smaller

graphs, and combining the solutions does not always yield an optimum result. However, this was

possible in necklace graphs provided that some care is taken while choosing the broadcast tree in

case there is more than one option. The foundation of the strategy that was applied to necklace

graphs was the fact that the connecting vertex has degree 2 in the attached graph. Whereas, given

a recursively decomposable graph where the connecting vertices have higher degrees, the problem

becomes more complicated. With some knowledge about the compounding (recursive) step, it is

possible to come up with an optimal broadcast scheme. The keystone of our approach is focusing

on a specific optimal broadcast scheme, since there may be many optimal schemes solving the

subproblems that do not generate an optimal solution for the original problem.
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4.4.1 Lazy broadcasting approach

Recall that an informed vertex v is idle in time unit t of a broadcasting process if v does not

make a call in time t.

Definition 4.4.1.1. A broadcast scheme is called busy (or non-lazy), if any informed vertex sends

a message to one of its uninformed neighbors, providing there are any, during each round. On the

contrary, a broadcast scheme is called lazy, if there exists a vertex v, which remained idle even

though it had an uninformed neighbor.

Busy schemes guarantee that as long as there remains an uninformed neighbor, vertices are never

idle. It can very easily be seen that for every lazy broadcast scheme, there exists a busy broadcast

scheme that guarantees at most the same broadcast time. All one needs to do is shift the calls to

cover all the idle time units of informed vertices. That is why, most of the time, any study related

to broadcasting is working with busy schemes, and lazy schemes are barely considered. However,

we will further show that lazy schemes can be very useful for designing optimal broadcast schemes,

especially when relying on a recursive approach.

Let S be a broadcast scheme for a graph G = (V,E), where v ∈ V is the originator. Also, let

b(S) denote the broadcast time achieved by S. Given a vertex u ∈ V , let tu(S) denote the time unit

in S when u is informed. For the originator, tv(S) = 0.

Definition 4.4.1.2. The degree of freedom of u in S (denoted by α(u, S)) is the smallest integer

i ≥ 0, such that u is idle in time unit tu(S) + i + 1. The degree of freedom of S is the degree of

freedom of the originator; formally α(S) = α(v, S).

Less formally, the degree of freedom is the number of time units that pass after being informed

when a vertex is first idle. Note that, if α(S) = 0, then S can be transformed to a scheme S′ by

removing the delay in the first time unit, such that b(S′) = b(S) − 1 and both induce the same

broadcast tree. Thus, for our purposes, we will assume that α(S) = α(v, S) ≥ 1 (only for the

originator, not other vertices).

Remark 4.4.1.3. The degree of freedom of a vertex u in a busy broadcast scheme is equal to the

number of vertices that were informed by u.
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Definition 4.4.1.4. A broadcast scheme S respects freedom, if for any broadcast scheme S′, such

that b(S) = b(S′), then α(S) ≤ α(S′). In other words, S has the smallest possible degree of

freedom while maintaining the same broadcast time.

4.4.2 Bridge-connected graphs

Let G be a graph comprising an edge (v1, v2) and two vertex-disjoint subgraphs G1 and G2 with

the following properties:

• v1 ∈ V (G1) and v2 ∈ V (G2).

• For an arbitrary vertex v ∈ G1 and an arbitrary vertex u ∈ G2, (v, u) /∈ E(G).

In other words, (v1, v2) is a cut edge1 of G, and G1, G2 are the components that are created if

(v1, v2) is removed.

Fig. 4.4 shows an example of the above-described graph. We may denote such a graph as

G = (v1, v2, G1, G2).

Figure 4.4: Visualization of bridge-connected graphs G = (v1, v2, G1, G2).

Consider a broadcasting process in G that originates from v1. The following bounds on the

broadcast time are easy to see:

max{b(v1, G1), 1 + b(v2, G2)} ≤ b(v1, G) ≤ 1 + max{b(v1, G1), b(v2, G2)}

The lower bound emerges when we combine the lower bounds on the broadcast times of two

subgraphs:
1An edge e ∈ G is called a cut edge (or a bridge) if the removal of e from G increases the number of connected

components of G.
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• Since G1 is a subgraph of G, b(v1, G) ≥ b(v1, G1).

• Consider the graph G′ comprising G2 and the edge (v1, v2), without the rest of graph G1.

Obviously, b(v1, G) ≥ b(v1, G
′) = 1 + b(v1, G2).

Whereas, the upper bound results from the following straightforward broadcast scheme:

• In the first time unit, v1 informs v2.

• Then both v1 and v2 broadcast in their corresponding subgraphs.

However, when b(v1, G1) ≤ b(v2, G2), the upper and lower bounds are equal, hence, b(v1, G) =

1 + b(v2, G2).

We are more interested in resolving the case when b(v1, G1) > b(v2, G2). More specifically,

our goal is to answer if b(v1, G) = b(v1, G1) or not.

Lemma 4.4.2.1. Let S1 = S(v1, G1) and S2 = S(v2, G2), such that S1 respects freedom. If

b(S1) ≥ 1 + α(S1) + b(S2), then b(v1, G) = b(S1). Otherwise, b(v1, G) = 1 + b(S1).

Proof. Consider the following broadcast scheme X .

(1) If b(S1) < 1 + α(S1) + b(S2), then

• In the first time unit, v1 informs v2.

• After that, v1 and v2 follow S1 and S2, respectively.

(2) If b(S1) ≥ 1 + α(S1) + b(S2), then

• First α(S1) time units, v1 follows S1.

• In time unit 1 + α(S1), v1 informs v2.

• After that, v1 and v2 follow S1 and S2, respectively.

If case 1 is followed, then the broadcast time achieved by X will be b(X) = 1 + b(S1).

In case 2, v2 is informed in time unit 1+α(S1). Hence, following S2, G2 will be fully informed

at time unit 1 + α(S1) + b(S2). By the execution condition of case 2, 1 + α(S1) + b(S2) ≤ b(S1),

hence, G2 will be fully informed by time unit b(S1). When it comes to G1, we can see that v1
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follows S1 at all times, but time unit 1 + α(S1). However, by the definition of α(S1), v1 is idle in

time unit 1 + α(S1). Hence, the fact that v1 informs v2 will not affect the broadcast time of G1,

which will be fully informed by time unit b(S1). Since both components of G are fully informed,

b(X) = b(S1).

We will prove the lemma by contradiction.

Let Y = S(v1, G) be an optimal broadcast scheme of G. If b(Y ) = 1 + b(S1), then b(X) ≤

b(Y ), making X an optimal broadcast scheme too.

Assume b(Y ) = b(S1) and b(X) = 1 + b(S1). Recall that tv2(Y ) denotes the time unit when

v2 is informed in Y . Since b(Y ) = b(S1), we can claim that:

tv2(Y ) + b(S2) ≤ b(Y ) = b(S1)

tv2(Y ) ≤ b(S1)− b(S2)

(15)

Moreover, since b(X) = 1 + b(S1), then the first case of scheme X took place. Thus:

b(S1) < 1 + α(S1) + b(S2)

α(S1) > b(S1)− b(S2) + 1

α(S1) > tv2(Y ) + 1

(16)

Let us gather all the calls of Y made within the subgraph G1 into a new scheme S′
1 while conserv-

ing laziness. Clearly, b(S′
1) ≤ b(Y ) = b(S1), making S′

1 and optimal broadcast scheme for G1

originating from v1. Moreover, since in Y , v1 informed v2 in time unit tv2(Y ), in the same time

unit v1 will be idle in S′. Hence, by Equation (16):

α(S′
1) ≤ tv2(Y )− 1 < α(S1) (17)

This makes S′
1 an optimal broadcast scheme with a degree of freedom smaller than that of S1.

Which is a contradiction.
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4.4.3 Path-connected graphs

Consider a graph G consisting of a path P with vertices v1, v2, ..., vl (in the path order), and l

pairwise vertex-disjoint graphs G1, G2, ..., Gl attached to P with the following properties:

• vi ∈ V (Gi), for any 1 ≤ i ≤ l.

• For any 1 ≤ i ≤ l, 1 ≤ j ≤ l, i ̸= j, an arbitrary vertex v ∈ Gi and an arbitrary vertex

u ∈ Gj , (v, u) /∈ E(G).

Fig. 4.5 gives an example of the above-described graph. We may denote such a graph as G =

(P,G1, G2, ..., Gl).

Figure 4.5: Visualization of path-connected graphs G = (P,G1, G2, G3, G4), where v1, v2, v3, v4
form the path P .

Given a graph G = (P,G1, G2, ..., Gl), where P = {v1, v2, ..., vl}, and an originator v1, we are

going to consider two separate problems.

(1) Fixed-deadline message dissemination problem: For a fixed positive integer t, the goal is

to find the maximum integer 1 ≤ j ≤ l for which G1, G2, ..., Gj can be fully informed within

t time units. We denote j by f(v1, G, t), or simply f(G, t), if v1 is clear from the context.

(2) Multicasting problem: For an integer 1 ≤ j ≤ l, consider the minimum multicast time

problem where Uj = V (G1) ∪ V (G2) ∪ ... ∪ V (Gj) is the set of terminals. The goal is to

find the minimum multicast time, denoted by b(v1, Uj , G).
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Fixed-deadline message dissemination problem

Given a graph G = (P,G1, G2, ..., Gl), where P = {v1, v2, ..., vl}, let S1, S2, ..., Sl be optimal

broadcast schemes respecting freedom for graphs G1, G2, ..., Gl originating from v1, v2, ..., vl, re-

spectively. Algorithm 10 finds the maximum integer 1 ≤ j ≤ l, for which a fixed integer deadline t

is sufficient.

Algorithm 10 Fixed-deadline message dissemination in Path-connected graphs
Input
1. A graph G = (P,G1, G2, ..., Gl), where P = {v1, v2, ..., vl}.
2. S1, S2, ..., Sl, where Si is an optimal broadcast scheme respecting freedom of Gi originating

from vi.
3. A deadline t.
Output Positive integer 1 ≤ j ≤ l.

1: procedure FIXEDDEADLINEPATH(G, t)
2: tvi is the time unit when vi is informed
3: i← 1
4: while 1 + tvi + b(Si) ≤ t do
5: if i == l then
6: return l
7: end if
8: if 2 + tvi + b(Si) ≤ t then
9: vi informs vi+1, as soon as it gets informed

10: tvi+1 = tvi + 1
11: else
12: vi informs vi+1, α(Si) time units after being informed
13: tvi+1 = tvi + 1 + α(Si)
14: end if
15: vi follows Si in all other time units
16: i← i+ 1
17: end while
18: return i− 1
19: end procedure

Lemma 4.4.3.1. Let k be the value returned by procedure FIXEDDEADLINEPATH. Integer k is an

optimal solution for the fixed-deadline message dissemination problem, or simply f(v1, G, t) = k.

Proof. We are going to prove this by contradiction. Let X be the scheme described by FIXED-

DEADLINEPATH. Assume a scheme Y exists that, within t time unit, informs all subgraphs up to

Gm, such as k < m ≤ l. Let 2 ≤ j ≤ k + 1 be the smallest integer for which tvj (X) > tvj (Y ).
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If such j does not exist, then vk+1 in X was informed in the same time unit or earlier than in Y .

However, since the loop on Step 4 of Algorithm 10 was not executed, it means that 1 + tvk+1
(X) +

b(Si) > t. Which implies that

1 + tvk+1
(Y ) + b(Si) ≥ 1 + tvk+1

(X) + b(Si) > t (18)

Moreover, 1 + tvk+1
(Y ) + b(Si) represents the theoretical minimum time required for Gk+1 to be

fully informed, rendering Y invalid.

If such j does exist, then vj−1 was informed at most in the same time unit in X than in Y ;

tvj−1(X) ≤ tvj−1(Y ). There are two options on when vj is informed in X:

• vj was informed instantly after vj−1 was informed (Step 9 of Algorithm 10). In this case,

tvj (X) = 1 + tvj−1(X) ≤ 1 + tvj−1(Y ) ≤ tvj (Y ). Thus, this case is not possible.

• vj was informed 1+α(Sj−1) after vj−1 was informed (Step 12 of Algorithm 10). First of all,

this case implies that Gj−1 should have been informed within b(Sj−1) = b(vj−1, Gj−1) time

units after vj−1 was informed, both in X and Y . Additionally,

tvj (X) = 1 + α(Sj−1) + tvj−1(X) ≤ 1 + α(Sj−1) + tvj−1(Y ) (19)

Let β be the number of time units after receiving the message that vj−1 spent placing calls to

its neighbors in Gj−1 following scheme Y .

tvj (Y ) = 1 + β + tvj−1(Y ) ≥ 1 + β + tvj−1(X) (20)

Since by assumption tvj (Y ) < tvj (X), Equations (19) and (20) imply that β < α(Sj−1). Let

S′ be the broadcast scheme for Gj−1, originating from vj−1, induced by Y (preserving idle

time units). As mentioned, b(S′) = b(vj−1, Gj−1), making scheme S′ an optimal broadcast

scheme for Gj−1 originating from vj−1. Since vj−1 informed vj after β time units, it may

remain idle in that time unit in S′. Therefore, α(S′) = β < α(Sj−1). Which contradicts the

definition of S.
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Multicasting problem

Again, for a graph G = (P,G1, G2, ..., Gl), where P = {v1, v2, ..., vl}, let S1, S2, ..., Sl

be any optimal broadcast schemes respecting freedom for graphs G1, G2, ..., Gl originating from

v1, v2, ..., vl, respectively. Given an integer 1 ≤ j ≤ l, the goal is to find the minimum multicast

time b(v1, Uj , G), where Uj = V (G1) ∪ V (G2) ∪ ... ∪ V (Gj) is the set of terminals.

Lemma 4.4.3.2. max{i− 1 + b(Si)|1 ≤ i ≤ j} ≤ b(v1, Uj , G) ≤ max{i+ b(Si)|1 ≤ i ≤ j}

Proof. First, we prove the lower bound. Let k−1+ b(Sk) = max{i−1+ b(Si)|1 ≤ i ≤ j}, where

1 ≤ k ≤ j. The fastest way vk can be informed is via a direct path from v1, requiring k − 1 time

units. After that, to fully inform Gk, k requires at least b(Sk) time units. Since V (Gk) ∈ Uj , we

can claim that:

b(v1, Uj , G) ≥ k − 1 + b(Sk) = max{i− 1 + b(Si)|1 ≤ i ≤ j} (21)

To prove the upper bound, consider the following simple multicast scheme X:

(1) Each vertex vi, 1 ≤ i < j, informs its neighbor on path P , namely vi+1, in the next time unit

after being informed.

(2) In all other cases, vi, 1 ≤ i ≤ j, follows Si.

In X , vertex vi, for all 1 ≤ i < j, is informed via a direct path from the originator v1 and receives

the message in time unit i− 1. Then, it spends a time unit informing its neighbor on the path P , to

start broadcasting in Gi after time unit i. Broadcasting in Gi will be over by time unit i + b(Si).

Hence:

b(v1, Uj , G) ≤ b(X) = max{i+ b(Si)|1 ≤ i ≤ j} (22)

Equations (21) and (22) prove the lemma.

By Lemma 4.4.3.2, there are only two possible values for the multicast time, which can be

checked using Algorithm 10. Let LB = max{i − 1 + b(Si)|1 ≤ i ≤ j} and UB = LB + 1. If
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f(v1, G, LB) = j, then b(v1, Uj , G) = LB. Otherwise, b(v1, Uj , G) = UB.

Remark 4.4.3.3. As in the case of bridge-connected graphs, it may seem that a difference of one

between upper and lower bounds is not significant to study. However, when considered as a com-

pound block of a recursive construction, based on the recurrence depth, the inaccuracy of a single

time unit can add up to a major difference between broadcast/multicast times.

4.4.4 Ring-connected graphs

Consider a graph G consisting of a cycle (ring) C with vertices v0, v1, v2, ..., vl (in the cycle

order), and l pairwise vertex-disjoint graphs G1, G2, ..., Gl attached to C with the following prop-

erties:

• vi ∈ V (Gi), for any 1 ≤ i ≤ l.

• v0 is only adjacent to v1 and vl.

• For any 1 ≤ i ≤ l, 1 ≤ j ≤ l, i ̸= j, an arbitrary vertex v ∈ Gi and an arbitrary vertex

u ∈ Gj , (v, u) /∈ E(G).

Fig. 4.6 gives an example of the above-described graph. We may denote such a graph as G =

(C,G1, G2, ..., Gl).

For a graph G = (C,G1, G2, ..., Gl), where C = {v0, v1, v2, ..., vl}, let S1, S2, ..., Sl be opti-

mal broadcast schemes respecting freedom for graphs G1, G2, ..., Gl originating from v1, v2, ..., vl,

respectively.

Note that, cycle C can be considered as two path-connected graphs: constructed by the path

going from v0, via v1, towards vl and the opposite direction. Hence Algorithm 10 can be applied to

G if the direction of the path is specified.

Čevnik and Žerovnik (2017) considered a similar structure as a subproblem and showed upper

and lower bounds on the broadcast time. Adjusting the notations, results can be summarized in the

lemma below. Let A and B be defined as follows.
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Figure 4.6: Visualization of ring-connected graphs G = (C,G1, G2, G3, G4), where the cycle C is
formed by v0, v1, v2, v3, v4.

A = max
1≤i≤⌈ l

2⌉
{b(Si) + i }

B = max
l
2
+1≤i≤l

{b(Si) + (l − i+ 1) }

Lemma 4.4.4.1. The broadcast time of v0 in G is bounded by:

A ≤ b(v0, G) ≤ A+ 1 A > B

A+ 1 ≤ b(v0, G) ≤ A+ 2 A = B

B ≤ b(v0, G) ≤ B + 1 A < B

Again let G = (C,G1, G2, ..., Gl) be a graph with ring-connected graphs structure, where

C = {v0, v1, v2, ..., vl}, and let S1, S2, ..., Sl be optimal broadcast schemes respecting freedom for

graphs G1, G2, ..., Gl originating from v1, v2, ..., vl, respectively. Consider the graph PG1, which

results after copying G and removing the edge (v0, vl). Since the removal of (v0, vl) disconnects
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the cycle C, PG1 will form path-connected graphs. Similarly, the removal of (v0, v1) will form

different path-connected graphs, namely the graph PG2.

Assume that b(v0, G) = τ , and also assume v0 placed the call to v1 in the first time unit. Even

though we assumed that v1 was informed in the first time unit, the case when vl is informed in the

first time unit, instead of v1, still needs to be considered. Let j1 = FIXEDDEADLINEPATH(PG1, τ),

whereas j2 = FIXEDDEADLINEPATH(PG2, τ − 1) (Algotihm 10). Informally, j1 is the index

of the last subgraph that can be fully informed within τ time units in PG1, whereas, j2 is the

index, in the original graph G, of the last subgraph that can be informed within τ − 1 time units

in PG2. Note that procedure FIXEDDEADLINEPATH presumes that the indices of the path vertices

are sorted in increasing order. Hence, the invocation of FIXEDDEADLINEPATH on PG2 contradicts

the definition of the procedure. However, a simple wrapper can easily be implemented to guarantee

the desired outcome. Since an optimal broadcasting process is finished by time unit τ and v1 is

informed in the first time unit, we can claim that j1 ≥ j2 − 1. If j1 < j2 − 1, then graph Gj2−1

would not be informed by the time unit τ .

By Lemma 4.4.4.1, in any scenario, there are two possible values for b(v0, G). We are left to

check if the lower bound of the broadcast time is achievable. Moreover, we need to check the only

two possible scenarios for the broadcast order of v0: v1 or vl is informed in the first time unit. If the

lower bound is not achievable, then we know that the broadcast time is equal to the upper bound.

Formally, the procedure to calculate the broadcast time of a graph with a ring-connected graphs

structure is presented in Algorithm 11.

4.4.5 Applications

Several graph families that can be represented as recursively decomposable graphs following

one of the discussed compound structures were already studied in the context of broadcasting.

• Trees can be represented as recursively decomposable path-connected graphs. Consider any

path that starts at the root (originator) and ends at any of the leaves. That path and the sub-

trees attached to it form path-connected graphs. A recursive broadcasting algorithm on this

representation of the tree will follow the depth-first search (DFS) order of the tree. Whereas,
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Algorithm 11 Broadcast time of Ring-connected graphs
Input
1. A graph G = (C,G1, G2, ..., Gl), where C = {v0, v1, v2, ..., vl}.
2. S1, S2, ..., Sl, where Si is an optimal broadcast scheme respecting freedom of Gi originating

from vi.
Output Broadcast time b(v0, G).

1: procedure BROADCASTTIMERING(G)
2: A← max1≤i≤⌈ l

2⌉{b(Si) + i }
3: B ← max l

2
+1≤i≤l{b(Si) + (l − i+ 1) }

4: Integer LB ▷ The lower bound on b(v0, G)
5: if A > B then
6: LB = A
7: else if B > A then
8: LB = B
9: else

10: LB = A+ 1
11: end if
12: j1 ← FIXEDDEADLINEPATH(PG1, LB) (Algorithm 10) ▷ Case 1: v1 is informed first
13: j2 ← FIXEDDEADLINEPATH(PG2, LB − 1)
14: if j1 ≥ j2 − 1 then
15: return LB
16: end if
17: j1 ← FIXEDDEADLINEPATH(PG1, LB − 1) ▷ Case 2: vl is informed first
18: j2 ← FIXEDDEADLINEPATH(PG2, LB)
19: if j1 ≥ j2 − 1 then
20: return LB
21: end if
22: return LB + 1 ▷ Lower bound is not achievable
23: end procedure

in literature, broadcasting algorithms on trees are usually designed following the breadth-first

search (BFS) order. Figure 4.7 portrays an example of this representation.

• Unicyclic graphs can be represented as a combination of ring-connected and path-connected

graphs. The single cycle of a unicyclic graph can form the ring-connected structure, whereas,

the resulting subgraphs are trees.

• Necklace graphs can be represented as recursively decomposable ring-connected graphs.

• Cactus graphs can be recursively represented as a combination of ring-connected and path-

connected graphs. Indeed, a structure similar to ring-connected graphs was utilized by Čevnik
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Figure 4.7: Visualization of a path-connected graphs representation of a tree, where vertices
v1, v2, v3, v4 form the path and their corresponding rooted subtrees form the graphs.

and Žerovnik (2017). The authors termed it as a cycle-like component. A cycle-like com-

ponent consists of a cycle and subcacti attached to all vertices of the cycle, other than the

originator. They propose several algorithms to calculate a cycle-like component’s full and

partial broadcast times. As opposed to our proposal for ring-connected graphs, all algorithms

in (Čevnik & Žerovnik, 2017) are based on the idea that attached subcacti can be replaced

with a corresponding optimal broadcast scheme (trees) without any limitations. However, as

per the simple example portrayed in Figure 4.8, not all optimal broadcast trees of the attached

subgraphs induce an optimal broadcast scheme for the original graph. Although, in both Sub-

figures (a) and (b), the attached subgraph Gv is replaced with an optimal broadcast scheme,

only in Subfigure (b) it results in an optimal broadcast scheme for the original graph.

This example renders Algorithms 1 − 5 and Lemma 1 of (Čevnik & Žerovnik, 2017) the-

oretically incomplete and inapplicable to the general structure. Thus, the theoretical foun-

dation introduced in Section 4.4 can be used to formally prove the correctness of an exact

polynomial-time algorithm for k-cacti.

• Lastly, studying more compound structures adapted for broadcasting, will result in known
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(a) (b)

Figure 4.8: Example of a cycle and an attached graph with optimal and non-optimal broadcast
schemes.

recursive representations of more graph families. For instance, chordal graphs can be rep-

resented as clique-connected graphs (clique and attached graphs). In any graph, a vertex

separator is a set of vertices, the removal of which leaves the remaining graph disconnected.

A vertex separator is minimal if it does not contain any proper subset that is a separator it-

self. Dirac (1961) showed that all minimal vertex separators of a chordal graph are cliques.

According to Bartlett (2003), the vertex set of a chordal graph G can be partitioned into three

nonempty, pairwise vertex-disjoint subsets A, B, and S, with the following properties.

◦ S is a clique,

◦ S ∪A and S ∪B induce chordal graphs, and

◦ there are no edges between A and B.

Hence, chordal graphs can, in fact, be represented as clique-connected graphs.
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Chapter 5

k-Path Graphs

This chapter discusses our contributions to the broadcast time problem in k-path graphs. We

present an algorithm that improves the previous best approximation ratio by a multiplicative factor

of two. We also pose a new problem concerning manipulations over a sequence of numbers, which,

as we believe, has not been studied previously. We demonstrate a close connection between the

proposed problem and broadcasting in k-path graphs, enabling us to devise an exact polynomial-

time algorithm on a subfamily of k-path graphs.

5.1 Introduction

In this section, we discuss a simple subfamily of 2-connected series-parallel graphs (Hambly

& Jordan, 2004) that are usually referred to as k-path graphs or melon graphs. A k-path graph

G = (P1, P2, ..., Pk) is obtained from a pair of vertices u and v, by adding k ≥ 2 internally

vertex-disjoint paths P1, P2, ..., Pk between u and v. Vertices u and v are called junctions of G

(Figure 5.1). We assume that paths are indexed in a non-increasing order of their lengths. Formally,

l1 ≥ l2 ≥ ... ≥ lk, where li is the number of vertices on path Pi (excluding u and v), for all

1 ≤ i ≤ k. Note that, since we consider all input graphs to be simple, only lk can be 0.

To have more understanding of the broadcast time problem in general graphs, it is rather impor-

tant to understand the properties of graphs that make this problem difficult. One such property is the

existence of intersecting cycles. Currently, k-restricted cacti and closed chains of rings are the only
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Figure 5.1: Example of a k-path graph.

graph families with intersecting cycles for which there exists an exact solution. Moreover, unlike

those two families where any two cycles intersect at a single vertex, cycle intersections in k-path

graphs happen at multiple vertices or edges. Hence, it is interesting to devise improved approxi-

mation algorithms or, ideally, exact algorithms for graph families such as k-path graphs, k-cycle

graphs, or cactus graphs. Since k-path graphs are one of the simplest graphs containing intersecting

cycles, they present an intriguing avenue for research regarding the broadcast time problem.

The broadcast time problem was researched for general series-parallel graphs as well as for

subclasses of series-parallel graphs (Kortsarz & Peleg, 1995; Marathe et al., 1998). Marathe et al.

(1998) prove that there is a O(log n/ log log n)-approximation algorithm for the minimum broad-

cast time problem in graphs with bounded treewidth1 (for an introduction to treewidth we refer

the reader to (Bodlaender, 1998; Bodlaender & Koster, 2008)). As series-parallel graphs have a

treewidth of 2, the result also applies to series-parallel graphs.

The current best results for the broadcast time problem in k-path graphs were introduced by

Bhabak and Harutyunyan (2019). The authors introduce a (4 − ϵ)-approximation algorithm for

the broadcast time problem in general k-path graphs, for some real ϵ > 0. Additionally, for some

particular subclasses of k-path graphs, the authors give better approximations or optimal algorithms.

The complete set of results introduced by Bhabak and Harutyunyan (2019) is presented in Table 5.1.

The main algorithm, introduced by Bhabak and Harutyunyan (2019), first counts the number

of uninformed vertices on each path in each time unit. Then, based on the relation between these
1The treewidth of an undirected graph is an integer number which specifies, informally, how far the graph is from

being a tree.
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numbers decides on the order of calls placed by the junction vertices. In this thesis, we design a

simple algorithm that achieves a better approximation ratio without counting the remaining lengths

of the paths.

Table 5.1: Summary of known results for k-path graphs

Case Algorithm Result

General k-path Spath 4-approximation

lj ≥ lj+1 + 2 and k ≤ lk + 1 Spath optimal

lj = lj+1 and k ≤ lk + 1 Spath optimal

lj = lj+1 + 1 and k ≤ lk + 1 Spath
4
3 -approximation

lj = lj+1 + 1, k ≤ lk + 1 and u is the originator Apath
7
6 -approximation

5.2 Broadcasting approximation in k-path graphs

In the same paper, Bhabak and Harutyunyan (2019) also presented several lower bounds and

other auxiliary results for the broadcast time problem.

Given a k-path graph Gk and junction vertex u, the authors proved the following.

Lemma 5.2.1 (Bhabak & Harutyunyan, 2019). There exists a minimum broadcast scheme from the

originator u in Gk in which the shortest path Pk is informed in the first time unit.

Similarly, given an internal vertex w, the authors proved the following.

Lemma 5.2.2 (Bhabak & Harutyunyan, 2019). There exists a minimum broadcast scheme from the

originator w in Gk in which w first sends the message along a shorter path towards a junction

vertex.

5.2.1 Broadcasting from a junction vertex

Let G = (P1, P2, ..., Pk) be a k-path graph with junction vertices u and v.

It is easy to see that in any broadcast scheme where a junction vertex is the originator, an

internal (non-junction) vertex w has at most one uninformed neighbor after being informed. Thus,

to describe a busy broadcast scheme, it is sufficient to specify the order of calls placed by u and v.

Below is the proposed broadcasting strategy that u and v need to follow.
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• As per Lemma 5.2.1, u first informs its neighbor on path Pk.

• Starting time unit 2, u informs its neighbors on longer paths first; from l1 to lk−1 in the

increasing order of indices.

• v receives the message via path Pk on time unit lk + 1.

• Starting time unit lk + 2, v informs its neighbors on shorter paths first; from lk−1 to l1 in the

decreasing order of indices.

Algorithm 12 formally describes the behavior of u and v in our approximation algorithm, assuming,

wlog, that u is the originator. Figure 5.2 portrays the broadcast scheme introduced in Algorithm 12.

Algorithm 12 Broadcasting from a junction vertex
Input A k-path graph G = (P1, P2, ..., Pk), junction vertices u and v, and an originator u
Output A broadcast scheme with time bAlg(u,G) for graph G and the originator u

1: procedure BROADCASTINGFROMJUNCTION

2: In the first time, unit u passes the message along the path Pk

3: for 2 ≤ i ≤ k do
4: if Pi−1 contains an uninformed vertex then
5: u passes the message along the path Pi−1 in time unit i
6: end if
7: end for
8: v gets the message in time unit lk + 1
9: for 2 ≤ j ≤ k do

10: if Pk−j+1 contains an uninformed vertex then
11: v passes the message along the path Pk−j+1 in time unit lk + j
12: end if
13: end for
14: end procedure

Complexity analysis

Note that all the basic steps of Algorithm 12 require constant time. Moreover, the order of calls

placed by each vertex is predefined and does not require any computation. Meaning that the time

required to inform each path can be computed in constant time. Hence, Algorithm 12 constructs a

broadcast scheme in O(1) time and can be used to calculate the corresponding broadcast time in

O(k) time.
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Figure 5.2: Example of the broadcast scheme described in Algorithm 12.

The approximation ratio

Theorem 5.2.1.1. Algorithm 12 is a polynomial-time 2-approximation algorithm for general k-path

graphs when the originator is a junction vertex. Moreover, when lk ≥ 1, it guarantees (2 − ϵ)-

approximation for some 0 < ϵ ≤ 1.

Proof. Let Pi be a path that contained an uninformed vertex before the last time unit of the broadcast

scheme described in Algorithm 12. To calculate bAlg(u,G), we will consider three cases: vertices

in Pi were informed by both u and v, Pi was informed only by u, and Pi was informed only by v.

Case 1: Only u (but not v) placed a call towards the path Pi.

According to our algorithm, u informs path Pi in time unit i + 1. Then, it will require li − 1

time units for the path Pi to get fully informed. Hence,

bAlg(u,G) = li + i (23)

According to Bhabak and Harutyunyan (2019), for any 1 ≤ i ≤ k − 1, the following lower

bound on the broadcast time holds.

b(u,G) ≥
⌈
lk + li + i+ 1

2

⌉
≥ lk + li + i+ 1

2
(24)

The approximation ratio directly follows from Equations (23) and (24).
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bAlg(u,G)

b(u,G)
≤ li + i

lk+li+i+1
2

< 2 (25)

Case 2: Only v (but not u) placed a call towards the path Pi.

According to our algorithm, u informs path Pi in time unit i+1. Since, in this case, path Pi was

informed solely by v, then we can claim that it was fully informed in time unit i + 1 as the latest.

Hence,

bAlg(u,G) ≤ i+ 1 ≤ k + 1 (26)

Bhabak and Harutyunyan (2019) also proved the below lower bound.

b(u,G) ≥
⌈
lk + k + 1

2

⌉
≥ lk + k + 1

2
(27)

Again, the approximation ratio directly follows from Equations (26) and (27).

bAlg(u,G)

b(u,G)
≤ k + 1

lk+k+1
2

≤ 2 (28)

Case 3: Both u and v placed a call towards the path Pi.

According to our algorithm, u informs path Pi in time unit i+1, and v informs path Pi no later

than time unit lk + k − i+ 1. To calculate bAlg(u,G), we need to consider two subcases.

Subcase 3.a: i+ 1 ≤ lk + k − i+ 1.

In this case, a single vertex on path Pi is informed in each time unit between i+1 and lk + k−

i+ 1. Afterward, up to 2 vertices can be informed. Hence,

bAlg(u,G) = lk + k − i+

⌈
li − (lk + k − i− i)

2

⌉
=

⌈
2lk + 2k − 2i+ li − lk − k + 2i

2

⌉
=

⌈
lk + k + li

2

⌉
≤ lk + k + li + 1

2

(29)

Subcase 3.b: i+ 1 > lk + k − i+ 1.

85



Similar to the previous case,

bAlg(u,G) = i+

⌈
li − (i− (lk + k − i))

2

⌉
= i+

⌈
li − i+ lk + k − i

2

⌉
=

⌈
2i+ li − 2i+ lk + k

2

⌉
=

⌈
li + lk + k

2

⌉
≤ lk + k + li + 1

2

(30)

Hence, in both subcases, we have the same upper bound on bAlg(u,G).

The following lower bound on the broadcast time is easy to see from Equations (24) and (27).

b(u,G) =
b(u,G)

2
+

b(u,G)

2
≥ lk + k + 1

4
+

lk + li + i+ 1

4

>
lk + k + 1

4
+

li
4

=
lk + k + li + 1

4

(31)

From Equations (29), (30) and (31),

bAlg(u,G)

b(u,G)
<

lk+k+li+1
2

lk+k+li+1
4

= 2 (32)

Thus, we showed that bAlg(u,G)
b(u,G) ≤ 2 in all possible cases. Moreover, we can see from Equations

(25) and (28) that equality is only possible when lk = 0.

5.2.2 Broadcasting from an internal vertex

Let G = (P1, P2, ..., Pk) be a k-path graph with junction vertices u and v. Let w be a vertex on

path Pm, where 1 ≤ m ≤ k.

It is easy to see that in any broadcast scheme where w is the originator, any internal (non-

junction) vertex other than w has at most one uninformed neighbor after being informed. Thus, in

order to describe a busy broadcast scheme, it is sufficient to specify the order of calls placed by u,
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v, and w.

Let d be the length of the path wu, and hence, lm+1− d be the length of the path wv. Assume,

wlog, that d ≤ lm + 1− d. Also, let τ(m) = lm + 2− 2d. Note that d ≥ 1 and τ(m) ≥ 1.

In the proposed algorithm, w passes the message along the shorter path towards u in the first

time unit. Then, in the second time unit, w informs the vertex on path Pm towards v. Clearly, u gets

informed in time unit d. Moreover, there will be lm +1− d− (d− 1) = τ(m) uninformed vertices

on path Pm. After that, if τ(m) ≥ lk + 1, then u informs its neighbor on path Pk. Otherwise, u

follows the main broadcasting scheme. We let tv denote the time unit when v is informed. The

main broadcasting strategy in this case is similar to the one described in Section 5.2.1. Below is the

proposed broadcasting strategy that u and v need to follow.

• As per Lemma 5.2.2, w first informs its neighbor on path wu and then its neighbor on path

wv.

• u receives the message in time unit d.

• In time unit d+ 1, u passes the message along the path Pk, if τ(m) ≥ lk + 1.

• After that, u informs its neighbors on longer paths first; from l1 to lk (or lk−1) in the increasing

order of indices.

• v receives the message in time unit tv.

• Starting time unit tv + 1, v informs its neighbors on shorter paths first; from lk (or lk−1) to l1

in the decreasing order of indices.

Algorithm 13 formally describes the behavior of u, v, and w in our approximation algorithm.

Complexity analysis

Algorithm 13 has a complexity similar to the one of Algorithm 12. Hence, Algorithm 13 con-

structs a broadcast scheme in O(1) time and can be used to calculate the corresponding broadcast

time in O(k) time.
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Algorithm 13 Broadcasting from an internal vertex
Input A k-path graph G = (P1, P2, ..., Pk), junction vertices u and v, and an originator w on

path Pm

Output A broadcast scheme with time bAlg(w,G) for graph G and the originator w
1: procedure BROADCASTINGFROMINTERNAL

2: In the first time unit, w passes the message along the path wu
3: In the second time unit, w passes the message along the path wv
4: if τ(m) ≥ lk + 1 then
5: u passes the message along the path Pk

6: for 1 ≤ i ≤ k − 1 do
7: if u has an uninformed neighbor on path Pi then
8: u passes the message along the path Pi in time unit d+ i+ 1
9: end if

10: end for
11: v gets the message in time unit tv = d+ lk + 1
12: else
13: for 1 ≤ i ≤ k do
14: if u has an uninformed neighbor on path Pi then
15: u passes the message along the path Pi in time unit d+ i
16: end if
17: end for
18: v gets the message in time unit tv = d+ τ(m)
19: end if
20: for 1 ≤ j ≤ k do
21: if v has an uninformed neighbor on path Pj then
22: v passes the message along the path Pj in time unit tv + k − j
23: end if
24: end for
25: end procedure

The approximation ratio

Let Pi be a path that contained an uninformed vertex before the last time unit of the broadcast

scheme described in Algorithm 13.

Theorem 5.2.2.1. Algorithm 13 is a polynomial-time 2-approximation algorithm for general k-path

graphs when the originator is an internal vertex and τ(m) < lk + 1. Moreover, when lk ≥ 1, it

guarantees (2− ϵ)-approximation for some 0 < ϵ ≤ 1.

Proof. First, let us consider the case when i = m. According to our broadcast scheme, path Pm

will be fully informed in time unit 1 + lm + 1− d− 1 = lm + 1− d ≤ lm. Moreover, any optimal

broadcast scheme will fully inform path Pm no earlier than b(w,G) ≥
⌈
lm+lk

2

⌉
≥ lm+lk

2 . The
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approximation ratio follows.
bAlg(w,G)

b(w,G)
≤ lm

lm+lk
2

= 2 (33)

Next, we prove the theorem for any i ̸= m, by breaking it down into three cases.

Case 1: Only u (but not v) placed a call towards the path Pi.

Path Pi requires li− 1 time units to be fully informed, after time unit d+ i when the first call to

it happens. Hence,

bAlg(w,G) = d+ i+ li − 1 (34)

As per Bhabak and Harutyunyan (2019), for any 1 ≤ i ≤ k − 1, i ̸= m, the following lower

bound on the broadcast time holds.

b(w,G) ≥ d+

⌈
li + τ(m) + i− 1

2

⌉
≥ d+

li + τ(m) + i− 1

2
(35)

The approximation ratio directly follows from Equations (34) and (35).

bAlg(w,G)

b(w,G)
≤ d+ li + i− 1

d+ li+τ(m)+i−1
2

< 2 (36)

Case 2: Only v (but not u) placed a call towards the path Pi.

According to our algorithm, u informs path Pi in time unit d+ i. Since, in this case, path Pi was

informed solely by v, then we can claim that it was fully informed in time unit i + 1 as the latest.

Hence,

bAlg(w,G) ≤ d+ i ≤ d+ k (37)

Bhabak and Harutyunyan (2019) also proved the following lower bound.

b(w,G) ≥ d+

⌈
k + τ(m)− 1

2

⌉
≥ d+

k + τ(m)− 1

2
(38)

Again, the approximation ratio directly follows from Equations (37) and (38).

89



bAlg(w,G)

b(w,G)
≤ d+ k

d+ k+τ(m)−1
2

< 2 (39)

Case 3: Both u and v placed a call towards the path Pi.

Since τ(m) < lk + 2, then vertex v will be informed via the direct path from w, and hence,

tv = d+ τ(m).

According to our algorithm, u informs path Pi in time unit d+ i, and v informs path Pi in time

unit d+ τ(m) + k − i.

Subcase 3.a: d+ i ≤ d+ τ(m) + k − i.

When this is the case, in every time unit between d + i and d + τ(m) + k − i a single vertex

on path Pi is informed. After d+ τ(m) + k − i up to 2 vertices can be informed in each time unit.

Hence,

bAlg(w,G) = d+ τ(m) + k − i− 1 +

⌈
li − (d+ τ(m) + k − i− d− i)

2

⌉
=

⌈
2d+ 2τ(m) + 2k − 2i− 2 + li − τ(m)− k + 2i

2

⌉
=

⌈
2d+ τ(m) + li + k − 2

2

⌉
≤ 2d+ τ(m) + li + k − 2

2

(40)

Subcase 3.b: d+ i > d+ τ(m) + k − i.

Similar to the previous case,

bAlg(w,G) = d+ i− 1 +

⌈
li − (d+ i− (d+ τ(m) + k − i))

2

⌉
= d+ i− 1 +

⌈
li − i+ τ(m) + k − i

2

⌉
=

⌈
2d+ 2i− 2 + li − i+ τ(m) + k − i

2

⌉
=

⌈
2d+ τ(m) + li + k − 2

2

⌉
≤ 2d+ τ(m) + li + k − 2

2

(41)

Hence, in both subcases, we have the same upper bound on bAlg(w,G).

bAlg(w,G) ≤ 2d+ τ(m) + li + k − 2

2
(42)
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The following lower bound on the broadcast time is easy to see from Equations (35) and (38).

b(w,G) =
b(w,G)

2
+

b(w,G)

2
≥ 2d+ li + τ(m) + i− 1

4
+

2d+ k + τ(m)− 1

4

>
2d+ li + τ(m)− 1

4
+

k − 1

4
=

2d+ li + k + τ(m)− 2

4

(43)

From Equations (42) and (43),

bAlg(w,G)

b(w,G)
<

2d+τ(m)+li+k−2
2

2d+τ(m)+li+k−2
4

= 2 (44)

Thus, we showed that bAlg(w,G)
b(w,G) ≤ 2 in all possible cases. Moreover, we can see from Equation

(33) that equality is only possible when lk = 0.

Theorem 5.2.2.2. Algorithm 13 is a polynomial-time 2-approximation algorithm for general k-path

graphs when the originator is an internal vertex and τ(m) ≥ lk + 1. Moreover, when lk ≥ 1, it

guarantees (2− ϵ)-approximation for some 0 < ϵ ≤ 1.

Proof. The case when i ̸= m is equivalent to that of Theorem 5.2.2.1

Now, we prove the theorem for any i ̸= m, by breaking it down into three cases.

Case 1: Only u (but not v) placed a call towards the path Pi.

Path Pi requires li − 1 time units to be fully informed, after time unit d + i + 1 when the first

call to it happens. Hence,

bAlg(w,G) = d+ i+ li (45)

For any 1 ≤ i ≤ k − 1, i ̸= m, the following lower bound on the broadcast time holds if

τ(m) ≥ lk + 1 (Bhabak & Harutyunyan, 2019).

b(w,G) ≥ d+

⌈
li + lk + i

2

⌉
≥ d+

li + lk + i

2
(46)

The approximation ratio directly follows from Equations (45) and (46).
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bAlg(w,G)

b(w,G)
≤ d+ i+ li

d+ li+lk+i
2

< 2 (47)

Case 2: Only v (but not u) placed a call towards the path Pi.

According to our algorithm, u informs path Pi in time unit d + i + 1. Since, in this case, path

Pi was informed solely by v, then we can claim that it was fully informed in time unit i + 1 as the

latest. Hence,

bAlg(w,G) ≤ d+ i+ 1 (48)

Again, the approximation ratio directly follows from Equations (48) and (47).

bAlg(w,G)

b(w,G)
≤ d+ i+ 1

d+ li+lk+i
2

< 2 (49)

Case 3: Both u and v placed a call towards the path Pi.

Since τ(m) ≥ lk + 2, then vertex v will be informed via path Pk from u, and hence, tv =

d+ lk + 1.

According to our algorithm, u informs path Pi in time unit d+ i+ 1, and v informs path Pi in

time unit d+ lk + 1 + k − i.

Subcase 3.a: d+ i+ 1 ≤ d+ lk + 1 + k − i.

When this is the case, in every time unit between d+ i+1 and d+ lk+1+k− i a single vertex

on path Pi is informed. After d+ lk + 1+ k − i up to 2 vertices can be informed in each time unit.

Hence,

bAlg(w,G) = d+ lk + k − i+

⌈
li − (d+ lk + 1 + k − i− d− i− 1)

2

⌉
=

⌈
2d+ 2lk + 2k − 2i+ li − lk − k + 2i

2

⌉
=

⌈
2d+ lk + li + k

2

⌉
≤ 2d+ lk + li + k

2

(50)

Subcase 3.b: d+ i+ 1 > d+ lk + 1 + k − i.
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Similar to the previous case,

bAlg(w,G) = d+ i+

⌈
li − (d+ i+ 1− (d+ lk + 1 + k − i))

2

⌉
= d+ i+

⌈
li − i+ lk + k − i

2

⌉
=

⌈
2d+ 2i+ li − i+ lk + k − i

2

⌉
=

⌈
2d+ lk + li + k

2

⌉
≤ 2d+ lk + li + k

2

(51)

Hence, in both subcases, we have the same upper bound on bAlg(w,G).

bAlg(w,G) ≤ 2d+ lk + li + k

2
(52)

According to Bhabak and Harutyunyan (2019), the following bound holds.

b(w,G) ≥
⌈
d+

k + lk
2

⌉
≥ d+

k + lk
2

(53)

The following lower bound can be obtained from Equations (46) and (53).

b(w,G) =
b(w,G)

2
+

b(w,G)

2
≥ 2d+ li + lk + i

4
+

2d+ k + lk
4

>
2d+ li + lk

4
+

k

4
=

2d+ li + lk + k

4

(54)

From Equations (52) and (54),

bAlg(w,G)

b(w,G)
<

2d+lk+li+k
2

2d+li+lk+k
4

= 2 (55)

Similar to Theorem 5.2.2.1, we showed that bAlg(w,G)
b(w,G) ≤ 2 in all possible cases and equality is

only possible when lk = 0.
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5.3 Lower bound on the broadcast time

Consider a k-path graph G = (P1, P2, ..., Pk) with junction vertices u and v, where u be the

originator. Let S be an optimal broadcast scheme such that b(S) = b and u sends the message

along the path Pk in the first time unit (Lemma 5.2.1). Assume T is the broadcast tree induced

by S. Clearly, in T , u and v are connected by path Pk. Whereas, both subtrees rooted at u and v

are formed by up to k − 1 paths of various lengths, where each path has the vertices on a path Pi,

1 ≤ i ≤ k − 1, informed by u or v. We will refer to the subtrees rooted at u and v as Tu and Tv,

respectively. Figure 5.3 portrays an example of such a broadcast tree.

We will first consider the case of k-path graphs where u and v are connected by an edge, i.e.

lk = 0.

Lemma 5.3.1. If lk = 0, b(u,G) ≥
⌈
1+

√
4n−7
2

⌉
.

Proof. Clearly, both (and only) u and v will be informed after the first time unit. Assume u informs

path Pi in time unit ti ≥ 2. By time unit b, Pi can have at most b− ti + 1 informed vertices in tree

Tu. Overall, paths informed by u in time units 2, 3, ..., b can have at most b−1, b−2, ..., 1 informed

vertices in Tu, respectively. Thus, if we count the lengths of all paths and include u and v, the below

upper bound on the number of vertices in Tu can be implied.

|Tu| ≤ 1 + 1 + 2 + ...+ (b− 2) + (b− 1) = 1 +
b(b− 1)

2
(56)

Analogously, the same can be claimed for v.

|Tv| ≤ 1 + 1 + 2 + ...+ (b− 2) + (b− 1) = 1 +
b(b− 1)

2
(57)

Since, in T , u and v are connected by an edge (lk = 0), Tu and Tv contain all the vertices of T .

|T | = |Tu|+ |Tv| = 2 +
b(b− 1)

2
+

b(b− 1)

2
= b2 − b+ 2 (58)

As any broadcast tree is a spanning tree of the graph, |T | = n. Solving the quadratic equation
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results in the below lower bound on the broadcast time.

b2 − b+ 2 ≥ n

b2 − b+ 2− n ≥ 0

b(u,G) = b ≥
⌈
1 +
√
1− 8 + 4n

2

⌉
=

⌈
1 +
√
4n− 7

2

⌉ (59)

Next, we generalize the above bound to the case when lk ≥ 0.

Lemma 5.3.2. For any lk ≥ 0,

b(u,G) ≥


1 + lk +

√
4n− l2k − 4lk − 7

2


Proof. After passing the message along path Pk in the first time unit, u follows the same restrictions

as in the previous case. Thus, Equation (56) still holds. However, in this case, v will get the

message in time lk + 1 via path Pk and can start informing other paths starting from time unit

lk + 2. This implies that paths informed by v in time units lk + 2, lk + 3, ..., b can have at most

b − lk − 1, b − lk − 2, ..., 1 informed vertices in Tv, respectively. The below upper bound on the

number of vertices in Tv follows.

|Tv| ≤ 1 + 1 + 2 + ...+ (b− lk − 2) + (b− lk − 1) = 1 +
(b− lk)(b− lk − 1)

2

=
b2 − 2blk − b+ l2k + lk + 2

2

(60)

Unlike the previous case, here, u and v are connected by path Pk in T , which contains lk vertices

(excluding u and v). Equations 56 and 60, combined with this fact, result in the following upper

bound on the order of T .

|T | = |Tu|+ |Tv|+ lk =
2b2 − 2blk − 2b+ l2k + 3lk + 4

2
(61)
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Similarly, solving the below quadratic equation results in the desired lower bound.

2b2 − 2blk − 2b+ l2k + 3lk + 4

2
≥ n

2b2 − 2blk − 2b+ l2k + 3lk + 4− 2n ≥ 0

b(u,G) = b ≥


1 + lk +

√
4n− l2k − 4lk − 7

2


(62)

Note that the lower bound in Lemma 5.3.2 is achieved when during the broadcasting process

there are no idle vertices and all paths (other than Pk) have uninformed vertices in the last time unit.

Figure 5.3: Example of a junction originator broadcast tree of a k-path graph.

5.4 3-LIST-SUB problem

For a list A, we refer to the ith element of A as A[i] or Ai. Unless otherwise stated, in the

context of this section, we assume that indexing of lists starts from 1. Given three lists of integers

A, X , and Y of the same size n, let list subtraction LS(A,X, Y ) denote a list of integers Z, such

that Zi = Ai −Xi − Yi. Also, let MLS(A,X, Y ) = max{Zi|1 ≤ i ≤ n}. The goal of the 3 lists

subtraction problem (3-LIST-SUB) is to find permutations X ′ and Y ′ of X and Y , that minimize

MLS(A,X ′, Y ′).
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We formally define the general 3 list subtraction decision problem as follows:

3 List Subtraction Problem (3-LIST-SUB):

Let A, X , and Y be lists of integers of the same size n, and k be a positive integer. Do

there exist permutations X ′ and Y ′ of X and Y , respectively, that meet the following

condition?

max
1≤i≤n

{Ai −X ′
i − Y ′

i } ≤ k

An example of 3-LIST-SUB instance and its solution is provided in Figure. 5.4.

Figure 5.4: Example of a 3-LIST-SUB instance and its solution.

For lists A, X , and Y , we denote by M(A,X, Y ) the minimum value of k, for which 3-LIST-

SUB can be solved on A, X , and Y . In other words, M(A,X, Y ) is the value of minimum MLS

out of all permutations of X and Y .

It is easy to see that, regardless of the selected permutations of X and Y , the sum of the elements

in the list subtraction is the same. Moreover, the theoretical minimum is achieved if all elements in

the list subtraction are equal (which may not always be possible). Hence, the following lemma is

trivial.

Lemma 5.4.1. For any lists A, X , and Y of size n,

M(A,X, Y ) ≥
∑

1≤i≤n(Ai −Xi − Yi)

n

Moreover, if all the elements in the list subtraction are equal then the solution is optimal.
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Particularly, we are interested in a variation of 3-LIST-SUB, where both X and Y comprise

consecutive numbers, i.e. Xi = Xi−1 + 1 and Yi = Yi−1 + 1, for all 2 ≤ i ≤ n.

3 Consecutive List Subtraction Problem (3-C-LIST-SUB):

Let A, X , and Y be lists of integers of the same size n, and k be a positive integer.

Moreover, Xi = Xi−1 + 1 and Yi = Yi−1 + 1, for all 2 ≤ i ≤ n. Do there exist

permutations X ′ and Y ′ of X and Y , respectively, that meet the following condition?

max
1≤i≤n

{Ai −X ′
i − Y ′

i } ≤ k

5.4.1 Equivalency of 3-LIST-SUB instances

We will denote with Π : {1, 2, . . . , n} −→ {1, 2, . . . , n}, a mapping function defining the

relation between the indices of a list and its permutation. We will sometimes use the notation Π(X)

to refer to the list that results after Π is applied on the indices of X . We say that a pair of permutation

functions (Π1,Π2) is an optimal solution to a 3-LIST-SUB problem on lists A, X , and Y , if Π1 and

Π2 applied on X and Y , respectively, result in permutation lists with minimum MLS.

Lemma 5.4.1.1. Let A, X , Y , B, and C be lists of n integers, where X , Y , B and C consist of

consecutive integers and B1 = C1 = 1. If a pair of permutation functions (Π1,Π2) is an optimal

solution to the 3-LIST-SUB instance on A, X , and Y , then (Π1,Π2) is also an optimal solution to

the 3-LIST-SUB instance on A, B, and C.

Proof. Let X ′ and B′ denote the lists that result when Π1 is applied on X and B, respectively.

More formally, X ′
j = Xi and B′

j = Bi, when j = Π1(i), 1 ≤ i ≤ n. Similarly, let Y ′ and

C ′ denote the lists that result when Π2 is applied on Y and C, accordingly. Consider the lists

Z = LS(A,X ′, Y ′) and D = LS(A,B′, C ′). Since, X , Y , B, and C all comprise consecutive

integers and B1 = C1 = 1, the following is easy to see for any 1 ≤ i ≤ n.

• X ′
j −B′

j = Xi −Bi = (X1 + i− 1)− i = X1 − 1, where j = Π1(i).

• Y ′
j − C ′

j = Yi − Ci = (Y1 + i− 1)− i = Y1 − 1, where j = Π2(i).
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• Dj − Zj = (Aj −B′
j − C ′

j)− (Aj −X ′
j − Y ′

j ) = X ′
j −B′

j + Y ′
j − C ′

j = X1 + Y1 − 1

In other words, all elements in Z and D with the same index differ by a constant. Thus, z − d =

X1 + Y1 − 1, where z = MLS(A,X ′, Y ′) and d = MLS(A,B′, C ′).

Assume, by contradiction, that (Π1,Π2) is not an optimal solution to the 3-LIST-SUB in-

stance on A, B, and C. Let (Π′
1,Π

′
2) be an optimal solution to the same instance, meaning

MLS(A,Π′
1(B),Π′

2(C)) = M(A,B,C) = d′ < d. Let z′ = MLS(A,Π′
1(X),Π′

2(Y )) be the

outcome when (Π′
1,Π

′
2) is applied to the instance on A, X , and Y . Based on the above observations,

z′ − d′ = X1 + Y1 − 1, which results in the following contradiction;

z′ = d′ +X1 + Y1 − 1 < d+X1 + Y1 − 1 < z

5.4.2 Optimal solution to restricted 3-C-LIST-SUB

Given an instance of 3-C-LIST-SUB on lists A, X , and Y of size n, where all the lists consist

of consecutive integers, we are going to design optimal permutation functions. By Lemma 5.4.1.1,

we can assume that X1 = Y1 = 1, since the permutation functions will also apply to other cases.

We will give the optimal permutations based on the parity of n.

Odd n

Let p = n−1
2 . Consider the following permutations X ′ and Y ′ of X and Y , respectively.


X ′

j = X2j = 2j where 1 ≤ j ≤ p

X ′
1+p+j = X2j+1 = 2j + 1 where 0 ≤ j ≤ p

(63)


Y ′
j = Yp−j+1 = p− j + 1 where 1 ≤ j ≤ p

Y ′
1+p+j = Yn−j = n− j where 0 ≤ j ≤ p

(64)

Theorem 5.4.2.1. X ′ and Y ′ are optimal permutations for the 3-C-LIST-SUB instance on A, X ,

and Y of odd size n, and M(A,X, Y ) = A1 − p− 2.
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Proof. Following the definitions of the permutations, we are going to calculate Z = LS(A,X ′, Y ′),

considering each half of the list Z separately.

• For 1 ≤ j ≤ p

Zj = Aj −X ′
j − Y ′

j = (A1 + j − 1)− (2j)− (p− j + 1) = A1 − p− 2 (65)

• For 0 ≤ j ≤ p, i = 1 + p+ j

Zi = Ai −X ′
i − Y ′

i = (A1 + 1 + p+ j − 1)− (2j + 1)− (n− j)

= A1 + p− n− 1 = A1 + p− (2p+ 1)− 1 = A1 − p− 2

(66)

Since all elements in Z are equal, by Lemma 5.4.1, X ′ and Y ′ are optimal permutations for the

3-C-LIST-SUB instance on A, X , and Y . Moreover, M(A,X, Y ) = A1 − p− 2.

Even n

Let p = n
2 . Consider the following permutations X ′ and Y ′ of X and Y , respectively.


X ′

j = X2j = 2j where 1 ≤ j ≤ p

X ′
1+p+j = X2j+1 = 2j + 1 where 0 ≤ j < p

(67)


Y ′
j = Yp−j+1 = p− j + 1 where 1 ≤ j ≤ p

Y ′
1+p+j = Yn−j = n− j where 0 ≤ j < p

(68)

Theorem 5.4.2.2. X ′ and Y ′ are optimal permutations for the 3-C-LIST-SUB instance on A, X ,

and Y of even size n, and M(A,X, Y ) = A1 − p− 2.

Proof. Following the definitions of the permutations, we are going to calculate Z = LS(A,X ′, Y ′),

considering each half of the list Z separately.

• For 1 ≤ j ≤ p

Zj = Aj −X ′
j − Y ′

j = (A1 + j − 1)− (2j)− (p− j + 1) = A1 − p− 2 (69)
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• For 0 ≤ j < p, i = 1 + p+ j

Zi = Ai −X ′
i − Y ′

i = (A1 + 1 + p+ j − 1)− (2j + 1)− (n− j)

= A1 + p− n− 1 = A1 + p− (2p+ 1)− 1 = A1 − p− 2

(70)

Since all elements in Z are equal, by Lemma 5.4.1, X ′ and Y ′ are optimal permutations for the

3-C-LIST-SUB instance on A, X , and Y . Moreover, M(A,X, Y ) = A1 − p− 2.

5.4.3 Reducing broadcast time problem on k-path graphs

Let G = (P1, P2, ..., Pk) be a k-path graph with junction vertices u and v. Recall that we

assume paths are sorted in a non-increasing order of their lengths, i.e. l1 ≥ l2 ≥ ... ≥ lk ≥ 0.

Consider the case when u is the originator. We reduce the minimum broadcast time problem on

k-path graphs to 3-C-LIST-SUB on the following lists.

(1) A = {lk−1, lk−2, . . . , l2, l1},

(2) X = {1, 2, 3, . . . , k − 1},

(3) Y = {1, 2, 3, . . . , k − 1}.

Theorem 5.4.3.1. If b(u,G) ≥ lk + k, the permutation functions of X and Y that optimally solve

3-C-LIST-SUB instance on A, X , and Y , also induce optimal broadcasting order of junctions u

and v in graph G.

Proof. By Lemma 5.2.1, u passes the message along the path Pk to v in the first time unit. Hence,

v will be informed in time unit tv = lk + 1. Consider the time unit tv + k − 1.

• Since v can start informing its neighbors from time unit tv + 1, by time unit tv + k − 1,

all k − 1 uninformed neighbors (other than on path Pk) of v can potentially be informed.

Moreover, the path that was informed on time tv + i can have k− i informed vertices, for any

1 ≤ i ≤ k − 1. This means v can contribute to informing {1, 2, . . . , k − 1} vertices on some

paths, depending on the order of calls placed by v.
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• Similarly, u starts informing its neighbors from time unit 2 (excluding path Pk). Hence, by

time unit tv + k − 1, the path that was informed by u on time 1 + i can have tv + k − 1− i,

for any 1 ≤ i ≤ k − 1. Meaning u can contribute to informing {tv, tv + 1, . . . , tv + k − 1}

vertices on some paths, depending on the order of calls placed by v.

Starting from time unit tv + k, neither u nor v can affect the broadcasting process. In each time

unit after that, one or two vertices on each path can be informed, until the broadcasting is finished.

Hence, the decisive factor of the broadcast time is the order of calls placed by u and v.

Consider the instance of 3-C-LIST-SUB on the following lists.

(1) A = {l1, l2, . . . , lk−2, lk−1},

(2) B = {1, 2, 3, . . . , k − 1},

(3) C = {tv, tv + 1, . . . , tv + k − 2}.

Let B′ and C ′ be any permutations of B and C, respectively. Let D = LS(A,B′, C ′) and d =

MLS(A,B′, C ′). Note that permutations B′ and C ′ uniquely define the order of calls (broadcast

scheme S) placed by v and u, respectively. Whereas Di, for any 1 ≤ i ≤ k − 1, corresponds to

the number of uninformed vertices on path Pi in time unit tv + k, if v and u followed the broadcast

order defined by B′ and C ′. Meaning d is the highest number of uninformed vertices on any path.

Assume, wlog, d = Dj for some 1 ≤ j ≤ k − 1. Since path Pj has the highest number of

uninformed vertices d, there are two possible cases.

• If d ≥ 0: In this case, starting from the time unit tv + k, up to two vertices can be informed

on path Pj . This means that the broadcasting will be over after ⌈d2⌉ time units, hence, the

following broadcast time will be achieved.

b(S) = tv + k − 1 +

⌈
d

2

⌉
= lk + k +

⌈
d

2

⌉
(71)

• If d < 0: This case implies that by time unit tv+k−1, none of the paths had any uninformed

vertices, i.e. broadcast was finished and b(S) < lk + 1 + k − 1 = lk + k. Which makes this

case inapplicable to this theorem. However, we can note that Pj was fully informed
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◦ at least
⌈
d
2

⌉
time units before tv + k − 1, if it was informed by both u and v,

◦ and at most d time units before tv + k − 1, if it was informed by only one of u and v.

Thus, by Equation (71), to minimize B(S), d should be equal to M(A,B,C).

b(u,G) = lk + k +

⌈
M(A,B,C)

2

⌉
(72)

On the other hand, by Lemma 5.4.1.1, the 3-C-LIST-SUB instance on A, B, and C has the same

optimal permutations as the instance on A, X , and Y .

The below corollary follows.

Corollary 5.4.3.2.


b(u,G) = lk + k +

⌈
M(A,B,C)

2

⌉
if b(u,G) ≥ lk + k

lk + k +M(A,B,C) ≤ b(u,G) ≤ lk + k +
⌈
M(A,B,C)

2

⌉
if b(u,G) < lk + k

Another case is when a vertex w on path Pm is the originator. Let d be the length of the path

wu, and hence, lm + 1− d be the length of the path wv. Assume, wlog, that d ≤ lm + 1− d. Also,

let τ(m) = lm + 2 − 2d. Recall that when τ(m) < lk + 2, the vertex v will be informed via the

direct path from w, and hence, tv = d+ τ(m). We reduce the minimum broadcast time problem on

k-path graphs to 3-C-LIST-SUB on the following lists.

(1) A = {lk, lk−1, . . . , lm+2, lm+1, lm−1, lm−2, . . . , l2, l1},

(2) X = {1, 2, 3, . . . , k − 1},

(3) Y = {1, 2, 3, . . . , k − 1},

(4) B = {1, 2, 3, . . . , k − 1},

(5) C = {τ(m) + 1, τ(m) + 2, . . . , τ (m) + k − 1}.

Let h = d+τ(m)+k−1. The below claims are proved analogous to Theorem 5.4.3.1 and Corollary

5.4.3.2.

103



Theorem 5.4.3.3. If b(w,G) ≥ h, the permutation functions of X and Y that optimally solve 3-C-

LIST-SUB instance on A, X , and Y , also induce optimal broadcasting order of junctions u and v

in graph G.

Corollary 5.4.3.4.


b(w,G) = h+

⌈
M(A,B,C)

2

⌉
if b(w,G) ≥ h

h+M(A,B,C) ≤ b(w,G) ≤ h+
⌈
M(A,B,C)

2

⌉
if b(w,G) < h

5.4.4 Exact broadcasting on restricted k-path graphs

Let G = (P1, P2, . . . , Pk) be a k-path graph, where li = li+1 + 1 for any 1 ≤ i ≤ k − 2. The

length of path lk is arbitrary. According to Table 5.1, the problem of finding an exact broadcasting

algorithm for such k-path graphs remains open. However, combining the contributions of Sections

5.4.2 and 5.4.3 results in an exact broadcast algorithm.

By Theorem 5.4.3.1, the exact order of calls placed by u and v corresponds to the optimal

permutations in the reduced 3-C-LIST-SUB instance. This means that, in the induced algorithm,

both u and v should follow the reverse order of permutation lists described in Equations (63), (64),

(67), and (68). An example visualizing this behavior is portrayed in Figure 5.5.

Algorithm 14 formally presents the broadcasting order.

Figure 5.5: Example of the broadcast scheme in Algorithm 14.

104



Algorithm 14 Broadcasting in restricted k-path graphs
Input A k-path graph G = (P1, P2, ..., Pk), junction vertices u and v, and an originator u
Output Exact broadcast scheme for graph G and the originator u

1: procedure EXACTBROADCASTING

2: In the first time, unit u passes the message along the path Pk

3: n← k − 1
4: if n is odd then
5: p← n−1

2
6: for 1 ≤ j ≤ p do
7: u informs its neighbor on path Pk−j , on time n− p+ j
8: v informs its neighbor on path Pk−j , n− 2j + 1 time units after being informed
9: end for

10: for 0 ≤ j ≤ p do
11: u informs its neighbor on path Pk−j−p−1, on time j + 1
12: v informs its neighbor on path Pk−j−p−1, n− 2j time units after being informed
13: end for
14: else
15: p← n

2
16: for 1 ≤ j ≤ p do
17: u informs its neighbor on path Pk−j , on time n− p+ j
18: v informs its neighbor on path Pk−j , n− 2j + 1 time units after being informed
19: end for
20: for 0 ≤ j < p do
21: u informs its neighbor on path Pk−j−p−1, on time j + 1
22: v informs its neighbor on path Pk−j−p−1, n− 2j time units after being informed
23: end for
24: end if
25: end procedure
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Chapter 6

Conclusion and Future Work

In an era marked by burgeoning data communication demands and the unceasing pursuit of

high-performance computing, the efficiency and efficacy of information dissemination mechanisms

in interconnection networks assume utmost significance. As a foundational primitive for informa-

tion dissemination, the study and refinement of broadcasting mechanisms emerge as an essential

research direction. Broadcasting is the problem of distributing a message from a single source

throughout the network to inform all members as quickly as possible. The goal of this research

is to contribute theoretical frameworks, algorithmic intricacies, and empirical investigations in the

field of broadcasting, with a particular focus on its applications within interconnection network

topologies comprising known structural decompositions.

Broadcasting is formally modeled using a graph G(V,E), where the originator v ∈ V has the

message at the beginning and tries to pass it to all members of V . Being NP-complete in arbitrary

graphs, this problem has remained interesting yet challenging for researchers in recent years. The

problem remains NP-hard even for some restricted graph families, such as bounded degree graphs

(Dinneen, 1994) and 3-regular planar graphs (Middendorf, 1993). Moreover, Elkin and Kortsarz

(2005a) showed that it is NP-hard to design a broadcasting algorithm that guarantees 3− ϵ approx-

imation ratio for any ϵ > 0. The current best approximation ratio of O( logn
log logn) for broadcasting

was introduced by Elkin and Kortsarz (2006). To date, exact polynomial-time solutions are known

only for a limited number of graph families, such as trees, unicyclic graphs, trees of cycles, hyper-

cubes, grids, etc. Most of such families either have simple structures with no complicated cycle
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intersections or exhibit properties, such as symmetry, regularity, and high connectivity, that make

the broadcasting problem polynomial-time solvable. One of the established and essential directions

concerning broadcasting research is to identify structural properties of graphs that make the problem

NP-hard to solve or approximate within a constant ratio.

Chapter 3 addresses broadcasting on graphs where the vertex set can be partitioned into vertex-

disjoint cliques and independent sets. Clearly, any arbitrary graph can be represented as a union

of several cliques and independent sets. In the worst-case scenario, any connected graph can be

divided into |V | − 1 cliques and no independent sets. Hence, it is interesting to study this property

of graphs. We start with one of the simplest cases of this partitioning, split graphs. The vertex

set of a split graph can be partitioned into a clique and an independent set. Jansen and Müller

(1995) proved that deciding whether the broadcast time from multiple originators in split graphs is

equal to 2 is NP-complete, making split graphs an intriguing subject for broadcasting research. We

proposed a polynomial-time 2-approximation algorithm for broadcasting on an arbitrary split graph.

Additionally, we analyzed several key properties of an optimal broadcast scheme on split graphs,

assisting in designing a strategy for generating optimal or near-optimal broadcast schemes. The

optimality of the generated algorithm depends on the solution of the newly proposed minimum cost

proper star-matching problem. Using this strategy, we further devised a heuristic for broadcasting

on split graphs, which eventually resulted in a successful empirical outcome. Since we were able

to broadcast on split graphs within an approximation ratio of 2, it was natural to consider graphs

with more complex alternatives of the same partitioning. As a natural generalization of split graphs,

(k, l)-graphs were the next topology to study. The vertex set of an arbitrary (k, l)-graph can be

partitioned into k independent sets and l cliques. All partitions are pairwise vertex-disjoint. Recall

that any connected graph can be represented as (0, |V | − 1)-graph. Utilizing the strategies that we

developed for split graphs, a broadcasting algorithm was devised for (k, l)-graphs. In comparison

with the heuristic on split graphs and lower bounds of broadcast time, the algorithm was empirically

shown to achieve good results. One of the main problems that remains open is to theoretically prove

an approximation ratio for the (k, l)-graph broadcasting algorithm, or to utilize known strategies

applicable to split graphs to devise a new approximation algorithm. Another open problem is to

solve or prove the NP-hardness of the proposed minimum cost star-matching problem.
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Next, Chapter 4 focuses on a property shared among various graph families. Our goal was

to provide insight into the broadcast time problem on topologies that display recursive structures.

First, we proposed an exact polynomial-time broadcasting algorithm for closed chains of rings.

These graphs are an extension of necklace graphs, where the first and the last cycles are also con-

nected at a vertex. Later in the chapter, we began designing a theoretical framework to aid any

future research concerning broadcasting on recursively decomposable graphs. We initiate the study

of a lazy approach to broadcasting. The vast majority of research work in the area of broadcasting

only examines busy broadcast schemes, which are the schemes that avoid vertex idling. On the

contrary, we propose a strategy to consider broadcast schemes that are as lazy as possible, mea-

sured by the degree of freedom of the originator. The degree of freedom of a vertex in a broadcast

scheme is the first time unit when the vertex is idle after receiving the message. Our aim was to

analyze several compounding structures, that can be employed to represent various recursive struc-

tures, using optimal broadcast schemes with maximum laziness. For some recursive structures,

we established a theoretical foundation and devised several algorithms that can be used to find the

broadcast time, the multicast time, or the largest subgraph that can be informed within a fixed dead-

line. We studied compounding strategies where arbitrary subgraphs are connected via a topology of

an edge, a path, or a ring. Toward the end of the chapter, we presented several graph families that

embody the mentioned compounding structures, such as trees, unicyclic graphs, necklace graphs,

and cacti. Moreover, we showed that the ring-connected graphs structure can be used to improve

and formally prove some of the subprocedures used for the known exact algorithm on k-cacti. Two

of the most important directions to continue studying this approach involve extending the proposed

theoretical framework to other compounding methods and considering more general variations of

lazy broadcasting. As per the argument that we briefly brought up in Section 4.4.5, chordal graphs

can be represented as clique-connected graphs. Since classical broadcasting on chordal graphs is

NP-complete (Jansen & Müller, 1995), the family of chordal graphs is a perfect candidate to inves-

tigate. Additionally, we believe that it may be possible, yet complicated, to explore considerations

beyond just the first time unit when the originator was idle.

Lastly, Chapter 5 concentrates on one of the properties of graphs that evidently makes the broad-

cast time problem difficult: the existence of intersecting cycles. Almost all graph families for which
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an exact polynomial-time broadcasting algorithm is known either do not contain intersecting cycles

or any two cycles intersect at a single vertex. Increasing the complexity of cycle intersections is one

of the ways to delineate the boundary between graph families where the broadcast time problem

is solvable or not. The subject of interest in this chapter is the family of k-path graphs. A k-path

graph consists of k internally vertex-disjoint paths of arbitrary lengths, such that all paths meet at

the endpoints (called junctions). First, we devised a polynomial-time 2-approximation algorithm

for broadcasting on k-path graphs that improves the previous results of Bhabak and Harutyunyan

(2019) by a multiplicative factor of two. Further, we introduced a new problem that we refer to as

the Three List Subtraction Problem (3-LIST-SUB). The goal of the problem is to find permutations

of two of the three given lists, such that element-wise subtraction of these two lists from the first

list results in a list with the lowest maximum element value. We introduced an optimal solution to

a restricted subproblem to 3-LIST-SUB, helping us to devise an exact broadcasting algorithm on

restricted k-path graphs with consecutive path lengths. Additionally, for k-path graphs with sig-

nificantly larger broadcast times of the junctions, we showed that the length of the shortest path

does not affect the broadcast order of the junctions. Looking ahead, the problem of designing a

polynomial-time exact broadcasting algorithm for arbitrary k-path graphs remains open. Given that

the introduced 2-approximation ratio for k-path graphs is less than the known inapproximability

lower bound of 3− ϵ, it is important to consider other, potentially more complicated graph families

that comprise intersecting cycles.

Some of the results of this thesis are presented in (Harutyunyan & Hovhannisyan, 2023a, 2023b,

2023c, 2023d; Harutyunyan, Hovhannisyan, & Maraachlian, 2023). Results of collaboration with

other researchers are presented in (Harutyunyan et al., 2022).
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Feldmann, R., Hromkovič, J., Madhavapeddy, S., Monien, B., & Mysliwietz, P. (1994). Optimal

algorithms for dissemination of information in generalized communication modes. Discrete

116



Applied Mathematics, 53(1-3), 55–78.

Foldes, S., & Hammer, P. L. (1977). Split graphs. In Proceedings of the Eighth Southeastern

Conference on Combinatorics, Graph Theory and Computing (SECCGTC) (Vol. XIX, p. 311-

–315).

Fomin, F. V., Fraigniaud, P., & Golovach, P. A. (2023). Parameterized complexity of broadcasting

in graphs. arXiv preprint arXiv:2306.01536.

Fraigniaud, P. (2001a). Approximation algorithms for minimum-time broadcast under the vertex-

disjoint paths mode. In European Symposium on Algorithms (ESA) (pp. 440–451).

Fraigniaud, P. (2001b). Minimum-time broadcast under edge-disjoint paths modes. In International

Conference on Fun with Algorithms (FUN).

Fraigniaud, P., & Lazard, E. (1994). Methods and problems of communication in usual networks.

Discrete Applied Mathematics, 53(1), 79-133.

Fraigniaud, P., & Peters, J. G. (2001). Minimum linear gossip graphs and maximal linear (δ,

k)-gossip graphs. Networks, 38(3), 150-162.

Fraigniaud, P., & Vial, S. (1996). Approximation algorithms for information dissemination prob-

lems. In Proceedings of 1996 IEEE Second International Conference on Algorithms and

Architectures for Parallel Processing (ICA3PP) (pp. 155–162).

Fraigniaud, P., & Vial, S. (1997). Approximation algorithms for broadcasting and gossiping. Jour-

nal of Parallel and Distributed Computing, 43(1), 47–55.

Fraigniaud, P., & Vial, S. (1999). Comparison of heuristics for one-to-all and all-to-all communi-

cations in partial meshes. Parallel Processing Letters, 9(01), 9–20.

Fulkerson, D. R., & Ford, L. R. (1962). Flows in networks. Princeton University Press Princeton.

Garey, M. R., & Johnson, D. S. (1983). Computers and intractability. A guide to the theory of

NP-Completeness.

Gargano, L., & Vaccaro, U. (1992). Minimum time broadcast networks tolerating a logarithmic

number of faults. SIAM Journal on Discrete Mathematics, 5(2), 178–198.

Gholami, S., & Harutyunyan, H. A. (2022a). Broadcast Graphs with Nodes of Limited Memory. In

13th International Conference on Complex Networks (CompleNet).

Gholami, S., & Harutyunyan, H. A. (2022b). Fully-adaptive model for broadcasting with universal

117



lists. In 24th International Symposium on Symbolic and Numeric Algorithms for Scientific

Computing (SYNASC) (p. 92-99).

Gholami, S., & Harutyunyan, H. A. (2022c). HUB-GA: A Heuristic for Universal lists Broadcasting

using Genetic Algorithm. Journal of Communications and Networks.

Gholami, S., Harutyunyan, H. A., & Maraachlian, E. (2023). Optimal broadcasting in fully con-

nected trees. Journal of Interconnection Networks, 23(01), 2150037.

Gitman, I., Van Slyke, R., & Frank, H. (1976). Routing in packet-switching broadcast radio net-

works. IEEE Transactions on Communications, 24(8), 926–930.

Golumbic, M. C. (2004). Algorithmic graph theory and perfect graphs. Elsevier.

Grigni, M., & Peleg, D. (1991). Tight bounds on mimimum broadcast networks. SIAM Journal on

Discrete Mathematics, 4(2), 207–222.

Grigoryan, H., & Harutyunyan, H. A. (2014). Diametral broadcast graphs. Discrete Applied

Mathematics, 171, 53–59.

Hambly, B. M., & Jordan, J. (2004). A random hierarchical lattice: the series-parallel graph and its

properties. Advances in Applied Probability, 36(3), 824–838.

Hammer, P. (1977). Aggregation of inequalities in integer programming. Ann. Discrete Math, 1,

145–162.

Harutyunyan, H. A. (2000). Multiple broadcasting in modified Knödel graphs. In 7th Interna-

tional Colloquium on Structural Information and Communication Complexity (SIROCCO)

(pp. 157–166).

Harutyunyan, H. A. (2006a). Minimum multiple message broadcast graphs. Networks, 47(4),

218-224.

Harutyunyan, H. A. (2006b). Minimum multiple message broadcast graphs. Networks, 47(4),

218–224.

Harutyunyan, H. A. (2008). An efficient vertex addition method for broadcast networks. Internet

Mathematics, 5(3), 211–225.

Harutyunyan, H. A., & Hovhannisyan, N. (2023a). Broadcasting in interconnection networks based

on node partitioning. In 2023 IEEE International Mediterranean Conference on Communi-

cations and Networking (MeditCom) (pp. 234–239).

118



Harutyunyan, H. A., & Hovhannisyan, N. (2023b). Broadcasting in split graphs. In International

Conference on Algorithms and Complexity (CIAC) (pp. 278–292).

Harutyunyan, H. A., & Hovhannisyan, N. (2023c). Efficient heuristic for broadcasting in chordal

networks. In International Conference on Advanced Information Networking and Applica-

tions (AINA) (pp. 332–345).

Harutyunyan, H. A., & Hovhannisyan, N. (2023d). Improved approximation for broadcasting in

k-path graphs. In International Conference on Combinatorial Optimization and Applications

(COCOA) (pp. 111–122).

Harutyunyan, H. A., Hovhannisyan, N., & Magithiya, R. (2022). Deep heuristic for broadcasting in

arbitrary networks. In 21st International Symposium on Parallel and Distributed Computing

(ISPDC) (p. 1-8). Los Alamitos, CA, USA: IEEE Computer Society. (Best Paper Award)

Harutyunyan, H. A., Hovhannisyan, N., & Maraachlian, E. (2023). Broadcasting in chains of rings.

In 2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN)

(pp. 506–511).

Harutyunyan, H. A., & Jimborean, C. (2014). New heuristic for message broadcasting in net-

works. In 2014 IEEE 28th International Conference on Advanced Information Networking

and Applications (AINA) (pp. 517–524).

Harutyunyan, H. A., & Kamali, S. (2008a). Broadcasting in weighted-vertex graphs. In IEEE

International Symposium on Parallel and Distributed Processing with Applications (ISPA)

(pp. 301–307).

Harutyunyan, H. A., & Kamali, S. (2008b). Efficient broadcasting in networks with weighted nodes.

In 14th IEEE International Conference on Parallel and Distributed Systems (ICPADS) (pp.

879–884).

Harutyunyan, H. A., & Kamali, S. (2010). Optimum broadcasting in complete weighted-vertex

graphs. In 36th Conference on Current Trends in Theory and Practice of Computer Science

(SOFSEM) (pp. 489–502).

Harutyunyan, H. A., & Kamali, S. (2017). Efficient broadcast trees for weighted vertices. Discrete

Applied Mathematics, 216, 598–608.

Harutyunyan, H. A., Laza, G., & Maraachlian, E. (2009, 05). Broadcasting in necklace graphs. In

119



ACM International Conference Proceeding Series (p. 253-256).

Harutyunyan, H. A., & Li, Z. (2017). Broadcast graphs using new dimensional broadcast schemes
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