
A Novel Convolutional Neural Network Pore-Based Fingerprint 

Recognition System 

 

Mohammed Ali 

 

 

A Thesis 

In the Department 

of 

Electrical and Computer Engineering 

 

 

 

Presented in Partial Fulfillment of the Requirements 

For the Degree of 

Doctor of Philosophy (Electrical and Computer Engineering) at 

Concordia University 

Montréal, Québec, Canada 

 

 

 

 

 

 

March 2024 

 

 

 

 

© Mohammed Ali, 2024 



CONCORDIA UNIVERSITY 

SCHOOL OF GRADUATE STUDIES 

 

 
This is to certify that the thesis prepared 

 

By:  Mohammed Ali 

  

Entitled:  A Novel Convolutional Neural Network Pore-Based Fingerprint Recognition System 

 

and submitted in partial fulfillment of the requirements for the degree of 

 

Doctor of Philosophy (Electrical and Computer Engineering) 

 

complies with the regulations of the University and meets the accepted standards with respect to originality and 

quality. 

 

 

Signed by the final examining committee: 

 

 

   _________________________________________        Chair 

   Dr. S. Samuel Li 

  

   _________________________________________        Examiner External 

Dr. Wasfy B. Mikhael             

 

   _________________________________________        Arm’s Length Examiner 

   Dr. Chun-Yi Su 

 

   _________________________________________        Examiner 

   Dr. M.N.S. Swamy 

 

_________________________________________        Examiner 

   Dr. Wei-Ping Zhu  

 

   _________________________________________        Thesis Supervisor 

   Dr. M. Omair Ahmad 

 

_________________________________________        Thesis Supervisor 

   Dr. Chunyan Wang 

 

 

 

 

 

 

 

 

Approved by    ____________________________________________________ 

                              Dr. Jun Cai, Graduate Program Director  

 

April 26, 2024                                                                         

     Dr. Mourad Debbabi, Dean, Gina Cody School of Engineering and Computer Science 



 

iii 
 

Abstract 

 

A Novel Convolutional Neural Network Pore-Based Fingerprint Recognition 

System 

 

Mohammed Ali, Ph.D. 

Concordia University, 2024 

Biometrics play an important role in security measures, such as border control and online 

transactions, relying on traits like uniqueness and permanence. Among the different biometrics, the 

fingerprint stands out for their enduring nature and individual uniqueness. Fingerprint recognition 

systems traditionally rely on ridge patterns (Level 1) and minutiae (Level 2). However, these systems 

suffer from recognition accuracy with partial fingerprints. Level 3 features, such as pores, offer 

distinctive attributes crucial for individual identification, particularly with high-resolution acquisition 

devices. Moreover, the use of convolutional neural networks (CNNs) has significantly improved the 

accuracy in automatic feature extraction for biometric recognition. 

 

A CNN-based pore fingerprint recognition system consists of two main modules, pore detection 

and pore feature extraction and matching modules. The first module generates pixel intensity maps to 

determine the pore centroids, while the second module extracts relevant features of pores to generate 

pore representations for matching between query and template fingerprints. However, existing CNN 

architectures lack in generating deep-level discriminative feature and computational efficiency. 

Moreover, available knowledge on the pores has not been taken into consideration optimally for pore 

centroids and metrics other than Euclidean distance have not been explored for pore matching. 

 

The objective of this research is to develop a CNN-based pore fingerprint recognition scheme 

that is capable of providing a low-complexity and high-accuracy performance. The design of the CNN 

architecture of the two modules aimed at generating features at different hierarchical levels in residual 

frameworks and fusing them to produce comprehensive sets of discriminative features. Depthwise and 

depthwise separable convolution operations are judiciously used to keep the complexity of networks 

low. In the proposed pore centroid part, the knowledge of the variation of the pore characteristics is 

used. In the proposed pore matching scheme, a composite metric, encompassing the Euclidean distance, 
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angle, and magnitudes difference between the vectors of pore representations, is proposed to measure 

the similarity between the pores in the query and template images. 

 

Extensive experiments are performed on fingerprint images from the benchmark PolyU High-

Resolution-Fingerprint dataset to demonstrate the effectiveness of the various strategies developed and 

used in the proposed scheme for fingerprint recognition. 
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Chapter 1 

Introduction 
 

1.1 General 

In the current landscape characterized by the pervasive integration of technology into 

various aspects of modern living, the safeguarding of confidential information has become an 

increasingly complex endeavor. With the rapid pace of digitization, traditional means of ensuring 

data security, such as passwords and keys [1], have gradually revealed their limitations and 

susceptibility to sophisticated hacker attacks. The exponential growth in cyber threats has 

underscored the inherent vulnerability of passwords, rendering them the weakest link in an 

organization's security infrastructure [2]. 

Recent incidents of network security breaches and identity thefts have served as alarming 

wake-up calls, shedding light on the urgent need for a robust authentication method that can 

effectively combat the evolving landscape of cyber threats. This heightened awareness has 

prompted a significant shift in focus toward the realm of biometric security, which offers a 

promising solution for the pressing challenge of verifying individual identities with utmost 

accuracy and reliability [2]. 

Biometric security leverages the distinctive physical and behavioral traits unique to each 

individual, including but not limited to fingerprints, face, iris, gait, and voice, as shown in Fig. 

1.1. These biometric characteristics possess an inherent and indelible connection to an 

individual's very being, making them an ideal foundation for robust authentication mechanisms. 

Unlike passwords that can be easily shared or compromised, biometric traits are intrinsically 

linked to an individual and cannot be easily replicated or imitated [3], [4]. 

By harnessing the power of biometric security systems, organizations can establish a 

highly accurate and reliable means of confirming an individual's identity. Biometric 

authentication surpasses the limitations of traditional methods, providing a formidable defense 

against the vulnerabilities inherent in password-based systems. Through the utilization of 

biometric traits, organizations can achieve unparalleled precision in identity verification, 

effectively mitigating the risks associated with unauthorized access and identity fraud [2]. 
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Figure 1.1: Examples of biometric authentication. 

As the realm of biometric security continues to evolve and mature, advancements in 

technology are continuously enhancing the effectiveness and reliability of these authentication 

systems. Ongoing research and development efforts are dedicated to refining biometric 

algorithms, improving sensor capabilities, and addressing concerns related to privacy and ethical 

considerations [2], [5], [6]. 

Biometric security systems have emerged as a compelling alternative, promising 

enhanced protection against hacking attempts and rendering replication or theft virtually 

impossible. By leveraging distinctive physical or behavioral characteristics, biometrics offer a 

seamless and convenient user experience by obviating the need for repetitive password inputs 

across multiple devices. 

One notable advantage of biometric authentication lies in the arduous task of falsifying 

biometric modalities. These unique traits, inherent to each individual, exhibit a remarkable 

stability throughout one's lifetime, further solidifying their efficacy in ensuring robust 

identification processes. As organizations integrate biometric security systems, employees stand 

to benefit from the convenience and heightened levels of protection bestowed upon their 

computer systems and sensitive files. Liberated from the burdensome task of remembering 

complex passwords or frequently changing them for security purposes, individuals can allocate 
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their valuable time and resources toward productive endeavors, instead of grappling with 

password resets. 

Unlike their password counterparts, biometric traits possess inherent non-transferability, 

drastically reducing time-consuming authentication procedures. With average identification 

times typically under 5 seconds, the efficiency and swiftness of biometric authentication are 

unparalleled. Moreover, the immutable nature of biometric identifiers effectively eliminates any 

potential for individuals to deny their actions, as these unique traits are an indelible part of their 

very being. Attempts to duplicate biometric characteristics are met with insurmountable 

challenges, further fortifying the system's integrity. 

The pursuit of reliable authentication mechanisms has long captivated the attention of 

researchers and industry practitioners, a pursuit that assumes heightened significance in an era of 

escalating security concerns. Biometrics, characterized by the automated identification of 

individuals through their distinctive physical or behavioral characteristics, have emerged as 

potent tools for achieving this objective [7]. These pattern recognition systems play a pivotal role 

in verifying the authenticity of specific biometric features possessed by users, thereby 

establishing their identity. 

The universal and unique attributes of biometric traits have propelled them to the 

forefront of human identification methodologies [8]. As a result, novel techniques and 

methodologies have emerged, capitalizing on these distinct biometric characteristics to facilitate 

user identity recognition and verification processes [9]. The continual advancement of biometric 

technologies, coupled with ongoing research and development efforts, holds great promise in 

further improving the accuracy, reliability, and scalability of biometric security systems. 

Biometric-based authentication systems have been extensively studied in the literature, 

with biometrics such as iris, voice, fingerprints, and facial characteristics being among the most 

commonly used. Among these, fingerprints have been widely accepted and used for a long time. 

In fact, the Chinese have been using fingerprints to sign documents for over a millennium, which 

is a testament to the longevity and reliability of this biometric modality [10].  

According to a report by BCC Research [11], the global biometric market was valued at 

$21.6 billion in 2021 and is projected to grow at a compound annual growth rate (CAGR) of 

15.7% during the forecast period (2021 - 2026), reaching a value of $44.7 billion by 2026. The 

market for Automatic Fingerprint Recognition System (AFRS) and fingerprint biometric 
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technologies accounted for the largest share of the global biometrics market and was projected to 

continue to be the primary source of overall market revenues from 2021 to 2026 and beyond. 

The main user segments of biometric technology include government departments, law 

enforcement, military, and transport and aviation markets. These statistics demonstrate the 

widespread use of fingerprint biometrics. 

Fingerprint properties are highly accurate and unique to each individual. Authentication 

systems based on fingerprints have been shown to produce low false acceptance and false 

rejection rates, along with other benefits such as an easy and cost-effective implementation 

procedure. Additionally, fingerprints typically remain unchanged from birth until death [12]. In 

addition to being unique and unchanging, fingerprints can be collected in a non-invasive manner 

with no side effects [13]. 

Fingerprint recognition technology has advanced significantly in recent years. While full 

prints can be matched with high accuracy, partial fingerprint recognition still requires 

improvement. The need for partial fingerprint recognition systems is increasing in both civilian 

and forensic applications. In civilian applications, small hand-held devices such as mobile 

phones and miniaturized fingerprint sensors produce only small portions of fingerprints. 

However, the miniaturization of fingerprint sensors has led to small sensing areas of 0.42" x 

0.42". According to FBI specifications, an average of 1.0" x 1.0" fingerprint area is needed to 

collect minutiae points accurately (minimum 12 minutiae points). 

The accuracy of recognition while using partial fingerprints is reduced due to the reduced 

fingerprint size, and research is still ongoing to improve this. The development of an automatic 

partial fingerprint recognition system (APFS) that can achieve high accuracy, low error rate, and 

maximum speed is still a work in progress. The present research aims to develop an APFS that 

can authenticate an individual. 

1.2 Biometric Technology 

Biometrics is a field of study that deals with verifying and establishing the identity of an 

individual through their physiological features or behavioral traits. Biometric technologies come 

in different levels of complexity, capabilities, and performance, but they all share some common 

elements. Biometric identification systems are essentially pattern recognition systems that use 

acquisition devices such as cameras and scanning devices to capture images, recordings, or 
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measurements of an individual’s characteristics. Computer hardware and software are then used 

to extract, encode, store, and compare these characteristics. Since the process is automated, 

biometric decision-making is generally very fast and takes only a few seconds in real-time. 

Biometric systems can operate in two modes: verification and identification [4]. 

Verification, or authentication, confirms a person’s identity by checking if they are who they 

claim to be. Identification, on the other hand, determines a person’s identity by finding out who 

they are. Biometric systems use various methods to measure different features, but they all share 

similar processes that consist of two main stages: (I) Enrollment and (II) Verification or 

Identification. 

The enrollment process teaches a biometric system to recognize a specific person. The 

person first shows an identifier, such as an ID card. The biometric matches the identity on the ID 

document. Then, the person gives the biometric (e.g., fingerprint or iris) to a capture device. The 

unique features are found, and one or more samples are extracted, encoded and stored as a 

reference template for future comparisons. Templates are usually stored remotely in a central 

database or in the biometric reader device itself. The quality of the template is vital for the 

biometric application to work well [14]. Verification systems check if a person is who they say 

they are after enrollment. The person gives an identifier and a biometric, which the system 

captures and compares with their stored template. Identification systems find out who a person is 

after enrollment. The person only gives a biometric, which the system compares with all the 

stored templates. The verification systems can match a biometric with one template in less than a 

second while the identification systems can match a biometric with many templates. 

Biometric systems capture a template that is likely to be different each time. They use a 

threshold to decide how similar the trial and reference templates should be. Biometric systems 

can make a match or no-match decision based on this threshold. They generate a score that 

shows how similar the templates are and compare it to the threshold. In identification systems, 

the threshold can allow more than one reference template to match the trial template, with the 

highest scores being the closest matches. 
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1.2.1 Types of Biometric Technologies 

Biometric technologies have been increasingly developed and deployed for many years 

[15]. Based on the human characteristics, biometrics fall into physiological or behavioral 

category [16]. Physiological features, such as fingerprint, face, DNA, ear, palm print, hand 

geometry, iris and retina, are related to the shape of the body. Behavioral features, such as 

signature, keystroke dynamics, gait and voice, are related to the actions of a person. The latter 

type of biometrics is sometimes referred to as behaviometrics. The choice of a biometric trait 

depends on the requirements of the application, as each trait has its advantages and 

disadvantages [17]. Fig. 1.1 shows some of the commonly used biometric systems. 

Facial recognition is a biometric technology that identifies people by analyzing their 

facial features, such as the eyes, eyebrows, nose, lips and chin [18]. However, face recognition 

faces challenges such as varying views and lighting conditions, as well as the aging of the face. 

These factors make it difficult to determine if the face alone is sufficient to recognize a person 

among many identities. 

Deoxyribonucleic acid (DNA) molecules is a long-time storage of information [19]. DNA 

profiling is a process that uses DNA from blood, semen, skin, saliva or hair at a crime scene to 

find a match with an individual. This method is very accurate for identifying matching DNA. 

However, it is extremely expensive and requires long process to identify an individual.  

Hand geometry is a biometric technology that uses 96 measurements of the hand, such as 

the width, height, and length of the fingers, distances between joints and shapes of the knuckles, 

to identify individuals [20]. It is a simple, easy and inexpensive method that has been widely 

used in various locations. It is not affected by many environmental or anomaly factors and has a 

high accuracy. However, it has some limitations, such as the variability of the hand geometry 

over time, the inability to recognize a large number of people, and the large size of the scanner 

required. Therefore, it is not widely adopted for computer security applications. 

Signature recognition is a biometric technology that verifies the writer’s identity by 

matching the signature with samples stored in a database [21]. It analyzes the unique way a 

person signs his name, either by looking at how the signature was written or by estimating how 

the signature was formed. However, this type of biometric is not stable over time, as the same 

person can sign differently depending on physical or emotional factors. 
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Iris recognition is a biometric technology that identifies people by analyzing the features 

of the colored tissue around the pupil, such as rings, rows and spots [22]. The iris has a very 

intricate and unique texture that makes it ideal for recognition purposes. Even the irises of 

identical twins are not the same. Although this complexity and uniqueness enable the system to 

be more precise and suitable for large-scale identification systems, iris recognition is expensive 

and requires advanced technology to get high accuracy. 

Keystroke dynamics is a biometric technology that identifies people by analyzing how 

they type on a computer keyboard. It is based on the idea that human repetitive actions are 

predictable and unique to each individual [23]. It considers factors such as the time between key 

presses and releases, the type of keyboard used, and the emotional and physical state of the 

person. It does not require any special hardware, only the regular computer keyboard. It is not as 

distinctive as other biometrics, but it can be adequate for some applications.  

Gait recognition is a behavioral biometric modality that uses the unique walking pattern 

of a person to identify or authenticate them from a distance. A gait recognition system employs a 

standard camera to capture the video of a person walking and applies computer vision algorithms 

to extract the silhouette and the movement features of the person. The system can then track and 

match the person with a database of known gait models. However, gait recognition is not very 

robust, as it can be influenced by various factors such as clothing, footwear, terrain, fatigue, and 

health. Gait is also not very distinctive across individuals, making it unsuitable for high-security 

applications [24]. 

Speech or voice recognition is a biometric modality that uses the unique features of a 

person’s voice to identify or authenticate them [25]. Voice features are determined by both 

physical and behavioral factors. Physical factors are related to the anatomy of the vocal organs, 

such as the mouth, lips, vocal cords, and nasal passages. Behavioral factors are influenced by the 

mood, health, and age of the person. The physical factors tend to be stable, while the behavioral 

factors can vary over time. Because of this variability, voice recognition is not a very reliable 

biometric modality. 

Fingerprint recognition is a biometric technology that identifies or authenticates a person 

based on their unique fingerprint [4]. This is the core topic of this research, and it will be 

explained in depth in the next sections. Fingerprint recognition is one of the most widely used 

biometric modalities, and it has been commercially available since the early 1970s [26].  
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Despite the apparent advantages of biometric systems for reliable person authentication, 

they are not infallible methods of automatic human recognition. The study of the current 

methods, along with the emergence of cheap, small biometric sensors and fast processing chips, 

reveals that a wider application of biometric technology would demand improved solutions to 

address three essential challenges [27]: system security, privacy issues, and recognition 

performance.  

To achieve system security (that is, to prevent fraudsters from accessing the system) and 

privacy issues (that is, to prevent unauthorized system administrators from exploiting the 

system), the biometric modality selected should have the following properties:  

• The physical trait should be stable and consistent throughout the person’s life.  

• The physical trait should be unique and specific to the individual person.  

• The data should be easily verified against the actual person in a simple, automated 

manner. 

These properties are fully met by the fingerprint biometric. Fingerprint recognition is one 

of the oldest and most trusted biometric modalities. Fingerprint recognition is based on the 

premise that every person has a unique and unchangeable fingerprint, even identical twins. This 

makes fingerprint recognition suitable for many applications that require identity verification, 

such as forensics, access control, website, and device security. Furthermore, the hardware and 

software for fingerprint recognition are becoming more affordable and accessible. 

 

1.2.2 Fingerprint Biometric 

A fingerprint is a mark left by the friction ridges on the surface of a human finger tip. A 

friction ridge is a raised part of the skin on the fingers that consists of one or more connected 

units of ridge skin (see Fig. 1.2). These are also called “epidermal ridges”, and they are formed 

by the interaction between the dermal papillae of the lower skin layer and the interpapillary pegs 

of the upper skin layer. These epidermal ridges enhance the vibrations caused by, for example, 

touching an uneven surface, and improve the transmission of the signals to the sensory nerves 

that perceive fine texture [28]. These ridges also help in holding rough or wet surfaces. 

Fingerprint impressions can be left on a surface by the natural sweat from the eccrine glands in 

the friction ridge skin, or they can be made by ink or other substances that transfer from the ridge 

peaks to a smooth surface, such as a fingerprint card [29]. Fingerprint records usually include 



 

9 
 

impressions from the pad of the last finger joint, as well as some parts of the lower finger joint 

areas. 

 

Figure 1.2: A macro photo of a human fingerprint showing the unique pattern of ridges and 

valleys. 

The ridge patterns on our fingers are unique and never repeated, making fingerprints an 

ideal biometric trait for authentication purposes. These patterns develop during the fetal stage 

and remain constant throughout life. Fingerprint-based biometric systems are used by more than 

74% of the biometric market as an authentication tool [4]. 

Fingerprints are a universally accepted solution for authentication, with over 96% of the 

population having legible fingerprints, which is more than the number of people who have 

licenses and identity cards. They are highly distinctive and one of the most accurate forms of 

biometrics available. In addition to these advantages, the following benefits have also been 

recognized [30]:  

i. The acquisition process is non-intrusive and requires no training.  

ii. It is the most economical biometric PC user authentication technique.  

iii. Small storage space is required for the biometric template, reducing the size of the 

database memory required. 

1.3 Basic Principles of Fingerprint Technology 

Sir Francis Galton, a British scientist, is regarded as the Father of Fingerprint Science. He 

established the basic principles of fingerprint technology [31], which are as follows: 

• Consistency in Persistence: Fingerprints retain their unchanging nature from birth until 

decomposition occurs. The ridges on the friction skin of fingers develop distinct and 

permanent characteristics within one and a half to two months of pregnancy, reaching full 



 

10 
 

formation in 180 days. These formations grow proportionally with the body, ensuring 

permanence unless the skin deteriorates or sustains damage. 

• Uniqueness and Diversity: No two fingerprints are identical, except those taken from the 

same finger of the same individual. Even fingerprints captured from different fingers of the 

same person exhibit distinct patterns. Hence, fingerprints serve as a unique, divine seal for 

individual identification. 

• Immutability of Fingerprints: As previously mentioned, the human skin comprises two 

layers, the outer epidermis and the inner dermis. Temporary effects on the ridges in the 

epidermis, such as simple injuries, aging, growth, skin peeling, warts, creases, burns, or skin 

diseases, may occur. However, over time, these affected ridges revert to their original pattern 

and characteristics. On the other hand, scars resulting from skin wounds affecting the dermis 

are permanent and alter the formation of patterns and ridges. 

Therefore, it can be comprehended that fingerprints remain flawless throughout a 

person's entire life, making them the most dependable, truthful, immutable, and steadfast means 

of establishing one's identity.  

 

1.3.1 Practical Applications and Usage 

Fingerprint biometric finds extensive applications in various fields, including entrance 

control, door-lock systems, smart cards, vehicle ignition control, and fingerprint-based access. 

With advancements in technology leading to smaller fingerprint sensor sizes, the scope of 

applications has expanded to the mobile market. Given the rapid growth of the current mobile 

market, its potential surpasses that of all other application markets. The fingerprint markets are 

categorized as illustrated in Fig. 1.3. 

In criminology, fingerprints are a frequently employed and highly reliable source for 

identifying criminals and individuals involved in fraudulent activities. Their utility extends to the 

identification of unidentified bodies, where fingerprint records are compared with existing 

databases. Fingerprint technology is increasingly integrated into crucial service-oriented 

industries such as banking, licensing, and passport issuance. The use of fingerprints significantly 

reduces the occurrences of forgery, impersonation, and fraud in these sectors. Furthermore, 

fingerprints play a vital role in property and civil cases, leveraging historical records from 

registration departments and documents to resolve critical issues. 
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Figure 1.3: Application Areas of Fingerprint Biometric. 

Notably, newborn babies' fingerprints are now captured in hospitals to prevent 

interchangeability errors, storing the prints of both the mother and child together. This practice is 

also adopted by old-age pensioners and various public services, such as railways and electricity 

boards, where fingerprinting of temporary laborers safeguards against muster role frauds. In 

contemporary settings, fingerprints serve as a means to access computers, with software-

equipped locking systems securing bank strong rooms and household doors, preventing 

unauthorized entry. The widespread adoption of fingerprint recognition systems reflects their 

high demand across diverse applications. 

 

1.3.2 Types of Fingerprints 

Throughout history, three categories of fingerprints have been identified: latent prints, 

patent prints, and plastic prints. Latent prints refer to intentionally collected fingerprints from 

individuals, whether for enrollment in a system or during arrest for a suspected criminal offense. 

Live Scan or ink on paper cards are commonly used methods for collecting latent prints, as 

illustrated in Fig. 1.4 (a). 

Patent prints are accidental friction ridge impressions that are easily visible to the naked 

eye, resulting from the transfer of foreign material from a finger onto a surface. Examples 

include impressions from flour and wet clay. Due to their inherent visibility and lack of need for 

enhancement, patent prints are typically photographed rather than lifted, as is done with latent 

prints. Materials like ink, dirt, or blood can leave patent prints on surfaces, as shown in Fig 1.4 

(b). 
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                                 (a)                              (b)      (c) 

Figure 1.4: Example of representative fingerprints. (a) Latent ink fingerprint. (b) Patent 

fingerprint. (c) Plastic fingerprint. 

A plastic print is a friction ridge impression embedded in a material that preserves the 

detailed ridge shape. While it is rare for criminals to leave prints in wet clay, this material serves 

as a perfect medium for creating plastic prints [32]. Examples commonly encountered include 

melted candle wax, putty removed from windowpane perimeters, and thick grease deposits on 

car parts. Unlike latent prints, plastic prints are already visible and require no additional 

enhancement (see Fig 1.4 (c)). 

Regardless of the aforementioned three types, the collected fingerprints can be 

categorized into Rolled/full, Plain/flat, and Latent or partial (see Fig. 1.5). Rolled fingerprint 

images are obtained by rolling a finger from one side to the other ("nail-to-nail") to capture all 

the ridge details. Plain impressions occur when a finger is pressed down on a flat surface without 

rolling. Rolled and plain impressions can be obtained through the scanning of inked impressions 

on paper or by using live-scan devices. These attended mode acquisitions typically result in high-

quality fingerprints rich in information content. 

On the other hand, latent or partial fingerprints are lifted from surfaces inadvertently 

touched or handled by a person through various methods, ranging from simple photographing of 

the print to more complex dusting or chemical processing [33], [34]. The critical aspect in 

forensics is the matching of a latent fingerprint against a database of rolled prints or latent prints 

(reference prints) to apprehend a criminal.  
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    (a) Rolled              (b) Plain     (c) Latent 

Figure 1.5: Types of Fingerprints. 

 

1.3.3 Partial Fingerprints 

Automated fingerprint recognition, primarily focused on complete fingerprints, has 

gained widespread usage and constitutes a well-explored field of study. However, the realm of 

partial fingerprint recognition emerges as an intriguing research area, involving the matching of a 

fragment of a fingerprint with a template or reference of pre-enrolled fingerprints. A partial 

fingerprint is defined as an incomplete fingerprint, and several examples are depicted in Fig. 1.6. 

       

Figure 1.6: Examples of Partial Fingerprints. 

Matching partial fingerprints against full pre-enrolled images in a database introduces 

several challenges [35]: 

• The limited number of minutiae points in such prints diminishes their discriminatory 

capability. 

• Uncontrolled impression environments result in unspecified orientations of partial 

fingerprints. 

• Distortions, such as elasticity and humidity, introduced by the characteristics of human skin, 

can amplify ambiguity between genuine and imposter fingerprints. 

The distinct characteristics inherent in partial fingerprints make the implementation of a 

fingerprint identification system based on partial prints a more formidable challenge compared to 

conventional AFRS. 
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1.4 Fingerprint Features 

The fingers are covered with a specialized type of skin characterized by minute elevated 

lines known as 'Papillary ridges' or 'Friction ridges.' The depressions situated between these 

elevated ridges are referred to as 'Forrows' or 'Valleys.' Additionally, white lines known as 

'creases' may also be present. Notably, the friction skin area of a finger remains unobstructed by 

hair or glands. A fingerprint is essentially a reproduction of the friction skin surface on the first 

phalanx of the finger. In impressions made with black printer's ink, ridges are represented as 

'black lines,' while valleys are depicted as 'white lines.' 

The features that can be gathered from a fingerprint are classified into three groups [4], 

namely: 

• Level 1 features: Encompasses macro details such as ridge flow and pattern (see Fig. 1.7 (a)). 

• Level 2 features:  Involves points or minutiae details (see Fig. 1.7 (b)). 

• Level 3 features: Encompasses high-level or micro details like pores and ridge contours (see 

Fig. 1.7 (c)). 

 

 

Figure 1.7: Fingerprint Features. 

 

1.4.1 Level 1 Features 

Level 1 features encompass macro details, providing information about the general ridge 

flow and pattern configuration. These features include orientation details, core and delta 

locations, and the ability to distinguish between finger and palm prints. At a global level, the 

(a) 

 

 
(b) 

 

 

(c) 
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fingerprint pattern reveals distinctive regions characterized by high curvature and frequent 

termination. Level 1 features comprise these global patterns and morphological information. 

While not sufficient for unique fingerprint identification, they serve for broad classification and 

exclusion. Examples include arch, tented arch, left loop, right loop, double loop, and whorl (see 

Fig. 1.7 (a)). 

 

1.4.2 Level 2 Features 

The comprehensive analysis of fingerprints for matching purposes necessitates the 

thorough comparison of numerous features embedded in the print pattern [36]. These features 

encompass distinct patterns intrinsic to the fingerprint, which further manifest in various unique 

characteristics. Within a fingerprint, several specific features stand out, such as islands (a 

standalone line that does not connect with other regions), dots (an independent ridge with 

roughly equal length and width), crossovers or bridges (short ridges running between parallel 

ones), core (the central point of the fingerprint pattern), and delta (the singular point from which 

patterns deviate). 

Patterns originating from ridges are collectively referred to as 'Minutiae,' with two 

primary forms known as 'ending' and 'bifurcation.' An ending denotes a feature where a ridge 

concludes, while bifurcation represents a feature where a ridge diverges from a single path into 

two paths at a Y-junction. These two types give rise to several other feature classifications, 

including lake or enclosure features (a single ridge point that bifurcates and reunites shortly after 

to form a single ridge) and spur (a bifurcation with a short ridge branching off a long ridge). 

Additionally, features like line-unit, line fragment, eye, and hook can also be extracted. 

Collectively, these features are termed low-level features (refer to Fig. 1.7 (b)) or level 2 

features, and they are easily extractable from a fingerprint image.  

Level 2 features pertain to the diverse manners in which ridges exhibit discontinuity. 

Minutiae, being the most prominent features, possess heightened stability and robustness. The 

distribution of minutiae features is acknowledged as distinctive to individuals, and empirical 

evidence substantiates their substantial discriminatory power in establishing the uniqueness of 

fingerprints. It is imperative to acknowledge that achieving higher accuracy during recognition 

necessitates extracting a considerable number of minutiae points.  
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1.4.3 Level 3 Features 

Level 3 features encompass fine intra-ridge details, including dimensional attributes of a 

ridge, such as ridge path deviation, width, shape, pores, edge contour, incipient ridges, breaks, 

creases, scars, and other permanent details [37] (see Fig. 1.7 (c)). Pores and ridge contours are 

commonly used level 3 features, where the ridge contours provide valuable information on ridge 

width and edge shape. The shapes and relative positions of ridge edges are considered permanent 

and unique. This research will specifically emphasize the pore feature. 

 

1.4.4 Pore Features 

Most automatic fingerprint recognition systems primarily utilize Level 1 and Level 2 

features, as they are evident in images captured with a resolution of at least 500 dots per inch 

(DPI). In contrast, Level 3 features can be derived from high-resolution fingerprint images 

ranging from 800 to 1000 dpi [38], encompassing pores, incipient ridges, and edge contours. The 

coordinates of pores, known for their high discriminatory value [39], contribute significantly to 

fingerprint recognition technology employing Level 3 features, showcasing elevated accuracy. 

Pore information is also instrumental in partial matching [40] and fingerprint liveness detection 

[41], particularly when combined with Level 2 minutiae features (refer to Fig. 1.8). 

 

Figure 1.8: Levels 1, 2 and 3 for fingerprint information from different image resolutions. In 

level 3, the yellow dots are the pores from the high-resolution image. 

With advancements in fingerprint-capturing techniques, increased image resolution has 

become crucial. Higher image resolution facilitates the inclusion of level 3 features in fingerprint 
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recognition, proven to be as unique and permanent as level 2 features. Pores have been 

statistically analyzed and validated for personal identification, especially beneficial in cases 

where only partial fingerprints are captured, and minutiae points are insufficient [42], [43].  

The complex shapes of pores in touched-based, touchless, and latent fingerprints pose a 

challenge, as illustrated in Fig. 1.9. The varying shapes of pores among individuals and even 

within the same person necessitate the use of features such as pore spacing, frequency, and total 

number for characterization. Pore features gain acceptance, particularly with high-resolution 

fingerprint scanners enabling reliable pore feature extraction. Pores, a popular level-3 feature, 

serve as useful supplementary features in forensic applications. 

 

   

(a) 

  

(b) 

 

(c) 

Figure 1.9: Pore on different types of fingerprints. (a) Touched-base fingerprint. (b) Latent 

fingerprint. (c) Touchless fingerprint. 

 

  



 

18 
 

Pores serving as the outlets for perspiration-secreting glands. These pores contain a 

combination of oily matter, sweat, and other secretions, contributing to the smoothness, 

lubrication, and softness of the hand. Arranged uniformly along the summit of the ridge, pores 

are persistent and unalterable, forming the focal point of interest in this research. Studies indicate 

a pore density on ridges ranging from 23 to 45 pores per inch, with 20-40 pores deemed 

sufficient for successful individual identification [39]. Pores exhibit varying sizes, ranging from 

88 to 220 microns in diameter. Two categories of pore features are distinguished based on 

perspiration activity (see Fig. 1.10): (i) Open pores, intersecting with the valley between two 

ridges, and (ii) Closed pores, entirely enclosed by a ridge. 

       

(a)               (b) 

Figure 1.10: Pore classes. (a) Open and (b) closed pores. 

In forensic applications, pores offer advantages over minutiae [44], being less susceptible 

to damage or mimicry and abundant even in small fingerprint fragments (see Fig. 1.11). These 

advantages motivate researchers to incorporate pores into partial fingerprint recognition systems, 

showcasing their potential in enhancing the robustness and security of fingerprint recognition. 

 

Figure 1.11: Minutiae (left side) and Pores (right side) counts on a partial fingerprint. 



 

19 
 

1.5 Fingerprint Recognition 

Fingerprint recognition has gained widespread popularity due to its ease of acquisition, 

diverse data sources, and extensive utilization by law enforcement and immigration agencies [3]. 

It serves as a fundamental aspect of biometric authentication and has undergone significant 

advancements over time. Researchers have delved into various levels of features to improve 

accuracy and reliability. 

Initially, focus was placed on ridge patterns, which provide a broad structural overview 

of fingerprints, including ridge orientation. While these patterns were easy to extract from low-

resolution images, they lacked detailed information and could lead to false positives, particularly 

among individuals with similar ridge patterns such as identical twins or family members. 

Moreover, ridge patterns often failed to capture local variations caused by factors like scars, cuts, 

or aging, which could significantly impact recognition accuracy, especially in noisy or distorted 

images. 

In response to these limitations, minutiae-based approaches gained prominence. 

Minutiae, comprising ridge endings and bifurcations, offered a more specific and reliable means 

of fingerprint recognition. However, they too had drawbacks, particularly in cases where the 

captured fingerprints lacked sufficient minutiae or exhibited non-standard ridge patterns like 

loops or whorls. 

The combination of ridge patterns and minutiae sought to mitigate their individual 

shortcomings, providing both a coarse overview and finer details [45]. Nevertheless, this 

approach requires a balance between robustness and precision, and results in increasing the 

template size, storage needs, and matching complexity. 

The introduction of Level 3 features, specifically pores, represents a continued effort to 

enhance fingerprint recognition. Pores offer unique attributes for each individual and have shown 

promise in improving recognition accuracy, especially with the availability of high-resolution 

scanners capable of capturing detailed fingerprint images. 

In recent years, the development of fingerprint recognition schemes using pores has 

drawn a great deal of researcher’s attention in view of the availability of high-resolution scanners 

that are capable of providing very good quality fingerprint images. A pore-based AFRS is 

essentially a pattern recognition system that has mainly two modules [4], [38], [46]. In the first 

module, the pores of the fingerprint are detected using some relevant features of these pores. In 
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the second module, fingerprint pores are utilized for recognition by extracting the relevant 

features from the detected pores and using these features to match the pores between the query 

and template fingerprints. In order to have a reliable pore-based AFRS, one needs to have both a 

good pore detection module that can detect the pores precisely as well as a module that can 

extract, represent and match the fingerprint pores accurately.  

Fingerprint recognition based on pore features has traditionally relied on handcrafted 

algorithms to detect pores and match them between the query and template fingerprints [38], 

[47], [48], [49], [50], [51], [52], [53], [54]. However, recent research has focused on the use of 

neural network algorithms to improve the accuracy and efficiency of fingerprint recognition 

systems [55], [56]. Neural networks can learn to extract features from fingerprint images that are 

difficult to identify using traditional methods. The use of deep learning techniques has enabled 

the development of more robust and scalable fingerprint recognition systems that can handle 

large datasets and complex features.  

Neural networks, particularly Convolutional Neural Networks (CNNs) [57], [58], [59], 

have demonstrated their proficiency in feature learning and pattern recognition tasks, making 

them well-suited for analyzing intricate details such as pore structures [60], [61], [62], [63], [64]. 

Despite the promising potential of incorporating pore features and neural networks in fingerprint 

recognition, there are challenges to overcome. Fine-tuning neural network architectures and 

ensuring robustness to variations in image quality remain focal points for ongoing research. The 

integration of neural networks into pore-based fingerprint recognition systems opens doors to 

real-time diverse applications, including forensic analysis, access control, and mobile device 

security. In the next section, we will review the related works for pore-based Fingerprint 

recognition system for both traditional and non-traditional schemes. 

 

1.6 Literature Review of Pore-Based Fingerprint Recognition 

An automatic fingerprint recognition system is essentially a pattern recognition system 

that has mainly two modules [4], [38], [46], as shown in Fig. 1.12. In the first module, pores of 

the fingerprint are detected using some relevant features of the pores. In the second module, the 

detected pores of the fingerprint are then used to do the actual fingerprint recognition.  
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The process of pore detection used in various schemes can, in general, be divided into 

two parts. In the first part, a pore intensity map is obtained by extracting relevant pore features 

from a gray-level input fingerprint image. A pore intensity map is essentially a collection of 

gray-level blobs characterizing the pores of a fingerprint image. In the second part, first, the 

locations of the candidate pores are found from the pore intensity map by locating the 

coordinates of their centers, and then, by using some prior knowledge about the true fingerprint 

pores, spurious pores are removed from the set of candidate pores in order to obtain the final set 

of true pores.  

The pore feature extraction and matching module has three segments: in the first 

segment, relevant features of the detected pores suitable for fingerprint recognition are extracted. 

In the second segment, the extracted features from the first segment are used to match the pores 

in the query fingerprint image with a template fingerprint image in the database. In the third 

segment, the matched pores are refined to remove any false matched pair of pores.  

In the following subsections, we will delve into the various methodologies employed for 

each part of the pore detection module and each segment of the pore feature extraction and 

matching module, while also providing a critical analysis of these methods. We will examine the 

approaches utilized in pore detection, including the extraction of relevant pore features and the 

elimination of spurious pores, aiming to achieve precise detection of true pores within fingerprint 

images. Additionally, we will explore the techniques employed in the pore feature extraction and 

matching module, covering the extraction of suitable features from detected pores, the matching 

process between a query and template fingerprint images, and the refinement of matched pores to 

eliminate false pairs. Through this comprehensive discussion and critique, we aim to gain 

insights into the strengths and limitations of existing methodologies in the realm of pore-based 

automatic fingerprint recognition. 
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Figure 1.12: General pore-based fingerprint recognition system. 

 

1.6.1 Pore Detection Module 

Recent studies proved that Level 3 features can greatly increase the accuracy of current 

fingerprint recognition technologies [65], [66]. In particular, the number and coordinates of the 

pores were demonstrated to be highly discriminative features [38], as well as in the case of 

partial fingerprints [67].  The process of pore detection, in general, has two parts, as shown in 

Fig. 1.12. In the first part, the possible candidate pores are determined from the gray-level image 
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of the fingerprint by extracting the pore features. In the second part, first, the location of the 

candidate pores is found by locating the coordinate of their centers and then a decision is made 

as to the true pores by identifying and removing any possible spurious pores from the set of the 

candidate pores. Next, we will discuss the background work of each part of the pore detection 

module. 

A. Feature Extraction 

The most critical step in the first part of pore detection is the feature extraction step. 

Traditionally, in the first part, the pore features generated and extracted are handcrafted features. 

The works in [47] and [48] are the two earliest methods of generating handcrafted pore features, 

in which the ridges of a binary skeletonized version of the fingerprint image are tracked and any 

discontinuity along the ridges is considered to represent the presence of a pore when certain 

criteria are satisfied. In the first part of other traditional schemes for pore detection, the pore 

features are first modeled in terms of the orientations of the ridges containing the pores and the 

pore shapes and sizes, and then a filter, such as Gabor [38], adaptive DOG or DAPM [49], is 

designed to extract the true pores from the fingerprint images. The pore detection performance of 

the schemes in which the pore feature extraction in the first part is based on the handcrafted 

features is very much limited by the modeling capability of the pore features that represent only 

certain types of pores accurately. 

The pore detection scheme of [60] is the first CNN-based scheme, in which the first part 

is based on a simple CNN architecture. In this architecture, two convolutional layers are 

employed using, respectively, 30 filters and one filter, each of kernel size 5×5, and a max-

pooling layer with a 3×3 kernel in between the two layers. However, this scheme uses only a 

shallow network, which relies only on its width to extract the pore features. Hence, it is not able 

to learn the deep high-level features of the pores. 

The scheme of [61] is another CNN-based pore detection scheme in which a deep 

network, referred to as Deplore, consisting of 10 convolution layers is used. Each of the layers in 

this network with the exception of the last one (the reconstruction layer) uses 64 filters of kernel 

size 3×3. In view of the fact that this scheme uses a deep network, it is capable of extracting 

high-level pore features and providing performance superior to that provided by the scheme of 

[60]. However, this scheme is not able to improve the performance further by making the 
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network deeper, since the network cannot handle the gradient vanishing problem associated with 

a very deep network.  

The pore detection scheme of [62] uses a very deep CNN, referred to as DeepResPore, in 

its first part. This network employs a total of 18 convolutional layers, with the first one using 64 

filters each of kernel size 7×7 and the last one (the reconstruction layer) employing a single filter 

with kernel size 3×3. The main body of this network consists of 8 residual blocks each 

containing two convolutional layers. The kernel size of each of the filters used in the residual 

blocks is also 3×3. The number of filters employed in each of the convolutional layers of the first 

two residual blocks is 64 and these numbers are doubled in the convolutional layers of the 

succeeding pairs of the residual blocks. The network of this scheme is able to handle the gradient 

vanishing problem in view of its residual architecture. Thus, by using a larger number of filters 

for each layer, this network is able to provide a performance much superior to that provided by 

DeepPore. However, this improvement in performance is achieved at the expense of very large 

complexity in terms of the number of parameters and multiply-add operations.  

 

B. Pore Centroid Detection and Refinement 

As mentioned earlier, in the second part of a pore detection scheme, the coordinates of 

the centers of the true pores are determined from the pore intensity map obtained in the first part. 

It is in this part of the pore detection scheme where our knowledge of some important 

characteristics of pores and pore fingerprint images can be utilized more efficiently without 

using a CNN network in order to obtain accurate values for the centroids of true fingerprint 

pores. In the pore detection schemes of [38], [47], [48], [49], [60], the pore intensity map is first 

binarized using a global threshold value, which converts the pore intensity map into a map of 

white and black regions. Then, the center of each white region in the binary map is computed 

and it is considered to be the coordinates of the center of a fingerprint pore. In the pore detection 

schemes of [61] and [62], the pore intensity map is first partitioned into windows. Then, a pixel 

with a maximum intensity inside a window is considered to be the center of a fingerprint pore if 

its intensity is found to be larger than a threshold value. In the second part of the schemes of [38] 

and [49], the pore detection process is further refined by identifying and removing the false 

pores. A major disadvantage of the second part of all the existing pore detection schemes, 

traditional or non-traditional, is that all the available knowledge regarding the fingerprint pores 
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are not taken into consideration and even the knowledge that is taken into consideration is not 

used optimally.  

1.6.2 Pore Feature Extraction and Matching Module 

As mentioned earlier, the second module has three segments: feature extraction and 

representation, pore matching and pore matching refinement. The focus of this module is how to 

design and implement a pore feature extraction and matching module that leads to a low-

complexity, high-accuracy fingerprint recognition system. It is with this overall objective and 

with reference to Fig. 1.12, that we now briefly review the existing literature on the various 

components of Module 2.   

A. Feature Extraction and Representation 

The existing methods in the literature for the pore feature extraction and representation 

segment (Segment 1) of Module 2 can be classified into two categories depending on whether 

the pore features extracted by this segment are handcrafted or automatic. In the first category, 

methods, such as correlation-based method [50], TD-spare method (TDSWR) [51], local 

descriptors and spatial relations based method [52], RootSIFT feature and edge descriptor 

method [53] and spatial pairwise co-occurrence descriptor method [54], have been proposed for 

pore feature extraction and representation. However, these handcrafted pore feature extraction 

methods, in view of skin distortion or imperfect acquisition of the fingerprint images, do not 

provide satisfactory pore representations in the sense that the same pore from two different 

images of the same finger captured at different times may not have the same representation or the 

pores from the images of two different individuals may have the same representation.  

The methods in which pore representation is based on automatic feature extraction of the 

fingerprint using CNN constitute the second category of the pore feature extraction and 

representation methods. Recently, in [63], the authors have designed a CNN architecture, 

referred to as PoreNet, using residual blocks to automatically extract pore features and represent 

them suitably for fingerprint recognition. Their model using 4 residual blocks generates a 1681-

dimensional feature representation of the fingerprint pores. However, the performance of the 

network is not high compared to some of the handcrafted feature methods, since the use of only 4 

residual blocks does not result in producing deep-level features. Increasing the number of 

residual blocks to produce deep-level features, however, is not a practical solution for this 
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network. This is in view of the fact that this network is constrained to produce the feature maps 

in different residual blocks to have the same fixed spatial size, and therefore, increasing the 

number of residual blocks would result in increasing the number of floating-point operations 

(FLOPs) exponentially.  

The authors in [64] have designed a CNN architecture, known as DeepPoreID, to 

generate 128-dimensional feature representations using 8 residual blocks. This CNN architecture, 

in view of its deep-level feature extraction capability, has been shown to provide a fingerprint 

recognition performance that is much superior to those provided by the handcrafted feature-

based techniques. At the same time, the complexity, in terms of the number of operations, of this 

network is only about one-fourth of that of the architecture of [63]. This reduction in complexity 

is achieved by introducing a max-pooling layer after each residual block, which reduces the 

spatial size of the channels input to the succeeding residual block. Although the DeepPoreID 

network has a substantially reduced number of operations compared to that required by the 

PoreNet network, it still does not outperform the latter for the test images of all the fingerprint 

datasets consistently. 

For mobile applications, such as online banking, a low-power biometric system is a 

requirement. Also, for forensic applications, a real-time biometric is an essential requirement. In 

view of these requirements of biometric systems, it is essential to design an automatic feature 

extraction network that is capable of extracting highly representable pore features and consuming 

a substantially lower number of arithmetic operations in comparison to that required by the 

existing feature extraction networks.  

B. Pore Matching  

In the pore matching segment (Segment 2), the pores of a pair query and template 

fingerprint images are matched based on the similarities of the pore feature representations 

obtained from Segment 1. The existing pore matching algorithms can be divided into two 

categories: alignment-based pore (AP) matching algorithms, such as correlation-based algorithm 

[68] and iterative closest point (ICP) algorithm [38], and direct pore (DP) matching algorithms, 

such as TD-Sparse algorithm [51], RootSIFT algorithm [53],  LTPM algorithm [54] and the 

algorithms of [63], [64].  
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In an alignment-based pore matching algorithm, given a pair of query and template 

fingerprint images, first, two parameters, namely, the translation and the rotation parameters, are 

estimated, which when applied to the query image translates and rotates it with respect to a 

reference point, such as a singular point or a minutia point, so as to provide a maximum overlap 

between the two fingerprint images. Then, each pair of the pores from the two fingerprint images 

in the overlapped region or the segments of the overlapped region in a neighborhood of the 

landmarks are matched using a geometric distance, such as Euclidean distance, between their 

feature representations. However, the matching of the fingerprint images in AP matching 

algorithms is dependent on the accuracy of the detection of the landmarks and the alignment of 

the fingerprint images, which is affected in view of the presence of noise and distortions in the 

query and template fingerprint images. Moreover, the alignment segment of the schemes in this 

category has an overhead of consuming more time. On the other hand, in the pore matching 

schemes belonging to the DP matching category, all the pore pairs from the two fingerprint 

images are matched without the alignment of the two images, resulting in an improved accuracy 

of pore matching. It is to be noted that the increase in time resulting from the comparison of the 

pores in a larger number of pairs is only a small proportion of the time taken by the process of 

aligning the fingerprint images in the schemes of the first category.  

In order to determine the similarity between the pores of a pair from the query and 

template fingerprint images, a metric for the similarity between the pore feature representations 

of the two pores is used. For instance, in all the pore matching algorithms as mentioned above in 

the two categories, a metric of geometric distance has been used. However, the geometric 

distances between the pore feature representation of a given pore in the query image and the pore 

feature representations of more than one pore in the template image may be the same or very 

similar. Hence, the use of a single metric (for example, a metric of distance) to determine the 

similarity between the feature representations in the query and template fingerprint images is not 

adequate. Consequently, the use of more than one metric on the pore feature representations 

should improve the matching accuracy between a pair of pores. 

C. Pore Matching Refinement 

The features of a pore in the query fingerprint image may be very similar to that of one or 

more pores in the template fingerprint image. As a result, a pair of pores resulting from Segment 
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2 of the pore feature extraction and matching module may lead to a situation in which a pore in 

the query image is paired with one or more non-corresponding pores in the template image. This 

is in view of the fact that different pore patches from a different region of two images of different 

fingers can look very similar, as the example (red circled) shown in Fig. 1.13. Hence, most of the 

pore feature extraction and matching modules have a pore matching refinement segment 

(Segment 3) whose purpose is to eliminate as many as possible all such pairs from the pore 

correspondence set obtained in Segment 2. 

 

Figure 1.13: An example of imposter fingerprint pairs with similar pore patches. 

The existing pore matching refinement schemes can be categorized into two classes based 

on the way these schemes attempt to eliminate the pairs of inaccurately matched pores. The 

schemes [50], [51], [64] of the first category are position-based. In this category, the position 

(coordinates) of a very small subset of pairs from the matched pores from the pore 

correspondence list is randomly selected and used to build a linear model. This linear model is 

then applied to all the other pairs, one by one, from the pore correspondence list. Then, all the 

test pairs (i.e., the remaining pairs from the corresponding list) that fit this model and also satisfy 

certain threshold conditions are considered to be inliers with respect to this model. The process 

of randomly choosing a small subset of pairs, building a linear model and testing it to determine 

the corresponding inliers is repeated a prespecified number of times. Finally, the model that 

provides the maximum number of inliers is chosen to refine the pore correspondence list. The 

disadvantage of the refinement schemes in this category is that the linear models built do not 

provide the refined list of correspondence in which all the pairs are necessarily true matches. As 

a matter of fact, it has been shown that the refinement schemes in this category do not perform 

well, from the accuracy point of view, if the number of outliers in the pore corresponding list 
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resulting from the pore feature extraction and matching module of Segment 2 exceeds 50%. 

Moreover, building and testing a large number of models in these schemes is time-consuming. 

The second category of pore matching refinement schemes can be referred to as graph-

based in which two graphs, one corresponding to the pores in the query image and the other 

corresponding to the pores in the template image, are formed and used to eliminate the pairs of 

the pores that are falsely matched in the correspondence list obtained from Segment 2. In the 

schemes of [52], and [53]  of this category, one graph is formed using the positions of the pores 

in the query image as nodes of the graph, and in this graph, an edge between a pair of nodes is 

introduced only if the Euclidean distance between the nodes falls within a prespecified range. 

The other graph is formed corresponding to the pores in the template image. In this second 

graph, as in the query image graph, the positions of the pores form the nodes of the graph and an 

edge between a pair of its nodes is introduced if and only if an edge exists between the 

corresponding pair of nodes in the graph of the query image. In the schemes of this category of 

pore matching refinement, a metric to measure the similarity between the two corresponding 

pairs of edges of the two graphs is defined and used to refine the correspondence list.  

In comparison with the schemes in the position-based category, these two graph-based 

pore matching refinement schemes are both more accurate and less time-consuming. However, 

the applicability of these schemes is limited to those pore-based fingerprint recognition systems 

in which its pore matching segment (Segment 2) leads to a one-to-one pore correspondence list. 

In order to improve the speed and accuracy of the graph-based techniques of [12] and [13], 

another graph-based scheme has been proposed in [54] to refine the pore correspondence list. In 

this scheme, for a given pair of pores (𝑃𝑄𝑖, 𝑃𝑇𝑖) from the pore correspondence list, local graphs 

are formed individually for the pores in the query and template images. The local graph for the 

query image consists of a node for the pore 𝑃𝑄𝑖 and those that are in the K-nearest neighborhood 

of 𝑃𝑄𝑖, but excluding those pores from this neighborhood that also have the same matched pore 

in the template image as that of 𝑃𝑄𝑖, i.e., 𝑃𝑇𝑖. The local graph corresponding to 𝑃𝑄𝑖 for the query 

image is formed by placing an edge between 𝑃𝑄𝑖 and other nodes in the neighborhood pores. The 

local graph for the pore 𝑃𝑇𝑖 in the template image is formed by selecting all pores corresponding 

to the ones used in the local graph of 𝑃𝑄𝑖 and placing edges between the pairs in the same way as 

done for performing the local graph for the query image. Therefore, in this scheme, we have as 
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many pairs of local graphs as the number of matched pairs of pores. In the calculation of the 

similarity measure between the pair of pores 𝑃𝑄𝑖 and 𝑃𝑇𝑖, the angles of the edges and Euclidean 

distances between the pore i and each of its neighborhood pores are used and the same goes for 

the pore j. In this scheme, the structure of the local graphs allows the use of spatial neighborhood 

information in the calculation of the similarity measure in a rotationally invariant manner. This 

graph-based scheme for pore matching refinement is capable of removing the mismatches more 

accurately and efficiently in comparison to the other two graph-based schemes. 

1.7 Problem Statement and Motivation 

Fingerprint recognition technology has various advantages such as offering high security, 

less cost and a non-invasive manner of acquisition and therefore is one of the most frequently 

used mechanisms. Owing to the high individualism and permanent nature portrayed by 

fingerprint, this biometric is chosen in the present research work. Advanced information 

technology and demand for high security have forced academicians and researchers alike to 

search for different recognition methods that are accurate, economical, fast, and safe. Fingerprint 

recognition is emerging as one of the important areas in biometrics authentication. Matching 

fingerprints continues to be an important challenge today, despite the advances made in 

fingerprint recognition techniques. The development of partial fingerprints is further challenged 

by the uncontrollable impression environments, resulting in the introduction of unspecified 

distortions like skin cuts or acquisition device quality.  

The main challenge in designing an effective fingerprint recognition system is the task of 

satisfying three extremities (i) the simplicity and ease to use. (ii) the scalability of working with 

small and high-size images. (iii) the acceptability in producing maximum accuracy. This 

combination is very challenging to achieve in fingerprint recognition systems. The most 

frequently used feature in fingerprint recognition algorithms is the minutiae features. A matching 

algorithm returns the number of matched minutiae on both query and template fingerprints, 

which will then be used to generate similarity scores. The similarity score increases when the 

number of minutiae features matched is high. That is, when the number of minutiae on both 

fingerprints is large, the ability of the system to confidently distinguish the genuine and imposter 

fingerprint is also high. According to forensic guidelines, when two fingerprints have a minimum 

of 12 matched minutiae they are considered to have come from the same finger [4], [69].   
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However, while considering partial fingerprints, the number of minutiae detected, and the 

size of the fingerprint are directly proportional. That is, when the fingerprint size is small, the 

feature detector can detect only a smaller number of minutiae. This would lower the similarity of 

the minutia matching score and consequently reduce the recognition accuracy. For example, 

consider the partial fingerprint in Fig. 1.14. There are only 5 points of detected minutiae and the 

ridge densities of the partial and full prints are equivalent in the area of overlay, which is not 

enough for reliable authentication. 

 

Figure 1.14: Partial and Full Fingerprint. 

This clearly shows that the relation between the acquired fingerprint size and the security 

strength plays a key role in designing a fingerprint recognition system and hence needs to be 

studied carefully. In particular, the demand for high security has increased the search for other 

efficient features that can be used to increase accuracy while decreasing the complexity of partial 

fingerprint recognition systems. 

Exploring more features in addition to or apart from minutiae on fingerprints is a recent 

trend and the benefits of using pores in fingerprint recognition have also been studied and 

validated [38], [44], [47], [47], [50], [51], [52], [53], [54], [60], [61], [62], [64], [68], [70], [71], 

[72], [73], [74]. The main modules in pore-based fingerprint recognition are pore detection and 

pore feature extraction and matching. As the most critical step in both stages is the feature 

extraction step, most research was focused on using traditional or handcrafted features. However, 

the performance of such schemes is very much limited by the modeling capability of the pore 

features. Recently, machine learning algorithms are considered the most appropriate for 

classifying an image.  A neural network is a well-known model designed to work on human 
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neurons and is more refined, accurate and reliable in accomplishing problems of classification. 

Neural networks attempt to imitate the way the human brain works, which makes them the right 

candidate for use with fingerprint recognition. However, the improvement in the performance of 

recent research for fingerprint pore-based recognition using machine learning is achieved at the 

expense of very large complexity and time consumption.  

Personal identification or recognition is required in applications such as online banking 

using mobile devices. Thus, a low-power architecture is necessarily a requirement for the 

deployment of a fingerprint recognition scheme. In biometric recognition applications, such as 

forensic applications, the algorithm must be run in real-time. These requirements of the 

biometric applications need the development of biometric identification schemes, including those 

based on the pores of fingerprint images, with very low complexity and real-time consumption. 

It is in a hybrid (non-traditional) pore detection module where one can more efficiently 

exploit the strength of CNNs in extracting automatic pore features and also use the knowledge 

base on the characteristics of the pores and fingerprint images. CNN-based networks for pore 

feature extraction and matching module struggle to produce deep-level features effectively due to 

limitations in residual block utilization and complexity considerations. Moreover, existing pore 

matching methods primarily rely on Euclidean distance metrics, highlighting the need for 

alternative criteria exploration. Enhancing these methodologies could substantially improve the 

accuracy and reliability of pore-based fingerprint recognition system.  

1.8 Objectives 

Based on the motivation provided in Section 1.7, this research aims at developing a low-

complexity, high-accuracy pore-based fingerprint recognition system leveraging convolutional 

neural network. The following objectives are formulated to facilitate the development of two 

modules, namely, pore detection, and pore feature extraction and matching. 

• In the pore detection module, it is in a hybrid (neural network) pore detection module where 

one can more efficiently exploit the strength of convolutional neural networks (CNNs) in 

extracting automatic pore features and also use the knowledge base on the characteristics of 

the pores and fingerprint images. The objective of this stage is to develop a two-part pore 

detection module in which for the first part a low complexity deep neural network is 

designed to produce pore intensity maps by focusing on the connectivity of its various 
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hierarchical parts that result in the extraction of meaningful features leading to a highly 

representational pore intensity map, and for the second part, a method is developed for the 

pore detection by making efficient use of the knowledge base on fingerprint pores. Since 

different kinds of features are very important in detecting the pores, the strategy in designing 

the network is to generate hierarchically low, middle and high-level features and to 

concatenate them to produce a very rich set of pore features. The features at each of the three 

levels are learnt locally in a residual framework, which helps in curtailing the gradient 

vanishing problem [75], [76], [77]. By placing emphasis on the architecture design of the 

network for generating an enriched set of features, it is possible to keep the number of filters 

and layers low, which results in a low-complexity network.     

• The second part of the pore detection module aims at eliminating the false pores and 

determining the coordinates of all the true pores accurately from the pore intensity map 

obtained in the first part in conjunction with the fingerprint image itself. In this part of the 

pore detection module, the knowledge on fingerprint images, such as the pores intensity, their 

variation from one region to another region of the fingerprint image and the minimum 

distance between two neighboring pores, is used to accurately detect the pores of a 

fingerprint image.  

• The accuracy of a neural network-based pore detection module is highly dependent on its 

ability to extract a very rich set of pore features and augmenting this ability with the known 

attributes of fingerprint pores in determining their true locations in the image. In this regard, 

the main contributions of our proposed pore detection module are as follows. (i) A new CNN 

architecture is developed that combines the features extracted at hierarchically low, middle 

and high levels. (ii) By recognizing the first part of the proposed pore detection module to be 

essentially a pixel classification problem, the design of the CNN architecture is carried out 

using depth-wise convolution that leads simultaneously to a superior binary pore 

classification [28] as well as to an ultralightweight network. (iii) Since the intensity of a pore 

pixel relative to that of a non-pore pixel varies from region to region of a fingerprint image, a 

locally adaptive threshold is used to binarize the pore intensity map. (iv) The center of a pore 

is obtained as the mean of the intensity-weighted coordinates of the pixels belonging to the 

pore region in order to obtain more accurate coordinates for the pore centroids. (v) In order to 

distinguish between a true pore and a false pore (a) a locally adaptive intensity threshold that 



 

34 
 

is determined based on the local mean and the variance of the intensities of the pixels 

belonging to the local pore regions is used, and (b) a minimum distance criterion is used, 

since the fact that a pair of true pores in a fingerprint image satisfy the requirement of certain 

minimum distance between them. 

• In pore feature extraction and matching module, the objective is focusing on the design of the 

first two segments of the module, i.e., pore feature extraction and representation, and pore 

matching, to provide good performance with low complexity for the task of fingerprint 

recognition. In the first segment, a low-complexity residual block is first developed, and 

then, used in designing a deep convolutional neural network so as to produce highly 

representable pore features for the point of view of matching the pores of the query 

fingerprint image and a pore in the template fingerprint image. In the design of the residual 

block, separable convolutions, instead of standard convolutions, in conjunction with Max-

pooling are used, which results in reducing the number of parameters but more significantly 

the number of arithmetic operations.  

• The main ideas in designing the proposed network for pore feature extraction and 

representation are as follows: (i) Since the proposed residual block is of low complexity, the 

network can be made deeper by using a larger number of our residual blocks, and yet, the 

network complexity is kept low. (ii) The final set of pore features are generated by 

concatenating the features extracted at various hierarchical levels, and hence, they are highly 

representable. (iii) The network’s training is enhanced by using the idea of deep supervision.  

• In the second segment of the pore feature extraction and matching module (the pore matching 

segment), a new metric is proposed to measure the similarity between a pore in the query 

image and the pores in a template image. The proposed metric is formed by utilizing 

information such as the angles and magnitudes difference of a pair of vectors representing the 

features of a query pore and a template pore, in addition to their Euclidean distance. The 

matching of the pores of the query and template fingerprint images is carried out by 

minimizing this proposed metric to generate a pore correspondence list.  

• In the third segment of the proposed pore feature extraction and matching module, the graph-

based pore matching refinement scheme [54] is used to carry out the refinement of the pore 

matching of the pairs of pores correspondence list, that is, to remove those matches that are 

falsely matched. 
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1.9 Organization of the Thesis 

The underlying objective of this research work is to develop an efficient CNN-based pore 

fingerprint recognition system that can meet the security demands of the authentication field. The 

thesis is organized as follows: 

This chapter (Introduction) provided a concise overview of biometric authentication, 

focusing particularly on fingerprint recognition. It introduces various levels of fingerprint 

features and underscores the significance of pores for fingerprint recognition systems. 

Furthermore, the chapter addresses the existing research of pore-based fingerprint recognition 

that is significant to this research. A critical look at the available works of literature related to the 

present research work in both pore detection and pore feature extraction and matching is 

presented in this chapter. Lastly, the motivation and the objective of the research were also 

debated in this chapter. 

Chapter 2 provides an overview of essential background materials pertinent to fingerprint 

recognition. It covers neural networks, performance metrics, such as accuracy and efficiency, 

Euclidean distance, and various pore matching refinement algorithms. These topics are used in 

developing fingerprint recognition systems. 

Chapter 3 proposes a two-part scheme for the pore detection module and provides the 

motivation and rationale behind ideas used in the two parts. This chapter also presents the 

experimental results of the proposed and other pore detection schemes when applying it to a 

bench-mark high-resolution fingerprint database. In this chapter, the contribution and the impact 

of each part of the proposed scheme on the overall performance are investigated and the results 

are compared with those of the existing pore detection modules. 

Chapter 4 introduces a novel pore feature extraction and matching module, which first 

describes the architecture of the proposed deep convolutional neural network using residual 

blocks for an automatic extraction of the features relevant to pore matching. Then, the details of 

designing a novel residual block to be used in the proposed network are described. This chapter 

also describes the rational and details of a new pore matching metric and use it for matching the 

pores by using the pore features representation extracted in the previous segment of the proposed 

module. In this chapter, a number of experiments involving the proposed module for fingerprint 

recognition are performed. Different ablation studies are carried out to show the effectiveness of 

the proposed network and that of the proposed metric for pore matching. The performance and 



 

36 
 

complexity of the proposed pore feature extraction and matching module are also compared with 

those of other existing state-of-the-art schemes. 

Chapter 5 concludes the thesis by summarizing the salient features of the proposed CNN-

based pore fingerprint recognition scheme. It also explains the possible work to be carried out in 

the future. 
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Chapter 2 

Background Material 
 

2.1 Introduction 

This chapter introduces the concepts of some of the algorithms and methods used in developing 

fingerprint recognition systems. The chapter starts with the convolutional neural network models 

inspired by the human brain in Section 2.2; it covers key components like convolution layers, 

activation functions, and prominent networks such as ResNet and DenseNet. Section 2.3 

discusses the evaluation of the system effectiveness, focusing on metrics crucial for gauging 

system reliability in diverse applications. Section 2.4 describes the significance of Euclidean 

distance in feature comparison within biometric systems, particularly in fingerprint recognition. 

Lastly, in Section 2.5, the pore matching refinements schemes, RANSAC, WRANSAC, and 

LTPM, is discussed and their role in enhancing accuracy and robustness across various 

fingerprint recognition systems are explained. 

2.2 Basic Concepts of Convolutional Neural Network 

The human brain stands as the pinnacle of complexity in the realm of computing devices. 

Its remarkable abilities in thinking, remembering, learning, and problem-solving have inspired 

studies and modeling efforts in digital computing. Yet, the brain's intricacies remain largely 

uncharted territory, with scientists merely scratching the surface to understand its workings. 

Despite the limited knowledge about the brain and neural systems, fundamental attempts to 

emulate its functionality have given rise to the creation of neural networks. 

Artificial neural networks (ANNs) employ similar principles to mimic and harness some 

of the potency exhibited by the brain and its neural network. Most of the ANNs [64], [65] (e.g., 

feedforward neural networks) consist of layers of neurons that process data in the form of one-

dimensional signals. Examples of one-dimensional signals include feature vectors, time series, 

measurements, and spatial coordinates. Supervised learning procedures allow neural networks to 

learn from examples and adapt their inner structure to acquire the capability of generalization, 

with which the neural network is able to approximate the function also in the case of an unknown 
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input signal [78], [79]. In the majority of ANNs, a feature extraction step computes the one-

dimensional input signals [80] from data with higher dimensionality (e.g., an image). The feature 

extraction step requires a priori knowledge of the problem to efficiently reduce the 

dimensionality of the input data while maintaining the most significant information. 

Convolution Neural Network (CNN)  [57], [79], [81] is a type of Artificial Neural 

Network with several layers. It is an efficient method developed in recent years and has attracted 

wide attention in the field of Artificial Intelligence. Taking LeNet-5 [81] as an example, as 

shown in Fig.  2.1, it is a hierarchical neural network with convolutional layers alternated with 

pooling layers, followed by some fully connected layers. 

 

Figure 2.1: Architecture of the LeNet-5 network. 

CNNs are a particular form of artificial neural networks whose layers have a structure 

that permits to process data in the form of multi-dimensional arrays, such as images [79]. In 

particular, the foremost layers of a CNN are multi-dimensional filter banks that process the input 

image by convoluting it with the corresponding filter. The convolutional layers can use several 

types of filters to extract the most significant visual features. The convolutional layer is a feature 

extraction layer. It utilizes various kernels to convolve the whole image or the former feature 

map to get new features. The convolutional layer function is donated as 𝑓(. ) and the feature map 

can be computed as follows. 

                                                 𝑥𝑗
𝑙 = 𝑓 (∑ 𝑥𝑖

𝑙−1 ∗ 𝑊𝑖𝑗
𝑙 + 𝑏𝑗

𝑙
𝑖∈𝑅𝑗

)                                            (2.1) 

Here 𝑥𝑗
𝑙 is the output at i-th feature map of the l-th layer, (*) is the 2D discrete convolution 

operator, 𝑊𝑖𝑗
𝑙  is a trainable filter (kernel) and 𝑏𝑗

𝑙 is a trainable bias parameter. Usually, the 

convolutional layers are followed by an activation function, which plays a crucial role in 

artificial neural networks by introducing non-linearity into the network's computations. This 
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layer allows it to learn complex patterns and relationships in the data. Without non-linear 

activation functions, the neural network would reduce to a linear model, severely limiting its 

capabilities. The choice of activation function depends on the specific task, network architecture, 

and considerations such as vanishing gradients, computational efficiency, and model 

interpretability. The activation function impacts the network's learning dynamics and 

performance, making it a crucial aspect of neural network design and optimization [82]. 

Generally, a pooling layer follows a convolutional layer to reduce the feature dimension 

by down sampling the features extracted by convolutional layers. The pooling operation not only 

reduces the complexity of the convolutional layers but also restrains the phenomenon of over-

fitting. Meanwhile, it enhances the tolerance of features to minor distortions, rotations and 

increases the performance and robustness of deep CNN. Denoting the pooling function as 

𝑑𝑜𝑤𝑛(. ), the feature map after pooling can be calculated as follows. 

 

                                           𝑥𝑗
𝑙 = 𝑓(𝑑𝑜𝑤𝑛(𝑥𝑖

𝑙−1) ∗ 𝑤𝑗
𝑙 + 𝑏𝑗

𝑙)                                                 (2.2)                                     

 

The subsequent layers convert and aggregate these features into a more abstract 

representation [57]. Among the advantages of CNNs with respect to neural networks able to 

process only one-dimensional input signals, there is the fact that CNNs require less prior 

knowledge of the problem. In fact, CNNs do not require a preliminary feature extraction step 

because a generic convolutional layer can extract the salient visual features from images 

depicting a great range of objects and situations. For this reason, researchers use CNNs in 

different application scenarios, such as object classification [57] or natural language processing 

[81]. In biometrics, there are several recognition schemes based on CNNs for different traits, 

such as face [83], iris [84], [85], and fingerprint [86]. There are also liveness detection methods 

based on CNNs and designed for a wide set of biometric characteristics [87], [88], [89]. 

CNNs are driving major advances in many computer vision tasks, such as image 

classification [90], object detection [91], [92] and semantic image segmentation [58]. The last 

few years have witnessed outstanding improvements in CNN-based models. Very deep 

architectures [75], [90], [93] have shown impressive results on standard benchmarks such as 

ImageNet [94] or Microsoft common objects in context (MSCOCO) [95] databases. Among 

CNN architectures extended as fully convolutional networks (FCNs), residual networks 
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(ResNets) [75] make an interesting case. ResNets facilitate training deep networks by 

introducing residual blocks, which combine a non-linear transformation with an identity mapping 

via shortcut connections, enhancing convergence and performance. ResNets are designed to ease 

the training of very deep networks (of hundreds of layers) by introducing a residual block that 

sums two signals: a non-linear transformation of the input and its identity mapping. As shown in 

Fig. 2.2, the identity mapping is implemented by means of a shortcut connection, and their 

outputs are added to the outputs of the stacked layers which perform the formulation of 𝐹(𝑥) + 𝑥 

where 𝐹(𝑥) is the mapping after the second layer, 𝑥 is the input.  

 

Figure 2.2: ResNet residual  block. 

ResNets have been extended to work as FCNs [96], [97] yielding very good results in 

different segmentation benchmarks. ResNets incorporate additional paths to FCN (shortcut 

paths) and, thus, increase the number of connections within a segmentation network. These 

additional shortcut paths have been shown not only to improve the segmentation accuracy but 

also to help the network optimization process, resulting in a faster convergence of the training 

[97]. 

A CNN architecture, called DenseNet, was introduced in [98], [99]. DenseNets are built 

from dense blocks and pooling operations, where each dense block is an iterative concatenation 

of previous feature maps. This architecture can be seen as an extension of ResNets [75], which 

performs the iterative summation of previous feature maps as shown in Fig. 2.3. However, this 

small modification has some interesting implications: (1) parameter efficiency, DenseNets are 

more efficient in the parameter usage; (2) implicit deep supervision, DenseNets perform deep 

supervision thanks to short paths to all feature maps in the architecture (similar to Deeply 

Supervised Networks [99]); and (3) feature reuse, all layers can easily access their preceding 

layers making it easy to reuse the information from previously computed feature maps. The 

characteristics of DenseNets make them a very good fit for semantic segmentation as they 
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naturally induce skip connections and multi-scale supervision.  

CNNs have revolutionized fingerprint recognition by offering a data-driven approach that 

achieves superior accuracy, robustness, and scalability compared to traditional techniques. As 

research in deep learning continues to advance, CNN-based fingerprint recognition systems are 

expected to become even more accurate and reliable, further enhancing their applicability in 

various real-world applications such as law enforcement, access control, and biometric 

authentication. 

 

 

Figure 2.3: A dense block with 5 layers and growth rate 4. 

 

2.3 Performance Metrics 

A classification model serves as a mapping from instances to predicted classes [100]. 

Each instance is associated with a single element representing positive or negative class labels. 

Given a classifier and an instance, four potential outcomes exist. If a positive instance is 

correctly classified as positive, it's termed a true positive; if classified as negative, it's deemed a 

false negative. Similarly, if a negative instance is correctly classified as negative, it's a true 

negative; otherwise, if classified as positive, it's a false positive. By employing a classifier and a 

set of instances (the test set), a two-by-two confusion matrix (contingency table), as illustrated in 
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Table 2.1, can be constructed to depict the disposition of instances, forming the basis for various 

metrics. 

The true positive rate (TP rate) and false positive rate (FP rate) can be calculated using 

the following equations: 

𝑇𝑃 𝑅𝑎𝑡𝑒 =  
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
       (2.3) 

𝐹𝑃 𝑅𝑎𝑡𝑒 =  
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
       (2.4) 

 

 

Table 2.1: Confusion Matrix for calculating hit rate for a classification model. 
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These rates are represented on a receiver operating characteristics (ROC) graph, with FP 

rate on the x-axis and TP rate on the y-axis. Each classifier generates a (FP rate, TP rate) pair, 

corresponding to a point in ROC space. The ROC curve is a fundamental tool in statistics and 

machine learning, particularly for evaluating the performance of classification models. It 

provides insights into how well a model distinguishes between positive and negative instances 

across different decision thresholds. In Fig. 2.4, each point on the curve corresponds to a 

different threshold applied to the model’s predicted probabilities. As the curve approaches the 

perfect classifier point, the model’s performance improves and a steeper curve towards that point 

indicates better discrimination. Conversely, deviations away from the perfect classifier indicate 

worse performance. A random guess typically results in a point falling along a diagonal line, 

known as the line of no-discrimination, stretching from the bottom-left to the top-right corners, 

irrespective of the positive and negative base rates [101]. A simple illustration of random 
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guessing is akin to making decisions by flipping coins. As the sample size grows, the ROC point 

of a random classifier converges towards this diagonal line. In the scenario of a balanced coin, 

this convergence leads to the point (0.5, 0.5). ROC curve provides valuable insights for model 

selection and optimization, especially when dealing with imbalanced datasets or critical decision-

making scenarios. 

 

Figure 2.4: Basic ROC graph showing different schemes curves. 

In fingerprint classification, a fingerprint that belongs to a class but isn't identified by the 

classifiers is categorized as a false negative. Given that fingerprint classification precedes 

various fingerprint applications such as fingerprint recognition, false negatives pose significant 

challenges as they lead to incorrect results in subsequent stages. 

In addition to these metrics, there are other parameters for biometric framework 

verification: 

• False Accept Rate (FAR) or False Matching Rate (FMR): Measures the likelihood of the 

system incorrectly matching input queries to non-matching templates in the database, 

indicating the percentage of invalid inputs that are erroneously accepted. 

• False Reject Rate (FRR) or False Non-Matching (Negative Matching) Rate (FNMR): 

Measures the likelihood of the system failing to identify a match between the input query 

and a matching template in the database, quantifying the percentage of valid inputs that 

are incorrectly rejected. 
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• Equal Error Rate (EER) or Crossover Error Rate (CER): The rate at which FMR and 

FNMR are equal. EER can be easily obtained from the ROC curve, providing a quick 

means to compare the accuracy of devices with different ROC curves. Generally, the 

scheme with the lowest EER is considered the most accurate, derived from the point on 

the ROC curve where FMR and FNMR are equal. 

2.4 Euclidean Distance 

In mathematics and geometry, the Euclidean distance plays a fundamental role [102]. It 

measures the length of the straight-line segment connecting two points in Euclidean space. This 

space adheres to the axioms and postulates of Euclidean geometry, which we encounter in our 

everyday physical world. The Euclidean distance between two points P and Q in Euclidean 

space is precisely the length of the line segment that directly connects these points. It provides a 

straightforward way to quantify the spatial separation between them. To calculate the Euclidean 

distance, consider two points with Cartesian coordinates as showing in Fig 2.5: 

• Point P: (p₁, p2) 

• Point Q: (q1, q₂) 

 

Figure 2. 5: Two-dimensional Euclidean distance. 

The Euclidean distance formula is derived from the Pythagorean theorem. It is expressed as: 

𝐸𝐷 =  √((𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2)        (2.5) 

R 
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By constructing a triangle using the points P and Q. The hypotenuse of this triangle corresponds 

to the line segment connecting the two points. Consider the following steps: 

1. Join points P and Q using a straight line. 

2. Construct a right triangle with hypotenuse PQ. 

3. Draw horizontal and vertical lines from P and Q, intersecting at point R. 

Applying the Pythagorean theorem [103] to triangle PQR, we get: 

Hypotenuse2 = 𝐵𝑎𝑠𝑒2 + Perpendicular2     (2.6) 

Substituting the coordinates: 

𝑃𝑄2  =  𝑃𝑅2  +  𝑄𝑅2      (2.7) 

Therefore:  

 𝐸𝐷2  =  (𝑞1 − 𝑝1)
2 + (𝑞2 − 𝑝2)

2                 (2.8) 

Taking the square root of both sides, we arrive at the Euclidean distance formula as in equation 

(2.5) 

The Euclidean distance employs applications in various fields, such as data science, 

computer vision, geographic information systems and physics. Euclidean distance is a versatile 

metric that bridges geometry, mathematics, and practical applications. Its simplicity and 

effectiveness make it a basis in various scientific and engineering domains.  

 

2.5 Random Sample Consensus (RANSAC) and Weighted Random 

Sample Consensus (WRANSAC) 
 

The random sample consensus (RANSAC) algorithm is an iterative approach designed to 

estimate parameters of a mathematical model from a dataset containing outliers, ensuring that 

these outliers have minimal influence on the estimation process. Consequently, RANSAC can 

also be viewed as an outlier detection method [104]. This algorithm operates in a non-

deterministic manner, meaning it yields a satisfactory result only with a certain probability, 

which increases as more iterations are allowed. RANSAC was initially applied to solve the 
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location determination problem (LDP), aiming to identify points in space that project onto an 

image as a set of landmarks with known locations. 

RANSAC employs repeated random sub-sampling [105]. It assumes that the dataset 

comprises "inliers," representing data explainable by a set of model parameters albeit subject to 

noise, and "outliers," which deviate from the model. Outliers may arise from extreme noise 

values, erroneous measurements, or incorrect hypotheses regarding data interpretation. 

Additionally, RANSAC assumes the existence of a procedure capable of estimating model 

parameters optimally when provided with a small set of inliers. 

For instance, consider fitting a line in two dimensions to a dataset comprising both inliers 

and outliers, as shown in Fig. 2.6. While a standard least squares method may produce a line 

poorly fitted to the data due to its inclusion of outliers, RANSAC aims to exclude outliers and 

derive a linear model solely from the inliers. By fitting linear models to multiple random subsets 

of the data and selecting the model with the best fit to a subset, RANSAC mitigates the impact of 

outliers. The likelihood of algorithm success hinges on factors such as the proportion of inliers in 

the dataset and the selection of algorithm parameters. 

 
              (a)                                                     (b) 

Figure 2.6: Data fitting using RANSAC. (a) A data set with many outliers for which a line has to 

be fitted. (b) Fitted line with RANSAC, where outliers have no influence on the result. 

The RANSAC algorithm is a robust learning technique utilized to estimate model 

parameters through random sampling of observed data. Operating on datasets containing both 

inliers and outliers, RANSAC employs a voting scheme to identify the optimal fitting result. This 
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voting process relies on two fundamental assumptions: noisy features will not consistently 

support any single model (indicating few outliers), and there are sufficient features to converge 

on a reliable model (indicating few missing data). RANSAC comprises two iterative steps: 

i. Sample subset selection: A minimal subset of data items is randomly chosen from the 

input dataset and a fitting model with model parameters is computed using only the 

elements of this sample subset. Note that the size of the sample subset ensures 

determinability of the model parameters. 

ii. Consensus set determination: The algorithm evaluates all data elements against the model 

instantiated by the estimated parameters from the first step and the data elements 

deviating from the model within a specified error threshold (defining the maximum 

deviation of inliers) are deemed outliers. The set of inliers obtained for the fitting model 

is referred to as the consensus set and the algorithm iteratively repeats these steps until a 

consensus set with a sufficient number of inliers is obtained. 

The input to the RANSAC algorithm includes a set of observed data values, a model for 

fitting to the observations, and confidence parameters defining outliers. In detail, RANSAC 

achieves its objective by iteratively repeating the following steps: 

1. Select a random subset of the original data, designated as the hypothetical inliers. 

2. Fit a model to the set of hypothetical inliers. 

3. Test all data against the fitted model, designating data points fitting the model well as the 

consensus set (i.e., inliers for the model). 

4. Evaluate the quality of the estimated model based on the size of the consensus set. 

5. Improve the model by re-estimating it using all members of the consensus set, refining 

the model fitting based on the fitting quality measure. 

6. Repeat the procedure a fixed number of times until convergence to a sufficiently good 

model parameter set, with each iteration either rejecting a model due to insufficient 

consensus set size or refining a model with a larger consensus set.  

The determination of the threshold value 𝑡 for data point fitting to a model and the 

required number of inliers (data points fitted within 𝑡) to assert the model's good fit to the data is 

contingent upon the specific application requirements and dataset characteristics, often informed 
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by experimental evaluation. However, the number of iterations (𝑁) can be approximately derived 

as a function of the desired probability of success (𝜌), as outlined below. 

Let 𝜌 denote the desired probability that the RANSAC algorithm yields at least one 

useful result upon execution. In an ideal scenario, RANSAC returns a successful result if, in 

some iteration, it exclusively selects inliers from the input data set when choosing n points for 

estimating model parameters. Let 𝑣 represent the probability of selecting an inlier each time a 

single data point is chosen, roughly defined as: 

𝑣 = 
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑙𝑖𝑒𝑟𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎)

(𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎)
                                                (2.9) 

While 𝑣 may not be precisely known beforehand due to the unknown number of inliers in 

the data prior to RANSAC execution, a rough estimate can suffice. Assuming n points needed 

for model estimation are selected independently (a rough assumption due to the reduction in 

available data points with each selection), the probability that all n points are inliers is 𝑣𝑛, while 

the probability of at least one outlier among the n points is 1 − 𝑣𝑛 , indicating potential 

estimation of a flawed model. The probability to the power of 𝑁 iterations (the probability that 

the algorithm never selects a set of n points consisting entirely of inliers) is equivalent to 1 − 𝜌 

(the probability of unsuccessful model estimation). Thus, the relationship can be expressed as: 

1 −  𝜌 =  (1 −  𝑣𝑛)𝑁                                                       (2.10) 

taking the logarithm of both sides’ yields: 

𝑁 =
log(1−𝜌)

log(1−𝑣𝑛)
                                                                 (2.11) 

This derivation assumes independent selection of 𝑛 data points, implying that a point 

selected once can be replaced and selected again within the same iteration. While this may not 

always be realistic, the derived value for 𝑁 should be considered an upper limit in scenarios 

where points are selected without replacement.  

WRANSAC, an extension of the renowned RANSAC algorithm, introduces a novel 

paradigm by integrating weighted considerations into the sampling and model evaluation phases 

[106]. This enhancement empowers WRANSAC to dynamically adjust its focus, prioritizing data 

points with higher reliability or relevance, thus fostering a more adaptable and robust model 
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estimation process. In contrast to the conventional RANSAC, WRANSAC's weighted approach 

enables it to better accommodate scenarios where certain data points carry more significance, 

potentially leading to more accurate model fittings and reduced susceptibility to outliers. For 

instance, in computer vision applications, WRANSAC may assign higher weights to well-

tracked features, thereby emphasizing their contribution to the model estimation. 

WRANSAC unfolds through several key steps, starting with the assignment of weights to 

individual data points, often informed by prior knowledge, sensor confidence, or domain-specific 

considerations. Subsequently, the algorithm employs weighted sampling techniques, favoring 

data points with higher assigned weights during the random sampling process. During model 

evaluation, these weights play a pivotal role, influencing both the model's quality assessment and 

its subsequent refinement. By iteratively adjusting weights and refining the model, WRANSAC 

converges towards a robust solution, striking a harmonious balance between the influence of 

inliers and outliers, ultimately enhancing its resilience and adaptability in diverse data 

environments. 

2.6 Local Topology Preserving Matching (LTPM) Algorithm 

In the pore feature extraction and matching module, the final result of the pore matching 

segment is input to a refinement algorithm to remove any falsely matched pair of pores between 

the query and template fingerprint images. These refinement algorithms focus on detecting 

reliable correspondences, akin to a process of mismatch removal. Various algorithms, such as 

position-based and graph-based approaches, can be employed for this task. Position-based 

algorithms, such as RANSAC and WRANSCA, utilize geometric distances between points to 

differentiate correct matches from outliers, while graph-based algorithms leverage spatial 

relationships between points to enhance robustness against local deformation. In this study, we 

discuss the pairwise locality preserving matching (LTPM) algorithm [54] for refining pore 

correspondences, i.e., list of the matched pair of pores from the query and template fingerprints, 

known for its accurate and efficient mismatch detection capabilities. This approach is rooted in 

the locality preserving matching (LPM) algorithm [107]. 

The LPM algorithm revolves around the fundamental concept of leveraging neighbor 

relationships and topological similarities between points in template and query images to assess 
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correspondence similarity. This algorithm operates on a correspondence set denoted as 𝑆 =

 {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑁  , where 𝑥𝑖 and 𝑦𝑖 represent coordinates of points from query and template images, 

undergoes comparison problem expressed as 

𝑝∗ = 𝑎𝑟𝑔𝐼 min𝐶(𝑝; 𝑆, 𝜆)        (2.12) 

where 𝑝 ∈ {0,1}1×𝑁  serves as an indicator vector, 𝑝𝑖 = 1 denotes an inlier and 𝑝𝑖 = 0 indicates an 

outlier. The parameter λ modulates the weight attributed to the corresponding part in equation 

(2.16) Here, 𝐶 represents the cost function, 𝑁 stands for the total number of correspondences, 

and 𝐼 denotes the unknown inlier set. For each point 𝑥𝑖, the algorithm conducts independent 

searches for its K-nearest neighbors, denoted as 𝑁𝑥𝑖
, along with their respective correspondences 

𝑦𝑖 and  𝑁𝑦𝑖
. Subsequently, the cost 𝐶 is computed based on the distance metrics 𝑑(𝑥𝑖, 𝑥𝑗) and 

𝑑(𝑦𝑖, 𝑦𝑗), as delineated below. 

𝑑(𝑥𝑖 , 𝑥𝑗) =  {
1,   𝑥𝑗 ∈  𝑁𝑥𝑖

0,   𝑥𝑗 ∉  𝑁𝑥𝑖

         𝑑(𝑦𝑖, 𝑦𝑗) =  {
1,   𝑦𝑗 ∈  𝑁𝑦𝑖

0,   𝑦𝑗 ∉  𝑁𝑦𝑖

    (2.13) 

Utilizing the local topological structure, the algorithm enhances the calculation of 

similarity between correspondence pairs. For every pair (𝑥𝑖, 𝑦𝑖), an edge is created with 𝑣𝑖  =

 𝑦𝑖 –  𝑥𝑖 (see Fig. 2.7 (a)). Subsequently, the topological similarity between the two 

correspondences is computed using the following equation: 

𝑠(𝑣𝑖 , 𝑣𝑗) =
min{|𝑣𝑖|,|𝑣𝑗|}

max{|𝑣𝑖|,|𝑣𝑗|}

(𝑣𝑖,𝑣𝑗)

|𝑣𝑖||𝑣𝑗|
      (2.14) 

Moreover, the distance between these edges is: 

𝑑(𝑣𝑖 , 𝑣𝑗) =  {
1,   𝑠(𝑣𝑖 , 𝑣𝑗) ≤  𝜏

0,   𝑠(𝑣𝑖 , 𝑣𝑗) >  𝜏
     (2.15) 

Lastly, the cost function is defined as 

𝐶(𝑝) = ∑
𝑝𝑖

𝐾

𝑁
𝑖=1 (∑ 𝑑(𝑦𝑖 , 𝑦𝑗)𝑗|𝑥𝑗∈ 𝑁𝑥𝑖

+ ∑ 𝑑(𝑣𝑖 , 𝑣𝑗)𝑗|𝑥𝑗∈ 𝑁𝑥𝑖
,𝑦𝑗∈ 𝑁𝑦𝑖

) + 𝜆(𝑁 − ∑ 𝑝𝑖
𝑁
𝑖=1 )      (2.16) 

This problem can be easily solved using a closed-form solution, requiring minimal 

computational complexity. 
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While the LPM algorithm has demonstrated effectiveness in removing mismatches, it 

suffers from a notable drawback. This algorithm constructs a displacement vector 𝑣𝑖  =  𝑦𝑖 –  𝑥𝑖 

for each correspondence pair (𝑥𝑖, 𝑦𝑖), and subsequently calculates the topological structure 

similarities between pairs based on differences in vector length and rotation. However, due to the 

non-rotational invariance of the displacement vector, the difference in length, computed as 

min{|𝑣𝑖|, |𝑣𝑗|} /max{|𝑣𝑖|, |𝑣𝑗|}, may fail to adequately account for small changes in length when 

significant translation exists between the images. Conversely, when rotation occurs between the 

test and template images, the difference in length between vectors becomes highly sensitive. To 

address this limitation, a rotational invariant local topology structure is employed to assess the 

similarities between correspondence pairs [54]. 

To mitigate these issues, consider a point 𝑥𝑖 and its k-nearest neighbors {𝑥𝑡, 𝑡 =

1,2, … , 𝑘}, with corresponding pores denoted as 𝑦𝑖 and {𝑦𝑡, 𝑡 =  1, 2, . . . , 𝑘}. For each 

corresponding pore (𝑥𝑡, 𝑦𝑡), two directional edges are independently constructed from (𝑥𝑖, 𝑦𝑖). 

This ensures a one-to-one correspondence between edges, as illustrated in Fig. 2.7 (b). 

 
   (a)              (b) 

Figure 2.7: LPM and LTPM algorithms description. (a) Local structure constructed by LPM 

algorithm. (b) LTPM algorithm. 
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Consider an edge consisting of 𝑥𝑖  and its jth nearest neighbor 𝑥𝑗 denoted as 𝑒𝑖𝑗
𝑥 , with its 

corresponding edge 𝑒𝑖𝑗
𝑦

. A vector 𝜗𝑖𝑗 is then formulated for each edge pair to represent the 

rotation between them. 

𝜗𝑖𝑗 = [cos(𝜃𝑖𝑗
𝑥 − 𝜃𝑖𝑗

𝑦
) . sin(𝜃𝑖𝑗

𝑥 − 𝜃𝑖𝑗
𝑦
)]         (2.17) 

The similarity between corresponding pairs (𝑒𝑖𝑗
𝑥 , 𝑒𝑖𝑗

𝑦
 ) and (𝑒𝑖𝑙

𝑥  , 𝑒𝑖𝑙
𝑦
 ) is computed using the 

following equation: 

𝑆𝑗𝑙 = 𝜗𝑖𝑗𝜗𝑖𝑙
𝑇 =

min{𝑑𝑖𝑗,𝑥,𝑑𝑖𝑗,𝑦}

max{𝑑𝑖𝑗,𝑥,𝑑𝑖𝑗,𝑦}
∙

min{𝑑𝑖𝑙,𝑥,𝑑𝑖𝑙,𝑦}

max{𝑑𝑖𝑙,𝑥,𝑑𝑖𝑙,𝑦}
       (2.18) 

where 𝑑𝑖𝑗,𝑥 and 𝑑𝑖𝑗,𝑦 represent the lengths of 𝑒𝑖𝑗
𝑥  and 𝑒𝑖𝑗

𝑦
, respectively. For each corresponding 

edge pair (𝑒𝑖𝑗
𝑥 , 𝑒𝑖𝑗

𝑦
 ), a cumulative comparison score is computed as 

𝑉𝑗 = ∑ 𝑆𝑗𝑙
𝑘
𝑙=1          (2.19) 

The corresponding edge pair with the highest cumulative score is designated as a datum: 

𝑟 = 𝑎𝑟𝑔 max
𝑗

𝑉𝑗      (2.20) 

This datum edge pair serves as a reference for evaluating the similarities of other edge pairs 

using equation (2.18). The similarity between the 𝑙th correspondence is denoted as 𝑆𝑟𝑙, 𝑙 =

1,2, … , 𝑘. The similarity between each pair (𝑥𝑖, 𝑦𝑖) can then be calculated as: 

𝑠𝑖 =
1

𝑘
∑ 𝑆𝑟𝑙

𝑘
𝑙=1         (2.21) 

Finally, the cost function is defined as 

𝐶(𝑝) = ∑
𝑝𝑖

𝐾

𝑁
𝑖=1 (∑ 𝑑(𝑦𝑖 , 𝑦𝑗)𝑗|𝑥𝑗∈ 𝑁𝑥𝑖

+ ∑ (1 − 𝑆𝑟𝑙)𝑗|𝑥𝑗∈ 𝑁𝑥𝑖
,𝑦𝑗∈ 𝑁𝑦𝑖

) + 𝜆(𝑁 − ∑ 𝑝𝑖
𝑁
𝑖=1 )   (2.22) 

The solution to the above equation is defined similar to LPM algorithm as 

   𝑝𝑖 = {
1,   𝑐𝑖 ≤  𝜆 
0,   𝑐𝑖 >   𝜆

           (2.23) 
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2.7 Summary 

In this chapter, fundamental components necessary for the development of fingerprint 

recognition systems have been briefly discussed. Convolutional neural networks, their 

architectures and basic elements such as convolution layers and activation functions have been 

introduced. Metrics for evaluating the performance of fingerprint recognition systems, such as 

FAR, FRR, ROC curve, and EER have been defined. The significance of Euclidean distance in 

feature comparison, particularly in fingerprint recognition, has been discussed. The techniques, 

such as RANSAC, WRANSAC, and LTPM, for refining a matched set of features have been 

described. 
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Chapter 3 

Proposed Pore Detection Module 
 

3.1 Introduction 

In this chapter, a two-part scheme for pore detection is developed [108]. In the first part, 

a low-complexity deep neural network is designed to generate a highly representational pore 

intensity map by focusing on the connectivity of different hierarchical levels of the network 

feature extraction and learning these features locally in a residual framework and globally 

through a concatenative feature fusion. In the second part of the scheme, a method is developed 

for the detection of the pore centroids from the pore intensity maps obtained in the first part by 

making efficient use of the existing knowledge of the properties of fingerprint pores.  

3.2 Proposed Scheme 

Fig.  3.1 shows the block diagram of a neural network-based pore detection scheme 

(hybrid scheme) depicting its two-part. The first part is the pore feature extraction part using a 

convolutional neural network, and the second part is a postprocessing part that determines the 

centroids of the true pores. The input to the pore detection system is a grey-level fingerprint 

image 𝑿𝒊, and the output is a map 𝑿𝒕 showing the centroids of the detected pores. The first part 

of the pore detection scheme extracts the features at various levels using a neural network from 

the input fingerprint image 𝑿𝒊 and then uses them to construct a single grey-level pore intensity 

map 𝑿𝒐. The postprocessing part of the pore detection scheme is divided into two steps, Step 1 

and Step 2. Step 1 is a pore centroid detection step, which receives the pore intensity map 𝑿𝒐 as 

input and first transforms it into a binary pore map in which a value of 1 indicates that the pixel 

in question belongs to one of the pore regions, whereas a value of zero indicates that it does not. 

Using this binary pore map, the centroid of each candidate pore is determined. Thus, the output 

of step 1 of the second part of the scheme is the map 𝑿𝒄 giving the coordinates of the centroids 

of each candidate pores. Step 2 is a pore refinement scheme, in which some of the candidate 

pores falsely detected as pores are discarded to yield a pore map 𝑿𝒕 representing the coordinates 
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of the centroids of the detected true pores. We next develop the proposed neural network-based 

scheme in the framework of the block diagram of Fig.  3.1. 

 

 

Figure 3.1: General structure of a neural network-based pore detection scheme. The approach 

takes a fingerprint image as an input and detects the true pore coordinates. 

 

3.2.1 Part 1: Pore Feature Extraction 

In this section, a CNN model for pore feature extraction is proposed. The design of this 

model aims at developing a feature extraction process that is robust enough to extract a very rich 

set of pore features in a computationally efficient manner. This is achieved through hierarchical 

feature extraction locally using convolutional layers in a residual framework and through their 

concatenative fusion globally. 

Our objective of developing a very lightweight network with the capability of providing a 

rich set of pore features leading to a highly representational pore intensity map is based on the 

following principles. 

• The network is designed to have three stages, stages 1 to 3, that produce, respectively, low, 

middle and high levels of hierarchal pore features. 
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• A concatenative fusion of the three levels of features must produce a very rich set of pore 

features for the construction of a highly representational pore intensity map.   

• Recognition that the generation of a pore intensity map is essentially a classification problem, 

in which each pixel is classified to belong or not to belong to a pore region. A classification 

problem can be better served in a convolutional network by using depthwise convolution 

rather than the standard convolution.  

• A major consequential advantage of depthwise convolution is that its use leads to the 

development of a CNN architecture with a dramatically reduced complexity.  

The proposed network model consists of four stages, as shown in Fig. 3.2. The first three 

stages carry out the processes of feature extraction and their fusion using a local skip connection. 

The last stage performs a global feature fusion of the features extracted locally at three hierarchal 

levels by the first three stages. Each of the three feature extraction stages consists of two 

convolution layers, and a module to residually learn the features locally. The skip connections 

used in each of the three stages curtail the gradient vanishing problem of a deep network [75], 

[76], [77] leading to better training of the network parameters, and hence, generation and 

extraction of more accurate features. The features produced by stages 1, 2 and 3 can be 

considered to be, respectively, the low, middle and high level pore features in view of the 

hierarchical levels of the convolutional layers used in these stages.  

In order to achieve sufficient diversity among the extracted features of different channels 

and yet to keep the complexity low, we apply eight different 3×3 kernels on an input patch 𝑿𝒊𝒑 

of the input image 𝑿𝒊 to obtain eight distinct channels in the first layer of stage 1. Each of the 

eight resulting feature maps of the first layer of this stage is operated on by another 3×3 kernel. 

Thus, the second layer of this stage also employs eight different kernels to produce eight distinct 

maps. The additive residual fusion of the corresponding maps of the two layers then yield the 

output feature maps 𝑿𝟏 of the first stage.  

In order to provide further diversity in the extracted features while keeping the 

complexity of the network low, we doubled the number of filters, in each of the other two feature 

extraction stages from that in the previous stage. Specifically, in the first layer of stage 2, we 

apply two 3×3 kernels on each of the eight maps of 𝑿𝟏 resulting from stage 1 and one 3×3 kernel 

in the second layer to each of the extracted maps from the first layer of this stage. Thus, each of 

the two layers of stage 2 uses 16 3×3 different kernels. Similarly, in stage 3, two kernels are 
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applied to each of the 16 maps of 𝑿𝟐 and one 3×3 kernel to each of the extracted maps from its 

first layer. Hence, each of the two layers of stage 3 employs a total of 32 3×3 different kernels, a 

number that is twice that used by the layers in stage 2. In the first three stages, batch 

normalization (BN) [109] and non-linear activation function (ReLU) [110] are performed after 

each convolution operation in order to normalize the distribution of the features produced by the 

previous layer. 

The main function of the last stage, stage 4, is two-fold. First, it should suitably combine 

the feature maps produced by the first three stages so that the significance of the individual 

features is taken into account to produce a pore map. Second, the values of the individual 

features should provide a reasonable indication of its likelihood of belonging to a pore. The 

feature maps produced by the different feature extraction stages are comparatively more diverse 

than the feature maps produced locally by a single stage. Therefore, a weighted combination of 

the feature maps 𝑿𝟏 , 𝑿𝟐 and 𝑿𝟑 should be carried out. This purpose is effectively served by 

performing a point-wise convolution of the feature map 𝑿𝑪𝒊
= (𝑿𝟏  𝑿𝟐  𝑿𝟑 )

𝑻, since this type of 

convolution provides a mechanism of summation of the corresponding pixels in the maps of 𝑿𝑪𝒊
 

with weights that are learnable. Thus, in our proposed scheme, a point-wise convolution is 

performed on 𝑿𝑪𝒊
 using a single filter of kernel size 1×1×56 pixels in order to produce a single 

map 𝑿𝑪𝒐
. Now, as mentioned earlier, each pixel value of the network output patch 𝑿𝒐𝒑 must be 

indicative of its likelihood of belonging to a pore. Therefore, a pixel with a large positive value 

can be regarded to belong to a pore with high certainty, whereas a pixel with a negative value but 

a large magnitude can be regarded to belong to a pore with very low certainty. On the other hand, 

the pixel values of 𝑿𝑪𝒐
in the neighborhood of zero need some amplification for further 

consideration of their likelihood of belonging to a pore. Essentially, this last step of stage 4 in 

going from 𝑿𝑪𝒐
to 𝑿𝒐𝒑 is a classification problem in which the likelihood of a pixel belonging to 

a pore is determined. In our proposed scheme, we achieve this goal by applying a sigmoid 

activation function [32] on 𝑿𝑪𝒐
 to yield 𝑿𝒐𝒑. Thus, each pixel value of 𝑿𝒐𝒑 lies in the range 0 to 

1 indicating its likelihood of belonging to a pore. Once the pore intensity maps 𝑿𝒐𝒑’s for all the 

patches of 𝑿𝒊 are determined, the network finally recomposes them into a single pore intensity 

map 𝑿𝒐 corresponding to the input image 𝑿𝒊.  
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Figure 3.2: Proposed network architecture for pore detection. 
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3.2.1 Part 2: Postprocessing  

In this section, a method is presented for accurately determining the coordinates of all the 

true pores from the pore intensity map 𝑿𝒐 obtained from the proposed pore feature extraction 

network presented in the previous section, while attempting to discard the false pores. This 

postprocessing part of the proposed pore detection scheme consists of two steps as shown in the 

block diagram of Fig. 3.3. Step 1 consists of an image binarization module that transforms the 

pore intensity map 𝑿𝒐 into a binary map 𝑿𝒃 and a pore determination module that obtains a 

candidate pore centroid map 𝑿𝒄 from 𝑿𝒃. Step 2 consists of a pore refinement process that 

identifies the true pores and removes false pores from 𝑿𝒄 leading to a final pore map 𝑿𝒕 

containing the centroids of the true pores in the fingerprint image.  

 

Figure 3.3: Structure of the proposed postprocessing part. 
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Step 1: Centroid Detection  

A. Image Binarization  

Since the pore intensity map 𝑿𝒐 gives only a measure of the likelihood of its individual 

pixels to belong to a pore, it is necessary to differentiate more clearly whether or not a pixel of 

𝑿𝒐 belongs to a pore region by assigning it a distinct binary value. Therefore, in order to obtain a 

binary map 𝑿𝒃 from the pore intensity map 𝑿𝒐, we need a suitable threshold 𝑇 so that a pixel 

with a value equal to or greater than 𝑇 could be classified as a candidate belonging to a pore 

region by assigning them a value of 1. On the other hand, if a pixel in 𝑿𝒐 has a value less than 𝑇, 

it is assigned a value of 0 and, therefore, regarded not to belong to a pore region.  

First of all, it is to be noted that the intensity values in 𝑿𝒐 are directly related to the 

intensity distributions of the various pores within a fingerprint image 𝑿𝒊. Even though the 

majority of the pores in the input image 𝑿𝒊 have the same shape and intensity pattern, there are 

always some pores whose shapes and intensity values may differ, and hence, the intensity 

patterns of such pores may be different from those of a typical normal pore. The distribution of 

the pixel values in 𝑿𝒐 is necessarily affected by such a nonuniformity of the pore shapes and 

intensity values in 𝑿𝒊. Thus, if a fixed threshold 𝑇 is chosen for the entire map 𝑿𝒐 to convert it to 

a binary map 𝑿𝒃, it may result in classifying some of the pixels of 𝑿𝒐 to be falsely classified to 

belong or not to belong to a pore region. Hence, a method for determining the threshold must 

take into account the non-identically distributed nature of the pore distribution across the pore 

intensity map 𝑿𝒐. In the following, we describe a scheme for determining a locally adaptive 

threshold 𝑇𝑙 to binarize the pore intensity map 𝑿𝒐, that is, it is adaptive from one window to 

another window of 𝑿𝒐. When this threshold 𝑇𝑙 is used for the window 𝑙 of 𝑿𝒐, then 𝑿𝒐 is 

converted to a binary map  𝑿𝒃. 

Window-based locally adaptive binarization methods, which compute a threshold value 

for all the pixels within a given window, based on the information contained on the pixels value 

within the window, exist for applications other than pore detection. The Niblack algorithm [111] 

has been successfully used to determine a locally adaptive threshold 𝑇𝑙 to identify the region of 

an object in document images. In this algorithm, the mean 𝑚𝑙 and the standard deviation 𝜎𝑙 in 

the window 𝑙 are used to determine a local value for the threshold 𝑇𝑙 to be used for all the pixels 

within the window 𝑙, as 
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𝑇𝑙 = 𝑚𝑙 + 𝛽𝜎𝑙                                                       (3.1) 

with the parameters  𝑚𝑙 and 𝜎𝑙 computed as 

𝑚𝑙 = 
1

𝑁𝑙
∑ 𝑝𝑘

𝑁𝑙
𝑘=1                                                     (3.2) 

 𝜎𝑙 = √∑ (𝑝𝑘 − 𝑚𝑙)2𝑁𝑙
𝑘=1

𝑁𝑙
⁄                                                    (3.3) 

where pk is the gray value of the 𝑘𝑡ℎ pixel in the 𝑙𝑡ℎ window of 𝑿𝒐, 𝑁𝑙 is the number of pixels in 

the 𝑙𝑡ℎ window, and β, called the Niblack factor, is a parameter that controls the effect of the 

local standard deviation in determining the boundary of an object. In [112], the Niblack factor 

was also made locally adaptive by selecting its value using the expression given by 

𝛽𝑙 = −
0.3((𝑚𝑔×𝜎𝑔)−(𝑚𝑙×𝜎𝑙))

max(𝑚𝑔×𝜎𝑔 , 𝑚𝑙×𝜎𝑙)
                                                  (3.4) 

where 𝑚𝑔 𝑎𝑛𝑑 𝜎𝑔 are the global mean and standard deviation of the entire map. Thus, the 

Niblack factor 𝛽𝑙 is made to change from window to window but it remains fixed within a 

window. For the purpose of transforming the pore intensity map 𝑿𝒐 to a binary map 𝑿𝒃, we 

employ the adaptive threshold 𝑇𝑙 given by (3.1) with the adaptive Niblack factor 𝛽𝑙 of (3.4). For 

the sake of simplicity, we use windows of fixed size 𝑁 for the entire pore intensity map 𝑿𝒐, i.e., 

𝑁𝑙 = 𝑁.  

The intensity and the pore shapes in a typical fingerprint image vary more globally than 

locally. Therefore, choosing a large window size would fail to capture this global variation in the 

fingerprint image. On the other hand, choosing a small size window would result in classifying 

the regions of the fingerprint image with noise as pore regions. Also, a small window size would 

adversely impact the processing time. Hence, the window size should be chosen suitably. 

 

B. Determination of Centroids of Candidate pores 

A single pore belongs to a specific region in the fingerprint image. The pixels belonging 

to this region cannot be disconnected. Therefore, typically a region of the binary map 𝑿𝒃 that 

has, say, 𝑁𝑝 pixels with the values of 1 and are connected can be considered to be a single pore 

region. However, it should be pointed out that this definition of pore region is not absolutely 

accurate, since for instance, if 𝑁𝑝 is too small, the region may or may not considered to be a pore 
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region, in view of the fact that a connected region of 𝑿𝒃 with too few pixels could possibly be 

noise. On the other hand, if 𝑁𝑝 is too large, it may be a situation where the region in question 

may be a region corresponding to two or more pores merged together. As to how such regions of 

the binary map are dealt with will be discussed in the next subsection. For the time being, we 

will consider a set of pixels of 𝑿𝒃 that have a binary value of 1 and are connected to represent the 

region of a single pore. 

Detection of a pore means finding the coordinates of a pixel in the corresponding pore 

region that can be used to describe the physical location of the pore. In previous works, pore 

centroids have been used to describe the locations of the pores. The centroid of a pore has been 

computed using only the coordinates of the pixels that belong to the pore region. However, the 

human visual system while determining the location of a pore focuses not only on the geometric 

center of the pore but it is also influenced by the intensity variation of the pixels in the pore 

region. Hence, the pore centroid is not a very accurate representation of the pore location. 

Consequently, in our scheme, the pore location is represented by its weighted centroid. We 

compute the weighted centroid by using the physical geometry of the pore region defined as a set 

of pixels that have a value of 1 and are connected in the binary map 𝑿𝒃 as well as the pore 

intensity information of the underlying pixels from the fingerprint image itself. Accordingly, the 

weighted centroid (𝑋, 𝑌) of a candidate pore is computed as 

(𝑋, 𝑌) =  (
∑ (𝑋𝑣×𝑃𝑣)

𝑣=𝑁𝑝
𝑣=1

∑ 𝑃𝑣
𝑣=𝑁𝑝
𝑣=1

,
∑ (𝑌𝑣×𝑃𝑣)

𝑣=𝑁𝑝
𝑣=1

∑ 𝑃𝑣
𝑣=𝑁𝑝
𝑣=1

)                                         (3.5) 

where(𝑋𝑣, 𝑌𝑣) represents the coordinates of the 𝑣𝑡ℎ pixel in the pore region of the candidate pore 

from the binary map 𝑿𝒃, 𝑃𝑣 is the pixel gray value of the corresponding pixel in the input image 

𝑿𝒊, and 𝑁𝑝 is the number of pixels within the pore region of the candidate pore. This process of 

determining the weighted centroids of the candidate pores results in the map 𝑿𝒄 which consists 

of the locations of the detected candidate pores. 

 

Step 2: Pore Refinement Process 

In principle, one would expect that a fingerprint image has as many pores as the number 

of pore centroids in the map 𝑿𝒄. However, in practice each centroid in 𝑿𝒄 does not necessarily 

represent a true pore. In order to distinguish between true and false pores, we first make certain 
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observations on the true pores in ground truth fingerprint images that will help in distinguishing 

a true pore from a false one.  

The first observation is that a true pore has a distance from its nearest neighbor which 

varies from pore to pore. Fig. 3.4 shows an example of a ground truth fingerprint image. In this 

figure, the nearest neighbor of pore 1 is pore 2 and that for pore 3 is pore 4. It is seen from this 

example that the distance between 1 and 2 is different from that between 3 and 4.  Fig. 3.5 shows 

the histograms of the frequency (numbers) of pores whose Euclidian distance from its nearest 

neighbor falls in a given range in all the 30 ground truth images of the PolyU High-Resolution 

Fingerprint database [35]. For example, there are 1,287 pores in all the fingerprint images in this 

database that have Euclidian distances that lie in the range [11,12) from their nearest neighbors. 

It is seen from Fig. 3.5 that in none of the fingerprint images in this database there is a pore with 

a Euclidian distance less than 4.12 from its nearest neighbor.  We denote this minimum distance 

by 𝑑𝑚𝑖𝑛. Hence, in a weighted centroid map 𝑿𝒄,  if a pair of neighboring pores is detected with 

Euclidian distance less than 𝑑𝑚𝑖𝑛, both the pores in the pair cannot be simultaneously regarded to 

be true pores. Note that the conclusion of 𝑑𝑚𝑖𝑛= 4.12 is reached based on 12,767 pores contained 

in the images of the PolyU High-Resolution Fingerprint database. We believe that the same 

conclusion would be valid for the pores in the fingerprint images from any other dataset with the 

value of  𝑑𝑚𝑖𝑛 multiplied by a factor equal to the ratio between the resolution level of the images 

in the dataset considered in our study and that of the images in the other dataset. 

 

Figure 3.4: Two different pairs of true pores and their corresponding Euclidian distance value in 

the ground truth fingerprint image. 
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Figure 3.5: A histogram of the minimum distance between the two nearest pores in all fingerprint 

images of PolyU High-Resolution Fingerprint database. 

 

The second observation is that, in different windows of a fingerprint image, there could 

be significant differences in the average intensities of their pores as well as in the variation of the 

intensities of the pores from the average intensity of the pores within the window. Fig. 3.6 shows 

two windows each of size 40×40 of a fingerprint image. It is seen from the fingerprint window in 

Fig. 3.6 (a) that the mean intensity of its pores is 77.3 and the variation of the pore intensities 

from this mean, represented by the standard deviation, is large. On the other hand, it is seen from 

the fingerprint window of Fig. 3.6 (b) that the mean intensity of its pores is smaller, and the 

variation of the pore intensities is also larger. 

Both of the above observations could be used to distinguish true and false pores in a 

fingerprint image, and therefore, the weighted centroid map 𝑿𝒄 could be refined by eliminating 

from it some of the centroids that correspond to false pores. The first observation that gives rise 

to the parameter 𝑑𝑚𝑖𝑛 can be used to require the Euclidian distance between a pair of centroids in 

𝑿𝒄 to have a minimum value 𝑑𝑚𝑖𝑛 for both the pores in the pair to be true pores. Based on the 

second observation, the mean and standard deviation values of the pore intensities in a given 

window in 𝑿𝒄 have values that vary from window to window. Therefore, if the intensity of a pore 

in any given window has a value that is much smaller than the mean intensity of the pores in the 

window, then such a pore cannot be regarded to be a true pore, and hence, its centroid must be 

1 
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removed from 𝑿𝒄. For the purpose of deciding whether the intensity of the pore is much smaller 

than the mean intensity of the pores within the window, its local standard deviation can be used. 

We now develop a criterion for each of the two observations to use it for refining 𝑿𝒄. 

 

      

(a) Mean = 77.3, STD = 9.85                                                      (b) Mean = 65.9, STD = 10.1 

Figure 3.6: Input fingerprint images with the intensity values of the true pores from the ground 

truth. 

A. Procedure for Identifying and Removing False Pores From 𝑋𝑐 using the 𝑑𝑚𝑖𝑛 Criterion  

In this subsection, we develop a systematic procedure for identifying as many false pores 

as possible in the pore map 𝐗𝐜 based on the minimum distance criterion between a pair of pores. 

We describe our procedure through an illustrative example. For this purpose, we make use of a 

manually constructed pore map 𝐗𝐜 rather than a pore map corresponding to a natural fingerprint 

image so that all the different possibilities of pores can be illustrated through a single example.  

Fig. 3.7 (a) shows one such pore map 𝐗𝐜 with 16 centroids numbered 1 to 16. 

Our objective is to construct from this pore map 𝐗𝐜 a refined pore map 𝐗𝒅𝒎𝒊𝒏
(Fig. 3.7(c)) 

from which all the candidate pores in 𝐗𝐜 that do not satisfy the minimum distance requirement 

are removed. Initially 𝐗𝒅𝒎𝒊𝒏
is set to be 𝐗𝐜. Then, starting from pore 1, we determine its Euclidian 

distance ED (1, j) to all the other pores j ( j=2,…,16) and choose the pore that has the minimum 

distance from pore 1 as its nearest neighbor using the centroid values Pck (k=1,..,16). In the 

example considered, the nearest neighbor of pore 1 is found to be pore 5. This is shown in Fig. 

3.7 (b) by connecting pore 1 to pore 5 with a green arrow directing from the former pore to the 
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latter with the minimum distance of 5.9 indicated on the arrow. Since ED (1,5) between these 

two pores is larger than 𝑑𝑚𝑖𝑛 = 4.12, both these pores are retained in 𝐗𝒅𝒎𝒊𝒏
.  

The same procedure is followed for pores 2 and 3 to find their nearest neighbors, pores 4 

and 5, with ED (2,4) = 9 and ED (3,5) =5.1. It is noted that these pairs of pores also do not 

violate the minimum distance criterion, and hence, they are also retained in 𝐗𝒅𝒎𝒊𝒏
.  For the next 

pore, i.e., pore 4, the nearest neighbor is found to be pore 7 with ED (4,7) = 3.5, which is less 

than  𝑑𝑚𝑖𝑛. Therefore, one of these pores in this pair must be removed from 𝐗𝒅𝒎𝒊𝒏
. In order to 

decide as to which pore in the pair has to be removed, we determine their pore intensities γ4 and 

γ7. The intensity of a pore j is found to be the average of the intensities of all the pixels in a 3×3 

window centered at the centroid of pore j in the original fingerprint image 𝐗𝒊 corresponding to 

𝐗𝐜. The intensity values γ4 and γ7 for pores 4 and 7 are, respectively, found to be 61.6 and 52.4, 

as indicated in Fig. 3.7 (b). Since γ7 is less than γ4, pore 7 is removed from 𝐗𝒅𝒎𝒊𝒏
 of Fig. 3.7 (c).  

As pore 7 was the nearest neighbor of pore 4 and it has been removed, we need to find a 

new nearest neighbor of this latter pore. The new nearest neighbor of pore 4 is found to be pore 2 

with ED (4,2) =9 indicated by a blue arrow in Fig. 3.7 (b).  Since ED (4,2) >𝑑𝑚𝑖𝑛, pore 4 is still 

retained in 𝐗𝒅𝒎𝒊𝒏
. Next, since pore 5 does not violate the minimum distance criterion, it is 

retained in 𝐗𝒅𝒎𝒊𝒏
. As for pore 6, its nearest neighbor is pore 9 with ED (6,9) = 2.7 < 𝑑𝑚𝑖𝑛. Since 

γ6 =65.1 and γ9 =50.4, pore 9 is removed from 𝐗𝒅𝒎𝒊𝒏
 and the new nearest neighbor of pore 6 is 

found to be pore 8. However, since ED (6,8) = 3.8 is also less than 𝑑𝑚𝑖𝑛, the pore in the pair 

with the lower intensity, i.e., pore 8, is removed from 𝐗𝒅𝒎𝒊𝒏
. Thus, we find the third nearest 

neighbor of pore 6, which is pore 3 with ED (6,3) =10.5 >𝑑𝑚𝑖𝑛, indicated by a purple arrow, and 

consequently, both pores 6 and 3 are retained in 𝐗𝒅𝒎𝒊𝒏
.  

Since pores 7, 8 and 9 are already removed from 𝐗𝒅𝒎𝒊𝒏
, next, we consider pore 10. For 

this pore, the nearest neighbor is pore 11 with ED (10,11) =3.3 <𝑑𝑚𝑖𝑛, and since γ11 < γ10, pore 

11 is removed from 𝐗𝒅𝒎𝒊𝒏
. Thus, we find the next nearest neighbor of pore 10, which is pore 16 

with ED (10,16) =7 >𝑑𝑚𝑖𝑛, and consequently, both pores 10 and 16 are retained in 𝐗𝒅𝒎𝒊𝒏
. For 

the next pore, i.e., pore 12, the nearest neighbor is pore 13 with ED (12,13) =5.2 >𝑑𝑚𝑖𝑛, and 

thus, it is retained in 𝐗𝒅𝒎𝒊𝒏
. Next, the nearest neighbor of pore 13 is found to be pore 15 with ED 

(13,15) =3.4 <𝑑𝑚𝑖𝑛, thus, the pair of pores in question violates the minimum distance criterion. 

However, since in this case γ13 = γ15 = 46.6, we remove the first pore in the pair, i.e., pore 13, 
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from 𝐗𝒅𝒎𝒊𝒏
. The last three pores, i.e., pores 14, 15 and 16, as seen from Fig. 3.7 (b), do not 

violate the minimum distance criterion, and hence, are retained in 𝐗𝒅𝒎𝒊𝒏
. After taking into 

consideration all the pores in Fig. 3.7 (b) and removing all those that violate the minimum 

distance criterion, 𝐗𝒅𝒎𝒊𝒏
 shown in Fig. 3.7 (c) is the final composition of the refined pore map. 

 

(a) An example of a pore map 𝑋𝑐 with 16 candidate pores.         

 

 (b) Pore graph corresponding to 𝑋𝑐 of the example in (a) with the distances of the nearest neighbors specified. 

 

(c) Pore map 𝑋𝑑𝑚𝑖𝑛
 corresponding to the pore map 𝑋𝑐 in (a) after applying the 𝑑𝑚𝑖𝑛  criterion. 

Figure 3.7: Illustrations of the proposed refinement of the first criterion. 
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The procedure for identifying the false pores by applying the minimum distance criterion 

and removing the corresponding centroids from 𝐗𝐜 is given in Algorithm 3.1. This algorithm 

presents our procedure for identifying and removing the false pores from 𝐗𝐜  by applying 

the𝑑𝑚𝑖𝑛 criterion. The input to this algorithm is 𝐗𝐢 , 𝐗𝐜 and dmin, and the output is the refined 

pore map 𝐗𝒅𝒎𝒊𝒏
 in which the centroids in 𝐗𝐜 corresponding to the pores not satisfying the 𝑑𝑚𝑖𝑛 

criterion has been removed. 
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B. Procedure for Identifying and Removing the False Pores from 𝑋𝑑𝑚𝑖𝑛
 Based on the 

Criterion of Local Mean and Standard Deviation 

In this subsection, we develop a procedure for identifying as many false pores as possible 

in the pore map 𝐗𝒅𝒎𝒊𝒏
 based on the local means and standard deviations of the pores 

corresponding to the centroids still remaining in the map 𝐗𝒅𝒎𝒊𝒏
 after carrying out the procedure 

of subsection 3.3.2.A. Generally, the intensity of a false pore is lower than that of a true pore in a 

given neighborhood of the fingerprint image. The standard deviation of the pore intensities is an 

indication of the degree to which the intensity of a true pore could be lower than the mean 

intensity in the neighborhood. In our method for removing a false pore, we require that its 

intensity must be less than a threshold value given by 𝑡 =  ɱ − 𝑐б, where ɱ and б are the mean 

and standard deviation of the pore intensities within a given neighborhood of the fingerprint 

image and 𝑐 is a parameter that needs to be determined suitably. We determine the value of 𝑐 

empirically for the entire dataset. The images of the dataset are divided into 𝑊 × 𝑊 windows. 

First, for a given image in the dataset, we determine a value of 𝑐 so that the accuracy that all the 

pores removed from that image are indeed false pores is more than 96%. Then, a value 

𝑐𝑎𝑣𝑔=1.12 that is the average of the values of 𝑐 so determined for the individual images is used to 

remove pores from each of the windows of a test image. Removing all the false pores from 𝐗𝒅𝒎𝒊𝒏
 

using this procedure results in the final pore map 𝐗𝒕.  

3.3 Experimental Results of the Proposed Pore Detection Module 

In this section, first, the dataset used and the procedure for the training of the proposed 

network along with the software and hardware platforms and the figures of merit for the 

evaluation procedure of the proposed and other schemes considered are described. Then, the 

results of the various experiments performed using the proposed pore detection scheme are 

presented and analyzed, and its performance is compared with that of the existing state-of-the-art 

schemes for pore detection. 

 

3.3.1 Training Details and Evaluation Procedure for the Proposed Pore Detection 

In our experiments, images from the PolyU High-Resolution-Fingerprint (HRF) database 

[113], are used for the training and testing of the proposed network and for the comparison of its 

performance with that of the other networks. The images in this database are acquired using an 
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optical touch-based sensor device. The database has 30 fingerprint images of size 240 × 320 

pixels with a resolution of 1200 dpi. The database also has a ground truth set containing the 

coordinates of the central position of each pore of the fingerprint images, as perceived by human 

experts. This ground truth set contains a total of 12767 coordinates of the pores in all the 

fingerprint images in the database. 

The fingerprint images are divided into training and testing sets using k-fold cross-

validation [114] with k = 5. Therefore, in our experiments, we have five different training and 

testing sets. We make sure that none of the 6 fingerprint images in each of the 5 testing sets are 

repeated and that they are different from those in other testing sets. Thus, we have five different 

training models of the proposed network each of which is evaluated using a unique testing set. 

The results of the five evaluations are then averaged to obtain the performance of the network.  

In the proposed network, we generate a labeled pore intensity map corresponding to a 

ground truth fingerprint image by setting all the pixel values in the 3×3 window centered at the 

coordinates of each true pore of the ground truth image to 1 and setting all the remaining pixels 

in the ground truth image to a value of 0. The fingerprint images in the training set as well as in 

their corresponding labels are partitioned into 𝑝 × 𝑝  patches using a random patch extraction 

with overlapping method [115], which ensures that each patch stays inside the image and all the 

patches together in an image cover the entire image. Therefore, in this method, regardless of the 

value of 𝑝, there does not exist a boundary problem. A set of 142,800 patches is obtained by 

randomly extracting 5,950 patches in each of the training fingerprint images. Some of the 

patches of a fingerprint image may overlap, i.e., the patches may contain the same part of a 

fingerprint image. During the testing phase, however, each test image is partitioned into non-

overlapping patches of size 𝑝 × 𝑝. In this case, depending on the value 𝑝, there may exist a 

situation in which a patch may not lie totally inside the image in order for all the pixels of the 

image to be covered by one or more patches. If in the formation of a patch on the boundary, there 

are not a sufficient number of pixels within the image, then the boundary pixels are simply 

repeated to complete the formation of that patch. It should be pointed out that the same value of 

𝑝 is used both in the training and testing phases of the network. In the testing phase, the network 

outputs a pore map corresponding to a single patch of the given input test image. When the pore 

maps of all the patches of a test image have been obtained, they are placed in a non-overlapping 

manner to compose a pore intensity map corresponding to that test input image. Data 
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augmentations [116] of the patches through their rotations by 90o and 180o, flipping and 

Gaussian blurring are utilized to enrich the training dataset and boost the network performance. 

The convolution kernels with spatial support of 𝑠 × 𝑠 are randomly initialized with a Gaussian 

distribution having a zero mean and a variance of  √
2

𝑠2𝑛
, where 𝑛 is the layer width. A binary 

cross-entropy loss function is optimized to train the parameters of the network. The binary cross-

entropy loss function given by [117] 

 

𝐿 = −
1

𝑁𝐵
∑ (𝑦𝑖 ⋅ log(�̂�𝑖) + (1 − 𝑦𝑖) ⋅ log(1 − �̂�𝑖))

𝑁𝐵
𝑖=1         (3.6) 

where  𝑦𝑖 represents the ith labeled patch in a batch of size 𝑁𝐵 and �̂�𝑖 represents the 

corresponding predicted patch, is used to train the network. We employ the stochastic gradient 

descent (SGD) algorithm with the Nesterov acceleration scheme [118] to update the parameters 

and minimize the loss. In our training, the momentum parameter and initial learning rate are set 

as 0.9 and 0.1, respectively, and the learning rate is decreased by 0.01 after every 10 epochs until 

the rate becomes 0.01, beyond which it is not decreased farther. The network is trained with a 

batch size of 34 and a maximum number of 100 epochs. The facts that the proposed network is 

not very deep, it contains a modest number of parameters, the high-resolution training images 

help the training process [119], [120], [121], and that each training image is undergone through 

different kinds of augmentations, a training set constructed using the 24 fingerprint images is 

sufficient to adequately train the proposed pore detection network. The experiments are 

performed in a Python environment on a supercomputer with 2.2 GHz Intel E5-2650 v4 

Broadwell CPU, 125 GB RAM and NVIDIA P100 Pascal (12GB HBM2 memory) GPU.  

The figures of merit that are used for the performance evaluation are as follows:  

1. True detection rate (RT), which represents the ratio of the number of the true pores detected 

to the number of actual true pores present in the ground truth of a fingerprint image [60].  

2. False detection rate (RF) indicates the ratio of the number of false pores detected to the total 

number of detected pores [60].  

3. The number of the parameters used in the CNN and the number of FLOPs, which indicate the 

computational cost of the CNN network. 
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The optimal values for RT and RF are one and zero, respectively. A high true detection 

rate and low false detection rate are indicative of a superior performance of the pore detection 

system, and small standard deviations of RT and RF represent a good robustness of the system.  

3.3.2 Performance Evaluation   

The objective of this subsection is to study the performance of the proposed pore 

detection scheme and compare it with that of other schemes in the literature. We conduct this 

study in three parts. In the first part, we study the impact of the patch size of the images and the 

depth of the network on the performance of the proposed scheme. In the second part, we study 

the influence of replacing either the proposed network or the proposed postprocessing method 

with the one used in other neural network-based schemes. In the third part, we compare both the 

quantitative and qualitative performance of the proposed scheme with those of the other schemes 

that are neural network-based or otherwise. The computational times of the network part and the 

postprocessing part of the proposed scheme along with its network complexity are also compared 

with those of the other network-based schemes. 

In the first part of the performance evaluation, we first perform experiments on the 

proposed scheme by using different patch sizes of the input images in the dataset as input to the 

proposed network. Once the pore intensity maps for all the test images have been obtained, we 

move on to the second part of the proposed scheme that uses the hyperparameters 𝑁 (the window 

size used in the binarization step) and 𝑊 (the window size used in the refinement step). In this 

part of the scheme, for a test image, the pore intensity map obtained from the network patches 

trained by using the patches of a given size 𝑝 is then used to obtain 𝐗𝒕 using a given value of the 

parameter 𝑁 and a given value of the parameter 𝑊. Using this final map of pore centroids, the 

values of RT and RF are obtained for a given test image. These values of the metrics are averaged 

over 30 test images. We have performed the experiments on the proposed scheme using different 

values for the patch size 𝑝 (10, 20, 30, 40, 50, 60, 70, 80, 90, and 100) in Part 1 of the scheme 

and for each value of 𝑝 with various values of the hyperparameters 𝑁 (20, 30, 40, 50, and 60) 

and 𝑊 (40, 50, 60, 70, and 80) in Part 2. Table 3.1 lists the average values of RT and RF and their 

standard deviations for each of the patch sizes used for the network training and testing, but only 

for those particular values of 𝑁 and 𝑊 that provide the best performance in terms of RT and RF 

for that patch size. From this table, it is seen that the proposed scheme of pore detection provides 

the best performance in terms of RT and RF for 𝑝 =40, 𝑁 =40 and 𝑊 =60.  Table 3.1 also 
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provides the network complexity in terms of the number of floating-point multiplication-addition 

operations (FLOPs). It is worth noting that the increase in the number of FLOPs by using a patch 

size beyond 40 × 40 actually results in deteriorating the performance of the scheme. Therefore, 

40 × 40 is the optimum patch size for the best performance of the proposed scheme.  

Next, we perform an experiment on the proposed network in which its depth is increased 

by adding additional feature extraction stages.  The results are shown in Table 3.2. It is seen from 

this table that as the number of feature extraction stages in the network increases beyond three 

stages, the improvement in its performance is only minimal. However, its complexity in terms of 

the number of FLOPs increases very significantly. Specifically, the number of FLOPs increases 

by more than 4 and 11 times when the number of feature extraction stages is increased to 4 and 

5, respectively. On the other hand, if the number of feature extraction stages is reduced to two, 

the performance of the network is severely affected. Thus, the network provides optimum 

performance with three feature extraction stages. 

In the second part of the performance evaluation, we examine the impact of the proposed 

network and the proposed postprocessing method individually on the performance of the 

proposed pore detection scheme, as well as on the performances of the neural network-based 

schemes of [60], [61] and [62]. Table 3.3 provides the results of this study in terms of the 

performance metrics RT and RF. The results in this table are divided into four blocks 

corresponding to the proposed and the schemes of [60], [61] and [62]. In each of the blocks 2, 3 

and 4, the performance results of the corresponding scheme along with that of the same scheme 

in which either its network or its postprocessing method is replaced by the one proposed in our 

scheme. By comparing the first lines in each of the blocks of this table, it is observed that the 

proposed scheme gives the best performance among all the neural network-based schemes. By 

comparing the results of the first and second lines of the blocks 2, 3 and 4 of this table, it is seen 

that each of the schemes of [60], [61] and [62] can significantly benefit if the networks of these 

schemes are replaced by the proposed network. Similarly, by comparing the results of the first 

and third lines of the blocks 2, 3 and 4, it is seen that each of the schemes of [60], [61] and [62] 

can improve the performance if its postprocessing method is replaced by the proposed 

postprocessing method. In summary, the study of this experimental part clearly shows that both 

the proposed network and the postprocessing method have a significant impact on the 

performance of the proposed pore detection scheme.  
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Table 3.1: Performance of the proposed scheme with different patch sizes of the images input to the network. 

Patch size 10 × 10 20 × 20 30 × 30 40 × 40 50 × 50 60 × 60 70 × 70 80 × 80 90 × 90 100 × 100 

Hyperparameters 𝑵 =  𝟓𝟎 

𝑾 = 60 

𝑵 =  𝟒𝟎 

𝑾 = 𝟔𝟎 

𝑵 =  𝟓𝟎 

𝑾 = 70 

𝑵 =  𝟒𝟎 

𝑾 = 60 

𝑵 =  𝟔𝟎 

𝑾 = 80 

𝑵 =  𝟔𝟎 

𝑾 = 80 

𝑵 = 40 

𝑾 = 𝟔𝟎 

𝑵 =  𝟒𝟎 

𝑾 = 80 

𝑵 =  𝟒𝟎 

𝑾 = 𝟔𝟎 

𝑵 = 60 

𝑾 = 70 

RT 91.84 

 (1.32) 

93.16 

(1.48) 

95.97 

(1.49) 

96.69 

(1.52) 

96.51 

(1.83) 

96.43 

(1.99) 

95.93 

(2.57) 

95.51 

(2.74) 

94.22 

(3.2) 

93.96 

(3.51) (σ) 

RF 10.02 

 (3.22) 

6.55 

(1.97) 

4.15 

(1.41) 

4.18 

(1.44) 

4.2 

(1.9) 

4.68 

(1.83) 

5.33 

(2.41) 

5.87 

(2.6) 

6.05 

(3.95) 

7.04 

(4.02) (σ) 

Number of 

FLOPs 

0.495M 0.99M 1.485M 1.98M 2.475M 2.97M 3.465M 3.96M 4.455M 4.95M 

 

Table 3.2: Performance of the proposed scheme with various network depths. 

Number of 

Feature extraction stages 

RT (σ) RF (σ) Number of 

FLOPs 

2  91.68 (4.93) 6.62 (5.10) 0.86M 

3  96.69 (1.52) 4.18 (1.44) 1.98M 

4  96.89 (1.5) 4.03 (1.41) 9.49M 

5  96.95 (1.49) 3.95 (1.40) 22.15M 
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Table 3.3: Comparison of performances of the proposed and other neural network-based 

schemes. 

Scheme Detail of the scheme RT (σ) RF (σ) 

Proposed scheme Proposed network + proposed postprocessing 96.69 (1.52) 4.18 (1.44) 

Scheme [60] 

Modified scheme [60] – 1 

Modified scheme [60] - 2 

Network of [60] + postprocessing of [60] 

Proposed network + postprocessing of [60] 

Network of [60] + proposed postprocessing 

84.69 (7.81) 

93.19 (3.04) 

88.21 (6.03) 

15.31 (6.2) 

7.88 (3.55) 

5.46 (2.74) 

Scheme [61] 

Modified scheme [61] – 1 

Modified scheme [61] – 2 

Network of [61] + postprocessing of [61] 

Proposed network + postprocessing of [61] 

Network of [61] + proposed postprocessing 

93.09 (4.63) 

95.47 (2.58) 

94.81 (3.05) 

8.64 (4.15) 

6.52 (3.56) 

4.53 (2.07) 

Scheme [62] 

Modified scheme [62] – 1 

Modified scheme [62] - 2 

Network of [62] + postprocessing of [62] 

Proposed network + postprocessing of [62] 

Network of [62] + proposed postprocessing 

94.49 (5.41) 

95.89 (2.42) 

95.22 (3.15) 

8.5 (4.4) 

6.42 (3.41) 

4.38 (2.10) 

 

In the third part of our experimental study, we compare the quantitative and qualitative 

performance of the proposed pore detection scheme with that of both the traditional schemes and 

neural network-based schemes. The traditional schemes that are used for comparison are those 

reported in [38] and [49], whereas the neural network-based schemes are the same as those used 

in Table 3.3, i.e., the schemes of [60], [61] and [62]. Table 3.4 gives the pore detection accuracy 

in terms of RT and RF provided by the various schemes. It is seen from this table that, as in the 

case of other neural network-based schemes with the exception of that reported in [60], the 

proposed scheme outperforms the traditional schemes by significant margins. It is to be pointed 

out that, since the network in [60] relies only on the network width to extract the pore features, it 

is not able to learn the high-level features, and hence, this network is not able to provide much 

improvement over the non-neural network-based methods. As already noted in Table 3.3, the 

proposed scheme provides performance much superior to that provided by the other neural 

network-based schemes. Table 3.4 provides the performance results using both with and without 

the pore refinement process introduced in Section 3.3. Note that the pore refinement process was 

intended to reduce the number of false pores. It is seen from the performance results given in 
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Table 3.4 that this objective is achieved by providing the value of RF that is almost one-half of 

that provided without using the pore refinement process while maintaining almost the same value 

for RT. 

Table 3.4: Performance comparison against state-of-the-art methods. 

Scheme RT (σ) RF (σ) 

Gabor Filter [38] 75.90 (7.5) 23.00 (8.2) 

DoG [49] 80.80 (6.5) 22.20 (9.0) 

DAPM [49] 84.80 (4.5) 17.60 (6.3) 

Labati et al. [60] 84.69 (7.81) 15.31 (6.2) 

DeepPore [61] 93.09 (4.63) 8.64 (4.15) 

DeepResPore [62] 94.49 (5.41) 8.5 (4.4) 

Proposed without Refinement 96.85 (1.53) 8.69 (2.12) 

Proposed with Refinement 96.69 (1.52) 4.18 (1.44) 

 

Table 3.5 demonstrates the average run times per image of the various CNN-based pore 

detection schemes for Parts 1 and 2 of the schemes individually as well as together. All the 

schemes have been implemented in the same software and hardware environment of the 

proposed scheme as stated in Section 3.4.1. It is seen from this table that the time complexities of 

the second part of all four schemes are about the same. On the other hand, the proposed scheme 

takes significantly lower time for its first part in comparison to the times taken by the other three 

schemes. This table also provides information on the complexity of the various neural network-

based schemes in terms of the number of parameters and the number of FLOPs. Note that the 

number of parameters and the number of FLOPs refers only to the numbers used by the network 

parts of these schemes. It is particularly important to note that the superiority in performance of 

the proposed scheme is achieved along with its very significantly lower complexity. Specifically, 

the number of parameters and the number of FLOPs of the network in the proposed scheme are 

several orders of magnitude lower than those of the network in the scheme of [62], the best 

performing scheme in the literature. 
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Table 3.5: Comparison of average time per image and network complexity of the proposed and 

other neural network-based schemes. 

Scheme parts 

𝑇𝐶𝑁𝑁 (ms) 

Part 1: 

Neural Network 

𝑇𝑃 (ms) 

Part 2: 

Postprocessing 

𝑇𝑇 

(ms) 

Number of 

Network 

Parameters 

Number of 

FLOPs used by 

Network 

Labati et al. [60] 2.76 15.54 18.3 1,531 50.03M 

DeepPore [61] 29.85 16.1 46.36 297,361 335.12 M 

DeepResPore [62]  218.02 16.24 234.67 11M 70,438.1M 

Proposed scheme 1.08 15.92 17 1,288 1.98M 

 

Fig. 3.8 shows the qualitative performance of the proposed scheme and the schemes of 

[61] and [62] by providing visual illustrations of the pores detected. Fig. 3.8 (a) shows an 

original fingerprint image from the HRF dataset, whereas Figs. 3.8 (b), (c) and (d) show the 

results of the pore detection by the three schemes. In this figure, the pores shown in green, red 

and yellow colors represent, respectively, true positive, false positive and false negative pores. It 

is seen from this figure that the proposed scheme is more successful in detecting the true pores 

by providing only one false positive pore and much fewer false negative pores than that provided 

by the other two schemes.   

 

     
                     (a)                                              (b)                                                (c) 

Figure 3.8: Qualitative performance of the proposed pore detection scheme. (a) Original 

fingerprint image. The pore detection results of (b) DeepResPore (c) Proposed work. The green, 

yellow, and red dots in these images represent the true positive, false negative and false positive, 

respectively. 
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3.4 Summary  

In recent years, advancements in pore detection have led to the emergence of hybrid 

approaches that incorporate convolutional neural networks (CNNs) to enhance accuracy. 

However, these approaches faced challenges with incomplete or distorted pores due to 

limitations in feature learning and post-processing. This chapter has proposed an ultralight 

hybrid pore detection scheme resulting in high representation with low complexity. The first part 

has developed a neural network architecture to generate and extract low, middle and high level 

hierarchical features in a residual framework using depthwise convolutional layers and then to 

fuse them to obtain a very rich and highly representational set of pore features leading to an 

accurate pore intensity map. The second part has leveraged the existing knowledge about 

fingerprint pores, such as the pore intensity, their variations in terms of shape and size from one 

region to another region of the fingerprint image and the minimum distance between neighboring 

pores, for an accurate centroid determination. Extensive experiments on the PolyU High-

Resolution-Fingerprint database have been conducted and the results have demonstrated the 

performance of the proposed scheme to be superior to that provided by the traditional and state-

of-the-art CNN-based schemes. 
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Chapter 4 

Proposed Pore Feature Extraction and Matching Module 

 

4.1 Introduction 

In this chapter, we propose a scheme for pore feature extraction and matching [122], 

comprising three segments, namely, pore feature extraction and representation, pore matching 

and pore matching refinement. The proposed module aims at an optimal performance with 

minimal complexity by focusing primarily on the first two segments. The first segment develops 

a low-complexity residual block that is embedded in a deep convolutional neural network, 

designed to yield highly representative pore features. The network makes a judicious use of 

depthwise and, depthwise separable convolution operations, and Max-pooling so as to curtail the 

number of parameters and arithmetic operations. The second segment introduces a novel metric, 

devised to measure the pore similarity by merging angles, magnitude differences, and Euclidean 

distances into a single metric. This new metric is then applied on the pore representation vectors 

obtained from the first segment to produce the pore correspondence list of the matches of the 

pores in the query and template fingerprint images.  

4.2 Proposed scheme 

A proposed pore feature extraction and matching module aims at providing a decision for 

the query image to have matched (i.e., a value of 1) or not to have matched (i.e., a value of 0) 

with the template fingerprint image in question. The pore feature extraction and matching 

module is divided into three segments. In the first segment (Segment 1), given the query 

fingerprint image and the entire set of N pores detected by Module 1 as input, this segment 

outputs a representation PFQi (i = 1,…,N) of each of the pores in the query image in terms of the 

structure of the pore as well as of its neighborhood by extracting suitable features from a patch 

corresponding to the pore in question using a CNN automatic feature extraction technique. The 

second segment (Segment 2) of the pore feature extraction and matching module is a pore 

matching segment, in which the feature representation PFQi of each of the pores in the query 
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image in the entire set PFQ and that of all the pores, but one at a time, in a single template 

fingerprint image in the set PFT from the database are matched based on some criterion of their 

similarities to establish a correspondence between the pores of each pair formed by taking one 

pore from PFQ  and other one from PFT. The output of the module of this segment is a set C of 

ci’s, where each ci (i = 1, .., K) corresponds to a pair of matched pores with the first one in the 

pair representing the x-y coordinates of a pore in the query fingerprint image and the second one 

representing the x-y coordinates of the matched pore in the template fingerprint image. The third 

segment (Segment 3) of the pore feature extraction and matching module is a pore matching 

refinement and fingerprint recognition segment. In this segment, a refined set RC of the 

correspondence between the pores of the query image and those that are matched in the template 

image is obtained by removing those pairs in which the pores are falsely matched in Segment 2. 

Finally in this segment, the query fingerprint image is recognized based on the refined set RC. If 

this set contains one or more pairs of matched pores, i.e., L ≥ 1, the query image is considered to 

be matched to the template image, otherwise (i.e., L=0), the two fingerprint images in question 

are considered as not matched. Fig. 4.1 shows an example (Illustration 1) of the pores from a 

query image and a template image that have been matched by the operation of Segment 2. In this 

illustration of the images, the pairs of pores assumed to have been matched after Segment 2 are 

joined by the red and yellow lines. In Illustration 2 of Fig. 4.1, the same two fingerprint images 

have been shown with the pairs of pores retained as matched pairs after the operation of Segment 

3 (i.e., after the pore matching refinement operation) joined by the yellow lines. We next develop 

each of these three segments of the pore feature extraction and matching module with reference 

to Fig. 4.1. 
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Figure 4.1: General module of pore-based fingerprint recognition highlighting the pore feature 

extraction and matching module. 
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4.2.1 Segment 1: Feature Extraction and Representation of Pores Using a 

Convolutional Neural Network  

In this section, a novel CNN model for the extraction and representation of fingerprint 

pores is proposed. The main objective in the design of the CNN model is to ensure robustness in 

capturing a discriminative set of features for the fingerprint pores and to generate a unique 

representation for each of them in a computationally efficient manner. The model design 

involves several key ideas specifically relevant to the task of fingerprint recognition using pores. 

1. Hierarchical Feature Extraction: The network is designed with multiple stages that aim to 

produce diverse levels of hierarchical pore features. This approach enables the extraction of 

the features of the pores at different scales and levels of detail. 

2. Concatenative Fusion: A concatenative fusion of the feature maps at various levels and scales 

is employed to provide a compact and highly discriminative representation of the features of 

a pore.   

3. Depthwise or Depthwise Separable Convolutions: In view of the fact that pore features are 

local features, depthwise or depthwise separable convolutions are employed, since it can 

extract local features more efficiently in comparison to the standard convolution, and in 

addition, they do so at a lower computational cost.  

4. Identification-Verification Loss Function: An identification-verification loss function [123] is 

utilized to generate the pore feature representation. The identification-verification loss 

function serves two main purposes:  

(a) Identification: The identification task involves classifying an input fingerprint pore patch 

image into one of the numerous individual identity classes. This task is a multi-class 

classification in which the model is required to accurately assign a correct identity label 

to the input pore patch from a set of pore patches belonging to the various classes. 

(b) Verification: The verification task involves classifying the two patches in a pair as either 

belonging to the same class or two different classes, which is essentially a binary 

classification problem. 
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The main advantages of using this identification-verification loss function for the training 

of the features extraction and representation network are as follows: 

(i) This loss function promotes the learning of highly discriminative features specific to 

fingerprint pore identities. By jointly optimizing for identification and verification, 

the model learns to extract features that capture both inter-class variations (for 

identification) and intra-class similarities (for verification). This helps to generate a 

compact and powerful feature representation for fingerprint pore. 

(ii) This loss function is able to minimize the distance and orientation between feature 

representations of the pores belonging to the same class and maximize these 

quantities when the pores belong to different classes. This results in a trained model 

that has a better capability of distinguishing the various pore classes and hence is able 

to produce more accurate pore feature representations. 

5. Deep Supervision: Deep supervision involves incorporating additional supervision signals 

from the intermediate stages of a network, in addition to the final output signal of the 

network [124]. A trained network for generating pore feature representations must be capable 

of capturing local and global details of the pores. Local details encompass attributes such as 

pore size, shape, orientation, and specific ridge patterns surrounding the pore, while global 

details involve factors such as the distribution of pores within the fingerprint, overall pore 

density in specific regions, or arrangement of pores along ridge structures. By leveraging 

deep supervision, a network can more effectively and accurately capture the local and global 

features of the fingerprint pores, resulting in a more comprehensive and discriminative pore 

feature representations.  

The proposed network model is shown in Fig. 4.2. The input to the network is a pore 

patch 𝒀𝑰 of size 31×31 cropped around a pore of the fingerprint image and the objective of the 

network is to produce at the output a feature representation vector 𝒀𝑶 of size 256 representing a 

unique identity for the pore in question in the patch. The network consists of five stages, 

producing features at increasingly higher levels of hierarchy using an increasingly larger number 

of convolution filters. We fuse the features in each stage in a residual framework to learn the 

local features of the pore and fuse the features obtained from the various hierarchical levels 

concatenatively to learn global features. The fusion of the features both locally and globally and 
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using them in a deep supervision framework is aimed at extracting highly discriminating 

features, and thus, providing a unique feature representation for the pore.  

In order to produce a diverse range of features from the input patch 𝒀𝑰 at low 

computational cost, in the first stage, we employ two depthwise separable convolutional layers 

(D_S Conv) each using 32 filters of kernel size 3×3. The outputs of the two layers are then 

additively fused and then max pooled with 3×3 kernels and a stride of 2 to produce the output 𝒀𝟏 

of the stage consisting of 32 channels each of spatial size 21×21.   

   In order to increase both the number and diversity of the features extracted from the 

first stage, in each of the stages 2 to 5, we employ two depthwise blocks (D_Block) followed by 

a max-pooling layer. The architecture of the depthwise block consists of two layers, a depthwise 

convolution layer and a depthwise separable convolutional layer. The depthwise convolutional 

layer of the first D_Block of each of these stages employes two filters of kernel size 3×3 for each 

of its input channels, whereas the second D_Block uses only one filter of the same kernel size. 

On the other hand, the depthwise separable convolutional layer in both the D_Blocks of a stage 

uses only one 3×3 filter for each of its input channels. The outputs of the depthwise and 

depthwise separable convolutional layers of a D_Block are additively fused to produce the 

output of the D_block. Thus, the number of channels in the output of a stage is twice the number 

of channels in the input of that stage.  

In a typical fingerprint image, the variations in pores are more prominent on a global 

scale rather than on a local level. Thus, selecting a smaller patch size would yield feature 

representations that are less distinctive. On the other hand, choosing a very large pore patch size 

would result in a large computational complexity. Therefore, for our proposed architecture, we 

choose the size of the input patches to be 31×31. The use of a large number of stages in our 

architecture can facilitate the extraction of high-level features. For our architecture, we use the 

largest possible number of stages, which is constrained to be 5, in view of the fact that the size of 

the input patch is 31×31 and there is a pooling layer in each of the stages, thus leading to a size 

of 1×1 for each of the channels in the output 𝑌5 of the last stage. In order for our proposed 

network to produce a very rich set of features, the features produced by the various stages are 

fused, which is done by a process of global max-pooling (i.e., selecting the maximum value) 

each of the channels of the outputs, 𝒀𝟏, 𝒀𝟐, 𝒀𝟑 and 𝒀𝟒, of the stages 1, 2, 3 and 4 and 
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concatenating the resulting outputs 𝒀𝟏𝒈,  𝒀𝟐𝒈,  𝒀𝟑𝒈 and 𝒀𝟒𝒈 with 𝒀𝟓. Thus, the output of the 

concatenation is 𝒀𝐶 = (𝒀𝟏𝒈  𝒀𝟐𝒈  𝒀𝟑𝒈  𝒀𝟒𝒈  𝒀𝟓) with a total of 992 channels each of size 1x1. 

The final step is to produce from 𝒀𝐶  an output vector 𝒀𝑂 representing the input pore, using a 

fully connected neural network (FC_Final) of 256 neurons. Therefore, 𝒀𝑂 is a 256-dimensional 

vector representing the pore in question in the input pore patch 𝒀𝐼. The details of the architecture 

in terms of the kernel size, the number of filters and the number of parameters used in the 

various layers are provided in Table 4.1. 

In each of the abovementioned stages, a non-linear activation function (ReLU) is applied 

after each convolutional layer and in order to normalize the distribution of the features produced 

by a convolutional layer, a batch normalization (BN) is applied. The residual framework used in 

these stages curtails the gradient vanishing problem in the proposed deep network leading to 

better training of the network parameters, and hence, the generation of more representational 

features. As the features produced at all the hierarchical levels are important, the proposed 

network employes deep supervision for its training. Therefore, in order to carry out the deep 

supervision training of the network, we need to produce 256-dimensional representations 

𝒀𝐹𝐶1, 𝒀𝐹𝐶2, 𝒀𝐹𝐶3, 𝒀𝐹𝐶4 and 𝒀𝐹𝐶5 from the outputs 𝒀1, 𝑌2, 𝑌3, 𝑌4 𝑎𝑛𝑑 𝑌5, respectively,  of the five 

stages using fully connected neural networks each using 256 neurons. It is to be noted that the 

five fully connected neural networks are needed only for the training of the network. 
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Table 4.1: Architecture detail of the proposed pore matching network. 

Size of input pore patch  𝒀𝑰:  31 × 31 

 Layer name Kernel size and  

no. filters 

Size and the no. 

output channel 

No. Parameters 

Stage 1 First D_S Conv 3 × 3, 32 31 × 31, 32 320 

Second D_S Conv 3 × 3, 32 31 × 31, 32 320 

Max-Pooling 3 × 3, stride 2 𝒀𝟏:   21 × 21, 32 0 

Stage 2 First D_Block: 
D Conv          

D_S Conv                     

 

3 × 3, 64 

3 × 3, 64 

 

21 × 21, 64 

21 × 21, 64 

 

576 

640 

Second D_Block: 

D Conv          

D_S Conv                     

 

3 × 3, 64 

3 × 3, 64 

 

21 × 21, 64 

21 × 21, 64 

 

576 

640 

Max-Pooling 3 × 3, stride 2 𝒀𝟐:    11 × 11, 64 0 

Stage 3 First D_Block: 

D Conv          

D_S Conv                     

 

3 × 3, 128 

3 × 3, 128 

 

11 × 11, 128 

11 × 11, 128 

 

1152 

1253 

Second D_Block: 

D Conv          

D_S Conv                     

 

3 × 3, 128 

3 × 3, 128 

 

11 × 11, 128 

11 × 11, 128 

 

1152 

1253 

Max-Pooling 3 × 3, stride 2 𝒀𝟑:    6 × 6, 128 0 

Stage 4 First D_Block: 

D Conv          

D_S Conv                     

 

3 × 3, 256 

3 × 3, 256 

 

6 × 6, 256 

6 × 6, 256 

 

2304 

2560 

Second D_Block: 

D Conv          

D_S Conv                     

 

3 × 3, 256 

3 × 3, 256 

 

6 × 6, 256 

6 × 6, 256 

 

2304 

2560 

Max-Pooling 3 × 3, stride 2 𝒀𝟒:    3 × 3, 256 0 

Stage 5 First D_Block: 

D Conv          

D_S Conv                     

 

3 × 3, 512 

3 × 3, 512 

 

3 × 3, 512 

3 × 3, 512 

 

4608 

5120 

Second D_Block: 

D Conv          

D_S Conv                     

 

3 × 3, 512 

3 × 3, 512 

 

3 × 3, 512 

3 × 3, 512 

 

4608 

5120 

Max-Pooling 3 × 3, stride 2 𝒀𝟓: 1 × 1, 512 0 

Global Pooling GP1 21 × 21 𝒀𝟏𝒈: 1 × 1, 32 0 

GP2 11 × 11 𝒀𝟐𝒈: 1 × 1, 64 0 

GP3 6 × 6 𝒀𝟑𝒈: 1 × 1, 128 0 

GP4 3 × 3 𝒀𝟒𝒈: 1 × 1, 256 0 

Concatenation C  𝒀𝑪: 1 × 1, 992 0 

Fully Connected  

layer 

FC-1 

FC-2 

FC-3 

FC-4 

FC-5 

FC-Final 

256-D 

256-D 

256-D 

256-D 

256-D 

256-D 

𝒀𝑭𝑪𝟏:  256 

𝒀𝑭𝑪𝟐:  256 

𝒀𝑭𝑪𝟑:  256 

𝒀𝑭𝑪𝟒:  256 

𝒀𝑭𝑪𝟓:  256 

𝒀𝑶:  256 

3612672 

1982464 

1179648 

589824 

131072 

253952 
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Figure 4.2: Proposed network architecture for pore feature extraction and representation. 
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4.2.2 Segment 2: Pore Matching 

At this point, we have pore representations of all the pores in the query image and those 

of all the pores in a template image resulting from Segment 1 of Module 2. In this section, we 

present a technique for matching a pore from the query image with a pore from the template 

image using their feature representations. 

The most common method of matching two entities represented by N-dimensional 

vectors, 𝑨 and 𝑩, is to compute the Euclidean distance (𝐸𝐷) between them:  

𝐸𝐷(𝑨,𝑩) = √∑ (𝑨𝑛 − 𝑩𝑛)2𝑁
𝑛=1                                                (4.1) 

and use it to determine the similarity between them. An N-dimensional vector represents a point 

in an N-dimensional space. Fig. 4.3 (a) shows an example of the Euclidean distance matric 

between two 2-dimensional vectors 𝑨 and 𝑩. The highest similarity between the two vectors 

occurs when both of them are represented by the same point in N-dimensional space, meaning 

that the value of 𝐸𝐷 is 0. However, 𝐸𝐷, as defined by equation (4.1), is not a very effective 

metric to determine the degree of similarity between two vectors, since this metric ignores the 

orientation of the vectors. To illustrate this point, we consider an example in 2-dimensional 

space, shown in Fig. 4.3 (b), in which we are interested in determining the degrees of similarities 

of two vectors 𝑷 and 𝑸 with the vector 𝑴. It is seen from this figure that 𝐸𝐷(𝑴,𝑷)= 

𝐸𝐷(𝑴,𝑸) = 3, meaning that both 𝑷 and 𝑸 are equally similar to the vector 𝑴.  

Another metric, known as triangle similarity metric [125], that has been used to measure 

the similarity between the two vectors 𝑨 and 𝑩 is the area of the triangle formed by these two 

vectors.  

𝑇𝑆(𝑨,𝑩) =
|𝑨||𝑩| sin(𝜃)

2
                                                (4.2) 

where |𝑨| = √∑ 𝑨𝑛
2𝑁

𝑛=1  , |𝑩| = √∑ 𝑩𝑛
2𝑁

𝑛=1   , an 𝜃 = 𝑐𝑜𝑠−1 (
∑ 𝑨𝑛.𝑩𝑛

𝑁
𝑛=1

|𝑨||𝑩|
 )d. Fig. 4.3 (a) also 

shows the area between vectors 𝑨 and 𝑩 representing the value of the 𝑇𝑆 metric. As with the 

Euclidean distance, 𝑇𝑆 metric also approaches zero as the two vectors approach each other, 

meaning that the two vectors become increasingly more similar, and the highest similarity is 

achieved when the two vectors overlap. However, the 𝑇𝑆 metric has the same problem as 𝐸𝐷 
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metric, in that 𝑇𝑆 metric may provide the same value for the similarity of two distinct vectors 𝑷 

and 𝑸 with respect to 𝑴. Fig. 4.3 (c) shows an example of such a situation. It is seen from this 

figure that even though 𝑷 and 𝑸 are distinct vectors, 𝑇𝑆(𝑴,𝑷)= 𝑇𝑆(𝑴,𝑸) = 1, meaning that 

both vectors 𝑷 and 𝑸 are equally similar to the vector 𝑴 in term of triangle similarity.  

However, it is seen from the example of Fig. 4.3 (b) that even though 𝐸𝐷(𝑴,𝑷)= 

𝐸𝐷(𝑴,𝑸) = 3, 𝑇𝑆(𝑴,𝑷) = 2.4 and 𝑇𝑆(𝑴,𝑸) = 4.85. Similarly, from Fig. 4.3 (c), it is seen 

that even though 𝑇𝑆(𝑴,𝑷)= 𝑇𝑆(𝑴,𝑸) = 1, 𝐸𝐷(𝑴,𝑷) = 2.96 and 𝐸𝐷(𝑴,𝑸) = 1.63. This 

implies that in the case of two distinct vectors 𝑷 and 𝑸, their similarities with respect to 𝑴 are 

not the same in terms of both the 𝐸𝐷 and 𝑇𝑆 metrics simultaneously. Also, we may have a 

situation such as the one shown in Fig. 4.3 (d) where 𝑷 is more similar to 𝑴 than 𝑸 in terms of 

𝐸𝐷, whereas 𝑸 is more similar to 𝑴 than 𝑷 in terms of 𝑇𝑆.  

Sector area similarity (𝑆𝑆) is another measure of similarity between two vectors 𝑨 and 𝑩 

introduced in [126]. It is defined as the area of a section of a circle of radius (𝐸𝐷 + 𝑀𝐷) with 

angle 𝜃 (see Fig. 4.3 (e)): 

𝑆𝑆(𝑨,𝑩) = 𝜋. (𝐸𝐷(𝑨,𝑩) +    𝑀𝐷(𝑨,𝑩))
2
. (

𝜃

360
)                  (4.3) 

where 𝑀𝐷 is the absolute value of the difference between the magnitude of vector 𝑨 and that of 

vector 𝑩, and is given by: 

𝑀𝐷(𝑨,𝑩) =  |√∑ 𝑨𝑛
2𝑁

𝑛=1 − √∑ 𝑩𝑛
2𝑁

𝑛=1 |                                         (4.4) 

Fig. 4.3 (e) shows the sector area representing the value of the 𝑆𝑆 metric. As 𝑨 

approaches 𝑩, 𝐸𝐷 + 𝑀𝐷 → 0 and 𝜃  → 0, and therefore, 𝑆𝑆 metric approaches zero. In this 

measure, if we have two distinct vectors 𝑷 and 𝑸, we can’t have 𝑆𝑆 (𝑷,𝑴)  =  𝑆𝑆 (𝑸,𝑴) unless 

the vectors 𝑷 and 𝑸 are symmetrically located with respect to the vector 𝑴 and they have the 

same magnitude. However, in the case of similarity measures of 𝐸𝐷 and 𝑇𝑆, there are other 

situations in which 𝐸𝐷 (𝑷,𝑴)  =  𝐸𝐷 (𝑸,𝑴) 𝑜𝑟 𝑇𝑆 (𝑷,𝑴)  = 𝑇𝑆 (𝑸,𝑴).  

Hence, in the case of using 𝑆𝑆 measure, the only deadlock situation of determining as to 

which of the two vectors 𝑷 and 𝑸 is more similar to the vector 𝑴 is only when 𝑷 and 𝑸 are of 

equal magnitude and symmetrically located with respect to 𝑴. While the 𝑇𝑆 measure 
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emphasizes the geometric relationship formed by the magnitudes of two vectors 𝑨 and 𝑩 and the 

angle between them, the 𝑆𝑆 measure provides a more comprehensive geometric assessment by 

incorporating both the Euclidean distance and the magnitude difference information between the 

vectors 𝑨 and 𝑩, in addition to the angle between them. However, 𝑆𝑆 lacks the information on 

the magnitudes of the two vectors individually, which is contained in the 𝑇𝑆 measure. Therefore, 

a suitable combination of these two measures can be expected to capture various geometric 

characteristics of the vectors 𝑨 and 𝑩, providing a more accurate similarity between them, and 

thus resulting in reducing the number of deadlock cases discussed above. In [126], a combination 

of the triangle similarity and sector similarity measures has been proposed for measuring the 

similarity levels among the documents. This metric is defined as 

𝑇𝑆_𝑆𝑆(𝑨,𝑩) =  𝑇𝑆(𝑨,𝑩). 𝑆𝑆(𝑨,𝑩)                                            (4.5) 

As an illustration of the comparison of the various similarity measures discussed in this 

section, we apply these measures to the vectors in Figs. 4.3 (b), (c) and (d) and determine wither 

or not 𝑷 is more similar to 𝑴 than 𝑸. The results of the comparison are given in Table 4.2. It is 

seen from this table that the conclusions reached by applying 𝑇𝑆_𝑆𝑆 measure always align with 

the majority of the conclusions reached by the other three similarity measures.  

Table 4.2: Similarity measure to the vectors 𝑴, 𝑷 and 𝑸 in Figs. 4.3 (b), (c) and (d). 

Figure 𝐸𝐷 measure 𝑇𝑆 measure 𝑆𝑆 measure 𝑇𝑆_𝑆𝑆 measure 

4.3 (b) 𝑷,𝑸 𝑷 𝑷 𝑷 

4.3 (c) 𝑸 𝑷,𝑸 𝑸 𝑸 

4.3 (d) 𝑷 𝑸 𝑷 𝑷 

 

For the example shown in Fig. 4.3 (b), 𝑇𝑆_𝑆𝑆(𝑴,𝑷) = (2.4) ∙ (3.53) = 8.47 and 

𝑇𝑆_𝑆𝑆(𝑴,𝑸) = (4.85) ∙ (4.13) = 20.03. Thus, using 𝑇𝑆_𝑆𝑆 measure, 𝑷 is more similar to 𝑴 than 

𝑸. In Fig. 4.3 (c), 𝑇𝑆_𝑆𝑆(𝑴,𝑷) = (1) ∙ (5.71) and 𝑇𝑆_𝑆𝑆(𝑴,𝑸) = (1) ∙ (2.29) which indicate that 

𝑸 is more similar to 𝑴 than 𝑷. Finaly, for Fig. 4.3 (d), 𝑇𝑆_𝑆𝑆(𝑴,𝑷) = 1.16 < 𝑇𝑆_𝑆𝑆(𝑴,𝑸) = 

3.26. These results can consider 𝑇𝑆_𝑆𝑆 as a more accurate representation of the true similarity 

between vectors. In order to prevent numerical instability when dealing with very small angles 

that are extremely close to 0o or 180o, an epsilon (ε) adjustment is typically added to the angle 
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value in both 𝑇𝑆 and 𝑆𝑆 leading to 𝜃′ = 𝜃 + ɛ. In this case, 𝑇𝑆_𝑆𝑆 will designate a similarity of 

0 only when both 𝐸𝐷 and 𝑀𝐷 equal 0, indicating identical vectors in both direction and 

magnitude, signifying the maximum possible similarity between two vectors. 

                                                                          

           (a)                                                       (b)                                                                  (c) 

 

   (d)                              (e) 

Figure 4.3: Similarity Algorithms. (a) Euclidean Distance and Triangle Similarity. (b) Example 

of 𝐸𝐷 drawback. (c) Example of Triangle Similarity drawback. (d) Example of two vectors 𝑷 

and 𝑸 having different 𝐸𝐷 and 𝑇𝑆 to vector 𝑴. (e) Triangle Similarity-Sector Similarity 

(𝑇𝑆_𝑆𝑆). 

In view of the above discussions and observations, we apply the 𝑇𝑆_𝑆𝑆 metric as a 

measure of similarity for matching a query pore with a template pore. Using this measure, the 

similarity between the feature representation of a pore in 𝑷𝑭𝑸 corresponding to a query image 

with each of the feature representations of all the pores 𝑷𝑭𝑻 corresponding to a template image 

is computed by following the steps given below:   

1. The similarity between the feature representation 𝑷𝑭𝑸𝒊
 of the ith pore in the query image and that 

of 𝑷𝑭𝑻𝒋
 of the jth pore in the template image is computed, using the 𝑇𝑆_𝑆𝑆 similarity measure 

given by (4.5) as 

𝑆𝑖𝑗 = 𝑇𝑆_𝑆𝑆 (𝑷𝑭𝑸𝒊
, 𝑷𝑭𝑻𝒋

) , i = 1,2,… ,𝑵;  j = 1,2,… ,𝑴                    (4.6) 
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2. For the pore features representation 𝑷𝑭𝑸𝒊
, there is a set {𝑆𝑖1, 𝑆𝑖2, … , 𝑆𝑖𝑀} of 𝑀 values, 

corresponding to the 𝑀 pores in the template image, for the similarity measures. Assuming that 

𝑆𝑖
𝑚 is the smallest value in this set, we can form a set of the similarity measures of all the pores 

in the query image as    

𝑆𝑚 = 

[
 
 
 
 
𝑆1

𝑚

⋮
𝑆𝑖

𝑚

⋮
𝑆𝑁

𝑚]
 
 
 
 

                                                                      (4.7) 

3. The above vector of the minimum similarity values corresponding to 𝑁 pores in the query image 

are then averaged to obtain a threshold value 𝛿 as 

𝛿 =  
∑ 𝑆𝑖

𝑚𝑁
𝑖=1

𝑁
                                                                (4.8) 

4. The ith pore in the query image is considered to be matched with the jth pore in the template 

image if 𝑆𝑖𝑗   <   𝛿 then the coordinates of the pores pair (i, j) is included in the pore 

correspondence set 𝐶. At the end of the matching process, if K pairs of pores are found to be 

matched, then 𝐶 will have K pairs or coordinates, 𝑐1, 𝑐2 , … , 𝑐𝐾 .  The pore correspondence set 𝐶 

is the output of the pore matching segment of Module 2 and is used as the input of Segment 3 of 

the module for pore matching refinement in order to obtain refined correspondence set RC.  

4.3 Experimental Results of the Proposed Module 2 

In this section, the proposed scheme for pore feature extraction and matching scheme is 

experimentally validated. First, the details of the dataset used, the procedure used for the training 

of the proposed network and the figures of merit employed for the performance evaluation of the 

proposed and the other schemes used for comparison are described. Then, the results of the 

various experiments performed on the proposed pore-based fingerprint recognition scheme are 

presented and analyzed, and its performance is compared with that of the existing state-of-the-art 

schemes. 

4.3.1 Training Details and Evaluation Procedure for the Proposed Module 2 

In our experiments, images from the PolyU High-Resolution-Fingerprint (HRF) database 

are used for the training and testing of the proposed network and for the performance evaluation 
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of the proposed fingerprint recognition scheme. The database has two sets of high-resolution 

(1200 dpi) fingerprint images referred to as DBI and DBII. DBI consists of 210 training images 

(DBI-training) from 35 fingers each with 6 different impressions, and 1,480 testing images (DBI-

test) from 148 fingers each with 10 different impressions. The size of the fingerprint images in 

the DBI dataset is 320×240 pixels. DBII dataset contains 1,480 images from 148 fingers each 

with 10 different impressions. The size of the fingerprint images in this dataset is 640×480 pixels 

and all the images in this dataset are used for testing. The images of the same finger in both sets 

were collected in two sessions (separated by about two weeks), each capturing 50% of the 

impressions of the same fingers. 

The fingerprint images in the DBI-training dataset are further partitioned randomly into 

80% training (query) and 20% validation (template) images. In the proposed network, each pore 

patch of a finger is classified into one of the n different classes, where n is the maximum number 

of pores that have been captured in at least one of the impressions of the finger. For a training or 

test image, a patch of size 𝑝 × 𝑝 ( 𝑝 = 31), centered at the centroid of the pore, is formed for 

each of the pores detected in Module 1. The total number of patches for all the training images 

combined together in the DBI-training is 85,410 patches. In the testing phase, the network 

outputs a pore feature representation with a 256-dimensional vector corresponding to a single 

pore from the query fingerprint image. Once the feature representations of all the pores of the 

query fingerprint image and a template fingerprint image have been obtained, these 

representations are used to determine their similarities using pore matching and refinement 

schemes of Module 2.  

For the training of the proposed network, deep supervision [124] is employed in a multi-

task learning framework by making the network’s parameters learned using a cost function 

which is the total of the weighted losses making use of the output maps 

𝒀𝐹𝐶1, 𝒀𝐹𝐶2, 𝒀𝐹𝐶3, 𝒀𝐹𝐶4, 𝒀𝐹𝐶5 at the intermediate layers, as well as the output map 𝒀𝑜 at the final 

layer, 

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = ∑ 𝛼𝑘𝐿𝑜𝑠𝑠𝑖𝑑𝑘
+6

𝑘=1 𝛽𝑘𝐿𝑜𝑠𝑠𝑣𝑟𝑘
                       (4.9) 

where 𝐿𝑜𝑠𝑠𝑖𝑑𝑘
 and 𝐿𝑜𝑠𝑠𝑣𝑟𝑘

 are the identification and verification loss functions at the 𝑘th stage, 

and 𝛼𝑘 (𝛽𝑘) are the weights used for the loss function 𝐿𝑜𝑠𝑠𝑖𝑑𝑘
 (𝐿𝑜𝑠𝑠𝑣𝑟𝑘

) that allow to have a 



 

94 
 

fine-grained control over the relative importance of the identification (verification) loss between 

the various stages. These weights are set with ∑ 𝛼𝑘
6
𝑘=1 = 1 (∑ 𝛽𝑘

6
𝑘=1 = 1 ) to give the best 

performance for Module 2. 

For the construction of the identification loss function at the kth stage, the map at the kth 

stage (𝒀𝐹𝐶1, 𝒀𝐹𝐶2, 𝒀𝐹𝐶3, 𝒀𝐹𝐶4, 𝒀𝐹𝐶5 𝑜𝑟 𝒀𝑜)  is flattened and fed to a fully connected dense layer 

followed by an n-way Softmax layer [127], which outputs the predicted probability distribution 

 𝑝�̂�𝑖 (i = 1,…,n)over the n classes. The identification loss function is computed using cross-

entropy as 

𝐿𝑜𝑠𝑠𝑖𝑑 = −∑ 𝑝𝑏𝑖  log  𝑝�̂�𝑖
𝑛
𝑖=1                                                      (4.10) 

where 𝑝𝑏𝑖 is the target probability distribution. 𝑝𝑏𝑖 = 0 for all i except for i=t, the target class, 

when 𝑝𝑏𝑡 = 1.  

The purpose of the verification loss function is to minimize the difference between 

feature representations of the same pore class and maximize the difference between feature 

representations of different pores classes. We adopt the loss function proposed by Hadsell et al. 

[128], which uses the L2 norm, and is given by 

𝐿𝑜𝑠𝑠𝑣𝑟 (𝑷𝑭𝑸𝒊
, 𝑷𝑭𝑻𝒋

, 𝑦𝑖𝑗) =  {
‖𝑷𝑭𝑸𝒊

− 𝑷𝑭𝑻𝒋
‖

2
                                      𝑖𝑓 𝑦𝑖𝑗 = 1

 max {0, (𝑚 − ‖𝑷𝑭𝑸𝒊
− 𝑷𝑭𝑻𝒋

‖
2
)}             𝑖𝑓 𝑦𝑖𝑗 = −1

     (4.11) 

where 𝑦𝑖𝑗  is a variable that has values of 1 or -1 depending on wither 𝑷𝑭𝑸𝒊
 and 𝑷𝑭𝑻𝒋

 belong to 

the same or two different classes, and 𝑚 is a positive number insuring that the L2 norm to be 

larger than 𝑚 when the two pores do not belong to the same class.  For our problem, a value of 

𝑚 = 1 has been found to be a suitable value for the margin between  𝑷𝑭𝑸𝒊
 and 𝑷𝑭𝑻𝒋

 when the 

two pores do not belong to the same class. 

We employ the stochastic gradient descent (SGD) algorithm with the Nesterov 

acceleration module [118] to update the parameters and minimize the loss. Data augmentations 

[116] of the patches through their rotations by 90o and 180o, flipping and Gaussian blurring are 

utilized to enrich the training dataset and enhance the generalization capability of the network. In 

the training phase, the initial learning rate and the momentum parameter are set as 0.9 and 0.1, 
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respectively. The learning rate is decreased by 0.01 after every 10 epochs until the 100 epochs 

after which it is fixed to a value of 0.01. The network is trained with a batch size of 256 and a 

maximum number of 500 epochs. The experiments are performed in a Python environment on a 

supercomputer as illustrated in chapter 3 (section 3.4.1). 

The figures of merit that are used for the performance evaluation are as follows:  

4. Equal error rate (EER) is used to predetermine the threshold values for its false matching 

rate (FMR) and its false-negative matching rate (FNMR). When the rates are equal, the 

common value is referred to as the EER. The value indicates that the proportion of false 

matching is equal to the proportion of false-negative matching. The lower the equal error rate 

value, the higher the accuracy of the fingerprint recognition system.  

5. False matching rate 1000 (FMR1000) indicates the lowest FNMR when FMR ≤ 0.1. The 

lower the FMR1000 value, the higher the accuracy of the scheme. 

6. The quantity of parameters employed within the network and the number of FLOPs denote 

the computational expense of the CNN network. 

We apply the same procedure to evaluate and compare with the proposed scheme as used 

by other works for fingerprint recognition schemes in the literature. For DBI-test and DBII 

datasets, each fingerprint image of the same finger in the first session (a total of five images for 

each finger) is matched against all the five fingerprint images of the same finger in the second 

session to compute the FNMR with a total of 3700 genuine matches. On the other hand, the first 

fingerprint image of each finger in the second session is matched against the first fingerprint 

images of the other fingers from the first session to compute the FMR with a total of 21,756 

imposter matches. 

4.3.2 Performance Evaluation of the Proposed Scheme 

The objective of this subsection is to study the performance of the proposed pore-based 

fingerprint recognition scheme and compare it with that of other schemes in the literature. We 

conduct this study in three parts. In the first part, we study the impact of the pore patch size from 

the fingerprint images on the performance of the proposed module. In the second part, we study 

the impact of replacing either the proposed network or the proposed pore matching method of the 

proposed Module 2 with the one used in other neural network-based modules. The computational 
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times of the network Segment (Segment 1) and the pore matching method segment (Segment 2) 

of the proposed module along with its network complexity, in terms of the number of parameters 

and the number of FLOPs, are also compared with those of the other network-based modules. In 

the third part, we compare both the quantitative and qualitative performance of the proposed 

scheme with those of the other schemes that are neural network-based or otherwise.  

4.1 Experimental Results – Part 1 

In this subsection of our experiments, we examine the impact of the patch size used by 

the proposed CNN on the overall performance of our fingerprint recognition scheme. We 

perform the experiments on the proposed module by using different values of the patch size 𝑝, 

𝑝 = 19, 25, 31 𝑎𝑛𝑑 41, corresponding to each of the pores detected from a fingerprint image by 

Module 1. Table 4.3 lists the EER values of the fingerprint recognition result as well as the 

number of FLOPs required by the network using the images of DBI-test dataset for the different 

patch sizes. Fig. 4.4 shows the ROC (FMR vs FNMR) curves for the five different patch sizes. It 

is seen that the networks with input pore patch sizes of 31×31 and 41×41 pixels provide very 

close results in terms of ROC performance. It is seen from the results of Table 4.3 and Fig. 4.4 

that the increase in the patch size beyond 31×31 results in a modest improvement in the 

performance of the network with a high computational cost in terms of the number of FLOPs. 

Therefore, 31×31 is the optimum patch size for the best performance of the proposed module.  

 

Table 4.3: Performance of the proposed module with different pore patch sizes evaluated on the 

DBI-test dataset. 

  Patch size  

 19× 19 25 × 25 31 × 31 41 × 41 

EER 4.33 2.23 1.02 1.00 

Number of 

FLOPs 

2.58M 5.05M 6.18M 11.9M 
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Figure 4.4: ROC curves of the proposed module for different input pore patch sizes. 

 

4.2 Experimental Results – Part 2 

In this subsection, we study the impact of using different schemes for Module 1 (Chapter 

3) as well as using different schemes for Segments 1 and 2 of Module 2 on the overall 

performance of a fingerprint recognition system. Table 4.4 provides the results of this study in 

terms of the performance metric EER. The results in this table are divided into four blocks. In the 

first block, we present the EER results of our proposed fingerprint recognition scheme (that uses 

the scheme of Chapter 3 for Module 1 and Segments 1 and 2 of the proposed Module 2) as well 

as that of the CNN-based fingerprint recognition schemes of [63] and [64]. It is seen from the 

results of this block of the table that the proposed scheme significantly outperforms the CNN-

based schemes of [63] and [64] for both the DBI-test set and DBII test dataset. The second block 

of the table provides the EER performance in which Module 1 of  [63] and [64] has been 

replaced by the module proposed in Chapter 3 while Module 2 is kept the same as those 

proposed in [63] and [64]. It is seen from this block of the table that both [63] and [64] can 

improve their performances by replacing their Module 1 with the proposed pore detection 

module (Chapter 3) for both the datasets. However, the performance of both these schemes still 

remains inferior to that of our proposed scheme. The third and fourth blocks of the table present 

the EER performance, where only Segment 1 or only Segment 2 of Module 2 in [63] and [64], 

has been replaced by the corresponding segment of our proposed Module 2, while keeping the 
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other segment of Module 2 as well as Module 1 to be the same as those proposed in [63] and 

[64]. It is seen from the results of these two blocks of Table 4.4 that the schemes of [63] and [64] 

can again benefit significantly if only one of the two segments, Segment 1 or Segment 2, is 

replaced by the corresponding segment of our proposed scheme. However, it is noted that even 

with just modifications in the schemes of [63] and [64], their performance still remains 

significantly lower than that of our proposed scheme for both the datasets.  

From the results of Table 4.4, it can be concluded that the proposed fingerprint recognition 

system, that consists of the proposed Modules 1 and 2, significantly outperforms the other two 

CNN-based fingerprint recognition systems, [63] and [64], reported in the literature, and that 

these two schemes can improve their performance substantially by replacing their segments of 

Module 2, or Module 1 or 2 totally by the ones used in the proposed scheme for fingerprint 

recognition system.   

Table 4.4: Performance comparison of the proposed scheme and the CNN-based schemes of [63] 

and [64] on DBI-test set and DBII test dataset without using pore matching refinement. 

Module EER 

Module 1 

Fingerprint Pore Detection 

Module 2 

Pore Feature Extraction and Matching 

DBI-test 

 

DBII 
Segment 1 

Pore Feature Extraction  

and  

Representation Network 

Segment 2 

Pore Matching 

Proposed Module 1 Proposed  Proposed 1.02 0.094 

[63] [63] [63]     2.91  0.57 

[64] [64] [64]     1.82 1.21 

Proposed Module 1 [63] [63]     2.59 0.53 

Proposed Module 1 [64] [64] 1.69 1.15 

[63] Proposed [63]     1.98 0.5 

[64] Proposed [64] 1.48 0.87 

[63] [63] Proposed 2.51 0.51 

[64] [64] Proposed    1.62 1.01 
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Table 4.5 provides the average run times per fingerprint image match of the proposed 

scheme and that of the schemes of [63] and [64], taken by the respective neural networks 

(Segment 1 of Module 2) and by the pore matching methods (Segment 2 of Module 2) 

individually and together, as well as the complexity of the networks in terms of the number of 

parameters and the number of FLOPs. All the neural network-based modules have been 

implemented in the same software and hardware environments as stated in Section 3.4.1. It is 

seen from this table that for both the datasets, the processing time of the neural network of [63] is 

lower than that of [64] in view of the simplicity of the latter network. However, the network of 

the proposed module takes significantly less time in comparison to the times taken by either of 

the other two networks. It is also seen from this table that the proposed pore matching method 

and the method in [64] take about the same time which is much lower than the time taken by the 

method in [63]. This is so in view of the fact that the method in [63] requires finding the pores in 

the template fingerprint image with the best and the second-best match with a pore in the query 

fingerprint image, while the method in [64] uses a less time-consuming procedure similar to that 

used by the proposed method. It must also be pointed out that even though the times taken by the 

proposed pore matching method and pore matching method of [64] are similar, the proposed 

matching scheme results in an accuracy that is higher than achieved by using the matching 

scheme of [64]. In order to show this, in our proposed fingerprint recognition system, we replace 

the pore matching method with the one used in [64] and obtain lower EER values of 1.23 and 

0.108 from the resulting system for DBI-test set and DBII test dataset, respectively. Despite the 

fact that the network used by the proposed scheme has a smaller processing time and provides 

more accurate performance results, its complexity in terms of the number of parameters utilized 

and the number of FLOPs consumed by its network is quite impressive. The number of 

parameters utilized, and the number of FLOPs consumed by the network of the proposed module 

is only ~33% and ~17%, respectively, of that utilized and consumed by the network of [64], the 

best performing neural network-based fingerprint recognition system exiting in the literature. 
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Table 4.5: Comparison of average time per match (in milli-seconds) and network complexity of 

the proposed scheme and the CNN-based schemes of [62] and [63] on DBI-test set and DBII test 

dataset. 

  [63] [64] Proposed module 

 Neural Network (Segment 1 of Module 2) 1.95 2.51 1.38 

DBI-test set Pore matching method (Segment 2 of Module 2)  2.84 1.08 1.10 

 Total 4.79 3.59 2.48 

 Neural Network (Segment 1 of Module 2) 4.61 7.84 3.99 

DBII test dataset Pore matching method (Segment 2 of Module 2) 5.88 3.49 3.54 

 Total 10.49 11.33 7.53 

Number of Network Parameters 2.99M 875.68k 291,018 

Number of FLOPs used by Network 134.62M 35.8M 6.18M 

 

4.3 Experimental Results – Part 3 

In this subsection of our experimental study, we compare the quantitative and qualitative 

performance of the proposed pore-based fingerprint recognition system with that of both the 

traditional and neural network-based schemes. The traditional schemes that are used for 

comparison are those reported in [38], [50], [51], [52], [53], [71], [73], [129], [130], whereas the 

neural network-based schemes are the same as those used in Table 4.6, i.e., the schemes of [63] 

and [64]. Table 4.6 gives the pore-based fingerprint recognition accuracy in terms of EER and 

the FMR1000 provided by the various schemes for DBI-test set and DBII test dataset. Note that 

some of the traditional schemes have provided their performance results without pore matching 

refinement and these schemes are so indicated by marking them with an asterisk (*). It should 

also be noted that the performance results of our proposed scheme in this table have been 

provided both without using a pore matching refinement scheme and using three different kinds 

of pore matching refinement schemes, namely, RANSAC [131], WRANSAC [106] and graph 

refinement [54]. It is seen from this table that the performance results provided by the proposed 

scheme, even without using a pore matching refinement scheme significantly outperform all the 

other existing fingerprint recognition schemes used for comparison in this table.  

The performance results of our proposed fingerprint recognition scheme are further 

improved by using one or the other pore match refinement scheme, with the highest performance 
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results been achieved using the graph refinement scheme. Fig. 4.5 shows the plots of the FNMR 

vs FMR ROC curves for the proposed scheme and the other two neural network-based schemes 

of [63] and [64], as well as those for the best performing traditional scheme of [53]. Note that for 

DBI-test dataset, the ROC curve resulting from the scheme of [63] shows lower FNMR values 

for the FMR values greater than 0.0021 compared to that for DBII test dataset for which the 

scheme of [63] provides lower values of FNMR for the entire range of FMR values. However, it 

is seen from this figure that the proposed scheme provides a lower value for FNMR for any value 

of FMR compared to that provided by the two CNN-based schemes of [63] and [64] as well as 

that provided by the traditional scheme of [53] for both the test sets. Therefore, in terms of the 

ROC curves as well, the proposed scheme can be regarded as having the best performance.  

Table 4.6: EER and FMR 1000 performance comparison on the test datasets against state-of-the-

art methods. 

Module DBI-test DBII 

 EER FMR 1000 EER FMR 1000 

MICP [38]* 30.45 N/A 7.83 N/A 

Greedy Matching [129]* 17.67 N/A 0.72 N/A 

DP [50] 15.42 N/A 7.05 N/A 

Spare Representation +DP [71] 6.59 N/A 0.97 N/A 

TDSWR [51]  3.25 11.07 0.53 4.07 

SIFT [73]* 3.74 N/A 0.76 N/A 

Multi-features + TDSWR [130] 2.17 N/A 0.17 N/A 

Data-driven descending algorithm [52]* 1.73 6.93 0.51 2.01 

Root-SIFT feature and edge descriptor [53] 1.86 3.92 0.12 0.21 

PoreNet [63] without refinement 2.91 5.42 0.57 0.96 

DeepPoreID [64] without refinement 1.82 8.83 1.21 9.72 

PoreNet [63] + RANSAC [131] 2.27 4.72 0.24 0.4 

DeepPoreID [64] + WRANSAC [106]  1.42 7.69 0.51 4.05 

Proposed module with no refinement 1.02 1.63 0.094 0.11 

Proposed module + RANSAC [131] 0.99 1.58 0.092 0.1 

Proposed module + WRANSAC [106] 0.97 1.44 0.09 0.095 

Proposed module + Graph refinement [54] 0.85 1.00 0.061 0.059 

* Traditional schemes without using pore matching refinement. 
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    (a) 
 

 
(b) 

Figure 4.5: ROC curves of the proposed scheme and the schemes of [53], [63] and [64] for (a) 

DBI_test set, (b) DBII test dataset. 

In Fig. 4.6, we provide a visual illustration of pore matching between a pair of genuine 

fingerprint images and also between a pair of imposter fingerprint images. For the purpose of this 

illustration, we have selected two pairs of genuine fingerprints (rows 1 and 2 of Fig. 4.6) and two 

pairs of imposter fingerprints (rows 3 and 4 of Fig. 4.6). Columns 1, 2 and 3 are the results of 

matching the pores between the pairs of images provided by the schemes of [63] and [64], and 

the proposed scheme, respectively. It is seen from this figure that in the cases of genuine 

fingerprints, the proposed scheme is able to match a much larger number of true matching 

compared to that provided by the other two schemes, where as in the cases of imposter 

fingerprints, the proposed scheme does not match any of the pores between the pairs of the 
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images and the schemes of [63] and [64] falsely match 11 and 4 pairs of pores, respectively, in 

one pair, and 13 and 5 pairs of pores, respectively, in the other pair.  

   
             37 matched pores                       46 matched pores                      157 matched pores            

   
             25 matched pores                       31 matched pores                        89 matched pores  

  

   
           13 matched pores                          4 matched pores                           0 matched pores            

   
           12 matched pores                          5 matched pores                           0 matched pores   

 

Figure 4.6: Matching results of two genuine fingerprint pairs and two imposter fingerprint pairs 

using PoreNet [62] (left column), DeepPoreID [63] (middle column) and the proposed scheme 

(right column). 

Table 4.7 presents the average numbers of true and false pore matches per pair of genuine 

and imposter fingerprints, respectively, as obtained by using the proposed scheme and that of 

using the schemes of [63] and [64]. For genuine pairs of fingerprints, the proposed scheme has a 

significantly higher number of true pore matches (138 for DBI-test set and 951 for DBII test 

dataset) compared to that obtained by using the two schemes. At the same time, for imposter 

pairs of fingerprints, the proposed scheme has a much lower number of false pore matches (4 for 

DBI-test set and 6 for DBII test dataset) compared to that obtained using the schemes of [63] and 

[64]. These results again support the superior capability of the proposed scheme in fingerprint 

recognition. 
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Table 4.7: Average number of true and false pore matches per pair of genuine and imposter 

fingerprints. 

The average number per pair                              Test 

Dataset 

PoreNet 

[63] 

DeepPoreID 

[64] 

Proposed 

scheme 

True matches in genuine 

fingerprints 

DBI-test 57 82 138 

DBII 692 349 951 

False matches in imposter 

fingerprints 

DBI-test 33 25 6 

DBII 12 21 4 

 

4.4 Summary  

In this chapter, a low complexity, high performance pore feature extraction and matching 

module has been proposed. The module consists of three segments, a pore feature and 

representation segment, a pore matching segment, and a pore matching refinement segment. In 

the first segment, a neural network that generates a hierarchical features by employing depthwise 

and depthwise separable convolutional layers in a residual framework to produce a highly 

representable pore features has been designed. In the second segment, a new metric for 

measuring the similarity between the pore representations in the query and template fingerprint 

images has been developed. This metric is capable of measuring the differences between the two 

pores more accurately by incorporating the Euclidean distance, angle, and magnitude differences 

metrices in a composite metric. In the third segment, a graph-based refinement method, LTPM, 

has been deployed by removing falsely matched pair of pores from the pore correspondence list. 

Empirical examination of the proposed module has been conducted using PolyU High-

Resolution-Fingerprint database. The experimental results have demonstrated the superiority of 

the proposed module in terms of the recognition accuracy and network complexity over the 

traditional and to other CNN-based schemes.  
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Chapter 5 

Conclusion 
 

5.1 Concluding Remarks 

Fingerprints are one of the most widely used biometric traits in view of it significant 

advantages such as high security, affordability, and non-invasiveness. The use of fingerprints as 

identity evidence can be dated back to hundreds of years. Automated fingerprint recognition 

systems (AFRSs) have rapidly developed due to the advancement of computing power, 

fingerprint acquisition technology, and fingerprint processing algorithms. AFRSs are now 

deployed in both forensics and non-forensic applications. The capacity of fingerprints to 

distinguish different persons depends highly on the discriminative features that can be extracted 

from the captured fingerprint images. 

Fingerprint features are generally divided into three levels, known as level-1, level-2 and 

level-3 features, according to their scales. level-1 features refer to the ridge patterns. Level-2 

features refer to the minutiae points, such as bifurcations and ending of the ridges. Level-3 

features refer to the fine details associated with the ridges, such as ridge contour, pore, dots and 

incipient ridges. Although level-1 and level-2 features have been commonly used for fingerprint 

recognition, the distinctiveness of level-1 features is not sufficient for the recognition of the 

fingerprint and the accuracy of the level-2 features for fingerprint recognition systems are 

compromised in view of the presence of only small number of minutiae points present in a 

fingerprint, especially in a partial fingerprint. 

In recent years, attention has been paid to the use of pore features (leve-3 features) for 

fingerprint recognition. This is in view of the fact that in the fingerprint, pore exist in large 

quantities and the advancement in the high-resolution imaging technology has made capturing of 

these pores feasible in fingerprints. Recent research efforts in pore-based fingerprint recognition 

systems have shifted towards utilizing neural networks, particularly CNNs, in view of their 

capability of automatic generation and extraction of pore features. The integration of neural 

networks into pore-based fingerprint recognition systems holds promise for diverse real-world 
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applications. However, the challenge lies in balancing accuracy with complexity in designing the 

network architectures for the purpose of fingerprint recognition. In addition, the available 

knowledge on the fingerprint pores such as variations in the statistics of the pore intensities from 

region to region, have not been taken into consideration and even the knowledge that is taken 

into consideration have not been used optimally. To address these challenges, in this thesis, a 

CNN-based pore fingerprint recognition system, consisting of a pore detection module and a 

pore feature extraction and matching module, has been developed. These modules leverage the 

design of a new neural network architectures, incorporate pore-specific knowledge to detect the 

pore centroids and develop and utilize a new metric to measure the similarity of the pores 

accurately. 

In the pore detection module of the proposed CNN-based pore fingerprint recognition 

system, the process of the proposed pore detection has been divided into two parts. In the first 

part, a neural network architecture has been developed to generate and extract low, middle and 

high level hierarchical features in a residual framework and then to fuse them to obtain a very 

rich set of pore features that lead to a highly representational pore intensity map. In this part, the 

goals of high-performance and low complexity have been achieved by designing the network 

based on depthwise convolutional layers. The focus in the second part of the pore detection 

scheme has been on the efficient use of the existing knowledge on fingerprint pores, such as the 

pore intensity, their variations from one region to another region of the fingerprint image and the 

minimum distance between two neighboring pores, in order to accurately determine the pore 

centroids from the pore intensity map.  

In the pore feature extraction and matching module of the proposed CNN-based pore 

fingerprint recognition system, a neural network architecture has been designed to generate 

hierarchical features efficiently, achieving a balance between performance and complexity using 

depthwise and depthwise separable convolutional layers. Then, a more accurate composite 

metric, encompassing the Euclidean distance, angle, and magnitudes difference between the two 

vectors representing the pore representations, has been introduced to measure the similarity 

between the pores of the query and template fingerprint images. 
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The proposed CNN-based pore fingerprint recognition scheme has been extensively 

experimented on the fingerprint images of the PolyU High-Resolution-Fingerprint database. The 

performance of the proposed scheme has been evaluated in terms of true and false pore detection 

rates, EER, FMR1000, the subjective quality of the detected pores as well as of the matched 

pores between the query and template fingerprints. The experimental results have demonstrated 

that each part of the first module and each segment of the second module have a significant 

impact on the performance of the proposed fingerprint recognition system. It has been seen that 

the performance of the proposed scheme is significantly superior to that of both the traditional 

and the state-of-the-art CNN-based schemes. Finally, it is worth mentioning that the highly 

superior performance of the proposed scheme has been achieved with the number of the 

parameters and the number of arithmetic operations employed by both the pore detection 

network and the pore feature extraction and representation network are only small fractions of 

those employed by the CNN networks used in other state-of-the-art CNN-based fingerprint 

recognition systems. 

 

5.2 Scope for Further Investigation  

The primary objective in designing the CNNs in this thesis is to learn hierarchical pore 

features, enabling the network to extract complex patterns and structures of the pores in the 

fingerprint images. Moreover, the use of the depthwise and depthwise separable convolution 

operations in designing the residual blocks of the proposed networks have significantly 

contributed to the complexity of the proposed networks and the overall accuracy of the proposed 

fingerprint recognition system. In this context, study can be undertaken to explore other 

architectures, such as graph neural networks [132] (GNNs), in the context of fingerprint 

recognition. GNNs are a class of neural networks that operate on graph-structured data, making 

them well-suited for tasks involving relational data. Since the data used for fingerprint 

recognition involve relational data, it would be worth investigating GNNs for the extraction and 

matching of pore features in fingerprints. 

The concept of triangle and sector similarity for pore matching in fingerprint recognition 

systems has been used in this thesis to measure the similarity of the pore representations between 

the query and template fingerprint images. This metric merges the Euclidean distance, angle and 
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magnitudes difference of vectors representing the pore features. In our proposed system of 

fingerprint recognition, matching of the pores has been carried out outside the network, which 

provides pore feature representation. It would be worth investigating a modification of the 

architecture of the proposed network that carries out the task of pore feature extraction and 

representation, so that the pore matching is done by the network itself. In this case, one can 

design a cost function that minimizes the distance between the genuine pores and maximizes the 

distance between the imposter pores using the proposed composite metric and employ such a 

cost function for the training for the network.     

While the use of graph-based refinement techniques for pore matching refinement has 

provided enhanced accuracy for the fingerprint recognition system, there remains scope for 

exploring alternative refinement strategies that could possibly result in further improving the 

recognition accuracy. One avenue would be to investigate the integration of a machine learning 

algorithm, such as reinforcement learning [133], into the pore matching refinement process. 

These algorithms can be trained to learn discriminative patterns and decision rules from large-

scale fingerprint datasets, enabling a more accurate identification and filtering of falsely matched 

pore pairs.  
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