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Abstract

Detection, Isolation, and Estimation of Cyber-Attacks in Presence of Faults

in Cyber-Physical Systems

Reza Bahrevar Fetideh

The security of Cyber-Physical Systems (CPS) has been the center of attention in the past

decades. Developing methodologies to detect or estimate cyber-attacks on sensor measurements

and actuator inputs is essential for ensuring the safe and reliable performance of these intercon-

nected systems of systems. Considering the stealthy nature of cyber-attacks, combined with po-

tential faults, additional challenges emerge, which this thesis addresses through the lens of control

theory.

In control theory, several methodologies have addressed the decoupling of unknown inputs,

such as faults and disturbances. However, the simultaneous presence of faults and cyber-attacks

presents challenges that are not fully developed in the context of CPS. The first part of this thesis

proposes a methodology, consisting of the construction of two plant-side monitoring filters to detect

and isolate faults and cyber-attacks including covert and zero dynamic attacks. The findings are

supported through analytical and simulation studies.

As the second challenge, a multi-rate approach is employed to estimate actuator cyber-attacks

in the presence of sensors and actuators faults in CPS. A plant-side fault monitoring filter is

augmented with the physical system, and its residual, along with the plant’s outputs, is sent to

C&C with a specified mechanism. Cyber-attacks are isolated from faults through the received

information in the C&C and a secondary observer. Consequently, a delayed Unknown Input Ob-

server (UIO) is constructed to estimate the actuator cyber-attack. The effectiveness of the proposed

methodology is evaluated through numerical case studies.
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Chapter 1

Introduction and Literature Review

Advancement and breakthroughs in the three realms of science, including system theory, com-

munication networks, and processing systems have enabled the manipulation of machinery and

information. Developments in information technology and digital systems accompanied by the ad-

vent of distributed embedded sensing, processing, and control made a revolutionary impact on var-

ious domains such as science, transportation, energy, and medical systems [32, 50]. The distributed

embedded systems established the framework for the integration of control, communication, and

computing, and the capacity for more efficient and reliable systems like intelligent power distri-

bution [101] and autonomous vehicles have increased. These types of network-reliant systems are

referred to as Cyber-Physical Systems (CPS).

As the field of CPS encompasses the diverse realms of science, it also absorbs all the obstacles

that pertained to them. CPS are subject to new threats by adversaries with financial, harmful, and

malicious motivations that would endanger the reliability and safety of these systems.

1.1 Security Issues in CPS

The reliability of CPS is entangled with the confidentiality, safety, and security of both phys-

ical and cyber parts. To detect and elevate the abnormality, it is beneficial to understand some of

the problems causing security breaches in cyber-physical systems. The data in the CPS network
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(a) (b)

Figure 1.1: Examples of CPS: Left an Unmanned Aerial vehicle [84] (a) and right side a Positive
Train Control (PTC) over a communication network [21] (b).

is transferred through packets of information with a specified destination, which is exposed to

tremendous dangers. The term packet sniffer is used to describe software and hardware that are the

cause of such threats. Wireshark, TCPDUMP, and soft perfect network analyzer are a number of

tools available for spying in the communication networks [86]. While non-encrypted communica-

tions are an easy target for packet sniffers, through the use of deciphering methods even encrypted

communications are not immune from leakages of data.

Deciphering encrypted communication between embedded systems is not a simple job, and it

is neither inconceivable. One of the common ways to access these encrypted information is side-

channel attacks, such as retrieving intelligence about the cryptographic operation, which can be

used for calculating the encryption key [7]. After gathering enough information about the system,

an adversary can perform a form of cyber-attack called the man-in-the-middle attack.

Security breaches such as packet sniffers, manipulation of physical components, denial of ser-

vice, man-in-the-middle attacks, side-channel attacks, and malicious code injection are causing

serious concerns in maintaining the safety of CPS. From the control point of view, these security

2



breaches directly or indirectly result in disruption or manipulation of the sensor measurements or

control outputs. For example, the adversary can utilize packet sniffers to gather information about

the system and design an offline cyber-attack [14, 32]. Adversaries with malicious or financial mo-

tives are persistently looking for unprecedented ways to breach the CPS systems, which signifies

the importance of devising robust and reliable schemes to counter cyber-attacks. The ultimate so-

lution leading to reliable system performance is plausible when an intelligent system is conceived

that can distinguish malicious abnormalities from the system’s faults.

As a real-world example, cyber-attacks on Maroochy Shire Council’s sewage control system

in Queensland [91] can be mentioned, where they caused a lot of confusion and false alarms,

such as flooding nearby hotel, park, and the river. Overall, through cyber-attacks, the adversary

aims to utilize his knowledge and access (or sometimes both) of the physical system, control, and

communication network to target the vulnerabilities in the CPS, and the objective of this thesis is

to propose methodologies that can counter the threats posed by them. In this thesis, tackling these

problems from the viewpoint of control theory is of main interest.

Two of the preliminary term in this topic are cyber-attacks and adversary. Here, an adversary is

someone who wants to endanger the availability, reliability, and integrity of the control system. A

cyber-attack is malicious data through which the attacker compromises the integrity of the outputs

or command inputs data. The attacker intends to target the vulnerabilities to deviate the states of

the system, create misleading data, and evade detection by the monitoring system.

Geneally a the defender must design a methodology:

• Protecting integrity and confidentiality

✓ Detection and isolation of adversary attacks.

✓ Minimizing adversaries’ access (or revealing him/her) by cryptographic techniques.

• Ensuring robustness

✓ Ensuring the detectability of adversary attacks by introducing practical constraints on

the communication structure of cyber-physical systems.

3



✓ Being able to recover the compromised state of the system (resilient estimation).

• Increasing safety and reliability

✓ By designing protective measures that ensure detection and isolation of the attack w.r.t

faults in the system.

1.2 Motivation

Cyber-physical techniques in real-world examples come in a variety of examples such as

Positive Train Control (PTC) and Unmanned Aerial Vehicle (UAV). When dealing with positive

train control, the movement of the train must be monitored through each step of the operation. and

this supervision can take place through the C&C by consideration of traffic and all the operating

trains or on the plant side. In dealing with PTC, how can the faults in the C&C be monitored while

it is ensured that no stealthy cyber-attack can compromise the safety of the plan-side operation?

Convectional fault detection and isolation methods are unable to differentiate between faults

and cyber-attacks [28]. Observers developed based on decoupling methods such as Unknown input

observers [25], parity-based observers [79], or other observers such as Kalman filter are unable

to decouple fault and cyber-attacks with their conventional design, since the residual generated

through Kalman filter or decoupling methods such as Unknown Input Observers (UIO) can generate

identical symptoms.

In this work, the first objective is to develop a methodology for which the fault detection and

isolation methods can answer to the new demands for the safety of cyber-physical systems and

second objective is to suggest cyber-attack estimation methodology that can eventually lead to

faults and cyber-attacks tolerant control systems.

1.3 Type of Attacks

Cyber-attacks on control systems are classified into two branches: deception and Denial of

4



Figure 1.2: Different types of cyber-attacks against control systems are categorized based on their
disruption power, need for internal information about the system, and the difficulty of their detec-
tion [98].

Service (DoS) attacks. Denial of service cyber-attacks is an example of disruption in the commu-

nication networks, where the adversary jam the communication link to interfere with transferred

information to/from C&C [2]. On the other hand, the intent of the attacker from performing de-

ception attacks is to compromise the integrity of control signals or sensors. Through deception

attacks, the adversary manipulates the transferred data and causes unwanted behaviour while re-

maining undetected. Unlike DoS attacks, deception attacks are harder to detect, and due to their

stealthiness, they are harder to implement. Therefore, the focus of this thesis is directed toward

deception attacks. Replay, false data injection, covert, and its subclass zero dynamics attacks are

commonly studied classes of deception attacks, where the focus of this study is mainly toward zero

dynamics, covert, and false data injection attacks. In the following, some of the most recognized

attacks based on their intelligent design, stealthiness, and potential threats that exist in the literature

are mentioned:

5



1.3.1 Replay Attack

Incidents such as Stuxnet worm [54] are an indicator of the importance of finding ways to deal

with replay attacks. In the case of a replay attack, the attackers hijack sets of sensors for a while,

and then they replay the recorded signals to the command and control side, meanwhile the attackers

send malicious control commands toward actuators to diverge the system from its desired path.

Physical watermarking is one of the first proposed methods against replay attacks [69]. Based

on this method, the defender adds a zero-mean authenticating watermark inputs with a certain

covariance to the main command inputs while assuming that the attacker does not know about the

watermark. Therefore, in case of a replay attack, the adversary is not aware of the change in the

distribution of the control inputs, and by replaying previous measurements, a detector such as the

Kalman filter can identify it in the system. By using the watermark, we are essentially imposing a

trade-off such that the defender is perturbing the command inputs and compromising the efficiency

and safety of the system. In [43], instead of watermarking the inputs, a coding identifier on the

output is considered as the main contribution for the detection of the replay attacks. An alternate

control design strategy is proposed in [114], which provides a resilient control solution based on

limiting the number of consecutive outputs that the attacker can repeat. Furthermore, a recently

published paper discusses the simultaneous analysis of replay attack and physical fault in the system

where an adaptive estimator is designed to discriminate the replay attack from faults [111].

1.3.2 False Data Injection Attack

False data injection is another class of deception attacks, and several studies in the literature

considered these attacks regarding the situation where the attacker has partial information about

the system[106], and a common form of these attacks are called bias injection attacks. This cyber-

attack can target the inputs, outputs, or both of these channels [19, 27, 98]. This cyber-attack aims

to successfully insert a data injection sequence under which the system is affected by maximum

perturbation that causes the states of the system to diverge from desired values but simultaneously

hides its effect from the detector. Coding the outputs sequence [66] is one of the suggested ways
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of encountering these cyber-attacks. Some of the recent works have established robust and resilient

ways for encountering these cyber-attacks [27]. Also, from a different perspective, different meth-

ods have been established that investigate the physical and economic impact of these attacks on the

applications, such as the smart grid [52, 58].

1.3.3 Perfectly Undetectable Cyber-Attacks: Covert and Zero Dynamics

Attacks

A cyber-attack is called a perfectly undetectable attack where the effect of a cyber-attack is

completely removed from the measurements. The perfectly undetectable attack can be performed

through zero dynamics attacks and covert attacks [8, 10].

The covert attack is the main and more general case of integrity attacks against the control

systems, which usually assumes the attacker has the knowledge of system dynamics. The covert

attacks can compromise the inputs in the control system and hide its effect by measuring and

subtracting the inputs contribution from the outputs. There are studies on the design strategies for

covert attacks, which do not require the perfect knowledge of the system [39]. According to [39],

covert attacks can be accomplished by eavesdropping on the sensor and command inputs before

implementing the attack. Most of the work in the literature addressed the issue by taking away a

degree of information about the system from the attacker and designing a strategy that can reveal

them [105].

Another important perfectly undetectable attack is called the zero dynamics attack. The at-

tacker’s objective is to design an output zeroing input. Since the effect of the attack on the output

is zero, the detector would be unable to recognize any trace of that in the residuals of the system

[20]. The difference between zero dynamics attacks and covert attacks is the access to the output

channel by the adversary in the latter case.

Introducing the auxiliary system is one of the suggested ways in the literature to deal with the

covert and zero dynamics attacks in networked control systems[30, 88, 104]. This method explores

the idea of adding multiple switching auxiliaries on the site of the main process. The auxiliary
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systems are authenticating virtual processes that possess specific properties. They are coupled

with the main system’s inputs and outputs and together form an augmented system. Designing

an observer for the augmented dynamic while assuming that the attacker does not hold the perfect

knowledge of the auxiliary ( a certain point in time due to the switching auxiliaries) is the suggested

way of this thesis to encounter the covert attacks. Implementation of this method requires to fulfil

the assumption of synchronization between the system side and the C&C (it is the same as the

observer side).

The study in [37] suggested an inputs modulation as the detection strategy against covert and

zero dynamics attacks in the networked control systems and considers two scenarios: a fixed mod-

ulation matrix1 or a varying modulation matrix. In the second case, the main advantage is the

increased level of difficulty for the attacker to estimate a varying modulation, and as a conse-

quence, the method is difficult to implement, which is due to the need for synchronization so that

the observer and control law is updated based on the latest modulation matrix that multiplies the

command inputs on the system side. Furthermore, in the first case, if the defender chooses to use

static modulation, it will be easier for the attacker to break the defender’s plan, which can jeopar-

dize the security of the system.

The studies in [97, 111] are amongst the few works that addresses faults and stealthy attacks in

the view of detection and isolation, where a decoupling methodology is developed that can identify

which sensor or actuator is under fault or cyber-attack.

1.4 Faults and Their Importance in Dealing with Cyber-Attacks

In [45], faults are defined as "unpermitted derivation of one of the characteristics of the sys-

tems ". Then what is the difference between faults and attacks, as the attacks are also a form of

unpermitted deviation? The main difference is the stealthiness and intelligent design of attacks. A

fault does not try to hide from the observer, and chances that a fault signal can be described by a

1Modulation: An inputs modulation is a matrix multiplication of the inputs of the system for which it results in the
change of mapping direction of inputs to states
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signal based on the invariant zeros of the system are almost non-existence. In the following, first,

the fault-related problems and their importance for studying cyber-attacks are explained.

1.4.1 Introduction to Faults

Detection, isolation, reconfiguration, and recovery are some of the important problems of con-

trol theory, and it is essential to examine them in order to tackle the problems concerning cyber-

attacks in CPS. Detection and isolation of faults in control theory (Fault Detection and Isola-

tion (FDI)) are explored by finding the abnormalities through symptoms and behaviours of the

system in response to different inputs [45], and for this purpose model-based or knowledge-based

methodologies can be applied.

Model-Based Fault Diagnosis and Fault-Tolerant Problem

One method to generate the symptoms for fault detection and isolation is through dynamical

observers such as Leuenberger [44] and Kalman filter [12], by comparing the sensor measurements

with the estimated outputs of these observers. The next step after residual generation is residual

evaluation, where a decision is made according to created symptoms, corresponding to the presence

of faults in the system, where algorithms such as threshold checking, maximum likelihood, and

X2 are implemented for the processing the residual. If the evaluated residual leads to a unique

feature that corresponds to sensor faults, actuator faults, or system faults, the isolation of faults

are achieved. Methodologies such as parity approach [63], unknown input observer [25], and

eigenstructure [4] are popular in the view of decoupling-based approaches, and there are H∞ based

approaches that consider disturbance mitigation as a solution in detection and isolation faults [87].

Decoupling-based methodologies follow certain criteria that are strongly related to fundamental

concepts, such as strong observability and strong detectability [34], and the goal is to determine

whether with the knowledge of systems structure is possible to uniquely recover the inputs infor-

mation from outputs. On the other hand, by disturbance mitigation, the intent is to look for ways to

design the fault detection and isolation filter such that sensibility of the design magnified in fault’s
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effect on residuals, in comparison to disturbance effects.

Ideally, it is preferred to maintain the physical safety of the faulty plant by decreasing the

consequence of the faults and improving the reliability, safety, and performance of the system, and

that’s where the fault-tolerant control surfaces. The recovery after fault is often achieved either

with robust passive methodologies (Passive Fault Tolerant Control (PFTC)), where recovery plan

is predetermined, or algorithms that focus on control reconfiguration, which are also called Active

Fault Tolerant Control (AFTC), such as adaptive or switching control laws [44, 112].

Knowledge-Based Fault Diagnosis

In fault detection and diagnosis, some methodologies are not reliant on the dynamical observer,

but information processing through the inputs and outputs. These methodologies are often com-

bined with expert knowledge of the system to generate assessable symptoms based on recorded

abnormal events [45]. Generated symptoms can be considered raw data, feature extraction based

on analysis of the raw data or frequency analysis of data, or a hybrid combination of available

symptoms combined with expert knowledge of the system. Generating symptoms is considered as

part of data preprocessing, while data processing usually includes implementation of an algorithm

such as logic-based methods [94], machine learning [55], neural network [102] to make sense of

the symptoms. Most of the methodologies around the concept of knowledge-based fault diagnosis

follow categorizing faults based on symptoms and training an AI processing technique for learn-

ing and predicting future similar events, while learning can be through two categories of online or

offline training[45]. Knowledge-based methodologies have received criticism over the designer’s

bias and algorithm bias that can cause over sensitiveness and inaccurate results.

Among knowledge-based fault diagnosis for control systems, the most practical methods in-

volve a hybrid combination of expert knowledge and data mining, or methodologies, where distin-

guishable frequency characteristics can be extracted from the data. In this regard, fault diagnosis

of bearing in rotary machinery is one of the most discussed case studies in the last decades, and

many methodologies by the implementation of wavelet and Fast Fourier analysis tried to address
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the different of faults bearing based on the expert knowledge of model for which different faults

in bearing accrues [60]. Methodologies such as amplitude modulation detection based on power

spectrum analysis [41], neural network-based wavelet analysis [53], and machine learning-based

methodologies are some of the most discussed topics in literature.

Cyber-attacks and faults signals can have similar characteristics. The attack signal can be de-

signed by the adversary to imitate any type of fault, and consequently, they can impact the outputs

of the system similarly to faults. Therefore, due to similarities between the faults and cyber-attacks

impact on the output knowledge-based methodologies may not guarantee the isolation of cyber-

attacks and faults.

1.4.2 Multi-Agent Systems and Faults

Many studies have been conducted in the fault domain around multi-agent systems by consid-

ering topics such as obstacle avoidance [23], distributed estimation [38], distributed control [65],

and distributed control and estimation [61]. In each of the aforementioned topics, the presence

of fault can obstruct the consensus or the formation of agents. Furthermore, strategies with the

concept of fault tolerance are also relevant in the context of multi-agent systems [26], however,

the rationale behind the recovery procedure is situational and more subjective to designers’ ideas,

and it can cause the loss of an agent. The recovery plan can differ based on the expectancies of

the performance, objectives, control recovery, and mission robustness, where it is also dependent

on the communication protocol for the direct or indirect graph. Studies have been successful in

fault-tolerant control and estimation of the multi-agent system through passive or active strategies,

however, the challenge in the context of cyber-attack and faults is yet to be addressed2.

2This topic is out of scope of this thesis
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1.5 Methodologies and Their Effectiveness to Counter Cyber-

Attacks

Auxiliary-based methodologies are unique approaches in tackling cyber-attacks that are investi-

gated through event-triggered switching-based [88], and time-varying mechanisms [104]. Auxiliary-

based methodologies are proven to be effective against covert and zero dynamics attacks, while

there has been no discussion on their effectiveness against replay attacks. Utilizing auxiliaries in-

volves expanding plant side dynamic by a computer-generated secondary system such that design-

ers are flexible in choosing the auxiliaries inputs, while limited in its number of outputs depending

on network loads and plants limitation such as battery consumption. The potential for the isolation

of cyber-attacks and faults through auxiliary systems in the C&C has yet to be explored.

Multi-rate consideration of inputs or outputs rates is another approach that deals with zero

dynamics attacks, where the designer eliminates the sampling zeros of the system by considering

a fast output rate for the sensors. Fast outputs multi-rate strategy results in a strongly detectable

system [36]. While solely dealing with zero dynamics attacks, the multi-rate strategy has been used

in attack estimation [36] and resilient control [77]. The fast rate sampling based attack estimation

is also effective against bias data injection attacks, while it is not tested against replay or covert

attacks. Another way of detecting zero dynamics attacks is discussed in [6], which explores an

intermittent zero hold rate mechanism. These methodologies by manipulating the sampling rate

of the system, are trying to change the mapping function between the inputs and outputs such

that there exists no non-zero inputs that its evolution locates in the kernel space of the outputs.

The multi-rate idea is already been explored in the fault diagnosis domain for many years, while

various examples of Leuenberger-like observers [113] and Unknown Input Observers (UIO) [57]

are explored for this specific type of sampling to help with the residual generation and isolate faults

in the system, however, they are currently no studies that address the simultaneous presence of

faults and cyber-attacks.

Furthermore, there are reachable space optimization-based methods that search for cyber-attacks

12



in the entire set of estimates [31]. Secure estimation under adversarial attack is an example of these

works [29], where an observer is constructed that searches the entire space of data through a highly

complex optimization problem to correctly estimate the entire state of the system at all times, while

a Leuenberger observer converges to the estimated value after a period of time. While adding to

the complexity, these methods do not have significant protection over traditional observers.

Set membership-based approaches are another type of unique work in the literature in dealing

with the problem of attacks. In [59, 73], an ellipsoidal set membership-based estimate to "detect

the attacks on the outputs or through the control inputs channel" [73], where it is defined in the

framework of the networked control system and provides an estimate of the system based on the

set-theoretic estimation [22], by considering noise distribution in certain sets that are Unknown

But Bounded (UBB) [3, 24, 73]. Overall set membership approaches are extremely situational, and

while computationally expensive, have yet to bring a noticeable advantage compared to traditional

observers in countering faults and attacks.

Knowledge-based methodologies against attacks are limited to machine learning-based and

neural network-based cyber-attack detection [80]. There is also limited work concerning faults

and attacks in the cyber-physical system using data-based analysis, while it is not formally proven

how these methodologies can validate their approach to effectively separate the space of faults and

attacks [99]. Overall, as of now there is no concrete evidence of isolation of faults and attacks in

the feature space.

1.6 Four Aspects in Dealing with Simultanous Faults and Cyber-

Attacks Problems

1.6.1 Achieving Security Through Zero Analysis

Analyzing the system through its invariant zeros in algebraic view or equivalently, the nulling

space of the inputs of the system in the geometric point of view, is one of the main tools that is
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utilized in this thesis for dealing with attacks in CPS.

Why is the analysis of the security through invariant zeros important? Throughout the years,

many papers have been trying to address a type of attack that is called the perfectly stealthy attack

[98]. As an example, a perfectly stealthy attack called zero dynamics attacks can be designed

with the invariant zeros of the system, which denotes their effect is completely decoupled from the

outputs of the system. By analyzing zero dynamics attacks or covert attacks, the type of loopholes

that the attacker can use to remain completely stealthy from the potential detector are investigated.

This viewpoint is addressed in several papers through the concept of the security index [9, 35, 67].

Security index implies in the perspective of a defender, which actuator or sensor should be protected

to prevent a perfectly stealthy attack [67]. Analyzing the security index is beneficial to prevent

worst-case attacks. Researchers constructed other types of attacks, such as the one mentioned in

[19], while not perfectly stealthy, that are still considered a significant threat. In [19], cyber-attacks

are designed with a running optimization problem that the attacker has to continuously optimize so

that its effect on the residue is below the alarm threshold of the system.

This analogy has been used in multiple works to take away the perfect knowledge of the attacker

and reveal stealthy attacks such as zero dynamics attacks. Usage of axillary systems [104], or inputs

modulation [37] is a defensive action that researchers proposed for changing the mapping function

from inputs to outputs.

Recently, researchers have paid attention to the multi-rate sampled data system and how chang-

ing the speed of data sampling in outputs or received inputs would affect the attackers’ ability

to find attack sequences that can remain stealthy [77]. Furthermore, the study of fault diagnosis

through a multi-rate system has already been investigated in several works [57, 90], and it has been

extensively studied for designing a stable control [18, 49, 108, 109]. However, since this applica-

tion has the ability to change the location of zeros in the sampled data control system, recently, it

has been utilized for increasing the security in cyber-physical systems through fast-rate sampling.

This idea has also been used for the estimation of the zero dynamics attacks [36]. The real value of

this work is that every possible combination of attack will affect the outputs response, and now the
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adversary has to increase its design effort to find a sequence for which the attack will not raise an

alarm.

1.6.2 Simultanous Analysis of Faults and Cyber-Attacks

Besides the zero analysis, methodologies beyond the existing literature that can isolate the

residual effect of a fault with respect to an attack need to be established. Conventional fault isola-

tion methodologies are proven to be effective to isolate and locate actuator faults and sensor faults.

In this regard, one of the important theories called as detectability theory of the fault is established

by Nikookhah [78], which compares image space of the fault with respect to a secondary unknown

inputs such as disturbance. The detectability theory in [78] is the basis of many decoupling-based

observers, such as UIO and parity-based observers, where one can design an observer that is not

too sensitive to a specific unknown inputs. When analyzing faults and attacks, one might notice the

intersection of the image space of these two unknown inputs, therefore, finding a definite answer

to whether the nature of the presented anomaly is related to faults or attacks is not possible. Fault

analysis commonly starts with fault detection [45], then fault isolation [45], and finally the miti-

gation problem and recovery [44, 112]. However, how can the same problem through the lens of

faults and attacks be defined and analyzed?

1.6.3 Dealing with Cyber-Attacks in Single-Agent or Multi-Agent CPS

Depending on dealing with single-agent systems or multi-agent systems, the perspective on

the fault and attack isolation problem will be different. Given single-agent systems, a network

control system such as UAV, where there are certain established inputs or outputs for the agents

can be considered. However, in the case of multi-agent, there can exist numerous agents with

different channels for sent or received information, different communication topologies in form of

directed or undirected graphs, and a variety of control law or observer protocols [110]. Therefore, a

methodology developed for a single-agent system might not necessarily be suitable in a multi-agent

case and vice versa.
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Several work toward attack detection in multi-agent systems have been established in recent

years such as [96] and [68]. In [27], a detection and mitigation strategy for mitigating biasing

attacks in sensor networks is presented. In [96] , analysis toward understanding and detecting

attacks in multi-agent systems is provided. In [28], a fault and attack detection strategy for the

multi-agent system is provided by using a Markovian approach , however, a methodology that

decouples fault and cyber-attacks has yet to be established.

1.6.4 Practicality of the Methodology

Depending on the problem in terms of single-agent system or multi-agent system, the rate of

data transfer in the overall sampled data system, energy consumption, and computational complex-

ity should be considered. One of the major improvements in attack detection can be the utilization

of the event-triggered schemes to make the methodology more suitable for real-world scenarios

[96].

Another question is that what is the next step after the detection and diagnosis when dealing

with faults and attacks? In case of faults, one of the main concerns is the resilient estimation of

the states of the system, which is one of the first steps and methodologies that can be used towards

fault tolerance in the system. Resilient estimation is based on estimating the true state of the system

[34], which denotes estimating them without knowledge of the unknown inputs.

The literature encompasses a variety of approaches toward resilient estimation. One of these

approaches considers strong detectability as the dominant condition for resilient estimation, mean-

ing if there is a way to achieve strong detectability, estimation of the true state would be possible.

Alternatively, when dealing with any type of unknown inputs, by utilizing restrictive assumptions

on the model of unknown inputs, one can also achieve its recovery. For example, [27] suggests a

restrictive model assumption on the attacks for the recovery of true state in multi-agent systems,

however, it neglects the presence of faults. The aforementioned problem by [27] is not solved for

a situation dealing with both faults and attacks, therefore, the assumption of the knowledge about

the attack model still can be improved.
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1.7 Thesis Contributions

1. In Chapter 3, a methodology is presented that enhances the security of Cyber-Physical Sys-

tems (CPS) against covert and zero dynamics attacks. It will be formally proven that under

certain conditions, the presented methodology is immune to zero dynamics and covert at-

tacks. Furthermore, in this chapter, cyber-attacks and faults will be isolated from each other

from the plant side perspective.

2. In Chapter 4, a multi-rate methodology for the estimation of cyber-attacks and faults is pre-

sented. This chapter, for the first time, presents a fault and attack problem in a multi-rate

framework. This chapter also establishes a cost-effective strategy for the estimation of cyber-

attack, including zero dynamics and bias injection attacks with the presence of faults in the

multi-rate framework.

1.8 Thesis Layout

1. Chapter 1 provides a literature review of cyber-attacks (Section 1.3) and faults (Section 1.4)

and appropriate actions against them in the context of model-based and knowledge-based

methodologies (Section 1.6, 1.4, and 1.5) and some of the other aspects in dealing with

simultaneous cyber-attacks and faults.

2. Chapter 2 provides background information on sampled data systems (section 2.1) and cyber-

physical systems. CPS can be considered as a type of networked sampled data systems.

Furthermore, this chapter reviews some of the definitions regarding faults and cyber-attacks

in control systems 2.3. Lastly, some of the concepts regarding the cyber-attack and detectors

are reviewed 2.5.

3. Chapter 3 begins with an introductory (Section 3.1) of CPS and related works regarding

the detection of cyber-attacks in CPS, faults, and the importance of their isolation from the

cyber-attacks. This chapter continues with a problem statement (Section 3.2) regarding the
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isolation of faults and cyber-attacks in CPS. In this chapter a theory is developed for the

isolation of faults and cyber-attacks in CPS, which is backed by numerical example (Section

3.5), comparative study (Section 3.7), and simulation of the comparative study (Section 3.6).

4. Chapter 4 studies the estimation of actuator cyber-attacks in CPS with the presence of sensor

and actuator faults through a multi-rate-based methodology. First (Section 4.1), this chap-

ter includes an introduction to the multi-rate-based methodology and how it can be used

to detect and estimate cyber-attacks. Next, the problem in the framework of an auxiliary-

based approach for achieving the cyber-attack estimation is formalized in Section 4.2. In the

Section 4.3 of this chapter, we provide the solution to this problem. Finally, we provide a

numerical simulation demonstrating the estimation of actuator cyber-attack in the presence

of faults.

5. Chapter 5 is the conclusions and future works.
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Chapter 2

Background Information

2.1 Sampled Data Systems [17]

Sampled data systems are a combination of both continuous time and discrete time signals. "Sam-

pled data systems while operating in continuous time, while some of their continuous time signals

are sampled at certain time instants (usually periodically) [17]."

The topic sampled data systems in control theory is a subdomain of digital systems, where the

focus of the problem is not the quantization effects nor the issues regarding the real-time software

[17].

Where G is the generalized system consisting of physical components such as the main dy-

namical system, sensors, and actuators. r, d, u, and y are continuous time signals, for which r is

an exogenous input including reference command, sensor noise, and disturbances, and d desired

signal to be controlled. ϕ and ψ are digital signals, µ is a microprocessor or processing unit of

digital computer.

In general a single sampled data control system can be shown according to Fig. 2.1 that includes

1. G is the generalized system consist of physical components such as the main dynamical

system, sensors, and actuators.

2. r, d, u, and y are continuous time signals, for which r is an exogenous input including refer-
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Figure 2.1: A simple representation of sampled data control system.

ence command, sensor noise, and disturbances, and d desired signal to be controlled.

3. ϕ and ψ are digital signals.

4. µ is a microprocessor or processing unit of a digital computer with a control algorithm Kd.

5. In general, for multi-inputs and multi-outputs signals, A\D is called analog to digital con-

verter.

6. In general, for multi inputs and multi-outputs signal, D/A is called digital to analog con-

verter.

2.1.1 Single-Rate Systems [17]

For the single rate system sampling operator S and hold operator H can be considered in one of

the following situations:

• S is the ideal sampler with a sampling period of T and it will periodically samples the outputs

for which ϕ(k) = y(kT ), and k = 0, 1, ....
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• H is the hold operator, which is tasked with the conversion of discrete time signal ψ to

continuous time.

For the single rate system control law consists of three components K = SKdH , and the

discrete LTI plant for the period of T will be defined as Gd = SGH .

2.1.2 Multi-Rate Systems [17]

Multi-rate sampling and hold are applied in digital control and digital signal processing when it

is necessary to sample the outputs or update the inputs with different rates [11]. For system G

in Fig. 2.1, if sampling operator S and hold operator H consists of multiple rates such that S =

{ST1 . . . STi
} and H = {HT ′

1
. . . HT ′

j
}, where Ti and T ′

j are a finite number of periodic sampling

and hold rates, then the system Gm = SGH is called as multi rate system. The application of this

topic in CPS security will be formally addressed in Chapter 4.

2.2 Cyber-Physical Systems

Cyber-physical systems are sampled data systems and generally can be defined as concatenated

systems of systems, where by the combination of computing, communication, and control, they

perform their desired task. In the following, we explain this concept over real-world examples:

1. Swarm of UAV: In a swarm of UAV the communication can take place distributively be-

tween different UAV, where collectively UAVs can accomplish distributed observation or

distributed control for performing tasks such as environmental mapping and coordinated mil-

itary operations.

2. Communication-based Train Control: Systematic railway safety has also been subjected to

major upgrades and communication-based supervision. In this example, the entirety of trains

is considered the element of CPS, where each train communicates its location to the C&C,
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and a decision for train movement with respect to its communicated sensor measurements

and placement of others in the network will be made.

2.3 Faults and Cyber-Attacks

2.3.1 Actuator Faults

Actuators are devices with mechatronic features that are responsible for controlling a mechanism

[85]. They typically convert a form of input energy, such as electrical energy, into a mechanical

energy. A malfunction of this device causing an unpermitted deviation from the desired energy in

their outputs is called as an actuator fault [45].

2.3.2 Sensor Faults

"A sensor is a transducer that measures and monitors the status of the system without influencing it

[85]". Any deviation between the actual measurements and the monitored one is called a fault [45].

2.4 Cyber-Attacks

2.4.1 Preliminaries

In this part, the preliminary information of cyber-attacks is provided, and moving forward, the

investigated type of cyber-attacks in this thesis is explained.

1. Basic definitions:

• Adversary: An adversary is someone who wants to endanger the availability, reliability,

and integrity of the control system.

• Attack: An attack is a malicious data through which the attacker compromises the in-

tegrity of the outputs or command inputs data.
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• Defender: A defender is someone that comes up with a methodology to counter the

attack.

2. An attacker’s objective:

• The attacker intends to target the vulnerabilities to deviate the states of the system,

create misleading data and evade detection by the monitoring system.

3. A defender’s objective:

• Protecting integrity: Integrity denotes the trustworthiness of data and resources, a lack

of integrity results in deception [62].

• Protecting confidentiality: It denotes protecting information from getting accessed by

unauthorized parties.

• Ensuring availability: It means the information must remain accessible for authorized

users.

• Increasing safety: Design of protective measures that ensure the safety of the cyber-

physical systems in the presence of attacks and faults.

2.4.2 Type of Cyber-Attacks

Cyber-attacks, in general, can affect the networked communicated inputs or outputs of the cyber-

physical plant in different ways. The categories of cyber-attacks include disruption attacks such as

DoS or Distributed Denial of Service (DDoS) attacks, or deception attacks [70], where it includes

cyber-attacks such as replay-attacks, false data injection attacks, zero dynamics attacks, and covert

attacks. The deception attack is introduced as the following:

• Replay attacks: In replay attacks, the attacker hijacks a set of sensors for a period of time,

transmits the recorded measurements, and tries to manipulate the control system [71].

• False data injection attacks: It refers to data injection attacks through inputs, outputs, or both

channels w.r.t. In part of the literature, this cyber-attack is categorized based on the situations
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where the attacker has partial information about the system [52, 106]. However, some studies

in literature expand this category to different types of cyber-attack, where the attacker has

access to complete knowledge of system model, such as covert and zero dynamics attacks

[30].

• Covert attacks: In covert attacks, the attacker is assumed to possess knowledge of system

dynamics, or it can obtain it through eavesdropping. In this type of attack, adversary can

compromise the inputs and hide its effect by measuring and subtracting the inputs contribu-

tion from the outputs [39].

• Zero dynamics attack: An output zeroing input [83].

• Denial of Service (DoS) and DDoS attacks: A denial-of-service attack (DoS attack) is a

cyber-attack that targets availability of the communicated data by huge amounts of spam

requests, in DDoS attacks, these requests originates from many sources [46].

2.4.3 Investigated Cyber-Attacks

Consider the following discrete linear time-invariant system as shown in Fig. 2.2, with the assump-

tion that its inputs and outputs can be subjected to attack:

xk+1 = Axk +Buk +Bauauk

y′k = Cxk

yk = Cxk +Dayayk = y′k +Dayayk (2.1)

where xk ∈ Rn is the system state, uk ∈ Rm is the command control signal, auk ∈ Rmau denotes

the injected cyber-attacks through command input channel, ayk ∈ Rmay denotes the injected cyber-

attacks though the communicated measurements channel, yk ∈ Rp is the measurements received

on the C&C, y′k ∈ Rp is the measurements obtained on the plant-side.
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Figure 2.2: A CPS under cyber-attack.

Definition 2.1 (Actuator Cyber-Attack) : In the considered representation of cyber-physical sys-

tems (2.1), with states defined as x ∈ X , an actuator cyber-attack au ∈ Au is associated with maps

Bau , shown in equation (2.1), such that Bau : Au −→ X , and Im(Bau) ⊆ Im(B).

Definition 2.2 (Sensor Cyber-Attack) : In the considered representation of cyber-physical sys-

tems (2.1), with outputs defined as y ∈ Y , a sensor cyber-attack ay ∈ Ay is associated with maps

Day , shown in equation (2.1), such that Day : Ay −→ Y .

The investigated cyber-attack in the thesis include zero-dynamics and covert attacks as well as bias

data injection attacks. The aforementioned cyber-attacks are a type of data injection attacks into the

inputs or outputs of the systems and are similar in corruption of communicated data while different

in terms of the access to the information about the physical plant and its monitoring system. In the

following, description, objectives, and resource access of these cyber-attacks are provided:

1. Bias Injection Attacks: Several types of false data injection attacks exist, which can be in-

jected in the outputs, inputs or both channels[98][19]. In this thesis, bias injection attacks are

investigated that are a type of non-stealthy attack. Bias injection attacks are constant additive
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functions which their effect on the outputs of the system can be similar to the additive actu-

ator or sensor faults. For injecting bias injection cyber-attacks, a constant signal auk will be

added to the command inputs uk.

In order to apply more sophisticated attacks, such as zero dynamics and covert attacks, we

navigate some of the definitions of linear system theory through an adversary model used

by the attacker and analyze the adversary attacks that are used in this thesis. Consider the

adversary applies cyber-attacks with knowledge of networked linear time-invariant sample

data system with the rate of T and utilizes the following model:

xak+1 = Axak +Bauauk

yak = ayk = Cxak (2.2)

xa ∈ Xa demonstrates the evolution of state subject to adversary inputs au ∈ Aau , ay = ya ∈

Aay demonstrates the evolution of outputs under the adversary inputs.

2. Zero Dynamics Attacks

By definition a zero dynamics attack exist if the system under attack (2.2) is not strongly

observable. Consider the following pencil matrix

P(z) =

A− z0I Bau

C 0

 (2.3)

For a system to be strongly observable the following condition must hold:

rank(

A− z0I Bau

C 0

) = n+m (2.4)

Definition 2.3 (Strong observability) [100] System (2.2) is called strongly observable if for
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all initial condition xa0 ∈ Xa and for every input function the following holds [100]:

∀k ≥ 0, ya
u

(k, x0) = 0 implies x0 = 0. (2.5)

Definition 2.4 (Zero Dynamics Attack for plant) [10, Definition 2] For z0 ∈ C, if rank
(

P(z0)
)
≤ n+m, where n+m is equal to normrank of P(z), then there exist an attack vector

ak = (auk
T 0T1×p)

T called zero dynamics attack for plant, where ak is equal to au0z
k
0 , s.t z0, a0,

and x0 satisfy the following:

P(z0)

(
xT0 au0

T 0T1×p

)T

= 0 (2.6)

Definition 2.5 (Weakly unobservable point) [100] For the system (2.2), a point x0 ∈ X is

called weakly unobservable if ∃au ∈ U ⊂ Rm s.t ∀k ≥ 0 , ya(k, x0) = 0.

Definition 2.6 (Weakly unobservable subspace) [100] Set of all weakly unobservable point

named V is called the weakly unobservable subspace.

Thus, the attacker’s objective is to design an output zeroing input. Since the effect of the

attack on the output is zero, the detector would be unable to recognize any trace of it in the

residual of the system. This attack can be designed as the following:

Step 1: Find all the transmission zeros denoted by z0:

det(

A− z0I Ba

C 0

) = 0 (2.7)

Step 2: Find au0 corresponds to the transmission zero.

Step 3: Set auk = au0z
k
0

Step 4: Add the attack inputs to the known inputs: uk + auk
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3. Covert Attacks: Consider the following pencil matrix for equation (2.2):

P (z) =

A− zI Bau 0

C 0 Day

 (2.8)

Definition 2.7 (Covert Attack) For ∀z ∈ C and ∀x0 ∈ Rn, the attack vector aZ =

(auk
TayZ

T )T called covert attack for the plant s.t z, aZ , and xZ satisfy the following:

P (z)

(
xTZ auZ

T ayTZ

)T

= 0 (2.9)

For designing the covert attack the following steps are taken:

Step 1 : Add the attack inputs to the known inputs: uk + auk;

Step 2 : Compute ay corresponding to the au according to equation (2.2)

Step 3 : Apply ay as a sensor cyber-attack

2.5 Model-Based Detector Design

Model-based detector design can be divided into two fields of active and passive [30].

1. Passive: Normally, model-based detector design includes using residual generation alongside

a dynamic filter such as Kalman or Luenberger filter combined with detection methodology

such as X2 [30].

Passive detection methodologies are unable to deal with sophisticated attacks such as zero

dynamics attacks. For instance in order to design an observer for detection problems, it is

important to know if the system is observable:

Theorem 2.1 (Chapter8, Theorem 9) [13] The system in equation (2.1) is observable if

and only if ∀z ∈ σ(A) ⊂ C the following holds:
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rank(

A− zI

C

) = n (2.10)

for which σ(A) denotes eigenvalues of A ∈ Rn×n.

2. Active: active detection can take place by adding extra information to inputs and outputs

such that it can help to reveal the cyber-attacks [30].

Cyber-attacks are often designed to remain stealthy for an extended time window. Cyber-

attacks, such as zero dynamics and covert attacks, will continue to stay hidden and require

active detection methodologies to be revealed. Watermarking [72], auxiliary-based method-

ologies [88], and coding-scheme solutions [66] are all part of active detection-based method-

ologies that add an extra layer of information to help detect covert attacks.

Methodologies for detection, whether passive or active, should be modified in such a way that

they can distinguish cyber-attacks from faults [97]. For this purpose, the next section provides

a review of an important concept in control theory, dealing with the unknown inputs of systems.

Although cyber-attacks are intelligent, they are still considered an unknown input to the system and

must adhere to the fundamental laws established in control theory for unknown inputs in order to

be distinguishable from other types of unknown inputs in the system.

2.5.1 Detectability of Unknown Inputs

The topic of detectability for unknown inputs dates back in the literature to the work of Nikoukhah

[78] and Nyberg [79]. In the following sections, we first present a linear control system under fault

and disturbance to illustrate two important theorems discussed in Nyberg’s work [79], which aligns

with the conclusion drawn by Nikoukhah in [78]:

Consider a discrete-time representation of linear-time invariant systems with fault and distur-
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bance.

xk+1 = Axk +Buuk +Bddk +Bffk

yk = Cxk +Duuk +Dddk +Dffk (2.11)

where (A,Bu, Bd, Bf , C,Du, Dd , and Df ) are known system matrices of appropriate dimensions,

x indicates the states, u is the known inputs, d indicates the disturbance, and f indicates the fault.

Theorem 2.2 [79, Theorem 3] Faults are detectable in a system iff the following condition holds:

Im(

Bf

Df

) ⊈ Im(

zI − A Bd

C Dd

) (2.12)

The above theorem denotes the direction of space for which the fault causes an effect on outputs

will continue to do so if we decide to decouple the direction related to the disturbance. This result

is developed and proved in [79] for the case of any residual generator.

Another interesting aspect of the Nyberg’s work is presented in the following:

take:

M(z) =

zI − A Bd

C Dd

 (2.13)

and NL{{M(z)}) is the left null space of M(z).

Theorem 2.3 [79, Theorem 4]

A fault is strongly detectable iff the following condition holds:

NM(0)

Bf

Df

 ̸= 0 (2.14)

30



where the rows of NM(z) are a basis for NL{{M(z)}) .

Nyberg elaborates on the residual generator and shows that the effect of weakly detectable faults

can appear as a short pulse, which highlights the importance of establishing strong detectability for

faults. Consequently, when we are dealing with an attack, we have to find a strategy that helps us to

separate the space of the faults and attack such that the residual effect of the attack does not collide

with the space of faults.

In view of faults and cyber-attacks, the problem of fault detectability in the presence of distur-

bance can be treated as the detectability of cyber-attacks from faults. Meaning, the equation (2.11)

can be reformulated in the following manner:

xk+1 = Axk +Buuk +Bauauk +Bffk

yk = Cxk +Duuk +Dayayk +Dffk (2.15)

for which au and ay are cyber-attacks that are respectively directed at the inputs channel or the

outputs channel. Bau and Bay are the direction matrices for which these two vectors are applied on

the inputs or outputs. Consider the vector ak defined as
(
auk ayk

)T

. The equation (2.15) can be

reformulated as the following:

xk+1 = Axk +Buuk + B̄aak +Bffk

yk = Cxk +Duuk + D̄aak +Dffk (2.16)

for which D̄a =

(
0 Day

)
and B̄a =

(
Bau 0

)
.

Furthermore, the equation (2.12) can be reformulated for faults and cyber-attacks:
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Im(

B̄a

D̄a

) ⊈ Im(

zI − A Bf

C Df

) (2.17)

It signifies that cyber-attacks are detectable from faults if the above condition holds. Therefore,

the evolution space of cyber-attacks in the outputs space must not be a subset of the evolution space

of faults in the outputs space.

2.5.2 Model-Based Observers for Unknown Inputs

Fault-tolerant control often employs methodologies capable of obtaining the system’s true state.

This means that, even when faults are present, the expected estimate of the system’s states does not

differ from the actual states. One approach to achieve this is through Unknown Input Observers

(UIOs) [40]. These model-based observers are designed in such a way that they can estimate the

true state and also determine the value of the system’s unknown input. However, UIOs require the

system to be strongly detectable. As reported in [95], for the types of unknown inputs defined in

(2.11) and assuming d = 0, the following condition is necessary and sufficient for the construction

of UIOs to estimate the faults:

Theorem 2.4 (Theorem 6) [95] A UIO for a discrete-time system is applicable if and only if the

system, in the form shown in (2.11), is strongly detectable:

rank(

zI − A Bf

C Df

) = n+mf , ∀|z| ≥ 1, z ∈ C (2.18)

where mf denotes the dimension of the unknown input f .
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2.6 Conclusion

The presence of both cyber-attacks and faults poses a significant challenge for fault and cyber-attack

diagnosis. As discussed in Section 2.4.3, stealthy cyber-attacks are intelligently designed to evade

the monitoring capabilities of traditional observers. Control theory provides various strategies for

handling unknown inputs. However, when dealing with network-based unknown inputs, it is nec-

essary to leverage existing knowledge in CPS security, such as multi-rate systems, active detection,

and theories related to the isolation and estimation of unknown inputs, to devise solutions that can

isolate and estimate cyber-attacks in the presence of faults. For instance, through equation (2.17),

we discuss how cyber-attacks can be isolated from faults by identifying separate contributions of

cyber-attacks to an output space that does not overlap with the output space of faults.
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Chapter 3

Fault and Attack Isolation in Single Agent

Cyber-Physical Systems

3.1 Introduction

Cyber-attacks on the inputs and outputs of cyber-physical systems (CPS) have introduced a dif-

ferent class of unknown inputs aside from recognized classes of machine-induced faults or distur-

bances. Since the traditional filters fail to separate their effect from the machine-induced faults,

this has posed a significant threat to CPS security.

In [45], faults are defined as "unpermitted derivation of one of the characteristics of the sys-

tems." Attacks are also a form of unpermitted deviation, while the main difference between faults

and attacks is the stealthiness and intelligent design of attacks considering a fault does not try to

hide from the monitoring system. Zero dynamics attacks [8, 82] can be considered as one of the

examples that show the differences between machine-induced faults and cyber-attacks, where these

attacks are specifically designed to perform based on the output zeroing modes.

Fault detection and diagnosis consist of well-developed literature, including methodologies that

can efficiently decouple these anomalies from the disturbance of the system. Numerous studies on

the topic of fault detection and isolation through diagnostic methods such as Kalman filter [64],
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Unknown Input Observer (UIO) [25, 74], and parity-based methods [63] are conducted. The men-

tioned fault diagnosis methodologies intend to generate a residual and relate the residual deviation

to the malfunction of the actuators, sensors, or components of the system.

Different approaches for analyzing attacks in CPS can be divided into two categories: in the

first one, the study addresses a single type of attack such as replay attacks [43, 71, 81] or false data

injection attack [1, 52], and the second category involves investigating several types of attacks.

Studies on security index [9, 15] or the development of sophisticated adversary attacks known

as zero dynamics or covert attacks [51, 105] can be categorized as the second group, since the

methodologies developed for revealing covert or zero dynamics attacks [10, 77, 88] usually cause

other adversarial unknown inputs such as false data injection attacks to have a trace on the outputs

of the system.

Most of the developed methodologies concerned with adversarial attacks do not address situa-

tions where actuator or sensor faults are present in the system. For example, from the viewpoint of

the C&C, the range space of possible faults entries of actuators in the outputs can be a subset of the

range space of the possible attacks entries, therefore in a situation where the system is under simul-

taneous faults and cyber-attacks, the conventional filters are not able to distinguish between them.

[111] is one of few works in literature that address simultaneous faults and cyber-attack detection

and isolation, and it is limited to replay attacks.

This work addresses the detection and isolation of cyber-attacks and faults in CPS in the plant

side perspective through a specific structure shown in Fig.3.2. For the presented structure in Fig.3.2

it will be formally proven that CPS is secure against covert and zero dynamics attacks. The inves-

tigated CPS infrastructure includes a control loop responsible for tracking control and generating

the command inputs of a physical plant.

In order to accomplish the detection and isolation of anomalies, two filters are constructed,

one sensitive to faults and another one sensitive to cyber-attacks. The proposed methodology is

provided under the assumption that the C&C control law is established through a specific dynamic

of Kalman filter-based feedback control for which the attack-sensitive filter can isolate the zero
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dynamics and covert attacks. Lastly, the proposed methodology is compared to an auxiliary-based

attack detection method that is established in [88]. Upon detection of fault or cyber-attacks at the

plant side, a decision can be made that can include self mitigatory plan or communication with the

C&C, which is out of the scope of this paper.

The remainder of the chapter is as follows. Section. 3.2 provides the problem formulation.

Section 3.3 explains proposed approach. Section 3.4 includes the analysis of the stealthy attacks

for proposed methodology. Section 3.5 is the simulation results of the proposed methodology.

Section 3.6 is the comparative study. Section 3.7 is the simulation results corresponding to the

comparative study. Finally, Section 3.8 is the conclusion.

3.2 Problem Statement and Formulation

3.2.1 Considered System

The considered CPS in this chapter includes control law as depicted in Fig. 3.1. The control law

performs tracking control of the plant. The C&C receives the outputs yk and produces the command

inputs uk.

The governed system is represented by linear discrete-time invariant dynamics under the influ-

ence of actuator faults, sensors faults, cyber-attacks on the communication channels transmitting

control command, and cyber-attacks on transmitted measurements as the following (Fig. 3.2):

xk+1 = Axk +Buk +Bau︸ ︷︷ ︸
Bũk

auk +Bfu

fu
k + wk

y′k = Cxk +Dfs

f s
k + vsk

yk = Cxk +Dfs

f s
k + vsk +Dayayk = y′k +Dayayk (3.1)

where xk ∈ Rn is the system state, uk ∈ Rm is the command control signal, auk ∈ Rmau denotes

the injected cyber-attacks through command input channel, ayk ∈ Rmay denotes the injected cyber-
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Figure 3.1: The CPS framework.

attacks though the communicated measurements channel, fu
k ∈ Rmfu denotes the actuator faults,

f s
k ∈ Rmfs denotes the sensor faults, yk ∈ Rp is the measurements received on the C&C, y′k ∈ Rp

is the measurements obtained on the plant-side, wk, v
s
k are process noise and sensor noise with

Gaussian distribution, ũk = uk + Γauk , and Γ = [αi,j] ∈ Rm×ma and it is a diagonal or rectangular

diagonal matrix such that based on the attacked channels entries, αi,i are either zero or one, and

the rest of the entries are zero. Moreover, matrices A ∈ Rn×n, B ∈ Rn×m,Bau = BΓ ∈ Rn×mau ,

Bfu ∈ Rn×mfu C ∈ Rp×n, Day ∈ Rp×may , Dfs ∈ Rp×mfs are known and are based on the model

of the physical plant.

Remark 3.1 In equation (3.1) A,B,C is representative of physical plant and local control system

if the CPS needs a local control system such that it ensures stability on the plant side, the system

matrices can be representative of the physical plant if all command inputs are received from C&C.
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Therefore, the proposed methodology is not restrictive of the existence of local controller.

In the following formal definitions of actuator faults and sensor faults are provided. The formal

definition for actuator cyber-attack and sensor cyber-attack has been provided in Definitions 2.1

and 2.2.

Definition 3.1 (Actuator Fault) : In the considered representation of cyber-physical systems de-

noted in (3.1), with states defined as x ∈ X , an actuator fault signal fu ∈ Fu is associated with

a map Bfu
, such that Bfu

: Fu −→ X .

Definition 3.2 (Sensor Fault) : In the considered representation of cyber-physical systems (3.1),

with outputs defined as y ∈ Y , a sensor fault f s ∈ Fs is associated with maps Dfs
, shown in

equation (3.1), such that Dfs
= [λi,j] : Fs −→ Y . According to the faulty sensors, λi,i entries are

either zero or one, and the rest of the entries are zero.

Moreover, let us consider Kalman filter based control law in the C&C that can be represented

through the following equation:

xock+1 = Aocx
oc
k +Buk + Loc

k

(y′k+Dayayk)︷︸︸︷
yk

yock = Cxock

uk = −Kocxock (3.2)

where Aoc, K
oc, Loc

k , D
oc, B is the matrix representation describing the dynamical control, xoc rep-

resents its state, yoc is the outputs of Kalman filter, uk is the command inputs at C&C, with the

following filter parameters including Loc
k Kalman filter gain, error covariance matrix P oc

k

Aoc = (A− Loc
k C), L

oc = Loc
k

Loc
k = AP oc

k C
T (CP oc

k C
T +Rk)

−1

P oc
k+1 = A(P oc

k − P oc
k C

T (CP oc
k C

T +Rk)
−1CP oc

k )AT +Qk (3.3)
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Figure 3.2: A CPS system under fault and attack.

in which Qoc ad Roc are constant covariance matrices of system noises.

Assumption 3.1 There are no assumptions regarding the number of inputs and outputs.

3.2.2 Cyber-Attacks and Faults Isolation Problem

In this work, the main objective is to isolate cyber-attacks and faults from each other on the plant

side for a specific class of Kalman filter-based control law on the C&C. For this purpose, in Fig.

3.2, we present a schematic that makes the isolation possible while granting the CPS presented in

(3.1) immunity to covert and zero dynamics attacks.

39



To achieve this, we deal with two main challenges:

1. Consider the the control law model (3.2) with the state defined as xoc is available on C&C.

The challenge is to design two filters on the plant side called attack sensitive and fault sensi-

tive filters:

• Plant Side Attack Sensitive Filter: The monitoring filter for attack detection and iso-

lation is located on the plant side, which identifies the existence of malicious inputs in

the received inputs ũk and the transmitted measurements yk.

The task is to generated a residual roc by generating an error eoc through the plant side

generated value x̄oc for the control model such that eoc = x̄oc − xoc. roc must become

free of any fault such that it detects and isolates the attack, and its design is explained

in Section 3.3.1. It will also be shown that such an attack filter will cancel the effect of

the noise.

• Plant Side Fault Sensitive Filter: The fault monitoring filter is a traditional Kalman

filter located on the plant side. The fault filter utilizes plant-side received control com-

mand inputs and transmitted outputs to generate a residual rps that is attack-free and

recognizes machine-induced behaviors that affect the transmitted measurements to the

C&C, and it is explained in Section 3.3.2.

One of the main challenges in dealing with faults and attacks is that the conventional moni-

toring system is unable to generate a residual that leads to their detection and isolation. As

shown in Fig. 3.2, two residuals rpsk and rock , will be generated. For rpsk that belongs to the

Kalman filter residual, a X2 test will be performed, for which a value Jps
k = rTk Σ

−1
k rk will be
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generated, where Σk = CPkC
T +Rk:



if Jps
k > T th, |rock | <= ϵ

then f s
k or f

u
k ̸= 0 and auk & auk = 0

if Jps
k <= T th, rock > ϵ

then ayk or a
u
k ̸= 0 and f s

k & fu
k = 0

if Jps
k > T th, rock > ϵ

then ayk or a
u
k ̸= 0 and f s

k or fu
k ̸= 0

ϵ denotes small amount and the threshold for Jps will be determined by setting F1 score [92]

set in range of 92 to 93 %, where F1 score is defined as:

F1 = 100%
TP

TP + 1
2
(FP + TN)

(3.4)

where True Positive (TP), False Positive (FP), True Negative (TN) , and False Negative (FN)

are shown. The false alarm rate and detection rate are also defined as follows:

false alarm =
FP

TN + FP
(3.5)

detection rate =
TP

FN + TP
(3.6)

2. The second challenge is to determine whether the attack-sensitive filter is able to reveal covert

and zero dynamics cyber-attacks directed at the plant and how can they be avoided, for which

an analysis will be provided in Section 3.4.
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3.3 Attack Sensitive and Fault Sensitive Filters

In this section, the design of attack-sensitive and fault-sensitive filters are explained.

3.3.1 Representation of the Plant-side Attack Monitoring Filter

In this subsection, we propose our cyber-attack sensitive filter. This filter uses the plant side inputs

for updating the state of its estimator:

x̄ock+1 = (Aoc −M ocKoc)x̄ock + Bũk︸︷︷︸
Buk+Bauauk

+Locy′k

+M oc(−Kocxock + Γauk︸ ︷︷ ︸
ũk

) (3.7)

¯̃uk = −Kocx̄oc (3.8)

rock = ¯̃uk − ũk (3.9)

ũk is the plant side command inputs, x̄ock is the state of attack monitoring filter, rock is the generated

residual that will be utilized for attack isolation, M oc is the design parameter, and ¯̃uock is the plant-

side estimated of the command inputs. In the following, a theorem is provided that proves the

monitoring filter in (3.7) with residual (3.9) is able to isolate the cyber-attacks at the plant-side

while omitting the effects of sensor noise and measurements noise.

Theorem 3.1 The residual generated rock through the proposed filter in (3.9) is only sensitive to

attack if there exists a M oc s.t Aoc −M ocKoc is Schur stable 1.

Proof The error dynamic eock+1 = x̄ock+1 − xock+1 between the proposed monitoring attack filter in

(3.7) and the control law in (3.2) is derived according to the following. Loc
k is considered constant

1Schur stability: A square complex matrix is considered Schur stable if its eigenvalues are inside the unit circle in
the complex plane.
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upon convergence of Kalman filter and is represented by Loc.

eock+1 = (Aoc −M ocKoc)eock − LocDayayk

+ (Bau +M ocΓ)auk (3.10)

For the proposed filter if M oc is designed such that Aoc −M ocKoc is Schur stable, then eock −→

−LocDayayk + (Bau + M ocΓ)auk as k −→ ∞. The proposed residual in (3.9) is calculated by

rock = KocLocDayayk + (Bau +M ocΓ)auk)−Γauk . That shows that the generated residual rock is only

dependent on the attack.

□

3.3.2 Fault Sensitive Filter

This filter utilizes the traditional design of the Kalman filter method, and its objective is to generate

a residual, based on the comparison of the measured and estimated outputs of the plant on the

plant-side:

x̂psk+1 = (A− Lps
k C)x̂

ps
k + Bũk︸︷︷︸

Buk+Bauauk

+Lps
k y

′
k

Lps
k = AP ps

k C
T (CP ps

k C
T +Rk)

−1

P ps
k+1 = A(P ps

k − P ps
k C

T (CP ps
k C

T +Rk)
−1CP ps

k )AT +Qk

rpsk = y′k − Cx̂psk (3.11)

In which rps is the plant side fault detector residual, x̂ps is the estimated value of the plant, Lps is

the Kalman filter gain, and P ps is the error covariance of the Kalman filter.

Lemma 3.1 [103, Proposition 1] A Kalman filter of the form (3.2) (in which uk = 0, auk = 0, and

ayk = 0) converges if the following conditions hold:

(i) LocQLoc′ +R > 0
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(ii) The pair (A,Loc) is detectable

(iii) Ū ′z̄ = 0 for any arbitrary vectors z̄ implies Locz̄ = 0, where Q = Ū Ū ′ and Ū ∈ Rq×rank(Q)

Theorem 3.2 The residual rpsk generated by a plant-side Kalman filter according to (3.11) will

converge to the only fault.

Proof The error dynamic between Kalman filter in (3.11) and system (3.1) is derived as the

following:

epsk+1 = xk+1 − x̂psk+1 = (A− LpsC)epsk +Bfu

k fu
k

− LpsDfs

f s
k + εk(wk, vk) (3.12)

In which εk(wk, vk) is the optimal effect of noise on the error dynamic due to Kalman filter. If

the stability conditions in Lemma3.1 is satisfied for the proposed Kalman filter in (3.11), then

A − LpcC will be Schur stable. The residual for such an observer will converges to rps −→

C(Bfu

k fu
k − LpsDfs

f s
k + εk(wk, vk)) as k −→ ∞. Therefore the rpsk is dependent on the fault and

free of any attack. □

3.3.3 Attack and Fault Isolation Alarm Logic

Through the equations (3.9) and (3.11), it is demonstrated how to generate the residuals rpsk and

rock . From these residuals, faults and attacks can be isolated by a simple threshold checking as the

residues are respectively faults sensitive and attack sensitive per demonstration in Theorem 3.1 and

Theorem 3.2. The isolation logic can be demonstrated as follows:


if Jps

k > T th and |rock | <= ϵ −→ Fault

if rock > ϵ and Jps
k <= T th −→ Attack

if rock > ϵ and Jps
k > T th −→ Fault and attack
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Threshold (T th) is selected according to X2 detection methodology by consideration of F1 score

in range of (92-93)% averaged over 100 simulation.

3.4 Analysis of the Defined Class of Attack Filters Against Zero

Dynamics and Covert Attacks

In this section, the analysis for the zero dynamics and covert attacks is performed for the specified

class of control law in (3.2), from the attacker’s point of view. The analysis in this section seeks to

understand whether covert or zero dynamics attacks that are completely stealthy for the control-side

filter are also stealthy for the plant-side filter.

For this purpose, first, the error dynamic of the proposed filter is augmented with the open-loop

structure of the plant (3.1) in the attacker’s point of view, then covert and zero dynamics attacks

based on the definition provided in [10] are redefined for the presented scenarios.

First, the error dynamic presented in equation (3.10) for zero analysis of our system in the view-

point of the attacker with consideration of the residuals as the outputs is written as the following:

eock+1 = Acl
oce

oc
k − LocDayayk + (Bau +M ocΓ)auk

rock = −Kocēock −Koc(LocDayayk

+ (Bau +M ocΓ)auk) + Γauk (3.13)

where Acl
oc = Aoc −M ocKoc.

Next, the above equation (3.13) is augmented with equation (3.1) for performing the analysis:
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consider the augmented error dynamic of the filter and the plant as the following:

xk+1

eock+1

 =

A 0

0 Acl
oc


xk
eock

+

 Bau

Bau +M ocΓ

 auk

+

 0

−LocDay

 ayk

yk

rock

 =

C 0

0 −Koc


xk
eock


+

 0

−Koc(Bau +M ocΓ) + Γ

 auk

+

 Day

−KocLocDay

 ayk (3.14)

Subsequently, three pencil matrices for the plant, filter (3.13), and the augmented view are defined:

1. The pencil matrix of plant

Pplant(z) =

zI − A Bau 0

C 0 Day

 (3.15)

2. The pencil matrix of the filter

Pfilter(z) =

zI − Acl
oc Bau +M ocΓ −LocDay

−Koc −Koc(Bau +M ocΓ) + Γ −KocLocDay

 (3.16)
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3. The pencil matrix of augmented view

P(z) =



zI − A 0 Bau 0

0 zI − Acl
oc Bau +M ocΓ −LocDay

C 0 0 Day

0 −Koc −Koc(Bau +M ocΓ) + Γ −KocLocDay


(3.17)

Next, based on the definitions of covert and zero dynamics attack by [10], the stealthy attack sce-

narios for the system are defined:

Definition 3.3 (Zero Dynamics Attack for Plant) [10, Definition 2] For λ0 ∈ C, if rank
(

Pplant(λ0)
)

≤ r, where r is equal to normrank of Pplant(z), then there exist an attack vector

ak = (auk
T 0T1×p)

T called zero dynamics attack for plant, where ak is equal to au0λ
k
0, s.t λ0, a0, and

x0 satisfy the following:

Pplant(λ0)

(
xT0 au0

T 0T1×p

)T

= 0 (3.18)

Definition 3.4 (Zero Dynamics Attack for Filter) [10, Definition 2] For γ0 ∈ C, if rank
(

Pfilter(γ0)
)
≤ r, where r is equal to normrank of Pfilter(z), then there exist an attack vector

ak = (auk
T 0T1×p)

T called zero dynamics attack for the filter, where ak is equal to au0γ
k
0 , s.t γ0, a0,

and eoc0 satisfy the following:

Pfilter(γ0)

(
xT0 eoc0

T au0
T 0T1×p

)T

= 0 (3.19)

Definition 3.5 (Zero Dynamics Attack for Augmented System) [10, Definition 2] For z0 ∈ C,

if rank
(
P(z0)

)
≤ r, where r is equal to normrank of P(z), then there exist an attack vector ak =

(auk
T 0T1×p)

T called zero dynamics attack for plant and the filter, where ak is equal to au0z
k
0 , s.t z0,

a0, and x0, eoc0 satisfy the following:

P(z0)

(
xT0 eoc0

T au0
T 0T1×p

)T

= 0 (3.20)
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Definition 3.6 (Covert Attack for Plant) For ∀z ∈ C and ∀x0 ∈ Rn, the attack vector aZ =

(auZ
T ayZ

T )T called covert attack for the plant s.t z, aZ , and xZ satisfy the following:

Pplant(z)

(
xTZ auZ

T ayTZ

)T

= 0 (3.21)

Definition 3.7 (Covert Attack for the Detector) For ∀z ∈ C and ∀e0 ∈ Rn, the attack vector

aZ = (auZ
T ayZ

T )T called covert attack for the filter s.t z, aZ , and eocZ satisfy the following:

Pfilter(z)

(
eocZ

T auZ
T ayTZ

)T

= 0 (3.22)

Definition 3.8 (Covert Attack for Augmented System) For ∀z ∈ C and ∀x0, e0 ∈ Rn, the attack

vector aZ = (auZ
T ayZ

T )T called covert attack for both plant and filter s.t z, aZ , xZ , and eocZ

satisfy the following:

P (z)

(
xTZ eocZ

T auZ
T ayTZ

)T

= 0 (3.23)

Lemma 3.2 Consider (Lu,Ly) as the pair of all existing arbitrarily z-transform functions that

can be injected on the inputs or outputs of the plant (3.1). The set of all possible covert attacks for

this plant includes (Au,Ay) such that Au = Lu and Ay ⫋ Ly.

Proof The transfer matrices between the attacks and outputs for the (3.1) can form the follow-

ing:

zI − A Bau 0

C 0 Day


auZ (z)

ayZ (z)

 = 0 (3.24)

Based on the above for forming a covert attack by an arbitrary auZ (z) ∈ Lu, there exists a function

ay such thatDayayZ (z) = −C(zI−A)−1BauauZ (z), and based on this equality, it can be concluded

ayZ (z) = F (auZ (z)), where F : Au → Ay. Therefore, there exist a ayZ (z) ∈ Ay corresponding

directly to the function of auZ (z) such that Ay = {F (auZ (·))} ⫋ Ly. □

Theorem 3.3 Consider (Lu,Ly) as the pair of all arbitrarily z-transform functions creating a

cyber-attack, and (Au = Lu,Ay ⫋ Ly) the set of all possible covert attacks that target the plant
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(3.1). If a covert attack directed at plant takes place, in the augmented view of the plant side and

C&C, the filter described in (3.7) will limit the possible attacks that are covert for the filter, to sets

of (A W
u ,A W

y ) such that A W
u ⫋ Au and A W

y ⫋ Ay.

Proof To analyze this, first the transfer matrix between the attack and outputs will be written

and it will be shown that it is belongs to smaller subspace:

P(z) =

zI − A 0 Bau 0

0 zI − Acl
oc Bau +M ocΓ (M ocDoc − Loc)Day

C 0 0 Day

0 −Koc −Koc(Bau +M ocΓ) + Γ −KocLocDay





xZ (z)

eZ (z)

auZ (z)

ayZ (z)


= 0 (3.25)

in which xZ (z), eZ (z), auZ (z), ayZ (z) are corresponding to states, error dynamics, attacks through

the inputs, and attacks through the outputs in the frequency domain. First, the following will be

extracted the following equations from (3.25):

(zIn×n − A)xZ (z) + BauauZ (z) = 0 (3.26)

DayayZ (z) = −CxZ (z) (3.27)

(zIn×n − Acl
oc)eZ (z) + (Bau +M ocΓ)auZ (z)

− LocDayayZ (z) = 0 (3.28)

(−Koc(Bau +M ocΓ) + Γ)auZ (z) = KoceZ (z)

+ (KocLocDay)ayZ (z) (3.29)

49



By combining equations (3.27) and (3.29):

(−Koc(Bau +M ocΓ) + Γ)auZ (z) = KoceZ (z)

−KocLocCxZ (z) (3.30)

In the augmented structure, the aim is to prove that the auZ (z) cannot be selected arbitrarily. There-

fore, (3.26) and (3.28) are combined with (3.30) and the following equation is resulted from it:

(−Koc(Bau +M ocΓ) + Γ)auZ (z) =

Koc(zIn×n − Acl
oc)

−1
(
(Bau +M ocΓ)auZ (z)

+LocDayC(zIn×n − A)−1BauauZ (z)
)

−KocLocC(zIn×n − A)−1BauauZ (z) (3.31)

With simplifying the above equation:

(
(−Koc(Bau +M ocΓ) + Γ) . . .

−Koc(zIn×n − Acl
oc)

−1
(
(Bau +M ocΓ)

+ LocDayC(zIn×n − A)−1Bau
)

−KocLocC(zIn×n − A)−1Bau

)
auZ (z)

= W (z)auZ (z) = 0 (3.32)

Let us break down the above equation into three scenarios that are considered for every possible

auZ (z) ∈ A W
u :

1. W (z) is not full column rank for all z.

(a) In the general case, there exists a direction set of z-transforms auZ (z) ∈ ker(W (z)) as

the specific answer of this solution, and DayayZ (z) = −C(zI − A)−1BauauZ (z).
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(b) W (z) is not full column rank and also rank deficient for some z0:

In this case there exist a direction auZ (z0) ∈ ker(W (z0)) for which the (3.32) is equal

to zero, and DayayZ (z0) = −C(z0I − A)−1BauauZ (z0).

2. W (z) is full column rank for almost all z.

(a) In the general case, if W (z) is full column rank for almost all z, auZ (z) = 0 and since

DayayZ (z) = −C(zI − A)−1BauauZ (z) = 0, therefore ayZ (z) = 0.

(b) W (z) is full column rank for almost all z, and W (z0) is rank deficient for some z0:

If W (z0) is rank deficient for some z0, in this case there exist a direction auZ (z0) ∈

ker(W (z0)) for which the (3.32) is equal to zero, and DayayZ (z0) = −
(
C(z0I − A)−1

BauauZ (z0)
)
.

3. W (z) is full column rank for all z. In this case since W (z) is full column rank for all z

therefore, auZ (z) must be zero and accordingly ayZ (z) = 0.

Therefore according to the above it can be concluded A W
u ⫋ Lu = Au as it is a set including

all the above solutions and A W
y = {F (auZ (·))} has a specific answer corresponding to the auZ (z)

such that DayayZ (z) = −C(zIn×n − A)−1BauauZ (z), and since there are less possible choices for

auZ (z) in augmented case compared to what is shown in Lemma 3.2 for system without the novel

filter, then A W
y ⫋ Ay. □

Remark 3.2 By comparing Theorem 3.3 and Lemma 3.2, significant improvement can be con-

cluded by employing the proposed isolation methodology. Theorem 3.3 reaches a strict system

structural dependent condition by introducing W (z) that can limits the possible number of stealthy

attacks to a finite set or even zero, which is shown through the numerical example provided in

Section 3.5.
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3.5 Numerical Example: Attack Sensitive Filter and Kalman

Fault Filter

In order to demonstrate our proposed approach, certain simulation results are provided in this sec-

tion. The simulations belong to a quadruple tank process provided in [48], where it is assumed

C&C is in charge of all commands inputs, and therefore, the model in (3.1) will be representative

of the physical plant and not the combined control and physical system. We assume that the C&C

uses Kalman filter-based control, and according to simulation the maximum convergence time S

for its filter gains Loc is equal to 89.93s. We also use the outputs of Kalman filter yock to produce an

attack or fault detection residual r̄ock = yock − yk in C&C called as control side filter Control Side

Filter (CSF) residual. Furthermore, in the following figures, the Kalman Fault Filter (KFF) at the

plant side, and the novel plant-side Attack Sensitive Filter (ASF) are presented according to their

appropriate abbreviation. All the attacks or faults are injected at the time of 200s. The thresholds

for KFF are selected based on F1 score of 92 % to 93 % over 100 simulation (Fig. 3.3 ). The

threshold for the CSF follows is considered the same as the KFF. ASF is not sensitive to noise, and

the threshold is set to the small amount of |roc| < 0.05 for indication of no attack. The structure of

the example is defined as follows:

A =



0.9843 0 0.0251 0

0 0.9892 0 0.0175

0 0 0.9747 0

0 0 0 0.9823


,

B =



0.0478 0.0010

0.0005 0.0348

0 0.0765

0.0554 0


, C =

0.5 0 0 0

0 0.5 0 0

 (3.33)
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Figure 3.3: Trial for achieving the F1 score between 92 % and 93 %. Each trial includes 100
simulation.
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Loc =

0.2013 0 0.0712 0

0 0.2049 0 0.0752


Koc =

1.3130 1.1251 −0.3967 2.4002

0.9876 0.8680 2.4766 −0.7160

 ,

M oc =

0.0484 0.0239 0.0150 0.1623

0.0251 0.0383 0.1604 −0.0096

 (3.34)

The scenarios include sensor fault without attack (Fig. 3.4), actuator fault without attack (Fig. 3.5),

covert attack directed at plant without fault (Fig. 3.8), and zero dynamics attack (Fig. 3.6). In case

of covert attack and actuator fault for a discrete system with the period of 1s the following inputs

are added to the command inputs (u+ au(orfu)):

au(k) orfu(k) =


[0 0]T , if 0 ≤ k < 200

−[k/8 k/8]T , if 200 ≤ k < 300

[0 0]T , if k ≥ 300

(3.35)

for zero dynamics attacks the inputs is equal to the following:

au(k) =



[0 0]T , if 0 ≤ k < 200

−1.0128k−200

−0.3398

0.3157

 , if 200 ≤ k < 300

[0 0]T , if k ≥ 300

(3.36)
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For the covert attack the following outputs is subtracted from the sent measurements (y − ya):



yak = [0 0]T , if 0 ≤ k < 200

xak+1 = Axak +Bauk

yak = Cxak, if 200 ≤ k < 300

yak = [0 0]T , if k ≥ 300

(3.37)

And for the sensor fault a bias of 10 has been added to sensor measurements.

Fig. 3.4 and Fig. 3.5 show the isolation of faults from attacks through KFF residual while

insensitivity of ASF residual. Fig. 3.6 and Fig. 3.8 respectively show the isolation of zero dynamics

and covert attacks from faults through ASF and KFF residual, while these attacks are shown to be

stealthy for the CSF.

In this example, by setting Bau = B and Dau = I2×2, it can be concluded that W (z) is full

rank for almost all z. However, a finite number of undetectable attacks can be applied contrary to

an infinite case without the novel filter, as the function W (z) has 41 unstable zeros and 111 stables

zeros. The calculation of W (z) can be done using Matlab and is omitted due to spacing.

3.6 Comparative Study

To study the effectiveness of the proposed methodology, it will be compared to an auxiliary-based

attack detection methodology presented in [88]. The original methodology presented by [88], con-

sists of a switching strategy between auxiliary modes to reveal the stealthy attack. Based on [88],

attackers’ incomplete information about the auxiliaries will lead to detection of the attack.

First, it will be investigated how the auxiliary-based methodology will respond to the simulta-

neous presence of faults and attacks. Afterward, the simulation and comparison of the proposed

filter to the auxiliary-based methodology will be provided.

In the example presented in this section, two modes are utilized, wherein mode 1 the attacker
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Figure 3.4: The response of the plant side filters to sensor faults on both sensors starting at 200s.
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Figure 3.5: The response of the plant side filters to actuator faults on both actuators starting at 200s.
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Figure 3.6: The response of the plant side and C&C filters to zero dynamics attacks starting at 200s.
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Figure 3.7: The response of the plant to ZDA starting at 200s.
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Figure 3.8: The response of the plant side and C&C filters to covert attacks starting at 200s.
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Figure 3.9: The response of the plant to covert attack starting at 200s.
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has full knowledge of the system, and in the mode 2, due to the switching, the attacker has partial

knowledge, which according to [88] leads to detection of covert and zero dynamics attacks.

3.6.1 Original Work by [88]

In the methodology presented by [88], they consider a computer-generated auxiliary system on the

plant-side, its output information along with the system’s output measurements are transferred to

the C&C, however, the effectiveness of this methodology is to detect zero dynamics and covert

attacks at the C&C, and in this section, it will be compared to the proposed method and justify why

such method is not suitable for distinguishing faults and attacks:

• The considered representation in [88]:

ηk+1 =

xk+1

x̃k

 =

 A 0

Acoup Aaux


︸ ︷︷ ︸

Acomb

xk
x̃k


︸ ︷︷ ︸

ηk

+

 B 0

Bcoup Baux


︸ ︷︷ ︸

Bcomb

uk
ũk


︸ ︷︷ ︸

δk

+

 Ba 0

Ba
coup Ba

aux


︸ ︷︷ ︸

Ba
comb

auk
ãuk


︸ ︷︷ ︸

δa
u

k

+

 wk

waux
k


︸ ︷︷ ︸

w̃

ζk =

yk
ỹk

 =

 C 0

Ccoup Caux


︸ ︷︷ ︸

CComb

xk
x̃k


︸ ︷︷ ︸

ηk

−

yak
ỹak


︸ ︷︷ ︸

ζak

+

 vk

vauxk


︸ ︷︷ ︸

ṽk

(3.38)
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In plant-side view:

ζ ′k =

y′k
ỹ′k

 = Ccombηk + ṽk (3.39)

ACoup = QExp1,yQRed,yC,BCoup = QExp,uQRed,u,

CCoup = QExp2,yQRed,yC (3.40)

In the above equation, x̃k is the state of the auxiliary system, ỹk is the outputs of the auxiliary

system, ãuk cyber-attack directed at the auxiliary system, ỹak is the attack on the outputs of the

auxiliary,waux
k and vauxk computer based generated Gaussian process and measurement noise

for auxiliary system with covariance matrices ofQaux
k andRaux

k , ηk are is the augmented state

of the system plus the auxiliary, ζk is the augmented outputs of the system and auxiliary, δ is

the augmented inputs of the system and auxiliary, δauk is the augmented attack vectors of the

system plus auxiliary, w̃k is the augmented vector of process noise, and ṽk is the augmented

vector of measurements noise.

The design information for the auxiliary system is a procedure that is introduced by [88].

The design information includes matrices QExp1,y, QRed,y, QExp,u, QRed,u, QExp2,y,QRed,y

,Caux,Aaux, andBaux that are part of the novelty of the work by [88], and further information

can be found in the referenced paper. Red subscript denotes reduction, and Exp subscript

denotes expansion. QExp1,y denotes expansion at the direction of y, and QRed,y denotes re-

ducing dimension at the direction of y. Selecting the mentioned matrices is based on the

designer’s choices such that the multiplication of the maps as provided in (3.40) results in an

auxiliary system with a reduced dimension. Important information to consider is that in the

above representation, Acoupxk is QExp1,yQRed,yy
′
k in which the y′k represents the plant side

outputs of the system.
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• Attackers model-based on [88]:

ηak+1 =

xak+1

x̃ak+1

 =

 A 0

Acoup Aaux


xak
x̃ak


︸ ︷︷ ︸

ηak

+Ba
comba

δ
k

ζak =

yak
ỹak

 = Ccombη
a
k (3.41)

and the defender utilizes a Kalman filter designed as the following:

η̂k+1 = Acombη̂k +Bcombδk + Lcomb
k (ζk − ζ̂k)

ζ̂k = Ccombη̂k (3.42)

rk = V (ζk − ζ̂k) (3.43)

Lcomb
k = AcombP

comb
k CT (CcombP

comb
k CT +Rk)

−1

P comb
k+1 = Acomb

(
P comb
k − P comb

k CT
comb(CcombP

comb
k CT

+Rcomb
k )−1CcombP

comb
k

)
AT +Qcomb

k (3.44)

For which η̂ is the estimated augmented state, ζ̂ is the estimated augmented outputs, Lcomb
k is

the Kalman filter gain, Qcomb
k =

Qk 0

0 Qaux
k

, Rcomb
k =

Rk 0

0 Raux
k

 and V is an arbitrary

constant gain.

Remark 3.3 Acoupxk results in no physical connection, but Acoup is designed such that its

calculation is replaced form by an amount derived from the outputs of the system.
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3.6.2 Extended Representation

The representation in [88] is extended so that it includes faults. This representation helps us demon-

strate why the methodology proposed in [88] is unable to differentiate faults and attacks :

ηk+1 = Acombηk +Bcombδk +Ba
combδ

au

k +

Bfu
0

0 0


︸ ︷︷ ︸

Bf
comb

fu
k

0


︸ ︷︷ ︸

δf
u

k

+w̃k

ζk = Ccombηk − ζak +

Dfs
0

0 0


︸ ︷︷ ︸

Df
comb

f s
k

0


︸ ︷︷ ︸

δf
s

k

+ṽk (3.45)

Remark 3.4 Residual rk generated for system (3.45) through (3.43) is unable to differentiate be-

tween the faults and attacks at C&C.

Proof The error dynamic between (3.42) and equation (3.45) can be written as the following:

eηk+1 = ηk+1 − η̂k+1 = Acombηk +Bcombδk +Ba
combδ

au

k

+Bfu

combδ
fu

+ w̃k − Acombη̂k + Lcomb
k (Ccombηk + ṽk − ζak . . .

+Dfs

δf
s

k − Ccombη̂k) = (Acomb + Lcomb
k Ccomb)e

η
k

+Bcombδk +Ba
combδ

au

k +Bfu

combδ
fu

+ Lcomb
k (−ζak +Dfs

δf
s

k ) + ϵk(ṽk, w̃k)

r = V Ccombe
η
k (3.46)

In which ϵk(w̃k, w̃k) is the optimal effect of noise on the error dynamic with respect to Kalman filter.

In the above equation, although according to [88], the effect of attack can appear in Ccombe
η
k, due

to the term Ccoup, the residual effect of faults is coupled with the residual of attack. Therefore, a

definite comment on the separation of their impact on the outputs cannot be made. □
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3.7 Comparative Simulation

In the following, the capability of the methodology in [88] for isolation of actuator faults and ac-

tuator cyber-attacks is studied. The mentioned paper investigates the same quadruple tank process,

and two of its auxiliary modes (mode 1, mode 2) that respectively include A1
aux, A2

aux are provided

as follows:

A1
aux =

 0.98267 3.06e10−5

3.06e10−5 0.98262

 ,

A2
aux =

 0.98273 1.93e10−5

1.93e10−5 0.98265

 , Baux =

0.0282

0.0271

 ,

Caux =

0.0615 0.1036

0.1756 0.0970


QRed,y =

(
0.0407 0.1487

)
, QRed,u =

(
0.1609 0.0150

)

QExp1,y =

0.1582

0.1547

 , QExp2,y =

0.1670

0.0961


, QExp,u =

0.1396

0.1291

 (3.47)

Based on [88], at each mode one of auxiliary structures in equation (3.47) will be augmented

with matrices in equation (3.33). C&C through a Kalman filter (equation (3.43)) will produce a

residual rk . It is assumed that the attacker will target mode 1 with the incorrect assumption that

the auxiliary has not switched from mode 1 to mode 2, and this will lead to the detection of cyber-

attacks through mode 2. As can be seen in Fig.3.10 and Fig. 3.11, both attack and fault trigger

the alarm of the anomaly detector Auxiliary based Kalman Fault Filter (AKFF), and therefore

no comment can be made on the origin of the anomaly. Furthermore, a comparison between the

proposed filter and methodology presented in [88] is also provided through Table 3.1.
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Figure 3.10: Covert attack in CPS with the starting time of 200s.

The average F1 Score, drate, and falarm in Table 3.1 are computed with respect to scenarios

where the CPS is under only cyber-attacks or under faults, as the mathematical analysis in (3.46)

demonstrates that [88] is unable to separate faults and cyber-attacks. Therefore, anomaly detection

comparison has been performed for only faults or only cyber-attacks. In this table, dt represents the

detection time that is computed for one of the simulations. dt for faults and cyber-attacks is defined

as the time past the 30th sample of 0.1 seconds for which there exist either thirty consecutive attack

alarms or the current detection rate for 100 consecutive samples is bigger than 16%.

3.8 Conclusion

In this work, two filters are proposed on the plant-side for simultaneous isolation of faults and

cyber-attacks. The first filter is only sensitive to inputs or output cyber-attacks, and it is shown

that it can reveal covert and zero dynamics attacks directed at the plant. The second filter is also

67



0

2

4

6

8

10

X
2
 A

K
F

F

0 50 100 150 200 250 300 350 400 450 500

J
cc

Threshold

0 50 100 150 200 250 300 350 400 450 500

time [sec]

0

0.2

0.4

0.6

0.8

1

A
la

rm
 A

K
F

F

Figure 3.11: Fault on actuators with starting time of 200s.

Proposed method [88]
Anomaly Types falarm drate F1 Score dt AFI falarm drate F1 Score dt(sec) AFI

Covert attack 0.75 100 99.26 3.1 ✓ 11.4840 79.8 82.61 12 ✗

Zero Dynamics Attack 1.72 99.60 99.11 3.7 ✓ 7.10 58.5 71.26 13.8 ✗

Actuator Fault 6.82 99.05 93.14 3.3 ✓ 7.02 99.08 92.98 3.3 ✗

Sensor Fault 7.01 100 93.44 3 ✓ 7.29 100 93.21 3.1 ✗

Table 3.1: This table represents some of the advantages of proposed methodology with respect to
an auxiliary-based control side filter presented by [88]. AFI denotes attack and fault isolation.
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constructed on the plant side and is only sensitive to faults. In future work, a more sophisticated

design may be developed to address the isolation of the cyber-attacks on sensors and actuators. The

results are derived for a specific model of control law in the C&C, while it may also be possible to

accomplish a similar result by considering other types of models for control law, however, the type

of monitoring filter and the analysis provided in Section 3.4. We also provided detailed comparison

of the proposed methodology with an auxiliary based methodology for which Table 3.1 provide a

summary of this comparison.
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Chapter 4

A Dual-Rate Auxiliary-Based Approach for

Actuators Cyber-Attack Estimation in

Presence of Faults

4.1 Introduction

Safety of control systems used to be particularly viewed through the faults as the main unknown

inputs of the system, and an active path toward control reconfiguration is considered as unknown

inputs estimation. Estimation of faults has been addressed in the literature through a variety of

methodologies such as Kalman filter [42], UIO [16], adaptive [47], data-driven methodologies

[75] for single-rate sampled-data systems as well as multi-rate systems. In this regard, multi-rate

systems have been beneficial in terms of fault diagnosis and estimation applications while giving

freedom to relocate non-minimum phase sampling zeros of systems and providing a framework for

solving problems with uniform and non-uniform data sampling [5, 113]. However, with the advent

of cyber-attacks in the era of cyber-physical technologies, these new unknown inputs should be

considered in the study and analysis of CPS systems to enhance their security.

In the last decade, there have been numerous studies that address cyber-attacks as the stand-
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alone threat against cyber-physical systems. One of the fundamental approaches to studying secu-

rity against cyber-attacks is through the notion of invariant zeros and investigating zero dynamics

attacks. Introducing the auxiliary system is one of the suggested techniques in the literature to deal

with the zero dynamics attacks [8, 88], which can be considered as manipulating the invariant zeros

of the overall augmented system of the plant plus auxiliary. In [88], auxiliary systems are defined

as virtual processes that are coupled with the plant’s inputs and output and together form an aug-

mented system. Designing an observer for the augmented system while assuming that the attacker

does not hold the perfect knowledge of auxiliary is the suggested way of [88] to encounter zero

dynamics attacks. Utilizing the command input modulation matrix in the plant-side [37] is another

defensive action that researchers proposed for changing the function that maps command inputs

(entering from the network) to the output. Based on the idea that the attacker is not aware of the

mentioned changes, these methodologies offer a change in mapping function from inputs passing

through the network to the output, in which the attacker cannot exploit and insert a successful zero

dynamics attack.

In [77], based on increasing the sampling rate and forming a dual-rate CPS, they prove all its

sampling zeros are stable, and the CPS is immune to zero dynamics attacks. Dual-rate, which is de-

fined as the special case of multi-rate systems where the inputs hold rate and output sampling rates

are different, but fixed [77]. Based on [77], through the viewpoint of the (fast output-rate) dual-rate

system, one could design a filter that can detect zero dynamics attacks targeting the unstable modes

of the system in a situation where the adversary is not aware of the fast sampling rate, therefore, the

attacker will not be able to have a successful zero dynamics attack due to a change in the mapping

function between network command inputs and outputs, and the defender makes it impossible for

the attacker to find an input function that belongs to the null space of fast rate output.

Furthermore, in [36], a methodology based on the aforementioned dual-rate approach of [77] is

presented that designs an unknown input estimator based on the properties of the dual-rate system

for an attack only scenario. Besides [36], there are a few studies in the literature that address

the problem of attack estimation through resilient-based methodologies, which limit the type of
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cyber-attacks to false data injection attacks [29, 56].

This chapter investigates the estimation of actuator cyber-attacks in the presence of actuator and

sensor faults in the C&C from the viewpoint of fast output dual-rate systems while assuming that

the output channels are safe from cyber-attack. In order to deal with this, a fault filter is employed

at the plant side that securely transmits its residual to the C&C with a special mechanism that will

be formally defined in Section II.

Employing fast output dual-rate sampling for the plant causes strongly detectability, which is a

necessary and sufficient condition for designing delayed Unknown Input Observer (UIO) [95, The-

orem 6]. Delayed UIO has been used for inversion-based tracking of the unknown inputs in works

such as [74, 95], and has the decoupling capability, resilient estimation, and is not computationally

expensive, unlike convex estimation methods such as [33]. Consequently, a UIO is considered to

solve the actuator cyber-attack estimation problem in presence of faults.

The organization of this chapter is as the following. Section 4.2 is the problem statement and

problem formulation. Section 4.3 is the actuator cyber-attacks and fault estimator design. Section

4.4 is the simulation and Section 4.6 is the conclusion.

4.2 Problem Statement and Formulation

4.2.1 Considered System

The considered CPS in this chapter includes an outer control law and inner or local control law,

as depicted in Fig. 4.1. The inner control is responsible for the overall stability of the plant,

while the outer control law performs tracking control of the combined plant as well as the inner

control. The inner control consideration is not restrictive and does not affect the overall conclusion

of the chapter, where it can be extended to situations where all control commands for the plants are

decided in the C&C.

Through the outer control loop view Fig. 4.1 the physical system plus controller operate under

two different rates, meaning the A/D converter sends the transmitted output y(k) with the rate T
N
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Figure 4.1: The CPS framework.

and the D/A converter holds the commands inputs u(k) received from C&C for a period of T .

The governing dynamic for the CPS under actuator faults and actuator cyber-attacks can be

defined in three steps:

Step 1: Continuous-Time Representation: Consider a continuous-time representation of cyber-

physical systems. The following representation considers actuator faults as well as the cyber-

attack through communication channels dedicated to the inputs:

ẋ = Acx+Bcu+Bau

c au︸ ︷︷ ︸
Bũ(k)

+Bfu

c fu

y = Ccx+Dfs

f s (4.1)

Definition 4.1 Plant (4.1) is considered tall, meaning the number of outputs p is greater or

equal to the number of unknown inputs.

where x ∈ Rn, u ∈ Rm is the known inputs with dimension of m, au ∈ Rmau denotes the

actuator cyber-attacks with dimension of mau , fu ∈ Rmfu denotes the actuator faults with
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dimension of mfu , y ∈ Rp, f s(k) ∈ Rmfs denotes the sensor faults, y ∈ Rp, ũ = u + Γau,

and Γ = [αi,j] ∈ Rm×ma . Γ is a diagonal or rectangular diagonal matrix such that based

on the attacked channels entries αi,i are either zero or one, and the rest of entries are zero.

Ac ∈ Rn×n, Bc ∈ Rn×m,Bau

c ∈ Rn×mau , Bfu

c ∈ Rn×mfu , Cc ∈ Rp×n, and Dfs

c ∈ Rp×mfs .

Remark 4.1 In equation (4.1), Ac, Bc, and Cc is representative of a combined physical plant

and control system if the CPS needs a local control system such that it ensures stability on

the plant side. The system matrices can also be representative of the physical plant such

that all command inputs are received from C&C. Therefore, the proposed methodology is not

restrictive of the existence of a local controller.

Step 2: Discrete-Time Representation: A discrete-time state-space representation of (4.1) with a

selected period of T
N

can be achieved by the following transformation:

A = eAc
T
N , B =

∫ T
N

0

eAcτBcdτ

Bau =

∫ T
N

0

eAcτBau

c dτ, Bfu

=

∫ T
N

0

eAcτBfu

c dτ

Dfs

= Dfs

c , C = Cc (4.2)

this representation is shown according to the following:

x(k + 1) = Ax(k) + Bu(k) + Bauau(k)︸ ︷︷ ︸
Bũ(k)

+Bffu(k)

y(k) = Cx(k) +Dfs

f s(k) (4.3)

where k = 0, 1, . . ..
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In the Z transform domain, the equation (4.3) can be described as the following:

y(z) = (C(zI − A)−1B)u(z)

+ (C(zI − A)−1Ba)au(z)

+ (C(zI − A)−1Bfu

)fu(z) +Dfs

f s(z) (4.4)

where z is a forward shift operator such that zu(k) = u(k + 1) or zy(k) = y(k + 1).

Step 3: Dual-Rate Representation: Next, we define a linear time-invariant representation for the

system with operating rate T for command inputs and operating rate T
N

for outputs also

known as blocked or lifted representation in multi-rate systems, which is a well-known

methodology for transforming multi-rate representations to linear time-invariant represen-

tations of systems and is extensively explained throughout the literature [18, 108].

Consider the discrete-time system (4.3), with same sampling rate T
N

and changing of the hold

rate to T . Since sampling to hold ratio of y(k) and ũ(k) is equivalent to 1
N

in a uniform manner.

For instances that k = 0, N, 2N, . . ., we can define vectors U(k), A(k) as well as Fs(k) and Fu(k)

in the following manner:

U(k) =

(
u(k) u(k) . . . u(k)

)T

Fu(k) =

(
fu(k + 1) fu(k + 2) . . . fu(k +N − 1)

)T

Fs(k) =

(
f s(k + 1) f s(k + 2) . . . f s(k +N − 1)

)T

A(k) =

(
a(k) a(k) . . . a(k)

)T

(4.5)

Consequently, a shift operator Z is defined such that it satisfies ZU(k) = U(k +N), ZFu(k) =

Fu(k +N), ZFs(k) = Fs(k +N), ZA(k) = A(k +N), Zx(k) = x(k +N), ZY (k) = Y (k +N).
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With this modification, the blocked or lifted system will be given by:

x(k +N) = A
¯
x(k) + B

¯
U(k) + B

¯
fu

F(k) + B
¯
auA(k)

Y (k) = C
¯
x(k) + D

¯
U(k) + D

¯
fu

Fu(k)

+ D
¯
fs

Fs(k) + D
¯
auA(k)

Y (k) =

(
y(k) y(k + 1) . . . y(k +N)

)T

(4.6)

Where:

A
¯
= AN ,B

¯
fu

=

(
AN−1Bfu

AN−2Bf ... Bfu

)
,

B
¯
a =

(
AN−1Ba AN−2Ba ... Ba

)
,

B
¯
=

(
AN−1B AN−2B ... B

)
,

D
¯
=



D 0 · · · 0

CB D · · · 0

...
... . . . ...

CAN−2B CAN−3B · · · D


,D

¯
au=



Da 0 · · · 0

CBa Da · · · 0

...
... . . . ...

CAN−2Ba CAN−3Ba · · · Da



D
¯
fu

=



0 0 · · · 0

CBf 0 · · · 0

...
... . . . ...

CAN−2Bf CAN−3Bf · · · 0


,C

¯
=



C

CA

...

CAN−1



D
¯
fs

=



Dfs
0 · · · 0

0 Dfs · · · 0

0 0
. . . 0

0 0 0 Dfs


(4.7)

and where A
¯

∈ Rn×n, B
¯

∈ Rn×Nm, B
¯
au ∈ Rn×Nmau , B

¯
fu ∈ Rn×Nmfu , C

¯
∈ RNp×n, D

¯
∈
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RNp×m,D
¯
au ∈ RNp×Nmau ,D

¯
fu ∈ RNp×Nmfu ,D

¯
fs ∈ RNp×Nmfs Y (k) ∈ RNp, Np is equal to N

multiplied by p, Nm is equal to N multiplied by m, Nmfs is equal to N multiplied by mfs , and

Nmau is equal to N multiplied by mau .

The above equation in the Z transform domain can be described as the following:

Y (z) = (C
¯
(zNI − A

¯
)−1B

¯
+ D

¯
)U(z)

+ (C(zNI − A
¯
)−1B

¯
a + D

¯
a)A(z)

+ (C
¯
(zNI − A

¯
)−1B

¯
f + D

¯
f )F(z) (4.8)

Lastly, the equation (4.6) can be simplified as the following:

x(k +N) = Ãx(k) + B̃u(k) + B̃auau(k) + B̃fu

Fu(k)

Y (k) = C̃x(k) + D̃u(k) + D̃auau(k)

+ D̃fu

Fu(k) + D̃fs

Fs(k) (4.9)

Ã = A
¯
, B̃ =

N−1∑
k=0

AkB, B̃au =
N−1∑
k=0

AkBau ,

B̃fu

=
N−1∑
k=0

AkBfu

, D̃ =



0

CB

...

C
∑N−2

k=0 A
kB



D̃au =



0

CBau

...

C
∑N−2

k=0 A
kBau


, D̃fu

=



0

CBfu

...

C
∑N−2

k=0 A
kBfu


C̃ = C

¯
, B̃fu

= B
¯
fu

, D̃fs

= D
¯
fs

(4.10)
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where B̃ ∈ Rn×m, B̃au ∈ Rn×mau , D̃ ∈ RNp×m,D̃au ∈ RNp×mau , and D̃fu ∈ RNp×mfu .

4.2.2 Type of Cyber-Attacks

The type of considered attacks in this section is limited to zero dynamics and false data injection

attacks.

1. Zero dynamics attacks: Consider the pencil matrix associated with the output entry of the

system defined as the following:

Pplant(z) =

zNI − Ã B̃au

C 0

 (4.11)

Definition 4.2 (Zero Dynamics Attack for Plant) [10, Definition 2] For z0 ∈ C, if rank
(

Pplant(z0)
)
≤ l, where l is equal to normrank of Pplant(z), then there exist an attack vector

ak = (auk
T 0T1×p)

T called zero dynamics attack for plant, where ak is equal to au0(z
N
0 )k, s.t

(zN0 ), a0, and x0 satisfy the following:

Pplant(z0)

(
xT0 au0

T 0T1×p

)T

= 0 (4.12)

2. False data injection attacks:

Aside from zero dynamics attacks, in this work only non-stealthy false data injection attacks

such as bias injection attacks.

4.2.3 Designing the Cyber-Attack Sensitive Filter

First, we consider two filters: one at the plant side (Plant Side Filter (PSF)) and one at the C&C

(CSF) as shown in Fig. 4.2.

1. Plant Side Filter (PSF): Consider a fast rate fault filter with inputs and output rate of T
N

and

residual output r̄k that is constructed according to the following:
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Figure 4.2: The schematic of our methodology. The system is assumed to be prone to simultaneous
actuator cyber-attacks and actuator faults. Sensor channels are assumed to be secure and without
any fault.
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x̄(k + 1) = (A− LC)x̄(k) + Bũ(k)︸ ︷︷ ︸
Bu(k)+Bau (k)au(k)

+Ly(k)

r̄(k) = (Cx̄(k)− y(k)) (4.13)

where L is a filter gain, r̄(k) ∈ Rp×n is the residual, and x̄(k) ∈ Rn×n is the state of the

observer.

The error dynamic ē(k+ 1) = x(k+ 1)− x̄(k+ 1) of the above filter along with its residual

r̄(k) can be defined as the following:

ē(k + 1) = (A− LC)ē(k) + Bfu

fu(k)

r̄(k) = Cē(k) +Dfs

f s(k) (4.14)

The following mechanism based on a threshold level for each vector of r̄ is considered for

sending information to the C&C according the following:



if abs(r̄i(k)) > 0 for i = 0, 1, . . . p

then r̄i(k) transmitted to C&C

otherwise r̄i(k) will be set to zero by C&C

(4.15)
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2. C&C Filter (CCF):Next we construct a filter in a C&C in a similar manner to (4.13):

x́(k + 1) = (A− LC)x́(k) + Bu(k) + Ly(k)

ŕ(k) = (Cx́(k)− y(k)) (4.16)

where the error dynamic é(k + 1) = x́(k + 1)−x(k+1) is defined by the following equation:

é(k + 1) = (A− LC)é(k) + Bfu

fu(k) + Bauau(k)

ŕ(k) = Cé(k) +Dfs

f s(k) (4.17)

3. Cyber-Attack Sensitive Filter (CASF):We define a attack model-based on the PSF and CCF

with fast-rate error e(k + 1) = é(k + 1)− ē(k + 1) and residual r defined as the following:

e(k + 1) = (A− LC)e(k) + Bauau(k)

= Aee(k) + Bauau(k)

r(k) = Ce(k) (4.18)

and dual-rate representation defined as the following:

e(k +N) = Ãee(k) + B̃au

e au(k)

R(k) = C̃ee(k) + D̃au

e a
u(k)

R(k) =

(
r(k) r(k + 1) . . . r(k +N)

)T

(4.19)

in which by replacing Ae → A in (4.10), respectively, Ãe, B̃au

e , C̃e, and D̃au

e can be realized in

the same manner as Ã, B̃au , C̃, and D̃au .
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4.2.4 UIO Attack Estimator

Next, an attack estimator constructed corresponding to (4.19), that has the following structure:

ê(k − L+N) = Eê(k − L) + FR(k − L : k)

R(k − L : k) = OLe(k − L) + JLa
u(k − L : k) (4.20)

where

R(k − L : k) = (R(k − L+N) R(k − L+ 2N)

. . . R(k))
T

(4.21)

au(k − L : k) = (au(k − L+N) au(k − L+ 2N)

. . . au(k))
T

OL =
(

C̃e
OL−NAe

)
=
(

OL−N

C̃eÃL
e

)
(4.22)

JL =
(

D̃au
e 0

OL−N B̃au
e JL−N

)
=
(

JL−N 0

C̃eCL−N D̃au
e

)
(4.23)

where CL−N is the observability matrix between the pair (Ãe, B̃
au). L represents a fixed number

of delays, for the computation of the estimation, it can be selected through satisfying left invertibil-

ity condition, where the minimum number of delays is between N to n × (N − 1) , and the exact

number of delays depends on the system [107, Theorem 1], E, F are the design parameters for the

observers.

The error dynamic ee(k − L+N) = e(k − L+N)− ê(k − L+N) for this estimator, which
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is based on equations (4.20) and (4.19) is described in the following:

ee(k − L+N) = Ãee(k − L) + B̃au

e au(k − L)

− Eê(k − L)− FR(k − L : k)

= Eee(k − L) + (Ãe − E − FOL)e(k − L)

− FJLa
u(k − L : k) + B̃auau(k − L) (4.24)

4.2.5 Assumption

The key assumptions are as the following:

Assumption 4.1 r̄(k) and ȳ(k) are securely transmitted to C&C.

Assumption 4.2 It is assumed that Bau is full column ranks, and system (4.3) has no zero on unit

circle.

Assumption 4.3 The plant in the view of the outer control loop is tall, meaning the number of

output y(k) is more or equal to the number of command inputs u(k).

Remark 4.2 The amount of delay L in this ac UIO is dependent on the satisfaction of the left in-

vertibility condition [93]. According to [95], for a strongly detectable linear time-invariant system

such a delay always exists.

4.2.6 Objective and Motivation: Actuator Cyber-Attacks Estimation in Pres-

ence of Sensor and Actuator Faults

In this work, the main objective is to present a methodology for (4.9) and (4.13) that estimates

actuator cyber-attacks in the presence of sensor and actuator faults in the C&C. We also for the first

time present simultaneous occurrence of fault and attack in a multi-rate framework. For achieving

the objectives we aim to accomplish the followings:
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1. Design a C&C Attack Sensitive Filter in Presence of Faults and Actuator Cyber-Attack

: A delayed UIO will be designed on the C&C that provides an estimate of actuator cyber-

attacks âu(k) with the information that includes r(k), which is obtained in the command and

control in Section 4.2.

2. Provide a C&C Cyber-Attacks and Faults Isolation Scheme Based on the estimated ac-

tuator cyber-attack âu(k) and the residual r̄(k) (the sent information by the plant-side filter),

faults and attacks are isolatable from each other:



if abs(r̄(k)) > 0, (abs(âu(k)) > 0

or abs(âu(k)) = 0) → Fault

if abs(r̄(k)) = 0, (abs(âu(k)) > 0 or abs(âu(k)) = 0)

→ No Fault

if abs(âu(k)) > 0, (abs(r̄(k)) > 0 or abs(r̄(k)) = 0)

→ Attack

if abs(âu(k)) = 0, (abs(r̄(k)) > 0 or abs(r̄(k)) = 0)

→ No Attack

(4.25)

4.3 Observer Design

In this section, an unknown input observer (UIO) is constructed according to [95] for the error

dynamic system (4.24) such that this observer will achieve the attack estimation in the presence of

faults through a delayed left inversion.

The construction of such observers is dependent on satisfying the strong detectability condition

[95, Theorem 6], which is proved to be necessary and sufficient [95, Theorem 6]. Before designing

this estimator, first we investigate the properties of filters introduced in Section 4.2.
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4.3.1 Filter Properties

First, we respectively prove the fault sensitivity and attack sensitivity for our proposed filters. The

first filter (PSF) (4.13) is fault sensitive, while the CASF (4.18) is attack sensitive:

Theorem 4.1 Residual r(k) generated by CASF (4.18) is only attack sensitive and residual gener-

ated by plant side filter (PSF) (4.13) "r̄” is only fault sensitive, if A− LC is stable.

Proof The error dynamic (4.14) shows that by selecting a filter gain L for which A − LC is

stable, the residual of PSF r̄ → CBfs
fu(k) + Dfs

f s(k) as k → ∞. Furthermore, by satisfying

the stability of A−LC, and investigating the error dynamic (4.18), it is concluded that the residual

of CASF r → C(A− LC)e(k) + CBauau(k) as k → ∞. □

Theorem 4.1 establishes that the filter (4.18) is only sensitive to attacks. Despite the attack

sensitivity, without the dual-rate strategy, the single rate sampled data system in (4.18) is still prone

to zero dynamics attacks.

Furthermore, A dual-rate filter is established in equation (4.19) to deal with zero dynamics

attacks, and consequently, a UIO observer is designed for this filter. In the following, a Lemma

is provided that helps us prove the immunity of dual-rate filter (equation (4.19)) to zero dynamics

attacks.

Lemma 4.1 [77, Lemma 10 and Proposition 12]: Consider a CPS with the following dual-rate

representation defined through the following steps:

1. with the continuous representation

v̇ = Ācv + B̄cl

z = C̄cv (4.26)

in which v represents the state vector, z is the output vector, l is the unknown input. Moreover,

Āc, B̄c, and C̄c are system matrices with appropriate dimension.
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2. The system has a fast rate of discretized representation with a rate of T
N

:

v(k + 1) = Āv(k) + B̄l(k)

z(k) = C̄v(k) (4.27)

in which the discretization can take place according to (4.2) by substituting Ā → A, B̄āu →

B, and C̄ → C.

3. The dual-rate (inputs T and output T
N

) representation is described according to the following:

v(k +N) = ˜̄Av(k) + ˜̄Bl(k)

Z(k) = ˜̄Cv(k) + ˜̄D(k)

Z(k) =

(
z(k) z(k + 1) . . . z(k +N)

)T

(4.28)

in which the system matrices can be driven by following the steps in (4.10) by considering

fast rate representation (4.27) and substituting ˜̄A→ Ã, ˜̄B → B̃au , ˜̄C → C̃, and ˜̄D → D̃au .

No invariant zeros with non-minimum phase zeros exist for the sampled data system (4.28) with

inputs rate T , and output rate T
N

if the following conditions hold:

(i) B̄ is full column rank.

(ii) The following matrix is full column rank (e.g. if system is observable):

O =

[
C̄ Ā . . . C̄ĀN−2

]T
(4.29)

(iii) If the system (4.27) is tall and the respective sampled data system with the rate T
N

has no zero

at |z0| = 1.
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Satisfying Lemma4.1 is equivalent to strong detectability for the dual-rate system, in which N is

designed such that (4.29) holds (e.g. satisfying observability condition) [77]. Moreover, we have

to show that investigated system in (4.19), has the same properties:

Lemma 4.2 The investigated system (4.19) is strongly detectable if and only if the following con-

dition holds:

1. The pair (A− LC,C) is observable

2. Bau is full column rank

3. A− LC,Bau , C has no zeros on the unit circle.

Proof We must prove the above conditions can hold in the same manner as the 3 conditions

in Lemma4.1.

First, the pair (A,C) observable denotes rank(

 C

A− zI

) = n , ∀z ∈ C [100]. For the

pair (A-LC, C) we can write the observability condition as rank(

 C

A− LC − zI

) = n

which is equivalent to rank(

 I 0

−L I


 C

A− zI

) = n.

Condition (2) is the same as Assumption 4.2.

Condition (3) is also satisfied since the zeros of the system (4.19) is equivalent to system

(4.3) for which its zeros can be computed through pencil matrix

zI − A Bau

C 0

. Since

zI − A+ LC Bau

C 0

 =

I L

0 I


zI − A Bau

C 0

. Additionally it is known that in-

variant zeros do not change under output feedback [89, Lemma 1].

Therefore, the investigated system is also strongly detectable. □
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The above conditions satisfy the strong detectability that is necessary and sufficient for design-

ing a delayed UIO [95], which denotes we can design a delayed UIO according to (4.20) for the

dual-rate system. Therefore, the following proposition addresses its design:

Proposition 4.1 Observer (4.20) can be constructed if the following conditions holds:

1. E is stable

2. E = Ãe − F ÕL

3. FJL =

(
B̃au

e 0 · · · 0

)
Proof These conditions for designing the delayed UIO are derived by setting ee −→ 0 in (4.24).

The proposed type for UIO has a well-known design procedure, and details of calculating F for this

type of observer can be found in [95] (see Appendix). By satisfying above conditions, the UIO for

auxiliary system will be constructed, for which e −→ 0, that denotes ê(k − L) − e(k − L) −→ 0

or ê(k − L) −→ e(k − L). □

Under the condition that
(
B̃au

e D̃au

e

)T

is full column rank there exist a matrix G such that the

following holds:

G

(
B̃au

e D̃au

e

)T

= Imau
(4.30)

After this step, we can calculate the unknown inputs of the system through a left inversion of

the auxiliary system according to the following equation:

âu(k − L) = G

ê(k − L+N)− Ãeê(k − L)

R(k − L)− C̃eê(k − L)

 (4.31)

Since ê(k − L) − e(k − L) −→ 0 then the âu(k − L) −→ au(k − L) as k −→ ∞. The above

estimation is a direct result of left invertiblity of the system.
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4.4 Numerical Simulation Study

The performance of the methodology is tested by the estimation of unknown inputs through a

framework of zero dynamics attacks developed by [76, 77]. We used the continuous-time repre-

sentation denoted in their example, which is sampled with a rate of 0.5s. This would result in a

sampling zero for the discretized system. Here, the transfer function for this continuous system is

provided [76]:

Gc(s) =
10

1
500
s4 + 67

1000
s3 + 123

200
s2 + 31

20
s+ 1

(4.32)

The discrete-time minimal representation with a period of T
N

= 0.25s is computed as the following:

A =



−0.1723 −0.3513 −0.0856 −0.0250

0.2046 0.2560 −0.2111 −0.0656

0.2687 0.6648 0.9014 −0.0310

0.0318 0.1001 0.2426 0.9976



Bau = Bfu

=



0.0511

0.1343

0.0636

0.0048


, C =



0

0

0

4.8828



T

(4.33)
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And the lifted dual-rate representation can be seen in the following:

Ã =



0.0105 0.0246 0.0301 0.0112

−0.0918 −0.1817 −0.1711 −0.0367

0.1503 0.2687 0.1793 −0.2298

0.2354 0.5115 0.6326 0.8918



, B̃au = B̃fu

sys =



0.0001

−0.0005

0.0012

0.0088



, C̃ =



0 0 0 4.8828

0.1552 0.4889 1.1844 4.8713

0.5463 1.3458 2.1327 4.7871

0.9063 2.0498 2.7528 4.6077


, D̃au =



0

0.0236

0.1960

0.5634


(4.34)

The slow inputs rate of 0.5s, based on system structure Ã, B̃au , C, has unstable sampling zero at

(−1.4196), for which the attacker can utilize and insert a zero dynamics attack. However, with the

implementation of the proposed methodology, this attack can be estimated. In the following the

design parameters for the UIO are shown:
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E =



−0.0048 −0.0102 0.0184 −0.0907

0.0519 0.0976 −0.1840 0.9177

0.0705 0.1374 −0.2559 1.2725

0.0110 0.0217 −0.0402 0.1998



, F =



−0.0674 0 0 0 0.0006 −0.0152 0.0002 0.0006

0.3180 0 0 0 −0.0020 0.0498 −0.0006 −0.0019

0.4639 0 0 0 −0.0123 0.3121 −0.0041 −0.0116

−0.1365 0 0 0 −0.0058 0.1470 −0.0019 −0.0055


(4.35)

Mathematical description of simulated attacks and faults are provided in the following:

1. Zero dynamics actuator cyber-attack:

au(k) =


0, if 0 ≤ k < 60

−0.01× 1.4196k−60, if 60 ≤ k

(4.36)

2. Sinusoidal actuator cyber-attack:

au(k) =


0, if 0 ≤ k < 50

4sin(0.1k), if 50 ≤ k

(4.37)

3. Biasing actuator fault:

fu(k) =


0, if 0 ≤ k < 50

4, if 50 ≤ k

(4.38)

A few scenarios are considered by placing the UIO observer on the plant side as well as the

command and control side. Fig. 4.3 demonstrates the sinusoidal actuator cyber-attack for which
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Figure 4.3: Sinusoidal attack estimation in the C&C, comparison of plant side and command and
control side alongside with the fault alarm in this case.

the proposed methodology accurately estimates the cyber-attack in the C&C, while the same type

of observer on the plant side is unable to estimate the attack. In addition, Fig. 4.3 shows no fault is

detected through the residual generation for the sinusoidal actuator cyber-attack. Furthermore, the

same result can be taken for zero dynamics actuator cyber-attacks through Fig. 4.4.

Furthermore, an additive actuator fault is investigated, for which Fig. 4.5 shows the sensitivity

of the fault detector, and it also shows the insensitivity of the attack estimator in the C&C . In this

case, the number of unknown inputs is equal to the number of the outputs of the system, which

satisfies the minimal requirement for unknown input estimation, and it can be seen through Fig.

4.5 that the attack estimator can estimate this fault on the plant side. However, if sensor faults were

also included, this estimator may not be able to estimate multiple unknown inputs.
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Figure 4.4: Zero dynamics attacks estimation, comparison of plant side and command and control
side alongside with fault Detector with presence of zero dynamics attacks at C&C.
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Figure 4.5: Bias fault scenario of magnitude 4 applied at time 50s, comparison of estimators placed
in the C&C to Plant side estimator alongside with fault alarm at the C&C based on the received
residual.
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4.5 Comparison Study

The methodology is compared to the article [36] on the estimation of attack signal. As the novelty

of our work remains in providing the fault and attack framework as well as estimating the attack

in this framework, we also demonstrate the advantages or deficiency of the presented delayed UIO

attack estimation methodology to methodology in [36].

By investigating the work in [36] and designing a UIO for (4.9) by consideration Fu,Fs = 0 ,

we reach to the following estimator [36]:

x̂(k +N) = Ex̂+ LY (k) + B̃u(k) (4.39)

for which E and L are design parameters. with error dynamic

ê(k +N) = x̂(k +N)− x(k +N)

= Ex̂(k) + LY (k)− Ãx(k)− B̃au(k)au(k)

= Ee(k) + (E − Ã+ LC̃)x(k) + (LD̃au − B̃au)au(k)

s.t :

E is stable

LD̃au = B̃au

E = Ã− LC̃ (4.40)

In [36], the author mentions the use of "MATLAB Solver" for solving their constraint equations.

We used an LMI solver to replicate their result for numerical example in equation (4.32). We pro-

vide a comparison for two scenarios in order to demonstrate the strength of our proposed method-

ology:

While performing the simulation, we applied small amount of noise on output and considered

the following scenarios:
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Scenario 1 :

For the Proposed Methodology, consider a threshold of |Tr| < 0.15 for attack and fault

detection that is selected with respect to simulation noise and a situation such that plant side

fault residual is communicated according to equation (4.15).

For [36], consider a threshold of |Tr| < 0.15 for attack detection.

Scenario 2 :

For the Proposed Methodology, reconsider a small threshold of |Tr| < 0.05 for attack detec-

tion and assume that plant side fault residual is continuously communicated to C&C, which

is also a special case of equation (4.15) when the fault is detected at plant side.

For [36], reconsider a small threshold of |Tr| < 0.05 for attack detection.

We have simulated the fast rate output system for our presented work and methodology in [36]

in situations with T
N

= 0.25 and T
N

= 0.5 and considered the following factors for comparison

purposes:

In the scenarios, the stability of E is noted to be stable (S) or unstable (NS) to compare the

feasibility of delayed observer methodology and LMI-based methodology. Furthermore, drate for

the given thresholds, F1 score which is explained in equation (3.4), and a average attack tracking

error with (JA
e ) and without the attack (JH

e ) is provided:

JA
e =

ΣkEND
kSTART

|a(k)− â(k)|
number of samples

, JH
e =

ΣkSTART
0 |a(k)− â(k)|
number of samples

(4.41)

In the above equation, kSTART is associated with the sample for which the attack starts, and kEND

is associated with the sample for which the attack finishes.

Discussion: Scenario 1

We found that overall the methodology in [36] can lead to a feasible solution, however, this is

not the case for the provided example at T
N

= 0.5sec. In [36], their provided E matrix in the
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Figure 4.6: Sinusoidal attack scenario applied at time 50s, result based on methodology in [36].

example for the case of T
N

= 0.5sec is in fact unstable. Our simulation of their method for the

case of T
N

= 0.5 also reached an unstable E, which indicates that it is not suitable for the task

of attack estimation. Through the provided Table 4.1 and Table 4.2, it is shown that the proposed

methodology based on delayed UIO observer will demonstrate better tracking capability of attack

for both cases while T
N

= 0.25 and T
N

= 0.5.

Discussion: Scenario 2

Through Table 4.3 and Table 4.4, we provide a comparison of the proposed methodology to method-

ology in [36] for the second scenario. Our simulation of their method for the case of T
N

= 0.5 has

also reached an unstableE. However, through the provided Table 4.3 and Table 4.4, it is shown that

the proposed methodology will demonstrate the better tracking and detection capability of attack

for both cases, while the attack tracking ability of our methodology is improved in comparison to
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Proposed method (2 Sample Delay) [36] (No Delay)
T
N

= 0.5 E drate F1 JeH , JeA AFI E drate F1 JeH , JeA AFI
Bias Attacks S 97.33 96.98 0.0998,0.06 ✓ NS ✗ ✗ ✗ ✗

Sinusoidal Attacks S 94.19 95.35 0.099,0.23 ✓ NS ✗ ✗ ✗ ✗

Zero Dynamics Attacks S 60.59 73.14 0.099,155.31 ✓ NS ✗ ✗ ✗ ✗

Actuator Faults S 99 97.86 – , – ✓ ✗ ✗ ✗ ✗ ✗

Sensor Fault S 99.33 98.03 – , – ✓ ✗ ✗ ✗ ✗ ✗

Table 4.1: For the Scenario 1, this table represents some of the advantages of the proposed method-
ology with respect to an attack signal estimation methodology proposed in [36]. AFI denotes attack
and fault isolation. S denotes Stable, and NS denotes Not Stable. Each number represents the av-
erage result of a 50 simulation.

Proposed method (2 Sample Delay) [36] (No Delay)
T
N

= 0.25 E drate F1 JeH , JeA AFI E drate F1 JeH , JeA AFI
Bias Attack S 98.807 75.11 0.26,0.022 ✓ S 100 73.29 0.46,0.41 ✗

Sinusoidal Attack S 96.22 74.819 0.259,0.111 ✓ S 97.63 72.36 0.453,0.65 ✗

Zero Dynamics Attack S 76.2 52.8�6 0.24,48.49 ✓ S 69.21 48.511 0.39,93.869 ✗

Actuator Fault S 99.053 98.297 – , – ✓ ✗ ✗ ✗ ✗ ✗

Sensor Fault S 95.93 96.68 – , – ✓ ✗ ✗ ✗ ✗ ✗

Table 4.2: For Scenario 1, this table represents some of the advantages of the proposed methodology
with respect to an attack signal estimation methodology proposed in [36]. AFI denotes attack and
fault isolation. S denotes Stable, and NS denotes Not Stable. Each number represents the average
result of a 50 simulation.
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Proposed method (2 Sample Delay) [36] (No Delay)
T
N

= 0.5 E drate F1 JeH , JeA AFI E drate F1 JeH , JeA AFI
Bias Attack S 97.33 97.01 0.066,0.061 ✓ NS ✗ ✗ ✗ ✗

Sinusoidal Attack S 97.33 97.01 0.066,0.225 ✓ NS ✗ ✗ ✗ ✗

Zero Dynamics Attack S 68.5 78.96 0.055,155.307 ✓ NS ✗ ✗ ✗ ✗

Actuator Fault S 99 97.44 – , – ✓ ✗ ✗ ✗ ✗ ✗

Sensor Fault S 99.35 97.67 – , – ✓ ✗ ✗ ✗ ✗ ✗

Table 4.3: For the second scenario, this table represents some of the advantages of the proposed
methodology with respect to an attack estimation methodology proposed in [36]. AFI denotes
attack and fault isolation. S denotes Stable, and N denotes Not Stable. Each number represents the
average result of a 50 simulation.

Proposed method (2 Sample Delay) [36] (No Delay)
T
N

= 0.25 E drate F1 JeH , JeA AFI E drate F1 JeH , JeA AFI
Bias Attack S 98 97.67 0.174,0.019 ✓ S 100 61.205 0.45,0.417 ✗

Sinusoidal Attack S 96.67 96.99 0.17,0.105 ✓ S 99.51 60.85 0.46,0.65 ✗

Zero Dynamics Attack S 72.5 82.153 0.145,48.44 ✓ S 86.99 42.46 0.39,93.87 ✗

Actuator Fault S 99.17 96.16 – , – ✓ ✗ ✗ ✗ ✗ ✗

Sensor Fault S 96.77 94.87 – , – ✓ ✗ ✗ ✗ ✗ ✗

Table 4.4: For the second scenario, this table represents some of the advantages of the proposed
methodology with respect to an attack estimation methodology proposed in [36]. AFI denotes
attack and fault isolation. S denotes Stable, and N denotes Not Stable. Each number represents the
average result of a 50 simulation.

Scenario 1. By comparing Table 4.4 and Table 4.3 to Table 4.2 and Table 4.1, it is concluded that

in the presence of added noise in the simulation, when the residual generated at the plant side is

received at the C&C for all time, the proposed methodology performs better, even while selecting a

small threshold. The proposed strategy provides better performance for a small amount of threshold

since it inherently cancels the noise when C&C generated and plant-side generated residuals are

both present. The proof can be realized through Theorem 4.1 and substituting for sensor fault f s

and actuator fault fu such that Dfs
f s(k) → Dfs

f s(k)+w(k) and Dfu
fu(k) → Dfu

fu(k)+ v(k).

For which w demonstrates the process noise and v demonstrates the sensor noise. In other words,

through the subtraction of the residual of two filters PSF and CSF, the proposed methodology can-

cels the noise contribution to the residual in the same manner that it deals with the faults.
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4.6 Conclusion

In this chapter, estimation actuator cyber-attacks in the presence of faults are investigated. Based on

a dual-rate strategy and generating fault-sensitive residual through a Plant side filter (PSF), we were

able to design an unknown input observer that can estimate actuator cyber-attacks in the C&C in the

presence of sensor and actuator faults. The delayed UIO also demonstrates a higher tracking ability

of attack in comparison to the methodology presented in [36]. The presented work can be extended

through a non-uniform fast rate periodic sampling to be able to detect covert cyber-attacks.
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Chapter 5

Conclusion and Future Work

In this chapter we provide summary of the results of this work and provide potential future work

directions:

5.1 Conclusion

• In Chapters 3, a CPS system is investigated that is simultaneously impacted by faults and

cyber-attacks. On the plant side, to isolate the effects of cyber-attacks from faults, we try

to formulate attack-sensitive ASF and fault-sensitive filters KFF. Through mathematical

analysis of ASF filter (Section 3.4), we prove its capability to isolate stealthy cyber-attacks,

including covert and zero dynamics attacks, at the plant side. In Section 3.3.1, it is also

proven that KFF filter is only fault sensitive.

• In Chapter 3, by deriving equation (3.32) , an algebraic condition is developed to check for

stealthy attacks in CPS. Figures 3.8, 3.6, 3.5,3.4, and 3.7 investigate different scenarios of

covert and zero dynamics cyber-attacks as well as sensor and actuator faults to demonstrate

the capability of the proposed filters. A comparative study is provided by considering an

auxiliary-based attack detection methodology [88], and simulating it for the cyber-attack and

fault scenarios demonstrated in Fig. 3.10, 3.11. Table 3.1 shows the performance comparison
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of the established methodology with the methodology in [88]. Through this table, it is shown

that the proposed methodology has a better performance in detecting cyber-attacks. There

are no published paper that cover both sensor and actuator under faults and stealthy cyber-

attack. In [111], replay attack isolation from sensor faults has been addressed, however it

does not consider actuator faults or actuator cyber-attacks. The study in [28] also provide

attack and fault isolation in view of multi-agent systems, however does not address stealthy

cyber-attacks such as zero dynamics attacks.

• In Chapter 4, actuator cyber-attacks and faults in the multi-rate framework are investigated.

In this part, we propose a strategy that isolates faults and cyber-attacks while estimating

cyber-attacks on the command and control side. A plant-side auxiliary residual generator is

established that sends its data to the plant side in events of fault occurrence (equation (4.25)).

Unlike "cyber-attack only" detection auxiliary-based methodologies that are prevalent in the

literature, such as [10, 88], the event-based (4.15) is designed such that it does not need con-

stant communication to the C&C for isolating attacks from faults. Study in [36] is the only

comparable research problem to the presented methodology, while it ignores the presence

of faults and provides a cyber-attack estimation solution for dual-rate systems that is only

subjected to cyber-attacks. In our proposed work, for the first time, the problem formula-

tion of a dual-rate system is stated by including both faults and cyber-attacks. The proposed

methodology isolates cyber-attacks from faults in the C&C with the help of the communi-

cated residual (4.25) and is also able to estimate cyber-attacks while eliminating the effect of

faults.

• In Chapter 4, the results of our numerical simulations are presented in Figures 4.4, 4.3, and

4.5. A comparative analysis, as shown in Tables 4.1, 4.2, 4.3, and 4.4, demonstrates that

the Delayed-Observer-based methodology yields more reliable results compared to the LMI-

based approach.
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5.2 Future Work

1. Methodologies proposed in Chapters 3 and 4 can be investigated in a nonlinear framework.

(a) The work in Chapter 3 can be extended to other linear or non-linear filter plus controllers

in the C&C. No matter the type of filter plus controller placed on the command and

control side, such systems can be viewed as an auxiliary plant for which a plant-side

filter needs to be established. The requirement is that the C&C filter plus controller

needs to be observable through its output which is the communicated command and

control inputs to the plant. In such a case, a geometric analogy can be established to

prove the immunity to covert and zero dynamics attacks.

(b) The work in Chapter 4 can also be extended to non-linear systems. With such modifi-

cation, investigation can be done on the detection performance of control side and plant

side filters for the dual-rate non-linear system.

2. The work in Chapter 3 can be investigated in the detection of replay attack, although its not

formally proven in this thesis, it is probable that observability of matrix (Aoc, K) in equation

(3.2) is sufficient for detection of reply attacks.

3. The work in Chapter 4 can be modified to detect covert attacks in CPS. By considering

a constant rate for the inputs and a varying fast rate for the outputs it is possible to detect

covert attacks. The defender has to make sure the knowledge of discrete-time representation

of the CPS for the attacker remains uncertain by changing the output rate, therefore, making

the attacker unable to perform a covert attack.

4. Mitigation strategies may be developed to deal with a reconfiguration of control law in the

event of cyber-attack detection in Chapter 3 and Chapter 4.

5. A multi fast output rate and constant inputs rate strategy can be developed to deal with covert

attacks in homogenous multi-agent systems for Chapter 4. It is particularly interesting to
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how a varying output rate for a few agents can affect the collective zero dynamics of the

multi-agent system.

6. In Chapter 3 and Chapter 4, we can also move forward and investigate fault and cyber-attack

isolation in a way that is possible to determine which sensor or actuators are under cyber-

attacks or fault.

7. Auxiliary consideration in 4 can be extended to multi-agents systems. Augmenting auxiliary

systems in a multi-agent multi-rate frame work may prove effective in detecting stealthy

cyber-attacks.
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Appendix A

Computing Observer Gain

Here the methodology for computing the auxiliary’s observer gain F aux is explained, the observer

gain F sys can be computed:

Step for calculating F [95]:

1. Find L such that rank(JL) − rank(JL−N) = mau , that denotes satisfying left invert-

ibility.

2. Find M such that MJL =

 0 0

Imau
0

.

3. Consider F = F̂M =

(
F̂1 F̂2

)
M we want

(
F̂1 F̂2

) 0 0

Imau
0

 =

(
B̃au 0

)
From this we get F̂2 = B̃au .

4. According to proposition 4.1, we have E = Ã− F ÕL = Ã−
(
F̂1 B̃au

)
MÕL.

5. We set MÕL =

(
S1 S2

)T

and calculate S1 and S2.

6. Take E = (Ã− B̃auS2)− F̂1S1.

7. E has to be stable. Therefore, calculate F̂1 such that the pair (Ã − B̃auS2, S1) is

detectable.
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