
Blackbox Security Auditing for Network
Functions Virtualization (NFV)

Momen Oqaily

A THESIS

IN THE DEPARTMENT OF

CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy (Information and Systems)

AT CONCORDIA UNIVERSITY
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Abstract

Blackbox Security Auditing for Network Functions Virtualization (NFV)

Momen Oqaily, Ph.D.

Concordia University, 2024

Over the past decade, Network Functions Virtualization (NFV) has revolutionized network-

ing by leveraging virtualization to separate Network Functions (NFs) from dedicated phys-

ical hardware. However, this architecture introduces unique security risks, such as stealthy

attacks causing discrepancies between tenant-level NF specifications and cloud provider-

level deployment. To safely utilize NFV, robust security auditing mechanisms are crucial

to ensure compliance and detect breaches. Yet, existing methods face challenges: NFV

tenants have limited access to cloud infrastructure, and providers are hesitant to share data

due to confidentiality concerns. Relying solely on providers for auditing may overlook

tenant-specific requirements and legitimate modifications by attackers. Furthermore, cur-

rent solutions often require unrealistic infrastructure modifications. This thesis introduces

novel auditing solutions for both tenants and providers of NFV, addressing these limita-

tions. Firstly, an interactive anonymization tool called iCAT facilitates selective, privacy-

preserving data sharing between tenants and providers. It utilizes an anonymization space

to model various anonymization techniques, translating requirements from both parties into

suitable primitives using NLP and ontology modeling. Secondly, a tenant-based, two-stage

solution enhances auditing autonomy. The first stage utilizes tenant-side information to

detect integrity breaches, while the second stage anonymizes provider-level data for tenant
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verification, offering control, transparency, and accuracy in breach identification. Addi-

tionally, a cryptographic approach is combined with side-channel watermarking to bolster

tenant security. This lightweight solution enables continuous detection and classification

of cloud-level attacks on service function chains, encoding cryptographic trailers as side-

channel watermarks. This approach ensures verifiable attack detection without significant

overhead, overcoming challenges such as limited side channel capacity and packet delay.

By addressing these issues, the proposed solutions aim to enhance the security of NFV

deployments and enable safer utilization of this innovative networking architecture.
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Chapter 1

Introduction

1.1 Motivation

NFV aims to outsource network functions (NFs) from dedicated proprietary appliances

such that those functions can be implemented as software modules running on top of

generic hardware [4]. The NFV market is projected to grow by 34.9% each year reaching

122$ billion by 2027 according to a forecast of ResearchAndMarkets [5]. For cloud service

providers, this new paradigm allows them to more easily deploy a managed multi-tenant

NFV environment on top of existing cloud infrastructure. For NFV tenants, the paradigm

allows them to accelerate the provisioning and deployment of their network services at

lower costs [5]. However, despite the great benefits of this technology, tenants usually

show reluctance to virtualize their network services using NFV technologies. They antici-

pate dishonest behaviors by cloud providers, including violating data privacy and security

requirements stated in the Service Level Agreements (SLAs) and deliberately concealing

the violations by lying on the network services states [5]. Also, co-resident tenants, exter-

nal attackers, or malicious insiders may compromise enterprises’ network services to steal

sensitive data or interrupt business operations [6]. Therefore, to bring the NFV technology

into fruition, appropriate security auditing measures must be in place to detect any security

1



violation or integrity breach that may arise [7].

Existing works on NFV security can be largely divided into two main categories. First,

the stateful verification approaches [8, 9, 10] ensure that flows are forwarded correctly

according to the high-level service chaining policies to capture the problems before de-

ployment. These approaches rely on access to the underlying cloud infrastructure and to

the descriptions of the NFs. However, they do not consider the privacy of co-resident ten-

ants who might share the same resources and hence be indirectly involved in the auditing

process. Also, such methodology fails to match the highly dynamic nature of NFV where

anomalies can exist and disappear before being detected. Second, the run-time verification

approaches [1, 11, 12] perform verification on the correct behavior of NFs and the SFCs

after deployment. Moreover, most existing tools need access to the underlying cloud in-

frastructure to perform deployment and implementation changes. However, in real life, the

cloud provider typically does not give the tenants access to the underlying deployment as it

will increase the attack surface. Moreover, having a per-tenant solution on shared resources

would not be something acceptable to co-resident tenants.

1.2 Problem Statement

In this thesis, we propose security auditing solutions to ensure the security of virtualized

networks while respecting specific properties related to this technology (i.e., constraints of

access, performance, scalability, and deployability). Therefore, we look beyond what tra-

ditional direct observation-based approaches can achieve. Instead, we analyze the indirect

impacts of the attacks on the deployed infrastructure. More specifically, to overcome the

limited access constraints, we propose an interactive and customizable approach for the

cloud provider to enable selective data sharing in a privacy-preserving manner. Second,

we propose a BlackBox and lightweight mechanism for the tenant to verify the integrity

of SFCs in a privacy-preserving manner. Finally, we propose a tenant-based lightweight

2



solution to perform continuous detection and classification of cloud-level attacks on SFCs.

In particular, this thesis work mainly addresses the following research questions:

1. How to enable the cloud provider to share selective data with the tenants in a privacy-

preserving manner?

2. How can we verify that virtualized networks are forwarding traffic and providing the

same functionality as desired by the tenant?

3. How can we perform the verification while respecting the virtualized networks’ prop-

erties to reflect real-life scenarios?

1.3 Research Contributions

In the following, we provide a brief overview of the main research contributions of this

thesis. The contributions encompass two entities: 1) For the cloud provider, we propose

the interactive and customizable data anonymization solution; 2) For the cloud tenant, we

propose the following solutions: (i) side channel-based auditing of the integrity of Vir-

tual Network Functions (ii) continuous verification of Virtual Network Functions based on

virtual trailers.

1.3.1 Interactive and Customizable Data Anonymization

Data anonymization is a viable solution for cloud owners to mitigate their privacy con-

cerns. However, existing data anonymization tools are inflexible to support various privacy

and utility requirements of both cloud owners and data users. leaving two main gaps (i) be-

tween the cloud owner and data users’ requirements, and (ii) between those requirements

and the existing tool’s anonymization capabilities. In most cases, this limitation is due to

a lack of understanding of those requirements as well as the non-customizability of the
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existing tools. To address this limitation, we propose a solution for the cloud provider,

namely, iCAT+, which is an interactive and customizable anonymization approach. More

specifically, we first automate the interpretation of cloud owners’ and data users’ textual

requirements by deploying a Convolutional Neural Network (CNN) model for Natural Lan-

guage Processing (NLP). Second, we introduce the concept of the anonymization space to

model possible combinations of per-attribute anonymization primitives based on the level

of privacy and utility that each primitive provides. Third, we design an ontology model that

maps the translated requirements into their appropriate anonymization primitives in the de-

fined anonymization space corresponding to the plain data. Chapter 3 details our work on

interactive and customizable data anonymization.

1.3.2 Auditing the Integrity of Virtual Network Functions Chain

There is a growing trend of hosting chains of Virtual Network Functions (VNFs) on

third-party clouds for more cost-effective deployment. However, the multi-actor nature of

such a deployment may allow a mismatch to silently arise between tenant-level specifi-

cations of VNF chains and their cloud provider-level deployment. Most existing auditing

approaches would face difficulties in identifying such an integrity breach. First, relying on

the cloud provider may not be sufficient, since modifications made by a stealthy attacker

may seem legitimate to the provider. Second, the tenant cannot directly perform the au-

diting due to limited access to the provider-level data. In addition, shipping such data to

the tenant would incur prohibitive overhead and confidentiality concerns. In this work, we

design a tenant-based, two-stage solution where the first stage leverages tenant-level side-

channel information to identify suspected integrity breaches, and then the second stage

automatically identifies and anonymizes selected provider-level data for the tenant to ver-

ify the suspected breaches from the first stage. The key advantages of our solution are: (i)
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the first stage gives tenants more control and transparency (with the capability of identify-

ing integrity breaches without the provider’s assistance), and (ii) the second stage provides

tenants higher accuracy (with the capability of rigorous verification based on provider-level

data). Chapter 4 further describes our idea of auditing functional integrity for virtualized

networks.

1.3.3 Continuous Verification of Virtual Network Functions Services

Network functions virtualization enables tenants to outsource their service function

chains (SFCs) to third-party clouds for better agility and cost-effectiveness. However, out-

sourcing may restrict tenants’ ability to directly inspect the cloud-level deployment to de-

tect attacks on SFC forwarding paths, such as network function bypass or traffic injection.

Existing solutions requiring direct access to the cloud do not apply to outsourcing, and

cryptographic trailer-based ones may be expensive for large flows. In this work, we pro-

pose a lightweight solution for tenants to perform continuous detection and classification

of cloud-level attacks on SFCs. Our main idea is to “virtualize” cryptographic trailers by

encoding them as side-channel watermarks. This provides the best of both worlds, i.e.,

verifiable attack detection and classification without the overhead. We tackle several key

challenges such as encoding virtual trailers within limited side channel capacity and min-

imizing packet delay. Chapter 5 further describes our idea of auditing functional integrity

for virtualized networks. In summary, the main contributions of this thesis are as follows:

• To the best of our knowledge, we are the first to propose an automated approach to

translate the requirements (expressed in English) of both data owners and data users

by implementing and mapping them onto the anonymization space through NLP and

ontology modeling. Such automated translation and mapping of user requirements

improve the usability for data users and data owners as well as reduce potential hu-

man errors.
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• To the best of our knowledge, we propose the first tenant-based approach to auditing

the integrity of VNF chains. The two-stage design of our solution leads to two key

advantages: i) the first stage gives the tenant more control and transparency to au-

dit the underlying deployment; ii) the second stage provides higher accuracy to the

tenant who can perform rigorous verification based on selected provider-level data

(which has been automatically identified and anonymized).

• We propose the novel concept of virtual trailer, which inherits the advantages of

both cryptographic trailer-based solutions (i.e., verifiable attack detection) and side

channel watermarking (i.e., lightweight). To realize this, we address several key chal-

lenges such as encoding virtual trailers within the limited capacity of a side channel,

minimizing packet delay while computing virtual trailers and detecting/classifying

attacks with less trailers. We believe this concept may potentially find other applica-

tions in a broader context.

• All the proposed solutions are implemented and integrated into major cloud platforms

such as OpenStack [3] and Amazon Elastic Compute Service (EC2) [13]. Extensive

experiments with both synthetic and real data are performed to demonstrate the ef-

fectiveness and efficiency of the proposed approaches.

1.4 Relationships between the Research Topics

In the following, we describe the relationships between the three topics and how they

were identified. First, we start with the goal of providing a solution for the cloud provider

to enable selective data sharing with the tenants in a privacy-preserving manner. This will

enable the tenants to challenge the cloud provider with audit requests, while allowing the

cloud provider to fulfill such requests without worrying about privacy breaches. Second,

while this approach achieves the main goal of providing more transparency to the cloud, it
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has a major limitation, i.e., the tenants must fully rely on the cloud provider for every audit

request, and the provider would be overwhelmed by many audit requests coming from

all the tenants. This limitation leads to the second research topic of developing a tenant-

based auditing solution based on side channels, which returns some control back to the

tenants, as they can perform auditing by themselves based on side channel information that

is directly observed at the tenant-level. The solution also reduces the burden on the cloud

provider, which will only be contacted for providing related evidence, after the tenants

have already identified potential breaches. Third, while the second work achieves a balance

between tenants’ need for auditing and providers’ need for reducing interaction, its reliance

on side channel information means that its results are not always accurate, which can be

a limitation to those tenants who desire provable security. Therefore, the last topic of this

thesis aims to combine side channels with cryptographic approaches, such that we could

have the best of both worlds, i.e., the lightweight nature of side channels and the rigor of

crypto solutions. In summary, the three topics of this thesis are closely related, and they

form complementary components of a common solution to achieve the ultimate goal of

secure and privacy-preserving auditing for NFV.

1.5 Thesis Structure

This thesis is organized into six chapters. Chapter 1 introduces this thesis work. Chap-

ter 2 reviews the related literature. Chapter 3 discusses the result of our interactive and

customizable data anonymization tool. Chapter 4 presents our research work on auditing

the integrity verification of virtualized network functions. Chapter 5 details our work on

continuous integrity verification of virtualized networks using side-channel. Finally, we

conclude our thesis in Chapter 6. Finally, table 1.1 summarizes the terminologies used in

this thesis sorted alphabetically.
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Table 1.1: List of acronyms used in thesis and their terminology

Acronym Terminology
CNN Convolutional Neural Network
DPI Deep Packets Inspector
ETSI European Telecommunications Standards Institute
FW Firewall

GAN Generative Adversarial Network
GBRAM Goal-based requirements analysis method
GDPR General Data Protection Regulation
GNN Graph Neural Network
IDS Intrusion Detection System
IPD Inter Packets Delay

MAC Message Authentication Code
ML Machine Learning
NFP Network Forwarding Path
NFV Network Function Virtualization
NLP Natural Language Processing
NPT Network Performance Tomography
NS Network Service
OS Operating system
PU Privacy UP

RTT Round Trip Time
SFC Service Function Chain
UD Utility Down
VM Virtual Machine
VNF Virtual Network Function
VNF Virtual Network Function Forwarding Graph
VT Virtual Trailer
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Chapter 2

Related Work

In this chapter, we review related works of prior research on our identified problem

areas. Additionally, we provide a comparison between our proposed solutions and the

existing works. The review of related works is structured as follows. First, in Section 2.1,

we review the literature and show a qualitative comparison between existing works and our

proposed solutions in the area of data anonymization. Second, in Section 2.2, we review

the literature and show a qualitative comparison between existing works and our proposed

solutions in the area of forwarding integrity verification. Finally, in Section 2.3, we review

the literature and show a qualitative comparison between existing works and our proposed

solutions in the area of continuous integrity verification.

2.1 Data Anonymization Tools

In this section, we discuss the existing works in the domain of machine learning (ML),

anonymization, and the domain of privacy goals mining from privacy policies. We also

demonstrate the existing data anonymization tools, and their limitations and provide a tax-

onomy based on the nature of each tool into- (i) cryptography-based anonymization tools,

and (ii) replacement-based anonymization tools. Finally, we study the tools’ capabilities
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under each taxonomy in terms of the features they provide, the fields that they cover, and

the anonymization primitives they support.

2.1.1 ML-based anonymization

In [14], the authors propose a machine learning-based model that could remove sensi-

tive personal health information. Unlike iCAT, the authors deploy an ML algorithm to act

as an anonymization primitive to anonymize data. However, in iCAT, the ML algorithm

is used to help in understanding the users’ needs and translate them into the appropriate

anonymization primitives only. Moreover, we link the requirements translation phase in

iCAT to the privacy goals extraction from the privacy policies mining field, as we are aim-

ing for the same interest in inferring requirements from the natural English text. On the

other hand, in [15, 16], the authors introduce the goal-based requirements analysis method

(GBRAM) and heuristics to extract goal specifications from the text. Then, they apply

GBRAM to mine privacy goals from privacy policies. In [17], the authors report results

from three experiments aimed at assessing the potential of crowd-sourcing requirements

extraction to non-experts. The authors show the cost, efficiency, and effectiveness of that

task and conclude that by using NLP techniques, the cost decreases, and the requirements

coverage increases compared to manual extraction by trained experts. A combination of

crowd-sourcing and NLP is implemented in [18], while the authors introduce and evaluate

a method that combines crowd-sourcing and NLP to extract goals from privacy policies.

Their analysis depicts that crowd workers can provide human interpretations that are still

beyond the state of the art in NLP and the NLP can provide a cost-effective and more ef-

fective goal extraction. As per our best knowledge, unlike all existing works, iCAT deploys

the extracted privacy goals from the privacy policy in data anonymization.
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Table 2.1: Comparing existing network data anonymization tools with iCAT.
Tool Anonymized Fields Anonymization Primitive

Name NF fields IP Port Header Payload Pref-Pres Hiding Permutation Truncation Hashing Shifting
AnonToo [19] ✓ ✓ ✓ ✓ ✓ ✓
CANINE [20] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
CoralReef [21] ✓ ✓ ✓ ✓ ✓ ✓

Flaim [22] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
IPsumdump [23] ✓ ✓ ✓

NFDump [24] ✓ ✓
SCRUB [25] ✓ ✓ ✓ ✓ ✓ ✓

TCPanon [26] ✓ ✓
tcpdpriv [27] ✓ ✓ ✓ ✓ ✓ ✓ ✓

TCPmkpub [28] ✓ ✓ ✓ ✓ ✓ ✓
TCPurify [29] ✓ ✓ ✓ ✓ ✓

iCAT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2.1.2 Cryptography-based Anonymization Tools

To distinguish iCAT, we present our taxonomy of existing data anonymization tools.

Table 2.1 compares those tools according to the anonymized fields (e.g., IP, header, port,

etc.) and the anonymization primitives they use. As shown in Table 2.1, except iCAT,

none of those tools can support all the attributes or anonymization primitives (let alone the

flexibility for customization), nor can take users’ requirements to understand their privacy

and utility needs. The cryptography-based anonymization tools are considered as the first

taxonomy, whereas most of the existing tools under this taxonomy use cryptography-based

anonymization primitives; such as prefix-preserving, shifting, hashing, and permutation.

Existing tools in this category are used to anonymize network traces and mainly anonymize

the TCP header. However, some of those tools support live interfaces anonymization to

anonymize the data in a running-time manner. Moreover, tools under this taxonomy provide

higher privacy output and are well known to be more user-friendly as the tool user does not

require to have good knowledge about the anonymization primitives.

2.1.3 Replacement-based Anonymization Tools

The second taxonomy is the replacement-based anonymization tools, while the exist-

ing tools in this category deal mainly with log files and anonymized data by replacing the

sensitive attributes (e.g., passwords, system logs, files paths, etc.) in the log with some
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values predefined by the user in the so-called rule-file or generated using deterministic

cryptography algorithms. The rule file contains patterns used by the tool to perform pattern

matching and the conversion state of the anonymization can be stored in a look-up table.

This category of anonymization provides a higher utility output because it preserves some

property of the original data (e.g., equality, format, order, etc.). However, this is also sus-

ceptible to de-anonymization attacks, known as semantic attacks (e.g., frequency analysis,

injection, and shared text matching attacks). Moreover, those tools are generally not user-

friendly and require knowledge about conducting tool-based search patterns and managing

the conversion state of the anonymized data.

2.2 Forwarding Integrity Verification

2.2.1 NFV-based Security Solutions

Most of the existing solutions (e.g., [1, 11, 30, 31, 9, 32]), to audit integrity breaches

in NFV rely on the provider-level data. FlowCloak [31] and vSFC [11] identifies VNF

chain violations (e.g., path non-compliance and packet injection attacks). Similarly, SFC-

checker [9] and ChainGuard [30], audit the forwarding behavior of the VNF chains in

a network service. AuditBox [1] provides continuous assurance that packets follow the

formally specified policy-mandated path using formal models. On the other hand, several

works (e.g., [33, 34, 35]) focus on the performance and functionality of NFV network

services. Unlike those works, our solution provides a tenant-based, two-stage approach

which does not fully rely on the provider.

2.2.2 Performance-based Identification Solutions

There exist several performance-based identification solutions (e.g., [36, 37, 38]) for

virtualized environments. For instance, Koh et al. [36] study the inter-VM interference
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performance characteristics by collecting runtime performance measures. Whereas, Mei et

al. [37] study the network performance in a virtualized cloud environment while varying the

network I/O workloads. The authors in [38] analyze the performance of virtual machines in

an IaaS cloud environment to infer the network topology. There are a few other works (e.g.,

[39, 40, 41]) that analyze VNFs to find performance issues in NFV. Unlike those solutions,

our solution, in Stage 1, uses the performance characteristics to identify suspected integrity

breaches.

2.2.3 Network Tomography Solutions

There are several works (e.g., [42, 43, 44, 45]) that use network tomography for char-

acterizing network behavior. Among them, traceroute [42] and iperf [43] use the node-to-

node tomography approach to measure performance metrics (e.g., delay, loss rate) of a spe-

cific link directly through sending probing traffic from source to destination. On the other

hand, using the end-to-end tomography approach, Chen et al. [44] calculate unknown link

variables and Arifler et al. [45] identify the congested links. Similar to existing works, our

solution uses network tomography to collect performance characteristics data, but uniquely

for identifying integrity breaches in NFV.

2.2.4 Comparison Among Related Works

Table 2.2 summarizes the comparison between the most recent NFV security auditing

works and NFVSense, Chapter 4. Our comparison is based on different properties that

those solutions support. Specifically, the detection coverage (i.e., run-time or stateful),

the auditing capabilities (i.e., dynamic or static), the deployment level (i.e., tenant-side or

provider-side), the integrity breaches, and the provider level accessibility (i.e., blackbox or

whitebox).
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Table 2.2: Comparing our work with existing solutions.

Work Run-time Dynamic Tenant-based Path Modif. Blackbox
vSFC [11] ✓ ✓ x ✓ x
FlowCloak [31] ✓ ✓ x ✓ x
AuditBox [1] ✓ ✓ x ✓ x
SFC-Checker [9] x x x ✓ x
EasyOrch. [46] x x N/A x x
FlowTags [32] ✓ x ✓ ✓ x
ChainGuard [30] ✓ x x ✓ x
NFVSense ✓ ✓ ✓ ✓ ✓

2.3 Continuous Integrity Verification

2.3.1 SFC integrity

Traditional forwarding path verification protocols [47, 48, 49] cannot be directly ap-

plied to SFCs hosted in an NFV environment, since some of their underlying assumptions

become unrealistic in the NFV context, e.g., forwarding paths are no longer fixed or known

in advance in NFV, and network nodes (VNFs) are no longer transparent to packets as

they might legitimately modify packets. More recent works tackle such issues to enable

forwarding path verification in NFV. In [32], the authors study the issue of stateful and dy-

namic actions performed by VNFs, and propose a solution for VNFs to add tags to outgoing

packets to bind packets with their origin. However, this scheme becomes ineffective when

one or more switches are compromised. Therefore, FlowCloak [31] proposes an advanced

packet tagging approach to randomize the tag generation such that the tags are probabilis-

tically unknown by compromised switches. In contrast to our solution, FlowCloak requires

modification to the internal logic of VNFs which may complicate its deployment. In [50],

the authors propose a verification layer that is decoupled from the processing of VNFs and

is embedded in VMs supporting those VNFs. Nonetheless, vSFC requires modification at

the cloud level, whereas our solution is a tenant-level solution that regards the cloud as

a Blackbox. SFC-Checker [9] proposes a static analysis-based framework to ensure the
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correct behavior of dynamic and stateful forwarding paths. EasyOrch [46] performs verifi-

cation based on a formal model that provides the flexibility of specifying both a forward-

ing policy and the set of anomalies to verify. In contrast to our solution, those solutions

are static and cannot detect run-time integrity breaches, as they either take snapshots of

the network state to perform verification offline [9] or work before SFC deployment [46].

In [51], the authors propose a hardware-based solution to enclose both VNF processing

and verification inside enclaves to preserve data confidentiality and VNF integrity against

powerful adversaries, which are different from the focus of our solution (i.e., network links

between VNFs). Closest to our work, AuditBox [1] provides runtime guarantees on the

compliance with forwarding path policies using a hop-by-hop cryptographic trailer-based

protocol, and by running each VNF inside enclaves. While our solution borrows a sim-

ilar design of trailers as AuditBox, our virtual trailer concept can significantly reduce its

communication overhead (as demonstrated through experiments in Section 5.6).

2.3.2 Digital watermarking

There is a rich literature on digital watermarking in different contexts (e.g., image, au-

dio, video, and network packets) and for different applications (e.g., copyright protection,

traffic analysis, and tampering identification). The literature may be categorized along

different dimensions. For instance, blind (e.g., [52]) or non-blind (e.g., [53, 54]) water-

marking indicate whether the embedding and extraction of the watermarks require sharing

knowledge about the original data. our solution leverages a blind watermarking scheme

to avoid the overhead of sharing additional information about the original data. Second,

for applications such as copyright protection and traffic analysis, the watermarks will be

subject to either natural network noises on the Internet, or malicious tempering. There-

fore, the watermarks should be robust [55] and/or invisible [54, 53] (i.e., hide watermarks

against adversaries who aim to locate the watermarks [56, 57]). On the other hand, a fragile
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watermarking scheme (e.g., [58]) is mainly used for tampering identification as well as lo-

calisation of tampered data, and hence the watermarks should be sensitive to modifications

and are not necessarily invisible. our solution belongs to the fragile (and non-invisible)

category, since its watermarks are used to detect and classify tampering. The key innova-

tion of our solution is it introduces an additional abstraction layer, i.e., virtual trailers, over

watermarks, in order to leverage the latter’s cryptographic properties.

Timing-based side channels are shown to have a larger capacity to share more infor-

mation compared to other side channels [59]. In particular, packet timing-based flow wa-

termarking modulates the IPDs of target network flow to embed watermarks and achieve

the goal of linking flows for different applications, such as detection of stepping stone at-

tacks, and compromising anonymity systems. For instance, the authors in [52] propose

an IPD-based probabilistically robust watermarking scheme, which embeds watermark bits

through slightly adjusting the independently and randomly selected IPDs. In [60], the au-

thors propose an enhanced scheme where the watermarker can adaptively choose values of

watermark parameters according to packet timing and packet size features of target flows.

In [61], the authors propose a scheme that resists timing perturbations through grouping-

based flow watermarking. In [62], the authors propose a flow watermarking technology

based on packet matching and IPDs. In [63], the authors propose a blind flow watermark-

ing system, which modulates fingerprints into the timing patterns of network flows through

slightly delaying packets into secret time intervals only known to the fingerprinting par-

ties. More recent works leverage machine learning to design more robust watermarking

schemes, or employ watermarking to authenticate machine learning models. For instance,

Fang et al. [64] apply deep learning techniques to obtain more robust flow-based water-

marking schemes to ensure high consistency between the encoder and the decoder, and Xu

et al. [65] design a watermarking scheme for graph data to verify the ownership of Graph

Neural Networks (GNN) models. Although those works are similar to our solution in that
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they also deal with network data, they mostly fall in the robust (and often invisible) water-

marking category, since they mostly aim to correlate flows with unique watermarks, which

need to survive malicious modifications and the noises natural to Internet traffic. This is

different from our solution which employs a fragile and visible watermarking scheme to

detect integrity breaches.

2.3.3 Comparison Among Related Works

Finally, Table 2.3 summarizes the main advantages of ChainPatrol, Chapter 5, over

existing works on SFC integrity along several dimensions:

• Timeliness (runtime vs. offline): Offline solutions work on static snapshots taken

periodically from the deployment. Runtime solutions like our solution continuously

detect and classify SFC-based attacks based on real-time traffic.

• Methodology: Those existing solutions can be largely classified as either cryptography-

based or formal method-based. our solution combines the security guarantee pro-

vided by cryptographic trailers with side channel-based watermarking for a lightweight

solution.

• Blackbox: Most of the existing solutions are white-box approaches since they re-

quire access or modification to the underlying cloud. our solution is a tenant-based

Blackbox approach that does not require such accesses since it works on inter-packet

delays that are directly observable/mutable at the tenant level.

• No instrumentation: Most of the existing solutions require some modification or

amendment to the cloud-level deployment of VNFs. our solution does not require

any instrumentation of VNFs, since it is a tenant-level solution and its agents work

as independent proxies attached to VNFs.
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• No modification to cloud infrastructure: Most of the existing solutions require

some modification to the cloud infrastructure. our solution requires no such modifi-

cation and can be independently deployed by the tenant.

• Out-of-scope attacks: Compared to many of the existing works, our solution cov-

ers more attack types as it inherits the strength of a cryptographic trailer-based ap-

proach [1].

Table 2.3: Comparing our solution with existing solutions
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vSFC [11] Runtime Crypto-based No No No -
FlowCloak [31] Runtime Crypto-based No No Yes Dropping, replay
AuditBox [1] Runtime Crypto-based No No No -
FlowTags [32] Runtime Crypto-based No No Yes Forwarding misbehaviour

ChainGuard [30] Runtime Crypto-based No No No Dropping, modification
SFC-Checker [9] Offline Formal Methods No Yes Yes Dropping, modification, replay
EasyOrch. [46] Offline Formal Methods No Yes Yes Dropping, modification, replay

Fulvio et al. [46] Offline Formal Methods No Yes Yes Dropping, modification, replay
ChainPatrol Runtime Crypto + side channel Yes Yes Yes -
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Chapter 3

Interactive and Customizable Data

Anonymization

3.1 Introduction

Network data has recently become an increasingly valuable asset that enables various

applications for different stakeholders in many sectors [66]. At the same time, the re-

luctance in sharing those data, especially from the fear of sensitive information leakage,

is also well-known (e.g., [67, 68]). Moreover, this reluctance is exacerbated by potential

financial implications of privacy regulations (e.g., the General Data Protection Regulation

(GDPR) [69]), by an increasing trend of emerging attacks (e.g., frequency analysis and data

injection attacks [70]) and high profile data breaches and misuse incidents1 2, and by the

growing availability of large-scale data analytics that might further empower the attackers.

To this end, data anonymization is a widely adopted solution for mitigating data own-

ers’ concerns [71]. On the other hand, since data users are often not interested in the plain

data itself, but in its semantics [72], anonymized data also could be useful for data users to

1https://www.identityforce.com/blog/2021-data-breaches.
2https://www.techworld.com/security/uks-most-infamous-data-breaches-3604586/
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attain their goals. Nonetheless, a key challenge in applying anonymization solutions is that

the effectiveness of such solutions critically and solely depends on how well the data owner

makes the right choices of anonymization primitives. Such choices must achieve the signif-

icant trade-off between utility and privacy so that the data owners’ sensitive information is

properly hidden, whereas the desired information by the data receivers are well-preserved.

On the other hand, such a choice is highly dependent on a proper understanding of all

the requirements from both data owners and data users. To fulfill those requirements at a

satisfactory level, a data owner needs to:

• understand his/her own privacy requirements as well as the utility requirements of

potential data users;

• understand the capabilities (in terms of anonymization primitives) of the available

anonymization tools;

• map all the privacy/utility requirements correctly and consistently onto the capabili-

ties of the anonymization tools; and

• select the right combination of anonymization tools for different data attributes to

achieve the desired trade-off between utility and privacy.

However, since most data owners may not be familiar with all the privacy concepts and

solutions, they would find those tasks challenging, if not infeasible. Additionally, they may

not have much incentive to understand the utility requirements of data users. Moreover, due

to the lack of an efficient and automated translator, data users may also fail to translate their

requirements in an accurate way to present their demands to the data owners. As a ramifi-

cation, the data owners may simply decide to withhold the datasets, as indicated in several

studies (e.g., [73]). Such tendency practiced by data owners of withholding the datasets

is understandable since fulfilling those tasks would demand a systematic knowledge of the
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search space, i.e., all possible combinations of anonymization primitives, and their map-

ping to the privacy/utility requirements. Moreover, most existing anonymization tools (e.g.,

Loganon [74], Camouflage [75], etc.) only support a limited number of choices, providing

one-size-fits-all solutions, and manually mapping the privacy and utility requirements onto

the tools’ anonymization capabilities. In summary, there are two major gaps:

• The first gap is between the capability of a typical data owner and the expectations of

current solutions from data owners to identify the right combinations of anonymiza-

tion primitives for given privacy/utility requirements;

• The second gap is between the wide range of privacy/utility requirements and the

limited support of anonymization capabilities by existing tools.

To fill in both gaps, our key idea is to design an automated, interactive, and customizable

data anonymization framework that can translate privacy/utility requirements to identify

the right combination of anonymization primitives that satisfy those privacy/utility require-

ments. More specifically, we first adopt a Convolutional Neural Network (CNN) model to

automatically translate both data owners’ and data users’ requirements expressed in natu-

ral language (i.e., English) into their corresponding anonymization primitives. Second, we

identify the different data attributes and generate possible combinations of anonymization

primitives, namely, the anonymization space. Third, we build an ontology that develops

rules for mapping the translated requirements to the anonymization space that can provide

privacy-utility guarantees. Finally, we apply those mapping rules to translate requirements

to the anonymization space and provide a set of anonymization combinations that satisfy

both parties requirements. In summary, our main contributions are:

1. We propose an automated approach to translate the requirements (expressed in En-

glish) of both data owners and data users by deploying a CNN model, and mapping

them onto the anonymization space through the NLP and the ontology modeling.
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Such automated translation and mapping of user requirements improve the usability

for data users and data owners as well as reduce the potential human errors (i.e., the

effectiveness of the translation of the requirements is around 98% for data users and

99% for data owner).

2. To the best of our knowledge, our notion of anonymization space is the first model

that systematically characterizes and organizes existing anonymization primitives

based on their relative capabilities in terms of privacy and utility. This model pro-

vides data owners a comprehensive and yet intuitive understanding of the available

anonymization choices, and it also, for the first time, allows the data users to be

actively involved in making their own decisions.

3. We design and implement an automated tool, iCAT, that integrates popular anonymiza-

tion primitives into a single framework, and selects and configures the proper primi-

tives that satisfy the requirements of data owners and data users by utilizing the pro-

posed anonymization space. Compared to most existing anonymization tools, iCAT,

interactively provides more flexibility (access to the entire anonymization space) and

better usability (automated requirement translation), and can support the largest com-

bination of attributes and anonymization primitives.

4. We experimentally evaluate the effectiveness of iCAT using both synthetic and real

(e.g., Google cluster dataset [76]) data, while the usability of iCAT is appraised

through a user study involving participants from both industry and research labs.

3.2 Motivation and Preliminaries

In this section, we further illustrate our motivation using an example. Additionally, we

define our threat model and discuss the considered anonymization primitives.
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Figure 3.1: The motivating example.

3.2.1 Motivating Example

Figure 3.1 depicts a scenario where data owners (on the right) would like to anonymize

their data using anonymization tools (in the middle) before handing over the data to the

data users (on the left). Specifically, first, we consider three data users (Alice: an external

auditor, Bob: a university collaborator, and Charlie: a security administrator) who intend

to conduct different analysis tasks, i.e., reachability verification, ML time series analysis,

and network security, respectively. Second, we consider a data owner who has differ-

ent trust levels for those users: trusted, semi-trusted, and distrusted. Third, we consider

four different existing anonymization tools (i.e., TCPanon [26], Canine [20], Flaim [22]

and CoralRef [21]) which might be employed for this situation, but only if they guaran-

tee proper anonymization to meet the desired trust levels. (i.e., privacy requirements) of

the data owner as well as preserve data quality for the planned analysis tasks (i.e., utility

requirements) of data users. However, matching requirements and identifying the most ap-

propriate anonymization tools might become a non-trivial task for data owners and users

for the following reasons.

• Even though each data user (e.g., Alice) might have an understanding of his/her
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analysis tasks (e.g., reachability verification), identifying their correct and concrete

utility requirements (e.g., preserving both sequences of timestamps and subnets in

IPs will be needed for reachability verification) might not always be feasible (as

confirmed later by our user-based experiments in Section 3.4). This is mainly because

many iterations of interactions between a data owner and a data user have to be

performed to identify the correct utility requirements.

• Even though a data owner might be capable of understanding his/her trust level of

each data user (e.g., Alice is trusted), relying on data owners for identifying concrete

privacy requirements (e.g., Alice can only be given prefix-preserving and sequen-

tially numbered data) might not be practical mainly due to the fact that real-world

data owners are usually not so considerate and might simply go with whatever is

suggested by a handy anonymization tool [17].

• As shown in the middle of Figure 3.1, most existing tools (e.g., [26], [20], [22]

and [21]) only implement a small set of anonymization primitives (e.g., constant

shifting, hashing) suitable for a subset of the data attributes (e.g., timestamp, IP).

Furthermore, those tools are not customizable enough to accommodate specific com-

binations of privacy and utility requirements. As a result, most tools fall short to

satisfy the requirements of data owners and data users.

To address the aforementioned challenges, we propose iCAT. Intuitively, iCAT:

• automatically translates data users’ utility requirements in terms of data attributes;

• automatically translates data owners’ privacy requirements in terms of anonymiza-

tion primitives; and

• defines the entire “anonymization space” (that maps data attributes and their related

anonymization primitives) instead of covering a subset of it. We elaborate on iCAT

in Section 3.3.

24



3.2.2 Threat Model

We define the parties who are involved in the data anonymization process and their trust

relationships in a more realistic approach as follows:

• data owner: who has useful datasets that can be used for different purposes and is

interested in protecting the privacy of his/her data to avoid any data misuse. The data

owner has different trust levels to the data users, which determines the exposure of

data that s/he allows.

• Data users: who have different intentions of using the data (e.g., auditing, research

purposes, etc.), are interested in having the maximum data utility to achieve valid

results. The data users trust the data owners and are willing to share their use cases

with them.

In the following, we elaborate on both in-scope and out-of-scope threats.

In-scope threats. We assume that both data owners and users are willing to follow the

procedure to express their requirements, while the data user is interested in obtaining output

with a higher utility if the tool provides him/her with such an opportunity. Moreover, we

consider the case where the data user might tamper with the learning and requirement

translation process to obtain a higher utility output.

Out of scope threats. The intention of iCAT is not to mitigate any weakness or vulnera-

bility of the underlying anonymization primitives (e.g., frequency analysis, data injection

attacks, or data linkage attacks). Consequently, those primitives are used as a BlackBox

in our data anonymization module and can be replaced by other, better primitives when

available. Also, we do not consider the case where a data user uses the tool with the data

owner’s privileges, where s/he has more capabilities. Finally, any integrity breach of the

translation in NLP techniques is beyond the scope of this work.
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3.2.3 Anonymization Primitives

In spite of the existing many data anonymization primitives in the literature, most cur-

rent tools only support a limited number of primitives. Table 3.1 provides a list of such com-

mon anonymization primitives, examples of plain data, and the corresponding anonymized

data obtained using those primitives. However, this list is not meant to be exhaustive, and

our model and methodology can be simply extended to include other anonymization prim-

itives.

Table 3.1: Examples of plain data inputs and their corresponding anonymized outputs for
widely-used anonymized primitives.

Primitive Plain Data Input Anonymized Output
Prefix-preserving IP1:12.8.3.4 ; IP2:12.8.3.5 IP1:51.22.7.33 ; IP1:51.22.7.19
Truncation IP1:12.8.3.4 ; IP2:12.8.3.5 IP1:12.8.X.X ; IP2:12.8.X.X
Const. Substitution Version:2.0.1 Version: VERSION
Const. Shifting Time1: 2019-03-31; Time2:

2019-03-30
Time1: 2022-03-31; Time2: 2022-
03-30

Random Shifting Time1: 2019-03-31; Time2:
2019-03-30

Time1: 2003-03-31; Time2: 2015-
03-30

Sequ. Numbering Time1: 2019-03-31; Time2:
2019-03-30

Time1: T1; Time2: T2

Partial Hiding Time1: 2019-03-31; Time2:
2019-03-30

Time1: 2019-X-X; Time2: 2019-X-
X

Hashing ID:40018833 ID: H3%s2*D9
Clustering Port1:225; Port2: 277 Port1:200; Port2: 277
Permutation Port1:225; Port2: 277 Port1:277; Port2: 225
Randomization Port1: 225; Port2: 277 Port1:423; Port2: 29

3.3 Methodology

In this section, we provide overviews of the iCAT approach, as well as our anonymiza-

tion space, and preference up and utility down (PU/UD) rules.
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3.3.1 Approach Overview

Figure 3.2 depicts three major processes of iCAT including their corresponding steps:

(i) requirement translation (Steps 1-3), (ii) anonymization space creation (Steps 4-6), and

(iii) requirement mapping (Steps 7-9). In the following, we elaborate on each of them.
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Figure 3.2: An overview of iCAT.

• Requirement translation: In Step 1, iCAT accepts the requirements as plain text

in English to ameliorate the burden of both the data owners and users. In Step 2, it

parses those requirements into a combination of anonymization primitives and data

attributes using NLP. In Step 3, iCAT deploys a feedback option to allow the users

for a manual interpretation, in case the NLP fails to translate any requirement.

• Anonymiztion space creation: In Step 4, iCAT, performs filtering and pre-processing

on the data (received from data owners) to remove undesired columns and rows. In

Step 5, it extracts the total number of attributes (e.g., six columns) and their types

from the processed input data (e.g., IP address, string, timestamp, etc.). In Step 6,

iCAT creates the anonymization space based on the attributes number and data types

generated from the previous steps.
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• Requirement mapping: In Steps 7 and 8, based on the attribute type of each require-

ment, iCAT maps those requirements into anonymization primitives in the anonymiza-

tion space corresponding to the input data. In Step 9, based on the intersection be-

tween the data owner and data user requirements, iCAT provides a set of anonymiza-

tion combinations to the data user which also meets the data owner requirement.

These steps will be further detailed in Sections 3.3.3, 3.3.7, and 3.3.8, respectively.

3.3.2 An Overview of Anonymization Space

This section first describes the need for an anonymization space and then define our

proposed anonymization space.

The Need for an Anonymization Space. There is a need to determine a systematic ap-

proach to represent and organize all the possible choices of anonymization primitives for

applying on a given dataset to offer the freedom of choice to data owners for heightening

the privacy level even after ensuring the acceptable utility level for users. More specifically,

first, assigning a trust level for each data user and translating this trust level into a privacy

requirement is not a straightforward process due to the limited capabilities available by ex-

isting tools. Second, the existing anonymization primitives (i.e., shown but not limited to

in Table 3.1) provide a wide range of anonymization possibilities and lead to cover a large

number of trust levels as listed below.

• Each data attribute may be anonymized using a different collection of the anonymiza-

tion primitives (e.g., IPs may work with prefix preserving, truncation, hashing, etc.,

while IDs with clustering, hashing, etc., and both can be either completely hidden or

given as simple text without any anonymization).

• Or, different anonymization primitives applied to an attribute may yield different

levels of, and sometimes incomparable, privacy and utility (e.g., for IPs, hashing
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provides more privacy/less utility than prefix preserving, whereas they are both in-

comparable to truncation or randomization).

• Or, the data owner and data users’ requirements typically involve multiple attributes,

as demonstrated in Figure 3.1, and sometimes in a complex fashion, e.g., the data

owner might say “I can only give you the data with the IPs hashed, or with the IDs

clustered, but not both”, while a data user asks “I know I may not get the data with

the IPs truncated and the IDs hashed, but what would be my next best option?”

Definition of the Anonymization Space. To meet the above-mentioned needs, we propose

a novel concept, namely, anonymization space, by considering each data attribute as a di-

mension, and each combination of anonymization primitives that can cover all the attributes

as a point inside the anonymization space. Since anonymization primitives are not always

comparable in terms of privacy/utility, inspired by Denning’s Axioms [77], we consider the

collection of anonymization primitives applicable to each attribute to form a lattice[78] on

their relationships in terms of privacy and utility. The product of all those lattices is the

anonymization space. The formal definition and an example are as follows.
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Definition 3.3.1 (Anonymization Space) Given A = ⟨a1, a2, . . . , an⟩ as a set of attributes

to be anonymized, and given Fi = {f1, f2, . . . , fm}(1 ≤ i ≤ n) as the anonymization

primitives set applicable to ai, we define:

• The attribute anonymization lattice Li(1 ≤ i ≤ n) as a lattice ⟨Fi,≺⟩ where for any

f1, f2 ∈ Fi, we have f1 ≺ f2 iff f1 provides better utility and more stringent privacy

than f2 when applied to ai, and

• The anonymization space corresponding to A is denoted by
∏︁n

i=1 Li.

Example 3.3.1 Figure 3.3.A (top) shows some examples of anonymization primitives, Fig-

ure 3.3.B (middle) shows their applicability (using their indices) to six attributes and Fig-

ure 3.3.C (bottom) shows the six attribute anonymization lattices. Due to space limitations,

we omit the anonymization space representation (which would have a size of 20, 736 dif-

ferent anonymization combinations).

3.3.3 An Overview of PU/UD Rules

The preference up and utility down (PU/UD) rules are to address one of the major

challenges in mapping privacy or utility requirements into anonymization primitives to en-

sure acceptable utility levels for all data users without infringing the data owner’s privacy.

Inspired by the Bell–LaPadula (BLP) model [79], in PU/UD rules, we adopt a concept

of jointly enforcing the privacy and utility requirements through a simple access control

mechanism. In this mechanism, data users actively participate in the anonymization pro-

cess to maximize their utility levels, while this mechanism itself ensures the data owner’s

privacy concerns.

Due to considering each point (i.e., the collection of anonymization primitives) in the

anonymization space as a privacy/utility level, the data owner’s privacy requirement can be
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mapped to a level in such a way that anything above this level can satisfy the privacy re-

quirement. This mapping is automated, and its implementation details will be discussed

in Section 3.3.6. Since this approach yields the privacy higher, we define this as the

privacy-up rule. Simultaneously, a data user’s requirement can be mapped to a level in this

anonymization space below which any level would satisfy the utility requirement, namely,

the utility-down rule. Hence, these privacy-up and utility-down rules can be combinedly

called PU/UD rules. The formal definition and an example are as follows.

Definition 3.3.2 (PU/UD rules) Given the set of attributes A, the corresponding anonymiza-

tion space AS =
∏︁n

i=1 Li, then:

• The Privacy Up (PU) lattice denoted by Lp ∈ AS, represents the nodes that have

the least utility level compared to what is specified by the data owner in the privacy

requirement.

• The Utility Down (UD) denoted by Lu ∈ AS, represents the nodes that have the least

privacy level compared to what is specified by the data user in the utility requirement.

Respectively, any L ∈ AS will satisfy both requirements if Lp ≺ L (PU) and L ≺ Lu

(UD) are both true.

Example 3.3.2 Figure 3.4 shows an example of anonymization space corresponding to the

IP and ID attributes and the PU/UD rules for two data users, Alice and Charlie. The data

owner requires hashing (Ha) for IPs and no anonymization (NA) for IDs. By the privacy-up

rule, all levels inside the upper shaded area will also satisfy privacy requirements. Alice’s

and Charlie’s utility requirements are as follows.

1. Charlie requires to preserve the one-to-one mapping for both IPs and IDs. Following

the utility-down rule, the dark gray area highlights all the levels that satisfy Charlie’s

31



Hi,Cl

PP,Ha

Hi,Ha

Hi,Hi

Hi,NA

NA,NA

NA,Cl NA,Ha

NA,Hi

Tr,NA

Tr,Hi

Tr,HaTr,Cl

PP,NA

PP,Hi

PP,Cl

Ha,NA

Ha,Hi

Ha,Cl Ha,Ha

Hi,Cl Hi,Ha

Hi,Hi

Hi,NA

Data owner’s req.: Hashed IPs, Plain ID

Charlie’s req.: Preserve one to one mapping

Alice’s req.: Preserve IPs subnets

The intersection

Hi à Hiding
Ha à Hashing
PP à Prefix Preserving
Tr à Truncation
Ra à Randomization
Cl à Clustering
NA à Non Anonymiz.

Tags Map

Figure 3.4: An example of anonymization space for attributes IP and ID, and the PU/UD
rules for Alice and Charlie.

utility requirements. Also, the area with crossing lines includes all levels that satisfy

both the privacy and utility requirements, i.e., ⟨Ha, Ha⟩ and ⟨Ha, Na⟩.

2. Alice requires to preserve the IP subnets. The light gray area highlights all the levels

that satisfy Alice’s utility requirement. Since there is no intersection between the

upper shaded area and the light gray area, no level can satisfy both the privacy-up

and utility-down rules, which means no anonymization primitive can satisfy both the

privacy and utility requirements for Alice. However, the anonymization space makes

it easy to choose an alternative level that will satisfy the privacy requirement while

providing the best possible utility to Alice, e.g., ⟨Ha,Na⟩.

3.3.4 Machine Translation

To ensure a user-friendly interface, iCAT permits both the data owner and the data

users to express their requirements in English. As a ramification, the primary challenge of

translating any requirement is to understand that requirement linguistically. To overcome

32



Requirement:

IP addresses are 

used to verify 

nodes reachability 

Step1: Parsing 

requirement

to NLP engine
 

Step3: Mapping NLP 

output with translation 

dictionaries 

Anon. method

Prefix-Prese

No-Anon

GUI

Step4: Resolving ambiguity By 

interactively communicating with user

Step5: confirming translated 

requirement with user 

IP Addresses are used to verify node reachability

NNP NNS VBP VBN TO VB NNS NN

Compound auxpass mark compound

Attrib Attrib - - method Property 

hypernym - -- -

Argument1 - - Verb Argument2

POS

CH

NER

SRW

SRW

FeaturesToken

hyperhym

IP

addresses

methodverify

propertyreachability

Step2: Requirement 

filtering and 

features extraction

Translation dictionaries 

Attribute type token

IP address

…... ……

Anon. method token

Prefix-Prese Reachability 

No-Anon. Reachability

Anon. method

Prefix-Prese

Data attribute

IP address

GUI

Figure 3.5: An example to explain the requirement translation process.

this challenge, iCAT leverages a convolutional neural network (CNN) architecture [80] to

form a natural language processing (NLP) tool. The input of this tool is an English sentence

representing the requirement, and a set of language processing predictions are the expected

outputs. However, this deep neural network architecture should be trained in an end-to-end

fashion to process the input sentence by several layers of feature extraction. Unlike other

NLP tools, the extracted features range from semantic to syntactic constituent. Table 3.2

shows the NLP standards which are used here.
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Table 3.2: A list of NLP features used in iCAT and their definitions.
NLP Feature Meaning

Part-Of-Speech (POS) Labeling each word with a unique tag that indicates its syntactic role ( i.e., plural, noun, adverb)
Chunking (CH) Labeling segments of a sentence with syntactic constituents (i.e., noun phrase (NP) or verb phrase (VP)).

Named Entity Recognition (NER) Labeling atomic elements in the sentence into categories (i.e., attribute, method, property)
Semantic Role Labeling (SRL) Giving a semantic role to a syntactic constituent of a sentence.

Semantically Related Words (SRW) Predicting whether two words are semantically related (i.e., synonyms, holonyms, hypernym)

As an example, Figure 3.5 shows how a data owner’s requirement (e.g., “IP addresses

are used to verify nodes reachability”) is processed to obtain the attribute data type IP and

the associated anonymization primitive Prefix-Preserving. Since the aforementioned re-

quirement may have multiple interpretations for the anonymization method, the user inter-

acts with the tool through a GUI interface to solve the issue. This will be further discussed

in Section 3.3.5.

3.3.5 Ambiguity Resolution

If a particular requirement has multiple numbers of translation candidates, this may

lead to an ambiguous condition, i.e., which one from those translation candidates should

be chosen. The reasons behind such ambiguous situations and the corresponding solutions

are as follows.

• At the requirement parsing step, due to the typos or NLP failures, the sentences

entered by the user might be mistakenly parsed. As a ramification, the requirement

translation fails and the user has to re-enter the requirement.

• On the other hand, a particular requirement can be translated into different anonymiza-

tion methods. As an example, we may consider a requirement, Req-1: each IP ad-

dress must be mapped to one IP address and that can be satisfied with both the IP

hashing and the prefix-preserving. In this case, the ambiguity solver of iCAT will dis-

play a small multi-choice menu to the user, such that this ambiguity can be resolved

interactively, with the click of a button. This is worth mentioning that we evaluate
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Table 3.3: Different datasets used in evaluating iCAT.

Datasets Category Format Records Attributes Requirements
DS1: Google cluster Real CSV 2,000 9 56

DS2: OpenStack Neutron Synthetic log 2,000 18 62
DS3: OpenStack Nova Synthetic DB 2,000 22 44

DS4: BHPOBS ML Real text 1,027 22 43

Table 3.4: Distribution of participants over the user experience levels.

Category Research Industry
Expertise Level M.Sc. Ph.D. Junior Senior

Participants percentage 30.4% 8.6% 43.4% 17.6%
Overall percentage 39% 71%

the user selection and propose a solution to help him/her choose the right translation

from the multi-choice menu.

• On the other hand, a requirement even can be expressed in many different ways. For

example, one requirement states that the sequence of events in the logs should be

maintained, while the other requires that the correlation between the logged records

should be preserved. And in both requirements, the order of the data is mandatory

for the analysis task and should be preserved to serve the use purpose.

• There is also a possibility that a data user’s minimum requirement leads to the utility

level being higher than what is allowed by the data owner according to his/her pri-

vacy requirements. In this case, iCAT, suggests alternative anonymization primitives

that offer the closest utility level to what is specified by the data owner. A further

discussion is presented in Section 3.3.8, while we describe the requirement mapping

in detail.

3.3.6 Anonymization Space Creation and Requirement Mapping

In this section, we describe the procedures of building the anonymization space and

mapping the requirements on that space in an appropriate way to ensure the privacy of the
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data owner and the utilities for data users.

3.3.7 Anonymization Space Creation

iCAT creates an anonymization space based on the data received from a data owner

to provide more choices to users. Different steps of creating such a space are as follows.

To identify the Anonymization Space modeling, and hence to build the anonymization

space lattice, first, iCAT loads the available data from the data owner, deletes empty rows

or columns and converts the dataset into data frames, and detects all the data attributes

and their types based on pre-defined patterns. For example, the time and date format,

the IP format, the IDs based on sequence numbering or predefined patterns from the data

owner. Second, iCAT allows the user to perform several data filtering operations manually

or automatically to remove records from data. For example, column deletion, row deletion,

frequency deletion based on the number of occurrences of a text, searched deletion based

on the existence of a keyword. Thus, the anonymization space lattice is generated by

identifying the attribute-type lattices corresponds to each data attribute in the input data.

Finally, those lattices are multiplied together to generate the privacy/utility access control

model as explained in section 3.3.2.

3.3.8 Requirement Mapping

All the requirements are mapped with the anonymization primitives as follows.

Ontology Modeling. We utilize ontology modeling to define the relationship between
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requirements and data attributes/anonymization primitives. To explain the ontology learn-

ing process, first, we define the following concepts for data owners and users: i) anony-

methods; ii) method-functionality; iii) attribute-types; and iv) attribute-synon. The in-

stances of the anony-methods are the existing anonymization primitives and the method-

functionality instances are manually created based on the functionality and unique proper-

ties that each anonymization primitive can achieve. Moreover, the instances of the attribute-

type concept are the given attributes types and the attribute-synon instances are manually

created based on the use/synonymous of each attribute type. Note that those instances can

be updated accordingly based on the user interaction with iCAT, whenever a requirement

is failed to translate by the NLP module as we mentioned earlier. After that, we find the

relationships between those concepts’ instances by defining relations between the anony-

methods and the method-functionality concepts. Also, by defining relations between the

attribute-types and the attribute-synon instances. As an example, Figure 3.6 shows that the

type-ontologies related to the timestamp attribute type and the method-ontology related to

the constant shifting anonymization primitive. After that, we store the resulted ontologies

into two separate tables, namely, the type-ontology and the method-ontology.

Requirement Matching. For requirement matching, the learned ontologies are applied to

the processed and the filtered requirements provided by the NLP to find the data attributes

and the anonymization primitives. Every tokenized word in the processed requirement is

matched with the attribute type and the anonymization method ontology tables as shown in

Figure 3.5 and discussed as follows.

• For each tokenized word of each annotated requirement, first, the tokenized word is

matched with the type ontology and then with the method ontology.

• If the tokenized words are mapped to only one record from the attribute type ontology

table and one record from the attribute method ontology table, then the requirement

is translated properly, and the mapper will pass to the second requirement.
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• If none of the tokenized words matches any record in both the type and the method

ontology tables, the word is removed from the sentence annotation table.

• If the user tokenized words fail to map to any record from the type and/or the method

ontologies or if the tokenized words have multiple matching, then the mapper will

return an error message to the user reporting this issue and forward this conflict to

the ambiguity solving process.

3.3.9 Permission Granter and Anonymization

After translating all the requirements and generating the corresponding anonymization

space lattice, the data users are allowed to access only that portion of the anonymization

space which is approved by the data owner. Hence, iCAT associates the data user identity

with the privacy level specified by the data owner, and that is required to determine the

anonymization sub-space assigned to them based on the PU/UD access control rules as

discussed in Section 3.3.3. Finally, based on the granted anonymization primitives, data

users can choose among different anonymization combinations to anonymize the data and

get the final anonymized output.

3.4 Evaluation

In this section, we measure iCAT’s effectiveness and performance through experiments

using both synthetic and real datasets. Additionally, we evaluate iCAT’s usability through

a user-based study with participants from both industry and academia working on data

analysis.

3.4.1 Experimental Setup

Our experimental setup for the evaluation is as follows.
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Dataset Specification. We consider four different datasets, i.e., DS1, DS2, DS3, and DS4

for the experimental evaluation of the iCAT. DS1 is the Google cluster dataset [76] (i.e.,

traces from requests processed by the Google cluster management system), while DS2

is cloud logs collected from OpenStack Neutron services (i.e., the networking service of

Openstack). DS3 is a database dump of the OpenStack Nova service, and DS4 is the BHP-

OBS machine learning dataset [81]. We select these datasets for the following reasons:

(i) the privacy constraints and requirements are already known for datasets from the in-

dustrial collaborator; (ii) these public datasets are widely used in research labs [76]. In

Table 3.3, we provide more details about the selected datasets (i.e., category, format, num-

ber of records, etc.).

User-based Study Specification. To evaluate the usability of iCAT, we prepared question-

naires and conducted a survey among people involved in university research and industry.

In this process, we considered two types of participants, i.e., data owner participants and

data user participants. To solicit participants, we placed a flyer on the university campus

and also sent it to our industrial collaborators. The on-campus flyer requires that: i) par-

ticipants should be able to pose clear requirements (e.g., how to use the data and what

properties need to be preserved); ii) participants should be able to evaluate the usefulness

and usability of the data after the experiments. On the other hand, the request sent to the

industry indicates that: i) participants should be able to write their institutional privacy con-

straints and requirements that govern data sharing; ii) participants should be able to verify

whether the final anonymized output of the data meets those requirements/constraints. At

the end of this data acquisition procedure, we received feedback from nine researchers

from different university labs and fourteen participants from four industrial organizations.

Table 3.4 summarizes the participants’ experience level for each category in percentage,

where we categorize them based on their educational level and industrial experience (i.e.,

for Research: M.Sc. and Ph.D., and for Industry: junior and senior).
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Table 3.5: An evaluation of the failed translation of requirements.

Datasets Requirements data owner Data user
Utility loss Manual validation No-translation Utility loss No-translation

DS1 56 2 3 0 4 0
DS2 62 0 2 0 7 0
DS3 44 1 2 0 2 0
DS4 43 4 4 0 5 0

Procedures. We divided our study into four data anonymization operations based on the

considered datasets and asked the participants to select one of those four; corresponding to

their domain. After that, the participants had to input their requirements and interact with

iCAT until the anonymization operation was completed. Finally, we asked the participants

to fill a post-experiment questionnaire to report the correctness or satisfaction level of the

usefulness of data and the privacy constraints. We also recorded the requirements entered

by the participants to evaluate the effectiveness of iCAT.

3.4.2 Effectiveness of Requirements’ Translation

Since this is a multi-class problem, we calculate the percentage of correctly translated

requirements to measure the effectiveness of the system (in terms of translation capabil-

ity) for four different datasets depicted in Table 3.3. Hence, we manually investigated

the recorded user’s requirements and categorized the failures as follows: i) the privacy

leakage/utility loss caused by both data owners/users through wrongly chosen anonymized

methods; ii) the failures caused due to misinterpretation of iCAT on either the data owners

or the data user’s requirements or both.

Figure 3.7.A depicts that the overall effectiveness of translating data owners’ require-

ments is significantly high, while DS2 shows the lowest accuracy but even that is 97.1%.

The primary reason behind such higher accuracy is our highly efficient CNN model for

the NLP in language processing predictions and consequently assists in developing a rich

ontology table. However, any failure of the NLP (e.g., typos of user’s input can easily

guide the NLP to make a wrong interpretation) may have a significant impact on overall
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Figure 3.7: The effectiveness of requirement translation at A) data owner and B) data user
sides.

performance. After finding such translation failure, iCAT immediately triggers the ambi-

guity solver for asking a manual interpretation. This solver reduces the error rate through

interactive communication with the users, where they can directly intervene in the case of

any uncertain requirement as we discussed earlier. Hence, there is no failure reported from

the ontology modeling mapping as depicted in Figure 3.7.A. Not only for data owners, but

the ambiguity solver also assists in attaining high accuracy in the translation of data users’

requirements as depicted in Figure 3.7.B.

The translation accuracy is also influenced by the number of attributes. Table 3.5 de-

picts that a higher number of attributes may lead to a higher probability of translation fail-

ure. The reason behind such a negative influence is that while the number of attributes is

higher, there is a higher probability that the same attribute type may appear multiple times

in the dataset and hence, causes a translation failure. As an example, the dataset DS2, in

Table 3.3, is a cloud log dataset, and the attribute ID appears five times (i.e., project ID,

tenant ID, event ID, VM ID, and host ID). The user has to be precise in writing his/her re-

quirement to differentiate between these attributes when s/he writes that requirement which

is involved with the ID attribute type. As a ramification, if a user requirement is not precise

enough to differentiate between the attributes of the same type, the translation operation

will fail because the tool will not be able to select the relevant attribute to the entered
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requirement.

We also observe that data user participants are not aware of all existing anonymization

methods. They often fail to understand the mapping between anonymization primitives

suggested by iCAT’s ambiguity solver and their utility requirements. For example, the data

users are not able to differentiate between the privacy level of the prefix-preserving and

constant substitution anonymization primitive. This observation has led us to add a pop-

up message showing an example of each primitive to guide the user to avoid selecting the

wrong suggestion. Finally, Table 3.5 shows a comparative analysis of the number of failed

requirements presented in Figure 3.7. We can only observe privacy loss from data owners’

side due to failures in the NLP modeling. Utility loss could be caused at data users’ sides

due to an incorrect translation of data owners’ requirements and a misinterpretation of the

anonymization methods by data users.

3.4.3 Usability

Since there are many existing anonymization tools in practice, along with the perfor-

mance comparison of iCAT with these existing tools, we also intend to evaluate its ac-

ceptance probability on mass users. For this purpose, we conduct a survey based on two

questionnaires as we mentioned earlier. The first questionnaire follows the standardized

usability questionnaire [2] and consists of 19 questions. This questionnaire determines

the users’ satisfaction towards the services provided by the tool (e.g., whether this tool

converges the views and bridges the gaps between data owners and users). On the other

hand, the second one surveys the sensitivity of the attributes and the trust level in differ-

ent actors used to propose privacy/utility access control mechanisms for different attributes

anonymization.

The surveys are summarized in table 3.6, where we categorize the evaluation criteria
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and rate their respective average score out of seven, as instructed in the used question-

naire [2]. The results indicate that the data users are satisfied with being a part of the

anonymization process through expressing their requirements. On the other hand, the data

owner participants from the industry clearly show interest in this tool for being able in

owning different anonymization levels of the same input data instead of the encrypt/hide

policy which they usually use. Data users also report that the tool requires some privacy

expertise, especially during the implementation of the ambiguity solver. As mentioned ear-

lier, to handle such issues, we have revised our design by adding concrete examples for the

anonymization primitives to make them more understandable.

Table 3.6: The results of usability based on a questionnaire designed following [2].

Category Question Score/7

Ease of use,
interactivity, and

user friendly

It was simple to use iCAT 6.3
I can effectively complete my work using iCAT 5.2

I am able to complete my work quickly using iCAT 4.8
I am able to efficiently complete my work using iCAT 5.45

I feel comfortable using iCAT 5.7
It was easy to learn to use iCAT 4.2

I believe I became productive quickly using this system 6.4
The interface of this system is pleasant 6.5
like using the interface of this system 6.6

Errors detecting,
reporting and recovery

iCAT gives error messages to fix problems 5.7
I recover easily/quickly when I make a mistake 5.8

iCAT does not
need support/

background to use

It is easy to find the information I needed 4.4
The information provided for iCAT is easy to understand 3.5

The information is effective in completing the tasks 3.6
The information organization on iCAT screens is clear 5.7

This system has all the functions and capabilities I expect it to have Comment 6.1
The information provided with this system is clear (e.g., online help and other documentation) NA

The overall satisfaction
I am satisfied with how easy it is to use iCAT 5.3

I am satisfied with this system 6.2

3.4.4 Evaluation of Resource Consumption

To evaluate the overhead from different modules of iCAT, we intend to estimate the

required time, memory, and CPU consumption. All the experiments are performed on a
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Figure 3.8: The resources consumption by iCAT for anonymizing the selected datasets: A)
Time consumption; B) CPU consumption; C) Memory consumption.
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machine running the MACOS 11.2 operating system equipped with Intel Quad-Core i5

CPU 3.8GHz and 16GB 2400 MHz DDR4 RAM.

Figure 3.8 depicts the required time, memory, and CPU consumption of the data anonymiza-

tion process for four different datasets. We measure these resource consumptions for

five distinct events: i) Data loading and pre-processing (i.e., data owner side only); ii)

Anonymization space and access control matrix generation (i.e., data owner side only);

iii) Ontology mapping and learning (i.e., on both data owner and data users sides); iv)

NLP processing using the CNN results (i.e., on both data owner and data users sides); v)

The resource consumption of data anonymization (i.e., data owner side only). Figure 3.8

illustrates that from the data owner side, after a one-time effort to load the data, other

operations have negligible consumption. On the other hand, the overhead resulting from

NLP processing and data anonymization is mainly related to the original implementation

of these models and does not require too long to be operated [80].

3.4.5 A Study on the Size of Anonymization Space

We study the impact of three publicly available data sets, which are widely used by

the researchers [82], on the anonymization space or its size. The selected data sets vary

from network traces to cloud logs and IoT data, etc. The main objectives of this study

are: i) to measure the anonymization space size for different datasets; ii) to emphasize

that the anonymization decision by data owners (i.e., represented by the selection from the

multi-choice menu when ambiguity occurs) can vary the privacy/utility level of the final

anonymized output.

Table 3.8 depicts the size of the anonymization space (i.e., the total number of anonymiza-

tion combinations that can apply to the corresponding dataset). Based on the data owner’s

privacy requirements, a sub-space is selected for the data user and finalized the information

to the final anonymized output. As per our best knowledge, iCAT is the first tool to allow
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Table 3.7: Users’ feedback on the multi-level anonymization and its analysis: Sensitivity
of different data attributes;

Attribute Actor Level1 Level2 Level3 Level4 Level5 Level6

Time

I 95% 5%
E 45% 38% 6% 6% 5%
R 25% 50% 10% 5% 10%
C 5% 5% 20% 70%

ID

I 80% 5% 5% 10%
E 5% 70% 20% 5%
R 50% 5% 5% 10% 20% 10%
C 10% 25% 65%

String

I 55% 5% 40%
E 70% 15% 15%
R 25% 60% 5% 10%
C 20% 25% 55%

IP

I 75% 20% 5%
E 35% 15% 20% 20% 5%
R 40% 40% 10% 10%
C 25% 75%

Constant

I 40% 40% 20%
E 55% 20% 10% 5% 10%
R 45% 10% 30% 5% 10%
C 25% 5% 15% 55%

Number

I 60% 30% 5% 5%
E 25% 50% 5% 20%
R 5% 50% 5% 20% 20%
C 5% 45% 55%

46



1 2 3 4 5 6
0

10

20

30

D
is

tr
ib

ut
io

n

Marginal distribution of different attributes and actors

Timestamps

1 2 3 4 5 6
0

10

20

30

D
is

tr
ib

ut
io

n

IDs

1 2 3 4 5 6
0

10

20

30

40

D
is

tr
ib

ut
io

n

Strings

1 2 3 4 5 6
0

5

10

15

20

D
is

tr
ib

ut
io

n

Anonymization levels 

IPs

1 2 3 4 5 6
5

10

15

20

25

D
is

tr
ib

ut
io

n

Constants

1 2 3 4 5 6
0

10

20

30

D
is

tr
ib

ut
io

n

Anonymization levels 

Numbers

1 2 3 4 5 6
Anonymization levels 

0

20

40

60

80

D
is

tr
ib

ut
io

n

Internal Auditor
External Auditor
Researcher
Competitor

B) Sensitivity of different data actors

A) Sensitivity of different data attributes

Figure 3.9: Users’ feedback on the multi-level anonymization and its analysis: Sensitivity
of different data actors.

data owners to determine the location of the final anonymized output from a utility and

privacy point of view. Unlike other tools, iCAT is able to quantify the final anonymized

output in terms of utility and privacy concerning all other anonymization possibilities.
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Table 3.8: The size of the anonymization space for the selected datasets.
Datasets Category Source Format # of Attributes Anony. space size

DS1: Google cluster Real UCI data repository CSV 9 10.07 M
DS2: OpenStack Neutron Synthetic Generated in our lab log 10 60.5M

DS3: OpenStack Nova Synthetic Generated in our lab DB 8 1.7M
DS4: BHPOBS ML Real UCI data repository text 8 1.7M

DS5: IoT data Real UCI data repository CSV 11 362.8M
DS6: Network traces Real UCI data repository pcap 7 280k

3.4.6 A Study on the Multi-level Anonymization

The objective of this study is to determine the need for multi-level anonymization by

studying the sensitivity of the attributes and the trust level for different actors. To attain

this purpose, we prepare an online questionnaire form that has been filled by participants

from both academia and industry as we discussed in Section 3.4. This questionnaire asks

participants to anonymize data given a set of anonymization primitives and different data

receivers. The results of this questionnaire are listed in the Table 3.7. To demonstrate the

trend, we also apply the marginal distribution and draw the trend of each attribute and actor

of this survey as depicted in Figure 3.9. These two figures depict that the attributes and ac-

tors are associated with different sensitivity levels. The attributes e.g., Time, ID, Constant,

and Numbers have similar data-sharing strategy; internal actors could have low privacy

and high utility results, while competitors would be only provided with high privacy and

low utility data. The main reason is that those attributes are not as sensitive as personally

identifiable information, but still can leak information that can be used to stage security

attacks. On the other hand, attributes IP and Numbers (e.g., salary in our survey) are con-

sidered to be sensitive attributes for all levels of actors who prefer to apply at least Level 2

anonymization on them. This can be due to sharing policies or cultural background which

makes them less willing to share the information carried by those attributes. Figure 3.9

confirms the trust levels of the actors through the levels of anonymization methods they are

mostly assigned. Internal auditors are mostly granted Level 1 anonymization only, while

48



competitors could only get Level 6 anonymization results. On the other hand, external au-

ditors and researchers (generally under a non-disclosure agreement) share similar trusted

levels. This shows the participants share similar visions related to the internal auditor and

competitors and consider the external auditors and researchers harmless.

3.4.7 A Study on the Satisfaction of Anonymized Data

We also investigate the understanding of different anonymization methods by data own-

ers mainly for two reasons. First, to check whether the selected anonymization method

meets the data owners’ requirements and then to show the impact of the selected anonymiza-

tion primitives on the privacy/utility level. For these purposes, we take a sample of Open-

Stack cloud data, provide it to the user study participants and ask them to anonymize it

such that their privacy requirement would be satisfied. After that, we illustrate the plain

and anonymized data and present it to the participant to check whether the anonymization

process configured by data owners can meet their expectations.

The benefits of this selected cloud data to perform this experiment: i) the data syntax

is simple and understandable (i.e., the data consists of IP addresses, IDs, and reachability

rules), and ii) the data can be easily represented in a visualized form. Figure 3.10.A shows

the plain data visualization and the remaining parts of the figure depict the visualization of

the anonymized data using different anonymization primitives as mentioned at the bottom

of each figure.

As we can see in Figure 3.10, the output of the anonymized data can vary from high

utility output as shown in Figure 3.10.B where all the properties of the original data are

preserved to high privacy output as shown in Figure 3.10.D where all the mentioned prop-

erties are hidden. 63% of the participant has selected the anonymization method presented

in Figure 3.10.B, and only 39% of them were satisfied with the final anonymized output.

On the other hand, 73% of the participants have selected anonymization methods presented
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Figure 3.10: The visualization of plain and anonymized data using different anonymization
methods.

in Figures 3.10.B and 3.10.C, while 84% of them are happy about the final anonymized

output. Hence, it can be concluded that visualizing the data may assist the data owners in

evaluating their selected anonymization primitives and their satisfaction level.

3.5 Summary

Due to a lack of understanding of the requirements as well as the non-customizability of

the existing anonymization tools make this inflexible and hence inefficient to support vari-

ous privacy and utility requirements of both data owners and data users. To address these

issues, in this paper, we proposed an interactive and customizable data anonymization tool,

namely, iCAT, which takes user requirements in English, automatically processes those

requirements using an NLP technique, and addresses the flexibility limitations of most ex-

isting tools by creating a customizable anonymization space. iCAT can ensure the active

participation of data users in making their own decisions. We leveraged a CNN-based NLP

to make the requirements translation process automated. Since, due to typos, the designed

NLP may fail to translate any requirement, iCAT can trigger on a feedback module to accept

the manual interpretation. We made an extensive analysis based on both real and synthetic
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data to evaluate our proposed solution and formally achieved higher effectiveness (e.g.,

98% of users’ requirements were correctly translated), while the decision-making time was

significantly small (e.g., 64 seconds). In addition, we conducted several user surveys and

obtained quite positive feedback from the tool users who participated from both industry

and academia.
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Chapter 4

Auditing the Integrity of Virtual

Network Functions Chain

4.1 Introduction

4.1.1 Motivation

Network Functions Virtualization (NFV) enables on-demand and cost-effective deploy-

ment of network services as chains of VNFs on top of an existing cloud infrastructure [4].

A growing trend in NFV is to host the VNFs on third-party clouds for more cost-effective

deployment [83, 84, 85], e.g., DISH Network is reportedly deploying its cloud-native 5G

network in AWS Cloud [84], and VMware is enabling communications service providers to

accelerate the deployment of their VNFs on its VMware Telco Cloud platform [85]. In such

scenarios, the provider manages all the virtual and physical resources needed for deploying

the specified network services by tenants as a chain of VNFs. Despite its obvious bene-

fits to NFV tenants, the multi-actor nature of such deployment may lead to novel security

threats. In particular, potential integrity breaches may silently arise due to unintentional

misconfigurations [86] or malicious intents [7] to cause harmful inconsistencies between
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tenant specifications and their provider deployment.

Most existing security auditing1 approaches for NFV would face difficulties against

such integrity breaches mainly due to the following challenges. First, relying on the

cloud provider (e.g., [33, 87]) may be impractical (as many providers may be reluctant

to take the burden of conducting security auditing on behalf of their tenants) or insuffi-

cient (as providers typically do not understand tenant-level requirements, e.g., modifying

compromised switch forwarding rules may seem wrong to the tenant, but legitimate to the

provider). Second, relying on the tenant alone (e.g., [88]) may not be feasible, either, as

the tenant typically has limited access to provider-level data, and shipping all such data to

the tenant could incur prohibitive overhead and confidentiality concern. Based on compre-

hensive studies and existing literature [89, 90], it becomes evident that a novel solution is

required to tackle those challenges.

vFW vDPI vIDS

1. Tenant audits the provider

2. Provider ships all logs to tenant

The modification
looks legitimate 
to the provider

Stage1:Side-channel
for sensing

The problem Naïve solutions Our ideas

VM
FW

VM
DPI

VM
IDS

VM
Mal

No access

Prohibitive overhead and 
confidentiality concerns

Tenant

Provider

Stage2: Selective 
data for verification 

Identification

Anonymization

Attacker modifies vSwitch forwarding rules

Figure 4.1: Motivating example

High-level motivating example, naive solutions, and our proposed ideas. Figure 4.1

shows a motivating example to highlight the problem (left), limitations of naive solutions

(middle), and our main ideas (right).

1We focus on auditing the integrity of VNF chains (i.e., matching deployment with specification) instead
of detecting attacks that cause integrity breaches.
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4.1.2 The problem and our main ideas

The left side of Figure 4.1 illustrates an example of an integrity breach and the limita-

tion of provider-based auditing. Specifically, the top shows a chain of three VNFs (vFW,

vDPI, and vIDS) specified by the tenant, and the bottom depicts that the cloud provider

deploys those VNFs on three VMs. Suppose, due to an unintentional misconfiguration [91]

or through the exploitation of compromised resources, an attacker (e.g., a co-located ten-

ant) [86] can modify the switch forwarding rules to redirect traffic flowing through the

chain to the malicious VM (i.e., VM Mal) into the chain. Since the chain now deviates

from its specification, it allows the attacker to steal information, and hence, such a modi-

fication represents an integrity breach to the tenant. However, the modification may seem

legitimate to the provider, as it is coming from a (seemingly) legitimate tenant, and there-

fore any provider-based auditing mechanism will likely miss such breaches. Therefore,

relying on the provider alone may be insufficient due to its lack of understanding of tenant

requirements, which motivates a tenant-based solution.

Tenant-based Naı̈ve Solutions: The middle of Figure 4.1 illustrates the limitations

of two naive solutions. In the first solution, the tenant typically has limited access to

provider-level data (e.g., detailed logs or databases), and therefore it cannot directly au-

dit the provider. In the second solution, even if the provider is willing to share, such a data

transfer process may lead to prohibitive overhead and confidentiality concerns due to the

multi-tenancy nature of NFV.

Our Ideas: The right side of Figure 4.1 illustrates our main ideas. Intuitively, we keep

the auditing workload mostly on the tenant and only involve the provider to share selected

anonymized data upon “sensing” (hence NFVSense) suspects of integrity breach. First,

as illustrated by the clock and packet icons in the figure, the tenant identifies suspected

integrity breaches based on tenant-level side-channel information. Second, it performs

formal verification on selected provider-level data (which would be automatically identified

54



and anonymized) to confirm (or reject) such suspects.

Specifically, we propose NFVSense, a tenant-based, two-stage approach to audit the in-

tegrity of VNF chains hosted on third-party clouds. In the first stage, NFVSense combines

tenant-level side-channel information with machine learning (ML) techniques to identify

potential suspects of integrity breaches. As such an approach will likely introduce false

positives, the second stage automatically crafts selective data requests to the provider for

each suspect from the first stage, anonymizes the data before returning it to the tenant, and

finally performs rigorous verification based on such data to confirm (or reject) the suspects.

We implement and integrate NFVSense into OpenStack/Tacker [92], a popular choice for

NFV deployment. We evaluate the accuracy and efficiency of NFVSense through extensive

experiments. In summary, our main contributions are as follows.

• To the best of our knowledge, NFVSense is the first tenant-based approach to audit-

ing the integrity of VNF chains. The two-stage design of NFVSense leads to two

key advantages: i) the first stage gives the tenant more control and transparency to

audit the underlying deployment; ii) the second stage provides higher accuracy to the

tenant who can perform rigorous verification based on selected provider-level data

(which has been automatically identified and anonymized).

• To realize this two-stage design, NFVSense i) utilizes the tenant-level side chan-

nel information using Network Performance Tomography (NPT) and active probing

techniques; ii) conducts verification on selected and anonymized provider-level data

to audit the integrity of VNF chains hosted on third-party clouds.

• The applicability of NFVSense is demonstrated through its integration into Open-

Stack/Tacker, a popular cloud/NFV platform. Our experiments using several NFV

datasets demonstrate the effectiveness of NFVSense (e.g., up to 90% of accuracy

with the first stage alone).

55



4.2 Preliminaries

This chapter provides the essential preliminaries and defines our threat model.

4.2.1 Background on NFV

NFV enables the virtualization of network services and consists of two major abstrac-

tion levels as follows (according to the ETSI NFV reference architecture [4]):

1. Tenant Level: This level is specified and managed by an NFV tenant who specifies

its network services as a chain of several VNFs, e.g., virtual firewalls and IDS.

2. Provider Level: This level is managed by a cloud infrastructure provider who instan-

tiates the tenant’s specifications of VNFs using both virtual resources, e.g., VMs, and

physical resources, e.g., CPU and memory.

4.2.2 Rationale and Challenges in Using Performance-related Side-

channels

In the following, we explain our rationale for choosing performance-related side-channel

information and then outline the challenges that come with this side-channel.

Our Rationale. We choose NFV performance-related side-channel information since,

as Table 4.1 shows, there exist performance bottlenecks at different NFV abstraction levels,

which can provide useful input for identifying any integrity breaches [93, 94, 95, 38], e.g.,

the impact from the hardware level can be more severe than the virtualization level [38].

The last column of Table 4.1 shows the parameters we choose to extract side-channel in-

formation at the corresponding level (the parameters selection are discussed in Chapter 4.3

and evaluated in the experiments Chapter 4.4).

Challenges. Using NFV performance side channels for identifying integrity breaches

faces the following challenges, which will be addressed in Chapter 4.3:
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• Limited Data Access: Since tenants cannot access the provider-level configuration,

system-wide profiling tools to monitor hardware-based performance counters (e.g.,

cache-references or cross-system events, such as LinuxPerf [96] and OProfile [97])

cannot be utilized for our purpose.

• Performance Sensitivity and Probing Overhead: Network performance measurements

in NFV can be highly sensitive to different factors (e.g., VNF’s functionalities [34]

and network workload [93]). Therefore, performance measurements must be re-

peated under different combinations of workloads and other parameters to ensure

sufficient coverage.

• Fallacy of Profiling Standalone VNFs: The existing studies (e.g., [88, 98]) show that

performance measurements of VNFs can change depending on their relative order

in a chain. Also, adding or removing VNFs from a chain may affect the overall

performance [98]. Consequently, establishing the performance profile of a chain can

only be done by continuously measuring and analysing the performance of the chain

as a whole after deployment [34].

• Other Performance Factors: There exist other factors that impact the network per-

formance, such as the status of the VNF (e.g., active/passive) which may affect I/O

waiting and processing time. The network I/O overheads in the virtual switches can

affect the performance [34].

4.2.3 Threat Model

The basis of our work is the “trust but verify” principle behind most security auditing

techniques. More specifically, we assume the cloud provider and its infrastructure are

both trusted by the tenant, but the tenant may still be concerned about unintentional user

mistakes (made by cloud operators working for the provider) or stealthy attacks (which
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Table 4.1: Excerpt of existing NFV performance bottlenecks.

Level Bottleneck Impact Parameter
Physical Memory size, number

of CPUs, disk operation
and hypervisor type

Variation in packet
processing time [38]

Unique gap in
RTT

Virtual I/O interrupts, number of
ports, virtual switching

VNF performance
degrades [95]

Probing window/
workload

Virtual
resources

Stateful and stateless
connections, VNF
functionality, VNF image

Longer packets
delivery time [93]

Connection type
and VNF type

evade detection by the provider). Therefore, our solution is not meant to replace existing

security mechanisms (e.g., security auditing and attack detection) of the provider, but rather

to give the tenant additional control through performing independent tenant-based auditing.

Under such assumptions, we focus on a specific class of in-scope threats, i.e., integrity

breaches in the form of invisible (to the tenant) modifications to the provider-level deploy-

ment of VNF chains, e.g., injection of malicious resources [50, 31], traffic redirection to

bypass VNFs such as firewalls [6], reduction in virtual and physical resources [11], etc.

We assume such threats are not thwarted by the provider because they come from external

attackers who exploit zero-day attacks, or from malicious insiders, or unintentional user

mistakes or misconfigurations caused by cloud operators themselves.

The out-of-scope threats include any attacks that can breach the integrity of network

services without affecting network performance at any NFV layer. Also, we do not con-

sider attacks that are directly visible to a tenant (e.g., removing a VM and its corresponding

VNF) and thus do not require our solution. Moreover, similar to most side channel-based

solutions (e.g., [99, 91]), we do not consider truly malicious providers or powerful attackers

who have full control over the VNFs and thus can tamper with the captured performance

results or the VNFs running NFVSense, or who can launch adversarial attacks against our

tool (e.g., compromise the VNF chain at deployment time, or tamper with the training pro-

cess using malicious samples). Finally, our work focuses on identifying integrity breaches
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(the consequences) rather than detecting or preventing attacks (the causes).

4.3 NFVSense

This Chapter presents the methodology of our solution.

4.3.1 Overview

As shown in Figure 4.2, NFVSense is comprised of the following two stages: Stage 1:

Identifying Suspect Breaches, and Stage 2: Selected Data Verification.

3) Identifying Suspected Breaches2) Performance Profiling
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Figure 4.2: An overview of NFVSense.

Stage 1: Identifying Suspected Breaches. This stage is to identify suspected breaches by

only using tenant-level side-channels information as follows.

1. Information Gathering and Processing: When the chain is up and running, NFVSense

gathers tenant-level performance measurements of the deployed topology as side-

channel information, such as Round Trip Time (RTT). Using network performance

tomography and active probing, it first characterizes the RTT between all pairs of

VNFs in a tenant chain. Then it processes the collected data (i.e., outlier detection

and filtering) to prepare for profiling in the next step.
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2. Performance Profiling: Based on the impacts on the performance measures of VNFs,

NFVSense identifies breaches by profiling the processed performance information

as follows. It first learns an Identification Model (i.e., a binary classification ML

model) to identify normal behavior and abnormal behavior (resulted from integrity

breaches) and then learns a Classification Model (i.e., a signature-based multi-class

classification ML model) to classify different types of breaches based on their impact

on performance.

3. Identifying Suspected Breaches: By implementing two ML models (from Step 2), NFVSense

identifies suspected breaches in VNF chains and classifies them. Specifically, it first

checks the current network performance of all VNF pairs in the chain with the iden-

tification model to identify any suspected breach, then determines its type by using

the classification model. Finally, based on the type of the suspected breach, a tenant

queries the provider for selected data (e.g., port forwarding rules for a set of VMs)

for further verification in Stage 2. We will further elaborate Stage 1 in Chapter 4.3.2.

Stage 2: Selected Data Verification. This stage is to conduct the verification on anonymized

provider-level data that are specific to a suspected breach from Stage 1 and to confirm (or

reject) it as follows.

1. Selected Data Request: To minimize the overhead for the provider, NFVSense only asks

for selected provider-level data relevant to a suspected breach based on its source and

type. For instance, if NFVSense suspects an integrity breach from a malicious VM

injection (as in Figure 4.1), it only requests for the path forwarding logs of the VMs

in the VNF chain corresponding to the suspected breach.

2. Anonymized Data Preparation: The main goal of this step is to provide property-

preserved output that is suitable for auditing tasks. NFVSense leverages iCAT [100]

to anonymize the selected provider-level data to ensure both the privacy requirements
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of the provider and the utility requirements of the tenant. Finally, the anonymized

data is forwarded to the following steps.

3. Data Verification: To confirm an actual integrity breach from the suspects, NFVSense

leverages existing verification solutions (using formal methods [101]) or performs

a manual inspection on the anonymized data sent from the previous step. If the

suspected breach is confirmed (e.g., VM port forwarding rules are modified), the

tenant asks the provider for further action (e.g., mitigate the breaches). We will

elaborate on Stage 2 in Section 4.3.3.

4.3.2 Stage 1: Identifying Suspected Breaches

In the following, we elaborate on the steps of Stage 1.

Information Gathering and Processing. To train the identification and classification

models (described in the next step), NFVSense has to assess both the normal (i.e., breach-

free condition) and the abnormal behavior (i.e., breached conditions). Hence, in this step,

from the tenant level, NFVSense gathers and processes round trip time (RTT) as side-

channel information for a VNF chain deployed at the provider level. More specifically, we

adopt the following two steps: i) to assess the normal behavior, NFVSense collects RTT

values from time0 when the service is created and hence assumed to be free of integrity

breach; ii) to understand the abnormal behaviors, NFVSense simulates different attack sce-

narios to mimic different integrity breaches and collects respective RTT values.

To that end, NFVSense collects data from all VNF pairs after establishing an active

probing connection between all VNF pairs. For instance, if n VNFs are in the chain,

(n ∗ (n − 1))/2 active probing connections need to be established to cover all pairs of

VNFs. For each connection, different parameters (i.e., probing rate and probing window,

connection type) are also varied to profile the network behavior for different settings. After
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that, NFVSense collects RTT values in the probing responses accordingly and character-

izes them by correlating the RTT values with the corresponding VNF chains. For this

purpose, we adopt Network Performance Tomography (NPT) [102] of NFV which only

requires VNF’s usual packet forwarding behavior. Specifically, we integrate a performance

measurement tool (e.g., IPerf [43]) into the VNF images.
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VM-
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Figure 4.3: Example of different primitive scenarios for integrity breaches: i) Scenario1:
VM injection; ii) Scenario2: Physical hosts reduction; and iii) Scenario3: Passive VM
injection.

Example 4.3.1 For the sake of illustration, we assume four NFV setups corresponding

to four different integrity breaches scenarios as follows: i) Scenario0: Initial integrity

breach-free setup at time0 before the attacker performs any modification; ii) Scenario1:

Malicious VM injection (marked as 1⃝ in Figure 4.3); iii) Scenario2: Reduction in physical

hosts (marked as 2⃝) and iv) Scenario3: Traffic redirection to a malicious VM (marked

as 3⃝). For each scenario, the NPT is collected between all pairs of VNFs in the chain

while different parameters like probing workload, probing window, connection type, etc.

are also varied. Note that the methodology of NFVSense can be applied to other types

of breaches as well, and also note that Scenario1 to Scenario3 are integrity breaches

(i.e., the consequences) rather than attacks (hence NFVSense can identify such breaches

regardless of the attacks causing the breaches).

To process the collected data for profiling, NFVSense: i) identifies and filters out

the outliers (e.g., extremely high RTT for the first few probing packets compared to the
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rest [34], or lost probing packets) in the network performance measurements using the In-

terquartile Range [103]; ii) merges all the features in the collected data, namely, the number

of hops between source and destination of probes, VNF functionality type, probing rate and

probing window; and iii) adds two ground-truth data labels to each probing record: integrity

breach for indicating whether there is an integrity breach in a node pair and breach type

(e.g., Scenario1-Scenario3 as mentioned in Example (1) from which those measurements

are collected.

Performance Profiling. This step tends to profile the labeled RTT data by learning two

separate ML models: a binary classification based Identification Model for identifying sus-

pected breaches and a multi-class signature-based Classification Model for classifying the

suspects. This separation of models: i) allows NFVSense to identify suspected integrity

breaches beyond those example scenarios (i.e., Scenario0-Scenario3) as it mainly checks

any deviation from the normal behavior; ii) improves the identification accuracy as it re-

duces the complexity of the trained models by reducing the dimension of the training

dataset, and iii) improves the efficiency of NFVSense as the classification model is only

triggered when there is a suspected breach. We elaborate on learning each of those models

as follows:

• First, we learn the identification model to profile the normal behavior between all

pairs of VNFs based on the integrity breaches-free setup. The objective of this model

is to identify any deviation from the normal behavior (i.e., integrity breach-free setup)

to identify integrity breaches.

• Second, we learn the classification model to learn the breach types by observing the

patterns to extract each breach’s signature. The objective is to differentiate between

the suspected breaches based on their signature.
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Identifying Suspected Breaches. This step implements the trained identification and clas-

sification ML models to identify and then classify suspected breaches.

• NFVSense identifies the suspected breaches in a VNF chain by using the identifi-

cation model. Specifically, this model compares the similarity of the measured per-

formance features from the probing packets with the learned performance profiles

(i.e., the normal behavior), and any deviation from the normal behavior indicates a

suspected breach. Note that to identify suspected breaches, instead of using a sin-

gle probing packet, the model tests a stream of packets to compare them against the

normal profile and hence attains a higher accuracy.

• After identifying a suspected breach, NFVSense classifies that breach by using the

classification model. Specifically, using this model, NFVSense maps the deviated be-

haviors in the extracted integrity breach signatures into two levels: physical resource

level and virtual resource level, where the integrity breaches related to changes in

the physical resource level have distinct performance gaps compared to the breaches

related to the virtual resource level, as discussed in Table 4.1.

• Then NFVSense notifies the tenant about its findings to trigger Stage 2 (for further

verification) to confirm or reject the decisions made in Stage 1.

Example 4.3.2 For Scenario2 (refer to Figure 4.3), NFVSense identifies the suspected

breaches as follows. As the packets delivery gaps between VMDPI and VMIDP are ex-

pected to be lower compared to the normal behavior since the virtual switch level con-

sumes less time to deliver the traffic between these two VMs running on the same physical

hosts. Consequently, this leads the identification model to raise an alarm of a suspected

breach. Then using the classification model, NFVSense maps the suspected breach with

the pre-defined breaches (i.e., Scenario1 to Scenario3 as described in Example 1). More

specifically, the RTT values would be lower after the reduction in physical host (Scenario2)
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Table 4.2: An example of event logs for different cloud services in OpenStack [3]

Level Service Project Example Events

Physical
Computing Nova Add host, List Migrations
Networking Neutron Create port, Delete subnet
Switching Open VSwitch Add bundle, Delete bridge

Virtual SFC Tacker Create VNF, Delete SFC

compared to the malicious VM injection (Scenario1), where the virtual switch level for-

wards the traffic to an extra VM (i.e., a malicious VM) in a VNF chain. On the other hand,

Scenario2 has higher RTT values compared to the traffic redirection breach (Scenario3),

where the virtual switch duplicates the traffic to the injected passive VM, VMMal. Hence,

by this mapping, NFVSense determines the suspected breach as a potential reduction in

physical host attack.

4.3.3 Stage 2: Selected Data Verification

In the following, we elaborate on the steps of Stage 2.

Selected Data Request. This step is to request the provider for specific data related to

the suspected breach. More specifically, NFVSense considers the decision made by Stage

1 (i.e., the identified and classified suspected breaches) to determine which provider-level

data is required to verify those decisions, and requests the provider to send those related

logs accordingly. If the location of the suspected breach is identified and traced to a specific

pair of VNFs based on the built performance profiles and measured performance metrics,

then NFVSense requests only the provider-level logs which correspond to those VNF de-

ployments at the tenant level. On the other hand, if the class of the suspected breach is not

identified (i.e., a breach is suspected but cannot be classified), NFVSense queries the log

of all cloud services for a specific time range (i.e., TAbnormal − TNormal), where TAbnormal

is the time when the suspected breach is identified, and TNormal is the last time when there

was no breach.
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Example 4.3.3 Table 4.2 shows an example (from OpenStack [3], a popular cloud plat-

form) of event logs specific to different services (e.g., computing, networking, etc.) at the

provider level; part of which can be requested during this step for any suspected breach.

Due to a suspected breach related to Scenario2, between the VNF pairs V NFx and V NFy,

the tenant will query the provider for the ports forwarding logs of the corresponding VMs

VMx and VMy from the Neutron service in OpenStack. Similarly, other selected provider-

level data can be requested for other types of breaches such as OpenVswitch and Nova logs

for Scenario1 and Scenario3.

Anonymized Data Preparation. Though the previous step can minimize the overhead of

sending all logs to the tenant, that can not ensure the privacy and confidentiality of both

the provider and other tenants. For example, important network configuration information

(i.e., potential bottlenecks and topology of the network) may be inferred from the logs

and subsequently exploited by adversaries [100]. To address this concern, in this step,

NFVSense leverages iCAT [100] to anonymize the logs, while this tool meets both the

provider’s privacy requirements along with the tenant’s utility requirements. To that end,

iCAT leverages natural language processing techniques to translate those requirements and

find the most suitable anonymization primitives to meet the requirements. Hence the confi-

dentiality concern of the provider in sharing data is addressed, while auditing at the tenant

level is enabled.

Example 4.3.4 To verify the suspected breach in Scenario2, the tenant’s utility require-

ment is the Sequence of the events must be preserved (i.e., the events must be persevered

chronologically in the anonymized output). On the other hand, the provider’s privacy re-

quirement is all tenants’ network topologies should be unidentifiable. Considering those

requirements, the leveraged anonymization tool first determines the suitable anonymization

primitives (e.g., timestamp shifting, IPs truncation, etc.) and then produces an anonymized

output (i.e., ports forwarding logs).
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Figure 4.4: Anonymized Nova logs related to integrity breach.

Integrity Verification. NFVSense can leverage existing auditing tools or perform a manual

inspection on the received anonymized data to validate the suspected breaches identified

in Stage 1. To that end, we utilize a formal security verification tool, NFVGuard [101]

to formally verify the alerts generated by NFVSense. NFVGuard verifies chain integrity

using the formal method in two steps. First, VNF Forwarding Graph (i.e., VNFFG, a

feature used to orchestrate and manage traffic through VNFs) configuration consistency

properties are applied to verify consistency between the VNFFGs specification uploaded by

the tenants (such as the size of VNFFG and the sequences of VNFs) and their corresponding

implementation. Second, The VNFFG configuration consistency properties are applied to

verify the consistency between the created SFCs and hardware implementation. If either

property does not hold in the deployed NFV system, it means that there is a breach in the

integrity of the underlying deployment. In practice, the tenant admins can further manually

inspect the logs to verify the integrity of the SFC.

Example 4.3.5 In the case of Scenario2, the tenant will look for system event logs in the

computing service, Nova in OpenStack, resulting from deleting a physical server. Figure 4.4

shows a snippet of the Nova anonymized logs for the deleted host event. From this log entry

(highlighted in red), NFVSense confirms the breach from the host creation and deletion time

(i.e., created-at and deleted-at) and the success of the deletion operation (i.e., deleted:Yes).

4.4 Implementation and Experiments
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4.4.1 Implementation

We implement and integrate NFVSense into OpenStack/Tacker [92], which is a popular

NFV management platform. Specifically, NFVSense is implemented in Python, by lever-

aging the NumPy and Pandas [104] libraries for gathering NFV performance measurements

(RTT for this case), and scikit-learn [105] for implementing ML models. Finally, we use

our designed anonymization tool iCAT [100] to generate the anonymized proofs for verifi-

cation. All the VNFs are built based on the official Ubuntu 18.04 cloud image customized

by Canonical to run on public clouds [106]. We follow the model stated in [34] to configure

our VNFs and use Open vSwitch [107] to manage the connectivity between them.

4.4.2 Experimental Environment

This section describes our experiments datasets and environment.

Dataset Description. We consider both real and synthetic data to evaluate NFVSense

effectiveness. We collect and generate four datasets, DS0-DS3, for four scenarios (as

shown in Figure 4.3), respectively. In summary, a dataset of size 4.5 GB corresponding

to three different integrity breach scenarios are used, while over 136K probing requests

are generated on four scenarios, where four VNF images and two physical hosts are used.

During probing, we vary the traffic to four different workloads, the probing period to three

different windows with two connection types (i.e., stateful and stateless). In the following,

we briefly explain how data is collected.

• Real Data: We implement an NFV testbed to collect real data from the NFV stack.

We use Python scripts to automatically generate TOSCA templates in order to de-

ploy NFV entities, such as VNFs and VNFFGs. In our implementation, we deploy

three different VNF images for widely-used network services: i) Tcpdump [108], a
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network data packet analyzer with the default configuration, ii) Snort [109], a net-

work intrusion, detection, and prevention system configured with the default rules,

and iii) IPtables [110], a firewall program for Linux configured with 50 rules (in

a way that only the last rule matches with our probing traffic and the VNF checks

all rules). On each VNF, we implement NPT for characterizing NFV performance

measurements using IPerf3 [43], a tool that can produce standardized performance

measurements for any network, and Bash scripting to perform active probing be-

tween all pairs of VNFs in a chain while varying different probing parameters (i.e.,

probing rate, probing window, connection type). For each probing packet, we log the

source and destination nodes, the number of hops between them, and the resulting

RTT.

• Synthetic Data: We provide an option in NFVSense that is only enabled when a

tenant cannot gather a sufficient amount of training data for ML models due to the

higher cost of continuously obtaining labeled data (e.g., via manual efforts) [111],

or the overhead of substantial probing traffic using NPT [88]. This alternative op-

tion generates synthetic training data using generative adversarial network (GAN)

models [112]. In contrast to most existing works that apply GAN to deceive systems

(e.g., IDS [113], steganalyser [114]), we leverage GAN, similarly as in [115, 116], to

generate synthetic network traffic data that would be similar to the real flow data ob-

tained through active probing. More specifically, by generating realistic data, GAN

solves the challenge of acquiring “labeled data” for training our ML model [116]

along with ensuring a negligible overhead compared to the imposed overhead by the

NPT step. To evaluate the effectiveness of GAN in generating synthetic data, we

compare the performance of NFVSense with and without data synthesis in the next

section. Note that the synthetic data generated by GAN is proposed as an auxiliary

source of data, only when real data are scarce.
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For the experimental setup, we deploy 31 types of VNFs (e.g., with autoscaling policies,

dedicated subnet, floating IPs, etc.), and seven variations of VNFFGs to create sufficient

diversity in the corresponding event sequences. We also randomize a few important param-

eters in the template description: 1) the number of virtual network ports per VNF, 2) the

number of deployment units per VNF, 3) the node Flavor specification for each VDU, 4)

the number of VNFs for each Network Forwarding Path (NFP), 5) the order of VNFs for

each NFP, 6) the flow-classifier criteria for each NFP, and 7) the number of NFPs for each

VNFFG.

Environment Setup. All the experiments are conducted on SuperServer 6029P-WTR run-

ning the Ubuntu 18.04 operating system equipped with Intel(R) Xeon(R) Bronze 3104CPU

1.70GHz and 128GB of RAM without GPUs. Moreover, the NFV stack implementation

to collect the real datasets follows the four scenarios (shown in Figure 4.3).To evaluate

the accuracy (AUC) of NFVSense, we implement, train, and deploy different ML models:

Decision Tree (DT), Random Forest (RF), k-nearest neighbors (kNN), and Support Vector

Regression (SVR).

4.4.3 Experimental Results

We evaluate the accuracy (AUC) of Stage 1 for identifying the suspected breaches,

and the corresponding resource consumption. Afterward, we evaluate the performance of

Stage 2 in confirming (or rejecting) the findings of Stage 1 (i.e., suspected breaches) by

using selective data.

Evaluation of Stage 1 in Identifying Suspected Breaches. The first set of experiments

(Figure 4.5) is to evaluate the accuracy of Stage 1 in identifying suspected breaches. We

use the dataset without a breach, DS0, to train the identification model to learn the normal

behavior, and the three datasets having breaches (DS1-DS3) for validating and testing the

model (10% of data are for validating and 90% of them are for testing). To avoid overfitting,
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Figure 4.5: NFVSense Stage 1 evaluation.

we run our experiments up to 100 epochs. We also use an early stopping mechanism,

while the trigger parameter is set to early-stop-threshold = 5, which means that during the

training period, the accuracy is calculated after each epoch, and if there is no improvement

in the accuracy of the validation set compared to the training set for consecutive five epochs,

the training process stops. Finally, we set the length of packet trains and the number of
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different probing rates to four (a study on the selection of these parameters is shown in

Figures 4.5.e and 4.5.f).

Figures 4.5.(a-c) show the identification accuracy of Stage 1 for different integrity

breach scenarios and different ML algorithms. Among all four ML algorithms, the SVR

achieves the best accuracy in all cases, as it tries to fit the best line within a threshold value

that separates the normal behavior from the deviated one. The accuracy is also dependent

on the integrity breach scenario as depicted in Figure 4.5.d. For Scenario1 (i.e., malicious

VM injection), the AUC value is about 89%, while for Scenario2 (i.e., one physical host

is deployed instead of two), the AUC value increases up to 91.92%. For Scenario2, SVR

achieves the best accuracy due to having the highest impact on the measured performance

[38]. Finally, for Scenario3 (an adversary inserts passive and malicious VM to the chain),

Stage 1 achieves the AUC of 84.3% as depicted in Figure 4.5.c. The accuracy of the results

related to this scenario is the lowest due to the performance profiles at low probing rates

being very close to the scenario without a breach (i.e., normal behavior), and the effect of

this scenario only appears at higher probing rates. This is because the observed delay on

the end-to-end service results from the delay caused by the OvS duplicating the traffic to

the passive malicious VNF, and it only creates a distinct difference when the amount of

traffic to be duplicated is higher.

Figures 4.5.e and 4.5.f show the accuracy of identifying the suspected breaches by the

SVR model while varying the performance profiling parameters, i.e., the length of a packet

stream and the probing rates.

During measurements for each scenario, we fix one parameter and vary the other. For

varying the number of probing rates, we progressively increase the number of used probing

rates (in KB/s), i.e., 64, (64,128), (64, 128, 256), and so on. We observe that the accuracy

increases for all scenarios when we increase the number of probing rates and the length of

the packet stream. When both the length of a packet stream and the number of probing rates
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Figure 4.6: a) Stage 1 evaluation for integrity breach classification, b) evaluation of Stage
2 performance in correctly identifying integrity breaches from Stage 1, and c) evaluation
of Stage 2 performance in classifying the integrity breaches from Stage 1.
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are set to four, the accuracy becomes almost saturated (i.e., around 95% for Scenario2).

As a result, the model decision is made to identify suspected breaches based on the results

of four probing samples that cover four different probing rates. Also, even though the per-

formance profile of Scenario3 is the closest to the scenario without a breach (as discussed

above), our model successfully identifies it and the accuracy increases significantly when

increasing both the number of probing rates and the length of the packet stream.

Evaluation of Stage 1 in Classifying Suspected Breaches. The second set of experiments

(Figure 4.6.a) is to evaluate the accuracy of Stage 1 in classifying the suspected breaches.

To that end, we use 20% of the data to train the signature-based classification model, while

5% for validation, and 75% for testing. Similar to the previous set of experiments, we

implement four ML algorithms and run our experiments up to 100 epochs with an early

stopping mechanism (i.e., early-stop-threshold = 5). Figure 4.6.a shows that the Decision

Tree (DT) model achieves the best AUC compared to other ML models for all three scenar-

ios as it reduces the variance by creating its predictions based on the training data. The DT

model achieves the AUC value of 95.1% for Scenario1, 100% for Scenario2, and 94.2%

for Scenario3. Note that Stage 1 attains the highest accuracy for Scenario2 as there is a

distinct gap between the data points of this scenario compared to other scenarios.

Evaluation of Stage 2 in Verifying Selective Data. Figures 4.6.b and 4.6.c show the out-

comes of Stage 2 in verifying the suspected breaches. The logs are anonymized by using

iCAT [100] (an interactive and customizable anonymization tool as discussed in Section

4.3.3), while Nova logs are used to evaluate Scenario2 (i.e., physical hosts reduction),

and Neutron and OpenvSwitch logs are used to evaluate Scenario1 and Scenario3 (i.e.,

active and passive VM insertion). Figure 4.6.b shows the number of breaches identified

at two stages (separately) compared to the ground truth. We can see that Stage 1 identi-

fies a slightly larger number of breaches compared to the ground truth (i.e., 242 and 225

for Scenario1 and Scenario2, respectively), which denotes false positives. However, due
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Figure 4.7: NFVSense resource consumption evaluation.
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to Stage 2, we can successfully filter out those false positives from Stage 1. Thus, in

Scenario1 and Scenario2, 173 and 183 (respectively) of the suspects are identified by

Stage 2 to correspond to real integrity breaches. In Scenario3, Stage 1 identifies a slightly

lower number of breaches compared to the ground truth (i.e., 165 for Scenario3), which

denotes few missed integrity breaches. Stage 2 filters out the false positives and identi-

fies 152 of those suspects corresponding to real ones. Figure 4.6.c shows the number of

classified suspected breaches at two stages (separately) compared to the ground truth. In

this context, even though some false positives are generated by Stage 1, Stage 2 filters the

false positives and shows that there are only a few misses by Stage 1, which joins the accu-

racy obtained in the previous evaluation experiment. In summary, Stage 2 can successfully

filter out false positives generated by Stage 1. Furthermore, the total number of integrity

breaches reported by Stage 2 indicates that the identification and classification of suspected

breaches by Stage 1 are fairly accurate concerning the ground truth (e.g., for Scenario2,

183 out of 200 breaches are identified by Stage 1). Note that, the total number of false neg-

ative decisions is also significantly low (e.g., for Scenario2, the number of false negatives

is 17 out of 200 breaches), but NFVSense cannot verify this false negative decision using

its Stage 2.

Table 4.3: Datasets partitioning for synthetic data validation.

Source Setup1 Setup2 Setup3 Setup4 Setup5 Setup6

Scenario 0/1
Real Synth. Real Synth. Real Synth. Real Synth. Real Synth. Real Synth.
2k 0 2k 2k 4k 0 4k 20k 4k 30k 4k 40k

Evaluation of Resource Consumption. This set of experiments (Figure 4.7) is to evaluate

the time, CPU, and memory consumption by Stage 1. Figure 4.7.a shows the time con-

sumption of Stage 1 by phase. Note that the scenario without a breach dataset (DS0) has

no testing time as it is only used for training the suspected breach identification model, and

this evaluation is based on the ML models that achieve the best accuracy (i.e., SVR for iden-

tification model and DT for classification model). This figure depicts that the most costly
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Figure 4.8: Synthetic data effectiveness evaluation.
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operation by Stage 1 is to characterize network performance data using NPT, where we

collect performance statistics about the NFV deployment to train the identification model.

This observation indicates that using GAN-generated synthetic data may reduce the data

collection time. On the other hand, Figures 4.7.b and 4.7.c show each dataset’s memory

and CPU consumption, respectively. Though the probing step consumes a higher time, it

consumes the lowest CPU and memory resources. Also, synthesizing by GANs is the most

expensive step in terms of CPU and memory consumption. However, the CPU consump-

tion (17%) and the memory consumption (15%) for GANs are still not very high and might

be affordable.

Synthetic Data Effectiveness. The final set of experiments (Figure 4.8) is to measure the

effectiveness of our synthetically generated data (using GAN). To that end, we evaluate the

success rate of synthetic data that is indistinguishable from the real one, and the losses of

the discriminator and the generator models, and conduct a comparison between the real and

synthetic data distributions. Figure 4.8.a depicts a summary of the effectiveness evaluation

of GAN for 100 epochs, while on average, the success rate of the synthetic data is around

95.7%. On the other hand, the average generator and discriminator losses are only 3.3%

and 0.14%, as shown in Figures 4.8.b and 4.8.c, respectively. Such high accuracy indicates

a successful generation of indistinguishable synthetic data, while Figure 4.8.d also illus-

trates the similarity of the distribution of generated data (red-shaded areas) with the real

one (blue-shaded areas). Additionally, in Figure 4.8.e, we evaluate the SVR model only

on one integrity breach dataset, DS2 (i.e., physical host reduction scenario), to evaluate

the performance of the synthetic data in the identification accuracy of the NFVSense using

various partitioning setups between synthetic and real data (as shown in Table 4.3). The

figure demonstrates that the synthetic data provides almost the same accuracy as the real

one. As an example, despite having different ratios of the real and synthetic data, the two
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equal-sized datasets (i.e., Setup2 and Setup3 in Table 4.3) show almost the same iden-

tification accuracy. The identification accuracy also increases with the increased amount

of training data and hence, augmenting the real data (i.e., 4K) with 20K of synthetic data

(Setup4 in Table 4.3) increases the accuracy significantly (92.1%), while this is 93.5% for

Setup5. Thus, these experimental results indicate that utilizing synthetic data where col-

lecting large-scale real data is infeasible might be an alternative for the NFVSense users.

4.5 Discussions

Auditing over Specific Attack Detection. Unlike crypto-based solutions (e.g., Audit-

Box [1]), which are more specific and dependant on specific attacks/intrusions, NFVSense

aims to audit integrity breaches in VNF chains, which could have been caused by different

attacks. However, it can only classify the type of breaches in Stage 1 when the signature

of such breaches is already available in the models. To accommodate the retraining of the

model with new breach types, NFVSense would require human intervention to manually

label the data with the new signatures.

Requirements for Retraining Our Models. NFVSense’s ML models are not specific to

any topology, as they are trained based on the pairs of hops and not on the entire topology.

Therefore, the same model can be used for different topologies as long as the same VNF

images are used. On the other hand, the ML models require retraining when the number of

VNFs in a chain is increased.

Various Options for Stage 2 Verification. The design of NFVSense, particularly its Stage

2, is as such that a wide range of existing tools (e.g., VS [117]) can be leveraged for the ver-

ification step. In this paper, we mainly leveraged formal methods (e.g., NFVGuard [101])

and manual inspection as examples. Nonetheless, other verification tools can be leveraged.
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Compatibility with Other NFV Platforms. NFVSense is designed based on the generic

NFV architecture and deployment model [4], and all its modules are mostly platform-

agnostic (except the learned models). Therefore, NFVSense is a generic solution, which

can consequently be adapted to other NFV platforms (e.g., OSM [118] and OPNFV [119]),

by learning platform-specific models.

Online Training. The ML model of NFVSense is trained at deployment time (i.e, time0)

where the NFV setup is first created and thus assumed to be attack free. Therefore, such

ML models are specific to the actual setup and runtime configurations of the NFV. Unlike

existing works relying on offline training, we do not need to test all possible combinations

of VNFs (i.e., considering all possible types of hardware and topologies in advance). How-

ever, once legitimate changes are made to the topology/hardware, the ML models have to

be retrained. Hence, we plan to consider online training for the ML models as a future

direction to support dynamic changes.

4.6 Summary

Network Functions Virtualization (NFV) has emerged as an innovative networking ar-

chitecture that aims to overcome the limitations of traditional networks. NFV exploits

sophisticated virtualization technologies to implement VNFs as hardware-based middle-

boxes as software appliances. Many enterprises still consider the cloud as an untrustworthy

domain to operate mission-critical applications (e.g., firewalls, IDS, etc.). They antici-

pate dishonest behaviors by cloud providers, including violating strategic services clauses

such as data privacy and Service Level Agreement while obscuring these violations. Also,

co-resident tenants, external attackers, or malicious insiders may compromise enterprises’

network services to steal sensitive data or sabotage business operations. These risks are
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exacerbated in cloud-based NFV environments. In this work, we have proposed a two-

stage mechanism to overcome the above challenges. In the first stage, we proposed a cloud

provider-based data anonymization tool to overcome the challenges of limited access to

audit data. In the second stage, we proposed a set of tenant-based solutions that utilize the

side channels available as indirect effects of the attacks to detect NFV-based anomalies. In

future work, we plan to investigate other side channels to audit the correctness of the de-

ployed VNFs and the forwarding behavior of the SFCs. We will also merge our solutions

with existing direct auditing-based methods to fill any gap between our BlackBox methods

and whitebox existing solutions. Finally, we intend to compare our proposed solution’s

performance and effectiveness against existing direct auditing-based techniques.
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Chapter 5

Continuous Verification of Virtual

Network Functions Services

5.1 Introduction

By decoupling network functions from proprietary physical boxes, Network Functions

Virtualization (NFV) [4] allows tenants to host their network services on top of existing

clouds managed by third-party cloud providers [83, 84, 85]. For instance, Amazon AWS

Cloud is reportedly used to deploy an entire cloud-native 5G network [83], and VMware

Telco Cloud platform is also designed for similar purposes [85]. However, outsourcing

network services to third-party clouds may also bring novel security challenges. Since ten-

ants typically have limited visibility into the underlying cloud infrastructure, they cannot

directly inspect the cloud-level deployment of Service Function Chains (SFCs) to ensure

their deployment matches the specification. Therefore, cloud-level integrity breaches may

silently arise and stay invisible to tenants [7]. For instance, an attacker can exploit a vul-

nerability or a misconfiguration in cloud-level resources (e.g., virtual switches) either to

attack the SFC forwarding path (e.g., skipping a firewall inside the SFC [1]), or to attack

the traffic (e.g., packet/flow injection, dropping, and reordering [11]).
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Many existing solutions for verifying forwarding paths (e.g., ICING [48], OPT [47],

and EPIC [120]) are not directly applicable to SFCs as they are incompatible with the

inherent characteristics of SFCs (i.e., paths dynamicity and packets mutability) [5, 1]. Later

works [1, 11, 51]) address this through adding cryptographic trailers to packets, which can

guarantee the integrity and detect various attacks. However, such capabilities come at a

cost, i.e., the added communication overhead is usually proportional to the flow size (e.g.,

three times increase of the packet size [47] and 1.69 times increase of the network traffic

size [120]). Such an overhead may be prohibitive for applications with large flow sizes, e.g.,

music streaming, video conferencing, and virtual reality, which have become increasingly

popular today.

VNF1 VNF2

Our ideas
Encode “virtual” trailers inside a side channel

Secure channel

Larger delay for “1” and smaller for “0”

P1P2P4

1 0

Pm

00

Benefit: NO increase to the packet size
Challenges: How to encode trailers within the limited 
capacity of a side channel? How to minimize packet 
delays? How to detect/classify attacks with less trailers?

Attacks: 
• Packet Injection 
• Packet dropping
• Packet reordering
• VNF Skipping
• …

Existing Solutions
Add crypto trailers to packets to detect attacks

Pm

VNF1 VNF2

P2TrailerP3Trailer P1Trailer

Limitation:
Adding a crypto trailer to 
every packet introduces 
significant overhead 
especially for large flows

P3

Tenant

Cloud

I cannot 
see any 
cloud-level 
attack! Expected Virtual Trailer

Mismatched Virtual Trailer
I do not 
know 
tenant 
policy!

Figure 5.1: Motivating example

Motivating Example. Figure 5.1 shows a motivating example to further illustrate the

limitation of existing solutions (left), and our ideas (right). For simplicity, we consider

a toy example of SFC consisting of two Virtual Network Functions (VNFs) connected

through three cloud-level virtual switches, among which the middle one is compromised.

The Research Problem: The left side of Figure 5.1 illustrates a packet injection attack

against the SFC. By exploiting either a vulnerability [121, 86] or misconfiguration [91]

in the middle virtual switch, an attacker can inject a crafted packet (Pm) into the flow
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of normal packets (P1, P2, and P3) between VNF1 and VNF2. Since the tenant has no

direct access to cloud-level resources, it cannot easily uncover this attack. The protection

provided by the cloud provider may also be limited since it is not necessarily aware of all

tenants’ SFCs and forwarding policies. Therefore, such attacks may fall into the gap and

go undetected.

Existing solutions: The left side of Figure 5.1 also shows how existing cryptographic

solutions (e.g., [1, 11, 51]) can detect the aforementioned attacks. Specifically, such solu-

tions would modify VNF1 to append a verifiable cryptographic trailer (including a Message

Authentication Code (MAC) value computed over the packet and other trailer fields) to ev-

ery packet before it leaves VNF1. VNF2 is also modified to verify the trailer when the

packet arrives. The malicious packet Pm can be reliably detected by VNF2 since adver-

saries cannot forge such a trailer. However, as those solutions are adding a trailer to every

single packet, they imply an overhead that is proportional to the flow size.

Our ideas: As shown on the right side of Figure 5.1, we “virtualize” the physical trailers

as side channel watermarks, e.g., encoding a “virtual” trailer of ‘10’ by slightly delaying

packets P1 and P4 before they leave VNF1, such that the inter-packet delay between P1

and P2 becomes slightly smaller than usual, representing a ‘0’ bit, while the delay between

P3 and P4 becomes slightly larger than usual, representing a ‘1’ bit. The injection of a

malicious packet Pm can be detected as it will partially destroy our virtual trailer (there

will now be two ‘0’ bits after the injection, as shown in the figure). The exact way the

trailer is destroyed would also provide us additional information to not only detect the

attack, but also to classify its type (detailed in Section 5.4).

Specifically, this paper presents ChainPatrol, a solution for lightweight and verifiable

detection and classification of various attacks against SFC forwarding paths and traffic.

At the source VNF, ChainPatrol encodes virtual trailers using side-channel information,
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namely, inter-packet delays (IPDs). At the destination VNF, ChainPatrol extracts the vir-

tual trailers from observed IPDs to detect and classify various attacks. This novel approach

provides the best of both worlds. First, ChainPatrol offers a much lighter-weight solution

than existing works based on physical trailers [1, 11, 51], since no extra bit needs to be

added to packets (virtual trailers are encoded as side channel watermarks). Second, since

virtual trailers contain similar information as in their physical counterparts, ChainPatrol can

still guarantee the integrity of SFCs when the trailers are intact, and provide useful infor-

mation for detecting and classifying attacks when the trailers are compromised (note these

cannot be achieved by directly applying existing watermarking techniques [53, 54, 56], be-

cause the watermarks lack the semantics of a cryptographic trailer, e.g., sequence numbers

of packets or flows and MAC values). Finally, unlike many existing works (which either

require direct accesses to the underlying cloud infrastructure [31] or require modifications

to the VNFs [30]), ChainPatrol provides a tenant-level solution that can be transparently

integrated with existing SFCs, since IPDs are directly observable and mutable at tenant

level and outside the VNFs. In summary, our main contributions are as follows.

• We propose the novel concept of virtual trailer, which inherits the advantages of

both cryptographic trailer-based solutions (i.e., verifiable attack detection) and side-

channel watermarking (i.e., lightweight). To realize this, we address several key chal-

lenges such as encoding virtual trailers within the limited capacity of a side channel,

minimizing packet delay while computing virtual trailers, and detecting/classifying

attacks with less trailers. We believe this concept may potentially find other applica-

tions in a broader context.

• We apply the concept of virtual trailer to design a tenant-based solution, ChainPa-

trol, for lightweight attack detection and classification in SFCs hosted on third-party

clouds. First, ChainPatrol performs fast attack detection by identifying destroyed vir-

tual trailers. Second, it performs in-depth attack classification through partial recon-

struction of destroyed virtual trailers to match the expected ones. Finally, it verifies
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classification results through sharing a limited amount of information between the

source and destination.

• We implement and deploy ChainPatrol based on Amazon EC2 and perform extensive

experiments using both public datasets and an in-house 5G testbed. Our experimen-

tal results demonstrate the effectiveness and efficiency of ChainPatrol (e.g., close

to zero communication overhead and 0.68 ms end-to-end delay). Our comparison

of ChainPatrol to an existing physical trailer-based approach under real-world ap-

plications shows a significant reduction of communication overhead (up to 45%).

ChainPatrol is demonstrated through its integration into Amazon ECS.

5.2 Background

5.2.1 SFC Forwarding Path Verification

Existing cryptographic solutions for forwarding path verification [1, 11] adapt tradi-

tional forwarding path verification protocols [48, 47, 120] to the NFV setting in order to

meet its unique characteristics: i) path dynamicity and unpredictability, ii) packet mod-

ification by VNFs, and iii) SFC migration and autoscaling. Specifically, those solutions

intercept each egress packet at a source VNF to append a custom trailer to the packet,

which consists of additional data fields along with a MAC computed over the entire packet

content (including the trailer) using a secret key. A valid MAC extracted at the destination

VNF (under the same key) would attest to the integrity of the packet content. This allows

the traffic between VNFs to be verified for correctness.

Example 5.2.1 As shown in Figure 5.2, a packet tagger at the source VNF appends a

packet trailer to each passing packet (top), and a packet verifier at the destination VNF

verifies the packet and its trailer for integrity (bottom). First, SeqNum is a sequential

number representing the ordering of packets between each pair of VNFs for a given flow.
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Together with FlowID, it is used to detect packet reordering and replay attacks within a

given flow. Second, FlowID is uniquely mapped to the classic 5-tuple ⟨source IP address,

destination IP address, source port, destination port, protocol⟩, and is used to detect flow-

based attacks (e.g., flow injection and flow dropping). Third, SrcID and DstID refer

to the source and destination VNFs, respectively, and are used to ensure compliance with

forwarding policy between the two VNFs. Finally, MAC is computed over both the packet

content and above trailer fields, and is used to authenticate the integrity of the packet and

its trailer by the destination VNF.

Packet 
Verifier P1P1SeqNumFlowIDSrcIDDstIDMAC

MAC= hmac(key, P1, SeqNum, FlowID, SrcID, DstID)

Packet 
Tagger P1 SeqNum FlowID SrcID DstID MACP1

Trailer

Figure 5.2: Example of a packet with cryptographic trailer [1]

5.2.2 Blind Watermarking

In this work, we adopt a blind watermarking approach (i.e., the packet verifier does

not require knowledge about the original IPDs or watermarks). This choice was made

for the following two reasons: i) As we leverage watermarks to transmit virtual trailers

without actually sending any bit, a non-blind approach, which must send information about

the original IPDs and watermarks between the two VNFs, would defy our purpose; ii)

Although a non-blind watermarking approach is usually more resistant to network jitters

(since the packet verifier knows the original IPDs), a blind approach is sufficient for our

purpose, because the network connection between two VNFs in a data center is typically

more stable (in contrast to the Internet for which most existing watermarking approaches

are designed) [122].
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Figure 5.3: Example of watermarking and extracting two bits

Example 5.2.2 Figure 5.3 shows how a two-bit watermark message ⟨1, 0⟩ is encoded into

the IPDs between four packets at the source (left), and decoded at the destination (right).

First, the average IPD (5 ms) and network jitter (2 ms) are continuously measured and used

for reference on both sides. Second, the source encodes a bit 1 by increasing the original

IPD between packets P1 and P2 corresponding to the summation of the average IPD and

jitter (i.e., from 5 ms to 7 ms). Similarly, it encodes a bit 0 by decreasing the IPD between

P3 and P4 corresponding to the difference between the average IPD and jitter (i.e., from 6

ms to 3 ms). Third, by comparing the observed IPD with the average IPD and jitter, the

destination decodes a bit 1 between P1 and P2 as 7 ≥ (5 + 2), and a bit 0 between P3 and

P4 as 3 ≤ (5− 2). Note a jitter no greater than 2 would not change this result.

5.2.3 Threat Model

We consider a similar threat model as in recent works on crypto-based forwarding path

verification [1, 11]. We also make several assumptions related to our watermarking scheme.

In-Scope threats. Our in-scope threats include integrity breaches of the SFC forwarding

paths or traffic caused by either: i) a malicious attacker compromising an underlying cloud-

level forwarding device [86]; ii) misconfigurations (intentionally or mistakenly) introduced

by a cloud provider [91].
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Specifically, we assume the network links between VNFs and the virtual switches used

to steer traffic between such VNFs are both subject to the following attacks. First, a com-

promised cloud-level device may be used to skip VNFs or append malicious VNFs to the

forwarding path, or to cause other unexpected forwarding decisions such as redirecting

traffic intended for one VNF to another [11]. Second, a compromised cloud-level device

may also be used to disrupt SFC traffic, such as injecting fake packets and dropping, mod-

ifying, reordering, or replaying packets. We assume the adversary may attempt to evade

the detection through the so-called coward attack [47] (i.e., attacking selected flows not

subject to detection) or attacks on the watermarking scheme used to encode virtual trailers

(by deliberately altering the IPDs). A more detailed list of attacks covered in our work is

given later in Table 5.2.

Out-of-Scope threats. By taking a tenant-based viewpoint, we assume no direct access

to cloud-level resources or data, and therefore we must trust all the components to which

the tenant has direct access. This includes the VNFs and the gateway to access the SFC,

and we also consider the cloud provider to be cheap-and-lazy but not malicious [91]. At-

tacks that can compromise those components or our solution itself (including the secret

key used to compute the MAC) are out of scope for our work (which can be addressed

through hardware-based solutions [51, 1]).We focus on verifying the integrity of SFCs, and

thus denial of service attacks (e.g., dropping all packets) and attacks on confidentiality or

privacy of the traffic are out of scope. Moreover, since we leverage a fragile watermarking

scheme, which relies on modified watermarks to detect attacks [123], watermark invisibil-

ity attacks [53]) are out of scope for our work. Finally, as demonstrated in Section 5.6, our

solution is more beneficial for flows of relatively large sizes (for small flows, the overhead

of physical trailers may be acceptable).
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5.3 Virtual Trailer

This section defines the virtual trailer concept and details how to encode and decode

virtual trailers based on IPDs.

5.3.1 Definitions

Our goal is to design virtual trailers to contain similar information as in their phys-

ical counterparts, such that they can support attack detection and classification (detailed

in Section 5.4). However, there are several challenges. First, unlike a physical trailer

which can be defined for (and added to) each packet, a virtual trailer can only be en-

coded in the IPDs of multiple packets. Therefore, we define a virtual trailer for each

equal-sized group of consecutive packets within the same network flow, namely, a block.

Second, due to the limited capacity of this side channel, we need to simplify the design

of virtual trailers to only retain a minimal number of trailer fields, i.e., the identifiers

of blocks and flows, while implicitly representing the source and destination VNFs in-

side the flow identifiers. Specifically, each flow identifier is now uniquely associated with

a 7-tuple ⟨source IP, destination IP, source port, destination port,

protocol, source VNF, destination VNF ⟩. Third, since a MAC value typically

contains a much larger number of bits than what can be encoded inside a single block, we

redefine the MAC to be computed over an equal-sized group of consecutive blocks inside

the same flow, namely, a SuperBlock. Finally, to enable efficient attack classification and

verification, the MAC is computed based on a Merkle hash tree [124] defined over the

SuperBlock. The following first formally defines a virtual trailer for each block.

Definition 5.3.1 (Virtual Trailer) Given block Bi (1 ≤ i ≤ SF ) inside a SuperBlock

SB (with totally SF blocks) in a flow F , the virtual trailer of Bi is a 3-tuple VTi =

⟨BlockNumi,FlowID,MACi⟩. First, BlockNumi ∈ N is an integer value uniquely and
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Table 5.1: Examples of Virtual Trailers (VT)

Flow SB B VT
BlockNum FlowID MAC

¡IP1,IP2,8,80,6,VNF1,VNF2¿
1

1 0001 0001 0100
2 0010 0001 1100

2
3 0011 0001 1100
4 0100 0001 1100

¡IP1,IP2,4,80,6,VNF1,VNF2¿ 1
1 0001 0010 1010
2 0010 0010 0101

sequentially assigned to each block in the given flow F . Second, FlowID ∈ N is an integer

value uniquely and sequentially assigned to each flow. Third, MACi ∈ N is the ( i
SF

)th frac-

tion of the Merkle tree [124] HMAC value computed over all the blocks in SB concatenated

with their corresponding BlockNum and FlowID fields, i.e., Bi||BlockNumi||FlowID (1 ≤

i ≤ SF ).

Example 5.3.1 Table 5.1 shows an example with two flows, their SuperBlocks and blocks,

and the corresponding virtual trailers (last three columns). The BlockNum is sequentially

assigned to consecutive blocks inside the same flow, starting from a random number. Sim-

ilarly, the FlowID is sequentially assigned to consecutive flows. For the first flow, the

Merkle tree HMAC value of 01001100 is divided into two equal-sized bit strings (0100 and

1100) each of which forms the last field of the virtual trailer (similarly for the second flow).

Figure 5.4 also depicts a virtual trailer (bottom right) and how the MAC value is computed

(left) (the rest of the figure will be explained later in Example 5.3.2).

5.3.2 Virtual Trailer Encoding and Decoding

We detail how we encode and decode virtual trailers using the IPDs between the source

and destination VNFs.
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Figure 5.4: Example of a virtual trailer and its encoding

Virtual Trailer Encoding

ChainPatrol intercepts packets at the egress of source VNF and determines their cor-

responding flows, SuperBlocks, and blocks (see Section 5.3.1). It then generates a virtual

trailer for each block, and encodes the virtual trailer by modifying the IPDs (i.e., delaying

one packet between every pair of packets, as explained in Section 5.2.2). Specifically, as

each virtual trailer contains three fields (i.e., BlockNum, FlowID, and MAC), each block

is divided into a series of three frames, and then the IPDs in each frame are modified to

encode a corresponding trailer field.

However, a key challenge lies in the encoding of the MAC trailer field. Specifically,

since the MAC field of a virtual trailer is defined over a SuperBlock (as illustrated on the

left side of Figure 5.4), it cannot be computed before the entire SuperBlock is received.

Therefore, any received blocks of this SuperBlock must be delayed, since we do not yet

know how to modify their IPDs. Such delays must be maintained until the last block

arrives, after which we can then compute the virtual trailer, encode it by modifying the

IPDs of all the buffered blocks, and finally forward all the blocks to the destination VNF.

However, doing so would certainly cause a prohibitive delay (proportional to the size of the
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SuperBlock). To address this, our key idea is to shift the encoding of each virtual trailer to

the next SuperBlock. This would allow us to compute the virtual trailer (which tells us how

to modify the IPDs) ahead of the arrival of any block of the next SuperBlock, such that we

will know how to modify the IPD as soon as each such block arrives, and can forward the

block with minimum delay (as detailed in our experimental results in Section 5.6). This is

further illustrated in the following example.

Example 5.3.2 Figure 5.4 shows how the virtual trailer of a block (Block1) in the first

SuperBlock (shown on the left) is encoded using a block (Block3) in the next SuperBlock

(shown on the right). First, Block3 is divided into three frames, each of which cor-

responds to a virtual trailer field. Second, the IPD between each pair of packets inside

a frame are then modified (by delaying one of those packets) to encode each bit of the

field. Similarly, the virtual trailer of Block2 (i.e, the second block of SuperBlock1)

is encoded in Block4. Note that, by the time Block3 arrives, this virtual trailer of

Block1 would have already been computed. Therefore, we know how to modify the IPDs

in Block3 as soon as each pair of packets arrives, which can then be immediately for-

warded.

Another challenge is to ensure the correct decoding of virtual trailers despite poten-

tial network jitters. For this purpose, ChainPatrol leverages an existing watermarking

scheme [53] which is known to enable reliable extraction of watermarks at the destination

side despite network jitters. The main idea is to introduce an additional delay that is pro-

portional to the expected level of jitters to cancel their impact on the encoded watermarks.

Specifically, let m1 · · ·mw be the w-bit representation of a virtual trailer field to be encoded.

Denote the IPD between two packets arriving at time ti and ti+1 as IPDi = (ti+1 − ti). To

encode bit mi (1 ≤ i ≤ w) using IPDi, the new IPD, denoted by nIPDi, is computed as:

nIPDi = IPDAV G + a × M e
i , where IPDAV G is the average IPD, a is the watermarking

amplitude (computed using the Signal-to-Noise formula [53]), and M e
i = 1 if mi = 1,
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or M e
i = −1 if mi = 0 (the effectiveness of this method will be further evaluated in

Section 5.6).

Virtual Trailer Decoding

ChainPatrol passively monitors packets at the destination VNF and determines their

corresponding flows, SuperBlocks, blocks, and frames. It then decodes the virtual trail-

ers following a reversed process based on the observed IPDs. More specifically, let rIPDi

(1 ≤ i ≤ w) be the observed IPD between the ith and (i+1)th packets, where w is the size

of a virtual trailer field, and let IPDAV G and a be the average IPD and the watermarking

amplitude, respectively. Denote Md
i = (rIPDi − IPDAVG)/a. The w-bit binary repre-

sentation of the virtual trailer field can be computed as: mi = 1 if Md
i = 1, or mi = 0 if

Md
i = −1.

Attacks such as dropping, injection, or reordering of packets may shift the frames and

blocks among the observed packets. Section 5.4 will detail how we address this issue and

leverage it to classify attacks. Another challenge is related to the last SuperBlock. First,

the virtual trailers of this last SuperBlock itself cannot be encoded using the IPDs of next

SuperBlock (which does not exist). Second, when we divide a given flow into equal-sized

blocks and SuperBlocks, the last SuperBlock may be incomplete, i.e., there are not enough

packets remaining to compose a complete SuperBlock, which would prevent encoding the

virtual trailers of the previous SuperBlock using IPDs. ChainPatrol addresses the first

challenge by directly appending a physical version of the virtual trailers to the flow. Since

ChainPatrol is designed for large flows (as stated in Section 5.2.3) with a significant number

of SuperBlocks, the overhead of one trailer will be negligible in contrast to the flow size.

To address the second challenge, ChainPatrol performs one of the following two options

that introduce less overhead, i.e., i) adding dummy packets to the last SuperBlock such that

it can have enough IPDs for encoding the virtual trailers of the previous SuperBlock, or ii)
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appending the physical trailers.

5.4 Attack Detection and Classification

5.4.1 Attack Detection

Similar to existing works using physical trailers [1, 11], ChainPatrol detects SFC at-

tacks by matching decoded virtual trailers with corresponding blocks. However, the unique

design of virtual trailers (detailed in Section 5.3) leads to two differences as follows. First,

since the virtual trailers of one SuperBlocks are always encoded in the IPDs of the next Su-

perBlock, ChainPatrol iteratively performs attack detection inside a moving window that

slides over the next two consecutive SuperBlocks of the current flow in each iteration.

Second, recall that the HMAC of a SuperBlock is computed based on a Merkel hash tree

defined over all the blocks, and each virtual trailer only includes part of this HMAC value

(as illustrated in Figure 5.4). Therefore, ChainPatrol first decodes the virtual trailers en-

coded in the second SuperBlock inside the moving window and recomputes the Merkle

tree HMAC based on the decoded BlockNum and FlowID values and all packets of the

first SuperBlock. It then compares this re-computed HMAC with the decoded HMAC value

(obtained by concatenating the MAC fields of all the virtual trailers decoded from the second

SuperBlock).

One challenge is that, since an attack may cause the frames, blocks, or SuperBlocks to

shift, ChainPatrol needs to identify the beginning of the next SuperBlock once an attack

is detected. Specifically, if all the virtual trailer fields match the first SuperBlock in the

window, ChainPatrol marks the first SuperBlock as “recovered”, and the window slides

forward by one complete SuperBlock. When an attack is detected, ChainPatrol marks the

current pair of SuperBlocks as “attacked” (which will be further inspected for attack classi-

fication), and the window slides forward by only a pair of packets to identify the beginning
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of the next SuperBlock. Once a new SuperBlock is identified, ChainPatrol resumes the

normal attack detection as described above.

…

B2

…

B1
SB1

…

B4

…

B3
SB2

…

B6

…

B5
SB3

1st block of 1st
flow
H(SB1|1|1…)
=1001 
Expecting VT:
<1,1,1001>

Decoded VT:
<1,1, 1001> 

Iteration #1:
Sliding over (SB1, SB2) 

Result: SB1 “Recovered”

4th block of 
1st flow 
H(SB2|…4|1)
=0010 
Expecting VT:
<4,1,0010>

Decoded VT:
<4,1,1000> 

Iteration #2
Sliding over (SB2, SB3)

Result: (SB2, SB3) “Attacked”

Figure 5.5: Example of attack detection

Example 5.4.1 Figure 5.5 (top) shows the first three SuperBlocks of the first flow, and

(bottom) an example of attack detection.

• In the first iteration, the window slides over the first two SuperBlocks, SB1 and SB2.

For the first block of SB1, the expected BlockNum = 1) and FlowID = 1), as this

is assumed to be the first block of the first flow. As the figure shows, the first virtual

trailer decoded from SB2 also contains the same BlockNum and FlowID values.

• The expected MAC needs to be computed over the content of SB1 concatenated with

the decoded BlockNum and FlowID fields of both blocks inside SB1. As the figure

shows, the first half of the MAC value decoded from SB2 matches the expected value

(1001). Assuming the second half also matches, SB1 can be marked as “recovered”

as no attack is detected.

• In second iteration, the window slides to SB2 and SB3. Similarly, the expected

BlockNum and FlowIDmatch the ones decoded from SB3. However, assuming the

first half of the expected MAC value (0010) does not match the decoded one (1000),
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an attack is thus detected. At this point, it is unclear whether the attack happened to

SB2 or the virtual trailers (i.e., IPDs) in SB3, so both SuperBlocks are marked as

“attacked” for classification.

• Since the attack may have caused packets to be injected, dropped, or reordered, we

cannot take the beginning of the next SuperBlock for granted. Instead, the window

can only slide forward by one pair of packets at a time, until we identify the next

intact SuperBlock.

5.4.2 Attack Classification

Upon the detection of an attack, ChainPatrol classifies it with one of the known attack

types listed in Table 5.2. In addition to the well-known packet-level attacks reported in the

literature, ChainPatrol also considers block-level attacks that involve the manipulation of

a whole packet block, flow-level attacks involving all packet blocks in a flow, and SFC-

level attacks targeting the forwarding paths (instead of packets). To classify a SuperBlock

marked as attacked during the detection stage (Section 5.4.1), ChainPatrol attempts to re-

construct the expected virtual trailers by applying each of the classification rules listed in

the last column of Table 5.2, and it classifies with an attack type if the reconstruction is

successful under the corresponding rule.

One challenge is that, depending on the level of the classification rule (first column of

Table 5.2), this reconstruction may involve two SuperBlocks, the remainder of the flow,

or even other flows (e.g., flow or SFC-level attacks). Therefore, attack classification nat-

urally requires more effort than attack detection. This explains why ChainPatrol adopts a

layered approach to separate the (faster) detection from (slower) classification such that it

can provide faster detection (as shown through experiments in Section 5.6).

Another challenge is that the missing information (e.g., in case of dropping or modifi-

cation attacks) and lower granularity of virtual trailers (i.e., per block instead of per packet)
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Table 5.2: Attack types covered by ChainPatrol
Level Attack type Classification rules based on virtual trailers

Packet

Injection Unrecovered VT & larger block size
Reordering Partially recovered VT & expected block size

Replay Unrecovered VT & larger block size
Modification Unrecovered VT with mismatched MAC

Dropping Partially recovered VT & smaller block size

Block

Injection Unrecovered VT & expected block size
Reordering Out of order BlockNum

Replay Recovered VT with repeated BlockNum
Dropping Missing VT with specific BlockNum

Flow

Injection Unrecovered FlowID
reordering Out of order FlowID

replay Repeated VT for all blocks
dropping Missing FlowID

SFC

VNF Inj. Unrecovered FlowID
Reordering Out-of-order FlowID
VNF-Loop Repeated FlowID
Skipping Missing FlowID

together may prevent a full reconstruction of virtual trailers, and hence the attack classifi-

cation result can no longer be guaranteed like with detection. To address this, we leverage

our design choice of computing the MAC based on a Merkle hash tree [124] defined over

a superblock (detailed in Section 5.3) to enable efficient source-assisted verification of the

classification result in such cases. Specifically, the well-known property of a Merkle hash

tree [124] allows us to verify the MAC (and hence the correctness of classification) by

requesting selected tree nodes from the source, e.g., a single node (common ancestor) is

sufficient for log(N) consecutive blocks (in contrast, N nodes would be requested if the

MAC were computed directly over the SuperBlock).

Example 5.4.2 Figure 5.6 shows six examples of classification.

• Attack (#1) is classified as reordering of the two shaded blocks since their BlockNum
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Figure 5.6: Examples of attack classification (a question mark (?) means mismatching with
expected value; a dash (-) means no received packet; grey rows are involved in detection or
classification; numbers (1-6) indicate attacks)

fields are out-of-order (illustrated in Figure 5.6.c). Specifically, attack classifica-

tion attempts to reconstruct the expected virtual trailers (i.e., first four rows in Fig-

ure 5.6.a) by applying each classification rule (last column of Table 5.2) to the at-

tacked virtual trailers in Figure 5.6.b. The rule for block reordering leads to a suc-

cessful reconstruction, and hence the attack is classified as such.

• Attack (#2) is classified as packet-dropping, since attack classification can partially

reconstruct the virtual trailer for the seventh row (pointed to by #2, where the BlockNum

and FlowID fields are intact) and beyond, while the block size is smaller than ex-

pected (the MAC field is missing), which matches the classification rule for packet

dropping in Table 5.2. This verification result can be further verified by requesting

the missing information (Merkel tree node).

• Similarly, Attacks (#3) and (#4) are classified as packet block replay and drop, re-

spectively.

• Attack (#5) is a flow drop attack, as the expected FlowID = 4 (end of Figure 5.6.a)
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is missing in Figure 5.6.c, which matches the classification rule for flow dropping.

• Attack (#6) is a VNF skipping attack since a packet block received at the destination

VNF (the last row in Figure 5.6.b) has a missing FlowID (which does not appear in

Figure 5.6.a), which matches the classification rule for VNF skipping.

5.5 Implementation

5.5.1 Overview

ChainPatrol is composed of two agents per pair of communicating VNFs, plus a central

orchestrator. Figure 5.7 illustrates the architecture and main components of ChainPatrol.

The agents perform watermark encoding/decoding, attack detection, and local attack classi-

fication. The orchestrator is in charge of managing the agents and performing global attack

classification. ChainPatrol is implemented in C++ programming language, with approxi-

mately 1300 lines of code at the agent, and 200 lines at the orchestrator. The following

details the implementation.

ChainPatrol Agent

Source VNF

Egress traffic

Untrusted 

Network

Destination VNF

Ingress traffic

Traffic encoded

With VT

ChainPatrol Agent

Watermarker

Controller

Watermarker

Attack Detector

Controller

Passive 

Monitoring Attack Classifier

ChainPatrol Orchestrator

Agents 

Manager

Attack 

Classifier

Audit Table

Attack Detector

Attack Classifier

Figure 5.7: ChainPatrol Architecture

ChainPatrol agent. Each agent includes four components: i) The controller performs the
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following functionalities. First, it receives ChainPatrol parameters from the orchestrator at

initialization, and it then continuously monitors the network performance (e.g., IPD and

network jitter) to compute the watermark amplitude and X-shift values. Second, at the

source VNF, it intercepts the egress traffic, generates virtual trailers (the Merkel hash trees

are stored inside shared storage in case the destination-side agent may need selected nodes,

as discussed in Section 5.4.2), triggers the watermarker, and forwards the traffic. Third,

at the destination VNF, it passively monitors the ingress traffic to measure the IPDs, trig-

gers the watermarker, attack detector, and attack classifier, and finally reports the detection

and classification results to the orchestrator; ii) The source-side watermarker encodes the

virtual trailers generated by the controller, and the destination-side watermarker decodes

the virtual trailers from the ingress traffic. iii) Once triggered by the controller, the attack

detector marks SuperBlocks as either recovered or attacked. iv) Finally, once triggered, the

attack classifier classifies the detected attacks using classification rules that only involve

local traffic.

ChainPatrol orchestrator. The orchestrator includes three components: i) The agents

manager is responsible for instantiating the agents and communicating with them; ii) The

attack classifier is responsible for global attack classification that cannot be performed lo-

cally at each agent (e.g., flow or SFC-level attacks); iii) The Audit Table is used to store the

detection and classification results both from the agents and from the orchestrator. At the

initialization of ChainPatrol, the orchestrator shares with the agents the following Chain-

Patrol parameters: i) SuperBlock size and block size per flow type (as different numbers of

packets can be exchanged per flow type, for example, HTTP vs. SSH); ii)Initial seed values

per pair of agents (used with a pseudorandom generator for virtual trailer generation); iii)

A cryptographic key per pair of agents (for computing the MAC).
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5.5.2 Challenges

We discuss the challenges faced during implementation and deployment in Amazon

EC2.

Avoiding VNF instrumentation. To ease the deployment of ChainPatrol, it is designed to

intercept the egress traffic of a source VNF (to encode virtual trailers before forwarding the

traffic) and to monitor the ingress packet of a destination VNF (to decode virtual trailers)

without the need for instrumenting those VNFs. A commonly used stream socket cannot

achieve this as it only carries the payload but not the header information. Therefore, we

resolve to use raw sockets (i.e., netinet, sys and arpa libraries) to attach each instantiated

ChainPatrol agent to the interface of a source/destination VNF as a proxy, such that the

agent can listen to (and forward) the traffic. Moreover, at the source side, we use iptables to

drop the egress packets of the source VNF such that only the watermarked traffic forwarded

by the ChainPatrol agent will reach the destination VNF.

Minimizing communications. As ChainPatrol is designed to avoid the communication

overhead added by physical trailers, we implement ChainPatrol in such a way as to min-

imize the overhead of control messages exchanged between its agents and orchestrators.

First, a pair of ChainPatrol agents (attached to the source and destination VNFs) do not

talk to each other, except at the initiation, when they obtain common seed values from

the orchestrator to independently generate the same sequence of virtual trailer fields (i.e.,

BlockNum and FlowID) using pseudorandom generators without communications. Sec-

ond, the ChainPatrol agents and orchestrators communicate through shared storage to re-

duce communication overhead. We leverage the Amazon ElastiCache for Memcached,

which is a highly efficient in-memory key-value store service with a sub-millisecond re-

sponse time [125], to store and share data between agents and orchestrator (e.g., for per-

forming global attack classification, and for sharing selected nodes of Merkel hash trees

for verifying classification results, as mentioned in Section 5.4.2). Finally, we employ
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AWS Lambda service [126] to facilitate access to Memcached (otherwise not accessible by

tenant-level applications).

Handling unexpected IPD variation. Our virtual trailer encoding scheme already takes

into account potential variations in IPDs by computing the watermarking amplitude based

on average network jitter (detailed in Section 5.3.2). However, an unexpected amount of

IPD variation may still happen, which can render the encoding challenging. Specifically,

if an unexpected jitter causes the second packet to arrive so late, that it has not arrived

when the agent needs to send it (to match the desired new IPD), then encoding becomes

impossible since we cannot send a packet that has not yet arrived. For instance, Figure 5.8

shows two watermark bits 1, 0 to be encoded with new IPDs 52, 48 (assuming an average

jitter of 2 ms) between two pairs of packets (P1 to P4). The top timeline depicts their

actual arrival time, which shows an unexpected delay of 3 ms between P3 and P4. As

the middle timeline shows, a standard encoding scheme will fail to encode the second bit,

since P4 is supposed to depart at t=150 (to have an IPD of 48) but by that time it has not yet

arrived. One naive solution here is for both agents to use two pre-defined high IPD values

(which will never occur naturally) to encode 0 and 1, respectively, such that P4 can now

be further delayed to encode 0. However, this could lead to significant delay considering

that the watermarks in our application are generally large in size so this scenario may occur

very often. To address this, we propose a pragmatic X-shifting approach as follows. As the

lower axis in Figure 5.8 shows, the first packet in each pair will be proactively delayed by

a small amount (X = 44 ms in this case) to minimize the likelihood of requiring the costly

solution of using pre-defined large IPDs. The source-side agent periodically updates X

based on observed IPD variation (note that, unlike watermarking amplitude, the destination

agent does not need to know X). Finally, the impact of delaying the first packet of each

pair will not add up and hence remains negligible for the entire flow (see experiments in

Section 5.6).
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Figure 5.8: X-shift for encoding w/ unexpected IPD variation

5.6 Performance Evaluation

5.6.1 Evaluation Environment

Testbed setup. We deploy ChainPatrol in Amazon EC2 using EC2 instances of the t3a.small

type (i.e., 2 vCPUs of 2.50 GHz AMD EPYC 757, 2 GB RAM, up to 5Gbps of network

bandwidth). Each instance runs Amazon Linux 2 (based on Ubuntu 22.04). We leverage

the Memcached database cluster1 (a high-performance, distributed memory object caching

system) running on a t3.micro instance (2 vCPUs of 3.10 GHz Intel Xeon Scalable pro-

cessor, Skylake 8175M or Cascade Lake 8259CL, 1 GB RAM, up to 5Gbps of network

bandwidth) as shared storage between the ChainPatrol orchestrator and agents. We addi-

tionally use Lambda Functions2, written in Python 3, as the interface between ChainPatrol

and the Memcached cluster. Our evaluation focuses on data plane TCP flows between

VNFs inside an SFC, although ChainPatrol can work for other types of traffic.

Datasets. Our evaluation leverages three public datasets [127, 128, 129], an in-house

1Amazon ElastiCache: https://aws.amazon.com/elasticache/memcached/
2AWS Lambda: https://aws.amazon.com/lambda/
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Table 5.3: Datasets description

Dataset Avg IPD IPD range Source Application Packet rate
Dataset1 80ms 70-90ms Public [127] Cyber defense 600K/s
Dataset2 7ms 5-10ms In-house 5G core 500K/s

Free5GC/Kubernetes-based 5G core testbed, and a state-of-the-art solution [1] (for com-

parison). First, since IPD has the most significant impact on performance, we use both a

public cyber defense dataset [127] and the live traffic of our in-house 5G core testbed to

collect realistic IPD values. As shown in Table 5.3, those two applications demonstrate

distinct ranges of IPDs (80 ms vs. 7 ms) and jitters, which are representative of traditional

networks (based on physical infrastructures) and virtual networks (based on containers and

virtual machines), respectively. We follow the same distribution as those collected IPDs to

create two large live-streaming datasets with up to 600-750 packets per second. In the fol-

lowing, we evaluate ChainPatrol using those two datasets. Additionally, we also compare

it to a state-of-the-art solution [1] using the traffic of several real-world applications in two

public datasets [128, 129].

5.6.2 Experimental Results

We first evaluate the impact of various ChainPatrol parameters on its effectiveness and

overhead. Then, we measure the accuracy and efficiency of its attack detection and clas-

sification. Finally, we compare ChainPatrol with a state-of-the-art physical trailer-based

solution, namely, AuditBox [1].

Parameters Evaluation

We study how watermarking parameters may affect its effectiveness, and how Chain-

Patrol parameters may impact the service delay and its overhead.

Watermarking effectiveness. Figure 5.9.A and Figure 5.9.B show the impact of the two
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Figure 5.9: Parameters evaluation results
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watermarking parameters, i.e., the watermarking amplitude (Section 5.3.2) and the X-shift

value (Section 5.5), on the watermark extraction rate (the standard metric for watermarking

effectiveness [59]). First, Figure 5.9.A shows that a watermark amplitude value of 1.2 (for

Dataset1) and 1.6 (for Dataset2) can already achieve 100% extraction rate. The results

also show that Dataset2 generally requires a slightly larger amplitude value than Dataset1

(this can be explained by the relatively higher percentage of jitter in Dataset2, as shown in

Table 5.3). Second, Figure 5.9.B shows that a larger X-shift value is required for Dataset1

to achieve 100% extraction rate (which implies this parameter is more closely related to

the average IPD). Specifically, Datatset1, whose average IPD is 80 ms, requires X ≈ 3;

Dataset2, whose average IPD is 8 ms, requires X ≈ 0.5. The results also show that,

without our X-shift solution (i.e., X = 0), the extraction rate would be significantly lower

(less than 80% for Dataset1 and 90% for Dataset2). Note in both experiments, we fix the

other parameter (at a value achieving 100% extraction rate).

Service delay. In this set of experiments, we study how the end-to-end service delay may

be affected by different ChainPatrol parameters. Figure 5.9.C and Figure 5.9.D show the

end-to-end service delay for different SuperBlock sizes (a parameter of ChainPatrol) and

packet sizes (a characteristic of the traffic), respectively. Both results show that Chain-

Patrol introduces negligible end-to-end service delay on both datasets (around 2.1 ms for

Dataset1 and 0.68 ms for Dataset2), and varying the SuperBlock and packet size has almost

no impact on the end-to-end delay. This is mainly due to the fact that ChainPatrol agents

mainly examine the headers (hence packet sizes have little impact), and the virtual trailers

are always encoded in the next SuperBlock so the time for generating virtual trailers (which

depends on the SuperBlock size) does not affect packet processing (as the trailers are al-

ready ready when the packets arrive). Figure 5.10.E shows how the X-shift value affects

the end-to-end delay. As we can see, a larger X value generally leads to a lower delay

before it reaches the value that produces a 100% extraction rate (mentioned above).
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Figure 5.10: Parameters evaluation results
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Overhead. In this set of experiments, we evaluate the overhead of ChainPatrol concern-

ing time, memory, and CPU. First, Figure 5.10.F and G show the average watermarking

time (i.e., the time taken for a source-side agent to generate and encode virtual trailers)

for different SuperBlock and packet sizes. The results show that the watermarking time

increases almost linearly in SuperBlock size (as more packets need to be processed) and

increases more slowly in packet size (as only the MAC field is affected), while the maxi-

mum watermarking time is less than 2ms for both datasets. Second, Figure 5.10.H shows

the extraction time (i.e., the time taken for a destination-side agent to decode and verify

virtual trailers) for different SuperBlock sizes. The results are very similar to Figure 5.10.F

since the two agents perform similar but reversed operations (the results on extraction time

vs. packet size are also very similar to Figure 5.10.G and hence omitted). Finally, the

second to fourth columns of Table 5.4 (the last two columns will be discussed later) show

the CPU and memory consumption of the source-side agent, destination-side agent, and

orchestrator of ChainPatrol. The resource consumption is very low and does not depend on

the block size (which can be explained by the fact that those components mostly perform

very simple operations such as concatenation and hash).

Table 5.4: CPU (C) and Memory (M) consumption for ChainPatrol source/destination
agents and orchestrator

Without attacks With attacks
Block Size Source Dest. Orch. Dest. Orch.

24 C:0.01%
M:0.01%

C:0.08%
M:0.01%

C:0.01%
M:0.01%

C:0.08%
M:0.5%

C:0.07%
M:0.5%

60 C:0.01%
M:0.01%

C:0.08%
M:0.01%

C:0.01%
M:0.01%

C:0.08%
M:0.5%

C:0.07%
M:0.5%

96 C:0.01%
M:0.01%

C:0.08%
M:0.01%

C:0.01%
M:0.01%

C:0.08%
M:0.5%

C:0.07%
M:0.5%

Summary. It is relatively easy (i.e., with small amplitude and X values) for ChainPatrol

to ensure the correctness of its decoding of virtual trailers due to the more stable nature of

traffic between VNFs (as explained in Section 5.5, ChainPatrol also continuously adjusts
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those parameters based observed traffic). Moreover, our results show that ChainPatrol

causes negligible end-to-end delay to services on both datasets, e.g., the entire flow will

be delayed by only about 2.1 ms and 0.68 ms (2.6% and 9.8% of the normal delay between

two packets), respectively. Finally, the overhead of ChainPatrol in terms of both time and

resources is negligible.

Attacks detection and classification

We evaluate the accuracy and efficiency of attack detection and classification.

Accuracy Evaluation. First, Figure 5.11.A shows that ChainPatrol achieves 100% detec-

tion accuracy with up to 50 attacks of different types (as listed in Table 5.2) performed

on both datasets. This is expected as the experiment is performed with the ChainPatrol

parameters that can ensure 100% watermark extraction rate (detailed in Section 5.6.2), and

the extracted virtual trailers possess similar cryptographic properties as physical trailers to

guarantee accurate detection (detailed in Section 5.4.1). Second, Figure 5.11.B shows the

attack classification accuracy. To evaluate the true capability of virtual trailers for attack

classification, this experiment deliberately skips the source-assisted verification step (de-

scribed in Section 5.4.2), such that all inaccurate classification results will be counted. The

results show that the attack classification accuracy stays almost fixed at around 70% under

different amounts of attacks for both datasets. In contrast to detection, classification shows

a lower accuracy. This is expected due to missing information caused by attacks and po-

tential collision between attack types (e.g., a packet reordering attack may impact virtual

trailers same as a combination of packet dropping and injection attacks).

Efficiency Evaluation. First, we evaluate the attack detection time while varying the block

size and the number of compromised blocks, respectively. In Figure 5.11.C, the total num-

ber of compromised blocks is fixed at 30, and we measure the time required to detect those

compromised blocks. As the results show, the detection time increases almost linearly in
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the block size, with less than 2.4 seconds required for all block sizes for both datasets

(no significant difference between the datasets). Note the detection time has no impact on

the service delay (due to our multithreading implementation, as detailed in Section 5.5),

and the second-level detection time is reasonable since the detection results are meant to

be inspected by human experts. Second, we evaluate the time required to detect different

amounts of block-level attacks while fixing the total number of SuperBlocks at 50. In Fig-

ure 5.11.D, the detection time increases almost linearly in the number of attacks, with up

to 5.5 seconds required for detecting all 50 attacks.

Next, we evaluate the attack classification time by both the agents and the orchestrator,

for block-level attacks and packet-level attacks, respectively, while varying the number

of attacks. First, in Figure 5.11.E, the total number of SuperBlocks is fixed at 50, and

we measure the time required to classify different amounts of block-level attacks locally

by the destination-side agent. As the results show, the local classification time increases

almost linearly in the number of block-level attacks, with around 7.5 seconds required for

classifying all the 50 block-level attacks, which is slightly higher than the time for detection

(i.e., 5.5 seconds). Second, Figure 5.11.F shows the global classification time taken by the

orchestrator for classifying different amounts of packet-level attacks. The results show a

similar linear trend, with around 12.5 seconds required for classifying all the 50 attacks.

The orchestrator is taking more time since the global classification it performs involves

more input information, and the packet-level attack classification rules may require the

orchestrator to slide forward more slowly (by two packets, instead of a block, as detailed

in Section 5.4.2).

Finally, the last two columns of Table 5.4 show the CPU and memory consumption

of the destination-side agent (note source-side agent is not affected) and the orchestrator,

respectively, during attack detection and classification. The results show the same CPU

consumption of the destination agent as in the no-attack case (third column), whereas the
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Figure 5.11: Attacks detection and classification results
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memory consumption slightly increases. This shows local detection and classification incur

negligible computational overhead as the agent only performs simple operations such as

concatenations and hashes. In contrast, both the CPU and memory consumption of the

orchestrator slightly increases compared to the no-attack case. This is expected as global

classification is generally more complex. Summary. Virtual trailers can guarantee 100%

detection accuracy as their physical counterparts do. Virtual trailers provide a lower (70%)

but still acceptable classification accuracy since the result will be further verified in the

source-assisted verification step described in Section 5.4.2 (in many cases, the attacked

traffic will likely be re-transmitted regardless of attack types). Our results also show attack

detection and classification to be efficient (both take a few seconds for 50 attacks), scalable

(both show a linear trend), and lightweight (both consume negligible resources).

Comparison with existing work

We compare ChainPatrol to a recent state-of-the-art solution using physical trailers,

namely, AuditBox [1]. To ensure the two solutions can be compared under the same envi-

ronments and settings, we re-implement the approach as specified in [1], and compare it to

ChainPatrol using Dataset2 (whose traffic is more representative of SFC applications).

First, we compare the communication overhead added to traffic by ChainPatrol and Au-

ditBox [1] while varying the packet size (with flow size fixed). As Figure 5.6.2.A shows,

that ChainPatrol adds almost no extra traffic (ChainPatrol only needs to add a negligible

amount of bits at the end of a flow, as discussed in Section 5.3.2), regardless of the packet

sizes. On the other hand, the overhead of physical trailers ranges from around 10% (for

large packet sizes up to 512 bytes) to 200% (for small packet size of 20 bytes) of the orig-

inal traffic. Second, we study the level of reduction in communication overhead that can

be achieved by ChainPatrol (over AuditBox) for four categories of real-world applications

based on two public datasets [128, 129]. As Figure 5.6.2.B shows, ChainPatrol can achieve
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Figure 5.12: Comparative evaluation results

114



between 45% (for DNS traffic) and 22% (for instant messaging traffic) reduction in com-

munication overhead (the difference in those results can be explained by the distinct packet

sizes of those applications). Finally, we compare the end-to-end delay of both solutions

while varying the packet size (with fixed flow size). Figure 5.6.2.c shows that the average

end-to-end delay of AuditBox ranges between 0.35 and 0.55 ms, while the delay of Chain-

Patrol is between 0.65 to 0.68 ms. Both of those delays are negligible (less than 10% of

the delay of a single packet, as the average IPD is 7 ms). AuditBox incurs only slightly

less delay than ChainPatrol, despite the fact that each physical trailer is computed over a

single packet (instead of a block of packets, as with ChainPatrol) and directly appended to

the packet (hence no need for delaying any packet).

Summary. The comparison between AuditBox [1] and ChainPatrol shows that ChainPa-

trol introduces almost no extra communication overhead, regardless of the packet or flow

sizes, On the other hand, the overhead of physical trailers can be significant, especially for

applications whose traffic includes large flows and smaller packets. ChainPatrol is shown

to provide a significant reduction in communication overhead (up to 45% of the origi-

nal traffic) for common applications. Although the more complex virtual trailer design

of ChainPatrol inevitably incurs slightly more end-to-end delay, at 0.68 ms the delay is

completely negligible for most applications (e.g., 20-30 ms is shown to be noticeable for

interactive music, and 100 ms for games [130], and the fastest fiber-based ISPs in US have a

7-13 ms idle latency [131]). Therefore, we conclude that virtual trailers enable ChainPatrol

to provide a lightweight solution with both negligible communication overhead and neg-

ligible service delay, whereas physical trailers are better for applications with small flows

with large packet sizes.
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5.7 Summary

Deploying network functions on top of existing cloud infrastructures brings significant

benefits but at the same time makes it challenging for tenants to detect cloud-level attacks

on their SFCs. Existing solutions based on cryptographic trailers can incur significant

overhead for applications with large flows and small packets. In this paper, we proposed a

novel concept, virtual trailer, which leveraged the inter-packet delay-based side-channel to

encode cryptographic trailers without adding extra bits to packets. We developed ChainPa-

trol, a solution for encoding/decoding virtual trailers and detecting and classifying various

SFC attacks based on virtual trailers. We implemented and deployed ChainPatrol based on

Amazon EC2, and our experimental results confirmed its effectiveness and efficiency.
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Chapter 6

Conclusion

The swift expansion of Network Function Virtualization has captured considerable at-

tention from both industry and academia due to its potential benefits. Nonetheless, the

virtualization opens doors to many security issues that must be carefully considered be-

fore adopting this technology. To this end, most existing works fail to provide satisfactory

solutions for virtualized networks under the NFV constraints. First, relying on the cloud

provider may not be sufficient, since modifications made by a stealthy attacker may seem

legitimate to the provider. Second, the tenant cannot directly perform the auditing due

to limited access to the provider-level data. Finally, shipping all such data to the tenant

would incur prohibitive confidentiality concerns. In this thesis, we proposed solutions to

overcome the above-mentioned challenges by using data anonymization and side-channel

information as the indirect effects of the attacks at the tenant level. To this end, we first pro-

posed an interactive and customizable data anonymization tool to enable the cloud provider

to selectively share data in a privacy-preserving manner. Second, we propose an approach

to verify the forwarding integrity of virtualized network function chains; which covers a

wide range of integrity verification scenarios (i.e., VM injection, passive VM injection, and

physical hosts reduction). Third, we proposed a solution for continuous verification of the

forwarding integrity of the service chains (i.e., entire service chain bypassing, packet and
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flows dropping, injection, reordering, modification, reordering, and reply). The following

discusses the limitations and our future research focus:

• First, although our interactive and customizable data anonymization tool already

leverages deep learning algorithms such as CNN, further enhancing it with the latest

advances in generative artificial intelligence to improve the level of user-friendliness

would be an interesting future direction.

• Second, our tenant-based auditing solution is based on a side channel. Therefore, the

accuracy of our auditing is not as precise as direct observation solutions that have

access to the cloud’s underlying information. To address this concern, we plan to

improve the precision of our techniques by combining complementary information

from multiple side channels.

• Third, our continuous verification approach generates a negligible end-to-end delay,

which is accumulative over multiple pairs of network functions along the chain. A

future direction is to develop more intelligent approaches that can perform verifica-

tion only between selected pairs of network functions in order to achieve an optimal

tradeoff between security and overhead (delay).

• Finally, although we have separately integrated each of our solutions into various

cloud platforms and applications (e.g., OpenStack, Amazon EC2, Open5GS, and

free5GC), a future direction is to deploy and integrate those solutions as comple-

mentary and cohesive modules of the same environment.
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