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Abstract

A Tableau-based Algebraic Calculus for Description Logic SHOIQ

Humaira Farid, Ph.D.

Concordia University, 2024

The growing demand for efficient knowledge representation and reasoning in the era of inter-

connected systems and extensive data collection motivates this thesis. Addressing the limitations

of existing Description Logic (DL) reasoners, we focus on the challenges posed by qualified car-

dinality restrictions (QCRs), nominals, and inverse roles. These constructs, though crucial for

expressive ontologies, often hinder computational efficiency in traditional reasoning approaches.

Consequently, real-world ontologies either exclude them or employ very small numerical values.

This motivates our exploration of a novel reasoning approach, employing algebraic methods, aim-

ing to enhance DL reasoning with a focus on large numerical restrictions.

In this thesis, a novel algebraic tableau calculus for SHOIQ is presented for deciding ontol-

ogy consistency. This hybrid approach integrates standard tableau-based reasoning with algebraic

reasoning to handle a large number of nominals, QCRs, and their interaction with inverse roles.

The algorithm extends the previously presented algebraic tableau algorithm for SHOI [24, 25].

Numerical restrictions imposed by nominals and qualified number restrictions are encoded into a

set of linear inequalities. The knowledge about other axioms, such as universal restrictions, role hi-

erarchy, subsumption and disjointness, is also embedded in order to get a more informed mapping

of QCR satisfiability to feasibility. Column generation and branch-and-price algorithms are used

to solve these inequalities. The feasibility test for the linear inequalities can be computed in poly-

nomial time, as shown in [51]. Rigorous proofs ensure soundness, completeness, and termination

of the reasoning procedure.
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In practice, the proposed reasoning approach, implemented in the Cicada prototype, demon-

strates its effectiveness against existing state-of-the-art reasoners. Empirical evaluations using

synthetic and ORE 2014 datasets reveal Cicada’s robust performance against increasing numerical

values, showcasing its viability for handling expressive ontologies. Despite its more focused opti-

mization techniques, Cicada outperforms other reasoners in certain scenarios, providing a promis-

ing avenue for practical applications requiring efficient DL reasoning.

iv



Acknowledgement

Embarking on the doctoral journey was a formidable challenge, and the completion of this

thesis is a testament to the unwavering support and guidance I received along the way.

I extend my deepest gratitude to my supervisor, Dr. Volker Haarslev, whose mentorship, en-

couragement, and cooperative spirit were instrumental in shaping this research. His dedication to

my learning journey and expertise in Description Logics laid the foundation for my understanding

and accomplishments.

I am profoundly thankful to my supervisory committee for their invaluable time, patience,

and insightful remarks throughout the years. Their constructive criticism played a pivotal role in

refining the research and pushing its boundaries.

A special tribute goes to my late father, Muhammad Farid Khan, whose initial joy at my pursuit

of a Ph.D. was a driving force. Though he is not present today, his pride in my success remains a

cherished motivation. I would also like to fondly remember my late mother, Hussan Jan. I deeply

miss her, and I am confident that she would be overjoyed by this significant achievement of mine.

The unyielding love, support, and encouragement from my siblings, nephews, nieces, and

friends were indispensable pillars of strength. A sincere acknowledgement goes to my brothers,

Sajjad Ahmed Qureshi, Muhammad Rafiq Qureshi, and sisters Gulshan Farid, and Nargis Sajjad;

their constant backing made this achievement possible.

My heartfelt appreciation goes to my husband, Khawar, for his steadfast support throughout

every phase of this journey. This thesis would not have reached completion without his dedicated

encouragement and assistance.

Last but not least, I express my gratitude for the joy and motivation my daughters, Minha and

Esha, brought into my life. Their presence served as a welcomed diversion from the challenges of

Ph.D. life.

To all those who contributed to this journey, your belief in me and your roles in shaping this

endeavour are eternally appreciated.

v



Contents

List of Figures x

List of Tables xii

List of Algorithms xiii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 9

2.1 Description Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Basic DL Language ALC . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Description Logic SHOIQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Description Logic Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Tableau-based Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Consequence-based Reasoning . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Tableau-based Reasoning vs. Consequence-based Reasoning . . . . . . . . 26

2.3.4 Complexity of Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 The Algebraic Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vi



2.4.1 Atomic Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 Integer Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.3 Column Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.4 Branch-and-bound algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.5 Branch-and-price algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 DL Reasoning with Nominals, Inverse Roles and QCRs 36

3.1 Tableau-based Reasoning for Expressive DLs . . . . . . . . . . . . . . . . . . . . 36

3.1.1 The Expansion Rules for DL SHOIQ: . . . . . . . . . . . . . . . . . . . 37

3.2 Optimization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Preprocessing Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1.1 Lexical normalization and simplification . . . . . . . . . . . . . 41

3.2.1.2 Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1.3 Nominal Absorption . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Consistency checking optimizations . . . . . . . . . . . . . . . . . . . . . 45

3.2.2.1 Lazy Unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2.2 Dependency Directed Backtracking . . . . . . . . . . . . . . . 47

3.2.2.3 Semantic Branching . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2.4 Boolean constant propagation (BCP) . . . . . . . . . . . . . . . 49

3.2.2.5 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 (Hyper-)Tableau Reasoners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Consequence-based Reasoners . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Hybrid of Tableau reasoning and Consequence-based procedures . . . . . . . . . . 52

3.6 Algebraic Reasoners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 An Algebraic Tableau Calculus for SHOIQ 55

4.1 A Tableau for SHOIQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 The Algebric Method for SHOIQ . . . . . . . . . . . . . . . . . . . . . . . . . . 60

vii



4.2.1 Encoding Numerical Restrictions into Inequalities . . . . . . . . . . . . . 60

4.3 The Algebraic Tableau Algorithm for SHOIQ . . . . . . . . . . . . . . . . . . . 61

4.3.1 Generating Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1.1 Branch-and-Price Method . . . . . . . . . . . . . . . . . . . . . 63

4.3.2 Expansion Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.3 Example Application of the Expansion Rules . . . . . . . . . . . . . . . . 74

4.3.4 Example Illustrating Inequalities Generation and ILP Formulation . . . . . 77

4.3.4.1 Example with Integer Solution . . . . . . . . . . . . . . . . . . 77

4.3.4.2 Example with Non-Integer Solution . . . . . . . . . . . . . . . 81

4.4 Proof of Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.1 Soundness and Completeness of Algebraic Module . . . . . . . . . . . . . 90

4.4.2 Proof of the algorithm’s termination, soundness and completeness . . . . . 91

5 Cicada - An Algebraic Tableau Reasoner for SHOIQ 101

5.1 Reasoner Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Tableau Module (TM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.1 Reasoner Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.2 Preprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.2.1 Concept Absorption . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.2.2 Role Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.2.3 Nominal Absorption . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.3 Rule Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.4 Clash Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.5 Solution Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 Algebraic Module (AM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3.1 Inequality Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3.2 Inequality Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

viii



6 Performance Evaluation 119

6.1 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.1.1 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.1.2 Comparative Analysis with Prominent OWL Reasoners . . . . . . . . . . . 121

6.1.3 Evaluation Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.1 Test cases for SHQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2.2 Test cases for SHOQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2.3 Test cases for SHOIQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7 Conclusions and Future Work 137

7.1 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.2 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Bibliography 143

ix



List of Figures

2.1 Basic DL knowledge base consisting of a Tbox and an Abox . . . . . . . . . . . . 13

2.2 The expansion rules for ALC tableau algorithm . . . . . . . . . . . . . . . . . . . 20

2.3 The application of the tableau completion rules in order to test the concept satisfi-

ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Application of tableau expansion rule without blocking . . . . . . . . . . . . . . . 22

2.5 Application of tableau expansion rule with blocking . . . . . . . . . . . . . . . . . 23

2.6 Atomic Decomposition on S = {hasChild, hasSon, hasDaughter} . . . . . . . 30

3.1 The tableau expansion rules for handling the semantics of the added constructors

extending ALC to SHOIQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Lexical normalization and simplification . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Axiom equivalences used in absorption . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Basic Role Absorption Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Nominal Absorption Rules for tableau algorithms . . . . . . . . . . . . . . . . . . 44

3.6 Lazy unfolding rules for tableau algorithms . . . . . . . . . . . . . . . . . . . . . 46

4.1 Overview of the algebraic reasoning process . . . . . . . . . . . . . . . . . . . . . 64

4.2 The application of the fil -Rule, the e-Rule and the inverse-Rule . . . . . . . . . . 74

4.3 x2 is merged into z1 after the ≤nom-Rule application . . . . . . . . . . . . . . . . 76

4.4 Final completion graph after applying all relevant expansion rules . . . . . . . . . 77

4.5 Solution subsets for finding the optimal integer solution . . . . . . . . . . . . . . . 87

x



4.6 The optimal integer solution found at node 3 after applying the branch-and-price

technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1 Algebraic Tableau Reasoner Architecture . . . . . . . . . . . . . . . . . . . . . . 102

5.2 System’s classes, their attributes, methods, and the relationships among objects . . 104

5.3 Sequence diagram for initialization of reasoning process . . . . . . . . . . . . . . 106

5.4 Axiom equivalences used in extended role absorption . . . . . . . . . . . . . . . . 108

5.5 Axiom equivalences used in extended role absorption in the presence of inverse roles108

5.6 Axiom equivalences used in nominal absorption . . . . . . . . . . . . . . . . . . 109

5.7 Sequence diagram for ontology processing . . . . . . . . . . . . . . . . . . . . . . 109

5.8 Sequence diagram for consistency checking and clash handling . . . . . . . . . . . 111

5.9 Sequence diagram for generating inequalities and ILP solution . . . . . . . . . . . 116

6.1 Effects of linearly increasing the numbers used in QCRs in CSAT . . . . . . . . . . 124

6.2 Effects of linearly increasing the numbers used in QCRs in CUnSAT . . . . . . . . . 124

6.3 Effects of exponentially increasing the numbers used in QCRs in CSAT . . . . . . . 126

6.4 Effects of exponentially increasing the numbers used in QCRs in CUnSAT . . . . . . 126

6.5 Effects of increasing the number of nominal and the numbers used in QCRs in EUSAT127

6.6 Effects of increasing the number of nominal and the numbers used in QCRs in

EUUnSAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.7 Effects of increasing the number of nominals and the numbers used in QCRs in the

presence of inverse role in consistent ontologies . . . . . . . . . . . . . . . . . . . 131

6.8 Effects of increasing the number of nominals and the numbers used in QCRs in the

presence of inverse role in consistent ontologies . . . . . . . . . . . . . . . . . . . 132

6.9 Results of 221 Consistent Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.10 Results of 181 Inconsistent Ontologies . . . . . . . . . . . . . . . . . . . . . . . . 133

6.11 Results of ORE 2014 SHOIQ consistency benchmark (2882 ontologies) . . . . . 135

xi



List of Tables

2.1 Syntax and semantics of concept descriptions in ALC. . . . . . . . . . . . . . . . 11

2.2 Syntax and semantics of DL SHOIQ . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 The worst-case complexity of reasoning in DL Languages . . . . . . . . . . . . . 28

4.1 PP inequalities for DL axioms (n ≥ 1) . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 The expansion rules for SHOIQ . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 DL syntax and their correspondence OWL syntax . . . . . . . . . . . . . . . . . . 107

6.1 Evaluation results while the value of i is increased linearly (TO=timeout, Cic=Cicada,

FaC=FaCT++, Her=HermiT, JFa=JFact, Kon=Konclude) . . . . . . . . . . . . . . 123

6.2 Evaluation results while the value of i is increased exponentially (TO=timeout,

ERR=wrong result, Cic=Cicada, FaC=FaCT++, Her=HermiT, JFa=JFact, Kon=Konclude)126

6.3 Evaluation results of consistency test of EUSAT and EUUnSAT (TO=timeout, Cic=Cicada,

FaC=FaCT++, Her=HermiT, JFa=JFact, Kon=Konclude) . . . . . . . . . . . . . . 128

6.4 Evaluation results of satisfiability test of EUSAT and EUUnSAT

(TO=timeout, Cic=Cicada, FaC=FaCT++, Her=HermiT, JFa=JFact, Kon=Konclude)131

xii



List of Algorithms

4.1 generateRMP(S≥, S≤, S∃, So) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 generatePP(S≥, S≤, So, S∀, S⊑, S⊥, SR) . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 solveInequalities(RMP, PP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 applyBranchAndPrice(RMP, PP, σ) . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 createOWLOntologyManager() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.6 loadOntology(fileName) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.7 createTGAxiom(tgAx, df) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.8 addDependencySet(level) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.9 plusDependencySets(DS1, DS2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.10 removeLevel(DS, level) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.11 initializeRMPModel(totalV ar) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.12 initializePPModel(totalV ar, totalQualifiers) . . . . . . . . . . . . . . . . . . . 117

5.13 processSolution(ILPSolutionSet) . . . . . . . . . . . . . . . . . . . . . . . . . 118

xiii



Chapter 1

Introduction

This chapter serves as an introduction to the research conducted within this thesis. It com-

mences by outlining the motivational aspects behind the undertaken research. Following this, the

chapter details our motivation to research, encapsulating the definition of the problem, the estab-

lishment of goals and objectives, and the devised approach to achieve these objectives.

1.1 Motivation

Description Logic (DL) serves as a formal language for representing knowledge about con-

cepts, individuals, and their relationships. Originally designed to extend semantic networks with

formal logical semantics, DL has found extensive application in the semantic web, with the Web

Ontology Language (OWL) being based on description logics. Its usage extends to various ap-

plication domains, including medical informatics. Modern description logic systems provide rea-

soning services, enabling automated inference of implicit knowledge from explicitly provided in-

formation. Designing high-performance reasoning algorithms has been a central concern for DL

researchers.

In description logics, a knowledge base consists of two main components: Terminological

Knowledge (Tbox), and Assertional Knowledge (Abox). The Tbox defines the vocabulary and

characteristics of the domain. It contains axioms that specify relationships, concepts, and their
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properties. On the other hand, the Abox contains the asserted knowledge about the actual individ-

uals in the domain. These assertions specify information about individuals in terms of concepts

they belong to and relationships they have with other individuals through certain roles. Together,

these components form a comprehensive knowledge base that can be used for reasoning and mak-

ing inferences in the specified domain.

The fundamental inference services related to Tboxes include concept satisfiability and sub-

sumption. Concept satisfiability is determined by checking whether a concept description denotes

the empty set. A concept C is deemed satisfiable if there is at least one individual in the domain

that serves as an instance of C. Subsumption testing involves querying whether all instances of

the concept C (the subsumee) are also instances of the concept D (the subsumer). In essence, sub-

sumption examines whether the first concept can consistently be considered a subset of the second

one. For instance, the axiom Doctor ⊑ Human asserts that all doctors are human. A basic Abox

reasoning is instance checking which involves determining if an individual x, where x is a named

individual in the Abox, is an instance of concept C. These inference problems should be both

decidable and preferably of low complexity to ensure a reasonable and predictable behaviour of a

DL system.

There are two primary approaches for providing reasoning services in DL: tableau-based rea-

soning, and consequence-based reasoning. In tableau reasoning, a set of tableau rules is utilized to

construct a data structure known as a tableau. The first tableau-based algorithm was proposed in

[64] for DL ALC. Subsequently, this approach has been extended to accommodate more expres-

sive DLs. More expressive DLs may include additional features and constructs such as cardinality

restrictions, nominals, or inverse roles. However, these extra features contribute to higher com-

putational complexity in reasoning. To enhance reasoning performance, the expressivity of the

DL language can be reduced. This reduction, however, should not compromise the DL’s ability to

express crucial notions in the application domain. In contrast, consequence-based reasoning algo-

rithms, as proposed in [2] for the lightweight logic EL, focus on deriving logical consequences of

2



axioms in the ontology using inference rules. Consequence-based methods aim to be more effi-

cient than tableau-based approaches, offering a different perspective on deriving entailments and

reasoning about DL ontologies. The choice between these reasoning approaches often involves a

trade-off between expressiveness and computational efficiency, and the selection depends on the

specific requirements and characteristics of the DL and its intended application domain.

Cardinality restrictions in DL enhance the language’s expressive power by enabling the spec-

ification of numerical constraints on relationships. There are two types of cardinality restrictions:

(i) unqualified cardinality restrictions (N ), expressed in the forms ( ≥ nR) or ( ≤ mR), specify

the least or the most number of allowed role successors for an individual; (ii) qualified cardinality

restrictions (Q), shown by (≥ nR.C) or ( ≤ mR.C), additionally describe the type of individ-

uals that are counted by a given number restriction. For example, the concept representation of

Canada ⊑≥ 12hasProvince.CA_Province states a necessary condition that an instance of the

Canada concept must have at least 12 successors through the hasProvince role, and these suc-

cessors must specifically belong to the concept CA_Province.

One of the key features of many description logics is support for nominals (O). Nominals are

special concept names and they must be interpreted as singleton sets. They allow in particular

for a direct combination of knowledge about individuals (Abox assertions) with terminological

knowledge (Tbox axioms). In practical ontology applications, nominals often serve as identifiers

for entities such as countries, persons, flavors, and more. For instance, we can use nominals

to represent 10 provinces of Canada, namely Ontario, Quebec, Nova Scotia, New Brunswick,

Manitoba, British Columbia, Prince Edward Island, Saskatchewan, Newfoundland and Labrador,

Alberta, as follows:

CA_Province ≡ {Ontario ⊔ ... ⊔ Alberta}

Here Ontario, Alberta, and others are distinct nominals, each representing a specific province.

Qualified Cardinality Restrictions (QCRs) carry explicit numerical restrictions and their re-

strictions are local, whereas, nominals carry implicit global numerical restrictions. For example,
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the representation of the concept CA_Province as an enumeration of 10 distinct nominals ex-

presses an implicit cardinality restriction; the concept CA_Province is constrained to have ex-

actly 10 individuals. These restrictions are global because they affect the set of all individuals of

CA_Province in the domain. While these global cardinality restrictions enhance the expressive-

ness of description logics, they also contribute to practical complexity in reasoning and ontology

management.

Inverse role (I) is another DL construct that adds more expressiveness to a language. Inverse

Roles are used to represent converse relationships between individuals. For instance, hasChild ≡

hasParent− signifies that hasChild is the inverse of hasParent. This construct facilitates the

representation of bidirectional connections within a knowledge base.

In summary, DLs that incorporate QCRs, nominals, and inverse roles benefit from enhanced

expressiveness. However, this increased expressiveness comes at the cost of higher computational

complexity in reasoning tasks. As a result, there exists an inherent trade-off between the richness

of language features and the efficiency of algorithms delivering inference services.

1.2 Problem Statement

The extension of ALC with nominals and QCRs introduces powerful capabilities to express

arithmetic constraints on both concepts and roles. However, it is essential to recognize that nom-

inals carry implicit global numerical restrictions that increase the reasoning complexity. More-

over, the interaction between QCRs, nominals and inverse roles leads to the loss of the tree model

property and the finite model property. This results in a complexity increase from ExpTime to

NExpTime. Moreover, it makes the design of reasoning calculi more complicated.

Most state-of-the-art reasoners, such as Konclude [72], Fact++ [74], HermiT [66], have imple-

mented traditional tableau algorithms. These non-algebraic reasoners attempt to construct com-

pletion models in a highly nondeterministic way in order to handle numerical restrictions. For
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example, consider a small ontology having the following axioms:

CA_Province ≡ {Ontario ⊔ ... ⊔ Alberta} (1)

Canada ⊑≥ 12hasProvince.CA_Province (2)

Axiom (1) defines the concept CA_Province by enumerating all 10 provinces of Canada as

nominals and these 10 nominals are pairwise disjoint. Axiom (2) states a necessary condition for

the concept Canada that Canada must have at least 12 provinces. It is trivial to see that one cannot

satisfy the ≥ 12hasProvince.CA_Province QCR because the cardinality of CA_Province is

implicitly restricted to the 10 provinces listed as nominals. However, according to our experiments,

most DL reasoners are unable to decide this inconsistency within a reasonable amount of time.

In the above scenario, the primary cause of inefficiency lies in the nondeterministic merging

process. To determine the satisfiability of the concept Canada, a standard tableau algorithm gen-

erates 12 distinct yet anonymous instances of CA_Province. It then proceeds to nondeterministi-

cally attempt to merge these instances with the 10 nominals representing the Canadian provinces.

This merging process continues until all possible combinations are explored, and eventually, the

unsatisfiability of Canada is determined. This lack of consideration for numerical constraints can

lead to significant performance degradation, impacting not only the size of the completion models

but also introducing a substantial degree of non-determinism. The issue becomes more pronounced

when dealing with a large number of nominals or when handling substantial numerical values, as

illustrated in the following concept description:

Human ⊑≥ 600hasMuscles(Skeletal ⊔ Smooth ⊔ Cardiac)

However, algebraic DL reasoners are considered more efficient in handling numerical restric-

tions [22, 26, 36, 75]. RacerPro [36] was the first highly optimized reasoner that combined tableau-

based reasoning with algebraic reasoning [37]. Other tableau-based algebraic reasoner for SHQ

[26], SHIQ [58], SHOQ [22, 23] are also proposed to handle QCRs and their interaction with
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inverse roles or nominals. These reasoners use an atomic decomposition technique to encode num-

ber restrictions into a set of linear inequalities. These inequalities are then solved by integer linear

programming (ILP). These reasoners perform very efficiently in handling huge values in number

restrictions. Nevertheless, their ILP algorithms are best-case exponential to the number of in-

equalities. For example, in the case of m inequalities they require 2m variables in order to find the

optimal solution. Therefore, it is not feasible to enumerate all variables for ILP with a huge number

of variables. To overcome this problem, the column generation technique has been used [75, 77]

which considers a small subset of variables. Integer programming has also been applied for finite

model reasoning [59, 50, 60]. However, to the best of our knowledge, no algebraic calculus can

handle DLs supporting nominals, QCRs and inverse roles simultaneously.

1.3 Research Objectives

The research presented in this thesis is centred around developing a reasoning approach for

Description Logics (DLs) that effectively handles a substantial number of nominals, Qualified

Cardinality Restrictions (QCRs), and their interactions with inverse roles. The chosen reasoning

approach is hybrid, combining a standard tableau-based reasoning algorithm for DL with algebraic

reasoning.

The primary objectives of adopting this reasoning approach can be summarized as follows:

1. Expressive Language Support: The thesis aims to provide reasoning support for DL lan-

guages that enable the expression of all elements within an application domain using avail-

able logical language constructs. Specifically, the focus is on entailments based on the

combination of nominals (O), inverse roles (I), and qualified cardinality restrictions (Q),

achieving the expressivity of SHOIQ, which is nearly the full expressivity of OWL uti-

lized in Semantic Web applications.

2. Hybrid Reasoning Approach: While algebraic DL reasoners are acknowledged for their

efficiency in managing numerical restrictions, there exists a challenge in finding a calculus
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capable of handling DLs that support nominals, QCRs, and inverse roles simultaneously.

Therefore, the proposed reasoning approach aims to integrate both tableau and algebraic

reasoning to support these expressive DL constructs. The objective is to address the chal-

lenge of efficiently handling numerical restrictions using Integer Linear Programming (ILP).

These restrictions are encoded as inequalities and solved using the branch-and-price tech-

nique. The proposed algorithm aspires to encode additional knowledge about axioms such

as universal restrictions, role hierarchy, subsumption, and disjointness for more informed

reasoning.

3. Correctness Emphasis: The reasoning procedure must ensure both soundness and com-

pleteness. Soundness implies that every “yes” answer in an inference test is valid, while

completeness ensures that every “no” answer is also valid.

4. Termination and Efficiency: Developing sound and complete decision procedures for highly

expressive DL languages is crucial. However, if these procedures do not terminate or fail to

respond within a reasonable time, the entire system loses its utility. Therefore, the proposed

system aims to incorporate a suite of optimization techniques to ensure efficiency without

compromising correctness or termination.

1.4 Thesis Outline

The remainder of this thesis is organized as follows:

• Chapter 2 provides background knowledge and defines the formal syntax and semantics of

Description Logics (DL).

• Chapter 3 offers a brief overview of existing approaches, discusses related systems developed

for handling Qualified Cardinality Restrictions (QCRs), nominals, and inverse roles, and

explores state-of-the-art optimization techniques.
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• Chapter 4 presents the proposed Algebraic Tableau Calculus for SHOIQ, illustrating the

generation of the inequality system using numerical restrictions and related information. It

explains the column generation and branch-and-price technique for solving inequalities and

provides proofs of soundness, completeness, and termination.

• Chapter 5 introduces the prototype reasoner, Cicada, implemented to demonstrate the prac-

tical applicability of the proposed hybrid approach.

• Chapter 6 conducts an empirical evaluation of Cicada against existing state-of-the-art reason-

ers. It describes the datasets and metrics used for system evaluation and results comparison.

• Chapter 7 concludes the thesis with a summary, and suggests future directions.
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Chapter 2

Preliminaries

In this section, we provide some important definitions and introduce notations used later. The

aim of this chapter is to give an overview of the structure and expressiveness of Description Logic.

The syntax and semantics of concept descriptions in basic DL language ALC are discussed in

section 2.1.1. Section 2.2 provides an overview of the expressive constructs of DL SHOIQ.

The different approaches for DL reasoning adopted by most state-of-the-art DL reasoners and the

complexity of different DL languages are also discussed in section 2.3. Section 2.4 introduces the

algebraic method that is also used for description logic reasoning.

2.1 Description Logic

Description Logic (DL) is a formal knowledge representation language that is used for mod-

eling ontologies. Modern description logic systems provide reasoning services that can automat-

ically infer implicit knowledge from explicitly expressed knowledge. Description logic mainly

models three types of entities; concepts that represent sets of individuals, roles that represent bi-

nary relations between individuals of the domain, and individuals that are elements of the domain

of reasoning.
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Definition 1. (Concept) A concept represents a set of elements of the domain with similar char-

acteristics. For example, Woman is the concept which represents all persons that are female.

Similarly, the concept Child represents the set of individuals who are offsprings of a person. The

concepts that cannot have any common elements are declared as disjoint concepts. For instance,

the concepts Male and Female can be considered as disjoint concepts.

Definition 2. (Role) A role defines binary relationships between concepts. For example, hasChild

is a role that defines the relationship between two concepts, Woman and Child.

Definition 3. (Individual) An individual is a named element of the domain. For instance, the

concept Woman has an individual Mary (Mary : Woman), and the concept Child has an individual

John (John : Child). Roles can be used to define the relationship between a pair of individuals,

(e.g., Mary, John : hasChild).

These concepts, roles and individuals are used to represent the knowledge about the domain

of interest. From this explicitly represented knowledge one can infer the implicit knowledge. For

instance, the concept Mother is defined as a Woman who has at least one Child, and Mary is a

Woman who hasChild John. By using the reasoning services one can easily infer that Mary is a

Mother. Similarly, the concept Grandmother is defined as a Mother who has at least one Child who

is a Person and that child also has at least one Child. Mary is a Mother, John is a Person, Peter

is a Person, Mary hasChild John and John hasChild Peter. One can easily infer from the given

knowledge that Mary is a Grandmother.

The expressiveness of a DL language depends on the set of constructors it provides for building

complex concepts and roles. The DL ALC is the basic DL language that provides the smallest set

of DL constructors (conjunction ⊓, disjunction ⊔, negation ¬, existential restriction ∃, universal

restriction ∀). The formal syntax and semantics of the DL ALC are discussed in the following

section.

The main focus throughout this thesis is on the DL SHOIQ which extents the DL ALC with

more expressive constructs such as transitive roles (S), roles hierarchies (H), nominals (O), inverse

roles (I), and qualified cardinality restrictions (Q).
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Table 2.1: Syntax and semantics of concept descriptions in ALC.

Syntax Semantics

A (concept) AI ⊆ ∆I

⊤ (universal or top concept) ⊤I = ∆I

⊥ (empty or bottom concept) ⊥I = ∅

¬A (negation) ∆I \ AI

C ⊓D (conjunction) CI ∩DI

C ⊔D (disjunction) CI ∪DI

∀R.C (universal restriction) {x ∈ ∆I | ∀y : (x, y) ∈ RI ⇒ y ∈ CI}

∃R.C (qualified existential restriction) {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ RI and y ∈ CI}

2.1.1 Basic DL Language ALC

The base DL language, calledAL, is introduced in [64]. AL contains atomic concepts, atomic

negations, top and bottom concepts, conjunction for concept expressions, and unqualified existen-

tial restrictions.

AL is then extended to ALC, which is one of the basic DL languages that is propositionally

complete. The syntax and semantics of concept descriptions inALC are shown in Table 2.1. ALC

contains disjunction and negation for concept expressions, and qualified existential restrictions in

addition to AL.

For example, we use the following concept description to define the concept of "A woman that

is married to an Engineer, and all of their children are either Lawyers or Artists":

Human ⊓ ¬Male ⊓ (∃married.Engineer) ⊓ (∀haschild.(Lawyer ⊔ Artist))

The semantics of concept descriptions can be defined in terms of standard Tarski-style seman-

tics based on an interpretation I = (∆I , ·I), where ∆I is a non-empty set of individuals called
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the domain of interpretation and ·I is an interpretation function. An interpretation function ·I as-

sociates each role name R with a binary relation RI ⊆ ∆I ×∆I and each concept name C with a

subset CI ⊆ ∆I .

Definition 4. (Concept Inclusion Axiom) Concept inclusion axioms are expressed in the follow-

ing forms:

• C ⊑ D (Concept Subsumption Axiom) where C is subsumed by D. For example, Mother ⊑ Parent.

• C ≡ D (Concept Definition Axiom) which is a substitute for {C ⊑ D,D ⊑ C}. If

C is a concept name then this axiom is said to be a primitive definition. For example,

Woman ≡ Human ⊓ Female.

In the case where C is a complex class expression, a concept inclusion axiom is referred to as

a General Concept Inclusion (GCI) axiom. For example, we use the following GCI to define a

constraint that “only professors can teach to graduate students”:

∃teachesTo.GradStudent ⊑ Professor

Here, the left-hand side of the axiom is not a simple concept name.

Definition 5. (Tbox) A Tbox T is the terminological knowledge of the domain that contains a

finite set of concept inclusion axioms of the form C ⊑ D, and/or C ≡ D.

Definition 6. (Abox) An Abox A with respect to a Tbox T is a finite set of assertions of the form

• a : C where a is an individual and C ∈ NC and NC denotes a set of concepts (e.g.,

Mary : Woman),

• (a, b) : R where R ∈ NR and NR denotes a set of roles (e.g., Mary, John : hasChild), and

• a ̸= b where a and b are individuals (e.g., Mary ̸= John).
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Definition 7. (ALC Knowledge Base) A knowledge base K in description logics is composed of

two parts: the terminological knowledge (Tbox T ) that describes the vocabulary and characteristics

of the domain, and the assertional knowledge (Abox A) that contains the asserted knowledge

regarding the actual individuals of the domain, shown in Figure 2.1.

Figure 2.1: Basic DL knowledge base consisting of a Tbox and an Abox

An interpretation I is said to be a model of the knowledge base K if I is a model of the Tbox

T and the Abox A. A knowledge base K is consistent if it has a model.

2.2 Description Logic SHOIQ

SHOIQ extends the description logic ALC with transitive roles, role hierarchies, singleton

concepts (nominals), inverse roles and qualified cardinality restrictions (QCRs).

Definition 8. (R-filler) Assume a and b are two individuals. b is called an R-filler of a if (aI , bI) ∈

RI holds for a given role R ∈ NR. The set of all R-fillers of a is defined as Fil(a,R) = {b |

(aI , bI) ∈ RI}.
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Definition 9. (Role Hierarchy (H)) A role hierarchy is used to define subrole and super-role

relationship between the roles. For example, hasMother is a subrole of hasParent and hasParent is

a super-role of hasMother.

A set of role inclusion axioms are used to express these role hierarchies.

Definition 10. (Role Inclusion Axiom (RIA)) A role inclusion axiom is expressed in the form

R ⊑ S where R, S ∈ NR and R is called a subrole of S and S is a super-role of R. For example,

the RIA hasMother ⊑ hasParent specifies that every filler of the hasMother role must be a filler

of the hasParent role. The interpretation of an axiom R ⊑ S using the interpretation function ·I

is equal to RI ⊆ SI which means that for each pair of individuals if (aI , bI) ∈ RI is true then

(aI , bI) ∈ SI should also be true.

Definition 11. (Transitive Role (S)) If a role name R is declared as transitive then

(aI , bI) ∈ RI ∧ (bI , cI) ∈ RI ⇒ (aI , cI) ∈ RI

A set NR+ ⊆ NR denotes the set of transitive roles. For example, hasAncestor ∈ NR+ implies that

the ancestor of one’s ancestor is also considered as his or her ancestor.

A role is called simple if it is neither transitive nor has a transitive subrole.

Definition 12. (Inverse Role (I)) Inverse roles are used to represent converse relationships be-

tween individuals. For example, hasChild ≡ hasParent− means that hasChild is the inverse

of hasParent. For any role R ∈ NR, if a role R− is interpreted as the inverse of R, then the

semantics of inverse roles by the interpretation function ·I is represented as

(aI , bI) ∈ RI ⇔ (bI , aI) ∈ (R−)I

Definition 13. (Nominals (O)) Nominals are Abox named individuals that can be used within

concept descriptions in Tbox. They must be interpreted as singleton sets and they allow one to

express the notion of uniqueness and identity. For example, nominals can be used to model the

14



planets or the countries, e.g., “Earth”, “Moon”, “Canada”, “Pakistan”, etc. A set No ⊆ NC denotes

a set of nominals. Within a concept description, a nominal name is enclosed in curly brackets “{}”

to distinguish it from a concept name. Nominals can be defined as the hasValue and the oneOf

constructor.

• The oneOf constructor is used to enumerate the nominals to define a concept, e.g,

Continent ≡ {Africa,Antarctica,Australia,Asia,Europe,NorthAmerica, SouthAmerica}

where Africa, ..., SouthAmerica are all nominals.

• In the hasValue constructor, nominals are used as a part of an existential restriction, e.g,

AfricanCountry ⊑ ∃locatedIn.{Africa}

where Africa is a nominal and a concept AfricanCountry is defined as “a country located in

the continent of Africa”.

The interpretation of the nominal o using the interpretation function ·I is equal to ♯{o}I = 1

which means that o is a singleton set. Here, ♯ denotes set cardinality. Nominals carry implicit

global numerical restrictions. For example, the concept Continent which is defined by enumerated

7 nominals can have exactly 7 instances.

Moreover, nominals also introduce non-determinism because {o1, o2, o3} denotes a disjunction

of nominals. For example, the definition of Continent in axiom (3), which is using an enumeration

of nominals, is equivalent to a disjunction of nominals in axiom (4).

Continent ≡ {Africa,Antarctica,Australia,Asia,Europe,NorthAmerica, SouthAmerica} (3)

Continent ≡ {Africa} ⊔ {Antarctica} ⊔ ... ⊔ {NorthAmerica} ⊔ {SouthAmerica} (4)

Therefore, nominals increase the reasoning complexity. Furthermore, the presence of nominals
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leads to the loss of the tree model property (see Definition 23).

Definition 14. (Unqualified cardinality restrictions (N )) Unqualified cardinality restrictions

(N ), specify the least or the most number of allowed role fillers for an individual. For exam-

ple, the concept inclusion axiom Person ⊑ (≤ 2hasParent) ⊓ (≥ 2hasParent) indicates that

every individual that is a member of the concept Person has exactly two (distinct) parents.

Definition 15. (Qualified cardinality restrictions (Q)) In qualified cardinality restrictions (Q),

the cardinality restriction, along with the restriction on the number of role fillers, also specifies the

concept to which these fillers belong. For example, the assertion a : (≤ 1hasParent.Male) states

that a has at most one hasParent-filler that is also a member of the concept Male. Similarly, the

assertion a : (≥ 3hasChild.Female) states that a has at least three hasChild-fillers that are also

members of the concept Female.

Let N = NC ∪ No where NC represents concept names and No nominals. The set of roles

in SHOIQ is NR ∪ {R− | R ∈ NR}. A function Inv returns the inverse of a role such that

Inv(R) = R− if R ∈ NR and Inv(R) = S if R = S− and S ∈ NR. We use ⊤ (⊥) as an

abbreviation for A ⊔ ¬A (A ⊓ ¬A) for some A ∈ NC . We denote with ⊑∗ the transitive, reflexive

closure of ⊑ over NR. In the following ♯ denotes set cardinality. Table 2.2 presents the syntax and

semantics of QCRs, nominals and other expressive constructs of SHOIQ.

Qualified cardinality restrictions (QCRs) carry explicit numerical restrictions and their restric-

tions are local, whereas, nominals carry implicit global numerical restrictions. Suppose an individ-

ual x is an instance of a concept C and C ⊑≥ 3R.D where C,D ∈ NC and R ∈ NR. It imposes

that at least 3 individuals of D, say x1, x2 and x3, must be R-fillers of x. These restrictions are

local since they only affect the set of individuals that are R-fillers of x. On the other hand, if

C ⊑ {o1, o2, o3} (or {o1, o2, o3} ⊑ C), then o1, o2, o3 impose a numerical restriction that there can

be at most (or at least, provided o1, o2, o3 ∈ No are pairwise disjoint) three instances of C. These

restrictions are global because they affect the set of all individuals of C in ∆I . These cardinality
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Table 2.2: Syntax and semantics of DL SHOIQ

Construct Syntax Semantics
Nominals
O {o} ♯{o}I = 1
Number Restrictions

N ≥ nR.⊤ {x ∈ ∆I | ♯{y ∈ ∆I | (x, y) ∈ RI} ≥ n}
≤ mR.⊤ {x ∈ ∆I | ♯{y ∈ ∆I | (x, y) ∈ RI} ≤ m}

Qualified Cardinality Restrictions

Q ≥ nR.C {x ∈ ∆I | ♯{y ∈ ∆I | (x, y) ∈ RI ∧ y ∈ CI} ≥ n}
≤ mR.C {x ∈ ∆I | ♯{y ∈ ∆I | (x, y) ∈ RI ∧ y ∈ CI} ≤ m}

Inverse Role
I R− (aI , bI) ∈ RI ⇔ (bI , aI) ∈ (R−)I

Role Hierarchy
H R ⊑ S RI ⊆ SI

Transitive Role
S R ∈ NR+ (aI , bI) : RI ∧ (bI , cI) : RI ⇒ (aI , cI) : RI

restrictions significantly increase the expressiveness of a DL language, however, they also raise its

practical complexity.

2.3 Description Logic Reasoning

One of the most interesting aspects of DLs is that they provide several reasoning services

regarding domain knowledge. By using these services one can obtain some implicit knowledge

about the domain. In order to check the logical consistency of the ontology, the reasoner performs

two tasks:

1. the Tbox consistency test, which involves the satisfiability test of all concept names, and

2. the Abox consistency test, in which the reasoner verifies whether the Abox is consistent w.r.t.

the Tbox by considering the Abox assertions.

The most basic services regarding Tboxes are concept satisfiability, which verifies the satisfiability

of a concept, and subsumption, which checks subconcept-superconcept relationships.
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Definition 16. (Satisfiability) A concept description C is said to be satisfiable by an interpretation

I iff CI ̸= ∅, i.e., there exists an individual x ∈ ∆I as an instance of C such that x ∈ CI .

Definition 17. (Subsumption) A concept description D subsumes concept description C (C ⊑ D)

iff CI ⊆ DI for all interpretations I, i.e., the first concept description is always interpreted as the

subset of the second one.

For Aboxes, instance checking is a basic reasoning service which inquires if individual a is a

member of concept C where a is a named individual in the Abox and the reasoner needs to consider

the relevant Abox assertions as well as the Tbox.

In DLs, which support full negation, subsumption and satisfiability can be reduced to one

another. A concept description C is subsumed by D, C ⊑ D, iff C⊓¬D is unsatisfiable. Similarly,

a concept C is unsatisfiable if the subsumption C ⊑ ⊥ is entailed.

A Tbox T and its associated role hierarchy R is satisfied by I (or consistent) if each GCI and

RIA is satisfied by I. Such an interpretation I is then called a model of T . Due to the nominals, a

concept assertion a : C can be transformed into a concept inclusion {a} ⊑ C and a role assertion

(a, b) : R into {a} ⊑ ∃R.{b}. Therefore, concept satisfiability and Abox consistency can be

reduced to Tbox consistency by using nominals. For example, the concept C is satisfiable w.r.t.

the Tbox T iff T ∪ ({a} ⊑ C), where a ∈ No, is satisfiable and the Abox A is consistent w.r.t.

the Tbox T iff T ∪ (({a} ⊑ ∃R.{b}) ⊓ ({a} ⊑ C)) is satisfiable. We use {o1, . . . , on} as an

abbreviation for {o1} ⊔ · · · ⊔ {on} and may write {o} as o if it is clear from the context that o is a

nominal.

In order to prove concept satisfiability or test Tbox consistency, tableau algorithms try to

construct a representation of a model by constructing a completion graph. A completion graph

G = (V,E,L) is a directed graph where V is a set of nodes representing individuals. Each node

x ∈ V is labelled with a set of concepts L(x), and each edge between x and y, (x, y) ∈ E is

labelled with a set of role names L(x, y).

A completion graph is usually used as a data structure to describe an abstraction of a model for

a given knowledge base K.
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Definition 18. (R-successor, R-predecessor, R-neighbour) If a node y is a successor of a node

x and S ∈ L (⟨x, y⟩) with S ⊑ R where S,R ∈ NR, then y is called an R-successor of a node

x and x is called an Inv(R)-predecessor of y. A node y is called an R-neighbour of x iff y is an

R-successor or an R-predecessor of x.

Definition 19. (Decidability) A DL reasoning algorithm is said to be decidable if its soundness,

completeness, and termination can be proved. Soundness ensures that something can be inferred

only if it is entailed by a knowledge base K, completeness ensures anything that is entailed by a

knowledge base K can be inferred, and termination means that the algorithm always terminates.

There are two major approaches to provide reasoning services:

• Tableau-based reasoning

• Consequence-based reasoning

2.3.1 Tableau-based Reasoning

The most widely used approach to provide reasoning services is tableau reasoning. Tableau

reasoning is composed of a set of tableau rules which are applied by a tableau algorithm which

constructs a tableau. A tableau is a data structure first introduced in [64] for ALC which was

later on extended for various other DLs. The tableau algorithm checks the satisfiability of a given

concept C by attempting to construct a finite interpretation I which contains an element x for

which x ∈ CI [6]. For convenience, we assume that all concept descriptions are in negation

normal form (NNF).

Definition 20. (Negation Normal Form (NNF)) A concept description is in negation normal

form if the negation sign (¬) only appears in front of concept names (atomic concepts). Concept

descriptions can be transformed into an equivalent description in NNF in linear time for anyALC-

concept description [6]. We compute the NNF of concept expressions using

• de Morgan’s rules (e.g., ¬(C ⊓D) ≡ ¬C ⊔ ¬D,¬(C ⊔D) ≡ ¬C ⊓ ¬D),
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⊓-Rule if (C ⊓D) ∈ L(x) and {C,D} ⊈ L(x)
then set L(x) = L(x) ∪ {C,D}

⊔-Rule if (C ⊔D) ∈ L(x) and {C,D} ∩ L(x) = ∅
then set L(x) = L(x) ∪ {C} or L(x) = L(x) ∪ {D}

∃-Rule if (∃R.C) ∈ L(x) and there is not a node y with R ∈ L(x, y), C ∈ L(y)
then create a new node y and set L(y) = L(y) ∪ {C} and
L(x, y) = L(x, y) ∪ {R}

∀-Rule if (∀R.C) ∈ L(x) and there exists a node y with R ∈ L(x, y) and C /∈ L(y)
then set L(y) = L(y) ∪ {C}

Figure 2.2: The expansion rules for ALC tableau algorithm

• conversion rules of existential and universal restrictions (e.g., ¬(∀R.C) ≡ ∃R.(¬C),¬(∃R.C) ≡

∀R.(¬C)), and

• the usual rules for quantifiers (e.g., ¬(≤ nR.C) ≡≥ n+1R.C,¬(≥ nR.C) ≡≤ n−1R.C).

The Expansion Rules for DL ALC :

In order to prove concept satisfiability or test Tbox consistency, tableau algorithms try to construct

a representation of a model by constructing a completion graph (see Definition ??). A tableau

algorithm converts all subsumption relations of the form C ⊑ D to their equivalent NNF(¬C ⊔D)

then reduces all the concept axioms in Tbox T to a single axiom ⊤ ⊑ CT where CT is the

conjunction of NNF of all axioms occurring in T . Then the algorithm applies the completion

rules, shown in Figure 2.2, to the initial Abox A = {a : CT }, where a is a fresh individual.

These rules decompose the concepts in node labels (L) by either inferring new constraints for

a given node or extending the completion graph according to these constraints. For example, if

C1 ⊓ C2 ∈ L(x) then the ⊓-rule adds both C1 and C2 to L(x), if either C1 /∈ L(x) or C2 /∈ L(x).

However, the ∃-Rule extends the completion graph by adding a new node. For example, if ∃R.C ∈

L(x), and x does not yet have an R-successor with C in its label, then the ∃-rule generates a new

R-successor node y of x with L(y) = {C}.

The ⊔-Rule is nondeterministic because a given Abox is transformed into more than one new

Aboxes such that the original Abox is consistent if one of the new Aboxes is consistent. For
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Figure 2.3: The application of the tableau completion rules in order to test the concept satisfiability

example, if C1 ⊔ C2 ∈ L(x) and neither C1 ∈ L(x) nor C2 ∈ L(x), then it adds either C1

or C2 to L(x). In practice, the ⊔-Rule is the main source of complexity in tableau algorithms,

because it may be necessary to explore all possible choices of rule applications. The algorithm

must backtrack if it reaches an obvious contradiction known as a clash (see Definition 21). If a

concept is unsatisfiable then all possible expansions will lead to a clash. However, in the case

where a concept is satisfiable, the algorithm finds at least one expansion that leads to a complete

and clash-free completion graph.

Definition 21. (Clash) A node x has an obvious contradiction if there exists a concept expression

C such that {C,¬C} ⊆ L(x).

The step-by-step application of the completion rules for a satisfiability test of the concept

Mother has been shown in Figure 2.3. The concept Mother is defined as follows:

Mother ⊑ Woman ⊓ ∃hasChild.⊤ ⊓ ∀hasChild.Person

An Abox is satisfiable if the algorithm produces a complete clash-free completion graph from

the initial Abox. The algorithm terminates if

1. the Abox A contains a clash, or

2. none of the rules from Figure 2.2 is applicable to Abox A, in this case A is called complete.
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Figure 2.4: Application of tableau expansion rule without blocking

Blocking

In some cases, expanding the completion graph does not lead to a complete graph. This can

happen if a Tbox contains cyclic inclusion axioms (where a concept name appears on both sides

of the axiom). For example, if a Tbox T contains the axiom: A ⊑ ∃R.A, then the algorithm can

go on generating new individuals with repeating structure and the satisfiability of A w.r.t. T will

never stop. Figure 2.4 shows that during a satisfiability test of the concept Person (defined in axiom

5), the algorithm generates new individuals repeatedly which leads to a non-terminating tableau

model.

Person ⊑ ∃hasFriend.Person (5)

Therefore, in order to guarantee termination, the algorithm needs an extra mechanism called
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Figure 2.5: Application of tableau expansion rule with blocking

blocking. In a blocking algorithm, cyclic computations are detected to prevent the further applica-

tion of expansion rules. The main idea behind the blocking mechanism is to prevent a node from

applying expansion rules if it needs to satisfy a concept expression already satisfied by one of its

ancestors. For example, in the previous example (shown in Figure 5), the node x1 can use the role

successors of x0 instead of generating new ones as shown in Figure 2.5.

A node x is called a blocked node by a node y if

• there is an ancestor y of x such that L(x) ⊆ L(y) (subset blocking), or

• if there is an ancestor z of x such that z is blocked.

If a node x is blocked and none of its ancestors is blocked, then we say that x is directly blocked.

Subset blocking is sufficient for logics without inverse roles. However, blocking is more com-

plex when inverse roles are added to the logic. For inverse roles, the blocking condition must be

based on label equality, such that L(x) = L(y), and a block should not be established on a once

and for all basis. The equality blocking is important because inverse roles can propagate back

additional concepts which can invalidate the model. Moreover, further expansion in other parts

of the tree can invalidate the block by extending the labels of the blocking and/or blocked nodes.

Therefore, dynamic blocking was introduced in [39], where blocks can be established and broken
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dynamically.

Extending the logic further with functional restrictions1 or QCRs requires a more sophisticated

blocking strategy, called pairwise blocking [39]. The pairwise blocking is discussed in more detail

in the next chapter.

2.3.2 Consequence-based Reasoning

Although the tableau-based approach is currently the most widely used technique for reasoning

in DLs, other approaches have been developed as well. A recent notable progress in DL reasoning

is consequence-based reasoning. The reasoning algorithm proposed in [2] for the lightweight logic

EL can be seen as the first such calculus.

For certain logics and tasks, other approaches are preferable to the tableau-based approach. For

example, it is shown in [11, 2] that subsumption in EL remains polynomial even in the presence

of general TBoxes but it is not clear how can we obtain the same results for subsumption in EL by

using a tableau-based algorithm.

For a given DL L, an L-terminology (called L-TBox) is a finite set T of axioms of the form

C ⊑ D (called general concept inclusion (GCI)) or A .
= D (called definition) or r ⊑ s (called

simple role inclusion axiom (SRI)), where C and D are concept descriptions defined in L, A ∈

Ncon, and r, s ∈ Nrole where Ncon denotes a set of concepts names and Nrole denotes a set of role

names. A concept name A ∈ Ncon is called defined in T iff T contains one or more axioms of the

form A ⊑ D or A .
= D. A TBox that contains GCIs is called general. The DL EL admitting SRIs

in TBoxes is denoted by ELH.

The polynomial-time subsumption algorithm for ELH, proposed in [11], simultaneously com-

putes all subsumption relationships between the concept names occurring in TBox T . In the first

step, the algorithm normalizes the Tbox and after that, it computes implication sets.

A general ELH-Tbox is normalized if it only contains GCIs and SRIs and all of the GCIs have

1They are restrictions of the form ≤ 1R that allow an individual to relate to at most one other individual by the
role R.
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one of the following forms:

C ⊑ D C1 ⊓ C2 ⊑ D C ⊑ ∃r.D ∃r.C ⊑ D

where C, C1, C2, D are concept names. A given TBox can be transformed into a normalized

one by applying normalization rules. An example is used to illustrate these rules, and GCIs that

need further rewriting are underlined (adapted from [2] [5]):

∃r.C ⊓ ∃r.∃s.C ⊑ C ⊓D ⇝ ∃r.C ⊑ D1, D1 ⊓ ∃r.∃s.C ⊑ C ⊓D,

D1 ⊓ ∃r.∃s.C ⊑ C ⊓D ⇝ ∃r.∃s.C ⊑ D2, D1 ⊓D2 ⊑ C ⊓D,

∃r.∃s.C ⊑ D2 ⇝ ∃s.C ⊑ D3,∃r.D3 ⊑ D2,

D1 ⊓D2 ⊑ C ⊓D ⇝ D1 ⊓D2 ⊑ C,D1 ⊓D2 ⊑ D

In the second step, for every concept name A ∈ NT ,⊤
con

2, the algorithm defines an implication set

S(A). Initially S(A) := {A,⊤} which is then extended by applying completion rules. Similarly,

for every role r the algorithm defines S(r) which is the set of all roles included in r. These sets

satisfy the following invariants: (i) for every A,B ∈ NT ,⊤
con , B ∈ S(A) implies A ⊑T B, i.e., S(A)

contains only subsumers of A. (ii) for every r, s ∈ NT
role, s ∈ S(r) implies r ⊑T s.

The fact that subsumption in EL with respect to general TBoxes can be decided in polynomial

time is proved by showing that (i) T can be normalized in polynomial time, and (ii) the sets S(A)

and S(r) can be computed in polynomial time in the size of T . Moreover, it is also proved in [11]

that subsumption becomes co-NP hard when adding one of the constructors number restriction

(≤ n.r and ≥ n.r), disjunction (⊔), and allsome (∀∃)3.

This result is extended in [2] to the DL EL++, which extends EL with the bottom concept (and

2NT ,⊤
con := NT

con ∪ {⊤}
3A concept ∀∃.C is equivalent to ∀.C ⊓ ∃r.C
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thus disjointness constraints on concepts in the form of C⊓D ⊑ ⊥), nominals, a restricted form of

concrete domains (e.g., reference to numbers and strings), and a restricted form of role-value maps

which can express transitivity (e.g., r ◦ r ⊑ r) and the right-identity rule (e.g., r ◦ s ⊑ r whose

right-hand side is composition of role names). They proved that the subsumption problem remains

tractable when adding these constructors. Additionally, they demonstrated that the extension of EL

with any standard DL constructor not present in EL++ leads to the intractability of the subsumption

problem. They used the term CBox to represent an EL++ constraint box which is defined as a finite

set of GCIs and role inclusions (RIs). After normalizing CBox C, the algorithm computes mappings

S and R which satisfies two invariants: (i) B ∈ S(A) implies A ⊑C B, and (ii) (A,B) ∈ R(r)

implies A ⊑C ∃r.B. Then the sets S(A) and R(r) are extended by applying completion rules.

They also proved that once the completion algorithm has terminated, all subsumption relationships

between concept names occurring in C can be determined.

EL++ is further extended in [3] with reflexive roles (i.e., role inclusions of the form ε ⊑ r)

and range restrictions. They impose a restriction on the structure of TBoxes in order to avoid

intractability. To apply the subsumption algorithm for the original version of EL++, they first

converted TBoxes into a normal form and after that they eliminated the range restrictions. They

also proved that range restrictions can be eliminated in quadratic time without loss of any (non)-

subsumption. This extended version of EL++ allows for the capture of additional ontologies, such

as certain versions of the thesaurus of the US National Cancer Institute (NCI)4.

2.3.3 Tableau-based Reasoning vs. Consequence-based Reasoning

Tableau-based and consequence-based methods are two well-known approaches to reasoning

in DLs. Tableau-based methods work by building a counter model to test entailments. Whereas,

consequence-based methods work by computing all possible logical consequences of axioms in

the ontology using inference rules. Historically, consequence-based methods have been applied

to lightweight DLs, most prominently, the EL family [11, 2, 3], for which they are more efficient

4https://www.cancer.gov/
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than tableau, both theoretically and practically. However, consequence-based reasoning procedures

become incomplete if the ontology is extended with axioms that use features of more expressive

Description Logics, e.g., disjunctions. On the other hand, tableau-based methods are mostly used

for very expressive fragments of the DL family because reasoning in expressive logics requires

various forms of case analysis and tableau can handle cases via backtracking, whereas, designing

inference rule systems has not been easy. The tableau algorithms are also easier to extend to new

constructors because they follow more closely their semantics.

However, as discussed earlier, a fundamental reasoning problem in applications of DLs is to

determine the subsumption i.e., whether each instance of a concept C is also an instance of a

concept D in all models of an ontology. For expressive DLs, this problem has a high worst-case

complexity. Tableau-based algorithms construct a finite representation of a canonical model of the

ontology in order to test subsumption. In some cases, these algorithms construct very large model

representations, which is a source of performance problems. Therefore, the performance of such

algorithms is relatively brittle and there are some ontologies (e.g., GALEN5, SNOMED CT6) that

none of these algorithms is able to process.

In order to provide the more robust performance of reasoning and to make reasoning easy, one

can reduce language expressivity. However, the expressive power of the DL must be restricted in

an appropriate way so that it can express the important notions of the application domain.

It is also investigated to combine different reasoning techniques in order to improve the expres-

sive power of DL and to provide efficient reasoning services at the same time. For that purpose,

an approach for tightly coupling tableau-based and consequence-based saturation procedures is

proposed in [69]. This approach is implemented in the OWL DL reasoner Konclude [72] and eval-

uation shows that this combination significantly improves the reasoning performance on a wide

range of ontologies.

5http://www.opengalen.org/
6http://www.ihtsdo.org/snomed-ct
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Table 2.3: The worst-case complexity of reasoning in DL Languages

DL Languages
KB Consistency
(General TBox)

Finite model
property

Tree model
property

EL PTime-complete Yes Yes
ALC ExpTime-complete Yes Yes
SHIQ ExpTime-complete No No
SHOQ ExpTime-complete Yes No
SHOI ExpTime-complete - No
SHOIQ NExpTime-complete No No

2.3.4 Complexity of Reasoning

Description logic reasoning complexity increases with the expressivity of the DL language.

There are also two important properties, finite model property and tree model property, that repre-

sent important characteristics of DL that significantly speed up the reasoning.

Definition 22. (Finite model property) DL has a finite model property if the consistent knowledge

base K = (T ,A) has a model I where ∆I is a finite set (called finite model).

Definition 23. (Tree model property) DL has a tree model property if a concept C is satisfiable

w.r.t. the knowledge base K = (T ,A), and K has a tree-shaped model I whose root belongs to

CI .

Most expressive Description Logics (DLs) do not enjoy the finite model property and tree

model property. Therefore, there is always a trade-off between the complexity and expressivity

of the DL language. The goal is that DL should be sufficiently expressive, and reasoning should

be decidable with an acceptable run-time behaviour and complexity. However, contemporary im-

plementations of DLs exhibit reasonable runtime behavior on real-world problems, even though

reasoning in these DLs is ExpTime-complete. The worst-case complexity of reasoning in DL

Languages is shown in Table 2.3.
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2.4 The Algebraic Method

Algebraic reasoning was initially introduced in [54] for set description languages. Later, in

[55], they investigated how the concept subsumption and the consistency problem can be reduced

to equation-solving problems.

2.4.1 Atomic Decomposition

The atomic decomposition technique for reasoning about sets was first proposed in [54]. The

atomic decomposition technique encodes the numerical restrictions on concepts and role fillers

into inequalities. These inequalities are then solved to decide the satisfiability of the numerical

restrictions. Suppose we have a finite set of sets, S = {s1, ..., sn}, the atomic decomposition

considers all possible ways to decompose S into mutually disjoint atomic sets.

For example, assume we want to translate the following numerical restrictions into arithmetic

inequalities (adapted from [54]):

≤ 3hasSon⊓ ≤ 3hasDaughter⊓ ≥ 5hasChild (6)

here, hasSon ⊑ hasChild and hasDaughter ⊑ hasChild and S = {hasChild, hasSon, hasDaughter},

for short S = {c, s, d}. In the case of the entailment in 6, the atomic decomposition operates on

sets of hasSon-fillers, hasDaughter-fillers, and hasChild-fillers, represented using arbitrarily

overlapping sets Son, Daughter, Children, respectively. Consequently, a partitioningD is estab-

lished, encompassing all subsets of S except the empty set, as illustrated in Figure 2.6, therefore,

D = {{c}, {s}, {d}, {cs}, {cd}, {sd}, {csd}}

The partitions for this set of restrictions can be defined using set conjunctions and complement

operations, as:
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Figure 2.6: Atomic Decomposition on S = {hasChild, hasSon, hasDaughter}

c = children ∩ ¬son ∩ ¬daughter

s = ¬children ∩ son ∩ ¬daughter

d = ¬children ∩ ¬son ∩ daughter

cs = children ∩ son ∩ ¬daughter

cd = children ∩ ¬son ∩ daughter

sd = ¬children ∩ son ∩ daughter

csd = children ∩ son ∩ daughter

Since the decomposed subsets are mutually disjoint, we can encode these numerical restrictions

into the following inequalities:

≤ 3hasSon =⇒ s+ cs+ sd+ csd ≤ 3

≤ 3hasDaughter =⇒ d+ cd+ sd+ csd ≤ 3

≥ 5hasChild =⇒ c+ cs+ cd+ csd ≥ 5

2.4.2 Integer Linear Programming

Linear Programming (LP) is the study of determining the minimum (or maximum) value of a

linear function f(x1, x2, ..., xn) subject to a finite number of linear constraints. These constraints

consist of linear inequalities involving variables x1, x2, ..., xn [13].
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Definition 24. (Linear Function) If c1, c2, ..., cn are real numbers, then the function f of real

variables x1, x2, ..., xn defined by

f(x1, x2, ..., xn) = c1x1 + c2x2 + ...+ cnxn =
n∑

j=1

cjxj

is called a linear function.

Definition 25. (Linear Constraints) If f is a linear function and if b is a real number, then the

equation

f(x1, x2, ..., xn) = b

is called a linear equation and the inequalities

f(x1, x2, ..., xn) ≤ b

f(x1, x2, ..., xn) ≥ b

are called linear inequalities. Linear equations and linear inequalities both are called linear con-

straints.

We call f the objective function which must be either minimized or maximized. A linear

program is called a maximization linear program if we are to maximize the objective function,

whereas it is called a minimization linear program if we are to minimize the objective function.

Linear programs can be written under the standard form:

Maximize
n∑

j=1

cjxj (7)

Subject to

n∑
j=1

aijxj ≤ b (i = 1, 2, ...,m) (8)

aij ∈ R, xj ≥ 0 (j = 1, 2, ..., n) (9)
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All constraints are linear inequalities and all variables are non-negative. The variables xj are

referred to as decision variables. A n-tuple (x1, ..., xn) satisfying the constraints of a linear pro-

gram is a feasible solution for this problem. A solution that maximizes the objective function of

the problem is called an optimal solution.

If all of the variables are required to have integer values, then the problem is called Integer

Programming (IP) or Integer Linear Programming (ILP).

The Simplex method, proposed by G. B. Dantzig [17], is one of the most frequently used meth-

ods to solve LP problems. The simplex algorithm takes as input a linear program and returns an

optimal solution by traversing the boundary of the feasibility space. Although LP is known to be

solvable in polynomial time [48], the simplex method can behave exponentially for certain prob-

lems. Karmarkar’s algorithm [44] is the first efficient polynomial time method for solving a linear

program. In contrast to the simplex method, Karmarkar’s algorithm finds an optimal solution by

traversing the interior of the feasibility space. However, all these approaches are not sufficiently ef-

ficient in solving problems with a huge number of variables. Therefore, decomposition techniques

were considered to address such challenges.

2.4.3 Column Generation

The column generation technique is used to solve problems with a huge number of variables

in order to either find an optimal integer solution or to detect their infeasibility. The column gen-

eration method was first proposed in the context of a multi-commodity network flow problem by

Ford and Fulkerson [27]. Afterward, Dantzig and Wolfe adapted the column generation technique

for solving LP problems and proposed an algorithm called Dantzig–Wolfe decomposition [18].

They proposed the idea of decomposing a large LP into the master problem and the subproblem.

This technique was then implemented by Gilmore and Gomory [29, 30] to solve the cutting stock

problem.

The column generation method is based on the concept of duality. According to the duality

principle, optimization problems can be viewed from two perspectives, (a) the primal problem and
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(b) the dual problem. For example, LP (7) - (9) is a primal problem and its dual problem is (10) -

(12), where yi is a vector of dual variables associated with constraints (8):

Minimize
m∑
i=1

biyi (10)

Subject to

m∑
i=1

aijyj ≥ cj (j = 1, 2, ..., n) (11)

yi ≥ 0 (i = 1, 2, ...,m) (12)

If LP has an optimal solution, and the objective value of dual is the same as the primal, then

it is a strong duality. Conversely, it is considered weak duality if the objective value of the dual

problem at any feasible solution is greater than or equal to the objective value of the primal.

One can explain the duality theory using the concept of columns, where xj is a decision variable

and its associated column, and cj is the cost of column j.

If for LP (7) - (9) the number of variables n is much larger than the number of constraints

m, then the column generation method works with a subset of variables n′ ⊆ n and builds the

Restricted Master Problem (RMP). The column generation method works in the following steps:

1. Start with a small set of columns (RMP)

2. Solve RMP in order to obtain the current optimal objective function value x̄ and dual values

associated with its constraints.

3. Use these dual values to provide prices to the subproblem called pricing problem (PP) and

solve PP to identify the column with negative reduced cost.

4. Check if the cost is greater or equal to 0. If yes, then x̄ cannot be improved, therefore,

terminate the process. Otherwise, add a new column in RMP and go to step 2.
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2.4.4 Branch-and-bound algorithm

The branch-and-bound framework [19] is mostly used for designing the algorithms for a large

class of integer programs. This method is based on the column generation technique and it de-

composes the total set of feasible solutions into smaller subsets. These smaller subsets are then

evaluated until the optimal solution is found. Mostly it is in the form of a decision tree where the

leaves of this tree represent all possible solutions. In order to find the optimal solution (i.e. one of

the leaves) the following steps are followed:

1. Make a series of decisions and find the feasible solution x̂ and the objective value v̂ and set

them as the benchmark.

2. Initially make the root node active.

3. Select an active node i and find the optimal solution xi and the objective vi by LP relaxation

of Problemi

4. Check the following cases:

(a) If vi ≤ v̂ then prune node i

(b) If vi > v̂ and xi is feasible, then replace x̂ with xi and mark the nodes of a subtree of

node i as active.

(c) If vi > v̂ and xi is not feasible, then prune node i

5. If there are any active nodes then got to step 3. Otherwise, x̂ is the optimal solution.

2.4.5 Branch-and-price algorithm

The column generation technique may not necessarily give an integral solution for an LP re-

laxation and applying a standard branch-and-bound method to RMP with its existing columns will

not guarantee an optimal or feasible solution. It is also possible that after branching, there exists

a column that would price out favorably but is not present in the master problem. Therefore, it
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is necessary to generate columns after branching in order to find the optimal solution. Hence,

Barnhart et al. [8] proposed a branch-and-price method that is a hybrid of column generation and

the branch-and-bound method. The branch-and-price algorithm begins by formulating the master

problem by using Dantzig–Wolfe decomposition [18]. The algorithm then considers a subset of

columns to get the restricted master problem (RMP) and follows the following steps:

1. Build the restricted master problem (RMP).

2. Solve relaxation of RMP and get dual values for a subproblem called the pricing problem

(PP).

3. Solve PP to find the column with negative reduced cost.

4. Check the following cases:

(a) If a column is found, add such a column to RMP and go to step 1

(b) If a column is not found, check the solution:

i. if integral, terminate

ii. if not integral, branch and go to step 2
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Chapter 3

DL Reasoning with Nominals, Inverse Roles

and QCRs

Most DL reasoners supporting SHOIQ (DL with nominals, inverse roles and QCRs) are based

on a tableau calculus. These reasoners implemented a wide range of optimization techniques to

make reasoning services more efficient. As the numerical restrictions imposed by nominals are

global and nominals also introduce non-determinism (discussed in Section 2.2), we need enhanced

optimization techniques to handle them. Moreover, nominals’ interaction with inverse roles and

QCRs makes it even more complex. In section 3.1, we discuss tableau-based reasoning for DL

SHOIQ in more detail. Section 3.2 provides an overview of some state-of-the-art optimization

techniques. The remaining sections of this chapter discuss some existing DL reasoners.

3.1 Tableau-based Reasoning for Expressive DLs

Tableau algorithms have been extended in many ways for handling the semantics of more ex-

pressive DL constructs. Some new completion rules were introduced for handling QCRs, transitive

roles and nominals.
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Nominal Nodes and Blockable Nodes:

When handling nominals, it is crucial for the algorithm to differentiate between nominal nodes

and blockable nodes. A node x is a nominal node if its label contains a nominal. Whereas, all other

nodes are considered as blockable nodes. This distinction is necessary to preserve the semantics

of nominals while applying expansion rules or blocking strategies. For instance, if a nominal node

and a blockable node are needed to be merged in order to satisfy an at-most restriction, then for

preserving nominal semantics, a blockable node must be merged with a nominal node. A nominal

node is added corresponding to every nominal in the domain knowledge.

Blocking for DL SHOIQ:

In the presence of functional restrictions or QCRs along with the inverse roles, subset and

equality blocking are not sufficient. Therefore, pairwise blocking has been proposed in [39]. In

this blocking technique, blocks are established between pairs of nodes connected by the same role:

a node x is blocked by a node y if x has ancestors x′, y and y′, and the following conditions are

satisfied:

1. x has a predecessor x′ and y has a predecessor y′,

2. x, y and all the nodes on the path from y to x are blockable,

3. the labels of x, y are equal such that L(x) = L(y),

4. the labels of their predecessors x′ and y′ are equal such that L(x′) = L(y′), and

5. the labels of the edges connecting x′ to x and y′ to y are equal such that L(⟨x′, x⟩) =

L(⟨y′, y⟩).

3.1.1 The Expansion Rules for DL SHOIQ:

In the preceding chapter, tableau expansion rules for the fundamental Description Logic (ALC)

have been outlined. To accommodate additional constructors, extending ALC to SHOIQ, the
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expansion rules need to be augmented. Therefore, the expansion rules depicted in Figure 2.2 are

extended with additional rules to handle more expressive DL constructs. Figure 3.1 illustrates these

additional expansion rules presented by [41].

The ∀+-Rule handles the transitive roles. The ≥-Rule and ≤-Rule ensure that at-least and at-

most restrictions are satisfied. For example, for a concept ≥ nR.C ∈ L(x), if there are not n safe

R-neighbours of x, then the ≥-Rule creates them with C in their label. An R-neighbour y of a

node x is safe if either x is blockable or if y is not blocked and x is a nominal node. Moreover, the

≥-Rule makes these new nodes disjoint in order to prevent them from merging.

On the other hand, if ≤ nR.C ∈ L(x) and there are more than n R-neighbours of x with C

in their label, then the ≤-Rule nondeterministically merges R-neighbours of x for satisfying the

at-most number allowed by the restriction. The function Merge(z, y) merges a node z into a node

y by

1. adding the label of z to the label of y, i.e., L(y) = L(y) ∪ L(z),

2. moving all edges leading to z so that they lead to y. For instance, for all the nodes x such

that (x, z) ∈ E

(a) if {(y, x), (x, y)} ∩ E = ∅, then add (x, y) to E and set L(x, y) = L(x, z),

(b) if (x, y) ∈ E, then set L(x, y) = L(x, y) ∪ L(x, z),

(c) if (y, x) ∈ E, then set L(y, x) = L(y, x) ∪ {R− | R ∈ L(x, z)},

(d) remove edge (x, z) from E;

3. moving all edges leading from z to nominal nodes so that they lead from y to the same

nominal nodes. For instance, for all nominal nodes x such that (z, x) ∈ E

(a) if {(y, x), (x, y)} ∩ E = ∅, then add (y, x) to E and set L(y, x) = L(z, x),

(b) if (y, x) ∈ E, then set L(y, x) = L(y, x) ∪ L(z, x),

(c) if (x, y) ∈ E, then set L(x, y) = L(x, y) ∪ {R− | R ∈ L(z, x)},
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∀+-Rule if ∀S.C ∈ L(x) and there exist U,R with R ∈ NR+ and U ⊑∗ R, R ⊑∗ S,
and a node y with U ∈ L(x, y) and ∀R.C /∈ L(y)
then set L(y) = L(y) ∪ {∀R.C}

≥-Rule if ≥ nR.C ∈ L(x) , x is not blocked and there are not n safe R-neighbours
y1, ..., yn of x with C ∈ L(yi) and yi ̸= yj for 1 ≤ i < j ≤ n
then create n node y1, ..., yn and set L(yi) = {C}, L(x, yi) = {R} , and
yi ̸= yj for 1 ≤ i < j ≤ n

≤-Rule if ≤ nR.C ∈ L(x) , x is not blocked and there are m safe R-neighbours
y1, ..., ym of x with C ∈ L(yi) and m ≥ n for 1 ≤ i ≤ m,
and there are two R-neighbours yi and yj of x with C ∈ L(yi) ∩ L(yj) and
yi ̸= yj for 1 ≤ i < j ≤ m
then

1. if yi is a nominal node, then Merge(yj, yi)

2. else if yj is a nominal node or an ancestor of yi, then Merge(yi, yj)

3. else Merge(yj, yi)

ch-Rule if ≤ nR.C ∈ L(x), and there is an R-neighbours y of x with
{C,¬C} ∩ L(y) = ∅
then set L(y) = L(y) ∪ {C,¬C}

o-Rule if for some o ∈ No there are nodes x, y with o ∈ L(x) ∩ L(y), x ̸= y
then

1. if x is an initial node, then Merge(y, x) ,

2. else Merge(x, y)

NN -Rule if ≤ nR.C ∈ L(x), o ∈ L(x) for some o ∈ No, and there exists a blockable
R-predecessor y of x such that C ∈ L(y)
then

1. guess m with 1 ≤ m ≤ n and set L(x) = L(x) ∪ {(≤ mR.C)}
2. create m new nodes z1, ..., zm with L(x, zi) = {R}, L(zi) = {C, oi}

with oi ∈ No new in G, and zi ̸= zj for 1 ≤ i < j ≤ m.

≤o-Rule if
1. ≤ nR.C ∈ L(x), o ∈ L(x) for some o ∈ No, and there exists a

blockable R-neighbour y of x such that C ∈ L(y),
2. there exist m nominal R-neighbour z1, ..., zm of x such that C ∈ L(zi)

and zi ̸= zj for all 1 ≤ i < j ≤ m, and

3. there is a nominal R-neighbour z of x such that C ∈ L(z)
then Merge(y, z)

Figure 3.1: The tableau expansion rules for handling the semantics of the added constructors ex-
tending ALC to SHOIQ
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(d) remove edge (z, x) from E;

4. removing z and blockable sub-tree of z.

In the case when ≤ nR.C ∈ L(x), it is necessary to know how many R-neighbours of x have C

and how many have ¬C in their label. Due to the open world assumption in description logics, the

ch-Rule nondeterministically adds C or ¬C in the label of every R-neighbour of x. It ensures the

soundness and completeness of the algorithm. However, since this semantic branching is achieved

using a nondeterministic way, it can be a major source of inefficiency in most reasoners. For

instance, if ≤ nR.C ∈ L(x) and there are m R-neighbours of x, the application of ch-Rule opens

2m branches in the search space in order to add C or ¬C to the label of m R-neighbours of x.

As nominals are interpreted as singletons, the o-rule ensures this semantics and immediately

merges two nodes having the same nominal in their label. Due to this merging, the blockable part

of the graph can be non-tree shaped because a blockable predecessor of a nominal node can be

merged with another blockable neighbor.

To avoid this situation, the NN -Rule and the ≤o-Rule are proposed. The termination of the

algorithm in the presence of inverse roles, nominal nodes, and number restrictions is guaranteed by

fixing the upper bound on the number of nominal nodes and by using standard blocking technique

(pairwise blocking) for blockable nodes.

The NN -Rule guesses the exact number of new nominal nodes, for example if≤ nR.C ∈ L(x)

where x is a nominal node, the NN -Rule nondeterministically creates m new nominal nodes with

1 ≤ m ≤ n and C in their label. It also ensures that all of these m new nominal nodes are pairwise

disjoint, preventing them from being merged with each other.

After that, the ≤o-rule merges the blockable R-neighbour of x with one of the nominal nodes

for satisfying the at-most restriction ≤ nR.C ∈ L(x). Therefore, the NN -Rule and the ≤o-Rule

together ensure that the completion graph for the blockable part remains tree-shaped.
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3.2 Optimization Techniques

DL reasoners with naive implementations of tableau decision procedures often exhibit poor

performance in practice, as the nondeterministic expansion rules can create a very large search

space. Therefore, the reasoners are equipped with a set of optimization techniques in order to

achieve a reasonable run-time behaviour on real-world problems.

The optimization techniques are mostly categorized as preprocessing optimizations and con-

sistency checking optimizations.

3.2.1 Preprocessing Optimizations

Preprocessing optimization techniques are used to rewrite and reformulate parts of the knowl-

edge base in order to improve reasoning performance. In the following sections, we discuss some

most common preprocessing optimizations.

3.2.1.1 Lexical normalization and simplification

In order to detect a clash quickly, concept expressions are transformed into their lexically equiv-

alent expressions. For example, the lexically normalized form of ∃R.C is ¬∀R.¬C. If a node x

has a label L(x) = {∃R.(A⊓¬B⊓C),∀R.(¬A⊔B⊔¬C)}, where A, B and C are concept names.

The algorithm creates an R-successor y of x and adds concepts A, B, C ¬A, ¬B and ¬D in a label

of y in order to detect the inconsistency. On the other hand, by representing ∃R.(A ⊓ ¬B ⊓ C)

as ¬∀R.(¬A ⊔ B ⊔ ¬C), the algorithm can detect a clash quickly in the label of x. This type

of lexical normalization technique is widely used along with other simplification techniques that

enable faster clash detection. Simplification helps in eliminating redundancy. Figure 3.2 shows

some normalization and simplification rules [43].
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Concept Expression Normalization Concept Expression Simplification
⊥ ¬⊤ ∀R.⊤ ⊤
∃R.C ¬∀R.¬C C ⊓ ⊤ C
C ⊔D ¬(¬C ⊓ ¬D) C ⊓ ¬⊤ ¬⊤
¬¬C C C ⊓ ¬C ¬⊤

Figure 3.2: Lexical normalization and simplification

General concept inclusion axioms Primitive definition axioms
C1 ⊓ C2 ⊑ D C1 ⊑ D ⊔ ¬C2

C1 ⊔ C2 ⊑ D C1 ⊑ D and C2 ⊑ D
C ⊑ D1 ⊓D2 C ⊑ D1 and C ⊑ D2

Figure 3.3: Axiom equivalences used in absorption

3.2.1.2 Absorption

Absorption is an optimization technique that tries to eliminate general concept inclusion (GCI)

axioms in order to reduce non-determinism.

Concept Absorption

The idea of the concept absorption is presented in [43]. The basic idea is that a GCI axiom of

the form C ⊑ D, where C is not a concept name, can be absorbed into an equivalent primitive

definition axiom A ⊑ D′, where A is a concept name and D′ is a concept expression. Some axiom

equivalences are shown in Figure 3.3. Similarly, if there is an existing primitive definition axiom

A ⊑ C ′, then that axiom could be merged with A ⊑ D′. Then this would become A ⊑ C ′ ⊓D′.

Role Absorption

The domain and range constraints on roles are typically supported by ontology languages. The

domain constraint Domain(R,C) defines that if an individual x is an R-neighbour of y, then x must

be an instance of concept C (that is the domain of R). Whereas, the range constraint Range(R,C)

defines that if an individual x is an R-neighbour of y, then y must be an instance of concept C (that

is the domain of R).
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domain-Rule if there exists Domain(R,C), x is not blocked, and there is an
R-neighbour y of x with C /∈ L(x)
then set L(x) = L(x) ∪ {C}

range-Rule if there exists Range(R,C), x is not blocked, and there is an
R-neighbour y of x with C /∈ L(y)
then set L(y) = L(y) ∪ {C}

Figure 3.4: Basic Role Absorption Rules

These domain and range constraints can be transformed into the GCIs ∃R.⊤ ⊑ C and ⊤ ⊑

∀R.C respectively. As discussed earlier, GCIs are the one of the main sources of inefficiency in the

reasoning services, these constraints are handled by using the role absorption technique presented

in [73]. They introduced two types of role absorptions: basic and extended role absorptions.

In the basic role absorption, the domain and range constraints are handled by using two new

rules as shown in Figure 3.4. In the case of Domain(R,C), if there exists a node x with an R-

neighbour y and C /∈ L(x), then the algorithm will add C to the label of x. Similarly, in case of

Range(R,C), if there exists a node x with an R-neighbour y and C /∈ L(y), then the algorithm

will add C to the label of y.

The extended role absorption deals with a wider range of axioms. They used rewriting tech-

niques similar to the ones used in concept absorption, for example, an axiom ∃R.C ⊑ D can be

rewritten as ∃R.⊤ ⊑ D⊔¬(∃R.C) which can be absorbed into a domain constraint Domain(R,D⊔

¬(∃R.C)). Similarly, an axiom D ⊑ ∀R.C can be rewritten as ∃R.⊤ ⊑ ¬D ⊔ ¬(∃R.¬C) which

can be absorbed into a domain constraint Domain(R,¬D ⊔ ¬(∃R.¬C)). After that, the basic role

absorption technique rules can be used to handle these constraints.

3.2.1.3 Nominal Absorption

Nominals can be defined with the hasValue and the oneOf constructors (as discussed in the

previous chapter). The idea of absorption was extended for both of these constructors and presented

in [67]. These absorption techniques are discussed below.
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≡nom-Rule if A ≡ {a1, ..., an} with a1, ..., an ∈ No, atomic concept A,
then replace it with A ⊑ {a1, ..., an} and a1 : A, ..., an : A

∃nom-Rule if ∃R.{o} ⊑ A with with o ∈ No

then replace it with {o} ⊑ ∀R−.A

Figure 3.5: Nominal Absorption Rules for tableau algorithms

OneOf Absorption

Nominals can be used for defining concepts by finite enumeration of its elements, e.g., we can

define the major rose colours as:

RoseColour ≡ {red, white, yellow, pink} (13)

Nominal absorption transforms these definitions into a primitive definition1 and a set of Abox

assertions. For example, Axiom (13) is logically equivalent to a Tbox Axiom and a set of Abox

Assertions in (14).

⎧⎪⎪⎨⎪⎪⎩
RoseColour ⊑ {red, white, yellow, pink}, and

red : RoseColour and ... and pink : RoseColour

(14)

HasValue Absorption

Nominals are also used for defining concepts in terms of existential restrictions on a nominal,

e.g., we can define that the RedRose is a type of Rose that has red colour:

RedRose ≡ Rose ⊓ ∃hasColour.{red} (15)

1A ⊑ B is a primitive concept definition when the left-hand side is an atomic concept.

44



Considering that there are other inclusion axioms in the ontology with the concept RedRose in its

left-hand side, Axiom (15) is transformed into Axiom (16) and Axiom (17).

RedRose ⊑ Rose ⊓ ∃hasColour.{red} (16)

Rose ⊓ ∃hasColour.{red} ⊑ RedRose (17)

Therefore, we are again left with the GCI axiom (i.e., Axiom 17). However, nominal absorption

transforms Axiom (17) into Axiom (18), which is equivalent to an Abox assertion, as proved in

[67].

{red} ⊑ ∀hasColour−.(RedRose ⊔ ¬Rose) (18)

These two rules are defined in Figure 3.5.

3.2.2 Consistency checking optimizations

For consistency checking, the algorithm needs to construct the model (i.e., completion graph).

To make this task more efficient, some optimization techniques are employed by many reasoners.

We will briefly explain some of the most relevant techniques that significantly improve reasoning

performance for real-world ontologies.

3.2.2.1 Lazy Unfolding

As discussed in the previous chapter, Tbox axioms are mostly in the form C ⊑ D (called

general concept inclusion (GCI) axioms) or A ≡ D (called definitional axioms). A Tbox that

contains GCIs is called general. A Tbox can be internalized into a concept that is added to each

node label in order to ensure that each node of the completion graph satisfies all axioms of the
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⊑1-Rule if A ∈ L(x), A ⊑ B with atomic concept A, B /∈ L(x), and x is not blocked,
then set L(x) = L(x) ∪ {B}

⊑2-Rule if {A1, A2} ⊆ L(x), A1 ⊓ A2 ⊑ B with Ai atomic concepts, B /∈ L(x), and
x is not blocked,
then set L(x) = L(x) ∪ {B}

Figure 3.6: Lazy unfolding rules for tableau algorithms

Tbox. For example, if a Tbox T contains the following axioms:

A ⊑ ∃R.(C ⊓D) (19)

A ⊓B ⊑ ∃R.C (20)

then we can internalize them into a single axiom⊤ ⊑ CT such that CT :=
d

C⊑D∈T nnf (¬C⊔D),

where nnf transforms a given concept expression to its negation normal form. Therefore, here

CT := ((¬A ⊔ ∃R.(C ⊓D) ⊓ (¬A ⊔ ¬B ⊔ ∃R.C))

In each node label we add axiom ⊤ ⊑ CT . Since it introduces a large number of disjunctions in

each node label, we possibly require several nondeterministic choices and backtracking in case of

clashes. Therefore, the idea of lazy unfolding was first introduced in [4] and it was further refined

for general Tboxes in [38].

Lazy unfolding rules, as shown in Figure 3.6, are introduced to reduce the number of GCIs in

the Tbox. For Axiom (19), where A is an atomic concept, the⊑1-Rule adds ∃R.(C ⊓D) in a node

label if A is satisfied at that node. Similarly, for Axiom (20), the ⊑2-Rule adds ∃R.C in a node

label if both A and B exist at that node. Therefore, we do not need to internalize axioms of the

form A ⊑ B or A1 ⊓ A2 ⊑ B and that significantly reduces the non-determinism.

Moreover, instead of fully unfolding the concept expressions in the beginning, lazy unfolding

delays them until it is required. This way a lot of unnecessary unfolding can be avoided. This

method is more efficient, especially in case of large and complex concept expressions. For ex-

ample, in order to test the satisfiability of an expression ∃R.C ⊓ ∀R.¬C, where C is a concept
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expression, the unfolding of C can be delayed until the algorithm creates an R-successor y with

L(y) = {C,¬C}. The algorithm easily detects a contradiction without unfolding C which saves a

lot of wasted work.

3.2.2.2 Dependency Directed Backtracking

Dependency directed backtracking (DDB) is a widely used optimization technique that avoids

unproductive backtracking search by preventing the evaluation of irrelevant nondeterministic al-

ternatives.

For example, suppose there is a node x with a label

L(x) = {≤ 1R.⊤ ⊔ ∀R.¬B,C1 ⊔D1, ..., Cn ⊔Dn,≥ 2R.(A ⊓B)}

and the concepts in the label of x are processed in the same order as shown above. Therefore, from

the first disjunction ≤ 1R.⊤ ⊔ ∀R.¬B, the algorithm nondeterministically selects ≤ 1R.⊤. After

that, the algorithm processes the remaining n disjunctions C1 ⊔D1, ..., Cn ⊔Dn and then in order

to satisfy ≥ 2R.(A ⊓ B), it tries to create 2 R-successors of x. But this results in a clash with the

disjunct ≤ 1R.⊤, chosen from the first disjunction. Now with simple backtracking (also known

as thrashing), the algorithm will also try to evaluate all irrelevant disjunctions C1 ⊔ D1, ..., Cn ⊔

Dn. This problem is handled by adapting the dependency directed backtracking technique called

backjumping [43].

The idea is to label each concept in the completion graph with a dependency set. As the initial

completion graph is deterministic, the dependency set of each concept is initialized with an empty

set. Afterwards, when a new concept is added by an expansion rule application, its dependency set

becomes a union of the dependency sets of the concepts that cause the application of that rule. For

example, a concept ≤ 1R.⊤ ⊔ ∀R.¬B has a dependency set D1 = {∅}, then after application of

the ⊔-Rule, a concept ≤ 1R.⊤ is added to the label with a dependency set D2 = {D1 ∪ 1}, here

1 is a dependency that is set for disjunction ≤ 1R.⊤ ⊔ ∀R.¬B. Similarly, the chosen concepts

from C1 ⊔D1, ..., Cn ⊔Dn are also labelled with the dependency sets. Now, in the case of a clash,
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the algorithm easily identifies the relevant nondeterministic decision and jumps back directly to

that decision, choosing the other option if available. For example, here a concept ≥ 2R.(A ⊓ B)

has a dependency set Dk = {∅}, and when the algorithm tries to create 2 R-successors of x with

A and B in their label, it detects a clash with ≤ 1R.⊤, having a dependency set D2. Therefore,

the resulting clash set is Dl = {D2 ∪ Dk}. Now instead of exploring the irrelevant disjunctions

C1 ⊔ D1, ..., Cn ⊔ Dn, the algorithm directly jumps back to a disjunction ≤ 1R.⊤ ⊔ ∀R.¬B and

chooses ∀R.¬B which also results in a clash. Since there is no other option left the algorithm

identifies this label as unsatisfiable.

3.2.2.3 Semantic Branching

Standard tableaux algorithms handle disjunction by using syntactic branching which is not

very efficient. In syntactic branching, each disjunct is added to search the different models. If a

disjunct is unsatisfiable, then there is nothing to prevent the algorithm from repeatedly adding that

disjunct in different branches. This problem is handled by using the semantic branching technique

[43]. Semantic branching can optimize the handling of nondeterministic alternatives by adding

the negation of an unsatisfiable disjunct. For example, from a disjunction A ⊔ B, if a disjunct

A is evaluated and found unsatisfiable, then A ⊔ (¬A ⊓ B) (that is semantically equivalent with

(A ⊔ B)) would be added to a node label to check the satisfiability. Therefore, this would prevent

the algorithm from reevaluation of an unsatisfiable disjunct in different branches. For example,

now if a disjunction A ⊔ C is added to the label of the same node, then the algorithm would

deterministically expand this disjunction by adding C to the node label.

However, semantic branching causes some additional overhead. For example, if ¬A is a very

large or complex concept, then its expansion might require applying many (potentially nondeter-

ministic) rules. Nevertheless, semantic branching is still considered more efficient than syntactic

branching in practice.
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3.2.2.4 Boolean constant propagation (BCP)

Boolean constraint propagation (BCP) [28] is a simplification technique that is useful for the

reduction of the search space resulting from the application of nondeterministic expansion rules.

Before the ⊔-Rule application, BCP deterministically expands disjunctions to the label of a node

by adding a disjunct if the negations of all other disjuncts are satisfied at the node. For example,

if a node label contains the concepts {A, (¬A⊔¬B), (¬A⊔B ⊔C)}, then BCP deterministically

expands the disjunction ¬A ⊔ ¬B and adds ¬B. After that for the disjunction ¬A ⊔ B ⊔ C, BCP

deterministically adds C to the label. BCP can also be used with syntactic branching, but it is more

effective if used with semantic branching [1].

3.2.2.5 Caching

It is possible that different nodes have identical labels in several completion graphs. This results

in repeated expansion of these identical concepts that can be avoided by using caching [43]. The

basic idea behind this technique is to store the labels of blockable nodes of complete and clash-

free completion graphs in a cache. If the algorithm encounters a node with an identical label to

one stored in the cache, it would block the expansion of that node, as it already knows that it

is satisfiable. However, this caching technique may not work properly in the presence of more

expressive DL constructs. Therefore, this technique is extended for inverse roles and nominals in

[53, 20, 34, 32, 70].

3.3 (Hyper-)Tableau Reasoners

Most state-of-the-art reasoners, such as RacerPro [36], Pellet [57], Fact++ [74], HermiT [66],

have implemented traditional tableau algorithms.

RacerPro [36] is a tableau-based reasoner for DL SHIQ and it was the first Abox reasoner for

a very expressive logic. RacerPro also implemented many standard optimization techniques for

Tbox and Abox reasoning. It was the first highly optimized reasoner that combined tableau-based
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reasoning with algebraic reasoning [37]. However, it does not handle nominals.

Pellet [57] supports all OWL DL constructs including nominals. It parses an OWL ontology

into RDF triples, which are then converted to Tbox axioms and Abox assertions. It also incor-

porates various optimization techniques such as absorption, lazy unfolding, dependency directed

backtracking, semantic branching and early blocking strategies (detailed descriptions of these op-

timizations can be found in [1]).

Fact++ [74] uses a ToDo list architecture to control the application of the expansion rules. The

ToDo list is implemented as priority queues in which it sorts entries in a specified order and returns

the first entry from the list. This ordering has a huge impact on reasoning performance and is good

for more complex tableaux algorithms. Fact++ includes some preprocessing optimizations, such

as: 1) Lexical normalization, simplification and synonym replacement for early clash detection. 2)

GCI absorption that tries to eliminate GCIs for reducing nondeterminism. 3) Told cycle elimination

for performance improvement. Fact++ also includes dependency-directed backtracking, boolean

constraint propagation and semantic branching.

Tableau reasoners try to construct a model for a knowledge base in order to perform consistency

tests. The two main sources of inefficiency in model construction are:

1. A large number of possible models which tableau reasoners must possibly explore in order

to show inconsistency/unsatisfiability.

2. These models can be extremely large even for small ontologies.

Both of these problems, non-determinism and large model size, are tried to be addressed in HermiT

[66] by using a hyper-tableau calculus. This calculus uses some additional absorption techniques

and tries to reduce the number of possible models. HermiT also limits the model size by using

the anywhere blocking strategy which improves reasoning performance on many complex and

difficult ontologies. They introduced three rules for handling nominals: the o-rule, NN -rule and

≤o-rule (shown in Figure ) [41]. The NN -rule application can be highly nondeterministic and it

can increase the model size. Therefore, in order to handle this inefficiency they tried to optimize
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the NN -rule and proposed the NI-rule in [52]. The NI-rule limits the number of new nominal

nodes that can be introduced to satisfy a number restriction. However, it is still nondeterministic

in choosing nominal nodes for merging.

Although these reasoners have implemented many optimization techniques, they still prove to

be highly inefficient in handling a large number of nominals and number restrictions.

3.4 Consequence-based Reasoners

CB methods are considered more efficient than tableau for lightweight DLs. However, CB

reasoning algorithms are also extended to more expressive DLs such as Horn-SHIQ [45], Horn-

SROIQ [56], ELQ [75] and SHOQ [77]. CB algorithms use a graph structure similar to a

(hyper-)tableau; however, they avoid constructing very large model representations like resolution-

based algorithms [2, 45, 46, 10] by deriving logical consequences.

The first consequence-based calculus for deciding concept subsumption in the DL SRIQ is

proposed in [10, 9]. They have implemented their calculus in a new reasoner called Sequoia.

CB reasoning algorithm for DL SHOI is proposed in [14] which supports nominals and in-

verse roles. This calculus is extended in [15] for supporting number restrictions. The calculus for

the logic SROIQ has been implemented as an extension of Sequoia [16].

The saturation-based algebraic reasoners for DL ELQ [75] combine saturation rules with al-

gebraic reasoning based on Integer Linear Programming (ILP). Similarly, the CB SHOQ [77]

combines CB reasoning with algebraic reasoning based on ILP. However, the former does not

support nominals and inverse roles, and the latter does not handle inverse roles.
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3.5 Hybrid of Tableau reasoning and Consequence-based pro-

cedures

Konclude [72] is a highly efficient reasoner for DL SROIQV which extends SROIQ with

nominal schemas [49]. Konclude is primarily based on tableau calculus but also incorporates

consequence-based reasoning [69]. It uses several new optimization techniques along with stan-

dard optimizations.

There are three main stages for handling reasoning requests: parsing, loading, and reasoning.

The parsing stage includes parsing of ontology and queries. In the loading stage, it loads an on-

tology, builds its internal representation and preprocesses axioms. The reasoning stage is the main

stage that includes all major reasoning tasks such as consistency tests and ontology classification.

As consequence-based reasoning is more efficient for lightweight DLs, Konclude utilizes a sat-

uration procedure to process only those parts of knowledge bases that can easily and efficiently

be handled. Afterwards, it detects the parts that are not completely handled by the saturation and

uses tableau procedures to process them. For an easy coupling with tableau procedures, the satura-

tion procedure works on the same data structures and knowledge bases as the tableau algorithms.

Therefore, this makes it easy to use the node labels from the saturation directly in the tableau

algorithm.

Konclude also supports parallel processing at several levels of its processing architecture. Par-

allelization is applied to the tableau procedure and for deriving consequences for the individuals.

However, it is not applied to the saturation of Tbox related parts and other preprocessing and

precomputation steps.

Konclude incorporated many standard optimizations including lazy unfolding, semantic branch-

ing, dependency directed backtracking, boolean constant propagation, anywhere blocking, and

caching of satisfiability status. It also implemented some new optimization techniques such as

absorption-based handling of nominal schemas [68], pool-based merging [71], and known/possi-

ble set classification and realization approach [31].
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3.6 Algebraic Reasoners

A hybrid tableau algorithm for DL SHQ is proposed in [26] which extends the basic de-

scription logic ALC with role hierarchies, transitive roles, and qualified number restrictions. The

algorithm uses an atomic decomposition technique to encode number restrictions into a set of in-

equalities. Then this set of inequalities is processed by an inequality solver based on integer linear

programming. The inequality solver tries to find a minimal non-negative integer solution satisfying

the inequalities or returns a clash if no solution exists. Since all numerical restrictions imposed by

at-least and at-most restrictions are satisfied by this solution, the algorithm creates only one proxy

individual, which represents a set of role fillers. Moreover, the algorithm does not satisfy any at-

least restriction by violating any at-most restriction because all the information about arithmetic

expressions is collected before creating any role filler. Therefore, no extra mechanism is required

for merging role fillers. The algorithm proceeds in three steps: (i) preprocessing of Abox and

Tbox, (ii) atomic decomposition of role fillers, and (iii) applying completion rules.

The algebraic reasoner for DL SHIQ, proposed in [58], handles the interaction between in-

verse roles and number restrictions by driving inequalities. These inequalities are then solved by

using the Simplex method [17]. The semantics of inverse roles are preserved as numerical restric-

tions. For example, there is a node x with≥ 1R.C and an R-successor y with L(y)← C is created

to satisfy this at least restriction. Since R ∈ L(x, y), an implied back edge R− ∈ L(y, x) is also

imposed. Therefore, to preserve the semantics of this edge, the algorithm adds a set of number

restrictions {≥ 1R−
yx,≤ 1R−

yx} to the label of node y.

The interaction between nominals and number restrictions makes reasoning more complex.

For example, consider a small ontology that defines the European Union (EU) member states

using 28 mutually disjoint nominals, each representing a state {United Kingdom, Germany, Bel-

gium, France, Italy, Luxembourg, Netherlands, Bulgaria, Croatia, Cyprus, Czech Republic, Malta,

Poland, Portugal, Romania, Ireland, Latvia, Lithuania, Greece, Spain, Slovakia, Finland, Hun-

gary, Sweden, Denmark, Estonia, Slovakia, and Austria}. Additionally, there are Future EU mem-

bers that need to be related to at least 30 different EU member states (adapted from [22]). We can
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define it as:
EUMembers ≡ {UnitedKingdom,Germany, ...,Austria}

FutureEU ⊑≥ 30hasMember.EUMembers

Since a standard tableau algorithm first satisfies all at-least restrictions, it will create 30 anony-

mous mutually distinct individuals of EUMembers. After that it will try to merge them in order to

satisfy the implicit numeric restriction imposed by nominals which states that we can only have at

most 28 EUMembers. This merging is highly nondeterministic because the reasoner tries all possi-

ble choices of merging 30 anonymous individuals with 28 EUMembers which causes a significant

performance degradation. This problem is successfully addressed using algebraic reasoning in

[23, 22]. Since nominals carry cardinality restrictions, their semantics are also preserved as nu-

merical restrictions. Based on the nominals semantics ♯{o}I = 1 for each o ∈ No, the cardinality

of a partition element with a nominal o can only be equal to 1. This semantic is encoded into in-

equalities using a set ξ such that ξ({o},≥, 1) and ξ({o},≤, 1). These algebraic reasoners perform

very efficiently in handling huge values in number restrictions.

Integer programming has also been used in finite model reasoning [59, 50, 60].

However, to the best of our knowledge, no algebraic calculus can handle DLs supporting nom-

inals, inverse roles and number restrictions simultaneously.
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Chapter 4

An Algebraic Tableau Calculus for SHOIQ

As discussed earlier, the numerical restrictions imposed by nominals are global and their inter-

action with inverse roles and QCRs makes reasoning even more complex. Therefore, we need some

optimization techniques that can handle these numerical restrictions more efficiently. This chapter

demonstrates how algebraic reasoning is used for handling numerical restrictions. The algebraic

reasoning incorporates a branch-and-price technique with tableau-based reasoning. The algebraic

tableau algorithm either computes an optimal solution or detects infeasibility. This hybrid calcu-

lus reduces reasoning complexity that is caused by the interaction between QCRs, nominals and

inverse roles while maintaining soundness, completeness and termination. Section 4.3, provides

an overview of the reasoning process. The expansion rules for SHOIQ are presented in Section

4.3.2. In Section 4.3.1, we demonstrate how to use column generation and branch-and-price tech-

nique for generating inequalities. Section 4.4 provides the proof of correctness of the proposed

hybrid calculus.

4.1 A Tableau for SHOIQ

We define a tableau for DL SHOIQ based on the standard tableau for DL SHOIQ, intro-

duced in [41]. For convenience, we assume that all concept descriptions are in negation normal

form, i.e., the negation sign only appears in front of concept names (atomic concepts). A label is
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assigned to each node in the completion graph (CG) and that label is a subset of possible concept

expressions. We define clos(C) as the closure of a concept expression C.

Definition 26. (Closure) The closure clos(C) for a concept expression C is the smallest set of

concepts such that:

• C ∈ clos(C),

• ¬D ∈ clos(C) =⇒ D ∈ clos(C),

• (B ⊔D) ∈ clos(C) or (B ⊓D) ∈ clos(C) =⇒ B ∈ clos(C), D ∈ clos(C),

• ∀R.D ∈ clos(C) =⇒ D ∈ clos(C)

• ∃R.D ∈ clos(C) =⇒ D ∈ clos(C)

• ▷◁ nR.D ∈ clos(C) =⇒ D ∈ clos(C)

where B,D ∈ N , R ∈ NR and ▷◁ nR.D represents ≥ nR.D or ≤ nR.D. For a Tbox T , if

(C ⊑ D ∈ T ) or (C ≡ D ∈ T ) then clos(C) ⊆ clos(T ) and clos(D) ⊆ clos(T ). Similarly, for

an Abox A, if (a : C ∈ A) then clos(C) ⊆ clos(A).

Definition 27. (SHOIQ Tableau) If (T ,R) is a SHOIQ knowledge base w.r.t. Tbox T and

role hierarchy R, a tableau T for (T ,R) is defined as a triple (S,L, E) such that: S is a set of

individuals, L : S −→ 2clos(T ) maps each individual to a set of concepts, and E : NR −→ 2S×S

maps each role in NR to a set of pairs of individuals in S. For all x, y ∈ S, C,C1, C2 ∈ clos(T ),

and U,R, S ∈ NR, the following properties must always hold:
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(P1) if C ∈ L(x), then ¬C /∈ L(x),

(P2) if (C1 ⊓ C2) ∈ L(x), then C1 ∈ L(x) and C2 ∈ L(x),

(P3) if (C1 ⊔ C2) ∈ L(x), then C1 ∈ L(x) or C2 ∈ L(x),

(P4) if ∀R.C ∈ L(x) and ⟨x, y⟩ ∈ E(R), then C ∈ L(y),

(P5) if ∃R.C ∈ L(x), then there is some y ∈ S such that ⟨x, y⟩ ∈ E(R) and C ∈ L(y),

(P6) if ∀S.C ∈ L(x) and ⟨x, y⟩ ∈ E(U) for some U,R with U ⊑∗ R, R ⊑∗ S, and R ∈ NR+ ,

then ∀R.C ∈ L(y),

(P7) if ≥ nR.C ∈ L(x), then ♯RT (x,C) ≥ n,

(P8) if ≤ nR.C ∈ L(x) , then ♯RT (x,C) ≤ n,

(P9) if ≤ nR.C ∈ L(x) and ⟨x, y⟩ ∈ E(R), then {C,¬C} ∩ L(y) ̸= ∅,

(P10) if ⟨x, y⟩ ∈ E(R) and R ⊑∗ S ∈ R, then ⟨x, y⟩ ∈ E(S),

(P11) ⟨x, y⟩ ∈ E(R) iff ⟨y, x⟩ ∈ E(Inv(R)),

(P12) if o ∈ L(x) ∩ L(y) for some o ∈ No, then x = y, and

(P13) for each o ∈ No occurring in T , ♯{x ∈ S | o ∈ L(x)} = 1.
where RT (x,C) = {y ∈ S | ⟨x, y⟩ ∈ E(R) and C ∈ L(y)}

Lemma 28. A SHOIQ knowledge base (T ,R) is consistent iff there exists a tableau for (T ,R).

Proof. The proof is analogous to the one presented in [40, 41]. If T = (S,L, E) is a tableau for

(T ,R), a model I of (T ,R) can be defined as:

for a set of individuals: ∆I := S

for concept names C ∈ clos(T ): CI := {x | C ∈ L(x)}

for role names R ∈ R: RI :=

⎧⎪⎪⎨⎪⎪⎩
E(R)+ ifR ∈ NR+

E(R) ∪
⋃

U⊑∗R,U ̸=R UI otherwise

where the transitive closure of E(R) is denoted by E(R)+.

The non-transitive roles are interpreted while considering those non-transitive roles that have a

transitive subrole. From the definition of RI , (P10) and (P11), if ⟨x, y⟩ ∈ SI , then either ⟨x, y⟩ ∈
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E(S) or there exists a path ⟨x, x1⟩ , ⟨x1, x2⟩ , . . . , ⟨xn, y⟩ ∈ E(R) for some R with R ⊑∗ S ∈ R

and R ∈ NR+ . Hence, I is a model ofR.

Moreover, in order to prove that I is a model of T , we show that C ∈ L(x)⇒ x ∈ CI for any

x ∈ S by induction on the structure of concepts.

• If C ∈ L(x), then by definition x ∈ CI .

• If ¬C ∈ L(x), then by (P1) C /∈ L(x). Hence, x /∈ CI .

• If C = (C1⊓C2), then C ∈ L(x) and (P2) imply C1 ∈ L(x) and C2 ∈ L(x), so by induction

x ∈ (C1)
I and x ∈ (C2)

I . Hence, x ∈ (C1 ⊓ C2)
I .

• If C = (C1 ⊔ C2), then C ∈ L(x) and (P3) imply C1 ∈ L(x) or C2 ∈ L(x), so by induction

x ∈ (C1)
I or x ∈ (C2)

I . Hence, x ∈ (C1 ⊔ C2)
T .

• If C = ∃R.C1, then C ∈ L(x) and (P5) imply that there exists an individual y ∈ S such that

⟨x, y⟩ ∈ E(R) and C1 ∈ L(y). Since by definition ⟨x, y⟩ ∈ RI and by induction y ∈ CI
1 ,

x ∈ (∃R.C1)
I .

• If C = ∀S.C1 and C ∈ L(x), and y ∈ S such that ⟨x, y⟩ ∈ RI , then either

– ⟨x, y⟩ ∈ E(R), then (P4) implies C1 ∈ L(y), or

– ⟨x, y⟩ /∈ E(R), then there exists a path ⟨x, x1⟩ , ⟨x1, x2⟩ , . . . , ⟨xn, y⟩ ∈ E(R) for some

R with R ⊑∗ S ∈ R and R ∈ NR+ . (P6) implies ∀S.C1 ∈ L(xi) for all 1 ≤ i ≤ n

and, C1 ∈ L(y) also holds because of (P4).

In both cases, by induction y ∈ CI
1 , hence x ∈ (∀S.C1)

I .

• If C =≥ nR.C1, then C ∈ L(x) and (P7) imply that there are n individuals y1, . . . , yn such

that yi ∈ S, yi ̸= yj for 1 ≤ i < j ≤ n, ⟨x, yi⟩ ∈ E(R) and C1 ∈ L(yi). Since by definition

⟨x, yi⟩ ∈ RI and E(R) ⊆ RI and by induction yi ∈ CI
1 , x ∈ (≥ nR.C1)

I .
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• If C =≤ nR.C1 and R is a simple role such that E(R) = RI , then C ∈ L(x) and (P8)

imply ♯RT (x,C1) ≤ n. (P9) implies that either C1 ∈ L(y) or ¬C1 ∈ L(y). We can prove

♯RI(x,C1) ≤ ♯RT (x,C1) by a proof of contradiction and assume ♯RI(x,C1) > ♯RT (x,C1).

This assumption implies that there exists an individual y with ⟨x, y⟩ ∈ RI with y ∈ CI
1 ,

however, since E(R) = RI , C1 /∈ L(y). Therefore, (P9) implies ¬C1 ∈ L(y), which yields

y ∈ ¬CI
1 , in contradiction to y ∈ CI

1 .

• Furthermore, (P12) and (P13) ensure that the nominal semantics are preserved by interpret-

ing them as singletons.

For the converse, if I is a model of (T ,R), a tableau T = (S,L, E) for (T ,R) can be defined as:

S = ∆I

L(x) = {C ∈ clos(T ) | x ∈ CI}

E(R) = RI

In order to demonstrate that T is a tableau for (T ,R), we need to show that T satisfies the

properties (P1)−(P13).

• T satisfies (P1)−(P5) as a direct consequence of the definition of the semantics of SHOIQ-

concepts.

• By a proof of contradiction, we show if x ∈ (∀S.C)I and ⟨x, y⟩ ∈ RI for some R with

R ⊑∗ S ∈ R and R ∈ NR+ , then y ∈ (∀S.C)I . Assume there is some z such that

⟨y, z⟩ ∈ RI and z /∈ CI . Now if ⟨x, y⟩ ∈ RI , ⟨y, z⟩ ∈ RI and R ∈ NR+ , then ⟨x, z⟩ ∈ RI ,

which yields ⟨x, z⟩ ∈ SI and x /∈ (∀S.C)I , in contradiction to x ∈ (∀S.C)I . Therefore, T

satisfies (P6).

• T satisfies (P7)−(P9) as a direct consequence of the semantics of QCRs.

• Since I is a model ofR, (P10) is satisfied.

• T satisfies (P11) as a direct consequence of the semantics of inverse roles.
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• T satisfies (P12)−(P13) as a direct consequence of the nominal semantics.

4.2 The Algebric Method for SHOIQ

The algebraic method for SHOIQ is used to reduce the satisfiability of concept descriptions

involving QCRs and/or nominals to equation-solving problems. A crucial technique for enabling

this algebraic reasoning is atomic decomposition (see Section 2.4.1 for details) which facilitates

the decomposition of a set of elements into mutually disjoints subsets.

4.2.1 Encoding Numerical Restrictions into Inequalities

The atomic decomposition technique [54] is used to encode numerical restrictions on concepts

and role fillers into inequalities. These inequalities are then solved to decide the satisfiability

of the numerical restrictions. The existential restrictions are converted into ≥ 1 inequalities. The

cardinality of a partition element containing a nominal o is equal to 1 due to the nominal semantics;

♯{o}I = 1 for each nominal o ∈ No.

Definition 29. (Decomposition Set) Let Q = Q≥ ∪Q≤ ∪Q∀ ∪Qo define the decomposition set,

where Q∀ contains universal restrictions, Q≥ (Q≤) contains at-least (at-most) restrictions and Qo

contains all related nominals. A partitioning P that is the power set of Q containing all subsets of

Q except the empty set.

Each partition element e ∈ P represents the intersection of its elements. Each element Rq ∈

Q≥ ∪ Q≤ ∪ Q∀ represents a role R ∈ NR and its qualification concept expression q and each

element Iq ∈ Qo represents a nominal q ∈ No. The elements in Q∀ are used in AR to ensure the

semantics of universal restrictions. The set of related nominals Qo ⊆ No is defined as Qo = {o |

o ∈ clos(q) ∧ Rq ∈ Q≥ ∪ Q≤ ∪ Q∀} where clos(q) is the closure of concept expression q. The

atomic decomposition considers all possible ways to decompose Q into sets that are semantically

pairwise disjoint.
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4.3 The Algebraic Tableau Algorithm for SHOIQ

The algorithm takes a SHOIQ Tbox T and its role hierarchy R as input and tries to create a

complete and clash-free completion graph in order to check Tbox consistency.

Definition 30. (Completion Graph) The completion graph for a SHOIQ Tbox T is defined as

follows:

• Let G = (V,E,L,B,U) be a completion graph where V is a set of nodes and E a set of

edges. Each node x ∈ V is labelled with three labels: L(x), B(x), and U(x), and each edge

⟨x, y⟩ ∈ E is labeled with a set of role names L(x, y).

– L(x) denotes a set of concept expressions,

– B(x) denotes the neighbours of x that can potentially be reused in order to avoid merg-

ing later on. For each node x ∈ V , if L(x) contains a universal restriction or at-most

restriction on role R and there exists an R-neighbour of x, then B(x) contains a tuple

of the form ⟨v,L(x, v)⟩ where v ∈ V is an R-neighbour of x.

– U(x) contains a set of universal restrictions that ensure that the at-most restrictions

are not violated. For each node x ∈ V , if L(x) contains an at-most restriction e.g.,

≤ nR.C, then U(x) contains a universal restriction ∀R.(C ⊔ ¬C) in order to avoid the

violation of the at-most restriction.

• The cardinality of a node v is denoted by ♯v.

• Nodes in G are categorized into two types: nominal nodes and blockable nodes. If a node x

has a nominal in its label L(x) then it is a nominal node; otherwise, it is a blockable node.

• G utilizes proxy nodes (see Definition 31) as representatives for domain elements distributed

within the same partition. The concept of proxy nodes was initially introduced in [35].

Definition 31. (Proxy Node) A proxy node is used to represent a partition element e ∈ P . Ac-

cording to Proposition 32, one proxy node can be used to represent the n individuals in e.
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By creating a proxy node x for e in G, one can test the satisfiability of the concepts in e. If x

satisfies the concepts, then n nodes can also satisfy them. Since n is decided after considering all

inequalities and related axioms, x cannot violate cardinality bounds on role fillers and nominals.

Proposition 32. Given a completion graph G of a model I for a Tbox T . Let e be a partition

element of P and according to the solution σ, ♯e = n. It is sufficient to create one proxy node in G

in order to represent the n individuals in e.

For convenience, we assume that all concept descriptions are in negation normal form. We

divided our hybrid reasoning into two parts:

1. Tableau Reasoning (TR)

2. Algebraic Reasoning (AR)

In the TR part, the algorithm starts with some preprocessing and reduces all the concept axioms in a

Tbox T to a single axiom⊤ ⊑ CT such that CT :=
d

C⊑D∈T nnf (¬C⊔D), where nnf transforms

a given concept expression to its negation normal form. The algorithm checks the consistency of

T by testing the satisfiability of o ⊑ CT where o ∈ No is a fresh nominal in T , which means

that at least oI ∈ CT
I and CT

I ̸= ∅. Moreover, since ⊤I = ∆I , every domain element must

also satisfy CT . For creating a complete and clash-free completion graph, the algorithm applies

expansion rules (see Section 4.3.2).

In the AR part, the algorithm handles all numerical restrictions using Integer Linear Program-

ming (ILP). It generates inequalities and solves them using the branch-and-price technique (see

Section 4.3.1 for details). We use pairwise blocking [42] due to the presence of inverse roles and

QCRs (discussed in the previous chapter, see Section 3.1 for details).

4.3.1 Generating Inequalities

Dantzig and Wolfe [18] proposed a column generation technique (see Section 2.4.3) for solving

linear programming (LP) problems, called Dantzig–Wolfe decomposition, where a large LP is
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decomposed into a master problem and a subproblem (or pricing problem). In case of LP problems

with a huge number of variables, column generation works with a small subset of variables and

builds a Restricted Master Problem (RMP). The Pricing Problem (PP) generates a new variable

with the most reduced cost if added to RMP (see [13, 76] for details). However, column generation

may not necessarily yield an integral solution for an LP relaxation, i.e., at least one variable may

not have an integer value. Therefore, the branch-and-price method [8] has been used which is a

combination of column generation and branch-and-bound technique [19] (see Section 2.4.5). We

employ this technique by mapping number restrictions to linear inequality systems using a column

generation ILP formulation (see [76] for details). The feasibility test for the linear inequalities

can be computed in polynomial time, as shown in [51]. CPLEX1 has been used to solve our ILP

formulation.

4.3.1.1 Branch-and-Price Method

In the following, we use a Tbox T and its role hierarchyR, a completion graph G, a decompo-

sition set Q and a partitioning P that is the power set of Q containing all subsets of Q except the

empty set. Each partition element e ∈ P represents the intersection of its elements.

We decompose our problem into two subproblems:

1. Restricted Master Problem (RMP), and

2. Pricing Problem (PP).

RMP contains a subset of columns and PP computes a column that can maximally reduce the cost

of RMP’s objective. Whenever a column with negative reduced cost is found, it is added to RMP.

Number restrictions are represented in RMP as inequalities, with a restricted set of variables. The

flowchart in Figure 4.1 illustrates the whole process.

1CPLEX is an optimization software tool for solving linear optimization problems.
https://www.ibm.com/analytics/cplex-optimizer
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Figure 4.1: Overview of the algebraic reasoning process

Restricted Master Problem

RMP is obtained by considering only variables xe with e ∈ P ′ and P ′ ⊆ P and relaxing the

integrality constraints on the xe variables. The ILP model associated with the feasibility problem

of Q is as follows:

Min
∑
e∈P ′

costexe (21)

Subject to
∑
e∈P ′

aRq
e xe ≥ δRq

Rq ∈ Q≥ (22)

∑
e∈P ′

aRq
e xe ≤ δ̄Rq Rq ∈ Q≤ (23)

∑
e∈P ′

aIqe xe = 1 Iq ∈ Qo (24)

xe ∈ R+ with e ∈ P ′ (25)

aRq
e , aIqe ∈ {0, 1} with Rq ∈ Q≥ ∪Q≤, Iq ∈ Qo (26)

where a decision variable xe represents the elements of the partition element e ∈ P ′. δRq
(δ̄Rq ) is

the cardinality of an at-least (at-most) restriction on a role R. The coefficients ae are associated
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Algorithm 4.1 generateRMP(S≥, S≤, S∃, So)

Input: A set S≥ of at-least restrictions, a set S≤ of at-most restrictions, a set S∃ of existential
restrictions, and a set So of related nominals

Output: RMP
1: S ′

∃ ← {s′∃ | s′∃ ← convert s∃ ∈ S∃ into ≥ 1 inequalities }
2: S≥ ← S≥ ∪ S ′

∃
3: RMP← fresh model
4: RMP← add initial objective with artificial variables
5: for all s≥ ∈ S≥ do
6: RMP← add constraint for s≥ to handle at-least restrictions
7: end for all
8: for all s≤ ∈ S≤ do
9: RMP← add constraint for s≤ to handle at-most restrictions

10: end for all
11: for all so ∈ So do
12: RMP← add constraint for so to handle nominals
13: end for all

with variables xe and a
Rq
e indicates whether an R-neighbour that is an instance of q exists in e. Sim-

ilarly, aIqe indicates whether a nominal q exists in e. The weight coste defines the cost of selecting

e and it depends on the number of elements e contains. Since we minimize the objective function,

coste in the objective (21) ensures that only subsets with entailed concepts will be added which

are the minimum number of concepts that are needed to satisfy all the axioms. Constraints (22)

and (23) encode at-least and at-most restrictions. Constraint (24) encodes numerical restrictions

imposed by nominals (i.e., ♯{o}I = 1). Constraint (25) states the integrality condition relaxed from

xe ∈ Z+ to xe ∈ R+. Algorithm 4.1 (generateRMP) takes all related nominals, at-least, at-most

and existential restrictions as input and generates RMP.

In order to begin the solution process, we need to find an initial set of columns satisfying the

Constraints (22) and (24). However, it can be a cumbersome task to find an initial feasible solution.

Therefore, initially P ′ is empty and RMP contains only artificial variables h to obtain an initial

feasible inequality system. Each artificial variable corresponds to an element in Q≥ ∪ Q≤ ∪ Qo

such that hRq , Rq ∈ Q≥ ∪ Q≤ and hIq , Iq ∈ Qo. An arbitrarily large cost M is associated with

every artificial variable. The objective of RMP is defined as the sum of all costs as shown in (27)

of the RMP below. Since we minimize the objective function, by considering this large cost M
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one can ensure that as the column generation method proceeds, the artificial variables will leave

the basis. Therefore, in the case of a feasible set of inequalities, these artificial variables must not

exist in the final solution.

Min
∑
e∈P ′

costexe +M
∑

Rq∈Q≥

hRq +M
∑

Rq∈Q≤

hRq +M
∑
Iq∈Qo

hIq (27)

Subject to
∑
e∈P ′

aRq
e xe + hRq ≥ δRq

Rq ∈ Q≥ (28)

∑
e∈P ′

aRq
e xe + hRq ≤ δ̄Rq Rq ∈ Q≤ (29)

∑
e∈P ′

aIqe xe + hIq = 1 Iq ∈ Qo (30)

xe ∈ R+ with e ∈ P ′ (31)

aRq
e , aIqe ∈ {0, 1}, hRq , hIq ∈ R+ with Rq ∈ Q≥ ∪Q≤, Iq ∈ Qo (32)

Pricing Problem:

The objective of PP uses the dual values π, λ, ω as coefficients of the variables that are associ-

ated with a potential partition element. The binary variables rRq , rIq , bq (q ∈ N ) are used to ensure

the description logic semantics. A binary variable rR⊤ is used to handle role hierarchy. A variable

bq is set to 1 if there exists an instance of concept q and rRq is set to 1 if there exists an R-neighbour

that is an instance of concept q. Likewise, rIq is set to 1 if there exists a nominal q. Otherwise,

these variables are set to 0. The PP is given below.

Min
∑
q∈N

bq −
∑

Rq∈Q≥

πRqrRq −
∑

Rq∈Q≤

λRqrRq −
∑
Iq∈Qo

ωIqrIq (33)
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Table 4.1: PP inequalities for DL axioms (n ≥ 1)

DL Axiom Inequality in PP Description

A1⊓ ...⊓An ⊑ B
∑n

i=1 bAi − (n− 1) ≤ bB
If a set contains A1, ..., An, then it also
contains B.∗

A ⊑ B1⊔ ...⊔Bn bA ≤
∑n

i=1 bBi

If a set contains A, then it also contains at least
one concept from B1, ..., Bn.

∗Encodes unsatisfiability and disjointness in case B ⊑∗ ⊥

Subject to rRq − bq ≤ 0 Rq ∈ Q≥, R ∈ NR, q ∈ N (34)

bq − rRq ≤ 0 Rq ∈ Q≤, R ∈ NR, q ∈ N (35)

rIq − bq = 0 Iq ∈ Qo, q ∈ No (36)

rRq − rR⊤ ≤ 0 R ∈ NR, q ∈ N (37)

rR⊤ − bq ≤ 0 Rq ∈ Q∀, R ∈ NR, q ∈ N (38)

rR⊤ − rS⊤ ≤ 0 R ⊑ S ∈ R, R, S ∈ NR (39)

bq, rRq , rIq , rR⊤ , rS⊤ ∈ {0, 1}

where vector π, λ and ω are dual variables associated with (28) to (30) respectively. For each

at-least restriction represented in (28), Constraint (34) is added to PP, ensuring that if rRq = 1,

then the variable for bq must exist in P ′. Similarly, Constraint (35) is added for each at-most

restriction represented in (29). Constraint (36) ensures the semantics of nominals represented in

(28). Constraints (37) - (39) ensure the semantics of universal restrictions and role hierarchies

respectively.

We can also map the semantics of selected DL axioms, where only atomic concepts occur, into

inequalities, as shown in Table 4.1. For every T |= A⊓B ⊑ C, the algorithm adds bA+bB−1 ≤ bC

to PP. Therefore, if PP generates a partition containing A and B, then it must also contain C.

Similarly, for every T |= A ⊑ B ⊔ C, the algorithm adds bA ≤ bB + bC to PP. This inequality

ensures that if a partition contains A, then it must also contain B or C. Algorithm 4.2 (generatePP)

generates the pricing problem that ensures the semantics of all related DL axioms i.e., universal
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Algorithm 4.2 generatePP(S≥, S≤, So, S∀, S⊑, S⊥, SR)

Input: A set S≥ of at-least restrictions, a set S≤ of at-most restrictions, a set So of related nom-
inals, a set S∀ of universal restrictions, a set S⊑ of related subsumptions, a set S⊥ of related
disjointness, a set SR of related role hierarchy

Output: PP
1: PP← fresh model
2: PP← add initial objective
3: PP← add constraints to ensure semantics of S≥, S≤, So

4: for all s∀ ∈ S∀ do
5: PP← add constraint for s∀ to handle universal restrictions
6: end for all
7: for all s⊑ ∈ S⊑ do
8: PP← add constraint for s⊑ to handle subsumption
9: end for all

10: for all s⊥ ∈ S⊥ do
11: PP← add constraint for s⊥ to handle disjointness
12: end for all
13: for all sR ∈ SR do
14: PP← add constraint for sR to handle role hierarchy
15: end for all

restrictions, subsumptions, disjointness, and role hierarchies.

The algorithm solves RMP and PP as depicted in Algorithm 4.3 (solveInequalities). The al-

gorithm gets the dual values by solving RMP and updates the objective of PP accordingly. PP

computes a column that can maximally reduce the cost of RMP’s objective. Whenever a column

with a negative reduced cost is found, it is added to RMP. The process terminates when PP cannot

compute a new column with a reduced cost, i.e., when the value of the objective function of PP

becomes greater or equal to 0.

In the case of a non-integer solution, Algorithm 4.4 (applyBranchAndPrice) tries to find the

optimal integer solution. The algorithm selects one of the non-integer variables and gets two

solution subsets. After that, it explores both branches, in order to find the integer solution. The

process continues until the algorithm either finds an optimal integer solution or detects a clash.
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Algorithm 4.3 solveInequalities(RMP, PP)
Input: RMP, and PP
Output: Solution Set σ or Clash

1: {σ, SDV } ← Solve RMP and get solution and dual values
2: PP← update PP objective using SDV

3: {reducedCost, newColumn} ← solve PP
4: if reducedCost is negative then
5: RMP← add newColumn in RMP
6: goto 1
7: else if σ is feasible then
8: if σ is integer solution then
9: return σ

10: else if σ is non-integer solution then
11: return applyBranchAndPrice(RMP, PP, σ)
12: end if
13: else if σ is infeasible then
14: return Clash
15: end if

Algorithm 4.4 applyBranchAndPrice(RMP, PP, σ)
Input: RMP, PP, and a solution set σ with non-integer solution
Output: Solution Set σ or Clash

1: for all x ∈ σ do
2: if x is non-Integer then
3: {x1, x2} ← get two solution subsets
4: break
5: end if
6: end for all
7: RMP1← add new constraint in RMP to explore the branch x1

8: PP1← add new constraints in PP to explore the branch x1

9: Solution← solveInequalities(RMP1, PP1)
10: if Solution is Clash then
11: RMP1← add new constraint in RMP to explore the branch x2

12: PP1← add new constraints in PP to explore the branch x2

13: return← solveInequalities(RMP1, PP1)
14: else if Solution is σ then
15: return σ
16: end if

Definition 33. (ILP Solution σ) Upon completion of the branch-and-price process, the algorithm

produces a solution set denoted by σ. This set, σ, may either be empty or include a solution derived

from feasible inequalities. In cases of infeasibility, the algorithm signals a clash. A solution within
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σ is characterized by a collection of tuples of the form ⟨R,C, n,V⟩, where:

• R represents a set of roles (R ⊆ NR),

• C represents a set of concepts (C ⊆ N ),

• n denotes a cardinality (n ∈ N, n ≥ 1),

• V is an optional set that represents a set of nodes to be reused V ⊆ V .

Each tuple represents a partition element of n individuals. One proxy node is created for each

tuple.

4.3.2 Expansion Rules

In order to check the consistency of a Tbox T , the proposed algorithm creates a completion

graph G using the expansion rules shown in Table 4.2.

A node x in G contains a clash if (i) {A,¬A} ⊆ L(x) for A ∈ NC , or (ii) there is no feasible

solution for L(x) in AR. G is complete if no expansion rule is applicable to any node in G. T is

consistent if G is complete and no node in G contains a clash.

The ⊓-Rule, ⊔-Rule and ∀-Rule are similar to standard tableau expansion rules for ALC. The

∀+-Rule preserves the semantics of transitive roles.

The nommerge-Rule merges two nodes containing in their label the same nominal. Suppose

there is o ∈ L(x) and o ∈ L(y), and nodes x and y are not the same, then nommerge-Rule merges

x into y by

1. adding the label of x to the label of y, i.e., L(y) = L(y) ∪ L(x),

2. moving all edges leading to x so that they lead to y. For instance, for all the nodes z such

that (z, x) ∈ E

(a) if {(y, z), (z, y)} ∩ E = ∅, then add (z, y) to E and set L(z, y) = L(z, x),

(b) if (z, y) ∈ E, then set L(z, y) = L(z, y) ∪ L(z, x),
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Table 4.2: The expansion rules for SHOIQ

⊓-Rule if (C1 ⊓ C2) ∈ L(x) and {C1, C2} ⊈ L(x)
then set L(x) = L(x) ∪ {C1, C2}

⊔-Rule if (C1 ⊔ C2) ∈ L(x) and {C1, C2} ∩ L(x) = ∅
then set L(x) = L(x) ∪ {C} for some C ∈ {C1, C2}

∀-Rule if ∀S.C ∈ L(x) and there ∃y with R ∈ L(x, y), C /∈ L(y) and R ⊑∗ S
then set L(y) = L(y) ∪ {C}

∀+-Rule if ∀S.C ∈ L(x) and there exist U,R with R ∈ NR+ and U ⊑∗ R, R ⊑∗ S,
and a node y with U ∈ L(x, y) and ∀R.C /∈ L(y)
then set L(y) = L(y) ∪ {∀R.C}

nommerge-Rule if for some o ∈ No there are nodes x, y with o ∈ L(x) ∩ L(y), x ̸= y
then merge x into y

inverse-Rule if {≤ nR−.C, ∀R−.C} ∩ L(y) ̸= ∅ , R ∈ L(x, y), and ⟨x,L(y, x)⟩ /∈ B(y)
then set B(y) = B(y) ∪ {⟨x,L(y, x)⟩}

reset-Rule if
1. ≤ nR.C or ≥ nR.C propagated back to L(x) due to inverse role and
{≤ nR.C,≥ nR.C} ∩ L(x) = ∅ and R ∈ L(x, y), C ∈ L(x), or

2. ∀R.C ∈ L(y), R− ∈ L(x, y) and o ∈ clos(C) for some o ∈ No and
{o} /∈ L(x)

then reset x by removing the blockable subtree of x.
ch-Rule if ≤ nR.C ∈ L(x) and ∀R.(C ⊔ ¬C) /∈ U(x)

then set U(x) = U(x) ∪ {∀R.(C ⊔ ¬C)}
fil -Rule if the solution set σ is not empty and x is not blocked

then for each ⟨R,C, n,V⟩ ∈ σ(x)

1. if V = ∅ and there exists no safe R-neighbour∗ y of x with C ⊆ L(y),
#y ≥ n,
then create a new node y with L(y)← C and #y ← n

2. else for all v ∈ V add C to L(v) and set #v = n

e-Rule if ⟨R,C, n,V⟩ ∈ σ(x) and C ⊆ L(y), #y ≥ n, R ⊈ L(x, y)
then merge R into L(x, y) and {Inv(R) | R ∈ R} into L(y, x),
and for all S with R ⊑∗ S ∈ R add S to L(x, y) and Inv(S) to L(y, x)

ni -Rule if ≤ nR.C ∈ L(x), o ∈ L(x) for some o ∈ No, and there exists
a blockable R-predecessor y of x such that C ∈ L(y)
then create n new nodes z1, ..., zn with L(x, zi) = {R}, L(zi) = {C, oi}
with oi ∈ No new in G with 1 ≤ i ≤ n.

≤nom-Rule if
1. ≤ nR.C ∈ L(x), o ∈ L(x) for some o ∈ No, and there exists

a blockable R-neighbour y of x such that C ∈ L(y),
2. there exists n nominal R-neighbours z1, ..., zn of x with C ∈ L(zi)

and 1 ≤ i ≤ n, and
3. there is a nominal R-neighbour z of x with C ∈ L(z)

then merge y into z
∗An R-neighbour y of a node x is safe if either x is blockable or if y is not blocked and x is a
nominal node.
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(c) if (y, z) ∈ E, then set L(y, z) = L(y, z) ∪ {R− | R ∈ L(z, x)},

(d) remove edge (z, x) from E;

3. moving all edges leading from x to nominal nodes so that they lead from y to the same

nominal nodes. For instance, for all nominal nodes z such that (x, z) ∈ E

(a) if {(y, z), (z, y)} ∩ E = ∅, then add (y, z) to E and set L(y, z) = L(x, z),

(b) if (y, z) ∈ E, then set L(y, z) = L(y, z) ∪ L(x, z),

(c) if (z, y) ∈ E, then set L(z, y) = L(z, y) ∪ {R− | R ∈ L(x, z)},

(d) remove edge (x, z) from E;

4. merging B(x) into B(y) and U(x) into U(y)

5. removing x and blockable sub-trees below x and y

If L(x, y) = {R} and {≤ nR−.C, ∀R−.C}∩L(y) ̸= ∅, then the inverse-Rule encodes the already

existing R−-edge by adding a tuple ⟨x, {R−}⟩ to B(y). This information is crucial in the case of

at-most restrictions or when nominals occur in universal restrictions. For example, consider the

axioms

A ⊑ ∃R.B (40)

B ⊑≥ 2R−.C ⊓ ∃R−.D ⊓ ∀S−.{o1, o2} (41)

o1 ⊓ o2 ⊑ ⊥ (42)

where {A,B,C,D} ⊆ NC , {R, S} ⊆ NR, R ⊑ S ∈ R and {o1, o2} ⊆ No.

Suppose we have A ∈ L(x), R, S ∈ L(x, y) and B ∈ L(y). Since nominals carry numerical

restrictions, ∀S−.{o1, o2} implies that we can have at most 2 S−-neighbours of y. However, stan-

dard tableau reasoners might create three new S−-neighbours of y without considering the existing

S−-neighbour x of y. Then they try to merge these four nodes in a nondeterministic way to satisfy
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the numerical restriction imposed by nominals. In our approach, the inverse-Rule encodes infor-

mation about an existing S−-neighbour of y by adding ⟨x, {R−, S−}⟩ to B(y) and the algorithm

generates a deterministic solution.

The ch-Rule takes care of at-most restrictions. For instance, if ≤ nR.C ∈ L(x) and there

are R-neighbours of x, then the at-most restriction ≤ nR.C can be violated. We know that an R-

neighbour y of x either has C or ¬C in its label. Therefore, for every at-most restriction ≤ nR.C,

the ch-Rule adds the universal restriction ∀R.(C ⊔ ¬C) to U(x) and the algorithm handles these

universal restrictions in AR. This rule is similar to the ch-Rule in [41].

If a new numerical restriction on role R is added to L(x), and there exists an R-neighbour of x,

then the reset-Rule resets the node x by removing the blockable subtree of x. Similarly, it resets

the node x if a new nominal o is added to L(x).

For a node x, the algorithm transforms all nominals, numerical, existential, and universal

restrictions to a corresponding system of inequalities. The algorithm then processes these in-

equalities and gives back a solution set σ(x). The set σ(x) is either empty or contains solu-

tions derived from feasible inequalities. In case of infeasibility, the algorithm signals a clash.

A proxy node (see Definition 31) is created corresponding to each tuple, which represents n

R-neighbours of x (where R is a set of roles) that are all instances of all elements of C. V

is an optional set that contains existing R-neighbours of x that must be reused and C is added

to their labels. Consider the axioms (40) - (42), the algorithm returns the solution σ(y) =

{⟨{R−, S−}, {A,C, o1}, 1, {x}⟩ , ⟨{R−, S−}, {D,C, o2}, 1, ∅⟩}.

The fil -Rule is used to generate proxy nodes based on the arithmetic solution that satisfies a

set of inequalities. For the above solution, the fil -Rule creates only one node z with cardinality 1,

such that L(z)← {D,C, o2} and ♯z = 1, and reuses the existing node x, adding C and o1 to L(x).

The e-Rule creates an edge between nodes y and z, and adds R−, S− to L(y, z) and

Inv(R−), Inv(S−) to L(z, y). The e-Rule always adds all implied superroles to edge labels.

The ni -Rule and the≤nom-Rule are employed to ensure termination by fixing the upper bound

on the number of nominal nodes. This prevents the reasoner from repeatedly creating and merging
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(a) (b)

Figure 4.2: The application of the fil -Rule, the e-Rule and the inverse-Rule

nominal nodes. These two rules have been adapted from [41, 52], and are discussed in Section

3.1. The ni -Rule and the ≤nom-Rule are not applicable in the absence of inverse roles, nominals

or number restrictions in the input ontology.

4.3.3 Example Application of the Expansion Rules

Consider the small Tbox, given in axioms (43) - (48)

A ⊑ ∃R.(B ⊓ C)⊓ ≥ 2R.D (43)

C ⊑≥ 2R−.D ⊓ ∃R−.E ⊓ ∀S−.{a, b} (44)

a ⊓ b ⊑ ⊥ (45)

B ⊓D ⊑ ⊥ (46)

E ⊑≥ 2R.F⊓ ≤ 2S.B (47)

F ⊑ B (48)

where {A,B,C,D,E, F} ⊆ NC , {R, S} ⊆ NR, R ⊑ S ∈ R and {a, b} ⊆ No.

Our algorithm starts with an initial completion graph G having a single node x0 with
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L(x0) = {A}, B(x0) = ∅ and U(x0) = ∅. After unfolding A in the label of x0 and ap-

plying the ⊓-Rule, we obtain L(x0) = {A,∃R.(B ⊓ C),≥ 2R.D}. For a node x0, the al-

gorithm transforms all numerical and existential restrictions to a corresponding system of in-

equalities. After this, it processes these inequalities and gives back a solution set σ(x0) =

{⟨{R}, {D,¬B}, 2, ∅⟩ , ⟨{R}, {B,C,¬D}, 1, ∅⟩}.

For σ(x0), we apply the fil -Rule which creates two nodes; x1 with cardinality 2 such that

L(x1) ← {D,¬B} and ♯x1 = 2, and x2 with cardinality 1 such that L(x2) ← {B,C,¬D} and

♯x2 = 1.

Next, the e-Rule creates an edge between nodes x0 and x1, adding R, S to L(x0, x1) and

Inv(R), Inv(S) to L(x1, x0). Similarly, it creates an edge between nodes x0 and x2, and adds

R, S to L(x0, x2) and Inv(R), Inv(S) to L(x2, x0). Therefore, G has been extended with two new

nodes as shown in Figure 4.2a.

The algorithm proceeds by unfolding C in the label of x2. Next, we apply the ⊓-Rule

and obtain L(x2) = {B,C,¬D,≥ 2R−.D, ∃R−.E,∀S−.{a, b}}. The inverse-Rule encodes

information about an existing S−-neighbour of x2 by adding ⟨x0, {R−, S−}⟩ to B(y). Since

we do not have any at-most restrictions, U(x2) = ∅. The algorithm generates a corre-

sponding system of inequalities. After processing these inequalities, a solution σ(x2) =

{⟨{R−, S−}, {D, a,¬B,¬b}, 1, {x0}⟩ , ⟨{R−, S−}, {D,E, b,¬B,¬a}, 1, ∅⟩} is generated.

For σ(x2), we apply the fil -Rule which creates only one node; x3 with cardinality 1 such

that L(x3) ← {D,E, b,¬B,¬a} and ♯x3 = 1, and reuses the existing node x0 with L(x0) =

L(x0) ∪ {D, a,¬B,¬b}.

The e-Rule creates an edge between nodes x2 and x3, and adds R−, S− to L(x2, x3) and

Inv(R−), Inv(S−) to L(x3, x2). The label of x3 has been extended by unfolding E. Figure 4.2b

shows the extended completion graph.

The ni -Rule is now applicable, which is managed by the AR. All necessary details for generat-

ing new S-successors of x3 are encoded into inequalities, while the inverse-Rule encodes informa-

tion about an existing S-neighbour. The algorithm facilitates the generation of new nominal nodes
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Figure 4.3: x2 is merged into z1 after the ≤nom-Rule application

by introducing two new nominals o1 and o2. However, rather than creating two new S-successors

of x3 and then merging one with an existing S-neighbour of x3, AR opts to utilize the existing x2

of x3, as depicted in Figure 4.3. This strategy not only incorporates the ≤nom-Rule within AR but

also avoids unnecessary merging. Furthermore, the combined application of the ni-Rule and the

≤nom-Rule ensures the preservation of a tree-shaped completion graph for the blockable part.

The inverse-Rule encodes information about the existing S-neighbours of x3 such that

B(x3)← {⟨z1, {R, S}⟩ , ⟨z2, {R, S}⟩}.

Since ≤ 2S.B ∈ L(x3), the ch-Rule becomes applicable. It adds the universal restriction

∀S.{B ⊔ ¬B} to U(x3). Therefore, for node x3, we obtain L(x3) = {D,E,A, b,¬B,¬a,≥

2R.F,≤ 2S.B}, B(x3) = {⟨z1, {R, S}⟩ , ⟨z2, {R, S}⟩} and U(x3) = {∀S.{B ⊔ ¬B}}. The algo-

rithm transforms all numerical and universal restrictions to a corresponding system of inequalities.

It also encodes the information present in B(x3). The algorithm solves these inequalities and gives

back a solution set σ(x3) = {⟨{R, S}, {F,B,¬D}, 1, z1⟩ , ⟨{R, S}, {F,B,¬D}, 1, z2⟩}.

According to this solution, the fil -Rule reuses the existing nodes z1 and z2, and adds F in L(z1)

and L(z2). The algorithm terminates as no more expansion rules are applicable. Figure 4.4 shows

the final completion graph.

Since we are reusing the existing nodes, our algorithm minimizes the nondeterministic merging

which is one of the main sources of inefficiency in standard tableau reasoning.
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Figure 4.4: Final completion graph after applying all relevant expansion rules

4.3.4 Example Illustrating Inequalities Generation and ILP Formulation

4.3.4.1 Example with Integer Solution

Consider the axioms

B ⊑≥ 2R.C⊓ ≤ 1R.A ⊓ ∀S.{o1, o2} (49)

o1 ⊓ o2 ⊑ ⊥ (50)

with NR = {R, S}, {A,B,C} ⊆ NC , {o1, o2} ⊆ No, and R ⊑ S ∈ R. For the sake of bet-

ter readability, we apply in this example lazy unfolding [4, 38]. We start with a node x and

its label L(x) = {B} and by unfolding B and applying the ⊓-Rule we get L(x) = {B,≥

2R.C,≤ 1R.A, ∀S.{o1, o2}}. By applying the ch-Rule, we get U(x) = {∀R.(A ⊔ ¬A)}. Since

{≥ 2R.C,≤ 1R.A, ∀S.{o1, o2}} ⊆ L(x), the algorithm generates a corresponding set of inequali-

ties and applies ILP considering known subsumptions and disjointness.

For solving these inequalities, RMP starts with artificial variables, P ′ is initially empty, Q≥ =

{RC}, Q≤ = {RA}, Q∀ = {S⊤, R⊤} and Qo = {Io1, Io2}. The objective of (RMP 1) contains the

sum of artificial variables along with the cost M = 10. Constraint (a) corresponds to the at-least

restriction ≥ 2R.C and Constraint (b) corresponds to the at-most restriction ≤ 1R.A. Moreover,

77



Constraints (c) and (d) ensure the nominal semantics.

Min 10hRC
+ 10hRA

+ 10hIo1 + 10hIo2 (RMP 1)

Subject to

hRC
≥ 2 (a)

hRA
≤ 1 (b)

hIo1 = 1 (c)

hIo2 = 1 (d)

Solution: cost = 40, hRC
= 2, hRA

= 0, hIo1 = 1, hIo2 = 1

Duals: πRC
= 20, λRA

= 0, ωIo1 = 10, ωIo2 = 10

After solving (RMP 1), we get the optimal solution with cost 40 with 3 non-zero artificial

variables. The objective of (PP 1) uses the dual values from (RMP 1). For at-least restriction, a

constraint (i.e., ≥ 2R.C ; rRC
− bC ≤ 0) is added to (PP 1), which indicates that if rRC

= 1 then

a variable bC will also be 1. Similarly, for each at-most restriction, a constraint (i.e., ≤ 1R.A ;

bA − rRA
≤ 0) is added. It means that if a partition contains a qualification of an at-most QCR

(i.e., bA = 1), then a corresponding variable containing A in its subscript must exist (that means

rRA
= 1). In order to ensure the semantics of nominals, a constraint corresponding to each nominal

(e.g., {o1}; rIo1−bo1 = 0) is added to (PP 1). Constraints (i) to (iii) represent the role hierarchy.

The semantics of universal restriction are embedded in Constraints (iv) and (v). Constraints (vi)

and (vii) ensure that both o1 and o2, and A and ¬A cannot exist in the same partition element.

Min bC + bA + b¬A + bo1 + bo2 − 20rRC
− 0rRA

− 10rIo1 − 10rIo2 (PP 1)

Subject to
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rRC
− bC ≤ 0

bA − rRA
≤ 0

rIo1 − bo1 = 0

rIo2 − bo2 = 0

rRC
− rR⊤ ≤ 0 (i)

rRA
− rR⊤ ≤ 0 (ii)

rR⊤ − rS⊤ ≤ 0 (iii)

rR⊤ − (bA + b¬A) ≤ 0 (iv)

rS⊤ − (bo1 + bo2) ≤ 0 (v)

bo1 + bo2 ≤ 1 (vi)

bA + b¬A ≤ 1 (vii)

(PPC 1)

Solution: cost = −27, bC = 1, bo1 = 1, b¬A = 1, rRC
= 1, rIo1 = 1, rR⊤ = 1, rS⊤ = 1

The values of rRC
, rIo1 , rR⊤ and rS⊤ are 1 in (PP 1), therefore, the variable xS⊤R⊤RCIo1 is added

to (RMP 2) in corresponding inequalities. Since three b variables, bC , bo1, b¬A, are 1, the cost of

xS⊤R⊤RCIo1 is 3. P ′ = {{RC , Io1, S⊤, R⊤}} and the value of the objective function is reduced

from 40 in (RMP 1) to 23 in (RMP 2). However, (RMP 2) still has two non-zero h variables.

Min 3xS⊤R⊤RCIo1 + 10hRC
+ 10hRA

+ 10hIo1 + 10hIo2
(RMP 2)

Subject to

xS⊤R⊤RCIo1 + hRC
≥ 2

hRA
≤ 1

xS⊤R⊤RCIo1 + hIo1 = 1

hIo2 = 1

Solution: cost = 23, xS⊤R⊤RCIo1 = 1, hRC
= 1, hRA

= 0, hIo1 = 0, hIo2 = 1

Duals: πRC
= 10, λRA

= 0, ωIo1 = −7, ωIo2 = 10
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The objective of (PP 2) is updated using the dual values from (RMP 2).

Min bC + bA + b¬A + bo1 + bo2 − 10rRC
− 0rRA

+ 7rIo1 − 10rIo2 (PP 2)

Subject to (PPC 1)

Solution: cost = −17, bC = 1, bo2 = 1, b¬A = 1, rRC
= 1, rIo2 = 1, rR⊤ = 1, rS⊤ = 1

The values of rRC
, rIo2 , rR⊤ and rS⊤ are 1 in (PP 2), therefore, the variable xS⊤R⊤RCIo2 is added

to (RMP 3) in corresponding inequalities. Since three b variables, bC , bo2, b¬A, are 1, the cost of

xS⊤R⊤RCIo2 is 3. P ′ = {RC , Io1, S⊤, R⊤}, {RC , Io2, S⊤, R⊤}} and the cost is further reduced from

23 in (RMP 2) to 6 in (RMP 3).

Min 3xS⊤R⊤RCIo2 + 3xS⊤R⊤RCIo1 + 10hRC
+ 10hRA

+ 10hIo1 + 10hIo2
(RMP 3)

Subject to

xS⊤R⊤RCIo2 + xS⊤R⊤RCIo1 + hRC
≥ 2

hRA
≤ 1

xS⊤R⊤RCIo1 + hIo1 = 1

xS⊤R⊤RCIo2 + hIo2 = 1

Solution:cost = 6, xS⊤R⊤RCIo1 = 1, xS⊤R⊤RCIo2 = 1, hRC
, hRA

, hIo1 , hIo2 = 0

Duals: πRC
= 10, λRA

= 0, ωIo1 = −7, ωIo2 = −7

The objective of (PP 3) is updated using the dual values from (RMP 3).

Min bC + bA + b¬A + bo1 + bo2 − 10rRC
− 0rRA

+ 7rIo1 + 7rIo2 (PP 3)

Subject to (PPC 1)

Solution: cost = 0, all variables are 0.

All artificial variables in (RMP 3) are zero, indicating that we may have reached a feasible
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solution. The reduced cost of (PP 3) is not negative anymore which means that (RMP 3) cannot be

improved further. Therefore, the algorithm terminates after the third ILP iteration and returns the

optimal solution σ(x) = {⟨{R, S} , {C, o1,¬A} , 1, ∅⟩, ⟨{R, S} , {C, o2,¬A} , 1, ∅⟩}.

The fil -Rule creates two new nodes x1 and x2 with L(x1) ← {C, o1,¬A}, L(x2) ←

{C, o2,¬A}, ♯x1 ← 1 and ♯x2 ← 1.

The e-Rule creates edges ⟨x, x1⟩ and ⟨x, x2⟩ with L (⟨x, x1⟩) ← {R, S} and L (⟨x, x2⟩) ←

{R, S} (because R ⊑ S ∈ R). It also creates back edges ⟨x1, x⟩ and ⟨x2, x⟩ with L (⟨x1, x⟩) ←

{R−, S−} and L (⟨x2, x⟩)← {R−, S−}.

4.3.4.2 Example with Non-Integer Solution

We use a very simple example to show how we use the branch-and-price method to get an

integer solution. Consider a concept, HappyFather, defined as a person with at most 2 children,

among whom there should be an Artist, a Doctor, a Professor, and a Lawyer. Additionally, a

Doctor cannot be a Lawyer. For simplicity, we use short names: HF (HappyFather), A(Artist),

D(Doctor), P (Professor), L(Lawyer), and we use R for the role hasChild.

Now consider a small Tbox:

HF ⊑ ≥ 1R.A⊓ ≥ 1R.D⊓ ≥ 1R.P⊓ ≥ 1R.L⊓ ≤ 2R.⊤ (51)

D ⊓ L ⊑ ⊥ (52)

with NR = {R}, and {HF,A,D, P, L} ⊆ NC . We start with a node x and its label L(x) =

{HF} and by unfolding HF and applying the ⊓-Rule we get L(x) = {HF,≥ 1R.A,≥ 1R.D,≥

1R.P,≥ 1R.L,≤ 2R.⊤}. The algorithm generates a corresponding set of inequalities and applies

ILP considering known disjointness. For solving these inequalities, RMP starts with artificial

variables, P ′ is initially empty, Q≥ = {RA, RD, RP , RL}, Q≤ = {R⊤}, Q∀ = ∅ and Qo = ∅.

The objective of (RMP 4) contains the sum of artificial variables along with the cost M = 10.

Constraints (a) to (d) correspond to at-least restrictions ≥ 1R.A, ≥ 1R.D , ≥ 1R.P , and ≥ 1R.L
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respectively. Constraint (e) corresponds to at-most restriction ≤ 2R.⊤.

Min 10hRA
+ 10hRD

+ 10hRP
+ 10hRL

+ 10hR⊤ (RMP 4)

Subject to

hRA
≥ 1 (a)

hRD
≥ 1 (b)

hRP
≥ 1 (c)

hRL
≥ 1 (d)

hR⊤ ≤ 2 (e)

Solution: cost = 40, hRA
= 1, hRD

= 1, hRP
= 1, hRL

= 1

Duals: πRA
= 10, πRD

= 10, πRP
= 10, πRL

= 10

After solving (RMP 4), we get the optimal solution with cost 40 with 4 non-zero artificial

variables. The objective of (PP 4) uses the dual values from (RMP 4). Constraint (i) ensures that

D and L cannot exist in the same partition element.

Min bA + bD + bP + bL + b⊤ − 10rRA
− 10rRD

− 10rRP
− 10rRL

− 0rR⊤
(PP 4)

Subject to
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rRA
− bA ≤ 0

rRD
− bD ≤ 0

rRP
− bP ≤ 0

rRL
− bL ≤ 0

b⊤ − rR⊤ ≤ 0

bD + bL ≤ 1 (i)

bA − b⊤ ≤ 0

bD − b⊤ ≤ 0

bP − b⊤ ≤ 0

bL − b⊤ ≤ 0

(PPC 2)

Solution: cost = −26, bA = 1, bD = 1, bP = 1, b⊤ = 1, rRA
= 1, rRD

= 1, rRP
= 1, rR⊤ = 1

The values of rRA
, rRD

, rRP
, and rR⊤ are 1 in (PP 4), therefore, a variable xRARDRPR⊤ is added

to (RMP 5) in corresponding inequalities. Since four b variables, bA, bD, bP , b⊤ are 1, the cost of

xRARDRPR⊤ is 4. P ′ = {{RA, RD, RP , R⊤}} and the value of the objective function is reduced

from 40 in (RMP 4) to 14 in (RMP 5). However, (RMP 5) still has one non-zero h variable.

Min 4xRARDRPR⊤ + 10hRA
+ 10hRD

+ 10hRP
+ 10hRL

+ 10hR⊤ (RMP 5)

Subject to

xRARDRPR⊤ + hRA
≥ 1

xRARDRPR⊤ + hRD
≥ 1

xRARDRPR⊤ + hRP
≥ 1

hRL
≥ 1

xRARDRPR⊤ + hR⊤ ≤ 2
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Solution: cost = 14, xRARDRPR⊤ = 1, hRL
= 1

Duals: πRA
= 4, πRL

= 10

The objective of (PP 5) is updated using the dual values from (RMP 5).

Min bA + bD + bP + bL + b⊤ − 4rRA
− 0rRD

− 0rRP
− 10rRL

− 0rR⊤
(PP 5)

Subject to (PPC 2)

Solution: cost = −11, bA = 1, bL = 1, b⊤ = 1, rRA
= 1, rRL

= 1, rR⊤ = 1

A new variable xRARLR⊤ is added to (RMP 6) in corresponding inequalities.

Min 3xRARLR⊤ + 4xRARDRPR⊤ + 10hRA
+ 10hRD

+ 10hRP
+ 10hRL

+ 10hR⊤ (RMP 6)

Subject to

xRARLR⊤ + xRARDRPR⊤ + hRA
≥ 1

xRARDRPR⊤ + hRD
≥ 1

xRARDRPR⊤ + hRP
≥ 1

xRARLR⊤ + hRL
≥ 1

xRARLR⊤ + xRARDRPR⊤ + hR⊤ ≤ 2

Solution: cost = 7, xRARLR⊤ = 1, xRARDRPR⊤ = 1

Duals: πRD
= 4, πRL

= 3

The dual values from (RMP 6) are used to update the objective of (PP 6).

Min bA + bD + bP + bL + b⊤ − 0rRA
− 4rRD

− 0rRP
− 3rRL

− 0rR⊤
(PP 6)

Subject to (PPC 2)
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Solution: cost = −2, bD = 1, b⊤ = 1, rRD
= 1, rR⊤ = 1

A variable xRDR⊤ is added to (RMP 7) in corresponding inequalities.

Min
2xRDR⊤ + 3xRARLR⊤ + 4xRARDRPR⊤ + 10hRA

+ 10hRD
+ 10hRP

(RMP 7)

+10hRL
+ 10hR⊤

Subject to

xRARLR⊤ + xRARDRPR⊤ + hRA
≥ 1

xRDR⊤ + xRARDRPR⊤ + hRD
≥ 1

xRARDRPR⊤ + hRP
≥ 1

xRARLR⊤ + hRL
≥ 1

xRDR⊤ + xRARLR⊤ + xRARDRPR⊤ + hR⊤ ≤ 2

Solution: cost = 7, xRARLR⊤ = 1, xRARDRPR⊤ = 1

Duals: πRD
= 2, πRP

= 2, πRL
= 3

The objective of (PP 7) is updated using the dual values from (RMP 7).

Min bA + bD + bP + bL + b⊤ − 0rRA
− 2rRD

− 2rRP
− 3rRL

− 0rR⊤
(PP 7)

Subject to (PPC 2)

Solution: cost = −2, bP = 1, bL = 1, b⊤ = 1, rRP
= 1, rRL

= 1, rR⊤ = 1

A variable xRPRLR⊤ is added to (RMP 8) in corresponding inequalities.

Min
3xRPRLR⊤ + 2xRDR⊤ + 3xRARLR⊤ + 4xRARDRPR⊤ + 10hRA

(RMP 8)

+10hRD
+ 10hRP

+ 10hRL
+ 10hR⊤

Subject to
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xRARLR⊤ + xRARDRPR⊤ + hRA
≥ 1

xRDR⊤ + xRARDRPR⊤ + hRD
≥ 1

xRPRLR⊤ + xRARDRPR⊤ + hRP
≥ 1

xRPRLR⊤ + xRARLR⊤ + hRL
≥ 1

xRPRLR⊤ + xRDR⊤ + xRARLR⊤ + xRARDRPR⊤ + hR⊤ ≤ 2

Solution: cost = 6, xRPRLR⊤ = 0.5, xRDR⊤ = 0.5, xRARLR⊤ = 0.5, xRARDRPR⊤ = 0.5

Duals: πRA
= 1, πRD

= 2, πRP
= 1, πRL

= 2

The objective of (PP 8) is updated using the dual values from (RMP 8).

Min bA + bD + bP + bL + b⊤ − 1rRA
− 2rRD

− 1rRP
− 2rRL

− 0rR⊤
(PP 8)

Subject to (PPC 2)

Solution: cost = 0, all variables are 0.

The reduced cost of (PP 8) is not negative anymore which means that (RMP 8) cannot be

improved further. Moreover, all artificial variables in (RMP 8) are zero which might indicate that

we have reached a feasible solution. Therefore, (RMP 8) is optimal and feasible. However, column

generation does not return an integer solution. The values are as follows:

• xRPRLR⊤ = 0.5, xRDR⊤ = 0.5, xRARLR⊤ = 0.5, xRARDRPR⊤ = 0.5

To obtain an integer solution, we use the branch-and-price technique. The first step is to select

one of the non-integer variables and then branch on that variable. Here, we select xRARLR⊤ and

branch in RMP on xRARLR⊤ ≥ 1 and xRARLR⊤ ≤ 0. Therefore, now we have two solution

subsets for finding the optimal integer solution as shown in Figure 4.5. First, we explore the

branch xRARLR⊤ ≥ 1 and add this inequality in (RMP 9) as a new row. (PP 8) is also extended by

adding the corresponding variable rRARLR⊤ in the objective, and (PPC 2) is extended with three

constraints (ii), (iii) and (iv). Constraints (ii) and (iii) indicate that if rRARLR⊤ = 1, then variables

bA and bL will also be 1. Similarly, Constraint (iv) sets rRARLR⊤ = 1 if bA and bL are 1.
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Figure 4.5: Solution subsets for finding the optimal integer solution

Min
3xRPRLR⊤ + 2xRDR⊤ + 3xRARLR⊤ + 4xRARDRPR⊤ + 10hRA

(RMP 9)

+10hRD
+ 10hRP

+ 10hRL
+ 10hR⊤

Subject to

xRARLR⊤ + xRARDRPR⊤ + hRA
≥ 1

xRDR⊤ + xRARDRPR⊤ + hRD
≥ 1

xRPRLR⊤ + xRARDRPR⊤ + hRP
≥ 1

xRPRLR⊤ + xRARLR⊤ + hRL
≥ 1

xRPRLR⊤ + xRDR⊤ + xRARLR⊤ + xRARDRPR⊤ + hR⊤ ≤ 2

xRARLR⊤ ≥ 1

Solution: cost = 7, xRARLR⊤ = 1, xRARDRPR⊤ = 1

Duals: πRD
= 2, πRP

= 2, πRARLR⊤ = 3

Min bA + bD + bP + bL + b⊤ − 0rRA
− 2rRD

− 2rRP
− 0rRL

− 0rR⊤ − 3rRARLR⊤
(PP 9)

Subject to
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rRA
− bA ≤ 0

rRD
− bD ≤ 0

rRP
− bP ≤ 0

rRL
− bL ≤ 0

b⊤ − rR⊤ ≤ 0

bD + bL ≤ 1 (i)

bA − b⊤ ≤ 0

bD − b⊤ ≤ 0

bP − b⊤ ≤ 0

bL − b⊤ ≤ 0

rRARLR⊤ − bA ≤ 0 (ii)

rRARLR⊤ − bL ≤ 0 (iii)

bA + bL − rRARLR⊤ ≤ 1 (iv)

(PPC 3)

Solution: cost = −1, bD = 1, bP = 1, b⊤ = 1, rRD
= 1, rRP

= 1, rR⊤ = 1

A variable xRDRPR⊤ is added to (RMP 10) in corresponding inequalities.

Min
3xRDRPR⊤ + 3xRPRLR⊤ + 2xRDR⊤ + 3xRARLR⊤ + 4xRARDRPR⊤ (RMP 10)

+10hRA
+ 10hRD

+ 10hRP
+ 10hRL

+ 10hR⊤

Subject to
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xRARLR⊤ + xRARDRPR⊤ + hRA
≥ 1

xRDRPR⊤ + xRDR⊤ + xRARDRPR⊤ + hRD
≥ 1

xRDRPR⊤ + xRPRLR⊤ + xRARDRPR⊤ + hRP
≥ 1

xRPRLR⊤ + xRARLR⊤ + hRL
≥ 1

xRDRPR⊤ + xRPRLR⊤ + xRDR⊤ + xRARLR⊤ + xRARDRPR⊤ + hR⊤ ≤ 2

xRARLR⊤ ≥ 1

Solution: cost = 6, xRDRPR⊤ = 1, xRARLR⊤ = 1

Duals: πRD
= 2, πRP

= 1, πRARLR⊤ = 3

The objective of (PP 10) is updated using the dual values from (RMP 8).

Min bA + bD + bP + bL + b⊤ − 0rRA
− 2rRD

− 1rRP
− 0rRL

− 0rR⊤ − 3rRARLR⊤
(PP 10)

Subject to (PPC 3)

Solution: cost = 0, all variables are 0.

The reduced cost of (PP 10) is not negative anymore which means that (RMP 10) cannot be

improved further. Moreover, all artificial variables in (RMP 10) are also zero and this solution

has integer values. Therefore, the first branch is terminated and we computed the optimal in-

teger solution as shown in Figure 4.6. Since we do not need to continue with the second branch

xRARLR⊤ ≥ 0, the algorithm terminates and returns the solution σ(x) = {⟨{R} , {D,P,¬L} , 1, ∅⟩,

⟨{R} , {A,L,¬D} , 1, ∅⟩}.

The fil -Rule creates two new nodes x1 and x2 with L(x1) ← {D,P,¬L}, L(x2) ←

{A,L,¬D}, ♯x1 ← 1 and ♯x2 ← 1.

The e-Rule creates edges ⟨x, x1⟩ and ⟨x, x2⟩ with L (⟨x, x1⟩)← {R} and L (⟨x, x2⟩)← {R}.

Therefore, the concept HappyFather is satisfiable.
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Figure 4.6: The optimal integer solution found at node 3 after applying the branch-and-price tech-
nique

4.4 Proof of Correctness

In this section we present a tableau for DL SHOIQ and proof of the algorithm’s termination,

soundness and completeness.

4.4.1 Soundness and Completeness of Algebraic Module

All number restrictions and nominals are converted into linear inequalities and added to RMP.

Other axioms, such as universal restrictions, role hierarchy, subsumption and disjointness, are

embedded in PP. In case of feasible inequalities, the branch-and-price algorithm returns a solution

set that contains valid partition elements. Since the branch-and-price algorithm satisfies all the

axioms embedded in RMP and PP, this solution is sound. Moreover, it is also complete because

CPLEX is used to solve linear inequalities and it does not overlook any possible solution. Since

the ILP feasibility test relies on a limited number of variables to determine the integer optimal

solution, its best-case time complexity is polynomial with respect to the number of inequalities, as

discussed in [76].

Proposition 34. For a set of inequalities, the algorithm either generates an optimal solution which

satisfies all inequalities or detects infeasibility.
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4.4.2 Proof of the algorithm’s termination, soundness and completeness

Our proofs are guided by the ones given in [41] but address the algebraic part of this calculus

correspondingly. Some of the completion rules given in Table 4.2 are very similar to the ones

presented in [41]. Our rules dealing with inverse roles, QCRs, and nominals are very different due

to the nature of our hybrid calculus that involves a tableau and arithmetic module. The correctness

of our calculus relies on the correctness of the arithmetic module.

Lemma 35. When started with a SHOIQ knowledge base (T ,R), the algorithm terminates and

is worst-case double exponential.

Proof. Termination is a consequence of the following properties of the expansion rules:

1. Since a partitioning P is a power set of Q that contains all subsets of Q except the empty

set, the size of P is bounded by 2♯Q − 1 where ♯Q is the size of Q. While the computational

complexity of this process is exponential, it is important to note that P is computed only

once for each node.

2. The worst-case complexity of the proposed algorithm is double exponential, due to the uti-

lization of the branch-and-price method and CPLEX. However, it is noteworthy that even

though the worst-case complexity of the branch and price algorithm is exponential, the av-

erage complexity is considerably lower. Furthermore, due to the fixed number (2♯Q − 1 ) of

variables, the solution for the linear inequalities can be computed in polynomial time in the

best-case scenario. Moreover, it does not affect the termination of the expansion rules.

3. The blockable nodes have a tree-shaped structure and there can be only one predecessor

node of the blockable node. Moreover, an upper bound on the number of new nominal nodes

that can be added to G by the ni -Rule is also fixed. This is crucial for termination and for

preventing the yo-yo problem that can occur due to the interaction among existing nominal

nodes, inverse roles, and number restrictions (see [41, 52] for details).
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4. The nommerge-Rule, the reset-Rule and the ≤nom-Rule are the shrinking rules that merge

node labels, redirect edges and remove blockable nodes where necessary. As mentioned

above, the blockable nodes form a tree-structure, therefore, when a node y is merged into

a node x, or y is reset, these rules do not remove y or any of its predecessors. The reset-

Rule is invoked by adding a new number restriction or a new nominal to the label of a node.

Therefore, the maximum number of times the reset-Rule can fire for a node is bounded by

the size of Q.

5. Each rule except the shrinking rules extends the completion graph by adding new nodes or

extending node labels without removing nodes or elements from node.

6. The fil -Rule and the ni -Rule are the generating rules. New nodes are only added by these

two generating rules and these rules can only be triggered once for each of a given concept

for a node x.

The fil -Rule can only be triggered once for a concept ∃R.C ∈ L(x) or ≥ nR.C ∈ L(x).

Suppose a neighbour y of x was generated by the fil -rule for a concept ∃R.C ∈ L(x) and

L(x, y) = {R} is added by the e-Rule. Similarly, for a concept≥ nR.C ∈ L(x), the fil -rule

generates m proxy individuals y1, ..., ym, which are R-neighbours of x and each represents

a partition element of Mi individuals such that
∑m

i=1Mi = n and C ∈ L(yi) for 1 ≤ i ≤ m.

If y is later merged in some other node z by the nommerge-rule, then an R-edge toward z will

be created and labels of both nodes will be merged. Therefore, there will always be some

R-neighbour of x with C in its label. Hence, the fil -Rule cannot be applied to x for a concept

∃R.C or ≥ nR.C ∈ L(x) again.

The ni -Rule introduces a set of n new nominal nodes y1, ..., yn if applied for a concept

≤ nR.C ∈ L(x) with L(yi) = {C} for 1 ≤ i ≤ n. The ni -Rule can also be triggered only

once for each such concept. Moreover, blockable R-neighbours are merged with these new

nominal nodes, and the number of these new nominal nodes is bounded to n.
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7. Pairwise blocking [42] is used to prevent application of expansion rules when the construc-

tion becomes iterative. The blocking condition ensures that the blocking path contains only

blockable nodes and does not contain any nominals.

8. The generating rules can not be applied to blocked nodes.

Lemma 36. If the expansion rules can be applied to a SHOIQ knowledge base (T ,R) in such

a way that they yield a complete and clash-free completion graph, then there exists a tableau for

(T ,R).

Proof. Let G = (V,E,L,B,U) be a complete and clash-free completion graph resulting from the

expansion rules initiated with (T ,R). A tableau T = (S,L′, E) for (T ,R) can be derived from G

as outlined below.

Drawing inspiration from Horrocks et al. [41], we employ a path construction to prove

the soundness of the algorithm. Let a node w(x) be the witness of a node x (i.e., w(x)

blocks x), and a path p as a sequence of pairs of blockable nodes of G in the form of

⟨(x0, x
′
0), ..., (xn, x

′
n)⟩. For p, Tail(p) := xn and Tail′(p) := x′

n, and with ⟨p | (xn+1, x
′
n+1)⟩

the path is ⟨(x0, x
′
0), ..., (xn, x

′
n), (xn+1, x

′
n+1)⟩. Therefore, the set of all paths Paths(G) is defined

as follows:

• For each blockable node x of G that is a successor of a nominal node, ⟨(x, x)⟩ ∈ Paths(G),

and

• For a path p ∈ Paths(G) and a blockable successor y of Tail(p):

– if y is not blocked, then ⟨p | (y, y)⟩ ∈ Paths(G), and

– if y is blocked and w(y) blocks y, then ⟨p | (w(y), y)⟩ ∈ Paths(G).

Due to the construction of Paths, all nodes occurring in a path are blockable, and for each p ∈

Paths(G) with p = ⟨p′ | (x, x′)⟩, the following facts hold:
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• x′ is not blocked,

• x′ is blocked iff x ̸= x′, and

• the predecessor of x′ in G is not blocked, and

• the blocking condition implies L(x) = L(x′)

If G does not contain any blocks, then there exists exactly one path p ∈ Paths(G) such that

Tail(p) = Tail′(p) = x. However, if G contains block(s), then for an infinite tableau it constitutes a

finite representation and both x and w(x) occur in the same blockable tree-shaped part of the graph

[41].

The set of nominal nodes in G is represented by Nom(G), and tableau T = (S,L′, E) from G

is defined as follows:

S = Nom(G) ∪ Paths(G)

L′(p) =

⎧⎪⎪⎨⎪⎪⎩
L(Tail(p)) if p ∈ Paths(G)

L(p) if p ∈ Nom(G)

E(R) ={⟨p, q⟩ ∈ Paths(G)× Paths(G) |

q = ⟨p | (x, x′)⟩ andx′ is anR-successor ofTail(p) or

p = ⟨q | (x, x′)⟩ andx′ is an Inv(R)-successor ofTail(q)}∪

{⟨p, x⟩ ∈ Paths(G)× Nom(G) | x is anR-neighbour ofTail(p)}∪

{⟨x, p⟩ ∈ Nom(G)× Paths(G) | Tail(p) is anR-neighbour ofx}∪

{⟨x, y⟩ ∈ Nom(G)× Nom(G) | y is anR-neighbour ofx}
In order to show that T is a tableau for (T ,R), we prove that T satisfies all properties (P1) -

(P13) of tableau T (see Definition 27). This proof closely follows the one found in [41], however,

it is somewhat different for (P5), (P7), (P8) and (P9).

• Since G is clash-free, (P1) holds for T.

• Since G is complete, (P2) and (P3) hold for T.
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• For (P4), consider ∀R.C ∈ L′(x) and ⟨x, y⟩ ∈ E(R). We consider four different cases:

– If ⟨x, y⟩ ∈ Paths(G)× Paths(G), then ∀R.C ∈ L(Tail(x)) and either

∗ Tail′(y) is an R-successor of Tail(x), and G being a complete completion graph

implies C ∈ L(Tail′(y)), and either Tail′(y) = Tail(y) or L(Tail′(y)) = L(Tail(y))

according to the blocking condition; or

∗ Tail′(x) is an Inv(R)-successor of Tail(y), and either Tail′(y) = Tail(y) or ∀R.C ∈

L(Tail′(x)) according to the blocking condition. Then, since G is complete, it

implies that C ∈ L(Tail(y)).

– If ⟨x, y⟩ ∈ Paths(G)× Nom(G), then ∀R.C ∈ L(Tail(x)) and y is an R-neighbour of

Tail(x). Since the ∀-rule is not applicable, it implies that C ∈ L(y).

– If ⟨x, y⟩ ∈ Nom(G)× Paths(G), then ∀R.C ∈ L(x) and Tail(y) is an R-neighbour of

x. Since G is complete, it implies that C ∈ L(Tail(y)).

– If ⟨x, y⟩ ∈ Nom(G)× Nom(G), then ∀R.C ∈ L(x) and y is an R-neighbour of x, and

G being a complete completion graph implies that C ∈ L(y).

In all four cases, according to the definition of L′, we have C ∈ L′(y).

• (P6) is similar to (P4).

• For (P5) and (P7), consider ∃R.C ∈ L′(x) or ≥ nR.C ∈ L′(x) for some x ∈ S. We are

handling ∃R.C as ≥ 1R.C.

– If x ∈ Paths(G), then G being a complete completion graph implies the existence of m

proxy individuals y1, ..., ym, which are R-neighbours of Tail(x) with yi ̸= yj for each

i ̸= j, and each represents a partition element of Mi individuals such that
∑m

i=1 Mi = n

and C ∈ L(yi) for 1 ≤ i ≤ m. By construction, each yi corresponds to a ti ∈ S with

ti ̸= tj , for each i ̸= j:
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∗ if yi is blockable, then it can be blocked if it is a successor of Tail(x). The pair

construction in paths ensures that ⟨p | (w(yi), yi)⟩ ≠ ⟨p | (w(yj), yj)⟩ even if

w(yi) = w(yj) for some i ̸= j.

∗ if yi is a nominal node, then ⟨x, yi⟩ ∈ E(R).

– If x ∈ Nom(G), then G being a complete completion graph implies the existence of m

proxy individuals y1, ..., ym, which are safe R-neighbours of x with yi ̸= yj for each

i ̸= j, and each represents a partition element of Mi individuals such that
∑m

i=1Mi = n

and C ∈ L(yi) for 1 ≤ i ≤ m. The safe R-neighbours are used to ensure that enough

R-neighbours are generated for nominal nodes. By construction, each yi corresponds

to a ti ∈ S with ti ̸= tj , for each i ̸= j:

∗ if yi is blockable, then it cannot be blocked, as it is a safe R-neighbour of x. The

pair construction in paths ensures that ⟨p | (yi, yi)⟩ ∈ S and ⟨x, ⟨p | (yi, yi)⟩⟩ ∈

E(R).

∗ if yi is a nominal node, then ⟨x, yi⟩ ∈ E(R).

Hence, all ti are distinct, and by construction, C ∈ L′(ti) for each 1 ≤ i ≤ n.

• Suppose ≤ nR.C ∈ L′(x) for some x ∈ S and ♯RT (x,C) ≤ n is violated. This means that

we have m proxy individuals y1, ..., ym, which are R-neighbours of x and each represents a

partition element of Mi individuals such that
∑m

i=1 Mi > n and C ∈ L(yi) for 1 ≤ i ≤ m.

However, this cannot happen because: 1) The algorithm generates a solution after making

sure that all at-least and at-most restrictions for x are satisfied. 2) Since G is clash-free, it

implies that for each ≤ nR.C ∈ L(x) we can have at-most m proxy individuals y1, ..., ym

each representing a partition element of Mi individuals such that
∑m

i=1Mi ≤ n with C ∈

L(yi). Moreover, each y ∈ S with ⟨x, y⟩ ∈ E(R) corresponds to an R-neighbour yi of x or

Tail(x). Hence, (P8) is satisfied.

• Suppose ≤ nR.C ∈ L′(x) for some x ∈ S and there exists R-neighbour y of either x in

case x ∈ Nom(G) or Tail(x) in case x ∈ Paths(G) and {C,¬C} ∩ L(y) = ∅. This means
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either ∀R.(C ⊔ ¬C) /∈ U(x) or the algorithm generated an incomplete solution. However,

this cannot happen because:

1. If ∀R.(C ⊔¬C) /∈ U(x), then it would make the ch-Rule applicable to node x in G but

that is not possible because G is complete.

2. According to Proposition 34, algebraic reasoning is sound and complete. Therefore,

(P9) holds for T.

• (P10) and (P11) hold due to the definition of R-successor and R-neighbour. Furthermore,

for (P11), consider ⟨x, y⟩ ∈ E(R) in T that implies {⟨x, y⟩ ∈ E | L(⟨x, y⟩) ∩ {R}} ̸= ∅ in

G. Since G is complete, it implies that {⟨y, x⟩ ∈ E | L(⟨y, x⟩) ∩ {Inv(R)}} ≠ ∅ (due to the

e-Rule) and consequently ⟨y, x⟩ ∈ E(Inv(R)).

• For (P12), consider o ∈ L′(x)∩L′(y) where x ̸= y, and assume there are two corresponding

distinct nodes x and y in G with o ∈ L(x)∩L(y) for some nominal o ∈ No. In this case, the

nommerge-Rule would need to be fired but that is not possible because G is complete. Hence,

(P12) holds for T.

• Since the partition elements of P are semantically pairwise disjoint, i.e., if e, e′ ∈ P , e ̸= e′

then eI ∩ (e′)I = ∅, and due to the nominal semantics ♯{o}I = 1, the algebraic reasoner

assigns the nominal o to only one partition element e. Therefore, the cardinality of e will

always be 1. In addition, since nominals always exist, the nominal nodes are never removed

through pruning. Hence, (P13) always holds.

Lemma 37. If there exists a tableau of a SHOIQ knowledge base (T ,R), then, the expansion

rules can be applied to a SHOIQ knowledge base (T ,R) in such a way that they yield a complete

and clash-free completion graph.

Proof. Let T = (S,L′, E) be a tableau for (T ,R). We use T to trigger the application of the expan-

sion rules such that they yield a complete and clash-free completion graph G = (V,E,L,B,U).

97



A function π is employed to map the nodes in G to elements of S in a manner that ensures the

following properties hold consistently throughout the execution of the tableau algorithm for all

x, y ∈ V and R ∈ NR:

A1. L(x) ⊆ L′(π(x)),

A2. if ⟨x, y⟩ ∈ E and R ∈ L(⟨x, y⟩), then ⟨π(x), π(y)⟩ ∈ E(R),

A3. x ̸= y implies π(x) ̸= π(y),

A4. if ⟨y, x⟩ ∈ E and R− ∈ L(⟨y, x⟩), then ⟨x, {R−}⟩ ∈ B(y), and according to (A2),

⟨π(y), π(x)⟩ ∈ E(R−), and

A5. if ≤ nR.C ∈ L(x), ∀R.{C ⊔ ¬C} ∈ U(x) and R ∈ L(⟨x, y⟩), then ⟨π(x), π(y)⟩ ∈

E(R), D ∈ L′(π(x)) for some D ∈ {C,¬C}.

We show by applying the expansion rules defined in Table 4.2 in order to obtain G, the properties

of mapping π are not violated.

• We initialize π as follows: the initial completion graph contains a node ui, for each nominal

oi ∈ No, with L(ui) = {oi}, and therefore, π(ui) = xi for xi ∈ S with oi ∈ L′(xi). (P13)

implies that xi must exist.

• The ⊓-Rule, ⊔-Rule, ∀-Rule and ∀+-Rule extend the label of a node x without violating π

properties due to (P2) - (P4) and (P6) of T.

• The nommerge-Rule: If o ∈ L(x) ∩ L(y) for some nominal o ∈ No, then o ∈ L′(π(x)) ∩

L′(π(y)). Since T is a tableau, (P12) and (P13) imply π(x) = π(y). Therefore, the

nommerge-Rule can be applied to merge nodes x and y without violating π properties.

• The inverse-Rule: Since T is a tableau, (P11) implies that if ⟨π(x), π(y)⟩ ∈ E(R), then

there is a back edge ⟨π(y), π(x)⟩ ∈ E(Inv(R)). The inverse-Rule adds a tuple ⟨x, {R−}⟩ to

B(y) if ∀R−.C ∈ L(y). Since the inverse-Rule only adds information about an edge that

already exists and this information is only used in AR, it does not violate π properties.
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• The reset-Rule: This rule is invoked when new number restrictions or nominals are added

to the label of the node. The reset-Rule removes the blockable successor nodes, and the

fil -Rule and the e-Rule create the new nodes and edges by also satisfying these new number

restrictions and nominals. Therefore, the reset-Rule does not violate the properties of T or

π.

• The ch-Rule: If ≤ nR.C ∈ L(x) and R ∈ L(⟨x, y⟩), then ≤ nR.C ∈ L′(π(x)) and

⟨π(x), π(y)⟩ ∈ E(R) due to properties of π. Since T is a tableau, (P9) implies {C,¬C} ∩

L′(π(x)) ̸= ∅. Hence, the ch-Rule adds ∀R.{C ⊔ ¬C} ∈ U(x) and the algorithm generates

a solution in order to add an appropriate concept D ∈ {C,¬C} to L(y) such that L(y) ⊆

L′(π(y)) holds.

• The fil -Rule: If ∃R.C ∈ L(x) or ≥ nR.C ∈ L(x), then ∃R.C ∈ L′(π(x)) or ≥ nR.C ∈

L′(π(x)) due to properties of π. The numerical restrictions imposed by existential restric-

tions and nominals along with the number restrictions are encoded into inequalities. The

solution σ is returned by the algorithm that defines the distribution of fillers by satisfying the

inequalities. The fil -Rule creates a node for each corresponding partition element returned

by the algebraic reasoner. Since T is a tableau, (P5) and (P7) imply that there exist the indi-

viduals of S satisfying these existential and at-least restrictions. Therefore, the fil -Rule does

not violate properties of T or π.

• The e-Rule: For each ∃R.C ∈ L(x) or ≥ nR.C ∈ L(x), we have ∃R.C ∈ L′(π(x)) or

≥ nR.C ∈ L′(π(x)) that means there exist π(yi) ∈ S, C ∈ L′(π(yi)) and ⟨π(x), π(yi)⟩ ∈

E(R). Since T is a tableau, (P10) implies ⟨π(x), π(yi)⟩ ∈ E(S) if R ⊑∗ S ∈ R and (P11)

implies ⟨π(yi), π(x)⟩ ∈ E(Inv(R)). The e-Rule is applied to connect x to its fillers, say yi,

by creating edges ⟨x, yi⟩ ∈ E between them according to the solution σ. The e-Rule merges

R into L(⟨x, yi⟩) and {Inv(R) | R ∈ R} into L(⟨yi, x⟩) and all S with R ⊑∗ S ∈ R into

L(⟨x, yi⟩) and Inv(S) into L(⟨yi, x⟩) without violating π properties. Moreover, (P10) and

(P11) of T are also preserved.
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• The ni -Rule: If the ni -Rule is applied to x with ≤ nR.C ∈ L(x), it introduces n new

nominal nodes z1, ..., zn with C ∈ L(zi) for 1 ≤ i ≤ n. Since T is a tableau, (P8) implies

♯RT (x,C) ≤ n. As the upper bound on the number of new nominal nodes is fixed, then

together with the ≤nom-Rule, the ni -Rule does not violate properties of T or π.

• The ≤nom-Rule: If ≤ nR.C ∈ L(x), then ≤ nR.C ∈ L′(π(x)). Since T is a tableau, (P8)

implies ♯RT (x,C) ≤ n. If the≤nom-Rule is applicable to x, then it implies that ♯RT (x,C) >

n and there must be an R-neighbour y of x with C ∈ L(y) and the nominal nodes z1, ..., zn

with C ∈ L(zi) for 1 ≤ i ≤ n. Moreover, there must be two nodes y and z with z ∈

{z1, ..., zn} such that π(y) = π(z) because (P8) will not hold otherwise. Therefore, the

≤nom-Rule can be applied without violating π properties.
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Chapter 5

Cicada - An Algebraic Tableau Reasoner for

SHOIQ

This chapter introduces Cicada, a prototype system designed to implement the algebraic tableau

calculus, proposed in Chapter 4, as proof of concept. Given that the satisfiability problem for

SHOIQ is NExpTime-complete, addressing this challenge efficiently necessitates the incorpo-

ration of a wide range of optimization techniques. In response to this requirement, our imple-

mentation also integrates a few optimization techniques, complemented by column generation and

branch-and-price techniques. Section 5.1 provides an overview of the reasoner architecture, ex-

plaining the foundational structure of the system. Subsequently, Sections 5.2 and 5.3 delve into a

comprehensive discussion of all the components of the Tableau Module (TM) and the Algebraic

Module (AM). Sequence diagrams are used to illustrate the sequential flow of activities within

each component of a system. A sequence diagram is a kind of interaction diagram which shows

interaction among processes and the order in which they interact with each other.
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Algebraic Tableau Reasoner

Tableau Module (TM)

Reasoner Manager

Preprocessor

Rule Engine

Solution Processor

Clash Handler

Algebraic Module (AM)

Inequality Generator

Inequality Solver

CPLEX

Figure 5.1: Algebraic Tableau Reasoner Architecture

5.1 Reasoner Architecture

Cicada is implemented using JAVA (JRE 1.8) and OWL-API (5.1.0)1. OWL-API is a Java API

for working with OWL ontologies. IBM CPLEX (Optimization software)2 is used to solve our

Integer Linear Programming (ILP) formulation. The reasoner is divided into two main modules

(as shown in Figure 5.1):

1. Tableau Module (TM)

2. Algebraic Module (AM)

The Tableau Module (TM) initiates its operation by loading the ontology and initializing the rea-

soning process. It does some preprocessing and applies expansion rules (see Section 4.3.2) for

creating a complete and clash-free completion graph. In situations where an algebraic reasoner is

required, TM transmits all numerical restrictions and other related information to the Algebraic

Module (AM). This collaborative interaction ensures that the Algebraic Module receives the rele-

vant data required for its specialized reasoning tasks.

1https://owlapi.sourceforge.net/
2CPLEX is an optimization software tool for solving linear optimization problems.

https://www.ibm.com/analytics/cplex-optimizer

102

https://owlapi.sourceforge.net/
https://www.ibm.com/analytics/cplex-optimizer


The Algebraic Module (AM) handles all numerical restrictions through Integer Linear Pro-

gramming (ILP). It formulates inequalities and addresses them using the column generation and

branch-and-price technique. The potential outcomes involve either the return of an optimal inte-

ger solution or the identification of a clash, signalling the absence of a feasible solution. Upon

receiving the solution from AM, TM systematically processes the results. Subsequent sections

elaborate on both modules by providing a more detailed understanding of their functionalities and

contributions. Figure 5.2 presents the structure of a system by depicting the system’s classes, their

attributes, methods, and the relationships among objects.

5.2 Tableau Module (TM)

The Tableau Module (TM) commences its operation by loading the ontology (from the .owl

file) and initiating the reasoning process through the instantiation of a new Reasoner instance. Sub-

sequently, TM systematically processes the ontology, configuring its internal settings. All axioms

undergo transformation to their negation normal forms, and several preprocessing optimization

techniques are applied.

TM then constructs a completion graph (CGraph), comprising nodes and edges. Each node

encapsulates information regarding its label and cardinality, along with details about incoming

and outgoing edges. Similarly, each edge holds information about its label and the corresponding

nodes. The expansion rules are employed to extend the completion graph CGraph.

During the consistency checking phase, TM incorporates several optimization techniques.

Upon receiving a solution from the Algebraic Module (AM), TM processes it and applies the

necessary expansion rules to generate proxy nodes. In case of a clash, TM employs backtracking

mechanisms guided by dependencies to explore alternative options.

TM consists of five subcomponents, each contributing to the overall functionality and efficiency

of the module.

1. Reasoner Manager

103



<<Interface>>
OWLReasoner

<<Interface>>
OWLReasonerFactory

+ createReasoner(OWLOntology): OWLReasoner

<<instantiates>>

ReasonerFactory

- reasoner: Reasoner
- config : ReasonerConfiguration

+ createReasoner(OWLOntology, ReasonerConfig): Reasoner
+ getConfiguration(): ReasonerConfiguration

Reasoner

- ontology : OWLOntology

+ Reasoner(OWLOnto, Config)

<<Interface>>
OWLReasonerConfiguration

ReasonerConfiguration

- blockingType: String
- expressivity : String

+ ReasonerConfiguration(): SimpleConfiguration
+ setBlockingType(String): void
+ getBlockingType(): String

<<instantiates>>

Preprocessor

- tuAxioms: Set<OWLAxiom>
- tgAxioms: Set<OWLAxiom>

+ applyAbsorption(): void
+ internalizeOntology(): OWLAxiom

RuleEngine

- tuAxioms: Set<OWLAxiom>
- tgAxioms: Set<OWLAxiom>
- cg : CompletionGraph

+ applyRule(OWLAxiom): boolean
+ needILP(): boolean
+ checkClash(OWLClassEx): boolean

SolutionProcessor

- solSet: ILPSolution

+ processSol(): ILPSolution

InequalityGenerator

- numericalRes: Set<OWLCardRes>
- existRes: Set<OWLSomeVal>
- universalRes: Set<OWLAllVal>
- relatedNominals: Set<OWLOneOf>
- RelatedSub: Set<OWLSubclassAx>
- RMP: RMPModel
- PP: PPModel

+ generateInequalities(): void
+ generateRMPModel(): RMPModel
+ generatePPModel(): PPModel

InequalitySolver

- isFeasible: boolean
- isInteger: boolean

+ solve(RMPModel, PPModel): ILPSolution
+ needBranchNPrice(): boolean
+ applyBranchNPrice(): boolean

ILPSolution

- isFeasible: boolean
- edges: Set<OWLObjProEx>
- fillers: Set<OWLClassExp>
- nodeSet: Set<Integer>
- cardinality: int

+ getSolutionSet(): ILPSolution

DependencySet

- exp: OWLClassExp
- branchPoint: int
- bpList: Set<Integer>

+ createDS(): DepSet
+ plusDS(DepSet, DeptSet): DepSet
+ updateDS(DepSet): DepSet

CompletionGraph

- nodes : List<Node>
- edges: List<Edge>

+ addNode(): Node
+ addEdge(Node, Node) : Edge
+ findBlocker(Node) : Node

Node

- nodeId: int
- neighbours: List<Edge>
- disjointNodes: List<Node>
- nodeLabel:

+ addLabel(OWLClassExp): void
+ getincomingEdges():
+ getOutgoingEdges():

Edge

- from: Node
- to : Node
- edgeLabel : Set<OWLObjProEx>

+ getFromNode(): Node
+ getToNode(): Node
+ addLabel(OWLObjProEx): void

NodeLabel

- labelNDep: Map<OWLClassExp, DepSet>

+ getLabel(): Set<OWLClassExp>
+ getDependency((OWLClassExp): DepSet

ReasonerManager

- reasoner: Reasoner
- config : ReasonerConfiguration
- re: RuleEngine
- ontology : OWLOntology

+ loadOntology(OWLOntology) : void
+ processOntology(OWLOnto): void

<<
in

st
an

tia
te

s>
>

<<instantiates>>

<<instantiates>>

<<instantiates>>

RMPModel

- rmpCplex:IloCplex
- obj: IloObjective
- Constraint: IloRange[]

+ generateRmpModel(): RMPModel

PPModel

- ppCplex:IloCplex
- reducedCost: IloObjective
- Constraint: IloNumVar[]

+ generatePPModel(): PPModel

ClashHandler

+ clashSet: DependencySet

+ handleClash(clashSet): void

Figure 5.2: System’s classes, their attributes, methods, and the relationships among objects
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2. Preprocessor

3. Rule Engine

4. Clash Handler

5. Solution Processor

5.2.1 Reasoner Manager

The Reasoner Manager (RM) assumes the pivotal role of coordinating and overseeing various

tasks across different components. RM reads an ontology in the form of a .owl file, which can

be seamlessly integrated into the system by providing the corresponding file link. RM initiates

the creation of an instance of the OWLOntologyManager using the OWLManager class from the

OWL API, as outlined in Algorithm 5.5. This establishes a structured and efficient mechanism for

managing and manipulating ontological information within the system.

Algorithm 5.5 createOWLOntologyManager()

Output: An instance of OWLOntologyManager
1: manager← create OWLOntologyManager using OWLManager

Algorithm 5.6 loadOntology(fileName)

Input: A string representing the path to the ontology file fileName
Output: ontology

1: ontology← instance of OWLOntology
2: file← create File instance using fileName
3: ontology← load ontology from file

Following this, RM proceeds to load the ontology file into an OWLOntology object by im-

plementing Algorithm 5.6. This involves the effective transfer of the ontological content from

the file into a structured and manipulable representation within the system. The utilization of the

OWLOntology object facilitates further operations and reasoning tasks on the ontological data.

Subsequently, RM initiates the creation of the reasoner by invoking the createReasoner()

method of the ReasonerFactory. The ReasonerFactory class implements the
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:ReasonerManager

loadOntology()

:ReasonerFactory

:Reasoner

:ReasonerConfiguration

initializeReasoningProcess()

createReasoner(OWLOntology ont)

<<create>>

setConfiguration()

configuration

 Reasoner reasoner = new Reasoner(ontology, config)

reasoner

reasoner, configuration
reasoner, configuration

Figure 5.3: Sequence diagram for initialization of reasoning process

OWLReasonerFactory interface of the OWL API. As part of this process, the ReasonerFactory

first invokes the setConfiguration() method of the ReasonerConfiguration class to establish the

necessary configurations.

The ReasonerConfiguration class, implementing the OWLReasonerConfiguration inter-

face, plays a crucial role in configuring reasoning settings and determining the appropriate blocking

strategy. These configurations are established after assessing the expressivity of the loaded ontol-

ogy, ensuring that the reasoner is appropriately configured to handle the specific characteristics

and complexities of the ontology. For SHOIQ ontologies we use pairwise blocking (see Section

3.1 for details).

Once ReasonerFactory gets configuration settings, it instantiates an object of the Reasoner

class. The Reasoner object is created while considering both the characteristics of the loaded

ontology and the specified configuration settings. This process is visualized in a sequence diagram

presented in Figure 5.3.

Afterwards, RM engages the Preprocessor to handle the ontology. Following the completion of

the preprocessing stage, RM forwards the processed ontology to the Rule Engine, which conducts

an ontology consistency test.
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Table 5.1: DL syntax and their correspondence OWL syntax

DL SHOIQ Syntax OWL Syntax
⊤ OWL:Thing
⊥ OWL:Nothing
A OWLClass
¬C ObjectComplementOf(C)
{o} OWLIndividual

C ⊓D ObjectIntersectionOf(C D)
C ⊔D ObjectUnionOf(C D)
R OWLObjectProperty
∃R.C ObjectSomeValuesFrom(R C)
∀R.C ObjectAllValuesFrom(R C)
∃R.{o} ObjectSomeValuesFrom(R ObjectOneOf(o))
≥ nR.C ObjectMinCardinality
≤ nR.C ObjectMaxCardinality

5.2.2 Preprocessor

The Preprocessor undertakes several optimization techniques on the loaded ontology, repre-

sented as the OWLOntology object. All axioms within the ontology are assumed to be in their

Negation Normal Form (NNF), wherein the negation sign (¬) is exclusively positioned in front

of concept names or nominals, as defined in Definition 20. The initial step of the Preprocessor

involves transforming all axioms to their Negation Normal Forms.

Following this, the Preprocessor applies absorption techniques targeting concepts, roles, and

nominals. This process aims to eliminate General Concept Inclusion (GCI) axioms, thereby mit-

igating nondeterminism. Importantly, these preprocessing transformations are executed on the

OWLOntology object, ensuring that the original ontology file remains unaffected. Given that the

loaded ontology is manipulated using the OWL API, references to our implemented procedures are

made using OWL syntax. For clarity, Table 5.1 illustrates the correspondence between DL syntax

and its equivalent OWL syntax.
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5.2.2.1 Concept Absorption

The Preprocessor executes concept absorption, as discussed in Section 3.2.1.2. This step in-

volves the application of optimization techniques aimed at enhancing the representation and effi-

ciency of the ontology.

5.2.2.2 Role Absorption

Additionally, the Preprocessor applies both basic and extended role absorption techniques,

as described in Section 3.2.1.2. This role absorption is also employed in the case of universal

restrictions and Qualified Cardinality Restrictions (QCRs). The equivalences introduced by these

axiom transformations are illustrated in Figure 5.4.

General concept inclusion axioms Equivalent axioms after absorption
≥ 3R.C ⊑ D ∃R.⊤ ⊑ D⊔ ≤ 2R.C
≤ 3R.C ⊑ D ∃R.⊤ ⊑ D⊔ ≥ 4R.C
∀R.C ⊑ D ∃R.⊤ ⊑ D ⊔ ∃R.¬C

Figure 5.4: Axiom equivalences used in extended role absorption

Moreover, in the presence of inverse roles, instead of rewriting ∃R.C ⊑ D as ∃R.⊤ ⊑ D ⊔

¬(∃R.C), it has been rewritten as C ⊑ ∀R−.D. Some axiom equivalences in the presence of

inverse roles are shown in Figure 5.5.

General concept inclusion axioms Equivalent axioms after absorption
∃R.C ⊑ D C ⊑ ∀R−.D
∃R.(C1 ⊔ C2) ⊑ D C1 ⊑ ∀R−.D and C2 ⊑ ∀R−.D
∃R.(C1 ⊓ C2) ⊑ D C1 ⊓ C2 ⊑ ∀R−.D

Figure 5.5: Axiom equivalences used in extended role absorption in the presence of inverse roles

5.2.2.3 Nominal Absorption

In the presence of nominals, the Preprocessor additionally applies techniques for nominal

OneOf and HasV alue absorption, see Section 3.2.1.3 for details. Moreover, when nominals

are present in General Concept Inclusion (GCI) axioms, the Preprocessor tries to absorb these
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Algorithm 5.7 createTGAxiom(tgAx, df)

Input: Set of OWLSubClassOfAxiom tgAx representing subclass axioms, OWLDataFactory df
Output: OWLClassExpression TGAxiom

1: for all sb ∈ tgAx do
2: union ← df .getOWLObjectUnionOf(sb.getSubClass().getComplementNNF(),

sb.getSuperClass())
3: unionSet← unionSet ∪ union
4: end for all
5: TGAxiom← df .getOWLObjectIntersectionOf(unionSet)

nominals to eliminate GCIs. Some axiom equivalences resulting from this process are presented

in Figure 5.6. The assertion {a} ⊑ A is represented as ClassAssertion(Ao) in OWL Syntax.

General concept inclusion axioms Equivalent axioms after absorption
⊤ ⊑ A ⊔ ¬{a} {a} ⊑ A
⊤ ⊑ (A ⊓B) ⊔ ¬{a} {a} ⊑ A and {a} ⊑ B
⊤ ⊑ A ⊔ ¬{a, b, c} {a} ⊑ A and {b} ⊑ A and {c} ⊑ A
⊤ ⊑ (¬A ⊔ ¬B) ⊔ {a} A ⊓B ⊑ {a}
⊤ ⊑ (¬A ⊓ ¬B) ⊔ {a} A ⊑ {a} and B ⊑ {a}

Figure 5.6: Axiom equivalences used in nominal absorption

All the remaining axioms in the loaded ontology that are not absorbable are reduced to a single

axiom called TGAxiom such that TGAxiom :=
d

C⊑D(¬C ⊔D), as outlined in Algorithm 5.7.

The sequence diagram of ontology processing is shown in Figure 5.7.

:ReasonerManager :Preprocessor

applyConceptAbsorption()

processOntology(OWLOntology ont)

applyAbsoption(OWLOntology ont)

unfoldable concepts, tg Axiom
unfoldable concepts, tg Axiom

applyRoleAbsorption()

applyNominalAbsorption()

internalizeGCIs()

Figure 5.7: Sequence diagram for ontology processing
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5.2.3 Rule Engine

The Rule Engine (RE) serves as a main component within this module. RE implements the

tableau calculus presented in the previous chapter and performs the ontology consistency test. In

the process of checking ontology consistency, RE constructs a completion graph (CGraph). CGraph

is composed of a set of proxy nodes and a set of edges connecting these nodes. Each node within

the graph encapsulates information about its label, cardinality, and details regarding all incoming

and outgoing edges. Similarly, each edge retains information about its label and the corresponding

nodes it connects. Notably, the nominal node’s cardinality value is set to 1, while blockable nodes

possess a non-negative integer cardinality.

CGraph is then extended by applying the expansion rules discussed in Section 4.3.2. RE as-

sesses whether the ILP module is required. If ILP is indeed necessary, RE dispatches all related

information to the Algebraic Module. This information encompasses numerical restrictions, uni-

versal restrictions, nominals, disjointness, and subsumptions. Upon receiving the solution from the

Algebraic Module, RE applies the necessary expansion rules. RE also checks for a potential clash.

In case of a clash, RE invokes the Clash Handler to handle the clash. The Clash Handler deter-

mines whether the clash can be resolved. If resolution is possible, the Clash Handler communicates

this to RE. In scenarios where alternative options exist, RE easily identifies the relevant nonde-

terministic decision and jumps back directly to that decision by using the dependency-directed

backtracking technique (see Section 3.2.2.2). RE then selects the alternative option to address the

clash.

If the clash cannot be handled, RE notifies the Reasoner Manager (RM) that the ontology

is inconsistent. RE persists in extending the CGraph by applying expansion rules until a clash

is detected or no expansion rule is applicable to any node in CGraph. The sequence diagram

detailing the consistency checking and clash handling is presented in Figure 5.8. It depicts the

objects, classes, and the sequence of messages exchanged between the objects required to carry

out this process.
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:ReasonerManager :RuleEngine :ClashHandler

checkConsistency()
chechConsistency()

needILP()

[needILP == false]

handleClash(DepSet)

applyRule()

clash_handled [true, false]

[clash_handled == false]

inconsistent ontology

[clash_handled == true]
bachtrack()

[needILP == true]

alt

:CompletionGraph<<create>>

CG cg  = new CG()

completion graph

hasClash()

alt [hasClash == false]

[hasClash == true]

createNode()

:Node

:Edge

<<create>>

<<create>>

alt

loop

generateInequalities(numericalRestrictions)

ILPSolution

Node node  = new Node()

node

createEdge()

Edge edge  = new Edge()

edge

inconsistent ontology

complete CG
complete CG

ref

Call ILP (numericalRestrictions)

Figure 5.8: Sequence diagram for consistency checking and clash handling

111



Algorithm 5.8 addDependencySet(level)

Input: Branching Level level
Output: DependencySet DS

1: DS ← create new DependencySet using given branching level
2: DS.branchingPoint← level
3: DS.branchingPointList← DS.branchingPointList ∪ level

Algorithm 5.9 plusDependencySets(DS1, DS2)

Input: Two Dependency Sets DS1, DS2
Output: DependencySet DS

1: DS ← create an empty DependencySet
2: if DS1 is not NULL then
3: DS ← DS ∪ DS1
4: end if
5: if DS2 is not NULL then
6: DS ← DS ∪ DS2
7: end if

5.2.4 Clash Handler

When the system detects a clash, it invokes the Clash Handler (CH) to determine whether

the clash can be managed. As discussed in Section 3.2.2.2, each concept is associated with a

dependency set. CH instantiates an object of the DependencySet class to represent concept de-

pendencies.

If a concept is added as a result of a deterministic choice, it possesses an empty dependency

set. However, in the case of a nondeterministic choice, a concept is added to the label of the node

with the relevant dependencies. This dependency is incorporated using the add() method of the

DependencySet class, as shown in Algorithm 5.8.

In the case of a clash, the Clash Handler (CH) receives a ClashSet, which is a union of the

dependency sets of concepts triggering the clash. This union of sets is formed using the plus()

method of the DependencySet class (see Algorithm 5.9). CH examines these dependencies, iden-

tifies the maximum one, and determines whether there are alternative choices to explore. If other

options are available, CH requests the Rule Engine (RE) to directly backtrack to that decision and

choose the alternative option.
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Algorithm 5.10 removeLevel(DS, level)

Input: Dependency Set DS, Branching Level level
Output: updated DependencySet DS

1: DS.branchingPointList← get branchingPointList of DS
2: DS.branchingPointList← remove level from DS.branchingPointList
3: maxV alue← get maximum value of DS.branchingPointList
4: DS.branchingPoint←maxV alue

If there are no other options at that dependency to choose, CH updates the ClashSet by re-

moving that dependency and looks for alternative dependencies. CH implements Algorithm 5.10

to remove the current dependency. This process continues until either the ClashSet is empty or

another option to explore is found. If the ClashSet is empty, it implies that there are no other op-

tions available. Consequently, CH generates a message indicating that the clash cannot be handled.

Since there is no other option left, the system identifies this label as unsatisfiable.

CH manages three types of branchings: OR-branching, ILP-branching, and Merge-branching.

OR-branching

This type of branching occurs as a result of the ⊔-Rule application. This leads to branching

situations, introducing nondeterministic choices within the reasoning process. For example, we

have two concepts≤ 1R.⊤⊔∀R.¬B and≥ 2R.(A⊓B)⊔ ≥ 1R.A. A concept≤ 1R.⊤⊔∀R.¬B

has a dependency set D1 = {∅}, then after application of the ⊔-Rule, a concept ≤ 1R.⊤ is added

to the label with a dependency setD2 = {D1∪1}, here 1 is a dependency that is set for disjunction

≤ 1R.⊤⊔∀R.¬B. Similarly, a concept≥ 2R.(A⊓B)⊔ ≥ 1R.A has a dependency setD3 = {∅}.

After application of the ⊔-Rule, a concept ≥ 2R.(A ⊓ B) is added to the label with a dependency

set D4 = {D3 ∪ 2}.

When the algorithm tries to create 2 R-successors of x with A and B in their label, it identifies

a clash with ≤ 1R.⊤ that has the dependency set D2. Therefore, the resulting ClashSet is the

union of the dependency sets of participating concepts, i.e., Dl = {D2 ∪D4} = {1, 2}. CH at first

finds out if there are other choices to explore at dependency 2. If CH finds other options, it asks RE

to jump back directly to that decision. Otherwise, CH updates ClashSet by removing dependency
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2 and sets Dl = {1}. CH then checks other options at dependency 1. The process terminates when

either ClashSet is empty or it finds some other option to explore.

ILP-branching

ILP-branching manifests for two primary reasons:

1. Clash with Concepts Propagated by Inverse Roles: If a concept, propagated back in the

label of a node due to the inverse roles, clashes with a concept added by the ILP solution,

the Clash Handler (CH) identifies this conflict. CH then relays this information to the Rule

Engine (RE). RE, in turn, backtracks to that specific point, integrates new information, and

communicates with the Arithmetic Module to obtain an updated solution.

2. Clash Triggered by ch-Rule Application: Given that the ch-Rule is applied within the

Algebraic Module, a clash may occur due to this specific branching. CH detects this clash

using dependencies and notifies RE. Subsequently, RE includes information about the clash,

prompting a reevaluation of numerical restrictions by calling the Algebraic Module. The

Algebraic Module then takes into account the new clash-related information for an updated

solution.

Merge branching

If a concept that triggered a clash is added by merging nodes, the Clash Handler (CH) takes

corrective action. CH reverses the merging process and restores the CGraph to its previous state.

Following this, CH prompts the Rule Engine (RE) to backtrack and explore alternative options if

they are available. This undoing of merging ensures that the clash is appropriately addressed, and

the system can consider different choices to proceed.
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5.2.5 Solution Processor

To manage numerical restrictions, the Rule Engine (RE) invokes the Algebraic Module, pro-

viding all related information required to solve these numerical restrictions. The Algebraic Module

subsequently returns the solution after addressing these numerical restrictions. The Solution Pro-

cessor (SP) is then engaged to process this solution.

SP determines the number of proxy nodes that need to be created and how many can be reused.

It refines and processes the solution before forwarding it to RE. The processed solution is then

utilized by RE for the application of expansion rules and further processing. This collaborative

process ensures the effective integration of solutions obtained from the Algebraic Module into the

Tableau Module.

5.3 Algebraic Module (AM)

The Algebraic Module (AM) is responsible for handling all numerical restrictions using Integer

Linear Programming (ILP). It formulates inequalities and addresses them through the branch-and-

price technique (see Section 4.3.1 for details). This module comprises two subcomponents:

1. Inequality Generator

2. Inequality Solver

The sequence diagram shown in Figure 5.9 depicts the process of formulating inequalities and

generating solutions.

5.3.1 Inequality Generator

The Inequality Generator (IG) implements Algorithm 4.1 and 4.2 in order to generate the Re-

stricted Master Problem (RMP) and Pricing Problem (PP). IG initiates the process by initializing
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:RuleEngine :InequalityGenerator

callILP()

:InequalitySolver

generateInequalities()

solveInequalities(RMP, PP)

:SolutionProcessor

processSol(ILPSol)

:RMP
<<create>>

RMP rmp = new RMP()

rmp

:PP<<create>>

PP pp = new PP()

pp

:ILPSolution<<create>>

ILPSol sol = new ILPSol()

ILPSolution

ref

Check Consistency (ILP results)

Figure 5.9: Sequence diagram for generating inequalities and ILP solution

the RMP model, as outlined in Algorithm 5.11. IG gets all numerical restrictions, existential re-

strictions and related nominals and generates RMP. Information related to subsumptions, disjoint-

ness, universal restrictions and role hierarchies are used to generate PP. IG implements Algorithm

5.12 for initializing the PP model.

IG uses the atomic decomposition technique to encode numerical restrictions on concepts and

role fillers into inequalities. It represents the decomposition sets Q≥, Q≤ and Qo as an array

(IloRange [] Constraint) in RMP. On the other hand, Q∀ is represented in PP using arrays

(IloNumVar[] r) and (IloNumVar[] b). These representations and encodings ensure that the nu-

merical restrictions are appropriately translated into the ILP formulation.

IG sends these RMP and PP models to the Inequality Solver by invoking the

solveInequalities() method, which is responsible for solving the formulated ILP models.

By calling solveInequalities(), IG initiates the process of solving the RMP and PP, and the

Inequality Solver takes on the task of finding solutions based on the encoded constraints and ob-

jectives within these ILP models.
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Algorithm 5.11 initializeRMPModel(totalV ar)

Input: Total number of variables totalV ar
Output: An instance of RMPModel rmpModel

1: rmpModel← create an instance of RMPModel
2: rmpModel.rmpCplex← initialize the CPLEX model for RMP
3: rmpModel.Objective← a minimization objective to the CPLEX model
4: rmpModel.Constraint← initialize the array of inequalities for numerical restrictions using

totalV ar
5: rmpModel.H ← initialize the starting artificial variables
6: rmpModel.X ← initialize the new variables for generated columns

Algorithm 5.12 initializePPModel(totalV ar, totalQualifiers)

Input: Total number of variables totalV ar, Total number of qualifiers totalQualifiers
Output: An instance of PPModel ppModel

1: ppModel← create an instance of PPModel
2: ppModel.ppCplex← initialize the CPLEX model for PP
3: rmpModel.reducedCost← objective from the CPLEX model for PP
4: rmpModel.R← initialize the array of binary variables to ensure description logic semantics

using totalV ar
5: rmpModel.B ← initialize the array of binary variables to ensure description logic semantics

using totalQualifiers

5.3.2 Inequality Solver

The Inequality Solver (IS) plays a crucial role in solving the generated Restricted Master Prob-

lem (RMP) and Pricing Problem (PP) models. It implements Algorithm 4.3, which outlines the

steps and procedures for solving ILP models.

IS is responsible for executing the necessary computations and optimizations to find solutions

that satisfy the constraints and objectives encoded in the RMP and PP. It uses CPLEX, an optimiza-

tion software tool, to achieve this. It ensures that the ILP models are effectively solved to provide

an optimal integer solution.

In the case of a non-integer solution, IS takes corrective action by invoking the

applyBranchAndPrice() method, as specified in Algorithm 4.4. This method implements the

branch-and-price technique to further refine the solution and attempt to find an optimal integer

solution. As discussed in the previous chapter, the branch-and-price technique involves a combi-

nation of branching, where the solution space is divided into subproblems, and pricing, where new
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Algorithm 5.13 processSolution(ILPSolutionSet)

Input: ILPSolutionSet
Output: SolutionSet

1: for all sol ∈ ILPSolutionSet do
2: solution← an instance of Solution
3: solution.edges← sol.roles
4: solution.fillers← sol.concepts
5: solution.cardinality← sol.cardinality
6: solution.nodeSet← sol.nodeSet
7: SolutionSet← SolutionSet ∪ solution
8: end for all

variables are introduced to the model to improve the solution.

ILP Solution

After the termination of the branch-and-price process, the Inequality Solver (IS) generates

a solution derived from the feasible inequalities. The result is encapsulated in an object of the

ILPSoultion class, representing a solution set σ (as presented in the previous chapter). A set of

tuples in the form ⟨R,C, n,V⟩ is represented as a set of objects of the Solution class. Algorithm

5.13 outlines this process.

The Solution class serves as a representation for the tuple ⟨R,C, n,V⟩, and each object of

this class encapsulates attributes corresponding to the components of the tuple. Therefore, the

attributes within each Solution object are:

• Set < OWLObjectPropertyExpression > edges which represents a set of roles R ⊆ NR

• Set < OWLClassExpression > fillers which represents a set of concepts C ⊆ N

• int cardinality which represents cardinality n

• Set < Integer > nodeSet which represents a set of nodes V ⊆ V by using their ids.
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Chapter 6

Performance Evaluation

This chapter endeavours to assess the real-world application of the algebraic calculus intro-

duced in Chapter 4. The practical performance of Cicada, the prototype reasoner presented in

Chapter 5, is evaluated. Cicada implements the hybrid algebraic tableau calculus outlined in this

thesis. We compared Cicada with major OWL reasoners such as FaCT++ (1.6.5), HermiT (1.3.8),

JFact (1.2.3), and Konclude (0.6.2). Section 6.1 provides an overview of the evaluation method-

ology, detailing the benchmarking process. In Section 6.2, the test cases employed for evaluation

are outlined, accompanied by the presentation of evaluation results. Section 6.3 offers a general

analysis of Cicada’s performance.

6.1 Evaluation Methodology

The algebraic reasoning algorithm was proposed to address the inefficiencies observed in deal-

ing with highly expressive DL constructs, notably QCRs, nominals, and inverse roles. Therefore,

Cicada has been designed and implemented to show its proficiency in handling nominals, inverse

roles, and QCRs more effectively than existing reasoners lacking algebraic reasoning. To demon-

strate its enhanced capabilities, Cicada undergoes an evaluation through Tbox consistency tests,

utilizing ontologies containing these expressive DL constructs.

The effectiveness of the algebraic method has previously been highlighted in handling QCRs,
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as demonstrated in [37, 26]. Additionally, its applicability extends to addressing both QCRs and

nominals, as presented in [23, 22]. It is noteworthy that these previous works did not incorporate

the column generation technique.

Therefore, as part of comprehensive testing, Cicada is assessed against test cases involving the

use of QCRs and nominals, without necessarily incorporating inverse roles. This approach offers a

thorough evaluation of Cicada’s expertise in handling a diverse range of expressive DL constructs.

6.1.1 Benchmarking

In addition to ILP and branch-and-price, Cicada only implements a few standard optimization

techniques such as lazy unfolding [4, 38], concept absorption [43], role absorption [73], nominal

absorption [67], dependency directed backtracking [43], and a ToDo list architecture [74], strate-

gically controlling the application of expansion rules.

However, it is worth noting that, unlike many state-of-the-art reasoners that are equipped with

a wide range of optimization techniques to ensure reasonable runtime behaviour across real-world

problems, Cicada’s optimization techniques are more focused. This specialization could poten-

tially result in suboptimal performance, particularly for SHOIQ ontologies that require additional

optimization techniques.

Furthermore, existing reasoning approaches often face challenges in effectively handling

QCRs, particularly when these restrictions involve high numerical values. Consequently, many

real-world ontologies are structured in a way that either excludes QCRs completely or uses very

small numerical values in QCRs. Therefore, such ontologies may not be suitable as benchmarks

for evaluating Cicada’s performance. To address this potential limitation, we have used two distinct

categories of benchmarks:

1. A set of synthetic test cases: For a comprehensive empirical evaluation of Cicada, we

constructed a set of synthetic test cases. Among these test cases, some were adapted from

existing sources, including those documented in [26, 21]. This diverse set of synthetic sce-

narios allows us to rigorously assess Cicada’s performance across a spectrum of reasoning
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challenges.

2. A set of ontologies from OWL Reasoner Evaluation (ORE 2014) Dataset: To evaluate

Cicada’s performance with large-sized ontologies, we derived a set of ontologies from ORE

2014 [7].

6.1.2 Comparative Analysis with Prominent OWL Reasoners

In our investigation, Cicada underwent a comprehensive comparison with leading state-of-the-

art OWL reasoners, including FaCT++ (1.6.5) [74], HermiT (1.3.8) [66], JFact (1.2.3), and Kon-

clude (0.6.2) [72]. These reasoners employ distinct reasoning algorithms. Specifically, FaCT++

employs tableau-based DL reasoning, HermiT utilizes hyper-tableau reasoning, and Konclude,

while primarily based on tableau calculus, incorporates consequence-based reasoning as well.

In addition to incorporating various state-of-the-art optimization techniques, each reasoner is

equipped with numerous optimizations, some tailored to address specific complexities. For in-

stance, FaCT++ employs a ToDo list architecture to control the application of expansion rules. Her-

miT, on the other hand, implements core blocking to handle ontologies with large cyclic TBoxes

effectively. Konclude utilizes absorption-based handling of nominal schemas, pool-based merging,

and a known/possible set classification and realization approach.

Therefore, it is crucial to highlight that the performance of a particular system may vary across

specific test cases due to various factors that make reasoning service more challenging for the em-

ployed reasoning algorithm. Consequently, attributing a degradation or improvement in reasoning

performance directly to the reasoning algorithm adopted can be a difficult task.

6.1.3 Evaluation Platform

The benchmark set utilized for evaluation comprises .owl files representing OWL ontologies in

the OWL functional format. The evaluation tests were conducted on a robust HP DL580 Scientific

Linux SMP server equipped with four 15-core processors (Gen8 Intel Xeon E7-4890v2 2.8 GHz)
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and a substantial total RAM of 1TB. Each processor boasts 256GB of shared RAM, and the 15

cores are enhanced with hyper-threading support.

6.2 Test Cases

This section outlines the employed test cases and presents the run-times required for Cicada to

determine TBox consistency, drawing comparisons with the performance of other reasoners. We

focus our evaluation on concept expressions only containing QCRs or nominals.

We have organized three primary sets of synthetic test cases, with an incremental enhancement

of DL expressivity in each set. The first set exclusively involves QCRs (DL SHQ), the second

set introduces nominals (DL SHOQ), and the third set incorporates inverse roles (DL SHOIQ).

Each of these sets is further categorized into two subsets: consistent and inconsistent. While we

adapted the synthetic test cases from [26, 21], for the sake of completeness and to ensure this thesis

is self-contained, we reiterate the descriptions of those test cases as we report on their performance.

Each test case comprises a TBox consistency assessment featuring TBox T , which includes the

description of a concept C to evaluate its satisfiability. Additionally, a TBox axiom⊤ ⊑ ¬{a}⊔C is

incorporated, where a is a freshly introduced nominal. Furthermore, we derived a set of ontologies

from ORE 2014.

In the subsequent sections, we describe the test cases formulated to evaluate the algebraic rea-

soning approach. These test cases encompass a comprehensive examination of various parameters,

including:

1. The Size of Numbers: Exploring the impact of varying numerical values within qualified

cardinality restrictions.

2. Number of Nominals: Assessing the effect of the number of nominals incorporated.

3. Impact of Inverse Roles: Examining the consequences of inverse roles in the presence of

qualified cardinality restrictions and nominals.
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Table 6.1: Evaluation results while the value of i is increased linearly (TO=timeout, Cic=Cicada,
FaC=FaCT++, Her=HermiT, JFa=JFact, Kon=Konclude)

i
Test Ontologies - Consistent Test Ontologies - InConsistent

Cic FaC Her JFa Kon Cic FaC Her JFac Kon
1 10.65 1.42 3.15 3.11 0.03 9.53 2.69 4.08 2.27 0.03
2 9.67 1.48 2.71 2.66 0.02 11.89 1.38 3.19 2.19 0.04
3 9.32 1.77 3.99 2.75 0.03 11.35 2.09 4.72 3.55 0.1
4 10.74 1.66 3.56 1.99 0.05 9.61 1.52 5.96 7.93 1.1
5 10.36 2.22 12.9 3.59 0.04 10.19 6.99 171.41 23.03 16.16
6 11.73 7.26 TO 2.7 0.07 12.52 96.07 TO 216.31 230.93
7 9.96 34.29 TO 4.3 0.08 10.47 TO TO TO TO
8 11.1 364.93 TO 5.94 0.1 12.02 TO TO TO TO
9 11.47 TO TO 7.45 0.12 11.38 TO TO TO TO

10 10.38 TO TO 17.18 0.17 10.49 TO TO TO TO

4. Satisfiability vs. Unsatisfiability: Distinguishing the performance concerning the satisfia-

bility and unsatisfiability of the given concept expression.

These parameters collectively contribute to a thorough understanding of the algebraic reasoning

approach’s efficacy in handling numerical restrictions across various scenarios. We show runtimes

of our results in seconds and set the timeout limit to 1000 seconds.

6.2.1 Test cases for SHQ

This test examines the impact of varying numerical values within Qualified Cardinality Re-

strictions (QCRs). A concept C is defined as:

C ⊑ ≥ 2iRS.(A ⊔B)⊓ ≤ iS.A⊓ ≤ iR.B⊓ ≤ (i− 1)T.¬A⊔ ≤ jT.¬B

where {R, S,RS, T} ⊆ NR, {R ⊑ T, S ⊑ T,RS ⊑ R,RS ⊑ S} ⊆ R.

Given ⊤ ⊑ ¬{a} ⊔ CSAT, which indicates that a is a member of C and has a label L(a) = {≥

2iRS.(A ⊔ B),≤ iS.A,≤ iR.B, (≤ (i− 1)T.¬A⊔ ≤ jT.¬B)}. Considering that C is satisfiable

if a satisfies the following numerical restrictions:

1. ≥ 2iRS.(A ⊔B): a must have at least 2i RS-fillers, each satisfying (A ⊔B)
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Figure 6.1: Effects of linearly increasing the numbers used in QCRs in CSAT

Figure 6.2: Effects of linearly increasing the numbers used in QCRs in CUnSAT
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2. ≤ iS.A: At most i S-fillers of a can be members of A.

3. ≤ iR.B: At most i R-fillers of a can be members of B.

4. (≤ (i − 1)T.¬A⊔ ≤ jT.¬B): There can be at most (i − 1) T -fillers of a that are members

of ¬A, or there can be at most j T -fillers of a that are members of ¬B.

The satisfaction of a with (1), (2), and (3) holds for all i > 0. However, to satisfy (4), a must also

satisfy ≤ jT.¬B because ≤ (i− 1)T.¬A cannot be satisfied. Consequently, the satisfiability of C

depends on the value of j; when j ≥ i, C becomes satisfiable; otherwise, it becomes unsatisfiable.

Therefore, this set of ontologies is divided into two subsets. In the first set, a concept C is satisfiable

where j = i, while in the second one, C is unsatisfiable where j = (i− 1).

CSAT ⊑ ≥ 2iRS.(A ⊔B)⊓ ≤ iS.A⊓ ≤ iR.B⊓ ≤ (i− 1)T.¬A⊔ ≤ iT.¬B

CUnSAT ⊑ ≥ 2iRS.(A ⊔B)⊓ ≤ iS.A⊓ ≤ iR.B⊓ ≤ (i− 1)T.¬A⊔ ≤ (i− 1)T.¬B

We increment the value of i to observe its impact on reasoning performance. Initially, the

numbers are increased linearly with i ranging from 1 to 10. Table 6.1 presents the evaluation

results for both satisfiable and unsatisfiable cases. These findings reveal that Cicada’s performance

remains unaffected by the linear increase in numbers. For satisfiable cases, most reasoners exhibit

improved performance with a linear increase in i. In contrast, in unsatisfiable cases runtime for

other reasoners escalates significantly even with a linear increase in i and relatively small values.

Figure 6.1 and Figure 6.2 visually illustrate the effects of linearly increasing numbers in satis-

fiable and unsatisfiable cases, respectively.

In the second test, numbers are increased exponentially using i = 10k, with k ranging from 1

to 6. Table 6.2 provides the evaluation results for both satisfiable and unsatisfiable cases. Once

again, these results demonstrate that Cicada’s performance remains robust against the increase in

numbers. However, as the value of i grows exponentially, most of the reasoners are not able to

process these ontologies within the time limit whenever i ≥ 7.
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Table 6.2: Evaluation results while the value of i is increased exponentially (TO=timeout,
ERR=wrong result, Cic=Cicada, FaC=FaCT++, Her=HermiT, JFa=JFact, Kon=Konclude)

i
Test Ontologies - Consistent Test Ontologies - InConsistent

Cic FaC Her JFa Kon Cic FaC Her JFac Kon
101 12.9 4.02 TO TO TO 9.53 TO TO TO TO
102 12.53 TO TO TO TO 11.89 TO TO TO TO
103 12.18 TO ERR TO TO 9.61 TO ERR TO TO
104 11.13 TO TO TO TO 10.19 TO TO TO TO
105 10.12 ERR TO TO TO 12.52 ERR TO TO TO
106 12.42 TO TO TO TO 11.35 TO TO TO TO

Figure 6.3: Effects of exponentially increasing the numbers used in QCRs in CSAT

Figure 6.4: Effects of exponentially increasing the numbers used in QCRs in CUnSAT
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Figure 6.5: Effects of increasing the number of nominal and the numbers used in QCRs in EUSAT

Figures 6.3 and 6.4 depict the effects of exponentially increasing numbers in satisfiable and

unsatisfiable cases, respectively.

The consistent and effective performance of Cicada in solving these test cases underscores the

advantage of employing algebraic reasoning for handling QCRs compared to alternative reasoning

approaches. It is noteworthy that, due to the utilization of proxy nodes (refer to Definition 31),

the same completion graph remains valid for cases where numbers are increased linearly and ex-

ponentially. In the former scenario, the proxy nodes represent i elements, while in the latter case,

they represent 10k elements (1 ≤ k ≤ 6). This adaptability highlights the flexibility and stability

of Cicada’s approach across varying numerical values within QCRs.

6.2.2 Test cases for SHOQ

This test specifically investigates the influence of the number of nominals and varying nu-

merical values within QCRs. The European Union (EU) example, adapted from [21], serves as the

basis for creating test cases that incorporate both nominals and QCRs. In this example, the member

states are represented as an enumeration of 27 distinct nominals, with each nominal corresponding

to a specific member state. This representation can be expressed as
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Table 6.3: Evaluation results of consistency test of EUSAT and EUUnSAT (TO=timeout, Cic=Cicada,
FaC=FaCT++, Her=HermiT, JFa=JFact, Kon=Konclude)

n
Test Ontologies - Consistent Test Ontologies - InConsistent

Cic FaC Her JFa Kon Cic FaC Her JFac Kon
2 9.5 1.69 3.37 1.97 0.02 8.76 1.83 3.89 2.7 0.03
3 11.84 1.09 3.13 2.78 0.03 8.91 1.63 3.15 2 0.03
4 10.43 1.75 4.29 1.9 0.03 14.53 2.37 3.94 2.72 0.04
5 10.62 1.14 2.58 1.81 0.03 10.36 2.63 3.92 3.3 0.07
6 9.62 1.72 2.8 1.64 0.03 8.75 1.65 3.69 7.15 0.29
7 10.95 2.11 3.99 2.18 0.03 8.4 1.73 5.4 10.47 1.99
8 9.53 1.51 3.58 1.72 0.02 9.28 2.94 11.39 26.96 17.41
9 11.72 2.21 3.74 1.63 0.02 10.36 7.63 80.64 161.54 176.11

10 9.47 2.37 3.69 1.73 0.03 12.94 76.18 TO TO TO
15 12.6 1.77 2.89 2.25 0.03 11 TO TO TO TO
20 15.7 1.3 3.33 2.9 0.01 11.71 TO TO TO TO
25 14.79 2.03 3.44 2.34 0.02 15.02 TO TO TO TO
27 15.75 1.88 4.41 2.32 0.05 17.44 TO TO TO TO

Figure 6.6: Effects of increasing the number of nominal and the numbers used in QCRs in EUUnSAT
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EU_MemberState ≡ {Austria, ...,UK}

Here, a TBox consistency test is conducted by assessing the satisfiability of a concept EU

through the inclusion of a TBox axiom ⊤ ⊑ ¬{a} ⊔ EU within a TBox T . Similar to the previous

sets, this test is further categorized into two subsets. In the first subset, the concept EU is satisfiable,

whereas, in the second subset, EU is unsatisfiable. A concept EU is defined as:

EUSAT ⊑ ≥ nmemberOf.EU_MemberState

EUUnSAT ⊑ ≥ (n+ 1)memberOf.EU_MemberState

Furthermore, the number of nominals used to define a concept EU_MemberState also

varies depending on the value of n in a concept EU. Therefore, for testing purposes, we define

EU_MemberState as:

EU_MemberState ≡ {o1, ..., on}

In order to satisfy the at-least restriction ≥ nmemberOf.EU_MemberState, a standard tableau

reasoner generates n distinct memberOf -fillers as instances of EU_MemberState and then at-

tempts to merge them with n nominals enumerated in the definition of EU_MemberState. There-

fore, the complexity of these test cases arises from this nondeterministic merging process.

Table 6.3 provides a comprehensive overview of the evaluation results for both consistent and

inconsistent ontologies. In satisfiable cases, most reasoners exhibit efficient performance. How-

ever, in the case of EUUnSAT, these reasoners generate n+1 distinct memberOf -filler and attempt

to merge them with n nominals. Consequently, their performance deteriorates as the value of n

increases in unsatisfiable cases. Utilizing algebraic reasoning for handling nominals and QCRs,

Cicada swiftly recognizes that n + 1 elements cannot be merged with n nominals, ensuring its

performance remains unaffected by an increase in the value of n. Figures 6.5 and 6.6 visually

illustrate how the reasoning performance is affected by increasing the number of nominal and the

numbers used in QCRs.
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6.2.3 Test cases for SHOIQ

As discussed earlier, the interaction of nominals with inverse roles and QCRs adds complexity

to reasoning services. In this section, we investigate Cicada’s performance on SHOIQ ontologies

where nominals, QCRs and inverse roles interact. We employ three sets of benchmarks for this

evaluation:

1. The first set consists of small synthetic test ontologies utilizing a variable n to represent

the number of nominals. This allows us to assess the impact of increased nominals and the

numbers used in QCRs in the presence of inverse roles.

2. The second benchmark includes a set of 221 consistent and a set of 181 inconsistent

SHOIQ ontologies.

3. The third benchmark is derived from ORE 2014 and encompasses 2882 SHOIQ ontolo-

gies. For testing purposes, Aboxes have been removed because Cicada implements no Abox

optimization techniques.

In the first benchmark, we explore the effect of increasing the number of nominals and the numbers

used in QCRs in the presence of inverse roles. For testing purposes, concepts C, A and B are

defined as

C ⊑ ∃R−.A

A ⊑ ≤ nR.⊤ ⊓≥ nR.B ⊓ ≥ m1R.D ⊓ ≥ m2R.E

B ⊑ {o1, ..., on}

C ⊓ E ⊑ ⊥, C ⊓D ⊑ ⊥, E ⊓D ⊑ ⊥

Nominals o1, ..., on are declared as pairwise disjoint. The first set comprises consistent on-

tologies where m1 + m2 = n − 1. The second set consists of inconsistent ontologies where

m1 +m2 = n. Table 6.4 presents the evaluation results for both consistent and inconsistent cases.

Similar to previous tests, these results demonstrate improved performance for consistent ontolo-

gies. However, only Cicada can process all inconsistent ontologies within the time limit.

130



Table 6.4: Evaluation results of satisfiability test of EUSAT and EUUnSAT

(TO=timeout, Cic=Cicada, FaC=FaCT++, Her=HermiT, JFa=JFact, Kon=Konclude)

n
Test Ontologies - Consistent Test Ontologies - InConsistent

Cic FaC Her JFa Kon Cic FaC Her JFac Kon
5 12.44 1.95 3.02 0.74 0.04 14.3 1.64 24.59 24.59 0.04
7 14.26 2.36 12.68 0.77 0.03 14.49 12.78 TO TO 0.23

10 11.88 2.34 TO 0.92 0.05 11.71 TO TO TO 40.63
20 19.42 2.35 TO 0.87 0.06 16.2 TO TO TO TO
40 34.49 1.81 TO 0.93 0.2 19.7 2.46 TO TO TO

Figure 6.7: Effects of increasing the number of nominals and the numbers used in QCRs in the
presence of inverse role in consistent ontologies

Figures 6.7 and 6.8 visually depict the performance of the reasoners in both consistent and

inconsistent cases, considering the presence of nominals, cardinality restrictions, and inverse roles.

The second benchmark contains a set of 221 consistent and a set of 181 inconsistent ontologies.

These small ontologies exhibit entailments depending on combinations of cardinality restrictions,

nominals, and inverse roles. A timeout of 1000 seconds of CPU time was used. The runtimes for

test ontologies are ordered for each reasoner in increasing runtime values. The resulting graphs

demonstrate the superior performance of Cicada (see Figures 6.9 and 6.10).

The third benchmark is derived from the OWL Reasoner Evaluation (ORE 2014 [7]) dataset.

This dataset encompasses multiple extensive collections of real-life OWL ontologies acquired from
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Figure 6.8: Effects of increasing the number of nominals and the numbers used in QCRs in the
presence of inverse role in consistent ontologies
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Figure 6.9: Results of 221 Consistent Ontologies
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Figure 6.10: Results of 181 Inconsistent Ontologies

the web. Additionally, it includes user-submitted ontologies that were identified as particularly

challenging for reasoners. It contains 2882 SHOIQ ontologies. The set includes:

• The MOWLCorp (Manchester OWL Corpus)1

• The Oxford Ontology Library2

• The NCBO BioPortal3 Snapshot (June 2014)

• User-submitted ontologies, including:

– The Data Mining OPtimization Ontology (DMOP) [47], a complex SROIQ ontology

with around 3,000 logical axioms

1http://mowlrepo.cs.manchester.ac.uk/datasets/mowlcorp/
2http://www.cs.ox.ac.uk/isg/ontologies/
3https://bioportal.bioontology.org/
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– Genomic CDS [63], an ALCQ ontology containing approximately 4,000 logical ax-

ioms, involving a high number of qualified number restrictions of the type ’exactly

2’.

– Bio KB 101 [12], a set of OWL approximations of the first-order logic representation

of a biology textbook, consisting of 432 SHOIQ ontologies.

– FMA-FNL, a variant of the FMA (Foundational Model of Anatomy) ontology [62]. It

is a large and highly cyclic ALCOI (D) ontology with over 120,000 logical axioms.

– GALEN-FNL, a highly cyclic ALCHOI (D) variant of the well-known Galen ontol-

ogy [61], containing around 37,000 logical axioms and 951 object properties.

– GALEN-Heart: a highly cyclicALCHOI (D) ontology containing a module extracted

from the Galen ontology with over 10,000 logical axioms.

– Functional Therapeutic Chemical Classification System (FTC)4, a large ontology with

nearly 300,000 logical axioms

• The National Cancer Institute (NCI) Thesaurus (NCIt) (May 2013 version) [33]

• The Systematized Nomenclature of Medicine (SNOMED) Clinical Terms (SNOMED CT)

(January 2011 version) [65]

A timeout of 1000 seconds of CPU time was set. The runtimes for test ontologies are organized

for each reasoner in increasing runtime values, as illustrated in Figure 6.11, showcasing the eval-

uation results of the ORE 2014 dataset. Notably, Cicada employs a limited set of optimization

techniques that do not detect cases where entailments cannot be derived. Comparatively, the other

four reasoners use more extensive optimization techniques. Consequently, Cicada’s performance

falls within the mid-range for this benchmark.

Despite this, Cicada outperformed HermiT in over 2700 ontologies and exhibited superior per-

formance to JFact in 339 ontologies. It’s worth noting that neither HermiT nor JFact could process

4https://www.ebi.ac.uk/chembl/ftc/
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Figure 6.11: Results of ORE 2014 SHOIQ consistency benchmark (2882 ontologies)

most of the BioKB ontologies within the specified time limit. In contrast, Cicada successfully

processed all of them in less than 4 minutes.

6.3 Discussion

Algebraic reasoning allows Cicada to handle nominals, inverse roles, and QCRs more effec-

tively than existing reasoners. The evaluation of Cicada’s performance highlights its effectiveness

compared to existing reasoners. Traditional reasoning approaches often encounter challenges when

dealing with QCRs, especially those involving high numerical values. Real-world ontologies often

circumvent these challenges by either excluding QCRs or using small numerical values. Conse-

quently, such ontologies might not serve as ideal benchmarks for evaluating Cicada’s capabilities.

To overcome this limitation, we used a set of synthetic test cases along with the ORE 2014 dataset.
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The evaluation involved 32 ontologies focused solely on QCRs, examining the impact of in-

creasing numerical values in these restrictions. In 26 additional ontologies, nominals were in-

troduced alongside QCRs to assess their combined impact on the reasoning process. A total of

412 small SHOIQ ontologies were also tested. The results demonstrated Cicada’s robust per-

formance against increasing numerical values. However, existing reasoners faced challenges with

high numerical values, struggling to process these ontologies within the specified time limit. Kon-

clude, leveraging new optimization techniques, performed better overall, yet it also encountered

difficulties with ontologies featuring large numerical values.

Furthermore, we derived 2882 ontologies from the ORE 2014 dataset. It’s noteworthy that

Cicada’s optimization techniques are more focused, primarily employing column generation and

branch-and-price techniques. While Cicada’s performance is suboptimal, especially for ontologies

requiring additional optimization techniques, it still outperformed other reasoners in some cases.
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Chapter 7

Conclusions and Future Work

Description Logics (DLs) have gained significant traction in Knowledge Representation and

modelling, prompting numerous research endeavours to enhance their expressivity and reasoning

efficiency. It has become imperative for a DL not only to accommodate expressivity for modelling

all elements within an application’s domain but also to facilitate efficient reasoning when employ-

ing the full extent of expressivity. As previously mentioned, conventional tableau-based reasoning

procedures lack arithmetic awareness and exhibit a blind approach. As a consequence, DL reason-

ers employing these procedures face inefficiencies when handling the expressivity associated with

nominals and qualified cardinality restrictions (QCRs) during inference processes.

Nominals, capturing the essence of uniqueness and identity, play a crucial role in representing

concepts with a single instance in various real-world domains such as "Sun," "Blue," or "Canada."

On the other hand, QCRs empower the language with the capability to articulate numerical con-

straints concerning relationships. Despite the significance of nominals and QCRs, the limited abil-

ity of existing DL reasoners to efficiently handle these constructs has hindered the development of

real-world ontologies extensively utilizing them. Additionally, inverse roles, while enhancing ex-

pressiveness by representing bidirectional connections, introduce higher computational complexity

in reasoning tasks.

The primary goal of this thesis, as outlined in Section 1.3, was to devise an efficient reasoning
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algorithm capable of handling the expressive features of DLs, including QCRs, nominals, and in-

verse roles. The subsequent sections of this chapter delineate the achieved objectives and highlight

the key contributions made by this thesis.

7.1 Research Methodology

The research methodology adopted involves the following key steps:

1. Problem Identification: The initial step involved identifying the challenges and limitations

in existing reasoning algorithms for Description Logics, especially when dealing with ex-

pressive features such as QCRs, nominals, and inverse roles.

2. Objective Formulation: Once the challenges were identified, the research objectives were

formulated. The primary goal was to design a reasoning algorithm that efficiently handles

the expressivity of DLs incorporating QCRs, nominals, and inverse roles.

3. Algorithm Design: A novel reasoning algorithm was designed, building on the hybrid ap-

proach that combined tableau-based reasoning with algebraic reasoning. Theoretical foun-

dations, including soundness, completeness, and termination proofs, were established for the

proposed reasoning algorithm. This ensured the reliability and correctness of the developed

approach.

4. Implementation of Prototype System: A prototype system, named Cicada, was imple-

mented to validate the practical applicability of the proposed reasoning algorithm.

5. Empirical Evaluation: An empirical evaluation was conducted to assess the performance

of Cicada against existing state-of-the-art reasoners. Datasets and metrics were defined to

measure and compare the efficiency and effectiveness of the developed reasoning system.

6. Documentation and Analysis: The entire research process was documented, and the results

obtained from the theoretical framework, algorithm design, and empirical evaluation were
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analyzed to draw meaningful conclusions.

7.2 Research Contributions

The main contributions of the thesis align with the previously outlined objectives (see Section

1.3) and can be categorized as follows:

Algorithmic and Theoretical Contribution:

1. Calculus Design for SHOI and SHOIQ:

(a) The design of a decidable calculus for the DL SHOI was achieved through a hybrid

algebraic approach, as documented in [24, 25]. This included defining a tableau for

SHOI, creating a hybrid reasoning procedure that utilized algebraic reasoning for

satisfiability decisions involving nominals and inverse roles, and establishing proofs

for soundness, completeness, and termination.

(b) Extending the calculus to handle the more expressive DL SHOIQ was another main

contribution. This involved adapting the tableau reasoning algorithm and integrating an

algebraic component while ensuring the preservation of soundness, completeness, and

termination. The extension incorporated the handling of QCRs, nominals, and inverse

roles. The proofs for soundness, completeness, and termination were extended to cover

the augmented expressive DL. The calculus was presented in Chapter 4.

2. Algorithmic Enhancements: The reasoning algorithm has undergone substantial enhance-

ments, constituting a pivotal aspect of our contributions. These enhancements included:

(a) Encoding numerical restrictions imposed by nominals and QCRs into inequalities.

(b) Utilizing Integer Linear Programming (ILP) to decide the feasibility of numerical re-

strictions and enhancing computational capabilities of the reasoning approach. The

branch-and-price method has been used which is a combination of column generation
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and branch-and-bound technique. The feasibility test for the linear inequalities can be

computed in polynomial time, as shown in [51].

(c) Embedding additional knowledge about axioms such as universal restrictions, role hi-

erarchy, subsumption, and disjointness to provide a more informed mapping of QCR

satisfiability to feasibility.

Practical Contribution

1. Prototype Reasoner Design and Implementation: A running prototype reasoner has been

designed and implemented. The system served as a proof of concept and demonstrated the

feasibility of the hybrid approach in real-world scenarios. The architecture of this prototype

reasoner was detailed in Chapter 5.

2. Empirical Evaluation: The thesis contributed to the field by conducting an empirical eval-

uation of the performance of the proposed reasoning approach. The evaluation, presented

in Chapter 6, provides insights into the practical efficiency and effectiveness of the hybrid

approach. The evaluation, encompassing synthetic test cases and the ORE 2014 dataset,

showed that algebraic reasoning enhanced Cicada’s performance in handling nominals, in-

verse roles, and QCRs. Moreover, the evaluation revealed Cicada’s robust performance

against increasing numerical values. To assess the efficiency of Cicada, we compared its to-

tal runtime performance with other reasoners. In the SHOIQ inconsistent dataset, Cicada

demonstrated a notable speedup factor, surpassing Fact++ by 17.29, Konclude by 19.57,

JFact by 20.50, and HermiT by an impressive 44.56. Additionally, in the SHOIQ consis-

tent dataset, Cicada exhibited a substantial speedup factor, outperforming Konclude by 4.35,

JFact by 4.89, Fact++ by 6.41, and HermiT by 38.08. This comparison revealed that Cicada

outperformed other reasoner by a significant margin.
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These contributions collectively advanced the understanding and application of reasoning tech-

niques for expressive DLs involving nominals, QCRs, and inverse roles, emphasizing both theo-

retical foundations and practical implementations.

7.3 Future Work

Future work in this research domain could explore several avenues to further enhance and

extend the contributions made by the current study. Here are some potential directions for future

research:

1. Optimization Techniques: The proposed approach primarily emphasizes managing large

cardinality restrictions and nominals in the presence of inverse roles; however, Cicada cur-

rently lacks certain optimization techniques. To further refine the reasoning process, reduce

computational complexity, and enhance overall efficiency, there is a need to explore and de-

velop additional optimization techniques. It’s worth noting that Cicada does not incorporate

any Abox optimization techniques, which could be considered for inclusion in future work.

2. Support for Additional DL Features: The proposed calculus effectively handles the most

expressive DL constructs, yet there are certain DL features that it does not currently sup-

port. For instance, complex role inclusion axioms are not included. Additionally, reflexive,

irreflexive asymmetric, and disjoint roles are not addressed within the scope of this calculus.

Future enhancements to the calculus could incorporate support for these additional features.

3. Open Source Collaboration: Cicada can be released as an open-source project to encourage

collaboration and contributions from the broader research and developer communities. This

can lead to continuous improvement and adoption by a wider user base. Furthermore, other

reasoners can benefit from algebraic reasoning in handling large numbers.

4. Developing an Independent Algebraic Module: Consider creating a standalone algebraic

module, allowing other reasoners to adopt and leverage algebraic reasoning for efficient
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handling of large numbers. This modular approach enhances the flexibility and applicability

of algebraic reasoning across various reasoning systems.

By exploring these avenues, future research can contribute to the ongoing development of efficient

and effective reasoning algorithms for Description Logics, addressing both theoretical and practical

aspects of knowledge representation and reasoning.
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