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Abstract

Bytecode Similarity Detection for Obfuscated Java Android Applications

Misheelt Munkhjargal

Code similarity detection has many practical applications, such as intellectual property pro-

tection, vulnerability search, and malware detection. However, existing approaches typically focus

on the source code, while many third-party libraries are released in bytecode format. Hence, de-

velopers may unknowingly use third-party libraries without knowing possible license violations or

vulnerabilities. In this thesis, we introduce a deep learning approach, ByClone, to detect source

code clones based on Java bytecode. We collect source-code level clone data for bytecode in 140

Android applications to conduct the experiments. We find that ByClone is effective in detecting

code clones based on bytecode, with a precision and recall of 78.37 and 75.24. After obfuscating

the bytecode, ByClone still has a precision and recall of 82.55 and 70.95, highlighting the potential

of ByClone. Finally, we find that ByClone is not sensitive to different obfuscation options. Our

study highlights the potential of clone detection based on bytecode. We also release the data for

future research in this direction.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Licensing and Vulnerability Issues in Bytecode

Third-party software is widely used by practitioners from both open-source communities and

commercial companies to facilitate the process of development and maintenance. Due to privacy

issues and proprietary source code, many third-party software is usually only available in obfus-

cated bytecode (Su, Bell, Kaiser, & Baishakhi, 2017). Using such obfuscated bytecode has the risk

of unknowingly integrating third-party software that contains code with licensing agreements that

developers are not aware of or contains vulnerabilities (Mlouki, Khomh, & Antoniol, 2016). A

breach of license agreements may lead to serious legal issues. For example, many companies have

inadvertently violated the GNU General Public License (GPL) agreement (Mlouki et al., 2016).

Businesses can suffer from serious lawsuits that can amount to hefty fines. Hence, it would be ben-

eficial for companies to detect these violations ahead of time in the development process to prevent

using third-party libraries that can result in violating licensing agreements.

Code clone detection techniques can be effective in avoiding such license or vulnerability is-

sues (Ahtiainen, Surakka, & Rahikainen, 2006). If one is able to detect source code clones at the

bytecode level, third-party libraries with problematic license agreements can be prevented proac-

tively. Similarly, third-party bytecode containing vulnerabilities can be spotted by bytecode clone
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detection techniques to mitigate software quality issues when source code analytical tools do not

excel. In a practical setting, bytecode similarity detection can be used as a search or scanner tool,

either standalone or as an extension of a code base storage software, to detect vulnernabilities, mal-

ware, or copyright infringements.

1.1.2 Currently Available Code Similarity Detection Tools

The majority of prior studies for detecting code clones have detected similarities in source code

through parsing and comparing similar patterns. Source code similarity detection is a useful tech-

nique for license and vulnerability detection (Ahtiainen et al., 2006; Ragkhitwetsagul, Krinke, &

Clark, 2018; Ðurić & Gasevic, 2013). However, the source code is not always accessible for code

similarity analysis. For business and privacy/security reasons, the source code of the software is of-

ten not available. Instead, it is likely that the bytecode of the software is available for use. In cases

when only the bytecode is accessible, our goal is to still be able to detect similarities in the soft-

ware. In this thesis, we aim to advance code similarity detection techniques for the Java bytecode

in Android applications.

Although some prior studies (Liu, 2021; Tang, Luo, Fu, & Zhang, 2020; Yang, Fu, Liu, Yin, &

Zhou, 2021) explore source code similarity detection based on binary code, they primarily focus on

using assemble code (i.e., compiled from C/C++ code). There is a lack of techniques for detecting

source code similarity based on bytecode, especially for Java, where Java bytecode is peculiar due

to its cross-platform nature.

1.1.3 Detecting Clones in Obfuscated Java Bytecode

A potential challenge in detecting Java bytecode in Android applications is that developers com-

monly obfuscate their code for security purposes. Obfuscation alters the bytecode of an application

and presents difficulties when detecting code clones. The intuition behind ByClone is that detecting

clones in obfuscated bytecode can be regarded as a similar bytecode detection problem. By calcu-

lating the similarity between two bytecode methods, we can determine whether they are clones in

obfuscated or non-obfuscated formats.
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Thus, in this paper, we propose a deep learning-based approach, ByClone, for source code simi-

larity detection based on Java bytecode. Given a pair of methods in binary code, ByClone classifies

the pair’s corresponding source code as either clone or non-clone. We conduct our study using

Android applications because they are widely available and many are obfuscated. Furthermore, the

vulnerability and license incompatibility associated with the obfuscated bytecode format within the

Java-based Android ecosystem are major concerns Lim et al. (2018).

1.2 Overview of the Methodology

We collect 140 Android apps from F-Droid and create a dataset of the similarity score for every

pair of methods in bytecode. To build the dataset, we first run the state-of-the-art source code simi-

larity detection tool, NiCad (Cordy & Roy, 2011), on every pair of source code methods. We chose

NiCad because of its high precision and recall (95% and 96%, respectively). Then, we disassemble

the Java class files to get the bytecode using the javap command line tool. We map the source

code level similarity score that we got from NiCad to the corresponding method pairs in bytecode

format. In other words, in our dataset, the similarity score of a pair of bytecode methods is their

corresponding source code similarity score obtained from running NiCad.

ByClone leverages an LSTM Siamese Neural Network (Chicco, 2021a; Hochreiter & Schmid-

huber, 1997) to learn and detect bytecode similarity. An LSTM Siamese Neural Network trains two

LSTM sub-networks in parallel and concatenates them at the end to learn the similarity of the two

inputs. ByClone is able to detect source code similarity in both regular and obfuscated bytecode.

Among the 140 studied apps, we split them into training, validation, and test sets. The training

set consists of 80% of the total number of applications (112 apps), and the testing and validation

sets each consist of 10% of the total number of applications (14 apps each). We randomly split the

apps based on the distribution of the clone method pairs to ensure all three sets have a similar ratio

of clones/non-clones. We define a method pair as clones if they have a NiCad similar larger than

0.7 (Cordy & Roy, 2011).
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1.3 Research Questions

We evaluate ByClone by answering the following research questions:

1.3.1 RQ1: Can we detect source code clones based on Java bytecode in Android

applications?

We propose a deep learning-based approach to detect Java bytecode clones. Since embeddings

are critical to the performance of a deep learning model, we compared the results of four popu-

lar embeddings: Word2Vec (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013), FastText (Joulin,

Grave, Bojanowski, & Mikolov, 2016), GloVe (Pennington, Socher, & Manning, 2014), and In-

struction2Vec (Lee et al., 2019). We find that ByClone is able to detect clones in Java bytecode

(i.e., similar score larger than 0.7 (Cordy & Roy, 2011)) with a precision and recall of 78.37 and

75.24, respectively, when using FastText as the embedding. ByClone outperforms the baselines that

use traditional machine learning models such as SVM and random forest (precision is less than 1).

Although most embeddings result in similar precision/recall, using Instruction2Vec is not able to

detect any clones, which further highlights the importance of embeddings. Nevertheless, our find-

ings show that ByClone is able to detect code clones based on the bytecode with relatively high

precision and recall.

1.3.2 RQ2: Can we detect source code clones based on obfuscated bytecode?

Developers often obfuscate the bytecode, resulting in significant alteration to prevent others

from decompiling the bytecode for privacy/security reasons (Su et al., 2017). We find that ByClone

is able to accurately detect source code clones in obfuscated bytecode with a precision and recall

of 82.55 and 70.95, respectively, when using Word2Vec as the embeddings. The results show the

potential of using ByClone to detect clones based on obfuscated bytecode.

1.3.3 RQ3: Do configurations in R8 affect clone detection results?

R8 is the default code shrinker and obfuscation tool for Android applications. Developers often

set custom configurations in R8 for their obfuscation and optimization requirements. The changes
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in obfuscation and optimization defined by the R8 configuration can affect the resulting bytecode.

We find that the presence of R8 configurations has an impact on ByClone’s detection results. Par-

ticularly, the applications that contain pre-defined R8 configurations score a precision of 52.69 and

a recall of 76.08. We remove the R8 configurations for the application and find that it results in

worse performance results with a precision of 60 and a recall of 47.11. The performance compari-

son between the two cases indicates that our bytecode similarity detection approach is effective for

obfuscated bytecode with R8 configurations.

1.4 Contributions

We summarize the contributions of this thesis as follows:

• Contribution 1. We train and evaluate 140 popular Java Android applications scraped from

F-Droid. Our bytecode similarity dataset consists of pairs of bytecode methods and their

source code similarity score provided by NiCad. This includes a total of 1.9 millions pairs of

methods. We release this dataset and make it available online.

• Contribution 2. We present a deep learning approach to detect both unobfuscated and obfus-

cated bytecode in Java Android applications. We release the replication package for our Java

bytecode similarity detection tool, ByClone.

• Contribution 3. We study the effects of R8 configurations on bytecode similarity detection.

In particular, we study whether compiling Java bytecode with R8 options has an effect on the

performance of our bytecode similarity detection tool, ByClone.

1.5 Thesis Organization.

Chapter 2 discusses the background of this thesis. Chapter 3 presents our approach. Chapter 4

discusses the data collection and model training. Chapter 5 presents the evaluation results. Chapter 6

presents a discussion of our thesis. Chapter 7 discusses the threats to validity. Chapter 8 summarizes

the related work. Chapter 9 concludes the thesis.
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Chapter 2

Background

Java is one of the most popular programming languages used by developers (Cass, 2015). The

“write once, run anywhere” feature makes Java programs capable of being executed on a wide range

of machines. The Java compiler first compiles the source code into bytecode (i.e., “.class” files).

Then, the Java Virtual Machine (JVM) translates the bytecode to machine code according to the

specific machine and executes the program; thus, making Java programs platform-independent. Java

bytecode uses the instruction set that consists of an opcode to specify the operation to perform, and

zero or more operands as the value to be operated on (Lindholm, Yellin, Bracha, & Buckley, 2013).

Figure 2.1 shows an example of bytecode, where opcodes include aload, invokevirtual, and

return, and operands consist of registers and constants.

Due to the characteristics of the Java compiler and Java bytecode, developers can use a decom-

piler to reverse-compile the source code from bytecode. A Java decompiler takes “.class” files as

input and generates the corresponding source code. The decompiled Java source code is generally

readable and similar to the original source code. However, such readable decompiled code poses

risks to security, intellectual property, and copyright issues. The issues are more prevalent in An-

droid, since all the applications, including both commercial and open source, are available from the

Google Play store. Anyone can download the apk (Android Package Kit) files, which contain the

bytecode of the application, and decompile the code.
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Example Bytecode Before Obfuscation

  protected void onCreate(android.os.Bundle);
    Code:
       0: aload_0
       1: aload_1
       2: invokespecial  #2    //comment
       5: new                 #3    //comment
       8: dup
       9: invokespecial  #4    //comment
      12: ldc                  #5    //comment
      14: invokevirtual   #6    //comment
      17: aload_0
      18: invokevirtual   #7    //comment
      21: ldc                  #8    //comment
      23: invokevirtual   #9    //comment
      26: invokevirtual   #6    //comment
      29: invokevirtual   #10  //comment
      32: astore_2
      33: aload_0
      34: getfield           #11  //comment
      37: aload_2
      38: invokevirtual   #12  //comment
      41: return

Example Code After Obfuscation

  protected void onCreate(android.os.Bundle);
    Code:
       0: aload_0
       1: aload_1
       2: invokespecial   #13   //comment
       5: new                  #15   //comment
       8: dup
       9: invokespecial   #16   //comment
      12: astore_1
      13: aload_1
      14: ldc                   #18   //comment
      16: invokevirtual    #22   //comment
      19: pop
      20: aload_1
      21: aload_0
      22: invokevirtual   #28    //comment
      25: ldc                   #30   //comment
      27: invokevirtual    #36   //comment
      30: invokevirtual    #22   //comment
      33: pop
      34: aload_1
      35: invokevirtual    #40   //comment
      38: astore_1
      39: aload_0
      40: getfield            #44   //comment
      43: aload_1
      44: invokevirtual    #50   //comment
      47: return

Example Code Before Obfuscation (Decompiled)

protected void onCreate(Bundle savedInstanceState) {

    super.onCreate(savedInstanceState);

    String file_path = "file://" + this.getIntent().getStringExtra("file");

    this.wv.loadUrl(file_path);

  }

Example Code After Obfuscation (Decompiled)

protected void onCreate(Bundle var1) {
    super.onCreate(var1);
    StringBuilder var2 = new StringBuilder();
    var2.append("file://");
    var2.append(this.getIntent().getStringExtra("file"));

    String var3 = var2.toString();
    super.B.loadUrl(var3);
  }

Figure 2.1: An example of decompiled code before and after obfuscation.

7



build.gradle

android {
    buildTypes {
        release {
            minifyEnabled true
            proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
        }
    }
    ...
}

Figure 2.2: An example of an build.gradle file.

To increase the difficulty of reading the decompiled code, developers use obfuscation before re-

leasing Android apps to the Google Play store. Obfuscation is the process of transforming Java byte-

code into a more complex, but semantically equivalent representation (Batchelder, 2007). Many ob-

fuscation techniques exist, such as adding dummy files and methods, renaming variables and meth-

ods, and restructuring or shrinking the code while maintaining the same execution behaviour (Low,

1998). As a result, after decompiling the bytecode, the decompiled source code becomes very dif-

ficult to understand and almost unreadable. Figure 2.1 shows an example of a decompiled code

snippet before and after the process of obfuscation. We can see that many variable names have

changed, some new variables have been added, and the structure of the control flow has changed.

Note that there are multiple configuration options for code obfuscation. In this example, for better

readability, we keep the method names the same during obfuscation in the R8 configuration file.

R8 is a compiler that is able to shrink, optimize, and obfuscate the bytecode to improve effi-

ciency and security (Google, 2023). R8 is popular among developers as it is part of the official

Android software development kit (SDK) and is the default compiler for Android Studio 3.4 or

higher. Android developers are able to customize the R8 configurations to the specific needs of the

obfuscation and optimizations of an application. Some examples of configurations that a user can

set in R8 include keep rules that notify the compiler which packages, classes or methods to not

obfuscate or optimize, rules that allow R8 to change access modifiers, and rules that print the usage,

seeds, and used configurations to a file, amongst many other rules. Developers are able to easily en-

able R8 and set their custom configurations in their Android applications by editing the build.gradle

8



proguard-rules.pro

-keepnames class * implements android.os.Parcelable {
  public static final android.os.Parcelable$Creator *;
}
-keepattributes InnerClasses,Signature,SourceFile,LineNumberTable

Figure 2.3: An example of an R8 configurations file.

file. Figure 2.2 shows the contents of a build.gradle file that has R8 enabled (minifyEnabled is

set to true) and the R8 configurations file is either set to proguard-android-optimize.txt

if the user chooses to optimize or proguard-rules.pro if the user chooses not to optimize.

To define its configurations, R8 uses the rules files in Proguard, which was the default compiler

Android Studio in versions prior to 3.4. (ProGuard Manual: Usage | Guardsquare, n.d.) Figure 2.3

shows an example of a R8 configuration file. In this Proguard rules file, the first rule denotes that

every class that implements the Parcelable interface should be prevented from being obfuscated or

optimized. The second rule indicates that all inner classes, signatures, source files, and line num-

bers are also prevented from obfuscation or optimization. Adding R8 configurations affects the

compilation outcome of the bytecode, which could have an impact on the efficacy of bytecode clone

detection.

Detecting source code clones based on bytecode has great potential for practitioners to identify

and avoid issues such as unconsciously introducing vulnerable code or third-party libraries with

improperly licensed code. However, to the best of our knowledge, there is little research in this

direction due to a lack of clone datasets. Hence, in this paper, we collected and released a code clone

benchmark for Java bytecode. We also proposed an approach, ByClone, as one of the first steps

toward detecting source code clones based on both obfuscated and unobfuscated Java bytecode.

9



Chapter 3

Approach

In this chapter, we discuss our approach, ByClone, to detect clones in bytecode. We formulate

clone detection as a bytecode similarity detection problem. Given two pieces of bytecode (whether

obfuscated or not), our approach uses the Siamese Neural Network to determine whether their cor-

responding source code methods are clones (i.e., a binary classification).

Figure 3.1 shows an overview of ByClone and the experiments. We first pre-process the byte-

code to remove the constants and dynamic values. The pre-processed bytecode is then fed into a

pre-trained embedding layer to create input vectors for the deep learning model. Then, we train

a Siamese Neural Network that models the similarities between two pieces of bytecode. The out-

puts of the two parallel Siamese Neural Network layers are concatenated. Once concatenated, the

output is trained on multiple drop-out, batch normalization, and dense layers. The final layer is a

Pre-process
Data

Train
Embeddings

Train Siamese
Neural Network

Pre-process
Data

Pre-process
Data

1. Preparing the
Data 3. Testing2. Training

Evaluate on
Datasets

Obfuscated Test
Dataset

Training Dataset

Unobfuscated
Test Dataset

Preprocessed
Unobfuscated
Test Dataset

Preprocessed
Obfuscated Test

Dataset

Results on
Unobfuscated

Data

Results on
Obfuscated

Data

Siamese Neural
Network

Figure 3.1: An overview of our approach.
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Bytecode Before Pre-processing Bytecode After Pre-processing

invokevirtual     {reg}

ifeq                   {const} 

aload_0

aload_1

invokespecial   {reg}

1        invokevirtual     #418   //comment

4        ifeq                   1757

7        aload_0

8        aload_1

9        invokespecial    #420  //comment

Figure 3.2: An example of our Java bytecode preprocessing step.

one-neuron dense layer that outputs a score from 0 to 1. We set the threshold to 0.7 by following

NiCad’s recommendation (Cordy & Roy, 2011; NiCad, 2022). Note that we conduct our study at

the method level granularity, so the inputs to ByClone are the bytecode of a pair of methods. Below,

we discuss each step in detail.

3.1 Pre-processing Bytecode

Bytecode may contain some constants or dynamic values that can affect code similarity detec-

tion. For example, as shown in Figure 3.2, the bytecode produced by the disassembler contains some

automatically generated comments that document specific metadata. These comments are automat-

ically generated by the Java disassembler and serve to document specific metadata. The # symbol

followed by a number denotes a constant pool entry in Java bytecode. The constant pool is a table-

like data structure that holds constant values. These constants include numeric literals, strings, class

names, field names, and method signatures. Lastly, the bytecode contains some constants whose

values are directly transferred from the source code. Since our goal is to detect bytecode similarity,

we remove such values and comments by preprocessing the bytecode. Specifically, we apply the

following preprocessing steps by following a prior study (Zuo et al., 2018):

(1) Replace constant pool indices (denoted by the symbol # followed by a numeric value) with a

special token {reg}.

(2) Replace constant values with a special token {const}.

(3) Remove comments inside the bytecode.
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(4) Replace switch keys and switch blocks from the “tableswitch” and “lookupswitch” instruc-

tions with {switch_key} and {switch_block}, respectively.

(5) Replace exception table row elements that represent the “from”, “to”, and “type” values to

{from}, {to}, and {type}, respectively.

As shown in Figure 3.2, after preprocessing, the constants and constant pool indices are replaced

with the placeholder tokens, and the comments are removed. We apply preprocessing to both the

inputs of our Siamese Neural Network and to the bytecode corpus used as input for the embedding

layer, as described below.

3.2 Embedding Layer

To prepare for the inputs to the Siamese Neural Network, we convert the preprocessed bytecode

into a vector. Each dimension in the vector represents a unique token in the preprocessed bytecode,

and each element represents the frequency of a token in a given bytecode. The vectors are then fed

into an embedding layer, which performs an automated feature selection that converts the input vec-

tors into a lower-dimension vector (Mikolov, Chen, Corrado, & Dean, 2013; Rodriguez & Spirling,

2022). Embedding is crucial to ByClone because it allows effective comparison of code snippets

for similarity. Prior studies (Ding, Li, Shang, & Chen, 2022; Kang, Bissyandé, & Lo, 2019) found

that different embeddings may have an effect on the downstream tasks. Therefore, in this paper, we

also explore the effect of different embeddings on bytecode similarity detection. In particular, we

consider four embeddings that are commonly used in the literature (Z. Chen & Monperrus, 2019;

Ding et al., 2022; Perone, Silveira, & Paula, 2018):

Word2Vec. Word2Vec (Mikolov, Sutskever, et al., 2013) is a family of model architectures and

optimizations that can be used to learn word embeddings from large datasets. Given the bytecode,

Word2Vec maps each token to a vector representation, which is then leveraged as the context (i.e.,

neighboring tokens) to predict a target token. The underlying intuition is to cluster the vectors of

similar tokens together in a vector space. Through training, Word2Vec can then predict the target

token based on past appearances. Word2Vec considers the bytecode in our data as plain text.
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GloVe. GloVe (Pennington et al., 2014) is an unsupervised learning algorithm for obtaining vector

representations for words. Using only non-zero elements, GloVe leverages a word to word co-

occurrence matrix. It is able to achieve high performance by utilizing the count data and capturing

the linear substructures of a word vector space. GloVe also considers the input bytecode in out

model as plain text.

FastText. FastText (Joulin et al., 2016) is a lightweight library for learning of word embeddings and

text classification created by Facebook’s AI Research lab. FastText utilizes the skipgram model, in

which every word is represented as a bag of character n-grams and every n-gram is represented by

a vector. Like Word2Vec and GloVe, FastText also interprets bytecode as plain text.

Instruction2Vec. Instruction2Vec (Lee et al., 2019) is a framework to vectorize instructions of the

assembly language. Instruction2Vec uses Word2Vec to generate a lookup table for all the library

functions, opcodes, registers, and hex values. Then, it maps them onto a fixed-dimension table

that reflects the syntax of the assembly code. While Instruction2Vec inputs assembly code and not

bytecode, both languages share syntactical similarities.

3.3 Siamese Neural Network

Our bytecode similarity detection technique uses the Siamese Neural Network to train our

model. A Siamese Neural Network (SNN) is a neural network architecture that contains two or

more identical sub-networks for computing the similarity between inputs (Chicco, 2021b). Fig-

ure 3.3 shows a diagram of our SNN model. The input layer concurrently takes in two tokenized

and preprocessed methods in bytecode, which are fed into the embedding layer to learn or convert

to the embeddings. The output of the embeddings is then trained with a batch normalization layer,

which standardizes the inputs and improve the stability and speed of the training process (Ioffe &

Szegedy, 2015; T. Kim, 2021; Santurkar, Tsipras, Ilyas, & Madry, 2018). The output of the batch

normalization layer is used to train the Bi-directional Long short-term memory (Bi-LSTM) layer.

We set the number of units in each Bi-LSTM layer to 300 (300 dimensions of hidden state) and use

tanh as the activation function since it is found to be more effective in LSTM (Farzad, Mashayekhi,
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& Hassanpour, 2019). Both outputs of the Bi-LSTM layer are trained with a soft attention mecha-

nism, which helps improve the accuracy of the predictions (Q. Chen et al., 2017; Yao et al., 2015).

The output of the attention layer from one of the sub-networks is subtracted from, multiplied with

and concatenated with the output of the Bi-LSTM layer of the other sub-network and vice versa.

The two concatenated layers are then trained with an additional Bi-LSTM layer to improve model

accuracy. Then, a one-dimensional global average pooling layer and a one-dimensional global max

pooling layer are applied to the two subnetworks, and the results are concatenated. The average

and max pooling layers help downsample our data and reduce spatial dimensions while retaining

essential information. (Bieder, Sandkühler, & Cattin, 2021) The outputs of the two parallel networks

are then merged through the concatenation layer. To stabilize the concatenated vectors, the output

is trained with a batch normalization layer. Additionally, the output from the batch normalization

layer is trained with two iterations of the following sequence of layers: a dense layer with 300 neu-

rons and an Exponential Linear Units (ELU) activation function, a batch normalization layer, and

a dropout layer. The ELU activation function allows for both fast learning and good generalization

performance (Clevert, Unterthiner, & Hochreiter, 2015). We set the dropout rate to 0.5 to reduce

the risk of overfitting (T. Kim, 2021; Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov,

2014; T. Zhang, Gao, Ma, Lyu, & Kim, 2019). Finally, the output from the dropout layer will be

the input into a dense layer. The dense layer uses a sigmoid activation function. It will converge

the neurons from the last layer and output a single number in the range of 0 to 1, which will be

converted to be either non-clone or clone depending on whether the value is below or above the set

threshold (we set the threshold value to 0.98). Our model is inspired by the winning team’s solution

to the “Quora Question Pairs” contest on Kaggle (DataCanary et al., 2017). This contest aims to

find the best prediction model to identify duplicate questions on Quora, a question-and-answer fo-

rum. (Quora, n.d.) The winning team utilizes an enhanced LSTM (Q. Chen et al., 2017) to achieve

the best results in the competition.
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Figure 3.3: ByClone Model Diagram

3.4 Implementation Details

We performed our experiments using CUDA 12.3 on a server with a NVIDIA Tesla A100 Am-

pere GPU. To train our model, we used the Adam optimizer (Kingma & Ba, 2014), which is an

effective and commonly used optimization algorithm in deep learning with a learning rate of 1e-3.

Our model trains on 50 epochs and we set the batch size to 64 since our training data is large in size.

We compile our model with a binary cross-entropy loss function. Since our output is expected to be

a binary score of either 0 or 1, we chose to utilize a loss function that is effective for training binary

classification models. We describe in detail on how we obtain the ground truth to train the model

in Section 4. Running our model takes around 5 minutes each for the un-obfuscated dataset and the

obfuscated dataset, which contain the same 14 applications.
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Chapter 4

Experimental Setup

In this chapter, we describe the experimental setup of our study, including the data collection

process for training the embedding layers and the Siamese Neural Network.

4.1 Building the Ground Truth Dataset

Our goal is to detect, given two pieces of bytecode (whether or not they are obfuscated), what

the similarity of their corresponding source code is and whether they are clones or not. Therefore,

we need to have a mapping between the bytecode and the corresponding source code, and the

similarity score between source code to train the Siamese Neural Network. We use a source code

clone detection tool called NiCad (Roy & Cordy, 2008) to build our ground truth. NiCad computes

the similarity score between two code snippets by comparing the hybrid language-sensitive text

of the code snippets. We choose NiCad because of its high precision (95%) and recall (96%) in

detecting near-miss intentional clones (Roy & Cordy, 2008, 2009), but other clone detection tools

can also be used. We use its latest available version upon the submission of this paper (i.e., Nicad

6.2 (NiCad, 2022)) to build the dataset.

NiCad allows users to set a threshold to only report code pairs that have a certain similarity

score. The default threshold setting for NiCad is 0.3, which means that code pairs with a similarity

score of 0.7 or above are detected as clones. However, for our purposes, we wanted to examine the

similarity of all possible code pairs to train our model. Therefore, we maximized the threshold to
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Figure 4.1: The overall process of this paper.

Table 4.1: An Overview of the Studied Android Applications.
# Stars LOC # Commits # Clone Pairs # Non-Clone Pairs

Max 25.6k 175.5k 454.4K 629 316.7K
Average 1.1k 23.2K 11.9k 33.8 12.7K
Median 317.5 15.5K 1.8k 5 1.5k
Total 152.8k 3.2M 1.7M 4.7k 1.8M

1.0 so that code pairs with 0 to 100% similarity were detected. We set the granularity of detected

clones to the method level. After running NiCad, we get the similarity scores between all pairs

of methods associated with an application. Similar to NiCad and other clone detection tools (Roy

& Cordy, 2008; Saha, Roy, Schneider, & Perry, 2013), the final similarity score can be used to

determine whether or not two pieces of bytecode are clones by setting a threshold.

4.2 Collecting the Studied Android Apps

Due to the lack of datasets on bytecode similarity, we created a Java Android application dataset

that contains the similarity score between obfuscated and unobfuscated code pairs. Our dataset con-

sists of Android applications from F-Droid, which is a repository of Free and Open Source Software

(FOSS) for the Android platform. (F-Droid Free and Open Source Android App Repository, n.d.).

We are able to obtain the information of repositories from index.xml of F-Droid. Figure A.1 shows
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an example application in the F-Droid index.xml file. We obtain both the source code and the APK

file of the Android applications for our dataset. The source code is needed for building the ground

truth and the APK file is needed to extract the bytecode. F-Droid provides the link of the source

code repository from which the source code is downloaded. The applications on F-Droid are hosted

on a variety of source code repositories, including Github, Gitlab, and Bitbucket. We studied the

apps that are hosted on GitHub. We selected the apps with the most number of stars, discarded the

apps that do not have any APK files, and the ones that are actively maintained (had commits in 2022

or later). Our query retrieves the Android applications and their GitHub repository link. There were

a total of 4,194 applications available of F-Droid. After filtering out the applications based on the

above-mentioned criteria, we are left with 140 applications. Table 4.1 shows the statistics of the

studied applications. On average, these applications have 1.1k stars, 23.2K in LOC, and over 11.9k

commits. We use these 140 applications for training and evaluating ByClone.

4.3 Generating the Bytecode and Obtaining Their Similarities

Once we have collected the source code of the Android applications, we compile the applications

and retrieve the bytecode for both normal and obfuscated builds. We discuss our build process in

detail below.

Extracting Bytecode from the Android Applications. We split the 140 collection of Android ap-

plications into 112 for training, 14 for validation, and 14 for testing, based on the commonly used

80-10-10 ratio to split datasets (Jain & Meenu, 2021; D. Kim & MacKinnon, 2018). The bytecode

from both our training and validation datasets are obtained by disassembling the APK files of the

126 applications. APK files contain already-built bytecode, including ones that might be obfus-

cated. Hence, our training and validation datasets contain a mix of bytecode that is unobfuscated

or obfuscated. There are a total of 63 applications with minifyEnabled set to true (to shrink,

obfuscate, and optimize the bytecode), and the remaining 63 applications either have it set to false

or do not specify that option in the build.gradle file.

Since some applications contain more clones than others, we split the applications by consid-

ering the number of clones in each application such that the training, validation, and test set also
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contain roughly 80%, 10%, and 10% of the number of clones, respectively. There are a total of 63

applications with minifyEnabled set to true (to shrink, obfuscate, and optimize the bytecode),

and the remaining 63 applications either have it set to false or do not specify that option in the

build.gradle file.

Since our test dataset also consists of a mix of obfuscated and unobfuscated code, we wish to

ensure that the same applications are used for the evaluation of both the unobfuscated and obfus-

cated data to effectively compare the performance of the two sets. On the other hand, we build the

applications in our test dataset from the source code, instead of using the APK file to obtain our

bytecode. This allows us to study and compare the performances of both unobfuscated and obfus-

cated bytecode as well as obfuscated bytecode with R8 (an Android code shrinker) configurations.

We build the Android applications in the test dataset using Gradle, the default build system for An-

droid, with two settings: unobfuscated (i.e., regular builds) and obfuscated. For the applications

with R8 configurations, we later removed the R8 configurations and built again. After the regular

build process, we obtain both the source code (.java) and the unobfuscated bytecode (.class)

files. For the obfuscated build, we use R8 to compile the Android applications during the build

process and generate obfuscated bytecode. For both the unobfuscated and the obfuscated build, we

disassemble the resulting .class files to Java bytecode using javap, a Java class file disassembler

command line tool. Specifically, we use the javap tool with the -c flag to print out disassembled

code comprised of Java bytecode instructions.

Mapping Source Code Similarity Detection Results to Bytecode. As discussed above, we use

NiCad’s source code similarity detection results as the ground truth. The results contain the similar-

ity score (ranges from 0 to 100) for all pairs of methods. We rely on method names to map from the

bytecode to the source code, and use the source code similarity scores as the ground truth for the

similarity among bytecode. Specifically, we use the method signatures to find the matching methods

between source code and bytecode. We save the results in an XML file that stores bytecode clone

pairs. For every bytecode pair in the XML file, we store the following information: 1) the bytecode

of the first method, 2) the bytecode of the second method, and 3) the similarity score between the

first and second method.

19



4.4 Training Java Bytecode Embeddings

Since there is no existing pre-trained embedding on Java bytecode to the best of our knowl-

edge, we construct a corpus of bytecode instructions from 10 Android projects and the top 10 most

popular non-Android Java projects on GitHub. To avoid biases, these 10 Android projects do not

overlap with the projects that we use for training/evaluating ByClone. We choose both Android and

regular Java projects to increase the diversity in the bytecode so that it is not limited to only Android

projects. After preprocessing, we gathered a total of 1,967,146 instructions in our corpus. We then

train the different embedding models from the corpus. We use 300 as the size of the embedding

vector by following a prior study (Gu, Tandon, Ahn, & Radicchi, 2021). These embedding models

generate a vectorized dictionary of the words in the corpus. The vectors and values from the em-

bedding layer are then used as inputs to the Siamese neural network. We release the information for

the applications that we use for training and evaluating the embeddings in our replication package,

which can be accessed online (ByClone, n.d.).

4.5 Resampling the Data

There are significantly more non-clone code pairs than clone pairs in our dataset, which creates

a skewed dataset that makes it difficult for the model to accurately learn the features of the under-

represented class. In total, there are 4.7k code pairs that have a similarity score larger than 0.7 and

1.8M code pairs that have a similarity score smaller than 0.7. In order to address this imbalance, we

implement random resampling to balance our training dataset. We do so by reducing the quantity

of non-clone pairs (code pairs whose similarity score is smaller than 0.7). We resample the data to

a 1:10 clone-to-non-clone ratio by reducing the non-clone sample quantity to 10 times the number

of clone sample quantity. Undersampling the majority class allows our dataset to be more balanced,

which allows the model to be trained more accurately (Pereira, Costa, & Silla Jr., 2021). Addition-

ally, training our model would require less memory and resources as a result. After the resampling

process, we have 3,236 clones and 32,360 non-clones (1:10) code pairs in our training dataset.
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Chapter 5

Evaluation

In this chapter, we first present the metrics that we use to evaluate ByClone, which classifies if a

given pair of bytecode methods are clones. Then, we present the motivation, approach, and results

of the research questions (RQs). Given two bytecode snippets, ByClone predicts whether or not two

code snippets are clones. Hence, we use the following commonly used metrics to evaluate how well

ByClone is able to detect clones: Precision, Recall, and F-score.

Precision. Precision measures the ratio of correctly classified positive values to the total number

of predicted positive values (i.e., a code pair predicted to be clone is actually clone). Precision is

defined as:

Precision =
TP

TP + FP
(1)

where a higher precision value indicates more accurate predictions. The advantage of precision is

that it is a more suitable metric for assessing the performance of imbalanced datasets than accu-

racy (Juba & Le, 2019).

Recall. Recall measures the ratio of correctly classified positive values to the total number of

positive values. Recall is defined as:

Recall =
TP

TP + FN
(2)
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where a higher recall value indicates the model can correctly classify more clone code pairs. Re-

call is also a more appropriate metric for evaluating the performance of imbalanced datasets than

accuracy (Juba & Le, 2019).

F-1 Score. The F-1 score represents the harmonic mean of the precision and recall (Tharwat, 2020).

F-1 Score is defined as:

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(3)

where a higher F-1 score indicates a more accurate classification.

5.1 RQ1: Can we detect source code clones based on Java bytecode in

Android applications?

Motivation. Software reuse is a common practice due to the wide availability of open-source and

commercial libraries. Many developers use code from third-party software and only have access

to the bytecode and not the source code. This can cause developers to unknowingly use bytecode

that contains licensing agreements. These licensing agreements can further be unwittingly breached

by the developer and lead to legal or financial ramifications. As a first step to tackle the above-

mentioned challenges, finding clones in bytecode is crucial. Therefore, in this RQ, we wish to

evaluate the performance of ByClone in detecting clones based on bytecode.

Approach. As mentioned in Chapter 4.3, we train ByClone by splitting the 140 studied Android

applications into 112 applications for training and 14 each for validation and testing. This is based

on the 80-10-10 ratio that is commonly used in splitting datasets into training, validation, and test

sets (Jain & Meenu, 2021; D. Kim & MacKinnon, 2018). We consider the distribution of clones

when splitting the apps to reduce classification biases. We then apply the data resampling technique

described in Chapter 4.5 to increase the ratio between clone and non-clone method pairs in the train-

ing set. We first evaluate the overall clone detection accuracy using the above-mentioned evaluation

metrics. Prior studies (Z. Chen & Monperrus, 2019; Ding et al., 2022; Perone et al., 2018) found

that the embeddings in deep learning models affect the results of downstream tasks. Hence, in this
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Table 5.1: Overall Results of ByClone.

Obfuscation Model Precision Recall F Score

Un-obfuscated

Decision Tree 0.51 14.10 0.99
Gradient Boosting Classifier 0.45 0.38 0.41
Logistic Regression 0.12 0.76 0.20
Random Forest 0.93 0.19 0.32
Stochastic Gradient Descent Classifier 0.46 18.29 0.90
SVM 0.00 0.00 0.00
ByClone-FastText 78.37 75.24 76.77
ByClone-GloVe 69.17 71.81 70.47
ByClone-Instruction2Vec 0.00 0.00 0.00
ByClone-Word2Vec 76.86 76.57 76.72

Obfuscated

Decision Tree 0.90 21.43 1.74
Gradient Boosting Classifier 0.00 0.00 0.00
Logistic Regression 0.08 0.48 0.14
Random Forest 0.96 0.24 0.38
Stochastic Gradient Descent Classifier 0.40 13.81 0.77
SVM 0.00 0.00 0.00
ByClone-FastText 71.71 70.00 70.84
ByClone-GloVe 71.21 75.95 73.50
ByClone-Instruction2Vec 0.00 0.00 0.00
ByClone-Word2Vec 82.55 70.95 76.31

RQ, we also evaluate the performance of different embeddings in ByClone. We compare the results

from ByClone with six baseline models: decision tree, gradient boosting classifier, logistic regres-

sion, random forest, stochastic gradient descent classifier, and support vector machine (SVM). We

train and evaluate these baseline models using the same dataset that we use for ByClone.

Result. We find that ByClone is able to achieve significantly higher precision and recall (78.37

and 75.24 respectively) compared to the baseline models where the highest precision and recall

are 0.93 and 18.29. Table 5.1 shows the clone detection results. ByClone with the highest F-1

Score can achieve a precision of 78.37 and a recall of 75.24 when detecting clones. The result is

significantly higher than the baseline models, for which the highest F-1 Score is only 0.99. We also

find that the embeddings have a large impact on the clone detection results, although the embeddings

are trained on the same instruction corpus. In particular, the model trained using Instruction2Vec

shows the worst result, where the model could not detect any clones. The ByClone model that is

trained using Instruction2Vec is not able to converge and predicts all the pairs to be non-clones. The
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Table 5.2: Clone detection results for different clone types.

Obfuscation Clone Type Precision Recall F Score

Un-obfuscated
Non-Clones 99.93 99.93 99.93
Type 2 & 3 Clones 68.32 69.23 68.77
Type 1 Clones 78.52 79.05 78.79

Obfuscated
Non-Clones 99.90 99.95 99.93
Type 2 & 3 Clones 74.60 60.66 66.91
Type 1 Clones 89.71 83.47 86.49

reason may be that while Instruction2Vec aims to capture the syntax of assembly code, it might not

be able to capture the syntax of bytecode effectively (Lee et al., 2019). Among the four evaluated

embeddings, FastText gave the best results (precision and recall are 78.37 and 75.24) when detecting

clones in unobfuscated bytecode. While FastText produces the highest F-1 Score (76.77) among the

embeddings, it is worth noting that the F-1 Score of Word2Vec (76.72) is only slightly worse than

that of FastText. GloVe also performs comparably to both Word2Vec and FastText with an F-1 Score

of 70.47. All three embeddings (FastText, Word2Vec, and GloVe) are widely used embeddings and

are effective for various natural language processing (NLP) tasks. (Torregrossa, Allesiardo, Claveau,

Kooli, & Gravier, 2021) The efficacy of these three approaches in training word embeddings in NLP

tasks extends to training bytecode instructions for our tool, ByClone.

We find that code pairs with a similarity score close to the cutoff threshold have lower precision

and recall. Figure 5.1 shows the distribution of the prediction results across NiCad’s code simi-

larity scores categorized into true positives (TP), false positives (FP), true negatives (TN), and false

negatives (FN). The results are obtained from one of the best performing embeddings, Word2Vec.

The distribution of both of the incorrectly classified sets (FP and FN) is close to NiCad’s 70% sim-

ilarity score threshold. This finding suggests the code clones that are around the cutoff threshold

may have a greater probability of being misclassified. Hence, we further evaluate how well ByClone

can detect different types of clones: Type-1 (exactly the same) and Type-2&3 (also called near-miss

clones), where the clones that have some differences such as variable names or some statements

added/deleted (Roy, 2009) (in Table 5.2). In Type-2 clones, the code is syntactically the same with

differences in variable names, string values, and styling. However, since when the source code is
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Figure 5.1: Distribution of the classification results across NiCad’s code similarity scores.

compiled to bytecode, information such as variable names is lost, we consider Type-2 and Type-

3 clones together. We can see that Type-1 clones have a higher precision and recall compared to

Type-2 and Type-3, although we still achieve relatively good results in all clone types.

We find that ByClone is able to achieve considerably higher precision and recall (78.37 and

75.24, respectively) compared to the baseline models (best precision and recall are less than 1

and 20, respectively). ByClone is more effective in detecting Type-I clones.

5.2 RQ2: Can we detect source code clones based on obfuscated byte-

code?

Motivation. Java application developers often obfuscate their code in order to protect the source

code and prevent others from reverse engineering the application. Obfuscation transforms the source

code without impacting its functionality. For example, R8, the default bytecode obfuscation tool in

Android Studio, supports identifier and package renaming to make the bytecode more difficult to

decompile or understand (Zhan et al., 2020, 2021). We built ByClone to detect clones in Android
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Method 1 (Obfuscated)
aload_1
ldc {reg}
aload_2
iconst_0
invokevirtual {reg}
astore_1
aload_0
aload_1
ldc {reg}
invokevirtual {reg}
checkcast {reg}
putfield {reg}

aload_1
ldc {reg}
invokevirtual {reg}
checkcast {reg}
astore_2
aload_0
aload_2

putfield {reg}

aload_2
new {reg}
dup
aload_0
invokespecial {reg}
invokevirtual {reg}
aload_1
ldc {reg}
invokevirtual {reg}
checkcast {reg}
astore_2
aload_0
aload_2
putfield {reg}
aload_0
aload_2

invokevirtual {reg}

putfield {reg}
aload_1
areturn

Method 2 (Obfuscated)
aload_1
ldc {reg}
aload_2
iconst_0
invokevirtual {reg}
astore_1
aload_0
aload_1
ldc {reg}
invokevirtual {reg}
checkcast {reg}
putfield {reg}
aload_0
aload_1
ldc {reg}
invokevirtual {reg}
checkcast {reg}
putfield {reg}
aload_0
aload_1
ldc {reg}
invokevirtual {reg}
checkcast {reg}
putfield {reg}

aload_0

aload_1
ldc {reg}
invokevirtual {reg}
checkcast {reg}

putfield {reg}
aload_0
aload_0
invokevirtual {reg}
ldc {reg}
invokevirtual {reg}
checkcast {reg}
putfield {reg}
aload_1
areturn

Method 1 (Un-Obfuscated)

aload_0
aload {const}
ldc {reg}
invokevirtual {reg}
checkcast {reg}
putfield {reg}
aload_0
aload_0
getfield {reg}
invokevirtual {reg}

putfield {reg}
aload {const}
areturn

aload_1
ldc {reg}
aload_2
iconst_0
invokevirtual {reg}
astore {const}
aload_0
aload {const}
ldc {reg}
invokevirtual {reg}
checkcast {reg}
putfield {reg}
aload_0
aload {const}
ldc {reg}
invokevirtual {reg}
checkcast {reg}
putfield {reg}
aload_0
getfield {reg}
aload_0
invokedynamic {reg} {const}
invokevirtual {reg}

Method 2 (Un-Obfuscated)

aload_1
ldc {reg}
aload_2
iconst_0
invokevirtual {reg}
astore {const}
aload_0
aload {const}
ldc {reg}
invokevirtual {reg}
checkcast {reg}
putfield {reg}
aload_0
aload {const}
ldc {reg}
invokevirtual {reg}
checkcast {reg}
putfield {reg}
aload_0
aload {const}
ldc {reg}

invokevirtual {reg}
checkcast {reg}
putfield {reg}

aload_0
aload {const}
ldc {reg}
invokevirtual {reg}
checkcast {reg}
putfield {reg}
aload_0
aload_0

invokevirtual {reg}
ldc {reg}
invokevirtual {reg}
checkcast {reg}
putfield {reg}
aload {const}
areturn

Figure 5.2: A comparison of a code pair misclassified in obfuscated code, but correctly classified in
unobfuscated code.
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applications that can be obfuscated. In this RQ, we evaluate the performance of ByClone on obfus-

cated bytecode.

Approach. We utilize the same training (112 applications) and validation (14 applications) datasets

we use for RQ1. For our test dataset, we utilize the same 14 applications as we use for the RQ1

test dataset. However, we obfuscate these same applications to evaluate the effect of ByClone on

obfuscated Java bytecode. We have detailed how we choose these applications in Chapter 4. We

obfuscated our Java Android applications with Android Studio’s built-in obfuscation tool named

R8. Once we built the files, we obtain the APK files for the Android projects. We then extract the

.class files from the APK and further disassemble the .class files to Java bytecode files. We do

not add more obfuscated bytecode in the training data because, as mentioned in Section 4, it already

contains both obfuscated and unobfuscated bytecode. We run NiCad on the source code of both our

training and test datasets to find similarity between methods. We then match the code clone pairs

to their bytecode equivalent code. Our model then makes a prediction on whether two bytecode

methods are a clone. Depending on the predicted and actual results of the similarity scores, we are

able to calculate the precision, recall, and F-1 scores

Result. ByClone is able to achieve a higher precision but lower recall (82.55 and 70.95, respec-

tively) when detecting clones in obfuscated bytecode. We observe that the best-performing embed-

ding, Word2Vec, demonstrates a higher precision (82.55) and lower recall (70.95) in the obfuscated

dataset compared to RQ1. This suggests that ByClone-Word2Vec has a higher false negative rate,

but a lower false positive rate for detecting clones in obfuscated bytecode. The false negative rate

can be attributed to the altered content of the pairs of bytecode methods as a result of obfuscation.

In other words, two bytecode segments that share syntactical similarities in their unobfuscated form

can be become dissimilar once obfuscated. Figure 5.2 shows an example of a method pair that is

incorrectly classified in our obfuscated dataset as a non-clone (false negative), but is correctly clas-

sified as a clone (true positive) in the unobfuscated dataset. The source code of these two methods

was classified as a clone with 81% similarity by NiCad. Similar to the source code, the unob-

fuscated bytecode of the two methods share many similarities. On the other hand, the obfuscated

bytecode shares fewer similarities, as shown in the figure, since many details were removed/shrunk.

However, these misclassified results only constitute a small fraction of all the classification results.
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In particular, there are only 31 false negative results in the obfuscated dataset that are classified as

true positive results in the unobfuscated dataset out of the 525 total shared clones in the test datasets.

While the three embeddings have similar results, Word2Vec achieves the highest F-1 score. We

also find that there is variation in the scores across the different embeddings. As shown in Table 5.1,

the scores of the different embeddings for ByClone range from 0 to 82.55 in precision and 0 to

75.95 in recall. The embeddings in the obfuscated dataset follow a similar trend in RQ1 where

Word2Vec, GloVe, and FastText all perform comparatively well, with the best-performing embed-

ding, Word2Vec, having a precision and recall of 82.55 and 70.95, respectively. Instruction2Vec

performs the worst with a precision and recall of 0. Instruction2Vec classifies all the results as

non-clones and, therefore, achieves very low precision and recall scores. On the other hand, both

GloVe and FastText perform relatively well with GloVe scoring a precision and recall of 71.21 and

75.95 respectively, and with FastText scoring a precision of 71.71 and a recall of 70.00. The find-

ing suggests that the Word2Vec embedding can achieve higher performance in detecting clones for

obfuscated bytecode. Moreover, similar to RQ1, traditional machine learning algorithms (e.g., de-

cision tree and SVM) are not effective in detection clones in obfuscated bytecode, with the highest

F-1 Score of only 1.74.

Observing the misclassified results, we find that a few source code clones could be overlooked by

a bytecode similarity detection tool due to the dissimilarity of the bytecode. We conduct randomly

sample the prediction results across different classification types. In particular, we randomly select

five samples each from the true positive, true negative, false positive, and false negative results.

Figure B.1 shows one of the five randomly selected true positive results that is calculated to have a

80% similarity by NiCad. We observe that both the bytecode and source codes of the two methods

are similar and ByClone is able to correctly identify the pair as a clone. Figure B.2 is one of the

randomly selected true negative results that is calculated to have a 7% similarity by NiCad. We

notice that both the bytecode and source codes of the two methods are very dissimilar and ByClone

is able to correctly classify the two methods as non-clones. On the other hand, we analyze the

results of the randomly sampled false positive and false negative values to understand the reason

ByClone incorrectly classifies some results. Figure B.3 shows a false positive result obtained from

28



Table 5.3: A comparison of results from applications with R8 configurations and without.
Pre-existing R8
Configurations

Obfuscated Compiled With
Configurations

Precision Recall F Score

Yes
Yes

Yes 70.89 45.16 55.17
No 60.00 47.11 52.78

No - 69.07 71.18 70.11

No
Yes No 85.82 81.76 83.74
No - 83.28 80.74 81.99

the sampling that is assigned a similarity score of 61% and is classified as a non-clone by NiCad.

However, not only the bytecode, but also the source code of the methods is shown to be similar. All

five randomly sampled false positive results follow the same pattern, where both the source code

and bytecode were similar, but was assigned a similarity score close to, but below the 70% similarity

threshold. This finding is in agreement with findings from figure 5.1, which show that the FP results

are skewed towards the 70% cutoff threshold. Figure B.4 shows a sample of a false negative result

with NiCad a similarity score of 77%. We notice that the source code of the two methods are quite

similar, but the bytecode of the pair share very little similarity. This suggests that a few source code

clones could be overlooked by a bytecode similarity detection tool due to the dissimilarity of the

bytecode.

ByClone is able to achieve significantly higher precision and lower recall (82.55 and 70.95,

respectively) on obfuscated bytecode compared to the unobfuscated ones. We find that obfusca-

tion may remove details in the bytecode that can affect clone detection results.

5.3 RQ3: Do configurations in R8 affect bytecode clone detection re-

sults?

Motivation. Android application developers are able to customize the obfuscation configurations

in R8 based on their obfuscation requirements. R8 configurations can be customized with pro-

guard rules and allow developers to preserve certain code segments (classes, members, etc). Since

customizing R8 configurations changes the obfuscation and optimization processes, the output byte-

code can be altered and might affect the efficacy of bytecode similarity detection approach. Thus,

in this RQ, we wish to investigate the sensitivity of ByClone on R8’s configurations.
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Approach. We use the same training and validation dataset set as in RQ1 and RQ2. Additionally,

we use the same 14 applications in both RQ1 and RQ2 and split them according to whether they

have R8 configurations already written in the code. We do so by reviewing the proguard rules

file in all 14 applications and checking whether there are any pre-written rules. From the 14 total

applications in our test dataset, 5 contain proguard rules and 9 do not. For our evaluation, we

first run ByClone on the 5 applications that contain proguard rules. Then, we run ByClone on

the 9 applications that do not contain any proguard rules. This allows us to compare the efficacy of

ByClone on applications both with and without R8 configurations from the dataset we collected. We

additionally evaluate ByClone on the 5 applications that do contain proguard rules after removing

the pre-existing proguard rules and obfuscating them without the rule. We remove the proguard

rules to compare the effects of R8 configuration on bytecode similarity within the same applications.

We evaluate ByClone on the three aforementioned subsets of the test dataset (i.e., apps containing

R8 configurations, apps that do not contain R8 configurations, and apps with R8 configurations

that were removed). All three results are obfuscated to evaluate the effect of R8 configurations

on similarity detection. We additionally evaluate the unobfuscated results on both the subset of

applications that have R8 configurations and those that do not.

Results. Removing R8 configurations slightly decreases the performance in applications that

have pre-existing R8 options. Table 5.3 shows the results of the bytecode similarity detection on:

1) the applications in our test dataset that already contained R8 configurations in their code, 2) the

applications in our test dataset that did not contain any R8 configurations, 3) the same applications

from (1), but with the R8 options removed and obfuscated, 4) the unobfuscated results of the ap-

plications with R8 configurations, and 5) the unobfuscated results from the applications without R8

configurations. We observe that the set of applications that do not have any pre-existing R8 con-

figurations perform significantly better than the ones with configurations. The applications without

configurations achieved a precision score of 85.82 and a recall of 81.76. On the other hand, the ap-

plications with configurations had precision and recall scores of 70.89 and 45.16, respectively. The

considerable difference between the performance of the two subsets leads us to speculate whether

the presence of R8 configurations significantly diminishes the bytecode similarity detection perfor-

mance. Since these two subsets consist of different sets of applications, we decided to additionally
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evaluate the scores of the unobfuscated bytecode methods of the two subsets. We found that the dif-

ference in performance metrics was still present. Namely, the subset with pre-existing R8 configu-

rations (precision 69.07 and recall 71.18) also performed worse than the subset without pre-existing

R8 configurations (precision 83.28 and recall 80.74) in their unobfuscated formats. Since these two

subsets contain different applications and their performance scores vary, we compare the results of

R8 configurations with the same set of applications to ensure a more accurate comparison of the

prediction results. This entails removing the existing R8 configurations from the proguard rules file

from the applications that contain configurations. However, removing the R8 configuration resulted

in worse performance than keeping the configurations. The results of the applications with R8 con-

figurations removed are 60 for precision and 47.11 for recall. Nevertheless, we find that ByClone’s

result is not very sensitive to R8 configurations.

The applications containing R8 options perform slightly better than when the options are removed

from the same applications. Upon further investigation, we observe that the sets with options and

options removed have different numbers of bytecode method pairs. The set with options has 55,084

pairs of methods, and the set with options removed has 12,525. This is likely because many R8

configurations prevent specified code from being removed. Hence, the set with R8 configurations

will have more pairs of methods. In order to more accurately compare the performance of the two

sets, we selected all the pairs that the two sets have in common and calculated the performance

metrics for this subset of data. This results in a precision of 69.05% and recall of 43.94% for the

set with R8 options, and 64.44% precision and 43.93% recall for the set with R8 options removed.

The set with the R8 configurations performs slightly better than the set with options removed, and

produces fewer false positive results. The reason might be that many R8 configurations used by

developers are keep options that prevent bytecode from obfuscation, which might result in more

effective predictions from ByClone since there are less diverse in the bytecode patterns.

ByClone is not very sensitive to R8 configurations, where the results are similar before/after

removing the configurations.

31



Chapter 6

Discussion

For Researchers. Our results showed that ByClone was able to detect clones in both unobfuscated

and obfuscated Java bytecode effectively compared to the six baseline models. We also found that

a significant impact in the performance of ByClone was the choice in embeddings, and the different

R8 configurations have an effect to the performance. We encourage future research to design more

effective approaches to take into account the different aspects of Java bytecode clone detection.

Though our model was able to detect clones in obfuscated Java bytecode effectively, there were

some pairs of code that were misclassified. Especially for those cases that have a close to 70%

NiCad similarity threshold, clones are commonly misclassified. Such cases can be further studied

to improve the accuracy of Java bytecode clone detection.

For Practitioners. One application of Java bytecode clone detection is to facilitate downstream

tasks for practitioners. When risky Java bytecode is identified, ByClone can be used to help scan

among a collection of artifacts to identify similar code. Practitioners and tool developers can eval-

uate our proposed approach in their target use cases, for example, detecting vulnerabilities in Java

Android applications, especially when the bytecode is obfuscated. Another example is to identify

potential issues in software licensing compliance in a proactive manner. We also provide insights

into the effectiveness of Java bytecode clone detection in both unobfuscated and obfuscated byte-

code, and in various R8 configurations. These build options are commonly used by Android appli-

cation developers. Future tooling efforts can integrate clone detection functionality into the build
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process, thus preventing issues (e.g., vulnerability and licensing issues) in an early stage.
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Chapter 7

Threats to Validity

External Validity. Our study is conducted on open-source Java Android applications from F-Droid.

Our findings might not generalize to commercial systems or other applications. Future studies may

consider validating our findings by conducting an extensive study on additional systems. Our model

is trained on 126 Android applications and evaluated on 14 Android applications. In future work,

this number can be further extended to test on more applications to produce even more robust results.

Namely, the analysis on the effect of R8 configurations could be evaluated on more applications.

Although some Java source code clones appear similar at the source level, they may differ once

compiled into bytecode. This discrepancy could affect the performance of our model. Nevertheless,

our model predicts source code clones based on bytecode well as evident in our precision and recall

scores.

Internal Validity. We use a different bytecode extraction process for the training/validation datasets

and the test dataset. For the training and validation sets, we use bytecode disassembled from the

APK files. This ensures our training reflects real-world Android application data and helps us

obtain data from a large number of Android application efficiently. However, the test dataset is

built from the source code because the test dataset needs to be evaluated on both unobfuscated and

obfuscated code. We further discuss this threat in chapter 7. However, we obfuscate with R8, an

obfuscation tool built-in to the Android SDK. In fact, half (63 applications) of our training and

validations sets have R8 enabled in their build.gradle files. Therefore, we believe the training
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and validation datasets are still representative of our test dataset. Moreover, ByClone performs

well when trained with our training and validation sets and evaluated with our test set in both

unobfuscated and obfuscated bytecode, which further suggests the different bytecode extraction

processes for the datasets do not negatively affect the performance of our model. Instruction2Vec

yields a precision and recall of 0 for both the un-obfuscated and obfuscated clones as it classifies all

the results as non-clones. This issue might be due to the over-representation of non-clones in our

dataset and Instruction2Vec’s ability to capture the semantics of assembly code, which differs from

bytecode.

Construct Validity. Our model is trained on 126 Android applications and evaluated on 14 Android

applications. In future work, this number can be further extended to test on more applications to

produce even more robust results. Namely, the analysis on the effect of R8 configurations could be

evaluated on more applications. In our current test dataset, we discovered 5 applications with R8

options, which could make it more difficult reach a clear conclusion on the effect of R8 configuration

on bytecode similarity detection. However, even with 5 Android applications, we are able to produce

a high number of method pairs. We produce 55,084 method pairs from the these 5 applications

compiled with R8 configurations and 12,525 method pairs from the same applications compiled

without R8 configurations.
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Chapter 8

Related Work

Detecting Code Clone Similarity in Source Code. Many prior works have focused on detecting

similarity in source code. As a result, many clone detection tools are proposed at the source code

level. They leverage the structure and syntax of the source code to identify code clones. For exam-

ple, NiCad is a scalable and flexible clone detection tool that we use in our study to build the ground

truth clone dataset at the source code level. It uses flexible pretty printing and code normalization to

convert code into a standard textual format (Roy & Cordy, 2008). Another popular clone detection

tool is CCFinder, which uses a multi-linguistic token-based approach (Kamiya, Kusumoto, & In-

oue, 2002). In addition, there are deep learning-based clone detection tools, such as CCLearner, that

train a deep learning classifier from known method-level code clones and nonclones (L. Li, Feng,

Zhuang, Meng, & Ryder, 2017). White et al. (White, Tufano, Vendome, & Poshyvanyk, 2016)

proposed a deep learning clone detection approach that leverages code patterns at both the lexical

and syntactic levels. For a more systematic review of clone detection tools, readers are suggested to

refer to Ain et al. (Ain, Butt, Anwar, Azam, & Maqbool, 2019).

Detecting Code Clone Similarity in Binary Code. Detecting binary code similarity is a relatively

new field where the binary code is analyzed to identify similar patterns. Approaches are proposed

to detect binary code similarity (Haq & Caballero, 2021). For example, Zhu et al. proposed a
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graph search algorithm to efficiently search for small-sized similar binary code in a large-sized pro-

gram (Zhu, Jiang, Chen, & Yan, 2021). BinDeep is a deep learning-based approach that combines

both CNN and LSTM to measure the similarity of two binary functions (Tian et al., 2021). They use

the instruction sequences in the binary code and vectorize the instructions as embeddings. Li et al.

proposed a multi-semantic feature fusion attention network to detect binary code similarity, with the

benefits of both learning the overall features and capturing the relationships between features (B. Li

et al., 2023).

Detecting Code Clone Similarity in Java Bytecode. While limited, there exist some studies that

detect clones in Java bytecode using various techniques. For example, Keivanloo et al. proposed an

approach that uses two criteria to detect similarities in bytecode: pattern similarity using Semantic

Web querying and reasoning and content similarity using the Jaccard coefficient (Keivanloo, Roy,

& Rilling, 2012). Additionally, Keivanloo et al. have expanded on their initial approach to build

a scalable bytecode clone detection and search model that applies semantic-enabled token match-

ing. (Keivanloo, Roy, & Rilling, 2014). Another study uses the Smith-Waterman algorithm, which

is an algorithm derived from gene sequence matching, to align bytecode sequences (Yu, Yang, Chen,

& Chen, 2019).

While prior research in code similarity detection has focused on source code or C/C++ assem-

bly code for their analysis (Liu, 2021; Yang et al., 2021), our approach introduces an approach to

detect similarity in Java bytecode. Although there exists some, yet limited, prior research on byte-

code similarity detection, our approach differs from existing methods in its methodology, dataset

used, and ability to detect clones in obfuscated bytecode. In particular, we employ a deep learning

approach that detects source code clones based on Java bytecode. Additionally, we create our own

dataset from Android applications available on F-Droid and we detect not only regular bytecode

code clones, but also obfuscated bytecode code clones.

Code obfuscation is a common practice for Android application development (Dong et al., 2018;

Maiorca, Ariu, Corona, Aresu, & Giacinto, 2015; Wang & Rountev, 2017; X. Zhang, Breitinger,

Luechinger, & O’Shaughnessy, 2021). The Android Studio desktop application has an obfuscation

tool named R8 built into the Android software development kit (SDK). Many developers use ob-

fuscation for various reasons, including security and plagiarism prevention. Our work proposes a
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bytecode similarity detection model that not only detects code clone similarity in the unobfuscated

bytecode from Java Android applications, but also the obfuscated bytecode from Java Android ap-

plications.
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Chapter 9

Conclusion

The use of third-party Java software, whether in its original or obfuscated bytecode form, may

pose a greater risk of vulnerability to attacks and potential issues with software licensing compli-

ance, due to the lack of access to the source code. In this paper, we propose a clone detection

approach, ByClone, to detect source code clones based on bytecode for both unobfuscated and

obfuscated bytecode. Due to a lack of existing data, we collected and conducted our study on

140 Java Android applications. We obtained the pairs of methods and their similarity scores by

utilizing NiCad, a source code similarity detection tool, and mapped the scores to the correspond-

ing bytecode to create the ground truth. ByClone uses a Siamese Neural Network, where it takes

in a pair of methods in bytecode format and classifies whether they are clones or not. We built

our Java Android applications both with a normal configuration and an obfuscation configuration.

Results showed that the model performs well on both unobfuscated and obfuscated datasets. We

also compare the performance of different popular embeddings on our model. Results showed that

the Word2Vec embedding outperformed all the other embedding models in the obfuscated dataset,

whereas the FastText embedding produced the best performance results in the unobfuscated dataset.

Additionally, we explore the effects of R8 (Android bytecode obfuscator) configuration settings.

We find that ByClone is not sensitive on R8 configurations.
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Appendix A

An Example of FDroid index.xml
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index.xml
<application id="net.gsantner.markor">

<id>net.gsantner.markor</id>
<added>2017-09-11</added>
<lastupdated>2023-10-15</lastupdated>
<name>Markor</name>
<summary>Text editor - Notes & ToDo. Lightweight. Markdown and atodo.txt support.</summary>
<desc>📝 Create notes and manage your to-do list using simple markup formats 🌲 .... 

<a href="fdroid.app:org.documentfoundation.libreoffice">LibreOffice</a>) or to-do apps .... 
<a href="fdroid.app:com.owncloud.android">OwnCloud</a>, 
<a href="fdroid.app:com.nextcloud.client">NextCloud</a>, 
<a href="fdroid.app:com.seafile.seadroid2">Seafile</a>, 
<a href="fdroid.app:com.nutomic.syncthingandroid">Syncthing</a>, 
<a href="fdroid.app:org.amoradi.syncopoli">Syncopoli</a> 👀 These apps may also .... 
<b>Support the project:</b>
<a href="https://github.com/gsantner/markor/issues/new/choose">Report ideas and issues</a> | 
<a href="https://github.com/gsantner/markor/discussions">Join community discussion</a> | 
<a href="https://crowdin.com/project/markor/invite">Translate</a> | 
<a href="https://github.com/gsantner/markor#contributions">More information about contributions</a>

</desc>
<license>Apache-2.0</license>
<categories>Writing</categories>
<category>Writing</category>
<web/>
<source>https://github.com/gsantner/markor</source>
<tracker>https://github.com/gsantner/markor/issues</tracker>
<changelog>https://github.com/gsantner/markor/blob/HEAD/CHANGELOG.md</changelog>
<author>Gregor Santner</author>
<marketversion>2.11.1</marketversion>
<marketvercode>148</marketvercode>
<package>

<version>2.11.1</version>
<versioncode>148</versioncode>
<apkname>net.gsantner.markor_148.apk</apkname>
<srcname>net.gsantner.markor_148_src.tar.gz</srcname>
<hash type="sha256">e393a87975b7fe3aee74b878f66e0db0f3091ad859f6d5ae3419ff3e573aa60b</hash>
<size>11113846</size>
<sdkver>16</sdkver>
<targetSdkVersion>33</targetSdkVersion>
<added>2023-10-15</added>
<sig>af12ddae122db68f2ebf5469dbb98620</sig>
<permissions>INSTALL_SHORTCUT,INTERNET,MANAGE_EXTERNAL_STORAGE,...</permissions>

</package>
<package>

<version>2.10.9</version>
...

</package>
<package>

<version>2.10.8</version>
...

</package>
</application>

Figure A.1: An Example Application in F-Droid.
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Appendix B

Example Results of ByClone on

Obfuscated Bytecode
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Source Code of First Method

public byte getByte() {
try {

int numByteRead = commonRead(1);
if (numByteRead == 1) {

return buffer[0];
} else {

Log.e(TAG, "Error in reading byte");
}

} catch (IOException e) {
e.printStackTrace();

}
return -1;

}

Source Code of Second Method

public long getLong() {
try {

int numByteRead = commonRead(4);
if (numByteRead == 4) {

return ByteBuffer.wrap(Arrays.copyOfRange(buffer, 0, 4))
    .order(ByteOrder.LITTLE_ENDIAN).getInt();

} else {
Log.e(TAG, "Error in reading byte");

}
} catch (IOException e) {
e.printStackTrace();
}
return -1;

}

Bytecode of First Method

aload_0
iconst_1
invokespecial {reg}
iconst_1
if_icmpne {const}
aload_0
getfield {reg}
iconst_0
baload
ireturn

ldc {reg}
ldc {reg}
invokestatic {reg}
pop
goto {const}
astore_1
aload_1
invokevirtual {reg}
iconst_m1
ireturn
Exception table:
{from} {to} {target} java/io/IOException
{from} {to} {target} java/io/IOException

Bytecode of Second Method

aload_0
iconst_4
invokespecial {reg}
iconst_4
if_icmpne {const}
aload_0
getfield {reg}
iconst_0
iconst_4
invokestatic {reg}
invokestatic {reg}
getstatic {reg}
invokevirtual {reg}
invokevirtual {reg}
i2l
lreturn
ldc {reg}
ldc {reg}
invokestatic {reg}
pop
goto {const}
astore_1
aload_1
invokevirtual {reg}
ldc2_w {reg}
lreturn
Exception table:
{from} {to} {target} java/io/IOException
{from} {to} {target} java/io/IOException

Figure B.1: An example of a true positive result.
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Source Code of First Method

@Override
public View generateView(@NonNull final BaseActivity activity,
               @Nullable final Integer textColor,
               @Nullable final Float textSize,
               final boolean showLinkButtons) {

final int paddingPx = General.dpToPixels(activity, 3);
        final int thicknessPx = General.dpToPixels(activity, 1);
        final View divider = new View(activity);
        final ViewGroup.MarginLayoutParams layoutParams
                = new ViewGroup.MarginLayoutParams(
                        ViewGroup.LayoutParams.MATCH_PARENT,
                        thicknessPx);
        layoutParams.leftMargin = paddingPx;
        layoutParams.rightMargin = paddingPx;
        divider.setBackgroundColor(Color.GRAY);
        divider.setLayoutParams(layoutParams);

        return divider;
    }

Source Code of Second Method

public synchronized void triggerUpdateIfNotReady(
@Nullable final FunctionOneArgNoReturn<SubredditRequestFailure> onFailure) {

final RequestResponseHandler<HashSet<SubredditCanonicalId>, 
   SubredditRequestFailure> handler

= new RequestResponseHandler<HashSet<SubredditCanonicalId>,
SubredditRequestFailure>() {

@Override
public void onRequestFailed(final SubredditRequestFailure failureReason) {

if(onFailure != null) {
onFailure.apply(failureReason);

}
}

@Override
public void onRequestSuccess(

final HashSet<SubredditCanonicalId> result,
final long timeCached) {

// Do nothing
}

};

if(!areSubscriptionsReady()
&& (mLastUpdateRequestTime == 0
|| RRTime.since(mLastUpdateRequestTime) > RRTime.secsToMs(10))) {

triggerUpdate(handler, TimestampBound.notOlderThan(RRTime.hoursToMs(1)));
}

}

Bytecode of First Method

aload_1
ldc {reg}
invokestatic {reg}
istore {const}
aload_1
fconst_1
invokestatic {reg}
istore {const}
new {reg}
dup

aload_1
invokespecial {reg}
astore_1
new {reg}
dup
iconst_m1
iload {const}
invokespecial {reg}
astore_2
aload_2
iload {const}
putfield {reg}
aload_2
iload {const}
putfield {reg}
aload_1
ldc {reg}

invokevirtual {reg}

aload_1
aload_2

invokevirtual {reg}

aload_1
areturn

Bytecode of Second Method

aload_0
monitorenter

new {reg}
dup
aload_0
aload_1
invokespecial {reg}
astore_1
aload_0

invokevirtual {reg}
ifne {const}
aload_0
getfield {reg}
lstore_2
lload_2
lconst_0
lcmp
ifeq {const}
lload_2
invokestatic {reg}
ldc2_w {reg}
lcmp
ifle {const}
aload_0
aload_1
ldc2_w {reg}
invokestatic {reg}
invokestatic {reg}
invokevirtual {reg}
aload_0
monitorexit
return
astore_1
aload_0
monitorexit
aload_1
athrow
Exception table:
{from} {to} {target} any
{from} {to} {target} any
{from} {to} {target} any

Figure B.2: An example of a true negative result.
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Source Code of First Method

public void startCTMU(int cRange, int trim, int tgen) {
if (tgen == -1) tgen = 1;
try {

mPacketHandler.sendByte(mCommandsProto.COMMON);
mPacketHandler.sendByte(mCommandsProto.START_CTMU);
mPacketHandler.sendByte(cRange | (tgen << 7));
mPacketHandler.sendByte(trim);
mPacketHandler.getAcknowledgement();

} catch (IOException e) {
e.printStackTrace();

}
}

Source Code of Second Method

public void setSqrs(int wavelength, int phase, int highTime1, int highTime2,
int prescalar) {

if (prescalar == -1) prescalar = 1;
try {

mPacketHandler.sendByte(mCommandsProto.WAVEGEN);
mPacketHandler.sendByte(mCommandsProto.SET_SQRS);
mPacketHandler.sendInt(wavelength);
mPacketHandler.sendInt(phase);
mPacketHandler.sendInt(highTime1);
mPacketHandler.sendInt(highTime2);
mPacketHandler.sendByte(prescalar);
mPacketHandler.getAcknowledgement();

} catch (IOException e) {
e.printStackTrace();

}
}

Bytecode of First Method

iload_3
istore {const}
iload_3
iconst_m1
if_icmpne {const}
iconst_1
istore {const}
aload_0
getfield {reg}
aload_0
getfield {reg}
getfield {reg}
invokevirtual {reg}
aload_0
getfield {reg}
aload_0
getfield {reg}
getfield {reg}
invokevirtual {reg}
aload_0
getfield {reg}
iload {const}
bipush {const}
ishl
iload_1
ior

invokevirtual {reg}
aload_0
getfield {reg}
iload_2
invokevirtual {reg}
aload_0
getfield {reg}

invokevirtual {reg}
pop
goto {const}
astore {const}
aload {const}
invokevirtual {reg}
return
Exception table:
{from} {to} {target} java/io/IOException

Bytecode of Second Method

iload {const}
istore {const}
iload {const}
iconst_m1
if_icmpne {const}
iconst_1
istore {const}
aload_0
getfield {reg}
aload_0
getfield {reg}
getfield {reg}
invokevirtual {reg}
aload_0
getfield {reg}
aload_0
getfield {reg}
getfield {reg}
invokevirtual {reg}
aload_0
getfield {reg}

iload_1

invokevirtual {reg}
aload_0
getfield {reg}
iload_2
invokevirtual {reg}
aload_0
getfield {reg}
iload_3
invokevirtual {reg}
aload_0
getfield {reg}
iload {const}
invokevirtual {reg}
aload_0
getfield {reg}
iload {const}
invokevirtual {reg}
aload_0
getfield {reg}
invokevirtual {reg}
pop
goto {const}
astore {const}
aload {const}
invokevirtual {reg}
return
Exception table:
{from} {to} {target} java/io/IOException

Figure B.3: An example of a false positive result.
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Source Code of First Method

@NonNull
@Override
public View onCreateView(@NonNull LayoutInflater inflater,

           @Nullable ViewGroup container,
   @Nullable Bundle savedInstanceState) {

View view = inflater.inflate(R.layout.skill_usource__call, container, false);

for (int i = 0; i < checkBoxIds.length; i++) {
stateCheckBoxes[i] = view.findViewById(checkBoxIds[i]);

}
numberEditText = view.findViewById(R.id.et_number);

return view;
}

Source Code of Second Method

@NonNull
@Override
public View onCreateView(@NonNull LayoutInflater inflater,

           @Nullable ViewGroup container,
   @Nullable Bundle savedInstanceState) {

View view = inflater.inflate(R.layout.skill_usource__screen, container, false);
rb_screen_on = view.findViewById(R.id.radioButton_screen_on);
rb_screen_off = view.findViewById(R.id.radioButton_screen_off);
rb_screen_unlocked = view.findViewById(R.id.radioButton_screen_unlocked);
return view;

}

Bytecode of First Method

iconst_0
istore {const}
aload_1
ldc {reg}
aload_2
iconst_0
invokevirtual {reg}
astore_1
getstatic {reg}
astore_2
iload {const}
aload_2
arraylength
if_icmpge {const}
aload_0
getfield {reg}
iload {const}
aload_1
aload_2
iload {const}
iaload

invokevirtual {reg}
checkcast {reg}
aastore
iload {const}
iconst_1
iadd
istore {const}
goto {const}
aload_0
aload_1
ldc {reg}
invokevirtual {reg}
checkcast {reg}
putfield {reg}
aload_1
areturn

Bytecode of Second Method

aload_1

ldc {reg}
aload_2
iconst_0
invokevirtual {reg}
astore_1
aload_0
aload_1
ldc {reg}
invokevirtual {reg}
checkcast {reg}
putfield {reg}
aload_0

aload_1
ldc {reg}

invokevirtual {reg}
checkcast {reg}
putfield {reg}

aload_0
aload_1
ldc {reg}
invokevirtual {reg}
checkcast {reg}
putfield {reg}
aload_1
areturn

Figure B.4: An example of a false negative result.
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