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Abstract

Blood Pressure Estimation through Photoplethysmography using Deep Learning in
Clinical Setting: Critical Survey and Solutions

François LaBerge

Current solutions for blood pressure monitoring can be classified as invasive or non-invasive,

both with drawbacks. Invasive blood pressure monitoring can lead to complications. Non-invasive

blood pressure monitoring is intermittent which leads to missed episodes of hypertension and hy-

potension, also leading to complications. The state of the art for blood pressure monitoring through

machine learning methods usually requires personalization, which is prohibitive in a clinical appli-

cation. These proposed methods are generally not evaluated for clinical application. Datasets are

usually split randomly, while a patient-wise split is required.

We first start by performing a survey of the literature to find candidate models for evaluation.

These models are reproduced for evaluation alongside our proposed models. Popular input modal-

ities from the literature are also reproduced with our proposed input modality. All combinations of

models and input modalities are then evaluated against a patient-wise and random split. We perform

a learning curve analysis to estimate how much data would be required to pass the AAMI standard.

The performance results establish that no model can provide calibration-free, non-invasive blood

pressure monitoring using a single PPG site. The performance metrics show that our models and

input modalities outperform the state of the art for random and patient-wise splits. Comparison

against the models demonstrates that model complexity is insufficient to achieve better performance

and that better preprocessing is a more efficient way to improve performance. The learning-curve

analysis estimates that additional data could help achieve a model that passes the AAMI standard.
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Chapter 1

Introduction

Blood pressure is one of the most common health metrics used to evaluate the health of a pa-

tient’s hemodynamics. In itself, it measures the pressure exerted by the blood on the arterial walls.

blood pressure (BP) monitoring can help characterize the circulatory system of a patient and help

practitioners take adequate actions to maximize the chances of favorable outcomes. For instance,

complications stemming from episodes of hypotension and hypertension can be counteracted if

acted upon in a timely fashion.

Monitoring of arterial blood pressure (ABP) is critical during the perioperative period. It has

been shown to be a good predictor of outcomes for patients. Episodes of hypotension during pe-

rioperative, intraoperative, and postoperative care have been associated with increased chances of

myocardial infarction and death [58, 59].

1.1 Motivation

The status quo of BP monitoring solutions can be divided into two categories: non-invasive and

invasive methods, both of which come with their drawbacks. Invasive BP monitoring can cause var-

ious complications with the patients. Complications include infection and sepsis [55]. Meanwhile,

non-invasive BP is safer and does not cause complications. However, most implementations of

non-invasive BP monitoring are non-continuous and cause intermittent readings. It has been shown

that this type of monitoring can cause critical episodes of change in BP, such as hypotension, to
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be outright missed. In these cases, proper action can not be taken, which reduces the chances of a

favorable outcome for patients.

The state of the art has proposed some non-invasive continuous BP monitoring algorithms. Un-

fortunately, these algorithms usually require personalization to achieve an acceptable performance.

Personalization is not applicable in a clinical or EMS setting, since labeled data for the patient is

not available. As such, a third property of the algorithm is required for clinical use: calibration-free.

As such we are looking to develop a non-invasive, continuous, and calibration-free BP monitor-

ing algorithm for use in a clinical setting. This algorithm could provide considerable improvement

in outcomes for patients undergoing perioperative care.

The literature on this topic has proposed a multitude of methods for non-invasive, continuous

BP monitoring. These solutions most commonly rely on machine learning and deep learning meth-

ods. Unfortunately, proposed methods are often difficult or impossible to properly compare due to

several factors. The data used by the authors to develop their models is not always reproducible. In

some cases, the dataset is not shared, making reproduction impossible. In other cases, the prepro-

cessing of the dataset itself is not reproducible. Similarly, the implementation of the deep learning

models themselves can not be reproduced. Code implementation for the proposed methods is sel-

dom published and descriptions of the architecture are insufficient to properly reproduce it. Lastly,

the performance of the methods is not always reported with the same metrics. In our review, works

could report performance in terms of mean absolute error (MAE), mean error (ME), root mean

squared error (RMSE), R-square, or a combination of these.

1.2 Contributions

In order to tackle the gaps identified in the literature and advance the development of a non-

invasive, continuous, and calibration-free BP monitoring algorithm, we provide the following con-

tributions:

• We first provide a comprehensive review of the literature through a survey.

• We reproduce and evaluate models from the literature from a concrete clinical perspective

and publish our implementations on an open-source platform.
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• We propose new deep learning architectures for our BP monitoring algorithm. Those architec-

tures are evaluated against the reproduced models from the literature considering a concrete

clinical context. Implementation for those models along with our automatic preprocessing

pipelines and preprocessing methodology for PPG signals are also made open-source.

• We provide an analysis of the MIMIC-IV dataset to evaluate how much data is required to

achieve a calibration-free BP estimation algorithm.

1.3 Organization

The organization of the thesis is as follows. In Chapter 2, we provide the background knowledge

for BP and BP monitoring. We also present a literature review of BP estimation through machine

learning. In Chapter 3, we present our survey, model reproductions, proposed models, preprocessing

methodologies, and learning curve analysis. Lastly, in Chapter 4, we summarize our findings and

suggest avenues for future research.
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Chapter 2

Background and Literature Review

2.1 Background

Hemodynamics is the study of blood flow in the circulatory system. A major component of

hemodynamics is BP. In the following subsection, we cover the background related to BP, by de-

tailing its basic mechanisms and monitoring options.

2.1.1 Blood Pressure

To understand the importance of BP monitoring, we must first understand what is blood pres-

sure, and why it is important to the circulatory system.

As with any other pressure, BP is a force over an area. In most cases, when practitioners want

to measure blood pressure they are really interested in measuring ABP. Aortic blood pressure is the

pressure of the blood in the aorta after exiting the left ventricle. Therefore, BP can be understood as

the pressure exerted by the blood on the walls of the aorta. This pressure is generated by the heart

itself. As the heart contracts to eject blood into the aorta, it generates a pressure wave that propagates

through the circulatory system. It is interesting to note that this pressure wave propagates faster than

the blood itself is moving. The speed is affected by the compliance of the arterial walls. The more

compliant a vessel is, the slower the wave will propagate. For instance, pressure waves move slower

in the aorta than the arteries [48]. Due to the intermittent contractions of the heart, BP is pulsatile

in nature, meaning the pressure rises and falls back down within every heart cycle. Therefore, BP
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is usually given by means of two measurements: the maximum and minimum pressure within a

cycle. The maximum pressure is the systolic blood pressure (SBP) and the minimum pressure is the

disatolic blood pressure (DBP). For historical reasons, BP is measured in millimeters of mercury

(mmHg). It was first measured by measuring the distance by which the blood pressure displaced a

column of mercury. We can therefore infer that BP is measured relatively to atmospheric pressure.

For instance, normal blood pressure is usually said to be 120/80 mmHg, where the first number

denotes the SBP and the second denotes DBP.

The main purpose of the circulatory system is to provide the tissues of the body with oxygen

and nutrients. The metabolic need of a tissue dictates how much oxygen and nutrients are required

by the tissue. The metabolic need can increase or lower depending on various factors, such as

the type of tissue and activity of the tissue. For instance, during heavy exercise, the metabolic

need of skeletal muscle can increase by 20 times its resting baseline. In order to accommodate the

variations in metabolic needs, the circulatory system increases the blood flow to the tissues with a

higher metabolic need and lowers blood flow to the ones with a lower metabolic need. Meanwhile,

the aortic blood pressure is kept remarkably constant. Fast changes in local blood flow are achieved

by constricting or dilating the arterioles and capillaries for the receiving tissue. An interesting

parallel can be drawn between blood pressure and Ohm’s law. The blood pressure in a circulatory

system can roughly be modeled by a simple electrical circuit, where the blood pressure acts as the

voltage source, blood flow takes the role of current, and the arterioles and capillaries act as variable

resistances. Therefore, the heart must supply sufficient cardiac output to fulfill the needs of the

tissues. Tissues have a critical closing pressure that the heart must overcome in order to allow blood

to flow. If the heart is unable to overcome this pressure, the blood flow to the tissues stops and can

not fulfill its metabolic requirements.

2.1.2 Blood Pressure Monitoring

Blood pressure is one of the most commonly monitored characteristics of the circulatory system.

Monitoring options are usually either classified as invasive or non-invasive monitoring.

Invasive blood pressure monitoring usually only comes in the form of an arterial line. To mon-

itor BP with an arterial line, a catheter is inserted into the patient. This catheter is connected to a
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tube containing a saline solution. Nowadays, the tube connects to a calibrated pressure transducer

that can provide readings in mmHg. As the blood pressure changes, it pushes the saline solution.

This motion in the saline solution is picked up by the pressure transducer and converted to a pres-

sure reading. The catheter can be inserted in various arteries, but it is most commonly inserted in

the radial artery [45]. Arterial lines are considered to be the gold standard of blood pressure mon-

itoring. They provide an accurate and continuous reading of the pressure. Due to the invasiveness

of catheterization, arterial lines can lead to complications. The most common complications are

infection and sepsis [55].

Two types of non-invasive blood pressure monitoring methods exist; cuff-based methods and

volume clamps. Inflatable cuff-based BP monitoring is the most well-known monitoring method

and is extensively used for home monitoring. The method operates by placing a cuff around the

arm of the patient. The cuff is inflatable, thereby increasing the pressure around the arm. Different

techniques can be used to monitor the pulse around the cuff and detect when the inflatable cuff

pressure is equal to the SBP and BP. Some techniques are automatic while others are manual. How-

ever, all these cuff-based methods hold the same advantages and drawbacks. The main advantage

of this method is that it is non-invasive and therefore has little to no adverse health effects in most

cases. The largest disadvantage is that the monitoring is not continuous, causing large time intervals

between readings. These time delays can have negative repercussions on the care of patients. Turan

et al. [68] found that common delays of 4 to 6 hours between readings can cause episodes of hyper-

tension and hypotension to be outright missed by the monitoring. Intraoperative hypotension has

been associated with higher risks of myocardial injury, acute kidney injury, and death [70], while

hypertension shown to increase risks of myocardial injury [58], infarction [59, 54], acute kidney

injury [65], and mortality [40, 37, 63]. Had these episodes not been missed, proper responses could

have been taken by the medical personnel to minimize their adverse effects. The volume clamp

method aims to overcome the issues of cuff-based methods. The volume clamp combines an inflat-

able cuff and a photoplethysmogram to correlate the changes in blood volume with blood pressure.

This method is continuous and non-invasive, however, the accuracy of the readings is insufficient,

the system is susceptible to motion artifacts, and is more expensive than other methods [38].
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2.2 Literature Review

Since the 1970s, researchers and medical practitioners alike have searched for a way to monitor

BP that was non-invasive and accurate. In more recent years a lot of research for non-invasive BP

monitoring has been interested in experimenting with machine learning methods. These works have

also mainly focused on using the signal from a photoplethysmogram as input. The literature for

this domain of research can be divided into three sections: feature engineering, machine learning

models, and data.

2.2.1 Feature Engineering

Feature engineering can make or break a machine learning solution. Blood pressure estimation

is no different. In the BP domain, physiological signals are most often used as input. These can

aptly be defined as time series. In the majority of cases, a photoplethysmography (PPG) signal is

used, although some works use additional signals or features. Feature engineering for BP estimation

can be divided into two types: manual and automatic.

A. Manual Feature Engineering

As previously noted, PPG plays an important role in BP estimation. PPG is a non-invasive mea-

surement method widely used in clinical settings to measure various properties of the circulatory

systems, such as heart rate, oxygen concentration, and respiration rate. Most importantly, PPG can

detect variations in blood volume [3]. The method is typically implemented by using an light emit-

ting diode (LED) to emit light on the skin of a patient, a photodiode then measures the amount of

light reflected by the skin. The wide adoption of the method can be attributed to its variety, inexpen-

siveness, and ease of installation. The blood flow measured by PPG is directly affected by the ABP

[36]. As such, PPG is an indirect measure of ABP, PPG shares many features of the ABP wave-

form. However, the relationship between the PPG and ABP waveform is not fully understood and

can vary depending on the physiological characteristics of the patient’s circulatory system and even

the position of the PPG sensor. Most of the literature on non-invasive blood pressure measurement

through machine learning has relied on extracting information from the PPG waveform.
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Historically, a lot of feature engineering has been focused on manually extracting salient fea-

tures from a single PPG signal. This type of feature extraction is called pulse wave analysis (PWA).

It has the advantage of being cheaper and simpler since it only requires one sensor. The features

are most often composed of time domain features, such as the height and width of the waveform

at various key points. For example, El-hajj and Kyriacou [12] extracted 52 features from the PPG

signal, its first derivative, and second derivative, as input features to an LSTM-based deep learning

model. Their approach achieved a performance of 4.51 and 2.6 MAE for SBP and DBP respec-

tively. Less frequently, PWA features are crafted from the frequency domain, such as the amplitude

and frequency of FFT peaks. Li and He [32] only used the harmonics of the PPG signal as input

for a GRNN, and reported 3.96 and 2.39 MAE for SBP and DBP respectively. Ma et al.[34] used

manually extracted features in the time and frequency domain as input for a Transformer-inspired

architecture and achieved estimation performance of 4.303 ± 6.378 and 3.134 ± 4.489 MAE for

SBP and DBP. In Roy et al.[52], over 200 features were extracted from the PPG signal including

features from continuous wavelet transforms, and were used as input for a deep learning model

employing residual convolutional blocks and 2 fully connected layers. The model achieved per-

formance results of 2.38 ± 3.24 MAE and 1.23 ± 1.73 for SBP and DBP. In [77] The amplitude

and phase were obtained with an FFT and used for estimation with only 2 fully connected layers

and achieved an impressive error of 0.06 ± 7.08 and 0.01 ± 4.66 MAE for SBP and DBP. Lastly,

In Li et al.[32], the authors used the harmonics of the signal as input for a GRNN and achieved

3.96 and 2.39 MAE for SBP and DBP. In Pandey et al. [46], the authors mixed FFT-based features

with time-domain features from the first and second derivative of the PPG signal and obtained es-

timation errors of 2 ± 6.08 and 1.87 ± 4.09 MAE for SBP and DBP. Even more rarely, statistical

features are extracted from the signal [17, 52, 9]. They include metrics such as the mean, standard

deviation, skewness, and kurtosis. Roy et al. [52] Included 11 statistical features alongside other

time domain and autoencoder-based features. They calculated, standard deviation, mean absolute

deviation, skewness, kurtosis, interquartile range, approximate entropy, spectral entropy, Hjorth

complexity, Higuchi fractal dimension, and detrended fluctuation analysis. They then used these

features as input for a deep learning model. Extensive research has been done in exploring PWA

features. In their work, Dey et al. [10] extracted 233 different features from the PPG signal, which
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included time domain, frequency domain, and physiological features. Their approach reported per-

formances of 7.8 and 6.1 MAE for SBP and DBP respectively. Further miscellaneous features have

also been explored, such as the heart rate [31, 79, 76, 33, 41], Teager–Kaiser energy [51, 41], K

value [51, 34], energy profile [51, 41], PPG Intesity Ratio (PIR) [16], and margin factor [34].

Removing the requirement for using a single sensor, an approach that is often used is to use

two PPG readings to measure the pulse transit time (PTT). The PPG signals are recorded at two

different locations, and the PTT is derived by calculating the time taken by the pulse waveform to

propagate from the first location to the other. The hope in using this method is that the PTT can help

determine some physiological characteristics of the patient’s circulatory system [43]. An important

physiological property that can affect the relationship between blood volume and blood pressure

is the ability of arteries to contract or distend in response to changes in pressure. This property is

referred to as the compliance of the arteries. For instance, Yen et al. [79] Derived PTT by measuring

PPG at the index and middle finger. Using other features derived from the PPG waveform, they

trained a deep learning model to acquire pressure measurement from the PPG signal. They reported

a performance of 0.17 and 0.52 MAE for SBP and DBP respectively.

A more popular, but similar approach to PTT is to use an ECG signal to measure pulse arrival

time (PAT). An ECG measures the electrical activity in the heart. Some features of the ECG wave-

form have been associated with stages of the heart cycle. Most importantly, the R peak corresponds

with the contraction of the ventricles. The PAT is defined as the time difference between the R

peak of the ECG signal and the systolic peak in the PPG signal. Therefore, PAT approximates the

waveform propagation time from the aorta to the PPG site. As noted by El-Hajj and Kyriacou [11],

PAT and PTT are often wrongly used interchangeably in the literature. Li et al. [31] extracted 7

features from the PPG and ECG signal, including PAT, and reported 0.7357 and 0.5587 MAE for

SBP and DBP respectively. In Farki et al. [16], the authors extracted 3 features from the PPG and

ECG signals, including PAT. They reported a performance of 2.561 and 2.231 MAE for SBP and

DBP respectively.

Some researchers have also suggested using demographic information from the patients as ad-

ditional input to the models [75, 9, 56, 10]. This demographic information can act as an approxi-

mation to the physiological properties of subjects. Xing et al. [75] added the patient’s weight and
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BMI as features alongside time domain features. They concluded that including physiological in-

formation might improve the performance of BP estimation algorithms. These features typically

include weight, height, age, sex, and BMI. Yang et al. [78] concatenated the subject’s features to

the automatically extracted features. They concluded that adding demographics features helps with

estimation, with their best model achieving 4.43 ± 6.09mmHg and 3.23 ± 4.75mmHg MAE for

SBP and DBP. Dey et al.[10] employed a different technique by partitioning their training set based

on demographic thresholds. They found that this split helped with estimation performance. the

partitioning scheme reduced the error, starting from 7.8 ± 10.4 and 6.1 ± 7.1 for SBP and DBP

without the partitioning to 6.9± 9 and 5± 6.1 for SBP and DBP with the partitioning. These find-

ings are supported by [2, 60, 41, 9, 56] who also used demographics information and achieved good

performance. These results indicate that demographic information might help the models estimate

the properties of the subject’s circulatory system.

B. Automatic Feature Engineering

Proper PWA requires the implementation of a complex algorithm to filter the signals, extract the

heartbeats, and finally extract the features. Therefore, an increasingly popular approach is to rely

on deep learning models to perform automatic feature extraction. The most popular input method-

ology is to split the PPG signals into segments, and subsequently rely on CNN or RNN layers

to perform feature extraction [4, 5, 20, 47, 82]. The most popular segment sizes were 8 seconds

[80, 7, 26, 66, 81] or 5 seconds [2, 15, 30, 53]. Schlesinger et al. uniquely picked a window of 30

seconds [56]. A less frequent approach is to split the signal into single cycles [71]. Shimazaki et al.

[61, 60] have explored the efficiency of automatic feature extraction compared to manual features.

In “Features Extraction for Cuffless Blood Pressure Estimation by Autoencoder from Photoplethys-

mography” [60] the authors compared the performance of manual PWA and demographics features

against autoencoder-generated features. They reported a correlation coefficient (R) of 0.67 and

0.72 for conventional features and autoencoder features respectively, showing autoencoder features

outperformed the conventional features. In their other work [61], the authors compared automat-

ically extracted features through a CNN against a multiple regression analysis using conventional

features. They concluded that the CNNs outperformed the conventional features. The correlation
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coefficient for the CNN was 0.71 and 0.63 for the conventional features. Their results demonstrate

the superiority of automatic feature extraction for BP estimation.

2.2.2 Machine Learning Models

A variety of models have been proposed to model a subject’s hemodynamic system. Mathemat-

ical models can generally provide approximations for the properties of the system. More recently,

researchers have explored machine learning models to determine if they could more accurately de-

scribe hemodynamic systems. For BP estimation, we can break down the models into classical

machine learning models, deep learning models, or ensemble methods.

A. Classical Machine Learning

Several studies have explored classical machine learning algorithms for BP estimation. Clas-

sical machine learning (ML) algorithms usually require manual feature engineering. Various algo-

rithms have been explored in the literature. The tested algorithms include XGBoost [17, 19], SVM

[25, 39, 51], random forest [76, 41, 16], linear regression [74, 67, 10], KNN [44], and GPR [9].

Xie et al. [74] compared the performance of various ML models on a BP estimation task. They

compared linear regression, artificial neural networks, decision tree regression, bagging regression,

and random forest. Their results show that random forest outperforms other types of ML mod-

els. Other works in the literature have also shown good performance from random forest models

[76, 41, 44, 16]. Yang et al. [78] also compared various ML algorithms against deep learning

models. While they also concluded that random forest performed the best out of the classical ML

models, they showed that deep learning models outperformed classical ones. These conclusions

show that, while the classical machine model might perform acceptably, deep learning networks

show more promise.

B. Deep Learning

Deep learning has been able to solve a wide variety of long-standing machine learning problems.

This justifies its increase in popularity since the 2010s. As a result, it has been more extensively

explored for BP estimation in recent years. The interfaceable nature of neural network models
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makes it easy to create new types of layers. The following deep learning layers have been applied

to BP estimation: dense, CNN, RNN, attention mechanisms, and self-attention.

With the popularity of Deep Learning, many studies have explored using deep learning models

for BP estimation. As aforementioned, the superiority in automatic feature extraction and improved

performance of deep learning architectures make it an enticing approach. Hence, deep learning

might be able to provide continuous, calibration-free, non-invasive BP estimation. For instance, [4]

and [53] both have used a very deep architecture inspired by U-net with good performance. [62] and

[57] have both implemented models inspired by ResNet and observed good performance from the

model. [57] and [71] used AlexNet for estimation, also with good performance. Additionally, Yang

et al., in [78], compared deep learning models to classical machine learning models and showed that

deep learning models consistently outperformed the classical ones. These results show that more

complex deep learning models, both wider and deeper can improve estimation performance.

With the ever-increasing ubiquity of CNNs, studies have explored using them to automatically

extract features from the PPG waveform. Their ability to extract minute features from the signal

while keeping few parameters makes them a good candidate for time series tasks. For example,

Schlesinger et al.[56] explored using CNNs to extract features from a PPG spectrogram. The results

demonstrate that CNNs are capable of extracting the proper features from the signal. Works in the

literature have used CNNs to perform feature extraction on PPG and ECG signals for BP estimation

[7, 53, 23]. CNNs have been applied both with complimentary layers [80, 79, 81, 61, 73], such as

pooling and batching layers, or plainly [15, 30, 66, 78, 56]. A residual CNNs architecture is also

sometimes used [82]. In some cases, a popular model or architecture is used [62, 4, 26, 71]. For

instance, Schrumpf et al. [57] used the AlexNet [28] and ResNet [21] architectures, which both

heavily rely on CNNs to perform BP estimation from remote PPG signals. They reached an MAE

of 15.2 ± 9.11 mmHg SBP and 8.52 ± 4.92 mmHg DBP with the AlexNet model. The ResNet

model reached an MAE of 12.51± 12.61 mmHg SBP and 8.3± 9.84 mmHg DBP. In the literature,

approaches using CNNs for automatic feature extraction from the PPG signal generally report good

performance. These results indicate that CNNs are better at extracting relevant features in the PPG

signal than manual feature extraction.
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RNNs are a special type of neural network layers that are specifically designed to deal with se-

quential data. Regular RNNs can have trouble dealing with long-range dependencies. Two variants

of the RNNs have been developed to overcome this issue: LSTMs and their simpler counterpart,

GRUs. Since the PPG signal is a time series, they’re a natural method to try for BP estimation.

El-hajj and Kyriacou [12] used BiLSTM, BiGRU, LSTM, and GRU layers as feature extraction

layers for BP estimation. They reported performances of 4.51 mmHg and 2.6 mmHg MAE for SBP

and DBP, respectively, using BiLSTMs and GRUs layers. In [31] Li et al. used LSTMs and BiL-

STMs and tested different numbers of layers of LSTM. They found that 4 LSTM layers performed

the best with estimation performance of 0.7357 ± 0.9579 and 0.5587 ± 0.6829 MAE for SBP and

DBP. RNNs are most often used in conjunction with CNNs. The CNNs perform initial fine-grained

feature extraction and the RNNs extract the temporal features. These architectures usually use ei-

ther LSTMs [80, 66, 81, 78] or GRUs [62, 15, 30, 57]. In [66] Tazarv et al. used a combination of

CNN, 2 LSTM layers, and a fully connected layer. Their results show that their model outperformed

previous works with performance of 3.7 ± 3.07 and 2.02 ± 1.76 for SBP and DBP. Furthermore,

[20, 47, 23] all used RNNs in their architecture and reported good performance. These results could

indicate the importance of modeling time dependencies for blood pressure estimation using PPG.

Because of the vanishing gradient problem, RNNs have trouble extracting relationships between

inputs with long-range time dependencies. As such, attention mechanisms have been developed to

help RNNs track patterns over long periods of time. Several papers have tried to apply this method

for BP estimation. For example, in [26] Kim et al. used a ResUNet architecture and compared

its performance with and without an attention-based skip connection. Their results show that the

attention mechanism improves MAE by 0.81mmHg for SBP and by 0.15mmHg for DBP, with final

estimation performance of 5.75± 7.55 and 2.73± 4.23 MAE for SBP and DBP. Other studies used

an attention-based mechanism in their architecture such as, [2] and [7], Chen et al. [7] reported

good performance using this method. This could indicate that, as previously, modeling time depen-

dencies is important, but modeling time dependencies for longer periods of time can further help

with estimation.

With the popularity of the Transformer architecture, a variation of the attention mechanism,

self-attention, is further being used for time series analysis. A Self-attention layer can pay attention
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to any output of its previous layer and is typically used within an encoder or decoder network.

However, few works have explored self-attention layers as feature extractors for PPG signals [15,

26, 34]. In [26] Kim et al. compared a ResUNet architecture with and without self-attention, and

concluded that self-attention provided the best performance improvement compared to an attention-

based skip connection. The self-attention layer improved estimation performance by 1.88mmHg

for SBP and 0.67mmHg MAE for DBP compared to a model without any attention mechanism.

Their architecture using self-attention only boasted an estimation performance of 3.87 ± 4.42 and

2.06 ± 2.48 for SBP and DBP. Further taking inspiration from the Transformer, Ma et al. [34]

architectured a model based on an Informer model. Their model, titled KD-Informer, predicted

BP with a performance of 4.303 ± 6.378 and 3.134 ± 4.489 MAE for SBP and DBP. Moreover,

[12] and [15] both employed a self-attention mechanism in their architectures and reported good

performance. Considering these results, we can note again the importance of modeling long-range

sequence dependencies and the superiority of self-attention mechanisms to detect those patterns.

C. Ensemble Methods

A few studies have explored the use of ensemble methods for blood pressure estimation. For

instance, [17] and [19] both used XGBoost to train a machine learning model, however, the two

studies’ results vary greatly. Fleischhauer et al. saw 5.799 ± 7.481 MAE for SBP for their best

model and Haque et al. achieved 2.54 ± 4.24 with their best model. Other methods used in the

studies could explain this variation. Sadrawi et al. [53] used a genetic algorithm to create an ensem-

ble of deep learning models. Their ensemble model achieved performance of −1.659 ± 0.665 and

0.665±2.03 ME for SBP and DBP. In [10] Dey et al. split their training data by demographic prop-

erties, then trained linear regression models for each partition. The models were then aggregated by

inferring a prediction value with each model, rejecting outlying predictions, and taking the mean of

the remaining predictions to get a final output. Their ensemble model achieved 6.9± 9 and 5± 6.1

MAE for SBP and DBP. Finally, in [16] Farki et al. clustered the training models based on extracted

features using K-means, then trained models for each cluster. Their total error was calculated as

the mean of the performance on all the clusters. Their best model, which used gradient boosting

as their base model, achieved good performance of 2.561 and 2.231 for SBP and DBP. Clustering
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the data improved the performance greatly, the model without it achieved performance of 6.367 and

6.276 MAE for SBP and DBP. These results indicate that ensemble methods could further improve

estimation accuracy.

2.2.3 Data

Machine learning methods can find patterns in training data. Thus, data plays a crucial role

when training those models. As observed by El-Hajj [12], BP estimation performance seems to

improve as the size of the dataset decreases. The size of the dataset seems to be the main driver

of performance in the literature. This poses a major issue in creating a non-invasive blood pressure

estimation algorithm as generalization performance will lower with dataset size. This observation

coincides with Slapničar et al. [62] who observed the lowest errors were achieved on small selected

subsets of data, and studies with larger datasets saw larger errors. While splitting the BP estimation

values into ranges, Schrumpf et al. [57] observed that the error for a given range depended strongly

on the amount of training data for that range. The authors also state that morphological differences

between individuals are a main challenge for creating a generalized BP estimation neural network.

This finding corroborates with the ones from Shimazaki et al. [61]. While studying the efficiency

of using CNN for feature extraction, the authors noticed that the largest errors were incurred by

subjects with very high or low SBP values. Taking these findings into consideration, both Ma et

al. [34] and Slapničar et al. [62] recommend using a patient-wise train/test dataset split in order

to get a more accurate generalization performance. Using this method would make sure no bias is

introduced into the predictions by overfitting on the subject’s morphology.

Some studies have attempted to address this issue with personalization, which consists of fine-

tuning the model using a patient’s labeled data. In effect, this calibrates the model for the subject.

For example, Slapničar et al. [62] added personalization to their deep learning model, which reduced

the prediction error from 15.41 and 12.38 MAE for SBP and DBP to 9.43 and 6.88 MAE for

SBP and DBP. Leitner at al. [30] used a similar approach where patient-specific data was used to

retrain some layers of their models, a technique borrowed from transfer learning. Personalization

improved the performance of their model, starting from 4.59 and 2.72 MAE for SBP and DBP

without personalization to 3.52 and 2.2 MAE for SBP and DBP with personalization. Lastly, Xing
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et al. [76] created a personalized random forest algorithm by subtraction the mean error from the

predictions of the uncalibrated model. Personalization can improve performance by a large amount

and helps with the challenges we’ve highlighted in the previous paragraphs. However, this method

requires the user to acquire a gold standard measurement through a cuff-based or invasive technique

in order to personalize the model. Furthermore, the efficiency of personalization over long periods

of time or multiple uses has not been explored.
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Chapter 3

Blood Pressure Monitoring in a Clinical

Setting

3.1 Introduction

Blood pressure management is an essential element of perioperative care. Intraoperative hy-

potension has been associated with higher risks of myocardial injury, acute kidney injury, and death

[70], while hypertension shown to increase risks of myocardial injury [58], infarction [59, 54], acute

kidney injury [65], and mortality [40, 37, 63]. Adequate BP monitoring can help achieve optimal

outcomes for patients. Two methods are generally used to provide BP monitoring: non-invasive and

invasive. Non-invasive BP monitoring is usually achieved using oscillometric methods by means

of a sphygmomanometer cuff. This method has its drawbacks. It provides intermittent monitoring,

every 1 to 5 minutes, which can cause critical delays in capturing changes in BP which can even

be missed altogether [68]. Invasive BP monitoring is considered the gold standard and consists

of inserting a catheter into a patient’s artery. The invasive nature of this method can lead to com-

plications such as vascular injury, bleeding, infection, and sepsis. [55]. Therefore, a continuous,

non-invasive method of BP monitoring has long been sought after. More recently, PPG and ML

have shown promising results in order to provide accurate, calibration-free, clinically usable, and

non-invasive BP monitoring. We set out to determine if machine learning algorithms could produce

an accurate, calibration-free, and non-invasive blood pressure monitoring from a single PPG signal.
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Current state-of-the-art algorithms often require personalization or calibration of the model to the

patient, which is undesirable in a clinical context.

Many deep learning architectures for BP estimation have been presented in the literature. Com-

mon layers to use for these architectures are combinations of CNNs and RNNs or GRUs and atten-

tion mechanisms [66, 12]. Others even used the phase and amplitude of the PPG signal as features

for an artificial neural network [77]. These models usually pass the Association for the Advance-

ment of Medical Instrumentation (AAMI) standard. Model performance is often compared against

the AAMI and British Hypertension Society (BHS) standards to evaluate their practical applica-

bility in a clinical setting. The AAMI standard operates on a pass/fail evaluation and states that

SBP and DBP should be evaluated separately and should have a mean difference of 5 mmHg and

a standard deviation of 8 mmHg. Even so, we can not determine if these results are applicable in

a clinical setting. The dataset splits used to evaluate the performance of the algorithms often share

data from the same recordings and patients. In some cases, the models are trained and evaluated on

data from the same recording [66]. More often, the dataset is said to be split into fixed percentages

of the dataset. These splitting schemes do not explicitly state the splitting strategy used, but can

generally be assumed to be random splits. Again, this leads to shared recordings and patients across

the splits [12, 77]. These evaluation methods can not provide accurate performance estimates for

a calibration-free algorithm since the trained model has had the opportunity to train on the eval-

uated patient’s data. Other works have attempted to keep the training and evaluation patient data

separated. A patient-wise split is most common, but some works have proposed using a leave-one-

subject-out split for better evaluation estimates [57, 62]. Unfortunately, these approaches do not

qualify for the AAMI standard.

Works in this field are difficult to compare due to several factors. The datasets used for training

and evaluation are rarely shared, and preprocessing methodologies can not always be reproduced.

Likewise, code implementation for developed models is seldom published, and textual descriptions

of the networks often lack details. Moreover, the reported performance is sometimes calculated as

MAE, ME, RMSE, or R-squared. The combination of these three factors makes it troublesome to

compare and reproduce studies. Our contribution to the literature is threefold:

(1) We first provide a comprehensive review of the literature through a survey.
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(2) We reproduce and evaluate models from the literature for a clinical application and publish

our implementations on an open-source platform.

(3) We propose new deep learning architectures evaluated against the reproduced models for a

clinical context. Implementation for our models is also published.

These contributions help tackle the gaps we identified in the literature. The survey and reproduction

allow comparing models under the same dataset and implementation conditions, allowing for a

better overview of the state-of-the-art in BP estimation. Sharing our implementation will also make

it easier for future contributors to compare their works. We designed our proposed models to cover

a wide range of popular deep learning layers. This selection helps us evaluate which type of layer

architecture performs best for the task.

Section 3.2 presents a summary of the current literature on surveys for non-invasive blood pres-

sure monitoring through machine learning. In Section 3.3, we conduct a survey to find reproducible

state-of-the-art models. Section 3.4 describes our datasets, input modalities, custom models, and

reproduction implementations used for our experiments. Section 3.5 presents the results of our ex-

periments. In Section 3.6, We interpret our results and explain our arguments. Section 3.7 closes

the chapter and describes avenues for potential future works.

3.2 Related Work

Previous reviews on non-invasive blood pressure monitoring have been conducted in the litera-

ture. We looked for related reviews on the search engines: Google Scholar, Sofia, and PubMed. We

searched using the following keywords: “machine learning”, “arterial pressure”, “hypertension”,

“monitoring”, “non-invasive”, and “review”. Our search yielded a collection of 9 review articles.

We compare the reviews against 5 characteristics describing the aspects of BP estimation that was

reviewed. The characteristics are as follows: (1) BP estimation devices, (2) classical machine learn-

ing algorithms, (3) deep learning algorithms, (4) single PPG waveform only, and (5) reproduction

of the models. All reviews are shown against their evaluation characteristics in Table 3.1.

El-Hajj and Kyriacou [11] conducted a review covering PWA, PAT, PTT, pulse wave velocity,

classical machine learning, and deep learning approaches. They concluded that the state-of-the-art
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methods require calibration in order to provide acceptable results. Rastegar et al. [50] performed

a review mainly focusing on the methods for non-invasive BP estimation, the reviewed methods

covered PWA, PAT, and PTT. Their review also included an overview of deep learning algorithms.

They concluded that PTT-based methods along with deep learning are the most promising meth-

ods for BP estimation. Ismail et al. [24] presented a review on the stat-of-the-art and commercial

devices for non-invasive BP monitoring. They concluded that new methods can boast improved

estimation performances. Kim et al. [27] presented a meta-analysis of non-invasive BP estimation

methods compared to a gold standard. They selected non-invasive methods, as measured by com-

mercial devices. Their analysis showed that no commercial devices met the AAMI standards for BP

measurement. Quan et al. [49] reviewed cuff-based and cuffless non-invasive BP monitoring meth-

ods and presented a capacitive proximity sensing method for BP estimation. Their work concludes

that a large and diversified population is required for accurate BP prediction. Stojanova et al. [64]

reviewed cuff-less BP estimation methods, including devices. They conclude that PPG and ECG

are the most common signals for non-invasive BP monitoring and that deep learning approaches

provide promising results in terms of prediction accuracy. Le et al. [29] performed a review on

sensors from which PAT and PTT can be determined. They further reviewed the state-of-the-art for

PTT/PAT-based approaches. Hosanee et al. [22] reviewed the sites for single PPG monitoring, as

well as, the dataset used in BP estimation studies. They recommended using a finger photoplethys-

mogram and improving the diversity of the datasets. Meidert and Saugel [38] presented techniques

for non-invasive BP monitoring and reported the validity in a clinical setting. Their analysis shows

that non-invasive methods cannot always be replaced with invasive methods.

Our survey conducts a review of deep learning methods for BP estimation using a single PPG

waveform. To our knowledge, our survey is the only review focusing exclusively on deep learning

models using only a single PPG signal as input. We further differentiate by being the only review

including reproduction of the reviewed models, allowing for a more accurate comparison of the

reviewed methodologies.
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Table 3.1: Related review articles compared against our work

Review Device Classical ML DL S. PPG Wav. Reproduction
El-Hajj and Kyriacou [11] No Yes Yes No No
Rastegar et al. [50] No Yes Yes No No
Ismail et al. [24] Yes Yes Yes No No
Kim et al. [27] Yes No No No No
Quan et al. [49] Yes No No No No
Stojanova et al. [64] Yes Yes Yes No No
Le et al. [29] No Yes Yes No No
Hosanee et al. [22] No No No Yes No
Meidert and Saugel [38] Yes No No No No
Our work No No Yes Yes Yes

3.3 Survey

We first begin this study by conducting a survey of the machine learning models used for blood

pressure estimation in the literature. We specifically bring our attention to models that used a PPG

signal as input. We conducted our survey by conducting a keyword search in various databases

in order to find relevant articles. We then filtered those articles in order to retrieve a subset of

architectures that were promising and comparable.

We employed a variety of keywords across different databases to retrieve our candidate archi-

tectures. Our searches were based on the following keywords “machine learning”, “deep learning”,

“artificial intelligence”, “blood pressure”, “ABP”, “arterial pressure”, “hypertension”, “estimation”,

“prediction”, “monitoring”, “PPG”, “photoplethysmography”, “Transformer”, “ensemble”, “convo-

lution”, “attention”, “continuous”, “non-invasive”, and “cuffless”. Our searches were spread across

3 different search engines: Google Scholar, The PubMed search engine, and the Sofia1 specialized

search engine. Google Scholar and Sofia are both database aggregators searching across multiple

journals. From those searches, the articles were manually reviewed and picked according to their

relevancy. The articles were then annotated with different properties in order to further evaluate

their relevancy. Some of those properties include the date of publication, the dataset used, the

dataset size, the architecture of the models, and the reported performance. The resulting collection

of models is published online and can be viewed the following link.
1The Sofia searches across multiple libraries and databases, such as the WorldCat database. https://sofia-biblios-uni-

qc.org/en/
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Various machine learning techniques have been proposed for estimating BP. We propose a tax-

onomy, shown in Figure 3.1, to help classify and understand the approaches.

Figure 3.1: Taxonomy of approaches for BP estimation through ML

As part of the proposed approaches, a variety of learning algorithms, deep learning layers, and

input features have been proposed. Figure 3.2 shows the popularity of each approach. We note that

over half of the works proposed a deep learning architecture. Of these deep learning architectures,

the most popular combination of layers was dense, recurrent, and convolutional layers. We also

note that using only PPG signals was the most popular input type.

Figure 3.3 shows the distribution of the publication years of the collected works. The vast

majority was published after 2018. A total of 113 proposed models were evaluated and reported

using MAE. Of these models, the distribution of their reported performances is shown in Figure 3.4.

Both the MAE and standard deviation (SD) performances are shown. The vertical line shows the

requirement threshold for the AAMI standard. According to the reported performance, 36 models

passed the AAMI standard for SBP and 54 for DBP. A total of 36 models passed the standard for

both SBP and DBP, which represents roughly 32% of the proposed models.

In order to find promising architectures from the candidates, we eliminated some articles by

filtering with the annotated properties. First, we narrowed down the input data used by taking the
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articles that only used a PPG signal as input. This meant excluding the articles that used ECG

and demographics information. Since features extracted automatically by CNN and autoencoders

perform better than manually extracted features [60, 61], we narrowed down our candidates to

models that used automatic feature extraction. We then excluded articles that used a self-collected

dataset, as it would be harder to compare against their reported results. We kept only models trained

on a MIMIC or UCI dataset. Finally, For the sake of comparison, we filtered to only keep models

that predicted SBP and DBP values and measured prediction performance in MAE. Some articles

did not report the performance results on its prediction and therefore had to be excluded. By the end

of this elimination process, 8 articles remained which totaled 9 unique architectures. The resulting

articles are presented in Table 3.2.

In addition to the model architectures, the datasets used to train the models are important to

evaluate the performances reported by the authors. Special attention must be given to the number of

subjects and total amount of data. For the sake of comparison, we evaluated the amount of data in

hours of signal. In general, it is harder to achieve good performance on datasets with more subjects,

but they will generalize better in a clinical setting. We believe the amount of subjects is the main

factor that contributes to a model’s generalization performance. The datasets employed by each

article are shown in Table 3.3. We also include the dataset split used for evaluation. In the works

of Slapničar et al., the impact of sharing patients in the training and test set is well shown. In their

work, the authors first used a leave-one-subject-out dataset split to evaluate the performance of their
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Table 3.2: Architectures of the remaining models after filtering

No. Title Authors Architecture
1 Blood Pressure Estimation

from Photoplethysmogram
Using a Spectro-Temporal
Deep Neural Network

Slapničar et al. [62] spectro-temporal ResNet
inspired

2 An Estimation Method of
Continuous Non-Invasive
Arterial Blood Pressure
Waveform Using
Photoplethysmography: A
U-Net Architecture-Based
Approach.

Athaya and Choi [4] U-Net inspired

3 A new deep learning
framework based on blood
pressure range constraint for
continuous cuffless BP
estimation.

Chen et al. [7] RSPAN

4 Continuous Blood Pressure
Estimation Using
Exclusively
Photopletysmography by
LSTM-Based
Signal-to-Signal Translation.

Harfiya et al. [20] LSTM autoencoder

5 DeepCNAP: A Deep
Learning Approach for
Continuous Noninvasive
Arterial Blood Pressure
Monitoring Using
Photoplethysmography.

Kim et al. [26] ResUNet with
attention-based skip
connections and
self-attention

6 Personalized Blood Pressure
Estimation Using
Photoplethysmography: A
Transfer Learning Approach.

Leitner et al. [30] CNN, GRU, Dense

7 A Deep Learning Approach
to Predict Blood Pressure
from PPG Signals.

Tazarv and Levorato [66] CNN, LSTM, Dense

8 Assessment of deep learning
based blood pressure
prediction from PPG and
rPPG signals.

Schrumpf et al. [57] AlexNet

9 Assessment of deep learning
based blood pressure
prediction from PPG and
rPPG signals.

Schrumpf et al. [57] ResNet
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algorithm. In a leave-one-subject-out validation split, a single patient is first reserved for model

evaluation and the rest are used for model training. Multiple runs like these are repeated until all

subjects have been used for evaluation once. The performance results for all runs are then averaged

together. They then showed that by adding a personalization step by training the model on some

data of the evaluated patient, the performance improved from 15.41 mmHg MAE to 9.43 mmHg

MAE for SBP and 12.38 mmHg MAE to 6.88 mmHg MAE for DBP. Their results show that BP

estimation from PPG is extremely patient-dependent. In some cases, we were unable the recover an

estimate of the recording hours in the dataset from the article. Those articles are noted with “-” in

the recording hours column.

Table 3.3: Datasets of the remaining articles after filtering

Authors Validation Method Subjects Recording Hours
Slapničar et al. [62] Leave-one-subject-out 510 700
Athaya and Choi [4] 70/15/15 100 195
Chen et al. [7] 10-fold cross-validation 1562 -
Harfiya et al. [20] 70/10/20 5289 -
Kim et al. [26] 10-fold cross-validation 2064 374.43
Leitner et al. [30] 5-fold cross-validation per subject 100 1000
Tazarv and Levorato [66] Leave-one-window-out, one model

per patient
20 1.66

Schrumpf et al. [57] 75/12.5/12.5, patient-wise 5000 -

The candidate architectures will be reproduced and evaluated against a classical random split

for comparison with their original works and against a patient-wise split to determine if their per-

formance is adequate for a clinical context.

3.4 Materials and Methods

3.4.1 Dataset

For our experiments, we used physiological signals from a freely available dataset. The MIMIC

datasets stand as the most widely used datasets in cuff-less blood pressure estimation. They are

distributed freely by PhysioNet. For our research, we used the most recent version of the dataset:

MIMIC-IV Waveform [42, 18]. The wide adoption of this dataset by works in the literature makes

this the best option to enable comparison of our work with related works. The dataset is composed
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of various physiological signals and measurements taken from critically ill intensive care unit (ICU)

patients at the Beth Israel Deaconess Medical Center. The dataset contains 200 records spread across

198 patients. In their work, Slapničar et al. [62] note the importance of having a wide variety of

subjects rather than pure hours of recording in order to achieve generalization. For our purposes,

we are mainly interested in recordings of PPG and ABP. The datasets contain 2886.61 and 1081.23

hours of recording for PPG and ABP respectively. The signals are not cleaned and require significant

preprocessing to extract valuable information. Both PPG and ABP are sampled at 125 Hz.

3.4.2 Preprocessing

Previous works in the literature usually use two input modalities for automatic feature extraction.

(1) The input signal can be split into windows of constant length, for example, Tazarv and Levorato

[66] uses rolling windows of 8 seconds with a stride of 2 seconds. (2) The input signals might be

segmented into individual heartbeat [71].

For this study, we use three input modalities, including two modalities from the literature and a

new one. (1) Window of signal (Section B.), (2) single heartbeat (Section C.), and (3) sequence of

heartbeats (Section D.). We chose these input modalities to improve the ease of comparison with

other works. In the sequence of heartbeats, we create a 3-dimensional representation of our data

using taking 2-dimensional single heartbeats. Ten subsequent individual heartbeats are concatenated

together on a third axis. To our knowledge, this is the first work using such an input modality. Figure

3.5 shows examples for each input modality.

Since the input signals are noisy, we must first clean and filter our input data before using it as

training data for our models. Some data cleaning steps are common to all preprocessing pipelines,

they are detailed in Section A. The input modalities are implemented as three fully automatic pre-

processing pipelines.

BP estimation from PPG is extremely patient dependent [62]. Therefore, sharing patients be-

tween the training and evaluation sets can drastically change the performance of the model. Keeping

this in mind, we compare performance on two dataset splits, the first dataset split is a patient-wise

split and the second is a random split. For the patient-wise split, we first split the patients into

a 70/15/15% scheme before preprocessing to make sure no information on the patients is shared
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(a) Window (b) Heartbeat

(c) Heartbeat sequence

Figure 3.5: Input modality examples

between the dataset splits. For the random split, we first preprocessed the patient’s data, the result-

ing data was then merged into a common dataset, this dataset was shuffled, and finally split into a

70/15/15% scheme so that patient information could be shared between the three sets.

A. Cleaning

As mentioned in the previous sections, the PPG and ABP signals from the MIMIC dataset

contain a lot of noisy data. The signals must be cleaned and filtered to remove low-quality and

noisy inputs. The preprocessing steps in this section are reused in all input modality preprocessing

pipelines, but their order and hyperparameters might vary from one pipeline to another. We mostly

rely on preprocessing steps from the literature to clean the data. In total, four steps are reused in all
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pipelines: (1) Reject invalid recordings; (2) filter the signal; (3) filter the input using a signal quality

index (SQI); and (4) filter based on pressure values.

(1) Rejection of invalid recordings. Some recordings in the dataset might not contain data for the

PPG, ABP, or Both signals. We start all pipelines by rejecting these recordings. Similarly,

some recordings contain missing values in their signal recording, which can cause numerical

calculation errors in subsequent preprocessing steps. We remove these values from the signals

while keeping the remainder of the signal. In the case the entire signal is missing, we repeat

the first step of rejecting recordings with no signal.

(2) Signal filtering. The PPG and ABP signals might contain some high-frequency and low-

frequency signal noise. This noise can be removed with a signal processing filter. We rely on

the literature to choose an appropriate filter. Butterworth low-pass and band-pass filters are

the most often used. We reproduce Tazarv and Levorato [66]’s filtering steps. A 2nd-order

band-pass Butterworth filter is applied to the PPG signal with a lower bound of 0.1 Hz and

an upper bound of 8 Hz. For the ABP, we use a 2nd-order low-pass Butterworth filter with a

cutoff of 5 Hz. This step is applied after rejecting invalid signals as described in the previous

paragraph.

(3) SQI Filter. In some cases, the PPG and ABP signals contain sections where the signal is

dominated by various artifacts and is unusable. In most cases, these artifacts are generally

motion artifacts or noise artifacts [13]. Further artifacts could include flat lines from the

sensor being removed or flat peaks from unknown sensor issues [62]. To remove these noisy

inputs, we filter the input based on an SQI. Elgendi et al. [13] compared the performance

of different signal metrics when used as an SQI. They found that skewness performed the

best, as such we use skewness as our SQI in our work. SQI filtering is applied at a different

preprocessing step depending on the input modality. It is applied after the data is shaped into

its modality and is calculated on the PPG signal. We empirically found the best threshold

values for filtering. For input windows, we use a lower bound of 0.35 and an upper bound of

0.8. For single heartbeats, we found that the bounds were better extended to a lower bound of

0.5 and an upper bound of 2. For sequences of heartbeats, we rejected the whole sequence if
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a single heartbeat in the sequence was out of the bounds for a heartbeat.

(4) Filter pressure. After adding the output pressure values to the signal, we found some extreme

BP values that should only occur in extreme circumstances. We decided to remove those

inputs, as often done in the literature [66, 23]. This step helps further improve the quality of

the input data. It is applied after adding the pressure labels to the input data. We keep inputs

where the SBP and DBP pressures are between 30 mmHg and 230 mmHg. For a sequence of

heartbeats, we keep inputs where all the SBP and DBP in the sequence are within 30 mmHg

and 230 mmHg.

B. Window

Separating the input signal into segments of constant length is one of the most common input

modality for BP estimation from PPG. This method is often used in other machine learning tasks

dealing with time series, therefore it is natural to extend this method to BP estimation. Additionally,

the preprocessing for this input modality is easy to implement. The resulting input segment will

usually contain many heartbeats. This enables the model to extract information from the temporal

nature of the PPG waveform. Rolling window is usually used in conjunction with automatic feature

extraction. Since the heartbeats are not isolated, it makes it harder to extract manual features.

We implement window preprocessing in our research to make it easier to compare our results

with other results from the literature. We base our preprocessing on Tazarv and Levorato.’s [66]

work, using windows of 8 seconds with a stride of 2 seconds, resulting in an overlap of 6 seconds.

We preprocess the PPG and ABP recordings at the same time. The steps go as follows:

(1) Rejection of invalid recordings. This step is executed as described in Section A.

(2) Filter signal size. Some recordings in the dataset are very short, as such we must very that at

least one time window fits in the recording. Therefore, we filter out the signals with less than

8 seconds of recording.

(3) Signal filtering. We remove frequency noise from the signals as described in Section A.

30



(4) Sliding window. We use a rolling window algorithm to create our signal windows. As previ-

ously described, we use segments of 8 seconds with a stride of 2 seconds.

(5) SQI Filter. We filter out noisy segments with an SQI score. As described in Section A., we

keep the windows with an SQI between 0.35 and 0.8.

(6) Add blood pressure. Using the windows from the ABP signal, we extract the maximum and

minimum values of the input window. The maximum value is used as the SBP target and the

minimum value is used as the DBP target. The ABP signal is rejected after this step.

(7) Filter pressure. With the BP target values, we filter our out-of-bounds pressure as described

in Section A.

(8) Standard scaling. To make sure the extracted features focus on the shape of the waveform and

to generalize to multiple PPG devices, we apply standard scaling to each input window.

C. Heartbeat

Extracting individual heartbeats from the signals is also one of the most commonly used input

modalities in BP estimation. This method is often employed for manual feature extraction of the

PPG waveform. In our work, we use this input modality as an automatic feature extraction strategy,

letting the machine learning model extract its latent features from the input heartbeat. This method

is unique to BP estimation but bears some resemblance to tokenization of text data. The heartbeat

segments can interpreted as embeddings which make up the input sequence that is the PPG signal.

This method bears a few disadvantages. Notably, the temporal aspect of the PPG waveform is mostly

lost. This method is also harder to implement since finding the boundaries between heartbeats can

be technically challenging. Luckily, Elgendi et al. [14] described an algorithm for systolic peak

extraction from PPG. An implementation is freely available in the NeuroKit2 [35] python library.

We implement the heartbeat input modality to make it easier to compare our results with other

papers and to determine whether the waveform contains sufficient information for BP estimation.

We preprocess with the following steps:

(1) Rejection of invalid recordings. This step is executed as described in Section A.
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(2) Signal filtering. We remove frequency noise from the signals as described in Section A.

(3) Split heartbeats. To split the signals into segments containing a single heartbeat, we use

Elgendi et al.’s [14] algorithm. The algorithm finds the location of each systolic peak. We then

find the minimal values between two consecutive peaks and use these points as the boundaries

for heartbeat segments. Finally, we resample the segments to 400 samples to obtain inputs

with constant size.

(4) SQI Filter. We filter out noisy segments with an SQI score. As described in Section A., we

keep the heartbeats with an SQI between 0.5 and 2.

(5) Add blood pressure. As with input windows, we extract the maximum and minimum values

of the heartbeat segment. The maximum value is used as the SBP target and the minimum

value is used as the DBP target. The ABP signal is rejected after this step.

(6) Filter pressure. With the BP target values, we filter our out-of-bounds pressure as described

in Section A.

(7) Standard scaling. To make sure the extracted features focus on the shape of the waveform and

to generalize to multiple PPG devices, we apply standard scaling to each heartbeat segment.

D. Heartbeat Sequence

The heartbeat sequence consists of stacking individual heartbeats into a new axis, resulting in

a two-dimensional input where the first axis indexes the heartbeats and the second axis indexes the

signal. The objective of this modality is to restore the temporal aspect of the PPG waveform that

was present in rolling windows and lost in single heartbeats. This modality also allows us to keep

fine-grained analysis on a single heartbeat. As mentioned in C. the heartbeats can be viewed as

embeddings for the time series. In this context, the semantics of the time steps change compared

to how the PPG signal is generally interpreted in the literature. Individual time steps are usually

considered to be the samples from the sensor. With this heartbeat sequence, the time steps are the

heartbeats. We believe this is closer to how experts generally interpret the PPG signal. We use a
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series of 10 heartbeats as it approximates the number of heartbeats in input windows while keeping

the input at a reasonable size.

We implement a heartbeat sequence to determine if fine-grained analysis of the signal and anal-

ysis of its temporal aspect can be exploited at the same time. The preprocessing steps are as follows:

(1) Rejection of invalid recordings. This step is executed as described in Section A.

(2) Signal filtering. We remove frequency noise from the signals as described in Section A.

(3) Split heartbeats. To split the signals into segments containing a single heartbeat, we use

Elgendi et al.’s [14] algorithm. The algorithm finds the location of each systolic peak. We then

find the minimal values between two consecutive peaks and use these points as the boundaries

for heartbeat segments. Finally, we resample those segments to 50 samples to obtain inputs

with constant size.

(4) Sliding window. We use a rolling window algorithm to create our stack of heartbeats. We

stack together 10 heartbeats with a stride of 1 heartbeat.

(5) SQI Filter. We filter out noisy segments with an SQI score. As described in Section A., we

keep the sequence where all heartbeats’ SQI are within 0.5 and 2.

(6) Add blood pressure. We extract the maximum and minimum values of the last heartbeat in

the sequence. The maximum value is used as the SBP target and the minimum value is used

as the DBP target. The ABP signal is rejected after this step.

(7) Filter pressure. With the BP target values, we filter our out-of-bounds pressure as described

in Section A.

(8) Standard scaling. To make sure the extracted features focus on the shape of the waveform

and to generalize to multiple PPG devices, we apply standard scaling to each heartbeat in the

sequence.
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3.4.3 Surveyed Model Reproductions

We implemented the surveyed models (Section 3.3) to the best of our ability. However, some im-

plementation details required for the reproduction of the models are missing from their descriptions.

In these cases, we made our best guesses to maintain the architecture to the spirit of their articles.

We detail our modifications in Section 3.4.3. In addition to the models surveyed, we present various

models using different layer types to evaluate which performs the best at feature extraction con-

sidering the different input modalities. (1) A simple MLP composed of fully connected layers, (2)

A ResNet-inspired model using residual convolution layers, (3) a model stacking an RNN with an

MLP for regression, and (4) a transformer encoder model using self-attention layers.

For the model proposed by Slapničar et al. [62], we implemented the version that only used the

raw PPG signal as described in the article. The model introduced by Athaya and Choi [4] required

some modifications. We added conditional zero padding of 1 at the expansion layers and employed

a valid padding for the convolution layer when the shape of the lower level’s input and the skip

contraction block input did not match. This modification was necessary since a supplemental row

of data is lost during the contraction layers when the input size is odd. Otherwise, we used a same

padding for the convolution layer. We also removed the last two convolution layers of the model and

replaced them with a Dense layer of output 2 in order to adapt the model to our regression problem.

We also added a Dense layer of output 2 to the models proposed by Harfiya et al. [20] and Kim et

al. [26] for the same reason.

The model introduced by Chen et al. [7] had some ambiguities with its hyperparameters and

architecture. We used our best guesses to resolve these ambiguities and fill in the blanks. According

to the description, the RFPASB block includes a skip connection, but its implementation is not

possible as described. Due to the change in number of filters of the convolution layers from the input

to the output, the dimensions of the input and output do not match and can not be added together.

We added a convolution layer with a kernel of 1, strides of 2, same padding, and matching filters

to implement the skip connection. In the hyperparameter table, the article states that the RFPASB

modules use a stride of 2, but the specific convolution layer in the module where it is applied is not

stated. We assumed it was added to the last 1× 1 convolution layer in the multiscale large receptive
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field. We also removed the global average pooling layer before the channel attention and spatial

attention module since it would cause the feature map to output a 2D tensor while the subsequent

layers require a 3D tensor. Moreover, The first MLP layer of the channel attention module uses a

reduction ratio hyperparameter to determine the number of units as described by Woo et al. [72].

This hyperparameter is not specified, so we set it to 1. The last change concerns the soft threshold

module. The given definition in the article is not well-defined. We changed it to the equation shown

in Equation 1 to match the one given by Zhao et al. [83],

ysoft =


x− δ x > δ

0 −δ ≤ x ≤ δ

x+ δ x < −δ

(1)

where x is the feature map from the multiscale large receptive field and δ is the threshold from the

mixed domain attention module.

Schrumpf et al. [57] used both AlexNet and ResNet for their work. The specific version of

ResNet wasn’t specified in the article. For simplicity, we chose to implement ResNet34. AlexNet

and ResNet34 both use a final dense layer of 1000 units to output their prediction, again, we replaced

them with dense layers of 2 units to adapt them to our regression problem.

3.4.4 Our Models

Several deep learning architectures have been evaluated for BP estimation in the past with

varying degrees of success. Most commonly, the architectures usually rely on Multilayer Percep-

trons (MLP), Recursive Neural Networks (RNN), Convolutional Neural Networks (CNN), or self-

attention layers to perform feature extraction. Although those architectures have been explored, the

difficulty in comparing results due to differences in datasets, preprocessing, and data splits makes it

difficult to evaluate which performs the best at feature extraction. While MLP is the simplest model

that can be applied to our dataset, RNN, CNN, and self-attention layers have all been applied to

time series data and therefore can naturally be extended to PPG data.
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A. MLP

The MLP is the simplest model we evaluate. It consists solely of regular dense layers with

activation functions. Although this model can prove efficient at extracting features, it could prove

incapable of extracting long-range dependencies in the data due to the large number of parameters

required. We ran a hyperparameter search on the architecture to find the architecture that performed

the best. The architecture consists of 2 layers of 128 neurons with a ReLU activation for feature

extraction and a final layer of 2 neurons with no activation for regression. The architecture can be

viewed in Figure 3.6.

Figure 3.6: MLP architecture

B. RNN-MLP

RNNs are a type of neural network specifically designed to deal with temporal data. It is natural

to apply RNNs to PPG signals, which are a type of time series. Therefore, RNNs should be well

capable of extracting information from the temporal aspect of the PPG waveform. RNNs have also

been explored for BP estimation, but usually don’t perform as well as convolution layers for feature

extraction. Fairly often, RNNs are used in conjunction with CNNs. The CNN extracts fine-grained

features from the waveform, while the RNN extracts its temporal aspect. In order to evaluate the

RNN’s performance as a feature-extracting layer, we use it without convolutional layers. We stacked

our MLP (Section A.) at the end of the RNN to perform regression. As with our other models, we

used a hyperparameter search to find the optimal parameters for the RNN. We found that 10 layers

of GRU with 256 neurons performed the best. The architecture can be viewed in Figure 3.7.
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Figure 3.7: RNN-MLP architecture

C. Residual CNN

Convolution layers have often been used on PPG signals for automatic feature extraction. The

restricted size of the kernel in convolution layers should encourage the model to extract local fea-

tures from the signal while extracting the temporal aspect of the input data. Due to its popularity,

a ResNet-like architecture is often used in place of regular convolutional layers. The ResNet archi-

tecture relies on regular convolution layers with residual connections to improve the optimization

of very deep networks. Since those ResNet architectures usually perform best, our architecture also

relies on convolutional residual layers. We ran a hyperparameter search on the architecture to find

the architecture that performed the best. The optimal architecture was composed of 4 residual mod-

ules and a final regressor. The residual modules were composed of several residual blocks. The

residual blocks were composed of 3 convolutional layers and a skip connection. All convolution

layers used a kernel of size 3, same padding, and a ReLU activation function. The number of di-

mensions of the kernel changed depending on the input used. For window and heartbeat inputs

we used 1-dimensional convolution layers and 2-dimensional convolutional layers for heartbeat se-

quence inputs. The convolution layers of the first residual blocks of each residual module used a

stride of 2 to reduce the dimension of its output. The skip connection going around it then used

a convolution layer with a kernel size of 1, stride 2, and no activation function to make the output

sizes match. All convolution layers are followed by a batch normalization layer. The number of

residual blocks and filters used in each module is shown in Table 3.4. The regressor was composed

of 2 fully connected layers of 128 units with ReLU activation. A dropout layer with a rate of 0.01

was added after each of the regressor layers for regularization. The first layer of the regressor was

regularized with an L2 weight regularizer. Finally, a last fully connected layer of 2 units and no
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activation function was added to provide the final regression output. The architecture can be viewed

in Figure 3.8.

Table 3.4: Number of residual blocks and filters used in each residual module

Module Blocks Filters
1st 2 64
2nd 4 128
3rd 8 256
4th 2 256

(a) Residual
Convolution
Block

(b) Residual
CNN

Figure 3.8: Residual CNN architecture

D. Transformer Encoder

In [69] (“Attention is all you need”), the authors present the Transformer architecture for ma-

chine translation. In this architecture, the model only relies on self-attention layers to extract fea-

tures from its input data. The authors make the argument that self-attention layers can learn long-

range dependencies while keeping a connection between all elements in the sequence. They also
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demonstrate that self-attention layers find long-range dependencies in an input while keeping com-

putations parallelizable, thereby providing advantages from both recursive and convolutional layers

in a single-layer architecture. Considering these advantages, self-attention layers might perform

well for feature extraction in a PPG signal. Although attention layers have been applied to BP

estimation, very little research has been done on self-attention layers. From our survey, we only

found 3 articles that employed self-attention [15, 26, 34]. Therefore, in our research, we repro-

duce the transformer encoder architecture and tune its hyperparameters to evaluate the performance

of self-attention layers for automatic feature extraction of PPG signals. Again, we found optimal

hyperparameters through a hyperparameter search. The optimal architecture consists of 3 encoder

modules. The encoder modules are composed of one global self-attention layer with 4 attention

heads and 2 fully connected layers to provide non-linearity. We used an embedding size equal to

the size of the last dimension of the input. The embedding size was 1 for the window and heartbeat

input modalities and 50 for heartbeat sequences. A ReLU activation function is applied after the

first fully connected layer. The first fully connected layer uses 64 neurons while the second’s neu-

ron count is equal to the embedding size. A skip connection is added around the self-attention layer

and the two fully-connected layers. Layer normalization is applied after both skip connections. As

with the RNN, we stack our MLP architecture on top of the encoder to perform regression. The

architecture can be viewed in Figure 3.9.

3.4.5 Learning Curve Analysis

In order to evaluate the impact of dataset size and variability of patients on the performance, we

performed a learning curve analysis on the dataset. The analysis was accomplished by sub-sampling

the patients in the training set and keeping the validation and training set identical. We then trained

our simplest model, the MLP, on the training set and evaluated it on the test set. We chose the

heartbeat input modality for these experiments as it is the input modality that trains the fastest. We

sampled the patients at increments of 10% from 10% to 100%, yielding the following sampling

rates: 10%, 20%, 30%, . . . , 100%. Each of those sampling rates was repeated 10 times and then

averaged together to get an accurate performance estimate despite the random sampling.
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Figure 3.9: Transformer Encoder architecture

3.4.6 Training Settings

The models were implemented in Python 3.10 using TensorFlow 2.10 [1] and the Keras API [8].

The implementation for the models is made freely available at https://github.com/FGRCL/ML-BP-

Estimation.

All models were trained under the same optimization parameters and kept to fairly common

values. We trained all models for 50 epochs with a batch size of 128. Upon the end of training, we

recovered the version of the model that performed the best on the validation set and evaluated this

version on the test set. This method is used in place of early stopping. We further made sure that all

models reached convergence during training. We opted for the Adam optimizer with a learning rate

of .0001 and used mean absolute error as the loss function.

We ran our experiments on Compute Canada to run multiple experiments at the same time. The

hardware for the experiments varied. We used 32 CPU cores and 1 GPU. The possible list of CPUs

is given in Table 3.5. The GPUs used were NVIDIA P100 Pascal 12G, NVIDIA P100 Pascal 16G,

and NVIDIA V100 Volta 32G.
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Table 3.5: List of CPUs used to run experiments

CPU
Intel E5-2683 v4 Broadwell @ 2.1GHz
Intel E5-2683 v4 Broadwell @ 2.1GHz
Intel E5-2683 v4 Broadwell @ 2.1GHz
Intel E5-2683 v4 Broadwell @ 2.1GHz
Intel E7-4809 v4 Broadwell @ 2.1GHz
Intel Silver 4216 Cascade Lake @ 2.1GHz
Intel Platinum 8160F Skylake @ 2.1GHz
Intel Platinum 8260 Cascade Lake @ 2.4GHz

3.5 Results

We compare the results of our experiments across our different preprocessing methods, surveyed

models, developed models, and dataset split. We measure the performance of our models in MAE

and its SD for SBP and DBP. The performance of all tested models as evaluated on the test set can be

viewed in Tables 3.6, 3.7, and 3.8. Table 3.6 shows the results using window preprocessing, Table

3.7 shows the results using heartbeat preprocessing, Table 3.8 shows the results using heartbeat

sequence preprocessing. Each table is split into two sections, the first one shows our results with a

patient-wise split, and the second shows our results using a random split. The tables also contain

both our models and our reproduction of models from the literature as selected in our survey in

Section 3.3. Our models are boldfaced and reproduced models are marked with a citation. We

would like to emphasize that the results on models from the literature are from our experiments and

not the results reported in their respective articles. Since reproduced models were incompatible with

heartbeat sequence preprocessing, they are omitted from 3.8. Figure 3.14 presents the results of our

learning curve analysis experiments. It displays the performance of the MLP on the test set with

respect to the percentage of patients randomly sampled to be part of the training set. We measured

the same performance metrics, i.e., MAE for SBP and DBP.

We note the large difference in performance between the patient-wise split and random split.

For ease of comparison, this difference is shown in Figures 3.10, 3.11, and 3.12. On average, the

random split provided an improvement of 13.802 mmHg SBP MAE and 7.277 mmHg DBP MAE.

In context, the range of normal SBP spans 30 mmHg, from 90 mmHg to 120 mmHg, and the range

for DBP spans 20 mmHg, from 60 mmHg to 80 mmHg. This means an MAE of 13.802 mmHg SBP
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Table 3.6: Performance results of all models and splits with the window input modality

SBP (mmHg) DBP (mmHg)

Model MAE SD MAE SD
Patient-wise split

Slapničar et al. [62] 21.013 14.158 13.263 10.742
Athaya and Choi [4] 23.169 17.47 12.056 10.384
Chen et al. [7] 21.986 15.011 11.662 10.292
Harfiya et al. [20] 29.447 18.027 11.843 9.597
Kim et al. [26] 19.1 13.889 12.313 10.186
Leitner et al. [30] 103.847 20.44 28.935 14.732
Tazarv and Levorato [66] 21.301 16.772 11.815 9.677
AlexNet [57] 21.222 15.017 12.11 10.452
Resnet34 [57] 21.078 15.297 11.968 10.47
MLP 22.83 17.164 12.525 10.879
RNN-MLP 25.447 17.252 11.827 9.573
Residual CNN 22.205 15.56 12.88 10.367
Transformer Encoder 25.59 17.164 12.525 10.879

Random split

Slapničar et al. [62] 6.26 7.621 3.601 5.711
Athaya and Choi [4] 13.146 12.162 8.379 7.58
Chen et al. [7] 5.051 7.232 3.117 5.646
Harfiya et al. [20] 14.908 12.387 8.669 7.66
Kim et al. [26] 4.725 6.746 3.005 5.57
Leitner et al. [30] 91.673 21.105 31.872 13.742
Tazarv and Levorato [66] 6.255 8.155 3.964 6.21
AlexNet [57] 5.303 7.043 3.164 5.646
Resnet34 [57] 5.077 7.194 3.172 5.696
MLP 11.52 11.125 7.269 7.604
RNN-MLP 7.685 8.512 4.668 6.313
Residual CNN 4.56 6.452 2.752 5.377
Transformer Encoder 14.908 12.413 8.672 7.665
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Figure 3.10: Comparison of patient and random split with window preprocessing
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Figure 3.11: Comparison of patient and random split with heartbeat preprocessing
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Figure 3.12: Comparison of patient and random split with heartbeat sequence preprocessing
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Table 3.7: Performance results of all models and splits with the heartbeat input modality

SBP (mmHg) DBP (mmHg)

Model MAE SD MAE SD
Patient-wise split

Slapničar et al. [62] 22.092 15.087 14.611 10.463
Athaya and Choi [4] 24.715 16.206 11.904 10.043
Chen et al. [7] 20.155 14.138 14.201 9.927
Harfiya et al. [20] 19.691 14.351 14.065 10.42
Kim et al. [26] 18.792 14.353 13.021 9.982
Leitner et al. [30] 21.863 16.69 15.09 10.422
Tazarv and Levorato [66] 20.425 15.859 12.501 9.735
AlexNet [57] 19.638 14.757 13.927 10.331
Resnet34 [57] 20.8 14.176 15.435 10.226
MLP 20.701 15.836 13.13 9.836
RNN-MLP 24.924 14.618 13.158 10.394
Residual CNN 20.738 14.565 15.289 10.632
Transformer Encoder 24.948 14.621 13.106 10.333

Random split

Slapničar et al. [62] 7.201 8.034 4.686 7.1
Athaya and Choi [4] 11.943 10.861 8.599 8.666
Chen et al. [7] 6.694 7.973 4.469 7.134
Harfiya et al. [20] 6.192 7.654 4.099 6.965
Kim et al. [26] 6.094 7.577 3.986 6.685
Leitner et al. [30] 18.812 25.476 5.609 8.218
Tazarv and Levorato [66] 6.977 8.313 4.736 7.418
AlexNet [57] 5.591 7.338 3.613 6.607
Resnet34 [57] 5.385 7.391 3.407 6.368
MLP 8.485 8.984 5.911 7.624
RNN-MLP 5.873 7.419 3.907 6.666
Residual CNN 5.783 7.331 3.704 6.446
Transformer Encoder 13.716 11.164 10.126 9.007
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Table 3.8: Performance results of all models and splits with the heartbeat sequence input modality

SBP (mmHg) DBP (mmHg)

Model MAE SD MAE SD
Patient-wise split

MLP 18.547 14.054 10.152 6.986
RNN-MLP 21.491 16.35 14.952 9.648
Residual CNN 21.469 14.545 14.362 8.266
Transformer Encoder 19.294 14.459 11.749 8.054

Random split

MLP 6.678 7.079 4.321 5.448
RNN-MLP 3.423 4.344 1.937 3.278
Residual CNN 4.166 5.382 2.365 4.271
Transformer Encoder 3.947 4.644 2.337 3.799

could cause a normal BP to incorrectly be measured as hypertension. Furthermore, while the random

split provides adequate results, it can not be generalized to new patients. Algorithms evaluated

with this approach do not provide an accurate estimation of the performance of a calibration-free

algorithm. Instead, the patient-wise split provides a much more accurate estimate of performance for

a calibration-free algorithm. In the literature, the dataset split used is often not explicitly mentioned.

Our results can help us estimate which dataset split was used. Excluding the Slapničar, AlexNet,

and ResNet models, we can note that the results from the random split are closer to the results

reported in their respective articles. Hence, we believe it is a safe assumption that a random split is

generally used to report the performance of machine-learning algorithms for BP estimation. Due to

differences in the dataset and mostly preprocessing of it, our results do not match exactly the ones

reported in the literature.

We can also make observations from the performance of the models with respect to their com-

plexity. While our models generally use fewer parameters than the ones from the literature, their

performance difference is small.

We observe the models which perform the best. Taking only into account the patient-wise

split results that are clinically applicable, the model with the highest-rated performance is the MLP

with heartbeat sequence preprocessing. The MLP is also the simplest of all the models tested.

When comparing all models, irrespective of dataset split, the RNN-MLP using heartbeat sequence

preprocessing with a random split performed the best.
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We note the performance relative to input modalities. For ease of comparison, the performance

of our models is shown across their preprocessing strategy in Figure3.13. Under this comparison,

the heartbeat sequence preprocessing strategy generally performs the best, although it is sometimes

bested by the other two strategies.
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Figure 3.13: Comparison of patient and random split with heartbeat sequence preprocessing

We further notice the performance difference between the training set and our evaluation set. A

comparison of the training set and test set for the performance in MAE for SBP and DBP is shown

in Table 3.9. For a better overview, we calculated the mean of those metrics for all the models and

input modalities. Most Notably we note the great gap in performance between the two sets for the

patient-wise split. The performance gap is 14.609 mmHg SBP MAE and 8.016 mmHg DBP MAE.

This gap is very large when compared to the same difference measures, 0.180 mmHg SBP MAE

and 0.156 mmHg DBP MAE, obtained on the random split.
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Table 3.9: Mean performance results on the training set and test set

SBP MAE (mmHg) DBP MAE (mmHg)

Split Training Test Diff. Training Test Diff.
Random 10.421 10.601 0.180 5.514 5.67 0.156
Patient 10.008 24.617 14.609 5.506 13.522 8.016

Under patient-wise dataset split, no model meets the requirements for the AAMI standard for

SBP or DBP.

From the learning curve analysis results shown in Figure3.14, we notice that the performance

for SBP MAE improves the larger the dataset is, but varies little with the other metrics.
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Figure 3.14: Performance of the MLP in relation to the percentage of patients used for training with
heartbeat input modality

47



3.6 Discussion

In this work, we set out to determine if machine learning could be used to develop a non-

invasive, continuous, and calibration-free for BP monitoring. We reduced our scope to models

which used a single PPG sensor, to minimize the cost of a potential system and maximize its ease

of use. We further scoped down to deep learning algorithms since they performed better at feature

extraction. More restrictions were detailed in the survey section (Section 3.3). We draw two main

conclusions from our findings; Non-invasive, calibration-free BP monitoring remains an unsolved

problem and the solution to this problem lies in the data rather than the model.

A non-invasive, calibration-free algorithm using a single PPG site that is applicable in a clinical

setting has yet to be presented in the literature. As noted in the results section (Section 3.5), a

patient-wise dataset split provides a more accurate estimate of performance for a calibration-free

algorithm. A random split, the most common alternative, leads to sharing the patients between the

training set and the test set. As stated by Xing and Sun [77], The largest challenge in estimating BP

from PPG signal is learning the physiology of patients. As such, this sharing of patients leads to data

leakage, which overestimates the performance of the algorithm in a calibration-free context. The

employed dataset split strategy is not always mentioned in the literature. From our results, in Table

3.6, 3.7, and 3.8 we found that results from a random split were close to the performance reported

in their respective articles. These results indicate that a random split is the most popular used split

strategy in the literature, which is inapplicable to a calibration-free algorithm. The dataset splits

from our surveyed models are reported in Table 3.3. Except for, Slapničar et al. [62] and Schrumpf

et al. [57], we can determine that all surveyed models used a dataset split which shared patients

between their training and test split. Slapničar et al. [62] further note the difficulty in comparing

works in the literature due to variations in the datasets and evaluation metrics. Moreover, works

in the literature rarely share their source code, making it more difficult to compare. Our work in

reproducing models from the literature and comparing them solves these issues and allows for a

more accurate comparison of approaches. We noticed from our patient-wise results that no models

were able to meet the AAMI standards for BP monitoring. Therefore, this leads us to the conclusion
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that no works in the literature have been able to present an algorithm for non-invasive, calibration-

free BP monitoring.

We found that improvements in data preprocessing and quality are more effective than increas-

ing the complexity of models. Most often, works in the literature propose a new deep learning

architecture to provide BP monitoring. In contrast, we found that adding complexity to models sel-

dom increases the performance of models by much. For instance, although the model by Kim et al.

[26] usually performs the best for a patient-wise split and is also the most complex of our surveyed

models, its performance improvement isn’t very large compared to our simplest model, an MLP.

Table 3.10 shows the improvement provided by the Kim et al. [26] compared to our MLP.

Table 3.10: Performance improvement of MAE going from an MLP to the Kim et al. [26] model

SBP MAE (mmHg) DBP MAE (mmHg)

Preprocessing MLP Kim et al. [26] Imp. MLP Kim et al. [26] Imp.
Window 22.83 19.1 3.73 12.525 12.313 0.212
Heartbeat 18.792 20.701 1.909 13.13 13.021 0.109

The performance difference ranges from 3.73 mmHg to 0.109 mmHg. The Kim et al. [26]

model has 5.5B parameters, while the MLP has 145K parameters. In our opinion, this performance

difference is too little to warrant the added complexity. Next, when comparing results across all

our models, we note that the heartbeat sequence preprocessing performs the best. The RNN-MLP

on a random split performs the best out of all our experiments. These observations lead us to the

conclusion that improvements to the data preprocessing and cleaning are more efficient at improv-

ing performance than increasing the model complexity. We also noted that, while we let all models

achieve convergence on the training set, there was a large gap between test error and training error

on the patient-wise split dataset, this is usually an indication of overfitting. This gap can be seen in

Table 3.9. Overfitting can generally be solved by increasing model capacity, increasing regulariza-

tion, increasing the amount of data, or a combination of these. Still, considering our wide variety of

models in architecture and complexity, the remaining course of action to narrow down this gap and
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reduce training error to an acceptable level is to increase the amount of data. As seen in our learn-

ing curve analysis (Figure 3.14), SBP MAE can benefit from more data. We believe that the large

performance gap between DBP MAE and SBP MAE causes the model to optimize entirely on the

SBP output and mostly ignore the DBP output. This explains why DBP MAE did not see as much

of a performance improvement from additional data. Following the findings of Brumen et al. [6],

by fitting a power model on the SBP MAE curve, we can extrapolate the amount of data required to

achieve an algorithm with less than 5 mmHg SBP MAE. This simple extrapolation evaluated that

roughly 21.51× more data is required to meet this goal.

This is described in Equation 2 and 3.15 shows the fitted curve plotted against the gathered data.

y = 28.533− 9.518x0.295 (2)

where y denotes the expected MAE for SBP and x denotes the sample rate.
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Figure 3.15: Fitted curved plotted against the data

With the entire training dataset currently consisting of 42 patients, this would mean that a train-

ing set of roughly 904 patients is required. In addition to low amounts of data, the variability of

data is also usually poor. Works on this problem usually rely on 4 datasets: MIMIC, UQVSD, UCI,

or self-collected. These datasets usually provide fairly low variability of data since all the data is
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collected from a single hospital, and usually from patients under similar conditions. Therefore, we

suggest that creating a larger dataset with much more variability is the most important task in order

to solve non-invasive, calibration-free BP monitoring.

3.7 Conclusion

Our results seem to indicate that more data and better preprocessing have more to offer than

increasing model complexity to attain acceptable performance for non-invasive, calibration-free

BP monitoring from a single PPG signal that could be applicable in a clinical setting. Still, non-

invasive, calibration-free BP monitoring is highly desirable to avoid the shortcomings of cuff-based

and invasive BP monitoring. In light of our claims, we envision a few potential avenues to achieve

this algorithm. The scope of this article was narrowed down to articles using a single PPG signal.

This scope could be broadened to explore additional signals, such as ECG, or use demographic

information. Additionally, we believe it is valuable to gather more data in order to validate our

extrapolation (Equation 2) and increase model accuracy. Finally, We alluded to the low variability

of current datasets. Increasing the variability of patients who compose the datasets could potentially

improve the quality of data enough to achieve our goal.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

According to our results, the state-of-the-art for BP estimation is unable to provide a non-

invasive, calibration-free BP estimation algorithm. Our extensive survey of the literature helps

provide a comprehensive overview of the literature BP estimation. By reproducing models from the

literature, we were able to better compare and reevaluate these models using an appropriate split

for a calibration-free algorithm. We showed that using a patient-wise split is essential to accurately

estimate the performance of calibration-free algorithms. We also found that a majority of works in

this domain do not use a patient-wise split. Furthermore, our results seem to indicate that increasing

the complexity of deep learning networks does not provide considerable performance improvement

over simpler models. Similarly, we estimated the impact of increasing the amount of patients in the

dataset on the performance of the model. We determined that no amount of data could improve the

performance of our model to an acceptable level.

Opposing these shortcomings, we also found that some of our input modalities and proposed

models perform better than the literature. Our heartbeat sequence preprocessing methodology out-

performed windows of signal which are commonly used in the literature. Moreover, our RNN-MLP

using this preprocessing also outperformed the models from the literature. These two methods could

provide performance improvements for machine learning models using a personalization approach

while simplifying the models.
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4.2 Future Work

While our results seem to show little hope for a non-invasive, calibration-free BP estimation

algorithm, we note that only a small scope of the possible approaches have been explored.

First, our work focused solely on methods using a single PPG signal. As shown with PTT

and PAT methods, adding additional signals to the algorithm might improve the performance. A

first possibility could be to use two PPG signals with a deep learning network to approximate PTT

approaches. On a similar note, deep learning architectures might be able to find additional relation-

ships between PPG and ECG signals that PAT approaches miss. Renouncing additional physiologi-

cal signals, we’ve noted that the literature shows that adding demographic information as inputs can

improve performance. Deep learning approaches might be able to extrapolate enough morphologies

from these features to achieve a calibration-free approach.

We’ve extrapolated that adding additional patients to the dataset can help achieve acceptable

performance, for that reason, we believe that improvements could be made to the datasets used for

BP estimation. First, it could be valuable to train on more data to validate our extrapolation and

improve performance. Furthermore, our experiments were conducted only on the MIMIC dataset.

This dataset is composed only of ICU patients from a single hospital. We believe that adding more

variety to the dataset could improve the performance of our algorithm.
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