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Abstract 

 

Displacement and Stress Computation in Dual-Horizon State-Based 

Peridynamics 
 
 

Ali Khoshrou 

 

 

Numerous research endeavors have delved into the realm of multi-horizon peridynamics 

frameworks and their connection to the interplay between peridynamic force densities and stress 

tensors in the field of continuum mechanics. This study introduces an enhanced iteration of the 

dual horizon peridynamic (DH-PD) model, merging established multi-horizon peridynamic 

frameworks with equations that specifically establish stress components using peridynamic forces. 

This pioneering model offers a method to analyze stress within a 2D framework. 

The new formulation allows for choosing two horizons and concentration of more material points 

in high-stress areas. By using this dual horizon idea, the model computes faster by focusing on 

areas of interest while providing accurate results in less crucial areas. The peridynamics equations 

are solved using a direct integration method. 

The efficiency of the model is assessed by benchmark problem tests involving a 2D steel plate 

containing a central hole under uniform tension. The obtained solution is rigorously compared 

with finite element solutions. This study demonstrates that the extended DH-PD model is capable 

of computing stress and displacement fields, regardless of whether they are near high-stress 

concentration zones or in distant areas of the simulated 2D setup. The model showcases its ability 

to accurately capture the intricate behavior of stress and deformation. 
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Chapter 1: 

 

 

1. Introduction and literature review 
  



2 
 

Continuum mechanics is an established branch of mechanics that has been developed to explain 

the mechanical response of materials to internal and external forces, first proposed by Augustin-

Louis Cauchy, the father of continuum mechanics [1]. The principal assumption of this theory is 

the continuity of the material which ignores the fact that they are made of particles, atoms, and 

contain microscopic defects. With the constitutional principles of continuum mechanics set in 

conservation of mass, energy, and momentum, the governing equations of continuum mechanics 

take the form of integral or differential equations which are then solved using calculus. 

With the disregard of inherent discontinuous nature of materials, continuum mechanic models are 

able to sufficiently explain and predict the mechanical behavior of materials at a macroscopic 

level; However, the constitutive relationships governing this field fail to accommodate for the 

macroscopic features that are caused by microscopical properties, such as crack initiation in 

fracture mechanics or the role of microstructure in deformation theories[2-9]. For instance, crack 

initiation, a symptom of material fatigue, emerges from micro-cracks near defects such as pores, 

grain boundaries, or dislocations [10, 11]. The assumption of continuity in continuum mechanics 

requires that the material consist of infinitesimal volumes that are continuous. This theory 

therefore disregards any involvement of microscopic discontinuities that naturally occur in all 

materials. This shortcoming is worsened as constitutive equations in continuum mechanics will 

have singularities in a discontinuous body, since they are mathematically spatial derivative 

equations. Therefore, the study of crack initiation and crack propagation using continuous models 

requires special treatments. [12, 13]. 
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1.1. History of fracture analysis 

1.1.1. Linear Elastic Fracture Mechanics 
One of the earliest attempts at remedying the treatment of crack propagation was done by Griffith 

in the early twentieth-century by developing the concept of Linear Elastic Fracture Mechanics 

(LEFM), which treats the crack growth of pre-existing cracks in a continuous body using 

continuum principles [14]. This theory was later developed with the introduction of new concepts 

such as critical energy release rate which is equal to the decrease of total potential energy per 

increase of fracture surface area [15, 16], and stress intensity factor (𝐾) which indicates the severity 

of stress at the crack tip. The introduction of stress intensity factor helps to characterize the crack 

tip conditions using a single parameter 𝐾. In other words, knowing the value 𝐾, one can find the 

distribution of stress around the crack tip given a linear elastic material. Tension opening, sliding 

shear, tear shear are the types LEFM fracture which differ in the direction of the fracture forces 

with respect to the fracture surface, as seen in Figure 1.1.The most common fracture mode is the 

opening mode which occurs if the stress is normal and is perpendicular to the crack plane. In case 

of shear stresses, Mode II and Mode III can occur, with Mode II having the shear stress 

perpendicular to the crack front and Mode III having the shear stress applied parallel to the crack 

front [17]. 

Depending on the mode of fracture, its corresponding roman numeric will be added as a subscript 

to 𝐾. For example, in Mode I, which is the most studied of the three modes, the stress intensity 

Figure 1.1. Modes of fracture relative to the direction of crack propagation [17]. 
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factor is shown as 𝐾𝐼. The critical stress intensity for Mode I is known as 𝐾𝐼𝐶, which is an inherent 

property and does not depend on geometry. If the condition in Eq. (1) is true, the crack grows. 

 𝐾𝐼 > 𝐾𝐼𝑐 (1) 

It is worth noting that although LEFM has been adopted in wide range of engineering applications, 

it comes with limitations. First, there is the assumption of linearity and elasticity of the material. 

LEFM is not applicable to non-linear materials such as elastomers, nor is it applicable when the 

deformation is considered plastic. In other words, when using LEFM, the plastic deformation near 

the crack front is assumed to have an infinitesimal volume [18]. Secondly, the underlying issue of 

singularities still persist. This means that LEFM predicts infinite stress magnitudes near the crack 

front. As explained, this is due to the nature of continuum mechanics equations, which rely on 

spatial derivatives equations. This led to validity of LEFM - as was proposed by Griffith – limited 

only to brittle materials such as glass and ceramics [18]. Studying fracture mechanics of metals 

and alloys that undergo large plastic deformation prior to fracture require a modified theory that 

incorporates the effect of plastic deformation on crack propagation. 

1.1.2.  Irwin’s modification 
Following Griffith, Irwin [19] postulated that it is the stress field that determines whether fracture 

is possible, and that the energy required to create fracture surfaces can be measured with the stress 

field near the crack tip. Irwin concluded that the stress field near the fracture surface is dependent 

on certain geometric parameters such as plane thickness and mode of fracture. In thin plates, the 

conditions of “plane stress” emerge, which limits the stress component normal to thickness of the 

plate to zero. The thinness of the plate prevents forces to be transmitted throughout the thickness, 

resulting in zero stress in that direction. On the other hand, there is the “plane strain” condition, 

which prevails in thick specimen. Under plane strain conditions, the plate can produce adequate 

forces in the transverse direction, resulting to the existence of stress component in the traverse 

direction.  
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The general solution of the stress field in two-dimensional elastic problems leads to the Airy stress 

function shown in Eq. (2) [20, 21]. 

 ∇4𝚿 = 0  (2) 

With Ψ being a function dependent on stress field such that it satisfied the following Eq. (3). 

 
𝜎𝑥𝑥 =

𝜕2𝚿

𝜕𝑦2
;    𝜎𝑦𝑦 =

𝜕2𝚿

𝜕𝑥2
;    𝜏𝑥𝑦 =

𝜕2𝚿

𝜕𝑦𝜕𝑥
 (3) 

Irwin argued that by knowing the stress field near the fracture surface, whether by solving the Airy 

stress function equations or by using stress gauges to experimentally determine the stress field, the 

stress intensity factor is linearly proportionate to the stress nonlinearly to the crack length [19]. 

The general equation of 𝐾 depends on specimen geometry as well, shown in Eq. (4) as the factor 

𝑓(𝑎/𝑊), which depends on the specimen width 𝑊 (See Figure 1.2.a). 

 𝐾 = 𝜎√𝜋𝑎𝑓 (
𝑎

𝑊
) (4) 

Figure 1.2. Schematics of a central crack in a two-dimensional plate of a) width 2𝑊 

and b) infinite width, in fracture Mode I. 

b) a) 
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For loading conditions shown in Figure 1.2.b, the stress intensity factor is expressed as in Eq. (5). 

 𝐾𝐼 = 𝜎√𝜋𝑎 (5) 

The stress intensity factor has been derived for other specimen configurations including but not 

limited to: finite plate under uniform uniaxial stress [22], edge crack in a plate under uniaxial stress 

[23], single-edge notch bending specimen [24], and under different Modes I, II and III. 

The stress intensity factor is a fundamental parameter that characterizes the behavior of crack under 

linear elastic conditions. It has been shown that two cracks with the same value of 𝐾 but in different 

structural components will behave similarly, that is, will propagate or initiate in similar rates. 

1.1.3.  Numerical approaches in fracture analysis 
To incorporate analytical fracture mechanics into computational models, there had been a need to 

modify the traditional finite element method (FEM) so that it would be capable of analyzing 

structures with volume discontinuities. FEM as a popular method of numerically solving partial 

differential equations (PDEs), uses the technique of subdividing the problem domain into smaller 

sections called the elements. The origins of this technique go back to the works of Clough [25] 

and Courant [26] who used continuous functions defined over triangular domains. FEM reduces 

the original PDEs into a series of linear equations which weakly satisfy the original PDEs boundary 

conditions. Linear equations are derived per node which are points derived after meshing the 

problem. The node solutions are then assembled to form the overall solution of the entire system. 

FEM however is cumbersome in dealing with crack propagation as with the change of crack length, 

remeshing is required. Moës et al [27] introduced the modified finite element method or XFEM, 

which used the enrichment of solution space with discontinuous functions to create a meshless 

solution. The enrichment is an exploitation of the partition of unity property of finite elements first 

identified by Melenk and Babuska [28] allowing for more degrees of freedom assigned to selected 

nodes at the conjunction of the growing crack. 
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Another attempt is to build a computational model based off of the “cohesive zone model” or 

CZM, which as a fracture mechanics model to simulate and analyze crack propagation and 

cohesive behavior in materials. A special zone is defined at the vicinity of any cracks or 

discontinuities called the cohesive zone. This zone has its own material properties, such as the 

cohesive strength, fracture toughness, and cohesive law. The cohesive strength is the stress value 

that the material withstands before it starts to separate, while the fracture toughness characterizes 

its resistance to crack propagation [29]. 

  

A cohesive law describes the behavior of CZM, which relates the separation or traction forces 

across the zone to the corresponding displacements or deformations. The cohesive law defines the 

cohesive zone behavior during crack initiation, growth, and stabilization [30]. 

Cohesive zone models have found application in addressing discontinuities within LEFMs and 

approximating nonlinear material separation phenomena [31, 32], they have also been employed 

to investigate a range of material failure scenarios, such as stress distribution near the crack tip in 

brittle materials [33], polymer crazing [34], fatigue crack growth [35], and dynamic fracture [36].  

Moreover, cohesive zone models have been integrated into FEM for studying quasi-brittle 

materials [37]. 

Nonetheless, a significant drawback of the cohesive zone model lies in its strong dependence on 

the mesh configuration. Specifically, the accuracy of predictions made by the cohesive zone model 

Figure 1.3. CZM schematic [29]. 
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can be influenced by both mesh size and orientation. In cases involving extrinsic cohesive zone 

models, effectively managing adaptive mesh modifications is essential [38], Furthermore, 

representing arbitrary crack geometries and crack paths poses a challenge when employing 

cohesive zone models, as prior knowledge of the crack's growth trajectory is required [39]. 

 

Figure 1.4. Visualization of Peridynamic model in relation to continuum mechanics models and 

atomistic models [40]. 

 

1.2. Peridynamics literature review 

1.2.1. Peridynamics: a generalization of continuum mechanics 
Peridynamics can be viewed as an extension that permits the inclusion of forces operating across 

distances, leading to the incorporation of a length scale within the continuum depiction of classical 

phenomena [41]. The conventional understanding of local stress within materials confines 

interactions solely to neighboring material points in immediate contact with each other. 

Peridynamics involves a continuum framework rooted in integral equations. These peridynamic 

equations take into account nonlocal force interaction between material points over a pre-defined 

distance limit. Material response is shaped by these nonlocal interactions, with interaction forces 

linked to the material's deformation within a finite local region. Conceptually, peridynamics 

exhibits similarities to molecular dynamics, where forces operate remotely on atoms. Peridynamic 

as a mathematical framework bridges the gap between atomistic models and continuum mechanics 
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models (See Figure 1.4). While atomistic models such as molecular dynamics, explicitly simulate 

the behavior of individual atoms, they are computationally intensive and are limited to relatively 

small spatial and temporal scales [42]. In peridynamic while individual atoms are not simulated, a 

non-local interaction between material points over finite distances is considered, allowing it to 

capture non-local effects that emerge at larger scales due to atomic interactions. On the other side 

of the spectrum, in continuum mechanics models, material is treated as continuous media, which 

while it is highly efficient for large-scale engineering simulations, microscopic level interactions 

are not considered [43]. 

1.2.2. Continuum constitutive laws and nonlocal theories 

In cases involving plastic softening or damage, continuum mechanics theories encounter problems 

where negative tangent moduli arise, leading to imaginary wave speeds [44]. The presence of such 

a constitutive response in boundary value problems renders them mathematically unsound, as 

material softening becomes localized to an extremely small region. This challenge is addressed by 

introduction of a set length scale into nonlocal representation model. Nonlocal theories are 

classified into two types: weakly nonlocal and strongly nonlocal [44]. Weakly nonlocal theories, 

exemplified by strain gradient and higher-order gradient theories like the Mindlin model [45], rely 

on local evaluations of higher order gradients to approximate nonlocal effects. On the other hand, 

Peridynamics, characterized as a strongly nonlocal theory, embraces nonlocal interactions right 

from the start, effectively introducing a physical length scale to regularize the description of 

continua [46]. 

1.2.3. Complex dispersion and nonlocal interactions 
One major difference between local and nonlocal theories is the arise of complex dispersion 

relation in nonlocal theories, including peridynamics. This has been shown in both weak nonlocal 

theories [45], such as higher order gradient theories and strong nonlocal theories, like peridynamics 

[47, 48]. In homogenous linearly elastic materials, the nonlocal phase velocity correlates with 

wave number, thus causing a complex dispersion relation (i.e. wave dispersion). This is shown to 

not be the case for local phase velocity, neither for pressure waves or shear waves. The proof 

involves a definition of an equation of motion, derivation of energy balance equation, and 

derivation of phase velocity equation from Fourier transformed equation of motion [47]. The 
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dispersion relation complexity reduces with the increase in wave number. This occurs given 

sufficiently small horizon size in peridynamic models [49]. 

1.2.4. Peridynamics approach in modeling material failure 
Due to the fundamental approach and the more flexible continuity conditions, the concept of 

fracture and fragmentation can be naturally incorporated without the necessity of using traditional 

cohesive elements or similar devices, as commonly employed in classical continuum discretization 

methods [50]. However, this advantage comes with its own complexities, as it necessitates the 

inclusion of additional material behavior information, such as a failure criterion, directly into the 

continuous formulation.  

To accurately model material degradation involving interruptions, peridynamics has been utilized 

for predicting damage in composites [51, 52] and layered heterogeneous materials [53]. 

Peridynamic has been adapted to consider irreversible damage in materials while retaining a 

unique solution [12]. Peridynamic has been used to simulate pitting corrosion and to understand 

nonlocal parameters involved in corrosion. De Meo et al. [54] showed that peridynamics can have 

a numerical multiphysics framework and utilized it in modeling stress-corrosion cracking induced 

by adsorbed hydrogen. De Meo and Oterkus [55] incorporated a peridynamics-based pitting 

corrosion damage model into a FEM, as discussed in [56, 57]. Jiang et al. [58] utilized 

peridynamics theory to thoroughly examine micro damage occurring in cemented carbide cutting 

tools. 

The use of peridynamics has emerged as a potent approach for modeling different types of material 

fractures, mainly because it relies on integro-differential principles without spatial derivatives. By 

employing the peridynamics framework, Kilic and Madenci [59] were able to predict crack 

propagation in plates of grass the were prequenched. Ha et al. [60] applied a bond-based 

peridynamics approach to study dynamic brittle fractures. Shi [61] simulated the propagation of 

cracks in brittle glasses using a modified Lennard–Jones potential. To investigate brittle and 

ductile solids, Liu and Hong [62] utilized discretized peridynamics in combination with parallel 

computing. The initial exploration of dynamic fracture using peridynamics was conducted by 

Silling [63]. Shojaei et al. [64] integrated the finite point method with peridynamics to investigate 

dynamic fracture phenomena. Madenci et al. [65] studied short crack growth in isotropic materials 

under four-point shearing loading condition and simulated the crack path given the presence of a 
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miss hole in the specimen. Peridynamic is extensively used to study fracture mechanics of brittle 

materials [59, 60, 66] , fiber networks [67], polymers [68], concrete structures [69], and anisotropic 

materials [70, 71, 72]. Evangelatos and Spanos [73] introduced the use of peridynamics for 

stochastic fracture modeling. Recently, Vieira and Araujo [74] proposed a correspondence-based 

peridynamic model to model the crack growth in piezoelectric solids under complex loading 

conditions. Lu et al. [75] used a viscoelastic peridynamic method to study the fracture behavior of 

a three-point bending concrete beam with an initial crack. Xiang et al [76] studied potential 

mechanical damages in various anodes under severe conditions within a single-cell design 

subjected to thermal shocks using peridynamics. 

In the field of fatigue behavior, Hu and Madenci [77] introduced presented a trans-scale model 

aimed at simulating crack generation and propagation based on microstructural characteristics in 

composites. The numerical simulations they conducted agreed with the experimental fatigue data. 

Zhang et al. [78] formulated a Peridynamic model for the analysis of fatigue cracking in 

functionally graded materials such as a two-phase composite. Recently, Wang et al [79] used a 

peridynamics capture the fatigue crack growth in corrosive environments. 

Extensive exploration has focused on analyzing composite damage through the application of 

peridynamic methods. These composite materials find wide usage across various applications 

owing to their outstanding features such as high strength-to-weight ratios, long fatigue life, high 

tolerance against damage. Efforts are underway to develop efficient computational models aimed 

at expediting and streamlining experimental procedures, contributing to better characterization of 

materials behavior. Silling [80] illustrated that nonlocality in a heterogenous materials (i.e. layered 

composites) occur only in homogenized models, given a choice of smoothed displacement field. 

For the examination of the tolerance of composite laminates given any impact velocities, Sun and 

Huang [81] proposed a peridynamic rate-dependent equation model based on an interlayered 

bondage mode to account for interaction occurring at interlayers of fiber reinforced composite 

laminates. Using the proposed equations, they simulated low and high velocity collisions and their 

damage pattern in composite laminates. The results were then compared to the high velocity impact 

resistance of plates with isotropic properties. Kilic et al. [82] demonstrated that peridynamics can 

predict damage in composite laminates without the need for an assumption of lamina homogeneity. 

In a related study, Hu et al. [70] asserted that without the need to set any special criteria for Mode 
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II facture, a homogenous peridynamic model can observe multitudes of modes of failure including 

but not limited to: matrix-fiber-splitting fracture, matrix-cracking and crack-migration in the 

matrix. 

Askari et al. [51] developed three models of peridynamic and compared their capabilities in 

reproducing inelastic moduli in laminate composites. It was shown bond-based peridynamics has 

limitation in reproducing all inelastic moduli, whereas correspondence and state-based 

peridynamics (SB-PD) can simulate all five moduli. Bond-based peridynamics can be improved 

via a coupling strategy they introduced called “morphing” which glues bond-based peridynamic 

to continuum mechanics. Hu et al. [83] used peridynamics to implicitly find the critical stretch in 

the study of delamination growth and remove the necessity of assumption of constant critical 

stretch. Diyaroglu et al. [84] studied the validity of peridynamics models in capturing damage 

propagation and nonlinear transient deformation of composites under blasts and explosions. 

Sadowski and Pankowski [85] developed peridynamics models to examine nanoindentation of 

ceramic composites. Recently, Wu and Chen [86] studied peridynamic electromechanical 

modeling of crack propagation in conductive composites. Hu et al. [87] presented a novel 3D 

micromechanical peridynamic model that can establish the correlation of microstructural features 

of the composites with damage mechanisms. Madenci et al. [88] used the capabilities of 

peridynamic in capturing material point interaction in plies and in the adjacent plies to study failure 

progression in fiber steered composites. 

Peridynamics has found diverse applications in the in areas where continuum mechanics 

traditionally utilized. These applications encompass various areas such as membrane and fiber 

modeling [89], phase transitions [90], intergranular fracture [91], and thermal engineering [92]. 

Researchers have even integrated peridynamics into traditional finite element codes using beam 

elements [93]. Additionally, a bond-based formulation has been successfully incorporated into the 

molecular dynamics code LAMMPS [94]. Peridynamic formulations have demonstrated their 

utility in meso-scale modeling of material responses [91], suggesting that peridynamics could 

serve as a valuable tool for bridging length scales within a multi-scale framework. 

Furthermore, bond-based peridynamic mathematical limitations has been extensively explored, 

including issues related to convergence [95, 96]. Notably, bond-based peridynamics converges to 

classical results only when the Poisson’s ratio is limited to 𝑣 =  0.25[96]. Additionally, a 
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correspondence has been established between strain gradient elasticity and elastic peridynamics 

[96]. Note that peridynamic convergence into continuum mechanic approximations hold true with 

the assumption of smooth displacement fields. At the vicinity of discontinuities, such as cracks, a 

classical modeling is not viable while peridynamics holds its validity. 

The peridynamic theory was first prompted by the need for a more comprehensive model that 

involved discontinuities-such as cracks, without a need for extra treatments, unlike in cohesive 

zone model and XFEM. The integral equations of peridynamic theory allows the incorporation the 

specimen discontinuities by developing and the circumvention of the spatial discontinuities 

introduced by PDEs. With the non-locality property introduced in peridynamics, it was now 

possible to treat complex crack propagation paths with multiple trajectories, without the need of 

knowing the crack growth path or any special treatments.  The extent of peridynamic in simulating 

various modes of fracture has been studied as well, such as dynamic fracture [63, 97, 98, 99, 100, 

101, 102, 103, 104] and crack-propagation in isotropic-materials under-complex loading 

conditions [65]. 

1.2.5.  Stress theory in peridynamics 
Lehoucq and Silling [105] first defined a peridynamic stress tensor and explained its relation to 

the peridynamic force tensor. Although the research was done using a bond-based peridynamic 

model, the assumptions made about the pairwise-force function were arbitrary and could be 

relaxed, leading to a general definition of peridynamic stress tensor which could be applied in SB-

PD models. Fallah et al. [106] developed used the peridynamic stress tensor defined in [105] to 

calculate the J-integral in the case of benchmark problem of a 2D plate with an edge crack and 

compared the results with the J-integral calculated using stress tensor derived by FEM. 

In the case of non-ordinary SB-PD models, Warren et al. [107] used the non-local deformation 

gradient definition given by Silling et al. [41] and approximated the non-ordinary stress tensor 

using general continuum mechanics approach described by Malvern [108]. Jiang and Wang [109] 

implemented the same method to evaluate the stress of a multi-scale Griffith crack subjected to 

tensile loading. In recent years, Dipasquale et al. [110] experimented with a failure criterion for 

ordinary SB-PD using a calculated stress tensor. Asgari and Kouchakzadeh [111] derived von 

Mises stress and corresponding equivalent plastic strain in ordinary peridynamics by comparing 

the deviatoric energy part of the strain energy defined in peridynamic with its equivalent in 
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continuum mechanics. Le [112] calculated Mode-I J-integral via peridynamic stresses calculated 

by using peridynamics stress calculation that was originally equatied to weighted static Virial 

stress in [113]. Sau et al. [114] analyzed failure points of concrete structures by calculating stress 

in peridynamics.  

 

1.2.6. Multi horizon peridynamics 

Variable horizon peridynamics is an extension of the peridynamics framework that incorporates 

the concept of varying influence horizons. In standard peridynamics, the horizon is usually fixed 

and uniform throughout the material domain. However, in variable horizon peridynamics, the 

horizon can vary spatially and temporally. This enables flexible and adaptive simulation of the 

material behavior, especially situations where different regions of the material may exhibit 

different length scales or response characteristics. By allowing the horizon to vary, variable 

horizon peridynamics provides a means to capture localized deformation, strain gradients, and 

fracture initiation and propagation in a more accurate and efficient manner. It can be particularly 

useful in simulating materials with complex microstructures, heterogeneous materials, or problems 

involving large deformations and discontinuities. 

Ren et al [115] proposed-dual-horizon peridynamics model which uses two different horizon sizes. 

It was shown that the use of varied horizons can help the model to allocate more nodes to areas of 

interest, similar to fine meshing in FEM, allowing for a reduction in computation cost and increase 

in accuracy in areas of interest. Wang et al [116] reformulated dual-horizon SB-PD by way of 

basing the model on Euler-Lagrange equation, while also explaining the application of constraints 

and derivation of correction factors in dual-horizon peridynamics. The majority of numerical 

approaches towards peridynamic is of the explicit form. Dorduncu and Madenci [117] have 

developed a variable horizon peridynamic model within the FE framework that uses a combination 

of implicit and explicit solvers. They showed that by using an implicit solver right before crack 

initiation, and afterwards switching to an explicit scheme for crack initiation and propagation, 

there is a boost in computation cost. 
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1.3. Objective of study 
The objective of this dissertation is to introduce a multi-horizon peridynamic model capable of 

accurately calculating displacement and stress components. While previous research has 

extensively explored single-horizon peridynamics, the realm of multi-horizon peridynamic models 

remains relatively unexplored. Moreover, the direct derivation of stress calculations from 

peridynamic constitutional laws is lacking. Therefore, this dissertation delves into the study of 

stress calculation through the multi-horizon peridynamic framework. 

From the preceding discussion, it is deduced that peridynamic theory holds significant promise in 

bridging the gap between various length scales. What's more, the capability of predicting damage 

within peridynamic theory surpasses the realism of methods grounded in classical continuum 

theory, as peridynamics seamlessly incorporates material failure into the material response, 

without the need for external damage criteria. 

In Chapter 2, the foundational principles of peridynamic theory is delved into and a novel material 

model capable of accommodating mechanical loadings is introduced. In this chapter, the 

peridynamic balance laws are introduced and compared to their continuum mechanics 

counterparts. Convergence of peridynamic results into continuum mechanic models with respect 

to the value of peridynamic horizon size is also discussed. The contexts of balance laws and 

convergence theories are studied through the perspectives of SB-PD and dual-horizon 

peridynamics. 

Chapter 3 is dedicated to addressing the developing a numerical model of the peridynamic 

constitutive equations, and it introduces a programmable set of equations to accomplish this task. 

In this solution method, two methods of discretization methods of the domain of interest are 

introduced and briefly compared in terms of computational efficiency. The domain of interest is 

discretized into a set of collocation points (i.e. material points) and for each unique material points 

the discrete peridynamic equations are solved. The requirement of solving peridynamic differential 

equations, such as intial and boundary conditions, and the challenges of introducing them into the 

equations in the context of benchmark problems is studied. Finally, corrections such as volumetric 

and surface corrections of peridynamic equations in the context of two-dimensional benchmark 

problems are utilized. To solve for discrete peridynamic partial differential equations, explicit time 

integration is employed. However, it's important to note that explicit time integration comes with 



16 
 

the requirement of using small time steps, which can make it challenging to solve problems 

subjected to static or quasi-static conditions. Consequently, this chapter introduces an extension of 

the adaptive-dynamic relaxation method initially introduced by [118]. This extension adapts the 

method to accommodate the intricacies of peridynamic theory. 

In Chapter 4, a dual-horizon peridynamic approach to address a benchmark problem involving a 

two-dimensional steel plate with a central hole is implemented. This quasi-static benchmark 

problem serves as a critical test to evaluate the accuracy of displacement and stress component 

calculations in comparison to their FEM counterparts. Additionally, various discretization modes 

to assess the impact of material point distribution and density on the accuracy of the model is 

explored. 

  



17 
 

 
 
 
 
 
Chapter 2: 

 

 

2. Peridynamics theory 
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Initially, peridynamics was conceived as a "bond-based" model, assuming a unique force density 

between minuscule elements of a material referred to as "material points." These points needed to 

be within a certain distance known as "the horizon," denoted as δ [33, 34]. These adjacent material 

points formed bonds in the peridynamical framework, subject to deformation under peridynamical 

bond forces. However, a drawback of the bond-based peridynamics was its reliance on specific 

Poisson's ratios, specifically 𝑣 = 0.25 in plane strain models and 𝑣 = 0.33 in plane stress models 

[34]. This limitation was attributed to inherent constraints imposed by Cauchy's relations for 

isotropic materials [35]. 

To address these shortcomings, a more encompassing peridynamics model, known as the "state-

based" peridynamics, was subsequently introduced. In the SB-PD, constitutive models account for 

significant deformations by making bond deformation dependent on the collective deformation of 

neighboring bonds. The SB-PD is itself expanded into two subtypes: ordinary state-based (OSB-

PD) and non ordinary state-based (NOSB-PD), with the latter representing the most generalized 

form of peridynamics. 

In this chapter, the main focus is on studying SB-PD, as this will be the constitutive model which 

is used throughout the thesis. Bond-based-peridynamics is briefly explained as a subset of the SB-

PD. 

2.1. State-based peridynamics 
In a peridynamic model, a material body is subdivided into multiple material points. All material 

points are assigned a radius variable called the horizon, which defines a circular or spherical area 

centered around the material point [33, 34]. Let's consider a specific point, denoted as 𝒙𝑖, and its 

associated horizon size, referred to as 𝛿(𝒙𝑖). Any other point located within the circular region 

centered at  𝒙𝑖 with a radius of 𝛿(𝒙𝑖) is termed a "neighbor" of  𝒙𝑖 and is represented as  𝒙𝑗. Within 



19 
 

the peridynamic body designated as 𝔅, the collection of points surrounding  𝒙𝑖 is referred to as 

𝐻(𝒙𝑖), and its precise definition is provided in Eq. (6). 

 𝐻(𝒙𝒊) = {𝒙𝑗 − 𝒙𝑖: 0 <  ‖𝒙𝑗
⬚ − 𝒙𝑖‖  ≤ 𝛿(𝒙𝑖),  𝒙𝑗 ∈ 𝔅} (6) 

Figure 2.1. Schematic of horizon and neighbors of point 𝒙𝑖 



20 
 

The initial relative position vector between two neighbors is shown as 𝝃𝑖𝑗  =  𝒙𝑗   −  𝒙𝑖 shown in 

Figure 2.1. For every material point 𝒙𝑗, the displacement is defined as 𝒖𝑗  =  𝒚𝑗  −  𝒙𝑗 , with 𝒚𝑗  as 

the coordinates of point 𝒙𝑗  in the deformed state shown in Figure 2.2. 

2.1.1. Peridynamics states 
Silling [41] defines a series of infinite-dimensional arrays called vectors states (see Figure 2.3), to 

store and represent peridynamic constitutive relations in a compact form. The term state-based 

peridynamics comes from this new feature, as opposed to bond-based peridynamic, which relies 

simply on defining pairs of particle interactions using a bond from one material point to another. 

Figure 2.2. The deformed state at the vicinity of the material points  𝒙𝑖 and 𝒙𝑗 
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Figure 2.3. Schematic of deformations state and force state in relation to the initial relative-

position vector ξ [119]. 

 

A vector-state maps peridynamic bonds into real coordinate space of ℝ𝑛, with 𝑛 = 1, 2, or 3. The 

dependence of the vector-state to space 𝒙 or time variable 𝒕 is shown using a square-bracket.  

The vector-states operate on bonds 𝝃 ∈ 𝐻(𝒙) expressed by angle brackets. Dependencies on other 

vector-state or other types of variables are shown using parentheses. By convention, a vector-state 

is shown as a capital letter with an underline such as 𝒀 for deformation vector-state. 

A vector-state 𝑨[𝒙] ∈ 𝒱3(𝒙) is generally defined as in Eq. (7). 

 𝑨[𝒙]〈∙〉 ∶ 𝐻(𝒙) → ℝ3 (7) 

Where 𝒱3(𝒙)  ∶= 𝐻(𝒙) × ℝ3 defines the vector-state space at 𝒙.  This definition is analogous to a 

tensor 𝑨 ∈ ℝ𝟑 × ℝ𝟑 as defined in continuum mechanics and is interpreted as a function operating 

on point 𝒙. 

The two most important vector-states defined are the deformation vector-state 𝒀 and force vector-

state 𝑻. The deformation vector-state 𝒀 stores all the relative position vectors associated with a 

material-point 𝒙. Operating on the initial relative position vector 𝝃𝑖𝑗, the deformation vector-state 

yields 

𝒀[𝒙𝒊, 𝑡]〈𝝃𝒊𝒋〉 = 𝒚𝒋 − 𝒚𝒊 = 𝝃𝒊𝒋 + 𝒖𝒋 − 𝒖𝒊 
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Which is the deformed relative position vector. Similarly, all the force density vectors associate 

with space 𝒙 is stored in force vector-state 𝑻. Operating on the initial relative position vector 𝝃𝑖𝑗, 

the force density vector-state yields 

𝑻[𝒙𝒊, 𝑡]〈𝝃𝒊𝒋〉 = 𝒕𝒊𝒋 

In terms of dependency, the force density vector-state 𝑻 depends on deformation vector-state 𝒀, 

while the opposite is not true. The standard constitutive assumption of SB-PD is that the force 

vector-state is given by a constitutive law 𝑻̅ of the form in Eq. (8). 

 𝑻 = 𝑻̅(𝒀, 𝒀̇, 𝒒, 𝒒) (8) 

In which 𝒒 summarizes the internal parameters such as the body temperature-and damage, and 𝒒 

stands for all the internal vector-state field variables. 

The principal gauge of deformation in peridynamics is the deformation vector-state, which 

associates each bond with its altered counterpart. A fundamental and physically grounded 

limitation in continuum mechanics pertains to the requirement that individual material points, as 

they exist in the initial reference state, must retain their uniqueness in the altered configuration. 

Put differently, the deformation mapping must be a one-to-one correspondence. This is 

mathematically expressed as Eq. (9). 

 det(𝑭) > 0 (9) 

With 𝑭 as deformation gradient tensor. This condition guarantees that the material density stays 

both positive and finite, thereby preventing the material from undergoing complete collapse or 

inversion to attain negative volume. Compliance with the condition of impenetrability of matter 

can be achieved by the condition enforced on the deformation vector-state shown in Eq.(10) [41, 

120]. 

 𝒀[𝒙]〈𝝃〉 ≠ 0,   ∀𝝃 ≠ 0 ∈ 𝐻(𝒙),   ∀𝒙 ∈ 𝔅 (10) 

 

2.1.2. Balance laws 
The constitutive equations of peridynamic must follow balances of linear and angular momentum, 

similar to equations of continuum mechanics. The principle of virtual work can be utilized to derive 

peridynamic constitutive equations which satisfy linear momentum balance, shown in Eq. (11). 
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𝛿 ∫ (𝑇 − 𝑈)𝑑𝑡 = 0

⬚

𝑡

 (11) 

This principle holds true when solved for Lagrange's equation shown in Eq. (12), with T 

representing the overall kinetic energy and U representing the total potential energy within the 

system, with Lagrangian defined as 𝐿 = 𝑇 − 𝑈. 

 𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝒖̇
) −

𝜕𝐿

𝜕𝒖
= 0 (12) 

The kinetic-and potential-energies can be defined as in Eq. (13) and Eq. (14). 

 
𝑇 = ∑

1

2
𝜌𝑖𝒖̇𝑖 ∙ 𝒖̇𝑖

∞

𝑖=1

𝑉𝑖 (13) 

 

 
𝑈 = ∑ 𝑊𝑖𝑉𝑖

∞

𝑖=1

− ∑(𝒃𝑖

∞

𝑖=1 

∙ 𝒖𝑖)𝑉𝑖    (14) 

The strain energy 𝑊 equals the summation of micropotentials. The interactions between two 

material points denoted as 𝒙𝒊 and 𝒙𝑗 has a micropotential denoted as 𝑤𝑖𝑗. This micropotential is 

influenced by both the material properties and the stretching between point 𝒙𝑖 and all other material 

points within its associated group. It's important to note that the micropotential 𝑤𝑖𝑗 is distinct from 

𝑤𝑗𝑖 because 𝑤𝑖𝑗 depends on the conditions of bonds between 𝒙𝑗 and its neighbors. These 

micropotentials can be represented as Eq. (15). 

 𝑤𝑖𝑗 = 𝑓(𝒀[𝒙𝒊, 𝒕]) (15) 

The strain-energy 𝑊 of material point 𝒙𝒊 is thus defined as Eq. (16). 

 
𝑊𝑖 =

1

2
∑

1

2
(𝑤𝑖𝑗 + 𝑤𝑗𝑖)𝑉𝑗

⬚

𝑥𝑗∈𝐻(𝑥𝑖)

 (16) 

By substituting the definitions of strain energy, potential-energy, and kinetic energy, the 

Lagrangian can be defined as Eq. (17). 

 
𝐿 = ∑ 𝐿𝑖

∞

𝑖=1

 (17) 
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𝐿𝑖 =

1

2
𝜌𝑖𝒖̇𝑖 ∙ 𝒖̇𝑖𝑉𝑖 −

1

4
𝑉𝑖 ∑ (𝑤𝑖𝑗 + 𝑤𝑗𝑖)𝑉𝑗

𝑥𝑗∈𝐻(𝑥𝑖)

+ 𝒃𝑖 ∙ 𝒖𝑖𝑉𝑖 (18) 

Using the Eq. (18) into Eq. (12), the Lagrangian equation for 𝒙𝑖 is simplified to Eq. (19). 

 
𝜌𝑖𝒖̈𝑖 =

1

2
𝑉𝑖 ∑ (

𝜕𝑤𝑖𝑗

𝜕(𝒚𝑗 − 𝒚𝑖)
) − (

𝜕𝑤𝑗𝑖

𝜕(𝒚𝒊 − 𝒚𝑗)
)

𝑥𝑗∈𝐻(𝑥𝑖)

+ 𝒃𝑖 (19) 

with 
𝜕𝑤𝑖𝑗

𝜕(𝒚𝑗−𝒚𝑖)
 and 

𝜕𝑤𝑗𝑖

𝜕(𝒚𝒊−𝒚𝑗)
 as 𝒕𝑖𝑗 and 𝒕𝑗𝑖, respectively. Equation (19) must be valid for the 

conservation of linear momentum. Given the classical formation of the Lagrangian, The force 

densities 𝒕𝑖𝑗 and 𝒕𝑗𝑖  have to be equal to 
𝜕𝑤𝑖𝑗

𝜕(𝒚𝑗−𝒚𝑖)
 and 

𝜕𝑤𝑗𝑖

𝜕(𝒚𝒊−𝒚𝑗)
, respectively. This will ensure the 

conservation of linear momentum while setting values for peridynamic force densities. 

Given the angular momentum 𝑯0 and torque 𝚷0, the conservation of angular momentum is met if 

and only if Eq. (20) holds. 

 𝑯̇0 = 𝚷0 (20) 

Given a set of particles at time 𝑡 in volume 𝑉, the angular momentum is defined as in Eq. (21). 

 
𝑯0 = ∫ 𝒚(𝒙, 𝑡) × 𝒖̇(𝒙, 𝑡)𝜌(𝒙)𝑑𝑉

⬚

𝑉

 (21) 

And torque is defined as in Eq. (22). 

 

 
𝚷0 = ∫(𝒚(𝒙, 𝑡) × 𝒃(𝒙, 𝑡) + ∫ 𝒚(𝒙, 𝑡) × (𝑻[𝒙, 𝑡]〈𝝃〉 − 𝑻[𝒙′, 𝑡]〈𝝃′〉)𝑑𝐻)𝑑𝑉

⬚

𝐻(𝒙)

⬚

𝑉

 

 

(22) 

The force densities converge to zero outside of the horizon-of a-material point. Thus Eq. (22) can 

be re-written to eliminate the limit 𝐻(𝑥) into 𝑉. Substituting into Eq. (20), one can have Eq. (23). 

∫ (𝒚(𝒙, 𝑡) × 𝜌(𝑥)𝒖̈(𝒙, 𝑡))𝑑𝑉
𝑉

 = ∫ 𝒚(𝒙, 𝑡) × 𝒃(𝒙, 𝑡)𝑑𝑉

⬚

𝑉

 (23) 
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 + ∬ 𝒚(𝒙, 𝑡) × 𝑻[𝒙, 𝑡]〈𝝃〉𝑑𝑉′𝑑𝑉

⬚

𝑉 𝑉

 

  − ∬ 𝒚(𝒙′, 𝑡) × 𝑻[𝒙′, 𝑡]〈𝝃′〉𝑑𝑉′𝑑𝑉

⬚

𝑉 𝑉

 

To use the vector-state notation, the subtraction shown in Eq. (23) can be shows to reduce to Eq. 

(24). 

 𝒚(𝒙′, 𝑡) − 𝒚(𝒙, 𝑡) = 𝒀[𝒙, 𝑡]〈𝒙′ − 𝒙〉 (24) 

The elimination of the limit 𝐻(𝑥) allows to show Eq. (25) via a change of parameter. 

 
∬ 𝒚(𝒙, 𝑡) × 𝑻[𝒙, 𝑡]〈𝝃〉𝑑𝑉′𝑑𝑉

⬚

𝑉 𝑉

= ∬ 𝒚(𝒙′, 𝑡) × 𝑻[𝒙′, 𝑡]〈𝝃′〉𝑑𝑉𝑑𝑉′

⬚

𝑉 𝑉

 (25) 

With integration limited only to the horizon, substitution of Eq. (24) and Eq. (25) into Eq. (23) 

leads to Eq. (26) as the final form. 

 
∫ (𝒚(𝒙, 𝑡) × (𝜌(𝑥)𝒖̈(𝒙, 𝑡) − 𝒃(𝒙, 𝑡)))𝑑𝑉

𝑉

= ∬(𝒀[𝒙, 𝑡]〈𝒙′ − 𝒙〉 × 𝑻[𝒙, 𝑡]〈𝒙′ − 𝒙〉)𝑑𝐻𝑑𝑉

⬚

𝑉𝐻

 
(26) 

 

2.1.3. Initial and boundary conditions 
The force densities introduced in the SB-PD are the counterparts of surface tractions in continuum 

mechanics, except that they operate on a volumetric basis. The difference can be shown in the 

problem of calculating the internal forces of a body under external loads. An internal force is 

defined as the that exerted by one region of the body to another adjacent region. In other words, if 
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body 𝔅 is divided into two regions 𝛺1 and 𝛺2, there must be an internal force applied from region 

𝛺1 onto region 𝛺2 and vice versa. 

In classical continuum mechanics, this internal force termed as F, is measured by an integration of 

surface traction of region 𝛺1 over its cross-sectional area, 𝜕𝛺, as shown in Eq. (27). 

1 

2 

2 

Figure 2.4. Comparison of continuum mechanics and peridynamic forces: (a) Total force 

applied on a point in 𝛺2  from region 𝛺1, (b) Tractions in continuum mechanics, (c) 

Peridynamic force densities acting on a point in 𝛺2 from 𝛺1, (d) Peridynamic force densities 

acting on 𝛺2 due to 𝛺1 [103]. 
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𝑭 = ∫ 𝑻𝑑𝐴

𝜕𝛺

 (27) 

With 𝑻 as surface traction. In the peridynamic theory, the integration will turn from a surface 

integration into a volumetric integration, as the interaction of the two regions is extended over the 

cross section to the maximum depth of the horizon size used in the model. The volumetric 

integration is shown in Eq. (28). 

 
𝑭 = ∬ 𝑻[𝒙, 𝑡]〈𝒙 − 𝒙′〉 − 𝑻[𝒙′, 𝑡]〈𝒙′ − 𝒙〉𝑑𝑉𝛺2

𝑑𝑉𝛺1

⬚

𝛺1𝛺2

 (28) 

With 𝒙 and 𝒙′ belonging to regions 𝛺1 and 𝛺2, respectively. As stated previously, parameter body 

force density 𝒃 stands for all external loads applied in the peridynamic equation of motion. 

Boundary conditions is then introduced by presetting a displacement or a velocity of the material 

points forming the boundary layer. 

 

2.1.4. State-based peridynamics force density 

The deformation on one material point at location 𝒙𝑖 is dependent on the total displacement of its 

neighbor points; that is, material points that are members of 𝐻(𝒙𝑖). As stated previously, in SB-

PD, vector-state 𝑻 can be prompted to output the force density applied by 𝒙𝑗 on 𝒙𝑖 as 

𝑻[𝒙𝑖, 𝑡]〈𝒙𝑗 − 𝒙𝑖〉. 

Given the requirements for the conservation of linear momentum, the state-based force density is 

dependent on the partial differentiation of the strain energy density 𝑊 with respect to the relative 

position vector 𝝃 + 𝜼 (Eq. (29)).  

 
𝑻[𝒙𝑖, 𝑡]〈𝒙𝑗 − 𝒙𝑖〉 ~

1

𝑉
 

𝜕𝑊(𝒙)

𝜕(|𝝃 + 𝜼|)

𝝃 + 𝜼

|𝝃 + 𝜼|
  (29) 

With 𝑊 defined as the same in classical continuum mechanics shown in Eq. (30). 

 
𝑊 =

𝐾

2
𝜃2 +

1

4𝜇
∑ 𝜎𝑖𝑖

2

3

𝑖=1

+
1

2𝜇
(𝜏12

2 + 𝜏13
2 + 𝜏23

2 ) −
3𝐾2

4𝜇
𝜃2  (30) 

With 𝜃 as the dilatation term. All influence emanating from neighboring points is summarized in 

the dilatation term [40]. In the denominator, the shear modulus is equal to 𝜇 =
𝐸

2(1+𝜈)
 given 
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Poisson’s ratio as 𝜈 and Young’s modulus as 𝐸. In order to relate force densities to the strain 

energy density, Cauchy stress components need to be defined based on force densities, shown in 

Eq. (31) by Madenci [40]. 

 
∑ 𝜎𝑖𝑗

2 =

3

𝑖=1

∑ 4𝒕 ∙ 𝒕|𝝃|𝑉2

⬚

⬚

 (31) 

 Equation (32) is derived with the substitution of  Eq. (30) and Eq. (31) into Eq. (29). 

 
𝑻[𝒙𝒊, 𝑡]〈𝒙𝒋 − 𝒙𝒊〉 =

2𝛿

|𝝃𝑖𝑗 |
(𝑑𝛼𝜃 + 𝛽𝑠𝑖𝑗)

𝝃𝑖𝑗 + 𝜼𝑖𝑗

|𝝃𝑖𝑗 + 𝜼𝑖𝑗|
 (32) 

With parameters d, α, and β as peridynamic parameters which are constant for all material points 

given a constant horizon size. For a two-dimensional body, these parameters are defined as in Eq. 

(33). 

 
𝛼 =

1

2
(𝐾 − 2𝜇) , 𝛽 =

6𝜇

𝜋ℎ𝛿4
 , 𝑑 =

2

𝜋ℎ𝛿3
 (33) 

The dilatation term in its general form is shown in Eq. (34). 

 
𝜃 = ∑

𝑤𝑠(𝝃 + 𝜼)

|𝜉 + 𝜂|
∙ 𝝃𝑉′

𝑥′∈𝐻(𝑥)

 (34) 

Equations (33) and (34) are then substituted into Eq. (32) to yield the force density in an SB-PD 

model. 

Finally, for an SB-PD model, the equation of motion is defined as in Eq. (35). 

 
𝑝𝒖̈(𝒙𝑖, 𝑡) = ∫ (𝑻[𝒙𝑖, 𝑡]〈𝒙𝑗 − 𝒙𝑖〉 − 𝑻[𝒙𝑗, 𝑡]〈𝒙𝑖 − 𝒙𝑗〉)

𝐻(𝒙𝑖)

𝑑𝑉𝒙𝑗
+ 𝒃(𝒙𝑖, 𝑡) (35) 

2.2. Ordinary peridynamics 
A peridynamic material model is ordinary if Eq. (36) is satisfied for all material points. 

 𝑻〈𝝃〉 × 𝒀〈𝝃〉 = 0,   ∀𝝃 ∈ 𝐻 (36) 

This stipulation states that the force direction is parallel to the deformation direction, ensuring the 

adherence to the angular momentum rule. For elastic materials, this means that the elastic energy 

can be calculated by knowing the deformed relative position vector-state (i.e. distances after 
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deformation). It has been shown that typical peridynamic materials can accurately portray 

nonlocal-isotropic-elasticity. [41], as well as nonlocal-isotropic-plasticity [121]. 

2.3. Bond-based peridynamics 
Bond-based peridynamics is the original format of the peridynamic theory first proposed by Silling 

[122] can be seen as a subset of SB-PD. In this case, the force density vectors 𝑻[𝒙𝑖, 𝒕]〈𝒙𝑗 − 𝒙𝑖〉 

and 𝑻[𝒙𝑗, 𝑡]〈𝒙𝑖 − 𝒙𝑗〉 are equal in magnitude, parallel, and opposite in direction (i.e. Eq. (37)). For 

conservation of angular momentum, all force density vectors are also parallel to their respective 

relative-position-vectors or 𝒀[𝒙𝒊, 𝑡]〈𝒙𝑗 − 𝒙𝑖〉. 

 
𝑻[𝒙𝒊, 𝑡]〈𝒙𝒋 − 𝒙𝒊〉 = −𝑻[𝒙𝒋, 𝑡]〈𝒙𝒊 − 𝒙𝒋〉 =

1

2
𝒇 (37) 

The constitutive equation of motion of point 𝒙𝑖 in bond-based peridynamic is defined as Eq. (38). 

 
𝜌(𝒙)𝒖̈(𝒙, 𝑡) = ∫ 𝒇𝑑𝐻

𝐻(𝒙)

+ 𝒃(𝒙, 𝑡) (38) 

With 𝒇 being the pair-wise force density which is dependent on the initial-relative-position-vector 

𝝃 and deformed relative position vector 𝝃 +  𝜼. Silling [122] defined the pair-wide force density 

along with its properties.  

To follow the rule of reaction per force interaction, the pairwise force exerted by material point 𝒙 

unto 𝒙′ has to be equal to the pairwise force exerted by material point 𝒙′ unto 𝒙 as shown in Eq. 

(39). 

 𝒇(−𝝃, −𝜼) = −𝒇(𝝃, 𝜼) (39) 

Another limitation comes from the angular momentum shown in Eq. (40), forcing the pairwise 

force density to be in the parallel to the deformed position vector 𝝃 +  𝜼. 

 (𝝃 + 𝜼) × 𝒇(𝝃, 𝜼) = 0     ∀𝜼, 𝝃. (40) 

For a microelastic material without memory with constant temperature, the pairwise force density 

is linearly correspondant to the bond stretch of two material points, shown in Eq. (41). 

 
𝒇(𝝃, 𝜼) =

𝐶𝑠(𝝃, 𝜼)(𝝃 + 𝜼)

|𝝃 + 𝜼|
 (41) 

  With stretch being defined as in Eq. (42). 
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𝑠(𝝃, 𝜼) =

|𝝃 + 𝜼| − |𝝃|

|𝝃|
 (42) 

Based on the findings of [123], the constant 𝐶 in Eq. (41) is equal to that in Eq. (43). 

 
𝐶 =

18𝐾

𝜋𝛿4
 (43) 

With 𝐾 as bulk modulus. 

2.4. Dual-horizon peridynamics 
One fundamental limitation in traditional peridynamic formulations is the requirement for constant 

horizon radii. Failure to maintain constant horizon sizes can lead to unwanted wave reflections and 

the introduction of erroneous forces between material points, thereby compromising the accuracy 

of results. Nevertheless, in many practical applications, there is a need to adaptively adjust the 

sizes of horizons based on the spatial distribution of material points, such as for the purpose of 

computational efficiency, adaptive refinement, and multiscale modeling. 

In the original peridynamic models, it is crucial to set the horizon radius according to the local 

resolution required by the material points with the lowest resolution. When a multitude of horizon 

sizes is introduced to the model without consideration of its effect on the constitutive peridynamic 

assumption, the problem of “spurious wave reflections” occurs [124]. A review and modification 

of consttitutive peridynamic equations has led to a novel approach known as dual-horizon 

peridynamics (DH-PD) [124]. The central concept behind DH-PD involves defining two horizons 

per material point, with one being essentially complementary to the original horizon. 

Using DH-PD, it becomes possible to derive the traditional peridynamics with constant horizon 

values, without the need for additional techniques such as variational principles or Taylor 

expansions, as required in other methods [125]. Notably, DH-PD enables the usage of multiple 

horizon sizes as needed, leading to a reduction in computation cost by limiting computationally 

intensive calculations to areas of interest. DH-PD multi-horizon capabilities are similar to how 

various mesh sizes can be used in traditional methods such as FEM or Finite-Volume-Method 

(FVM). 

2.4.1. Horizon and dual horizon set 
In DH-PD a concept of ‘dual horizon’ has to be introduced adjacent to the previous definition of 

‘horizon’ in peridynamics. As was originally stated, The neighbors 𝐻(𝒙𝑖) is a set of all the 
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material-points that are within the horizon of the material-point 𝒙𝑖, as stated in Eq. (6), repeated 

below for convenience. 

 𝐻(𝒙𝒊) = {𝒙𝑗 − 𝒙𝑖: 0 <  ‖𝒙𝑗
⬚ − 𝒙𝑖‖  ≤ 𝛿(𝒙𝑖),  𝒙𝑗 ∈ 𝔅}  

All neighbors of material point 𝒙𝑖 exert a force density 𝒇𝑖𝑗 , which is equal to the pairwise force-

density 𝒇 when using a bond-based peridynamics model and equal to 𝑻[𝒙𝒊, 𝑡]〈𝒙𝑖 − 𝒙𝑗〉 or 𝒕𝑖𝑗 in 

SB-PD. Based on Newton’s third law of motion, there will be a reactionary force applied to the 

neighbor 𝒙𝑗 due to this peridynamic force density. Note that in this definition, there is no implicit 

assumption that 𝒙𝒊 is a neighbor of 𝒙𝑗, only that 𝒙𝑗 is a neighbor of 𝒙𝒊. The constituent assumption 

of neighborhood mutuality no longer applies in DH-PD. Nevertheless, the reaction force density 

has to be taken into account. This is done by the introduction of the dual horizon set, which 

compliments the original horizon set 𝐻(𝒙𝑖). 

Figure 2.5. A schematic of horizon and dual horizon sets in a multi-horizon peridynamic 

model. 
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The dual horizon 𝐻′(𝒙𝑖) is a set of all the material points whose neighborhood includes material 

point 𝒙𝒊. In other words, the set of all material points that ‘see’ material point 𝒙𝒊, regardless of 

whether the opposite is true. Figure 2.5 shows a schematic of horizon and dual horizon sets and 

their difference. In this figure, points 𝒙1, 𝒙2, 𝒙4 and 𝒙3 see point 𝒙 and are part of its dual horizon 

set, or 𝐻′(𝒙)  =  {𝒙1 , 𝒙2, 𝒙3, 𝒙4}. Points 𝒙5 and 𝒙6 do not see point 𝒙. members of point 𝒙 horizon 

set are 𝐻(𝒙) =  {𝒙1, 𝒙2, 𝒙4, 𝒙6}. If material point 𝒙𝑘  ∈  𝐻′ (𝒙𝑖), there is a peridynamic force 𝒇𝑘𝑖 

applied over 𝒙𝑘 by 𝒙𝑖. Newton’s third law of motion requires an existence of reactionary force of 

equal magnitude in the opposite direction applied over 𝒙𝒊. A ‘shape’ can also be assigned to 

horizon and dual-horizon sets, which is the area or volume containing the members of the set. 

While the shape of the 𝐻(𝒙𝑖) is a circle around the 𝒙𝑖, the shape of the dual horizon 𝐻′ (𝒙𝒊) is 

circular if and only if the horizon sizes of material points in 𝐻′(𝒙𝒊) are equal to that of  𝒙𝑖. 

The distinction between the dual horizon set and the horizon set is useful in finding the equation 

of motion in  DH-PD, but it is worth noting that no new bonds were introduced in DH-PD, rather, 

the existing peridynamic bonds between material points were regrouped by new definitions into 

two sets of horizon and dual horizon. It is seen in the coming sections that the dual horizon set 

vanishes from the angular momentum and linear momentum balance laws, keeping the equilibrium 

of the body intact. Also, The DH-PD does not alter the nature of peridynamic bonds, so a DH-PD 

model can either be bond-based, state-based, or oridnary and non-ordinary. An ordinary state-

based DH-PD model is set as the default model used in the rest of this dissertation 

Equation (44) is includes the dual horizon set in the definition of state-based force density.  

 𝑻[𝒙𝑖, 𝑡]〈𝒙𝑗 − 𝒙𝑖〉 ≠ 0,    𝑖𝑓 𝒙𝑗 ∈ 𝐻(𝒙𝑖)  𝑜𝑟 𝒙𝑖 ∈ 𝐻′(𝒙𝑗) (44) 

For any region 𝛺, the net internal force can be calculated by summing up the force densities via 

two approaches [126]. The first approach is to iterate through every horizon set and is shown as in 

Eq. (45). 

 
𝑭 =  ∑ ( ∑ 𝑻[𝒙𝑖, 𝑡]〈𝒙𝑗 − 𝒙𝑖〉𝑑𝑉𝒙𝑗

𝒙𝑗∈𝐻(𝒙𝑖)

)

𝒙𝑖∈Ω

𝑑𝑉𝒙𝑖
 (45) 

 The second approach is to iterate through every dual horizon set shown in Eq. (46). 
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𝑭 =  − ∑ ( ∑ −𝑻[𝒙𝑗 , 𝑡]〈𝒙𝑖 − 𝒙𝑗〉𝑑𝑉𝒙𝑗

𝒙𝑗∈𝐻′(𝒙𝑖)

)

𝒙𝑖∈Ω

𝑑𝑉𝒙𝑖
 (46) 

Note that the reactionary forces must be considered in calculating the net internal force. Comparing 

the two equations yields Eq. (47). 

 
∑ ( ∑ 𝑻[𝒙𝑖 , 𝑡]〈𝒙𝑗 − 𝒙𝑖〉𝑑𝑉𝒙𝑗

𝒙𝑗∈𝐻(𝒙𝑖)

)

𝒙𝑖∈Ω

𝑑𝑉𝒙𝑖

= ∑ ( ∑ −𝑻[𝒙𝑗, 𝑡]〈𝒙𝑖 − 𝒙𝑗〉𝑑𝑉𝒙𝑗

𝒙𝑗∈𝐻′(𝒙𝑖)

)

𝒙𝑖∈Ω

𝑑𝑉𝒙𝑖
 

(47) 

Equation (47) allows the elimination of the dual horizon set in angular momentum and linear 

momentum balance laws. 

2.4.2. Equation of motion in dual horizon peridynamics 
Similar to the equation of motion in single horizon peridynamics, the net total force applied on a 

material point is used to find the displacement. In state-based DH-PD, given a neighbor particle 

called 𝒙𝑗 for a material point 𝒙𝑖, a force density of 𝑻[𝒙𝑖, 𝑡]〈𝒙𝑗 − 𝒙𝑖〉 exists. The force vector 

𝒇̃𝑖𝑗(𝝃𝑖𝑗, 𝜼𝑖𝑗) is defined as in Eq. (48). 

 𝒇̃𝑖𝑗(𝝃𝑖𝑗, 𝜼𝑖𝑗) ≔ 𝑻[𝒙𝑖, 𝑡]〈𝒙𝑗 − 𝒙𝑖〉 ∙ Δ𝑉𝒙𝑖
∙ Δ𝑉𝒙𝑗

 (48) 

With 𝛥𝑉𝒙𝑖
 denoting the volume associated with 𝒙𝑖. Note that the unit of 𝑻[𝒙𝑖, 𝑡]〈𝒙𝑗 − 𝒙𝑖〉 is force 

per volume squared. Summation of Eq. (48) over all the neighbors of 𝒙𝑖 yields the net direct 

peridynamical force applied to 𝒙𝑖. 

For every material point 𝒙𝑘 ∈ 𝐻′(𝒙𝑖), there exists a force density 𝑻[𝒙𝑘, 𝑡]〈𝒙𝑖 − 𝒙𝑘〉 which is 

applied to 𝒙𝑘. The reaction of this force density, −𝑻[𝒙𝑘, 𝑡]〈𝒙𝑖 − 𝒙𝑘〉, is applied to 𝒙𝑖. The force 

vector associated with this force density felt by 𝒙𝑘 is defined in Eq. (49). 

 𝒇̃(𝝃𝑘𝑖, 𝜼𝑘𝑖) ≔ 𝑻[𝒙𝑘, 𝑡]〈𝒙𝑖 − 𝒙𝑘〉 ∙ Δ𝑉𝒙𝑘
∙ Δ𝑉𝒙𝑖

 (49) 

The reaction to the force of Eq. (49) is applied to 𝒙𝑖 and is equal to −𝒇̃(𝝃𝑘𝑖, 𝜼𝑘𝑖) or 

−𝒇̃(−𝝃𝑖𝑘, −𝜼𝑖𝑘). Summation of Eq. (49) over all the members of 𝐻′(𝒙𝑖) yields the net reactionary 
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peridynamical force applied to 𝒙𝑖. The governing equation of motion in a state-based DH-PD 

model over 𝒙𝑖 is thus surmised as in Eq. (50). 

 𝜌𝒖̈(𝒙𝑖, 𝑡)Δ𝑉𝒙𝑖
= ∑ 𝒇̃𝑖𝑗(𝝃𝑖𝑗, 𝜼𝑖𝑗)

𝒙𝑗∈𝐻(𝒙𝑖)

− ∑ 𝒇̃(−𝝃𝑖𝑘, −𝜼𝑖𝑘) + 𝒃(𝒙𝑖 , 𝑡)Δ𝑉𝒙𝑖

𝒙𝑘∈𝐻′(𝒙𝑖)

 (50) 

With 𝒃(𝒙𝑖, 𝑡) as body force density applied to 𝒙𝑖 with a unit of force per volume. Substituting 

equations (48) and (49) into Eq. (50) and dividing the two sides by Δ𝑉𝒙𝑖
, one can have the get Eq. 

(51). 

 𝜌𝒖̈(𝒙𝑖, 𝑡) = ∑ 𝑻[𝒙𝑖, 𝑡]〈𝒙𝑗 − 𝒙𝑖〉 ∙ Δ𝑉𝒙𝑗

𝒙𝑗∈𝐻(𝒙𝑖)

− ∑ 𝑻[𝒙𝑘, 𝑡]〈𝒙𝑖 − 𝒙𝑘〉 ∙ Δ𝑉𝒙𝑘
+ 𝒃(𝒙𝑖, 𝑡)

𝒙𝑘∈𝐻′(𝒙𝑖)

 
(51) 

Equation (51) is the governing equation of motion of 𝒙𝑖 in the discretized form. By refining the 

discretization volume so that 𝛥𝑉𝒙𝒊
→ 0, the integral form of the equation of motion is equal to Eq. 

(52). 

 
𝜌𝒖̈(𝒙, 𝑡) = ∫ 𝑻[𝒙, 𝑡]〈𝒙′ − 𝒙〉𝑑𝑉𝑥′ − ∫ 𝑻[𝒙′, 𝑡]〈𝒙 − 𝒙′〉𝑑𝑉𝑥′ + 𝒃(𝒙, 𝑡)

⬚

𝑥′∈𝐻′(𝑥)

⬚

𝑥′∈𝐻(𝑥)

 (52) 

By setting a constant horizon, one will have 𝐻(𝒙)  =  𝐻′ (𝒙) and Eq. (52) collapses into the 

equation of motion governing a state-based single horizon shown in Eq. (53). 

 
𝜌𝒖̈(𝒙, 𝑡) = ∫ 𝑻[𝒙, 𝑡]〈𝒙′ − 𝒙〉 − 𝑻[𝒙′, 𝑡]〈𝒙 − 𝒙′〉𝑑𝑉𝑥′ + 𝒃(𝒙, 𝑡)

⬚

𝑥′∈𝐻(𝑥)

 (53) 

Which is exactly equal to Eq. (35). 

2.4.3. Balance of linear momentum in dual horizon peridynamics 
The conservation of linear momentum requires that the sum of the internal forces of a closed 

system (i.e. the peridynamic body of 𝔅) be equal to zero if the net external force is zero. Thus Eq. 

(54) must hold.  
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 ∑ ∑ 𝑻[𝒙𝑖, 𝑡]〈𝒙𝑗 − 𝒙𝑖〉

𝒙𝑗∈𝐻(𝒙𝑖)

∙ Δ𝑉𝒙𝑖
∙ Δ𝑉𝒙𝑗

𝒙𝑖∈𝔅

− ∑ ∑ 𝑻[𝒙𝑘, 𝑡]〈𝒙𝑖 − 𝒙𝑘〉

𝒙𝑘∈𝐻′(𝒙𝑖)

∙ Δ𝑉𝒙𝑘
∙ Δ𝑉𝒙𝑖

= 𝟎

𝒙𝑖∈𝔅

 
(54) 

But given Eq. (47) it is concluded that Eq. (54) is already satisfied, therefore the linear momentum 

balance is valid in dual horizon peridynamics. An intuitive way to notice the conservation of linear 

momentum is to realize that for every direct force, there is a unique reactionary force. This 

principle is not violated when the dual horizon set is introduced, therefore linear momentum is 

conserved. 

2.4.4. Balance of angular momentum in dual horizon peridynamics 
The angular momentum is conserved if the net internal torque equals the rate of angular momentum 

of the body 𝔅. As shown in Eq. (55). In the case of a body under no external force, the sum of the 

internal torque must equal zero. 

 ∑ ∑ 𝒚𝒊 × 𝑻[𝒙𝑖, 𝑡]〈𝒙𝑗 − 𝒙𝑖〉

𝒙𝑗∈𝐻(𝒙𝑖)

∙ Δ𝑉𝒙𝑖
∙ Δ𝑉𝒙𝑗

𝒙𝑖∈𝔅

− ∑ ∑ 𝒚𝒊 × 𝑻[𝒙𝑘 , 𝑡]〈𝒙𝑖 − 𝒙𝑘〉

𝒙𝑘∈𝐻′(𝒙𝑖)

∙ Δ𝑉𝒙𝑘
∙ Δ𝑉𝒙𝑖

= 𝟎

𝒙𝑖∈𝔅

 
(55) 

With 𝒚𝑖  =  𝒙𝑖  +  𝒖𝑖. Expanding Eq. (55) and using Eq. (47) one can get Eq. (56) 
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 ∑ ∑ 𝒚𝒊 × 𝑻[𝒙𝑖, 𝑡]〈𝒙𝑗 − 𝒙𝑖〉

𝒙𝑗∈𝐻(𝒙𝑖)

∙ Δ𝑉𝒙𝑖
∙ Δ𝑉𝒙𝑗

𝒙𝑖∈𝔅

− ∑ ∑ 𝒚𝒊 × 𝑻[𝒙𝑘, 𝑡]〈𝒙𝑖 − 𝒙𝑘〉

𝒙𝑘∈𝐻′(𝒙𝑖)

∙ Δ𝑉𝒙𝑘
∙ Δ𝑉𝒙𝑖

𝒙𝑖∈𝔅

=  ∑ ∑ (𝒙𝒊 + 𝒖𝒊) × 𝑻[𝒙𝑖, 𝑡]〈𝒙𝑗 − 𝒙𝑖〉

𝒙𝑗∈𝐻(𝒙𝑖)

∙ Δ𝑉𝒙𝑖
∙ Δ𝑉𝒙𝑗

𝒙𝑖∈𝔅

− ∑ ∑ (𝒙𝒊 + 𝒖𝒊) × 𝑻[𝒙𝑘, 𝑡]〈𝒙𝑖 − 𝒙𝑘〉

𝒙𝑘∈𝐻′(𝒙𝑖)

∙ Δ𝑉𝒙𝑘
∙ Δ𝑉𝒙𝑖

𝒙𝑖∈𝔅

= ∑ ∑ (𝒙𝒊 + 𝒖𝒊) × 𝑻[𝒙𝑖, 𝑡]〈𝒙𝑗 − 𝒙𝑖〉

𝒙𝑗∈𝐻(𝒙𝑖)

∙ Δ𝑉𝒙𝑖
∙ Δ𝑉𝒙𝑗

𝒙𝑖∈𝔅

− ∑ ∑ (𝒙𝒋 + 𝒖𝒋) × 𝑻[𝒙𝒊, 𝑡]〈𝒙𝒋 − 𝒙𝒊〉

𝒙𝑗∈𝐻(𝒙𝑖)

∙ Δ𝑉𝒙𝑗
∙ Δ𝑉𝒙𝑖

𝒙𝑖∈𝔅

= ∑ ∑ (𝒙𝒊 + 𝒖𝒊 − 𝒙𝒋 − 𝒖𝒋) × 𝑻[𝒙𝑖, 𝑡]〈𝒙𝑗 − 𝒙𝑖〉

𝒙𝑗∈𝐻(𝒙𝑖)

∙ Δ𝑉𝒙𝑖

𝒙𝑖∈𝔅

∙ Δ𝑉𝒙𝑗
= − ∑ ∑ 𝒀〈𝒙𝑗 − 𝒙𝑖〉 × 𝑻[𝒙𝑖, 𝑡]〈𝒙𝑗 − 𝒙𝑖〉Δ𝑉𝒙𝑗

𝒙𝑗∈𝐻(𝒙𝑖)𝒙𝑖∈𝔅

Δ𝑉𝒙𝑖

= 𝟎 

(56) 

 

2.5. Stress calculation in peridynamics 
The stress calculation in peridynamics requires establishing a relationship between the force 

density and stress components given the non-locality of the model. Lehoucq and Silling [105] 

showed in a bond-based peridynamic model, the stress tensor 𝑽 at point 𝒙 is defined as in Eq. (57).. 

 
𝑽(𝒙) =

1

2
∫ ∫ ∫(𝑦 + 𝑧)2𝒇̂(𝒙 + 𝑦𝒎, 𝒙 − 𝑧𝒎) ⊗ 𝒎𝑑𝑦𝑑𝑧𝑑Ω𝒎

∞

0

∞

0

⬚

𝛩

 (57) 

In Eq. (57), 𝒇̂ is an alternate representation of the pairwise force density 𝒇. Their relationship is 

defined in Eq. (58). 

 
𝒇̂(𝒙𝑗 , 𝒙𝑖) = {

𝒇(𝝃𝑖𝑗, 𝜼𝑖𝑗),   𝑖𝑓 𝒙𝑗 ∈ 𝐻(𝒙𝑖)

𝟎,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (58) 
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  This alternate representation is only used to simplify the equation. In other words, 𝒇̂(𝒙𝑗 , 𝒙𝑖) 

equals the pairwise force density 𝒙𝑗 applied onto 𝒙𝑖. In Eq. (57), 𝒎 is a unit vector, and 𝑑Ω𝑚  

denotes a differential-solid-angle in the direction of 𝒎. Equation (57) is thus interpreted as the 

outer product of 𝒎 and all the pairwise force densities parallel to 𝒎 that pass through point 𝒙. 

Similarly, in SB-PD, the stress tensor 𝑽 at point 𝒙 can be defined as in Eq. (59). 

 
𝑽(𝒙) =

1

2
∫ ∫ ∫ (𝑦 + 𝑧)2(𝑻̂[𝒙 − 𝑧𝒎, 𝑡]〈(𝑦 − 𝑧)𝒎〉

∞

0

∞

0

⬚

𝛩

− 𝑻̂[𝒙 + 𝑦𝒎, 𝑡]〈(𝑧 − 𝑦)𝒎〉) ⊗ 𝒎𝑑𝑦𝑑𝑧𝑑Ω𝒎 

(59) 

With the condition that the force vector-state follows the conditions of Eq. (60). 

 𝑻̂[𝒙 − 𝑧𝒎, 𝑡]〈(𝑦 − 𝑧)𝒎〉

= {
𝑻[𝒙 − 𝑧𝒎, 𝑡]〈(𝑦 − 𝑧)𝒎〉,    𝑖𝑓 𝒙 + 𝑦𝒎 ∈ 𝐻(𝒙 − 𝑧𝒎)

𝟎,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(60) 

In both equations (58) and (59) the coefficient 1
2
 exists to prevent the summation of both direct and 

reactionary force densities since the integration iterates through every unit vector 𝒎. Note that Eq. 

(59)  combined with Eq. (60) is also valid for a DH-PD model as the integration iterates through 

all the material points that may exert a force density passing through point 𝒙, regardless of whether 

the said material point is in the horizon or dual horizon set of point 𝒙. 

2.5.1. Physical and classical interpretations of peridynamic stress tensor 

Lehoucq and Silling [105] also proved that Eq. (61) holds true if 𝒇 is continuously differentiable. 

 
∇. 𝑽(𝒙) = ∫ 𝒇(𝝃, 𝜼)𝑑𝑉𝒙′  

𝒙′∈𝐻(𝒙)

 (61) 

Equations (62) and (63) are the equivalents of Eq. (61) in SB-PD and DH-PD. 

 

 
∇. 𝑽(𝒙𝑖) = ∫ (𝑻[𝒙𝑖, 𝑡]〈𝒙𝑗 − 𝒙𝑖〉 − 𝑻[𝒙𝑗 , 𝑡]〈𝒙𝑖 − 𝒙𝑗〉)

𝒙𝑗∈𝐻(𝒙𝑖)

𝑑𝑉𝒙𝑗
 (62) 

In DH-PD, an extra integration is required for all the dual horizon bonds. 
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∇. 𝑽(𝒙𝑖) = ∫ 𝑻[𝒙𝑖, 𝑡]〈𝒙𝑗 − 𝒙𝑖〉𝑑𝑉𝒙𝑗

− ∫ 𝑻[𝒙𝒌, 𝑡]〈𝒙𝑖 − 𝒙𝒌〉
𝒙𝑘∈𝐻′(𝒙𝑖)

𝑑𝑉𝒙𝑘
𝒙𝑗∈𝐻(𝒙𝑖)

   (63) 

The equations above allow for a rewriting of the equation of motion similar to that of the classical 

theory of mechanics such as in Eq. (64). 

 𝜌(𝒙)𝒖̈(𝒙, 𝑡) = ∇. 𝑽(𝒙) + 𝒃(𝒙, 𝑡) (64) 

It is clear from Eq. (64) that 𝑽 is the equivalent of the first-Piola-stress-tensor in classical 

continuum mechanics [105]. The symmetry of 𝑽 is guaranteed if and only if balances of linear and 

angular momentum are conserved. 

Equation (65) is another necessary definition, called the peridynamic force flux, and is defined for 

any unit vector 𝒏.  

 𝝉(𝒙, 𝒏) = 𝑽(𝒙)𝒏 (65) 

Substituting Eq. (59) into Eq. (65) one can have the form of Eq. (66). 

 
𝝉(𝒙, 𝒏) =

1

2
∫ ∫ ∫(𝑦 + 𝑧)2(𝑻̂[𝒙 − 𝑧𝒎, 𝑡]〈(𝑦 − 𝑧)𝒎〉

∞

0

∞

0

⬚

𝛩

− 𝑻̂[𝒙 + 𝑦𝒎, 𝑡]〈(𝑧 − 𝑦)𝒎〉)𝒎. 𝒏 𝑑𝑦𝑑𝑧𝑑Ω𝒎 

(66) 
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3.1. Discretization of equation of motion 

In peridynamics the body 𝔅 is discretized into a uniform grid of material points at equal distances 

of  𝛥𝑥 from one another. The equation of motion is thus approximated as Eq. (67). 

 𝜌𝒖̈(𝒙𝑖, 𝑡) = ∑ 𝑻[𝒙𝑖, 𝑡]〈𝒙𝑗 − 𝒙𝑖〉

𝒙𝑗∈𝐻(𝒙𝑖)

Δ𝑉𝒙𝑗
− ∑ 𝑻[𝒙𝑘, 𝑡]〈𝒙𝑖 − 𝒙𝑘〉Δ𝑉𝒙𝑘

𝒙𝑘∈𝐻′(𝒙𝑖)

+ 𝒃(𝒙𝑖, 𝑡) 

(67) 

 Similarly, three-dimensional problems are discretized in three cardinal directions by a uniform 

grid of material points. A time integration scheme is required to solve Eq. (67). An explicit forward 

and backward difference technique is applied to solve for 𝒖𝑛 at the nth time step or 𝑡 = 𝑛𝛥𝑡. 

Substituting 𝑡 = 𝑛𝛥𝑡 in Eq. (67), the numerical equation of motion becomes Eq. (68) 

 𝜌𝒖̈(𝒙𝑖, 𝑛Δ𝑡) = ∑ 𝑻[𝒙𝑖, 𝑛Δ𝑡]〈𝒙𝑗 − 𝒙𝑖〉 

𝒙𝑗∈𝐻(𝒙𝑖)

Δ𝑉𝒙𝑗

− ∑ 𝑻[𝒙𝒌, 𝑛Δ𝑡]〈𝒙𝒊 − 𝒙𝒌〉Δ𝑉𝒙𝑘

𝒙𝑘∈𝐻′(𝒙𝑖)

+ 𝒃(𝒙𝑖, 𝑛Δ𝑡) 
(68) 

It is worth noting that according to Eq. (8), force densities are dependent on the deformed relative 

position vectors. Thus, per time step, the force densities must be recalculated as in Eq. (69). 

 𝑻[𝑛Δ𝑡] = 𝑻̅(𝒀[𝑛Δ𝑡], 𝒀̇[𝑛Δ𝑡], 𝒒[𝑛Δ𝑡], 𝒒(𝑛)) (69) 

With superscript 𝑛 depicting the value of the variable in time step 𝑡 = 𝑛𝛥𝑡. Utilizing Eq. (32) to 

find the force density in a time integration scheme one derives Eq. (70) . 

 
𝑻[𝒙𝒊, 𝑛Δ𝑡]〈𝝃𝒊𝒋〉 =

2𝛿

|𝝃𝑖𝑗 |
(𝑑𝛼 𝜃𝑖

(𝑛)
+ 𝛽𝑠𝑖𝑗

(𝑛)
)

𝝃𝑖𝑗 + 𝜼𝑖𝑗
(𝑛)

|𝝃𝑖𝑗 + 𝜼𝑖𝑗
(𝑛)

|
 (70) 

At time step 𝑡 = 𝑛𝛥𝑡, the dilatation term becomes Eq. (71). 

 
𝜃𝑖

(𝑛)
= ∑ 𝑑𝛿𝑠𝑖𝑗

(𝑛)
Λ𝑖𝑗

(n)
𝑉𝒙𝑗

⬚

𝒙𝑗∈𝐻(𝒙𝑖)

 (71) 

And the stretch becomes Eq. (72). 
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𝑠𝑖𝑗

(𝑛)
=

|𝝃𝑖𝑗 + 𝜼𝑖𝑗
(𝑛)

| − |𝝃𝑖𝑗|

|𝝃𝑖𝑗|
 (72) 

 

3.2.  Adaptive dynamic relaxation 
The dynamic relaxation technique converts a static or a quasi-static problem into a dynamic one 

to solve it. Since peridynamic-equation-of-motion is dynamic, a dynamic relaxation correction will 

convert the benchmark problems in this study into dynamic equations. The steady-state solution 

of the dynamically relaxed equation corresponds to the static solution of the original equation 

[127]. To achieve this, the dynamic relaxation technique solves peridynamic equations with the 

addition of a damping coefficient that is artificially introduced into the equation. If the damping 

coefficient is updated iteratively, the method is called Adaptive Dynamic Relaxation (ADR) [118], 

which will be used in this research. 

In accordance with the dynamic relaxation approach, the equation of motion is reformulated with 

the addition of the time derivative of displacement multiplied by the fictitious inertia and damping 

terms as in Eq. (73). 

 𝑫𝒖̈(𝒙, 𝑡) + 𝑐𝑫𝒖̇(𝒙, 𝑡) = 𝑭(𝝃, 𝜼, 𝜼̇, 𝑡) (73) 

The diagonal matrix 𝑫 is called the fictitious -density-matrix and 𝑐 is the damping-coefficient. The 

addition of 𝑐 allows a fictitious dampening effect which can drastically reduce the number of 

iterations to solve the equation. 

Using a central-difference-explicit time integration scheme, the displacements and velocities of 

each iteration can be defined as in Eq. (74). 

 
𝒖̇(𝑛+

1
2

) =
(2 − 𝑐(𝑛)Δ𝑡)𝒖̇(𝑛−

1
2

) + 2Δ𝑡𝑫−1𝑭(𝑛)

2 + 𝑐(𝑛)Δ𝑡
 (74) 

Equation (74) is required to calculate 𝒖 at time step 𝑡 = 𝑛 + 1, shown in Eq. (75). 

 
𝒖(𝑛+1) = 𝒖(𝑛) + Δ𝑡𝒖̇(𝑛+

1
2

)  (75) 

 

 The dynamic relaxation approach involves initiating 𝑐 and 𝑫 and then iteratively solving 

equations (70) to (75). For convenience, 𝛥𝑡 can be assumed to be equal to 1, as the magnitude of 
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time step can be arbitrary in explicit time schemes. To ensure the stability and convergence of the 

solution, diagonal density matrix 𝑫 must follow the inequality of Eq. (76). 

 
𝑎𝑖𝑖 <

1

4
Δ𝑡2 ∑ |𝑲𝑖𝑗|

𝑗

 (76) 

 With 𝑎𝑖𝑖 as the diagonal elements of 𝑫 and 𝑲𝑖𝑗 as the stiffness matrix of the bond between material 

points 𝒙𝑖 and 𝒙𝑗 in the global coordinate system. The calculation of the bond stiffness matrix 

requires the differentiation of the force density with respect to the relative displacement vector 𝜼, 

which can prove tedious given the nonlinearity of interactions between the two. Assuming small 

displacements, the stiffness matrix can be approximated as Eq. (77). 

 
|𝑲𝑖𝑗| =

𝜕(𝒕𝑖𝑗 − 𝒕𝑗𝑖)

𝜕(|𝜼𝑖𝑗|)
. 𝒆 = |𝝃𝑖𝑗. 𝒆|

2𝛿

|𝝃𝑖𝑗|
2 (

𝑎𝑑2𝛿

|𝝃𝑖𝑗|
(𝑉𝑖 + 𝑉𝑗) + 𝛽) (77) 

With 𝒆 as the unit vector along the global cartesian coordinate directions [128]. 

To find the value of 𝑐, one can use the lowest frequency of the system. Equation (78) shows the 

approximation of the system frequency using Rayleigh’s quotient [128]. 

 
𝜔 = √

𝒖∗𝑲𝒖

𝒖∗𝑫𝒖
 (78) 

The condition of using Rayleigh’s quotient is for 𝑲 and 𝑫 to be of Hermitian matrix and for vector 

𝒖 to be nonzero. For real vectors and matrices, the conjugate transpose 𝒖∗ is reduced to the 

common transpose 𝒖𝑇 and the Hermitian condition is reduced to the matrix being symmetric [128]. 

The calculation of the denominator of Eq. (78) can be simplified by only measuring the damping 

coefficient at the 𝑛𝑡ℎ iteration, expressed in Eq. (79). 

 
𝑐(𝑛) = 2√

𝒖(𝑛)𝑇
𝒌(𝑛)𝒖(𝑛)

𝒖(𝑛)𝑇
𝒖(𝑛)

 (79) 

With 𝒌(𝑛) as the diagonal stiffness matrix in the local coordinate system at the nth iteration, given 

as Eq. (80). 

 
𝒌𝑖𝑖

(𝑛)
= −

𝑭𝑖
(𝑛)

− 𝑭𝑖
(𝑛−1)

𝐃iiΔ𝑡𝒖̇𝑖
(𝑛−

1
2

)
 (80) 
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Rayleigh’s quotient is only an approximation of the lowest system frequency as the lowest 

frequency of the system at equilibrium is not known. This will lead the overdamping or 

underdamping depending on the overestimation or underestimation of the damping coefficient. In 

other words, Eq. (79) gives the critical damping coefficient of the 𝑛𝑡ℎ iteration. The cyclic update 

of the coefficient ensures that the damping coefficient reaches its optimum value, and therefore 

ensuring that the equation converges faster to its equilibrium state [129]. 

 

3.3.  Volume correction factor 
A volume correction factor is introduced into the peridynamic equations by Silling [130] which 

corrects the volume of neighboring materials depending on their distance and the grid used to 

discretize the body. In a uniform grid, with a constant space of 𝛥𝑥 between each material point 

and horizon size of 𝛿 =  3𝛥𝑥, the volume of certain neighbors will only be partially inside the 

horizon (See Figure 3.1 ). The distance of neighbors is given by 𝝃𝒊𝒋. For any neighbor that falls in 

the range of |𝝃𝑖𝑗|  <  𝛿 –  𝑟, with 𝑟 =  2𝛥𝑥, the entire volume lies inside the horizon δ and 

therefore the volume correction factor 𝜐𝑗  =  1. For neighbors with their distance between 𝛿 –  𝑟 <

 |𝝃𝑖𝑗| <  𝛿 , 𝜐𝑗 is defined in Eq. (81). 

 
𝜐𝑗 =

𝛿 + 𝑟 − |𝝃𝑖𝑗|

2𝑟
 (81) 

The volume correction factor thus linearly varies between 1 and ½ depending on |𝝃𝑖𝑗 |. The 

equation of motion is thus updated into Eq. (82). 

 𝜌𝒖̈(𝒙𝑖, 𝑡) = ∑ 𝑻[𝒙𝑖, 𝑡]〈𝒙𝑗 − 𝒙𝑖〉

𝒙𝑗∈𝐻(𝒙𝑖)

υjΔ𝑉𝒙𝑗
− ∑ 𝑻[𝒙𝑘, 𝑡]〈𝒙𝑖 − 𝒙𝑘〉υkΔ𝑉𝒙𝑘

𝒙𝑘∈𝐻′(𝒙𝑖)

+ 𝒃(𝒙𝑖, 𝑡) 

(82) 

3.4. Surface effects 
The implicit assumption in calculating peridynamic parameters such as force density and dilatation 

term is that the material point horizon does not extend the boundaries of the domain. A correction 

is thus needed for the material points that are near or at free surfaces. 

This correction is heavily dependent on the shape of the free surface and therefore it is not possible 

to analytically find a correction factor for all the arbitrary surfaces. Madenci [40] used the terms 
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dilatation correction factor and distortion correction factors as surface correction factors. He 

approximated the dilatation correction factor as the dilatation term ratio between peridynamics and 

continuum mechanics and the distortion correction factor as the strain energy ratio between 

peridynamic and continuum mechanics. The surface correction factors are thus dependent on the 

problem parameters and loading conditions and must be recalculated given a different problem. 

A simple uniaxial stretch along one of the coordinate axes could be used to derive the peridynamic 

dilatation term 𝜃𝑃𝐷. In the case of a homogenous uniform body, the loading condition can be 

expressed as in Eq. (83). 

 
𝒖1

𝑇(𝒙) = {
𝜕𝑢1

𝜕𝑥1
𝑥1,   0}   (83) 

 The dilatation term 𝜃𝑃𝐷 is calculated using Eq. (71). In continuum mechanics, the corresponding 

dilatation term is uniform throughout the body and is given by Eq. (84). 

 
𝜃𝐶𝑀,𝑖 = 𝜀 =

𝜕𝑢1

𝜕𝑥1
 (84) 

Figure 3.1. Volume correction factor is required for all the neighbors outside the circle with 

radius 𝑟 but inside the horizon of 𝒙𝑖 (i.e. the green cells). 
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Choosing a constant 𝜕𝑢1

𝜕𝑥1
= 𝜁, the dilatation correction factor for material point 𝒙𝑖 is calculated by 

Eq. (85). 

 
𝐺𝑑,𝑖 =

𝜃𝐶𝑀

𝜃𝑃𝐷
=

𝜁

𝑑𝛿 ∑ 𝑠𝑖𝑗
(𝑛)

Λ𝑖𝑗
(n)

𝑉𝑗
⬚
𝒙𝑗∈𝐻(𝒙𝑖)

 (85) 

The same argument is made for strain-energy-density 𝑊. In continuum mechanics, the strain 

energy density at point 𝒙𝑖 is defined by Eq. (86). 

 
𝑊𝐶𝑀,𝑖 = (

𝐸

2(1 − 𝜈2)
− 𝛼) 𝜁2 (86) 

In peridynamics, the strain energy density for material point 𝒙𝑖 is given by Eq. (87) 

 𝑊𝑃𝐷,𝑖 = 𝛼𝜃𝑖
2 + 𝛽𝛿 ∑ |𝝃𝑖𝑗|𝑠𝑖𝑗

2 𝑉𝑗

𝒙𝑗∈𝐻(𝒙𝑖)

  (87) 

With 𝛼 and 𝛽 defined in Eq. (33). The distortion correction factor 𝐺𝑏 is thus defined by Eq. (88) 

 

𝐺𝑏,𝑖 =
𝑊𝐶𝑀,𝑖

𝑊𝑃𝐷,𝑖
=

(
𝐸

2(1 − 𝜈2)
− 𝛼) 𝜁2

𝛼𝜃𝑖
2 + 𝛽𝛿 ∑ |𝝃𝑖𝑗|𝑠𝑖𝑗

2 𝑉𝑗𝒙𝑗∈𝐻(𝒙𝑖)

 (88) 

 

In most cases, the 𝑊 and 𝜃 of two neighbors are not equal. Therefore, unequal correction factors 

are derived for a pair of neighbors. To utilize the correction factor when discussing the interaction 

of two material points 𝒙𝑖 and 𝒙𝑗, the mean value can be used as defined in Eq. (89) 

 
𝐺̅𝑑,𝑖,𝑗 =

𝐺𝑑,𝑖 + 𝐺𝑑,𝑗

2
,     𝐺̅𝑏,𝑖,𝑗 =

𝐺𝑏,𝑖 + 𝐺𝑏,𝑗

2
  (89) 

 

After considering the surface effect for correction, the 𝑊 and 𝜃 are redefined into Eq. (90) and Eq. 

(91), respectively. 

 
𝜃𝑖 = 𝑑𝛿 ∑ 𝐺̅𝑑,𝑖,𝑗𝑠𝑖𝑗

⬚Λ𝑖𝑗
⬚𝑉𝑗

⬚

𝒙𝑗∈𝐻(𝒙𝑖)

 (90) 
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 𝑊𝑃𝐷,𝑖 = 𝛼𝜃𝑖
2 + 𝛽𝛿 ∑ 𝐺̅𝑏,𝑖,𝑗|𝝃𝑖𝑗|𝑠𝑖𝑗

2 𝑉𝑗

𝒙𝑗∈𝐻(𝒙𝑖)

  (91) 

 

3.5. Selecting horizon size 

In single-horizon peridynamics, given a uniform grid, the horizon size can be assumed to be 𝛿 =

 3𝛥𝑥, with 𝛥𝑥 as the spacing between each material point. This horizon size value was first 

suggested by Silling and Askari [123] in bond-based peridynamics. Given a uniform grid and no 

damage in the peridynamical body, Wang and Oterkus [131] showed that a minimum of 𝛿 =  3𝛥𝑥 

leads to accurate results compared to conventional FEM results. Any increase in the value of 

horizon size will lead to more accuracy but at the same time to more computation time. It is also 

shown that in a DH-PD, the minimum of 𝛿 = 3𝛥𝑥 is necessary for acceptable accuracy for both 

subdomains of different horizon sizes [131]. 

3.6. Neighbor searching algorithms 
An algorithm needs to be implemented to find the neighbors of each material point. An exhaustive 

algorithm can be used in which the distance of each material point pair is measured and compared 

to the horizon size 𝛿. 

Algorithm 1 Exhaustive neighbor search 

1: 𝒇𝒐𝒓 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 1: 𝑁 𝒅𝒐 

2:    𝒇𝒐𝒓 𝑗 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 1: 𝑁 𝒂𝒏𝒅 𝑗 ≠  𝑖 𝒅𝒐 

3:          𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 |𝝃𝑖𝑗| 

4:          𝒊𝒇 |𝝃𝑖𝑗|  ≤  𝛿(𝒙𝑖) 𝒅𝒐 

5:               𝑎𝑑𝑑 𝒙𝑗 𝑡𝑜 𝐻(𝒙𝑖) 

6:          𝒆𝒏𝒅 𝒊𝒇 

7:     𝒆𝒏𝒅 𝒇𝒐𝒓 

8: 𝒆𝒏𝒅 𝒇𝒐𝒓 

 

With 𝑁 as the number of material points used in for discretization. With the time complexity of 

𝑂(𝑁2), the exhaustive neighbor search algorithm is not efficient. This time complexity order 
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means that as the number of 𝑁 increases, the time required to find neighbors grows quadratically. 

If one has a large number of material points, this algorithm becomes computationally expensive. 

The search for neighbors can be optimized by limiting the search only to an area in the vicinity of 

the material point under investigation. This method, called “Regional Neighbor Search”, is the 

neighbor search algorithm that is implemented and utilized in this research instead of the 

exhaustive method. In this method, the body is separated into blocks of material points. The search 

for potential neighbors is limited to the block containing the material point, called the ‘home 

block’, and the adjacent blocks, depending on the coordinates of the material point. Each block is 

further divided into regions called ‘E’, ‘NE’, ‘N’, ‘NW’, ‘W’, ‘SW’, ‘S’, and ‘C’, which are 

demonstrated in Figure 3.2. Depending on which region the material point falls into, closest 

adjacent blocks will be included in the search for neighbors. The regions ‘W’, ‘E’, ‘N’, and ‘S’ 

each have a width of 𝛿(𝒙𝑖), meaning that any material point that falls into the center of the block 

Figure 3.2. Schematics of regional neighbor search algorithm 
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‘C’ cannot have any neighbors outside of its home block. If the material point falls into the side 

regions, two blocks will be searched, the home block and the adjacent block which shares the 

corresponding edge. If the material point belongs to the corner regions (‘NE’, ‘NW’, ‘SE’, ‘SW’), 

four blocks are searched: the home block and the other three blocks which share the corresponding 

corner. In the example of Figure 3.2, if a material point falls into region ‘NE’ of its home block 

(the yellow block), the search for its neighbors is focused on Blocks 1, 2, 3, and the home block 

(i.e. the green blocks plus the yellow block). If on the other hand, the material point falls into 

region ‘W’ of its home block, the search for neighbors is focused on the adjacent block to the left 

(Block 4) and the home block. Finally, the search for neighbors for any material point that falls 

into region ‘C’ is limited only to the home block itself.  The blocks are square in shape as they best 

fit the geometry of the problem, but the shape can be arbitrary. A pseudo-code for Regional 

Neighbor Search algorithm can be seen in Algorithm 2 table. 

Algorithm 2 Regional Neighbor Search 

1: 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑏𝑜𝑑𝑦 𝑖𝑛𝑡𝑜 𝑏𝑙𝑜𝑐𝑘𝑠 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑏𝑙𝑜𝑐𝑘 𝑤𝑖𝑑𝑡ℎ 𝑎𝑛𝑑 𝑏𝑙𝑜𝑐𝑘 𝑙𝑒𝑛𝑔𝑡ℎ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 

2:    𝒇𝒐𝒓 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 1: 𝑁 𝒅𝒐 

3:   ℎ𝑜𝑚𝑒𝐵𝑙𝑜𝑐𝑘  𝑏𝑙𝑜𝑐𝑘 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝒙𝑖 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝒙𝑖 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 

4:      𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝒙𝑖 𝑎𝑛𝑑 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 ℎ𝑜𝑚𝑒𝐵𝑙𝑜𝑐𝑘 

5:      𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 𝑓𝑜𝑟 𝒙𝑖 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝑠𝑡𝑒𝑝 4 

6:      𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝐵𝑙𝑜𝑐𝑘𝑠   𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑏𝑙𝑜𝑐𝑘𝑠 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝒙𝑖 𝑟𝑒𝑔𝑖𝑜𝑛 𝑎𝑛𝑑 ℎ𝑜𝑚𝑒𝐵𝑙𝑜𝑐𝑘 

7:    𝒇𝒐𝒓 𝒙𝒋 𝑖𝑛 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒{ℎ𝑜𝑚𝑒𝐵𝑙𝑜𝑐𝑘, 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝐵𝑙𝑜𝑐𝑘𝑠} 𝒂𝒏𝒅 𝑗 ≠  𝑖 𝒅𝒐 

8:          𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 |𝜉𝑖𝑗| 

9:          𝒊𝒇 |𝜉𝑖𝑗|  ≤  𝛿(𝒙𝑖) 𝒅𝒐 

10:               𝑎𝑑𝑑 𝒙𝑗 𝑡𝑜 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝒙𝑖) 𝑎𝑟𝑟𝑎𝑦 

11:          𝒆𝒏𝒅 𝒊𝒇 

12:     𝒆𝒏𝒅 𝒇𝒐𝒓 

13: 𝒆𝒏𝒅 𝒇𝒐𝒓 

 

3.7.  Initial and boundary conditions 
The peridynamic equation of motion is a complex partial differential equation with time and space 

derivatives. Notably, it doesn't rely on simplifications involving kinematic linearity, making it 
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well-suited for analyzing geometrically nonlinear scenarios. This equation encompasses both time 

derivatives and spatial integration but does not involve spatial derivatives related to displacements. 

Consequently, it remains applicable universally, irrespective of the presence or absence of 

displacement discontinuities within the material. Given that peridynamics equations are expressed 

as integro-differential equations, the approach for implementing boundary conditions in the 

peridynamics framework differs from that in the classical continuum mechanics. In peridynamics, 

boundary conditions are imposed by defining regions in space, and these regions are occasionally 

constructed as artificial or imaginary areas extending beyond the actual solution domain. These 

regions are called fictitious regions, ℛ𝑓, and are outside the main solution body 𝔅 shown in Figure 

3.3. The effectiveness of this technique was shown by Macek and Silling [93] who suggested a 

fictitious boundary layer with an outward dimension of at least the size of the horizon 𝛿. The 

minimum size of 𝛿 is required so that the boundary conditions are successfully implemented upon 

the solution body. 

3.7.1. Displacement and velocity constraints 

Given a prescribed displacement vector 𝑼0, displacement constraints can be defined by Eq. (92). 

Figure 3.3. Constraints and external loads are required to be applied to boundary regions, 𝑅𝑓, 

with the outward dimension size of 𝛿.  
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 𝒖(𝒙, 𝑡) = 𝑼0, 𝑓𝑜𝑟 𝒙 ∈  ℛf (92) 

A smoother transitory constraint can be enforced in the form of Eq. (93). 

 
𝒖(𝒙, 𝑡) =  {

𝑼0𝑡

𝑡0
,   𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 𝑡0

𝑼0, 𝑓𝑜𝑟 𝑡0 ≤ 𝑡          

 (93) 

A velocity constraint can instead be prescribed given an initial velocity vector 𝑽(𝑡) by Eq. (94). 

 𝒖̇(𝒙, 𝑡) = 𝑽(𝑡), 𝑓𝑜𝑟 𝒙 ∈  ℛf (94) 

The same step function as in Eq. (93) could be used to avoid an abrupt velocity introduction as in 

Eq. (95). 

 
𝒖̇(𝒙, 𝑡) =  {

𝑽(𝑡)𝑡

𝑡0
, 𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 𝑡0

𝑽(𝑡), 𝑓𝑜𝑟 𝑡0 ≤ 𝑡

 (95) 

3.7.2. External loads 
The external forces can be introduced in a peridynamical model by applying an appropriate body 

force to the material points at the desired boundaries. In the case of a distributed pressure, 𝒑(𝒙, 𝑡), 

the body force density vector is expressed by Eq. (96). 

 
𝒃(𝒙, 𝑡) =  −

1

 Δ
𝑝(𝒙, 𝑡)𝒏 (96) 

 With 𝛥 as a boundary dimension size which is usually set to be the horizon size 𝛿. 

Figure 3.4 shows the flowchart which summarizes the entire process of numerically solving a DH-

PD model developed to solve for displacement and stress components. Initial geometrical and 

peridynamic parameters are inputs of the algorithm. These include desired peridynamic horizon 

size, selection of areas of interest, dimension of the body 𝔅, etc. The discretization is then 

commenced coordinates are assigned to each material point. Next, Regional Neighbor Search 

algorithm finds and assigns neighbors of each material point before the algorithm enters the 

iterative process of solving the peridynamic equation of motion. Note that certain parameters such 

as surface correction factor and dilatation term will have to be recalculated as per cycle or time 

step 𝑛. The stability of the solution is tested with the rate of change in displacement calculation. 

The algorithm stops once the difference between displacements of two cycles is below a threshold 
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𝜖 set by the user. In other words, the iteration stops if ||𝒖(𝑛)(𝒙, 𝑡) − 𝒖(𝑛−1)(𝒙, 𝑡)|| < 𝜖. The final 

step is to calculate stress components with the stable solution parameters. 
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Figure 3.4. Flowchart of the DH-PD model progression 
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3.8. Summary of benchmark problems  
The developed dual horizon peridynamic model is tested on the benchmark problem of a steel plate 

with a central hole under uniaxial tension. Several nomenclatures need to be defined in order to 

explain the nature of the following experiments. First, the concept of ‘subdomain’ is defined, 

which is the collective of all material points that share one horizon size. Given the usage of two 

horizon sizes in the current DH-PD model, the plate is separated into two subdomains, the remote 

subdomain 𝛤𝑟 with the horizon size 𝛿𝑟, and the local subdomain 𝛤𝑙 with the horizon size 𝛿𝑙. The 

local subdomain encompasses the central hole and stretches across the width of the plate. Any 

material point outside of this area is considered ‘remote’ and belongs to the remote subdomain 𝛤𝑟. 

Essentially in the case of these benchmark problems, all the areas of interest, including the high 

stress areas are in the local subdomain 𝛤𝑙 (See Figure 3.5). The rest of the body is encompassed by 

the remote subdomain 𝛤𝑟. Throughout a simulation, each subdomain can be assigned a horizon 

size which in return defines the distance of material points 𝛥𝑥 in that subdomain. Since 𝛿 and 𝛥𝑥 

are linearly correlated (𝛿 =  3𝛥𝑥), assigning a small horizon size for a subdomain leads to a 

decrease in 𝛥𝑥 and the subsequent increase in the number of subdomain material points (i.e. small 

horizon size equates to higher material point density in a subdomain). 

Assigned horizon sizes remain constant per subdomain. The ratio of the subdomain horizon sizes, 

called horizon ratio 𝜙, is an important hyperparameter whose effect on the accuracy and efficiency 

of the model is studied in Section 4.2, and is defined in Eq. (97). 

 
𝜙 ≔

𝛿𝑟

 𝛿𝑙
> 1 (97) 

Because the local subdomain 𝛤𝑙 encompasses the high-stress locations, it is paramount that a finer 

discretization be used in 𝛤𝑙. This translates to a small horizon size 𝛿𝑙. On the other hand, material 

points in subdomain 𝛤𝑟 are considered remote in terms of distance from the high-stress locations, 

therefore a coarser discretization and a larger 𝛿𝑟 may be used. The horizon ratio 𝜙, defined as 𝛿𝑟 

divided by 𝛿𝑙, is thus always larger than 1 (Eq. (97)). 

The discretized plate is of the width and length of 0.5m. The Young’s modulus and Poisson’s ratio 

are 200GPa and 0.3, respectively. The central hole of the plate is of the elliptical shape and is 
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denoted by a major radius 𝑟𝑎 and a minor radius 𝑟𝑏. A parameter of interest in the following sections 

in the radius of the vertices on the major axis of the central hole 𝜌 which is calculated by Eq. (98). 

 
𝜌 ≔

𝑟𝑏
2

𝑟𝑎
 (98) 

   

 

  

Figure 3.5. Schematic of the dimensional parameters in the DH-PD model of a steel plate 

with a central hole 
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Chapter 4: 

 

 

4. Results and Discussion 
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FE models are developed to test the validity of the developed peridynamic model. To make the 

two methods comparable, several constraints must be established. The FE model is discretized 

with structured linear quadrilateral elements with nodes corresponding to the material points in 

DH-PD, meaning that for every material point in DH-PD, there is an FE node in the same 

coordinates. In the areas of high curvature near the hole, the mesh shapes are deformed to fit the 

geometry. This is called adaptively refined mesh, which is refining the mesh size in areas prone to 

higher percentage of solution error. The material is homogeneous and linear isotropic, allowing a 

linear relation between displacement and force. The plastic zone near high stress concentration 

areas is assumed to be negligible. 

The mesh element size in FEM corresponds to the cell size in DH-PD. The peridynamic cell size, 

equal to 𝛥𝑥, is measured as the distance of two material points in the peridynamic model. FEMs 

should thus be developed with quadrilateral mesh elements of average size of Δ𝑥. The cell size is 

inversely related to the subdomain material point density. A material points linear density of 𝐷𝑙    =

 800𝑚−1 corresponds to 𝛥𝑥𝑙  =  1.25𝑚𝑚 (see Figure 4.1). 

4.1. Impact of horizon size on displacement and stress accuracy 

The steel plate with central hole of major radius 𝑟𝑎 =  5𝑐𝑚 and minor radius 𝑟𝑏 =  0.6𝑐𝑚  is  

Figure 4.1. Close up schematic of the linear quadrilateral structured mesh used in FEM 

corresponding to peridynamic local horizon size of 𝛿𝑙  =  3.45𝑚𝑚 and element size 

𝛥𝑥 =  1.25𝑚𝑚 
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Figure 4.2. Three modes of discretization with a constant horizon ratio of  𝜙 =  2 and varying 

remote horizon size of (a) 𝛿𝑟 =  7.5𝑚𝑚, (b) 𝛿𝑟 =  3.75𝑚𝑚, and (c) 𝛿𝑟 =  1.9𝑚𝑚. 

discretized into three modes. The remote horizon size is selected as 𝛿𝑟 =  7.5𝑚𝑚, 𝛿𝑟  =  3.75𝑚𝑚, 

and 𝛿𝑟 =  1.9𝑚𝑚 per mode shown in Figure 4.2. The remote horizon size 𝛿𝑟 =  7.5𝑚𝑚 

corresponds to a material point linear density of 200 material points per meter. Dividing the remote 

horizon size by half will increase the linear density of material points in Figure 4.2.(b) to 400 

material points per meter. Lastly, the remote horizon size 𝛿𝑟 =  1.9𝑚𝑚 results in Figure 4.2.(c) in 

a linear density of 800 material points per meter in remote subdomains. The horizon sizes are thus 

selected to progressively double the linear density of material points from one discretization mode 

to another. The progressive increase of material points’ linear density from one mode to another 

allows the observing of the influence of the number of material points on accuracy. The horizon 

ratio 𝜙 is kept constant in all three modes and is 𝜙 =  2. This means that at the local subdomains, 

the density of material points is twice the density of material points at the remote subdomain in 

each mode. An increase in the number of material points around the curvature of the central hole 

is required to capture the contour of the elliptical-shaped hole more accurately. Table 4.1 

summarizes the parameters used in these discretization modes. 
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Table 4.1. Discretization parameters of the three modes used to study the impact of horizon size 

on displacement and stress accuracy. 

 𝛿𝑟(𝑚𝑚) 𝛿𝑙(𝑚𝑚) 𝜙 Δ𝑥𝑟(𝑚𝑚) Density in 

𝛤𝑟(𝑚−1) 

Δ𝑥𝑙(𝑚𝑚) Density 

in 

𝛤𝑙(𝑚−1) 

Mode (a) 7.5 3.75 2 2.5 200 1.25 400 

Mode (b) 3.75 1.9 2 1.25 400 0.63 800 

Mode (c) 1.9 0.95 2 0.63 800 0.32 1600 

 

Figure 4.3 and Figure 4.4 provide a visual comparison of the contours depicting displacements 𝑢𝑥 

and 𝑢𝑦 between the peridynamic approach and FEM. Notably, these figures depict the undeformed 

configuration. The outcomes reveal a consistent agreement between the calculated displacements 

in all three modes of discretization and their respective counterparts in FEM. Moreover, the results 

across the three modes exhibit close conformity, suggesting that the increase in material point 

density has a minimal impact on the accuracy of displacement calculations. Because of this, the 

minimum material point density, that is, the mode with the largest horizon size of 𝛿𝑟 =  7.5𝑚𝑚 

can be ruled as sufficient for this plate geometry. Keep in mind that this experiment does not prove 

that any horizon size is acceptable for this geometry. As will be shown in Section 4.2, a maximum 

horizon size exists, above which the model becomes unstable. 
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Figure 4.3. Displacement 𝑢𝑥 (unit: mm) compared between DH-PD and its FEM counterpart for 

(a) 𝛿𝑟 =  7.5𝑚𝑚, (b) 𝛿𝑟 =  3.75𝑚𝑚, and (c) 𝛿𝑟 =  1.9𝑚𝑚 given 𝜙 =  2 
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Figure 4.4. Displacement 𝑢𝑦 (unit: mm) compared between DH-PD and its FEM counterpart for 

(a) 𝛿𝑟 =  7.5𝑚𝑚, (b) 𝛿𝑟 =  3.75𝑚𝑚, and (c) 𝛿𝑟 =  1.9𝑚𝑚 given 𝜙 =  2. 



61 
 

Figure 4.5 captures the displacement 𝑢𝑥 along the line 𝑦 = 0. The distance 𝑥 on the line 𝑦 = 0 is 

normalized with respect to the vertex radius of the central hole 𝜌. This allows a better 

understanding of displacement or stress component behavior in terms of distance relative to the 

curvature of the central hole. Equation (99) shows the norm-1 error equation used to calculate the 

difference between DH-PD and FEM results. 

 
𝑒 =

|𝑢𝑃𝐷 − 𝑢𝐹𝐸𝑀|

|𝑢𝐹𝐸𝑀|
 (99) 

   

As summarized in Table 4.2, the average norm-1 error percentages in measuring 𝑢𝑥 for 𝛿𝑟 =

 7.5𝑚𝑚, 𝛿𝑟 =  3.75𝑚𝑚, and 𝛿𝑟 =  1.88𝑚𝑚 are 𝑒 =  2.3%, 𝑒 =  4.5% and 𝑒 =  2.8%, 

respectively. At the distances of 𝑥/𝜌 <  50, the highest accuracy belongs to 𝛿 = 1.88𝑚𝑚 with 

the error percentage of 𝑒 =  0.1%, matching the FEM results exactly. With further distance from 

the hole tip, the model with 𝛿𝑟 =  7.5𝑚𝑚 converges with FEM results with an error percentage of 

Figure 4.5. Comparison of 𝑢𝑥 (unit:mm) on the line 𝑦 =  0 at distance 𝑥 normalized by 𝜌 for 

𝛿𝑟 =  7.5𝑚𝑚, 𝛿𝑟 =  3.75𝑚𝑚, 𝛿𝑟 =  1.88𝑚𝑚 and FEM. 
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𝑒 =  0.3%. This suggests that at the vicinity of the hole, finer discretization is desired, whereas 

coarser discretization can be used further away from the crack tip. Due to the symmetry of the 

benchmark problem and the experiment done under elastic conditions, the displacement 𝑢𝑦 along 

the line 𝑦 = 0 is zero across all three peridynamic modes and FEM. 
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Figure 4.6. Normalized  𝜎𝑦𝑦 with respect to the uniaxial tension 𝑆 (unit: Pa / Pa) compared 
between DH-PD and its FEM counterpart for (a) 𝛿𝑟 =  7.5𝑚𝑚, (b) 𝛿𝑟 =  3.75𝑚𝑚, and (c) 𝛿𝑟 =

 1.9𝑚𝑚 given 𝜙 =  2. 
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Table 4.2. The DH-PD total 𝑢𝑥 norm-1 error percentage and average norm-1 error percentage for 

distances 𝑥/𝜌 <  50 and 𝑥/𝜌 >  50 given a constant 𝜙 =  2 and varying 𝛿𝑟 configurations. 

 Total norm-1 error  Norm-1 error: 𝑥/𝜌 <

 50 

Norm-1 error: 𝑥/𝜌 >

 50 

𝛿𝑟 =  7.5𝑚𝑚 2.3% 9.2% 0.3% 

𝛿𝑟 =  3.75𝑚𝑚 4.5% 6.5% 4.0% 

𝛿𝑟 =  1.88𝑚𝑚 2.8% 0.1% 3.5% 

 

Figure 4.6 compares the stress component 𝜎𝑦𝑦 contours in the peridynamic approach and FEM. 

The stress is normalized with respect to the uniaxial tension 𝑆 =  10𝑀𝑃𝑎. In comparison to FEM, 

stress contour can be captured accurately in DH-PD. The maximum value for 𝜎𝑦𝑦 occurs at the 

hole tip. 

Figure 4.7 compares 𝜎𝑦𝑦 along the line 𝑦 =  0, with the coordinate origin resting at the hole tip. 

The distance along the line 𝑦 =  0 is normalized with respect to the tip curvature 𝜌. Here again 

the 𝜎𝑦𝑦 is normalized by the uniaxial tension 𝑆. Given a constant geometry, with the decrease in 

𝛿, the maximum 𝜎𝑦𝑦 measured in DH-PD increases. The increase is attributed to the fact that with 

more material points at the vicinity of the hole tip, the high stress concentration occurring can 

better be captured. With 𝛿 converging to zero, the plot converges towards the analytical solution. 

Figure 4.8 compares DH-PD measured stress component 𝜎𝑦𝑦  along the line 𝑦 =  0 of each 

discretization mode with their FEM counterpart. As was mentioned in Section 3.8, for each 

discretization mode, FEM mesh is adjusted so that each node in FEM corresponds to a material 

point in DH-PD, and with elements corresponding to a material point cell, both in size, shape, and 

location. Figure 4.8 demonstrates that with comparable meshing and discretization in FEM and 

DH-PD, the results of DH-PD is close to their FEM counterparts. At the distance of 𝑥/𝜌 =  5 (i.e. 

𝑥 =  4𝑚𝑚 given 𝜌 =  0.78𝑚𝑚) stress plots of FEM and DH-PD converge for 𝛿𝑟 =  1.88𝑚𝑚 

and 𝛿𝑟 =  3.75𝑚𝑚. In 𝛿𝑟 =  7.5𝑚𝑚, there is a discrepancy between FEM and DH-PD up to 

𝑥/𝜌 =  15 , followed by convergence. 
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Figure 4.7. Comparison of normalized 𝜎𝑦𝑦 (unit:mm) on the line 𝑦 =  0 at distance 𝑥 normalized 

by  𝜌 for 𝛿𝑟 =  7.5𝑚𝑚, 𝛿𝑟 =  3.75𝑚𝑚, and 𝛿𝑟 =  1.88𝑚𝑚. 

Figure 4.9 shows the norm-1 error percentage in 𝜎𝑦𝑦 measurement along the line 𝑦 =  0. The 

distance along the line 𝑦 =  0 is normalized with respect to the horizon size 𝛿𝑙. In all the three 

modes, there is a higher error rate for material points right at the tip of the hole followed by a sharp 

error rate drop to below 5%. Similarly, there is a spike in error at the end of the path, by the edge 

of the plate. In all the modes, the sharp spikes in error rate occurs for the material points whose 

circular horizon overreaches the boundaries of the plate. This is caused by material points near the 

edges of the plate whose horizons are not symmetrical. 

The abovementioned phenomenon, called the “skin effect”, was originally reported by Ha and 

Bobaru [60] . The skin effect occurs because it is required that the horizon be symmetrical. In other 

words, the balance laws are not violated if the material point horizon is well within the boundaries 

of the body. The skin effect is similar to a “softening” of the material around the boundaries, that 
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is, its effect is similar to a reduction in Young’s modulus and Poisson’s ratio. For a given 

displacement, lower stress is calculated using Hook’s law for a material that has a lower  

 

Figure 4.8. Inspection of the degree of agreement between DH-PD and its FEM counterpart 

calculation of normalized 𝜎𝑦𝑦 along the line y = 0 for a) 𝛿𝑟 =  7.5𝑚𝑚, b) 𝛿𝑟 =  3.75𝑚𝑚, and c) 

𝛿𝑟 =  1.88𝑚𝑚. 

Young’s modulus. This is the main explanation behind the lower stress values calculated for 
material points adjacent to the hole tip. 

Multitude techniques are available to alleviate the skin effect. In the case of applying the boundary 

conditions, which do not occur naturally in nonlocal theories such as peridynamics, a fictitious 

layer can be utilized, mentioned in Section 3.7. The softened regions caused by skin effect in 

peridynamics are of the thickness of 𝛿, therefore a fictitious layer of minimum thickness 𝛿 can be 

used in locations where skin effect occurs [132, 133, 134]. Another method is to modify the micro-

modulus formulation at the boundaries, as the skin effect is the cause of using the same micro-

modulus as those produced for the bulk nodes [60]. The modification of the micro-modulus 
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formulation at the boundaries reduces the skin effect. Note that since the skin effect occurs at a 

maximum thickness of 𝛿 around the boundaries, the smaller the horizon is, the smaller the region 

affected by skin effect becomes. The skin effect does not have an overall noticeable effect on 

damage and crack propagation studies as the initiation and crack propagation is dependent on the 

energy available at the vicinity of the crack tip, which is inherently a nonlocal entity and is not 

dependent on a single element or material point. 

 

Figure 4.9. Norm-1 error percentage of normalized 𝜎𝑦𝑦 along line 𝑦 =  0 at a at distance 𝑥 

normalized by  𝛿𝑙 for a) 𝛿𝑟  =  7.5𝑚𝑚, b) 𝛿𝑟  =  3.75𝑚𝑚, and c) 𝛿𝑟  =  1.88𝑚𝑚. 

The peridynamic approach is capable of modelling damage propagation despite the skin effect 

[123, 120]. Moreover, several studies have focused on the calculation of nonlocal J-integral and 

have concluded that the peridynamic J-integral formulation, based either on either displacement 

or stress fields, is accurate within 2% to 5% percentages of error, irrespective of the skin effect 

[135], since the J-integral formulation is based only on the nearest neighboring material points of 

the contour integral [136]. Several trends can be pointed to in Figure 4.9, first, the error drops 
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sharply at the distance of 𝑥/𝛿𝑙  =  1, into a plateau before rising sharply again at the right edge of 

the plate. At the vicinity of the hole tip, the drop becomes sharper as 𝛿𝑙 gets smaller. This means 

that to alleviate the skin effect, a small horizon size should be used around areas where the horizon 

shape may not be symmetrical (e.g. near crack tips, edges, etc.). Secondly, the maximum error 

drops with the decrease of 𝛿𝑙. This means that the discretization mode with the highest density of 

material points is more accurate when compared with its FEM counterpart. Summarized in Table 

4.3, the lowest norm-1 error percentage belongs to 𝛿𝑟  =  1.88𝑚𝑚 mode, with e = 0.8%. The 

lowest error rate for the distance range of 𝑥/𝛿𝑙  <  1 also belongs to mode 𝛿𝑟  =  1.88𝑚𝑚, with e 

= 12%. 

 

Table 4.3. The DH-PD total 𝜎𝑦𝑦 norm-1 error percentage and average norm-1 error percentage 

for distances 𝑥/𝛿𝑙 <  1.  

 𝜎𝑦𝑦 total norm-1 error 𝜎𝑦𝑦 norm-1 error: 𝑥/𝛿𝑙  <  1 

𝛿𝑟 =  7.5𝑚𝑚 4.7% 28.1% 

𝛿𝑟 =  3.75𝑚𝑚 2.3% 15.5% 

𝛿𝑟 =  1.88𝑚𝑚 0.8% 12% 

 

4.2. Impact of horizon ratio on displacement and stress accuracy  

The optimization of the horizon size ratio 𝜙 is studied in this section. Given the formulation of this 

ratio in Eq. (97), the increase in 𝜙, given that 𝛿𝑙 is constant, results in an increase in 𝛿𝑟, which is 

desirable in terms of computation efficiency. 

This section focuses on investigating how an important parameter, 𝜙, influences the stability of 

the solution for a steel plate containing a central hole. This steel plate has specific geometric 

characteristics: it has a major radius, denoted as 𝑟𝑎 , equal to 5 cm and a minor radius, denoted as 

𝑟𝑏 , equal to 0.5 centimeters. To conduct this study, the plate is divided into three different modes 

or configurations for analysis. 

In all three modes, the local horizon size, 𝛿𝑙, remains constant at 1.88 mm. What varies among 

these modes is the value of the parameter 𝜙, which is set at three different magnitudes: 2, 4, and 
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8. The discretization or division of the steel plate for analysis is shown in Figure 4.10, where the 

differences in discretization between these three modes are visually compared. It's important to 

note that with the given values of 𝜙 and 𝛿𝑙, the remote horizon, denoted as 𝛿𝑟, is determined to be 

3.75 mm, 7.5 mm, and 15 mm, respectively, for the three modes. 

To assess the accuracy of the analysis, Figure 4.11 and Figure 4.12 present a comparison of the 

displacement components, 𝑢𝑥 and 𝑢𝑦 , as calculated by the DH-PD approach, against the Finite 

Element Method (FEM) solution. In the FEM solution, a mesh is used with elements of size equal 

to the material point cell size, 𝛥𝑥, which is equal to 1.88/3 mm, corresponding to 𝛿𝑙  =  1.88 mm. 

The primary objective here is to compare the results obtained from the DH-PD modes among 

themselves and with the FEM solution. Since the discretization is the same for the three modes in 

the local subdomain and is only different in the remote areas, only one FEM model is developed 

as a reference point, with a uniform mesh density across the area of the plate corresponding to the 

material point density of the local subdomain with 𝛿𝑙  =  1.88𝑚𝑚 

The figures demonstrate that the displacement contour is accurately captured by the modes with 𝜙 

equal to 2 and 4, However, the third mode, which corresponds to 𝜙 =  8, fails to accurately 

represent the displacement contours. This leads to a possible conclusion that there is a maximum 

magnitude allowable for 𝜙, which is a hyperparameter controlling the disparity of material point 

density between the two subdomains 𝛤𝑙 and 𝛤𝑟.   

To address this issue and stabilize the model when 𝜙 is set to 8, a specific adjustment is tried. The 

width of the local subdomain, denoted as 𝛤𝑙, is increased by 200%. This revised discretization 

ensures that any material points located on either side of the local subdomain 𝛤𝑙 will not recognize 

each other as neighbors, thus stabilizing the model under these conditions. The comparison is 

shown schematically for a query material. 



70 
 

Figure 4.10. Three modes of discretization with a constant local horizon size of  𝛿𝑙  =  1.88𝑚 and 

varying horizon ratio of (a) 𝜙 =  2, (b) 𝜙 =  4, and (c) 𝜙 =  8. 

 

Figure 4.11. Displacement 𝑢𝑥 (unit: mm) compared between DH-PD and its FEM counterpart for 

(a) 𝜙 =  2, (b) 𝜙 =  4,  (c) 𝜙 =  8 (unstable) and d) FEM, given 𝛿𝑙  =  1.88𝑚𝑚. 
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Figure 4.12. Displacement 𝑢𝑦 (unit: mm) compared between DH-PD and its FEM counterpart for 

(a) 𝜙 =  2, (b) 𝜙 =  4,  (c) 𝜙 =  8  (unstable) and d) FEM, given 𝛿𝑙  =  1.88𝑚𝑚. 
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Figure 4.13. Comparison of 𝑢𝑥 (unit: mm) on the line 𝑦 =  0 at distance 𝑥 normalized by  𝜌 =

0.05𝑐𝑚 for 𝜙 =  2, 𝜙 =  4,  𝜙 =  8  (unstable), 𝜙 =  8 (stable), and FEM. 

 

 

Figure 4.14. The increase in width of the local subdomain stabilizes the DH-PD solution for 𝜙 =

 8 
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Figure 4.15. Displacement field stabilization in (a) 𝑢𝑥, and (b) 𝑢𝑦  (unit: mm) shown for 

configuration 𝜙 =  8 undergoing an increase in width of the local subdomain. 

 

Figure 4.16. Comparison of normalized 𝜎𝑦𝑦 (unit: Pa/Pa) on the line 𝑦 =  0 at distance 𝑥 

normalized by  𝜌 = 0.05𝑐𝑚 for 𝜙 =  2, 𝜙 =  4,  𝜙 =  8  (unstable), 𝜙 =  8 (stable), and FEM. 
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point 𝑥𝑖 in Figure 4.14 which has stabilized the stress and displacement calculation. It appears that 

the width of the local subdomain 𝛤𝑙 should be at least larger than half of the largest horizon size 

used in the model, i.e. the inequality in Eq. (100) 

 
𝑊Γ𝑙

>  
𝑀𝑎𝑥(𝛿(𝑥𝑖))

2
, ∀𝑥𝑖 ∈ 𝔅     (100) 

With the DH-PD approach in this study, the largest horizon size is equal to the remote horizon size 

𝛿𝑟 . The displacement contour of the stabilized mode with 𝜙 =  8 is shown in  Figure 4.15. Figure 

4.14 shows the displacement component 𝑢𝑥 along the line 𝑦 =  0 for the three modes of DH-PD 

and compares with FEM results. The modes 𝜙 =  2, 𝜙 =  4, and the stabilized 𝜙 =  8 all show 

accurate displacement results when compared with FEM. The norm-1 displacement 𝑢𝑥 error 

percentage is demonstrated in Table 4.4. The highest accuracy at distances of 𝑥 / 𝜌 < 50 belongs 

Figure 4.17. Contour of normalized  𝜎𝑦𝑦 with respect to S (unit: Pa/Pa) compared between DH-

PD and its FEM counterpart for (a) 𝜙 =  2, (b) 𝜙 =  4,  (c) 𝜙 =  8  (unstable), d) 𝜙 =  8 (stable) 

and e) FEM, given 𝛿𝑙  =  1.88𝑚𝑚. 
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to mode 𝜙 =  4  with the error rate of 𝑒 =  3.3% . In terms of total norm-1 error, the mode 𝜙 =

 4 again has the lowest error rate. 

Table 4.4. The DH-PD total 𝑢𝑥 norm-1 error percentage and average norm-1 error percentage for 

distances 𝑥/𝜌 <  50 and 𝑥/𝜌 >  50 given a constant 𝛿𝑙  =  1.88𝑚𝑚 and varying 𝜙 

configurations. 

 Total norm-1 error  Norm-1 error: 𝑥/𝜌 <

 50 

Norm-1 error: 𝑥/𝜌 >

 50 

𝜙 = 2 8.1% 7.7% 8.2% 

𝜙 = 4 3.7% 3.3% 3.8% 

𝜙 = 8 (𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒) 28.5% 52.5% 25.0% 

𝜙 = 8 (𝑠𝑡𝑎𝑏𝑙𝑒) 5.7% 4.5% 5.8% 

 

Figure 4.16 shows the comparison of the normalized stress component 𝜎𝑦𝑦 plot along the line 𝑦 =

 0, respectively. Except for the unstable 𝜙 =  8, the other modes closely follow a similar 

trajectory. Like the displacement field, the stabilization of stress calculation depends on the 

satisfaction of Eq. (100). The Average maximum normalized 𝜎𝑦𝑦  with respect to S predicted by 

the three modes is 10. The Maximum normalized  𝜎𝑦𝑦  with respect to S predicted by FEM is 11.8.  

All three stable modes show little variance in accuracy in both the displacement and stress 

components, which leads to the conclusion that as long as Eq. (100) is satisfied, the calculations 

are independent of the magnitude of 𝜙. In other words, the highest magnitude of 𝜙  that satisfy 

Eq. (100) can be used to ensure computational efficiency. 
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Chapter 5: 

 

 

5. Conclusions and recommendations 
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5.1. Conclusion 
An advanced extended dual-horizon peridynamic model has been implemented, drawing 

inspiration from Lehoucq and Silling's work [105] on the SB-PD framework. This model exhibits 

the capability to accurately assess the stress component parallel to the applied load. To achieve 

this, explicit integration techniques were employed to solve the peridynamical equations and 

measure displacement fields. The primary focus was on a well-known benchmark scenario 

involving a 2D steel plate with a central hole subjected to tension. 

To develop the model, the principles of the peridynamic approach is outlined.  

The difference between the dual horizon and single horizon peridynamic as well as modes of 

peridynamic models such as bond-based and state-based peridynamics are summarized in the 

literature review. The methodology involves around developing a dual-horizon peridynamic model 

with implemented volumetric and surface correction factors. To make the peridynamic model 

capable of solving quasi-static problems such as the abovementioned benchmark problem, the 

adaptive dynamic relaxation technique is introduced and implemented. 

The investigation in this study revolves around the impact of two critical factors on the accuracy 

of stress calculation in a DH-PD model: the density of material points and the ratio between the 

peridynamic horizon sizes employed in the model. FEM solution of benchmark problems is 

utilized to test the accuracy of the model. It is shown that the DH-PD displacement components 

match closely with their FEM counterparts. Moreover, the increase in the density of material points 

(i.e. decrease in the horizon size) does not lead to more accuracy in the displacement calculation. 

It is therefore computationally preferable to use the largest horizon size possible for discretization.  

In the calculation of the normal stress component, it is shown that with the decrease in horizon 

size, the model can capture higher stress concentrations. This pattern is similar to that of using 

finer mesh in FEM near areas of high-stress concentration. It is also observed that the decrease in 

horizon size leads to lower error rates. Skin effect is shown to affect the accuracy of stress 

calculation near the boundaries of the plate body. At the boundaries of the solution body, due to 

the horizon of material points becoming asymmetrical, a “softening of the material” effect occurs, 

leading to lower maximum stress calculated in DH-PD near the boundaries. However, the error 

rate is shown to drop drastically to below 5% at a distance of one horizon away from the edges. 
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The effect of the horizon ratio hyperparameter 𝜙 is investigated on stress and displacement 

calculation and their computational efficiency. Given the description of 𝜙, the higher horizon ratio 

is more desirable in terms of time efficiency. It is shown that below a maximum threshold for 𝜙, 

the value of the horizon ratio does not influence the accuracy. However, if the maximum threshold 

is exceeded, a sudden transition from low-density to high-density regions occurs, resulting in 

instability in stress measurements. It is important to note that this critical density ratio is influenced 

by the specific geometric characteristics of the benchmark problem, and its determination often 

necessitates a trial and error approach. An experimental equation is introduced that serves as a rule 

of thumb to find the maximum stable 𝜙 in a two-dimensional quasi-static problem. 

In summary, the effectiveness of the dual-horizon peridynamic model in accurately calculating 

stress components in complex structures is showcased. Furthermore, the importance of tailoring 

the material point density to the specific geometric features of the problem is emphasized, as 

exceeding a critical density ratio can lead to measurement instability in multi-horizon 

peridynamics. 

Some limitations of this model should be mentioned. The experimental nature of the density ratio 

𝜙 makes it difficult to find a 𝜙 suitable for all geometries, therefore the optimum 𝜙 must be found 

by trial and error. As was mentioned, an experimental upper bound for 𝜙 is found for the specific 

benchmark problems studied. Moreover, the computation time rises exponentially with the 

increase of material point density. This is due to the 𝑂(𝑁2) time complexity of the algorithms used 

to calculate peridynamic force densities. Lastly, the current model is limited to calculating the 

normal stress components. However, with given equations for stress calculation in peridynamics, 

it is possible to calculate shear stress components as well. Of course, these additional calculations 

must justify the increase in overall time cost and complexity. 

5.2. Further research and recommendation 
There exist multiple ways to develop more complex models based on the study summarized in this 

dissertation. The model itself can be improved in the following cases: 

• Three-dimensional problems: The model shown in this study was only studied on two-

dimensional benchmark problems. The peridynamic constitutive laws are general in the 
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sense of dimensionality and the principles used here for two-dimensions can easily be 

transformed to be applicable to three-dimensional problems. 

• Adaptive discretization: The discretization shown in this study is done manually by the 

user and the horizon size along with the position of local and remote subdomains is chosen 

based on the user’s judgment. An adaptive discretization technique can be used that similar 

to FEM software such as ABAQUS and ANSYS, can automatically detect areas of interest 

such as highly curved edges or cracks and use higher density of material points at the 

vicinity of those locations. 

• Skin-effect elimination: It is alluded to in this study that there are ways to mitigate the skin-

effect. The recommended approach is to change the micropotential equation for the 

material points at the edges of the plate to eliminate the skin effect. 

• Full stress tensor calculations: The study can be extended to calculate all the components 

of the stress tensor. Care must be taken into the fact that the non-locality of the 

peridynamics forces a new definition of the components of the stress different from the 

differential definition given in continuum mechanics for Cauchy stress tensors. 

Furthermore, the majority of damage analysis done by peridynamics models focuses on the 

definition of stretch parameters in bond-based and state-based peridynamics. Stress calculation 

does not play a role in crack propagation analysis done in the literature. This study can be used 

for stress-based damage and fracture simulation using peridynamics. This includes J-integral 

calculation which relies on the stress contours at the vicinity of a crack tip. 

  



80 
 

 

6. References 
 

[1]  A.-L. Cauchy, Résumé des leçons données à l'École royale polytechnique sur le calcul 

infinitésimal, Paris: Impr. royale, 1823.  

[2]  J. R. Kermode, " Low-speed fracture instabilities in a brittle crystal.," Nature, no. 455, pp. 

1224-1227, 2008.  

[3]  A. J. Pons and A. Karma, "Helical crack-front instability in mixed-mode fracture," 

Nature, no. 464, pp. 85-89, 2010.  

[4]  D. H. Warner, W. A. Curtin and S. Qu, "Rate dependence of crack-tip processes predicts 

twinning trend in f.c.c. metals," Nature Mater, no. 6, pp. 876-881, 2007.  

[5]  M. J. Buchler and H. Gao, "Dynamical fracture instabilities due to local hyperelasticity at 

crack tips," Nature, no. 439, pp. 307-310, 2006.  

[6]  J. Song and W. Curtin, "Atomic mechanism and prediction of hydrogen embrittlement in 

iron," Nature Mater, no. 12, pp. 145-151, 2013.  

[7]  A. Livne, E. Bouchbinder, I. Svetlizky and J. Fineberg, "The near-tip fields of fast 

cracks," Science, no. 327, pp. 1359-1363, 2010.  

[8]  R. K. Nalla, J. H. Kinney and R. O. Richie, "Mechanistic fracture criteria for the failure of 

human cortical bone," Nature Mater, no. 2, pp. 164-168, 2003.  

[9]  Z. P. Bazant, "Concrete fracture models: testing and practice," Eng. Frac. Mech., no. 69, 

pp. 165-205, 2002.  

[10]  P. Ehrhart, "Properties and interactions of atomic defects in metals and alloys," Berlin, 

Springer, 2013, p. 88. 



81 
 

[11]  R. W. Siegel, "Atomic defects and diffusion in metals," Yamada conference on point 

defects and defect interactions in metals, Kyoto, 1981. 

[12]  E. Emmrich and D. Puhst, "A short note on modeling damage in peridynamics," J 

Elasticity, vol. 123, no. 2, pp. 245-252, 2016.  

[13]  S. A. Silling, "Stability of peridynamic correspondence material models and their particle 

discretizations," Comput. Methods Appl. Mech. Eng., vol. 322, pp. 42-57, 2017.  

[14]  A. A. Griffith, "The phenomena of rupture and flow in solids," Philos. Trans. R. Soc., vol. 

221, pp. 163-198, 1921.  

[15]  F. Z. Li, C. F. Shih and A. Needleman, "A comparison of methods for calculating energy 

release rates," Engineering Fracture Mechanics, vol. 21, no. 2, pp. 405-421, 1985.  

[16]  B. Budiansky and J. R. Rice, "onservation Laws and Energy-Release Rates," J. Appl. 

Mech., vol. 40, no. 1, pp. 201-203, 1973.  

[17]  J. L. González-Velázquez, "Linear elastic fracture mechanics," in A Practical Approach 

to Fracture Mechanics, Elsevier, 2021, pp. 35-74. 

[18]  R. W. Hertzberg, R. P. Vinci and J. L. Hertzberg, Deformation and Fracture Mechanics of 

Engineering Materials, New Jersey: John Wiley & Sons, Inc., 2012.  

[19]  G. R. Irwin, "Analysis of stresses and strain near the end of a crack transversing a plate," 

J. of Applied mechanics, vol. 24, pp. 361-364, 1957.  

[20]  S. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill, 1951.  

[21]  M. H. Sadd, Elasticity: theory, applications, and numerics, Academic Press, 2009.  

[22]  D. P. Rooke and D. J. Cartwright, "Compendium of stress intensity factors," HMSO 

Ministry of Defence, 1976.  

[23]  M. Liu, "An improved semi-analytical solution for stress at round-tip notches," 

Engineering Fracture Mechanics, vol. 149, pp. 134-143, 2015.  



82 
 

[24]  A. F. Bower, Applied mechanics of solids, CRC Press, 2009.  

[25]  R. W. Clough, "The finite element method in plane stress analysis," in Proceedings of the 

2nd ASCE conference on electroni, 1960.  

[26]  R. Courant, "Variational methods for the solutions of problems of equilibrium and 

vibrations," Bull. Am. Math. Soc., vol. 49, pp. 1-23, 1943.  

[27]  N. Moës, J. Dolbow and T. Belytschko, "A finite element method for crack growth 

without remeshing," International Journal for Numerical Methods in Engineering, vol. 

46, no. 1, pp. 131-150, 1999.  

[28]  J. M. Melenk and I. Babuska, Computer Methods in Applied Mechanics and Engineering, 

vol. 39, pp. 289-314, 1996.  

[29]  K. Park and G. Paulino, "Cohesive Zone Models: A Critical Review of Traction-

Separation Relationships Across Fracture Surfaces," Applied Mechanics Reviews, vol. 64, 

2011.  

[30]  D. S. Dugdale, "Yielding of Steel Sheets Containing Slits,," Journal of the Mechanics and 

Physics of Solids, vol. 8, pp. 100-104, 1960.  

[31]  M. F. Kanninen and C. Popelar, Advanced Fracture Mechanics, New York: Oxford 

University Press, 1985.  

[32]  Z. P. Bazant and L. Cedolin, Stability of Structures: Elastic, Inelastic,, New York: Oxford 

University Press, 1991.  

[33]  J. L. Cribb and B. Tomkins, "On the Nature of the Stress at the Tip of," J. Mech. Phys. 

Solids, vol. 25, pp. 135-140, 1967.  

[34]  C. Y. Hui, A. Ruina, R. Long and A. Jagota, "Cohesive Zone Models," J. Adhes., vol. 87, 

pp. 1-52, 2011.  



83 
 

[35]  Z. Zhang and G. Paulino, "Cohesive Zone Modeling of Dynamic," Int. J. Plast., vol. 21, 

pp. 1195-1254, 2005.  

[36]  W. Brocks and A. Cornec, "uest Editorial: Cohesive Models,," Eng. Fract. Mech., vol. 70, 

pp. 1741-1742, 2003.  

[37]  A. Hillerborg, M. Modeer and P. Petersson, "Analysis of Crack Formation and Crack 

Growth in Concrete by Means of Fracture Mechanics and Finite Elements," Cem. Concr. 

Res., vol. 6, pp. 773-781, 1976.  

[38]  W. Celes, G. Paulino and R. Espinha, "A Compact Adjacency-Based Topological Data 

Structure for Finite Element Mesh Representation," Int. J. Numer. Methods Eng., vol. 64, 

pp. 1529-1556, 2005.  

[39]  J. Song and T. Belytschko, "Cracking Node Method for Dynamic Fracture With Finite 

Elements," Int. J. Numer. Methods Eng., vol. 77, pp. 360-385, 2009.  

[40]  E. Madenci and E. Oterkus, Peridynamic Theory and Its Applications, New York: 

Springer, 2014.  

[41]  S. A. Silling, M. Epton and O. Weckner, "Peridynamic States and Constitutive 

Modeling," J. Elasticity., vol. 88, pp. 151-184, 2007.  

[42]  U. Stocker, D. Juchli and W. F. van Gunsteren, "Increasing the Time Step and Efficiency 

of Molecular Dynamics Simulations: Optimal Solutions for Equilibrium Simulations or 

Structure Refinement of Large Biomolecules," Molecular Simulation, vol. 29, no. 2, pp. 

123-128, 2003.  

[43]  S. A. Silling, "Peridynamics:Introduction," Handbook of Nonlocal Continuum Mechanics 

for Materials and Structures, pp. 1-38, 2018.  

[44]  Z. P. Bazant and M. Jirasek, "Nonlocal integral formulations of plasticity and damage: 

Survey of Progress," Journal of Engineering Mechanics, vol. 128, pp. 1119-1149, 2002.  



84 
 

[45]  R. D. Mindlin, "Second gradient of strain and surface-tension in linear elasticity," 

International Journal of Solids and Structures, vol. 1, pp. 417-438, 1965.  

[46]  S. A. Silling, O. Weckner, E. Askari and F. Bobaru, "Crack nucleation in a peridynamic 

solid," Int. J. Fract., vol. 162, no. 1-2, pp. 219-227, 2010.  

[47]  O. Weckner, G. Brunk, M. A. Epton, S. A. Silling and E. Askari, "Green's functions in 

non-local three-dimensional linear elasticity," Proceedings of the Royal Society, vol. 465, 

pp. 3463-3487, 2009.  

[48]  A. C. Eringen, "Linear theory of nonlocal elasticity and dispersion of plane waves," 

International Journal of Engineering Science, vol. 10, pp. 425-435, 1972.  

[49]  O. Weckner and R. Abeyaratne, "The effect of long-range forces on the dynamics of a 

bar," Journal of the Mechanics and Physics of Solids, vol. 53, pp. 705-728, 2005.  

[50]  A. Seagraves and R. Radovitzky, "Advances in Cohesive Zone Modeling of Dynamic 

Fracture,," in Dynamic Failure of Materials and Structures, Springer, 2009, pp. 349-405. 

[51]  A. Askari, Y. Azdoud, F. Han, G. Lubineau and S. Silling, in Peridynamics for analysis of 

failure in advanced composite materials, Woodhead Publishing, 2015, pp. 331-350. 

[52]  H. Yi-le, Y. Yin and H. Wang, "eridynamic analytical method for progressive damage in 

notched composite laminates," Composite Struct , vol. 108, no. 1, pp. 801-810, 2014.  

[53]  J. Jung and J. Seok, "atigue crack growth analysis in layered heterogeneous material 

systems using peridynamic approach," Composite Struct , vol. 152, pp. 403-407, 2016.  

[54]  D. De Meo, C. Diyaroglu, N. Zhu, E. Oterkus and M. Siddiq, "odelling of stress-corrosion 

cracking by using peridynamics," Int J Hydrogen Energy, vol. 41, no. 15, pp. 6593-6609, 

2016.  

[55]  D. De Meo and E. Oterkus, "inite element implementation of a peridynamic pitting 

corrosion damage model," Ocean Eng, vol. 135, pp. 76-83, 2017.  



85 
 

[56]  Z. Chen and F. Bobaru, "Peridynamic modeling of pitting corrosion damage," J Mech 

Phys Solids, vol. 78, pp. 352-381, 2015.  

[57]  Z. Chen, G. Zhang and F. Bobaru, "The influence of passive film damage on pitting 

corrosion," J Electrochem Soc , vol. 163, no. 2, pp. C19-C24, 2016.  

[58]  H. Jiang, L. He, L. Fan and G. Zhan, "Numerical analysis method of cemented carbide 

turning tool’s micro breakage based on peridynamic theory," Int J Adv Manufacturing 

Technol , vol. 88, no. 5-8, pp. 1619-1628, 2017.  

[59]  B. Kilic and E. Madenci, "Prediction of crack paths in a quenched glass plate by using 

peridynamic theory," Int. J. Fract., vol. 156, pp. 165-177, 2009.  

[60]  Y. D. Ha and F. Bobaru, "Characteristics of dynamic brittle fracture captured with 

peridynamics," Engineering Fracture Mechanics, vol. 78, no. 6, pp. 1156-1168, 2011.  

[61]  Y. Shi, "Creating atomic models of brittle glasses for in silico mechanical tests," Int J 

Appl Glass Sci , vol. 7, no. 4, pp. 464-473, 2016.  

[62]  W. Liu and J. W. Hong, "Discretized peridynamics for brittle and ductile solids," 

International Journal for Numerical Methods in Engineering, vol. 89, no. 8, pp. 1028-

1046, 2012.  

[63]  S. A. Silling, "Dynamic fracture modeling with a meshfree peridynamic code," Computat. 

Fluid Solid Mech., vol. 1, pp. 641-644, 2003.  

[64]  A. Shojaei, T. Mudric, M. Zaccariotto and U. Galvanetto, "A coupled meshless finite 

point/Peridynamic method for 2D dynamic fracture analysis," Int J Mech Sci , vol. 119, 

pp. 419-431, 2016.  

[65]  E. Madenci, K. Colavito and N. Phan, "Peridynamics for unguided crack growth 

prediction under mixed-mode loading," Eng. Fract. Mech., vol. 167, pp. 34-44, 2016.  

[66]  Y. Shi, "Creating Atomic Models of Brittle Glasses for In Silico Mechanical Tests," Int. J. 

Appl. Glass Sci., vol. 7, pp. 464-473, 2016.  



86 
 

[67]  F. Bobaru, "Influence of van der Waals forces on increasing the strength and toughness in 

dynamic fracture of nanofibre networks: a peridynamic approach," Modell. Sim. Mater. 

Sci. Eng., vol. 15, no. 5, p. 3970417, 2007.  

[68]  J. Lee and J. W. Hong, "Dynamic crack branching and curving in brittle polymers," Int. J. 

Solids Struct., pp. 332-340, 2016.  

[69]  D. Huang, G. Lu and Y. Liu, "Nonlocal peridynamic modeling and simulation on crack 

propagation in concrete structures," Math Problems Eng., pp. 1-11, 2015.  

[70]  W. Hu, Y. D. Ha and F. Bobaru, "Peridynamic model for dynamic fracture in 

unidirectional fiber-reinforced composites," 2012, Vols. 217-220, pp. 247-261, Comput. 

Meth. Appl. Mech. Eng..  

[71]  M. Ghajari, L. Iannucci and P. Curtis, "A peridynamic material model for the analysis of 

dynamic crack propagation in orthotropic media," Comput. Meth. Appl. Mech. Eng., vol. 

276, pp. 431-452, 2014.  

[72]  G. Zhang, Q. Le, A. Loghin, A. Subramaniyan and F. Bobaru, "Validation of a 

peridynamic model for fatigue cracking," Eng. Fract. Mech., vol. 162, pp. 76-94, 2016.  

[73]  G. Evangelatos and P. Spansos, "A collocation approach for spatial discretization of 

stochastic peridynamic modeling of fracture," J Mech Mater Struct, vol. 6, no. 7-8, pp. 

1171-1195, 2011.  

[74]  F. S. Vieira and A. L. Araujo, "A peridynamic model for electromechanical fracture and 

crack propagation in piezoelectric solids," Comput. Methods Appl. Mech. Engrg., vol. 

412, 2023.  

[75]  D. Lu, Z. Song, G. Wang and X. Du, "Viscoelastic peridynamic fracture analysis for 

concrete beam with initial crack under impact," Theoretical and Applied Fracture 

Mechanics, p. 124, 2023.  



87 
 

[76]  Y. Xiang, Z. Zhong and Z. Jiao, "An adaptive thermo-mechanical peridynamic model for 

crack analysis in anode-supported solid oxide fuel cell," Journal of Power Sources, vol. 

547, 2022.  

[77]  Y. Hu and E. Madenci, "Peridynamics for fatigue life and residual strength prediction of 

composite laminates," Composite Struct, vol. 160, pp. 169-184, 2017.  

[78]  G. Zhang, Q. Le, A. Loghin, A. Subramaniyan and F. Bobaru, "A peridynamic model for 

dynamic fracture in functionally graded materials," Composite Struct, vol. 133, pp. 529-

546, 2015.  

[79]  H. Wang, H. Dong, Z. Cai, Y. Liu and W. Wang, "Corrosion fatigue crack growth in 

stainless steels: A peridynamic study," International Journal of Mechanical Sciences, vol. 

254, 2023.  

[80]  S. Silling, "Origin and effect of nonlocality in a composite," J Mech Mater Struct, vol. 9, 

no. 2, pp. 245-258, 2014.  

[81]  C. Sun and Z. Huang, "Peridynamic simulation to impacting damage in composite 

laminate," Composite Struct, Vols. 336-341, p. 138, 2016.  

[82]  B. Kilic, A. Agwai and E. Madenci, "Peridynamic theory for progressive damage 

prediction in center-cracked composite laminates," Composite Struct, vol. 90, no. 2, pp. 

141-151, 2009.  

[83]  Y. Hu, N. De Carvalho and E. Madenci, "Peridynamic modeling of delamination growth 

in composite laminates," Composite Struct, vol. 132, pp. 610-620, 2015.  

[84]  C. Diyaroglu, E. Oterkus, E. Madenci, T. Rabczuk and A. Siddiq, "Peridynamic modeling 

of composite laminates under explosive loading," Composite Structures, vol. 144, pp. 14-

23, 2016.  

[85]  T. Sadowski and B. Pankowski, "Peridynamical modelling of nanoindentation in ceramic 

composites," Solid State Phenomena, vol. 254, pp. 55-59, 2016.  



88 
 

[86]  P. Wu and Z. Chen, "Peridynamic electromechanical modeling of damaging and cracking 

in conductive composites: A stochastically homogenized approach," Composite 

Structures, vol. 305, 2023.  

[87]  Y. L. Hu, J. Y. Wang, E. Madenci, Z. Mu and Y. Yu, "Peridynamic micromechanical 

model for damage mechanisms in composites," Composite Structures, vol. 301, 2022.  

[88]  E. Madenci, A. Yaghoobi and A. Barut, "Peridynamics for failure prediction in variable 

angle tow composites," Arch Appl Mech, vol. 93, pp. 93-107, 2023.  

[89]  S. A. Silling and E. Askari, "A meshfree method based on the peridynamic model of solid 

mechanics," Computers and Structures, vol. 83, pp. 1526-1535, 2005.  

[90]  K. Dayal and K. Bhattacharya, "Kinetics of phase transformations in the peridynamic 

formulation of Continuum Mechanics," Journal of the Mechanics and Physics of Solids, 

vol. 54, pp. 1811-1842, 2006.  

[91]  E. Askari and F. Bobaru, "Peridynamics for multiscale materials modeling," Journal of 

Physics, vol. 125, 2008.  

[92]  F. Bobaru and M. Duangpanya, "The peridynamic formulation for transient heat 

conduction," International Journal of Heat and Mass Transfer, 2010.  

[93]  R. W. Macek and S. A. Silling, "Peridynamics via finite element analysis," Finite 

Elements in Analysis and Design, vol. 43, no. 15, pp. 1169-1178, 2007.  

[94]  M. Parks, R. Lehoucq, S. Plimpton and S. A. Silling, "Implementing peridynamics within 

a molecular dynamics code," Computer Physics Communications, vol. 179, pp. 777-783, 

2008.  

[95]  E. Emmrich and O. Wechner, "The peridynamic equation and its spatial discretization," 

Math. Model. Anal., vol. 12, pp. 17-27, 2007.  

[96]  S. A. Silling and R. B. Lehoucq, "Convergence of peridynamics to classical elasticity 

theory," Journal of Elasticity, vol. 93, pp. 13-37, 2008.  



89 
 

[97]  Y. D. Ha and F. Bobaru, "Studies of dynamic crack propagation and crack branching with 

peridynamics," International Journal of Fracture, vol. 162, pp. 229-244, 2010.  

[98]  F. Bobaru and W. Hu., "The meaning, selection, and use of the preidynamic horizon and 

its relation to crack branching in brittle materials," Int. J. Fract., vol. 176, no. 2, pp. 215-

222, 2012.  

[99]  D. Dipasquale, M. Zaccariotto and U. Galvanetto, "Crack propagation with adaptive grid 

refinement in 2D peridynamics," Int. J. Fract., vol. 190, no. 1-2, pp. 1-22, 2014.  

[100]  R. Lipton, "Cohesive dynamics and brittle fracture," J. Elasticity, vol. 124, no. 2, pp. 143-

191, 2016.  

[101]  R. Panchadhara and P. A. Gordon, "Application of peridynamic stress intensity factors to 

dynamic fracture initiation and propagation," Int. J. Fract., vol. 201, no. 1, pp. 81-96, 

2016.  

[102]  X. Zhou, Y. Wang and X. Xu, "Numerical simulation of initiation, propagation and 

coalescence of cracks using the non-ordinary state-based peridynamics," Int. J. Fract., 

vol. 201, no. 2, pp. 213-234, 2016.  

[103]  S. Oterkus and E. Madenci, "Peridynamic modeling of fuel pellet cracking," Eng. Fract. 

Mech., vol. 176, pp. 23-37, 2017.  

[104]  R. Beckmann, R. Mella and M. R. Wenman, "Mesh and timestep sensitivity of fracture 

from thermal strains using peridynamics implemented in Abaqus," Comput. Meth. Appl. 

Mech. Eng., vol. 263, pp. 71-80, 2013.  

[105]  R. B. Lehoucq and A. S. S., "Force flux and the peridynamic stress tensor," Journal of the 

Mechanics and Physics of Solids, vol. 56, no. 4, pp. 1566-1577, 2008.  

[106]  A. S. Fallah and et al., "On the Computational Derivation of Bond-Based Peridynamic 

Stress Tensor," Journal of Peridynamics and Nonlocal Modeling, vol. 2, pp. 352-378, 

2020.  



90 
 

[107]  T. L. Warren, S. A. Silling, A. Askari, O. Weckner, M. A. Epton and J. Xu, "A non-

ordinary state-based peridynamic method to model solid material deformation and 

fracture," Int. J. Solids and Stru., vol. 46, no. 5, pp. 1186-1195, 2009.  

[108]  L. E. Malvern, Introduction to the Mechanics of a Continuous Medium, Englewood 

Cliffs, NJ.: Prentice-Hall, 1969.  

[109]  X. W. Jiang and H. Wang, "Crack-tip stress evaluation of multi-scale Griffitch crack 

subjected to tensile loading by using peridynamics," Scool of Aeronautics and 

Astronautics, Shanghai Jiao Tong University, Shanghai, 2017. 

[110]  D. Dipasquale, G. Sarego, P. Prapamonthon, S. Yooyen and A. Shojaei, "A Stress Tensor-

based Failure Criterion for Ordinary State-based Peridynamic Models," J. Appl. Comput. 

Mech.,, vol. 8, no. 2, pp. 617-628, 2021.  

[111]  M. Asgari and M. A. Kouchakzadeh, "An equivalent von Mises stress and corresponding 

equivalent plastic strain for elastic–plastic ordinary peridynamics," Meccanica, vol. 54, 

pp. 1001-1014, 2019.  

[112]  M. Q. Le, "Mode-I J-integral via peridynamic stresses," Int J Fract, vol. 241, pp. 143-151, 

2023.  

[113]  S. Li, "Peridynamic stress is a weighted static Virial stress," arXiv, Vols. 

arXiv:2103.00489v2 [physics.class-ph], 2021.  

[114]  N. Sau, J. Medina-Mendoza and A. C. Borbon-Almada, "Peridynamic modelling of 

reinforced concrete structures," Engineering Failure Analysis, vol. 103, pp. 266-274, 

2019.  

[115]  H. Ren, X. Zhuang and T. Rabczuk, "Dual-horizon peridynamics: A stable solution to 

varying horizons," Comput. Methods. Appl. Mech. Engrg, no. 318, pp. 762-782, 2017.  



91 
 

[116]  B. Wang, S. Oterkus and E. Oterkus, "Derivation of dual-horizon state-based 

peridynamics formulation based on Euler-Lagrange equation," Continuum Mech. 

Thermodyn., pp. https://doi.org/10.1007/s00161-020-00915-y, 2020.  

[117]  M. Dorduncu and E. Madenci, "Finite element implementation of ordinary state-based 

peridynamics with variable horizon," Engineering with Computers, vol. 39, pp. 641-654, 

2023.  

[118]  P. Underwood, "Dynamic relaxation," Comput. Meth. Trans. Anal., vol. 1, pp. 245-265, 

1983.  

[119]  E. Oterkus, Peridynamic Theory for Modeling Three-Dimensional Damage Growth in 

Metallic and Composite Structures, Arizona: The University of Arizona, 2010.  

[120]  S. A. Silling and R. B. Lehoucq, "Peridynamic Theory of Solid Mechanics," Advances in 

Applied Mechanics, vol. 44, pp. 73-168, 2010.  

[121]  J. A. Mitchell, "A nonlocal, ordinary, state-based plasticity model for peridynamcis," 

Sandia Report, 2011. 

[122]  S. A. Silling, "Reformulation of elasticity theory for discontinuities and long-range 

forces," Journal of the Mechanics and Physics of Solids, vol. 48, no. 1, pp. 175-209, 2000.  

[123]  S. A. Silling and E. Askari, "A meshfree method based on the peridynamic model of solid 

mechanics," Computers & Structures, vol. 83, no. 17, pp. 1526-1535, 2005.  

[124]  H. Ren, X. Zhuang, Y. Cai and T. Rabczuk, "Dual-horizon peridynamics," Int. J. Numer. 

Meth. Engng, no. 108, pp. 1451-1476, 2016.  

[125]  A. Katiyar, J. T. Foster, H. Ouchi and M. M. Sharma, "A peridynamic formulation of 

pressure driven convective fluid transport in porous media," Journal of Computational 

Physics, vol. 261, pp. 209-229, 2014.  

[126]  T. Rabczuk, H. Ren and X. Zhuang, "Dual-Horizon Peridynamics," in Computational 

Methods Based on Peridynamics and Nonlocal Operators, Springer, 2023, pp. 25-65. 



92 
 

[127]  B. Kilic and E. Madenci, "An adaptive dynamic relaxation method for quasi-static 

simulations using the peridynamic theory," Theoretical and Applied Fracture Mechanics, 

vol. 53, pp. 194-204, 2010.  

[128]  R. A. Horn and C. R. Johnson, Matrix Analysis, New York: Cambridge University Press, 

2013.  

[129]  G. R. Joldes, A. Wittek and K. Miller, "An adaptive Dynamic Relaxation method for 

solving nonlinear finite element problems. Application to brain shift estimation," Int J 

Numer Method Biomed Eng, vol. 2, no. 27, pp. 173-185, 2011.  

[130]  S. A. Silling, EMU user's manual, Sandia National Laboratories, Albuquerque: Code Ver. 

2.6d., 2004.  

[131]  B. Wang, S. Oterkus and E. Oterkus, "Determination of horizon size in state-based 

peridynamics," Continuum Mech. Thermodyn., pp. https://doi.org/10.1007/s00161-020-

00896-y, 2020.  

[132]  Y. Tao, X. Tian and Q. Du, "Nonlocal diffusion and peridynamic models with Neumann 

type constraints and their numerical approximations," Appl. Math. Comput., Vols. 282-

298, p. 305, 2017.  

[133]  Q. V. Le and F. Bobaru, "Surface corrections for peridynamic models in elasticity and 

fracture,," Comput. Mech., vol. 61, pp. 499-518, 2018.  

[134]  S. Oterkus, E. Madenci and A. Agwai, "Peridynamic thermal diffusion,," J. Comput. 

Phys. , vol. 265, pp. 71-96, 2014.  

[135]  W. Hu, Y. D. Ha, F. Bobaru and S. A. Silling, "The formulation and computation of the 

nonlocal J-integral in bond-based peridynamics," Int J Fract, vol. 176, pp. 195-206, 2012.  

[136]  C. Stenstrom and K. Eriksson, "The J-area integral applied in peridynamics," Int J Fract , 

pp. 127-142, 2021.  



93 
 

[137]  Z. Zeng, H. Zhang, X. Zhang, Y. Liu and Z. Chen, "An adaptive peridynamics material 

point method for dynamic fracture problem," Comput. Methods Appl. Engrg., no. 393, 

2022.  

[138]  Q. Zeng, Z. Liu, D. Xu, H. Wang and Z. Zhuang, "Modeling arbitrary crack propagation 

in coupled shell/solid structures with X-FEM," Int. J. Numer. Methods Eng., vol. 106, no. 

12, pp. 1018-1040, 2016.  

[139]  M. L. Williams, "On the Stress Distribution at the Base of a Stationary Crack," J. Appl. 

Mech, vol. 24, no. 1, pp. 109-114, 2021.  

[140]  C. Truesdell, "A First Course in Rational Continuum Mechanics," General Concepts, vol. 

I, pp. 120-121, 1977.  

[141]  J. Trageser and P. Seleson, "Bond-Based Peridynamics: a Tale of Two Poisson’s Ratios," 

J. Peridyn. Nonlocal Model, vol. 2, pp. 278-288, 2020.  

[142]  S. Silling, W. Gerstle and N. Sau Soto, "Peridynamic modeling of plain and reinforced 

concrete structures," 18th International Conference on Structural Mechanics in Reactor 

Technology, 2005.  

[143]  T. Rabczuk and H. Ren, "A peridynamic formulation for quasi-static fracture and contact 

in rock," Engineering Geology, no. 225, pp. 42-48, 2017.  

[144]  N. Prakash and G. D. Seidel, "A novel two-parameter linear elastic constitutive model for 

bond based peridynamics," 2015.  

[145]  M. Ortiz and A. Pandolfi, "Finite‐deformation irreversible cohesive elements for three‐

dimensional crack‐propagation analysis," Int. J. Numer. Methods Eng., vol. 44, no. 9, pp. 

1267-1282, 1999.  

[146]  B. Moran and C. F. Shih, "A general treatment of crack tip contour integrals," 

International Journal of Fracture, vol. 35, pp. 295-310, 1987.  



94 
 

[147]  R. Maranganti and P. Sharma, "Length scales at which classical elasticity breaks down for 

various materials," Physical Review Letters, vol. IV, 2007.  

[148]  E. Madenci, M. Dorduncu, A. Barut and N. Phan, "A State-Based Peridynamic Analysis 

in a Finite Element Framework," Engineering Fracture Mechanics, vol. 195, 2018.  

[149]  I. A. Kunin, "Elastic media with microstructure II: threedimensional," Springer Series, 

vol. 1, 2012.  

[150]  B. Kilic and E. Madenci, "Peridynamic Theory for Thermomechanical Analysis," IEEE 

Transactions on Advanced Packaging, vol. 33, no. 1, pp. 97-105, 2010.  

[151]  G. R. Irwin, "Analysis of Stresses and Strains Near the End of a Crack Traversing a 

Plate," J. Appl. Mech., vol. 24, no. 3, pp. 361-364, 1957.  

[152]  Y. D. Ha and F. Bobaru, "Studies of dynamic crack propagation and crack branching with 

peridynamics," Int. J. Fract., vol. 162, no. 1-2, pp. 229-244, 2010.  

[153]  Y. Gui, Y. Yu, Y. Hu, Y. Zhang and L. Lew, "A peridynamic cohesive zone model for 

composite laminates," ournal of Peridynamics Nonlocal Model, 2021.  

[154]  M. Elices, G. V. Guinea, J. Gomez and J. Planas, "The cohesive zone model: advantages, 

limitations and challenges," Eng. Fract. Mech., vol. 69, pp. 137-163, 2002.  

[155]  M. Dorduncu and E. Madenci, "Finite element implementation of ordinary state-based 

peridynamics with variable horizon," Engineering with Computers, pp. 

https://doi.org/10.1007/s00366-022-01641-6, 2022.  

[156]  E. Budyn, T. Hoc and J. Jonvaux, "Fracture strength assessment and aging signs detection 

in human cortical bone using an X-FEM multiple scale approach," Comput. Mech., vol. 

42, no. 4, pp. 579-591, 2008.  

[157]  F. Bobaru, M. Yang, L. F. Alves, S. A. Silling, E. Askari and J. Xu, "Convergence, 

adaptive refinement, and scaling in 1D peridynamics," Int. J. Numer. Meth. Engng, no. 

77, pp. 852-877, 2009.  



95 
 

[158]  T. Belytschko, R. Gracie and G. Ventura, "A review of extended/generalized finite 

element methods for material modeling," Model. Simul. Mater. Sci. Eng., vol. 17, no. 4, 

2009.  

[159]  F. Amiri, C. Anitescu, M. Arroyo, S. A. Bordas and T. Rabczuk, "XLME interpolants, a 

seamless bridge between XFEM and enriched meshless methods," Computational 

Mechanics, vol. 53, no. 1, pp. 45-57, 2014.  

[160]  S. A. Silling, M. Zimmermann and R. Abeyaratne, "Deformation of a peridynamic bar," 

Journal of Elasticity, vol. 73, pp. 173-190, 2003.  

[161]  M. Zimmermann, "continuum theory with long-range forces for solids," PhD thesis, 

Massachusetts Institue of Technology, 2005. 

[162]  S. Silling, D. Littlewood and P. Seleson, "Variable horizon in a peridynamic medium," 

Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States), 2014. 

[163]  S. Silling and A. Askari, "Peridynamic model for fatigue cracks," Technical Report 

18590, Sandia National Laboratories, 2014. 

[164]  V. Buryachenko, "Some general representations in thermoperistatics of random structure 

composites," Int J Multiscale Computat Eng, vol. 12, no. 4, pp. 331-350, 2014.  

[165]  J. L. Gonzalez-Velazquez, "Linear elastic fracture mechanics," in A Practical Approach 

to Fracture Mechanics, Elsevier Inc., 2021, pp. 35-72. 

 

 


