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Abstract 

Triple Product p-adic L-functions for Finite Slope Families and A p-adic Gross-

Zagier Formula 

Ting-Han Huang, Ph. D. 

Concordia University, 2024 

 

In this thesis, we generalize the p-adic Gross-Zagier formula of Darmon-Rotger on triple 

product p-adic L-functions to finite slope families. First, we recall the construction of triple product 

p-adic L-functions for finite slope families developed by Andreatta-Iovita. Then we proceed to 

compute explicitly the p-adic Abel-Jacobi image of the generalized diagonal cycle. We also 

established a theory of finite polynomial cohomology with coefficients for varieties with good 

reduction. It simplifies the computation of the p-adic Abel-Jacobi map and has the potential to be 

applied to more general settings. Finally, we show by q-expansion principle that the special value 

of the L-function is equal to the Abel-Jacobi image. Hence, we conclude the formula. 
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1 Introduction

The theory of L-functions has long been a central topic in Number Theory due to its various arithmetic
applications. Some notable ones are the Birch and Swinnerton-Dyer (BSD) conjecture and its generalizations,
mostly attributed to Bloch and Kato.

Let E be an elliptic curve defined over Q. One has the Hasse–Weil L-function L(E, s) and the Mordell–
Weil group E(Q) associated with E. The BSD conjecture predicts the relation

rankZE(Q) = ords=1 L(E, s)

between the rank of the abelian group E(Q) and the vanishing order of L(E, s).

Let
ρ : GalQ := Gal(Q/Q) → AutL(Vρ) ∼= GLn(L)

be an Artin representation factoring through a finite Galois extension H/Q, where Vρ is an n-dimensional
L-vector space with L ⊂ C being a finite extension of Q. One then has the twisted L-function L(E, ρ, s).
Let E(H)ρ := HomGQ

(Vρ, E(H)⊗ZL) be the ρ-isotypic component of the Mordell–Weil group. The analytic
and algebraic rank of E twisted by ρ are defined as

ran(E, ρ) := ords=1 L(E, ρ, s), ralg(E, ρ) := dimL(E(H)ρ).

The (Galois-)equivariant BSD conjecture predicts that ran(E, ρ) = ralg(E, ρ).

Besides BSD-type conjectures, there are many other studies on special values of L-functions. For example,
Katz’s p-adic Kronecker limit formula [Kat76] relates special values of a two-variable p-adic L-function, which
interpolates central critical values of the complex L-function attached to a p-adic family of Eisenstein series
twisted by a family of algebraic Hecke characters, to p-adic logarithms of elliptic units. Another example is
due to Gross and Zagier [GZ86], usually known as the Gross–Zagier formula, which expresses the value of
the first derivative of the complex L-function attached to an elliptic curve as the height of a certain rational
point on the elliptic curve. Since the Gross–Zagier formula serves as an inspiration of its p-adic version,
which is the main subject of this thesis, we will sketch it below.

Let E be an elliptic curve over Q with conductor N and with complex multiplication by an imaginary
quadratic field K. When all the prime divisors of N split in K (usually called the Heegner assumption),
the L-function L(E/K, s) necessarily vanishes at s = 1. Hence one shifts his attention to the first derivative
L′(E/K, 1). On the other hand, the Heegner assumption provides points (called Heegner points) with
CM by K on the modular curve X0(N)(HK), where HK is the Hilbert class field of K. By the modular
parametrization, one can construct a point yK ∈ E(HK), which is actually defined over K. The Gross–Zagier
formula then states that L′(E/K, 1) is equal, up to an explicit constant, to the height hE(yK) of the point
yK .

In the work of Bertolini–Darmon–Prasanna [BDP13], they generalized Katz’s p-adic L-functions to cusp
forms, and then related the central critical values of the p-adic L-function to the p-adic Abel–Jacobi images
of generalized Heegner cycles. The result was considered as a p-adic analogue of the Gross–Zagier formula.

Later in [DR14], Darmon and Rotger constructed a Garret–Rankin triple product p-adic L-function
attached to three Hida families of modular forms. Similarly, they proved a p-adic Gross–Zagier formula
which relates

- the special values of the triple product p-adic L-function at classical points lying outside the region of
interpolation, to

- the p-adic Abel–Jacobi images of generalized diagonal cycles in the product of three Kugo–Sato vari-
eties, evaluated at certain differentials.

It has been shown, in [Ber+14] and [DR17] for example, that these two p-adic Gross–Zagier formulae
have applications to Euler systems and the equivariant BSD conjecture.
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The main focus of this article is to generalize the p-adic Gross–Zagier formula in [DR14] to the case of
finite slope families of modular forms.

In order to state our main result, we need to introduce several notations. Let

f =
∑

an(f)q
n ∈ Sk(Nf , χf ),

g =
∑

an(g)q
n ∈ Sℓ(Ng, χg),

h =
∑

an(h)q
n ∈ Sm(Nh, χh)

be a triple of normalized primitive cuspidal eigenforms of weights k, ℓ,m ≥ 2, levels Nf , Ng, Nh ≥ 1, and
nebentypus characters χf , χg, χh, respectively. Set N = lcm(Nf , Ng, Nh) and assume that

χf · χg · χh = 1,

which implies that k + ℓ+m is even.

The triple (k, ℓ,m) is said to be balanced if the largest number is strictly less than the sum of the other
two. A triple which is not balanced is called unbalanced, and the largest number in an unbalanced triple is
called the dominant weight.

In §2.3, we will recall the definition of the (complex) Garrett–Rankin L-function L(f, g, h; s). It can be
viewed as the L-function attached to the tensor product

V (f, g, h) = V (f)⊗ V (g)⊗ V (h)

of the (compatible systems of) p-adic Galois representations attached to f, g, and h. This L-function admits
a functional equation relating values at s and k+ ℓ+m− 2− s. As a consequence, the order of vanishing of
L(f, g, h; s) at the central point c = k+ℓ+m−2

2 is determined by the root number ε ∈ {±1} of the functional
equation. The root number ε can be further written as a product

∏
v|N∞ εv of local root numbers εv ∈ {±1}.

We will assume the following assumption throughout this thesis.

Assumption H: The local root numbers εv = +1 for all finite primes v | N .

As indicated in [DR14], this assumption holds in a broad collection of settings. For instance, it is satisfied
when

- gcd(Nf , Ng, Nh) = 1, or,

- N = Nf = Ng = Nh is square-free and av(f)av(g)av(h) = −1 for all primes v | N .

Under Assumption H, ε = ε∞, which in turns depends only on whether the triple of weights (k, ℓ,m) is
balanced or not:

ε∞ =

{
−1 if (k, ℓ,m) is balanced;

+1 if (k, ℓ,m) is unbalanced.

In particular, the L-function necessarily vanishes at the central point c when (k, ℓ,m) is balanced. In this
situation, instead of studying the values of L(f, g, h; s), one naturally studies the values of its first derivative
L′(f, g, h; s) and expects it to encode arithmetic information.

Let E → X = X1(N) be the universal elliptic curve over the modular curve. For any n ≥ 0, we let Wn

be the n-th Kuga–Sato variety over X1(N). It is an (n+1)-dimensional variety obtained by desingularizing
the n-fold fiber product En over X (c.f. [BDP13, Apeendix]). Then the Galois representation V (f, g, h)
appears in the middle cohomology of the triple product

W ∗ := Wr1 ×Wr2 ×Wr3 ,

where the notation (r1, r2, r3) = (k − 2, ℓ− 2,m− 2) will be commonly used in this article.

When (k, ℓ,m) is balanced and Assumption H is satisfied, the conjectures of Bloch–Kato and Beilinson–
Bloch predict that the vanishing of L(f, g, h; c) implies the existence of a non-trivial cycle ∆f,g,h in the Chow
group Q⊗ CHc(W ∗)0 of rational equivalence classes of null-homologous cycles of codimension c in W ∗.

2



Such a cycle is defined in [DR14], whose construction will be recalled in §5.8. We here only give a brief
description. Set r := r1+r2+r3

2 . There exists an essentially unique way to closedly embed W r into W ∗. Its
image, under suitable modifications, gives rise to a homologically trivial cycle

∆k,ℓ,m ∈ CHr+2(W ∗)0 := ker(CHr+2(W ∗)
cl
−→ H2r+4

dR (W ∗/C)).

The cycle ∆f,g,h can be then defined as the (f, g, h)-isotypic component of ∆k,ℓ,m with respect to the Hecke
actions.

In the archimedean setting, the height h(∆f,g,h) of the cycle in the sense of Beilinson and Bloch is
conjectured to be well-defined and related to the first derivative of L(f, g, h; s) at s = c. That is, one expects
the relation

h(∆f,g,h)
?
= (Explicit non-zero factors)× L′(f, g, h, c).

In this article, we will focus on the p-adic analogue. To be more precise, we aim to relate the image of
∆k,ℓ,m under the p-adic Abel–Jacobi map

AJp : CHr+2(W ∗)0(Cp) → [Filr+2 H2r+3
dR (W ∗/Cp)]

∨

to the special value of the triple product p-adic L-function attached to three finite slope families of modular
forms. We will now describe the setup in detail.

Choose a prime p ∤ N such that f, g, h are of finite slope at p. Then we may find Coleman families f , g, h
passing through f, g, h, defined over certain weight spaces Ωf ,Ωg,Ωh, respectively. In the language of rigid
analytic geometry, the space Ω• for • ∈ {f, g, h} is a finite rigid analytic cover over a subset of the weight
space W := Homcts(Z×

p ,C
×
p ) which always contains the integers Z via the identification k 7→ (γ 7→ γk).

When f is of slope a ∈ Q≥0, a point x ∈ Ωf is said to be classical if its image in Ω, denoted by κ(x),
belongs to Z>a+1. We will denote the set of classical points in Ωf by Ωf,cl and usually identify x ∈ Ωf,cl

with κ(x) ∈ Z by an abuse of notations. For almost all x ∈ Ωf,cl, the specialization of f at x ∈ Ωf,cl, denoted
by fx (or simply fx), is a normalized eigenform of weight κ(x) on Γ1(N, p) := Γ1(N) ∩ Γ0(p). For all but
finitely many such x, fx is the (finite slope) p-stabilization of a normalized eigenform of the same weight on
Γ1(N), denoted by f0

x .

When f , g, h are Hida families, one can view them as maps

f : Ωf → CpJqK, g : Ωg → CpJqK, h : Ωh → CpJqK.

The triple product p-adic L-function for Hida families is defined to be

L
f
p (f ,g,h) :=

(f∗, eord(θ
•g[p] × h))

(f∗, f∗)
,

where f∗ is the Atkin–Lehner involution of f , eord is Hida’s ordinary projector, θ = q d
dq is Serre’s operator,

and g[p] := (1 − V U)g is the p-depletion of g. The philosophy behind this definition will be explained in
§2.3.

For finite slope families, one needs a different approach. A construction of triple product p-adic L-
functions for finite slope families is developed by F. Andreatta and A. Iovita in [AI21]. Sections §3 and §4
are dedicated to describe their construction.

Roughly speaking, one wants to define the triple product p-adic L-function as the ratio

L
f
p (f ,g,h) :=

(f∗,∇•g[p] × h)

(f∗, f∗)
,

where ∇ is the Gauss–Manin connection (c.f. §2.1). In order for this expression to make sense, one needs to
p-adically iterate the connection ∇. When f , g,h are Hida families, as we saw in above definition, one may
replace ∇ by θ = q d

dq and works only on q-expansions. Then there is a straightforward way to iterate θ to

3



p-adic powers, provided that the form it acts on lies in the kernel of U (e.g. g[p]). The argument for ∇ is
more complicated and will be recalled in §4.8.

The triple product p-adic L-function L f
p (f ,g,h) can be viewed as a three variable function

L
f
p (f ,g,h) : Ωf × Ωg × Ωh → Cp,

whose value at (x, y, z) ∈ Ωf × Ωg × Ωh is

(f∗x ,∇
−tg

[p]
y × hz)

(f∗x , f
∗
x)

,

where t ∈ Ω satisfies κ(x) = κ(y) + κ(z)− 2t. As one easily observes, the form f (or f∗) plays a distinct role
in L f

p . What is not so obvious is that L f
p (f ,g,h) is symmetric, up to a ± sign, in the last two components.

Similarly, one can define L g
p = L g

p (g, f ,h) and L h
p .

Set Σ = Ωf × Ωg × Ωh and Σcl = Ωf,cl × Ωg,cl × Ωh,cl. The set Σcl can be naturally divided into four
disjoint subsets:

Σbal := {(x, y, z) ∈ Σcl | (κ(x), κ(y), κ(z)) is balanced};

Σf := {(x, y, z) ∈ Σcl | κ(x) ≥ κ(y) + κ(z)};

Σg := {(x, y, z) ∈ Σcl | κ(y) ≥ κ(x) + κ(z)};

Σh := {(x, y, z) ∈ Σcl | κ(z) ≥ κ(x) + κ(y)}.

The p-adic L-function L f
p on Σf interpolates the square roots of central critical values of the classical

L-functions L(f0
x , g

0
y, h

0
z; s), which is a combined result of the Ichino formula (c.f. Theorem 2.24), [DR14,

Theorem 4.7] and [AI21, Corollary 5.13].

Points in Σbal, on the other hand, lie outside this region of interpolation. By definition, the value of
L f

p (f ,g,h) at a balanced point (x, y, z) involves a “negative” power ∇−t, which is originally defined as a
p-adic limit. On the other hand, the interpolating property implies that ∇−t satisfies ∇s ◦ ∇−t = ∇−t+s.
In particular, this negative power also serves as the t-th anti-derivative with respect to ∇. Hence, we may
expect to express these special values via an integration theory. A suitable candidate is Coleman p-adic
integration or its generalization, Besser’s finite polynomial cohomology. In particular, in [Bes00a], Besser
showed that one can interpret the p-adic Abel–Jacobi map as a p-adic integration, which is in analogue to
the classical case.

Now fix a balanced weight (x, y, z) ∈ Σbal and write (x, y, z) = (r1 + 2, r2 + 2, r3 + 2) as before. We let
r := 1

2 (r1 + r2 + r3). Assume that the specializations fx,gy,hz are p-stabilizations of f0
x , g

0
y, h

0
z, respectively.

For simplicity, we will further assume that they are newforms of the same level N in this introduction.

To any classical newform ϕ of weight k = s+ 2 on Γ1(N), there is a cohomology class

ωϕ ∈ Fils+1 Hs+1
dR (Ws/Q) ⊂ Hs+1

dR (Ws/Cp).

The ϕ-isotypic part Hs+1
dR (Ws/Cp)[ϕ] is two-dimensional and contains ωϕ. If ϕ is ordinary at p, then there

is a one-dimensional unit root subspace Hs+1
dR (Ws/Cp)[ϕ]

u-r, on which the Frobenius endomorphism acts as
multiplication by a p-adic unit. Moreover, one has a direct sum decomposition

Hs+1
dR (Ws/Cp)[ϕ] = Fils+1 Hs+1

dR (Ws/Cp)[ϕ]⊕Hs+1
dR (Ws/Cp)[ϕ]

u-r,

which is well known as the unit root splitting. When ϕ has finite slope a ∈ Q, a similar result holds if
a < k − 1 = s+ 1. To be more precise, one has a direct sum decomposition

Hs+1
dR (Ws/Cp)[ϕ] = Fils+1 Hs+1

dR (Ws/Cp)[ϕ]⊕Hs+1
dR (Ws/Cp)[ϕ]

a

where Hs+1
dR (Ws/Cp)[ϕ]

a is the one-dimensional subspace on which the Frobenius acts as multiplication
by an element of p-adic valuation a. As a result of Poincaré duality, there is a unique element ηaϕ ∈

4



Hs+1
dR (Ws/Cp)[ϕ]

a such that for any cusp form ω on Γ1(N) of weight k, we have

⟨ηaϕ, ω⟩ :=
(ϕ∗, ω)

(ϕ∗, ϕ∗)
,

where ⟨ , ⟩ denotes the non-degenerate Poincaré pairing onHs+1
dR (Ws/Cp), ϕ

∗ is the Atkin–Lehner involution
of ϕ, and ( , ) denotes the Petersson inner product of level Γ1(N) and weight k (c.f. 2.1).

Suppose that the family f is of slope a and a < x − 1. Then we construct an element (associated with
(f0

x , g
0
y, h

0
z))

ηaf ⊗ ωg ⊗ ωh ∈ Hr1+1
dR (Wr1)⊗ Filr2+1 Hr2+1

dR (Wr2)⊗ Filr3+1 Hr3+1
dR (Wr3)

⊂ Filr+2(Hr1+1
dR (Wr1)⊗Hr2+1

dR (Wr2)⊗Hr3+1
dR (Wr3))

⊂ Filr+2 H2r+3
dR (W ∗/Cp),

where the first inclusion is by the balancedness assumption, and the second one is from the Künneth decom-
position of W ∗ = Wr1 ×Wr2 ×Wr3 . In particular, ηaf ⊗ ωg ⊗ ωh lies inside the domain of AJp(∆x,y,z).

Lastly, we need to introduce several Euler factors. For any ϕ ∈ Sk(Γ1(N), χ), we shall write the Hecke
polynomial

x2 − ap(ϕ)x+ χ(p)pk−1 = (x− αϕ)(x− βϕ)

with ordp(αϕ) ≤ ordp(βϕ). For the modular form f0
x associated with fx, we also assume that a = ordp(αf0

x
).

For simplicity, we will write αf for αf0
x
and similarly for other modular forms.

The main result of this thesis is the theorem below.

Theorem 1.1. Given (x, y, z) ∈ Σbal. Let c := (x+ y + z − 2)/2 and write x = y+ z − 2t with t > 0. Then

L
f
p (f ,g,h)(x, y, z) = (−1)t−1

E (f0
x , g

0
y, h

0
z)

(t− 1)!E0(f0
x)E1(f0

x)
AJp(∆x,y,z)(η

a
f ⊗ ωg ⊗ ωh), (1)

where the Euler factors are given by

E0(f
0
x) := 1− β2

fχ
−1
f (p)p1−x,

E1(f
0
x) := 1− β2

fχ
−1
f (p)p−x,

E (f0
x , g

0
y, h

0
z) := (1− βfαgαhp

−c)(1− βfαgβhp
−c)(1− βfβgαhp

−c)(1− βfβgβhp
−c).

(2)
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2 Preliminaries

As the theory of modular forms is a vital ingredient in this thesis, we will set up the notations and recall
several facts for future use. Some notable results are the relations between modular forms and cohomology
groups, overconvergent modular forms, and Hida families.

Then we proceed to recall the work of H. Darmon and V. Rotger on the p-adic Gross–Zagier formula for
triple product p-adic L-functions associated with Hida families. Few proofs will be given in this part since
our results for the finite slope cases will naturally cover the ordinary case. Nevertheless, we think that giving
a picture of the proof for the p-adic Gross–Zagier formula first will help readers to understand this thesis
better.

2.1 Modular forms and cohomology

Classical modular forms. Fix an integer N ≥ 4 and a prime p ∤ N . Let Y = Y1(N) be the affine modular
curve of level Γ1(N) defined over Qp and X = X1(N) be the compactified modular curve. We let C := X\Y
be the subscheme of cusps. The modular curve X is proper smooth over Qp, and it has a smooth model X
defined over Zp.

Let π : E → Y be the universal elliptic curve and ωE := π∗Ω
1
E/Y denote the invertible sheaf (line bundle)

on Y . The sheaf ωE extends canonically to a sheaf over X, which is still denoted by ωE . To be more precise,
around a cusp, we have

H0(SpecQp[[q]], ωE) = Qp[[q]] · ωcan

where ωcan := dt
t is the canonical differential on the Tate curve Gm/qZ.

Let Qp ⊂ K ⊂ Cp be a tower of field extensions. A modular form f on X of weight k ≥ 0 with Fourier
coefficients in K then corresponds to a global section ωf of the sheaf ωk

E over XK (c.f. [Kat73]). If f is
a cusp form of weight k ≥ 2, then ωf can be further identified as a section of ωk−2

E ⊗ Ω1
X . The notation

k = r + 2 will be frequently used.

Let
H := R1π∗Ω

•
E/Y

be the sheaf of relative de Rham cohomology on Y , which also extends canonically to a coherent sheaf of
rank 2 on X and will be denoted by the same notation. Alternatively, the extensions of ωE and H to X can
be described as

ωE = π∗Ω
1
E(log π

−1(C)),

H = R1π∗Ω
1
E(log π

−1(C)).

The sheaf H is equipped with a Hodge filtration

0 → ωE → H → ω−1
E → 0 (3)

and a Gauss–Manin connection
∇ : H → H⊗OX

Ω1
X(logC).

For any r ∈ N, the r-th symmetric power Hr := Symr H is of rank r + 1 and is equipped with the induced
Hodge filtration and Gauss–Manin connection. Locally around a cusp, we have

H0(SpecQp[[q]],H
r) = Qp[[q]]ω

r
can +Qp[[q]]ω

r−1
can ηcan + · · ·+Qp[[q]]η

r
can

where ηcan := ∇(q d
dq )(ωcan) and the connection ∇ is given by

∇ωcan = ηcan ⊗
dq

q
, ∇ηcan = 0

together with the Leibniz’s rule.
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The Hodge filtration on Hr is decreasing with successive quotients

Hr/Fil1 Hr ∼= ω−r
E ,Fil1 Hr/Fil2 Hr ∼= ω−r+2

E , . . . ,Filr Hr ∼= ωr
E .

The connection ∇ satisfies Griffiths transversality

∇(Fili Hr) ⊂ Fili−1 Hr ⊗ Ω1
X(logC)

and further induces isomorphisms

∇ :
Fili Hr

Fili+1 Hr
∼=

Fili−1 Hr

Fili Hr
⊗ Ω1

X(logC) (4)

of OX -modules. In particular, when r = 1 and i = 1, it gives rise to the Kodaira–Spencer isomorphism

KS : ω2
E
∼= Ω1

X(logC).

Next, we would like study the cohomology of Hr. However, instead of using the complex Hr → Hr ⊗
Ω1

X(logC), we need a modified version of it.

Definition 2.1. ([Sch85, § 2]) The parabolic complex (Hr ⊗ Ω•
X)par is a subcomplex of

0 → Hr → Hr ⊗ Ω1
X(logC) → 0

defined by

(Hr ⊗ Ω0
X)par := Hr,

(Hr ⊗ Ω1
X)par := ∇(Hr) +Hr ⊗ Ω1

X .

Locally around a cusp, one has

H0(SpecQp[[q]], (H
r ⊗ Ω1

X)par) =
(
Qp[[q]]ω

r
can +Qp[[q]]ω

r−1
can ηcan + · · ·+ qQp[[q]]η

r
can

) dq
q
.

The hypercohomology of (Hr ⊗ Ω•
X)par on XK will be denoted by Hi

par(XK ,Hr).

Remark 2.2. By examining the graded pieces and using the isomorphism (4), we have an isomorphism (c.f.
[Sch85, § 2])

H0(XK , ωr
E ⊗ Ω1

X) ∼=
H0(XK , (Hr ⊗ Ω1

X)par)

∇H0(XK ,Hr)
. (5)

The parabolic cohomology H1
par(XK ,Hr) is equipped with a short exact sequence

0 → H0(XK , ωr
E ⊗ Ω1

X) → H1
par(XK ,Hr) → H1(XK , ω−r

E ) → 0, (6)

and the Hodge filtration on H1
par(X,Hr) is given by

Fil0 = H1
par(XK ,Hr),

Fil1 = Fil2 = · · · = Filr+1 = H0(XK , ωr
E ⊗ Ω1

X),

Filr+2 = 0.

As we will see in §5, there is an action of Frobenius ϕ on H1
par(XK ,Hr). This makes the vector space

H1
par(XK ,Hr) into a filtered Frobenius module.

We also remark that there is a non-degenerate Poincaré pairing

⟨ , ⟩ : H1
par(XK ,Hr)×H1

par(XK ,Hr) → K(−1− r) (7)

where (−1− r) denotes the Tate twist of a filtered Frobenius module (c.f. §5).
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p-adic and overconvergent modular forms. In this part, we will assume some basic knowledge of rigid
analytic geometry. A beginner friendly reference would be [FP03].

Let P1, . . . , Ps ∈ X̄(Fp2) denote the supersingular points of the special fiber of X (also called the reduction
of X). These points are the zeros of the Hasse invariant Ha, which is a mod p modular form of weight p− 1.
We may choose lifts P̃1, . . . P̃s ∈ X (Zp2) of the supersingular points. For example, when p ≥ 5, one may

simply take the zeros of the Eisenstein series Ep−1. We let X ′ := X − {P̃1, . . . P̃s} be the resulting affine
curve over Zp, whose generic fiber and special fiber will be denoted X ′ and X̄ ′ respectively.

Now view X(Cp) as a rigid analytic space Xan and let red : Xan → X̄ be the reduction map. Then
A = Aord := red−1(X̄ ′) is a connected affinoid, called the ordinary locus. Let Ha be a lift of the Hasse
invariant (e.g. Ep−1 when p ≥ 5). One has the following description of the ordinary locus

A = {x ∈ X(Cp) | ordp Ha(x) = 0}.

For a real number ϵ > 0, we define

Wϵ := {x ∈ X(Cp) | ordp Ha(x) < ϵ}.

When 0 < ϵ < 1, the region Wϵ is independent of the choice of lifts of the Hasse invariant. Such a Wϵ is
called a strict neighborhood or a wide open neighborhood of A in Xan. If ordp Ha(x) < p

p+1 , then the elliptic
curve Ax for which x represents admits a canonical subgroup Zx. This allows us to define a map Φ on Wϵ

for ϵ < p
p+1 , whose restriction to A is a lift of the Frobenius on X̄ ′ (c.f. [Kat73] or [DR14, § 2.1]).

By abuse of notations, we will let Ω1
X denote its corresponding rigid analytic sheaf on Xan and similarly

for ωr
E ,H

r. Let K be a complete subfield of Cp, we let

Sp
2 (N ;K) := H0(A/K,Ω1

X), Soc
2 (N ;K) := lim

−→
ϵ>0

H0(Wϵ/K,Ω1
X)

be the spaces of p-adic cusp forms and overconvergent cusp forms of weight two with coefficients in K. For
k > 2, we let

Sp
k(N ;K) := H0(A/K, ωk−2

E ⊗ Ω1
X), Soc

k (N ;K) := lim
−→
ϵ>0

H0(Wϵ/K, ωk−2
E ⊗ Ω1

X).

When K = Cp, we will simply write Sp
k(N) and Soc

k (N). Notice that by restriction, we may identify
Soc
k (N ;K) ⊂ Sp

k(N ;K) as a subspace.

For any f ∈ Sp
k(N ;K), we have the q-expansion

f(q) =
∑

n≥1

anq
n

of f , which uniquely determines f (c.f. [Kat73]). We have two non-commuting operators U and V on
f ∈ Sp

k(N ;K), defined via q-exapnsions by

(Uf)(q) =
∑

n≥1

apnq
n, (V f)(q) =

∑

n≥1

anq
pn.

Obviously, these operators satisfy

UV f = f, V Uf(q) =
∑

n≥1

apnq
pn.

We define the p-depletion of f to be

f [p] := (1− V U)f, with f [p](q) =
∑

p∤n

anq
n.

The operator U restricted to the p-adic Banach space Soc
k (N) is a compact (or completely continuous),

which gives rise to a slope decomposition of the infinite-dimensional vector space Soc
k (N) (c.f. §7).
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Definition 2.3. An overconvergent modular form is said to be ordinary if it belongs to the slope 0 subspace
for U . We let Sord

k (N) denote the subspace of ordinary modular forms. We also recall Hida’s ordinary
projector

eord := lim
n→∞

Un!,

which gives a Hecke equivariant projection from Sp
k(N) tp Sord

k (N).

Nearly holomorphic and nearly overconvergent modular forms. All the modular forms we men-
tioned before are sections of ωk

E and ωr
E ⊗Ω1

X . In this part, we will shift our attention to sections of Hr and
introduce some differential operators. A more complete study can be found in [Urb14].

We first start with the complex case K = C. Hodge theory provides a canonical real analytic, but
non-holomorphic splitting

SplHdg : H → ωE

of the exact sequence (3) over X, or equivalently, a decomposition H = ωE ⊕ ωE . We also let the same
symbol denote the induced map Hr → ωr

E as well as the following map

SplHdg : H0(XC, (H
r ⊗ Ω1

X)par) → H0(X(C)an, (ωr
E ⊗ Ω1

X)par) (8)

where by X(C)an we means the real analytic structure of X(C).

Definition 2.4. The image of SplHdg in (8) is called the space of nearly holomorphic cusp forms of weight

k = r + 2 on Γ1(N) and will be denoted by Snh
k (N ;C).

We will recall, mostly without proof, the following facts about nearly holomorphic forms.

1. The map SplHdg in (8) is injective, and hence induces an isomorphism of complex vector spaces

H0(XC, (H
r ⊗ Ω1

X)par) ∼= Snh
k (N ;C).

As a result, we will also call elements in H0(XC, (H
r ⊗ Ω1

X)par) nearly holomorphic cusp forms.

2. For any subfield K of C, the image of H0(XK , (Hr⊗Ω1
X)par) under SplHdg yields a natural K-structure

on Snh
k (N ;C) and is denoted by Snh

k (N ;K).

3. Let ϕ ∈ H0(XK , (Hr ⊗ Ω1
X)par), then equation (5) allows us to write

ϕ = Πholo(ϕ) +∇s, with

{
Πholo(ϕ) ∈ H0(XK , ωr

E ⊗ Ω1
X) = Sk(N ;K),

s ∈ H0(XK ,Hr).
(9)

The modular form Πholo(ϕ) is called the holomorphic projection of ϕ.

4. By composing with the inverse of Kodaira–Spencer isomorphism and the natural morphism ω2
E⊗Hr ↪→

H2 ⊗Hr → Hr+2, one may view the Gauss–Manin connection as a map

∇̃ : H0(XK , (Hr ⊗ Ω1
X)par) → H0(XK , (Hr+2 ⊗ Ω1

X)par).

This map is related to the weight k Shimura–Maass differential operator δk = 1
2πi (

d
dτ + k

τ−τ̄ ) via the
following commutative diagram

H0(XK , (Hr ⊗ Ω1
X)par) Snh

k (N ;K)

H0(XK , (Hr+2 ⊗ Ω1
X)par) Snh

k+2(N ;K).

SplHdg

∇̃ δk

SplHdg
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This follows from a direct computation. Recall that in terms of the standard coordinates τ ∈ H and
z ∈ C/⟨1, τ⟩ (c.f. [Urb14, § 2.2.1]), we have

∇(2πidz) = 2πi

(
dz − dz̄

τ − τ̄

)
⊗ dτ, ∇(dz̄) = 0, KS((2πidz)⊗2) = 2πidτ.

One can then take the successive composition δtk := δk+2t−2 ◦ · · · ◦ δk+2 ◦ δk for all t ∈ N, which sends
Snh
k (N ;K) to Snh

k+2t(N ;K). In particular, when g ∈ Sℓ(N ;K) and h ∈ Sm(N ;K), the product δtℓg× h

belongs to Snh
ℓ+2t+m(N ;K). More precisely, it is the image of the element

∇̃t(ωg)⊗ ωh ∈ H0(XK , (Hℓ+2t+m ⊗ Ω1
X)par)

under the splitting SplHdg.

5. Hodge theory also gives a canonical splitting of the exact sequence (6):

H1
par(XC,H

r) = H0(XC, ω
r
E ⊗ Ω1

X)⊕H0(XC, ωr
E ⊗ Ω1

X).

One may then define the Petersson scalar product ( , )N on Snh
k (N ;K) by the rather unusual rule

(f1, f2)N :=

∫

Γ1(N)\H

f1(τ)f2(τ)y
k dxdy

y2
(10)

where τ := x+ iy. Notice that we follow the definition in [DR14]. This product is Hermitian-linear in
the first component and C-linear in the second component.

Lemma 2.5. For all η ∈ Sk(N ;C) and ϕ ∈ Snh
k (N ;C), we have

(η, ϕ)N = (η,Πholo(ϕ))N .

This equation may serve as an alternative definition of the holomorphic projection.

Proof. As XC is a compact manifold, the class of ∇(s) is zero in H1
par(XC,H

r) for all s ∈ H0(XC,H
r). The

result then follows from the relation between the Petersson product and the Poincaré pairing.

We now consider the p-adic case. Recall that we have the ordinary locus A and a system of strict
neighborhoods Wϵ ⊃ A. Since Wϵ is a Stein space, the hyper-cohomology Hi(Wϵ, (H

r ⊗ Ω•
X)par) (with

respect to the rigid analytic topology) can be computed by the complex of global sections. In other words,
we have

H1
rig,par(Wϵ,H

r) := H1(Wϵ, (H
r ⊗ Ω•

X)par) =
H0(Wϵ, (H

r ⊗ Ω1
X)par)

∇H0(Wϵ,Hr)
. (11)

The comparison theorem between rigid cohomology and de Rham cohomology then implies that

H1
rig,par(Wϵ,H

r) ∼= H1
par(X

′
Cp
,Hr)

for all 0 < ϵ < 1. In particular, the space H1
rig,par(Wϵ,H

r) is independent of ϵ.

It is known (c.f. [Col95]) that for an overconvergent modular form s ∈ H0(Wϵ, ω
−r
E ) of weight −r, it

admits a unique lift s̃ ∈ H0(Wϵ,H
r) under the projection H0(Wϵ,H

r) → H0(Wϵ, ω
−r
E ) satisfying ∇s̃ ∈

H0(Wϵ, ω
r
E ⊗ Ω1

X). Moreover, the section ∇s̃ corresponds to the overconvergent form θr+1s where θ = q d
dq

is Serre’s operator. Notice that θ sends p-adic modular forms of weight k to p-adic modular forms of weight
k + 2 and in general does not preserve overconvergence.

Again by (4), any rigid analytic section ϕ ∈ H0(Wϵ, (H
r ⊗ Ω1

X)par) can be written as

ϕ = ϕ0 +∇s, with ϕ0 ∈ H0(Wϵ, ω
r
E ⊗ Ω1

X), s ∈ H0(Wϵ,H
r). (12)
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Hence one may rewrite (11) as

H1
rig,par(Wϵ,H

r) =
H0(Wϵ, ω

r
E ⊗ Ω1

X)

∇H0(Wϵ,Hr) ∩H0(Wϵ, ωr
E ⊗ Ω1

X)
=

Soc
r+2(N)

θr+1Soc
−r(N)

. (13)

Over A, the slope decomposition with respect to the action of Frobenius gives the unit-root splitting

Splu-r : H → ωE

of the exact sequence (3). We will use the same notation to denote the associated map Splu-r : Hr → ωr
E

and
Splu-r : lim−→

ϵ>0

H0(Wϵ, (H
r ⊗ Ω1

X)par) → H0(A, ωr
E ⊗ Ω1

X) (14)

via composing with the restriction map.

Definition 2.6. The image of the map Splu-r in (14), denoted by Sn-oc
k (N ;Cp), is called the space of nearly

overconvergent modular forms of weight k on Γ1(N).

Remark 2.7. The space Sn-oc
k (N ;Cp) is contained in the space of p-adic modular forms by definition. It

contains the space of overconvergent modular forms by the inclusion H0(Wϵ, ω
r
E ⊗Ω1

X) ⊂ H0(Wϵ,H
r⊗Ω1

X).
But the two spaces are not equal, since the unit root splitting does not extend to any strict neighborhood
Wϵ (c.f. [Urb14, Proposition 3.1.3]).

We recall the following important facts about nearly overconvergent modular forms, which are analogous
to those in the complex setting:

1. The map Splu-r in (14) is injective and induces an isomorphism of p-adic Fréchet spaces (c.f. [CGJ95]):

Splu-r : lim−→
ϵ>0

H0(Wϵ, (H
r ⊗ Ω1

X)par)
∼
−→ Sn-oc

k (N ;Cp).

As a results, we will also call elements in lim
−→ϵ>0

H0(Wϵ, (H
r ⊗Ω1

X)par) nearly overconvergent modular

forms.

2. If K is any subfield of Cp, the image of lim
−→ϵ>0

H0(Wϵ/K, (Hr ⊗ Ω1
X)par) under Splu-r yields a natural

K-vector subspace Sn-oc
k (N ;K) ⊂ Sn-oc

k (N ;Cp).

3. Let ϕ ∈ lim
−→ϵ>0

H0(Wϵ, (H
r ⊗ Ω1

X)par). As we already mentioned, one can write

ϕ = ϕ0 +∇s, with ϕ0 ∈ H0(Wϵ, ω
r
E ⊗ Ω1

X), s ∈ H0(Wϵ,H
r).

The overconvergent modular forms Πoc(ϕ) := ϕ0 is called the overconvergent projection of the nearly
overconvergent modular form ϕ. Note that Πoc(ϕ) is only well-defined modulo θr+1(Soc

−r(N)).

4. The map ∇̃ corresponds under Splu-r to the operator θ = q d
dq . That is, we have the commutative

diagram

lim
−→ϵ>0

H0(Wϵ, (H
r ⊗ Ω1

X)par) Sn-oc
k (N ;Cp)

lim
−→ϵ>0

H0(Wϵ, (H
r+2 ⊗ Ω1

X)par) Sn-oc
k+2 (N ;Cp).

Splu-r

∇̃ θ

Splu-r

5. Suppose K is equipped with embeddings into C and Cp. Then there are natural maps

Snh
k (N ;K) H0(XK , (Hr ⊗ Ω1

X)par) Sn-oc
k (N ;K).

SplHdg Splu-r

By definition, the images of H0(XK , (Hr ⊗Ω1
X)par) under the holomorphic and overconvergent projec-

tions both take values in Sk(N,K) and are equal.
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The following lemma studies the relation between Hida’s ordinary projection and the overconvergent projec-
tion.

Lemma 2.8. Let ϕ be a nearly overconvergent modular form on Γ1(N) of weight k ≥ 2. Its image under
eord is overconvergent, and is thus classical on Γ1(N) ∩ Γ0(p) (c.f. [Col95]). Moreover, we have

eordϕ = eordΠ
oc
N (ϕ). (15)

Proof. We first write ϕ = ϕ0 + ∇s as in the definition of the overconvergent projection. Then we observe
that eord annihilate ∇s by looking at the q-expansion. More precisely, eord annihilates θ(Cp⊗OCp

[[q]]). The
result hence follows.

Let g ∈ Sℓ(N ;K) and h ∈ Sm(N ;K) be classical cusp forms defined over K, with fixed embeddings of K
into C and Cp. The forms g, h can be regarded as complex and overconvergent forms simultaneously. The
proposition below relates θtg × h to δtℓg × h.

Proposition 2.9 ([DR14, Proposition 2.8]). For all t ≥ 0, the modular form θtg×h belongs to Sn-oc

ℓ+2t+m(N ;K)
and

eord(θ
tg × h) = eordΠ

holo(δtℓg × h).

Proof. Observe that both modular forms come from the section ∇̃ωg ⊗ ωh. The result then follows from a
direct computation together with the previous lemma.

The situation becomes more intriguing when one wants to take negative power of θ. In order to do so,
one needs to replace g by its p-depletion g[p] ∈ Soc

k (N ;Cp). The form θ−tg[p]×h (with t > 0) is still a p-adic
modular form of weight k := ℓ+m− 2t. The following proposition shows that it is nearly overconvergent in
certain cases.

Proposition 2.10. Assume that 1 ≤ t ≤ ℓ− 1 so that k := ℓ+m− 2t ≥ 2. Then the p-adic modular form
θ−tg[p] × h belongs to Sn-oc

k (N ;Cp), and in particular

eord(θ
−tg[p] × h) ∈ Sord

k (N ;Cp) ⊂ Sord
k (Γ1(N) ∩ Γ0(p);Cp).

Proof. For a proof in the ordinary case, we refer it to [DR14, Proposition 2.9]. However, we will give a more
general (but implicit) proof in Section 6.

Periods of modular forms. Let f ∈ Sk(Nf , χf ;Kf ) ⊂ Sk(Nf ;Kf ) be an newform of nebentypus χf . It
generates an automorphic representation πf of GL2(AQ). For any multiple N of Nf and any field extension
Kf ⊂ K ⊂ C, we let Sk(N ;K)[f ] := Sk(N ;K)[πf ] denote the f -isotypic subspace of Sk(N ;K), which
consists of modular forms in Sk(N ;K) on which the Hecke operators Tℓ for (ℓ,Nf ) = 1 and the diamond
operators ⟨d⟩ for d ∈ (N/NN)× act with the same eigenvalues as those on f . The space Sk(N ;K)[f ]
is finite dimensional over K with dimension equal to σ0(N/Nf ) :=

∑
0<d|(N/Nf )

1. A basis is given by

{f(d · τ) = f(qd)}0<d|(N/Nf ). Similarly, one can define H1
par(XK ,Hr)[f ].

Definition 2.11. Suppose f is a cusp form of weight k, level N . We define the Atkin-Lehner involution of
f to be

f∗(τ) = (wNf)(τ) := ikN− k
2 τ−kf(−1/Nτ).

It can be easily check that wN is indeed an involution and the Hecke eigenvalues of wN (f) outside N are
equal to those of f twisted by χ−1

f . For this reason, we will often write f ⊗χ−1
f to denote f∗. Moreover, wN

is self-adjoint. As a consequence, we have (f, f)N = (f∗, f∗)N (c.f. [DS10, § 5.5, § 5.10]).

Lemma 2.12 ([DR14, Lemma 2.21]). For any f̆ ∈ Sk(N ;K)[f ] and all ϕ ∈ Sk(N ;K), the Petersson scalar

product (f̆∗, ϕ)N is a K-multiple of (f∗, f∗)N .
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We then define the period to be

J(f̆∗, ϕ) :=
(f̆∗, ϕ)N
(f∗, f∗)N

∈ K.

Let
ηa-h
f̆

∈ H0(XC, ωr
E ⊗ Ω1

X) ⊂ H1
par(XC,H

r)

denote the class of 1
⟨ω

f̆
,ω

f̆
⟩ · ωf̆ and ηa-h

f̆
be its natural image in H1(XC, ω

−r
E ) under the projection in (6).

Corollary 2.13 ([DR14, Corollary 2.13]). The class ηa-h
f̆

belongs to H1(XKf
, ω−r

E ).

We now give an alternative descriptions of J(f̆∗, ϕ), following [BSV22, § 2]. The Poincaré pairing (7)
descends to a perfect pairing

H1
par(XK ,Hr)[f̆ ]/Filr+1 ×Sk(N ;K)[f̆∗] → K.

The K-linear functional J(f̆∗, ·) on Sk(N ;K)[f̆∗] then corresponds to a unique element

ηf̆ ∈ H1
par(XK ,Hr)[f̆ ]/Filr+1 .

Under the identification H1
par(XK ,Hr)[f̆ ]/Filr+1 ∼= H1(XK , ω−r

E ), the class ηf̆ is sent to ηa-h
f̆

.

Remark 2.14. Notice that J(f̆∗, ·) is K-linear because of our unusual choice of the Petersson scalar product.

If one wished to use the usual Petersson scalar product, then one should exchange the positions of f̆∗ and ϕ
in the definition of J .

2.2 A quick recall on Hida families

Hida families. Let f ∈ Sk(Nf , χf ;Kf ) ⊂ Sk(Nf ;Kf ) be an eigenform of nebentypus χf . We factor the
Hecke polynomial at a prime p ∤ Nf as

T 2 − ap(f)T + χf (p)p
x−1 = (T − αf )(T − βf )

with a := ordp(αf ). In the ordinary setting, we will assume a = 0, i.e., αf is a p-adic unit. The ordinary
p-stabilization of f is defined to be

f (p) := (1− βfVp)f,

on which the Up acts with the eigenvalue αf . We will use similar notations for g ∈ Sℓ(Ng, χg;Kg) and
h ∈ Sm(Nh, χh;Kh). Suppose that Kf ,Kg,Kh are contained in a field K with a fixed p-adic embedding
K ↪→ Cp, and let O denote the ring of integers of the closure of K in Cp.

Set Γ = 1 + pZp and Λ = O[[Γ]] be the completed group algebra. The weight space is defined to be

Ω = Spf(Λ)(O) = HomO-alg(Λ,O),

which can be naturally identified as the set Homcts(Γ,O
×) of continuous homomorphisms. The subset of

classical weights is defined to be
Ωcl = {χk := γ 7→ γk | k ∈ Z≥2}.

For any finite flat extension Λf of Λ, let

Ωf := Spf(Λf )(O),

this space is endowed with a natural projection κ : Ωf → Ω induced by the inclusion Λ ⊂ Λf . A point x ∈ Ωf

for which κ(x) ∈ Ωcl is called a classical point. By abuse of notations, we will usually identify a classical
point x with the integer κ(x) ∈ Z even though there may be multiple points sent to the same classical weight
κ(x).

We now introduce the notion of Hida families. We follow the definitions used in [DR14], which are slightly
restrictive compared to definitions in other literature.
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Definition 2.15. Let Nf ≥ 1 be an integer and p be a prime not dividing Nf . A Hida family of tame level
Nf is a quadruple (Λf ,Ωf ,Ωf,cl, f), where

1. Λf is a finite flat extension of Λ;

2. Ωf is a non-empty open subset of Xf := Hom(Λf ,Cp) and Ωf,cl is a p-adically dense subset of Ωf

consisting of classical points;

3. f =
∑

an(f)q
n ∈ Λf [[q]] is a formal power series with coefficients in Λf such that, for any x ∈ Ωf,cl,

the power series

fx(q) :=

∞∑

n=1

an(f)xq
n ∈ Cp[[q]]

is the q-expansion of the ordinary p-stabilization of a normalized newform of weight κ(x) on Γ1(Nf ).

Remark 2.16. In order to lighten the typing load, the notation fx will be frequently used to denote the
specialization of f at x throughout this thesis. The corresponding normalized newform on Γ1(Nf ) will then
be denoted by f0

x .

Theorem 2.17 (Hida). Let f ∈ Sk(Nf ;K) be a newform with ordinary p-stabilization f (p). Then there
exists a Hida family (Λf ,Ωf ,Ωf,cl, f) of tame level Nf and a classical point x0 ∈ Ωf,cl satisfying

κ(x0) = k, fx0 = f (p).

It will be convenient to introduce a more general definition of families of modular forms.

Definition 2.18. A Λ-adic modular form of tame level N is a quadruple (R,Ωϕ,Ωϕ,cl,φ), where

1. R is a complete, finitely generated, flat extension of Λ;

2. Ωϕ is a non-empty open subset of Hom(R,Cp) and Ωϕ,cl is a p-adically dense subset of Ωϕ consisting
of classical points;

3. φ =
∑

an(φ)q
n ∈ R[[q]] is a formal power series with coefficients in R such that, for any x ∈ Ωϕ,cl, the

power series

φx(q) :=

∞∑

n=1

an(φ)xq
n ∈ Cp[[q]]

is the q-expansion of a classical ordinary cusp form in Sκ(x)(Γ1(N) ∩ Γ0(p);Cp).

One can define families of old forms as below. Let f ∈ Sk(Nf ;Kf ) be a new form and N a multiple of Nf

with p ∤ N . Let f̆ ∈ Sk(N ;Kf )[πf ] be an old form. Then there are unique scalars λd ∈ Kf for d | (N/Nf )
such that

f̆(q) =
∑

d|(N/Nf )

λd · f(q
d).

The p-stabilization of f(qd) is the weight k specialization of the formal power series (Λ-adic form)

f(qd) :=
∑

n

an(f)q
dn,

where (Λf ,Ωf ,Ωf,cl, f) is the Hida family of tame level Nf attached to f . Hence we can set

f̆ :=
∑

d|(N/Nf )

λdf(q
d).

The quadruple (Λf ,Ωf ,Ωf,cl, f̆) is a Λ-adic modular form which specializes to the ordinary p-stabilization of

f̆ at the weight k point x0 ∈ Ωf,cl in Theorem 2.17.

Remark 2.19. Given a Hida family f̆ of nebentypus χf , there is the Atkin–Lehner involution f̆∗ := f̆ ⊗χ−1
f ,

such that for all x ∈ Ωf,cl, f̆
∗
x = (f̆x)

∗.
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Products of families. Let (Λg,Ωg,Ωg,cl,g), (Λh,Ωh,Ωh,cl,h) be two Λ-adic modular forms of tame level
N . Let Λgh := Λg ⊗O Λh be the finitely generated Λ-algebra with the natural diagonal embedding Λ →
Λg ⊗ Λh given by sending the group-like element [a] to [a]⊗ [a]. We set

Ωgh := Ωg × Ωh, Ωgh,cl := Ωg,cl × Ωh,cl.

The naive product g × h ∈ Λgh[[q]] may not be an ordinary family. Nevertheless, we can take its ordinary
projection eord(g × h). Then the quadruple (Λgh,Ωgh,Ωgh,cl, eord(g × h)) is a Λ-adic modular forms.

Operators on families. Recall that we have the operators U, V and θ = q d
dq on modular forms, defined

primarily via q-expansions. We will extend these operators to families of modular forms. For U and V , the
generalizations are straightforward. In particular, we can define the p-depletion of g to be

g[p] := (1− V U)g =
∑

p∤n

an(g)q
n.

The specialization g
[p]
y of g[p] at a classical weight y can either be viewed as a p-adic modular form of tame

level N or a classical modular form of level Np2. Notice that g[p] is far from being ordinary. In fact, it is
annihilated by U , hence by eord.

For any n ∈ Z with p ∤ n, we can view it as the group-like element [n] ∈ Λ. The specialization [n]k of [n]
at a point k ∈ Ω is simply nk := k(n) ∈ O. Now we consider the q-expansion

θ•g[p] :=
∑

p∤n

[n]⊗ an(g)q
n, (16)

viewed as an element in Λ⊗OΛg[[q]]. It is a “two-variable” family, whose specialization at (t, y) ∈ Ωcl×Ωg,cl

is the p-adic modular form
θtg[p]y .

Define Rgh := Λ ⊗O Λg ⊗O Λh, regarded as a Λ-algebra by the embedding of group-like elements [a] 7→
[a2]⊗ [a]⊗ [a]. Then the map from Hom(Rgh,Cp) = Ω× Ωg × Ωh to the weight space Ω sends the classical
point (t, y, z) to κ(y)+κ(z)+2t ∈ Ωcl. Hence, the product eord(θ

•g[p]×h) is a Λ-adic form with coefficients in

Rgh, whose specialization at (t, y, z) is equal to the p-adic modular form eord(θ
tg

[p]
y ×hz) of weight y+z+2t.

We here give a lemma which is easy to prove but is extremely useful.

Lemma 2.20. Let g and h be two p-adic modular forms of tame level N , then U annihilate g[p] × V h, and
in particular

eord(g
[p] × V h) = 0.

The same result also holds for families of modular forms.

Proof. This is obvious from the q-expansion, where one observes that an(g
[p] × V h) = 0 whenever p|n.

We conclude the discussion on products of families with the following proposition.

Proposition 2.21. Let

Ωgh,cl := {(t, y, z) ∈ Ωcl × Ωg,cl × Ωh,cl | t > max (1− κ(y), 1− κ(z))}.

The quadruple
eord(θ

•g[p] × h) = (Rgh,Ω× Ωg × Ωh,Ωgh,cl, eord(θ
•g[p] × h))

is a Λ-adic modular form of tame level N . Moreover, its specialization at (t, y, z) ∈ Ωgh,cl is a the classical
modular form

eord(g
[p]
y × hz) ∈ Sx(Γ1(N) ∩ Γ0(p);Cp)

where x = y + z + 2t.
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Periods of families. Write Sord(N ;R) for the space of Λ-adic modular forms with coefficients in a Λ-
algebra R. A Hida family (Λf ,Ωf ,Ωf,cl, f) then gives rise to a subspace

Sord(N ; Λf )[πf ] := {f̆ ∈ Sord(N ; Λf ) | Tnf̆ = an(f)f̆ ∀(n,N) = 1}.

Let φ = (R,Ωϕ,Ωϕ,clφ) be another Λ-adic modular form and consider a pair (x, y) ∈ Ωf,cl ×Ωcl
Ωϕ,cl,

i.e., κ(x) = κ(y). The specialization ϕy needs not be the p-stabilization of a classical modular form, but its
projection ϕx,y := efxϕy to the fx-isotypic part is the p-stabilization of a classical modular form, which will
be denoted by ϕ0

x,y.

Lemma 2.22. For all f̆ ∈ Sord(N ; Λf )[πf ] and φ ∈ Sord(N ;R), there exists a unique J(f̆ ,φ) ∈ Frac(Λf )⊗ΛR
such that, for all classical points (x, y) ∈ Ωf,cl ×Ωcl

Ωϕ,cl,

J(f̆ ,φ)(x, y) =
(f̆x, efxϕy)N,p

(fx, fx)N,p
=

(f̆0
x , ϕ

0
x,y)N

(f0
x , f

0
x)N

= ⟨ηf0
x
, ϕ0

x,y⟩dR (17)

where ( , )N,p stands for the Petersson scalar product on Sx(Γ1(N) ∩ Γ0(p);C), and the last pairing is the
Poincaré pairing on H1

par(XCp
,Hx−2).

Proof. We would like to leave it to [DR14, Lemma 2.19].

2.3 The p-adic Gross–Zagier formula of Darmon–Rotger

Classical triple product L-functions. Let f ∈ Sk(Nf , χf ;Kf ), g ∈ Sℓ(Ng, χg;Kg), and h ∈ Sm(Nh, χh;Kh)
be a triple of normalized primitive cusp forms with coefficients in K• ⊂ Q̄ ⊂ C for • ∈ {f, g, h}. We set
N = lcm(Nf , Ng, Nh) and K = Kf,g,h := Kf · Kg · Kh. We assume that χf · χg · χh = 1, which implies
k + ℓ+m is even.

The Garrett–Rankin triple product L-function L(f, g, h; s) is defined by an Euler product

L(f, g, h; s) =
∏

p

Lp(f, g, h; p−s)−1,

where for p ∤ N , the local factor is the degree 8 polynomial

Lp(f, g, h;T ) =(1− αf,pαg,pαh,pT )× (1− αf,pαg,pβh,pT )

× (1− αf,pβg,pαh,pT )× (1− βf,pαg,pαh,pT )

× (1− αf,pβg,pβh,pT )× (1− βf,pαg,pβh,pT )

× (1− βf,pβg,pαh,pT )× (1− βf,pβg,pβh,pT ).

(18)

Piatetski-Shapiro and Rallis gave a precise recipe in [PR87] for the local factors at primes p|N as well as the
archimedean factor L∞(f, g, h; s). They also showed that the completed L-function

Λ(f, g, h; s) := L∞(f, g, h; s) · L(f, g, h; s)

admits a functional equation

Λ(f, g, h; s) = ε(f, g, h)Λ(f, g, h; k + ℓ+m− 2− s)

where ε(f, g, h) ∈ {±1}. The sign of ε(f, g, h) then determine the parity of the order of vanishing of
L(f, g, h; s) at the central point

c = cf,g,h :=
k + ℓ+m− 2

2
,

at which there is no pole (c.f. [PR87, Theorem 5.2]). The root number ε(f, g, h) can be expressed as a
product

ε(f, g, h) =
∏

q

εq(f, g, h)
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where q ≤ ∞ runs through all the places of Q and each local root number εq(f, g, h) ∈ {±1}.

Throughout this article, we will assume that all root numbers at finite primes are +1 (c.f. [DR14, § 1]).
Then ε(f, g, h) is determined by the local root number at infinity, which depends only on the weights of
(f, g, h). Precisely, we have

ε(f, g, h) = ε∞(f, g, h) =

{
−1 if (k, ℓ,m) is balanced;

+1 if (k, ℓ,m) is unbalanced.
(19)

We recall the definitions of balanced and unbalanced triples below.

Definition 2.23. A triple (x, y, z) ∈ N3 is said to be balanced if the largest number is strictly less than the
sum of the other two; it is called unbalanced if otherwise.

In the unbalanced case, we recall the following result of M. Harris and S. Kulda [HK91], refined by A.
Ichino [Ich08] and T. C. Watson [Wat02]. The theorem is usually known as the Ichino formula.

Theorem 2.24. Let f, g, h be as above and assume that the weights (k, ℓ,m) is unbalanced with k = ℓ+m+2t
for some t ∈ N. Then there exist modular forms (called test vectors)

f̆ ∈ Sk(N,Kf,g,h)[f ], ğ ∈ Sℓ(N,Kf,g,h)[g], h̆ ∈ Sm(N,Kf,g,h)[h]

and constants Cq ∈ K depending only on the local components of f̆ , ğ, h̆ at all q | N∞ such that

∏
q Cq

π2k
L

(
f̆ , ğ, h̆,

k + l +m− 2

2

)
= |I(f̆ , ğ, h̆)|2,

where
I(f̆ , ğ, h̆) := (f̆∗, δtℓğ × h̆)N .

Moreover, there exists a choice of f̆ , ğ, h̆ such that Cq ̸= 0 for all q.

Triple product p-adic L-functions for Hida families. Let the triple (f, g, h) be as before, and fix an

embedding ιp : Q̄ ↪→ Q̄p. Also let (f̆ , ğ, h̆) be test vectors as in Theorem 2.24. Assume further that (f̆ , ğ, h̆)
are ordinary with respect to ιp and let

f̆ = (Λf ,Ωf ,Ωf,cl, f̆), ğ = (Λg,Ωg,Ωg,cl, ğ), h̆ = (Λh,Ωh,Ωh,cl, h̆)

be the Hida families of tame level N interpolating the ordinary p-stabilizations of (f̆ , ğ, h̆) respectively. We
write

Σ := {(x, y, z) ∈ Ωf,cl × Ωg,cl × Ωh,cl},

and

Σf := {(x, y, z) ∈ Σ | x− y − z ∈ 2N},

Σbal := {(x, y, z) ∈ Σ | (x, y, z) is balanced and x+ y + z ∈ 2N}.

In light of Theorem 2.24, one would like to have a p-adic L-function associated with (f̆ , ğ, h̆) that in-

terpolates values related to I(f̆ , ğ, h̆) := (f̆∗, δtℓğ × h̆)N . This motivates the following definition in [DR14,
§ 4].

Definition 2.25. The Garrett–Rankin triple product p-adic L-function attached to the families (f̆ , ğ, h̆) is
the element

L
f
p (f̆ , ğ, h̆) := J(f̆∗, eord(θ

• ˘g[p] × h̆)) ∈ FracΛf ⊗Λ (Λ⊗ Λg ⊗ Λh) (20)

where the family eord(θ
• ˘g[p] × h̆) and the period J are defined as in previous sections.
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Notice that L f
p (f̆ , ğ, h̆) has poles only for finitely many x ∈ Ωf . By definition, its value at (x, y, z) ∈ Σf ,

after setting x = y + z + 2t, is

L
f
p (f̆ , ğ, h̆)(x, y, z) =

(f̆∗
x , eord(θ

tğ
[p]
y × h̆z))N,p

(f̆x, f̆x)N,p

. (21)

In particular, the value is algebraic. Furthermore, in virtue of the relation between θ and δ, one has the
following interpolation formula.

Theorem 2.26 ([DR14, Theorem 4.7]). Let (x, y, z) ∈ Σf and f0
x , g

0
y, h

0
z be classical modular forms of level

N whose ordinary p-stabilizations are f̆x, ğy, h̆z respectively. Then

L
f
p (f̆ , ğ, h̆)(x, y, z) =

E (f0
x , g

0
y, h

0
z)

E0(f0
x)E1(f0

x)
×

I(f0
x , g

0
y, h

0
z)

(f0
x , f

0
x)N

(22)

where the Euler factors E (f0
x , g

0
y, h

0
z),E0(f

0
x),E1(f

0
x) are defined as in the introduction.

Evaluations at balanced weights. It is more than natural to ask what happens when we specialize
L f

p (f̆ , ğ, h̆) to a classical point (x, y, z) ∈ Σbal. These points lie outside the range of interpolations in the
sense that Ichino formula does not apply to them.

One sees from the definition of L f
p that the value at a point (x, y, z) ∈ Σbal involves a negative power of

θ. Let t ∈ Z>0, the negative power θ−tg[p] is originally defined as a p-adic limit of modular forms. However,
it does satisfy the identity θt(θ−tg[p]) = g[p]. In other words, θ−tg[p] may be viewed as the t-th anti-derivative
of g[p] with respect to the differential operator θ. Hence, one may expect the values on Σbal can be expressed
as certain integrals. This is the motivation of the p-adic Gross–Zagier formula. In this case, the special
values can be further expressed as p-adic Abel–Jacobi images, which are indeed certain p-adic integrals, as
we will show in later sections.

We here recall the p-adic Gross–Zagier formula for Hida families without fully defining every ingredient.

Theorem 2.27 ([DR14, Theorem 1.3]). Let notations be as in Theorem 2.26, except that (x, y, z) ∈ Σbal

now. We write x = y + z − 2t with t ∈ Z>0. Then

L
f
p (f̆ , ğ, h̆)(x, y, z) = (−1)t−1

E (f0
x , g

0
y, h

0
z)

(t− 1)!E0(f0
x)E1(f0

x)
×AJp(∆x,y,z)(η

u-r

f ⊗ ωg ⊗ ωh) (23)

where AJp(∆x,y,z) is the p-adic Abel–Jacobi image of the diagonal cycle associated with the weight (x, y, z),
and ηu-rf , ωg, ωh are elements in the cohomology groups of various Kuga–Sato varieties associated with the

classical modular forms f0
x , g

0
y, h

0
z (c.f. §5).

Remark 2.28. The formula obviously has two sides, the L-function part and the Abel–Jacobi map part.
To generalize the formula to finite slope families, one needs to generalize these two factors. Sections 3 and
4 will recall the construction of triple product p-adic L-functions for finite slope families in [AI21], while
Section 5 will focus on the p-adic Abel–Jacobi map. As our results for finite slope families will cover the
ordinary case, we would like to omit the proof of Theorem 2.27.
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3 Vector bundles with marked sections

In this section, we will study vector bundles with marked sections (abbr. VBMS). It serves as an important
tool in Section 4 for constructing both the modular and de Rham sheaves. The results in this section all
come from [AI21, § 2] and I wish to claim no originality of the proofs.

3.1 Formal vector bundles with marked sections

Let S be a formal scheme with ideal of definition I which is invertible, and let E be a locally free OS-module
of finite rank n. Let s1, s2, . . . , sm ∈ H0(S, E/IE) with m ≤ n be a collection of sections such that they
generate a direct summand of Ē := E/IE . Such a data (E , s1, . . . , sm) is called a locally free sheaf with
marked sections. The goal is to construct a vector bundle associated with (E , s1, . . . , sm).

Definition 3.1. A formal vector bundle of rank n over S is a formal vector group scheme f : X → S such
that locally on S it is isomorphic to the n-fold product of the additive group Gn

a,S .

Theorem 3.2 ([AI21, § 2.2]). Let (E , s1, . . . , sm) be as above. We have the following results.

i. The functor that sends a morphism of formal schemes t : T → S (with the ideal of definition of T being
t∗(I)) to the set

V(E)(t : T → S) := HomOT
(t∗E ,OT )

is represented by the formal vector bundle V(E) := Spf(Ŝym(E)), where Ŝym(E) is the I-adic completion
of the symmetric algebra Sym(E) := ⊕i∈N Symi

OS
(E).

ii. The subfunctor V0(E , s1, . . . , sm) of V(E), which sends t : T → S as above to the set

V0(E , s1, . . . , sm)(t : T → S) := {h ∈ V(E)(t : T → S) | h(mod t∗(I))(t∗(sj)) = 1 ∀j},

is represented by an open formal subscheme V0(E , s1, . . . , sm) in a formal admissible blow-up of V.

Proof. (of Theorem 3.2) The first part is obvious, see [AI21, Lemma 2.2]. We here give a detailed proof for
the second part since the local description is crucial in later sections.

The sections s1, . . . , sm define a subsheaf of OS̄-module in Ē . By assumption, the quotient Q is a locally
free OS̄-module of rank n−m. Consider the quotient map

Sym(Ē) := ⊕i∈N Symi
OS̄

(Ē) → Sym(Q)

which has kernel J̄ := (s1 − 1, . . . , sm − 1). Taking the induced map on spectra (relative to S̄), it defines a
closed subscheme in Spec(Sym(Ē)). Let J ⊂ OV(E) be the inverse image of J̄ .

Now consider the I-adic completion of the open formal subscheme of the blow-up of V(E) with respect
to the ideal J , defined by the requirement that the ideal generated by the inverse image of J coincides with
the inverse image of I. We claim that such an open formal subscheme, denoted by B, represents the desired
functor.

In local coordinates, let U = Spf(R) ⊂ S be an open formal subscheme such that I is generated by α,
E|U is free with basis e1, . . . , en such that ei ≡ si modulo α for i = 1, . . . ,m, and em+1, . . . , en define a basis
of Q. Then V(E)|U is the formal scheme associated with R⟨X1, . . . , Xn⟩ where Xi corresponds to ei and J |U
is the ideal (α,X1 − 1, . . . Xm − 1). In particular, one sees that

B|U = Spf R⟨Z1, . . . , Zm, Xm+1, . . . , Xn⟩

with morphism B|U → V(E)|U given by the map Xi 7→ Xi for i = m + 1, . . . , n and Xi 7→ 1 + αZi for
i = 1, . . . ,m.

For every formal scheme T over U , a section ρ ∈ V(E)(T ) = HomOT
(t∗E ,OT ) is defined by the images

ai := ρ(t∗(ei)) of Xi’s. Then ρ ∈ V0(E , s1, . . . , sm)(T ) if and only if ai ≡ 1 mod α for i = 1, . . . ,m. Hence, ρ
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determines uniquely a T -point of B|U given by Xi 7→ ai for i = m+1, . . . , n and Zi 7→
ai−1
α for i = 1, . . . ,m.

Conversely, any T -point of B|U defines a section ρ ∈ V0(E , s1, . . . , sm)(T ).

One can then verify that the isomorphism B|U ∼= V0(E , s1, . . . , sm)|U glues to an isomorphism B ∼=
V0(E , s1, . . . , sm) as formal schemes over V(E). The functoriality is immediately checked by construction.

3.2 Filtrations on vector bundles with marked sections

Let S and E be as before. Suppose F ⊂ E is a subsheaf, locally free of rank m, such that E/F is locally free
of rank n−m. Suppose also that the sections s1, . . . , sm of Ē define an OS̄-basis of F̄ . By the functoriality,
we have a commutative diagram

V0(E , s1, . . . , sm) V(E)

V0(F , s1, . . . , sm) V(F).

We let f : V(E) → S, g : V(F) → S and f0 : V0(E , s1, . . . , sm) → S, g0 : V0(F , s1, . . . , sm) → S denote the
structural morphisms.

Lemma 3.3 ([AI21, Lemma 2.5]). The above diagram is Cartesian. In particular, the vertical morphisms
are principal homogeneous spaces under the formal vector group scheme V(E/F).

Corollary 3.4 ([AI21, Corollary 2.6]). Let notations be as above. The sheaf f0,∗OV0(E,s1,...,sm) is endowed
with an increasing filtration Fil• f0,∗OV0(E,s1,...,sm) with graded pieces

Grh f0,∗OV0(E,s1,...,sm)
∼= g0,∗OV0(F,s1,...,sm) ⊗OS

Symh(E/F).

Remark 3.5. The proofs of above two results can be derived from the following local description. Locally,
let U = Spf(R) ⊂ S is an open formal affine subscheme such that F , E are free with basis {e1, . . . , em} (resp.
{e1, . . . , em, fm+1, . . . , fn}). We can write

V0(F , s1, . . . , sm)|U ∼= Spf(R⟨Z1, . . . , Zm⟩),

V0(E , s1, . . . , sm)|U ∼= Spf(R⟨Z1, . . . , Zm, Xm+1, . . . , Xn⟩)

as in previous section. In particular, the filtration Filh f0,∗OV0(E,s1,...,sm)(U) consists of polynomials of degree
at most h in the variables Xm+1, . . . , Xn with coefficients in R⟨Z1, . . . , Zm⟩.

3.3 Connections on vector bundles with marked sections

Fix a Zp-algebra A and an element α ∈ A such that A is α-adically complete and separated. Suppose that
S is a formal scheme locally of finite type over Spf(A) and the topology of S is the α-adic topology. We let
Ω1

S/A be the OS-module of continuous Kähler differentials.

Grothendieck’s description of integrable connections. Let P = PS := S×AS and ∆ : S → PS be the
diagonal embedding. It is a locally closed immersion, and we let P(1) be the first infinitesimal neighborhood
of ∆: if locally on P the morphism ∆ is defined by an ideal I , then P(1) is defined by I 2. There are two
natural projections j1, j2 : P(1) → S.

Then, giving an integrable connection ∇ : M → M ⊗OS
Ω1

S/A on a locally free OS-module of finite rank
is equivalent to giving an isomorphism of OP(1) -modules

ϵ : j∗2 (M) = OP(1) ⊗OS
M ∼= j∗1 (M) = M ⊗OS

OP(1)

such that ∆∗(ϵ) = Id on M and ϵ satisfies a suitable cocycle condition with respect to the pullbacks of three
possible embeddings from S ×A S to S ×A S ×A S.
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Remark 3.6. This is a well-known fact (c.f. [BO78, § 2]), but we will recall it for later use. First, one
observes that the sheafOS⊗OS has twoOS-module structures. Namely, the one given byOS⊗1 and the other
given by 1⊗OS . They give rise to two OS-structures on OP(1) which correspond to the structures induced
by j∗1 and j∗2 . Also, we have a natural map OS ⊗OS/I → OS and hence a map OP(1)/(I /I 2) → OS .

Now suppose we have an isomorphism ϵ as above. The condition ∆∗(ϵ) = Id is equivalent to saying that
ϵ = Id on M modulo I /I 2. We also remark that the OS-structure on OP(1) used for the tensor product
OP(1) ⊗OS

M is the one given by OS → 1⊗OS . One defines θ := ϵ ◦ j∗2 : M → OP(1) ⊗OS
M and

∇(m) := θ(m)−m⊗ 1.

By the assumption of ϵ, ∇(m) ∈ M ⊗ I /I 2 ∼= M ⊗ Ω1
S . For the Leibniz rule, one computes, for s ∈ OS

and m ∈ M , that

∇(sm) = θ(sm)− sm⊗ 1 = (1⊗ s)θ(m)− (s⊗ 1)(m⊗ 1)

= (1⊗ s)θ(m)− (1⊗ s)(m⊗ 1) + (1⊗ s)(m⊗ 1)− (s⊗ 1)(m⊗ 1)

= (1⊗ s)∇(m) + ds · (m⊗ 1) = s∇(m) +m⊗ ds

where we identify 1⊗ s− s⊗ 1 = ds in I /I 2 ∼= Ω1
S .

Conversely, given a connection ∇, one defines

ϵ(1⊗m) = m⊗ 1 +∇(m).

One can then reverse the above computation to verify that ϵ has the desired properties.

Lastly, we remark that this formulation allows us to define connections on an arbitrary quasi-coherent
OS-module M (not necessarily locally free of finite rank).

Suppose now that E is a locally free OS-module with an integrable connection ∇ : E → E ⊗OS
Ω1

S and
si’s are marked sections of Ē that are horizontal for ∇ modulo I. This means that the reduction of the
associated isomorphism ϵ : j∗2E → j∗1E satisfies ϵ̄(j∗2 (si)) = j∗1 (si) for all i. Let f : V0(E , s1, . . . , sm) → S be
the structural morphism. We would like to give a connection on the sheaf f∗OV0(E,s1,...,sm).

First, by functoriality, we have the commutative diagram of formal schemes over S

P
(1)
S/A ×S V0(E , s1, . . . , sm) V0(E , s1, . . . , sm)×S P

(1)
S/A

P
(1)
S/A ×S V(E) V(E)×S P

(1)
S/A

ϵ0

ϵ′

such that ∆∗(ϵ0) = Id and ∆∗(ϵ′) = Id. Passing to functions, we obtain compatible isomorphisms

j∗2 (f∗OV(E)) j∗1 (f∗OV(E))

j∗2 (f0,∗OV0(E,s1,...,sm)) j∗1 (f0,∗OV0(E,s1,...,sm))

ϵ′,∗

ϵ∗0

such that ∆∗(ϵ∗0) = Id and ∆∗(ϵ′,∗) = Id. By construction, when restricted to the submodule E ⊂ f∗OV(E),
ϵ′,∗ coincides with ϵ. Hence, via Grothedieck’s correspondence, there are compatible integrable connections:

E E ⊗OS
Ω1

S/A

f∗OV(E) f∗OV(E)⊗̂OS
Ω1

S/A

f0,∗OV0(E,s1,...,sm) f0,∗OV0(E,s1,...,sm)⊗̂OS
Ω1

S/A.

∇

∇′

∇0
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Assume further that we have a direct summand F ⊂ E as in the setting of Section 3.2. Recall that there
is a filtration Fil• f0,∗OV0(E,s1,...,sm) on f0,∗OV0(E,s1,...,sm).

Lemma 3.7 ([AI21, Lemma 2.9]). The connection ∇0 satisfies Griffiths transversality with respect to the
filtration Fil• f0,∗OV0(E,s1,...,sm). That is, for every integer h, we have

∇(Filh f0,∗OV0(E,s1,...,sm)) ⊂ Filh+1 f0,∗OV0(E,s1,...,sm)⊗̂OS
Ω1

S/A.

Proof. The statement can be checked locally. Let U = Spf(R) ⊂ S be an open formal affine subscheme such
that I is generated by u ∈ R. Suppose that F , E are free with basis {e1, . . . , em} (resp. {e1, . . . , em, fm+1, . . . , fn}).
Write

V0(E)|U ∼= Spf(R⟨X1, . . . , Xn⟩),

V0(F , s1, . . . , sm)|U ∼= Spf(R⟨Z1, . . . , Zm⟩),

V0(E , s1, . . . , sm)|U ∼= Spf(R⟨Z1, . . . , Zm, Xm+1, . . . , Xn⟩)

as before.

By assumption, for 1 ≤ s ≤ m, we can write ∇(es) =
∑m

i=1 uei ⊗ αs,i +
∑n

j=m+1 ufj ⊗ βs,j where

αs,i, βs,j ∈ Ω1
U . Hence,

∇′(Xs) =

m∑

i=1

uXi ⊗ αs,i +

n∑

j=m+1

uXj ⊗ βs,j .

Since Xs = 1 + uZs, we deduce that

∇0(Zs) =

m∑

i=1

(Xi ⊗ αs,i − Zi ⊗ du) +

n∑

j=m+1

Xj ⊗ βs,j

for 1 ≤ s ≤ m. Recall that the filtration Filh f0,∗OV0(E,s1,...,sm)(U) consists of polynomials of degree at most
h in the variables Xm+1, . . . , Xn with coefficients in R⟨Z1, . . . , Zm⟩. One then verifies Griffiths transversality
by Leibniz’s rule.
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4 Overconvergent modular and de Rham sheaves

In this part, we will recall the constructions of overconvergent sheaves by using vector bundles with marked
sections. The arguments mainly follow [AI21, § 3], with some inputs from [Kaz22]. Again, we do not claim
any originality of the proofs.

Throughout this section, we will let N ≥ 4 be an integer, p be a prime not dividing N and let q = 4 if
p = 2 and q = p if otherwise.

4.1 The weight space

We let Λ := ZpJZ×
p K ∼= Zp[(Z/qZ)×]JT K be the Iwasawa algebra. Here the isomorphism is given by exp(q) 7→

1 + T . We also let Λ0 = ZpJT K. Then we have two formal schemes

W := Spf(Λ) and W0 := Spf(Λ0)

which are called the weight spaces. Recall that for any p-adically complete Zp-algebra R,

Homcont,Zp
(Λ, R) ∼= Homcont,Z(Z×

p , R
×).

Then W0 is the connected component of the trivial character in W. We define W := Spa(Λ,Λ)an to be the
analytic adic space associated with Λ, and similarly W0 := Spa(Λ0,Λ0)an.

For any interval I = [pa, pb] ⊂ [0,∞] with a ∈ N ∪ {−∞} and b ∈ N ∪ {∞}, we let

W0
I = {x ∈ W0 | |p|x ≤ |T pa

|x ̸= 0, |T pb

|x ≤ |p|x ̸= 0}.

We will mainly focus on the following two cases of I:

1. I = [0, pb] for some b ∈ N;

2. I = [pa, pb] with a ∈ N and b ∈ N ∪ {∞}.

We then have the descriptions of W0
I for these two cases:

W0
[0,pb] = Spa

(
Λ0

〈
T pb

p

〉[
1

p

]
,Λ0

〈
T pb

p

〉)
;

W0
[pa,pb] = Spa

(
Λ0

〈
p

T pa ,
T pb

p

〉[
1

p

]
,Λ0

〈
p

T pa ,
T pb

p

〉)
.

For I as above, we can similarly define WI , which is the componentwise union of W0
I . We let Λ0

I :=
Γ(W0

I ,O
+
W0

I

), ΛI := Γ(WI ,O
+
WI

) and W0
I := Spf Λ0

I , WI := Spf ΛI . For I = [0, pb], we choose a pseudo-

uniformizer α = p and for I = [pa, pb], we take α = T .

Remark 4.1. Throughout this thesis, we will be mostly dealing with the case I = [0, 1] and α = p.

The universal character.

Definition 4.2. Given a p-adically complete and separated ring R, we say that a continuous homomorphism
k : Z×

p → R× is an analytic weight of radius pa for a ∈ N if there exists an element u ∈ R[ 1p ] such that

k(t) = exp(u log t) for every t ∈ 1 + paZp.

Let kuniv : Z×
p → Λ be the universal character. We denote by k0 := kuniv,0 : Z×

p → Λ0 the character

obtained by kuniv via the projection Λ → Λ0. We also let k0I : Z×
p → Λ0

I be the restriction of k0 to W0
I .
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Lemma 4.3. For I ⊂ [0, q−1pn], the restriction of k0I to 1 + qpn−1Zp is analytic. In particular, it extends
to a character

k0I : W0
I × Z×

p (1 + qpn−1G+
a ) → G+

m

which further restricts to
k0I : W0

I × (1 + qpn+m−1G+
a ) → 1 + qpmG+

a

for all m ≥ 0.

Proof. ([AIP18, Proposition 2.1]) For simplicity, we let I = [0, q−1pn]. One first observes that k0I (exp(qp
n−1))−

1 = (1 + T )p
n−1

− 1 ∈ (T pn−1

, pT pn−2

, pn−1T ). Since T pn−1

is divisible by q in Λ0
I = Λ0⟨T q−1pn

/p⟩, We can

write (1+T )p
n−1

= 1+qh(T ) for some h ∈ Λ0
I . In particular, the element u′ = log((1+T )p

n−1

) is well-defined
in Λ0

I . As 1 + qpn−1Zp is isomorphic to qpn−1Zp via the exponential and the logarithm, for any r ∈ Zp, we
have

k0I (exp(qp
n−1r)) = exp

(
r log((1 + T )p

n−1

)
)
= exp

(
qpn−1r ·

1

qpn−1
log((1 + T )p

n−1

)

)
.

Hence k0I is analytic with u = 1
qpn−1 log((1 + T )p

n−1

). The rest of the statements then follow from direct
computations.

4.2 Modular curves and Igusa towers

Let Y = Y1(N)/Zp be the moduli scheme of elliptic curves with Γ1(N)-level structure. Let X = X1(N) be its
smooth proper compactification of Y that classifies generalized elliptic curves with Γ1(N)-level structure. We
let X, Y be the formal completions of X, Y along their special fibers respectively. Lastly, we let π : E → X

be the universal semi-abelian scheme.

Similarly as in §2.1, the two sheaves π∗(Ω
1
EY/Y) and R1π∗(Ω

•
EY/Y) have canonical extensions to X, which

will again be denoted by ωE and H respectively. The sheaf ωE is locally free of rank 1 and H is locally free
of rank 2 with a Hodge filtration and a Gauss–Manin connection.

The Hodge ideal, denoted by Hdg, is the ideal of OX defined locally by: on an open affine U = Spf(R)

of X such that ωE |U is a free R-module of rank 1, Hdg is generated by the value H̃a(E/R, ω), where H̃a is
a lift of the Hasse invariant and ω is any R-generator of ωE|U . Recall that when p ≥ 5 case we can simply

take H̃a = Ep−1, the Eisenstein series of weight p − 1. By abuse of notations, we will also write Hdg for a
local generator of the ideal Hdg.

The Partial Igusa tower. Fix an interval I = [pa, pb]. Let XI := X ×Spf Zp
W0

I . By an abuse of
notation, we also let Hdg be the Hodge ideal inside OXI

/(α) where recall that α is the chosen pseudo-

uniformizer depending on I. For any r ≥ 1, consider the inverse image of Hdgp
r+1

under the natural map

OXI
→ OXI

/(α) and call this ideal Hdgr. Locally over Spf(R) ⊂ XI , Hdgr is equal to (α,Hdgp
r+1

).

Let Xr,I → XI be the open in the admissible blow-up of XI with respect to the ideal Hdgr, defined such

that the inverse image of Hdgr is locally generated by Hdgp
r+1

.

In case 1, that is, I = [0, pb], then p

Hdgpr+1 ∈ OXr,I
. If I = [pa, pb] as in case 2, then p

Hdgpa+r+1 ∈ OXr,I
.

We let n be an integer with 1 ≤ n ≤ r in case 1, and 1 ≤ n ≤ a+ r in case 2.

Proposition 4.4. For I, r, n as above, the semi-abelian scheme E → Xr,I admits a canonical subgroup Hn.
To be more precise, we have the following properties:

1. Hn lifts ker(Frob) modulo p/λ, where Frob is the Frobenius and λ = Hdg
pn−1
p−1 ,

2. For any α-adically complete admissible Λ0
I-algebra R with a morphism Spf(R) → Xr,I ,

Hn(R) = {s ∈ E[pn](R) | s mod p/λ ∈ ker(Frob)},

3. Let Ln = E[pn]/Hn. Then ωLn
is killed by λ and we have ωLn

∼= ωE/λωE,
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4. E[pn]/Hn
∼= H∨

n through the Weil pairing.

Proof. The proof of these facts about the canonical subgroup can be found in [AIP18, Appendice A].

Definition 4.5. Let I, r, n be as above. We let IGn,rI → Xr,I be the adic space which classifies trivializations

Z/pnZ ∼
−→ H∨

n , and define gn : IGn,rI → Xr,I to be the normalization of Xr,I in IGn,rI .

Fact. (c.f. [AI21, § 3.1]) The morphism IGn,rI → Xr,I is finite étale and Galois with the Galois group
(Z/pnZ)×. The morphism gn : IGn,rI → Xr,I is finite and is endowed with an action of (Z/pnZ)×.

4.3 Heuristics on vector bundles with marked sections and overconvergent

sheaves

In this subsection, we will briefly explain the idea of using vector bundles with marked sections to construct
overconvergent sheaves. We figure it would be helpful to give a picture of the theory before going into
detailed constructions. We also set up several notations that will be fixed during the following subsections.

Fix a positive integer n, then we take I = [pa, pb] such that k0I is analytic on 1+ pn−1Zp and r such that
Hn is defined over Xr,I . For example,

1. I = [0, 1]: For p ̸= 2, take 2 ≤ r and 2 ≤ n ≤ r. For p = 2, take r ≥ 4 and 4 ≤ n ≤ r.

2. I = [pa, pb] with a, b ∈ N: For p ̸= 2, take b+ 2 ≤ a+ r and b+ 2 ≤ n ≤ a+ r. For p = 2, 2 ≤ r, take
b+ 4 ≤ a+ r and b+ 4 ≤ n ≤ a+ r.

The idea is fairly simple. First, one would like to construct a (1+ pn−1Zp)-torsor τ : T → Xr,I . Then for
an analytic weight kI , we consider the sheaf τ∗OT[k

0
I ] on which 1 + pn−1Zp acts by k0I . The sections of such

a sheaf should be close to a family of modular forms of weight k0I . Vector bundles with marked sections,
especially the marked sections (say, modulo pn−1), provide a desired 1+ pn−1Zp-action. Following this idea,
we can construct overconvergent modular and de Rham sheaves, denoted by w0

kI
and W0

kI
in §4.4 and §4.5.

On the other hand, let kfI : (Z/qZ)× → Z×
p → ΛI be the torsion part of the universal character kI .

For p ̸= 2, we consider the morphism h : IG1,r,I → Xr,I and for p = 2 we consider h : IG2,r,I → Xr,I .

Set w
f
kI

:= h∗OIGi,r,I
[kfI ], which takes care of the torsion part action. We then let wkI

:= w0
kI
⊗̂w

f
kI

and

WkI
:= W0

kI
⊗̂w

f
kI
. These are sheaves that interpolate Symℓ ωE and Symℓ H respectively for all classical

weight ℓ ∈ Z.

Remark 4.6. According to A. Kazi’s observation in [Kaz22, § 1.3], the idea of using vector bundles with
marked sections can be explained in the following way. As ωE is a line bundle, its isomorphism class [ωE ]
can be viewed as an element in Ȟ1(X,Gm), where the cohomology is the Čech cohomology. For a classical

weight ℓ ∈ Z, ωℓ
E corresponds to the image of [ωE ] under the map Ȟ1(X,Gm)

ℓ
−→ Ȟ1(X,Gm) induced by the

ℓ-th power map on Gm.

Now one would like to extend the same process to a p-adic weight. To do so, one needs the analyticity of
k. Suppose k is analytic on an open subgroup 1+pn−1Zp ⊂ Z×

p . Then we consider the map k : 1+pn−1Ga →

Ĝm. It is not hard to see that the group Ȟ1(X, 1 + pn−1Ga) classifies line bundles L on X together with
an isomorphism OX/p

n−1OX
∼= L /pn−1L . In other words, the sheaf L comes with a marked section

corresponding to the isomorphism. This gives a more intuitive explanation of the use of vector bundles with
marked sections.

4.4 The overconvergent modular sheaf wk

Let n, r, I be fixed as in previous sections. Then the trivialization of H∨
n over IGn,r,I induces an equality

Z/pnZ ∼= H∨
n (IGn,r,I) = H∨

n (IGn,r,I).
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Let P univ denote the image of 1̄ ∈ Z/pnZ in H∨
n (IGn,r,I). We have a diagram of OIGn,r,I

-linear maps (c.f.
[AI21, A.1])

ωE

H∨
n (IGn,r,I) ωHn

ωE/p
n Hdg−

pn−1
p−1 ωE .

d log

Recall that a point P ∈ H∨(R) gives a group homomorphism γP : Hn,R → Gm,R, which allows as to defined
d log(P ) := γ∗

P (dt/t) where dt/t is the canonical differential on Gm.

Set βn := pn Hdg
−pn

p−1 and view s := d log(P univ)) as a section of ωE/βnωE by a further quotient of the
above diagram.

One may naively expect (ωE , s) to be a locally free sheaf with a marked section and then construct the
modular sheaf via V0(ωE , s). Unfortunately, the data (ωE , s) does not satisfy the condition in Section 3
since the cokernel of the inclusion

s · (OIGn,r,I
/βnOIGn,r,I

) ↪→ ωE/βnωE

is annihilated precisely by δ := Hdg
1

p−1 . Hence one needs to modify either ωE or s.

Definition 4.7. Define ΩE ⊂ ωE to be the inverse image of d log(P univ) under the map ωE → ωHn
. We

call ΩE the modified modular sheaf.

Then we have the following properties (c.f. [AI21, A.1]):

1. ΩE is a locally free OIGn,r,I
-module of rank 1.

2. The map d log induces an isomorphism

H∨(IGn,r,I)⊗Z OIGn,r,I
/βn

∼= ΩE/βnΩE .

In particular, the pair (ΩE .s) is a locally free sheaf with a marked section. Also, we have ΩE = δωE , which
implies that ΩE is actually a free OIGn,r,I

-module for p ≥ 5.

Now, we have the formal scheme V0(ΩE , s) with morphisms

u : V0(ΩE , s)
u0−→ IGn,r,I

gn
−→ Xr,I .

The morphism u0 : V0(ΩE , s) → IGn,r,I carries an action of the formal group scheme I := 1+βGa, which
realizes V0(ΩE , s) as a torsor. The action can be described explicitly on points. Let ρ : Spf(R) → IGn,r,I

be a morphism such that ρ∗(ωE) is free of rank 1. By abuse of notations, we let βn and δ be a generator of
ρ∗(βn) and ρ∗(δ).

An R-point (ρ, f) ∈ V0(ΩE , s)(R) consists of a morphism ρ as above and an element f ∈ HomR(ρ
∗ΩE , R)

such that f(ρ∗s) (mod βn) = 1. Then for any t ∈ 1 + βnR, the action is defined by t ∗ (ρ, f) := (ρ, tf). It is
clear that (ρ, tf) is still an element of V0(ΩE , s)(R).

One can also describe it in local coordinates. Recall that we can take an R-basis e of ρ∗ΩE such that
e (mod βn) = ρ∗(s). Then we have V0(ΩE , s)(R) = Spf R⟨Z⟩ → V0(ΩE)(R) = Spf R⟨X⟩ induced by
X → 1 + βnZ, where X corresponds to the chosen basis e.

On the other hand,

V0(ΩE , s)(R) = {f : ρ∗ΩE → R | f(ρ∗s) mod βn = 1} = (1 + βnR)e∨

where e∨ is the dual basis to e. In particular, an element (1 + βnr)e
∨ correspond to the map R⟨Z⟩ → R

sending Z → r = (1+βnr)−1
βn

.
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One can then define the action of 1 + βnR on R⟨Z⟩ by letting t ∗ Z be the element in R⟨Z⟩ such that
(t ∗ f)(Z) = f(t ∗ Z) for all f ∈ V0(ΩE , s)(R) and t ∈ 1 + βnR.

Suppose that t = 1+ βnb, f = (1+ βna)e
∨ and t ∗Z =

∑∞
m=0 cmZm. By definition, f(t ∗Z) =

∑
cmam,

and t∗f = (1+βnb)(1+βna)e
∨ = (1+βn(a+b+βnab))e

∨. We see that (t∗f)(Z) = a+b+βnab = b+(1+βnb)a,
and hence t ∗ Z = b+ (1 + βnb)Z = t−1

βn
+ tZ.

Since there is a (Z/pnZ)×-action on gn : IGn,r,I → Xr,I , the action of I can be extended to an action of
Iext := Z×

p (1 + βnGa) on u : V0(ΩE , s) → Xr,I . We here describe this action.

Let λ ∈ Z×
p and λ̄ be its image in (Z/pnZ)×. Then λ̄ may be viewed as an isomorphism λ̄ : IGn,r,I →

IGn,r,I over Xr,I . Hence it induces a natural isomorphism γλ : ΩE
∼= λ̄∗ΩE characterized by γλ(s) ≡ λ̄−1 · s

(mod pn). The action of Z×
p is defined by λ ∗ (ρ, f) := (λ̄ ◦ ρ, f ◦ γ−1

λ )

Definition 4.8. Let kI : Z×
p → ΛI be the universal character onWI . Then we definewkI

:= u∗(OV0(ΩE ,s))[kI ].
That is, the subsheaf on which Iext acts by kI .

Local description of w0
kI
. For simplicity, we write k = kI . Let w0

k : u0∗(OV0(ΩE ,s))[k], which is a sheaf
on IGn,r,I .

Lemma 4.9. Let ρ : Spf(R) → IGn,r,I be as before. Then we have the local description of w0
k.

1. ρ∗(w0
k) = R⟨Z⟩[k] = R · k(1 + βnZ).

2. w0
k is a locally free sheaf of rank 1.

Proof. 1. First note that by the analyticity of k, k(1 + βnZ) ∈ R⟨Z⟩ is a well-defined element. Moreover,
for t ∈ 1 + βnR, we have

t ∗ (1 + βnZ) = t · (1 + βnZ).

This implies that t ∗ k(1+βnZ) = k(t) · k(1+βnZ), i.e. R · k(1+βnZ) ⊂ R⟨Z⟩[k]. For the inverse inclusion,
we refer to [AI21, Lemma 3.9].

2. It follows directly from part 1.

Remark 4.10. The element k(1 + βnZ) should be viewed as the “k-th power” of 1 + βnZ. For this reason,
we will also write (1 + βnZ)k for k(1 + βnZ).

Remark 4.11. If we wish to describe wk, we need to consider the Z×
p -action on w0

k and descend from
IGn,r,I to Xr,I . In particular, one sees that gn∗(w

0
k) decomposes into |(Z/pnZ)×|-pieces according to the

residual action.

4.5 The overconvergent de Rham sheave Wk

Similar to the modular sheaf, the pair (H, s) is not a locally free sheaf with a marked section either. So
again, we need to modify it.

Definition 4.12. We define H♯ := ΩE + δpH to be the modified de Rham sheaf. It is the push-out in the
category of coherent sheaves on Xr,I of the diagram

δpωE δpH

ΩE .

⊂

27



As δ is locally free, H♯ is locally free of rank 2. Moreover, it sits inside the following commutative diagram
with exact rows:

0 δpωE δpH δpω−1
E 0

0 ΩE H♯ δpω−1
E 0

0 ωE H ω−1
E 0.

⊂ =

⊂ ⊂

It follows that (H♯, s) is a locally free sheaf with a marked section, where recall that s = d log(P univ)
is viewed as a section of ΩE/βnΩE ⊂ H♯/βnH

♯. Hence we have V0(H
♯, s), together with a morphism

v0 : V0(H
♯, s) → IGn,r,I that factors through u0. We let v := gn ◦ v0 : V0(H

♯, s) → Xr,I .

Recall that ΩE ⊂ H♯ gives a filtration of locally free sheaves with a marked section (ΩE , s) ⊂ (H♯, s).
Therefore, the sheaf v∗(OV0(H♯,s)) is endowed with a filtration Fil•(v∗(OV0(H♯,s))).

Similarly, there is an action of I on V0(H
♯, s) over IGn,r,I and an action of Iext on V0(H

♯, s) over Xr,I .

Definition 4.13. Let kI : Z×
p → ΛI be the universal character onWI . Then we defineWkI

:= v∗(OV0(H♯,s))[kI ].

Theorem 4.14 ([AI21, Theroem 3.11]). The action of Iext preserves the filtration on v∗(OV0(H♯,s)). For
any h ∈ N, define Filh WkI

:= Filh v∗(OV0(H♯,s))[kI ]. Then,

1. Each Filh WkI
is a coherent OXr,I

-module of finite rank.

2. WkI
is the α-adic completion of limh→∞ Filh WkI

.

3. Fil0 WkI
= wkI

and Grh WkI
∼= wkI

⊗OXr,I
Hdgh ω−2h

E .

When we specialize kI to a classical weight m ∈ N, viewed as a point in the weight space, and write Wm for
the corresponding base-change of WkI

, then we have the identification

Symm(H)[1/p] = Film(Wm)[1/p]

over the adic fiber Xr,I . Moreover, this identification is compatible with the natural Hodge filtration on
Symm(H).

Local description of W0
k For simplicity, we write k = kI and W0

k := v0∗OV0(H♯)[k]. We first give
descriptions of the I-action.

Let ρ : Spf(R) → IGn,r,I be a morphism such that ρ∗(ωE) is a free R-module of rank one and βn, δ be
as before. We fix an R-basis (e, e′) of ρ∗(H♯) such that e (mod βn) = ρ∗(s). We denote by (e∨, e′∨) the dual
basis. Then we have

V0(H
♯, s)(R) = {f = ae∨ + be′∨ | a ∈ 1 + βnR, b ∈ R}.

Also, we have V0(H
♯, s)×IGn,r,I

Spf R = Spf(R⟨Z, Y ⟩), where a point ae∨+be′∨ corresponds to the R-algebra
homomorphism R⟨Z, Y ⟩ → R given by Z 7→ a−1

βn
and Y 7→ b. As before, the action of t ∈ 1 + βnR on f is

simply t ∗ f = tf . In terms of coordinates Z and Y , we have t ∗ Z = t−1
βn

+ tZ, t ∗ Y = tY .

Lemma 4.15. Let ρ : Spf(R) → IGn,r,I be as above. Then we have

ρ∗(v0∗(OV0(H♯,s))[k]) = R⟨Z, Y ⟩[k] = {
∞∑

m=0

am(1 + βnZ)k
Y m

(1 + βnZ)m
},

where am ∈ R for all m and am → 0 as m → ∞. Moreover, the filtration is given by

ρ∗(Filh v0∗(OV0(H♯,s))[k]) = {
h∑

m=0

am(1 + βnZ)k
Y m

(1 + βnZ)m
}.

One can see that this description is in accordance with the fact that Fil0 W0
k = w0

k.
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Proof. (c.f. [AI21, Lemma 3.13]) The proof is similar to Lemma 4.9, so we adopt the same notations. Clearly,
(1 + βnZ)k−mY m ∈ R⟨Z, Y ⟩. In addition, for t ∈ 1 + βnR, one can check that

t ∗ (1 + βnZ)k−mY m = k(t) · (1 + βnZ)k−mY m

for all m ≥ 0.

For the converse inclusion, one needs to observe that the (1+βnR)-invariant subspace of R⟨Z, Y ⟩ is R⟨V ⟩
where V := Y

1+βnZ
(c.f. proof of [AI21, Lemma 3.13]). If f(Z, Y ) ∈ R⟨Z, Y ⟩[k], then

f(Y, Z)

(1 + βnZ)k
∈ R⟨Z, Y ⟩1+βnR = R⟨V ⟩.

Hence, f(Y, Z) ∈ (1 + βnZ)kR⟨V ⟩, which proves the lemma.

4.6 The q-expansions

For any morphism S → X, we let Sord be the the inverse image of the ordinary locus Xord. Over IGord
n,r,I ,

we have H♯ = H = ωE ⊕ω−1
E via the unit-root splitting. In particular, the splitting induces an isomorphism

V0(H
♯, s)ord → V0(ωE , s)

ord ×IGord
n,r,I

V(ω−1
E ).

Assume that the weight k is analytic on 1 + pnZp. Let uord : V0(ωE , s)
ord → Xord be the canonical

projection, then the global sections of ωord
k0 := uord

∗ (OV0(ωE ,s)ord)[k
0] over Xord coincide with Katz’s p-adic

modular forms of weight k0. Similarly, we can define ωord
k := ωord

k0 ⊗ ωkf
|Xord . Then we have canonical

decompositions

W0
k|Xord

∼= ωord
k0 ⊗̂ Sym(ω−2

E ),

Wk|Xord
∼= ωord

k ⊗̂ Sym(ω−2
E ).

So there are natural splittings

W0
k|Xord → ωord

k0 , Wk|Xord → ωord
k

of the filtrations Fil0 W0
k and Fil0 Wk.

Definition 4.16. Using the q-expansion map for Katz’s p-adic modular forms, we obtain the following map

H0(Xr,I ,Wk)
res
−−→ H0(Xord,Wk|ord) → H0(Xord, ωord

k ) → ΛI((q)),

which we will call the q-expansion map.

The q-expansion map can be made more explicit by using the Tate curve. Consider the Tate curve
E = Tate(qN ) over Spf(R) with R = Λ0

I((q)). We fix a basis {ωcan, ηcan := ∇(θ)(ωcan)} of H, where θ is

the derivation dual to dq
q = KS(ω2

can). Let W0
k(q) be the module of W0

k over the Tate curve E. Then we

have the local description W0
k(q) = R⟨V ⟩(1 + pnZ)k where V := Y

1+pnZ . If we set Vk,i(q) = Y i(1 + pnZ)k−i,

then Filh W0
k(q) =

∑h
i=0 R · Vk,i. The q-expansion map correspond to the projection W0

k(q) → R given by∑
i≥0 aiVk,i(q) 7→ a0. The q-expansion map for Wk can be described similarly by replacing Λ0

I((q)) with
ΛI((q)).

Remark 4.17. As the local description is constructed by using the canonical basis {ωcan, ηcan} of H on the
Tate curve, when specialized to a classical weight ℓ ∈ N, the basis Vℓ,i is specialized to the element ωℓ−i

canη
i
can

for all i ≤ ℓ.
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4.7 The operators U and V

Similar to the classical case, we can define the operators U and V by using Hecke correspondences, as recalled
below.

Consider the two morphism p1, p2 : Xr+1,I → Xr,I defined on the universal elliptic curve by E 7→ E and
E 7→ E′ := E/H1 respectively. Over IGn,r+1,I , we have the isogeny λ : E′ → E, which is dual to the natural
map π : E → E′.

Proposition 4.18 ([AI21, Proposition 3.24]). The isogeny λ induces a morphism of OXr,I
-modules

U : p2∗p
∗
1Wk → p2∗p

∗
2Wk

which commutes with the Gauss–Manin connection and preserves the filtrations.

Further, as the map p2 is finite flat of degree p, there are well-defined trace map tr : p2∗OXr+1,I
→ OXr,I

and tr : p2∗p
∗
2Wk → Wk. We then define the operator U as

U : H0(Xr,I ,Wk)
U◦p2∗p

∗
1−−−−−→ H0(Xr,I , p2∗p

∗
2Wk)

1
p
tr

−−→ H0(Xr,I ,Wk)[p
−1].

Proposition 4.19 ([AI21, Proposition 3.25]). Assume that I ⊂ [0, 1] and let α = p or assume that I ⊂ [1,∞]
and α = T . Then U(H0(Xr,I ,Wk)) ⊂

1
αH

0(Xr,I ,Wk), and the induced map on H0(Xr,I ,Wk/Filh Wk) is 0

modulo α[h/p]−1 for h ≥ p. Moreover, if m ∈ N is an integral weight, then the identification Film Wm[p−1]|Xr
=

Symm H[p−1]|Xr
on the adic fiber is compatible with the U -operators defined on the two sides.

Passing to the adic fiber Xr,I , we have the following result.

Corollary 4.20 ([AI21, Corollary 3.26]). The operator U on H0(Xr,I ,Wk) admits a Fredholm determinant
PI(k,X) ∈ ΛIJXK, and for any non-negative a ∈ Q, the space H0(Xr,I ,Wk) admits a slope a-decomposition.
Similarly, for any h ∈ N, we also have the Fredholm determinant Ph

I (k,X) on H0(Xr,I ,Filh Wk) and a slope
a-decomposition. Finally, for a fixed a ∈ Q, the inclusion H0(Xr,I ,Filh Wk)

≤a ⊂ H0(Xr,I ,Wk)
≤a is an

equality for h large enough.

For the operator V , we first observe that the map Φ : Xr+1,I → Xr,I , previously denoted by p2, lifts
naturally to Φ : IGn+1,r+1,I → IGn,r,I . By [AI21, § A2] the dual isogeny λ induces an isomorphism
λ∗ : ΩE → Φ∗(ΩE) over IGn+1,r+1,I and hence a morphism Wk → Φ∗(Wk) which provides an isomorphism
λ∗ : wk → Φ∗(wk) on the 0-th filtrations. We then define

V : H0(Xr,I ,wk) → H0(Xr+1,I ,wk), V (γ) := (λ∗)−1Φ∗(γ).

Note that on the q-expansion
∑

n≥0 anq
n of an element in H0(Xr,I ,wk), we have the familiar formulae

U(
∑

anq
n) =

∑
anpq

n,

V (
∑

anq
n) =

∑
anq

np.

In particular, U ◦ V = Id.

Definition 4.21. Let f ∈ H0(Xr,I ,wk). The p-depletion of f , denoted by f [p], is defined as f [p] := (1−V U)f .

Remark 4.22. Let
∑

n≥0 anq
n be the q-expansion of f , then the q-expansion of f [p] is

∑
n≥0,p∤n anq

n.

Consequently, one easily sees that U(f [p]) = 0.

4.8 p-adic iterations of the Gauss–Manin connection

We first study the explicit description of the connection on Wk. Let ρ : S = Spf(R) → IG′
n,r,I be a morphism

of formal scheme over Spf(Λ0
I). Assume that the composite of ρ and the projection to the modular curve

X factors through ζ : S → U where U ⊂ X is an open affine over which H is free with basis {ω, η}, and ω
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spans ωE . Let the notations δ, βn be as before. By definition, the R-modules ζ∗H and ρ∗H♯ are free of rank
2 with basis {ζ∗ω, ζ∗η} and {e′ = δω, e = δpη} respectively.

To describe the connection, we utilize Grothendieck’s formalism. Let P(1) ⊂ Spf(R⊗̂Λ0
I
R) be the first

infinitesimal neighborhood. The R-module ρ∗(H♯) admits an integrable connection ∇♯, which can be ex-
pressed as an isomorphism ϵ♯ : j∗2 (ρ

∗(H♯)) ∼= j∗1 (ρ
∗(H♯)), where ji : S × S → S is the projection to the i-th

component. Let

A :=

(
a b
c d

)
∈ GL2(OP(1))

be the the matrix of ϵ♯ with respect to the basis {1⊗ e′, 1⊗ e} and {e′ ⊗ 1, e⊗ 1}.

Lemma 4.23 ([AI21, Lemma 3.20]). We have

1. a = 1 + a0, d = 1 + d0 with a0, b, c, d0 ∈ I(∆). So a20 = b2 = c2 = d20 = 0 in OP(1) .

2. If we interpret a0, b, c, d0 ∈ I(∆)/I(∆)2 as elements in Ω1
R/Λ0

I

, then a0, b, c, d0 ∈ 1
Hdg · ζ∗(Ω1

X) and

Hdg ·c is the Kodaira–Spencer differential KS(ω, η) associated to the local basis {ω, η} of H.

Proof. The first statement comes from the fact that A ≡ Id (mod I(∆)), and I(∆)2 = 0 in OP(1) .

For the second statement, recall that ∇♯ is uniquely determined by the connection on ρ∗H♯ ⊂ ζ∗H. Note
that we have δp−1 = Hdg by definition, and in this situation δp−1 = ζ∗(u) for a section u ∈ H0(U,OU ). So
we have

dζ∗(u) = dδp−1 = (p− 1)δp−2dδ = (p− 1)δp−1d log(δ).

This implies that d log(δ) = (p− 1)−1d log(ζ∗(u)) ∈ 1
Hdgζ

∗Ω1
X/Zp

. The Kodaira–Spencer isomorphism

KS : ωE → ω−1
E ⊗ Ω1

X/Zp
,

provides a basis element Θ := KS(ω, η) of Ω1
X/Zp

over U characterized by the property KS(ω) = η ⊗Θ. We

may now write the connection as

∇(ω) = mω ⊗Θ+ η ⊗Θ

∇(η) = qω ⊗Θ+ rη ⊗Θ,

where m, q, r ∈ H0(U,OU ). Hence, omitting the notation ζ∗ for simplicity, we have

∇♯(e′) = ∇(δω) = δ∇(ω) + δω ⊗ d log(δ)

= me′ ⊗Θ+ e′ ⊗
du

(p− 1)u
+

1

δp−1
e⊗Θ,

∇♯(e) = ∇(δpη) = δp∇(η) + pδpη ⊗ d log(δ)

= δp−1qe′ ⊗Θ+ re⊗Θ+ pe⊗
du

(p− 1)u
.

Carefully writing down the correspondence between ∇♯ and the isomorphism ϵ♯, we see that the entry c of
the matrix A is 1

δp−1Θ.

Now we wish to understand the induced connection on the vector bundle with a marked section. Let

ζ∗(W0
k) = {

∞∑

m=0

amV m(1 + βnZ)k | am ∈ R, am → 0, V =
Y

1 + βnZ
}

be the local description of W0
k. Similarly, we have

j∗i (ζ
∗(W0

k)) = {
∞∑

m=0

amV m(1 + βnZ)k | am ∈ j∗i (R), am → 0, V =
Y

1 + βnZ
}
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To describe the connection∇k onWk, it suffices to describe its corresponding isomorphism ϵk : j∗2 (ζ
∗(W0

k)) →
j∗1 (ζ

∗(W0
k)). This isomorphism is induced by the matrix A. As X = 1+βnZ corresponds to the basis e′ and

Y corresponds to the basis e, X is sent to aX + cY and Y is sent to bX + dY . Hence, one gets

ϵk ◦ j∗2 (V
m(1 + βnZ)k) = j∗1 [(b+ dV )m(a+ cV )−m(a+ cV )k(1 + βnZ)k]

= j∗1 [(a+ cV )k−m(b+ dV )m(1 + βnZ)k].

Use the fact that k is analytic with k(t) = exp(u log(t)) for some element u ∈ p1−nΛ0
I , we can write

(a + cV )k−m = exp((u − m) log(1 + a0 + cV )) = 1 + (u − m)(a0 + cV ). On the other hand, (b + dV )m =
(V + b+ d0V )m = V m +mV m−1(b+ d0V ). Therefore,

ϵk ◦ j∗2 (V
m(1 + βnZ)k) = j∗1

[(
(1 +md0 + (u−m)a0)V

m +mbV m−1 + (u−m)cV m+1
)
(1 + βnZ)k

]
.

We can now recover∇k by using the relation∇k(V
m(1+βnZ)k) = ϵk◦j

∗
2 (V

m(1+βnZ)k)−j∗1 (V
m(1+βnZ)k).

To be more precise, we have

∇k(V
m(1 + βnZ)k)

=
(
mV m ⊗ d0 + (u−m)V m ⊗ a0 +mV m−1 ⊗ b+ (u−m)V m+1 ⊗ c

)
× ((1 + βnZ)⊗ 1)k. (24)

Let E = Tate(qN ) be the Tate curve over Spf(R) with R = ΛI((q)) as before. Recall that we have a
basis {ωcan, ηcan := ∇(θ)(ωcan)} with θ = q d

dq . With respect to this basis, the matrix of the Gauss–Manin
connection ∇ is given by (

0 0
dq
q 0

)

By equation (24), on Wk(q) we have

∇(aVk,h) = θ(a)Vk+2,h + a(uk − h)Vk+2,h+1.

Note that when specialized to a classical weight ℓ ∈ Z, this is the familiar formula for ∇ on Symℓ H as uk 7→ ℓ
under the specialization.

Iterating this formula, we have the following lemma.

Lemma 4.24. Let g(q) ∈ R and s ∈ N. Then we have the formula

∇s(g(q)Vk,h) =

s∑

j=0

as,k,h,jθ
s−jg(q) · Vk+2s,h+j

where as,k,h,j ∈ R are given by as,k,h,0 = 1 and

as,k,h,j =

(
s

j

)
(uk − h+ s− 1) · · · (uk − h+ 1)(uk − h)

(uk − h+ s− 1− j) · · · (uk − h+ 1)(uk − h)

=

(
s

j

) j−1∏

i=0

(uk − h+ s− 1− i).

One might naively expect the same formula to hold for an arbitrary analytic p-adic weight s : Z×
p → ΛIs .

However, one needs to worry about the convergence of the operator. One should also be aware of that the
norm we are considering is not the naively one given by the Gauss norm on q-expansions, but rather the
sup-norm of functions on a strict neighborhood.

We will list below a series of results on (integral) iterations of the Gauss–Manin connection, which in the
end leads to the convergence of certain p-adic powers of ∇ (Theorem 4.30). We prefer to omit the proofs,
since they are highly technical and lengthy. Detailed computations can be found in [AI21, § 3.10 & § 4]. We
hope that by providing these statements, the reader can at least grasp the idea of this construction.

32



Proposition 4.25 ([AI21, Proposition 3.41 & Claim 3.42]). Assume that g(q) ∈ RJqK is the q-expansion of
an overconvergent modular form g of weight k and U(g(q)) = 0. For every positive integer N , we may write

(
(∇p−1 − Id)Np

pN

)
g(q)Vk,0 =

(p−1)pN∑

r=0

∞∑

h=0

pN−2r−h ((1 + pZ)2(p−1) − 1)hp

ph
g
(N)
r,h Vk,r

where g
(N)
r,h ∈ RU=0[1 + pZ] is a polynomial in 1 + pZ with coefficients in RU=0. If we further assume

that uk ∈ pΛI , then pN−2r−hg
(N)
r,h ∈ RU=0[1 + pZ] for every r and h. In particular, p2r+h−N divides g

(N)
r,h

whenever 2r + h−N ≥ 0.

Write wk(q) for the evaluation of the sheaf wk at the Tate curve. It can be viewed as a submodule of
Wk(q) via the identification wk(q) = Fil0 Wk(q).

Corollary 4.26 ([AI21, Corollary 3.43]). Suppose that we have g(q) ∈ wk(q) with U(g(q)) = 0. Then for
every positive integer N , we have

(∇p−1 − Id)Np(g(q)) ∈

(p−1)pN∑

n=0

p2N−2nwk(q)[Z]Vk,n.

Moreover, if uk ∈ pΛI , then

(∇p−1 − Id)Np(g(q)) ∈ pN ·




(p−1)pN∑

n=0

wk(q)[Z]Vk,n


 .

Assumption 4.27. Assume that the weights k and s satisfy the condition: k = χ · k0 · v and s = χ′ · s0 ·w,
where

1. χ, χ′ are finite-order character on Z×
p and χ is even.

2. k0 and s0 are integral weights such that k0 is even modulo p. That is, there are integers a, b with a
even modulo p such that k0(t) = ta, s0(t) = tb for all t ∈ Z×

p .

3. v, w are analytic weights such that there exist uv ∈ pΛI , uw ∈ qΛIs satisfying v(t) = exp(uv log(t))
and w(t) = exp(uw log(t)) for all t ∈ Z×

p .

Suppose that g ∈ H0(Xr,I ,Wk)
U=0 and k, s satisfy Assumption 4.27. The idea is to set

∇s
k(g) := exp

(
us

p− 1
log(∇p−1

k )

)
(g)

and show that this expression makes sense and gives rise to a section of Wk+2s.

Recall that we have fixed integers r and n as in §4.3. Set W := v∗(OV0(H♯,s)) and W′
k ⊂ W be the

subsheaf defined by W′
k :=

∑
i∈Z Wk+2i.

Proposition 4.28 ([AI21, Propopsition 4.11]). Let s be a non-negative integer. Then there exists a positive
integer b ≥ r, depending on r, n and s such that for every section g ∈ Hdg−s H0(Xr,I ,W) with g|Xord

r,I
∈

H0(Xord
r,I , p

jW) for some j ∈ N, we have g ∈ H0(Xb,I , p
[j/2]W). In other words, one can retain some

information on the divisibility by restricting to the ordinary locus.

Proposition 4.29 ([AI21, Corollary 4.12]). There exist integers b and cn depending on r and n such that,
for every g ∈ H0(Xr,I ,Wk)

U=0 and every positive integer N , we have

Hdgcn(p−1)2(∇p−1 − Id)N (g) ⊂ p[N/2p]H0(Xb,I ,W) ∩H0(Xb,I ,W′
k).

At last, we have the following main theorem.
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Theorem 4.30 ([AI21, Theorem 4.3]). Let k, s be two weights that satisfy Assumption 4.27, and let g ∈
H0(Xr,I ,Wk)

U=0. Then there exists positive integers γ and b depending on r, n, p and a unique element
∇s

k(g) of Hdg
−γ H0(Xb,I ,Wk+2s) such that on the q-expansions, if g(q) =

∑
h gh(q)Vk,h, then

∇s
k(g)(q) =

∑

h

∞∑

j=0

(
us

j

) j−1∏

i=0

(uk + us − h− 1− i)θs−j(gh(q))Vk+2s,h+j ,

where
(
us

j

)
= us(us−1)···(us−j+1)

j! , and

θs−j(gh(q)) =
∑

s(n)n−jah,nq
n

if we write gh(q) =
∑

n,p∤n ah,nq
n.

Remark 4.31. In [Kaz22], a more refined tool called vector bundles with marked sections and marked
splitting is considered. With this modification, one can get a better control on the convergence and loosen
Assumption 4.27.

Remark 4.32. In our application later, we will be particularly interested in the specialization of ∇s
k(g) to

a pair of classical weights (k, s) 7→ (y,−t) where y ≥ 2 and y > t > 0. Let gy be the specialization of g at y,

viewed as a section of ωy−2
E ⊗ Ω1

X over a strict neighborhood Wϵ. The condition U(g) = 0 implies the class
[gy] in H1

rig,par(Wϵ,H
y−2) is 0. As Wϵ is a Stein space, this means that there is a section Gy of Hy−2 over

Wϵ such that ∇(Gy) = gy. In fact, one can choose Gy such that it is equal to ∇s
k(g) specialized at (y,−1).

The same argument also holds for t > 1.

4.9 The overconvergent projection

In this section we will introduce the overconvergent projection for families. We first explain the idea in the
following paragraph.

Let g be a section of ωr
E over some strict neighborhood W = Wϵ. For any positive integer N , we have

the nearly overconvergent form ∇N+1(g), viewed as a section of Hr+2N ⊗ Ω1
W . In practice, one usually

wants to deal with overconvergent modular forms instead of nearly overconvergent modular forms. So the
natural question is: can we assign an element H†(f) ∈ H0(W,ωr

E ⊗ Ω1
W ) for any f ∈ H0(W,Hr ⊗ Ω1

W )
in a canonical way? As we have seen in §2.1, a natural choice is to take the overconvergent projection
Πoc(f) ∈ H0(W,ωr

E ⊗ Ω1
W ) of f . The overconvergent projection Πoc(f) satisfies the property that the two

classes [Πoc(f)], [f ] ∈ H1
rig,par(W,Hr) coincide. One should note that the overconvergent projection is only

well-defined up to Im∇∩H0(W,ωr
E ⊗ Ω1

W ).

The goal now is to extend the above method to sections of WkI
for I ⊂ [0,∞]. Throughout this section,

we will work with the adic space Xr,I and write k = kI and u = uk for simplicity.

Recall that we can view the connection ∇k as a complex of sheaves W•
k : Wk → Wk+2 on the adic space

Xr,I . We let Hi
dR(Xr,I ,W•

k) be the i-th hypercohomology group of this complex. As the connection satisfies
Griffiths transversality, we have the following diagram of sheaves on Xr,I .

0 Filn(Wk) Wk Wk/Filn Wk 0

0 Filn+1(Wk+2) Wk+2 Wk+2/Filn+1 Wk+2 0

∇k ∇k ∇k

The rows are exact by definition, and we denote by Fil•n(Wk) and (Wk/Filn Wk)
• the first and last column

of the above diagram respectively. With this notation, we can rewrite the above diagram as the following
exact sequence of complexes

0 → Fil•n Wk → W•
k → (Wk/Filn Wk)

• → 0, (25)
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which gives rise to the long exact sequence

0 → H0
dR(Xr,I ,Fil

•
n Wk) → H0

dR(Xr,I ,W•
k) → H0

dR(Xr,I , (Wk/Filn Wk)
•)

→ H1
dR(Xr,I ,Fil

•
n Wk) → H1

dR(Xr,I ,W•
k) → H1

dR(Xr,I , (Wk/Filn Wk)
•) → · · · (26)

We recall that the sheaves Filn Wk and Filn+1 Wk are coherent, while the rest are not. As Xr,I is a Stein
space, the hypercohomology of the complex Fil•n Wk can be computed by the cohomology of the complex of
global sections. That is, for i ≥ 0, we have

Hi
dR(Xr,I ,Fil

•
n Wk) = Hi

(
H0(Xr,I ,Filn Wk)

∇k−−→ H0(Xr,I ,Filn+1 Wk)
)
.

Lemma 4.33 ([AI21, Lemma 3.32]). We have an exact sequence, with equivariant morphisms for the action
of U ,

0 → H0(Xr,I ,wk+2) → H1
dR(Xr,I ,Fil

•
n Wk) →

n⊕

i=0

H0(Xr,I , ji∗(ωE)
−i) → 0,

where the first map is induced by the inclusion wk+2 = Fil0 Wk+2 ⊂ Wk+2, ji is the closed immersion
Xr,I ×WI

Qp ⊂ Xr,I defined by the Qp-valued point k = i of WI , and the action of U on H0(Xr,I , ji∗(ωE)
−i)

is divided by pi+1. Moreover, if we let H1
dR(Xr,I ,W•

k)
tf be the ΛI-torsion-free part, we have the following

U -equivariant exact sequence

0 → H0(Xr,I ,wk+2) → H1
dR(Xr,I ,Fil

•
n Wk)

tf →
n⊕

i=0

θi+1(H0(Xr,I , ji∗(ωE)
−i)) → 0,

where θi : H0(Xr,I , ji∗(ωE)
−i) → H0(Xr,I , ji∗(ωE)

i+2) is the theta operator defined in [Col95, Proposi-
tion 4.3].

Proof. We here only give the proof of the first part, and leave the second part to [AI21, Lemma 3.32].

Recall that we have the identification Gri Wk = wk−2i over Xr,I . The connection ∇k : Filn Wk →
Filn+1 Wk+2 then induces the map

wk−2n
∼= Grn(Wk) → Grn+1(Wk+2) ∼= wk−2n

which is an isomorphism times the multiplication by u − n map. This map is injective, and the cokernel is
identified with wk−2n/(u− n)wk−2n

∼= ω−n
E . The first statement then follows by induction on n, where the

case for n = 0 one use the identification wk+2 = Fil0 Wk+2.

Notice that the U operators on Hi
dR(Xr,I ,Fil

•
n Wk) and Hi

dR(Xr,I , (Wk/Filn Wk)
•) are also compact. So

we also have slope decompositions on these spaces.

Lemma 4.34. Fix a rational a ≥ 0, then for n large enough, the exact sequence (25) induces isomorphisms

Hi
dR(Xr,I ,Fil

•
n Wk)

≤a ∼= Hi
dR(Xr,I ,W•

k)
≤a

for all i ≥ 0.

Proof. This follows from a similar description for the U operator on Wk/Filn Wk as in Proposition 4.19. In
particular,

Hi
dR(Xr,I , (Wk/Filn Wk)

•)≤a = 0

for n large enough. Therefore, the long exact sequence (26) implies the claim.

Summarizing the above results, we have the following theorem.
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Theorem 4.35. Given a finite slope a ≥ 0, locally over the weight space, the spaces Hi
dR(Xr,I ,W•

k) admits
slope a-decomposition. Moreover, for some n large enough, we have an exact sequence

0 → H0(Xr,I ,wk+2)
≤a → H1

dR(Xr,I ,W•
k)

≤a →
n⊕

i=0

H0(Xr,I , ji∗(ωE)
−i)

≤ a

pi+1 → 0.

Definition 4.36. We define

H†
n : H1

dR(Xr,I ,Filn(Wk)
•)⊗ΛI

ΛI

[
n∏

i=0

(uk − i)−1

]
∼= H0(Xr,I ,wk+2)⊗ΛI

ΛI

[
n∏

i=0

(uk − i)−1

]

and

H† : H1
dR(Xr,I ,W•

k)
≤a ⊗ΛI

ΛI

[
na∏

i=0

(uk − i)−1

]
∼= H0(Xr,I ,wk+2)

≤a ⊗ΛI
ΛI

[
na∏

i=0

(uk − i)−1

]

to be the isomorphisms given by Lemma 4.33 and Theorem 4.35. These maps are called overconvergent
projections in families. We will often drop the subscript n of H†

n for simplicity.

We now proceed to describe the overconvergent projection in terms of q-expansions. Recall that we have
the identity

∇(aVk,h) = θ(a)Vk+2,h + a(uk − h)Vk+2,h+1.

on Wk(q).

Given a section γ ∈ H0(Xr,I ,Filn+1 Wk+2) with its q-expansion
∑n+1

i=0 γi(q)Vk+2,i, the overconvergent
projection of the class [γ] is the element H†(γ) = γ†(q)Vk+2,0 such that γ ≡ H†(γ) modulo the image of ∇.
Hence, after shifting the indices, we have the following result.

Proposition 4.37. Let γ ∈ H0(Xr,I ,Filn Wk) and γ(q) =
∑n

i=0 γi(q)Vk,i be its q-expansion. Then the
q-expansion of H†([γ]) is

n∑

i=0

(−1)i
θiγi(q)

(uk−2 − i+ 1)(uk−2 − i+ 2) · · ·uk−2
Vk,0.

Remark 4.38. It is clear from the above formula that one needs to invert some elements in ΛI for the
overconvergent projection in families. Also, when specialized to a classical weight m > n, one can see that
H†

n coincides with the definitions of overconvergent projections in [Urb14, Lemma 3.3.4] or [DR14, § 2.4].

4.10 The triple product p-adic L-functions for finite slope families

With all the results in the previous sections, we are now able to define triple product p-adic L-functions for
finite slope families.

Let f ∈ Sk(Nf , χf ), g ∈ Sℓ(Ng, χg), h ∈ Sm(Nh, χh) be a triple of normalized primitive cuspidal
eigenforms such that f has slope a > 0 and χf ·χg ·χh = 1. We further assume that and a < 1 if k = 2, and
2a < k − 1 if k > 2 (see Remark 4.41).

Let N = lcm(Nf , Ng, Nh), and let f̆ , ğ, h̆ be as in Theorem 2.24. We denote by K a finite extension of
Qp that contains all the Fourier coefficients of f, g, h as well as the values of χf , χg, χh and denote by OK

the ring of integers in K.

Let f , g, h be overconvergent families of modular forms deforming the p-stabilizations of f, g, h and
similarly f̆ , ğ, h̆ for f̆ , ğ, h̆. We denote by

kf : Z∗
p → Λf , kg : Z∗

p → Λg, kh : Z∗
p → Λh
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the analytic weights of these families respectively. After base-change to OK , we may further assume that
Λf ,Λg,Λh are OK-algebras. Then there exists some n ∈ N such that we have families

f , f̆ ∈ H0(Xn,wkf
),

g, ğ ∈ H0(Xn,wkg
),

h, h̆ ∈ H0(Xn,wkh
).

As we want to apply p-adic powers of ∇ to the p-depletion ğ[p] later, we need the following assumption
on the weights.

Assumption 4.39. Suppose the weight kf − kg − kh is even, i.e., there is an analytic weight ν : Z∗
p →

Λf ⊗̂OK
Λg⊗̂OK

Λh such that kf − kg − kh = 2ν. Moreover, we require that kg and ν satisfy Assumption 4.27
in this order.

With this assumption, we have
∇ν

kg
ğ[p] ∈ H0(Xn′ ,Wkg+2ν)

for some n′ ≥ n. Therefore, (∇kg
)ν ğ[p]×h̆ ∈ H0(Xn′ ,Wkf

) and we may consider its class inH1
dR(Xn′ ,Wkf−2).

After base change to Kf , we obtain a section in H1
dR(Xn′ ,Wkf−2)⊗Λf

Kf , where Kf is obtained from Λf by
inverting the elements {ukf

− n | n ∈ N} (or one may simply take it to be Frac(Λf )). We then consider its
overconvergent projection

H†,≤a(∇ν
kg
ğ[p] × h̆) ∈ H0(Xn′ ,wkf

)≤a ⊗ Kf .

Definition 4.40. The Garrett-Rankin triple product p-adic L-function attached to the triple (f̆ , ğ, h̆) of
finite slope families of modular forms is

L
f
p (f̆ , ğ, h̆) :=

(f̆∗, H†,≤a(∇ν
kg
ğ[p] × h̆))

(f̆∗, f̆∗)
∈ Kf ⊗̂Λg⊗̂Λh

where f̆∗ is the the Atkin-Lehner involution of f̆ (c.f. [AI21, Definition 5.2]) and ( , ) is the Petersson
product defined in [AI21, § 5.2.1]. When f, g, h are ordinary at p, one can see that this definition coincides
with the one given in [DR14, § 4.2].

Remark 4.41. As explained in [AI21, § 5.2.1], when specialized to a classical weight x > 2 with 2a < x−1 or
x = 2 with a < 1, the Petersson product interpolates the classical Petessons inner product on Sx(Γ1(N, p)),
up to a constant multiple.

In fact, given f , what is really required for the weight x is the condition α(fx)
2 ̸= px−1b(fx), where

α(fx), b(fx) are the eigenvalues of Up and ⟨p⟩ acting on fx, respectively. In other words, if f0
x is the classical

modular form on Γ1(N) with one of its p-stabilizations being fx, it means that the two roots α, β of the
Hecke polynomial of f0

x at p are different. Equivalently in a fancier language, one wants to restrict to a
subset of the weight space over which the eigencurve giving rise to the family f is étale.
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5 Finite polynomial cohomology and the p-adic Abel–Jacobi map

In this section, we aim to formulate a theory of finite polynomial cohomology with coefficients in a special
case, which generalizes Besser’s results in [Bes00a].

Technically speaking, this machine is not necessary in our application since one can use the so-called
Liebermann’s trick to avoid dealing with coefficients, as H. Darmon and V. Rotger did in [DR14]. Still, our
theory with coefficients has its own advantages. The most obvious one is that it may be applied to objects
without universal abelian varieties. The second one is that it makes the computation of Abel-Jacobi maps
simpler.

The language of rigid geometry and Coleman integration will be used heavily throughout this section. For
those who are not familiar with these topics, Appendix §8 provides a rather short but sufficient introduction.

Notation. We fix a prime p and let K be a finite unramified extension of Qp. We denote by V = OK the
ring of integers in K and κ the residue field with |κ| = q = pr.

We also recall the category of filtered Frobenius modules (abbr. ffm) over K.

Definition 5.1. Let σ : K → K = Frac(W (κ)) be the Frobenius induced from the Frobenius on the Witt
ring W (κ). By a filtered Frobenius module (over K), we means a finite dimensional K-vector space M with
the following data:

1. An exhaustive and separated decreasing filtration Fili M of K-vector spaces.

2. A σ-linear automorphism ϕ : M → M .

We consider K as a filtered Frobenius module with Fili = K for i ≤ 0, Fili = 0 for i > 0 and ϕ = Id. For
any n ∈ Z, we let K(n) be the filtered Frobenius module whose underlying space is just K, with filtration
Fili K(n) = Fili+n K and ϕ = q−n Id. For any filtered Frobenius module M , we let M(n) := M ⊗K K(n).
The dual M∨ of a filtered Frobenius module M is again a filtered Frobenius module. Its underlying space
is HomK(M,K), with filtration Fili M∨ := (Fil−i+1 M)⊥ and Frobenius ϕ(f) = f ◦ ϕ−1. The collection of
filtered Frobenius modules over K forms a category with the obvious definition of morphisms.

5.1 Finite polynomial cohomology without coefficients and applications

In this section, we briefly recall the definition of finite polynomial cohomology without coefficients (c.f.
[Bes00a]). Then we will compute the Abel–Jacobi map in the special case of weight (2, 2, 2), which follows
closely [Bes16].

Let X be a proper, irreducible and smooth V -scheme of relative dimension d. We denote by XK its
general fiber and Xκ its special fiber. Then, by [Bes00b, § 4, 5], we have the following functorial complexes
of K-vector spaces

RΓrig(Xκ/K), RΓdR(XK), Filn RΓdR(XK)

which compute the rigid cohomology Hi
rig(Xκ/K), Hi

dR(XK/K) and Filn Hi
dR(XK/K) respectively. We will

drop the subscripts κ and K inside RΓ• and Hi
• as the context will make it clear what we are referring. We

note that there is a canonical map Filn RΓdR(X) → RΓdR(X) and a natural quasi-isomorphism RΓdR(X) →
RΓrig(X).

On RΓrig(X), there is an K-linear action of the Frobenius ϕ (of degree q). By [CLS98, Théorèm 1.2], its

eigenvalues on Hi
rig(X) are of pure Weil weight i, i.e., are algebraic of complex absolute value p

i
2 . By using

the comparison Hi
rig(X) ∼= Hi

dR(X) induced by the above quasi-isomorphism, we may translate the action

of ϕ to Hi
dR(X).

Remark 5.2. To obtain the functorial complexes RΓdR(XK) and Filn RΓdR(XK), one can use Godement
resolutions (in the Zariski topology). For the rigid complex RΓrig(Xκ), this method does not work in rigid
analytic topology. However, if one passes to adic spaces, which are genuine topological spaces, the same trick
would provide a desired functorial complex. As explained in [Bes00b, § 7], the property of being a complex

38



is used only for constructing Chern classes (hence the cycle class maps) and comparing it to Chern classes
in de Rham cohomology. Outside this situation, one can just work with the derived category of complexes.

Definition 5.3. Let P ⊂ K[T ] be the monoid of polynomials with constant term 1 and algebraic roots. For
any s ∈ Z, we let Ps ⊂ P be the submonoid of polynomials with constant term 1 and whose roots are of
Weil weight s.

Definition 5.4. For any polynomial P ∈ P and n ∈ N, we define the syntomic P -complex RΓsyn,P (X,n)
to be

RΓsyn,P (X,n) := Cone

(
Filn RΓdR(X)

P (ϕ)
−−−→ RΓrig(X)

)
[−1].

Here Cone means the mapping cone and the map Filn RΓdR(X)
P (ϕ)
−−−→ RΓrig(X) should be understood as

the composite

Filn RΓdR(X) −→ RΓdR(X) −→ RΓrig(X)
P (ϕ)
−−−→ RΓrig(X)

where the first map is the natural map and the second one is the quasi-isomorphism mentioned above. The
i-the cohomology of RΓsyn,P (X,n) will be denoted by Hi

syn,P (X,n).

Remark 5.5. We would like to recall our convention for the mapping cone. Let A•, B• be two complexes

with a map f : A• → B•. The complex Cone(A• f
−→ B•)[−1] is called the mapping fiber of f in some

literature and is denoted by MF(f : A• → B•) or simply MF(f). At degree i, it is given by Ai ⊕Bi−1 with
differential d(a, b) = (da, f(a)− db).

Definition 5.6. For any s ∈ Z, we define

RΓfp,s(X,n) := lim
−→

P∈Ps

RΓsyn,P (X,n)

where the connecting map is induced by the commutative diagram

Filn RΓdR(X) RΓrig(X)

Filn RΓdR(X) RΓrig(X).

P (ϕ)

= Q(ϕ)

PQ(ϕ)

The i-th cohomology of RΓfp,s(X,n) will be denoted by Hi
fp,s(X,n). If i = s, we will abbreviate it as

Hi
fp(X,n).

Proposition 5.7 ([Bes00a, Proposition 2.5]). The space Hi
fp(X,n) satisfies the following properties:

1. There is a short exact sequence

0 → Hi−1
dR (X)/Filn

ifp
−→ Hi

fp(X,n)
prfp
−−→ Filn Hi

dR(X) → 0,

which will be called as the fundamental exact sequence.

2. There is a cup-product ∪ : Hi
fp(X,n) ×Hj

fp(X,m) → Hi+j
fp (X,n +m) that is compatible with the cup

product on de Rham cohomology via the fundamental exact sequence. In particular, ⟨x, ifp(y)⟩fp =

⟨prfp(x), y⟩dR for any x ∈ Hi
fp(X,n) and y ∈ Hj

dR(X)/Film Hj
dR(X).

3. The map ifp : H2d
dR(X)/Fild+1 → H2d+1

fp (X, d + 1) is an isomorphism and induces the following trace
map

trfp : H2d+1
fp (X, d+ 1)

i−1
fp
−−→ H2d

dR(X)/Fild+1 H2d
dR(X) = H2d

dR(X)
trdR−−−→ K.

Moreover, the pairing

⟨ , ⟩fp : Hi
fp(X,n)×H2d+1−i

fp (X, d+ 1− n)
∪
−→ H2d+1

fp (X, d+ 1)
trfp
−−→ K

is a perfect pairing.
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4. Suppose ιZ : Z → X is a smooth irreducible closed subscheme of codimension c. Then we have a
pushforward map

ιZ,∗ : Hi
fp(Z, n) → Hi+2c

fp (X,n+ c)

which is adjoint to the pullback ι∗Z with respect to the pairing ⟨ , ⟩fp.

Proof. Let P (T ) ∈ P be a polynomial such that P (ϕ) annihilates Hi
rig(X) but acts bijectively on Hi−1

rig (X).

We set C•
P := Cone(Filn RΓdR(X)

P (ϕ)
−−−→ RΓrig(X))[−1]. By the long exact sequence of mapping cones, we

have the following long exact sequence

· · · Filn Hi−1
dR (X) Hi−1

rig (X) Hi(C•
P )

Filn Hi
dR(X) Hi

rig(X) · · · .

P (ϕ)

P (ϕ)

The choice of the polynomial P , together with the comparison Hi
rig(X) ∼= Hi

dR(X), then imply the short
exact sequence

0 → Hi−1
dR (X)/P (ϕ) Filn Hi−1

dR (X)
i′fp
−→ Hi

syn,P (X,n)
prfp
−−→ Filn Hi

dR(X) → 0.

As P (ϕ) is an isomorphism on Hi−1
dR (X), we have Hi−1

dR (X)/Filn ∼= Hi−1
dR (X)/P (ϕ) Filn. Hence, we get

0 → Hi−1
dR (X)/Filn Hi−1

dR (X)
ifp
−→ Hi

syn,P (X,n)
prfp
−−→ Filn Hi

dR(X) → 0,

where the first map is twisted by P (ϕ). This twist is important in later computations and should not be
forgotten. The fundamental exact sequence then follows from taking limit in the direct system. This proves
1.

For 2 and 3, we would like to refer to [Bes00a, § 3, 4]. The construction of the cup product and the
compatibility with de Rham cohomology rely on an alternative description of the cone C•

P (see §5.2 below).
The trace map trfp, on the other hand, is a direct result of 1.

For 4, one first observes that the complexes RΓsyn,P (X,n) and RΓfp(X,n) are functorial since both

Filn RΓdR and RΓrig are. Hence, the pullback ι∗Z : Hj
fp(X,m) → Hj

fp(Z,m) is well defined. The pushforward
ιZ,∗ can be defined directly as the dual of ι∗Z with respect to the pairing ⟨ , ⟩fp. One then works out the
indices to get the statement in 4.

Remark 5.8. If one is only interested in the functoriality of finite polynomial cohomology between two fixed
proper smooth schemes Y → X, one does not really need to deal with the direct limit. In fact, most of the
explicit computations are done at a “finite level,” i.e., at a fixed polynomial P . To be more precise, one can
find a polynomial P ∈ Pi such that P (ϕ) simultaneously annihilates Hi

dR(X), Hi
dR(Y ) and acts bijectively

on Hi−1
dR (X), Hi−1

dR (Y ). Then one has a natural pullback map Hi
syn,P (X,n) → Hi

syn,P (Y, n). The process
of taking direct limit over all polynomials in Pi is to secure the functoriality between all proper smooth
schemes. It is important to note that one can take polynomials in Pi because of the Weil conjecture for
rigid cohomology of proper smooth schemes. In order to replace the structure sheaf by some overconvergent
F -isocrystal E , one would like to have a similar condition on the rigid cohomology groups for all proper
smooth pullback of E , or at least for the schemes one wants to study.

Abel–Jacobi maps via finite polynomial cohomology. Suppose Z =
∑

aiZi ∈ Ac(X) is a cycle
where each Zi is closed smooth irreducible of codimension c in X. The cycle Z is said to be de Rham
(co)homologous to zero or (co)homologically trivial if Z is sent to 0 ∈ H2c

dR(X) under the class map clX . We
denote by Ac(X)0 the subgroup of homologically trivial cycles.

This can be re-interpreted by finite polynomial cohomology in the following way. For each i, there is a
canonical element 1Zi

∈ H0
fp(Z, 0)

∼= H0
dR(Zi) ∼= K. The pushforward of 1Zi

by ιZi
: Zi → X is the cycle
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class clfp(Zi) ∈ H2c
fp (X, c) that satisfies ⟨clfp(Zi), y⟩fp = trZi,fp(ι

∗
Zi
y) for all y ∈ H

2(d−c)+1
fp (X, d−c+1) where

we recall that d− c is the relative dimension of Zi.

It is showed in [Bes00a, § 5] that if Z =
∑

aiZi is de Rham homologous to zero, then we have
prfp(

∑
ai clfp(Zi)) = 0 ∈ H2c

dR(X). Hence
∑

ai clfp(Zi) ∈ ker prfp = H2c−1
dR (X)/Filc. By further apply-

ing Poincaré duality, we may identify H2c−1
dR (X)/Filc with [Fild+1−c H

2(d−c)+1
dR (X)]∨. The resulting map

AJp : Ac(X)0 → [Fild+1−c H
2(d−c)+1
dR (X)]∨

is called the (p-adic) syntomic Abel–Jacobi map and it coincides with the étale Abel–Jacobi map under
the p-adic comparison theory (c.f. [Bes00b, Remark 9.11]). To be more precise, given Z ∈ Ac(X)0 and

ω ∈ Fild+1−c H
2(d−c)+1
dR (X), we have AJp(Z)(ω) = ⟨clfp(Z), ω̃⟩fp, where ω̃ ∈ H

2(d−c)+1
fp (X, d+ 1− c) is a lift

of ω under prfp.

Two important variations. In this paragraph, we will briefly introduce two variations of the finite
polynomial cohomology. Some definitions will be omitted as they are lengthy. However, we will provide
examples that will suffice our future use.

First, notice that the constructions of RΓsyn,P and RΓfp,s can be extended to a smooth affine scheme X ′,
though some statements in Proposition 5.7 may fail due to the fact that Hi

rig(X
′) may no longer be of pure

weight. Nevertheless, an affine scheme has the advantage that the rigid cohomology is easier to compute, as
illustrated below (c.f. §8.1).

Example. Let X ′ ⊂ X be an smooth affine subscheme of a smooth proper scheme X over V . The space
A :=]X ′

κ[⊂ Xrig
K is an affinoid. We define the dagger differential complex of X ′

κ to be

Ω†,•
rig (X

′
κ) := lim

−→
W

Ω•
rig(W )

where W runs through all strict neighborhoods of A in Xrig
K and Ω•

rig is the rigid differential complex. Then

the rigid cohomology Hi
rig(X

′
κ) can be computed simply as the i-th cohomology of the complex Ω†,•

rig (X
′
κ).

Second, we introduce the Gros style finite polynomial cohomology H̃i
fp(X,n). The idea is to replace the

de Rham complex Filn RΓdR(X) with a rigid complex Filn RΓrig(X). That is,

R̃Γsyn,P (X,n) := Cone

(
Filn RΓrig(X)

P (ϕ)
−−−→ RΓrig(X)

)
[−1].

For the exact definition of Filn RΓrig(X), we leave it to [Bes00b, § 9]. We remark that when X is proper,
Filn RΓrig(X) is canonically quasi-isomorphic to Filn RΓdR(X). The Gros style cohomology has the advan-
tage that it is more convenient for comparing to Coleman’s p-adic integration theory, especially in the affine
case where we can use the dagger differential complex.

Example. Let X be a smooth proper curve over V , and X ′ ⊂ X be an affine subscheme. We would like
to describe the cohomology H̃i

fp(X
′, n). In this setting, the complexes Filn RΓrig(X

′) and RΓrig(X
′) can be

represented by
Filn Ω†,•

rig (X
′
κ) and Ω†,•

rig (X
′
κ),

where Filn Ω†,•
rig (X

′
κ) is the stupid filtration τ≥nΩ†,•

rig (X
′
κ). As a result, an element in H̃i

syn,P (X
′, n) can

be represented by a pair (ω,G) where ω ∈ Filn Ω†,i
rig(X

′
κ) is closed, G ∈ Ω†,i−1

rig (X ′
κ), and dG = P (ϕ)ω. In

particular, if we restrict to the natural image of H̃1
syn,P (X, 1) in H̃1

syn,P (X
′, 1), an element can be represented

by a pair (ω,G) where ω ∈ Ω1
rig(X

rig
K ), G ∈ O(W ) for some strict neighborhood W with dG = P (ϕ)ω on a

possibly smaller neighborhood W ′. It should be clear now how to relate the class (ω,G) in H̃1
syn,P (X, 1) to

a Coleman integral of ω (c.f. §8.1 or [Bes00a, § 9]).
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5.2 Explicit cup product formula

In this section, we will explicitly describe the cup product for finite polynomial cohomology. This is a crucial
step if one wants to compute the syntomic Abel–Jacobi map. As a byproduct, we illustrate (partial) proofs
for statements 2. and 3. in Proposition 5.7. Most of the results are from [Bes00a, § 3, 4] and we will skip
some of the proofs about homological algebra. The reason for recalling these constructions is that the same
arguments can be applied to the case with coefficients with little modifications.

We start with an alternative description of the complex RΓsyn,P (X,n). Given a polynomial P ∈ P, we
let VP be the cyclic K[T ]-module whose generator has characteristic polynomial P (T ). In other words, let
V •
P be the complex

V •
P : K[T ]

·P (T )
−−−−→ K[T ]

which is concentrated at degree −1 and 0. Then VP is the 0-th cohomology of V •
P and V •

P serves as a
projective resolution of VP .

Remark 5.9. In [Bes00a], Besser only used Q[T ], which is not ideal for most of the applications. Indeed,
since the eigenvalues of the Frobenius on rigid cohomology are algebraic, we can always find a “large” enough
polynomial that belongs to Q[T ]. However, in practice, one prefers a simpler polynomial that is suitable for
computation. For example, the Hecke polynomial of a cusp form usually does not have coefficients in Q.

Let C• be a complex of K-vector spaces with a K-linear endomorphism ϕ. We can then view C• as a
complex of K[T ]-modules where T acts as ϕ.

Lemma 5.10 ([Bes00a, Lemma 3.1]). Let C• and P be as above. There is a canonical isomorphism

Hom(V •
P , C

•) ∼= MF(P (ϕ) : C• → C•),

where Hom is the total complex of the double complex of homomorphisms between different components of
V •
P and C•.

Proof. The statement can be verified straightforward once we recall the notation of Hom. For two complexes
A• and B•, the (p, q)-degree of the Hom double complex is defined to be Hom(A−p, Bq). In particular, we
identify Hom(K[T ], Ci) ∼= Ci in the natural way, and pullback by P (T ) on K[T ] transforms to the action of
P (ϕ) on Ci. By definition, the degree i part of Hom(V •

P , C
•) is

Hom(V 0
P , C

i)⊕Hom(V −1
P , Ci−1) ∼= Ci ⊕ Ci−1.

One can then check the differential on the total complex coincides with the differential on the mapping fiber
MF(P (ϕ)).

Remark 5.11. There is a canonical map K[T ] → V •
P given by the identity at degree 0. The induced map

Hom(V •
P , C

•) → Hom(K[T ], C•) ∼= C• can be then identified with the natural map MF(P (ϕ)) → C•.

Definition 5.12. Suppose we have three complexes X•, Y •, Z• with two morphisms f : X• → Z• and
g : Y • → Z•. One can define the fiber product X• ×Z• Y • simply by componentwise fiber products. On the
other hand, there is the quasi-fiber product

X•×̃Z•Y • := MF(f − g : X• ⊕ Y • → Z•).

One can check that the canonical map X• ×Z• Y • → X•×̃Z•Y • taking (x, y) to ((x, y), 0) is a quasi-
isomorphism if f − g is surjective. The advantage of the quasi-fiber product is that there is a natural
sequence of complexes

Z•[−1] → X•×̃Z•Y • → X• ⊕ Y •.

Another advantage of the quasi-fiber product concerns the cup product formula, which is illustrated in
the below lemma.
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Lemma 5.13 ([Bes00b, Lemma 3.2]). Suppose we have complexes X•
i , Y

•
i , Z

•
i with maps fi : X

•
i → Z•

i and
gi : Y •

i → Z•
i as above for i = 1, 2, 3. Suppose further that there are maps of complexes (cup products)

∪ : X•
1 ⊗X•

2 → X•
3 and similarly for Y and Z, which are compatible with the maps fi and gi in the obvious

way. Then one has an induced map

(X•
1 ×̃Z•

1
Y •
1 )⊗ (X•

2 ×̃Z•
2
Y •
2 )

∪
−→ X•

3 ×̃Z•
3
Y •
3 .

More precisely, it can be described by the following formula

(x1, y1, z1) ∪ (x2, y2, z2) = (x1 ∪ x2, y1 ∪ y2,

z1 ∪ (γf2(x2) + (1− γ)g2(y2)) + (−1)deg x1((1− γ)f1(x1) + γg1(y1)) ∪ z2)

for any arbitrary choice of γ ∈ K.

Following the definitions and carefully writing down the maps in various complexes, we have the following
result on mapping fibers.

Lemma 5.14 ([Bes00a, Lemma 3.2 & Lemma 3.3]). Suppose there is another complex D• with α : D• → C•.
Then there is a commutative diagram

MF(P (ϕ) ◦ α : D• → C•) D• ×C• Hom(V •
P , C

•)

D•×̃C•MF(P (ϕ) : C• → C•) D•×̃C• Hom(V •
P , C

•).

∼

∼

In particular, given P,Q ∈ P and consider the natural map VPQ → VP by further reduction mod P (T ).
This map lifts to the map on their projective resolutions given by

V •
PQ : K[T ] K[T ]

V •
P : K[T ] K[T ].

PQ(T )

Q(T )

P (T )

Then the maps of mapping fibers induced by

D• C•

D• C•

P (ϕ)◦α

Q(T )

PQ(ϕ)◦α

can be identified as the (quasi-)fiber product of D• with the map Hom(V •
P , C

•) → Hom(V •
PQ, C

•) induced by
the map V •

PQ → V •
P .

Finally, we obtain the alternative descriptions of ifp and prfp in the fundamental exact sequence.

Proposition 5.15 ([Bes00a, Proposition 3.4]). 1. Let P ∈ P. There are canonical maps

RΓsyn,P (X,n) → Filn RΓdR(X)×RΓrig(X) Hom(V •
P ,RΓrig(X))

→ Filn RΓdR(X)×̃RΓrig(X) Hom(V •
P ,RΓrig(X)),

where the first map is an isomorphism and the second one is a quasi-isomorphism. Moreover, after
taking lim

−→
over P ∈ Ps, one has similarly

RΓfp,s(X,n) → lim
−→

P∈Ps

Filn RΓdR(X)×RΓrig(X) Hom(V •
P ,RΓrig(X))

→ lim
−→

P∈Ps

Filn RΓdR(X)×̃RΓrig(X) Hom(V •
P ,RΓrig(X)),

where again the first map is an isomorphism and the second one is a quasi-isomorphism. The transition
maps in the direct limit are induced by V •

PQ → V •
P described above.
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2. Fix a polynomial P ∈ Pi, then the maps ifp and prfp in the fundamental exact sequence are induced,
respectively, by the first and second maps of the diagram

RΓrig(X)[−1] → MF
(
Filn RΓdR(X)⊕Hom(V •

P ,RΓrig(X)) → RΓrig(X)
)

→ Filn RΓdR(X) (27)

at degree i, where the map in the mapping fiber is the difference of the two natural maps from the two
components to RΓrig(X).

Proof. The first statement is a direct results from previous lemmas. For the second statement, we will
describe the two maps in the sequence.

First, one can identify Hom(V •
P ,RΓrig(X)) with MF(P (ϕ)). Then an element of degree i in the mapping

fiber MF
(
Filn RΓdR(X) ⊕ Hom(V •

P ,RΓrig(X)) → RΓrig(X)
)
can be written as (x ⊕ (y, z), w) where x is of

degree i in Filn RΓdR(X) and y, z, w are in RΓrig(X) of degrees i, i− 1, i− 1 respectively. The second map is
defined by sending (x⊕ (y, z), w) to x. Given a closed element w of degree i− 1 in RΓrig(X), the first map
takes w to (0 ⊕ (0, 0), w). In particular, one sees that the two maps are compatible with the cup products
on the rigid and de Rham cohomology.

The quasi-isomorphism between RΓsyn,P and the mapping fiber appearing in (27) is a direct result of the
first statement. However, one still needs to check that the two maps in (27) agree with ifp and prfp. For the
second map, it is clearly that it coincides with prfp. For the first map, recall that the identification

RΓsyn,P → MF
(
Filn RΓdR(X)⊕Hom(V •

P ,RΓrig(X)) → RΓrig(X)
)

sends a representative (x, z) of RΓsyn,P to (x⊕(x, z), 0). One then observes that the two elements (0⊕(0, 0), w)
and (0⊕ (0, P (ϕ)w), 0) differ by a coboundary. Hence they induce the same map ifp.

Definition 5.16. Let P,Q be two polynomials in P which factor as P (T ) =
∏
(1 − αiT ) and Q(T ) =∏

(1− βjT ). We define their star product to be

P ∗Q(T ) :=
∏

i,j

(1− αiβjT ).

We now aim to construct a cup product

Hi
syn,P (X,n)×Hj

syn,Q(X,m) → Hi+j
syn,P∗Q(X,n+m).

First, we need the following lemma.

Lemma 5.17 ([Bes00a, Lemma 4.2]). 1. If P and Q are the characteristic polynomials of operators T
and S, respectively, on some finite dimensional vector spaces. Then P ∗Q is the characteristic polyno-
mial of T ⊗K S.

2. There is a canonical map VP∗Q → VP ⊗ VQ sending the generator 1 to 1 ⊗ 1. Moreover, this map
lifts, uniquely up to homotopy, to a map of complexes

V •
P∗Q → V •

P ⊗K V •
Q.

3. In the polynomial rings K[T1, T2] one can find polynomials a(T1, T2) and b(T1, T2) such that

(P ∗Q)(T1T2) = a(T1, T2)P (T1) + b(T1, T2)Q(T2).
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We now sketch the construction of the cup product. One first observes that the cup product on RΓrig(X)
and the map V •

P∗Q → V •
P ⊗ V •

Q induce a map

Hom(V •
P ,RΓrig(X))⊗Hom(V •

Q,RΓrig(X)) → Hom(V •
P∗Q,RΓrig(X)).

Hence, one obtains a map

RΓsyn,P (X,n)⊗ RΓsyn,Q(X,m) → RΓsyn,P∗Q(X,n+m).

One also needs to check its compatibility with the cup product on RΓdR(X) via ifp and prfp. This essentially
comes from the proof of statement 2. in Proposition 5.15.

Remark 5.18. To explicitly describe the cup product, we endow RΓrig(X) ⊗ RΓrig(X) with an action of
K[T1, T2] by letting T1 act as ϕ ⊗ 1 and T2 as 1 ⊗ ϕ. We also represent an element of RΓsyn,P (X,n) by a
pair (x, y) with x ∈ Filn RΓdR(X) and y ∈ RΓrig(X) of degrees i, i − 1 respectively. Then by Lemma 5.13,
the cup product is given by the formula

(x1, y1) ∪ (x2, y2) =
(
x1 ∪ x2, (−1)deg x1

⋃
b(T1, T2)(x1 ⊗ y2) +

⋃
a(T1, T2)(y1 ⊗ x2)

)

where by an abuse of notation we let xi denote its natural image in RΓrig(X) in the second coordinate.

One should notice that the polynomials a(T1, T2), b(T1, T2) are not unique. However, for two different
pairs of polynomials, one can show that the resulting maps on the complexes are homotopic to each other.

5.3 Applications to modular forms of weight 2

Let X = X1(N) be the modular curve defined over V . We let X ′ ⊂ X be the affine subscheme obtained by
removing lifts of all supersingular points. The notation W will now be reserved to denote a suitable strict
neighborhood of the ordinary locus in Xan

K . In particular, we will represent an element in H̃1
syn,P (X, 1) ⊂

H̃1
syn,P (X

′, 1) by a pair (ω,G) as in last section. We also recall that the Hecke operator U = Up acts on the

dagger complex Ω†,•
rig (X

′
κ), which can be described by the usual rule on q-expansions.

Since X is proper, the Gros style finite polynomial cohomology H̃i
fp(X,n) is canonically isomorphic to

the non-tilde version Hi
fp(X,n). Hence we will make no difference between the two versions in the following

discussions.

Proposition 5.19. For i = 2, 3 let Pi(T ) = (1−αiT ) and suppose that we have two classes ω̃i := (ωi, Gi) ∈
H1

syn,Pi
(X, 1). Then

ω̃2 ∪ ω̃3 = (0, G2ω3 − α2G3ϕω2) ∈ H2
syn,P2∗P3

(X, 2).

Proof. This follows directly from the explicit cup product formula, where we choose a(T1, T2) = 1 and
b(T1, T2) = α2T1.

Theorem 5.20. Suppose that we have two classes ω̃i = (ωi, Gi) ∈ H1
syn,1−αiT

(X, 1) with UGi = 0 for

i = 2, 3. Let P (T ) = (1− α2α3T ) and consider the cup product ω̃2 ∪ ω̃3 ∈ H2
syn,P (X, 2). Let i−1

fp (ω̃2 ∪ ω̃3) ∈

H1
dR(X) be the inverse and recall that the map ifp : H1

dR(X) → H2
syn,P (X, 2) ∼= H1

dR(X) is twisted by P (ϕ).

If η ∈ H1
dR(X) is an eigenvector of ϕ with eigenvalue α and ordp(α) = a ∈ Q, then

⟨η, i−1
fp (ω̃2 ∪ ω̃3)⟩dR = (1− βα2α3)

−1⟨η, e≤a(G2ω3)⟩dR,

where β = p/α and e≤a is the slope a-projection with respect to U . We here abuse the notation by writing
e≤a(G2ω3) for its class in H1

dR(X).

Proof. We first recall several facts. First, the Poincaré pairing satisfies ⟨ϕη1, ϕη2⟩dR = p⟨η1, η2⟩dR. Second,
as we assume that UG3 = 0, we have U(G3ϕω2) = 0 by examining the q-expansion. The fact that e≤a can
be written as a power series in U with no constant term further implies that and e≤a(G3ϕω2) = 0. Lastly,
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recall that ω̃2 ∪ ω̃3 = (0, G2ω3 − α2G3ϕω2). The inverse i−1
fp (ω̃2 ∪ ω̃3) is then an element in H1

dR(X) such

that P (ϕ)(i−1
fp (ω̃2 ∪ ω̃3)) = G2ω3 − α2G3ϕω2.

Therefore, after applying Lemma 7.3, we have

⟨η, e≤a(G2ω3 − α1G3ϕω2)⟩ = ⟨η,G2ω3 − α2G3ϕω2⟩

= ⟨η, P (ϕ)i−1
fp (ω̃2 ∪ ω̃3)⟩

= ⟨η, i−1
fp (ω̃2 ∪ ω̃3)⟩ − α2α3⟨η, ϕ(i

−1
fp (ω̃2 ∪ ω̃3))⟩

= ⟨η, i−1
fp (ω̃2 ∪ ω̃3)⟩ − α2α3p⟨ϕ

−1η, i−1
fp (ω̃2 ∪ ω̃3)⟩

= ⟨η, i−1
fp (ω̃2 ∪ ω̃3)⟩ − α2α3p⟨α

−1η, i−1
fp (ω̃2 ∪ ω̃3)⟩.

The result then follows.

We now set up some notations for modular forms. Let f be a cusp form of weight 2 of level Γ1(N), which
we also view as a global section ωf of Ω1

X . We write the Hecke polynomial of f as

T 2 − ap(f)T + χf (p)p = (T − αf )(T − βf )

and assume a = ordp(αf ) ̸= ordp(βf ). We let

Pf (T ) = 1− ap(f)p
−1T + χf (p)p

−1T 2 = (1− αfp
−1T )(1− βfp

−1T )

and write α′
f := αfp

−1, β′
f := βfp

−1 for simplicity. The polynomial Pf (T ) is defined such that Pf (ϕ)

annihilates the class of ωf in H1
dR(X). More precisely, Pf (ϕ)ωf = ωf [p] as section over W and there is a

unique section F [p] = θ−1f [p] such that dF [p] = ωf [p] .

Remark 5.21. As the f -isotypic part H1
dR(X)[f ] is defined such that ωf ∈ H1

dR(X)[f ], the above result
implies that the characteristic polynomial of ϕ on H1

dR(X)[f ] is (a power of) Pf (T ). In particular, the
eigenvalues of ϕ are p

αf
= βfχf (p)

−1 = βf∗ and p
βf

= αfχf (p)
−1 = αf∗ . We remind that our notations are

different than those in [BSV22, § 2.5].

Corollary 5.22. Let g, h be two cusp forms on Γ1(N) of weight 2 which are eigenforms for the Hecke
operator Tp and ωg, ωh be the associated differential form on X. Let ω̃g, ω̃h ∈ H1

fp(X, 1) be the lifts of ωg, ωh

such that the associated Coleman integrals vanish at the ∞-cusp. Suppose that η ∈ H1
dR(X) is an eigenvector

of ϕ with eigenvalue α and ordp(α) = a ∈ Q. Let β = p/α. Then we have

⟨η, i−1
fp (ω̃g ∪ ω̃h)⟩ = (1− β2α′

gα
′
hβ

′
gβ

′
h)

×
(
(1− βα′

gα
′
h)(1− βα′

gβ
′
h)(1− ββ′

gα
′
h)(1− ββ′

gβ
′
h)
)−1

× ⟨η, e≤a(G[p]ωh)⟩.

Proof. By the choice of the polynomial Pg(T ), we have the element (ωg, G
[p]) ∈ H1

syn,Pg
(X, 1). In order to

apply Theorem 5.20, one needs to modify Pg into a degree one polynomial. This can be done by considering
the two p-stablizations of g. Namely, we let

ωg,α := (1− β′
gϕ)ωg, ωg,β := (1− α′

gϕ)ωg

ωh,α := (1− β′
hϕ)ωh, ωh,β := (1− α′

hϕ)ωh.

Then they may be lifted to classes

ω̃g,α = (ωg,α, G
[p]) ∈ H1

syn,1−α′
gT

(X, 1) ⊂ H1
fp(X, 1)

ω̃g,β = (ωg,β , G
[p]) ∈ H1

syn,1−β′
gT

(X, 1) ⊂ H1
fp(X, 1)

and similarly for h. The obvious relation ωg = (α′
g − β′

g)
−1(α′

gωg,α − β′
gωg,β) implies the same relation

ω̃g = (α′
g − β′

g)
−1(α′

gω̃g,α − β′
gω̃g,β)
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in H1
fp(X, 1). Hence, the pairing ⟨η, i−1

fp (ω̃g ∪ ω̃h)⟩ decomposes into 4 terms

(α′
g − β′

g)
−1(α′

h − β′
h)

−1
[
⟨α′

gω̃g,α, α
′
hω̃h,α⟩ − ⟨α′

gω̃g,α, β
′
hω̃h,β⟩ − ⟨β′

gω̃g,β , α
′
hω̃h,α⟩+ ⟨β′

gω̃g,β , β
′
hω̃h,β⟩

]

and each term satisfies the assumption of Theorem 5.20. For example, the first cup product in the bracket is

α′
gα

′
h⟨η, i

−1
fp (ω̃g,α ∪ ω̃h,α)⟩ = α′

gα
′
h(1− βα′

gα
′
h)

−1⟨η, e≤aG[p]ωh,α⟩

= α′
gα

′
h(1− βα′

gα
′
h)

−1⟨η, e≤aG[p]ωh⟩

where we again use the fact that U(G[p](1 − β′
hϕ)ωh) = U(G[p]ωh) − β′

hU(G[p]ϕωh) = U(G[p]ωh). The rest
is then reduced to the following computation

(α′
g − β′

g)
−1(α′

h − β′
h)

−1

(
α′
gα

′
h

1− βα′
gα

′
h

−
β′
gα

′
h

1− ββ′
gα

′
h

−
α′
gβ

′
h

1− βα′
gβ

′
h

+
β′
gβ

′
h

1− ββ′
gβ

′
h

)

= (1− β2α′
gα

′
hβ

′
gβ

′
h)×

(
(1− βα′

gα
′
h)(1− βα′

gβ
′
h)(1− ββ′

gα
′
h)(1− ββ′

gβ
′
h)
)−1

.

The remaining task is to relate the above result to the p-adic syntomic Abel–Jacobi image of the diagonal
cycle ∆2,2,2. Consider the triple product X3 and let πi : X

3 → X be the projection of the i-th component.
Let o ∈ X be the ∞-cusp and consider the following embeddings of X into X3

ι123 :X
∆
−→ X ×X ×X,

ι12 :X
∆
−→ X ×X → X ×X × {o} ↪→ X3,

ι13 :X
∆
−→ X ×X → X × {o} ×X ↪→ X3,

ι23 :X
∆
−→ X ×X → {o} ×X ×X ↪→ X3,

ι1 :X → X × {o} × {o} ↪→ X3,

ι2 :X → {o} ×X × {o} ↪→ X3,

ι3 :X → {o} × {o} ×X ↪→ X3.

Recall that the diagonal cycle ∆2,2,2 ∈ A2(X3)0 is defined as

∆2,2,2 = ι123(X)− ι12(X)− ι23(X)− ι13(X) + ι1(X) + ι2(X) + ι3(X).

For simplicity, we will write XI for ιI(X) for ∅ ≠ I ⊂ {1, 2, 3}.

Now we want to evaluate AJp(∆2,2,2) at η ⊗ ωg ⊗ ωh, where η, ωg, ωh are as in Corollary 5.22. We first
take a lift of η ⊗ ωg ⊗ ωh ∈ Fil2 H3

dR(X
3) in H3

fp(X
3, 2). Such a lift can be taken to be π∗

1 η̃ ∪ π∗
2 ω̃g ∪ π∗

3 ω̃h

where η̃ is the preimage of η under the isomorphism H1
fp(X, 0)

prfp
−−→ H1

dR(X), while ω̃g, ω̃h are lifts such that
the associated Coleman integrals vanish at the ∞-cusp.

Then, by definition,

AJp(∆2,2,2)(η ⊗ ωg ⊗ ωh) = −
∑

∅≠I⊂{1,2,3}

(−1)|I|⟨clfp(XI), π
∗
1 η̃ ∪ π∗

2 ω̃g ∪ π∗
3 ω̃h⟩fp

= −
∑

∅̸=I⊂{1,2,3}

(−1)|I| trfp,X(ι∗I(π
∗
1 η̃ ∪ π∗

2 ω̃g ∪ π∗
3 ω̃h)).
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This allows us to compute everything over X instead of over X3. Since πi ◦ ιI is the identity map if i ∈ I
and is the constant map o otherwise, we see that AJ(∆2,2,2)(η ⊗ ωg ⊗ ωh) is the trace of

η̃ ∪ ω̃g ∪ ω̃h

− η̃ ∪ o∗ω̃g ∪ ω̃h − η̃ ∪ ω̃g ∪ o∗ω̃h

− o∗η̃ ∪ ω̃g ∪ ω̃h

+ η̃ ∪ o∗(ω̃g ∪ ω̃h)

+ o∗η̃ ∪ o∗ω̃g ∪ ω̃h + o∗η̃ ∪ ω̃g ∪ o∗ω̃h.

As o∗η̃ ∈ H1
fp(SpecOK , 0) = 0, the third and the fifth lines are 0. The fourth line is also zero since

H2
fp(SpecOK , 2) = 0. By [Bes00a, Theorem 1.1], o∗ω̃g ∈ K is the evaluation of the associated Coleman

integration at the point o. Hence o∗ω̃g and o∗ω̃h are both 0 by our choices.

In conclusion, we have AJ(∆2,2,2)(η ⊗ ωg ⊗ ωh) = η̃ ∪ ω̃g ∪ ω̃h = ⟨η̃, ω̃g ∪ ω̃h⟩fp. Moreover, since ifp :
H1

dR(X) → H2
fp(X, 2) is an isomorphism, the compatibility of cup products implies that ⟨η̃, ω̃g ∪ ω̃h⟩fp =

⟨prfp(η̃), i
−1
fp (ω̃g ∪ ω̃h)⟩dR = ⟨η, i−1

fp (ω̃g ∪ ω̃h)⟩dR.

In conclusion, we have the following modified version of [DR14, Theorem 3.14].

Theorem 5.23. Let η, g, h be as in Corollary 5.22 and ∆2,2,2 be the diagonal cycle defined above. Then we
have

AJ(∆2,2,2)(η ⊗ ωg ⊗ ωh) = (1− β2α′
gα

′
hβ

′
gβ

′
h)

×
(
(1− βα′

gα
′
h)(1− βα′

gβ
′
h)(1− ββ′

gα
′
h)(1− ββ′

gβ
′
h)
)−1

× ⟨η, e≤a(G[p]ωh)⟩dR.

5.4 Finite polynomial cohomology with coefficients

Let X be proper smooth V -scheme of relative dimension d = dX and fix a overconvergent F -isocrystal (E, ϕ)
on X which is of pure weight w. Again, following the idea in [Bes00b], one has canonical functorial complexes
of K-vector spaces

RΓrig(Xκ, (E, ϕ)), RΓdR(XK , (E,∇)), Filn RΓdR(XK , (E,∇))

computing cohomology groups of their namesakes respectively (c.f. §8.2). For simplicity, we will drop the no-
tations κ,K, ϕ and write RΓrig(X,E),RΓdR(X,E),Filn RΓdR(X,E) when no confusion might be caused. As
before, we also have natural quasi-isomorphsim RΓdR(X,E) → RΓrig(X,E), which induces the comparison
Hi

dR(X,E) ∼= Hi
rig(X,E).

Remark 5.24. As mentioned in remark 5.2, these functorial complexes can be constructed by Godement
resolutions. For the rigid complex, one needs to pass to adic spaces so that the construction of Godement
resolution works. On the other hand, since our construction of the cycle classes map with coefficients requires
no input from K-theory, we will simply view them as objects in the derived category of K-complexes. The
existences and functorialities are provided by their respective cohomology theory. In addition, the language
of mapping cones also applies to derived complexes.

Definition 5.25. For any polynomial P (T ) ∈ P and n ∈ Z, we define the syntomic P -complex RΓsyn,P (X,E, n)
by

RΓsyn,P (X,E, n) := Cone

(
Filn RΓdR(X,E)

P (ϕ)
−−−→ RΓrig(X,E)

)
[−1].

Its i-th cohomology will be denoted by Hi
syn,P (X,E, n).

For any s ∈ Z, we define
RΓfp,s(X,E, n) := lim

−→
P∈Ps

RΓsyn,P (X,E, n)

where the connecting map is similar to the one in Definition 5.4. Its cohomology will be denoted by
Hi

fp,s(X,E, n).
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We will be particularly interested in cohomology Hi
fp,w+i(X,E, n), which will be denoted simply by

Hi
fp(X,E, n). The reason is encoded in the following proposition analogous to Proposition 5.7.

Proposition 5.26. The group Hi
fp(X,E, n) satisfies the following properties:

1. We have the fundamental exact sequence

0 → Hi−1
dR (X,E)/Filn Hi−1

dR (X,E)
ifp
−→ Hi

fp(X,E, n)
prfp
−−→ Filn Hi

dR(X,E) → 0.

2. Let E∨ be the dual of E such that Poincaré pairing reads

Hi
dR(X,E)×H2d−i

dR (X,E∨) → H2d
dR(X) ∼= K(−d).

Then we have a perfect pairing ⟨ , ⟩fp induced by the cup product

Hi
fp(X,E, n)×H2d+1−i

fp (X,E∨, d+ 1− n)
∪
−→ H2d+1

fp (X, d+ 1) ∼= K

which is compatible with the Poincaré pairing on the de Rham cohomology via the fundamental exact
sequence.

3. Suppose that ιZ : Z → X is a smooth irreducible closed subscheme of codimension c. Then we have a
pushforward map

ιZ,∗ : Hi
fp(Z, ι

∗
ZE, n) → Hi+2c

fp (X,E, n+ c)

which can be described as the adjoint of the pullback ι∗Z under the above cup product pairing.

Proof. The proof is highly similar to the proof of Proposition 5.7. In fact, everything in §5.1 and §5.2 can
be translated by replacing

RΓrig(Xκ), RΓdR(XK), Filn RΓdR(XK)

with
RΓrig(Xκ, (E, ϕ)), RΓdR(XK , (E,∇)), Filn RΓdR(XK , (E,∇)),

respectively. As before, we will work with a fixed polynomial. The results will then follow by taking inductive
limit.

Let P ∈ P. We set C•
P := Cone(Filn RΓdR(X,E)

P (ϕ)
−−−→ RΓrig(X,E))[−1]. Assume that P (ϕ) annihilates

Hi
rig(X,E) but acts bijectively on Hi−1

rig (X,E). Notice that the existence of such a polynomial P is from our
pure weight assumption on E. In particular, one may further assume that P ∈ Pi+w.

Then we have the following long exact sequence

· · · Filn Hi−1
dR (X,E) Hi−1

rig (X,E) Hi(C•
P )

Filn Hi
dR(X,E) Hi

rig(X,E) · · · .

P (ϕ)

P (ϕ)

By the choice of P and the comparison Hi
rig(X,E) ∼= Hi

dR(X,E), one obtains the following short exact
sequence

0 → Hi−1
dR (X,E)/P (ϕ) Filn Hi−1

dR (X,E)
i′fp
−→ Hi

syn,P (X,E, n)
prfp
−−→ Filn Hi

dR(X,E) → 0.

As P (ϕ) is an isomorphism on Hi−1
dR (X,E), we have Hi−1

dR (X,E)/Filn ∼= Hi−1
dR (X,E)/P (ϕ) Filn. Hence we

can rewrite the above sequence as

0 → Hi−1
dR (X,E)/Filn Hi−1

dR (X,E)
ifp
−→ Hi

syn,P (X,E, n)
prfp
−−→ Filn Hi

dR(X,E) → 0,

where the first map is now twisted by P (ϕ).
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For 2 and 3, we will adopt the notations used in §5.2. First, we remark that for two overconvergent
F -isocrystals E,E′ on X, we have the maps

RΓrig(X,E)⊗K RΓrig(X,E′) → RΓrig(X,E ⊗ E′) and

RΓdR(X,E)⊗K RΓdR(X,E′) → RΓdR(X,E ⊗ E′)

that induce the cup products on the cohomology groups. When E′ = E∨, one gets a perfect pairing

Hi
•(X,E)⊗K H2d−i

• (X,E∨) → H2d
• (X,E ⊗ E∨)

ev
−→ H2d

• (X) ∼= K(−d)

where ev : E ⊗E∨ → OX is the evaluation map and • ∈ {dR, rig}. For de Rham cohomology, the proof can
be found in [AB01]. For rigid cohomology, it is proved in [Ked06]. Alternatively, since X is proper, one can
apply rigid GAGA to reduce to the de Rham case. As a consequence, when E if of pure weight w, E∨ is of
pure weight −w.

As in Proposition 5.15, one can compute RΓsyn,P (X,E, n) by the complex

MF
(
Filn RΓdR(X,E)⊕Hom(V •

P ,RΓrig(X,E)) → RΓrig(X,E)
)
,

and the maps ifp and prfp can be interpreted as the first and second maps in the following sequence

RΓrig(X,E)[−1] → MF
(
Filn RΓdR(X,E)⊕Hom(V •

P ,RΓrig(X,E)) → RΓrig(X,E)
)

→ Filn RΓdR(X,E),

respectively.

Consider now the commutative diagram:

0 Hi−1
dR (X,E)/Filn Hi

fp(X,E, n) Filn Hi
dR(X,E) 0

0
(
Fild+1−n H2d+1−i

dR (X,E∨)
)∨

H2d+1−i
fp (X,E∨, d+ 1− n)∨

(
H2d−i

dR (X,E∨)/Fild+1−n
)∨

0.

∼

ifp prfp

∼

pr∨fp i∨fp

The first and the third vertical maps come from Poincaré duality of de Rham cohomology. For the middle
one, recall from §5.2 that we can construct a map

Hom(V •
P ,RΓrig(X,E))⊗Hom(V •

Q,RΓrig(X,E∨)) → Hom(V •
P∗Q,RΓrig(X)),

where P ∈ Pi+w and Q ∈ P2d+1−i−w are such that P (ϕ) annihilates Hi
rig(X,E) and acts invertibly on

Hi−1
rig (X,E), while Q(ϕ) annihilates H2d+1−i

rig (X,E∨) and acts invertibly on H2d−i
rig (X,E∨). This induces a

product between
MF
(
Filn RΓdR(X,E)⊕Hom(V •

P ,RΓrig(X,E)) → RΓrig(X,E)
)

and
MF
(
Fild+1−n RΓdR(X,E∨)⊕Hom(V •

Q,RΓrig(X,E∨)) → RΓrig(X,E∨)
)

to the mapping fiber MF
(
Fild+1 RΓdR(X) ⊕ Hom(V •

P∗Q,RΓrig(X)) → RΓrig(X)
)
. Taking cohomology, we

get a pairing
Hi

syn,P (X,E, n)×H2d+1−i
syn,Q (X,E∨, d+ 1− n) → H2d+1

syn,P∗Q(X, d+ 1) ∼= K (28)

which gives rise to the middle map. Notice that since P ∗ Q ∈ P2d+1, one can identify H2d+1
syn,P∗Q(X, d + 1)

with K. In general, one has a cup product

Hi
syn,P (X,E, n)×Hj

syn,Q(X,E∨,m) → Hi+j
syn,P∗Q(X,n+m).

Moreover, it can be explicitly described as in Remark 5.18.
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We also remark that commutativity of the diagram again comes from the descriptions of ifp and prfp via

MF
(
Filn RΓdR(X,E) ⊕ Hom(V •

P ,RΓrig(X,E)) → RΓrig(X,E)
)
. Finally, the snake lemma concludes that

equation (28) is a perfect pairing.

Given a proper smooth morphism f : Y → X, we have the natural maps f∗ : RΓsyn,P (X,E, n) →
RΓsyn,P (Y, f

∗E, n) and f∗ : RΓfp,s(X,E, n) → RΓfp,s(Y, f
∗E, n), since both Filn RΓdR and RΓrig are func-

torial. However, in order for the pullback map f∗ to be compatible with the fundamental exact sequences
on Y and X, we need the condition in Definition 8.13. To be more precise, this condition ensures that we
can take a polynomial P ∈ Pw+i such that P (ϕ) annihilates Hi

rig(X,E) and Hi
rig(Y, f

∗E) simultaneously,

while acts invertibly on Hi−1
rig (X,E) and Hi−1

rig (Y, f∗E). In particular, let ιZ : Z → X be as in the statement
3, the pushforward ιZ,∗ is defined as the dual of ι∗Z with respect to the pairing ⟨ , ⟩fp.

5.5 Abel–Jacobi maps with coefficients

We begin with a description of Abel–Jacobi maps in the trivial coefficient case.

Recall that if Z ⊂ X is a proper smooth irreducible subvariety of codimension c defined over K, we have
an isomorphism H0

dR(Z) ∼= K and the Gysin sequence

0 → H2c−1
dR (X) → H2c−1

dR (X\Z) → H2c
dR,Z(X)(−c) ∼= H0

dR(Z)(−c)
clX−−→ H2c

dR(X) → · · · .

Suppose now Z =
∑

ajZj ∈ Ac(X)0 with each Zj smooth irreducible, the condition of being cohomo-
logically trivial implies that the sum

∑
ajclX(1Zj

) is zero in H2c
dR(X). The coefficients aj ’s define a unique

K-line in H0
dR(Z). Hence one gets an extension

0 H2c−1
dR (X) D K(−c) 0

0 H2c−1
dR (X) H2c−1

dR (X\Z) H0
dR(Z)(−c)

via pullback.

Remark 5.27. One can also define the Abel–Jacobi map under the framework of Galois representations
and étale cohomology (c.f. [Nek00]), which is essentially based on the Hochschild–Serre spectral sequence.
In the case of varieties with good reduction, it translates back to the above extension (of filtered Frobenius
modules) via p-adic comparison theory.

The isomorphism class of D gives an element in Ext1ffm(K(−c), H2c−1
dR (X)) where ffm stands for the

category of filtered Frobenius modules. This extension class, denoted by AJ(D), is the Abel–Jacobi image
of D. Via the isomorphism (c.f. [BDP13, Proposition 3.5] or [AI19, Lemma 7.2])

Ext1ffm(K(−c), H2c−1
dR (X)) ∼= H2c−1

dR (X)/Filc,

one can then view AJ(D) as an element in H2c−1
dR (X)/Filc. By further identifying H2c−1

dR (X)/Filc with

[Fild+1−c H2d−2c+1
dR (X)]∨ under Poincaré duality, this coincides with the Abel–Jacobi map described in §5.1.

Now turn to non-trivial coefficients E. Inspired by the trivial coefficient case, the question reduces to
finding a subspace in H0

dR(Z,E) isomorphic to K(j) for some j ∈ Z. This is not easy in general. However,
when the sheaf E comes from a universal object W over X, one has the following approach. For simplicity,
we will restrict to the case where dimX = 1.

Suppose we have a commutative diagram of smooth irreducible K-schemes with good reductions

W WZ Y

X Z

π
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where

• dimW = dW , dimX = 1, and dimZ = 0 .

• π : W → X is proper, smooth, and the square is Cartesian.

• Y =
∑

aiYi is a cycle of codimension n in W , hence of codimension n−1 in WZ . Moreover, we require
that Y ∈ An(W )0 but Y ∈ An−1(WZ) is not cohomologically trivial.

Consider
E := ϵRwπ∗Ω

•
W/X

for some w ∈ Z and an auxiliary idempotent ϵ ∈ Q[Aut(W/X)]. By the relative Leray spectral sequence (c.f.
[Kat70, (3.3.0)])

Eij
2 := Hi

dR(X,Rjπ∗Ω
•
W/X) ⇒ Hi+j

dR (W ),

we can view H1
dR(X,E) as a piece of Hw+1

dR (W ) (or more precisely, ϵHw+1
dR (E)). Hence one sees that E has

pure weight w.

By setting W ′ = W\WZ , we have the Gysin sequence

· · · → H2n−3
dR (WZ)(−1) → H2n−1

dR (W ) → H2n−1
dR (W ′) → H2n−2

dR (WZ)(−1) → H2n
dR(W ) → · · · .

Note that each component Yi of Y provides a subspace K(−n+ 1) in H2n−2
dR (WZ) by the pushforward map

H0
dR(Yi)(−n+ 1) ∼= K(−n+ 1) → H2n−2

dR (WZ).

Since we want to relate H1
dR(X,E) to H2n−1

dR (W ), we will take w = 2n− 2 and assume the idempotent ϵ is
chosen so that:

1. the cycle Y is stable under ϵ;

2. it annihilates Hj
dR(W ) for j ̸= 2n− 1;

3. it gives rise to an isomorphism ϵH2n−1
dR (W ) ∼= H1

dR(X,E) via the Leray spectral sequence.

Consequently, one obtains a diagram

0 ϵH2n−1
dR (W ) ϵH2n−1

dR (W ′) ϵH2n−2
dR (WZ)(−1) · · · .

H1
dR(X,E) H0

dR(Z,E)(−n)

H0
dR(Y )(−n)

∼=

The inclusionH0
dR(Y )(−n) ↪→ ϵH2n−2

dR (WZ)(−1) provides a uniqueK(−n)-line determined by the coefficients
ai’s. In summary, we obtain by pullback an extension

0 → H1
dR(X,E) → D → K(−n) → 0.

Notice that D now gives a class in Ext1ffm(K(−n), H1
dR(X,E)) ∼= H1

dR(X,E)/Filn, where n = w
2 + 1 is

different from the trivial coefficient case.

Remark 5.28. In general, let E be an arbitrary overconvergent F -isocrystal of pure weight w on X. The
above discussion suggests that in order to define Abel–Jacobi maps with the coefficient E, the weight w
must be even. This restriction can also be found in [BDP13] and [DR14]. Furthermore, for a cohomolog-
ically trivial cycle Z of codimension c with coefficient E, a correct Abel–Jacobi map should send Z into
H2c−1

dR (X,E)/Fil
w
2 +c. The philosophy is that we still treat E as if it came from Rwπ∗Ω

•
W/X for some

morphism π : W → X that may not even exist.
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Now let X be a proper smooth irreducible V -scheme of relative dimension d = dX as before and E be
a convergent F -isocrystal on Xκ of pure weight w ∈ 2Z. We first need to define the cycle class group with
coefficient in E.

In the trivial coefficient case, the target of the cycle class map clX : Ac(X) → H2c
dR(X) is aK-vector space.

Hence we may extend scalar to Ac(X)⊗Z K. If we let Zc(X) be the collection of smooth irreducible closed
subscheme Z in X such that they form a base of Ac(X). Then we may write Ac(X)⊗Z K = ⊕Z∈Zc(X)K =
⊕Z∈Zc(X)H

0
dR(Z). Inspired by this observation, we have the following definition.

Definition 5.29. The cycle group with coefficients in E of codimension c, denoted by Ac(X,E), is defined
to be

Ac(X,E) :=
⊕

Z∈Zi(X)

H0
fp(Z,E,

w

2
) =

⊕

Z∈Zi(X)

Fil
w
2 H0

dR(Z,E).

The finite polynomial class map clfp is simply defined as the sum of the pushforward maps

clfp :=
⊕

Z∈Zi(X)

ιZ,∗ : Ac(X,E) → H2c
fp (X,E,

w

2
+ c).

We then define Ac(X,E)0 = ker(prfp ◦ clfp) to be the subgroup of cohomologically trivial cycles with coeffi-
cients in E. By the fundamental exact sequence

0 → H2c−1
dR (X,E)/Fil

w
2 +c ifp

−→ H2c
fp (X,E,

w

2
+ c)

prfp
−−→ Fil

w
2 +c H2c

dR(X,E) → 0,

we define the finite polynomial Abel–Jacobi map with coefficients in E

AJfp : Ac(X,E)0 → H2c−1
dR (X,E)/Fil

w
2 +c

simply by the i−1
fp ◦ clfp. One can further identify the target with [Fild+1−w

2 −c H2d−2c+1
dR (X,E∨)]∨ under our

notation of duality.

5.6 The special case Hr

In this section, we will deal with the sheaf Hr. Some modifications are needed because we are interested in
its parabolic cohomology instead of the usual de Rham cohomology.

We first recall several definitions that already appeared in §2. Let X = X1(N) be as in the previous

section, E
π
−→ X be the universal generalized elliptic curve, and Y ⊂ X be the affine modular curve. Recall

that H is the canonical extension of R1π∗Ω
1
E/X on Y to X. It comes with an exact sequence

0 → ω → H → ω−1 → 0

which defines the Hodge filtration on H and a Gauss–Manin connection ∇ : H → H⊗ Ω1
X .

For any positive integer r, we let Hr := Symr H be the r-th symmetric power of H, together with the
induced Hodge filtration and Gauss–Manin connection.

The parabolic complex (Hr ⊗ Ω•
X)par is a subcomplex of

0 → Hr → Hr ⊗ Ω1
X(logC) → 0

defined by

(Hr ⊗ Ω0
X)par := Hr,

(Hr ⊗ Ω1
X)par := ∇(Hr) +Hr ⊗ Ω1

X .

The hypercohomology of (Hr ⊗Ω•
X)par will be denoted by Hi

par(X,Hr). One also has its rigid analogue, the

rigid parabolic cohomology Hi
rig,par(X,Hr).
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The parabolic cohomology H1
par(X,Hr) is equipped with a short exact sequence

0 → H0(X,ωr ⊗ Ω1
X) → H1

par(X,Hr) → H1(X,ω−r) → 0.

However, the Hodge filtration on H1
par(X,Hr) is not the naive 2-step filtration. As explained in [DR14,

Lemma 2.2], the parabolic cohomology can be viewed as the image of Hr+1
dR (Wr) under a certain idempotent

ϵr ∈ Q[Aut(Wr/X)]. Here Wr is the Kuga–Sato variety appearing in the introduction (also see §5.8). In
particular, the Hodge filtration on H1

par(X,Hr) is given by the Hodge filtration on Hr+1
dR (Wr). That is,

Fil0 = H1
par(X,Hr),

Fil1 = Fil2 = · · · = Filr+1 = H0(X,ωr ⊗ Ω1
X),

Filr+2 = 0.

Also, Poincaré duality on the fibers induces a duality Hr ×Hr → OX(−r) which allows us to identify (Hr)∨

with Hr(r).

We then have the derived complexes

RΓpar(X,Hr), Filn RΓpar(X,Hr), RΓrig,par(X,Hr)

which computeHi
par(X,Hr),Filn Hi

par(X,Hr) andHi
rig,par(X,Hr) respectively. Moreover, there are a natural

map Filn RΓpar(X,Hr) → RΓpar(X,Hr) and a quasi-isomorphism RΓpar(X,Hr) → RΓrig,par(X,Hr). The
Frobenius ϕ on RΓrig,par(X,Hr) then induces a Frobenius action ϕ on H1

par(X,Hr).

Since Wr is of good reduction, the Frobenius action ϕ on Hr+1
dR (Wr) is pure of Weil weight r + 1. As a

consequence, all the eigenvalues of the Frobenius ϕ on H1
par(X,Hr) are also of Weil weight r + 1.

Replace everything with its parabolic version, we have the following definition.

Definition 5.30. For any polynomial P (T ) ∈ P and n ∈ N, we define the syntomic P -complex RΓsyn,P (X,Hr, n)
by

RΓsyn,P (X,Hr, n) := Cone

(
Filn RΓpar(X,Hr)

P (ϕ)
−−−→ RΓrig,par(X,Hr)

)
[−1].

Its i-th cohomology will be denoted by Hi
syn,P (X,Hr, n).

For any s ∈ Z, we define

RΓfp,s(X,Hr, n) := lim
−→

P∈Ps

RΓsyn,P (X,Hr, n)

where the connecting map is similar to the one in Definition 5.4. Its cohomology will be denoted by
Hi

fp,s(X,Hr, n).

Remark 5.31. Technically speaking, we should use the notation Hi
syn,par,P and Hi

fp,par,s. However, we
prefer to drop the subscript in order to keep notations clean. Any cohomology that involves Hr should be
understood as the parabolic version in this article.

As before, we are particularly interested in the group H1
fp(X,Hr, n) := H1

fp,r+1(X,Hr, n).

Proposition 5.32 (c.f. Proposition 5.26). The group H1
fp(X,Hr, n) satisfies the following properties:

1. We have the exact sequence

0 → H0
par(X,Hr)/Filn H0

par(X,Hr)
ifp
−→ H1

fp(X,Hr, n)
prfp
−−→ Filn H1

par(X,Hr) → 0.

Moreover, the map prfp is in fact an isomorphism.
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2. Let (Hr)∨ be the dual of Hr such that the Poincaré pairing reads

H1
par(X,Hr)×H1

par(X, (Hr)∨) → K(−1).

Then we have a perfect pairing induced by the cup product

Hi
fp(X,Hr, n)×H3−i

fp (X, (Hr)∨, 2− n)
∪
−→ H3

fp(X, 2) ∼= K

which is compatible with the Poincaré pairing on H1
par via the fundamental exact sequence.

Definition 5.33. Similarly to Definition 5.29, when r is even we have the finite polynomial Abel–Jacobi
map

AJfp : A1(X,Hr)0 → H1
par(X,Hr)/Fil

r
2+1 H1

par(X,Hr) ∼= [Fil1−
r
2 H1

par(X, (Hr)∨)]∨.

Remark 5.34. Recall that we have a perfect pairing

H1
par(X,Hr)×H1

par(X,Hr) → K(−r − 1).

This provides the identification H1
par(X, (Hr)∨) ∼= H1

par(X,Hr)(r). Hence, as K-vector spaces,

Fil1−
r
2 H1

par(X, (Hr)∨) = Fil
r
2+1 H1

par(X,Hr).

One can check that this numerology is compatible with the Abel–Jacobi map in [BDP13, § 3]. Further
explanation can be found in [HW22, § 6.4].

In next section, we will also consider the sheaf Hr1 ⊠Hr2 ⊠Hr3 := π∗
1H

r1 ⊗ π∗
2H

r2 ⊗ π∗
3H

r3 on X3. By
Künneth decomposition, the only interesting (parabolic) cohomology is at middle degree 3, with

H3
par(X

3,Hr1 ⊠Hr2 ⊠Hr3) ∼= H1
par(X,Hr1)⊗H1

par(X,Hr2)⊗H1
par(X,Hr3).

Hence, the Frobenius acts on H3
par(X

3,Hr1 ⊠Hr2 ⊠Hr3) with eigenvalues of Weil weight r1 + r2 + r3 + 3,
and Hr1 ⊠ Hr2 ⊠ Hr3 is of pure weight r1 + r2 + r3 (for the parabolic cohomology). One can then define
Hi

fp(X
3,Hr1 ⊠Hr2 ⊠Hr3) and Hi

fp(X
3, (Hr1 ⊠Hr2 ⊠Hr3)∨) similarly, where (Hr1 ⊠Hr2 ⊠Hr3)∨ is of pure

weight −(r1 + r2 + r3). In particular, the finite polynomial Abel–Jacobi map we will use later is of the form

AJfp : A2(X3, (Hr1 ⊠Hr2 ⊠Hr3)∨)0 → [Fil
r1+r2+r3

2 +2 H3
par(X

3,Hr1 ⊠Hr2 ⊠Hr3)]∨.

5.7 Applications to modular forms of weight > 2

We will show how to compute the Abel–Jacobi map appearing in Section 6.2 by using finite polynomial
cohomology with coefficients. The ideas and computations are almost identical to those in Section 5.1, with
only some minor modifications.

Let (x, y, z) ∈ Z3
>2 be a triple of balanced weights such that x = y + z − 2t with t ∈ Z>0. Write

x = r1 + 2, y = r2 + 2, z = r3 + 2 and r = 1
2 (r1 + r2 + r3) as before. Then r1 = r2 + r3 − 2(t − 1) and

r ≤ r2 + r3.

Let ι = ι123 : X → X3 be the diagonal embedding. We set Z := ι(X) ⊂ X3 to be the smooth closed
subscheme of codimension 2 and will often identify it with X in the following arguments. When restricted
to Z (pull-back via ι), the sheaf Hr1 ⊠Hr2 ⊠Hr3 is identified with Hr1 ⊗Hr2 ⊗Hr3 on X. For simplicity,
we will denote Hr1 ⊠Hr2 ⊠Hr3 by H⊠ and Hr1 ⊗Hr2 ⊗Hr3 by H⊗.

Recall that we want to evaluate the Abel–Jacobi map at an element of the form η ⊗ ω2 ⊗ ω3 with

η ∈ H1
par(X,Hr1),

ω2 ∈ Filr2+1 H1
par(X,Hr2),

ω3 ∈ Filr3+1 H1
par(X,Hr3).
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Note that η ⊗ ω2 ⊗ ω3 can be viewed as an element in Filr2+r3+2 H3
par(X

3,H⊠) ⊂ Filr+2 H3
par(X

3,H⊠). We
then take lifts

η̃ ∈ H1
fp(X,Hr1 , 0),

ω̃2 ∈ H1
fp(X,Hr2 , r2 + 1),

ω̃3 ∈ H1
fp(X,Hr3 , r3 + 1)

of η, ω2, ω3 under the isomorphism prfp respectively. A lift of η ⊗ ω2 ⊗ ω3 can then be taken to be π∗
1 η̃ ∪

π∗
2 ω̃2 ∪ π∗

3 ω̃3.

We would like to define the diagonal cycle ∆ ∈ A2(X3, (H⊠)∨) such that it is supported only on the
diagonal Z. In other words, we want ∆ = δ ·Z with δ ∈ H0

fp(Z, (H
⊠)∨,−r) = H0

dR(Z, (H
⊠)∨). The job now

reduces to find the correct section δ. By definition, the Abel–Jacobi map AJfp(∆)(η ⊗ ω2 ⊗ ω3) computes
the cup product

⟨δ, ι∗(π∗
1 η̃ ∪ π∗

2 ω̃2 ∪ π∗
3 ω̃3)⟩fp

on Z ∼= X.

Observe that by the assumption on ri’s, there is a canonical direct sum decomposition

Hr2 ⊗Hr3 ∼= ⊕
min{r2,r3}
j=0 Hr2+r3−2j(−j).

In particular, there is a projection prr1 : Hr2 ⊗Hr3 → Hr1(1− t). We may then consider

prr1(ω̃2 ∪ ω̃3) ∈ H2
fp(X,Hr1(1− t), r2 + r3 + 2)

and the cup product η̃ ∪ prr1(ω̃2 ∪ ω̃3) ∈ H3
fp(X,Hr1 ⊗Hr1(1− t), r2 + r3 + 2). Now apply Poincaré duality

Hr1 ⊗Hr1 → OX(−r1), we end up with an element in H3
fp(X,OX(−r1 + 1− t), r2 + r3 + 2).

Since −r1 + 1− t+ r2 + r3 = 0, we have, as vector spaces,

H3
fp(X,OX(−r1 + 1− t), r2 + r3 + 2) = H3

fp(X,OX , 2) ∼= K

where the last isomorphism is the trace map trfp for the trivial coefficient. In summary, we showed that there
is a non-trivial map τ : H3

fp(X,H⊗, r2 + r3 + 2) → K. In particular H3
fp(X,H⊗, r2 + r3 + 2) is non-empty.

By the fact that we have a perfect pairing

⟨ , ⟩fp : H0
fp(X, (H⊗)∨, n)×H3

fp(X,H⊗, 2− n) → H3
fp(X, 2) ∼= K,

there is an element 1Z ∈ H0
fp(X, (H⊗)∨,−r2 − r3) = H0

par(X, (H⊗)∨) such that

⟨1Z , η̃ ∪ ω̃2 ∪ ω̃3⟩fp,X = η̃ ∪ prr1(ω̃2 ∪ ω̃3) = τ(η̃ ∪ ω̃2 ∪ ω̃3) ∈ K.

In fact, we can take 1Z ∈ H0
fp(X, (H⊗)∨,−r) since −r+(r2 + r3 +2) ≥ 2 and H3

fp(X,m) ∼= K for all m ≥ 2.
By doing so, the ri’s now play equal roles in the sense that the Abel–Jacobi map of the cycle defined below
can also be evaluated at elements of the form ω1 ⊗ η2 ⊗ ω3 or ω1 ⊗ ω2 ⊗ η3.

Definition 5.35. Let 1Z be as above. We define ∆x,y,z
2,2,2 := 1Z · Z ∈ A2(X3, (H⊠)∨). The superscript is to

denote that we are interested in modular forms of weights x, y and z (or equivalently, the sheaves Hr1 ,Hr2

and Hr3). While the subscript is to remind us that it is supported on closed subscheme Z of X3, as in the
weight (2, 2, 2) case.

One can check that the push-forward ι∗(1Z) ∈ H4
fp(X

3, (H⊠)∨,−r + 2) in fact lies in

ker(prfp) = H3
par(X

3, (H⊠)∨)/Fil−r+2 H3
par(X

3, (H⊠)∨) ∼= [Filr+2 H3
par(X

3,H⊠)]∨.

This justifies the evaluation of AJfp(∆
x,y,z
2,2,2 ) at η ⊗ ω2 ⊗ ω3.
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Let (f, g, h) be three cusp forms on X of weight (x, y, z), respectively. Recall that we write the Hecke
polynomial of f as

T 2 − ap(f)T + χf (p)p
x−1 = (T − αf )(T − βf )

with a = ordp(αf ), and similarly for g, h. We also write

Pg(T ) = 1− ap(g)p
1−yT + χg(p)p

1−yT 2 = (1− αgp
1−yT )(1− βgp

1−yT ),

Ph(T ) = 1− ap(h)p
1−zT + χh(p)p

1−zT 2 = (1− αhp
1−zT )(1− βhp

1−zT )

and let α′
g := αgp

1−y, β′
g := βgp

1−y, α′
h := αhp

1−z and β′
h := βhp

1−z. The polynomial Pg(T ) is defined
such that Pg(ϕ) annihilates the class of ωg, where ϕ is the Frobenius on the cohomology H1

par(X,Hr2). In
particular, Pg(ϕ)ωg = ωg[p] as sections over some strict neighborhood W of the ordinary locus.

Similarly as before, we may represent a class in H1
syn,P (X,Hri , ri + 1) by a pair (ω,G) where ω ∈

H0(X,Hr ⊗ Ω1
X) and G ∈ H0(W,Hr) are such that P (ϕ)(ω) = ∇G. Then we have the following analogues

of Theorem 5.20 and Corollary 5.22, whose proofs will be omitted.

Theorem 5.36. Suppose that we have two classes ω̃i = (ωi, Gi) ∈ H1
syn,1−αiT

(X,Hri , ri + 1) with UGi = 0
for i = 2, 3. Let P (T ) = (1− α2α3T ) and consider the cup product

ω̃2 ∪ ω̃3 ∈ H1
syn,P (X,Hr2 ⊗Hr3 , r2 + r3 + 2).

Let i−1
fp (ω̃2∪ω̃3) ∈ H1

par(X,Hr2 ⊗Hr3) be the inverse and apply the projection prr1 on it to obtain the element

prr1(i
−1
fp (ω̃2 ∪ ω̃3)) ∈ H1

par(X,Hr1(1− t)). If η ∈ H1
par(X,Hr1) is an eigenvector of ϕ with eigenvalue α and

ordp(α) = a ∈ Q, then

⟨η, prr1(i
−1
fp (ω̃2 ∪ ω̃3))⟩dR = (1− βα2α3)

−1⟨η, e≤a prr1(G2ω3)⟩dR

where β = px−1+t−1/α and e≤a is the slope a-projection with respect to U .

Remark 5.37. One needs to be careful about the twisting. The above pairing ⟨ , ⟩dR is the Poincaré
pairing

H1
par(X,Hr1)×H1

par(X,Hr1(1− t)) → K(−r1 − 1 + 1− t) = K(1− x+ 1− t).

Hence we have β = px−1+t−1/α, instead of β = p/α in the weight (2, 2, 2) case.

Corollary 5.38. Let g, h be as above and suppose they are eigenfroms form the Hecke operator Tp. Let
ω̃g, ω̃h ∈ H1

fp(X, 1) be the lifts of ωg, ωh. Suppose that η ∈ H1
dR(X) is an eigenvector of ϕ with eigenvalue α

and ordp(α) = a ∈ Q. Let β = px−1+t−1/α. Then we have

⟨η, i−1
fp (ω̃g ∪ ω̃h)⟩dR = (1− β2α′

gα
′
hβ

′
gβ

′
h)

×
(
(1− βα′

gα
′
h)(1− βα′

gβ
′
h)(1− ββ′

gα
′
h)(1− ββ′

gβ
′
h)
)−1

× ⟨η, e≤a prr1(G
[p]ωh)⟩dR.

Together with the definition of AJfp(∆
x,y,z
2,2,2 )(η ⊗ ωg ⊗ ωh), we have the following theorem.

Theorem 5.39. Let notations be as before. Then we have

AJfp(∆
x,y,z
2,2,2 )(η ⊗ ωg ⊗ ωh) = (1− β2α′

gα
′
hβ

′
gβ

′
h)

×
(
(1− βα′

gα
′
h)(1− βα′

gβ
′
h)(1− ββ′

gα
′
h)(1− ββ′

gβ
′
h)
)−1

× ⟨η, e≤a prr1(G
[p]ωh)⟩dR.
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Remark 5.40. In the applications later, the eigenvalue α will be αf∗ = χf (p)
−1αf . Then β = px−1+t−1/αf∗ =

pt−1βf . One can re-write

1− β2α′
gα

′
hβ

′
gβ

′
h = 1− p2t−2β2

fαgβgαhβhp
2−2yp2−2z

= 1− p2t−2β2
fχg(p)p

y−1χh(p)p
z−1p2−2yp2−2z

= 1− p2t−2β2
fχ

−1
f (p)p1−yp1−z

= 1− β2
fχ

−1
f (p)p2t−y−z

= 1− β2
fχ

−1
f (p)p−x,

which is equal to the Euler factor E1(f) defined in the introduction. Similarly, one can re-write

(1− βα′
gα

′
h)(1− βα′

gβ
′
h)(1− ββ′

gα
′
h)(1− ββ′

gβ
′
h)

= (1− βfαgαhp
−c)(1− βfαgβhp

−c)(1− βfβgαhp
−c)(1− βfβgβhp

−c)

with c := x+y+z−2
2 . It is then equal to the Euler factor E (f, g, h). Hence, we will use the following notations

E1(η) := (1− β2α′
gα

′
hβ

′
gβ

′
h),

E (η, g, h) := (1− βα′
gα

′
h)(1− βα′

gβ
′
h)(1− ββ′

gα
′
h)(1− ββ′

gβ
′
h).

5.8 Comparison to the generalized diagonal cycle without coefficient

In this section, we recall the generalized diagonal cycle (without coefficient) defined in [DR14] and its Abel–
Jacobi image. In the end, we will see that their generalized diagonal cycle ∆x,y,z is essentially equal to ∆x,y,z

2,2,2

we defined in the last section.

Kuga–Sato varieties and the generalized diagonal cycles. For any r ≥ 0, we have the Kuga–Sato
variety Wr, which is the desingularization (c.f. [BDP13, Appendix]) of the r-fold fiber product

W ′
r := E ×X E · · · ×X E .

Then one may see the parabolic cohomology H1
par(X,Hr) as a subspace in a correct degree of the de

Rham cohomology of Wr, which is illustrated in the following lemma.

Lemma 5.41 ([BDP13, Lemma 2.2]). Assume that r ≥ 1. Then there is an idempotent ϵr ∈ Q[Aut(Wr/X)],
defined in [DR14, §3.1], such that we have

ϵrH
j
dR(Wr/K) =

{
0 j ̸= r + 1

H1
par(X,Hr) j = r + 1

.

Suppose now we have a triple of balanced weights (x, y, z) = (r1 + 2, r2 + 2, r3 + 2). We further assume
that r1 > 0, r2 > 0, r3 > 0 and r := r1+r2+r3

2 ∈ N.

Set W ∗ = Wr1 ×Wr2 ×Wr3 , which is of dimension 2r + 3 over the base field. We now briefly recall the
definition of the generalized diagonal cycle ∆x,y,z ∈ CHr+2(W ∗) (c.f. [DR14, Definition 3.3]).

Choose three subsets

A = {a1, . . . , ar1}, B = {b1, . . . , br2}, C = {c1, . . . , cr3}

of {1, . . . , r} such that A ∩ B ∩ C = ∅ and A ∪ B = B ∪ C = A ∪ C = {1, . . . , r}. One can see that the
balancedness assumption guarantees the existence of such sets. Then we consider the map

φABC : Wr → Wr1 ×Wr2 ×Wr3

(x;P1, . . . , Pr) 7→ ((x;Pa1 , . . . , Par1
), (x;Pb1 , . . . , Pbr2

), (x;Pc1 , . . . , Pcr3
)),

which is a closed embedding of Wr into W ∗.
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Definition 5.42. The generalized diagonal cycle is defined by

∆x,y,z = (ϵr1 , ϵr2 , ϵr3)φABC(Wr) ∈ CHr+2(W ∗).

Remark 5.43. For the case where some ri = 0, we refer the definitions to [DR14, § 3.1].

By using the Künneth decomposition of H2r+4
dR (W ∗) and examining the image of the idempotents ϵri ’s,

it follows that the cycle ∆x,y,z is homologous to zero. That is,

∆x,y,z ∈ CHr+2(W ∗)0 := ker(cl : CHr+2(W ∗) → H2r+4
dR (W ∗)).

Fix a prime p ∤ N , we have the p-adic Abel–Jacobi map

AJp : CHr+2(W ∗)0 → Filr+2 H2r+3
dR (W ∗)∨

as introduced in [Nek00]. We recall the following result by Darmon–Rotger.

Theorem 5.44 ([DR14, § 3.4]). Let η, ωg, ωh be as in Corollary 5.38. Then

AJp(∆x,y,z)(η ⊗ ωg ⊗ ωh) =
E1(η)

E (η, g, h)
· ⟨η, e≤a prr1(G

[p] × ωh)⟩.

As a result, we see that the two definitions of cycles are essentially the same, as least when we evaluate
their Abel–Jacobi images at η ⊗ ωg ⊗ ωh.

Theorem 5.45. Let η, ωg, ωh be as before. Then

AJp(∆x,y,z)(η ⊗ ωg ⊗ ωh) = AJfp(∆
x,y,z
2,2,2 )(η ⊗ ωg ⊗ ωh) =

E1(η)

E (η, g, h)
· ⟨η, e≤a prr1(G

[p] × ωh)⟩.

Notice that in the first Abel–Jacobi map, we view η ⊗ ωg ⊗ ωh as elements in the de Rham cohomology
Filr+2 H2r+3

dR (W ∗). Whereas in the second one, it is viewed as an element in Filr+2 H3
par(X

3,H⊠).

Lastly, we would like to make an expedition to the proof of [DR14, Theorem 3.8] for (k, ℓ,m) > (2, 2, 2).
We briefly recall the setting.

Given ωg, ωh as before, one obtain a class

ωg ⊗ ωh ∈ H1
par(X,Hr2)⊗H1

par(X,Hr3).

Let Φ := ϕ⊗ ϕ. As explained in [DR14, § 3.4], one can find a polynomial P (T ) such that P (Φ) annihilates
the class ωg ⊗ ωh and none of its roots is of Weil weight r2 + r3 + 1.

Then, for a suitable strict neighborhood W = Wϵ, there is an rigid analytic 1-form ρ(P, ω2, ωh) on W×W
such that

∇ρ(P, ωg, ωh) = P (Φ)(ωg ⊗ ωh).

Recall that we have a map prr1 : Hr2 ⊗ Hr3 → Hr1(1 − t). Composed with the pullback by the diagonal
embedding W → W ×W , we get a map Hr2 ⊠Hr3 → Hr1(1− t), which will still be denoted by prr1 .

Set ξ(P, ωg, ωh) := the class of prr1 ρ(P, ωg, ωh) ∈ H1
rig(W,Hr1(1− t)). If one further requires that P (ϕ)

composed with the residue map to each supersingular residue disk is zero for the sheaf Hr1(1 − t) (these
eigenvalues are of Weil weight 2r + 2), then ξ(P, ωg, ωh) actually lies in H1

par(X,Hr1(1− t)).

As the eigenvalues of ϕ on H1
par(X,Hr1(1− t)) are of Weil weight r1 + 1 + 2t− 2 = r2 + r3 + 1, P (ϕ) is

an isomorphism on H1
par(X,Hr1(1− t)). One then set

ξ(ωg, ωh) : P (ϕ)−1ξ(P, ωg, ωh) ∈ H1
par(X,Hr1(1− t)).

It can be checked that this class is independent of the choice of the polynomial as long as it satisfies the
conditions above.
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Proposition 5.46 ([DR14, theorem 3.8]). Let notations be as before. Then

AJp(∆x,y,z)(η ⊗ ωg ⊗ ωh) = AJfp(∆
x,y,z
2,2,2 )(η ⊗ ωg ⊗ ωh) = ⟨η, ξ(ωg, ωh)⟩dR.

We now illustrate the proof by using finite polynomial cohomology with coefficients. In particular, we
show how it simplifies the argument in [DR14, Lemma 3.11]. One should then see that this approach is more
coherent to the one for weight (2, 2, 2) case in [DR14, § 3.3].

By this time, one might already see that the pair (ωg ⊗ ωh, ρ(P, ωg, ωh)) gives rise to a class

˜ωg ⊗ ωh ∈ H2
syn,P (X

2,Hr2 ⊠Hr3 , r2 + r3 + 2).

Consider now the following diagram (we temporarily set r′ = r2 + r3 + 2 to make the diagram smaller):

0 H1
par(X

2,Hr2 ⊠Hr3) H2
syn,P (X

2,Hr2 ⊠Hr3 , r′) Filr
′

H2
par(X

2,Hr2 ⊠Hr3) 0

0 H1
par(X,Hr1(1− t)) H2

syn,P (X,Hr1(1− t)), r′) Filr
′

H2
par(X,Hr1(1− t)) 0.

ifp

prr1

prfp

prr1
prr1

ifp prfp

Notice that Filr2+r3+2 H2
par(X,Hr1(1− t)) is 0 since the sheaf Hr1(1− t) has no non-trivial global horizontal

section. So the map ifp in the bottom row is an isomorphism. Also recall that the map ifp on the bottom
row sends a class ζ to (P (ϕ)ζ, 0) (since we are on a curve, any representative of the class ζ is necessarily

closed). As a consequence, the class ξ(ωg, ωh) is nothing but the preimage of prr1( ˜ωg ⊗ ωh) under ifp. The
result then follows from our definition of AJfp(∆

x,y,z
2,2,2 )(η ⊗ ωg ⊗ ωh) in §5.7 and the compatibility between

cup products on finite polynomial cohomology and de Rham cohomology.
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6 Special values of triple product p-adic L-functions

In this section, we will focus on the specializations of the triple product p-adic L-functions at certain balanced
classical weights, and try to relate the values to p-adic Abel-Jacobi images.

Recall that the triple product p-adic L-function is defined as

L
f
p (f̆ , ğ, h̆) :=

(f̆∗, H†,≤a(∇ν
kg
ğ[p] × h̆))

(f̆∗, f̆∗)
∈ Kf ⊗̂Λg⊗̂Λh

From now on, we will simply write f∗ for f̆∗ and similarly for ğ and h̆.

6.1 Special values at balanced classical weights

We first specify at which classical points we want to study the values of L f
p (f ,g,h).

Suppose f is a family of finite slope a = af , and g,h are of slopes ag, ah respectively. We are interested
in the values of L f

p (f ,g,h) at classical weights (x, y, z) ∈ Z3 such that

1. The specializations of f ,g,h at (x, y, z) are p-old, i.e., fx,gy,hz are p-stabilizations of some classical
modular forms f0

x , g
0
y, h

0
z on X1(N);

2. (x, y, z) is balanced and x = y + z − 2t for some t ∈ Z>0;

3. x > 2a+ 1, y > 2ag + 1 and z > 2ah + 1.

We denote the set consisting of all such weights by Σf ,g,h. By abuse of notations, we will write fx := fx,
gy := gy, hz := hz and denote the classical forms f0

x , g
0
y, h

0
z simply by f, g, h. Notice that they are different

from the modular forms f, g, h (of weight k, ℓ,m, resp.) which the families f ,g,h deform.

Remark 6.1. The third condition is explained in Remark 4.41. We can modify it into the following condition:
3′. x− 1 > a, y − 1 > ag, z − 1 > ah and αf0

x
̸= βf0

x
, αg0

y
̸= βg0

y
, αh0

z
̸= βh0

z
.

As we will proceed our proofs by studying the q-expansions of various forms, we here recall several
definitions. Around the Tate curve, one has a basis {ωcan, ηcan} of H that satisfy

∇(ωcan) = ηcan ⊗
dq

q
, ∇(ηcan) = 0.

As we mentioned before, the basis Vr,i of the sheaf Wr at the Tate curve corresponds to the basis ωr−i
can η

i
can

of Hr at the Tate curve when r is a positive integer and i ≤ r. From now on, we will make no difference
between these two notations and use them interchangeably.

We now examine the q-expansion of H†(∇ν
kg
(g[p])× h) at (y, z). Let

g[p]y (q)Vy,0 and hz(q)Vz,0

be the q-expansions of the specializations of g[p] and h at y and z respectively.

Since we assume the triple (x, y, z) to be balanced, b := y − t is a positive integer. Apply the formula in
Theorem 4.30, we see that

∇−t(g[p]y Vy,0) =

∞∑

j

(
−t

j

) j−1∏

i=0

(y − t− 1− i)θ−t−jg[p]y (q)Vy−2t,j

=
b−1∑

j=0

(
−t

j

) j−1∏

i=0

(y − t− 1− i)θ−t−jg[p]y (q)Vy−2t,j
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is in fact a finite sum. We simplify the above formula as

∇−t(g[p]y Vy,0) =
b−1∑

j=0

Cj · θ
−t−jg[p]y (q)Vy−2t,j

by letting Cj :=
(
−t
j

)∏j−1
i=0 (y − t− 1− i).

The q-expansion of the product ∇−tg
[p]
y (q)Vy,0 × hz(q)Vz,0 can now be expressed as

b−1∑

j=0

Cj · θ
−t−jg[p]y (q)Vy−2t,j × hz(q)Vz,0 =

b−1∑

j=0

Cj · θ
−t−jg[p]y (q)× hz(q)Vx,j .

We here remark that b − 1 ≤ x. Since if b − 1 = y − t − 1 > x, by using the balancedness assumption
x+ z − y > 0, we have z > t+ 1. But this would imply x = y − t+ z − t > y − t+ 1 > y − t− 1, which is a
contradiction. As a result, one has the identification

b−1∑

j=0

Cj · θ
−t−jg[p]y (q)× hz(q)Vx,j =

b−1∑

j=0

Cj · θ
−t−jg[p]y (q)× hz(q)ω

x−j
can ηjcan.

Applying the overconvergent projection formula in Prop. 4.37 with

γj(q) = Cj · θ
−t−jg[p]y (q)× hz(q),

we get

H†(∇−t(g[p]y Vy,0)× hzVz,0)(q) =

b−1∑

j=0

(−1)jCj ·
θj(θ−t−jg

[p]
y (q)× hz(q))

(x− 2− j + 1)(x− 2− j + 2) · · · (x− 2)
Vx,0.

6.2 The p-adic Abel–Jacobi images

In this section, we will review the computation of the Abel–Jacobi map. In particular, we will define an
element ηaf attached to a modular form f of finite slope ≤ a and compute AJ(∆x,y,z

2,2,2 )(η
a
f ⊗ ωg ⊗ ωh).

Let f, g, h be a triple of cusp forms on X1(N) of balanced weights (x = r1 + 2, y = r2 + 2, z = r3 + 2)
such that x = y + z − 2t as before. The cusp form f then corresponds to a section ωf ∈ H0(X,ωr1 ⊗ Ω1

X)
and similar for g and h. We also fix a strict neighborhood W of the ordinary locus in X and sometimes view
ωg, ωh as sections over W via restriction.

As explained in §2.1, we have a class ηf ∈ H1
par(X,Hr)[f ]/Filr+1 such that for any cusp form ω ∈

Sx(Γ1(N)), we have

⟨ηf , ω⟩dR =
(f∗, ω)N
(f∗, f∗)N

.

Notice that on H1
par(X,Hr)[f ], the Frobenius ϕ acts with eigenvalues α∗

f and β∗
f . We want to find a lifting

ηf = ηaf ∈ H1
par(X,Hr)[f ] such that the Frobenius ϕ acts with eigenvalue αf∗ = αfχf (p)

−1, which also has
p-adic valuation a. In order to do so, we need the decomposition

H1
par(X,Hr1)[f ] = H0(X,ωr1 ⊗ Ω1

X)[f ]⊕H1
par(X,Hr1)[f ]ϕ=αf∗ .

The existence of the decomposition is unknown in general. However, it is true under the non-critical as-
sumption ordp(αf∗) < x − 1 (c.f. [BC09, § 2.4.3]). We then define ηaf to be the unique lift of ηf in

H1
par(X,Hr1)[f ]ϕ=αf∗ .

Then we have the following special case of Theorem 5.39.
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Theorem 6.2. Let ∆x,y,z
2,2,2 be the general diagonal cycle with coefficients defined in §5 and ηaf , ωg, ωh be as

above. Then we have

AJfp(∆
x,y,z
2,2,2 )(η

a
f ⊗ ωg ⊗ ωh) =

E1(f)

E (f, g, h)
· ⟨ηaf , e

≤a prr1(G
[p] × ωh)⟩.

Now we shift our attention to the term prr1(G
[p] × ωh). As 1 − V U annihilates the cohomology

H1
par(X,Hr2), the form ω

[p]
g over W is ∇-exact. A primitive G[p] over W can be chosen (uniquely) such

that its polynomial q-expansion takes the form

G[p](q) =

r2∑

i=0

(−1)ii!

(
r2
i

)
θ−i−1g[p](q)ωr2−i

can ηican.

The product G[p]×ωh can be viewed as a section of Hr2 ⊗Hr3 ⊗Ω1
X . By assumption on the weights (x, y, z),

it follows that there is a projection prr1 : Hr2 ⊗Hr3 → Hr1(1− t) (c.f. [DR14, Prop. 2.9]).

Remark 6.3. We here explain the projection prr1 in detail, for it is crucial in later computations.

Set r := r2 + r3 − (t − 1), and let H(1), . . . ,H(r) be r-copies of H and H⊗r := H(1) ⊗ · · ·H(r). We then
have a natural embedding of Hr := Symr H into H⊗r.

We choose subsets B ⊂ {1, 2, . . . , r} of cardinality r2 and C ⊂ {1, 2, . . . , r} of cardinality r3 such that
B ∪ C = {1, 2, . . . , r} as before. Notice that we automatically have #(B ∩ C)c = r1. We may fix a simple
choice B = {1, 2, . . . , r2} and C = {r − r3 + 1 = r2 − t+ 2, . . . , r}.

We may embed Hr2 canonically into H⊗r2 , then embed it into H⊗r via the set B, and embed Hr3

into H⊗r via C similarly. In terms of the basis {ωcan, ηcan}, the element 1 · ωr2
can of Hr2 is sent to ω

(r2)
can =

1 · ωcan ⊗ ωcan · · · ⊗ ωcan of H⊗r2 . On the other hand, 1 · ωr2−1
can ηcan is sent to

1(
r2
1

)
r2∑

j=1

η(j)can ⊗ ω(ĵ)
can

where η
(j)
can = 1 ⊗ · · · ⊗ 1 ⊗ ηcan ⊗ 1 ⊗ · · · ⊗ 1 with only one ηcan at the j-th component, and ω

(ĵ)
can =

ωcan ⊗ · · · ⊗ωcan ⊗ 1⊗ωcan ⊗ · · · ⊗ωcan with only one 1 at the j-th component. One should be able to work
out the general cases explicitly.

Now apply the Poincaré pairing H × H → OX(−1) component-wise on the images of Hr2 and Hr3 .
Since there are (t− 1)-many overlapping components corresponding to B ∩C, after symmetrization, we may

identify the resulting sheaf as Hr1(1 − t). The symmetrization sends, for example,
∑r2

j=1 αjη
(j)
can ⊗ ω

(ĵ)
can to

(
∑r2

j=1 αj) · ω
r2−1
can ηcan.

Notice that one may view the projection prr1 as a generalization of the decomposition

Symr2 V ⊗ Symr3 V ∼=

min{r2,r3}⊕

j=0

Symr2+r3−2j V

for a two dimensional vector space V (or viewed as the standard representation of SL2).

6.3 The p-adic Gross–Zagier formula and its proof

After studying the two ingredients, we are now able to prove the p-adic Gross–Zagier formula. Before doing
so, we first fix some notations.

Let f ,g,h be three finite slope families and (x, y, x) ∈ Σf ,g,h be a triple of balanced weights as in Section
6.1. The specializations fx, gy, hz are classical modular forms on X1(N, p) and will be viewed as sections
over the strict neighborhood W in X. Furthermore, they are the p-stabilizations of modular forms f, g, h on
X1(N) and fx = (1− βfV )f by our assumption. We also have the elements ηf = ηaf , ωg, ωh associated with
f, g, h in their respective cohomology groups as defined in Section 6.2.
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Theorem 6.4 (p-adic Gross–Zagier formula). Let notations be as above. We have

L
f
p (f ,g,h)(x, y, z) = (−1)t−1 E (f, g, h)

(t− 1)!E0(f)E1(f)
×AJp(∆x,y,z)(ηf ⊗ ωg ⊗ ωh),

where the Euler factors E (f, g, h) and E1(f) are as before, and

E0(f) = (1− β2
fχ

−1
f (p)p1−x).

The strategy of the proof is the following: from the two overconvergent forms gy, hz, there are two ways
to construct an overconvergent form of weight x (or an element in H1

par(X,Hr1)).

One is H†(∇−t(g
[p]
y Vy,0) × hzVz,0), which relates to the triple product L-function. The other one is

H†(prr1(G
[p]×ωh)), which relates to the Abel-Jacobi image. Hence, proving the p-adic Gross–Zagier formula

is essentially equal to relating the two overconvergent forms (or cohomological classes) mentioned above.

The crucial observation is the following lemma, which should be considered the main technical novelty
of this paper.

Lemma 6.5. Let notations be as before, then we have

(−1)t−1(t− 1)! ·H†(∇−t(g[p]y Vy,0)× hzVz,0) = H†(prr1(G
[p] × hz))Vx,0.

Proof. We prove this equality by examining their q-expansions and using the q-expansion principle.

First, we observe that the two forms g and gy = (1−βgV )g has the same p-depletion. So we may replace

g
[p]
y with g[p].

Let b := y − t be as before, recall that

H†(∇−t(g[p]Vy,0)× hVz,0) =

b−1∑

j=0

(−1)j
(
−t

j

) j−1∏

i=0

(y − t− 1− i)
θj(θ−t−jg[p] × h)

(x− 2− j + 1) · · · (x− 2)
Vx,0. (29)

On the other hand, we have

G[p] =

r2∑

s=0

(−1)ss!

(
r2
s

)
θ−s−1g[p](q)ωr2−s

can ηscan

where G[p] is the primitive of the overconvergent form g[p] with respect to the Gauss–Manin connection ∇.
We now view hz as a section of Hr3 ⊗ Ω1

X over W and write its q-expansion as hz(q)ω
r3
can · dq

q .

Following the recipe in Remark 6.3, we have the polynomial q-expansion

prr1(G
[p] × hz) =

r2∑

s=t−1

(−1)ss!

(
r2 − (t− 1)

s− (t− 1)

)
θ−s−1g[p] × hz ωr1−(s−(t−1))

can ηs−(t−1)
can ·

dq

q
.

After the change of variable α := s− (t− 1) and noticing that r2 − (t− 1) = b− 1, it can be written as

prr1(G
[p] × hz) =

b−1∑

α=0

(−1)α+(t−1)(α+ t− 1)!

(
b− 1

α

)
θ−t−αg[p] × hz ωr1−α

can ηαcan ·
dq

q
.

The overconvergent projection H†(prr1(G
[p] × hz)) then takes the form

b−1∑

α=0

(−1)2α+(t−1)(α+ t− 1)!

(
b− 1

α

)
θα(θ−t−αg[p] × hz)

(x− 2− α+ 1) · · · (x− 2)
ωr1
can ·

dq

q
. (30)
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The lemma then reduces to comparing the numbers

(−1)j
(
−t

j

) j−1∏

i=0

(b− 1− i)

and

(−1)t−1(j + t− 1)!

(
b− 1

j

)
.

Observe that

(−1)j
(
−t

j

) j−1∏

i=0

(b− 1− i) = (−1)j
(−t)(−t− 1) · · · (−t− j + 1)

j!

j−1∏

i=0

(b− 1− i)

= (−1)2j · t(t+ 1) · · · (t+ j − 1) ·
1

j!
·

j−1∏

i=0

(b− 1− i)

= t(t+ 1) · · · (t+ j − 1)
1

j!
· j!

(
b− 1

j

)

= t(t+ 1) · · · (t+ j − 1) ·

(
b− 1

j

)
.

Hence we have

(−1)t−1(t− 1)! ·

(
(−1)j

(
−t

j

) j−1∏

i=0

(b− 1− i)

)
= (−1)t−1(j + t− 1)!

(
b− 1

j

)

for all 0 ≤ j ≤ b−1. The lemma then follows. In fact, one sees that the equality holds even without applying
the overconvergent projection.

Remark 6.6. In the ordinary case (c.f. [DR14, Prop 2.9]), the proof is easier as one may replace the
overconvergent projection with the unit root splitting. That is, one only needs to prove the equality between
the first terms of the two polynomial q-expansions.

Corollary 6.7. With notations as before, we have

AJ(∆x,y,z)(ηf ⊗ ωg ⊗ ωh) =
E1(f)

E (f, g, h)
· ⟨ηf , e

≤a(prr1(G
[p] × h)⟩

=
E1(f)

E (f, g, h)
· ⟨ηf , e

≤a(prr1(G
[p] × hz)⟩

= (−1)t−1(t− 1)!
E1(f)

E (f, g, h)
· ⟨ηf , e

≤aH†(∇−t(g[p])× hz)⟩.

Proof. It only suffices to prove the second equation. As U(G[p] · V h) = 0, and e≤a has no constant term as
a power series in U (c.f. Remark 7.23), e≤a annihilates prr1(G

[p] × V h). Hence we may replace h by one of
its p-stabilization hz and the second equality follows.

Now back to the triple product p-adic L-function L f
p (f ,g,h). By definition, its value at the point (x, y, z)

is
(f∗

x , H
†,≤a(∇−t(g

[p]
y )× hz))N,p

(f∗
x , f

∗
x)N,p

where the Petersson product is on X1(N, p).

We need to translate this Petersson product on X1(N, p) back to one on X1(N). Recall that fx is the
p-stabilization of f . In other words, as classes in H1

par(X,Hr1), we have fx = (1− β′
fϕ)f = (1− βfV )f and

f∗
x = (1− βf∗V )f∗.
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For this we recall the formula in Lemma 2.22. Let ω be any modular form on X1(N, p) of weight x, we
have

(f∗
x , ω)N,p

(f∗
x , f

∗
x)N,p

=
(f∗

x , ef∗
x
ω)N,p

(f∗
x , f

∗
x)N,p

=
(f∗, ω0)N
(f∗, f∗)N

= ⟨ηf , ω
0⟩dR.

Here ef∗
x
is the projection to the f∗

x -isotypic component, and ω0 is a modular form on X1(N) such that

ef∗ω = (1− β′
f∗ϕ)ω0 = (1− βf∗V )ω0.

Note that here we also write ω0 for its (unique) corresponding element in Filr1+1 H1
par(X,Hr1) by an abuse

of notations, rather than using the awkward ωω0 . Now we let ω be the modular form H†,≤a(∇−t(g
[p]
y )× hz)

on X1(N, p), viewed as a class in H1
dR(X,Hr1). Then,

⟨ηf , ω⟩ = ⟨ηf , ef∗ω⟩ = ⟨ηf , (1− βf∗V )ω0⟩

= ⟨ηf , ω
0⟩ − βf∗⟨ηf , V ω0⟩

= ⟨ηf , ω
0⟩ − βf∗⟨ϕ−1ηf , ω

0⟩

= (1−
βf∗

αf∗

)⟨ηf , ω
0⟩

= E0(f)⟨ηf , ω
0⟩

where E0(f) := (1−
βf∗

αf∗
) = (1−

βf

αf
) = (1− β2

fχ
−1
f (p)p1−x). As a result,

L
f
p (f ,g,h)(x, y, z) =

1

E0(f)
⟨ηf , H

†,≤a(∇−t(g[p]y )× hz)⟩dR.

This equality, together with Corollary 6.7, then imply

L
f
p (f ,g,h)(x, y, z) = (−1)t−1 E (f, g, h)

(t− 1)!E0(f)E1(f)
×AJp(∆x,y,z)(ηf ⊗ ωg ⊗ ωh).

6.4 Comparison to the result of Bertolini–Seveso–Venerucci

Lastly, we would like to make some remarks on the result in [BSV20]. They computed the Bloch–Kato
logarithm of a certain cohomology class κ(f, g, h), evaluated at ηf ⊗ ωg ⊗ ωh, and related this value to
a certain period attached to the triple (f, g, h). We here recall their theorem without fully explain every
ingredient. Those who are familiar with the relation between Bloch–Kato logarithm and syntomic Abel–
Jacobi map will immediately see its connection to Theorem 6.4.

Theorem 6.8 ([BSV20, Theorem A]). Let (f, g, h) be as before, and let κ(f, g, h) be the diagonal class
defined in [BSV20, § 2]. Then,

logp(κ(f, g, h))(ηf ⊗ ωg ⊗ ωh) = (−1)t−1N c−2 E (f, g, h)

(t− 1)!E0(f)E1(f)
× Ip(f, g, h), (31)

where

Ip(f, g, h) :=
(f∗, ef∗(θ−tg[p] × h))Np

(f∗, f∗)Np
.

Here, the Petersson product is taken over level Γ1(Np).

Remark 6.9. One notices that they are using the p-adic modular form θ−tg[p]×h instead of overconvergent
modular forms. This difference is explained in [BSV20, § 4.4], where they utilized the result of [Nik10].
Roughly speaking, it says that one can study certain overconvergent forms by restricting to the ordinary
locus. This is coherent to [Urb14, Proposition 3.2.4], where the q-expansion map is proved to be injective
on the space of overconvergent modular forms. The same technique, however, does not work for finite
slope families of overconvergent forms. The main reason is that one now enters into the realm of infinitely
dimensional p-adic Banach spaces. Whereas every norm on a finite dimensional vector space is equivalent,
the same statement is not true for infinitely dimensional vector spaces.
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7 Appendix. A lemma on pairings of p-adic Banach spaces

In this appendix, we make a detour to the theory of p-adic Banach spaces. Our goal is to explore more on
the relation between finite slope projector e≤a and the Poincaré pariring. To be more precise, we wish to
establish a result analogous to [DR14, Prop 2.3] and [DR14, Prop 2.11]. A combined statement as well as
its proof will be recalled below.

Let K be a finite extension of Qp and X = X1(N) be the modular curve defined over Zp as before.

Lemma 7.1. Let η ∈ H1
dR(XK ,Hr)u−r be a class in the unit root part, i.e., the Frobenius ϕ acts on η as

multiplying by a p-adic unit. Suppose g is a nearly overconvergent modular form of weight k = r+ 2 ≥ 2 on
Γ1(N) with vanishing residues at all the supersigular annuli. We let ω = ωg in H1

dR(XK ,Hr) be the class
given by g. Then we have

⟨η, ω⟩ = ⟨η, eordω⟩

where ⟨ , ⟩ is the Poincaré pairing.

Proof. ([Bes16, [Prop. 3.2]) First, recall that we have the operators U and V , which are inverse to each other
on the level of cohomology. We also have the Frobenius morphism ϕ that satisfies ⟨ϕη, ϕω⟩ = pk−1⟨η, ω⟩ and
ϕ = pk−1V = pk−1U−1 on the level of cohomology. Let β be the eigenvalue of ϕ acting on η, which is a
p-adic unit. Then,

⟨η, Uω⟩ = p1−k⟨ϕη, ϕUω⟩

= ⟨ϕη, p1−kϕUω⟩

= ⟨ϕη, ω⟩

= β⟨η, ω⟩.

Taking limit, we have
⟨η, eordω⟩ = ⟨η, lim

n→∞
Un!ω⟩ = lim

n→∞
βn!⟨η, ω⟩ = ⟨η, ω⟩

as desired.

Remark 7.2. In [DR14], it is proved in another way. First, one uses the relation ⟨ϕη, ϕω⟩ = pk−1⟨η, ω⟩ to
deduce that the Poincaré pairing descends to

⟨ , ⟩ : H1
par(XK ,Hr)u−r ×H1

par(XK ,Hr)ϕ,k−1 → K(1− r)

where the subscript ϕ, k−1 denotes the slope = k−1 subspace for ϕ. Then one identifies Sord
k (N), the space

of ordinary overconvergent modular forms of weight k, with H1
par(XK ,Hr)ϕ,k−1.

The main result in this section is the following lemma:

Lemma 7.3 (General form). Let M be a p-adic Banach space over a p-adic field K and u be a compact
operator on M . Suppose there is a bilinear pairing ⟨ , ⟩ : M ×M → K and another operator ϕ on M that
satisfies

⟨m1, um2⟩ = ⟨ϕm1,m2⟩

for any m1,m2 ∈ M .

Let η ∈ M be an eigenvector for ϕ with eigenvalue α, whose p-adic valuation is a ∈ Q. Let e≤a be the
projector onto the slope ≤ a subspace of M for the operator u. Then we have

⟨η,m⟩ = ⟨η, e≤am⟩

for all m ∈ M .

In our application, it takes the following form:
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Lemma 7.4. Suppose η ∈ H1
dR(XK ,Hr) is an element for which the Frobenius ϕ acts with eigenvalue α

such that vp(α) ≤ a. Then for any ω ∈ H1
dR(XK ,Hr), we have

⟨η, ω⟩ = ⟨η, e≤aω⟩

where e≤a is the projector to the slope ≤ a part for the Up operator and the pairing is the Poincaré pairing.

Remark 7.5. As we will eventually restrict to classical forms, we are dealing with the finite dimensional vec-
tor space H1

dR(XK ,Hr). If we understand the action of U (or its characteristic polynomial) on H1
dR(XK ,Hr),

the projector eord or e≤a can be expressed as polynomials in U . So technically speaking, we do not really
need to deal with (infinite dimensional) p-adic Banach spaces and compact operators. However, we wish to
provide a more general statement that may be applied to non-classical forms.

We first recall some facts about p-adic Banach spaces and compact operators. The main references are
[Ser62], [Col97] and [Buz07].

Let K be a complete non-archimedean valuation field, A be its ring of valuation, m be its maximal ideal,
and k = A/m be the residue field. We also let G ⊂ R× denote the image of K× under the valuation map.

Definition 7.6. A Banach space E over K is a complete normed vector space over K that satisfies

|a+ b| ≤ max{|a|, |b|}

for all a, b ∈ E. For such a space E, we let E0 = {x ∈ E | |x| ≤ 1}. It is clear that E0 is a A-module, and
the topology of E is determined by E0.

We will have to consider the following property (N): for all x ∈ E, |x| ∈ G, the closure of G.

Example. Let I be a set and let c(I) be the set of families x = (xi)i∈I , xi ∈ K such that xi tends to 0 on
the complement of an increasing filtration of finite subsets of I (denoted by xi → 0 when i → ∞). The norm
is given by |x| = sup{|xi|}.

The space c(I) will be our main object of interest, and it turns out that most of the Banach spaces are
of this type.

Proposition 7.7. Suppose the valuation on K is discrete. Then any Banach space E/K satisfying property
(N) is isomorphic to c(I) for some set I.

Definition 7.8. An orthonormal basis of a Banach space E is a family (ei)i∈I , ei ∈ E, such that any x ∈ E
can be written uniquely as

x =
∑

xiei, xi ∈ K

with |xi| → 0 and |x| = supi |xi|. A space E is called orthonormizable if it admits an orthonormal basis.

Suppose E,F are two Banach spaces. Let L(E,F ) be the vector space of continuous linear maps from
E to F . The space L(E,F ) is equipped with the norm

|u| := sup
x ̸=0

|ux|

|x|

which is equivalent to sup0 ̸=|x|≤1 |ux|. Under this norm, L(E,F ) is a Banach space. If E,F satisfy (N), then
so does L(E,F ).

Now suppose E = c(I) is orthonormizable with basis (ei)i∈I , and F = c(J) with basis (e′j)j∈J . Then
for any u ∈ L(E,F ), the element ui := f(ei) takes the form (nij)j∈J where |nij | → 0 when j → ∞ and
i is fixed. We have |u| = supi,j |nij |, and if x = (xi) ∈ E, then u(x) = (yj)j∈J where yj =

∑
i nijxi. We

call (nij) the matrix of u with respect to the orthonormal basis of E,F . On the other hand, we may write
u(x) = (wjx)j∈J where wj is in the dual E∗ of E. Then |u| = supj |wj |.

Definition 7.9. A map u ∈ L(E,F ) is called completely continuous (or compact) if it lies in the closure of
the subspace of finite rank maps. We denote this set by C(E,F ).

It is clear by definition that the composition v◦u is completely continuous if either v or u is. In particular,
C(E,E) is a two-sided ideal in L(E,E).

68



Proposition 7.10. Suppose F = c(J), then the above identification defines an isomorphism from C(E,F )
to cE∗(J), the space of collections (wj)j∈J of elements in E∗ tending to 0, with the norm defined by sup |wj |.

Fredholm determinant. From now on, we will always assume the Banach spaces E,F are orthonormiz-
able.

It is tempting to define a certain characteristic power series for u ∈ L(E,F ) analogous to what we do
in finite dimensional linear algebra. However, as a Banach space can be infinite dimensional, one needs to
worry about the convergence. It turns out that we are able to define det(1− Tu) for completely continuous
map u, which can be essentially computed by using the matrix coefficients (nij) of u.

We briefly recall some definitions. For any finite subset S of I, define

cS =
∑

τ

sgn(τ)
∏

i∈S

ni,τ(i)

and cn = (−1)n
∑

|S|=n cS , where the sum is taken over all finite subsets S of index n.

Proposition 7.11 ([Ser62, § 5]). Let u be an element in C(E,E) with matrix (nij). We can define the
Fredholm determinant det(1− Tu) ∈ K[[T ]] that satisfies the following properties:

i. det(1− Tu) =
∑∞

n=0 cnT
n, where cn is defined as above;

ii. det(1− Tu) is an entire function of T with values in L(E,E);

iii. If ui → u with u ∈ C(E,E). Then det(1− Tui) → det(1− Tu) coefficient-wise;

iv. If u is of finite rank, then det(1− Tu) coincides with the polynomial defined in the classical sense.

Corollary 7.12. If u, v ∈ C(E,E), then

det(1 + u+ v + uv) = det(1 + u) det(1 + v).

Generally, we have det((1− Tu)(1− Tv)) = det(1− Tu) det(1− Tv).

Corollary 7.13. Suppose that u ∈ C(E,F ), v ∈ C(F,E). Then we have

det(1− Tu ◦ v) = det(1− Tv ◦ u)

We will need the following lemma later.

Lemma 7.14. Let I = I ′ ∪ I ′′ be a disjoint union. Suppose u is completely continuous on E = c(I), which
sends E′ = c(I ′) to E′. Let u′ be the restriction of u to E′, and u′′ be the induced map on the quotient E/E′.
Then we have

det(1− Tu) = det(1− Tu′) det(1− Tu′′)

Definition 7.15. The Fredholm resolvant R(T, u) is defined to be

R(T, u) :=
det(1− Tu)

(1− Tu)
=

∞∑

m=0

vmTm

where vm ∈ L(E,E) are polynomials in u.

Proposition 7.16 ([Ser62, Proposition 10]). R(T, u) is an entire function of T with values in L(E,E).

From now on, we will fix a compact operator u ∈ C(E,E) and simply write P (T ) = Pu(T ) for det(1−Tu).

Proposition 7.17. Suppose λ ∈ K. Then 1− λu is invertible in L(E,E) if and only if P (λ) ̸= 0.

Definition 7.18. For a function F (T ) =
∑

bmTm, define ∆sf =
∑(

m+s
m

)
bm+sT

m for any s ∈ N. A zero
λ ∈ K of f is said to have order h ∈ N if ∆s(λ) = 0 for all s < h and ∆hf(λ) ̸= 0. Note that if the
characteristic of K is 0, we have ∆s = 1

s!
ds

dT s .
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Proposition 7.19 (Riesz theory). If λ ∈ K is a zero of P (T ) = det(1− Tu) of order h. Then the space E
can be decomposed uniquely as a direct sum of u-invariant closed subspaces

E = N(λ)⊕ F (λ)

such that

i. (1− λu) is invertible on F (λ);

ii. (1− λu) is nilpotent on N(λ). More precisely, (1− λu)hN(λ) = 0 and N(λ) is of dimension h.

In [Col97], Coleman generalized Serre’s results to Banach modules. Most of the results stay the same
after some minor modifications.

Definition 7.20. For a polynomial Q(T ) of degree d, we introduce the notation Q∗(T ) := T dQ(T−1).

As a corollary of Proposition 7.19, Coleman proved

Theorem 7.21. Suppose that Pu(T ) = Q(T )S(T ), where Q(T ) = 1+ · · · is a polynomial of degree h whose
leading coefficient is a unit (i.e., Q∗(0) is a unit) in A, and Q is relatively prime to S. Then there is a
unique decomposition of M into u-invariant closed sub-modules

M = N(Q)⊕ F (Q)

such that

i. Q∗(u) is invertible on F (Q);

ii. Q∗(u) is zero on N(Q). Moreover, N(Q) is of rank h, and the characteristic polynomial of u on N(Q)
is Q∗(T ).

Remark 7.22. When the vector space E is finite dimensional, I will use the term “characteristic polynomial”
to denote det(T−u) as usual. I will still call det(1−Tu) “characteristic power series” even if it is a polynomial.

In order to understand more about the projection E ↠ N(λ), we need to recall part of the proof of
Proposition 7.19 (c.f. [Ser62]).

Proof. By assumption, we have ∆sP (λ) = 0 for all s < h, and ∆hP (λ) = c ̸= 0. Consider the identity

(1− Tu)R(T, u) = P (T )

and apply ∆s, we get
(1− Tu)∆sR(T, u)− u∆s−1R(T, u) = ∆sP (T )

Now put ws = ∆sR(λ, u), we have the equations

(1− λu)w0 = 0

(1− λu)w1 − uw0 = 0

...

(1− λu)wh−1 − uwh−2 = 0

(1− λu)wh − uwh−1 = c

We deduce from these equations that (1− λu)s+1ws = 0 for s < h.

Set e = c−1(1− λu)wh and f = −c−1uwh−1. Then e+ f = 1 and feh = 0 since (1− λu)hwh−1 = 0 (ws

is power series in u, so it commutes with u).

Consider the equation (e+ f)h = 1, and let

p = eh

q = heh−1f + · · ·+ hefh−1 + fh
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Then p+q = 1 and pq = qp = 0. The maps p and q are the desired projections to F (a) and N(a) respectively.
More precisely, ker p = Im q = N(λ) and ker q = Im p = F (λ). Hence we have the decomposition

E = N(λ)⊕ F (λ)

As (1 − λu)hq = 0, we see that (1 − λu)h = 0 on N(λ). On the other hand, (1 − λu)h(wh)
h = chp, so

1− λu is invertible on F (λ) = Im p.

The rest of the proof is omitted. Details on proving that dimN(λ) = h can be found in [Buz07].

Remark 7.23. Looking at the formulae f = c−1uwh−1 and

q = heh−1f + · · ·+ hefh−1 + fh

in the proof of Proposition 7.19, we see that the projector q has no constant term in u. This fact will be
useful later when we apply finite polynomial cohomology to compute the Abel-Jacobi maps.

Now we are able to prove lemma 7.3

Proof. By assumption, for any power series G(T ) such that G(u) converges, we have

⟨m1, G(u)m2⟩ = ⟨G(ϕ)m1,m2⟩

as long as the expression G(ϕ)m1 also converges. So it suffices to show that G(ϕ)η = η when G(T ) is a
power series such that G(u) is the projector eu=α on M .

Suppose that u has α as one of its eigenvalues, then α−1 is a root of P (T ) = det(1− Tu). On the finite
dimensional subspace N(α−1), u has characteristic polynomial (T −α)h. For simplicity, we will assume that
it is also the minimal polynomial.

By Proposition 7.16, the resolvant R(T, u) is an entire function of T . In particular, R(α−1, u) converges
in L(E,E). We write R(T ) for the power series R(α−1, T ). For any eigenvector ω of u with eigenvalue α, the
element R(α−1, u)ω = R(α)ω converges. Hence, the power series R(T ) a least converges for |T | ≤ |α| = p−a.

In other words, we may view R(T ) as an element in the Tate algebra K⟨T/α⟩, and so are ws(T ) =
∆sR(α−1, T ) and the power series G(T ) that satisfies G(u) = q = heh−1f + · · · + hefh−1 + fh (recall that
this is the projector to N(α−1)).

As the polynomial (T − α)h is regular, we can apply Weierstrass division on the Tate algebra K⟨T/α⟩
and write

G(T ) = (T − α)hS(T ) + r(T )

where S(T ) ∈ K⟨T/α⟩ and r(T ) is a polynomial of degree < h. Since G(u) is a projector to N(α−1), we
must have G(u)|N(α−1) = 1. This implies r(u) = 1 on N(α−1). Since we assume (T − α)h is the minimal
polynomial on N(α−1), we must have r(T ) = 1.

Now, for every m ∈ M , we have

⟨η, eu=αm⟩ = ⟨η,G(u)m⟩

= ⟨G(ϕ)η,m⟩

= ⟨[(ϕ− α)hS(ϕ) + 1]η,m⟩

= ⟨η,m⟩.

Note that the expression [(ϕ− α)hS(ϕ) + 1]η converges.

The lemma then follows as the projector e≤a is just the finite sum of all eu=γ with ordp(γ) ≤ a.
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8 Appendix. Coleman integration and F -isocrystals

This appendix aims to provide some complimentary materials for §5, such as rigid cohomology, Coleman
integration and F -isocrystals. We will try to keep in a manner of minimalism and refer most of the results
to the listed references.

8.1 Coleman integration

In this part, we will recall the construction of Coleman integration. Our expectation is that one should be
able to verify its connection with finite polynomial cohomology appearing in §5.3 without too much efforts
after reading this section. For the main references, Coleman’s original papers [Col82] and [Col85] are already
good and clear. The note of Besser [Bes12] also gives a friendly introduction to this topic. Unfortunately,
we need to assume basic knowledge of rigid geometry, which can be found in [Ber96] and [Ber97].

Throughout this appendix, we let K be a finite unramified extension of Qp, V = OK be its ring of
integers, m be the maximal ideal and κ be the residue field. The valuation on K is fixed such that |p| = p−1.

We first start with a simple example of rigid cohomology. The closed disk B[0, 1] := {z ∈ K | |z| ≤ 1} is
an affinoid (rigid analytic space) over K with structure sheaf given by the Tate algebra

K⟨T ⟩ :=




∑

n≥0

anT
n | an ∈ K, lim

n→∞
an = 0



 .

If one naively computes the cohomology of the complex K⟨T ⟩ → K⟨T ⟩ · dT , one immediately sees that H1

of this complex is non-zero, and in fact it is of infinite dimension. To remedy this problem, we consider the
dagger algebra

K⟨T ⟩† :=




∑

n≥0

anT
n | an ∈ K, lim

n→∞
anr

n = 0 for some r > 1



 ,

which can be viewed as the collection of functions that converge on some disks slightly larger than B[0, 1]
(hence the name overconvergent). This idea was first proposed by Monsky and Washnitzer in [MW68]. The
cohomology (sometimes referred as Monsky–Washnitzer cohomology) of the resulting complex

K⟨T ⟩† → K⟨T ⟩† · dT

then has the desired cohomology group at degree 1.

The above idea inspired Berthelot’s construction of the rigid cohomology, which will be briefly illustrated
below (c.f. [Ber96, § 1]).

Let Xκ be a smooth scheme, separated of finite type over κ. By a rigid datum (Xκ, Yκ, P ) for Xκ, we
mean the following objects: a formal V -scheme P and a proper κ-scheme Yκ such that

1. Yκ is a closed subscheme of P ;

2. Xκ is an open κ-subscheme of Yκ;

3. P is smooth on a neighborhood of Xκ.

In this situation, one has tubes ]Xκ[ and ]Yκ[ inside the (rigid analytic) generic fiber PK . An (admissible)
open subset U in ]Yκ[ is called a strict neighborhood of ]Xκ[ (in ]Yκ[) if ]Xκ[⊂ U and {U, ]Yκ[\]Xκ[} forms
an admissible cover of ]Yκ[.

For any strict neighborhood U of ]Xκ[ in ]Yκ[, we write jU : U →]Yκ[ for the inclusion map. We then
define a functor

j† := lim
−→
U

jU,∗j
∗
U

from the category of abelian sheaves on ]Yκ[ to itself, where U runs through all strict neighborhoods of ]Xκ[
in ]Yκ[.
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Example. Let Xκ = A1
κ, Yκ = P1

κ and P be the formal completion of P1
V along its special fiber. Then

(Xκ, Yκ, P ) is a rigid datum. In this situation, we have ]Xκ[= B[0, 1] and one can verify thatH0(]Yκ[, j
†O]Yκ[)

∼=
K⟨T ⟩†, and the complex K⟨T ⟩† → K⟨T ⟩† · dT computes the hypercohomology of j†Ω•

]Yκ[
on ]Yκ[.

Definition 8.1. Let Xκ be a smooth, separated scheme of finite type over κ and (Xκ, Yκ, P ) be a rigid

datum. The rigid cohomology Hi
rig(Xκ) is defined to be the i-th hypercohomology of Ω†,•

]Xκ[
:= j†Ω•

]Yκ[
on

]Yκ[.

Remark 8.2. Of course, one needs to verify that this definition is well-defined and check the functoriality.
We would like to leave the details to [Ber97, § 1]. We only remark that when Xκ is affine, Hi

rig(Xκ) agrees
with the “formal cohomology” of Monsky–Washnitzer mentioned earlier (c.f. [Ber96, § 4]).

We now shift our attention to the integration of differential forms on a smooth variety XK defined over
K. We will assume that XK admits a smooth model X over V (i.e., is of good reduction).

Theorem 8.3 ([Ber96, § 4] and [Ogu90, § 6]). Under the above assumption, one has comparison isomor-
phisms

Hi
rig(Xκ) ∼= Hi

dR(XK) for all i.

The functoriality of Hi
rig provides an action of Frobenius ϕ on Hi

rig (c.f. [Col85, Appendix] or [Chi98,
§ 2]). Naturally, we are interested in the behavior of this Frobenius.

Theorem 8.4 ([CLS98]). If Xκ is smooth and proper, the eigenvalues of ϕ on Hi
rig(Xκ) are pure of Weil

weight i.

Corollary 8.5. If Xκ is an affine open subscheme of a smooth proper curve, the eigenvalues of ϕ on H1
rig(Xκ)

are of Weil weights 1 and 2.

We are now able to introduce Coleman integration. We start with the case where XK is an affine
open subscheme of a smooth proper scheme YK with good reduction. In this case, we fix the rigid datum
(Xκ, Yκ, Ŷ ) where Ŷ is the formal completion of the smooth model Y of YK along its special fiber.

Definition 8.6. A function f on a rigid analytic space (e.g. Xan
K or Y an

K =]Yκ[) is called locally analytic if
it is rigid analytic on each of its residue classes.

Theorem 8.7 ([Col85, Theorem 2.1]). Given a closed differential form ω ∈ H0(]Yκ[, j
†Ω1

]Yκ[
), there is a

polynomial P (T ) ∈ Cp[T ] whose roots are not roots of unity, such that P (ϕ)ω = 0 in the cohomology group
H1

rig(Xκ). Moreover, there is a locally analytic function fω on ]Xκ[, unique up to an additive constant, such
that

i. dfω = ω,

ii. P (ϕ)fω is rigid analytic, i.e., it belongs to H0(]Xκ[,O]Xκ[) (even H0(]Yκ[, j
†O]Yκ[)).

Such a function fω is called a Coleman integral of ω.

Remark 8.8. One can extend the above result to a proper scheme by covering it with affine open subschemes.
The details are explained in [Col85, § II].

8.2 F -isocrystals and cohomology

In this section we will focus on (overconvergent) F -isocrystals, which are the “coefficients” of our theory of
finite polynomial cohomology with coefficients in §5.4.

There are several ways to introduce this topic. We will follow the one which is closer to Berthelot’s
original idea. This approach is more explicit, albeit the functoriality needs more elaborations. The main
references are [Ber96, § 2], [CL99] and [Ked22]. A more functorial approach can be found in [Ogu84].

We will keep the notations of a rigid datum (Xκ, Yκ, P ) as in last section.
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Definition 8.9. A convergent isocrystal on Xκ is a coherent sheaf E on the tube ]Xκ[ together with an
integrable connection ∇. An overconvergent isocrystal on Xκ is a coherent sheaf E on a strict neighborhood
U of ]Xκ[ (or alternatively, a coherent j†O]Yκ[-module) together with an integrable connection ∇.

For an overconvergent isocrystal E on Xκ, one similarly defines the rigid cohomology Hi
rig(Xκ, E) to be

the i-th hypercohomology of the de Rham complex

0 → E
∇
−→ E ⊗j†O]Yκ[

j†Ω1
]Yκ[

∇
−→ E ⊗j†O]Yκ[

j†Ω2
]Yκ[

→ · · · .

We let RΓrig(Xκ, E) be the (hyper-)derived complex of the above complex, which computes Hi
rig(Xκ, E).

Theorem 8.10 ([Ked06, Theorem 1.2.1]). The K-vector spaces Hi
rig(Xκ, E) are finite dimensional.

Remark 8.11. If Xκ itself is proper, we may take Yκ = Xκ, and the definitions of convergent and over-
convergent isocrystals are the same. Moreover, when Xκ is proper and admits a smooth model X over
OK , then PK = Xan

K is the rigid analytic space associated with the generic fiber XK . By applying GAGA
(between rigid analytic geometry and algebraic geometry), the data (E,∇) on Xan

K correspond to a coherent
sheaf on XK with an integrable connection. By abuse of notations, we will denote this data by the same
symbols (E,∇) and even call it an isocrystal on X (or XK). Moreover, one has a comparison isomorphism
Hi

rig(Xκ, E) ∼= Hi
dR(XK , E). Lastly, we would like to recall that there are derived complexes RΓdR(XK , E)

and Filn RΓdR(XK , E) which compute Hi
dR(XK , E) and Filn Hi

dR(XK , E) respectively.

We now consider the Frobenius action.

Definition 8.12. Let σ : Xκ → Xκ be the absolute Frobenius. An overconvergent F -isocrystal (E, ϕ) is an
overconvergent isocrystal E on Xκ together with an isomorphism of isocrystals ϕ : σ∗E ∼= E. In particular,
the map ϕ induces an automorphism on the cohomology group Hi

rig(Xκ, E) for all i, which will be again
denoted by ϕ.

As we will need to control the Frobenius actions on the cohomology groups, we make the following
definition.

Definition 8.13. Let X be a proper smooth V -scheme. An overconvergent F -isocrystal E on X is said to
be of pure weight w ∈ Z if the action of the Frobenius ϕ on Hi

rig(Zκ, ι
∗
ZE) is pure of Weil weight w + i for

any proper smooth morphism ιZ : Z → X.

As illustrated in §5.4, this pure weight assumption is important if one wants to consider functoriality
of finite polynomial cohomology between different schemes. In particular, it allows us to construct the
push-forward map for a proper closed subscheme Z of X.

Remark 8.14. When X is proper, the sheaf O]Xκ[ is of pure weight 0. In this case our definition is somewhat
analogous to Deligne’s purity theorem on étale cohomology.

Example. A unipotent F -isocrystal with only one slope m ∈ Z on a proper smooth scheme Xκ is of pure
weight 2m (c.f. [CL99, § 3]).

Remark 8.15. Similarly to the case of structure sheaf, Coleman also developed an integration theory for
overconvergent F -isocrystals with certain conditions on the Frobenius action (c.f. [Col94]).
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Vol. 189. Progress in Mathematics. Birkhäuser Verlag, Basel, 2001, pp. viii+214.

[AI19] F. Andreatta and A. Iovita. Katz type p-adic L-functions for primes p non-split in the CM field.
2019. url: https://arxiv.org/abs/1905.00792.

[AI21] F. Andreatta and A. Iovita. Triple product p-adic L-functions associated to finite slope p-adic
families of modular forms. Duke Mathematical Journal 170.9 (2021), pp. 1989–2083.

[AIP18] F. Andreatta, A. Iovita, and V. Pilloni. Le halo spectral. Annales Scientifiques de l’Ecole Normale
Superieure 51 (2018), pp. 603–655.
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