
Exact Algorithms for Network Fortification and Design
Problems under Stochastic Interdiction

Shabnam Mahmoudzadeh Vaziri

A Thesis

in

The Department

of

Mechanical, Industrial, and Aerospace Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy (Industrial Engineering) at

Concordia University

Montréal, Québec, Canada

August 2024

© Shabnam Mahmoudzadeh Vaziri, 2024

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Shabnam Mahmoudzadeh Vaziri

Entitled: Exact Algorithms for Network Fortification and Design Problems under

Stochastic Interdiction

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Industrial Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Ciprian Alecsandru

External Examiner
Dr. Cole Smith

External to Program
Dr. Chun Wang

Examiner
Dr. Claudio Contardo

Examiner
Dr. Mingyuan Chen

Supervisor
Dr. Onur Kuzgukaya

Co-supervisor
Dr. Navneet Vidyarthi

Approved by
Dr. Muthukumaran Packirisamy
Graduate Program Director

2024
Dr. Mourad Debbabi
Dean of Faculty of Engineering and Computer Science

Abstract

Exact Algorithms for Network Fortification and Design Problems under Stochastic Interdic-
tion

Shabnam Mahmoudzadeh Vaziri, Ph.D.

Concordia University, 2024

Networks such as telecommunication, transportation, and logistics play a vital role in sustaining

social, economic, and industrial operations. However, networks are at risk of natural and man-made

disruptions. With the increasing interconnectivity of networks, a disruption in one network can

negatively affect other networks. We use network interdiction models to analyze the effects of dis-

ruptions on the networks. Interdiction models represent a two-player sequential game between the

interdictor, seeking to maximize damage, and the network operator, striving to optimize operations

after interdiction. Network interdiction models identify the critical nodes and/or arcs of the network

and can be extended to fortify the existing networks or design resilient networks. In this thesis,

we study the design of distribution and multicommodity networks and the fortification of spanning

trees under stochastic interdictions.

The first paper investigates the distribution network design problem considering the effect of

interdictions. Since interdiction outcomes can be uncertain in the real world, we consider the inter-

diction outcome as an uncertain parameter. We extend the model to consider the correlated facility

interdictions where interruptions at one facility affect the nearby facilities. We Benders decomposi-

tion algorithm. Improved by two acceleration techniques to solve the model.

In the second paper, we focus on the design of a multicommodity network with interdictions.

The designer does not have information about the interdiction resources; therefore, we consider the

uncertainty in the number of interdictions by presenting a tri-level stochastic mathematical model.

We present a branch-and-Benders-cut (BBC) algorithm enhanced by several acceleration techniques

to solve the model.

iii

In the third paper, we study the fortification of minimum spanning tree (MST) and optimum

communication spanning tree (OCST) problems under stochastic number of interdictions. The MST

aims to connect all nodes in a graph with minimal installation cost while satisfying communication

requirements with minimum communication cost. The goal is to find the optimal fortification strat-

egy so that the increase in the MST/OCST costs due to the interdiction of unfortified edges is

minimized by presenting a tri-level stochastic model. We use backward sampling framework with

acceleration technique to solve the deterministic and stochastic MST/OCST fortification problems.

iv

Acknowledgments

I would like to express my heartfelt gratitude to the following individuals who have played

a pivotal role in helping me successfully complete my PhD journey. Their unwavering support,

encouragement, and love have been instrumental in this achievement.

First and foremost, I want to acknowledge and thank my supervisors, Dr. Onur Kuzgunkaya

and Dr. Navneet Vidyarthi, for their exceptional guidance, mentorship, and patience throughout

my doctoral research. Your expertise and dedication were invaluable, and I am deeply grateful for

the knowledge and skills I have gained under your guidance. Furthermore, I would like to extend

my gratitude to the Fonds de Recherche du Québec – Nature et Technologies (FRQNT) for their

invaluable financial support

To my incredible husband and my best friend, Masoud, whose endless love and sacrifice made

this journey possible. Your constant encouragement and understanding made it possible for me to

focus on my studies. Your unwavering belief in me kept me motivated during the most challenging

times, and I am so fortunate to have you by my side. You were my code editor, motivational coach,

and proofreader during this journey. Without you, none of this would have been possible. No words

can truly capture the depth of my gratitude for everything you have done for me.

I would like to appreciate my parents, Asad and Maryam, for their unconditional love, encour-

agement, and support. Their belief in my capabilities has been a source of motivation and strength

throughout my academic journey. To my sister, Shamim, for her sense of humor, and our long

discussions. Thanks for helping mom and dad in my absence.

In loving memory of my late grandmothers, Akram and Fakhri. I want to express my gratitude to

both of these remarkable women who have left an indelible mark on my life. I am forever thankful

vi

for the love they shared and the strength they instilled in me. Unfortunately, I was unable to be by

my grandmother’s side, Fakhri, during her final days as I pursued my PhD in Canada. Her absence

weighed heavily on my heart, but her memory and the lessons she imparted continue to inspire me

every day.

I would like to appreciate my friends, Ximena and Alejandro, who provided me with unwavering

emotional support during the challenging phases of my journey. I would like to thank Ibrahim for his

scientific and professional support. To my friend, Maryam, for making me laugh. To Yeganeh, my

high school friend, and Yasaman, my childhood friend, thanks for the invaluable presence you’ve

had in my life. Thanks to all my friends whom I did not mention by name. Your friendship provided

the necessary balance in my life and made this journey more memorable.

To all of you, I am immensely grateful for being a part of my life and for celebrating this

significant achievement with me. Your belief in me has been the driving force behind my success,

and I could not have reached this milestone without you. Thank you for being my constant source

of inspiration and strength.

vii

To my family

”When it is tough, will you give up, or you will be relentless?”

-Jeff Bezos

v

Contribution of Authors

This dissertation is presented in a manuscript-based format. The thesis contains three articles

that are either under revision in different journals or in preparation for submission to a journal.

The first article titled “Distribution Network Design under Stochastic Facility Interdiction” has

been submitted to the journal Computers & Operations Research. The second article titled “An

Exact Algorithm for Multicommodity Network Design under Stochastic Interdictions” has been

submitted to INFORMS Journal on Computing. Finally, the third manuscript, titled “Fortification

of Spanning Trees under Stochastic Interdictions” is being prepared for submission to European

Journal of Operational Research.

All three manuscripts presented in this thesis were co-authored with Dr. Onur Kuzgunkaya and

Dr. Navneet Vidyarthi, as supervisors. The author of this thesis acted as the principal researcher

and performed the development of formulations and algorithms, the coding of solution methods,

and the analysis of computational results along with writing the first drafts.

viii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Network Design under Stochastic Interdictions 4

1.2 Spanning Tree Fortification under Stochastic Interdictions 5

2 Distribution Network Design under Stochastic Facility Interdiction 6

2.1 Introduction . 7

2.2 Literature Review . 11

2.3 Model Formulation . 14

2.3.1 Single-level Reduction of the Interdictor’s Problem using Dual Formulation 19

2.3.2 Extension to the Correlated Facility Disruptions 21

2.4 Solution Methodology . 23

2.4.1 Benders Decomposition . 23

2.4.2 Dual Decomposition Algorithm for Solving the Subproblem 25

2.4.3 Supervalid and Valid Inequalities . 29

2.5 Computational Experiments . 31

2.5.1 Test Instances . 31

2.5.2 Analysis of Algorithmic Refinements . 33

2.5.3 Performance on Larger-size Instances . 37

ix

2.5.4 Sensitivity Analysis of Model Parameters on Computation Time 39

2.5.5 Sensitivity Analysis of Model Parameters on Distribution Network Design 41

2.5.6 Computational Results for the Correlated Facility Interdictions 44

2.5.7 Value of using Stochastic Design Model 48

2.6 Conclusion . 49

3 An Exact Algorithm for Multicommodity Network Design under Stochastic Interdic-

tions 51

3.1 Introduction . 52

3.1.1 Contribution . 54

3.2 Literature Review . 55

3.3 Problem Description and Formulation . 59

3.3.1 Formulation . 59

3.3.2 Extension to Uncertain Demand and Interdiction Budget 63

3.3.3 Single-level Reformulation of the Bilevel Interdiction Problem 65

3.4 Benders Decomposition . 66

3.4.1 Multicut Benders Reformulation . 67

3.4.2 Implementation of Branch-and-Benders-Cut Algorithm 69

3.5 Acceleration Techniques . 70

3.5.1 Pareto-optimal Cuts . 70

3.5.2 Penalty Reformulation . 71

3.5.3 Supervalid and Valid Inequalities . 74

3.5.4 Additional Acceleration Techniques . 75

3.5.5 Enhanced Branch-and-Benders-Cut Algorithm 77

3.6 Computational Experiments . 79

3.6.1 Test Instances . 80

3.6.2 Computational Performance of Warm Start, Variable Fixing, and Cut Selection 81

3.6.3 Performance of BBC Algorithms . 82

3.6.4 Comparison with Smith et al. (2007)’s Algorithm 87

x

3.6.5 Comparison with MibS Solver . 89

3.6.6 Results of Uncertain Demand and Number of Interdiction 90

3.6.7 Sensitivity Analysis . 91

3.7 Conclusion . 95

4 Fortification of Spanning Trees under Stochastic Interdictions 97

4.1 Introduction . 98

4.1.1 Contribution . 100

4.2 Literature Review . 101

4.2.1 Network Fortification and Interdiction . 101

4.2.2 MST and OCST Problems . 103

4.3 Mathematical Model . 104

4.3.1 Stochastic Model for the MST Problem 106

4.3.2 Stochastic Model for the OCST Problem 108

4.4 Solution Methodology . 109

4.4.1 BSF Algorithm for the Stochastic Model 110

4.4.2 Waiting List Acceleration Technique . 115

4.5 Computational Experiments . 116

4.5.1 Test Instances . 118

4.5.2 Results of the MST Fortification Problem 118

4.5.3 Results of the OCST Fortification Problem 124

4.6 Conclusion . 126

5 Conclusion 128

Appendix A Details of Results: Chapter 2 130

A.1 Tables of Computational Results . 130

Appendix B Smith et al. (2007)’s Algorithm, Details of Test Instances, and Results: Chap-

ter 3 134

B.1 Details of Smith et al. (2007)’s Algorithm . 134

xi

B.2 Detailed Input Data . 135

B.3 Detailed Results . 135

Bibliography 142

xii

List of Figures

Figure 2.1 Network Design Model as a Tri-level Nested Optimization Model 15

Figure 2.2 An Illustration of Network Design Problem with Interdictions 16

Figure 2.3 Performance Profile of CPU Time for Different Algorithms 36

Figure 2.4 Effects of Varying Interdiction Budget (B) on Computation Time 39

Figure 2.5 Effects of Varying Interdiction Success Probability (p) on Computation Time 40

Figure 2.6 Effects of Varying the Weight of Post-interdiction Cost (ρ2) on Computation

Time . 41

Figure 2.7 Effects of Varying Interdiction Budget on the Number of Open Facilities for

Set I . 42

Figure 2.8 Effects of Varying p on the Design for Set I, ρ2 = 0.5 and B = 3. (a) Pre-

interdiction Flow for p = 0.5, (b) Worst-case Post-interdiction Flow for p = 0.5,

(c) Pre-interdiction Flow for p = 0.75, (d) Worst-case Post-interdiction Flow for

p = 0.75, (e) Pre-interdiction Flow for p = 0.9, (f) Worst-case Post-interdiction

Flow for p = 0.9 . 43

Figure 2.9 Effects of Varying ρ2 on the Design for Set I, p = 0.5 and B = 4. (a) Pre-

interdiction Flow for ρ2 = 0.2, (b) Worst-case Post-interdiction Flow for ρ2 = 0.2,

(c) Pre-interdiction Flow for ρ2 = 0.5, (d) Worst-case Post-interdiction Flow for

ρ2 = 0.5, (e) Pre-interdiction Flow for ρ2 = 0.8, (f) Worst-case Post-interdiction

Flow for ρ2 = 0.8 . 45

xiii

Figure 2.10 Effects of Correlation on Network Design (a) Pre-interdiction Flow with-

out Correlation, (b) Worst-case Post-interdiction Flow without Correlation, (c) Pre-

interdiction Flow with Correlation, (d) Worst-case Post-interdiction Flow with Cor-

relation . 47

Figure 3.1 Performance Profile of Different Variants of BBC Algorithm 84

Figure 3.2 Effects of Changing the Number of Scenarios on Optimal Design 93

xiv

List of Tables

Table 2.1 Classification of the Modeling Approaches for Facility Disruptions 9

Table 2.2 Classification of Relevant Literature on Stochastic Network Interdiction . . . 12

Table 2.3 Table of Notations . 16

Table 2.4 Scenario Representation and its Corresponding Probability of a Network with

3 Facilities . 17

Table 2.5 Summary of the Instance Sets used in the Computational Experiments 32

Table 2.6 Number of Instances Solved to Optimality within the Time Limit 33

Table 2.7 Summary of the Performance of the Algorithms 34

Table 2.8 Summary of the Large Instance Sets used in the Computational Experiments 37

Table 2.9 Summary of the Performance of BD-VI and BDD-VI for Larger-size Instances 38

Table 2.10 Summary of the Performance of BD-VI and BDD-VI for “Capa” Instances . 38

Table 2.11 Effects of Varying Interdiction Budget on Network Costs 42

Table 2.12 Effects of Varying Interdiction Success Probability on Network Costs 44

Table 2.13 Effects of Varying the Weight of Post-interdiction Cost on Network Costs . . 44

Table 2.14 Effects of Correlation on Network Costs . 46

Table 2.15 Summary of the Performance of BD-VI and BDD-VI for Instances with Cor-

related Facility Interdictions . 47

Table 2.16 Cost Analysis of Stochastic and Deterministic Models 48

Table 2.17 The Cost Increase of using Deterministic Design in Stochastic Interdiction

Setting . 49

Table 3.1 Summary of Literature on Multicommodity Network Interdiction Problems . 58

xv

Table 3.2 Table of Notations . 60

Table 3.3 Summary of Test Instances . 80

Table 3.4 Performance of Warm Start Techniques . 81

Table 3.5 Performance of Variable Fixing . 82

Table 3.6 Performance of Cut Selection . 82

Table 3.7 Summary of the Performance of the Variants of BBC Algorithm on r01-r09 Sets 85

Table 3.8 Paired T -test of Variants of BBC Algorithm (p-value) 86

Table 3.9 Summary of the Performance of BBC2, BBC3, and BBC5 Algorithms on

“r10” to “r18” Sets . 88

Table 3.10 Summary of Performance of the BBC2 Algorithm for Bs = % of Arcs . . . 89

Table 3.11 Comparison of the Computation Time of BBC2 Algorithm and Smith et al.

(2007)’s Algorithm . 90

Table 3.12 Comparison of the Performance of MibS Solver and BBC2 Algorithm 91

Table 3.13 Summary of Performance of the BBC2 Algorithm for Uncertain Demand and

Number of Interdictions . 92

Table 3.14 Comparison of Deterministic and Stochastic Designs (Unmet Demand) . . . 94

Table 3.15 Effects of Varying the Weight of Pre-interdiction Cost (Φ) on the Network

Design . 95

Table 3.16 Effects of Varying the Weight of Pre-interdiction Cost (Φ) on CPU Time (s) . 95

Table 4.1 Classification of Fortification Papers . 103

Table 4.2 Table of Notations . 105

Table 4.3 Comparing the Effect of Acceleration Technique on CPU Time (s) for the

MST Fortification Problem . 120

Table 4.4 CPU Time (s) for Solving MST Fortification Problem with BSF+WL 121

Table 4.5 CPU Time (s) for Solving the Stochastic MST Fortification Problem with Two

Scenarios . 122

Table 4.6 CPU Time (s) for Solving the Stochastic MST Fortification Problem with

Three and Four Scenarios . 123

xvi

Table 4.7 Comparison of the MST Cost for Deterministic and Stochastic Fortification

Strategies . 123

Table 4.8 Comparing the Effect of Big-M Value on CPU Time (s) for the MST Fortifi-

cation Problem . 124

Table 4.9 CPU Time (s) for Solving OCST Fortification Problem with BSF+WL 125

Table 4.10 CPU Time (s) for Solving the Stochastic OCST Fortification Problem 126

Table 4.11 Comparison of the OCST Cost for Deterministic and Stochastic Fortification

Strategies . 126

Table A.1 Comparison of the Performance of the Algorithms for Set I, Set II, and Set III

Instances . 131

Table A.2 Comparison of the Performance of the Algorithms for Set IV, Set V, and Set

VI Instances . 132

Table A.3 Comparison of the Performance of the Algorithms for Set VII, Set VIII, and

Set IX Instances . 133

Table B.1 Details of ”r” Set . 136

Table B.2 CPU Time (s) of Variants of BBC Algorithm on “r01-r09” Sets 137

Table B.2 CPU Time (s) of Variants of BBC Algorithm on “r01-r09” Sets (continued) . 138

Table B.3 CPU Time (s) of Variants of BBC Algorithm on “r10-r18” Sets 139

Table B.3 CPU Time (s) of Variants of BBC Algorithm on “r10-r18” Sets (continued) . 140

Table B.4 CPU Time (s) of BBC2 for Uncertain Demand and Number of Interdictions . 141

xvii

Chapter 1

Introduction

Networks are the vital aspects of today’s life that appear in many systems such as electric power

distribution, transportation and public transit, telecommunication, water supply, and natural gas and

petroleum distribution systems. Due to the importance of networks for social and economic aspects

of life, it is important to find the critical infrastructures and reduce the vulnerability of the networks.

We use the network interdiction model to identify critical infrastructures. Network interdiction

models consist of two opposing players: leader and follower. Network interdiction problems are

formulated as bi-level mixed-integer programming models where at the upper level, the interdictor

(leader) decides to interdict specific network components to cause maximum damage to the network.

At the lower level, the follower intends to optimize their decisions in the disrupted network. As an

example, in a bi-level shortest path network interdiction problem, the follower’s decision variables

y determine the shortest path in the network. The follower’s decision variables are affected by the

interdiction decision x. Let X be the set of feasible solutions to the first level, and Y (x) be the set

of feasible solutions to the shortest path problem for a given interdiction decision x. Traversing an

arc incurs a cost of c in normal conditions and the cost increases to (c+ dx) if the arc is interdicted.

The interdictor intends to maximize the shortest path by disrupting some arcs of the network which

results in the following max-min optimization problem.

max
x∈X

min
y∈Y (x)

(c+ dx)y (1.1)

1

Network interdiction models are studied on networks with well-studied recourse problems like

shortest path (Israeli and Wood, 2002; Holzmann and Smith, 2021), maximum flow (Rad and

Kakhki, 2013), knapsack (Contardo and Sefair, 2022), vehicle routing problem (Sadati et al., 2020),

multicommodity network (Smith et al., 2007), matching (Zenklusen, 2010), hub location (Ra-

mamoorthy et al., 2018), and traveling salesman problem (Lozano et al., 2017). Moreover, net-

work interdiction models have applications in military (McMasters and Mustin, 1970), cybersecu-

rity (Baggio et al., 2021), water resource analysis (Jiang and Liu, 2018), power grid analysis (Wu

and Conejo, 2016), and illicit supply chains (Jabarzare et al., 2020).

The interdiction models are able to identify the critical infrastructures and are extendable in

two different ways to enhance the reliability of the networks. In the first category, interdiction

models are used to fortify the existing networks. In this category, the objective is to mitigate the

negative effects of interdictions by protecting the infrastructures of the network e.g., by placing

surveillance cameras. In the second category, we consider the effects of interdictions in the design

stage of networks. Design models are an extension of interdiction models that aim to build a reliable

network which not only operates effectively in normal situations but also functions efficiently under

disruptions. Fortification and design models are formulated as tri-level models, a game between

defender-interdictor-defender or designer-interdictor-designer, where at the upper level the defender

determines the fortification decisions or the designer determines the infrastructures to install.

In the real world, there is uncertainty associated with different parameters of the networks.

Different parameters can be uncertain in network interdiction models including interdiction budget

(Liberatore et al., 2011), interdiction success (Janjarassuk and Linderoth, 2008), network config-

uration (Morton, 2010), interdiction place (Holzmann and Smith, 2021), and demand (Hien et al.,

2020). In this thesis, we aim to study the effects of uncertain interdiction parameters on the fortifica-

tion and design of networks. We consider the interdiction outcome and the number of interdictions

as uncertain parameters. To incorporate the uncertainty in the models, we present tri-level stochastic

mathematical models to fortify or design networks. Considering stochastic interdiction parameters

in fortifying or designing networks complicates the problem. In this thesis, we present exact solution

methodologies to solve network fortification and design problems with stochastic interdictions.

The contributions of this thesis can be categorized as follows:

2

• Problem modeling

- Considering the stochastic interdiction outcome for designing the distribution network

- Considering the stochastic number of interdictions for designing the multicommodity

network

- Presenting the fortification problem for minimum spanning tree (MST) and optimum

communication spanning tree (OCST) under stochastic interdictions

• Algorithmic development

- Presenting Benders decomposition algorithm accelerated with dual decomposition and

supervalid and valid inequalities for distribution network design problem

- Presenting branch-and-Benders-cut algorithm improved by acceleration techniques for

multicommodity network design problem

- Implementing backward sampling framework for solving the deterministic and stochas-

tic MST/OCST fortification problems

• Managerial insights

- The resiliency of the networks can be enhanced by a slight increase in the installation

cost

- Showcasing the advantages of stochastic design over deterministic design when the

number of interdictions is uncertain

This thesis focuses on the extension of interdiction models for having more reliable networks by

considering the effects of interdictions in the design phase of networks and fortifying the existing

networks. In what follows, we elaborate on our contributions to network design under stochastic

interdictions and spanning tree fortification under stochastic interdictions.

3

1.1 Network Design under Stochastic Interdictions

Distribution and multicommodity networks have applications in logistics, transportation, and

telecommunication systems. Such networks are designed based on the premise of undisrupted func-

tioning with minimal redundancy in their structure. Given the importance of supply chains and

telecommunication systems, it is essential to ensure that these systems are resilient. We consider

the impact of interdictions in the design stage of networks to create reliable networks that function

effectively under both normal and disrupted conditions. It is important to consider disruptions in

the design stage of distribution and multicommodity networks because adjusting or changing these

systems is generally costly. We present tri-level mathematical models for the distribution and mul-

ticommodity network design with interdictions. To have more realistic models, we consider the

uncertainty in interdiction parameters in the presented tri-level design models.

In Chapter 2, we present a tri-level stochastic mathematical model for distribution network de-

sign under uncertain outcomes of interdictions. To solve the model, we implement the Benders

decomposition (BD) algorithm, solving the MILP master problem and stochastic subproblem itera-

tively. To improve the performance of the BD algorithm, we use the dual decomposition algorithm

to solve the stochastic subproblem. We also add valid and supervalid inequalities to the master

problem. Our extensive computational experiments show that the BD algorithm improved with dual

decomposition and valid and supervalid inequalities outperforms other variants of the BD algorithm.

We demonstrate that the stochastic model provides a less conservative design compared to the deter-

ministic counterpart by opening fewer facilities at the expense of a slight increase in the worst-case

post-interdiction transportation cost.

In Chapter 3, we present a tri-level stochastic model for multicommodity network design under

an uncertain number of interdictions. The designer does not have information about the exact num-

ber of interdiction resources. Therefore, we consider the number of interdictions as the stochastic

parameter. To solve the model, we use the branch-and-Benders-cut algorithm. We use several accel-

eration techniques including warm start, variable fixing, cut selection, Pareto-optimal cuts, penalty

reformulation, and supervalid and valid inequalities to improve the performance of the branch-and-

Benders-cut algorithm. We emphasize the benefits of employing a stochastic design as opposed to

4

a deterministic one when the number of interdictions is uncertain.

1.2 Spanning Tree Fortification under Stochastic Interdictions

In the last contribution of the thesis, we examine the fortification of two different classes of

spanning tree problems. We study the minimum spanning tree (MST) and optimum communication

spanning tree (OCST) problems. MST and OCST problems have important applications in trans-

portation and communication networks. Our goal is to find the optimal fortification strategy that

hinders the negative impact of interdictions on the MST/OCST costs. In Chapter 4, we propose

tri-level stochastic models for fortification of the MST and OCST problems under the stochas-

tic number of interdictions for the first time. We implement the backward sampling framework

(BSF) to solve the deterministic and stochastic variants of the MST/OCST fortification problems

under stochastic interdictions. To improve the performance of the BSF algorithm, we delay the

exploration of fortification strategies if the improvement is not sufficiently large by keeping them

in a waiting list. We save the unpromising fortification strategies in a waiting list for subsequent

re-evaluation within the algorithm’s execution. Our computational experiments illustrate that the

waiting list acceleration technique significantly improves CPU time.

5

Chapter 2

Distribution Network Design under

Stochastic Facility Interdiction

Abstract In this paper, we study a robust distribution network design problem that accounts for

the impact of disruptions of intermediate facilities. We consider a two-echelon distribution network

design problem where the designer’s decision is to locate intermediate facilities between a set of

supply and demand nodes such that the total installation cost and the transportation costs under

normal conditions and after interdictions are minimized. The problem is modeled as a two-player,

sequential, designer-attacker-designer Stackelberg game. In the first stage, the designer selects a

subset of intermediate facilities to locate, the interdictor next damages a subset of located facilities,

after which the designer optimizes a recourse problem over the network of residual facilities. Un-

like deterministic network interdiction models that assume that all the model parameters are known

with certainty, we present a tri-level stochastic mixed-integer programming model where the inter-

diction outcomes are uncertain and the interdictor’s goal is to maximize the expected damage. We

study both cases of independence of interdictions across facilities as well as the correlated interdic-

tions. We present an exact algorithm based on Benders decomposition to solve the model, where the

subproblem is a stochastic optimization problem. To improve the computation time, the stochastic

subproblem is solved using dual decomposition. Two sets of valid inequalities are proposed to ac-

celerate the Benders decomposition algorithm. Extensive computational experiments are conducted

6

to assess the efficiency of the proposed refinements. The results show that 91% of instances are

optimally solved using algorithmic refinements compared to 67% of instances with the basic Ben-

ders decomposition algorithm. In terms of computational time, the refinements reduce the CPU

time by 35%. Computational results on large instances with up to 18 facilities, and 218 interdiction

scenarios confirm the efficiency of the algorithms. We illustrate that the stochastic model provides

a less conservative design compared to the deterministic counterpart by opening fewer facilities at

the expense of a slight increase in the worst-case post-interdiction transportation cost.

2.1 Introduction

In recent years, the importance of protection planning for global supply chains and distribution

networks has grown with the increasing frequency of major disruptions. Despite lower operational

costs, globalization trends, just-in-time delivery, and other lean practices have made supply chains

more vulnerable to disruptions. In the short term, disruptions result in higher transportation costs,

delayed orders, lost sales, and also have a long-term impact on market share. Supply chains and

distribution networks can be at risk of natural disruptions (e.g., earthquake, fire), or premeditated

disruptions such as labor strikes, terrorist attacks, and geopolitical conflicts (Ivanov et al., 2017;

Xu et al., 2020). For example, the Russia-Ukraine conflict is having a massive influence on the

global supply chains (such as the shortage of electronic chips), forcing supply managers to reassess

their established supply chain and partner ecosystem (Stackpole, 2022). Toyota had to reduce its

production in 2022 due to the chip shortage and halted some of the production lines because of the

supply shortage caused by COVID-19 restrictions in China (CNBC, 2022). Many countries placed

quarantine orders and closed borders to limit the spread of COVID-19. It is worthwhile noting

that 94% of Fortune 1000 companies faced disruptions in their supply chains during the pandemic

(Sherman, 2020). These recent events are mounting pressure on supply chain managers to build

robustness in their supply chain configurations so that it is possible to operate in both normal and

disrupted conditions.

Major disruptions, characterized by a low probability of occurrence and a large magnitude of

effect, have significant short-term and long-term cost implications (Jabbarzadeh et al., 2016). A

7

disruption in one facility can seriously impact the market share and cause extensive interruptions in

vital services as it indirectly affects the whole distribution network (Snyder et al., 2016; Aldrighetti

et al., 2021). Hendricks and Singhal (2005) show that companies experiencing disruptions have

40% lower stock returns compared with similar industries. Therefore, considering the effects of

disruptions in the design stage is essential for a robust network (Snyder and Daskin, 2005).

In considering the impact of major disruptions in networks, approaches in the literature can be

categorized into risk-neutral and risk-averse models based on the underlying risk considerations.

The literature on the risk-neutral approach relies on stochastic programming models where disrup-

tions are defined as scenarios with different probabilities. The model aims to optimize an expected

value of a given performance measure, such as minimizing the expected operational cost or max-

imizing the expected profit if disruptions occur (Cui et al., 2010). This leads to two important

challenges in considering disruptions. First, the disruption probabilities are assumed to be known

a priori. Second, decisions based on expected cost minimization can lead to poor performance in

rare and high-impact disruption events. Therefore, risk-averse models are better suited to consider

worst-case disruptions.

As categorized in Table 2.1, the literature on the risk-averse approach uses robust optimization

and network interdiction models to account for the effects of the disruptions. Works on robust op-

timization use conditional value-at-risk (Yu et al., 2017), p-robustness criterion (Peng et al., 2011),

distributionally robust optimization (Che et al., 2024), interval robust optimization (Jabbarzadeh

et al., 2016), and two-stage robust optimization (An et al., 2014; Cheng et al., 2021) to design net-

works with disruptions. On the other hand, network interdiction models are often formulated as a

bi-level nested optimization problem based on the leader-follower game theoretic framework. In the

first level, the leader interdicts arcs/nodes of the network to maximize the damage. In the second

level, the follower optimizes the network operations after interdiction. Both of these approaches

result in nested optimization models, defined as min-max-min or max-min-max formulations.

Motivated by the importance of robust supply chains in the recent wave of disruptions, we

present a model for designing a two-echelon distribution network that accounts for the effects of

interdictions or disruptions. The goal of designing a robust distribution network is to achieve oper-

ational efficiency under normal as well as post-interdiction operation conditions. More specifically,

8

Table 2.1: Classification of the Modeling Approaches for Facility Disruptions

Reference
Modeling Approach

Stochastic Optimization Robust Optimization Network Interdiction
Cui et al. (2010) ✓
Li and Ouyang (2010) ✓
Lim et al. (2010) ✓
Li et al. (2013) ✓
Azad and Hassini (2019) ✓
Chang et al. (2024) ✓
Peng et al. (2011) ✓
Baghalian et al. (2013) ✓
An et al. (2014) ✓
Jabbarzadeh et al. (2016) ✓
Yu et al. (2017) ✓
Cheng et al. (2018) ✓
Cheng et al. (2021) ✓
Gicquel et al. (2022) ✓
Smith et al. (2007) ✓
Laporte et al. (2010) ✓
O’Hanley and Church (2011) ✓
Aksen and Aras (2012) ✓
Medal et al. (2014) ✓
Parvaresh et al. (2014) ✓
Ghaffarinasab and Motallebzadeh (2018) ✓
This paper ✓

we present a tri-level nested design model where in the first level, the designer makes facility loca-

tion decisions so that the installation cost and weighted sum of transportation costs under normal

operations and after interdiction are minimized. Under a limited interdiction budget and uncertain

outcome, the interdictor attempts to interdict intermediate facilities in the network with the objective

of maximizing the expected minimum transportation costs in the distribution network. Finally, the

designer optimizes the flow after interdiction in the third level.

Most interdiction models consider deterministic settings where interdiction outcomes are known

with certainty (Smith and Song, 2020). Since interdiction outcomes can be uncertain in practice; it

makes sense to consider it as an uncertain parameter rather than a deterministic one. To the best of

our knowledge, this is the first paper considering the uncertainty of the interdiction outcomes for de-

signing the two-echelon distribution network using the interdiction modeling framework. Stochastic

network interdiction problems are a difficult class of optimization problems. To this end, we present

an exact solution approach based on the Benders decomposition algorithm. To improve the perfor-

mance of the proposed Benders decomposition algorithm, we solve the stochastic subproblem using

9

dual decomposition. In addition, we strengthen the Benders decomposition by adding supervalid

and valid inequalities to the master problem. Our extensive computational experiments show that

the Benders decomposition algorithm combined with dual decomposition, supervalid, and valid in-

equalities outperforms other variants of the Benders decomposition, improving the CPU time by

35% compared to the basic BD algorithm. Results on large-size instances with up to 18 facilities

and 218 scenarios confirm the effectiveness of the proposed solution methodology. We analyze the

impact of various model parameters such as interdiction budget, interdiction success probability, and

the relative weight of post-interdiction cost on the computation time of the proposed algorithm and

the obtained design. Moreover, we illustrate that the proposed network design model with stochastic

interdiction yields less conservative solutions in comparison with its deterministic variant.

The contributions of this paper are as follows:

• We introduce a tri-level interdiction model for designing robust distribution network that ac-

counts for the effect of disruptions of intermediate facilities under interdiction uncertainty.

The problem is modeled as a two-player, sequential designer-attacker-designer framework

resulting in a tri-level stochastic mixed-integer program.

• We exploit the structure of the formulation to present an enhanced Benders decomposition

algorithm, where we solve the stochastic subproblem using dual decomposition. In addition,

we strengthen the Benders decomposition by adding supervalid and valid inequalities to the

master problem. Interestingly, our computational results show that with the proposed algo-

rithmic refinements, we are able to solve large instances of an otherwise intractable problem.

The remainder of this paper is organized as follows: In Section 2.2, we review the relevant

literature. In Section 2.3, we provide the mathematical model for the stochastic network design

problem. Solution methodologies for solving the proposed stochastic design model are described in

Section 2.4. The computational experiments and conclusion are presented in Sections 2.5 and 2.6,

respectively.

10

2.2 Literature Review

To consider the impact of disruptions, network interdiction models are one of the widely used

models in the literature. Interdiction models were first introduced for military and homeland secu-

rity applications (McMasters and Mustin, 1970). Since then, interdiction models have been used for

shortest path (Israeli and Wood, 2002), maximum flow (Ghosh and Jaillet, 2022), facility location

(Scaparra and Church, 2008a; Aksen et al., 2014), hub location (Ramamoorthy et al., 2018; Ullmert

et al., 2020), multi-commodity networks (Lim and Smith, 2007), and vehicle routing problem (Sa-

dati et al., 2020).

A common method to solve bi-level interdiction models is to reformulate the model using dual-

ity and KKT conditions into a single-level formulation. However, reformulating the bi-level model

into a single-level formulation is not an efficient approach for large-size problem instances (Israeli

and Wood, 2002). Authors present different heuristic and metaheuristic algorithms (Nandi et al.,

2016; Forghani et al., 2020), decomposition algorithm (Tanergüçlü et al., 2019), and cutting plane

algorithm (Naoum-Sawaya and Ghaddar, 2017) to solve bi-level interdiction models efficiently.

Metaheuristic algorithms might solve large-size instances, but they do not guarantee the optimal

solution. Exact algorithms guarantee the optimal solution, but they might not be time-efficient for

large-size instances. Moreover, decomposition algorithms like Benders decomposition have slow

convergence; therefore, acceleration techniques are required to improve the efficiency of algorithms.

Network interdiction models are further extended to fortify the existing networks (Cappanera

and Scaparra, 2011) or design robust networks (Smith et al., 2007). Fortification and design models

are expanded to tri-level mathematical models, but they can be modeled as bi-level if the contri-

bution of a single asset to system performance is easy to define (Brown et al., 2006). Fortification

models aim to identify critical facilities whose protection would reduce the negative impacts of

worst-case interdictions. As the location of facilities is determined, it is costly to change the loca-

tion and structure of the facilities (Cheng et al., 2018). Therefore, the network will be more robust

by considering the effects of disruptions in the design of the network.

The purpose of the network design model with interdictions is to consider the effects of disrup-

tions in the design stage of networks to minimize the disruption costs. Considering network design

11

with interdictions transforms the bi-level model into a tri-level, increasing the complexity. Authors

solve the design model with interdictions using metaheuristic algorithm (Aksen and Aras, 2012;

Parvaresh et al., 2014; Ghaffarinasab and Motallebzadeh, 2018), decomposition algorithm (Smith

et al., 2007; O’Hanley and Church, 2011; Couedelo, 2018), and binary search algorithm (Medal

et al., 2014).

The previous works mentioned in the interdiction literature assume deterministic values for pa-

rameters. Table 2.2 summarizes the papers in which uncertainty is considered: interdiction budget

(or the number of interdictions) (Liberatore et al., 2011; Chen et al., 2011; Parvaresh et al., 2013;

Bhuiyan et al., 2021), network configuration (Pan et al., 2003; Hemmecke et al., 2003; Morton,

2010; Towle and Luedtke, 2018), interdiction success (Cormican et al., 1998; Janjarassuk and Lin-

deroth, 2008; Losada et al., 2012), arc capacities (Pay et al., 2019; Nguyen and Smith, 2022), and

demand (Hien et al., 2020). Recently, Holzmann and Smith (2021) consider the randomized inter-

diction strategy in the shortest path network interdiction problem where the follower only knows

the place of interdictions with a given probability.

Table 2.2: Classification of Relevant Literature on Stochastic Network Interdiction

Articles
Problem Stochastic Parameter Model Type Methodology

Interdiction Fortification Design Budget Configuration Interdiction Success Other Bi-level Tri-level Exact Heuristic

Liberatore et al. (2011) ✓ ✓ ✓ ✓ ✓

Parvaresh et al. (2013) ✓ ✓ ✓ ✓

Chen et al. (2011) ✓ ✓ ✓ ✓

Bhuiyan et al. (2021) ✓ ✓ ✓ ✓

Pan et al. (2003) ✓ ✓ ✓ ✓

Morton (2010) ✓ ✓ ✓ ✓

Hemmecke et al. (2003) ✓ ✓ ✓ ✓

Towle and Luedtke (2018) ✓ ✓ ✓ ✓

Cormican et al. (1998) ✓ ✓ ✓ ✓ ✓

Janjarassuk and Linderoth (2008) ✓ ✓ ✓ ✓ ✓

Losada et al. (2012) ✓ ✓ ✓ ✓

Nguyen and Smith (2022) ✓ ✓ ✓ ✓

Hien et al. (2020) ✓ ✓ ✓ ✓

Song and Shen (2016) ✓ ✓ ✓ ✓ ✓

Lei et al. (2018) ✓ ✓ ✓ ✓ ✓ ✓

Holzmann and Smith (2021) ✓ ✓ ✓ ✓

This paper ✓ ✓ ✓ ✓

Considering uncertain parameters as a set of scenarios leads to stochastic programming models,

which are more complex than their deterministic counterparts due to the large size of the problem.

12

Sample average approximation algorithm (Janjarassuk and Linderoth, 2008; Lei et al., 2018), L-

shape and Benders decomposition algorithms (Janjarassuk and Linderoth, 2008; Song and Shen,

2016), Jensen’s inequality (Cormican et al., 1998; Nguyen and Smith, 2022), and constraint-and-

column generation (Bhuiyan et al., 2016) are exact methods to solve the stochastic interdiction

models.

Most interdiction papers with stochastic parameters consider the bi-level formulation determin-

ing the most critical infrastructures or fortification strategies. Chen et al. (2011) use interdiction

budget scenarios to solve the deterministic tri-level network design problem. By enumerating all

possible interdiction scenarios, they reformulate the problem into a two-stage stochastic program

from the designer’s perspective. They present cut generation algorithm using Benders cut to solve

the single-level two-stage stochastic model. Hien et al. (2020) present a tri-level mathematical

model for fortifying a single-commodity network flow problem with stochastic demand. They also

extend the model to multi-commodity network flow. They solve the model using the stochastic ap-

proximation method. They mention that the stochastic approximation method works better than the

sample average approximation if the parameters are selected carefully.

The closest papers to our work in terms of problem formulation are Chen et al. (2011), Smith

et al. (2007), and Cheng et al. (2021). Our work is different from Chen et al. (2011) in two ways:

first, we consider node interdiction in contrast to arc interdiction. Second, our proposed objective

function considers both pre-interdiction and post-interdiction costs to provide a cost-efficient robust

network design. With respect to Smith et al. (2007), we incorporate the stochastic nature of inter-

dictions into the network design as opposed to deterministic assumption. In contrast to Cheng et al.

(2021), our paper considers a robust design in an extended two-echelon supply chain network setting

and incorporates the uncertainty in the outcome of interdictions. The fact that we consider interdic-

tions to be successful with a given probability results in the inner bi-level optimization model to be a

two-stage stochastic optimization. If we assume that interdictions are always successful (i.e., deter-

ministic interdiction outcome version of our mathematical model), it is equivalent to the two-stage

robust optimization problem. As such, the model presented in Cheng et al. (2021) is a special case

of the model presented in this manuscript. To the best of our knowledge, our proposed model is the

first paper that takes into account stochastic interdiction outcomes for distribution network design.

13

In terms of solution methodology, the closest works are Song and Shen (2016) and Jabarzare

et al. (2020). Song and Shen (2016) present branch-and-Benders-cut algorithm to solve a bi-level

stochastic shortest path problem. In contrast to their work, we employ classic Benders decom-

position algorithm and focus on solving our subproblems efficiently. Jabarzare et al. (2020) use

classic Benders decomposition to solve the deterministic bi-level interdiction model for the illicit

supply chain. We use Benders decomposition to solve the stochastic design model where the master

problem determines the design and pre-interdiction decisions, and the subproblem is the stochastic

interdiction problem. We present dual decomposition algorithm to solve the stochastic subproblem

more efficiently.

2.3 Model Formulation

In this paper, we design a two-echelon distribution network comprising supply nodes, interme-

diate facilities, and demand nodes. The goal is to locate intermediate facilities so that the installation

and transportation costs before and after interdiction are minimized. We model the distribution net-

work design problem as a Stackelberg game in which the designer makes the first move by selecting

the intermediate facilities to install (y) and the routing decisions before interdiction (u′ and u). At

the second level, the interdictor selects the facilities to interdict (x) to maximize the expected min-

imum transportation cost of the designer. At the third level, the designer determines the routing

decisions given the interdicted facilities in each scenario (w′ and w) to minimize post-interdiction

cost. We first consider the case where the interdiction on a facility is independent of the interdic-

tion of other facilities, then we relax this assumption to consider the correlated interdiction among

facilities.

We make the following assumptions: (i) The designer and the interdictor have complete knowl-

edge of the network structure. (ii) The interdictor is uncertain about the outcome of interdictions

on the network. We assume that interdictions are successful with known probability. (iii) The de-

signer makes all the design and pre-interdiction decisions before the interdictor makes interdiction

decisions. After the interdictor’s decision, the designer makes the post-interdiction decisions. This

game is called designer-interdictor-designer game. (iv) The game is played for only one round. (v)

14

Once a facility is interdicted, and the interdiction is successful, it becomes unavailable since partial

interdiction does not occur.

Objective: Minimize the installation cost and the weighted sum of the transportation costs before and after the interdiction (NDM)

Decisions: Which intermediate facilities to install (y)? How to route the demand (u′ and u)?

y decision variables

Objective: Maximize the expected minimum transportation cost after interdiction (IP)

Decisions: Which intermediate facilities to interdict (x)?

x decision variables

Objective: Minimize the transportation cost after interdiction (FP)

Decisions: How to route the demand after interdiction (w′ and w)?

Level 1: Designer’s level

Level 2: Interdictor’s level

Level 3: Designer’s level

Figure 2.1: Network Design Model as a Tri-level Nested Optimization Model

The nested structure of the mathematical model is shown in Figure 2.1, and the list of notations

appears in Table 2.3. Let I be the set of supply nodes, J be the set of potential intermediate facilities,

and K be the set of demand nodes. Each supply node i ∈ I has capacity q′i and each demand node

k ∈ K has demand dk. Each facility j ∈ J has capacity qj and installation cost fj . The cost of

sending demand from supply node i ∈ I to facility j ∈ J is denoted by c′ij and the cost of sending

demand from facility j ∈ J to demand node k ∈ K is denoted by cjk. We assume the interdictor

has a limited interdiction budget B for interdicting intermediate facilities.

Figure 2.2 illustrates the network before and after interdiction.

A scenario s ∈ S represents a realization of uncertainty set with probability ps. We define the

binary parameter ξjs to represent the uncertain outcome associated with the interdiction of facility

j under scenario s. ξjs is 1 if interdiction of facility j in scenario s is successful. In this model,

the scenarios being considered do not directly specify whether an interdiction event occurs or not.

Instead, they provide information about the potential outcome of an interdiction attempt if the in-

terdictor decides to target facility j in scenario s ∈ S. We assume that interdiction outcomes are all

pairwise independent (Janjarassuk and Linderoth, 2008). The interdictor determines the interdiction

15

Figure 2.2: An Illustration of Network Design Problem with Interdictions

Table 2.3: Table of Notations

Sets
I Set of supply nodes (indexed by i, i ∈ I)
J Set of candidates for intermediate facilities (indexed by j, j ∈ J)
K Set of demand nodes (indexed by k, k ∈ K)
S Set of scenarios (indexed by s, s ∈ S)
Parameters
dk Demand of node k
c′ij Unit transportation cost from supply node i to facility j
cjk Unit transportation cost from facility j to demand node k
fj Installation cost of facility j
q′i Capacity of supply node i
qj Capacity of facility j
B Interdiction budget (Number of facility interdictions)
ps Probability of scenario s
ρ1 The weight of pre-interdiction cost in the objective function
ρ2 The weight of post-interdiction cost in the objective function
Decision Variables
yj 1 if facility j is installed
u′ij Amount of flow from supply node i to facility j before interdiction
ujk Amount of flow from facility j to demand node k before interdiction
w′
ijs Amount of flow from supply node i to facility j after interdiction in scenario s

wjks Amount of flow from facility j to demand node k after interdiction in scenario s
xj 1 if facility j is interdicted

16

strategy without the knowledge of the outcome of the interdiction. Therefore, interdiction decisions

can be considered as the first-stage decisions in the stochastic programming model. As the uncer-

tainty is revealed for any realization of scenario s, the continuous recourse problem (designer’s third

level) determines the post-interdiction flows as second-stage decisions. We illustrate the scenarios

with an example of three facilities; therefore, there are 23 scenarios for the interdiction outcomes.

Assume that the interdiction on any given facility would be successful with a probability of 0.75.

We present the eight possible scenarios with the associated probabilities in Table 2.4. As an exam-

ple, in scenario 8, the interdiction on all facilities would be successful (i.e., ξ18 = ξ28 = ξ38 = 1)

with probability p8 = 0.75 ∗ 0.75 ∗ 0.75 = 0.422. In scenario 5, the interdiction on the first 2

facilities would be successful and the interdiction of the third facility would be unsuccessful (i.e.,

ξ15 = ξ25 = 1, ξ35 = 0) with probability p5 = 0.75 ∗ 0.75 ∗ 0.25 = 0.141.

Table 2.4: Scenario Representation and its Corresponding Probability of a Network with 3 Facilities

Scenario Facility 1 Facility 2 Facility 3 Probability

1 1 0 0 0.047
2 0 0 1 0.047
3 1 0 1 0.141
4 0 1 0 0.047
5 1 1 0 0.141
6 0 0 0 0.016
7 0 1 1 0.141
8 1 1 1 0.422

17

The tri-level design model (designer-interdictor-designer) is as follows:

(NDM) : min
u,u′,y

∑
j∈J

fjyj + ρ1

(∑
i∈I

∑
j∈J

c′iju
′
ij +

∑
j∈J

∑
k∈K

cjkujk

)
+ ρ2T1(y) (2.1)

s.t. :
∑
j∈J

ujk ≥ dk ∀k ∈ K (2.2)

∑
i∈I

u′ij ≥
∑
k∈K

ujk ∀j ∈ J (2.3)

∑
j∈J

u′ij ≤ q′i ∀i ∈ I (2.4)

∑
i∈I

u′ij ≤ qjyj ∀j ∈ J (2.5)

yj ∈ {0, 1} ∀j ∈ J (2.6)

u′ij , ujk ≥ 0 ∀i ∈ I, j ∈ J, k ∈ K

(2.7)

(IP) : T1(y) = max
x

∑
s∈S

psAs(x, y) (2.8)

s.t. :
∑
j∈J

xj ≤ B (2.9)

xj ∈ {0, 1} ∀j ∈ J (2.10)

(FP) : As(x, y) = min
w,w′

∑
i∈I

∑
j∈J

c′ijw
′
ijs +

∑
j∈J

∑
k∈K

cjkwjks (2.11)

s.t. :
∑
j∈J

wjks ≥ dk ∀k ∈ K (2.12)

∑
i∈I

w′
ijs ≥

∑
k∈K

wjks ∀j ∈ J (2.13)

∑
j∈J

w′
ijs ≤ q′i ∀i ∈ I (2.14)

∑
i∈I

w′
ijs ≤ qjyj(1− xjξjs) ∀j ∈ J (2.15)

w′
ijs, wjks ≥ 0 ∀i ∈ I, j ∈ J, k ∈ K

(2.16)

18

The first level mathematical model (designer’s level) is given by (2.1)-(2.7). At this level, the

installation decisions are determined to minimize the installation cost and weighted sum of the pre-

interdiction and post-interdiction costs. The demand satisfaction is guaranteed by constraint (2.2).

The flow balance in the network is ensured by constraint (2.3). Constraints (2.4) and (2.5) impose a

capacity limit on each supply node and facility, respectively.

In the proposed stochastic network design model, the uncertainty is modeled at the second level

since the outcome of interdiction of intermediate facilities is uncertain. Therefore, the objective

function of the interdictor (2.8) is to maximize the expected value of the designer’s transportation

costs after interdiction, given the uncertainty in scenarios. The interdictor has a limited interdiction

budget as shown in constraint (2.9). We should mention that the interdictor should interdict open

facilities (yj = 1) to maximize the damage (see Lemma 1 of An et al. (2014)); therefore, we can fix

the value of interdiction decisions xj if the facility is not installed (i.e., yj = 0).

At the third level, the designer minimizes the post-interdiction cost in the residual network for

scenario realization s. We can see the effect of interdictions on the right-hand side of constraint

(2.15), which states that the capacity of facility j is zero if it is interdicted successfully in scenario

s ∈ S. In some cases, the capacity of the residual facilities after interdiction is not sufficient to

satisfy demand. To account for the lost demand, we create a dummy facility. The dummy facility is

characterized by zero installation and high transportation costs to represent the lost sales cost. The

proposed designer-interdictor-designer model results in a tri-level formulation. In the next section,

we reduce the lower-level bi-level interdictor-designer model to a single-level model.

2.3.1 Single-level Reduction of the Interdictor’s Problem using Dual Formulation

Given a design decision ŷ, we fix the interdiction decisions in the lower level FP and take the

dual of the inner minimization model to get a single-level mixed-integer programming (MIP) model.

Associating Γks, ϕjs, θis, and ψjs as dual variables with constraints (2.12)-(2.15), respectively, the

resulting single-level MIP problem IP’ is as follows:

(IP ′) : max
Γ,ϕ,θ,ψ,x

∑
s∈S

ps

∑
k∈K

dkΓks −
∑
i∈I

q′iθis −
∑
j∈J

qj ŷj(1− xjξjs)ψjs

 (2.17)

19

s.t. Γks − ϕjs ≤ cjk ∀j ∈ J, k ∈ K, s ∈ S (2.18)

ϕjs − θis − ψjs ≤ c′ij ∀i ∈ I, j ∈ J, s ∈ S (2.19)∑
j∈J

xj ≤ B (2.20)

Γks, ϕjs, θis, ψjs ≥ 0 ∀i ∈ I, j ∈ J, k ∈ K, s ∈ S (2.21)

xj ∈ {0, 1} ∀j ∈ J (2.22)

The model IP’ has bilinear objective function and can be linearized by defining a set of non-

negative continuous variables ωjs and the following constraints:

ωjs ≤Mxj ∀j ∈ J, s ∈ S (2.23)

ωjs ≤ ψjs ∀j ∈ J, s ∈ S (2.24)

where M is a large number. Variable ωjs appears only in the objective function with a positive

coefficient in (2.17); therefore, ωjs takes the maximum value which is xjψjs and there is no need

to consider ωjs − ψjs −Mxj ≥ −M .

With this, the tri-level model (2.1)-(2.16) reduces to a bi-level model NDM’ as follows:

(NDM ′) : min
u,u′,y

∑
j∈J

fjyj + ρ1

[∑
i∈I

∑
j∈J

c′iju
′
ij +

∑
j∈J

∑
k∈K

cjkujk

]

+ ρ2 max
x,Γ,ϕ,θ,ψ,ω

∑
s∈S

ps

∑
k∈K

dkΓks −
∑
i∈I

q′iθis −
(∑
j∈J

qjyjψjs −
∑
j∈J

qjyjξjsωjs

)
(2.25)

s.t. (2.2)− (2.5), (2.18)− (2.20), (2.23)− (3.9)

xj , yj ∈ {0, 1} ∀j ∈ J

u′ij , ujk ≥ 0 ∀i ∈ I, j ∈ J, k ∈ K

Γks, ϕjs, θis, ψjs, ωjs ≥ 0 ∀i ∈ I, j ∈ J, k ∈ K, s ∈ S

20

To solve the bi-level formulation, we present Benders decomposition algorithm and two accel-

eration techniques in Section 2.4.

2.3.2 Extension to the Correlated Facility Disruptions

We extend the model (2.1)-(2.16) to consider the interdependencies among the facility disrup-

tions. Examples of correlation effects are natural disasters (e.g., hurricanes, fire, and earthquakes)

where disruption at a facility affects the nearby facilities as well (Liberatore et al., 2012). We assume

the interdiction success probability of facilities does not depend on this correlation. The correlation

represents the ripple effect of capacity reduction after a successful interdiction. To consider the

effects of correlated disruptions, we define correlation matrix ϱjj′ which represents the portion of

capacity that facility j loses if facility j′ is interdicted. When there is more than one interdiction,

the capacity of facility j is reduced by the highest correlation coefficient that affects facility j. Let

FC be the set of facility pairs (j, j′) with ϱjj′ ≥ 0. We modify constraint (2.15) to account for the

correlated interdictions as follows:

∑
i∈I

w′
ijs ≤ qjyjfjj′(xj′) ∀(j, j′) ∈ FC (2.26)

where

fjj′(xj′) =


1, if xj′ = 0 ∨ (xj′ = 1 ∧ ξj′s = 0)

1− ϱjj′ , if xj′ = 1 ∧ ξj′s = 1

According to constraint (2.26), capacity of facility j does not change if facility j′ is not in-

terdicted or in cases where facility j′ is interdicted but the interdiction attempt is unsuccessful

(ξj′s = 0). If facility j′ is interdicted and the interdiction is successful (ξj′s = 1), the capacity of

facility j reduces by a factor of (1− ϱjj′).

To solve the proposed model considering the correlated facility interdictions, we first take the

dual of the inner minimization problem FP with constraint (2.26) instead of constraint (2.15). We

define τjj′s as the dual variable associated with constraint (2.26). The single-level formulation is as

21

follows:

max
Γ,ϕ,θ,τ,x

∑
s∈S

ps

∑
k∈K

dkΓks −
∑
i∈I

q′iθis −
∑

(j,j′)∈FC

qj ŷjfjj′(xj′)τjj′s

 (2.27)

s.t. Γks − ϕjs ≤ cjk ∀j ∈ J, k ∈ K, s ∈ S (2.28)

ϕjs − θis −
∑

j′|(j,j′)∈FC

τjj′s ≤ c′ij ∀i ∈ I, j ∈ J, s ∈ S (2.29)

∑
j∈J

xj ≤ B (2.30)

Γks, ϕjs, θis ≥ 0 ∀i ∈ I, j ∈ J, k ∈ K, s ∈ S (2.31)

τjj′s ≥ 0 ∀(j, j′) ∈ FC, s ∈ S (2.32)

xj ∈ {0, 1} ∀j ∈ J (2.33)

The term fjj′(xj′)τjj′s in the objective function (2.27) makes the problem nonlinear. To lin-

earize the model, we define non-negative continuous variables βjj′s and we add the following con-

straints:

βjj′s ≥ τjj′s(1− ϱjj′) ∀(j, j′) ∈ FC, s ∈ S (2.34)

βjj′s ≥ τjj′s −Mξj′sxj′ ∀(j, j′) ∈ FC, s ∈ S (2.35)

To show that the provided linearization is valid, we consider three different cases:

(1) When xj′ = 1 and ξj′s = 1, we obtain βjj′s ≥ τjj′s(1− ϱjj′) and βjj′s ≥ τjj′s −M . Since

the nonlinear term fjj′(xj′)τjj′s has a negative sign in the maximization objective function,

the value of βjj′s would be τjj′s(1− ϱjj′).

(2) When xj′ = 0, we obtain βjj′s ≥ τjj′s(1 − ϱjj′) and βjj′s ≥ τjj′s. Since we assume that

ϱjj′ ≥ 0, the value of βjj′s would be the lowest allowable value τjj′s.

(3) When xj′ = 1 and ξj′s = 0, we obtain βjj′s ≥ τjj′s(1 − ϱjj′) and βjj′s ≥ τjj′s. Since we

assume that ϱjj′ ≥ 0, the value of βjj′s would be τjj′s.

22

The solution methods presented in Section 2.4 are applicable to the correlated facility interdic-

tion model.

2.4 Solution Methodology

Benders decomposition is a technique for solving MIPs by decomposing the problem into an

integer master problem and a linear subproblem (Benders, 1962). The value of the specific partition

of variables is determined in the master problem first. The value of the other partition of variables

is determined by solving the subproblem for a given master problem solution. Due to the structure

of interdiction models, Benders decomposition is a common technique for solving such models

(Jabarzare et al., 2020). Consider a bi-level interdiction model with integer variables in the first

level and continuous variables in the second level. By taking the dual of the inner optimization

problem, we obtain a single-level MIP. To solve the MIP using the Benders algorithm, we fix the

value of integer variables and take the dual of the single-level problem, which causes the bi-level

model to reappear. As a result, the Benders decomposition readily applies to bi-level problems

(Brown et al., 2006).

2.4.1 Benders Decomposition

In the Benders reformulation of the model, the master problem (MP) determines the facility

location and pre-interdiction flow decisions, and the remaining decision variables are determined

in the subproblem (SP). In the proposed model, the SP is the bi-level stochastic interdiction model

that is transformed into a single-level MIP model IP’ in Section 2.3. By fixing the values of facility

location decisions ŷ, we obtain the following mixed-integer SP.

(SP) : max
x,Γ,ϕ,θ,ψ,ω

∑
s∈S

ps

[∑
k∈K

dkΓks −
∑
i∈I

q′iθis −
(∑
j∈J

qj ŷjψjs −
∑
j∈J

qj ŷjξjsωjs

)]
s.t. (2.18)− (3.9)

(2.36)

Using continuous variable η for the post-interdiction cost, the Benders reformulation of the

23

mixed-integer MP is as follows:

(MP) : min
u,u′,y,η

∑
j∈J

fjyj + ρ1

[∑
i∈I

∑
j∈J

c′iju
′
ij +

∑
j∈J

∑
k∈K

cjkujk

]
+ ρ2η (2.37)

s.t. (2.2)− (2.7)

η ≥
∑
s∈S

ps

[∑
k∈K

dkΓ̂ks −
∑
i∈I

q′iθ̂is −
(∑
j∈J

qjyjψ̂js −
∑
j∈J

qjyjξjsω̂js

)]
(2.38)

η unrestricted (2.39)

In each iteration of the Benders decomposition algorithm, we add the optimality cut (2.38) to the

MP. As we define the dummy facility to account for lost sales, the SP is always feasible; therefore,

we do not need to add a feasibility cut to the MP. The algorithm terminates when the optimality gap

between the upper bound and the lower bound is less than a specified threshold value (ϵ). The MP

is the relaxation of NDM’ since a subset of interdiction scenarios and post-interdiction flows are

considered. Therefore, the MP provides a lower bound on the objective function value of the NDM’

model. On the other hand, for a design decision ŷ, the SP determines the optimal decision xj for

the interdictor. This decision is feasible for the NDM’ model. Therefore, the sum of the installation

cost of the ŷ solution, the weighted pre-interdiction transportation cost, and the weighted cost of the

SP provides an upper bound on the objective function value of the NDM’ model.

Let UB denote an upper bound on the optimal objective value obtained by solving the SP. Let LB

indicate a lower bound on the optimal objective value obtained by solving the MP, and t represents

the current iteration. Gt refers to the set of extreme points generated up to iteration t, and ϵ is

the desirable optimality gap. The pseudo-code of the classic Benders decomposition algorithm is

presented in Algorithm 7.

24

Algorithm 1 Benders Decomposition Algorithm (BD)
UB ←∞, LB ← −∞, t← 0, Gt ← ∅

While (
UB − LB

UB
> ϵ) do

Solve the MP to obtain y

Update LB

Solve the SP for a given ŷ

Obtain dual variables (Γ, ϕ, θ, ψ, ω)

Update UB

Gt+1 ← Gt ∪ {Γ, ϕ, θ, ψ, ω}

t← t+ 1

End while

Due to a large number of interdiction scenarios, the SP becomes harder to solve as the number

of candidate facilities increases. To overcome this issue, we present dual decomposition algorithm

to solve the stochastic SP more efficiently.

2.4.2 Dual Decomposition Algorithm for Solving the Subproblem

Dual decomposition is one of the widely used approaches in stochastic programming as it creates

subproblems structurally similar to the original formulation (Märkert and Gollmer, 2008; Guo et al.,

2015). It is based on the reformulation of the extensive form of the deterministic equivalent and

Lagrangian relaxation (Carøe and Schultz, 1999).The idea of dual decomposition is to decompose

the problem by scenarios. To decompose the problem by scenarios, we introduce the copies of xjs

of the first-stage variables xj (interdiction decisions) with the non-anticipativity constraint xj1 =

xj2 = · · · = xjS . The non-anticipativity constraint ensures that the first-stage variables take the

same value in all scenarios. By relaxing the non-anticipativity constraint, we can decompose the

problem into |S| disjoint SPs. We use the subgradient method to solve the resulting Lagrangian

dual. We rewrite the SP as MIP SPDD with non-anticipativity constraint (2.44).

25

(SPDD) : max
x,Γ,ϕ,θ,ψ,ω

∑
s∈S

ps

[∑
k∈K

dkΓks −
∑
i∈I

q′iθis −
(∑
j∈J

qj ŷjψjs −
∑
j∈J

qj ŷjξjsωjs

)]
(2.40)

s.t. (2.18), (2.19), (3.9)

ωjs ≤Mxjs ∀j ∈ J, s ∈ S (2.41)

ωjs − ψjs −Mxjs ≥ −M ∀j ∈ J, s ∈ S (2.42)∑
j∈J

xjs ≤ B ∀s ∈ S (2.43)

∑
s∈S

Hjsxjs = 0 ∀j ∈ J (2.44)

Γks, ϕjs, θis, ψjs, ωjs ≥ 0 ∀i ∈ I, j ∈ J, k ∈ K, s ∈ S (2.45)

xjs ∈ {0, 1} ∀j ∈ J, s ∈ S (2.46)

The matricesHjs ∈ R(S−1)×SJ for the representation of constraint (2.44) are: Hj1 =


1

...

1

 , Hj2 =



−1

0

...

0


, · · · , HjS =



0

...

0

−1


.

By relaxing constraint (2.44) with Lagrange multipliers λj , we obtain the following Lagrangian

function:

Ds(λ) : max ps

[∑
k∈K

dkΓks −
∑
i∈I

q′iθis −
∑
j∈J

qj ŷj(ψjs − ξjsωjs)
]
+
∑
j∈J

λjHjsxjs (2.47)

26

s.t. Γks − ϕjs ≤ cjk ∀j ∈ J, k ∈ K (2.48)

ϕjs − θis − ψjs ≤ c′ij ∀i ∈ I, j ∈ J (2.49)

ωjs ≤Mxjs ∀j ∈ J (2.50)

ωjs ≤ ψjs ∀j ∈ J (2.51)

ωjs − ψjs −Mxjs ≥ −M ∀j ∈ J (2.52)∑
j∈J

xjs ≤ B (2.53)

Γks, ϕjs, θis, ψjs, ωjs ≥ 0 ∀i ∈ I, j ∈ J, k ∈ K (2.54)

xjs ∈ {0, 1} ∀j ∈ J (2.55)

Hence, the Lagrangian dual becomes:

(LD) : min
λ
D(λ), where D(λ) =

∑
s∈S

Ds(λ) (2.56)

To solve LD, we use the subgradient algorithm as stated in Algorithm 2. At each iteration t

of the subgradient method, we compute the new Lagrange multiplier λt in the direction of sub-

gradient st with the step length of µt. The parameter ε controls the step length at every iteration.∑
s∈S Ds(λ

t) provides the upper bound (UB’) because the non-anticipativity constraint (2.44) may

not be satisfied. In order to calculate the lower bound (LB’), we solve SPDD by fixing the values of

(Γ̂, ϕ̂, θ̂, ψ̂) obtained by solving Lagrangian function Ds(λ). Due to constraint (2.44) in SPDD, the

x solutions would be the same; therefore, we find the lower bound. The algorithm terminates when

one of the following stopping criteria has been reached: (i) maximum number of iterations, (ii) the

upper bound has not improved after a given number of consecutive iterations, and (iii) optimality

gap has been reached (UB’−LB’
UB’ < ϵ’).

27

Algorithm 2 Subgradient Method
UB’←∞, t← 0, λ0 ← 0, ε0 ← 2

Define LB’ as the lower bound on the optimal value.

While (stopping criteria is not satisfied) do

Solve the Lagrangian function Ds(λ
t)

If(
∑

s∈S Ds(λ
t) < UB’) then

UB’←
∑

s∈S Ds(λ
t)

end if

Evaluate the subgradient st

Calculate the step length µt =
εt(

∑
s∈S Ds(λ

t)− LB’)
∥ st ∥2

λt+1 ← λt + µtst

t← t+ 1

End-do

Due to the integrality conditions in the SP, there may be a duality gap between the optimal value

of the Lagrangian dual (2.56) and the optimal value of the SP. Generally, the interdiction decisions

may not be the same in all scenarios unless the duality gap vanishes. As identified in Algorithm 3, if

constraint (2.44) is violated, we first group the scenarios with the same xj solutions. Let P denote

the groups of distinct solutions. For each solution P ∈ P , we fix the value of xP and resolve the SP

to update the dual variables (ΓP , ϕP , θP , ψP , ωP). Among those solutions, we choose the one that

maximizes the value of the objective function.

28

Algorithm 3 Dual Decomposition Algorithm for Solving the SP
For given ŷ, solve LD (2.56) with the subgradient algorithm

If (
∑

s∈S Hjsxjs = 0, ∀j ∈ J) then

The optimal solution of the SP is found.

Obtain dual variables (Γ, ϕ, θ, ψ, ω) and update UB

Else

Find scenarios with different xj solutions and let P consist of the distinct solutions

While (P ̸= ∅) do

Select and delete a solution P from P .

Solve the SP with fixed xP to find dual variables (ΓP , ϕP , θP , ψP , ωP) and the value

of objective function ηP .

End while

Choose the solution with maximum ηP

Update UB and obtain dual variables (Γ, ϕ, θ, ψ, ω).

End if

2.4.3 Supervalid and Valid Inequalities

The convergence of the BD algorithm can be enhanced by adding supervalid inequality (SVI)

and valid inequality (VI) to the MP. VI reduces the feasible LP relaxation region without eliminating

any integer solutions. In contrast, SVI reduces the integer feasible region by eliminating integer

solutions. SVI is guaranteed not to eliminate any optimal solutions unless the incumbent (best

solution found so far) is optimal. The presented SVI in this paper is derived from (Wood, 2010)

while VI has been derived by exploiting the characteristics of NDM.

Proposition 2.1. Consider the Benders optimality cut

η +
∑
s∈S

ps

(∑
j

qjyjψ̂js −
∑
j

qjyjξjsω̂js

)
≥

∑
s∈S

ps

(∑
k

dkΓ̂ks −
∑
i

q′iθ̂is

)

added to the MP. The following inequality is supervalid.

29

∑
j

I(ψ̂js − ξjsω̂js)yj ≥ 1 (2.57)

where

I(ψ̂js − ξjsω̂js) =


1, if

∑
s∈S(ψ̂js − ξjsω̂js) > 0

0, otherwise

Proof. The statement supposes that feasible solution (ŷ, ψ̂, ω̂, Γ̂, θ̂) generates the Benders cut (2.57).

Let η̂ =
∑

s ps

[∑
k dkΓ̂ks −

∑
i q

′
iθ̂is −

(∑
j qj ŷjψ̂js −

∑
j qj ŷjξjsω̂js

)]
. We assume that the

incumbent leads to η∗ < η. Let (η∗, y∗) denote the optimal solutions to the MP and note that∑
s ps

∑
j(ψ̂js − ξjsω̂js)qjy

∗
j =

∑
j I(ψ̂js − ξjsω̂js)y

∗
j = 0 or ≥ 1. When

∑
s

∑
j I(ψ̂js −

ξjsω̂js)y
∗
j = 0,

η∗ ≥
∑

s ps

[∑
k dkΓ̂ks −

∑
i q

′
iθ̂is −

∑
j qjy

∗
j (ψ̂js − ξjsω̂js)

]
is true for any (ψ̂, ω̂, Γ̂, θ̂),

= η̂ −
∑

s ps
∑

j qjy
∗
j (ψ̂js − ξjsω̂js) +

∑
s ps

(∑
j qj ŷjψ̂js −

∑
j qj ŷjξjsω̂js

)

≥ η̂ because
∑

s ps
∑

j qjy
∗
j (ψ̂js − ξjsω̂js) = 0

≥ η because ŷ does not need to be the incumbent solution and

> η∗ by assumption; but this is a contradiction.

Therefore, if the incumbent solution is not optimal,
∑

j I(ψ̂js− ξjsω̂js)y∗j ≥ 1 must be true for

every optimal solution (η∗, y∗). Hence, the inequality
∑

j I(ψ̂js− ξjsω̂js)y∗j ≥ 1 is supervalid.

In deriving the valid inequality (2.58), we use the observation that the post-interdiction cost is

always greater than or equal to the pre-interdiction cost.

30

η ≥
∑
i∈I

∑
j∈J

c′iju
′
ij +

∑
j∈J

∑
k∈K

cjkujk (2.58)

We add SVI and VI to the MP at each iteration of the Benders decomposition algorithm to

improve the computation time. In Section 2.5, we compare the efficiency of acceleration techniques

on the performance of the BD algorithm.

2.5 Computational Experiments

Extensive computational experiments are conducted to evaluate the performance of the pro-

posed Benders decomposition algorithm and its algorithmic refinements. First, we analyze the

performance of acceleration techniques over different problem instances. Instances vary in terms of

size and parameter settings, e.g., the number of potential facilities, demand nodes, interdiction sce-

narios, the weight of post-interdiction cost, interdiction success probability, and interdiction budget.

Next, we analyze the impact of key parameters on the CPU time and the obtained solution.

The algorithms are coded in C and run on a workstation with 3.10 GHz Intel Xeon E5 2687W

V3 processor under the Linux environment using the Callable Library for CPLEX 12.10.0. In the

following subsections, we summarize the results of our experiments.

2.5.1 Test Instances

The test instances are generated from the 2000 census data comprising 49, 88, and 150 largest

cities in the continental United States (Snyder and Daskin, 2005). The 49-node data set consists of

the states’ capitals of the USA plus Washington D.C. The 88-node data set is obtained by considering

the capitals and the 50 largest cities in the USA by omitting duplicates. The 150-node data set

comprises the 150 largest cities in the USA. We consider five supply nodes to serve 49, 88, and 150

demand nodes. The set of supply nodes and candidates for intermediate facilities are chosen from

demand sets, i.e., each city can simultaneously be the demand node, facility, and/or the supply node.

The transportation cost is computed based on the greatest circle distance between two nodes. The

capacity of intermediate facilities is set to qj = U [0.1, 0.3] ×
∑

k dk. We also set the capacity of

each supply node equal to the total demand (q′i =
∑

k dk). For every instance, we solve a p-median

31

model to find the location of supply nodes and the candidate locations for intermediate facilities.

The interdiction budget B (expressed in terms of the number of facilities to be interdicted) varies

from 1 to 5. The number of scenarios is set to 2|J |. We consider three different values 0.5, 0.75, and

0.9 for the success probability (p) to study the effects of varying success probability on the design

and the performance. The weight of post-interdiction cost in the objective function (ρ2) is varied

from 0.2, 0.5 to 0.8. We use these values to analyze the effects of varying post-interdiction costs on

the network design when it has low, neutral, and high values in the objective function.

Table 2.5 provides the details of the test problems. These problems are classified into nine

sets based on the number of facilities, demand nodes, and the number of scenarios. Each set

contains 45 instances obtained by varying the values of ρ2, p, and B. Thus, our testbed com-

prises a total of 405 instances. These instances can be downloaded from https://bit.ly/

StochasticDesignInstances. The CPU time limit for experiments with Sets I to VI is set

to 5 hours (18,000 seconds), whereas for Sets VII to IX, it is set to 10 hours (36,000 seconds). The

optimality gap for all instances is set to 0.1%.

Table 2.5: Summary of the Instance Sets used in the Computational Experiments

Instance Set Supply Nodes (|I|) Facilities (|J |) Demand Nodes |K| # Scenarios (|S|) Time Limit (s)
I (Small) 5 10 49 1,024 18,000
II (Small) 5 10 88 1,024 18,000
III (Small) 5 10 150 1,024 18,000
IV (Moderate) 5 12 49 4,096 18,000
V (Moderate) 5 12 88 4,096 18,000
VI (Moderate) 5 12 150 4,096 18,000
VII (Large) 5 15 49 32,768 36,000
VIII (Large) 5 15 88 32,768 36,000
IX (Large) 5 15 150 32,768 36,000

The initial value of ε is in the interval (0,2] for the subgradient method used in the dual decom-

position algorithm. If the value of the upper bound does not improve in 20 consecutive iterations,

we decrease the value of ε to ε/2. Moreover, the algorithm terminates if the upper bound does

not improve in 40 consecutive iterations. The maximum number of iterations for the subgradient

method is set to 100, and the gap is ϵ’ = 0.5%.

32

https://bit.ly/StochasticDesignInstances
https://bit.ly/StochasticDesignInstances

2.5.2 Analysis of Algorithmic Refinements

In the first part of the computational experiments, we analyze the effectiveness of the standard

Benders decomposition method and the proposed algorithmic refinements. The four variants of the

Benders decomposition algorithm are as follows:

• BD: This is the classic Benders decomposition algorithm, where we solve the MP and the SP

iteratively.

• BD-VI: In this variant, we add SVI (2.57) and VI (2.58) to the MP and solve the MP and the

SP iteratively.

• BDD: In this variant, the SP is solved using dual decomposition method. However, no valid

inequalities are added. We solve the MP and the SP iteratively.

• BDD-VI: In this variant, the SP is solved using dual decomposition method, and we add SVI

(2.57) and VI (2.58) to the MP. We solve the MP and the SP iteratively.

To compare the performance of the algorithms, we report the total number of instances solved

to optimality using each version of the algorithm in Table 2.6 and the average gap and CPU time for

different sets of instances in Table 2.7. The detailed results are provided in Table A.1 - Table A.3 in

Appendix A.1.

Table 2.6: Number of Instances Solved to Optimality within the Time Limit

Set BD BD-VI BDD BDD-VI
I 45 45 45 45
II 45 45 45 45
III 22 45 45 45
IV 45 45 45 45
V 41 45 45 45
VI 14 38 42 45
VII 38 42 43 45
VIII 14 25 28 32
IX 9 10 13 22
Total 273/405 (67%) 340/405 (84%) 351/405 (87%) 369/405 (91%)

Results in Table 2.6 and 2.7 present the summary of improvements in CPU time and optimality

33

Table 2.7: Summary of the Performance of the Algorithms

Average Gap (%) Average Time (s)
Set BD BD-VI BDD BDD-VI BD BD-VI BDD BDD-VI
I 0 0 0 0 1,399 1,216 1,061 867
II 0 0 0 0 4,264 3,261 2,686 1,953
III 2.97 0 0 0 17,143 13,648 12,064 8,708
IV 0 0 0 0 5,787 4,625 3,912 3,035
V 0.63 0 0 0 12,116 10,485 8,343 7,690
VI 4.34 0.69 0.13 0 17,210 15,683 13,496 10,474
VII 0.30 0.12 0.04 0 18,262 16,268 15,083 12,778
VIII 4.27 2.29 1.02 0.49 33,216 31,791 30,554 28,569
IX 13.78 8.07 4.76 1.72 34,014 33,380 32,980 31,974
Average 2.92 1.24 0.66 0.25 15,934 14,484 13,353 11,783

gap achieved by algorithmic refinements across the instance sets. The acceleration techniques pro-

vide significant contributions to the average optimality gap and the number of instances solved to

optimality within the time limit. Results in Table 2.6 show that we are able to solve 67% (273 out

of 405) of the instances to optimality using BD. Note that BD could solve some small and moderate

set instances (Sets I, II, and IV) to optimality. The average optimality gap (across all 405 instances)

is 2.92%. By adding the valid inequalities to the BD algorithm, we are able to solve 17% more

(340 out of 405) instances to optimality. These instances belong to Sets III, V to IX. Moreover, the

gap reduces by 57.5% and the CPU time reduces by 9%. On decomposing the SPs (BDD), we are

able to solve 20% more instances to optimality compared to BD. Most of these instances belong to

moderate and large-size instances (Sets V to IX). The average optimality gap reduces by 77% and

the average CPU time reduces by 16%.

In the final version of the algorithm BDD-VI, we add two algorithmic refinements to the BD

algorithm. The results show significant improvements in the number of instances solved to optimal-

ity, as well as the average optimality gap and CPU time over BD. More specifically, the results in

Tables 2.6 and 2.7 show that we are able to solve 91% (369 out of 405) of the instances to optimal-

ity within the time limit. These instances belong to small (Sets I, II, and III), moderate (Sets IV, V,

and VI), and large (Set VII) instances. Using BDD-VI results in a 91.5% reduction in the average

gap and a 26% reduction in average CPU time compared to the BD algorithm. By comparing the

results for large instances in Table 2.7, BD has an average gap of 6.1%, while BDD-VI improves

the performance significantly and solves the instances with an average gap of 0.7%. The average

34

optimality gap for the instances that could not be solved to optimality (Sets VIII and IX) is 2.7%

(range: 0.4% and 7.2%) compared to the average optimality gap of 12.1% (range: 0.9% to 45%)

with the BD algorithm.

Analyzing the optimality gap of each algorithm across all the instances leads to the following

observations: (i) algorithms are sensitive to the number of scenarios. As the number of scenarios

increases, the gap increases, (ii) BDD performs better than BD and BD-VI because it solves the

scenario SPs separately instead of solving the SP with all scenarios, (iii) the best algorithm is BDD-

VI which solves more instances to optimality within the time limit, and (iv) for each |J |, as the

number of demand nodes |K| increases, the gap increases as well.

We compare the performance profile of algorithms in terms of CPU time for small, moderate,

and large instances in Figure 2.3. The performance profile in Figure 2.3-(a) shows that, for small

instances (Sets I, II, and III), BDD-VI solves 64 instances to optimality within 2,000 seconds of

CPU time while BD solves only 45 instances (42% more instances). The figure also depicts that

BDD-VI solves 56% of instances in 52% less time than the BD algorithm. Moreover, the time limit

is reached for 17% of the instances using the BD algorithm, while the other three versions of the

algorithm solve all of the small instances within the time limit. For moderate instances (Sets IV, V,

and VI), we observe from Figure 2.3-(b) that (i) the BD algorithm can solve 11% of instances in less

than 5,000 seconds of CPU time compared to 20%, 26.6%, and 34.8% for BD-VI, BDD, BDD-VI

algorithms, respectively, and (ii) 74%, 94.8%, and 97.7% of instances are solved with BD, BD-VI,

and BDD, respectively, while BDD-VI solves all instances to optimality in the time limit. For large

instances (Sets VII, VIII, and IX), the results show that (i) BDD-VI solves 20% of instances with

35% less time compared with BD algorithm, and (ii) BDD-VI solves 73% of instances compared

to BD, which is able to solve only 46% of instances within the time limit. We can conclude that

the proposed acceleration techniques improve the BD algorithm’s performance substantially. The

superiority of the BDD-VI algorithm is demonstrated through the performance profile charts from

small to large instances in Figure 2.3.

35

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000

0

50

100

Computation Time (s)

Pe
rc

en
ta

ge
of

In
st

an
ce

s
So

lv
ed

BD
BD-VI
BDD

BDD-VI

(a) Small Instances (Sets I, II, III)

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000

0

50

100

Computation Time (s)

Pe
rc

en
ta

ge
of

In
st

an
ce

s
So

lv
ed

BD
BD-VI
BDD

BDD-VI

(b) Moderate Instances (Sets IV, V, VI)

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000

0

20

40

60

80

Computation Time (s)

Pe
rc

en
ta

ge
of

In
st

an
ce

s
So

lv
ed

BD
BD-VI
BDD

BDD-VI

(c) Large Instances (Sets VII, VIII, IX)

Figure 2.3: Performance Profile of CPU Time for Different Algorithms

36

2.5.3 Performance on Larger-size Instances

In this section, we compare the performance of BD-VI and BDD-VI over larger-size instances.

Table 2.8 provides the details of the larger test instances. For Set X to XIV, we vary the number

of facilities from 16 to 20 and the number of customers from 49 to 88, and 150. In addition,

we use “Capa” dataset where we vary the number of customers from 200 to 500, and 1000. The

“Capa” dataset comprises 100 facilities and 1000 customers1. Instances with 200 and 500 customers

are generated by selecting the first 200 and 500 customers from the 1000 customers. To choose

the suppliers as well as the candidate locations for intermediate facilities, p-median problems are

solved. The capacity of intermediate facilities and suppliers are set to qj = U [0.1, 0.3] ×
∑

k dk,

and q′i =
∑

k dk respectively.

Table 2.8: Summary of the Large Instance Sets used in the Computational Experiments

Instance Set Supply Nodes (|I|) Facilities (|J |) Demand Nodes (|K|) # Scenarios (|S|) Time Limit (s)
X 5 16 49, 88, 150 65,536 86,400
XI 5 17 49, 88, 150 130,072 86,400
XII 5 18 49, 88, 150 262,144 86,400
XIII 5 19 49, 88, 150 524,288 86,400
XIV 5 20 49, 88, 150 1,048,576 86,400
Capa-I 5 10 200, 500, 1000 1,024 86,400
Capa-II 5 12 200, 500, 1000 4,096 86,400
Capa-III 5 15 200, 500, 1000 32,768 86,400

To compare the performance of BD-VI and BDD-VI for larger-size instances, we run the ex-

periments for Set X to XIV instances with ρ2 = 0.5 and p = 0.75. We report the CPU time (s)

and optimality gap (%) for BD-VI and BDD-VI in Table 2.9. The results in Table 2.9 depict the

efficiency of the proposed algorithms to solve larger-size instances with up to 18 facilities, 150 cus-

tomers, and 218 scenarios. For instances with 19 facilities and 219 scenarios, the optimality gap

ranges from 0 to 12.4%. For instances with 20 facilities and 220 scenarios, we face insufficient

memory. In line with the results of Section 2.5.2, we conclude that BDD-VI solves more instances

to optimality (68% compared with 58% of instances solved optimally with BD-VI). BDD-VI also

outperforms BD-VI in terms of CPU time and optimality gap. The results in Table 2.10 confirm

that BD-VI and BDD-VI can solve the “Capa” dataset instances with up to 1000 customers. As

expected, BDD-VI outperforms BD-VI in larger-size instances. More specifically, BDD-VI reduces
1http://people.brunel.ac.uk/˜mastjjb/jeb/orlib/capinfo.html

37

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/capinfo.html

the CPU time by 17.6%, 15%, and 13.5% compared with BD-VI for instances with 200, 500, and

1000 customers, respectively.

Table 2.9: Summary of the Performance of BD-VI and BDD-VI for Larger-size Instances

|J | B

|K| = 49 |K| = 88 |K| = 150

BD-VI BDD-VI BD-VI BDD-VI BD-VI BDD-VI

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

16 1 0 27,194 0 22,526 0 40,352 0 32,726 0 55,085 0 45,628
2 0 34,086 0 29,159 0 45,540 0 37,854 0 63,573 0 50,524
3 0 46,632 0 38,291 0 53,228 0 42,687 0 69,615 0 60,208
4 0 48,335 0 42,516 0 58,002 0 48,062 0 75,883 0 67,175
5 0 55,888 0 47,258 0 64,830 0 52,341 0 82,052 0 77,955

17 1 0 51,438 0 44,753 0 63,857 0 49,869 0 72,960 0 61,217
2 0 57,823 0 49,707 0 70,542 0 55,403 0 79,931 0 67,083
3 0 64,742 0 52,843 0 75,634 0 63,500 0 86,257 0 76,910
4 0 72,943 0 64,287 0 83,582 0 69,385 2.3 86,400 0 84,394
5 0 81,358 0 66,341 1.5 86,400 0 79,247 3.6 86,400 2.9 86,400

18 1 0 63,826 0 52,633 0 71,837 0 60,854 2.2 86,400 0 85,175
2 0 68,237 0 59,871 0 78,518 0 68,173 3.4 86,400 2.9 86,400
3 0 78,524 0 72,370 0 83,694 0 79,237 4.2 86,400 3.3 86,400
4 0 82,421 0 76,110 2.1 86,400 0 82,145 4.9 86,400 4.2 86,400
5 2.8 86,400 0 81,754 3.5 86,400 2.8 86,400 5.9 86,400 5.1 86,400

19 1 0 83,706 0 75,259 2.1 86,400 1.8 86,400 3.4 86,400 2.6 86,400
2 2.2 86,400 0 84,697 3.1 86,400 2.4 86,400 4.5 86,400 3.8 86,400
3 3.7 86,400 3.1 86,400 4.3 86,400 3.6 86,400 6.7 86,400 5.9 86,400
4 4.6 86,400 3.9 86,400 5.5 86,400 4.8 86,400 9.3 86,400 8.9 86,400
5 5.5 86,400 4.8 86,400 7.3 86,400 6.7 86,400 12.4 86,400 10.4 86,400

Average 0.94 67,458 0.61 60,979 1.47 74,041 1.11 66,994 3.14 81,108 2.50 77,013

Table 2.10: Summary of the Performance of BD-VI and BDD-VI for “Capa” Instances

Computation Time (s)

|J | B
|K| = 200 |K| = 500 |K| = 1000

BD-VI BDD-VI BD-VI BDD-VI BD-VI BDD-VI

10 1 12,523 9,286 18,259 13,742 24,492 19,724
2 14,508 10,652 23,638 16,751 31,714 23,754
3 15,943 11,834 27,937 22,710 36,058 30,054
4 17,872 12,530 29,630 25,721 40,394 36,841
5 19,837 15,731 33,712 29,341 43,567 39,151

12 1 18,967 11,842 25,710 18,755 30,333 23,467
2 20,635 14,637 30,934 23,515 36,069 30,562
3 22,821 16,341 35,564 29,410 41,810 36,085
4 26,682 19,751 40,800 34,681 47,375 42,251
5 29,927 23,741 45,375 39,417 53,381 49,541

15 1 25,413 21,071 36,217 28,978 40,837 33,754
2 38,716 37,008 42,607 39,014 48,571 43,541
3 39,937 37,890 48,839 42,184 55,356 48,063
4 43,873 39,427 51,252 48,370 60,271 54,517
5 45,594 42,271 55,873 51,762 70,714 60,541

Average 26,217 21,601 36,423 30,957 44,063 38,123
* These instances were solved to optimality within the time limit.

38

2.5.4 Sensitivity Analysis of Model Parameters on Computation Time

We analyze the impact of various model parameters such as interdiction budget, interdiction

success probability, and the relative weight of post-interdiction cost on the computation time using

the results obtained with BDD-VI algorithm.

As shown in Figure 2.4, increasing the budget (B) results in an increase in the average CPU time

across all the instances. Increasing the interdiction budget results in opening more facilities in the

distribution network. As a result, the combination of interdictions to consider in the SP increases,

resulting in increased CPU time.

1 2 3 4 5

0

5,000

10,000

15,000

Interdiction Budget (B)

C
PU

Ti
m

e
(s

)

(a) Small Instances (Sets I, II, III)

1 2 3 4 5

0

5,000

10,000

15,000

Interdiction Budget (B)

C
PU

Ti
m

e
(s

)

(b) Moderate Instances (Sets IV, V, VI)

1 2 3 4 5
0

10,000

20,000

30,000

Interdiction Budget

C
PU

Ti
m

e
(s

)

(c) Large Instances (Sets VII, VIII, IX)

Figure 2.4: Effects of Varying Interdiction Budget (B) on Computation Time

The effects of varying interdiction success probability (p) on the CPU time are shown in Figure

2.5. The results reveal that increasing interdiction success probability from 0.5 to 0.9 increases the

39

average CPU time by 21%, 21%, and 28% for small, moderate, and large instances, respectively.

0.5 0.75 0.9

0

5,000

10,000

15,000

Success Probability

C
PU

Ti
m

e
(s

)

(a) Small Instances (Sets I, II, III)

0.5 0.75 0.9
0

5,000

10,000

15,000

Success Probability

C
PU

Ti
m

e
(s

)

(b) Moderate Instances (Sets IV, V, VI)

0.5 0.75 0.9
0

10,000

20,000

30,000

Success Probability

C
PU

Ti
m

e
(s

)

(c) Large Instances (Sets VII, VIII, IX)

Figure 2.5: Effects of Varying Interdiction Success Probability (p) on Computation Time

The effects of changing the weight of post-interdiction cost (ρ2) on CPU time are illustrated

in Figure 2.6. This analysis reveals that increasing the relative importance of post-interdiction cost

leads to an increase in CPU time. For example, increasing the weight of post-interdiction cost from

0.2 to 0.8 increases the average CPU time by 11%, 24%, and 23% for small, moderate, and large

instances, respectively. This is because increasing the importance of post-interdiction cost leads to

locating more facilities. Such an increase makes the SP difficult.

40

0.2 0.5 0.8

0

5,000

10,000

15,000

Weight of Post-interdiction Cost

C
PU

Ti
m

e
(s

)

(a) Small Instances (Sets I, II, III)

0.2 0.5 0.8
0

5,000

10,000

15,000

Weight of Post-interdiction Cost

C
PU

Ti
m

e
(s

)

(b) Moderate Instances (Sets IV, V, VI)

0.2 0.5 0.8
0

10,000

20,000

30,000

Weight of Post-interdiction Cost

C
PU

Ti
m

e
(s

)

(c) Large Instances (Sets VII, VIII, IX)

Figure 2.6: Effects of Varying the Weight of Post-interdiction Cost (ρ2) on Computation Time

2.5.5 Sensitivity Analysis of Model Parameters on Distribution Network Design

In this section of computational experiments, we analyze the effects of interdiction budget, suc-

cess probability, and the weight of post-interdiction cost on the design of the distribution network.

Figure 2.7 depicts the effects of varying interdiction budget on the number of open facilities for

Set I at varying levels of success probability while using the weight of post-interdiction cost 0.5

(ρ2 = 0.5). The results show that increasing the interdiction budget results in an increase in the

number of open facilities.

In Table 2.11, we analyze the impact of interdiction budget on network costs using instance Set

I with ρ2 = 0.5 and p = 0.5. The results indicate that an increase in the interdiction budget leads

to an increase in the number of open facilities, which also helps reduce pre-interdiction cost. The

41

1 2 3 4 5
0

5

10

Interdiction Budget

N
um

be
ro

fO
pe

n
Fa

ci
lit

ie
s

ρ2 = 0.5, p = 0.5
ρ2 = 0.5, p = 0.75
ρ2 = 0.5, p = 0.9

Figure 2.7: Effects of Varying Interdiction Budget on the Number of Open Facilities for Set I

rationale is that as B increases, the model prescribes more facilities, allowing demand nodes to be

served by nearby facilities.

Table 2.11: Effects of Varying Interdiction Budget on Network Costs

Interdiction
Budget (B)

Installation
Cost ($)

Pre-interdiction
Cost ($)

Expected
Post-interdiction

Cost ($)
Total Obj.

1 799,200 1,132,922 1,392,510 2,061,916
2 799,200 1,132,922 1,598,352 2,164,837
3 907,800 1,077,483 1,767,233 2,330,158
4 1,024,500 1,077,483 1,839,460 2,482,972
5 1,169,400 1,076,019 1,784,796 2,599,808

Using the same instance Set I with interdiction budget of 3 and ρ2 = 0.5, we illustrate the

implications of varying levels of interdiction success probability on the network design in Figure

2.8. In Figure 2.8, the worst-case happens when all the interdictions are successful (ξjs = 1). When

probability is 0.75, we open an additional facility compared with probability of 0.5. However,

by changing the probability from 0.75 to 0.9, the number of open facilities does not change, but

different facilities are chosen. The increase in the interdiction success probability causes more

installation cost in the design stage.

We compare the costs for demand satisfaction of each design in Table 2.12. On the one hand,

we observe that the installation and pre-interdiction costs for p = 0.9 are higher than p = 0.75.

On the other hand, the post-interdiction cost reduces due to a more robust network design. The

42

proposed solution provides a robust network since we observe a higher number of open facilities

for higher values of interdiction success probability. According to Table 2.12, the worst-case post-

interdiction cost for p = 0.9 decreases 12.2% by 3.5% more installation cost compared with the

costs of p = 0.75.

Figure 2.8: Effects of Varying p on the Design for Set I, ρ2 = 0.5 and B = 3. (a) Pre-interdiction
Flow for p = 0.5, (b) Worst-case Post-interdiction Flow for p = 0.5, (c) Pre-interdiction Flow for
p = 0.75, (d) Worst-case Post-interdiction Flow for p = 0.75, (e) Pre-interdiction Flow for p = 0.9,
(f) Worst-case Post-interdiction Flow for p = 0.9

The impact of changing the weight of post-interdiction costs, ρ2, is presented in Figure 2.9

43

Table 2.12: Effects of Varying Interdiction Success Probability on Network Costs

p
Installation

Cost

Pre-interdiction Post-interdiction

Transportation
Cost

Per Unit
Transportation Cost

Worst-case
Transportation Cost

Per Unit
Transportation Cost

0.50 907,800 1,077,483 441 3,151,137 1,290
0.75 1,024,500 1,077,483 441 2,665,473 1,091
0.90 1,060,800 1,131,318 463 2,340,339 958

where we compare the designs for instance Set I, with an interdiction budget of 4, and an interdiction

success probability of 0.5. When the relative weight of ρ2 is low, the solution obtained prioritizes

low installation cost at the expense of lost sales in a worst-case interdiction scenario of 4 disabled

facilities as shown in Figures 2.9-(a) and (b). Increasing the relative weight of post-interdiction cost

to 0.5 and 0.8 results in a higher number of open facilities and installation cost while decreasing

the post-interdiction cost. The results in Table 2.13 indicate that by increasing the weight of the

post-interdiction cost from 0.5 to 0.8, the installation and pre-interdiction costs increase by 3.5%

and 5%, respectively, while the worst-case post-interdiction cost decreases by 23.3%.

Table 2.13: Effects of Varying the Weight of Post-interdiction Cost on Network Costs

Weight of
Post-interdiction

Cost

Installation
Cost

Pre-interdiction Post-interdiction

Transportation
Cost

Per Unit
Transportation Cost

Worst-case
Transportation Cost

Per Unit
Transportation Cost

0.20 907,800 1,077,483 441 6,231,735 2,551
0.50 1,024,500 1,077,483 441 3,339,391 1,367
0.80 1,060,800 1,131,318 463 2,560,058 1,048

2.5.6 Computational Results for the Correlated Facility Interdictions

In this section, we analyze the effects of correlated facility interdictions on the performance of

the algorithms and the optimal design. To define the correlation matrix between the facilities, we

use the transportation cost information between facilities. We consider five levels of correlation as

follows:

44

Figure 2.9: Effects of Varying ρ2 on the Design for Set I, p = 0.5 and B = 4. (a) Pre-interdiction
Flow for ρ2 = 0.2, (b) Worst-case Post-interdiction Flow for ρ2 = 0.2, (c) Pre-interdiction Flow
for ρ2 = 0.5, (d) Worst-case Post-interdiction Flow for ρ2 = 0.5, (e) Pre-interdiction Flow for
ρ2 = 0.8, (f) Worst-case Post-interdiction Flow for ρ2 = 0.8

ϱjj′ =



1, if cjj′ ≤ 250

0.75, if 250 < cjj′ ≤ 500

0.5, if 500 < cjj′ ≤ 1000

0.25, if 1000 < cjj′ ≤ 1500

0, if cjj′ > 1500
45

Using the instance Set I with interdiction budget of 2, ρ2 = 0.5, and p = 0.75, we demonstrate

the designs of the model without correlation and the model with correlation in Figure 2.10. In Fig-

ure 2.10-(d), the capacity of facilities represented by green triangles is impacted by the interdiction

of other facilities. The interdiction of the two facilities does not influence the capacity of the red

facilities shown in Figure 2.10-(d). We observe that, when correlation exists among facilities, we

need to open more facilities in order to meet the demand after interdiction. Furthermore, the inter-

diction strategy is affected by the correlation. In Figure 2.10-(b), the interdiction strategy involves

interdicting facilities that are distant from others, resulting in increased transportation costs to sat-

isfy demand. However, in Figure 2.10-(d), the interdictor interdicts the facilities in close proximity

to others because the interdiction of one facility reduces the capacity of the nearby facilities as well.

We observe that in Figure 2.10-(d), the demand of multiple customers is satisfied by more than

one facility. We conduct a comparison of network costs in Table 2.14. The results indicate that

considering the correlations, the installation cost increases significantly to hedge against the effects

of correlated facility interdictions. As a result, the worst-case post-interdiction cost increases only

5.6% in the correlated case.

Table 2.14: Effects of Correlation on Network Costs

Installation
Cost

Pre-interdiction
Transportation Cost

Worst-case
Post-interdiction

Transportation Cost
Open Facilities

No Correlation 799,200 1,132,922 2,395,631 CA,NY,TX,PA,IL,OH,CO
Correlation 1,169,400 1,076,019 2,530,067 CA,NY,TX,FL,PA,IL,OH,NC,WA,CO

We report the CPU time (s) and Gap (%) for BD-VI and BDD-VI in Table 2.15 for Set I to Set

IX with ρ2 = 0.5 and p = 0.75. The results indicate that considering correlation among facilities

increases the complexity of the model as the CPU time increases significantly. We also observe

that finding the design and interdiction strategies for B = 2 is the most challenging among all

interdiction budgets. This can be explained by the fact that finding the interdiction strategy to attack

two facilities with the highest correlation is harder than finding the strategy for attacking e.g., four

facilities with the highest correlation, increasing the complexity of the subproblem at each iteration

of the algorithm. Finally, we conclude that BDD-VI outperforms BD-VI in terms of CPU time and

gap for the correlated facility interdiction model (improving average CPU time and average gap by

46

Figure 2.10: Effects of Correlation on Network Design (a) Pre-interdiction Flow without Corre-
lation, (b) Worst-case Post-interdiction Flow without Correlation, (c) Pre-interdiction Flow with
Correlation, (d) Worst-case Post-interdiction Flow with Correlation

3% and 17%, respectively).

Table 2.15: Summary of the Performance of BD-VI and BDD-VI for Instances with Correlated
Facility Interdictions

|J | B

|K| = 49 |K| = 88 |K| = 150

BD-VI BDD-VI BD-VI BDD-VI BD-VI BDD-VI

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

10 1 0 4,276 0 3,742 0 13,527 0 11,863 0 26,238 0 23,674
2 0 16,404 0 14,577 0 27,613 0 25,317 0 62,281 0 56,712
3 0 13,125 0 11,862 0 22,652 0 20,739 0 46,051 0 42,051
4 0 16,137 0 13,505 0 24,698 0 22,621 0 45,332 0 41,308
5 0 21,658 0 17,779 0 22,652 0 18,912 0 21,992 0 19,081

12 1 0 28,637 0 24,843 0 47,539 0 41,931 2.2 86,400 1.8 86,400
2 0 72,419 0 65,831 2.1 86,400 0 83,628 3.3 86,400 2.9 86,400
3 0 64,953 0 60,374 0 77,234 0 73,711 2.8 86,400 2.2 86,400
4 0 62,273 0 58,224 1.8 86,400 1.1 86,400 2.3 86,400 1.9 86,400
5 0 59,214 0 51,760 2.1 86,400 1.7 86,400 3.1 86,400 2.5 86,400

15 1 2.3 86,400 1.7 86,400 3.4 86,400 2.4 86,400 4.8 86,400 4.1 86,400
2 4.9 86,400 3.8 86,400 6.5 86,400 5.8 86,400 9.1 86,400 8.4 86,400
3 4.1 86,400 3.3 86,400 4.4 86,400 4.1 86,400 6.6 86,400 5.9 86,400
4 3.8 86,400 3.1 86,400 5.2 86,400 4.6 86,400 7.7 86,400 6.8 86,400
5 3.2 86,400 2.3 86,400 5.1 86,400 4.5 86,400 6.9 86,400 6.3 86,400

Avgerage 1.22 52,740 0.95 50,300 2.04 61,808 1.61 60,235 3.25 71,060 2.85 69,788

47

2.5.7 Value of using Stochastic Design Model

In the last part of the computational experiments, we compare the results of our stochastic

model with the deterministic counterpart. Note that when p = 1, our stochastic model reduces to

the deterministic problem as all interdictions are successful. In Table 2.16, we report the design

and costs of the stochastic and the deterministic models for three selected instances from Sets I, IV,

and VII. The results of |J | = 10 and |J | = 12 show that we have to pay more installation cost to

reduce the post-interdiction cost in deterministic design compared with the stochastic design with

p = 0.75 and p = 0.5. At p = 0.9, the interdiction success probability is high; therefore, the

obtained design is the same as the deterministic design for |J | = 10 and |J | = 12. At |J | = 15, we

have to open 11 facilities with the deterministic model while the number of open facilities decreases

by reducing the interdiction success probability. Since the probability of worst-case interdiction is

reduced with lower p, fewer facilities are opened to avoid higher installation costs. Therefore, the

presented stochastic model provides a less conservative design compared to the deterministic model

by opening fewer facilities at the expense of a slight increase in the worst-case post-interdiction

transportation cost.

Table 2.16: Cost Analysis of Stochastic and Deterministic Models

|J | ρ2 B Open Facilities
Installation

Cost
Pre-interdiction

Transportation Cost

Worst-case
Post-interdiction

Transportation Cost

Expected
Post-interdiction

Transportation Cost

10 0.8 2 Deterministic 1,2,3,4,5,6,7,9,10 1,024,500 1,077,484 1,956,054
Stochastic p = 0.9 1,2,3,4,5,6,7,9,10 1,024,500 1,077,484 1,956,054 1,823,930
Stochastic p = 0.75 1,2,3,5,6,7,9,10 915,900 1,132,922 2,137,668 1,771,134
Stochastic p = 0.5 1,2,3,5,6,7,10 799,200 1,132,922 2,395,631 1,598,353

12 0.5 2 Deterministic 2,5,6,7,9,10,11,12 567,200 1,168,836 1,870,264
Stochastic p = 0.9 2,5,6,7,9,10,11,12 567,200 1,168,836 1,870,264 1,789,887
Stochastic p = 0.75 2,5,6,7,9,10,12 490,100 1,168,836 2,196,753 1,757,380
Stochastic p = 0.5 2,5,6,9,10,12 424,100 1,168,967 2,547,331 1,599,521

15 0.2 4 Deterministic 1,2,3,5,6,7,10,11,13,14,15 808,400 719,032 2,027,141
Stochastic p = 0.9 1,2,3,5,6,8,10,11,13,15 711,800 752,589 2,166,820 1,940,758
Stochastic p = 0.75 1,2,3,5,6,9,10,14,15 684,100 801,052 2,205,598 1,695,312
Stochastic p = 0.5 1,2,3,6,9,10,11,13,115 721,600 724,251 2,262,090 1,398,630

In order to demonstrate the benefit of using our proposed stochastic model, we compare the per-

formance of the networks generated by our proposed model and the deterministic model when they

are subject to the same interdiction outcome scenarios. To achieve this, we run the bi-level stochas-

tic interdiction model on the facility decisions obtained by the deterministic model in order to obtain

the expected post-interdiction transportation cost. We present the results of experiments conducted

48

at varying instance sizes and p values in Table 2.17. The comparison is made by comparing the dif-

ference between the installation cost and the expected post-interdiction transportation cost between

the deterministic model and the stochastic variant. The results show that the increase in installation

cost for using the deterministic design is more than the savings in the expected post-interdiction

transportation cost. Therefore, one can not justify using the more conservative deterministic design

when there is uncertainty in the outcome of interdictions.

Table 2.17: The Cost Increase of using Deterministic Design in Stochastic Interdiction Setting

|J | ρ2 B p
Installation Cost Expected Post-interdiction Transportation Cost Cost Change (Deterministic-Stochastic)

Deterministic Stochastic Deterministic Stochastic Installation Cost Expected Cost

10 0.8 2 0.9 1,024,500 1,024,500 1,823,930 1,823,930
0.75 1,024,500 915,900 1,667,910 1,771,134 108,600 -103,224
0.5 1,024,500 799,200 1,461,650 1,598,353 225,300 -136,703

12 0.5 2 0.9 567,200 567,200 1,789,887 1,789,887
0.75 567,200 490,100 1,693,586 1,757,380 77,100 -63,794
0.5 567,200 424,100 1,491,122 1,599,521 143,100 -108,399

15 0.2 4 0.9 808,400 711,800 1,847,464 1,940,758 96,600 -93,294
0.75 808,400 684,100 1,631,968 1,695,312 124,300 -63,344
0.5 808,400 721,600 1,314,709 1,398,630 86,800 -83,921

2.6 Conclusion

In this paper, we introduce a tri-level interdiction model for designing robust distribution net-

work that accounts for the effect of disruptions of intermediate facilities under interdiction un-

certainty. The resulting tri-level stochastic model has been transformed into a bi-level stochastic

formulation. To solve the proposed formulation efficiently, we present an exact solution approach

based on the Benders decomposition algorithm, where we solve the stochastic subproblem using

dual decomposition. In addition, we strengthen the Benders decomposition by adding supervalid

and valid inequalities to the master problem. The results show that 91% of instances are optimally

solved using algorithmic refinements compared to 67% of instances with the basic Benders decom-

position algorithm. In terms of computational time, the refinements reduce the CPU time by 35%.

Computational results on large instances with up to 18 facilities, and 218 interdiction scenarios con-

firm the efficiency of the algorithms. The insights from the experiments show that the correlation

effect of interdiction increases the network installation costs. We also illustrate that the proposed

49

network design model with stochastic interdiction outcomes yields a less conservative design solu-

tion in comparison with its deterministic variant.

50

Chapter 3

An Exact Algorithm for

Multicommodity Network Design under

Stochastic Interdictions

Abstract In this paper, we study the multicommodity network design problem by considering

the effects of worst-case disruptions under the uncertain interdiction budget. The goal is to install

links between nodes to satisfy the demand of different commodities with minimum installation cost

and the weighted sum of flow costs before and after interdictions. Using the designer-attacker-

designer framework, we present a trilevel mixed-integer stochastic network design model. In the

first level, the designer selects a subset of links to install and route flows under normal conditions.

Most studies in the literature assume that the interdiction budget is known to the decision maker

(network designer) with certainty; however, in practice, the designer is not aware of interdiction ca-

pabilities. Therefore, the designer’s objective is to minimize the installation cost, and the weighted

sum of pre-interdiction and expected post-interdiction costs. In the second level, the attacker in-

terdicts a subset of installed arcs with a limited interdiction budget. In the third level, the designer

optimizes the flow over the surviving links. Moreover, we extend the model to consider the un-

certainty in the demand. We present a branch-and-Benders-cut algorithm to solve the proposed

model. The algorithm is enhanced through the use of several features such as the use of multicut

51

reformulation, warm start, variable fixing, cut selection, penalty reformulation, generation of strong

Pareto-optimal cuts, use of supervalid and valid inequalities. Extensive computational experiments

were performed to evaluate the efficiency and robustness of the proposed algorithmic refinements.

We compare the performance of our algorithm with a state-of-the-art, general-purpose stochastic

mixed-integer bilevel linear optimization solver and show that our algorithm is faster by orders

of magnitude. Our results demonstrate that the branch-and-Benders-cut algorithm combined with

some of these acceleration techniques solves large-scale benchamark instances with up to 20 nodes,

220 arcs and 200 commodities. Furthermore, we highlight the advantages of stochastic design over

deterministic design when the number of interdictions is uncertain.

3.1 Introduction

Network design problems (NDPs) are fundamental problems that arise in the strategic design

and operational planning of telecommunication networks (Feremans et al., 2003), supply chains

(Klibi et al., 2010), power systems (Costa et al., 2011), transportation and logistics systems (Crainic,

2000), among others (Crainic et al., 2021). The goal of most NDPs is to select a set of arcs and/or

nodes to install such that a trade-off between the operational cost and design cost is achieved while

the demand is satisfied. NDPs can be categorized into single and multicommodity variants based

on demand characteristics. In single-commodity variants, the demand at each node can be satis-

fied by any of the other nodes’ supply since they all route the same commodity. However, in the

multicommodity variant, demand is expressed as origin-destination pairs, and hence the demand

of the destination node must be met by the corresponding supply node (Zetina et al., 2019). The

multicommodity network design problem (MCNDP) is a class of NDPs with applications in trans-

portation, logistics, telecommunications, power distribution and production systems, among others.

In MCNDPs, the objective is to install a subset of arcs to route different commodities (e.g. people,

messages, goods) from specific origins to their destinations at minimal design and flow costs (Gen-

dron et al., 1999). MCNDPs can be categorized into uncapacitated and capacitated variants based

on the capacities on the arcs and/or nodes (see Yaghini et al. (2015), Zetina et al. (2019),Crainic

et al. (2021) and references therein). Other variants of MCNDPs include dynamic (time-varying)

52

demand (Fragkos et al., 2017), demand uncertainty (Wang et al., 2019; Sarayloo et al., 2021), uncer-

tain demand and arc capacities (Crainic et al., 2021), uncertain travel times (Lanza et al., 2021), and

service requirements like latency, transit time, and transshipment limitations (Balakrishnan et al.,

2017; Gudapati et al., 2022). MCNDPs are NP-hard (Paraskevopoulos et al., 2016).

Multicommodity networks are complex networks of several facilities (nodes) connected by links

(e.g. roads, railways, cables, pipelines etc.) to facilitate the flow of commodities, passengers and/or

information from several origins to destinations. Disruptions of multicommodity networks can

have a devastating impact on social well-being and economy. It can cause momentous destruction

to properties, losses of human life, and extensive interruptions in vital services. Recent events have

exposed the vulnerability of these systems to disruptions due to intentional human actions (e.g.

terrorist attacks, labor strikes). With the increasing interconnectivity of networks, a disruption in

one network can negatively affect other networks (Cappanera and Scaparra, 2011).

To consider the effects of disruptions, survivable network design (SND) models have been in-

troduced. SND problems aim to minimize the design costs while satisfying specific survivability

conditions in the presence of node or arc failures. The survivability conditions can be the amount

of demand satisfied after failure, the lengths of the path for demand satisfaction, or the number of

paths between any two nodes (Kerivin and Mahjoub, 2005). Garg and Smith (2008) present an SND

model by considering reliable and unreliable arcs where unreliable arcs fail with a specific proba-

bility. Azizi et al. (2016) present models for designing hub-and-spoke networks with hub failures

by minimizing the weighted sum of the transportation cost in normal conditions and the expected

transportation cost when a hub fails. Mohammadi et al. (2017) also consider the expected cost

for designing the multicommodity hazardous material transportation network. They consider hub

failures as well as link failures. These papers assume that failures are random and they intend to

minimize the expected cost of failures. Therefore, the design solution may not function efficiently

under worst-case disruptions (i.e., optimal interdiction by an intelligent attacker). To overcome

this issue, network interdiction models are used to model the effects of worst-case disruptions on

networks.

Interdiction models are two-player sequential games between the interdictor and the defender.

First, the interdictor attacks the network to maximize the damage. Next, the network operator acts

53

to optimize the network operations in the residual network. Interdiction models were initially devel-

oped for military and homeland security applications (McMasters and Mustin, 1970) and are also

used in other applications like illicit supply chain (Jabarzare et al., 2020), water resource analysis

(Jiang and Liu, 2018), and power system vulnerability analysis (Wu and Conejo, 2016), cyberse-

curity (Baggio et al., 2021), among others. Network interdiction models identify the critical nodes

and/or arcs of the network and can be extended to fortify the existing networks (Brown et al., 2006)

or design resilient networks (Smith et al., 2007). Fortification and design models are trilevel math-

ematical models, a game between defender-interdictor-defender and designer-interdictor-designer,

respectively. The goal of fortification models is to identify an optimal subset of arcs/nodes to protect

with a limited budget to reduce the negative effects of interdictions. The fortification models aim to

protect the existing networks; however, as the arcs/facilities are installed, it is expensive to change

their structure for protection. Therefore, the design model accounts for worst-case interdictions in

the design stage.

3.1.1 Contribution

In this paper, we introduce the multicommodity network design problem under stochastic inter-

diction (MCND-SI), by incorporating budget uncertainty into multicommodity flow network inter-

diction problem. This allows the network designer to make design decisions before the action of the

interdictor can be observed. To study this problem, we present a trilevel model using the designer-

attacker-designer framework to capture the interactions between the designer and the interdictor.

As such, the designer first builds the network, followed by the execution of the max-min network

interdiction games. One of the most common modeling assumptions in the network interdiction

literature is that the interdiction budget (of the attacker) is known to the decision maker (network

designer) with certainty; however, in practice, the designer is not aware of interdiction capabilities

in the design phase.

Accounting for stochastic interdiction in designing multicommodity networks makes the prob-

lem exceptionally difficult to solve. Even the deterministic version of MCND with (optimal) inter-

diction, studied by Smith et al. (2007), is difficult and computationally challenging. Therefore, the

most significant contribution of this paper is to develop an exact and efficient algorithm that can

54

find provably optimal solutions within reasonable computational time. We present a branch-and-

Benders-cut algorithm enhanced with several acceleration techniques that are tailored based on the

problem’s characteristics. These include (i) the use of a stronger multicut Benders reformulation,

(ii) the generation of stronger Pareto-optimal cuts, (iii) the use of a penalty reformulation, (iv) the

generation of supervalid and valid inequalities, and (v) the use of warm start strategies, along with

variable fixing, and cut selection. In order to evaluate and assess the robustness, efficiency, and lim-

itations of our proposed algorithm, extensive computational experiments were performed on classi-

cal MCND instances. The models and solution methods have been extended to the case when both

the demand and interdiction budget are uncertain. We compare the performance of our algorithm

with the method presented in Smith et al. (2007) and a general-purpose stochastic mixed-integer

bilevel linear optimization solver (MibS), and show that our algorithm is orders of magnitude faster.

Results on large-size benchmark instances with up to 20 nodes, 220 arcs, and 200 commodities

confirm the effectiveness of our proposed solution methodology. Based on the extensive compu-

tational results, we observe that all these acceleration techniques improve the performance of the

branch-and-Benders-cut algorithm substantially. Moreover, we demonstrate the advantages of using

the stochastic model instead of the deterministic one when the number of interdictions is uncertain.

The remainder of this paper is organized as follows: In Section 3.2, we briefly review the rel-

evant literature. Section 3.3 describes the problem settings, model assumptions, and the trilevel

mixed-integer programming (MIP) formulation of the MCNDP under stochastic interdictions. The

linear reformulation of the lower bilevel interdiction problem into single-level MIP is also described

in this section. Benders reformulation and some aspects of the Benders decomposition algorithm

are presented in Section 3.4. Section 4.4.2 introduces several acceleration techniques that improve

the convergence and efficiency of the algorithm. In Section 3.6, we present the results of extensive

computational experiments. Conclusions follow in Section 3.7.

3.2 Literature Review

In what follows, we provide a brief review of the literature on network interdiction problems.

Network interdiction problems are generally bi-level models consisting of two opposing players

55

(i.e., attacker and defender) in a game theoretic framework. Interdiction problems arise in a variety

of real-world applications, including national defense (McMasters and Mustin, 1970), coordinating

military logistics (Ghare et al., 1971), flood control (Ratliff et al., 1975), infectious disease control

(Assimakopoulos, 1987), counter-terrorism (Salmeron et al., 2004), contrasting nuclear smuggling

(Morton et al., 2007), the interception of contraband and illegal items such as drugs (Washburn and

Wood, 1995), protection of infrastructure systems (Salmeron et al., 2009), spread of fake news in

social media (Baggio et al., 2021), and the kidney exchange problem (Blom et al., 2024). Interdic-

tion problems have been widely investigated for well-known combinatorial optimization problems,

including knapsack problem (Caprara et al., 2016; Contardo and Sefair, 2022), shortest path prob-

lem (Lozano and Smith, 2017), maximum flow problem(Afshari Rad and Kakhki, 2017), traveling

salesman problem (Lozano et al., 2017), facility location (Liberatore et al., 2011), hub location

(Ramamoorthy et al., 2018), and MCND problem (Smith et al., 2007), among others.

In one of the seminar papers, Wood (1993) studies single-commodity and multicommodity net-

work interdiction problem. Lim and Smith (2007) studies the complete and partial interdiction of the

multicommodity network. They transform the bi-level model for the multicommodity network with

complete interdictions into a single-level model using penalty reformulation. They solve the partial

interdiction model by partitioning algorithm. Smith et al. (2007) extend the bi-level formulation to

a trilevel mathematical model for designing a survivable multicommodity network by considering

heuristic and optimal interdictor’s actions. Alderson et al. (2011) present a trilevel mathematical

model for protecting a municipal transportation network where the government intends to enhance

the resiliency of the links of the network in a cost-effective way. Jin et al. (2015) present a trilevel

model for protecting the urban rail transit network. Zhang and Fan (2017) study a multicommodity

network flow problem with interdictions on nodes and arcs with varying budget levels. Jabarzare

et al. (2020) present a multicommodity bi-level interdiction model for illicit supply chains. We refer

the readers to Smith and Song (2020) and Hunt and Zhuang (2024) for comprehensive survey on

interdiction models and solution methods.

56

Note that all the mentioned network interdiction papers consider a deterministic model; how-

ever, the interdictor/defender/designer may not have complete knowledge about the network param-

eters or interdiction budget. Different parameters can be uncertain in interdiction models. Libera-

tore et al. (2011) consider a stochastic number of interdictions for the optimal fortification strategy

of r-interdiction median problem. The defender minimizes the expected disruption costs in the

first level as the number of interdictions is uncertain. The interdictor, in the second level, maxi-

mizes the disruption cost by interdicting r facilities. Bhuiyan et al. (2021) present a risk-averse

bi-level stochastic model to protect the network against an uncertain number of cyber-attacks. In-

terdiction success outcomes can be uncertain as well. Janjarassuk and Linderoth (2008) consider

the maximum flow network interdiction problem where interdictions are successful with specific

probabilities. Moreover, the configuration of the network (Collado et al., 2017), arc traveling costs

(Song and Shen, 2016; Nguyen and Smith, 2022), interdiction place (Holzmann and Smith, 2021),

and demand (Hien et al., 2020) can be uncertain. Considering uncertain parameters increases the

complexity of the interdiction models. To the best of our knowledge, Hien et al. (2020) is one of

the first papers to study the stochastic version of the multicommodity network interdiction problem.

They present a trilevel mathematical model for fortifying the single/multicommodity networks with

stochastic demand. They solve the trilevel nonlinear stochastic model with a robust stochastic ap-

proximation approach. This work differs from Hien et al. (2020) as we design a multicommodity

network while they fortify the existing network. Moreover, we consider the uncertain number of

interdictions while Hien et al. (2020) consider the uncertainty in the demand.

Table 3.1 presents a summary of the literature on relevant multicommodity network interdiction

models. For each paper, we list the problem (interdiction, fortification, or design problem), the num-

ber of levels, the deterministic or stochastic nature of the parameters, and the solution methodology.

Smith et al. (2007) study the multicommodity network design problem with partial interdictions,

where the primary objective is to maximize profit. They solve the problem with the cutting plane al-

gorithm that generates Benders cuts iteratively. We also study the multicommodity network design

with interdictions. However, our work is different from Smith et al. (2007) as we consider the com-

plete interdiction, cost minimization, and stochastic number of interdictions. To solve the trilevel

57

stochastic model, we use the branch-and-Benders-cut algorithm. Note that the cutting plane algo-

rithm presented in Smith et al. (2007) can solve our presented model but the branch-and-Benders-cut

algorithm presented in this paper with acceleration techniques has a better performance. To the best

of our knowledge, our paper is one of the first that studies a trilevel stochastic model for designing

multicommodity networks.

As evident in Table 3.1, interdiction problems are often modelled as bilevel programs, whereas

fortification and design problems are modelled as trilevel programs. Bilevel optimization is a a pow-

erful tool for modeling hierarchical decision making processes and real-world problems, however

the resulting problems are challenging to solve. Readers are refereed to recent surveys by Beck et al.

(2023) and Kleinert et al. (2021). Many state-of-the-art solution approaches for bilevel optimization

uses techniques that originate from mixed-integer programming including branch-and-bound meth-

ods, cutting plane method (Hemmati and Smith, 2016), branch-and-cut approaches (DeNegre and

Ralphs, 2009), or Benders-like decomposition methods among others; see (Kleinert et al., 2021)

and references therein. Our approach for solving the reduced bilevel problem is based on an en-

hanced branch-and-Benders-cut (BBC) method, also called Benders-based branch-and-cut method,

where instead of solving one MILP master problem at every iteration, a single branch-and-cut tree

is constructed and the Benders cuts are added during the exploration of this tree.

Table 3.1: Summary of Literature on Multicommodity Network Interdiction Problems

Articles
Problem

No. of Levels
Model type Methodology

Interdiction Fortification Design Deterministic Stochastic Exact Heuristic

Wood (1993) ✓ 2 ✓ ✓
Lim and Smith (2007) ✓ 2 ✓ ✓
Smith et al. (2007) ✓ 3 ✓ ✓
Akgün et al. (2011) ✓ 2 ✓ ✓
Alderson et al. (2011) ✓ 3 ✓ ✓
Shen et al. (2012) ✓ 2 ✓ ✓
Jin et al. (2015) ✓ 3 ✓ ✓
Zhang and Fan (2017) ✓ 2 ✓ ✓
Jabarzare et al. (2020) ✓ 2 ✓ ✓
Hien et al. (2020) ✓ 3 ✓ ✓
This paper ✓ 3 ✓ ✓

58

3.3 Problem Description and Formulation

In this section, we define the three-stage, sequential, zero-sum game that is used for modeling

the MCNDP under stochastic interdiction budget. In particular, we present a designer–attacker–designer

model for designing a multicommodity network that is resilient against worst-case attacks. In the

first stage, the network designer constructs a network in which each arc has a fixed installation

cost, a maximum capacity, and a per-unit flow cost. The designer’s objective is to minimize the

installation cost of arcs, as well as the flow costs incurred in normal operating conditions and af-

ter interdictions. The designer does not have full information about the interdiction budget (i.e.,

the number of arc interdictions). Therefore, the designer minimizes the expected flow cost after

interdictions in the first level. In the second stage, the interdictor inflicts damage to the network

by destroying certain arcs completely (i.e., reducing the arc capacity to zero). The objective is to

maximize the minimum possible post-interdiction flow cost. Finally, in the third stage, the designer

maximizes post-interdiction flow cost by solving a multicommodity flow problem on the residual

network while satisfying the demand.

In line with network interdiction literature, we assume perfect information and rationality for the

game (see Baggio et al. (2021); Smith and Song (2020) and references therein). In other words, our

modeling assumptions are as follows: (i) The designer and the interdictor have complete information

about the network topology. (ii) The designer is uncertain about the number of interdictions. (iii)

The game is sequential where the designer makes the first move by selecting the design and pre-

interdiction flow decisions. Then, the interdictor determines the interdiction decisions. Finally,

the designer determines the post-interdiction flow decisions in the remaining network. (iv) The

interdictor is aware of the design decisions. (v) The game is played one round by the designer and

the interdictor. (vi) We consider complete interdictions which means that the capacity of arcs is

reduced to zero if they are interdicted.

3.3.1 Formulation

Let G(N,A) be a directed graph, where N is the set of nodes, A is the set of arcs, and K is

the set of commodities. Let A+(l) represents the set of arcs directed out of node l ∈ N , and A−(l)

59

Table 3.2: Table of Notations

Sets
N Set of nodes (indexed by l, l ∈ N)
A Set of arcs (indexed by h, h ∈ A)
A+(l) Set of arcs directed out of node l ∈ N
A−(l) Set of arcs directed into node l ∈ N
A′ Set of dummy arcs
K Set of commodities (indexed by k, k ∈ K)
S Set of scenarios (indexed by s, s ∈ S)
Parameters
Dk Demand node of commodity k ∈ K
Ok Supply node of commodity k ∈ K
dk Demand of commodity k ∈ K
rkh Cost of transmitting commodity k ∈ K through arc h ∈ A
ch Installation cost of arc h ∈ A
qh Capacity of arc h ∈ A
f(h) From-node of arc h ∈ A
t(h) To-node of arc h ∈ A
Bs Interdiction budget, i.e., number of interdictions under scenario s ∈ S
ps Probability of scenario s ∈ S
M Penalty cost for using interdicted arcs
Φ The weight of pre-interdiction flow cost in the objective function
1− Φ The weight of post-interdiction flow cost in the objective function
Decision Variables
wh 1 if arc h ∈ A is installed; 0 otherwise
ykh Flow of commodity k ∈ K on arc h ∈ A before interdiction
xhs 1 if arc h ∈ A is interdicted in scenario s ∈ S; 0 otherwise
vkhs Flow of commodity k ∈ K on arc h ∈ A after interdiction in scenario s ∈ S

represents the set of arcs directed into node l ∈ N . Also, we define the from-node and to-node of

arc h ∈ A as f(h) and t(h), respectively. Each arc h ∈ A has installation cost ch and capacity qh.

Each commodity k ∈ K has a unique supply node Ok and a unique demand node Dk. We assume

that transshipment nodes can be used to send commodity k ∈ K from the supply node Ok to the

demand node Dk. The cost of transmitting commodity k ∈ K through arc h ∈ A is denoted by

rkh (rkh > 0). Since the number of interdictions is uncertain, a scenario s ∈ S defines a particular

realization of the interdiction budget Bs with probability ps. The notations are listed in Table 3.2.

It is possible that the remaining capacity after interdiction is insufficient to satisfy the demand.

Therefore, we create dummy arcs in the network to ensure feasible multicommodity flows. The

dummy arcs cannot be interdicted and they represent the unmet demand, stating that all the demand

60

should be satisfied in all conditions. These arcs have zero installation costs, sufficiently high flow

costs, and large capacities. A similar setting has been used in (Smith et al., 2007). Under these

assumptions and settings, the nested trilevel optimization problem of the network design can be

stated as follows:

61

(MCNDSI) : min
w,y

∑
h∈A

chwh +Φ

[∑
h∈A

∑
k∈K

rkhy
k
h

]
+ (1− Φ)

∑
s∈S

psTs(w) (3.1)

s.t.
∑

i∈A+(l)

yki −
∑

j∈A−(l)

ykj =


dk l = Ok

−dk l = Dk

0 otherwise

∀k ∈ K, l ∈ N

(3.2)∑
k∈K

ykh ≤ qhwh ∀h ∈ A (3.3)

wh ∈ {0, 1} ∀h ∈ A (3.4)

ykh ≥ 0 ∀h ∈ A, k ∈ K

(3.5)

(MCNIs) : Ts(w) = max
x

Hs(x,w) (3.6)

s.t.
∑
h∈A

xhs ≤ Bs (3.7)

xhs = 0 ∀h ∈ A′ (3.8)

xhs ∈ {0, 1} ∀h ∈ A (3.9)

(MCFs) : Hs(x,w) = min
v

∑
h∈A

∑
k∈K

rkhv
k
hs (3.10)

s.t.
∑

i∈A+(l)

vkis −
∑

j∈A−(l)

vkjs =


dk l = Ok

−dk l = Dk

0 otherwise

∀k ∈ K, l ∈ N

(3.11)∑
k∈K

vkhs ≤ qhwh (1− xhs) ∀h ∈ A (3.12)

vkhs ≥ 0 ∀h ∈ A, k ∈ K

(3.13)

62

The designer’s objective function (3.1) consists of the fixed arc installation cost plus the weighted

sum of the flow cost before interdiction and the expected flow cost after interdiction. As the net-

work is not always under disruption, the designer intends to find a design that performs efficiently in

normal conditions and under disruptions. Therefore, the parameter Φ ∈ [0, 1] represents the relative

importance of the pre-interdiction and post-interdiction flow costs in the objective function. Con-

straint (3.2) represents the flow balance in node l ∈ N for commodity k ∈ K before interdiction.

Constraint (3.3) ensures that the capacity limit of arc h ∈ A is respected. At MCNIs level, the

interdictor’s objective is to maximize the post-interdiction flow cost using an interdiction budget of

Bs in scenario s ∈ S stated in constraint (3.7). Constraint (3.8) guarantees that dummy arcs are not

interdicted. At MCFs level, the designer minimizes the network flow cost after interdiction of Bs

arcs under scenario s ∈ S. Constraint (3.12) represents the effects of interdictions on the capacity

of arc h ∈ A.

3.3.2 Extension to Uncertain Demand and Interdiction Budget

We extend the stochastic trilevel MILP model (3.1)-(3.13) to consider demand uncertainty be-

sides budget uncertainty. We assume that the designer considers ω ∈ Ω scenarios with probability

pω for the realization of demand in the first level. However, the interdictor interdicts the network

based on the expected demand. Therefore, for the third level model, we consider the expected

demand d
k

for each commodity k ∈ K. In the first level, the designer minimizes the sum of in-

stallation cost and the convex combination of the expected pre-interdiction cost, and the expected

post-interdiction cost. The resulting formulation for MCND with stochastic demand and interdiction

63

(MCND-SDI) is as follows:

(MCND-SDI) : min
w,y

∑
h∈A

chwh +Φ

[∑
ω∈Ω

pω
∑
h∈A

∑
k∈K

rkhy
k
hω

]
+ (1− Φ)

∑
s∈S

psTs(w)

(3.14)

s.t.
∑

i∈A+(l)

ykiω −
∑

j∈A−(l)

ykjω =


dkω l = Ok

−dkω l = Dk

0 otherwise

∀k ∈ K, l ∈ N,ω ∈ Ω

(3.15)∑
k∈K

ykhω ≤ qhwh ∀h ∈ A,ω ∈ Ω (3.16)

wh ∈ {0, 1} ∀h ∈ A (3.17)

ykhω ≥ 0 ∀h ∈ A, k ∈ K,ω ∈ Ω

(3.18)

(MCNIs) : Ts(w) = max
x

Hs(x,w) (3.19)

s.t. (3.7)− (3.9)

(MCFs) : Hs(x,w) = min
v

∑
h∈A

∑
k∈K

rkhv
k
hs (3.20)

s.t.
∑

i∈A+(l)

vkis −
∑

j∈A−(l)

vkjs =


d
k

l = Ok

−dk l = Dk

0 otherwise

∀k ∈ K, l ∈ N (3.21)

∑
k∈K

vkhs ≤ qhwh (1− xhs) ∀h ∈ A (3.22)

vkhs ≥ 0 ∀h ∈ A, k ∈ K (3.23)

The designer-attacker-designer formulation presented in (3.1)-(3.13) and (3.14)-(3.23) are trilevel

MIP models. Such trilevel formulations can be solved by transforming them into equivalent bilevel

models. In Section 3.3.3, we present the transformation of the trilevel model into the bilevel model

64

using strong duality.

3.3.3 Single-level Reformulation of the Bilevel Interdiction Problem

We use the strong duality of the bilevel interdiction problem to reformulate the bilevel inter-

diction problem MCNIs as a single-level formulation. Zare et al. (2019) have shown that strong

duality-based approaches may reduce the number of variables and constraints significantly com-

pared with the KKT-based reformulation. Let πkls and αhs denote the dual variables corresponding

to flow constraint (3.11) and (3.12), respectively. For fixed design decisions ŵh, we (i) fix the value

of xhs, (ii) take the dual of MCFs, and (iii) release xhs, resulting in the following single-level MIP

formulation D-MCNIs for each scenario s ∈ S:

(D-MCNIs) : max
x,α,π

∑
k∈K

dk
(
πkOks

− πkDks

)
−

∑
h∈A

qhŵh(1− xhs)αhs (3.24)

s.t. πkf(h)s − π
k
t(h)s − αhs ≤ r

k
h ∀h ∈ A, k ∈ K (3.25)∑

h∈A
xhs ≤ Bs (3.26)

xhs = 0 ∀h ∈ A′ (3.27)

xhs ∈ {0, 1} ∀h ∈ A (3.28)

πkls unrestricted ∀l ∈ N, k ∈ K (3.29)

αhs ≥ 0 ∀h ∈ A (3.30)

The objective function (3.24) is nonlinear due to the multiplication of the binary variable x

and the continuous variable α. To linearize the objective function, we define the auxiliary variable

φhs = xhsαhs, and add the following linear constraints to D-MCNIs:

φhs − αhs ≤ 0 ∀h ∈ A (3.31)

φhs − αxhs ≤ 0 ∀h ∈ A (3.32)

Variable φhs appears only in the objective function with a positive coefficient in (3.24). There-

fore, φhs takes the maximum value which is αhsxhs and there is no need to consider the constraint

65

αhs + αxhs − φhs ≤ α. In constraint (3.32), α =
∑

h∈A
∑

k∈K r
k
h is the upper bound on the value

of decision variable α.

After transforming the bilevel MCNIs into a single-level MIP formulation, the resulting bilevel

stochastic MCND model is as follows:

(MCNDSI’) : min
w,y

∑
h∈A

chwh +Φ

[∑
h∈A

∑
k∈K

rkhy
k
h

]
+ (1− Φ) max

x,φ,α,π

∑
s∈S

ps[∑
k∈K

dk
(
πkOks

− πkDks

)
−

∑
h∈A

qhwhαhs +
∑
h∈A

qhwhφhs

] (3.33)

s.t. (3.2)− (3.3), (3.25)− (3.27), (3.31)− (3.32)

wh ∈ {0, 1} ∀h ∈ A

ykh ≥ 0 ∀h ∈ A, k ∈ K

xhs ∈ {0, 1} ∀h ∈ A, s ∈ S

πkls unrestricted ∀l ∈ N, k ∈ K, s ∈ S

αhs, φhs ≥ 0 ∀h ∈ A, s ∈ S

In MCNDSI’ problem, constraints (3.2)-(3.3) belong to the first level, constraints (3.26)-(3.27)

belong to the second level, and constraints (3.25), (3.31)-(3.32) belong to the dual of the third

level. In Section 3.4, we use the Benders decomposition algorithm to solve MCNDSI’. We present

different acceleration techniques to improve the convergence and the efficiency of the Benders de-

composition algorithm in Section 4.4.2. Note that the solution methodologies presented in Sections

3.4 and 4.4.2 apply to MCND-SDI as well.

3.4 Benders Decomposition

Benders decomposition is a well-known partitioning technique for solving MILP problems by

decomposing the problem into a mixed-integer master problem and a linear subproblem (Benders,

1962). The main idea behind this approach involves simplifying a problem by projecting out some

complicating variables, resulting in a formulation with fewer variables but many constraints known

66

as Benders cuts. Only a few of these constraints are typically necessary to find an optimal solution;

therefore, it is common to relax the problem by discarding Benders cuts and generate them as

necessary in a cutting-plane fashion.

Due to the slow convergence of the classical Benders decomposition algorithm, several accel-

eration techniques have been proposed to speed up the convergence of the algorithm. The most

widely used acceleration technique is the use of Pareto-optimal cuts (Magnanti and Wong, 1981;

Papadakos, 2008). The idea of Pareto-optimal cuts is to add non-dominated optimality cuts to the

master problem when there are alternative optimal solutions to the subproblem. Furthermore, one

can use multi-cut reformulation when the subproblem can be separated into smaller independent

subproblems. Variable fixing is another technique that can reduce the size of the master problem

(Taherkhani et al., 2020; Zetina et al., 2021). We refer the readers to the survey by Rahmaniani et al.

(2017) for the developments of these acceleration techniques.

Benders decomposition has been widely used for solving several variants of MCNDPs (Costa,

2005; Costa et al., 2009; Rahmaniani et al., 2018; Zetina et al., 2019; Fragkos et al., 2021; Crainic

et al., 2021). It has also been proven to be an efficient method for solving interdiction problems

(Brown et al., 2006). Examples include interdiction models of illicit supply chain (Jabarzare et al.,

2020), shortest path (Israeli and Wood, 2002; Song and Shen, 2016), knapsack (Fischetti et al.,

2019), electric power grid (Salmeron et al., 2009), maximum reliability (Bodur et al., 2017), and

hub networks (Ramamoorthy et al., 2018), to name a few. In this paper, we exploit the structure

of the problem, adapt the acceleration techniques to develop an efficient branch-and-Benders-cut

algorithm for solving the model.

3.4.1 Multicut Benders Reformulation

Let W denote the set of vectors (w, y) satisfying constraints (3.2)-(3.5). For any fixed ŵ ∈ W,

the primal subproblem (SP) consists of the bi-level interdiction model, transformed into single-level

67

formulation D-MCNIs for each scenario s ∈ S.

(SPs) : max
x,φ,α,π

∑
k∈K

dk
(
πkOks

− πkDks

)
−

∑
h∈A

qhŵhαhs +
∑
h∈A

qhŵhφhs (3.34)

s.t. (3.25)− (3.27), (3.31)− (3.32)

xhs ∈ {0, 1} ∀h ∈ A

πkls unrestricted ∀l ∈ N, k ∈ K

αhs, φhs ≥ 0 ∀h ∈ A

Since we define dummy arcs to account for the unmet demand, the SP is always feasible; there-

fore, no feasibility cuts are added to the MP.

Let Υ denote the set of extreme points associated with SPs. By introducing continuous variables

ηs for the post-interdiction flow cost of each scenario s ∈ S in the MP, the resulting formulation of

Benders master problem (MP) is as follows:

(MP) : min
w,y,η

∑
h∈A

chwh +Φ

[∑
h∈A

∑
k∈K

rkhy
k
h

]
+ (1− Φ)

∑
s∈S

psηs (3.35)

s.t. (3.2)− (3.3)

ηs ≥
∑
k∈K

dk
(
π̂kOks

− π̂kDks

)
−

∑
h∈A

qhwhα̂hs +
∑
h∈A

qhwhφ̂hs ∀s ∈ S, (π̂, α̂, φ̂) ∈ Υ

(3.36)

ηs ≥ lb ∀s ∈ S (3.37)

ηs unrestricted ∀s ∈ S (3.38)

wh ∈ {0, 1} ∀h ∈ A

ykh ≥ 0 ∀h ∈ A, k ∈ K

Note that we use the decomposability of SP by scenarios to generate optimality cuts (3.36). In

the multicut reformulation, one optimality cut per scenario is added to the MP instead of aggregating

the obtained information of all scenario SPs into one optimality cut. Multicut reformulation provides

more information about the SPs and prevents information loss in the aggregation process. As stated

68

earlier, we relax the optimality cuts (3.36) and add them during the algorithm. Therefore, we add

constraint (3.37) to provide an initial lower bound (lb) on ηs to avoid the unboundedness of the MP

in the first iteration.

The classic version of Benders decomposition solves MP and SP iteratively until the optimality

gap is closed. The MP gives the lower bound of the original problem because the cuts are relaxed

and added during the algorithm. By fixing the decision variables of MP in SP, SP provides the upper

bound of the original problem by finding a feasible solution. Depending on the solution obtained

from SP at each iteration of the algorithm, the optimality or feasibility cuts are added to the MP.

3.4.2 Implementation of Branch-and-Benders-Cut Algorithm

In the classical implementation of the Benders decomposition, the mixed-integer MP is solved to

optimality at each iteration of the algorithm, which can be computationally prohibitive. The idea in

the recent implementation of Benders decomposition is to solve the mixed-integer MP only once and

add the optimality cuts in the branch-and-bound search tree as needed. This implementation, known

as branch-and-Benders-cut (BBC), is possible using callback functions in commercial solvers such

as CPLEX. In the first phase of BBC, we relax the integrality condition of the MP and the optimality

cuts (3.36). We add the necessary optimality cuts by solving MP and SP iteratively. In the second

phase, we reintroduce the integrality requirement to the MP with the optimality cuts generated in

the first phase. This facilitates CPLEX to add more and/or stronger cuts to the model by having

more information about the problem based on the constraints of the first phase. The optimality cuts

and the CPLEX cuts provide a better starting point for the branch-and-bound algorithm. When an

integer solution is found in one of the tree nodes, the SP is solved to find violated optimality cuts,

which are added to MP, and the node is resolved. The optimality cuts, at integer solutions, are

added as lazycut constraints to the MP whereas, at fractional solutions, they are added as usercut

constraints (Bodur and Luedtke, 2017).

69

3.5 Acceleration Techniques

In this section, we present several acceleration techniques to improve the convergence and sta-

bility of the Benders decomposition algorithm presented in the previous section. In Sections 3.5.1,

3.5.2 and 3.5.3, we use the characteristics of the interdiction model to present three acceleration

techniques: generate Pareto-optimal cuts, use of penalty reformulation of the bi-level interdiction

model, generate supervalid and valid inequalities.

3.5.1 Pareto-optimal Cuts

The effectiveness of the Benders decomposition algorithm relies on the selection of Benders

cuts. One way to improve the convergence of the Benders algorithm is to construct stronger, un-

dominated cuts, known as Pareto-optimal cuts. To address this issue, Magnanti and Wong (1981)

proposed a method to generate Pareto-optimal cuts, which are cuts that are not dominated by any

other cut.

Given two cuts defined by dual solutions (πa, αa, φa) and (πb, αb, φb) in the form of η ≥

f(πa) + wg(αa, φa) and η ≥ f(πb) + wg(αb, φb), respectively, the cut defined by (πa, αa, φa)

dominates the cut defined by (πb, αb, φb) if and only if

f(πa) + wg(αa, φa) ≥ f(πb) + wg(αb, φb)

with strict inequality for at least one feasible solution w of the MP. The cut defined by (πa, αa, φa)

is Pareto-optimal if it is not dominated by any other cut.

To generate Benders cuts that are Pareto-optimal, we need to solve another auxiliary linear

problem at each iteration. This auxiliary linear problem is very similar to SPs, except for two key

differences. First, in the objective function (3.34), we replace the MP solution ŵ with a core point

w0. A core point is a point in the relative interior of the MP space. Second, an equality constraint

is introduced to guarantee that the resulting solution remains within the set of alternative optimal

solutions of the SPs for the current MP solution ŵ (Magnanti and Wong, 1981).

The disadvantages of the method presented by Magnanti and Wong (1981) are the difficulty

of finding the core points and the extensive computation time to solve auxiliary SPs with equality

70

constraints. Therefore, Papadakos (2008) presents an alternative way to find the Pareto-optimal cuts.

In this method, independent Pareto SPs are solved by removing the equality constraint utilized in

Magnanti and Wong’s method. At each iteration t, the approximate core points are determined using

equation (3.39), where ŵt−1
h represents the optimal solution of the MP from the previous iteration

t− 1 and the initial weight value of W t
h is W 0

h = 1.

W t
h ←

1

2
W t−1
h +

1

2
ŵt−1
h (3.39)

Based on Papadakos (2008), the independent Pareto subproblem (PSPs) defined below is the SP

of the original Benders with the approximate core points W t
h.

(PSPs) : max
∑
k∈K

dk
(
πkOks

− πkDks

)
−

∑
h∈A

qhW
t
hαhs +

∑
h∈A

qhW
t
hφhs (3.40)

s.t. (3.25)− (3.32)

3.5.2 Penalty Reformulation

We provide an equivalent reformulation to bilevel MCNIs where the interdictor’s decision vari-

ables appear as a penalty term in the objective function of the designer (Lim and Smith, 2007). The

interpretation of the reformulation (3.41)-(3.42) is that the designer has to incur a penalty for using

interdicted arcs. We can set the penalty term to M =
∑

h∈A
∑

k∈K r
k
h. The resulting formulation

is as follows:

71

(PMCNIs) : max
x

Hs(x)

s.t.
∑
h∈A

xhs ≤ Bs

xhs = 0 ∀h ∈ A′

xhs ∈ {0, 1} ∀h ∈ A

(PMCFs) : Hs(x) = min
v

∑
h∈A

∑
k∈K

(rkh +Mx̂hs)v
k
hs (3.41)

s.t.
∑

i∈A+(l)

vkis −
∑

j∈A−(l)

vkjs =


dk l = Ok

−dk l = Dk

0 otherwise

∀k ∈ K, l ∈ N

∑
k∈K

vkhs ≤ qhŵh ∀h ∈ A (3.42)

vkhs ≥ 0 ∀h ∈ A, k ∈ K

In what follows, we prove that the reformulation PMCFs is equivalent to the reformulation

MCFs. Lemma 1 and Proposition 1 show that the penalty reformulation correctly models the impact

of interdictions on network flow and is equivalent to the original MCNIs formulation in terms of

optimization objectives.

Lemma 3.1. LetM be a large number, and v(x̂) be an optimal solution of PMCFs for any x̂ ∈ X .

Then we have v(x̂)khs = 0, ∀k ∈ K if x̂h = 1 for any x̂ ∈ X .

Proof. Since M is a large number, if x̂ = 1 and v(x̂) > 0, a strictly better solution exists in which

v(x̂) = 0, achieved by reallocating flows from paths containing arc h to the dummy arcs in the

network, resulting in lower costs. Therefore, if x̂ = 1, v(x̂) should be zero. This completes the

proof.

Proposition 3.1. Given any x̂ ∈ X , let MCFs(x̂) and PMCFs(x̂) denote the designer’s solutions

to MCFs and PMCFs, respectively. Then, MCFs(x̂) has an optimal solution v(x̂) if and only if

72

v(x̂) is optimal to PMCFs(x̂). Additionally, the optimal objective function value of MCFs(x̂) is

equal to the objective function value of PMCFs(x̂).

Proof. We first show that the objective function value of PMCFs remains less than or equal to

the objective function value of MCFs. Consider an optimal solution v(x̂) to MCFs with an ob-

jective function value of v∗. Since PMCFs(x̂) is a relaxation ofMCFs(x̂), v(x̂) is also feasible for

PMCFs(x̂). Moreover, we have
∑

h∈A
∑

k∈K(rkh+Mx̂hs)v
k
hs = v∗ because

∑
h∈A

∑
k∈K r

k
hv

k
hs =

v∗ and Lemma 3.1 ensures that
∑

h∈A
∑

k∈KMx̂hsv
k
hs = 0. Therefore, the optimal objective func-

tion value of PMCFs(x̂) does not exceed v∗.

Furthermore, we show that the optimal objective function value of MCFs(x̂) does not exceed

the optimal objective function value of PMCFs(x̂), leading to the equivalence of these two values.

Let v(x̂) be an optimal solution to PMCFs with an objective function value of v∗. Since Lemma

3.1 guarantees that vkhs(x̂) = 0 for x̂hs = 1, v(x̂) is a feasible solution for MCFs(x̂) with objective

function value
∑

h∈A
∑

k∈K r
k
hv

k
hs = v∗, which provides a lower bound on the optimal objective

function value of MCFs(x̂). This completes the proof.

Now, we take the dual of the inner minimization problem PMCFs, the resulting linear single-

level model is as follows:

(D-PMCNIs) : max
x,α,π

∑
k∈K

dk
(
πkOks

− πkDks

)
−

∑
h∈A

qhŵhαhs (3.43)

s.t. πkf(h)s − π
k
t(h)s − αhs ≤ r

k
h +Mxhs ∀h ∈ A, k ∈ K (3.44)∑

h∈A
xhs ≤ Bs

xhs = 0 ∀h ∈ A′

xhs ∈ {0, 1} ∀h ∈ A

πkls unrestricted ∀l ∈ N, k ∈ K

αhs ≥ 0 ∀h ∈ A

73

Considering Υ′ as the set of extreme points associated with D-PMCNIs, the penalty reformula-

tion results in the optimality cut (3.45) instead of (3.36).

ηs ≥
∑
k∈K

dk
(
π̂kOks

− π̂kDks

)
−

∑
h∈A

qhwhα̂hs ∀s ∈ S, (π̂, α̂) ∈ Υ′ (3.45)

3.5.3 Supervalid and Valid Inequalities

To enhance the convergence of the Benders algorithm, we add supervalid inequality (SVI) to the

MP. SVI will reduce the integer feasible region by eliminating integer solutions while guaranteeing

not to eliminate any optimal solutions unless the current solution is optimal (Israeli and Wood,

2002).

Proposition 3.2. Consider the Benders cut ηs+
∑

h∈A qhwh(α̂hs−φ̂hs) ≥
∑

k∈K d
k(π̂kOks

−π̂kDks
)

is added to the MP. The following inequality is supervalid.

∑
h∈A

I(α̂hs − φ̂hs)wh ≥ 1 (3.46)

where

I(α̂hs − φ̂hs) =


1, if α̂hs − φ̂hs > 0

0, otherwise

Proof. The proof employs a contradiction strategy. It demonstrates that if we assume the incumbent

solution is not optimal, it leads to a contradiction, thus confirming the necessity of the inequality

being at least 1 in an optimal solution. This establishes the supervalidity of the stated inequality in

the given context of the Benders cut. We perform the following steps to prove the Proposition:

The statement supposes that feasible solution (ŵ, π̂, α̂, φ̂) generates the following Benders cut

ηs +
∑

h∈A qhwh(α̂hs − φ̂hs) ≥
∑

k∈K d
k(π̂kOks

− π̂kDks
). Let η̂s =

∑
k∈K d

k(π̂kOks
− π̂kDks

) −∑
h∈A qhŵh(α̂hs − φ̂hs). We assume that the incumbent leads to η∗s < ηs. Let (w∗, y∗, η∗) de-

note the optimal solution to the MP and note that
∑

h∈A I(α̂hs − φ̂hs)w
∗
h = 0 or ≥ 1. From∑

h∈A I(α̂hs − φ̂hs)w∗
h = 0, we can conclude that

∑
h∈A qhw

∗
h(α̂hs − φ̂hs) = 0.

∑
h∈A I(α̂hs −

74

φ̂hs)w
∗
h = 0 when (i)w∗

h = 0 which implies that
∑

h∈A qhw
∗
h(α̂hs−φ̂hs) = 0 or (ii) I(α̂hs−φ̂hs) =

0. In this case, based on the definition of I(α̂hs − φ̂hs), α̂hs − φ̂hs ≤ 0. Since the maximum value

of φ̂hs is α̂hsxhs, α̂hs − φ̂hs would be zero implying that
∑

h∈A qhw
∗
h(α̂hs − φ̂hs) = 0. When∑

h∈A I(α̂hs − φ̂hs)w∗
h = 0,

η∗s ≥
∑

k∈K d
k(π̂kOks

− π̂kDks
)−

∑
h∈A qhw

∗
h(α̂hs − φ̂hs) is true for any (π̂, α̂, φ̂),

= η̂s −
∑

h∈A qhw
∗
h(α̂hs − φ̂hs) +

∑
h∈A qhŵh(α̂hs − φ̂hs)

≥ η̂s because
∑

h∈A qhw
∗
h(α̂hs − φ̂hs) = 0

≥ ηs because ŵ does not need to be the incumbent solution and

> η∗s by assumption; but this is a contradiction.

Therefore, if the incumbent solution is not optimal,
∑

h∈A I(α̂hs−φ̂hs)w∗
h ≥ 1 must be true for

every optimal solution (w∗, y∗, η∗). Hence, the inequality
∑

h∈A I(α̂hs−φ̂hs)wh ≥ 1 is supervalid.

The fact that the flow cost after interdiction is always greater than or equal to the flow cost

before interdiction yields the following valid inequality (3.47) to the MP.

ηs ≥
∑
h∈A

∑
k∈K

rkhy
k
h ∀s ∈ S (3.47)

3.5.4 Additional Acceleration Techniques

We use warm start, variable fixing, and cut selection techniques to further improve the perfor-

mance of the Benders decomposition algorithm.

75

3.5.4.1 Warm Start

The initial iterations of Benders decomposition algorithm are ineffective due to weak optimality

cuts. To overcome this challenge, we use warm start strategies to generate initial tight cuts (Rahma-

niani et al., 2018). To generate tight cuts, we find feasible solutions and add optimality cuts based

on feasible binary solutions instead of the optimality cuts obtained from fractional solutions in the

first phase of the algorithm.

We add optimality cuts based on the following four warm start strategies to the MP:

• Strategy 1 (WS1): We solve the MCNDP for each instance without considering the interdic-

tions. This solution provides us with the minimum number of arcs to satisfy the demand. We

keep the value of the flow variables ykh.

• Strategy 2 (WS2): We assume that the interdictor interdicts S arcs having the highest flow.

• Strategy 3 (WS3): We assume that the interdictor has high interdiction budget (B = ⌈0.2∗A⌉)

and interdicts the arcs with the highest multicommodity flow. Then, we solve the MCNDP

over the residual network.

• Strategy 4 (WS4): We assume that all arcs are installed.

We solve the SPs based on the design solutions obtained from the above warm start strategies to

generate the optimality cuts. We also use the upper bound from feasible binary solutions for fixing

the value of variables in Section 3.5.4.2.

3.5.4.2 Variable Fixing

Note that one of the flow balance constraints (3.11) is redundant for each commodity k ∈

K. Therefore, we are able to set the dual variable associated with the origin (destination) of each

commodity to zero i.e. πkOks
= 0 (Rahmaniani et al., 2018). We use the information generated in the

first phase of the Benders algorithm to fix the value of installed arcs to zero in the optimal solution.

Let UB and LB denote the upper bound and LP relaxation lower bound to the MP. Let rch be the

reduced cost associated with variables wh. If LB + rch > UB, then wh = 0. The correctness

76

of this variable fixing technique results from the fact that LB + rch is the lower bound if arc h is

installed in the optimal solution. Since LB+ rch > UB, wh should be zero in any optimal solution

(Contreras et al., 2011).

3.5.4.3 Cut Selection

To reduce the size of the LP problem solved at the nodes of the branch-and-bound tree in the

second phase of the Benders algorithm, we remove the optimality cuts with large slacks (generated

in phase one). In addition, CPLEX removes the lazycuts or usercuts generated in the second phase

if they have large slack.

3.5.5 Enhanced Branch-and-Benders-Cut Algorithm

The pseudo-code of the enhanced BBC algorithm for solving the trilevel stochastic MCNDP is

presented in Algorithm 4. First, we use the warm start techniques to generate optimality cuts. Then,

we start phase one of the algorithm where the LP relaxation of MP and SPs are solved iteratively

until stopping criteria are met. Stopping criteria can be the number of iterations, time limit, and/or

the optimality gap. In phase two, we reintroduce the integrality requirement to the MP with the

cuts generated in the first phase of the algorithm. We remove the optimality cuts generated in the

first phase of the algorithm with high slacks and fix the value of w variables to zero if possible.

Considering the tree τ and the global upper bound UB, we start the branch-and-bound procedure

(lines 12-49). Whenever we find a node with an integer solution, we check the SPs for violated

optimality cuts. If we find any violated cuts, we add them as lazycut to the MP and resolve the node

(lines 34-45). If no violated optimality cuts are found, we calculate the optimal objective function

z∗. If it is better than UB, we update the current upper bound UB and prune the node. We can

optionally add the violated optimality cuts at the fractional nodes as usercuts to the MP (lines 18-33)

and we resolve the node. To reduce the number of cuts added to the MP, we add usercuts only at

nodes with depth up to Max-Depth. In line 47 of the algorithm, we perform branching to create two

new nodes and continue the procedure until the optimal solution is found. Note that optimality cuts

can be generated using SPs/PSPs/D-PMCNIs based on the variant of the algorithm.

The BBC algorithm terminates after a finite number of steps as the branch-and-bound method

77

Algorithm 4 Enhanced Branch-and-Benders-Cut Algorithm
1: Create optimality cuts with warm start techniques
2: while Stopping criteria are not met do ▷ Phase 1
3: Solve the LP relaxation of the MP with optimality cuts generated with warm start techniques
4: for s ∈ S do
5: Solve SPs/PSPs/D-PMCNIs
6: Add optimality cut to the MP
7: end for
8: end while
9: Remove the optimality cuts with large slacks ▷ Phase 2

10: Fix the value of w variables if possible
11: Add the obtained MP into the tree τ and set UB = ∞
12: while τ ̸= ∅ do
13: Select node t from τ
14: Solve this node to obtain the optimal (w, y, η) with objective value of z∗

15: if the node is infeasible or z∗ ≥ UB then
16: Prune the node and return to line 12
17: end if
18: if w is not integer then
19: if depth ≤ Max-Depth then
20: Add the violated cut(s) as the usercuts to the MP
21: Solve the node again with the violated cut(s) to find (w, y, η) with objective value of z∗

22: if the node is infeasible or z∗ ≥ UB then
23: Prune the node and return to line 12
24: end if
25: if w is integer then
26: Return to line 34
27: else
28: Return to line 46
29: end if
30: else
31: Return to line 46
32: end if
33: end if
34: if w is integer then
35: while violating cut(s) can be found and w is integer do
36: Add the violated cut(s) as the lazycuts to the MP
37: Solve the node again with the violated cut(s) to find (w, y, η) with objective value of z∗

38: if the node is infeasible or z∗ ≥ UB then
39: Prune the node and return to line 12
40: end if
41: end while
42: if w is integer then
43: Set UB = min{UB, z∗}, prune the node and return to line 12
44: end if
45: end if
46: Choose a fractional w variable to branch
47: Create two nodes and add them to τ
48: Remove node t from τ
49: end while

78

operates on a finite search space and the number of Benders cuts is finite. Each time a Benders

cut is added to the MP, it eliminates a part of the search space that does not include the optimal

solution. Given that there are a limited number of Benders cuts that can be added and that the

branch-and-bound method will systematically explore and eliminate suboptimal branches, the pro-

cess will terminate after a finite number of steps.

3.6 Computational Experiments

We perform extensive computational experiments to assess the performance of our branch-and-

Benders-cut algorithm and the efficacy of the proposed acceleration techniques tailored to the prob-

lem. In the first set of computational experiments, we analyze the effects of warm start, variable

fixing, and cut selection techniques on the performance of the BBC algorithm. Then, we perform

extensive experiments to analyze the effects of the use of penalty formulation, Pareto-optimal cuts,

and supervalid and valid inequalities on the performance of the BBC algorithm over small and mod-

erate size instances. In the third set of experiments, we report the results of solving the large-scale

instances using the three most promising variants of our BBC algorithm. We also compare our best

variant of the BBC algorithm with the cutting plane algorithm proposed by (Smith et al., 2007). To

provide a fair comparison, we have adapted (Smith et al., 2007)’s algorithm for the stochastic vari-

ant. The algorithm is outlined in Appendix B.1. Then, we compare the results of our best variant of

the algorithm with that of MibS, a state-of-the-art solver for mixed-integer bilevel linear programs.

In the next set of computational experiments, we report the performance of our algorithm for the

case with uncertain demand and uncertain interdiction budget. Finally, we conduct sensitivity anal-

ysis to showcase the impact of considering interdiction budget on the optimal network design. We

also present a sensitivity analysis to depict the impact of varying weights of pre-interdiction and

post-interdiction flow cost on the optimal network design.

All experiments are run on a workstation with the 3.10 GHz Intel Xeon E5 2687W V3 processor

under the Linux environment, using one thread. The algorithms are coded in C using the callable

library for CPLEX 22.1.0. We use lazyconstraintcallback and usercutcallback functions in CPLEX

79

to add the optimality cuts to the nodes with integer and fractional solutions, respectively. We fine-

tune the CPLEX parameters, e.g., the user cut frequency. Adding too many cuts slows down the

solution of the LP relaxation at each node while adding a few cuts underestimates the lower bound at

the nodes. Therefore, we find the appropriate combination of parameter settings for each algorithm.

Based on preliminary experiments, we add user cuts to the nodes with depths up to two, and we

generate one round of user cuts in each fractional node. We observe that generating cuts for depths

of more than two increases the computation time of the algorithms.

3.6.1 Test Instances

To compare the efficiency of our algorithms, we use the well-known “r” benchmark instances

for capacitated MCNDP (Crainic et al., 2001) available at http://pages.di.unipi.it/

frangio/. There are 18 sets of instances, denoted by “r01” to “r18”. Each set consists of 9

problem instances with different capacities and fixed costs. The details of the test instances are

summarized in Table 3.3 and Appendix B.2. The time limit in all the experiments is set to 24 hours

(86,400 seconds), and the optimality gap is set to 10−4 unless otherwise stated. We consider three

scenarios (|S| = 2, 3, 4). In each scenario s ∈ S, the interdiction budget is set to Bs = s, s =

1, ..., |S| unless otherwise stated. All scenarios have equal probability, and we set the weight of the

pre-interdiction flow cost to Φ = 0.8.

Table 3.3: Summary of Test Instances

Set |N | |A| |K| # Instances Set |N | |A| |K| # Instances

r01 10 35 10 9 r10 20 120 40 9
r02 10 35 25 9 r11 20 120 100 9
r03 10 35 50 9 r12 20 120 200 9
r04 10 60 10 9 r13 20 220 40 9
r05 10 60 25 9 r14 20 220 100 9
r06 10 60 50 9 r15 20 220 200 9
r07 10 82 10 9 r16 20 314 40 9
r08 10 83 25 9 r17 20 318 100 9
r09 10 83 50 9 r18 20 315 200 9

80

http://pages.di.unipi.it/frangio/
http://pages.di.unipi.it/frangio/

3.6.2 Computational Performance of Warm Start, Variable Fixing, and Cut Selec-

tion

First, we analyze the efficacy of different warm start techniques on the BBC algorithm. For this,

we choose a variant of BBC algorithm (with multicut reformulation, penalty reformulation, variable

fixing, and cut selection activated) but without any warm start techniques. In Table 3.4, we report

the CPU time (s) of the BBC algorithm under six conditions: (i) without any warm start, (ii-v) with

each of the four warm starts activated individually, and (vi) with all warm starts activated. The table

also reports the percentage reduction in CPU time as a result of all warm start activated compared

to none. Based on the average CPU time, we observe that all the warm start techniques have a

positive impact on the performance of the BBC algorithm. If we choose to activate only one of the

warm start techniques, warm start 4 has the best performance among all techniques. Warm start

techniques 1 and 2 have similar performance.

Table 3.4: Performance of Warm Start Techniques

Set
CPU Time (s) for |S| = 3 CPU Time (s) for |S| = 4

No WS WS 1 WS 2 WS 3 WS 4 All WS % Red No WS WS 1 WS 2 WS 3 WS 4 All WS % Red

r08 6,782 7,023 7,034 7,981 5,902 5,506 20 40,865 39,105 39,599 40,105 33,804 36,798 10
4,622 3,544 4,306 3,985 3,449 3,387 27 31,935 25,939 25,452 33,733 27,357 21,922 31
2,696 2,387 2,346 3,315 2,285 2,365 12 21,738 21,310 20,961 24,217 20,771 20,428 6

12,984 10,502 10,900 12,283 9,848 10,130 22 59,251 56,460 57,273 55,152 55,971 49,036 17
7,776 7,526 7,282 6,798 5,447 5,314 32 48,671 44,269 45,110 50,595 42,527 45,106 7
5,855 5,642 6,238 5,989 5,461 5,620 4 23,733 24,200 23,278 21,729 21,154 14,511 39
1,480 1,482 948 1,384 1,195 1,093 26 1,821 1,787 1,179 1,837 1,801 1,769 3
1,398 1,183 1,131 1,290 1,110 1,124 20 1,753 1,600 1,981 1,659 1,627 1,752 0
1,530 1,453 1,395 1,479 1,393 1,391 9 1,770 1,498 1,675 1,661 1,724 1,651 7

Average 5,014 4,527 4,620 4,945 4,010 3,992 19 25,726 24,018 24,057 25,632 22,971 21,441 13
Geo. Mean 3,890 3,536 3,456 3,835 3,165 3,133 16 13,965 12,967 12,817 13,839 12,735 11,922 6

Next, we analyze the performance of variable fixing on the BBC algorithm. For this, we choose

a variant of BBC algorithm (with multicut reformulation, penalty reformulation, all warm starts,

and cut selection activated) but with and without any variable fixing. In Table 3.5, we report the

CPU time (s) of the BBC algorithm under two conditions: (i) without variable fixing (w/o VF), (ii)

with variable fixing (w/VF) activated. The table also reports the percentage reduction in CPU time

as a result of variable fixing. We observe that variable fixing improves the performance of the BBC

algorithm.

Lastly, we analyze the performance of cut selection on the BBC algorithm. For this, we choose

81

Table 3.5: Performance of Variable Fixing

Set
|S| = 3 |S| = 4

w/o VF w/VF % Red w/o VF w/ VF % Red

r08 6,752 5,506 18 86,400 36,798 57
6,338 3,387 47 59,779 21,922 63
6,395 2,365 63 86,400 20,428 76

17,991 10,130 44 82,044 49,036 40
9,307 5,314 43 86,400 45,106 48

43,401 5,620 87 86,400 14,511 83
5,734 1,093 81 10,085 1,769 82
5,249 1,124 79 11,828 1,752 85
7,590 1,391 82 9,591 1,651 83

Average 12,084 3,992 60 57,659 21,441 69
Geo. Mean 9,161 3,049 55 40,791 11,170 67

a variant of BBC algorithm (with multicut reformulation, penalty reformulation, all warm starts,

and variable fixing activated) but with and without any cut selection. In Table 3.6, we report the

CPU time (s) of the BBC algorithm with the cut selection (w/CS) versus without the cut selection

(w/o CS). The results depict that cut selection improves the performance of the BBC algorithm on

larger instances compared to the small ones (where it affects adversely).

Table 3.6: Performance of Cut Selection

Set
|S| = 3 |S| = 4

w/o CS w/CS % Red w/o CS w/CS % Red

r08 4,646 5,506 - 19 47,329 36,798 22
3,176 3,387 - 7 32,923 21,922 33
2,902 2,365 18 86,037 20,428 76
9,961 10,130 - 2 74,733 49,036 34
6,266 5,314 15 86,400 45,106 48
6,065 5,620 7 86,400 14,511 83
4,767 1,093 77 1,331 1,769 - 33

993 1,124 - 13 2,064 1,752 15
1,073 1,391 - 30 1,439 1,651 - 15

Average 4,428 3,992 5 46,517 21,441 29
Geo. Mean 3,517 3,049 18,817 11,170

3.6.3 Performance of BBC Algorithms

In this part of the computational experiments, we analyze the effectiveness of the three main

acceleration techniques proposed in Section 4.4.2. For presentation purposes, we only include sum-

marized results of all experiments. Interested readers are referred to Appendix B.3 for detailed re-

sults. We have implemented five different versions of our BBC algorithm. Based on our preliminary

82

computational experiments, we activate all warm start techniques, variable fixing, and cut selection

techniques in all the five variants. The first one, called BBC1, uses the multicut reformulation. In

the second, third, and fourth variants, we activate penalty reformulation, Pareto-optimal cuts, and

supervalid and valid inequalities, one at a time respectively. Lastly, we activate all acceleration

techniques. Hence, the resulting variants are as follows:

• BBC1: Multicut reformulation

• BBC2: Multicut reformulation with penalty reformulation

• BBC3: Multicut reformulation with Pareto-optimal cuts

• BBC4: Multicut reformulation with supervalid and valid inequalities

• BBC5: Multicut reformulation with all the acceleration techniques

3.6.3.1 Results for Moderate Instances

We compare the performance of the five variants of our algorithm on small to moderate-size

instances (sets ”r01-r09”) for different scenarios (interdiction budgets). The summary of results is

reported in Table 3.7 whereas the detailed results of all 81 instances over three budget levels are

presented in Appendix B.3. In Table 3.7, we report the average CPU time (seconds) of 9 instances

in each set.

We observe that the BBC2 (multicut with penalty reformulation) is the most promising variant

of the algorithm as it outperforms all other variants under all scenarios. The use of penalty refor-

mulation (BBC2) reduces the CPU time by 52%, 58%, and 51% compared with BBC1 for |S|=2,

|S|=3, and |S|=4, respectively. Moreover, BBC2 outperforms BBC5 on 68% of instances. This is

due to the fact that we solve PSPs to find the Pareto-optimal cuts in BBC5, which increases the CPU

time. Note that the BBC5 (multicut with all acceleration techniques) is the next promising variant

of the algorithm as it outperforms the three other variants under all scenarios. The use of all the

acceleration techniques reduces the CPU time by 46%, 52%, and 42% compared with BBC1 for the

three budget levels, respectively.

83

Note that all the five variants of our algorithm were able to solve 81 instances for low budget

levels (|S|=2 and |S|=3) to optimality. However, BBC1 and BBC4 were unable to solve “r09”

instances to optimality for |S|=4. BBC1 solves 5 (out of 9) instances of ”r09” to optimality with

an average gap of 2.7% (maximum of 11.6%). BBC4 solves 6 (out of 9) instances of ”r09” to

optimality with an average gap of 1.9% (maximum of 9.2%). This shows that adding supervalid and

valid inequalities affects the performance of BBC1 for |S|=2 and |S|=3 slightly. However, as the

instance size increases, BBC4 and BBC1 have similar performance in terms of number of instances

solved to optimality. Although, BBC4 reduces the average gap by 30% compared with BBC1 for

”r09” instances. Furthermore, adding Pareto-optimal cuts (BBC3) improves the CPU time by 28%,

30%, and 23.5% compared with BBC1 for |S|=2, |S|=3, and |S|=4, respectively. The use of all

acceleration techniques (BBC5) reduces the CPU time by 46%, 51.5%, and 42% compared with

BBC1 for |S|=2, |S|=3, and |S|=4, respectively.

To further compare the efficacy of acceleration techniques, we present the performance profile of

acceleration techniques over all 81 instances. Figure 3.1 displays the percentage of instances solved

to optimality within the time limit. In summary, BBC2 outperforms all variants of the algorithm by

solving all instances in less time across all scenarios. Specifically, BBC2 solves all instances (for

|S|=2 and |S|=3) in 48% and 42% less time than BBC1.

0 20 40 60 80

·103

50

60

70

80

90

100

Time (s)

%
of

in
st

an
ce

s
so

lv
ed

BBC1
BBC2
BBC3
BBC4
BBC5

(a) |S|=2

0 20 40 60 80

·103

50

60

70

80

90

100

Time (s)

BBC1
BBC2
BBC3
BBC4
BBC5

(b) |S|=3

0 20 40 60 80

·103

50

60

70

80

90

100

Time (s)

BBC1
BBC2
BBC3
BBC4
BBC5

(c) |S|=4

Figure 3.1: Performance Profile of Different Variants of BBC Algorithm

84

Table 3.7: Summary of the Performance of the Variants of BBC Algorithm on r01-r09 Sets

Set
Average CPU Times (s) for |S| = 2 % Red. % Red.

BBC1 BBC2 BBC3 BBC4 BBC5 BBC2-BBC1 BBC5-BBC1

r01 14 5 14 14 5 66 66
r02 28 8 28 27 8 72 70
r03 74 20 67 72 20 73 73
r04 109 33 64 107 41 70 63
r05 978 387 756 930 454 60 53
r06 1,771 595 1,276 1,823 679 66 62
r07 146 38 100 159 48 74 67
r08 1,510 566 1,044 1,578 636 62 58
r09 10,051 5,359 7,250 10,073 6,056 47 40

Arith. Mean 1,631 779 1,178 1,643 883 66 61
Geo Mean. 284 95 220 285 107 65 60

Set
Average CPU Times (s) for |S| = 3 % Red. % Red.

BBC1 BBC2 BBC3 BBC4 BBC5 BBC2-BBC1 BBC5-BBC1

r01 21 6 20 22 6 73 71
r02 43 11 46 42 12 74 73
r03 109 29 97 100 28 73 74
r04 250 64 152 269 64 74 74
r05 3,302 1,329 2,692 3,208 1,571 60 52
r06 8,365 2,218 4,427 8,534 2,976 73 64
r07 840 269 494 919 299 68 64
r08 11,023 3,992 7,316 11,650 4,446 64 60
r09 38,029 17,942 27,959 37,990 20,571 53 46

Arith. Mean 6,887 2,873 4,800 6,970 3,330 68 64
Geo Mean. 855 267 632 869 295 68 64

Set
Average CPU Times (s) for |S| = 4 % Red. % Red.

BBC1 BBC2 BBC3 BBC4 BBC5 BBC2-BBC1 BBC5-BBC1

r01 34 8 34 38 8 77 76
r02 59 13 65 64 13 78 78
r03 132 31 112 134 34 76 74
r04 329 87 231 369 98 73 70
r05 2,701 1,181 2,283 3,223 1,391 56 48
r06 14,476 5,707 9,980 13,429 8,259 61 43
r07 2,971 1,042 2,040 3,197 1,262 65 57
r08 52,423 21,442 40,811 45,469 27,350 59 48
r09 56,462* 34,620 43,827 55,987** 36,924 39 35

Arith. Mean 14,399 7,126 11,042 13,546 8,371 65 59
Geo Mean. 1,461 484 1,187 1,519 558 64 57
* 5 out of 9 instances are solved to optimality
** 6 out of 9 instances are solved to optimality

85

Next, we conduct a paired t-test to assess the statistical significance of the means of a pair

of different variants of the algorithm. We compare the performance of BBC2, BBC3, BBC4, and

BBC5 with that of BBC1. The null hypothesis (H0) states that there is no significant difference in the

performance of the two algorithms, indicating a mean difference of zero. Conversely, the alternative

hypothesis (H1) suggests a significant difference between the two algorithms. To determine the

threshold for rejecting the null hypothesis, we set the significance level to α = 0.05. We reject the

null hypothesis if the p-value is smaller than the significance level of 0.05. As the CPU time among

81 instances of “r01-r09” varies significantly, we first normalize the CPU time as follows:

tbj =
tbj − µb
σb

(3.48)

where tbj is the CPU time of instance b using algorithm j, and µb, σb are the mean and standard

deviation of instance b using all algorithms. Based on the results of Table 3.8, there is a significant

difference between the results of BBC1 and BBC2, BBC1 and BBC3, as well as BBC1 and BBC5.

There is no significant difference between the results of BBC1 and BBC4 under |S|=2 and |S|=3

but their difference is significant under |S|=4.

Table 3.8: Paired T -test of Variants of BBC Algorithm (p-value)

Variant of Algorithm * |S|=2 |S|=3 |S|=4

BBC2 < 10−6 < 10−6 < 10−6

BBC3 < 10−6 < 10−6 < 10−6

BBC4 0.1997 0.3292 0.0001
BBC5 < 10−6 < 10−6 < 10−6

* All techniques are compared with BBC1

Based on the results in Table 3.7, Table 3.8, and Figure 3.1, we observe that the three most

promising variants, in order of their performance, are BBC2, BBC5, and BBC3 as they outperform

other variants by reducing the CPU time significantly and solving all the instances to optimality

within the time limit.

86

3.6.3.2 Results for Larger Instances

We now report the performance of our algorithm on large instances (sets “r10 to r18”). For this

set of experiments, we focus on the three most promising variants of our algorithm: BBC2, BBC3,

and BBC5 only. We present the results of “r10-r18” in Table 3.9 for different budget scenarios. The

column “Time” is computed by averaging the CPU time of all 9 instances in each set. The column

“Gap” is computed by averaging the instances that reached the time limit with an integer solution.

The column “Op/Fe/Nf” shows the number of instances solved optimally within the time limit (Op),

the number of instances that reached the time limit with an integer solution (Fe), and the number of

instances with no feasible solution (Nf). We observe that BBC2 outperforms BBC3 and BBC5 (as

it is able to solve 31% and 10% more instances to optimality than BBC3 and BBC5, respectively).

With BBC2, the number of instances with no feasible solution decreases by 26% and 14% compared

with BBC3 and BBC5, respectively. Moreover, BBC2 is efficient in terms of average CPU time and

average gap compared to BBC3 and BBC5. In conclusion, BBC2 is the most efficient variant of the

algorithm (followed by BBC5).

In Table 3.10, we increase the interdiction budget (number of interdictions) in each scenario to

test the performance of the algorithm over difficult instances. We set the number of interdictions

at levels of 5%, 10%, 15%, and 20% of the total number of arcs, with any fractional values being

rounded down. Consequently, when |S| = 2, the number of interdictions is set as B1 being 5% of

the arcs and B2 at 10% of the arcs. In cases where |S| = 3, the number of interdictions is B1 at 5%

of the arcs, B2 at 10%, and B3 at 15% of the arcs. Lastly, for |S| = 4, the number of interdictions

is determined as B1 at 5% of the arcs, B2 at 10%, B3 at 15% of the arcs, and B4 at 20% of the

arcs. In Table 3.10, we report the average CPU time (s), the average gap on instances not solved

to optimality, and the number of optimal solutions in each “r” set using the BBC2 algorithm. We

observe that as the number of interdictions increases, the difficulty of the problem increases, thereby

increasing the computation time significantly compared to the results of Table 3.7.

3.6.4 Comparison with Smith et al. (2007)’s Algorithm

87

Table 3.9: Summary of the Performance of BBC2, BBC3, and BBC5 Algorithms on “r10” to “r18”
Sets

(a) |S|=2

Set
BBC2 BBC3 BBC5

Time (s) 1 Gap (%) 2 Op/Fe/Nf 3 Time (s) Gap (%) Op/Fe/Nf Time (s) Gap (%) Op/Fe/Nf

r10 14,508 - 9/0/0 21,867 - 9/0/0 16,338 - 9/0/0
r11 23,631 - 9/0/0 40,089 1.3 7/2/0 26,996 - 9/0/0
r12 63,119 13.5 3/3/3 64,961 30.5 3/1/5 64,164 25.8 3/1/5
r13 39,927 - 9/0/0 55,231 6.7 7/2/0 52,348 4.5 8/1/0
r14 86,185 8.3 1/6/2 86,400 14.6 0/6/3 86,250 7.5 1/5/3
r15 86,400 32.2 0/4/5 86,400 35.5 0/2/7 86,400 35.3 0/3/6
r16 55,854 - 9/0/0 68,581 9.1 8/1/0 62,114 7.4 8/1/0
r17 86,320 27.4 1/4/4 86,400 22.2 0/2/7 86,400 24.8 0/3/6
r18 86,400 - 0/0/9 86,400 - 0/0/9 86,400 - 0/0/9

Total 41/17/23 34/16/31 38/14/29
Arith. Mean 60,260 66,259 63,045
Geo. Mean 51,789 61,187 55,650

(b) |S|=3

Set
BBC2 BBC3 BBC5

Time (s) 1 Gap (%) 2 Op/Fe/Nf 3 Time (s) Gap (%) Op/Fe/Nf Time (s) Gap (%) Op/Fe/Nf

r10 29,164 1.1 8/1/0 51,682 2.7 7/2/0 34,090 1.1 8/1/0
r11 38,878 8.3 6/3/0 54,133 15.9 5/3/1 42,584 10 6/3/0
r12 66,041 31.2 3/1/5 69,202 - 3/0/6 67,659 39.2 3/1/5
r13 76,452 10.4 5/4/0 82,993 14.1 3/6/0 81,302 10.9 3/6/0
r14 86,400 16.4 0/7/2 86,400 21.4 0/5/4 86,400 17.5 0/6/3
r15 86,400 27.3 0/3/6 86,400 - 0/0/9 86,400 38.9 0/2/7
r16 73,705 14 4/5/0 82,819 16.8 2/7/0 79,591 13.9 3/6/0
r17 86,400 27.1 0/5/4 86,400 18.3 0/1/8 86,400 27.8 0/3/6
r18 86,400 - 0/0/9 86,400 - 0/0/9 86,400 - 0/0/9

Total 26/29/26 20/24/37 23/28/30
Arith. Mean 69,982 76,270 72,314
Geo. Mean 65,922 74,896 68,993

(c) |S|=4

Set
BBC2 BBC3 BBC5

Time (s) 1 Gap (%) 2 Op/Fe/NFe 3 Time (s) Gap (%) Op/Fe/NFe Time (s) Gap (%) Op/Fe/NFe

r10 49,099 10.1 7/2/0 59,731 13.5 4/5/0 53,841 13.6 6/3/0
r11 51,424 12.2 6/3/0 61,218 26.5 5/1/3 55,641 17.3 6/3/0
r12 67,684 - 3/0/6 73,001 - 3/0/6 68,215 - 3/0/6
r13 83,573 14.5 3/6/0 86,047 16.7 1/8/0 84,638 18.1 3/6/0
r14 86,400 20 0/6/3 86,400 28.2 0/4/5 86,400 21 0/5/4
r15 86,400 - 0/0/9 86,400 - 0/0/9 86,400 - 0/0/9
r16 81,136 16.5 3/6/0 86,045 20.4 1/8/0 84,530 18.6 2/7/0
r17 86,400 30 0/4/5 86,400 - 0/0/9 86,400 32 0/2/7
r18 86,400 - 0/0/9 86,400 - 0/0/9 86,400 - 0/0/9

Total 22/27/32 14/26/41 20/26/35
Arith. Mean 75,390 79,071 76,941
Geo. Mean 73,754 78,261 75,684
1 The average time is computed on all 9 instances of each set 2 The average gap is computed on the instances that reached the time
limit with an integer solution 3 Op: Number of instances solved to optimality. Fe: Number of instances that reached the time limit
with an integer solution. Nf: Number of instances with no feasible solution.

88

Table 3.10: Summary of Performance of the BBC2 Algorithm for Bs = % of Arcs

|S| = 2 |S| = 3 |S| = 4

Set
Bs = (5%, 10%) Bs = (5%, 10%, 15%) Bs = (5%, 10%, 15%, 20%)

Time (s) Gap (%) Opt. Time (s) Gap (%) Opt. Time (s) Gap (%) Opt.

r01 4 0.0 9 5 0.0 9 6 0.0 9
r02 7 0.0 9 10 0.0 9 12 0.0 9
r03 18 0.0 9 26 0.0 9 43 0.0 9
r04 143 0.0 9 227 0.0 9 390 0.0 9
r05 1,176 0.0 9 1,380 0.0 9 1,697 0.0 9
r06 4,976 0.0 9 7,283 0.0 9 16,066 0.0 9
r07 1,597 0.0 9 2,065 0.0 9 4,014 0.0 9
r08 20,747 0.0 9 42,243 7.6 7 43,224 8.5 7
r09 39,788 4.8 6 48,539 13.9 5 51,148 11.1 6

Arith. Mean 7,606 0.5 11,309 2.4 12,956 2.2
Geo. Mean 436 620 878

Smith et al. (2007) propose a cutting plane algorithm to solve the deterministic variant of the

MCND problem under optimal interdiction. We use their algorithm for solving our stochastic

MCND problem and compare the results of our BBC2 algorithm over moderate-size instances:

set “r07” and set “r08”. The pseudo-code of the Smith et al. (2007)’s algorithm is presented in

Appendix B.1. The results of Table 3.11 highlight the efficiency and the robustness of our proposed

BBC algorithm. As can be observed, while the cutting plane algorithm could solve 76% of 54 in-

stances to optimality within the time limit, BBC2 solves all instances to optimality. Furthermore,

our algorithm is an order of magnitude faster, on average, than Smith et al. (2007)’s algorithm.

3.6.5 Comparison with MibS Solver

We compare the performance of the BBC2 algorithm with MibS, a general-purpose mixed-

integer bilevel linear optimization solver developed by DeNegre and Ralphs (2009) and Tahernejad

et al. (2020). The solver is available at https://github.com/coin-or/MibS. MibS solver

uses a branch-and-cut algorithm, which recursively partitions the feasible region and dynamically

enhances the relaxation by adding valid inequalities. It iterates by generating bounds, pruning nodes,

branching on variables, and eliminating infeasible solutions. We use the default settings of MibS

solver version 1.2.1. Our preliminary experiments were conducted on “r01” instances, however,

MibS was unable to solve any of these instances within the time limit. Therefore, we create new

89

https://github.com/coin-or/MibS

Table 3.11: Comparison of the Computation Time of BBC2 Algorithm and Smith et al. (2007)’s
Algorithm

Set
|S| = 2 |S| = 3 |S| = 4

BBC2 Smith et al. (2007) BBC2 Smith et al. (2007) BBC2 Smith et al. (2007)
r07 28 94 368 209 1,899 927

22 134 216 952 2,090 6,832
27 666 199 11,601 1,592 86,400*

63 161 689 518 1,070 463
36 1,498 332 13,310 1,129 12,470
27 10,770 356 86,400* 1,335 86,400*

50 33 97 70 73 99
48 215 71 239 102 259
40 820 92 861 88 596

Arith. Mean 38 1,599 269 12,684 1,042 21,605
Geo. Mean 36 369 211 1,393 573 2,526

r08 181 166 5,506 3,568 36,798 31,686
409 5,897 3,387 86,400* 21,922 86,400*

210 86,400* 2,365 86,400* 20,428 86,400*

664 630 10,130 10,206 49,036 45,398
701 14,843 5,314 86,400* 45,106 86,400*

348 86,400* 5,620 86,400* 14,511 86,400*

1,159 407 1,093 722 1,769 1,197
593 2,015 1,124 1,473 1,752 3,090
829 6,949 1,391 5,846 1,651 7,391

Arith. Mean 566 22,634 3,992 40,824 21,441 48,262
Geo. Mean 483 4,180 3,049 13,252 11,170 23,506
* Time limit reached

small instances from “r” instances with deterministic demand and number of interdictions. The

results are presented in Table 3.12 where we compare the CPU time (s) and the objective function

value of MibS and BBC2 algorithm. We observe that our proposed algorithm with acceleration

techniques improves CPU time by orders of magnitude.

3.6.6 Results of Uncertain Demand and Number of Interdiction

We also analyze the performance of the BBC2 algorithm for instances with stochastic demand

and stochastic number of interdictions. We use the benchmark instances with 16, 32, and 64 sce-

narios for the demand (Sarayloo et al., 2021). The instances can be downloaded from https:

//github.com/shabnamvaziri/Instances-MCND-SI. In Table 3.13, we present the

average CPU time and gap over the nine instances in each “r” set. We present the detailed results

in Appendix B.3. We can observe that considering the stochastic demand besides uncertain budget

increases the problem difficulty; however, BBC2 is capable of solving 284 instances (out of 486

instances) to optimality over all demand and interdiction budget scenarios within the time limit.

90

https://github.com/shabnamvaziri/Instances-MCND-SI
https://github.com/shabnamvaziri/Instances-MCND-SI

Table 3.12: Comparison of the Performance of MibS Solver and BBC2 Algorithm

|N |, |A|, |K| B
MibS BBC2

Time (s) Obj Time (s) Obj

10,15,5 1 11 138,749 < 1 138,749
2 14 292,166 < 1 292,166
3 30 444,844 < 1 444,844
4 52 556,297 < 1 556,297
5 54 635,497 < 1 635,497

10,15,10 1 6.6 898,918 < 1 898,918
2 24 1,012,154 < 1 1,012,154
3 65 1,123,046 < 1 1,123,046
4 105 1,228,028 < 1 1,228,028
5 101 1,299,546 < 1 1,299,546

10,20,5 1 260 331,105 < 1 331,105
2 519 469,584 < 1 469,584
3 648 573,549 < 1 573,549
4 671 576,106 < 1 576,106
5 851 637,286 < 1 637,286

10,20,10 1 176 592,579 < 1 592,579
2 655 1,038,001 < 1 1,038,001
3 797 1,164,033 < 1 1,164,033
4 907 1,270,589 < 1 1,270,589
5 1,260 1,305,904 < 1 1,305,904

3.6.7 Sensitivity Analysis

In this section, we perform a sensitivity analysis of the effects of the number of interdiction

scenarios on the optimal design. We show the importance of stochastic over deterministic variants in

cases where the number of interdictions is uncertain. Moreover, we analyze the effect of parameter

Φ on the performance of BBC algorithm and the network design.

3.6.7.1 Effect of Varying Interdiction Scenarios on the Network Design

First, we analyze the effects of changing the number of scenarios on the optimal solution. For

this purpose, we present the network solution of a specific instance of set “r07”, which comprises

10 nodes, 82 arcs, and 10 commodities. Figure 3.2 shows the following cases: (a) solution with

no interdiction, (b) solution with one scenario with Bs = 1, (c) solution with two scenarios with

B1 = 1, B2 = 2, (d) solution with three scenarios with Bs = s, s = 1, ..., 3, and (e) solution with

four scenarios with Bs = s, s = 1, ..., 4. We observe that the number of installed arcs increases as

the number of scenarios increases. Moreover, we notice that the installed arcs remain unchanged

across different scenarios, while the number of backup arcs increases as the number of scenarios

grows. This depicts that the network design is survivable by maintaining critical arcs consistently

91

Table 3.13: Summary of Performance of the BBC2 Algorithm for Uncertain Demand and Number
of Interdictions

Set

|Ω| = 16

|S| = 2 |S| = 3 |S| = 4

Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)

r04 586 0 2,426 0 4,253 0
r05 20,407 0.3 26,391 1.1 22,246 1.6
r06 40,522 2.2 44,872 4.6 48,892 5.4
r07 1,333 0 24,457 0.5 52,502 4.5
r08 16,186 0 76,137 7.3 77,120 16.1
r09 62,350 6.0 65,493 15.6 65,380 42.1

Arith. Mean 23,564 1.4 39,963 4.8 45,065 11.6
Geo. Mean 9,312 26,551 32,708

Set

|Ω| = 32

|S| = 2 |S| = 3 |S| = 4

Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)

r04 709 0 990 0 4,043 0
r05 31,138 1.9 33,733 2.8 32,122 2.8
r06 50,658 5.2 52,949 8.9 50,211 9.3
r07 7,612 0 41,027 0.4 59,098 5.1
r08 25,035 0.9 77,230 8.7 77,065 16.9
r09 66,796 8.5 72,964 18.6 70,953 48.5

Arith. Mean 30,325 2.7 46,482 6.6 48,915 13.7
Geo. Mean 15,568 27,241 35,805

Set

|Ω| = 64

|S| = 2 |S| = 3 |S| = 4

Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)

r04 1,937 0 7,296 0 5,190 0
r05 39,485 6.6 37,462 6.0 39,006 6.7
r06 56,662 5.5 63,184 10.5 62,134 14.9
r07 8,848 0 55,701 1.0 70,640 6.7
r08 41,438 1.5 77,909 11.9 78,828 23.2
r09 78,602 12.9 78,438 22.2 77,949 44.9

Arith. Mean 37,829 4.4 53,332 8.6 55,624 16.1
Geo. Mean 22,357 42,483 41,963

92

while introducing additional backup arcs to enhance adaptability to various conditions.

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

(a) No interdiction (b) |S|=1

(d) |S|=3

1

2

3

4

5

6

7

8

9

10

(c) |S|=2

1

2

3

4

5

6

7

8

9

10

(e) |S|=4

Figure 3.2: Effects of Changing the Number of Scenarios on Optimal Design

93

Second, we show the importance of using the stochastic model over the deterministic variant

in cases where the number of interdictions is uncertain. For this, we choose the same instance as

above. We find the optimal design for each deterministic number of interdictions. Then, we compute

the unmet demand under each design if the actual number of interdictions occurs. The results are

depicted in Table 3.14. The first column represents the interdiction budget used for the analysis.

The following four columns display the unmet demand for each design, corresponding to the actual

number of interdictions mentioned in the column headers. The last column presents the installation

cost for each design. The results of Table 3.14 show the robustness of the design obtained with

the stochastic model, as the stochastic design satisfies all demands for all numbers of interdictions.

However, the stochastic design has a higher installation cost than deterministic designs. Among

deterministic designs, the case with B = 4 is the same as the stochastic design as the designer

accounts for the worst-case disruptions. In contrast, the design of B = 1 performs poorly when a

higher number of interdictions happen.

Table 3.14: Comparison of Deterministic and Stochastic Designs (Unmet Demand)

Actual no. of interdictions
Installation cost ($)B = 1 B = 2 B = 3 B = 4

Deterministic design, B = 1 0 154 242 313 5,372
Deterministic design, B = 2 0 0 130 183 7,299
Deterministic design, B = 3 0 0 0 154 9,633
Deterministic design, B = 4 0 0 0 0 13,187
Stochastic design 0 0 0 0 13,187

3.6.7.2 Effect of Varying Φ on the Performance of BBC Algorithm and the Network Design

In Table 3.15, we compare the number of installed arcs for six randomly selected instances by

varying the weight of pre-interdiction and post-interdiction cost. As we can observe, the number

of installed arcs may increase as we decrease the weight of pre-interdiction cost or increase the

weight of post-interdiction cost, to have a more survivable network design against interdictions.

This increases the installation cost of the network.

To evaluate the impact of changing the weight of pre-interdiction and post-interdiction costs

on the performance of the BBC algorithm and the obtained design, we select the weight of pre-

interdiction cost to be Φ = 0.2, Φ = 0.5, and Φ = 0.8. In Table 3.16, we compare the CPU

94

Table 3.15: Effects of Varying the Weight of Pre-interdiction Cost (Φ) on the Network Design

|N | |A| |K| Φ = 1
|S| = 2 |S| = 3 |S| = 4

Φ = 0.8 Φ = 0.5 Φ = 0.2 Φ = 0 Φ = 0.8 Φ = 0.5 Φ = 0.2 Φ = 0 Φ = 0.8 Φ = 0.5 Φ = 0.2 Φ = 0

10 82 10 29 36 36 36 36 36 37 37 37 36 37 37 37
10 83 25 24 41 41 42 44 49 50 50 51 58 59 59 60
10 83 25 39 48 48 49 50 51 53 53 53 51 55 55 55
10 83 50 41 59 61 63 63 63 64 64 64 64 64 65 66
20 120 40 102 103 105 105 106 104 105 106 107 104 106 106 108
20 120 40 79 84 85 85 86 87 88 90 91 89 91 91 92

time (s) for the BBC2 algorithm applied to set “r07”, which consists of 10 nodes, 82 arcs, and 10

commodities. We observe that as the weight of the pre-interdiction cost (Φ) decreases, the CPU time

increases. Decreasing Φ implies assigning more importance to post-interdiction costs, which leads

to opening more arcs to obtain a more survivable design against interdictions. With the increased

number of arcs, the SPs become difficult.

Table 3.16: Effects of Varying the Weight of Pre-interdiction Cost (Φ) on CPU Time (s)

Set
|S| = 2 |S| = 3 |S| = 4

Φ = 0.8 Φ = 0.5 Φ = 0.2 Φ = 0.8 Φ = 0.5 Φ = 0.2 Φ = 0.8 Φ = 0.5 Φ = 0.2

r07 28 27 33 368 380 425 1,899 3,025 8,447
22 23 34 216 288 432 2,090 2,245 2,891
27 32 38 199 251 282 1,592 2,269 2,474
63 72 70 689 794 966 1,070 1,726 1,900
36 47 68 332 434 982 1,129 1,321 2,304
27 65 87 356 415 460 1,335 1,452 1,472
50 103 150 97 124 132 73 119 168
48 96 113 71 100 172 102 124 185
40 97 123 92 102 118 88 92 125

Arith. Mean 38 62 79 269 321 441 1,042 1,375 2,218
Geo. Mean 36 54 69 211 257 340 573 743 1,047

3.7 Conclusion

We studied a multicommodity network design problem with stochastic budget interdiction. As

the designer does not have complete information about the interdictor’s budget and attacking ca-

pabilities, we considered different scenarios for interdiction budget. Using the defender-attacker-

defender framework, we presented a trilevel stochastic MIP model which was reduced to the bilevel

model using strong duality. We devised a branch-and-Benders-cut algorithm enriched with sev-

eral acceleration techniques to improve its efficiency and robustness. Our extensive computational

experiments and statistical analysis show that multicut reformulation combined with penalty refor-

mulation, warm start, variable fixing, and cut selection techniques outperforms other variants of

95

the branch-and-Benders-cut algorithm. Large instances with up to 20 nodes, 220 arcs, 200 com-

modities, and 4 scenarios were solved to optimality with the proposed variant. Our results clearly

demonstrate the efficacy of the several acceleration techniques and the performance of the Benders

decomposition algorithm that can find provably optimal solutions within reasonable computational

time. Moreover, the proposed algorithm outperformed the general-purpose solver for bilevel prob-

lems (MibS) and the solution method proposed in the literature. We also analyzed the effects of

changing the number of scenarios on the design and showed the benefits of stochastic design when

the number of interdictions is uncertain.

96

Chapter 4

Fortification of Spanning Trees under

Stochastic Interdictions

Abstract In this paper, we study the fortification of minimum spanning tree (MST) and op-

timum communication spanning tree (OCST) problems by considering the effects of interdictions.

The goal of the MST problem is to find a spanning tree with minimum installation cost, and the goal

of the OCST problem is to satisfy the communication requirements in a network with minimum

communication cost. The fortification problem is modeled as a two-player defender-interdictor-

defender game. The goal is to find the optimal fortification strategy in a way that the increase in

the MST/OCST costs due to the interdiction of unfortified edges is minimized. We incorporate

the uncertainty in the number of interdictions as the defender does not have complete information

about the interdiction resources. Therefore, the defender intends to minimize the expected maxi-

mum damage in the first level. In the second level, the interdictor interdicts the edges of the graph

with a limited budget to maximize the MST/OCST costs. In the third level, the defender optimizes

the MST/OCST costs in the remaining graph. We use backward sampling framework to solve both

the deterministic and stochastic versions of the MST and OCST problems. We use the waiting list

acceleration technique to improve the performance of the backward sampling framework. Our re-

sults demonstrate the efficiency of the backward sampling framework algorithm with the waiting list

97

acceleration technique for solving the deterministic and stochastic MST/OCST fortification prob-

lems. We observe that the number of interdictions has a high impact on the computational time of

the algorithm. Moreover, we highlight the benefits of using the stochastic model when the number

of interdictions is uncertain.

4.1 Introduction

Minimum spanning tree (MST) problem is a well-studied combinatorial problem with appli-

cations in the design of transportation, computer, communication, electric grid, and water supply

networks. The goal is to connect all the nodes of the undirected, connected graph with minimum

cost. We refer the readers to surveys by Graham and Hell (1985) and Bazlamaçcı and Hindi (2001)

for the advancements of solution methodologies for solving MST problem. Another problem related

to MST is the optimum communication spanning tree (OCST). The goal of the OCST problem is

to satisfy the communication requirements between nodes of the network with minimum commu-

nication cost. If the communication cost is the only criterion in choosing the optimal solution,

the solution would be the union of the shortest paths between communication pairs. This solution

has more than |N | − 1 edges where |N | is the number of nodes; therefore, the construction cost

increases. As a result, OCST makes a trade-off between the minimum number of edges and the

minimum communication cost for satisfying the communication requirements. OCST problem has

practical applications for transportation and communication network design problems. OCST prob-

lem avoids cycles and the edges of OCST have high utilization which is a desired characteristic in

transportation networks with expensive installation costs. Moreover, the OCST problem is useful

when the building cost of the network depends on the number of established connections e.g., in

virtual networks (Mota, 2016).

The feasible solution of OCST involves all possible spanning trees connecting the nodes within

the graph. Therefore, OCST has the same feasible solution set as the MST problem, but their

objective functions differ. In MST, the goal is to connect all the nodes with minimum installation

cost whereas in OCST, the goal is to minimize the communication cost. This difference in the

objective function makes OCST a NP-hard problem whereas MST is a polynomial-time solvable

98

problem (Zetina et al., 2019).

Networks are at risk of natural or man-made disruptions. Disruptions have short-term and

long-term effects on the performance of networks. It is important to find critical infrastructures

of networks and reduce the vulnerability of networks by protection strategies. Network interdiction

models are used to find the critical infrastructures of networks, whose interdiction will cause the

maximum damage to the network. Network interdiction problems consist of two opposing players,

leader and follower, in a game theoretic framework. In the first level, the interdictor finds the nodes

or edges of the network to interdict in order to cause the maximum damage to the network. In the

second level, the follower optimizes the network after interdiction. Network interdiction problems

were first introduced for military applications (McMasters and Mustin, 1970). Network interdiction

has applications in power grid analysis, illicit supply chain, and cybersecurity, to name but a few.

We refer the readers to the survey by Smith and Song (2020) for the enhancements and applications

of the network interdiction field.

To reduce the negative impacts of interdictions on networks, one can fortify the networks e.g.,

by placing surveillance cameras. The objective of fortification models is to identify infrastructures

that, if protected, would mitigate the negative effects of interdictions. If the protection strategy

considers protecting the most critical assets, this strategy may result in suboptimal fortification plans

(Brown et al., 2006). The reason is that these strategies do not consider how strengthening certain

parts of the network can change the set of critical components. Therefore, they do not consider

the interactions within the network, which can lead to suboptimal results. Fortification problems

are tri-level mathematical models, a game between defender-interdictor-defender. In the first level,

the defender determines the defense strategy to minimize the negative impacts of interdictions. In

the second level, the interdictor interdicts the unfortified nodes/edges of the network to cause the

maximum damage. In the third level, the defender optimizes the residual network after interdiction.

In this paper, we intend to find the most effective defense strategy for the MST and OCST

problems considering uncertain number of interdictions. To the best of our knowledge, this is the

first work considering the effects of interdiction and fortification on the OCST problem. However,

MST problem with interdiction has been studied in the literature. This paper extends the bi-level

MST problem with interdiction by considering the fortification of the MST problem. The interdictor

99

intends to increase the minimum spanning tree cost or minimum communication cost for MST and

OCST problems, respectively by interdicting U edges. On the other hand, the defender has the

chance to fortify Q edges of the network to minimize the adverse effects of interdictions. We

consider the uncertainty in the number of interdictions as the defender does not have complete

information about interdiction resources by presenting a tri-level stochastic mathematical model to

find the best defense strategy. To solve the tri-level stochastic model, we use the existing exact

algorithm based on the backward sampling framework (BSF). We implement the BSF algorithm

for two reasons. First, the BSF algorithm can solve problems with mixed-integer model in the

third level. As the OCST problem is a mixed-integer program, we cannot use techniques based on

dualization. Second, we can solve both the deterministic and stochastic versions of the MST and

OCST problems using the BSF algorithm.

4.1.1 Contribution

The contribution of this paper is two-fold. First, MST and OCST problems have important

applications for designing computer, communication, and transportation networks. Therefore, it is

paramount to find optimal fortification plans to improve their resiliency. To the best of our knowl-

edge, this is the first paper considering the MST and OCST problems with fortification. In practice,

the defender does not have prior knowledge of interdiction resources. Consequently, it is more logi-

cal to consider interdiction resources as uncertain parameters. In this paper, we extend the determin-

istic model by considering the uncertainty in the number of interdictions by presenting a tri-level

stochastic mathematical model for finding the optimal fortification strategy for MST and OCST

problems. Secondly, fortification problems are a difficult class of optimization problems. Consid-

ering stochastic parameters in the fortification problem increases the complexity. To this end, our

contribution is to develop an exact method based on state-of-the-art solution methods for solving the

MST and OCST fortification problems. We implement the existing backward sampling framework

to solve the deterministic and stochastic versions of MST/OCST problems with fortification. This

is the first paper using the backward sampling framework for the tri-level stochastic fortification

problem. We also enhance the performance of the BSF algorithm using the waiting list acceleration

technique. Our results demonstrate the efficiency of the backward sampling framework algorithm

100

with the waiting list acceleration technique for solving the deterministic MST fortification problem

for instances with up to 100 nodes, and 4,950 edges. We observe that the BSF algorithm with the

waiting list acceleration technique reduces CPU time by an average of 55% compared with the BSF

algorithm for large-sized MST instances. The stochastic MST fortification problem is solved for

instances with up to 4 scenarios, 40 nodes, and 780 edges. The deterministic OCST fortification

problem is solved for instances with up to 50 nodes, 1,225 edges, and 635 communication requests.

The stochastic version of OCST is solved for instances with up to 30 nodes for 2 and 3 scenarios,

and instances with up to 20 nodes for 4 scenarios. We show that the algorithm is sensitive to the

number of interdictions. Moreover, we highlight the benefits of using the stochastic model when

the number of interdictions is uncertain.

The remainder of this paper is structured as follows: In Section 4.2, we review the relevant

literature. In Section 4.3, we provide the stochastic mathematical models for fortifying the MST and

OCST problems. The solution methodology for solving the stochastic model for MST and OCST

is presented in Section 4.4. In Sections 4.5 and 4.6, we present the results of our computational

experiments and conclude the paper, respectively.

4.2 Literature Review

We provide a brief review of the literature concerning network fortification models, stochastic

interdiction/fortification models, MST problems with interdictions, and OCST problem.

4.2.1 Network Fortification and Interdiction

Brown et al. (2006) are among the first authors studying the optimal fortification of networks.

They show that protecting the critical assets found in the bi-level interdiction problem provides

suboptimal solutions. Scaparra and Church (2008b) reformulate the r-interdiction median problem

with fortification (IMF) as a maximal covering problem. They show that the worst-case interdiction

occurs by interdicting unfortified facilities. Therefore, they sort all interdiction patterns and try to

fortify facilities in worst-case patterns. The basic assumption for IMF reformulation is that they

aim to maximize the coverage of the most disruptive interdiction strategies with q fortifications.

101

Zhang and Ramirez-Marquez (2013) introduce the fortification of the maximum flow network with

information asymmetry where the defender does not have complete information about the attack

resources available for the interdiction. Jiang and Liu (2018) introduce the fortification model with

information asymmetry in water supply networks. They assume that the interdiction budget is not

known to the defender, and the interdictor does not have information about the network’s opera-

tional capacity. Ramamoorthy et al. (2018) and Ghaffarinasab and Atayi (2018) present models and

algorithms for hub protection problem. Hien et al. (2020) present a tri-level mathematical model for

fortifying single and multicommodity networks with uncertain demand. Sadati et al. (2020) present

a tri-level mathematical model for fortifying the depots in vehicle routing problem. Authors use

fortification problem to reduce the negative effects of interdictions for median problem (Liberatore

et al., 2012), knapsack problem (Leitner et al., 2022), power grid (Costa et al., 2018; Wu et al.,

2022), water distribution (Wu et al., 2021), maximum flow (Ghosh and Jaillet, 2022), among others.

We summarize some of the fortification papers in Table 4.1.

One of the widely used algorithms to solve the fortification problem is the implicit enumeration

technique. Cappanera and Scaparra (2011) implement implicit enumeration for finding the optimal

defense strategy of shortest path networks. Parajuli et al. (2017) and Parajuli et al. (2021) implement

implicit enumeration for protecting capacitated supply networks. Implicit enumeration is also used

for solving hub protection problem (Ghaffarinasab and Atayi, 2018; Ramamoorthy et al., 2018),

and r-interdiction median problem with fortification (Scaparra and Church, 2008a; Liberatore et al.,

2012). Lozano and Smith (2017) present backward sampling framework for the first time for solving

the shortest path fortification problem and capacitated lot sizing interdiction problem with fortifica-

tion. Lozano and Smith (2017) compare the results of the shortest path fortification problem solved

by BSF and implicit enumeration algorithms. They show that the BSF algorithm reduces CPU time

by more than two orders of magnitude compared with the implicit enumeration algorithm. Lozano

et al. (2017) solve the traveling salesman problem with interdiction and fortification using backward

sampling framework. Leitner et al. (2022) present a branch-and-cut algorithm based on fortifica-

tion cuts for the knapsack fortification problem and shortest path fortification problem. Sadati et al.

(2020), Wu et al. (2021), and Ghosh and Jaillet (2022) present heuristic algorithms to solve the

fortification problem.

102

Table 4.1: Classification of Fortification Papers

Articles
Model Type Methodology

Type of ProblemDeterministic Stochastic Exact Heuristic

Brown et al. (2006) ✓ ✓ Power grid, Supply chain
Cappanera and Scaparra (2011) ✓ ✓ Shortest path
Alderson et al. (2011) ✓ ✓ Municipal transportation network
Liberatore et al. (2012) ✓ ✓ Median problem
Lozano et al. (2017) ✓ ✓ Travelling salesman problem
Lozano and Smith (2017) ✓ ✓ Shortest path, Capacitated lot sizing
Parajuli et al. (2017) ✓ ✓ Capacitated supply chain
Ramamoorthy et al. (2018) ✓ ✓ Hub protection
Hien et al. (2020) ✓ ✓ Single and multicommodity
Ghorbani-Renani et al. (2020) ✓ ✓ Water, gas, and power utilities
Sadati et al. (2020) ✓ ✓ Vehicle routing problem
Parajuli et al. (2021) ✓ ✓ Capacitated supply chain
Wu et al. (2021) ✓ ✓ Urban water distribution
Leitner et al. (2022) ✓ ✓ Knapsack, Shortest path
Ghosh and Jaillet (2022) ✓ ✓ Maximum flow
Wu et al. (2022) ✓ ✓ Electric power system
This paper ✓ ✓ MST, OCST

In network interdiction and fortification models, different parameters can be uncertain e.g., in-

terdiction budget (Liberatore et al., 2011; Bhuiyan et al., 2021), interdiction success (Cormican

et al., 1998; Janjarassuk and Linderoth, 2008; Losada et al., 2012), network configuration (Collado

et al., 2017), demand (Hien et al., 2020), arc capacities (Lei et al., 2018), and traveling cost (Song

and Shen, 2016; Nguyen and Smith, 2022). Liberatore et al. (2011) consider the protection of p-

median problem with uncertain interdiction budget. Hien et al. (2020) present tri-level mathematical

models for fortifying single-commodity and multicommodity networks under demand uncertainty.

4.2.2 MST and OCST Problems

In this subsection, we review the papers related to the MST problem with interdictions. As the

effect of interdictions was not studied for the OCST problem as far as we are aware, we review the

solution methodologies for solving the OCST problem.

We refer to the most vital edge in the MST as relevant literature to the MST problem with

interdictions. The goal is to find a single edge whose deletion causes the maximum increase in the

length of the spanning tree (Hsu et al., 1991). Researchers extend the most vital edge to the k-most

vital edges (Lin and Chern, 1993; Frederickson and Solis-Oba, 1999). Bazgan et al. (2012) present

the bi-level mathematical model for the MST problem with interdictions for the first time. They

103

transform the bi-level formulation into single-level formulation. They compare the results of MIP

formulation with implicit and explicit enumeration algorithms. Zenklusen (2015) provide an O(1)-

approximation algorithm for the MST interdiction problem. Linhares and Swamy (2017) extend

the work in Zenklusen (2015) by presenting a better approximation algorithm. Wei et al. (2021)

present a new single-level mathematical model for the MST interdiction problem. They show that

this formulation has a stronger linear relaxation compared to the bi-level model. Wei and Walteros

(2022) present a set-covering reformulation for the MST interdiction problem.

Another line of research considering the tree-type graphs is critical node detection as presented

by Shen and Smith (2012) and Baggio et al. (2021). The goal is to find a set of nodes whose

removal disconnects the network at most. The application of critical node detection can be the

control of epidemic diseases by vaccinating the limited population to minimize the spread of the

disease.

The NP-hard OCST problem was introduced by Hu (1974). Several authors use heuristic and

metaheuristic algorithms to solve the problem (Lin and Gen, 2006; Fischer and Merz, 2007; Roth-

lauf, 2009). Ahuja and Murty (1987) present the first exact algorithm for solving OCST based

on branch-and-bound. Contreras et al. (2010) present Lagrangian relaxation for solving the OCST

problem. Tilk and Irnich (2018) use column-and-row-generation algorithm to solve the OCST prob-

lem and Zetina et al. (2019) propose branch-and-Benders-cut algorithm. Agarwal and Venkateshan

(2019) present new valid inequalities for the OCST problem.

To the best of our knowledge, this is the first paper focusing on the optimal fortification strategy

for the MST and OCST problems. We consider the uncertain number of interdictions as the defender

does not have complete information about the interdiction resources. We solve the deterministic and

stochastic fortification models with backward sampling framework. We show that this technique can

be used for the stochastic fortification model with a slight change in the algorithm.

4.3 Mathematical Model

In this paper, we study the fortification problem of MST and OCST with interdictions. As the

defender does not know the exact amount of interdiction resources, we present a tri-level stochastic

104

mathematical model for finding the fortification strategy. The goal is to fortify the edges of the

network in order to minimize the expected negative effects of interdictions on the network. In the

first level, the defender fortifies the limited number of edges to minimize the expected maximum

damage in different scenarios. In the second level, the interdictor interdicts the unfortified edges of

the network to maximize the network cost. In the third level, the defender solves the MST/OCST

problem in the remaining network.

We consider the following assumptions for our mathematical model: (i) the network parameters

are completely known by both the defender and the interdictor, (ii) the game is a sequential game

between the defender and the interdictor, (iii) the game is only one round, (iv) the defender does not

have complete information about the interdiction resources, and (v) we consider complete fortifica-

tions and interdictions which means that the fortified edges cannot be interdicted and the interdicted

edges cannot be part of the MST/OCST solution. We present the sets, parameters, and decision

variables in Table 4.2.

Table 4.2: Table of Notations

Sets
N Set of nodes (indexed by i, i ∈ N)
A Set of directed arcs (i, j)
E Set of undirected edges {i, j}
R Set of communication requests (indexed by r, r ∈ R)
S Set of scenarios (indexed by s, s ∈ S)
Parameters
or Origin of request r ∈ R
dr Destination of request r ∈ R
Wr Communication request quantity between (or, dr)
cij Installation cost of edge {i, j}
dij Communication cost between edge {i, j}
Q Number of fortifications
Us Number of interdictions in scenario s ∈ S
ps Probability of scenario s ∈ S
Decision Variables
qij 1 if edge {i, j} is fortified
uijs 1 if edge {i, j} is interdicted in scenario s ∈ S
yijs 1 if edge {i, j} is part of the spanning tree in scenario s ∈ S
xrijs Portion of communication request r ∈ R that is routed through arc (i, j) in scenario s ∈ S

105

4.3.1 Stochastic Model for the MST Problem

We consider a connected, complete, and undirected graph G = (N,E) where N is the set of

nodes andE is the set of undirected edges. We show the undirected edges by {i, j}, and the directed

arcs by (i, j). We define directed arcs for the routing of communication requests. Each edge has the

installation cost cij . In this paper, we use the network design formulation presented by Magnanti

and Wolsey (1995). In this formulation, one of the nodes will be selected as the root node known as

the origin of the communication requests or. The root node should send one unit of communication

request to all other nodes, known as the destination of communication requests dr. Binary decision

variable yijs is 1 if the edge {i, j} is part of the spanning tree in scenario s ∈ S and 0 otherwise.

The continuous decision variable xrijs represents the portion of communication request r ∈ R that

is routed through arc (i, j) in scenario s ∈ S. Binary decision variable qij is 1 if edge {i, j} is

fortified. The defender can fortify Q edges. The interdictor can interdict Us unfortified edges of the

network in scenario s ∈ S. The interdiction decisions are represented by binary decision variable

uijs which takes the value 1 if the edge is interdicted in scenario s ∈ S.

In the stochastic model, the defender determines the defense strategy under uncertainty about the

number of interdictions. In other words, the defender’s goal is to minimize the expected maximum

damage of the interdictor across possible scenarios. The tri-level stochastic mathematical model is

as follows:

106

(DLP-S) : min
q

∑
s∈S

psHs(q) (4.1)

s.t.
∑

{i,j}∈E

qij = Q (4.2)

qij ∈ {0, 1} ∀{i, j} ∈ E (4.3)

(ILP-S) : Hs(q) = max
u

As(u) (4.4)

s.t.
∑

{i,j}∈E

uijs ≤ Us (4.5)

uijs ≤ 1− qij ∀{i, j} ∈ E (4.6)

uijs ∈ {0, 1} ∀{i, j} ∈ E (4.7)

(ULP-S) : As(u) = min
x,y

∑
{i,j}∈E

cijyijs (4.8)

s.t.
∑

j∈N :(j,i)∈A

xrjis −
∑

j∈N :(i,j)∈A

xrijs =


−1 if i = or

1 if i = dr

0 otherwise

∀i ∈ N, r ∈ R (4.9)

xrijs + xrjis ≤ yijs ∀{i, j} ∈ E, r ∈ R (4.10)∑
{i,j}∈E

yijs = |N | − 1 (4.11)

yijs ≤ 1− uijs ∀{i, j} ∈ E (4.12)

yijs ∈ {0, 1} ∀{i, j} ∈ E (4.13)

xrijs ≥ 0 ∀(i, j) ∈ A, r ∈ R (4.14)

In the first level (DLP-S), the defender minimizes the expected maximum damage of interdic-

tions in the objective function (4.1). Constraint (4.2) limits the number of fortifications to Q edges.

Constraint (4.3) imposes a binary limitation on the fortification variables. In the second level (ILP-

S), the interdictor maximizes the minimum cost of MST in the objective function (4.4). Constraint

(4.5) ensures that maximum Us edges are interdicted. Constraint (4.6) states that the interdictor

107

cannot interdict the fortified edges. Constraint (4.7) indicates that interdiction variables are binary.

In the third level (ULP-S), the defender finds the optimal solution of MST in the residual network by

minimizing the installation cost in (4.8). Constraint (4.9) ensures the flow balance for each request

r ∈ R in node i ∈ N . Constraint (4.10) guarantees that the flow passes each edge if the edge is

part of the spanning tree. Constraint (4.11) represents the maximum number of open edges in the

spanning tree. Constraint (4.12) indicates that the interdicted edges cannot be part of the spanning

tree. Constraints (4.13) and (4.14) are the domain constraints.

4.3.2 Stochastic Model for the OCST Problem

To present the OCST interdiction problem with fortification, the first two levels (i.e., DLP-S and

ILP-s models) will be the same as (4.1)-(4.7). For the third level, consider the connected, complete,

and undirected graph G = (N,E). Each edge has the communication cost dij . We define the set of

communication requests as R and the communication request quantity between origin-destination

pairs (or, dr) as Wr. Binary decision variable yijs is 1 if the edge {i, j} is part of the spanning tree

in scenario s ∈ S and 0 otherwise. The continuous decision variable xrijs represents the portion of

communication request r ∈ R routed through edge {i, j} in scenario s ∈ S. The objective function

of OCST minimizes the total communication cost for routing all the requests. The mathematical

model of the defender’s third level for OCST is as follows:

108

(ULP-S) : As(u) = min
x,y

∑
r∈R

∑
{i,j}∈E

Wrdij(x
r
ijs + xrjis) (4.15)

s.t.
∑

j∈N :(j,i)∈A

xrjis −
∑

j∈N :(i,j)∈A

xrijs =


−1 if i = or

1 if i = dr

0 otherwise

∀i ∈ N, r ∈ R (4.16)

xrijs + xrjis ≤ yijs ∀{i, j} ∈ E, r ∈ R (4.17)∑
{i,j}∈E

yijs = |N | − 1 (4.18)

yijs ≤ 1− uijs ∀{i, j} ∈ E (4.19)

yijs ∈ {0, 1} ∀{i, j} ∈ E (4.20)

xrijs ≥ 0 ∀(i, j) ∈ A, r ∈ R (4.21)

As mentioned earlier, the feasible solutions of MST and OCST problems are the same as can

be seen in constraints (4.9)-(4.14) for the MST problem and constraints (4.16)-(4.21) for the OCST

problem. However, the objective functions of MST (4.8) and OCST (4.15) are different. The objec-

tive function (4.15) minimizes the communication cost for satisfying the communication requests

while the objective function (4.8) minimizes the installation cost.

4.4 Solution Methodology

In this section, we present the BSF algorithm for solving the tri-level stochastic fortification

model. We present the details for using the BSF algorithm for the MST fortification problem in

Section 4.4.1.1, and the OCST fortification problem in Section 4.4.1.2. We improve the performance

of the BSF algorithm with the waiting list acceleration technique in Section 4.4.2.

We implement the BSF algorithm to solve the tri-level fortification problem for two reasons.

First, the third-level OCST model is MIP. Therefore, solution methods based on duality cannot

be used. BSF algorithm can find the optimal defense strategy for problems with mixed-integer or

109

nonlinear third-level models. We should mention that MST formulation is recognized as integral,

indicating that the y variables inherently take values of either 0 or 1 without requiring the integrality

constraints (Magnanti and Wolsey, 1995). Therefore, we can relax the integrality conditions for

the MST problem. Second, the stochastic models of MST and OCST can be solved with the same

algorithm for the deterministic models with minor changes in the steps of the algorithm.

4.4.1 BSF Algorithm for the Stochastic Model

To solve the tri-level fortification problem, we implement the BSF algorithm presented by

Lozano and Smith (2017). Let Q, U , and Y be the set of all possible feasible solutions for the

first-level, second-level, and third-level problems, respectively. The main idea of the BSF algorithm

is to sample the third-level solutions (Ŷ ⊆ Y) iteratively. Therefore, the interdictor determines

the interdiction strategy based on the samples Ŷ instead of all possible feasible set Y . We add

more samples to the sample set during the algorithm until the optimal solution is found. The BSF

algorithm consists of the sampling-based inner approach to solve the bi-level interdiction model em-

bodied by an outer cutting plane algorithm determining the optimal defense strategy. Lozano and

Smith (2017) prove that BSF is an exact solution methodology terminating finitely with an optimal

solution. Our goal is to find the optimal solution z∗ of the problem (4.22):

z∗ = min
q∈Q

∑
s∈S

ps

(
max

us∈U (q)
min

y∈Y (us)
f(y)

)
(4.22)

First, we explain how to find the optimal solution to the bi-level interdiction problem using the

BSF algorithm. For any specific defense solution q ∈ Q, we want to find the optimal solution to the

interdiction problem zI(q) as follows:

zI(q) =
∑
s∈S

ps

(
max

us∈U (q)
min

y∈Y (us)
f(y)

)
(4.23)

To solve the bi-level problem (4.23), we solve the restricted problem (4.24) over the samples of

110

Ŷ ⊆ Y which provides an upper bound on the value of zI(q).

zI(q, Ŷ) =
∑
s∈S

ps

(
max

us∈U (q)
min

y∈Ŷ (us)
f(y)

)
(4.24)

We call equation (4.24) perceived damage because the interdictor assumes that the defender

chooses the optimal solution among feasible solutions Ŷ . However, the defender can choose any

feasible solution in Y .

Proposition 4.1. For each q ∈ Q and the sample of third-level solutions Ŷ ⊆ Y , zI(q, Ŷ) ≥

zI(q) ≥ z∗.

Proof. As Ŷ (us) ⊆ Y (us) for s ∈ S, we can conclude that miny∈Ŷ (us)
f(y) ≥ miny∈Y (us)f(y),

∀s ∈ S which suggested that
∑

s∈S ps

(
miny∈Ŷ (us)

f(y)

)
≥

∑
s∈S ps

(
miny∈Y (us)f(y)

)
. There-

fore, zI(q, Ŷ) ≥ zI(q). Moreover, zI(q) provides a feasible solution for the fortification problem

for a fixed value of q, implying that zI(q) ≥ z∗.

Let ûs, ∀s ∈ S be the optimal solution of the perceived damage problem (4.24). We define the

real damage of the interdiction ûs over all possible feasible solutions Y as:

zR(ûs) = min
y∈Y (ûs)

f(y) ∀s ∈ S (4.25)

The expected real damage over all scenarios provides the lower bound on the value of zI(q).

Let (ûs, ŷs) for s ∈ S be the optimal solution of zI(q, Ŷ). If zI(q, Ŷ) =
∑

s∈S psz
R(ûs), then

(ûs, ŷs), ∀s ∈ S optimizes zI(q) (see Proposition 2 of Lozano and Smith (2017)).

Now we extend the algorithm to find the optimal defense strategy q. We call an interdiction

critical if its real damage is greater than a target upper bound z (
∑

s∈S psz
R(ûs) ≥ z). Therefore,

the defender should prevent the critical interdiction by fortifying at least one of the interdicted

edges in ûs for s ∈ S. We add the covering constraint qT ûs ≥ 1 to the fortification problem for

each critical interdiction ûs, ∀s ∈ S. The BSF algorithm terminates when the fortification problem

becomes infeasible.

Let z be the global upper bound, UBk be the upper bound obtained by solving the perceived

damage (4.24) at iteration k, LBk be the lower bound obtained by computing the expected value of

111

the real damage (4.25) at iteration k, and C represent the set of covering constraints. The pseudo-

code of the BSF algorithm is presented in Algorithm 5. The algorithm starts with C = ∅ and

z ← ∞. The main while-loop of Algorithm 5 continues until the fortification problem becomes

infeasible with the incumbent solution as an optimal solution (z∗ = z). The algorithm has two

main steps. First, we select the defense strategy in step 5. Then, we solve the interdiction problem

in steps 6-22 for a specific defense strategy q̂. The inner while-loop (6-22) continues until we find

the critical interdictions (LBk ≥ z). As the critical interdictions are found, we add the covering

constraints to C and find a new defense strategy in step 5. For any defense strategy q̂ that reduces z,

the algorithm finds the optimal interdiction strategy, and the incumbent solution (the best solution

found so far) is updated.

Algorithm 5 BSF for Finding the Optimal Fortification Strategy for Stochastic Model
1: Let z ←∞ be the global upper bound and C = ∅ represent the set of covering constraints
2: Let Ŷ 1 ⊆ Y be a sample of the third-level solution space, and f(y) be the third-level objective function

for each solution y ∈ Ŷ 1

3: Iteration k ← 0
4: while Q(C) ̸= ∅ do
5: Select any q̂ ∈ Q(C) and set UBk ←∞ and LBk ← −∞
6: while LBk < z do
7: k ← k + 1
8: Solve UBk =

∑
s∈S psz

I
s (q̂, Ŷ

k) =
∑

s∈S ps[maxu∈Us(q̂) miny∈Ŷ k(u) f(y)] and find an opti-
mal solution (ûs, ŷs)

9: Solve LBk =
∑

s∈S psz
R(ûs) =

∑
s∈S ps[miny∈Y (ûs) f(y)] and find an optimal solution ŷ∗s

10: Set Ŷ k+1 = Ŷ k ∪ {ŷ∗s ∀s ∈ S}
11: if UBk < z then
12: z ← UBk

13: Remove all solutions with objective value exceeding UBk from Ŷ k+1

14: Select Ŷ ′ ⊆ Y as a sampling of the third-level solution space
15: Add to Ŷ k+1 all new solutions in Ŷ ′ ∩ YUBk

16: elseLBk ≥ z
17: We find the critical interdictions. Add the covering constraint qT ûs ≥ 1 for each scenario

s ∈ S to C
18: end if
19: if LBk = UBk = z then
20: Update the incumbent solution (q, us, ys)← (q̂, ûs, ŷs) for each scenario s ∈ S
21: end if
22: end while
23: end while
24: return: (q, us, ys), ∀s ∈ S

In order to apply the BSF algorithm for solving the MST and OCST fortification problems, it

is necessary to introduce the sampling strategy, an algorithm to solve the perceived damage over

112

the samples, and an algorithm tailored to solve the real damage model involving the MST or OCST

problems. In what follows, we present the details for implementing the BSF algorithm to solve the

MST fortification problem and OCST fortification problem.

4.4.1.1 Implementation of the BSF Algorithm for the MST Fortification Problem

Sampling strategy: If the samples are not diverse and they share many common edges, the in-

terdictor can interdict the MSTs by interdicting a few critical edges which results in a poor upper

bound for the BSF algorithm. Moreover, if the sample size is large, we may obtain a tighter upper

bound but this increases the complexity of solving the perceived damage. Therefore, we are inter-

ested in a sampling strategy that creates varied samples of moderate size. It is important to note that

ensuring Ŷ ⊆ Y guarantees the termination of the BSF algorithm. Therefore, we do not need to

find the optimal solution of the samples for the BSF algorithm to converge. To create the samples,

we iteratively solve the MST problem with a subset of interdicted edges. Let the first sample be

the solution of MST in normal conditions (i.e., there is no interdiction). We randomly choose the

number of interdictions (between 1 and |N | − 2). The interdiction decisions of sample l depend

on the y solution (edges that are part of the spanning tree) of sample l − 1. For each sample l,

we interdict the edges that are part of the y solution of sample l − 1 with the lowest installation

cost cij . Then, we solve MST for sample l considering that the interdicted edges cannot be part of

the MST. To have diverse samples, we restrict the number of times an edge can be included in the

MST solution. To find the MST for each sample, we implement Prim’s algorithm (Prim, 1957) by

allocating high cost for the interdicted edges or edges that are unable to be part of the MST due to

reaching the maximum allowed occurrences within the MST.

Solving the perceived damage problem: To solve the perceived damage (4.24), we consider Ωl

as the set of edges forming the lth spanning tree of graph G in sample Ŷ ⊆ Y . We define c(Ωl)

as the cost of the lth MST in sample Ŷ ⊆ Y . We solve the following MIP model (4.26)-(4.31) for

s ∈ S to find the interdiction strategy.

113

max z (4.26)

s.t. z ≤ c(Ωl) +
∑

{i,j}∈Ωl

Muijs ∀Ωl ∈ Ŷ (4.27)

∑
{i,j}∈E

uijs ≤ Us (4.28)

uijs ≤ 1− q̂ij ∀{i, j} ∈ E (4.29)

uijs ∈ {0, 1} ∀{i, j} ∈ E (4.30)

z ≥ 0 (4.31)

The objective function (4.26) maximizes z where constraint (4.27) ensures that the value of z

does not exceed the minimum MST cost considering the effects of interdictions. We use a large

number M to penalize the interdicted edges (M = max{cij} + 1). Constraint (4.29) defines the

feasible interdictions based on the defense strategy q̂.

Lemma 4.1. M = max{cij}+ 1 is a valid value for constraint (4.27).

Proof. As the interdictor interdicts an edge {i, j} that is the part of the spanning tree, the defender

replaces that edge with another edge having the cost as much as max{cij}. Therefore the value of

z increases by max{cij}.

We can tighten constraint (4.27) by defining Mij = max{cij} − cij . We next show that Mij is

a valid value for constraint (4.27).

Lemma 4.2. Mij = max{cij} − cij is a valid value for constraint (4.27).

Proof. As the interdictor interdicts an edge {i, j} that is the part of the spanning tree, the defender

replaces that edge with another edge having the cost as much as max{cij}. However, the defender

does not use edge {i, j} anymore. Therefore the value of z increases byMij = max{cij}−cij .

Solving the real damage problem: To solve the real damage (4.25), we use Prim’s algorithm,

known for its capability to find the optimal solution for the MST problem (Cormen et al., 2022).

114

4.4.1.2 Implementation of the BSF Algorithm for the OCST Fortification Problem

Sampling strategy: We use the same strategy for finding the samples as in Section 4.4.1.1. To

have a different solution in each sample, we interdict the edges that are part of the y solution (edges

that are part of the OCST solution) of the sample l − 1 with the lowest communication cost dij . To

find the solution to the samples with respect to the interdicted edges, we use the Ahuja-Murty local

search algorithm (Ahuja and Murty, 1987). This method starts by constructing a tree and improving

the solution by 1-edge exchange neighborhood choosing the best neighbor until a local minimum is

found.

Solving the perceived damage problem: We solve a similar model to (4.26)-(4.31) to find

the interdiction strategy based on the samples where c(Ωl) is the cost of lth OCST and M =∑
r∈R

∑
{i,j}∈EWrdij .

Solving the real damage problem: To find the optimal objective value of the real damage (4.25),

we use the state-of-the-art branch-and-Benders-cut algorithm enhanced with warm-start, cutset in-

equalities, Pareto-optimal cuts, in-tree heuristics, and cut filtering presented by Zetina et al. (2019).

We modify their presented branch-and-Benders-cut algorithm so that the interdicted edges cannot

be part of the OCST solution.

4.4.2 Waiting List Acceleration Technique

Finding the optimal solution to the perceived damage model (4.26)-(4.31) can be hard as the

number of samples increases throughout the algorithm. To reduce the number of perceived damage

models to be solved to optimality, Lozano and Smith (2017) present the acceleration technique that

we name it waiting list acceleration technique. The idea of the waiting list acceleration technique

is to stop searching q̂ ∈ Q if the relative enhancement to z is small. Therefore, we add the possible

covering constraints for each s ∈ S to the fortification problem, assuming that ûs, ∀s ∈ S is critical

for q̂. We save q̂ in a waiting list for subsequent re-evaluation within the algorithm’s execution.

During this phase, we either validate that ûs, ∀s ∈ S were critical and remove q̂ from the waiting

list, or proceed to investigate q̂ further if the attacks are considered non-critical.

The pseudo-code of the BSF algorithm with the waiting list acceleration technique is presented

115

in Algorithm 6. Let C ϕ represent the set of possible covering constraints integrated into the for-

tification problem. For each possible covering constraint C ϕ, we keep the defense strategy q̂ that

should be revisited, the expected real damage
∑

s∈S psz
R(ûs) that is assumed to be critical, and the

covering constraints ϕ̂ in waiting list L . The algorithm continues until the fortification problem

is feasible. For each feasible fortification strategy q̂, the algorithm solves the interdiction problem

zI(q̂) as in Algorithm 5 in steps 6-20. If the interdiction strategies are not critical, we calculate the

(z −LBk)/ z to obtain the percentage reduction to z if we continue to solve zI(q̂). If the reduction

is less than ϵ, we add (q̂,
∑

s∈S psz
R(ûs), ϕ̂) to the waiting list L in step 22, and add the covering

constraints qT ûs ≥ 1, ∀s ∈ S to C ϕ in step 23. At this point, we return to step 5. When the

fortification problem becomes infeasible (i.e., Q(C ∪ C ϕ) = ∅), if the waiting list is not empty

(L ̸= ∅), we should reassess the items stored in the waiting list in steps 28-37. For item i in the

waiting list L , if
∑

s∈S psz
R(ûis) > z, it means that these interdictions are critical; therefore, we

move the corresponding covering constraints from C ϕ to C , and remove the item from the waiting

list L . For the remaining items in steps 33-37, we continue the exploration for q̂i that is still in

Q(C) with ϵ = 0. In step 38, we clear the waiting list, remove the remaining covering constraints

C ϕ, and return to the main while-loop (step 4).

4.5 Computational Experiments

To test the performance of the proposed BSF algorithm, we use the benchmark instances pre-

sented in Contreras et al. (2010) and Zetina et al. (2019). We also analyze the effects of the number

of fortifications and interdictions on the performance of the algorithm. We demonstrate the benefits

of using the stochastic fortification model instead of the deterministic fortification model when the

number of interdictions is uncertain. We implement the algorithms in the C programming language

and execute them on a workstation equipped with a 3.10 GHz Intel Xeon E5 2687W V3 processor

within a Linux environment. We utilize the Callable Library for CPLEX version 22.1.0. for our

computational experiments.

116

Algorithm 6 BSF Algorithm with Waiting List Acceleration Technique

1: Let z ← ∞ be the global upper bound and C = C ϕ = ∅ represent the set of covering constraints and
L = ∅ indicating the waiting list

2: Let Ŷ 1 ⊆ Y be a sample of the third-level solution space, and f(y) be the third-level objective function
for each solution y ∈ Ŷ 1

3: Iteration k ← 0
4: while Q(C ∪ C ϕ) ̸= ∅ do
5: Select any q̂ ∈ Q(C ∪ C ϕ) and set UBk ←∞ and LBk ← −∞
6: while LBk < z do
7: k ← k + 1
8: Solve UBk =

∑
s∈S psz

I
s (q̂, Ŷ

k) =
∑

s∈S ps[maxu∈Us(q̂) miny∈Ŷ k(u) f(y)] and find an opti-
mal solution (ûs, ŷs)

9: Solve LBk =
∑

s∈S psz
R(ûs) =

∑
s∈S ps[miny∈Y (ûs) f(y)] and find an optimal solution ŷ∗s

10: Set Ŷ k+1 = Ŷ k ∪ {ŷ∗s ∀s ∈ S}
11: if UBk < z then
12: z ← UBk

13: Remove all solutions with objective value exceeding UBk from Ŷ k+1

14: Select Ŷ ′ ⊆ Y as a sampling of the third-level solution space
15: Add to Ŷ k+1 all new solutions in Ŷ ′ ∩ YUBk

16: elseLBk ≥ z
17: We find the critical interdictions. Add the covering constraint qT ûs ≥ 1 for each scenario

s ∈ S to C
18: end if
19: if LBk = UBk = z then
20: Update the incumbent solution (q, us, ys)← (q̂, ûs, ŷs) for each scenario s ∈ S
21: else(z − LBk)/ z ≤ ϵ and LBk < z

22: Add (q̂,
∑

s∈S psz
R(ûs), ϕ̂) to the waiting list L

23: Add covering constraints qT ûs ≥ 1, ∀s ∈ S to C ϕ and return to step 5
24: end if
25: end while
26: end while
27: if C ϕ ̸= ∅ then
28: for i ∈ L do
29: if

∑
s∈S psz

R(ûis) > z then
30: Add covering constraints ϕ̂i to C , eliminate them from C ϕ, and eliminate

(q̂i,
∑

s∈S psz
R(ûis), ϕ̂

i) from waiting list L
31: end if
32: end for
33: for i ∈ L do
34: if qi ∈ Q then
35: Continue solving zI(qi) with ϵ = 0
36: end if
37: end for
38: C ϕ ← ∅,L ← ∅, and return to step 4
39: end if
40: return: (q, us, ys), ∀s ∈ S

117

4.5.1 Test Instances

To evaluate the effectiveness of the BSF algorithm on the MST fortification problem, we execute

the algorithm for instances with 10 to 100 nodes. Instances with an identical number of nodes

(|N |) have different installation costs (shown by a, b, c, and d in the instances). For the OCST

fortification problem, we run the algorithm for instances with 10 to 50 nodes. Instances with an

identical number of nodes (|N |) have different communication costs and communication request

quantities. Each instance has |N |×(|N |−1)
2 edges as we consider the complete graphs. We set the

number of interdictions to 2, 3, and 4. The number of fortifications is set to 3, 4, and 5. The time

limit is 24 hours (86,400 seconds) with 1 hour (3,600 seconds) allocated to the sampling phase. The

maximum number of samples is set to 100.

4.5.2 Results of the MST Fortification Problem

4.5.2.1 Deterministic MST Fortification Problem

First, to show the effectiveness of the waiting list acceleration technique on the performance

of the BSF algorithm, we execute the BSF algorithm with and without the waiting list acceleration

technique (M = max{cij}+ 1). The value of ϵ for the waiting list acceleration technique is set to

0.25. We compare the performance of the algorithm across instances comprising 10 to 100 nodes,

with 2 interdictions (U = 2) and 3,4, and 5 fortifications (Q = {3, 4, 5}). In Table 4.3, column

“BSF” presents the CPU time (s) for the BSF algorithm without acceleration technique, column

“BSF+WL” presents the results for the BSF algorithm with waiting list acceleration technique,

and column “Reduction %” presents the percentage reduction in CPU time by using the BSF+WL

algorithm. In Table 4.3, we call instances with 10 to 30 nodes as small-sized instances, 40 to 60

nodes as moderate-sized instances, and 70 to 100 nodes as large-sized instances. The CPU time

for small-sized instances varies from less than 1 second to a maximum of 79 seconds. We observe

that the BSF+WL improves the CPU time in small-sized instances by an average of 7.6% across all

fortification levels where the average time of BSF is 23.6 seconds and the average time of BSF+WL

is 21.8 seconds. For moderate-sized instances, the CPU time varies from 282 seconds to 3,254

seconds. In moderate-sized instances, the BSF+WL reduces the CPU time by an average of 6.8%

118

across all fortification levels. For large-sized instances, we observe that the BSF algorithm is not

able to solve instances with 100 nodes and 4,950 edges in the time limit, but the BSF+WL solves

these instances to optimality with a maximum of 40,706 seconds. The BSF+WL reduces the CPU

time by an average of 55.5% across all fortification levels compared with the BSF algorithm for

large-sized instances.

As the BSF algorithm with the waiting list acceleration technique outperforms the BSF algo-

rithm, we use the BSF algorithm with acceleration technique for the rest of the computational ex-

periments. Table 4.4 presents the CPU time (s) for the MST fortification problem with U = {3, 4}

interdictions and Q = {3, 4, 5} fortifications. We observe that the BSF+WL algorithm is sensitive

to the number of interdictions. As U increases, CPU time increases significantly. Increasing the

number of fortifications increases CPU time slightly. The reason is that the number of interdictions

affects the difficulty of the perceived damage (4.24) but the number of fortifications affects the for-

tification problem solved when the critical interdiction has been found. As the perceived damage

(4.24) is solved more frequently in the algorithm, the increase in the number of interdictions has a

higher effect on the performance of the algorithm than the number of fortifications. When U = 2,

the algorithm finds the optimal defense strategy for instances with 100 nodes and 4,950 edges within

the time limit. As we increase the number of interdictions to 3, the algorithm solves the instances

with up to 60 nodes and 1,770 edges to optimality. When U = 4, the algorithm finds the optimal

solution for instances with up to 40 nodes and 780 edges.

4.5.2.2 Stochastic MST Fortification Problem

The defender does not know the exact number of interdictions; therefore, we consider the uncer-

tainty in the number of interdictions as a set of scenarios with equal probabilities. First, we show the

effects of the number of scenarios on the CPU time in Table 4.5 for the MST fortification problem

with two scenarios and Table 4.6 for the MST fortification problem with three and four scenarios.

The number of interdictions in each scenario s ∈ S is set to Us = s e.g., when |S| = 3, we have

U1 = 1, U2 = 2, U3 = 3. All the scenarios have the same probability. We observe that CPU time

increases as we consider the stochastic number of interdictions compared with the results of Table

4.3 and Table 4.4. The reason is that the perceived damage (4.24) and the real damage (4.25) should

119

Table 4.3: Comparing the Effect of Acceleration Technique on CPU Time (s) for the MST Fortifi-
cation Problem

Instance
U = 2, Q = 3 U = 2, Q = 4 U = 2, Q = 5

BSF BSF+WL Reduction % BSF BSF+WL Reduction % BSF BSF+WL Reduction %

10a 0.5 0.4 20.3 0.5 0.4 11.3 0.5 0.4 17.8
10b 0.3 0.2 22.5 0.3 0.3 17.8 0.4 0.3 22.9
10c 0.4 0.2 37.9 0.4 0.3 33.1 0.4 0.3 32.6
10d 0.4 0.3 21.9 0.4 0.3 15.5 0.4 0.3 21.0
20a 9.6 7.4 22.7 9.8 7.8 20.3 10.1 8.3 17.9
20b 6.0 5.4 9.5 6.3 5.9 5.9 6.5 5.9 9.4
20c 9.9 7.9 20.0 10.1 8.0 20.9 10.5 9.2 12.5
20d 9.1 7.0 22.6 9.2 7.2 22.6 9.5 8.0 15.9
30a 57 42 26.2 60 50 17.0 61 51 17.1
30b 60 47 20.3 62 51 17.6 63 56 12.1
30c 56 50 12.2 59 61 -2.5 61 67 -9.5
30d 63 62 2.5 68 79 -15.9 69 78 -12.4
Average 22.7 19.1 19.9 23.9 22.5 13.6 24.4 23.6 13.1

40a 289 287 0.6 302 308 -2.1 305 309 -1.3
40b 343 307 10.8 344 316 8.1 342 319 6.7
40c 313 282 9.9 317 285 10.0 325 289 11.0
40d 310 288 7.0 325 288 11.5 329 296 10.0
50a 1,139 1,147 -0.7 1,162 1,151 0.9 1,170 1,158 1.0
50b 951 888 6.5 969 889 8.3 987 892 9.7
50c 1,052 950 9.7 1,065 953 10.5 1,078 956 11.3
50d 1,140 1,018 10.7 1,140 1,017 10.8 1,147 1,024 10.7
60a 2,697 2,753 -2.1 2,837 2,766 2.5 2,833 2,781 1.8
60b 2,970 2,683 9.7 3,085 2,747 10.9 3,096 2,745 11.3
60c 3,002 2,654 11.6 3,002 2,695 10.2 3,011 2,762 8.3
60d 3,231 3,001 7.1 3,237 3,046 5.9 3,250 3,254 -0.1
Average 1,453 1,355 6.7 1,482 1,372 7.3 1,489 1,399 6.7

70a 6,857 5,780 15.7 6,913 5,826 15.7 7,214 5,851 18.9
70b 6,109 5,860 4.1 6,241 6,109 2.1 6,456 6,135 5.0
70c 6,808 6,582 3.3 6,876 6,522 5.1 7,079 6,516 8.0
70d 6,679 6,536 2.1 6,722 6,546 2.6 7,010 6,580 6.1
80a 18,672 13,802 26.1 18,668 13,886 25.6 19,166 13,733 28.3
80b 20,368 13,302 34.7 20,375 13,299 34.7 20,788 13,360 35.7
80c 21,888 15,888 27.4 21,906 16,017 26.9 22,633 16,003 29.3
80d 24,325 13,180 45.8 24,377 13,299 45.4 24,906 13,252 46.8
90a 49,910 16,532 66.9 49,910 16,536 66.9 51,308 16,650 67.5
90b 54,351 20,335 62.6 54,710 20,014 63.4 56,862 20,419 64.1
90c 57,278 19,090 66.7 57,402 19,061 66.8 58,000 19,221 66.9
90d 51,942 17,420 66.5 52,171 17,580 66.3 52,105 17,776 65.9
100a 86,400* 33,507 61.2 86,400* 34,298 60.3 86,400* 34,774 59.8
100b 86,400* 36,097 58.2 86,400* 36,786 57.4 86,400* 37,028 57.1
100c 86,400* 33,516 61.2 86,400* 34,208 60.4 86,400* 34,440 60.1
100d 86,400* 39,550 54.2 86,400* 40,536 53.1 86,400* 40,706 52.9
Average 41,924 18,561 41.0 41,992 18,783 40.8 42,445 18,903 42.0
* Time limit reached

120

Table 4.4: CPU Time (s) for Solving MST Fortification Problem with BSF+WL

Instance
U = 3 U = 4

Q = 3 Q = 4 Q = 5 Q = 3 Q = 4 Q = 5

10a 3.8 3.8 3.9 40 42 52
10b 3.4 3.5 3.7 47 49 45
10c 1.7 1.8 2.8 50 47 30
10d 2.1 2.3 3.2 49 27 24
20a 520 521 546 38,115 38,483 38,519
20b 492 494 494 30,184 30,282 30,557
20c 679 680 682 32,254 32,397 32,610
20d 704 728 729 25,577 25,583 25,773
30a 13,532 13,688 13,805 73,481 74,011 74,909
30b 14,865 14,941 14,979 76,819 77,285 77,793
30c 13,948 13,964 13,992 74,558 75,037 75,693
30d 14,302 14,476 14,558 76,704 77,154 77,986
Average 4,921 4,959 4,983 35,657 35,866 36,166

40a 29,257 29,812 30,589 65,289 67,210 68,040
40b 31,837 32,194 33,048 86,400* 86,400* 86,400*

40c 28,080 28,755 29,889 62,384 62,998 63,818
40d 31,286 32,002 33,104 86,400* 86,400* 86,400*

50a 75,867 76,812 77,209 86,400* 86,400* 86,400*

50b 66,358 67,402 67,975 86,400* 86,400* 86,400*

50c 76,341 76,941 77,503 86,400* 86,400* 86,400*

50d 73,800 74,226 74,857 86,400* 86,400* 86,400*

60a 84,414 85,498 86,302 86,400* 86,400* 86,400*

60b 85,409 86,100 86,400* 86,400* 86,400* 86,400*

60c 86,400* 86,400* 86,400* 86,400* 86,400* 86,400*

60d 86,400* 86,400* 86,400* 86,400* 86,400* 86,400*

Average 62,954 63,545 64,140 82,639 82,851 82,988
* Time limit reached

121

be solved for each scenario separately which increases the CPU time.

Table 4.5: CPU Time (s) for Solving the Stochastic MST Fortification Problem with Two Scenarios

Instance
|S| = 2

Instance
|S| = 2

Q = 3 Q = 4 Q = 5 Q = 3 Q = 4 Q = 5

10a 0.6 0.6 0.7 60a 3,492 3,623 3,832
10b 0.5 0.5 0.5 60b 3,061 3,210 3,357
10c 0.4 0.5 0.5 60c 3,333 3,409 3,513
10d 0.5 0.9 1.0 60d 3,742 3,816 3,968
20a 13 13 15 70a 6,798 6,869 6,917
20b 9 10 9 70b 6,836 7,016 7,318
20c 14 14 15 70c 10,757 11,090 11,132
20d 13 14 13 70d 9,886 9,990 10,846
30a 65 70 72 80a 18,671 19,099 19,323
30b 75 79 82 80b 20,780 20,909 21,228
30c 72 75 81 80c 24,623 25,074 25,402
30d 84 90 91 80d 22,643 22,734 23,431
40a 355 356 358 90a 17,217 17,328 17,562
40b 355 358 370 90b 23,011 23,226 23,263
40c 386 397 407 90c 19,566 20,028 20,967
40d 306 314 338 90d 20,055 20,088 21,072
50a 1,200 1,258 1,321 100a 40,965 41,004 41,246
50b 999 1,023 1,037 100b 37,528 38,490 39,287
50c 1,008 1,042 1,098 100c 42,725 43,307 44,338
50d 1,407 1,502 1,593 100d 47,666 48,919 50,663

We observe that as the number of scenarios increases, the CPU time increases. The reason is that

the algorithm is sensitive to the number of interdictions. As the number of scenarios increases, the

perceived damage and real damage problems should be solved for a higher number of interdictions,

increasing CPU time. Based on the results of Table 4.6, we find the optimal solution for the MST

fortification problem with three and four scenarios for instances with up to 40 nodes.

Next, we demonstrate the benefits of using the stochastic model over the deterministic model

in cases where the number of interdictions is uncertain. For this purpose, we randomly choose

instance “10a” with Q = 4 and we have four scenarios. First, we find the optimal fortification

strategy for the deterministic number of interdictions. Then we fix the fortification strategy and

compute the MST cost under this deterministic fortification strategy considering that the actual

number of interdictions happens. We report the results in Table 4.7. The first column shows the U

value used to derive the optimal fortification strategy, and the four subsequent columns represent

the MST cost for each fortification strategy corresponding to the actual U mentioned in the column

headers. The last column presents the optimal fortified edges of each U . Based on the results of

Table 4.7, we observe that the fortification strategy obtained from the stochastic model has a good

performance for all of the values of U . The minimum MST cost for each U is obtained when we

122

Table 4.6: CPU Time (s) for Solving the Stochastic MST Fortification Problem with Three and Four
Scenarios

Instance
|S| = 3 |S| = 4

Q = 3 Q = 4 Q = 5 Q = 3 Q = 4 Q = 5

10a 5.6 5.8 6.5 151 170 174
10b 8.6 8.8 9.5 294 327 329
10c 5.4 5.7 5.9 184 208 213
10d 8.3 9.1 9.2 258 298 302
20a 1,042 1,073 1,102 49,675 51,935 53,470
20b 550 563 587 35,643 35,741 36,899
20c 975 1,131 1,193 50,081 52,206 62,182
20d 954 1,086 1,095 49,908 51,117 51,716
30a 14,967 15,568 16,000 82,736 83,820 84,663
30b 15,856 15,886 16,982 86,400* 86,400* 86,400*

30c 15,572 15,777 17,003 84,039 85,705 86,400*

30d 15,751 16,139 17,729 83,725 84,607 85,594
40a 56,610 57,593 58,084 79,384 80,606 82,067
40b 74,499 75,003 75,942 86,400* 86,400* 86,400*

40c 60,153 61,795 62,404 84,254 85,907 86,309
40d 66,803 67,555 68,449 86,400* 86,400* 86,400*

50a 86,400* 86,400* 86,400* 86,400* 86,400* 86,400*

50b 86,400* 86,400* 86,400* 86,400* 86,400* 86,400*

50c 86,400* 86,400* 86,400* 86,400* 86,400* 86,400*

50d 86,400* 86,400* 86,400* 86,400* 86,400* 86,400*

60a 86,400* 86,400* 86,400* 86,400* 86,400* 86,400*

60b 86,400* 86,400* 86,400* 86,400* 86,400* 86,400*

60c 86,400* 86,400* 86,400* 86,400* 86,400* 86,400*

60d 86,400* 86,400* 86,400* 86,400* 86,400* 86,400*

* Time limit reached

consider that specific U value to find the fortification strategy. We notice that the stochastic model

has the minimum MST cost for U = 1, U = 2, and U = 4. When U = 3, this fortification strategy

increases the MST cost by 2 units. The deterministic fortification considering U = 2 performs the

same as the stochastic model as they fortify the same edges. However, the deterministic fortification

of U = 1, U = 3, and U = 4 do not show good performance when confronted with different U

levels.

Table 4.7: Comparison of the MST Cost for Deterministic and Stochastic Fortification Strategies

Actual no. of Interdictions
Fortified Edges

U = 1 U = 2 U = 3 U = 4

U = 1 241 257 274 282 {0, 5} − {0, 8} − {4, 7} − {8, 9}
U = 2 241 250 266 280 {0, 8} − {2, 4} − {4, 7} − {8, 9}
U = 3 250 258 264 281 {0, 5} − {2, 4} − {4, 7} − {8, 9}
U = 4 244 257 270 280 {0, 8} − {2, 3} − {6, 7} − {8, 9}
Stochastic 241 250 266 280 {0, 8} − {2, 4} − {4, 7} − {8, 9}

123

4.5.2.3 Effect of Big-M Value on the Performance of BSF Algorithm with Acceleration Tech-

nique

We solve the BSF algorithm with acceleration technique with Mij = max{cij} − cij . We

present the results ofMij = max{cij}−cij in Table 4.8 for deterministic model withU = 2, Q = 3

and stochastic model with |S| = 2, Q = 3. The results of M = max{cij} + 1 are presented in

Table 4.3 and Table 4.5. We compare the average of CPU time (s) for Mij = max{cij} − cij and

M = max{cij} + 1. We observe that the performance of BSF+WL algorithm is better with new

big-M value for instances with up to 80 nodes in deterministic model. However, instances with 90

and 100 nodes have better performance with M = max{cij} + 1. In stochastic model, instances

with up to 50 nodes have better performance with M = max{cij} + 1, and instances with 60, 70,

80, 90, and 100 nodes have better performance with Mij = max{cij} − cij .

Table 4.8: Comparing the Effect of Big-M Value on CPU Time (s) for the MST Fortification Prob-
lem

Instance U = 2, Q = 3 |S| = 2, Q = 3 Instance U = 2, Q = 3 |S| = 2, Q = 3

10a 0.5 0.6 60a 2,036 2,591
10b 0.3 0.5 60b 2,025 2,693
10c 0.3 0.5 60c 1,666 3,555
10d 0.3 0.6 60d 2,042 2,714
20a 9.2 14 70a 4,494 5,998
20b 6.5 9 70b 3,479 5,081
20c 9.3 18 70c 3,440 4,951
20d 8.2 13 70d 3,850 5,141
30a 50 76 80a 9,316 10,342
30b 53 89 80b 9,443 10,394
30c 50 82 80c 10,242 11,396
30d 60 91 80d 7,855 9,027
40a 223 371 90a 19,331 19,228
40b 221 421 90b 24,798 23,063
40c 198 328 90c 28,679 19,532
40d 204 325 90d 23,719 20,210
50a 818 1,519 100a 55,084 33,833
50b 627 1,239 100b 56,023 35,841
50c 589 1,212 100c 59,053 36,451
50d 702 1,309 100d 60,708 36,174
Avg. with Mij = max{cij} − cij 192 356 19,364 14,911
Avg. with M = max{cij}+ 1 270 318 15,403 19,168

4.5.3 Results of the OCST Fortification Problem

4.5.3.1 Deterministic OCST Fortification Problem

We compare the performance of the BSF+WL algorithm for the OCST fortification problem

across instances comprising 10 to 50 nodes, with U = {2, 3, 4} and Q = {3, 4, 5}. Based on the

124

results of Table 4.9, we observe that: (i) the OCST fortification problem is harder than the MST

fortification problem as we reach the time limit for the OCST instances with 50 nodes when U = 2

while we find the optimal solution for MST fortification problem with 100 nodes in Table 4.3, (ii)

both the number of fortifications and the number of interdictions increase the CPU time. However,

the number of interdictions has a higher impact on the CPU time. The reason is that the number

of interdictions affects the difficulty of perceived damage and the third-level OCST problems, and

(iii) when U = 2, the BSF+WL algorithm solves instances with 50 nodes, 1,225 edges, and 635

communication requests. When U = 3, we can solve instances with up to 40 nodes, 780 edges, and

420 communication requests within the time limit. For U = 4, instances with up to 30 nodes, 435

edges, and 250 communication requests are solved within the time limit.

Table 4.9: CPU Time (s) for Solving OCST Fortification Problem with BSF+WL

Instance
U = 2 U = 3 U = 4

Q = 3 Q = 4 Q = 5 Q = 3 Q = 4 Q = 5 Q = 3 Q = 4 Q = 5

10a 7.3 8.7 8.4 22 23 29 46 47 61
10b 1.0 1.1 1.2 3.6 4.2 4.5 16 16 19
10c 0.6 0.8 0.7 3.1 3.0 3.4 15 15 15
10d 2.3 2.4 2.4 9 10 12 30 33 37
20a 1,384 1,399 1,712 9,614 10,190 10,968 47,555 58,696 61,756
20b 192 195 199 1,492 1,690 1,720 18,058 18,477 20,164
20c 1,462 1,480 1,535 9,763 9,874 10,527 55,754 71,750 75,391
20d 67 74 98 583 606 655 6,636 8,184 8,587
30a 12,580 13,903 14,466 39,513 42,034 44,231 80,692 81,732 82,593
30b 38,093 41,144 49,468 76,805 79,528 82,042 86,400* 86,400* 86,400*

30c 20,592 22,736 23,810 45,733 47,023 48,230 84,201 85,309 86,215
30d 22,544 24,048 24,915 49,512 52,815 53,556 86,400* 86,400* 86,400*

40a 36,790 37,704 38,448 78,308 79,440 81,301 86,400* 86,400* 86,400*

40b 39,693 41,178 42,850 79,644 80,249 81,474 86,400* 86,400* 86,400*

40c 42,004 43,552 44,328 82,514 83,412 84,529 86,400* 86,400* 86,400*

40d 67,747 68,307 69,666 86,400* 86,400* 86,400* 86,400* 86,400* 86,400*

50a 80,816 82,514 84,004 86,400* 86,400* 86,400* 86,400* 86,400* 86,400*

50b 86,400* 86,400* 86,400* 86,400* 86,400* 86,400* 86,400* 86,400* 86,400*

50c 70,525 72,303 73,188 86,400* 86,400* 86,400* 86,400* 86,400* 86,400*

50d 86,400* 86,400* 86,400* 86,400* 86,400* 86,400* 86,400* 86,400* 86,400*

* Time limit reached

4.5.3.2 Stochastic OCST Fortification Problem

We present the CPU time (s) for the stochastic OCST fortification problem for |S| = 2, |S| = 3,

and |S| = 4 in Table 4.10 for instances with 10, 20, and 30 nodes. As expected, the number of

scenarios affects the CPU time significantly. The algorithm finds the optimal fortification strategy

for instances with up to 30 nodes, 435 edges, and 250 communication requests for |S| = 2 and

|S| = 3. As we increase the number of scenarios to |S| = 4, the algorithm finds the optimal

125

solution for instances with up to 20 nodes, 190 edges, and 102 communication requests.

Table 4.10: CPU Time (s) for Solving the Stochastic OCST Fortification Problem

Instance
|S| = 2 |S| = 3 |S| = 4

Q = 3 Q = 4 Q = 5 Q = 3 Q = 4 Q = 5 Q = 3 Q = 4 Q = 5

10a 9.8 10.2 10.2 106 114 115 399 393 368
10b 2.6 3.1 4.3 21 22 21 134 133 140
10c 1.3 1.3 1.5 7.2 7.8 8.4 85 99 86
10d 6.7 6.9 6.9 33 35 37 200 277 227
20a 4,417 4,565 5,436 33,424 46,698 47,904 86,400* 86,400* 86,400*

20b 399 417 437 6,882 7,002 7,233 59,963 60,887 61,395
20c 2,515 2,541 3,257 78,187 85,884 86,400* 86,400* 86,400* 86,400*

20d 150 177 181 2,305 2,247 2,430 39,967 41,206 42,424
30a 23,270 26,849 28,650 52,751 53,520 54,759 86,400* 86,400* 86,400*

30b 86,400* 86,400* 86,400* 86,400* 86,400* 86,400* 86,400* 86,400* 86,400*

30c 51,552 52,880 54,089 83,764 84,537 85,040 86,400* 86,400* 86,400*

30d 62,815 64,182 65,223 86,400* 86,400* 86,400* 86,400* 86,400* 86,400*

* Time limit reached

To show the advantages of using the stochastic model for finding the optimal fortification strat-

egy when the number of interdictions is uncertain, we analyze the same instance “10a” as Section

4.5.2.2. We present the results in Table 4.11. We observe that the stochastic model performs well for

all of the values of U . The deterministic fortification strategy of U = 3 is the same as the stochastic

fortification strategy. The deterministic fortification strategy of U = 4 has the worst performance

under the real number of interdictions 2 and 3.

Table 4.11: Comparison of the OCST Cost for Deterministic and Stochastic Fortification Strategies

Actual no. of Interdictions
Fortified Edges

U = 1 U = 2 U = 3 U = 4

U = 1 75,198 77,679 81,155 84,671 {0, 8} − {1, 9} − {7, 9} − {8, 9}
U = 2 75,198 77,679 81,155 84,671 {0, 8} − {1, 9} − {7, 9} − {8, 9}
U = 3 75,265 77,746 80,549 84,167 {0, 8} − {3, 7} − {7, 9} − {8, 9}
U = 4 75,265 79,307 81,788 83,545 {0, 8} − {4, 7} − {7, 9} − {8, 9}
Stochastic 75,265 77,746 80,549 84,167 {0, 8} − {3, 7} − {7, 9} − {8, 9}

4.6 Conclusion

We present tri-level mathematical models for fortifying the minimum spanning tree problem and

the optimum communication spanning tree with uncertain number of interdictions. We solve the tri-

level deterministic and tri-level stochastic models using backward sampling framework (BSF). We

implement the BSF algorithm as the third-level OCST problem is MIP and we cannot use solution

126

methods based on duality. Moreover, we improve the performance of the BSF algorithm with the

waiting list acceleration technique. The extensive computational experiments show that the perfor-

mance of the BSF algorithm improves significantly with the waiting list acceleration technique. We

observe that the number of fortifications and interdictions affect the performance of the BSF algo-

rithm; however, the number of interdictions has a significant impact on the CPU time. Moreover,

as the number of scenarios increases, the CPU time increases as more perceived damage and real

damage models should be solved. Finally, we demonstrate the advantages of using the stochastic

model in cases where the interdiction resources are uncertain.

127

Chapter 5

Conclusion

This thesis addressed the effects of stochastic interdictions on the design and fortification of

networks. It contributed to the current literature by presenting stochastic models for distribution

and multicommodity network design problems, and stochastic fortification models for the minimum

spanning tree (MST) and optimum communication spanning tree (OCST) problems. To solve the tri-

level stochastic design models, we developed exact algorithms based on the Benders decomposition

(BD) algorithm improved by acceleration techniques tailored to the presented models. We used

the backward sampling framework (BSF) to solve the tri-level stochastic fortification models. The

BSF was used to solve the deterministic fortification problem in the literature. We used the BSF

to solve the stochastic fortification models for the first time. We analyzed the effects of stochastic

parameters on the design. These contributions collectively highlight the importance of considering

stochastic parameters in the design and fortification of networks over deterministic models when

the parameters are uncertain.

In Chapter 2, we studied the distribution network design under uncertain outcome of interdic-

tions. In the real world, the interdictions are not always successful; therefore, we consider uncer-

tainty as a set of scenarios. To solve the tri-level stochastic model, we used the BD algorithm.

To solve the stochastic subproblems more efficiently, we implemented the dual decomposition algo-

rithm. Moreover, we improved the efficacy of the BD algorithm by valid and supervalid inequalities.

The results from extensive computations showed that the BD algorithm improved by dual decom-

position and valid and supervalid inequalities reduced CPU time by 35% compared with the BD

128

algorithm.

Chapter 3 investigated the effects of uncertain interdiction resources on the multicommodity

network design. As the designer does not have information about the number of interdictions, we

presented a tri-level stochastic model to design the multicommodity network. We proposed the

branch-and-Bender-cut (BBC) algorithm to solve the model. The BBC algorithm was enhanced

using warm start, variable fixing, cut selection, Pareto-optimal cuts, penalty reformulation, and

supervalid and valid inequalities. The best variant of the BBC algorithm, penalty reformulation

combined with warm start, variable fixing, and cut selection techniques, solved instances with up to

20 nodes, 120 arcs, 200 commodities, and 4 scenarios to optimality.

Finally, Chapter 4 investigated the fortification problem of MST and OCST problems under an

uncertain number of interdictions. As the third level OCST problem is mixed-integer, we could not

use solution methods based on duality; therefore, we solved the models using the BSF algorithm.

Moreover, we improved the efficacy of the BSF algorithm with the waiting list acceleration tech-

nique. Our extensive computational experiments show that the waiting list acceleration technique

improves the performance of the BSF algorithm significantly.

Beyond the mentioned contributions, the results of this thesis also represent a first step towards

considering more realistic assumptions for network design problems with interdictions. A logical

forward step in this area could be the inclusion of the risk behavior of the designer in the model.

We considered the risk-neutral designer. Our models can be extended by considering the risk-averse

designer. Moreover, the effects of other uncertain parameters can be studied.

129

Appendix A

Details of Results: Chapter 2

A.1 Tables of Computational Results

The details of experiments for small instances (Sets I, II, III), moderate instances (Sets IV, V,

VI), and large instances (Sets VII, VIII, IX) are presented in Tables A.1-A.3, respectively.

130

Ta
bl

e
A

.1
:C

om
pa

ri
so

n
of

th
e

Pe
rf

or
m

an
ce

of
th

e
A

lg
or

ith
m

s
fo

rS
et

I,
Se

tI
I,

an
d

Se
tI

II
In

st
an

ce
s

|K
|=

49
|K

|=
88

|K
|=

15
0

|J
|
ρ
2

p
B

B
D

B
D

-V
I

B
D

D
B

D
D

-V
I

B
D

B
D

-V
I

B
D

D
B

D
D

-V
I

B
D

B
D

-V
I

B
D

D
B

D
D

-V
I

G
ap

Ti
m

e
G

ap
Ti

m
e

G
ap

Ti
m

e
G

ap
Ti

m
e

G
ap

Ti
m

e
G

ap
Ti

m
e

G
ap

Ti
m

e
G

ap
Ti

m
e

G
ap

Ti
m

e
G

ap
Ti

m
e

G
ap

Ti
m

e
G

ap
Ti

m
e

10
0.

2
0.

5
1

0
26

3
0

21
0

0
18

6
0

11
2

0
1,

02
9

0
84

0
0

79
8

0
50

8
0

13
,9

69
0

9,
54

8
0

8,
20

5
0

6,
03

1
2

0
75

3
0

58
7

0
40

2
0

22
1

0
3,

09
6

0
2,

44
2

0
2,

35
2

0
1,

33
1

0
14

,6
09

0
11

,8
34

0
10

,0
96

0
7,

21
3

3
0

1,
43

7
0

1,
29

3
0

87
6

0
53

4
0

3,
18

6
0

2,
61

7
0

2,
30

0
0

1,
73

9
0

14
,9

95
0

12
,2

01
0

11
,0

93
0

7,
92

4
4

0
1,

50
6

0
1,

31
0

0
1,

06
7

0
67

4
0

3,
97

6
0

3,
09

7
0

2,
86

2
0

2,
04

5
0

15
,2

36
0

13
,4

34
0

11
,6

34
0

8,
24

5
5

0
1,

52
4

0
1,

35
6

0
1,

15
0

0
72

5
0

4,
06

0
0

3,
25

7
0

3,
00

6
0

2,
21

5
0

15
,6

54
0

14
,3

37
0

12
,0

96
0

8,
52

4
0.

75
1

0
30

3
0

27
1

0
19

5
0

13
8

0
1,

15
6

0
95

4
0

84
9

0
59

2
0

16
,3

59
0

9,
84

3
0

9,
11

9
0

6,
93

3
2

0
83

7
0

67
5

0
41

1
0

32
5

0
3,

47
9

0
2,

97
4

0
2,

55
7

0
1,

64
3

0.
5

18
,0

28
*

0
12

,5
89

0
11

,9
61

0
8,

06
5

3
0

1,
67

1
0

1,
33

7
0

92
2

0
68

0
0

3,
54

1
0

3,
05

2
0

2,
70

6
0

2,
02

2
2.

6
18

,0
84

*
0

12
,7

09
0

12
,0

71
0

8,
80

5
4

0
1,

81
5

0
1,

41
8

0
1,

16
2

0
70

9
0

4,
41

8
0

3,
66

0
0

3,
11

1
0

2,
52

5
8.

8
18

,1
19

*
0

14
,6

02
0

12
,7

85
0

9,
48

6
5

0
1,

85
8

0
1,

44
1

0
1,

21
0

0
75

0
0

4,
51

1
0

3,
82

3
0

3,
37

8
0

2,
63

7
10

.8
18

,0
38

*
0

15
,4

97
0

13
,1

72
0

9,
93

4
0.

9
1

0
48

0
0

36
8

0
29

4
0

18
9

0
1,

50
3

0
96

4
0

94
2

0
67

4
0

16
,9

52
0

10
,2

37
0

9,
95

7
0

7,
41

7
2

0
1,

07
7

0
82

4
0

63
7

0
45

2
0

4,
27

9
0

3,
18

2
0

2,
86

4
0

1,
82

4
5.

2
18

,1
78

*
0

13
,4

72
0

12
,3

02
0

8,
37

9
3

0
1,

75
2

0
1,

48
0

0
1,

28
5

0
88

5
0

4,
46

0
0

3,
20

5
0

2,
95

0
0

2,
14

3
4.

9
18

,0
56

*
0

13
,5

96
0

12
,6

39
0

9,
18

0
4

0
1,

89
1

0
1,

62
1

0
1,

48
6

0
90

5
0

5,
52

3
0

4,
13

6
0

3,
57

8
0

2,
72

7
7.

4
18

,0
33

*
0

14
,8

94
0

13
,6

80
0

10
,1

70
5

0
1,

95
9

0
1,

70
2

0
1,

56
4

0
95

2
0

6,
31

5
0

4,
32

0
0

3,
58

1
0

2,
76

9
13

.8
18

,1
45

*
0

15
,8

07
0

13
,9

62
0

10
,6

29
0.

5
0.

5
1

0
31

6
0

27
8

0
25

0
0

19
2

0
1,

19
3

0
99

1
0

86
2

0
54

4
0

14
,8

07
0

10
,3

12
0

8,
69

7
0

6,
39

3
2

0
86

6
0

71
0

0
63

9
0

57
5

0
3,

77
8

0
2,

68
6

0
2,

59
9

0
1,

45
1

0
15

,4
85

0
12

,5
44

0
10

,3
99

0
7,

57
4

3
0

1,
50

9
0

1,
35

8
0

1,
22

2
0

1,
10

0
0

3,
69

6
0

3,
06

2
0

2,
63

5
0

1,
89

5
0

16
,0

45
0

13
,0

99
0

11
,6

48
0

8,
24

1
4

0
1,

62
6

0
1,

41
5

0
1,

27
4

0
1,

14
6

0
4,

57
3

0
3,

40
6

0
3,

09
1

0
2,

16
8

0
15

,8
45

0
14

,6
43

0
12

,5
65

0
8,

49
3

5
0

1,
66

1
0

1,
46

2
0

1,
31

6
0

1,
18

4
0

4,
94

7
0

3,
84

4
0

3,
24

7
0

2,
43

7
0

16
,4

36
0

15
,0

54
0

12
,9

43
0

8,
86

5
0.

75
1

0
33

3
0

30
0

0
27

0
0

20
8

0
1,

30
6

0
1,

10
7

0
97

6
0

62
6

0
17

,6
68

0
10

,5
32

0
9,

39
3

0
7,

00
9

2
0

92
1

0
83

8
0

72
1

0
64

1
0

3,
89

6
0

3,
42

0
0

2,
78

7
0

1,
77

4
2.

6
18

,2
05

*
0

13
,4

70
0

12
,3

20
0

8,
38

8
3

0
1,

83
8

0
1,

61
8

0
1,

48
8

0
1,

18
8

0
3,

96
5

0
3,

51
0

0
3,

11
2

0
2,

12
3

4.
8

18
,1

48
*

0
13

,9
80

0
12

,5
54

0
9,

15
6

4
0

1,
99

7
0

1,
69

7
0

1,
52

7
0

1,
30

4
0

5,
16

9
0

4,
20

9
0

3,
29

8
0

2,
77

8
9.

3
18

,0
64

*
0

15
,4

78
0

13
,4

24
0

9,
75

0
5

0
2,

04
4

0
1,

77
8

0
1,

54
7

0
1,

39
2

0
5,

63
9

0
4,

24
4

0
3,

71
6

0
2,

86
9

9.
5

18
,0

44
*

0
16

,5
97

0
13

,9
62

0
10

,2
32

0.
9

1
0

52
8

0
44

9
0

40
4

0
32

2
0

1,
80

3
0

1,
13

7
0

1,
04

6
0

70
7

0
17

,7
99

0
11

,0
56

0
10

,3
55

0
7,

60
3

2
0

1,
09

7
0

98
7

0
88

8
0

79
9

0
5,

09
2

0
3,

75
5

0
3,

17
9

0
1,

91
5

1.
4

18
,1

37
*

0
14

,1
45

0
12

,9
17

0
8,

63
0

3
0

1,
92

7
0

1,
69

6
0

1,
52

6
0

1,
32

3
0

4,
90

6
0

3,
74

9
0

3,
33

3
0

2,
25

0
2.

5
18

,1
08

*
0

14
,4

12
0

13
,5

24
0

9,
63

9
4

0
2,

08
0

0
1,

76
7

0
1,

59
0

0
1,

38
7

0
6,

84
8

0
4,

67
3

0
3,

77
1

0
2,

97
2

6.
4

18
,1

42
*

0
16

,2
35

0
14

,2
27

0
10

,7
81

5
0

2,
15

2
0

1,
85

0
0

1,
66

5
0

1,
42

2
0

7,
26

3
0

4,
83

8
0

3,
86

7
0

2,
99

0
5.

7
18

,2
00

*
0

17
,0

47
0

14
,3

81
0

11
,0

55
0.

8
0.

5
1

0
36

3
0

32
7

0
29

4
0

22
8

0
1,

37
9

0
1,

10
8

0
91

8
0

58
5

0
15

,0
86

0
10

,5
02

0
8,

86
1

0
6,

45
3

2
0

96
1

0
86

5
0

77
9

0
70

1
0

4,
08

7
0

3,
19

8
0

2,
58

8
0

1,
58

4
0

15
,7

77
0

13
,0

17
0

11
,0

05
0

7,
86

2
3

0
1,

66
7

0
1,

50
1

0
1,

35
1

0
1,

21
5

0
4,

36
5

0
3,

40
2

0
2,

62
2

0
2,

03
5

0
16

,1
95

0
13

,2
99

0
11

,9
81

0
8,

47
8

4
0

1,
70

8
0

1,
53

7
0

1,
38

3
0

1,
24

5
0

5,
24

9
0

4,
08

8
0

3,
06

2
0

2,
37

2
0

16
,6

07
0

14
,9

12
0

12
,7

98
0

8,
57

5
5

0
1,

80
7

0
1,

64
5

0
1,

48
0

0
1,

33
2

0
5,

44
0

0
4,

10
4

0
3,

39
7

0
2,

41
4

0
16

,7
49

0
16

,0
58

0
13

,3
06

0
9,

03
5

0.
75

1
0

36
7

0
33

0
0

29
7

0
26

7
0

1,
58

4
0

1,
21

2
0

94
2

0
68

0
0

17
,8

31
0

10
,6

30
0

9,
94

0
0

7,
20

9
2

0
1,

01
3

0
91

2
0

82
0

0
73

8
0

4,
66

2
0

4,
01

5
0

2,
81

4
0

1,
92

2
3.

5
18

,0
24

*
0

13
,7

22
0

12
,7

98
0

8,
63

0
3

0
2,

02
2

0
1,

82
0

0
1,

63
8

0
1,

47
4

0
4,

63
7

0
4,

02
9

0
2,

86
8

0
2,

38
6

4.
7

18
,1

01
*

0
13

,8
53

0
13

,1
57

0
9,

42
0

4
0

2,
19

6
0

1,
97

7
0

1,
77

9
0

1,
58

3
0

5,
87

6
0

4,
75

8
0

3,
29

8
0

2,
80

3
7.

9
18

,0
86

*
0

15
,6

24
0

13
,3

97
0

9,
96

0
5

0
2,

24
8

0
2,

02
3

0
1,

82
1

0
1,

60
3

0
6,

18
0

0
5,

08
5

0
3,

47
9

0
2,

90
1

5.
2

18
,1

70
*

0
16

,9
13

0
13

,9
62

0
10

,7
29

0.
9

1
0

58
1

0
52

3
0

47
0

0
38

6
0

1,
96

9
0

1,
30

1
0

99
9

0
74

1
0

17
,8

00
0

11
,3

63
0

10
,5

54
0

7,
71

4
2

0
1,

20
6

0
1,

08
6

0
97

7
0

87
9

0
5,

82
0

0
4,

04
1

0
3,

03
8

0
2,

06
1

3.
5

18
,0

10
*

0
14

,6
84

0
13

,2
86

0
8,

71
4

3
0

2,
12

0
0

1,
90

8
0

1,
71

7
0

1,
54

5
0

6,
24

5
0

4,
10

2
0

3,
26

5
0

2,
46

5
5.

6
18

,1
11

*
0

15
,0

88
0

13
,8

08
0

9,
91

4
4

0
2,

28
7

0
2,

05
8

0
1,

85
2

0
1,

66
7

0
7,

45
5

0
5,

29
4

0
4,

04
3

0
3,

00
0

6.
9

18
,0

94
*

0
15

,9
37

0
14

,3
64

0
10

,9
84

5
0

2,
37

7
0

2,
13

0
0

1,
91

7
0

1,
70

9
0

8,
33

6
0

5,
83

2
0

4,
19

0
0

3,
04

6
0

17
,2

02
0

15
,3

59
0

11
,5

86
0

9,
45

2
M

in
.

0
26

3
0

21
0

0
18

6
0

11
2

0
1,

02
9

0
84

0
0

79
8

0
50

8
0

13
,9

69
0

9,
54

8
0

8,
20

5
0

6,
03

1
A

vg
.

0
1,

39
9

0
1,

21
6

0
1,

06
1

0
86

7
0

4,
26

4
0

3,
26

1
0

2,
68

6
0

1,
95

3
2.

97
17

,1
43

0
13

,6
48

0
12

,0
64

0
8,

70
8

M
ax

.
0

2,
37

7
0

2,
13

0
0

1,
91

7
0

1,
70

9
0

8,
33

6
0

5,
83

2
0

4,
19

0
0

3,
04

6
13

.8
18

,2
05

*
0

17
,0

47
0

14
,3

81
0

11
,0

55
*

Ti
m

e
lim

it
re

ac
he

d
(5

ho
ur

s)

131

Ta
bl

e
A

.2
:C

om
pa

ri
so

n
of

th
e

Pe
rf

or
m

an
ce

of
th

e
A

lg
or

ith
m

s
fo

rS
et

IV
,S

et
V,

an
d

Se
tV

II
ns

ta
nc

es

|K
|=

49
|K

|=
88

|K
|=

15
0

|J
|
ρ
2

p
B

B
D

B
D

-V
I

B
D

D
B

D
D

-V
I

B
D

B
D

-V
I

B
D

D
B

D
D

-V
I

B
D

B
D

-V
I

B
D

D
B

D
D

-V
I

G
ap

Ti
m

e
G

ap
Ti

m
e

G
ap

Ti
m

e
G

ap
Ti

m
e

G
ap

Ti
m

e
G

ap
Ti

m
e

G
ap

Ti
m

e
G

ap
Ti

m
e

G
ap

Ti
m

e
G

ap
Ti

m
e

G
ap

Ti
m

e
G

ap
Ti

m
e

12
0.

2
0.

5
1

0
1,

36
8

0
1,

16
0

0
91

7
0

62
9

0
6,

77
9

0
5,

73
6

0
4,

58
9

0
4,

06
7

0
12

,1
53

0
10

,9
49

0
8,

22
2

0
6,

41
3

2
0

4,
42

9
0

3,
57

4
0

3,
05

6
0

2,
24

5
0

7,
76

6
0

5,
94

5
0

4,
84

0
0

4,
42

4
0

14
,5

64
0

13
,2

40
0

10
,7

08
0

8,
24

6
3

0
4,

58
3

0
3,

72
0

0
3,

07
0

0
2,

34
7

0
10

,7
93

0
8,

86
0

0
7,

12
3

0
6,

47
5

0
16

,7
57

0
13

,9
64

0
10

,7
64

0
8,

39
6

4
0

5,
26

8
0

4,
12

6
0

3,
53

7
0

2,
57

6
0

11
,6

84
0

9,
01

3
0

7,
65

2
0

7,
00

8
2.

5
18

,2
86

*
0

15
,0

23
0

12
,6

44
0

9,
98

9
5

0
5,

35
9

0
4,

32
0

0
3,

63
5

0
2,

89
4

0
14

,1
63

0
11

,5
40

0
9,

96
6

0
9,

44
2

2.
8

18
,1

07
*

0
16

,5
65

0
14

,0
45

0
11

,2
36

0.
75

1
0

1,
46

8
0

1,
18

9
0

1,
01

3
0

73
4

0
7,

40
1

0
6,

16
8

0
5,

14
5

0
4,

26
1

0
13

,5
67

0
11

,5
96

0
8,

47
7

0
6,

61
2

2
0

4,
91

0
0

3,
73

1
0

3,
22

6
0

2,
50

6
0

8,
01

6
0

6,
58

0
0

5,
21

4
0

4,
96

5
8.

4
18

,3
94

*
0

14
,0

00
0

11
,5

74
0

8,
68

1
3

0
5,

19
4

0
4,

01
5

0
3,

39
1

0
2,

85
6

0
11

,3
46

0
9,

52
7

0
7,

81
8

0
6,

84
2

9.
2

18
,0

92
*

0
14

,9
73

0
11

,7
68

0
8,

82
6

4
0

5,
52

3
0

4,
52

8
0

3,
70

0
0

2,
98

2
0

12
,4

97
0

10
,1

17
0

7,
88

2
0

7,
72

6
4.

6
18

,2
43

*
0

15
,7

84
0

13
,4

51
0

10
,3

57
5

0
6,

67
6

0
5,

67
5

0
4,

67
3

0
3,

13
8

0
15

,0
52

0
12

,5
43

0
10

,6
05

0
9,

57
9

4.
2

18
,1

58
*

0
16

,8
74

0
14

,9
43

0
11

,9
54

0.
9

1
0

2,
07

4
0

1,
76

3
0

1,
36

9
0

1,
24

4
0

8,
32

6
0

6,
78

4
0

5,
73

6
0

5,
05

7
0

17
,0

94
0

12
,8

93
0

10
,2

40
0

6,
93

0
2

0
5,

24
9

0
4,

09
4

0
3,

56
9

0
2,

75
4

0
9,

52
9

0
7,

76
5

0
6,

63
5

0
5,

85
9

3.
9

18
,0

06
*

0
14

,3
65

0
12

,2
38

0
8,

96
7

3
0

5,
62

0
0

4,
66

5
0

3,
76

5
0

2,
93

9
0

12
,5

94
0

10
,5

75
0

8,
17

2
0

7,
40

3
5.

4
18

,1
93

*
0

15
,0

99
0

12
,6

16
0

9,
54

6
4

0
7,

29
0

0
6,

19
6

0
4,

95
7

0
3,

57
2

0
13

,4
43

0
11

,7
36

0
9,

49
6

0
8,

53
5

8.
5

18
,0

83
*

0
16

,1
46

0
14

,7
96

0
11

,5
41

5
0

9,
09

4
0

7,
45

7
0

6,
18

4
0

4,
72

9
10

.6
18

,0
94

*
0

14
,5

50
0

11
,5

08
0

11
,3

76
12

.3
18

,0
34

*
0

17
,4

71
0

15
,8

39
0

12
,3

54
0.

5
0.

5
1

0
1,

61
1

0
1,

35
0

0
1,

04
7

0
89

7
0

7,
67

6
0

6,
59

6
0

5,
15

7
0

5,
03

7
0

14
,5

59
0

12
,2

35
0

9,
86

7
0

7,
40

0
2

0
4,

72
2

0
3,

78
4

0
3,

07
5

0
2,

60
2

0
7,

80
4

0
6,

81
3

0
5,

38
8

0
5,

32
6

0
16

,7
00

0
14

,1
52

0
11

,9
93

0
9,

54
9

3
0

4,
73

5
0

3,
96

6
0

3,
11

6
0

2,
69

1
0

12
,2

40
0

10
,2

78
0

8,
11

8
0

7,
73

6
0

17
,5

70
0

15
,5

49
0

12
,7

02
0

9,
90

3
4

0
5,

71
6

0
4,

51
5

0
3,

77
2

0
2,

74
4

0
12

,3
20

0
11

,6
06

0
8,

31
6

0
7,

84
9

5.
2

18
,0

99
*

0
16

,0
08

0
14

,7
93

0
11

,0
95

5
0

6,
67

9
0

5,
14

2
0

4,
34

1
0

3,
60

6
0

16
,1

85
0

13
,3

86
0

10
,7

09
0

10
,3

44
5.

4
18

,1
58

*
0

16
,9

58
0

16
,7

14
0

13
,2

04
0.

75
1

0
1,

72
4

0
1,

37
9

0
1,

19
0

0
91

8
0

8,
47

8
0

6,
90

8
0

5,
52

6
0

5,
40

1
0

15
,0

68
0

12
,7

69
0

9,
57

9
0

7,
18

4
2

0
5,

00
8

0
4,

04
0

0
3,

38
9

0
2,

64
2

0
8,

66
1

0
7,

50
2

0
6,

13
8

0
5,

72
8

5.
9

18
,2

06
*

0
15

,9
15

0
12

,7
32

0
9,

59
5

3
0

5,
21

5
0

4,
19

4
0

3,
47

8
0

2,
87

1
0

12
,9

80
0

11
,4

33
0

8,
93

8
0

8,
00

3
6.

5
18

,1
94

*
0

16
,8

34
0

13
,6

50
0

10
,5

11
4

0
7,

08
2

0
5,

52
4

0
4,

60
3

0
3,

54
1

0
13

,7
19

0
12

,4
31

0
9,

78
6

0
8,

03
5

3.
6

18
,2

22
*

0
17

,2
55

0
15

,0
65

0
11

,2
99

5
0

7,
55

6
0

5,
81

8
0

5,
21

4
0

3,
75

1
0

16
,6

67
0

14
,5

50
0

12
,4

34
0

10
,3

18
7.

9
18

,0
83

*
5.

4
18

,1
00

*
0

17
,7

81
0

13
,6

91
0.

9
1

0
2,

47
1

0
2,

09
9

0
1,

60
6

0
1,

43
3

0
9,

20
0

0
7,

66
6

0
6,

13
3

0
5,

29
7

0
14

,2
85

0
12

,9
54

0
10

,7
18

0
8,

46
7

2
0

6,
37

8
0

5,
10

3
0

4,
14

6
0

3,
06

2
0

10
,9

12
0

9,
16

2
0

7,
33

0
0

6,
24

7
4.

8
18

,0
68

*
0

16
,0

10
0

14
,3

19
0

11
,1

69
3

0
7,

53
6

0
5,

72
8

0
5,

20
0

0
3,

54
2

0
15

,0
55

0
12

,2
67

0
10

,1
48

0
9,

92
5

5.
4

18
,1

19
*

0
17

,6
95

0
14

,5
08

0
11

,3
17

4
0

9,
10

8
0

7,
24

4
0

6,
09

3
0

4,
64

5
0

16
,6

02
0

13
,7

31
0

10
,9

85
0

10
,6

10
10

.2
18

,0
73

*
7.

2
18

,1
05

*
0

17
,4

59
0

13
,4

44
5

0
10

,8
94

0
8,

82
4

0
7,

62
6

0
5,

01
1

9.
5

18
,1

32
*

0
17

,0
24

0
14

,5
48

0
11

,9
17

7.
3

18
,0

39
*

3.
5

18
,0

84
*

2.
9

18
,1

53
*

0
13

,9
63

0.
8

0.
5

1
0

1,
79

2
0

1,
36

2
0

1,
25

5
0

1,
04

0
0

7,
93

1
0

6,
71

1
0

5,
49

4
0

5,
30

8
0

14
,1

78
0

13
,9

14
0

9,
45

6
0

7,
47

0
2

0
5,

39
5

0
4,

10
0

0
3,

77
7

0
2,

72
8

0
8,

15
0

0
7,

74
1

0
5,

73
5

0
5,

37
3

0
16

,8
85

0
15

,3
50

0
12

,3
79

0
9,

71
8

3
0

5,
45

6
0

4,
47

4
0

3,
81

9
0

3,
16

5
0

12
,2

84
0

10
,8

10
0

8,
35

3
0

7,
86

1
1.

9
18

,1
18

*
0

16
,2

58
0

12
,9

57
0

9,
90

7
4

0
7,

29
0

0
5,

75
9

0
4,

88
4

0
4,

30
1

0
13

,8
21

0
12

,8
84

0
8,

45
0

0
7,

96
4

8.
5

18
,0

94
*

0
17

,1
25

0
15

,4
26

0
12

,1
86

5
0

7,
87

3
0

6,
45

6
0

5,
11

7
0

4,
63

5
0

15
,9

94
0

13
,9

63
0

11
,2

98
0

11
,1

71
7.

4
18

,0
34

*
1.

3
18

,0
73

*
0

17
,1

35
0

12
,8

52
0.

75
1

0
2,

12
2

0
1,

80
4

0
1,

37
9

0
1,

08
2

0
8,

53
5

0
7,

27
8

0
6,

28
5

0
5,

16
1

0
13

,9
58

0
13

,3
03

0
9,

91
8

0
7,

83
5

2
0

6,
52

7
0

4,
96

0
0

4,
37

3
0

3,
31

6
0

9,
26

5
0

7,
96

2
0

6,
44

2
0

6,
29

7
4.

8
18

,3
21

*
0

16
,1

34
0

13
,3

10
0

10
,6

48
3

0
6,

63
1

0
4,

97
4

0
4,

57
6

0
3,

65
5

0
13

,0
61

0
12

,0
42

0
9,

14
3

0
8,

84
1

6.
5

18
,2

64
*

0
17

,5
10

0
14

,1
21

0
10

,7
32

4
0

7,
99

1
0

5,
99

3
0

5,
59

4
0

3,
89

2
0

14
,1

38
0

13
,4

43
0

10
,3

23
0

9,
65

0
4.

3
18

,0
82

*
0

17
,9

56
0

15
,8

72
0

12
,6

98
5

0
8,

28
1

0
6,

59
4

0
5,

79
7

0
4,

72
4

4.
8

18
,1

50
*

0
15

,3
03

0
11

,8
25

0
10

,8
51

7.
25

18
,2

68
*

3.
9

18
,1

48
*

2
18

,1
01

*
0

14
,2

55
0.

9
1

0
2,

55
9

0
2,

11
3

0
1,

71
5

0
1,

48
2

0
9,

29
1

0
7,

80
2

0
6,

66
7

0
5,

74
5

0
14

,4
09

0
13

,4
65

0
10

,9
03

0
8,

72
2

2
0

7,
33

3
0

5,
72

0
0

4,
84

0
0

4,
25

3
0

11
,0

78
0

10
,2

62
0

7,
74

6
0

7,
41

3
3.

5
18

,0
05

*
0

17
,0

37
0

14
,5

08
0

11
,4

62
3

0
9,

05
5

0
7,

19
6

0
6,

15
7

0
4,

34
6

0
14

,4
21

0
13

,7
90

0
10

,3
83

0
9,

92
1

11
.4

18
,1

02
*

0
17

,7
85

0
15

,1
75

0
12

,1
40

4
0

9,
46

8
0

7,
55

9
0

6,
35

4
0

4,
74

5
0

16
,9

12
0

15
,3

01
0

11
,2

31
0

10
,3

28
6.

8
18

,2
08

*
4.

8
18

,1
03

*
0

17
,6

07
0

13
,9

10
5

0
12

,0
88

0
10

,1
54

0
8,

46
1

0
7,

13
2

3.
5

18
,0

67
*

0
17

,7
52

0
14

,0
40

0
13

,3
94

8.
9

18
,3

44
*

5.
1

18
,0

27
*

1.
1

18
,0

90
*

0
14

,9
42

M
in

.
0

1,
36

8
0

1,
16

0
0

91
7

0
62

9
0

6,
77

9
0

5,
73

6
0

4,
58

9
0

4,
06

7
0

12
,1

53
0

10
,9

49
0

82
22

0
64

13
A

vg
.

0
5,

78
7

0
4,

62
5

0
3,

91
2

0
3,

03
5

0.
63

12
,1

16
0

10
,4

85
0

8,
34

3
0

7,
69

0
4.

34
17

,2
10

0.
69

15
,6

83
0.

13
13

,4
96

0
10

,4
74

M
ax

.
0

12
,0

88
0

10
,1

54
0

8,
46

1
0

7,
13

2
10

.6
18

,1
50

*
0

17
,7

52
0

14
,5

48
0

13
,3

94
12

.3
18

,3
94

*
7.

2
18

,1
48

*
2.

9
18

,1
53

*
0

14
,9

42
*

Ti
m

e
lim

it
re

ac
he

d
(5

ho
ur

s)

132

Ta
bl

e
A

.3
:C

om
pa

ri
so

n
of

th
e

Pe
rf

or
m

an
ce

of
th

e
A

lg
or

ith
m

s
fo

rS
et

V
II

,S
et

V
II

I,
an

d
Se

tI
X

In
st

an
ce

s

|K
|=

49
|K

|=
88

|K
|=

15
0

|J
|
ρ
2

p
B

B
D

B
D

-V
I

B
D

D
B

D
D

-V
I

B
D

B
D

-V
I

B
D

D
B

D
D

-V
I

B
D

B
D

-V
I

B
D

D
B

D
D

-V
I

G
ap

Ti
m

e
G

ap
Ti

m
e

G
ap

Ti
m

e
G

ap
Ti

m
e

G
ap

Ti
m

e
G

ap
Ti

m
e

G
ap

Ti
m

e
G

ap
Ti

m
e

G
ap

Ti
m

e
G

ap
Ti

m
e

G
ap

Ti
m

e
G

ap
Ti

m
e

15
0.

2
0.

5
1

0
2,

60
3

0
2,

31
5

0
2,

07
9

0
1,

69
0

0
18

,4
02

0
16

,7
29

0
16

,1
72

0
13

,9
41

0
18

,2
84

0
16

,2
59

0
15

,9
66

0
14

,6
47

2
0

3,
43

8
0

2,
95

3
0

2,
59

4
0

2,
10

9
0

28
,4

21
0

25
,2

16
0

24
,3

61
0

21
,3

70
4.

3
36

,3
50

*
0

35
,5

22
0

34
,2

18
0

32
,5

89
3

0
3,

56
6

0
3,

19
1

0
2,

69
8

0
2,

34
6

0
29

,5
79

0
25

,8
56

0
24

,9
94

0
21

,5
46

6.
4

36
,0

32
*

1.
7

36
,0

22
*

0
35

,3
16

0
32

,7
60

4
0

8,
25

4
0

6,
48

5
0

5,
79

7
0

4,
91

3
5.

9
36

,0
26

*
5.

3
36

,2
83

*
0

35
,8

78
0

31
,4

72
9.

3
36

,1
73

*
5.

7
36

,3
12

*
1.

3
36

,2
22

*
0

33
,1

00
5

0
8,

69
5

0
6,

77
4

0
6,

57
2

0
5,

05
5

12
.4

36
,0

91
*

8.
9

36
,0

08
*

1.
8

36
,2

06
*

0
34

,2
00

16
.1

36
,5

00
*

10
.6

36
,3

33
*

5.
8

36
,3

00
*

0
33

,8
40

0.
75

1
0

5,
43

6
0

4,
75

0
0

3,
45

3
0

2,
77

4
0

25
,8

91
0

21
,9

80
0

18
,1

84
0

15
,3

20
0

25
,4

11
0

20
,7

53
0

19
,9

24
0

16
,0

96
2

0
6,

43
3

0
5,

78
8

0
5,

00
2

0
3,

75
2

0.
9

36
,1

47
*

0
30

,0
88

0
28

,0
33

0
22

,9
78

1.
5

36
,0

05
*

0.
9

36
,2

89
*

0.
3

36
,1

78
*

0
35

,8
12

3
0

13
,0

19
0

10
,8

05
0

9,
50

8
0

7,
54

0
2.

2
36

,2
67

*
0

32
,9

28
0

28
,5

10
0

23
,4

20
12

.5
36

,1
21

*
7.

1
36

,1
48

*
3.

8
36

,0
08

*
1.

5
36

,0
33

*

4
0

29
,5

27
0

25
,0

27
0

23
,8

25
0

19
,7

25
16

.7
36

,3
01

*
10

.2
36

,2
43

*
3

36
,2

27
*

0
34

,9
69

28
36

,1
18

*
24

.5
36

,0
07

*
15

.1
36

,1
63

*
4.

9
36

,2
90

*

5
0

32
,9

52
0

27
,8

44
0

24
,4

51
0

20
,3

67
20

.4
36

,0
00

*
15

.3
36

,1
12

*
8.

1
36

,1
83

*
2.

6
36

,2
03

*
45

36
,1

78
*

20
.4

36
,1

26
*

10
.5

36
,2

26
*

5.
4

36
,1

94
*

0.
9

1
0

6,
48

4
0

5,
29

9
0

4,
37

0
0

2,
98

5
0

26
,2

47
0

22
,8

55
0

18
,2

00
0

16
,5

46
0

27
,9

91
0

23
,0

96
0

20
,9

53
0

17
,3

84
2

0
7,

21
7

0
6,

17
3

0
5,

81
0

0
4,

53
9

7.
4

36
,0

41
*

0
31

,6
28

0
28

,0
87

0
24

,8
16

18
.9

36
,1

53
*

7.
3

36
,2

59
*

2.
8

36
,1

09
*

1.
9

36
,2

66
*

3
0

16
,7

08
0

12
,8

29
0

12
,7

30
0

9,
94

5
8

36
,1

02
*

0
33

,0
38

0
29

,9
01

0
24

,8
25

28
.2

36
,0

94
*

9.
8

36
,1

55
*

4.
2

36
,0

93
*

3.
7

36
,0

64
*

4
0

33
,1

20
0

27
,6

00
0

24
,7

83
0

21
,2

31
10

.5
36

,0
18

*
5.

9
36

,0
92

*
3.

8
36

,0
06

*
1.

8
36

,1
02

*
32

.5
36

,0
83

*
15

.9
36

,3
27

*
9.

6
36

,2
05

*
3.

9
36

,2
02

*

5
0

33
,9

61
0

29
,2

70
0

26
,8

39
0

21
,5

65
12

.8
36

,0
36

*
6.

8
36

,0
26

*
3.

5
36

,1
92

*
2.

3
36

,3
30

*
39

.5
36

,1
43

*
19

.3
36

,2
90

*
10

.2
36

,1
51

*
5.

6
36

,1
02

*

0.
5

0.
5

1
0

4,
37

8
0

3,
62

5
0

3,
37

4
0

2,
78

9
0

20
,0

07
0

18
,5

89
0

17
,4

86
0

15
,7

54
0

19
,5

01
0

17
,9

53
0

16
,7

46
0

15
,0

87
2

0
5,

26
4

0
4,

65
7

0
4,

31
9

0
3,

37
4

0
31

,5
48

0
29

,6
50

0
27

,2
78

0
23

,7
20

6.
1

36
,1

72
*

3.
9

36
,0

74
*

0
35

,0
31

0
32

,6
44

3
0

7,
54

6
0

5,
65

9
0

5,
30

8
0

4,
38

7
0

31
,5

95
0

30
,7

04
0

27
,9

19
0

24
,5

63
7.

6
36

,0
56

*
4.

2
36

,3
30

*
0.

9
36

,2
77

*
0

33
,3

98
4

0
12

,0
23

0
9,

78
3

0
8,

66
3

0
7,

46
8

1.
3

36
,1

39
*

1.
1

36
,2

88
*

0.
5

36
,1

48
*

0
34

,3
05

9.
8

36
,4

31
*

4.
4

36
,2

98
*

2.
4

36
,0

44
*

0
34

,7
48

5
0

14
,1

60
0

12
,6

40
0

11
,5

94
0

9,
50

3
2.

9
36

,0
02

*
1.

5
36

,2
12

*
1.

2
36

,2
04

*
0.

8
36

,1
53

*
19

.9
36

,3
61

*
8.

9
36

,3
03

*
6.

8
36

,0
51

*
0

35
,8

70
0.

75
1

0
8,

24
9

0
7,

19
4

0
6,

03
7

0
4,

98
5

0
24

,8
40

0
22

,6
82

0
19

,3
58

0
16

,5
46

0
26

,8
86

0
22

,7
53

0
20

,5
81

0
16

,7
40

2
0

11
,0

87
0

10
,0

86
0

8,
44

1
0

7,
15

3
3.

2
36

,0
00

*
0

31
,0

89
0

28
,3

09
0

24
,8

25
8.

4
36

,1
00

*
4.

3
36

,1
79

*
3.

7
36

,0
06

*
1.

3
36

,2
31

*

3
0

26
,8

62
0

23
,3

16
0

19
,1

72
0

16
,1

11
4.

7
36

,1
88

*
0

33
,0

38
0

31
,8

04
0

25
,2

76
12

.3
36

,0
75

*
8.

3
36

,2
57

*
4.

1
36

,1
16

*
0.

9
36

,0
04

*

4
0

35
,1

75
0

26
,3

35
0

24
,1

25
0

20
,1

00
3.

7
36

,3
52

*
3.

3
36

,1
73

*
2.

4
36

,2
53

*
2.

3
36

,1
15

*
19

.5
36

,2
02

*
9.

7
36

,1
18

*
8.

2
36

,2
00

*
1.

6
36

,0
93

*

5
0

35
,5

32
0

28
,9

44
0

25
,4

54
0

20
,9

01
5.

9
36

,2
81

*
4.

2
36

,2
81

*
2.

9
36

,2
89

*
2.

4
36

,0
92

*
24

.2
36

,3
64

*
13

.8
36

,0
29

*
11

.1
36

,0
58

*
2.

2
36

,1
46

*

0.
9

1
0

8,
67

4
0

7,
83

0
0

6,
38

1
0

5,
40

9
0

26
,9

32
0

23
,0

22
0

20
,0

20
0

18
,2

00
0

28
,8

03
0

23
,9

72
0

20
,9

83
0

18
,0

79
2

0
12

,9
02

0
11

,6
28

0
10

,9
49

0
8,

48
8

2.
4

36
,3

33
*

0
32

,1
22

0
29

,7
60

0
26

,8
11

15
.3

36
,0

18
*

12
.7

36
,2

02
*

7.
8

36
,1

85
*

3.
5

36
,1

54
*

3
0

30
,9

72
0

26
,1

05
0

22
,7

70
0

18
,6

64
4.

8
36

,2
01

*
0

33
,7

10
0

32
,1

20
0

27
,2

98
20

.2
36

,2
60

*
14

.2
36

,1
74

*
9.

2
36

,0
38

*
4.

1
36

,2
05

*

4
1.

2
36

,0
00

*
0

35
,4

49
0

33
,1

03
0

26
,0

65
5.

3
36

,1
18

*
4.

5
36

,2
90

*
2.

8
36

,1
12

*
2.

5
36

,2
29

*
17

.4
36

,0
99

*
16

.5
36

,0
32

*
10

.7
36

,2
70

*
4.

8
36

,2
05

*

5
1.

5
36

,1
18

*
1.

1
36

,0
94

*
0.

8
36

,2
93

*
0

31
,8

47
7.

7
36

,1
03

*
4.

9
36

,3
41

*
3.

5
36

,2
80

*
2.

2
36

,1
78

*
33

.2
36

,1
54

*
16

.9
36

,1
43

*
12

.2
36

,1
17

*
5.

3
36

,3
02

*

0.
8

0.
5

1
0

6,
52

3
0

5,
03

5
0

4,
87

0
0

4,
51

9
0

21
,1

27
0

21
00

7
0

19
,3

27
0

18
,0

86
0

21
,4

51
0

19
,9

49
0

18
,8

77
0

15
,7

91
2

0
7,

42
2

0
6,

44
3

0
5,

96
6

0
5,

01
1

0
33

,7
56

0
32

,0
27

0
30

,4
76

0
27

,8
95

7.
7

36
,1

89
*

2.
8

36
,0

63
*

0
35

,5
81

0
33

,6
41

3
0

9,
95

7
0

8,
75

3
0

8,
23

5
0

7,
50

4
1.

1
36

,0
37

*
0

32
,7

92
0

31
,4

69
0

30
,0

54
9.

1
36

,4
31

*
4.

6
36

,1
89

*
1.

8
36

,1
10

*
0

34
,7

81
4

0
14

,3
33

0
14

,0
27

0
13

,2
83

0
11

,5
06

2.
3

36
,4

02
*

2.
1

36
,2

48
*

0.
3

36
,2

24
*

0
34

,5
93

12
.3

36
,0

28
*

10
.7

36
,3

10
*

3.
3

36
,2

51
*

0
35

,1
35

5
0

18
,2

35
0

18
,1

25
0

15
,0

34
0

12
,5

43
3.

1
36

,1
38

*
2.

6
36

,1
56

*
1.

5
36

,1
85

*
0.

5
36

,2
20

*
18

.4
36

,1
90

*
15

.8
36

,2
63

*
9.

2
36

,1
80

*
0

35
,9

60
0.

75
1

0
11

,6
32

0
9,

55
9

0
8,

45
2

0
7,

40
7

0
26

,5
79

0
26

,5
04

0
24

,4
13

0
24

,1
79

0
29

,0
36

0
27

,8
40

0
26

,0
82

0
24

,4
90

2
0

14
,1

58
0

12
,8

52
0

11
,9

74
0

10
,3

55
1.

6
36

,2
07

*
0

35
,1

54
0

34
,3

44
0

32
,1

93
6.

6
36

,2
85

*
3.

1
36

,2
20

*
2.

2
36

,3
36

*
0.

4
36

,0
93

*

3
0

31
,4

29
0

30
,9

61
0

30
,8

06
0

24
,2

03
3.

2
36

,4
05

*
1.

8
36

,0
82

*
0

35
,6

40
0

33
,1

23
11

.8
36

,0
92

*
5.

3
36

,1
99

*
3.

5
36

,2
50

*
1.

2
36

,1
29

*

4
1.

9
36

,1
04

*
0

34
,3

24
0

32
,8

89
0

30
,5

63
5.

2
36

,1
25

*
3.

5
36

,0
11

*
1.

9
36

01
8*

0.
8

36
,0

07
*

16
.8

36
,3

50
*

14
.1

36
,0

38
*

10
.3

36
,3

53
*

3.
9

36
,2

40
*

5
2.

1
36

,0
74

*
0

34
,9

85
0

33
,9

96
0

31
,1

12
8.

6
36

,0
83

*
5.

8
36

,2
99

*
2.

1
36

,0
27

*
1.

3
36

,1
18

*
22

.2
36

,3
98

*
14

.3
36

,1
81

*
11

.1
36

,2
80

*
5.

2
36

,1
93

*

0.
9

1
0

11
,8

84
0

10
,8

07
0

10
,5

26
0

9,
59

3
0

28
,7

37
0

28
,5

48
0

27
,1

21
0

26
,4

56
0

29
,9

55
0

27
,2

59
0

26
,8

67
0

24
,5

15
2

0
18

,9
65

0
13

,2
34

0
12

,4
63

0
11

,8
98

3.
8

36
,0

05
*

0
35

,9
10

0
34

,9
92

0
32

,6
78

10
.2

36
,4

00
*

7.
4

36
,1

93
*

2.
5

36
,0

59
*

0.
8

36
,1

10
*

3
2.

4
36

,0
72

*
0

34
,1

03
0

33
,1

99
0

27
,4

63
5.

4
36

,1
74

*
3.

6
36

,1
92

*
0

35
,8

35
0

33
,5

17
16

.9
36

,4
76

*
10

.7
36

,1
05

*
5.

7
36

,0
04

*
1.

8
36

,2
69

*

4
2.

5
36

,2
63

*
2.

2
36

,1
86

*
0

34
,3

79
0

31
,0

29
7.

2
36

,4
27

*
4.

7
36

,2
75

*
2.

1
36

,0
77

*
0.

7
36

,1
03

*
22

.8
36

,2
40

*
15

.3
36

,2
53

*
10

.2
36

,0
14

*
6.

1
36

,0
80

*

5
2.

1
36

,3
94

*
1.

9
36

,2
24

*
1.

2
36

,1
89

*
0

32
,5

22
11

.7
36

,2
93

*
7.

1
36

,1
36

*
4.

4
36

,3
02

*
1.

8
36

,2
67

*
29

.2
36

,0
06

*
18

.1
36

,3
45

*
13

.5
36

,1
18

*
7.

2
36

,1
20

*

M
in

.
0

2,
60

3
0

2,
31

5
0

2,
07

9
0

1,
69

0
0

18
,4

02
0

16
,7

29
0

16
,1

72
0

13
,9

41
0

18
,2

84
0

16
,2

59
0

15
,9

66
0

14
,6

47
A

vg
.

0.
30

18
,2

62
0.

12
16

,2
68

0.
04

15
,0

83
0

12
,7

78
4.

27
33

,2
16

2.
29

31
,7

91
1.

02
30

,5
54

0.
49

28
,5

69
13

.7
8

34
,0

14
8.

07
33

,3
80

4.
76

32
,9

80
1.

72
31

,9
74

M
ax

.
2.

5
36

,3
94

*
2.

2
36

,2
24

*
1.

2
36

,2
93

*
0

32
,5

22
20

.4
36

,4
27

*
15

.3
36

,3
41

*
8.

1
36

,3
02

*
2.

6
36

,3
30

*
45

36
,5

00
*

24
.5

36
,3

45
*

15
.1

36
,3

53
*

7.
2

36
,3

02
*

*
Ti

m
e

lim
it

re
ac

he
d

(1
0

ho
ur

s)

133

Appendix B

Smith et al. (2007)’s Algorithm, Details

of Test Instances, and Results: Chapter 3

B.1 Details of Smith et al. (2007)’s Algorithm

We present the pseudo-code for the algorithm presented by Smith et al. (2007). We define UB as

an upper bound on the optimal objective value obtained by solving the scenario SPs, LB as a lower

bound on the optimal objective value obtained by solving the MP, and t as the current iteration. Let

Υt be the set of extreme points generated up to iteration t, and ϵ be the desirable optimality gap.

134

Algorithm 7 Smith et al. (2007)’s Algorithm
UB ←∞, LB ← −∞, t← 0, Υt ← ∅

While (
UB − LB

UB
> ϵ) do

Solve the MP to obtain w

Update LB

For s ∈ S do:

Solve the SPs for a given ŵ

Obtain dual variables (π, α, φ)

End for

Update UB

Υt+1 ← Υt ∪ {π, α, φ}

t← t+ 1

End while

B.2 Detailed Input Data

In this section, we present the details of ”r” set in Table B.1.

B.3 Detailed Results

In this section, we report the detailed results of ”r01-r09” on five variants of the branch-and-

Benders-cut (BBC) algorithm in Table B.2. We also present the detailed results of ”r10-r18” for the

best three variants of BBC algorithm in Table B.3. In Table B.2 and B.3, The columns ”N”, ”A”,

and ”K” represent the number of nodes, arcs, and commodities, respectively. In the subsequent

columns, we present the CPU time (s) for instances with an optimal solution. If the algorithms

reached the time limit for a specific instance, we present the gap (%) instead of the CPU time. In

Table B.4, |Ω| is the number of demand scenarios.

135

Table B.1: Details of ”r” Set

Set Node Arc Commodity # of scenarios Interdiction budget

r01 10 35 10
2 1, 2
3 1, 2, 3
4 1, 2, 3, 4

r02 10 35 25
2 1, 2
3 1, 2, 3
4 1, 2, 3, 4

r03 10 35 50
2 1, 2
3 1, 2, 3
4 1, 2, 3, 4

r04 10 60 10
2 1, 2
3 1, 2, 3
4 1, 2, 3, 4

r05 10 60 25
2 1, 2
3 1, 2, 3
4 1, 2, 3, 4

r06 10 60 50
2 1, 2
3 1, 2, 3
4 1, 2, 3, 4

r07 10 82 10
2 1, 2
3 1, 2, 3
4 1, 2, 3, 4

r08 10 83 25
2 1, 2
3 1, 2, 3
4 1, 2, 3, 4

r09 10 83 50
2 1, 2
3 1, 2, 3
4 1, 2, 3, 4

r10 20 120 40
2 1, 2
3 1, 2, 3
4 1, 2, 3, 4

r11 20 120 100
2 1, 2
3 1, 2, 3
4 1, 2, 3, 4

r12 20 120 200
2 1, 2
3 1, 2, 3
4 1, 2, 3, 4

r13 20 220 40
2 1, 2
3 1, 2, 3
4 1, 2, 3, 4

r14 20 220 100
2 1, 2
3 1, 2, 3
4 1, 2, 3, 4

r15 20 220 200
2 1, 2
3 1, 2, 3
4 1, 2, 3, 4

r16 20 314 40
2 1, 2
3 2, 3, 4
4 1, 2, 3, 4

r17 20 318 100
2 1, 2
3 1, 2, 3
4 1, 2, 3, 4

r18 20 315 200
2 1, 2
3 1, 2, 3
4 1, 2, 3, 4

136

Table B.2: CPU Time (s) of Variants of BBC Algorithm on “r01-r09” Sets

Set |N | |A| |K|
|S| = 2 |S| = 3 |S| = 4

BBC1 BBC2 BBC3 BBC4 BBC5 BBC1 BBC2 BBC3 BBC4 BBC5 BBC1 BBC2 BBC3 BBC4 BBC5

1 r01 10 35 10 17 5 14 17 5 21 6 20 23 8 40 8 46 44 12
2 10 35 10 21 7 19 21 6 29 9 26 30 8 40 11 32 45 12
3 10 35 10 21 8 23 21 7 38 9 27 40 8 58 12 50 62 14
4 10 35 10 14 5 17 14 7 23 6 23 24 8 42 9 39 46 9
5 10 35 10 16 7 17 17 7 28 9 26 28 7 47 13 50 57 9
6 10 35 10 16 6 21 17 6 28 8 27 29 9 40 9 44 44 11
7 10 35 10 3 1 3 3 1 4 1 5 5 1 7 1 8 8 1
8 10 35 10 5 1 5 6 1 10 2 13 10 3 15 3 13 17 3
9 10 35 10 8 2 7 8 2 12 3 12 13 3 20 4 22 23 4

10 r02 10 35 25 21 5 19 20 5 28 7 41 29 7 36 9 44 40 9
11 10 35 25 51 14 57 40 19 47 15 71 50 17 82 18 111 87 15
12 10 35 25 60 17 50 64 17 88 29 91 86 26 100 29 144 148 28
13 10 35 25 26 4 20 25 5 37 8 31 36 7 52 10 49 54 11
14 10 35 25 23 7 29 25 7 58 9 54 56 12 90 15 75 65 15
15 10 35 25 29 5 25 28 6 55 12 56 45 13 84 12 73 87 15
16 10 35 25 18 7 17 17 7 29 7 22 28 7 31 8 27 35 8
17 10 35 25 8 2 8 9 3 13 3 12 15 4 11 4 15 14 5
18 10 35 25 18 8 23 17 6 34 11 34 37 14 47 14 46 48 13

19 r03 10 35 50 110 31 100 110 28 164 34 135 160 39 181 41 151 253 48
20 10 35 50 122 30 140 118 33 230 61 216 170 50 220 49 197 233 56
21 10 35 50 146 29 119 125 36 235 52 186 222 45 407 70 291 314 65
22 10 35 50 39 9 32 42 11 55 13 49 56 18 71 15 57 79 21
23 10 35 50 89 22 69 86 16 99 25 94 97 27 104 26 100 107 28
24 10 35 50 89 21 69 85 16 99 25 94 97 27 104 27 100 107 28
25 10 35 50 25 14 26 27 14 32 16 36 33 16 32 17 38 37 19
26 10 35 50 24 12 25 26 15 33 19 32 33 17 33 16 36 38 20
27 10 35 50 24 12 25 25 14 32 15 34 33 17 32 18 35 36 18

28 r04 10 60 10 109 39 72 135 41 642 102 224 780 118 619 151 351 782 169
29 10 60 10 105 32 75 107 43 461 129 253 518 100 558 149 385 632 228
30 10 60 10 113 36 60 107 52 268 115 234 300 96 573 161 278 573 148
31 10 60 10 298 52 112 260 77 287 52 176 274 68 310 95 200 365 91
32 10 60 10 150 60 115 142 65 271 70 201 252 89 439 117 364 500 124
33 10 60 10 143 60 96 139 70 185 85 180 171 82 290 77 347 304 94
34 10 60 10 29 5 17 35 7 68 12 38 64 7 63 14 49 59 11
35 10 60 10 17 5 14 17 5 31 8 28 27 7 46 11 51 44 9
36 10 60 10 19 6 19 22 5 43 8 32 35 8 63 10 52 65 11

37 r05 10 60 25 1,353 581 883 1,355 596 10,594 3,572 8,702 10,428 4,528 6,555 3,429 4,983 7,588 3,033
38 10 60 25 1,095 543 966 1,153 583 6,958 2,872 5,577 6,191 3,419 5,881 2,454 4,468 6,420 2,779
39 10 60 25 1,191 542 954 1,076 577 6,327 3,351 5,351 6,883 3,529 5,218 2,316 5,974 8,437 3,424
40 10 60 25 2,087 664 1,374 1,836 798 1,693 602 1,352 1,360 810 1,776 796 1,014 1,410 842
41 10 60 25 1,265 553 1,105 1,106 743 1,929 610 1,300 1,815 911 1,855 793 1,843 1,957 1,160
42 10 60 25 1,599 541 1,311 1,625 736 1,910 874 1,647 1,903 876 2,698 751 1,957 2,815 1,209
43 10 60 25 51 15 56 51 13 84 22 77 80 19 98 24 83 107 20
44 10 60 25 71 22 78 71 18 96 30 104 96 21 111 31 100 126 24
45 10 60 25 88 23 75 97 24 124 31 121 114 25 120 31 123 147 31

137

Table B.2: CPU Time (s) of Variants of BBC Algorithm on “r01-r09” Sets (continued)

Set |N | |A| |K|
|S| = 2 |S| = 3 |S| = 4

BBC1 BBC2 BBC3 BBC4 BBC5 BBC1 BBC2 BBC3 BBC4 BBC5 BBC1 BBC2 BBC3 BBC4 BBC5

46 r06 10 60 50 1,339 312 748 1,149 337 4,054 904 2,720 4,372 1,033 4,215 1,542 2,128 4,338 1,737
47 10 60 50 1,299 499 800 1,226 381 4,128 1,459 3,681 4,930 1,604 8,410 3,239 4,079 7,545 3,537
48 10 60 50 1,067 584 1,046 1,152 342 28,691 5,085 10,608 28,060 7,573 49,501 18,956 36,189 39,608 30,555
49 10 60 50 2,342 446 1,489 2,028 563 3,511 1,007 1,891 3,454 987 5,075 1,490 2,953 6,230 1,598
50 10 60 50 3,515 1,532 2,797 3,622 1,746 14,871 5,061 7,050 13,836 6,446 13,825 6,601 11,931 16,541 7,441
51 10 60 50 4,477 1,235 3,479 5,311 1,904 16,371 4,917 10,630 18,755 7,309 42,988 16,932 28,730 41,414 26,956
52 10 60 50 57 16 45 61 15 89 48 81 97 34 110 52 86 122 40
53 10 60 50 131 39 99 126 35 174 70 168 182 59 209 59 170 241 63
54 10 60 50 1,713 693 978 1,734 783 3,394 1,408 3,011 3,116 1,741 5,953 2,495 3,554 4,826 2,403

55 r07 10 82 10 110 28 43 108 26 1,043 368 435 1,145 289 5,124 1,899 3,624 5,797 2,574
56 10 82 10 81 22 66 90 34 765 216 460 729 289 4,551 2,090 3,266 4,944 1,920
57 10 82 10 107 27 70 135 39 640 199 426 638 228 5,774 1,592 3,137 5,943 2,229
58 10 82 10 231 63 111 242 59 1,995 689 1,341 2,481 734 3,358 1,070 3,151 4,059 1,388
59 10 82 10 140 36 123 147 59 1,014 332 604 1,058 460 4,069 1,129 2,425 4,209 1,493
60 10 82 10 95 27 76 96 38 1,180 356 579 1,292 402 2,874 1,335 2,062 2,771 1,474
61 10 82 10 248 50 178 329 65 333 97 177 420 107 279 73 165 331 70
62 10 82 10 169 48 125 129 57 295 71 213 289 89 335 102 246 274 98
63 10 82 10 132 40 109 154 54 298 92 212 218 97 380 88 281 442 115

64 r08 10 83 25 776 181 493 786 252 21,775 5,506 8,815 23,685 6,028 83,289 36,798 65,651 80,367 50,005
65 10 83 25 808 409 541 780 341 8,788 3,387 7,019 10,818 4,152 76,940 21,922 64,290 64,934 23,498
66 10 83 25 518 210 339 571 263 4,552 2,365 5,453 5,390 3,044 71,651 20,428 46,083 60,988 21,950
67 10 83 25 2,496 664 1,476 2,821 1,059 31,663 10,130 16,178 31,072 9,742 72,846 49,036 59,412 71,716 68,955
68 10 83 25 1,909 701 1,085 1,921 721 12,246 5,314 11,895 13,821 6,410 78,099 45,106 70,694 68,040 47,403
69 10 83 25 1,227 348 715 1,190 537 11,250 5,620 8,037 11,230 6,492 76,033 14,511 48,714 49,121 28,251
70 10 83 25 2,906 1,159 2,027 3,172 1,121 3,554 1,093 2,680 3,453 1,752 3,978 1,769 3,985 4,951 2,120
71 10 83 25 1,432 593 1,275 1,505 538 2,184 1,124 2,718 2,678 1,021 4,814 1,752 4,634 5,471 1,901
72 10 83 25 1,519 829 1,445 1,458 893 3,195 1,391 3,048 2,701 1,372 4,162 1,651 3,839 3,630 2,064

73 r09 10 83 50 15,014 6,582 9,678 16,578 6,969 79,527 33,700 38,934 77,392 36,774 (7.4)* 42,937 58,795 (5.3) 54,674
74 10 83 50 8,002 3,614 5,782 7,624 3,923 59,176 18,500 40,634 60,106 14,745 85,793 35,880 62,793 83,753 41,470
75 10 83 50 4,982 2,403 3,691 4,895 3,740 27,189 12,639 29,868 26,267 15,297 72,165 42,978 52,165 69,164 40,241
76 10 83 50 25,595 10,616 11,931 22,529 10,957 74,382 45,797 56,467 73,277 56,478 (11.6) 70,164 80,521 (9.2) 76,664
77 10 83 50 20,354 13,423 20,382 22,460 17,669 64,073 33,703 54,281 70,759 35,999 (3.7) 62,608 71,598 (2.9) 61,949
78 10 83 50 13,660 10,714 11,417 13,960 10,177 33,708 16,066 28,605 30,283 24,483 (1.3) 55,606 64,351 86,357 55,739
79 10 83 50 606 189 520 604 195 819 208 620 767 249 1,013 264 880 1,136 303
80 10 83 50 746 246 664 713 313 1,509 269 763 1,135 292 1,067 415 1,170 1,302 506
81 10 83 50 1,503 440 1,188 1,293 562 1,883 597 1,459 1,927 826 2,520 727 2,165 2,971 770

* () indicates the gap at the time limit

138

Table B.3: CPU Time (s) of Variants of BBC Algorithm on “r10-r18” Sets

Set |N | |A| |K|
|S| = 2 |S| = 3 |S| = 4

BBC2 BBC3 BBC5 BBC2 BBC3 BBC5 BBC2 BBC3 BBC5

82 r10 20 120 40 16,358 21,935 16,997 41,430 73,387 59,250 81,474 (4.8)* 83,208
83 20 120 40 10,526 19,755 13,994 32,679 66,082 38,693 (11) (15.8) (11.1)
84 20 120 40 8,235 9,782 8,392 24,862 51,325 31,439 35,079 66,078 52,316
85 20 120 40 51,360 69,034 55,916 (1.1) (4.6) (1.1) 85,039 (17.4) (10.5)
86 20 120 40 24,454 33,990 28,850 34,090 (0.8) 50,767 (9.1) (20.3) (19.2)
87 20 120 40 14,274 20,590 16,656 32,802 67,807 29,639 53,183 (9) 76,177
88 20 120 40 1,494 5,675 1,552 1,647 7,598 1,689 1,962 9,041 2,397
89 20 120 40 1,718 9,055 1,723 3,845 11,549 3,378 5,905 13,346 4,498
90 20 120 40 2,155 6,983 2,958 4,717 14,590 5,554 6,446 17,118 6,770

91 r11 20 120 100 25,138 (1.2) 34,932 (9.2) (12.2) (9.5) (16.2) (26.5) (15.8)
92 20 120 100 11,834 21,411 17,038 18,757 43,432 18,138 63,109 73,041 66,462
93 20 120 100 8,779 14,065 9,736 17,423 59,353 24,563 54,008 82,929 67,976
94 20 120 100 38,504 57,015 39,438 34,178 (17.1) 58,690 62,532 (100) 79,739
95 20 120 100 54,953 (1.4) 70,313 (6.7) (100) (6.8) (8.5) (100) (13.2)
96 20 120 100 59,696 79,218 58,872 (9.1) (18.2) (13.7) (11.9) (100) (22.9)
97 20 120 100 4,229 5,048 3,696 5,224 8,452 4,669 4,396 12,796 5,044
98 20 120 100 5,983 5,715 4,770 4,889 11,314 4,813 6,581 15,454 6,351
99 20 120 100 3,559 5,530 4,166 10,232 19,047 13,184 12,986 21,144 15,992

100 r12 20 120 200 (13.3) (100) (100) (100) (100) (100) (100) (100) (100)
101 20 120 200 (9.7) (100) (100) (100) (100) (100) (100) (100) (100)
102 20 120 200 (17.4) (30.5) (25.8) (31.2) (100) (39.2) (100) (100) (100)
103 20 120 200 (100) (100) (100) (100) (100) (100) (100) (100) (100)
104 20 120 200 (100) (100) (100) (100) (100) (100) (100) (100) (100)
105 20 120 200 (100) (100) (100) (100) (100) (100) (100) (100) (100)
106 20 120 200 18,459 25,471 23,340 25,043 32,750 26,570 27,877 38,452 27,061
107 20 120 200 16,151 21,689 19,476 28,790 36,456 32,768 30,271 51,201 32,166
108 20 120 200 15,065 19,093 16,256 22,139 35,214 31,197 32,604 48,959 36,311

109 r13 20 220 40 23,257 26,391 25,174 (10.4) (11.8) (10.1) (12.2) (18.3) (17.2)
110 20 220 40 26,565 31,405 33,794 60,421 (14.1) (8.4) 75,341 (5.7) 79,368
111 20 220 40 29,617 33,325 37,754 82,657 86,262 83,048 (9.3) (12.8) (10.5)
112 20 220 40 58,635 60,821 56,756 (9.7) (12.4) (12.3) (14.2) (18.4) (16.5)
113 20 220 40 36,554 51,869 43,935 62,710 75,193 65,010 78,052 83,219 80,058
114 20 220 40 38,261 48,449 46,167 67,447 67,081 65,258 80,359 (6.9) 83,920
115 20 220 40 52,815 72,022 69,920 (6.7) (11.1) (8.4) (12.3) (17.7) (16.8)
116 20 220 40 48,210 (8.7) (4.5) (15) (23.2) (19.2) (21.4) (28.7) (26.4)
117 20 220 40 45,426 (4.7) 71,231 69,236 (12.2) (7.2) (17.4) (24.8) (21.1)

118 r14 20 220 100 84,466 (9.8) 85,048 (4.4) (9.8) (5.2) (7.3) (13.8) (9.5)
119 20 220 100 (3.9) (14.7) (3.6) (10.7) (17.8) (11.6) (14.3) (27.8) (17.7)
120 20 220 100 (5.2) (11.1) (9.6) (100) (100) (100) (100) (100) (100)
121 20 220 100 (10.9) (26) (14.7) (33.9) (100) (100) (38.4) (100) (100)
122 20 220 100 (21.5) (100) (100) (21.3) (100) (27.4) (27.3) (100) (32.6)
123 20 220 100 (6.3) (16) (8.1) (9.4) (22.6) (13.5) (17.2) (32.7) (21.2)
124 20 220 100 (100) (100) (100) (25.2) (36.2) (31.3) (100) (100) (100)
125 20 220 100 (100) (100) (100) (100) (100) (100) (100) (100) (100)
126 20 220 100 (1.7) (9.6) (1.5) (9.7) (20.7) (16.3) (15.8) (38.3) (24.2)

* () indicates the gap at the time limit (24 hours)

139

Table B.3: CPU Time (s) of Variants of BBC Algorithm on “r10-r18” Sets (continued)

Set |N | |A| |K|
|S| = 2 |S| = 3 |S| = 4

BBC2 BBC3 BBC5 BBC2 BBC3 BBC5 BBC2 BBC3 BBC5

127 r15 20 220 200 (100) (100) (100) (100) (100) (100) (100) (100) (100)
128 20 220 200 (100) (100) (100) (100) (100) (100) (100) (100) (100)
129 20 220 200 (52.1) (100) (100) (100) (100) (100) (100) (100) (100)
130 20 220 200 (100) (100) (100) (100) (100) (100) (100) (100) (100)
131 20 220 200 (100) (100) (100) (100) (100) (100) (100) (100) (100)
132 20 220 200 (100) (100) (100) (100) (100) (100) (100) (100) (100)
133 20 220 200 (32.2) (100) (48.2) (17.3) (100) (100) (100) (100) (100)
134 20 220 200 (20.7) (33) (26.1) (30.4) (100) (38.5) (100) (100) (100)
135 20 220 200 (24.1) (38) (31.4) (34.4) (100) (39.4) (100) (100) (100)

136 r16 20 314 40 32,129 41,964 38,287 53,525 66,086 63,643 65,286 83,205 77,614
137 20 314 40 36,011 53,860 51,528 56,705 74,485 70,239 73,897 (18.3) (14.6)
138 20 314 40 46,403 58,601 55,054 60,059 (10.3) (8.8) (13.3) (19.3) (16.2)
139 20 314 40 61,930 66,893 65,106 (13.5) (18.4) (14.2) (16.5) (22.6) (19.4)
140 20 314 40 48,703 59,621 47,479 61,055 (9.2) 64,037 72,637 (9.6) 78,356
141 20 314 40 77,614 82,896 79,040 (8.2) (16.2) (10.2) (13.8) (20.6) (17.3)
142 20 314 40 67,043 80,677 63,647 (10.9) (18) (13.2) (16.5) (24.9) (21.5)
143 20 314 40 73,190 86,317 72,483 (19.8) (26.7) (23.7) (23.6) (28.6) (25.5)
144 20 314 40 59,666 (9.1) (7.4) (17.6) (18.9) (13) (15.5) (19.4) (15.4)

145 r17 20 318 100 85,679 (16.3) (11.5) (7.5) (18.3) (14.5) (11.3) (100) (20.3)
146 20 318 100 (100) (100) (100) (100) (100) (100) (100) (100) (100)
147 20 318 100 (23) (100) (100) (27.6) (100) (100) (33.2) (100) (100)
148 20 318 100 (25.3) (28.1) (25.1) (30.1) (100) (29.8) (36.8) (100) (43.6)
149 20 318 100 (35.1) (100) (37.8) (39.6) (100) (39.3) (100) (100) (100)
150 20 318 100 (26.1) (100) (100) (30.6) (100) (100) (38.8) (100) (100)
151 20 318 100 (100) (100) (100) (100) (100) (100) (100) (100) (100)
152 20 318 100 (100) (100) (100) (100) (100) (100) (100) (100) (100)
153 20 318 100 (100) (100) (100) (100) (100) (100) (100) (100) (100)

154 r18 20 315 200 (100) (100) (100) (100) (100) (100) (100) (100) (100)
155 20 315 200 (100) (100) (100) (100) (100) (100) (100) (100) (100)
156 20 315 200 (100) (100) (100) (100) (100) (100) (100) (100) (100)
157 20 315 200 (100) (100) (100) (100) (100) (100) (100) (100) (100)
158 20 315 200 (100) (100) (100) (100) (100) (100) (100) (100) (100)
159 20 315 200 (100) (100) (100) (100) (100) (100) (100) (100) (100)
160 20 315 200 (100) (100) (100) (100) (100) (100) (100) (100) (100)
161 20 315 200 (100) (100) (100) (100) (100) (100) (100) (100) (100)
162 20 315 200 (100) (100) (100) (100) (100) (100) (100) (100) (100)
* () indicates the gap at the time limit (24 hours)

140

Table B.4: CPU Time (s) of BBC2 for Uncertain Demand and Number of Interdictions

Set

|Ω| = 16 |Ω| = 32 |Ω| = 64

|S| = 2 |S| = 3 |S| = 4 |S| = 2 |S| = 3 |S| = 4 |S| = 2 |S| = 3 |S| = 4

Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap

r04 100 0 253 0 291 0 52 0 293 0 369 0 147 0 660 0 649 0
903 0 4,692 0 4,740 0 117 0 364 0 18,872 0 161 0 461 0 5,828 0
302 0 12,622 0 27,556 0 217 0 1,586 0 1,534 0 532 0 6,975 0 1,416 0
174 0 162 0 117 0 543 0 394 0 185 0 1,252 0 709 0 233 0

1,531 0 1,567 0 897 0 3,716 0 1,638 0 8,560 0 9,989 0 17,312 0 18,043 0
1,980 0 2,356 0 4,500 0 1,331 0 4,112 0 6,482 0 4,105 0 37,898 0 19,502 0

12 0 12 0 14 0 38 0 24 0 32 0 155 0 144 0 136 0
66 0 37 0 42 0 153 0 104 0 109 0 352 0 513 0 299 0

208 0 132 0 116 0 215 0 391 0 244 0 740 0 995 0 606 0

r05 2,272 0 3,122 0 2,218 0 3,630 0 3,938 0 2,144 0 4,891 0 4,636 0 2,582 0
21,001 0 49,484 0 10,466 0 34,630 0 86,400 3.1 34,630 0 86,400 6.4 86,400 8.5 86,400 5.9
49,639 0 86,400 5.5 86,400 9.5 86,400 6.3 86,400 12.4 86,400 13.8 86,400 15.4 86,400 20.0 86,400 22.3

831 0 1,270 0 1,046 0 3,082 0 1,265 0 1,106 0 3,655 0 1,103 0 1,713 0
23,383 0 10,687 0 13,536 0 65,814 0 38,884 0 78,051 0 86,400 3.5 70,938 0 86,400 2.2
86,400 2.6 86,400 4.0 86,400 5.0 86,400 10.8 86,400 9.9 86,400 11.2 86,400 34.2 86,400 25.8 86,400 29.6

14 0 18 0 22 0 28 0 28 0 36 0 71 0 71 0 81 0
45 0 65 0 53 0 90 0 115 0 149 0 581 0 523 0 462 0
83 0 72 0 76 0 171 0 163 0 178 0 567 0 682 0 615 0

r06 1,814 0 8,486 0 4,386 0 11,387 0 23,003 0 6,660 0 21,557 0 68,702 0 41,603 0
86,400 3.1 86,400 6.6 86,400 8.3 86,400 6.5 86,400 15.8 86,400 14.0 86,400 9.2 86,400 18.1 86,400 27.2
86,400 7.3 86,400 14.7 86,400 18.1 86,400 16.3 86,400 28.4 86,400 31.6 86,400 11.4 86,400 32.6 86,400 36.9
3,129 0 3,873 0 3,477 0 12,406 0 21,375 0 12,993 0 56,036 0 67,541 0 85,170 0

86,400 2.9 86,400 7.1 86,400 6.6 86,400 8.7 86,400 11.9 86,400 15.7 86,400 10.7 86,400 15.3 86,400 17.1
86,400 6.4 86,400 13.3 86,400 13.7 86,400 12.7 86,400 20.7 86,400 15.4 86,400 10.1 86,400 22.6 86,400 22.4

19 0 24 0 39 0 25 0 33 0 53 0 46 0 48 0 70 0
72 0 84 0 122 0 103 0 125 0 190 0 320 0 365 0 362 0

14,062 0 45,776 0 86,400 1.9 86,400 2.5 86,400 2.9 86,400 7.0 86,400 8.0 86,400 6.0 86,400 30.2

r07 56 0 1,908 0 86,400 1.2 71 0 3,363 0 86,400 2.0 73 0 5,187 0 86,400 2.1
43 0 3,657 0 86,400 6.1 54 0 17,876 0 86,400 8.8 70 0 49,251 0 86,400 11.3
53 0 19,114 0 86,400 11.5 76 0 18,015 0 86,400 12.4 80 0 86,400 2.2 86,400 17.5
60 0 8,639 0 26,299 0 84 0 66,495 0 35,190 0 95 0 86,400 0.8 86,400 1.0
62 0 86,400 1.1 86,400 10.4 132 0 86,400 1.3 86,400 8.0 339 0 86,400 2.5 86,400 10.5
65 0 86,400 2.9 86,400 11.8 141 0 86,400 2.0 86,400 14.4 268 0 86,400 4.0 86,400 16.4

159 0 170 0 169 0 310 0 514 0 499 0 532 0 575 0 854 0
3,677 0 2,947 0 4,401 0 26,054 0 23,274 0 20,791 0 23,364 0 29,665 0 30,103 0
7,821 0 10,879 0 9,645 0 41,583 0 66,909 0 43,403 0 54,813 0 71,027 0 86,400 1.1

r08 695 0 86,400 2.2 86,400 8 586 0 86,400 2.4 86,400 8.2 684 0 86,400 3.5 86,400 10.0
2,418 0 86,400 10.7 86,400 30.0 3,185 0 86,400 12.3 86,400 28.4 9,329 0 86,400 12.0 86,400 35.8
1,294 0 86,400 14.6 86,400 30.3 1,531 0 86,400 13.5 86,400 30.7 4,379 0 86,400 14.7 86,400 35.6
5,333 0 86,400 2.4 86,400 5.9 4,218 0 86,400 2.9 86,400 5.6 28,956 0 86,400 2.4 86,400 12.6

10,829 0 86,400 15.4 86,400 32.0 15,928 0 86,400 16.0 86,400 30.7 56,127 0 86,400 19.8 86,400 40.7
4,057 0 86,400 16.8 86,400 30.6 21,422 0 86,400 20.4 86,400 32.3 67,081 0 86,400 26.2 86,400 36.4
2,836 0 2,239 0 2,877 0 5,643 0 3,870 0 2,381 0 33,591 0 9,979 0 18,250 0

41,357 0 78,196 0 86,400 2.4 86,400 3.9 86,400 2.3 86,400 5.8 86,400 13.0 86,400 14.4 86,400 16.6
76,853 0 86,400 3.7 86,400 5.7 86,400 4.3 86,400 8.6 86,400 10.2 86,400 0.1 86,400 13.8 86,400 21.3

r09 86,400 1.3 86,400 5.2 86,400 100.0 86,400 2.3 86,400 8.7 86,400 46.9 86,400 3.0 86,400 14.3 86,400 100
86,400 4.5 86,400 26.7 86,400 48.3 86,400 9.6 86,400 34.7 86,400 100 86,400 15.5 86,400 41.9 86,400 55.1
86,400 10.3 86,400 29.4 86,400 44.0 86,400 12.3 86,400 35.1 86,400 51.3 86,400 18.4 86,400 42.8 86,400 49.7
42,605 0 86,400 4.7 86,400 100.0 27,843 0 86,400 7.3 86,400 100 86,400 3.4 86,400 10.7 86,400 100
86,400 16.7 86,400 35.7 86,400 45.0 86,400 21.9 86,400 41.9 86,400 43.9 86,400 33.8 86,400 39.0 86,400 44.8
86,400 21.2 86,400 38.8 86,400 41.6 86,400 30.1 86,400 39.1 86,400 45.8 86,400 35.5 86,400 40.2 86,400 48.7
1,958 0 1,920 0 1,073 0 3,709 0 3,776 0 2,008 0 16,214 0 14,743 0 10,339 0

25,900 0 20,015 0 24,545 0 59,098 0 48,102 0 31,768 0 86,400 1.1 86,400 1.9 86,400 3.2
58,683 0 49,099 0 44,406 0 78,513 0 86,400 1.0 86,400 86,400 4.9 86,400 8.7 86,400 2.5

Average 23,564 1.4 39,963 4.8 45,065 11.6 30,325 2.7 46,482 6.6 48,915 13.1 37,829 4.4 53,332 8.6 55,624 16.1

141

Bibliography

Afshari Rad, M. and H. T. Kakhki (2017). Two extended formulations for cardinality maximum

flow network interdiction problem. Networks 69(4), 367–377.

Agarwal, Y. K. and P. Venkateshan (2019). New Valid Inequalities for the Optimal Communication

Spanning Tree Problem. INFORMS Journal on Computing 31(2), 268–284.

Ahuja, R. and V. Murty (1987). Exact and heuristic algorithms for the optimum communication

spanning tree problem. Transportation Science 21(3), 163–170.

Akgün, İ., B. Ç. Tansel, and R. K. Wood (2011). The multi-terminal maximum-flow network-

interdiction problem. European Journal of Operational Research 211(2), 241–251.

Aksen, D., S. Ş. Akca, and N. Aras (2014). A bilevel partial interdiction problem with capacitated

facilities and demand outsourcing. Computers & Operations Research 41, 346–358.

Aksen, D. and N. Aras (2012). A bilevel fixed charge location model for facilities under imminent

attack. Computers & Operations Research 39(7), 1364–1381.

Alderson, D. L., G. G. Brown, W. M. Carlyle, and R. K. Wood (2011). Solving defender-attacker-

defender models for infrastructure defense. Technical report, Naval Postgraduate School Mon-

terey CA Dept Of Operations Research.

Aldrighetti, R., D. Battini, D. Ivanov, and I. Zennaro (2021). Costs of resilience and disruptions

in supply chain network design models: a review and future research directions. International

Journal of Production Economics 235, 108103.

142

https://doi.org/10.1002/net.21732
https://doi.org/10.1002/net.21732
https://doi.org/10.1287/ijoc.2018.0827
https://doi.org/10.1287/ijoc.2018.0827
https://doi.org/10.1287/trsc.21.3.163
https://doi.org/10.1287/trsc.21.3.163
https://doi.org/10.1016/j.ejor.2010.12.011
https://doi.org/10.1016/j.ejor.2010.12.011
https://doi.org/10.1016/j.cor.2012.08.013
https://doi.org/10.1016/j.cor.2012.08.013
https://doi.org/10.1016/j.cor.2011.08.006
https://doi.org/10.1016/j.cor.2011.08.006
https://doi.org/10.1016/j.ijpe.2021.108103
https://doi.org/10.1016/j.ijpe.2021.108103

An, Y., B. Zeng, Y. Zhang, and L. Zhao (2014). Reliable p-median facility location problem: two-

stage robust models and algorithms. Transportation Research Part B: Methodological 64, 54–72.

Assimakopoulos, N. (1987). A network interdiction model for hospital infection control. Computers

in biology and medicine 17(6), 413–422.

Azad, N. and E. Hassini (2019). A Benders decomposition method for designing reliable supply

chain networks accounting for multimitigation strategies and demand losses. Transportation

Science 53(5), 1287–1312.

Azizi, N., S. Chauhan, S. Salhi, and N. Vidyarthi (2016). The impact of hub failure in hub-and-

spoke networks: Mathematical formulations and solution techniques. Computers & Operations

Research 65, 174–188.

Baggio, A., M. Carvalho, A. Lodi, and A. Tramontani (2021). Multilevel approaches for the critical

node problem. Operations Research 69(2), 486–508.

Baghalian, A., S. Rezapour, and R. Z. Farahani (2013). Robust supply chain network design with

service level against disruptions and demand uncertainties: A real-life case. European Journal of

Operational Research 227(1), 199–215.

Balakrishnan, A., G. Li, and P. Mirchandani (2017). Optimal network design with end-to-end

service requirements. Operations Research 65(3), 729–750.

Bazgan, C., S. Toubaline, and D. Vanderpooten (2012). Efficient determination of the k most vital

edges for the minimum spanning tree problem. Computers & Operations Research 39(11), 2888–

2898.

Bazlamaçcı, C. F. and K. S. Hindi (2001). Minimum-weight spanning tree algorithms a survey and

empirical study. Computers & Operations Research 28(8), 767–785.

Beck, Y., I. Ljubić, and M. Schmidt (2023). A survey on bilevel optimization under uncertainty.

European Journal of Operational Research.

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems.

Numerische mathematik 4(1), 238–252.

143

https://doi.org/10.1016/j.trb.2014.02.005
https://doi.org/10.1016/j.trb.2014.02.005
https://doi.org/10.1016/0010-4825(87)90060-6
https://doi.org/10.1287/trsc.2018.0875
https://doi.org/10.1287/trsc.2018.0875
https://doi.org/10.1016/j.cor.2014.05.012
https://doi.org/10.1016/j.cor.2014.05.012
https://doi.org/10.1287/opre.2020.2014
https://doi.org/10.1287/opre.2020.2014
https://doi.org/10.1016/j.ejor.2012.12.017
https://doi.org/10.1016/j.ejor.2012.12.017
https://doi.org/10.1287/opre.2016.1579
https://doi.org/10.1287/opre.2016.1579
https://doi.org/10.1016/j.cor.2012.02.023
https://doi.org/10.1016/j.cor.2012.02.023
https://doi.org/10.1016/S0305-0548(00)00007-1
https://doi.org/10.1016/S0305-0548(00)00007-1
https://doi.org/10.1016/j.ejor.2023.01.008

Bhuiyan, T. H., H. R. Medal, A. K. Nandi, and M. Halappanavar (2021). Risk-averse bi-level

stochastic network interdiction model for cyber-security risk management. International Journal

of Critical Infrastructure Protection 32, 100408.

Bhuiyan, T. H., A. K. Nandi, H. Medal, and M. Halappanavar (2016). Minimizing expected max-

imum risk from cyber-attacks with probabilistic attack success. In 2016 IEEE Symposium on

Technologies for Homeland Security (HST), pp. 1–6. IEEE.

Blom, D., C. Hojny, and B. Smeulders (2024). Cutting plane approaches for the robust kidney

exchange problem. Computers & Operations Research 162, 106470.

Bodur, M., S. Dash, O. Günlük, and J. Luedtke (2017). Strengthened Benders cuts for stochastic

integer programs with continuous recourse. INFORMS Journal on Computing 29(1), 77–91.

Bodur, M. and J. R. Luedtke (2017). Mixed-integer rounding enhanced Benders decomposition

for multiclass service-system staffing and scheduling with arrival rate uncertainty. Management

Science 63(7), 2073–2091.

Brown, G., M. Carlyle, J. Salmerón, and K. Wood (2006). Defending critical infrastructure. Inter-

faces 36(6), 530–544.

Cappanera, P. and M. P. Scaparra (2011). Optimal allocation of protective resources in shortest-path

networks. Transportation Science 45(1), 64–80.

Caprara, A., M. Carvalho, A. Lodi, and G. J. Woeginger (2016). Bilevel knapsack with interdiction

constraints. INFORMS Journal on Computing 28(2), 319–333.

Carøe, C. C. and R. Schultz (1999). Dual decomposition in stochastic integer programming. Oper-

ations Research Letters 24(1-2), 37–45.

Chang, K.-H., Y.-C. Chiang, and T.-Y. Chang (2024). Simultaneous location and vehicle fleet sizing

of relief goods distribution centers and vehicle routing for post-disaster logistics. Computers &

Operations Research 161, 106404.

Che, A., J. Li, F. Chu, and C. Chu (2024). Optimizing emergency supply pre-positioning for disaster

relief: A two-stage distributionally robust approach. Computers & Operations Research, 106607.

144

https://doi.org/10.1016/j.ijcip.2021.100408
https://doi.org/10.1016/j.ijcip.2021.100408
https://doi.org/10.1109/THS.2016.7568892
https://doi.org/10.1109/THS.2016.7568892
https://doi.org/10.1016/j.cor.2023.106470
https://doi.org/10.1016/j.cor.2023.106470
https://doi.org/10.1287/ijoc.2016.0717
https://doi.org/10.1287/ijoc.2016.0717
https://doi.org/10.1287/mnsc.2016.2455
https://doi.org/10.1287/mnsc.2016.2455
https://doi.org/10.1287/inte.1060.0252
https://doi.org/10.1287/trsc.1100.0340
https://doi.org/10.1287/trsc.1100.0340
https://doi.org/10.1287/ijoc.2015.0676
https://doi.org/10.1287/ijoc.2015.0676
https://doi.org/10.1016/S0167-6377(98)00050-9
https://doi.org/10.1016/j.cor.2023.106404
https://doi.org/10.1016/j.cor.2023.106404
https://doi.org/10.1016/j.cor.2024.106607
https://doi.org/10.1016/j.cor.2024.106607

Chen, R. L.-Y., A. Cohn, and A. Pinar (2011). An implicit optimization approach for survivable

network design. In 2011 IEEE Network Science Workshop, pp. 180–187. IEEE.

Cheng, C., Y. Adulyasak, and L.-M. Rousseau (2021). Robust facility location under disruptions.

INFORMS Journal on Optimization 3(3), 298–314.

Cheng, C., M. Qi, Y. Zhang, and L.-M. Rousseau (2018). A two-stage robust approach for the

reliable logistics network design problem. Transportation Research Part B: Methodological 111,

185–202.

CNBC (2022). Toyota to cut global production plan by 100,000 in June.

Collado, R., S. Meisel, and L. Priekule (2017). Risk-averse stochastic path detection. European

Journal of Operational Research 260(1), 195–211.

Contardo, C. and J. A. Sefair (2022). A progressive approximation approach for the exact solution of

sparse large-scale binary interdiction games. INFORMS Journal on Computing 34(2), 890–908.

Contreras, I., J.-F. Cordeau, and G. Laporte (2011). Benders decomposition for large-scale unca-

pacitated hub location. Operations Research 59(6), 1477–1490.

Contreras, I., E. Fernández, and A. Marı́n (2010). Lagrangean bounds for the optimum communi-

cation spanning tree problem. Top 18(1), 140–157.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein (2022). Introduction to algorithms. MIT

press.

Cormican, K., D. Morton, and R. Wood (1998). Stochastic network interdiction. Operations Re-

search 46(2), 184–197.

Costa, A., D. Georgiadis, T. S. Ng, and M. Sim (2018). An optimization model for power grid

fortification to maximize attack immunity. International Journal of Electrical Power & Energy

Systems 99, 594–602.

Costa, A. M. (2005). A survey on Benders decomposition applied to fixed-charge network design

problems. Computers & Operations Research 32(6), 1429–1450.

145

https://doi.org/10.1109/NSW.2011.6004644
https://doi.org/10.1109/NSW.2011.6004644
https://doi.org/10.1287/ijoo.2021.0054
https://doi.org/10.1016/j.trb.2018.03.015
https://doi.org/10.1016/j.trb.2018.03.015
https://doi.org/10.1016/j.ejor.2016.12.002
https://doi.org/10.1287/ijoc.2021.1085
https://doi.org/10.1287/ijoc.2021.1085
https://doi.org/10.1287/opre.1110.0965
https://doi.org/10.1287/opre.1110.0965
https://doi.org/10.1007/s11750-009-0112-5
https://doi.org/10.1007/s11750-009-0112-5
https://doi.org/10.1287/opre.46.2.184
https://doi.org/10.1016/j.ijepes.2018.01.020
https://doi.org/10.1016/j.ijepes.2018.01.020
https://doi.org/10.1016/j.cor.2003.11.012
https://doi.org/10.1016/j.cor.2003.11.012

Costa, A. M., J.-F. Cordeau, and B. Gendron (2009). Benders, metric and cutset inequalities for mul-

ticommodity capacitated network design. Computational Optimization and Applications 42(3),

371–392.

Costa, A. M., P. M. França, and C. Lyra Filho (2011). Two-level network design with intermediate

facilities: an application to electrical distribution systems. Omega 39(1), 3–13.

Couedelo, A. (2018). Robust design of distribution networks considering worst case interdictions.

Master’s thesis, Concordia University.

Crainic, T. G. (2000). Service network design in freight transportation. European Journal of Oper-

ational Research 122(2), 272–288.

Crainic, T. G., A. Frangioni, and B. Gendron (2001). Bundle-based relaxation methods for mul-

ticommodity capacitated fixed charge network design. Discrete Applied Mathematics 112(1-3),

73–99.

Crainic, T. G., M. Gendreau, and B. Gendron (2021). Network design with applications to trans-

portation and logistics. Springer Nature.

Crainic, T. G., M. Hewitt, F. Maggioni, and W. Rei (2021). Partial Benders decomposition: general

methodology and application to stochastic network design. Transportation Science 55(2), 414–

435.

Cui, T., Y. Ouyang, and Z.-J. M. Shen (2010). Reliable facility location design under the risk of

disruptions. Operations Research 58(4-part-1), 998–1011.

DeNegre, S. T. and T. K. Ralphs (2009). A branch-and-cut algorithm for integer bilevel linear

programs. In Operations research and cyber-infrastructure, pp. 65–78. Springer.

Feremans, C., M. Labbé, and G. Laporte (2003). Generalized network design problems. European

Journal of Operational Research 148(1), 1–13.

Fischer, T. and P. Merz (2007). A memetic algorithm for the optimum communication spanning

tree problem. In International Workshop on Hybrid Metaheuristics, pp. 170–184. Springer.

146

https://doi.org/10.1007/s10589-007-9122-0
https://doi.org/10.1007/s10589-007-9122-0
https://doi.org/10.1016/j.omega.2010.01.005
https://doi.org/10.1016/j.omega.2010.01.005
https://doi.org/10.1016/S0377-2217(99)00233-7
https://doi.org/10.1016/S0166-218X(00)00310-3
https://doi.org/10.1016/S0166-218X(00)00310-3
https://doi.org/10.1007/978-3-030-64018-7
https://doi.org/10.1007/978-3-030-64018-7
https://doi.org/10.1287/trsc.2020.1022
https://doi.org/10.1287/trsc.2020.1022
https://doi.org/10.1287/opre.1090.0801
https://doi.org/10.1287/opre.1090.0801
https://doi.org/10.1007/978-0-387-88843-9_4
https://doi.org/10.1007/978-0-387-88843-9_4
https://doi.org/10.1016/S0377-2217(02)00404-6
https://doi.org/10.1007/978-3-540-75514-2_13
https://doi.org/10.1007/978-3-540-75514-2_13

Fischetti, M., I. Ljubić, M. Monaci, and M. Sinnl (2019). Interdiction games and monotonicity,

with application to knapsack problems. INFORMS Journal on Computing 31(2), 390–410.

Forghani, A., F. Dehghanian, M. Salari, and Y. Ghiami (2020). A bi-level model and solution

methods for partial interdiction problem on capacitated hierarchical facilities. Computers & Op-

erations Research 114, 104831.

Fragkos, I., J.-F. Cordeau, and R. Jans (2017). The multi-period multi-commodity network design

problem. CIRRELT, Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logis-

tique et le transport.

Fragkos, I., J.-F. Cordeau, and R. Jans (2021). Decomposition methods for large-scale network

expansion problems. Transportation Research Part B: Methodological 144, 60–80.

Frederickson, G. N. and R. Solis-Oba (1999). Increasing the weight of minimum spanning trees.

Journal of Algorithms 33(2), 244–266.

Garg, M. and J. C. Smith (2008). Models and algorithms for the design of survivable multicom-

modity flow networks with general failure scenarios. Omega 36(6), 1057–1071.

Gendron, B., T. G. Crainic, and A. Frangioni (1999). Multicommodity capacitated network design.

In Telecommunications Network Planning, pp. 1–19. Springer.

Ghaffarinasab, N. and R. Atayi (2018). An implicit enumeration algorithm for the hub interdiction

median problem with fortification. European Journal of Operational Research 267(1), 23–39.

Ghaffarinasab, N. and A. Motallebzadeh (2018). Hub interdiction problem variants: Models and

metaheuristic solution algorithms. European Journal of Operational Research 267(2), 496–512.

Ghare, P., D. C. Montgomery, and W. Turner (1971). Optimal interdiction policy for a flow network.

Naval Research Logistics Quarterly 18(1), 37–45.

Ghorbani-Renani, N., A. D. González, K. Barker, and N. Morshedlou (2020). Protection-

interdiction-restoration: Tri-level optimization for enhancing interdependent network resilience.

Reliability Engineering & System Safety 199, 106907.

147

https://doi.org/10.1287/ijoc.2018.0831
https://doi.org/10.1287/ijoc.2018.0831
https://doi.org/10.1016/j.cor.2019.104831
https://doi.org/10.1016/j.cor.2019.104831
https://doi.org/10.1016/j.trb.2020.12.002
https://doi.org/10.1016/j.trb.2020.12.002
https://doi.org/10.1006/jagm.1999.1026
https://doi.org/10.1016/j.omega.2006.05.006
https://doi.org/10.1016/j.omega.2006.05.006
https://doi.org/10.1007/978-1-4615-5087-7_1
https://doi.org/10.1016/j.ejor.2017.11.035
https://doi.org/10.1016/j.ejor.2017.11.035
https://doi.org/10.1016/j.ejor.2017.11.058
https://doi.org/10.1016/j.ejor.2017.11.058
https://doi.org/10.1016/j.ress.2020.106907
https://doi.org/10.1016/j.ress.2020.106907

Ghosh, S. and P. Jaillet (2022). An iterative security game for computing robust and adaptive

network flows. Computers & Operations Research 138, 105558.

Gicquel, C., S. Vanier, and A. Papadimitriou (2022). Optimal deployment of virtual network func-

tions for securing telecommunication networks against distributed denial of service attacks: a

robust optimization approach. Computers & Operations Research 146, 105890.

Graham, R. L. and P. Hell (1985). On the history of the minimum spanning tree problem. Annals

of the History of Computing 7(1), 43–57.

Gudapati, N. V., E. Malaguti, and M. Monaci (2022). Network design with service requirements:

Scaling-up the size of solvable problems. INFORMS Journal on Computing 34(5), 2571–2582.

Guo, G., G. Hackebeil, S. M. Ryan, J.-P. Watson, and D. L. Woodruff (2015). Integration of pro-

gressive hedging and dual decomposition in stochastic integer programs. Operations Research

Letters 43(3), 311–316.

Hemmati, M. and J. C. Smith (2016). A mixed-integer bilevel programming approach for a com-

petitive prioritized set covering problem. Discrete Optimization 20, 105–134.

Hemmecke, R., R. Schultz, and D. L. Woodruff (2003). Interdicting stochastic networks with binary

interdiction effort. In Network Interdiction and Stochastic Integer Programming, pp. 69–84.

Springer.

Hendricks, K. B. and V. R. Singhal (2005). An empirical analysis of the effect of supply chain

disruptions on long-run stock price performance and equity risk of the firm. Production and

Operations Management 14(1), 35–52.

Hien, L. T. K., M. Sim, and H. Xu (2020). Mitigating interdiction risk with fortification. Operations

Research 68(2), 348–362.

Holzmann, T. and J. C. Smith (2021). The shortest path interdiction problem with randomized

interdiction strategies: Complexity and algorithms. Operations Research 69(1), 82–99.

148

https://doi.org/10.1016/j.cor.2021.105558
https://doi.org/10.1016/j.cor.2021.105558
https://doi.org/10.1016/j.cor.2022.105890
https://doi.org/10.1016/j.cor.2022.105890
https://doi.org/10.1016/j.cor.2022.105890
https://doi.org/10.1109/MAHC.1985.10011
https://doi.org/10.1287/ijoc.2022.1200
https://doi.org/10.1287/ijoc.2022.1200
https://doi.org/10.1016/j.orl.2015.03.008
https://doi.org/10.1016/j.orl.2015.03.008
https://doi.org/10.1016/j.disopt.2016.04.001
https://doi.org/10.1016/j.disopt.2016.04.001
https://doi.org/10.1007/0-306-48109-X_4
https://doi.org/10.1007/0-306-48109-X_4
https://doi.org/10.1111/j.1937-5956.2005.tb00008.x
https://doi.org/10.1111/j.1937-5956.2005.tb00008.x
https://doi.org/10.1287/opre.2019.1890
https://doi.org/10.1287/opre.2020.2023
https://doi.org/10.1287/opre.2020.2023

Hsu, L.-H., R.-H. Jan, Y.-C. Lee, C.-N. Hung, M.-S. Chern, et al. (1991). Finding the most vital edge

with respect to minimum spanning tree in weighted graphs. Information Processing Letters 39(5),

277–281.

Hu, T. C. (1974). Optimum communication spanning trees. SIAM Journal on Computing 3(3),

188–195.

Hunt, K. and J. Zhuang (2024). A review of attacker-defender games: Current state and paths

forward. European Journal of Operational Research 313(2), 401–417.

Israeli, E. and R. K. Wood (2002). Shortest-path network interdiction. Networks 40(2), 97–111.

Ivanov, D., A. Dolgui, B. Sokolov, and M. Ivanova (2017). Literature review on disruption recovery

in the supply chain. International Journal of Production Research 55(20), 6158–6174.

Jabarzare, Z., H. Zolfagharinia, and M. Najafi (2020). Dynamic interdiction networks with applica-

tions in illicit supply chains. Omega 96, 102069.

Jabbarzadeh, A., B. Fahimnia, J.-B. Sheu, and H. S. Moghadam (2016). Designing a supply chain

resilient to major disruptions and supply/demand interruptions. Transportation Research Part B:

Methodological 94, 121–149.

Janjarassuk, U. and J. Linderoth (2008). Reformulation and sampling to solve a stochastic network

interdiction problem. Networks 52(3), 120–132.

Jiang, J. and X. Liu (2018). Multi-objective Stackelberg game model for water supply net-

works against interdictions with incomplete information. European Journal of Operational Re-

search 266(3), 920–933.

Jin, J. G., L. Lu, L. Sun, and J. Yin (2015). Optimal allocation of protective resources in urban

rail transit networks against intentional attacks. Transportation Research Part E: Logistics and

Transportation Review 84, 73–87.

Kerivin, H. and A. R. Mahjoub (2005). Design of survivable networks: A survey. Networks: An

International Journal 46(1), 1–21.

149

https://doi.org/10.1137/0203015
https://doi.org/10.1016/j.ejor.2023.04.009
https://doi.org/10.1016/j.ejor.2023.04.009
https://doi.org/10.1002/net.10039
https://doi.org/10.1080/00207543.2017.1330572
https://doi.org/10.1080/00207543.2017.1330572
https://doi.org/10.1016/j.omega.2019.05.005
https://doi.org/10.1016/j.omega.2019.05.005
https://doi.org/10.1016/j.trb.2016.09.004
https://doi.org/10.1016/j.trb.2016.09.004
https://doi.org/10.1002/net.20237
https://doi.org/10.1002/net.20237
https://doi.org/10.1016/j.ejor.2017.10.034
https://doi.org/10.1016/j.ejor.2017.10.034
https://doi.org/10.1016/j.tre.2015.10.008
https://doi.org/10.1016/j.tre.2015.10.008
https://doi.org/10.1002/net.20072

Kleinert, T., M. Labbé, I. Ljubić, and M. Schmidt (2021). A survey on mixed-integer programming

techniques in bilevel optimization. EURO Journal on Computational Optimization 9, 100007.

Klibi, W., A. Martel, and A. Guitouni (2010). The design of robust value-creating supply chain

networks: a critical review. European Journal of Operational Research 203(2), 283–293.

Lanza, G., T. G. Crainic, W. Rei, and N. Ricciardi (2021). Scheduled service network design with

quality targets and stochastic travel times. European Journal of Operational Research 288(1),

30–46.

Laporte, G., J. A. Mesa, and F. Perea (2010). A game theoretic framework for the robust railway

transit network design problem. Transportation Research Part B: Methodological 44(4), 447–

459.

Lei, X., S. Shen, and Y. Song (2018). Stochastic maximum flow interdiction problems under het-

erogeneous risk preferences. Computers & Operations Research 90, 97–109.

Leitner, M., I. Ljubić, M. Monaci, M. Sinnl, and K. Tanınmış (2022). An exact method for binary

fortification games. European Journal of Operational Research.

Li, Q., B. Zeng, and A. Savachkin (2013). Reliable facility location design under disruptions.

Computers & Operations Research 40(4), 901–909.

Li, X. and Y. Ouyang (2010). A continuum approximation approach to reliable facility location

design under correlated probabilistic disruptions. Transportation Research Part B: Methodologi-

cal 44(4), 535–548.

Liberatore, F., M. Scaparra, and M. Daskin (2011). Analysis of facility protection strategies against

an uncertain number of attacks: The stochastic R-interdiction median problem with fortification.

Computers & Operations Research 38(1), 357–366.

Liberatore, F., M. P. Scaparra, and M. S. Daskin (2012). Hedging against disruptions with ripple

effects in location analysis. Omega 40(1), 21–30.

Lim, C. and J. C. Smith (2007). Algorithms for discrete and continuous multicommodity flow

network interdiction problems. IIE Transactions 39(1), 15–26.

150

https://doi.org/10.1016/j.ejco.2021.100007
https://doi.org/10.1016/j.ejco.2021.100007
https://doi.org/10.1016/j.ejor.2009.06.011
https://doi.org/10.1016/j.ejor.2009.06.011
https://doi.org/10.1016/j.ejor.2020.05.031
https://doi.org/10.1016/j.ejor.2020.05.031
https://doi.org/10.1016/j.trb.2009.08.004
https://doi.org/10.1016/j.trb.2009.08.004
https://doi.org/10.1016/j.cor.2017.09.004
https://doi.org/10.1016/j.cor.2017.09.004
https://doi.org/10.1016/j.ejor.2022.10.038
https://doi.org/10.1016/j.ejor.2022.10.038
https://doi.org/10.1016/j.cor.2012.11.012
https://doi.org/10.1016/j.trb.2009.09.004
https://doi.org/10.1016/j.trb.2009.09.004
https://doi.org/10.1016/j.cor.2010.06.002
https://doi.org/10.1016/j.cor.2010.06.002
https://doi.org/10.1016/j.omega.2011.03.003
https://doi.org/10.1016/j.omega.2011.03.003
https://doi.org/10.1080/07408170600729192
https://doi.org/10.1080/07408170600729192

Lim, M., M. S. Daskin, A. Bassamboo, and S. Chopra (2010). A facility reliability problem: For-

mulation, properties, and algorithm. Naval Research Logistics 57(1), 58–70.

Lin, K.-C. and M.-S. Chern (1993). The most vital edges in the minimum spanning tree problem.

Information Processing Letters 45(1), 25–31.

Lin, L. and M. Gen (2006). Node-based genetic algorithm for communication spanning tree prob-

lem. IEICE Transactions on Communications 89(4), 1091–1098.

Linhares, A. and C. Swamy (2017). Improved algorithms for mst and metric-tsp interdiction. arXiv

preprint arXiv:1706.00034.

Losada, C., M. P. Scaparra, R. L. Church, and M. S. Daskin (2012). The stochastic interdiction

median problem with disruption intensity levels. Annals of Operations Research 201(1), 345–

365.

Lozano, L. and J. C. Smith (2017). A backward sampling framework for interdiction problems with

fortification. INFORMS Journal on Computing 29(1), 123–139.

Lozano, L., J. C. Smith, and M. E. Kurz (2017). Solving the traveling salesman problem with

interdiction and fortification. Operations Research Letters 45(3), 210–216.

Magnanti, T. L. and L. A. Wolsey (1995). Optimal trees. Handbooks in Operations Research and

Management Science 7, 503–615.

Magnanti, T. L. and R. T. Wong (1981). Accelerating Benders decomposition: Algorithmic en-

hancement and model selection criteria. Operations Research 29(3), 464–484.

Märkert, A. and R. Gollmer (2008). User’s guide to ddsip–ac package for the dual decomposi-

tion of two-stage stochastic programs with mixed-integer recourse. Department of Mathematics,

University of Duisburg-Essen, Duisburg.

McMasters, A. W. and T. M. Mustin (1970). Optimal interdiction of a supply network. Naval

Research Logistics Quarterly 17(3), 261–268.

151

https://doi.org/10.1002/nav.20385
https://doi.org/10.1002/nav.20385
https://doi.org/10.1016/0020-0190(93)90247-7
https://doi.org/10.1093/ietcom/e89-b.4.1091
https://doi.org/10.1093/ietcom/e89-b.4.1091
https://doi.org/10.48550/arXiv.1706.00034
https://doi.org/10.1007/s10479-012-1170-x
https://doi.org/10.1007/s10479-012-1170-x
https://doi.org/10.1287/ijoc.2016.0721
https://doi.org/10.1287/ijoc.2016.0721
https://doi.org/10.1016/j.orl.2017.02.007
https://doi.org/10.1016/j.orl.2017.02.007
https://doi.org/10.1016/S0927-0507(05)80126-4
https://doi.org/10.1287/opre.29.3.464
https://doi.org/10.1287/opre.29.3.464
 https://doi.org/10.1002/nav.3800170302

Medal, H. R., E. A. Pohl, and M. D. Rossetti (2014). A multi-objective integrated facility location-

hardening model: Analyzing the pre-and post-disruption tradeoff. European Journal of Opera-

tional Research 237(1), 257–270.

Mohammadi, M., P. Jula, and R. Tavakkoli-Moghaddam (2017). Design of a reliable multi-modal

multi-commodity model for hazardous materials transportation under uncertainty. European

Journal of Operational Research 257(3), 792–809.

Morton, D. (2010). Stochastic network interdiction. Wiley Encyclopedia of Operations Research

and Management Science.

Morton, D. P., F. Pan, and K. J. Saeger (2007). Models for nuclear smuggling interdiction. IIE

Transactions 39(1), 3–14.

Mota, C. L. (2016). The Optimum Communication Spanning Tree Problem: Properties, Models and

Algorithms. Ph. D. thesis, Universitat Politècnica de Catalunya (UPC).

Nandi, A. K., H. R. Medal, and S. Vadlamani (2016). Interdicting attack graphs to protect or-

ganizations from cyber attacks: A bi-level defender–attacker model. Computers & Operations

Research 75, 118–131.

Naoum-Sawaya, J. and B. Ghaddar (2017). Cutting plane approach for the maximum flow interdic-

tion problem. Journal of the Operational Research Society 68(12), 1553–1569.

Nguyen, D. H. and J. C. Smith (2022). Network interdiction with asymmetric cost uncertainty.

European Journal of Operational Research 297(1), 239–251.

O’Hanley, J. R. and R. L. Church (2011). Designing robust coverage networks to hedge against

worst-case facility losses. European Journal of Operational Research 209(1), 23–36.

Pan, F., W. S. Charlton, and D. P. Morton (2003). A stochastic program for interdicting smug-

gled nuclear material. In Network Interdiction and Stochastic Integer Programming, pp. 1–19.

Springer.

Papadakos, N. (2008). Practical enhancements to the Magnanti–Wong method. Operations Re-

search Letters 36(4), 444–449.

152

https://doi.org/10.1016/j.ejor.2014.01.040
https://doi.org/10.1016/j.ejor.2014.01.040
https://doi.org/10.1016/j.ejor.2016.07.054
https://doi.org/10.1016/j.ejor.2016.07.054
https://doi.org/10.1002/9780470400531.eorms0835
https://doi.org/10.1080/07408170500488956
https://doi.org/10.1016/j.cor.2016.05.005
https://doi.org/10.1016/j.cor.2016.05.005
https://doi.org/10.1057/s41274-017-0185-8
https://doi.org/10.1057/s41274-017-0185-8
https://doi.org/10.1016/j.ejor.2021.04.055
https://doi.org/10.1016/j.ejor.2010.08.030
https://doi.org/10.1016/j.ejor.2010.08.030
https://doi.org/10.1007/0-306-48109-X_1
https://doi.org/10.1007/0-306-48109-X_1
https://doi.org/10.1016/j.orl.2008.01.005

Parajuli, A., O. Kuzgunkaya, and N. Vidyarthi (2017). Responsive contingency planning of capac-

itated supply networks under disruption risks. Transportation Research Part E: Logistics and

Transportation Review 102, 13–37.

Parajuli, A., O. Kuzgunkaya, and N. Vidyarthi (2021). The impact of congestion on protection

decisions in supply networks under disruptions. Transportation Research Part E: Logistics and

Transportation Review 145, 102166.

Paraskevopoulos, D. C., T. Bektaş, T. G. Crainic, and C. N. Potts (2016). A cycle-based evolutionary

algorithm for the fixed-charge capacitated multi-commodity network design problem. European

Journal of Operational Research 253(2), 265–279.

Parvaresh, F., S. H. Golpayegany, S. M. Husseini, and B. Karimi (2013). Solving the p-hub me-

dian problem under intentional disruptions using simulated annealing. Networks and Spatial

Economics 13(4), 445–470.

Parvaresh, F., S. M. Husseini, S. H. Golpayegany, and B. Karimi (2014). Hub network design

problem in the presence of disruptions. Journal of Intelligent Manufacturing 25(4), 755–774.

Pay, B. S., J. R. Merrick, and Y. Song (2019). Stochastic network interdiction with incomplete

preference. Networks 73(1), 3–22.

Peng, P., L. V. Snyder, A. Lim, and Z. Liu (2011). Reliable logistics networks design with facility

disruptions. Transportation Research Part B: Methodological 45(8), 1190–1211.

Prim, R. C. (1957). Shortest connection networks and some generalizations. The Bell System

Technical Journal 36(6), 1389–1401.

Rad, M. A. and H. T. Kakhki (2013). Maximum dynamic network flow interdiction problem: New

formulation and solution procedures. Computers & Industrial Engineering 65(4), 531–536.

Rahmaniani, R., T. G. Crainic, M. Gendreau, and W. Rei (2017). The Benders decomposition

algorithm: A literature review. European Journal of Operational Research 259(3), 801–817.

153

https://doi.org/10.1016/j.tre.2017.03.010
https://doi.org/10.1016/j.tre.2017.03.010
https://doi.org/10.1016/j.tre.2020.102166
https://doi.org/10.1016/j.tre.2020.102166
https://doi.org/10.1016/j.ejor.2015.12.051
https://doi.org/10.1016/j.ejor.2015.12.051
https://doi.org/10.1007/s11067-013-9189-3
https://doi.org/10.1007/s11067-013-9189-3
https://doi.org/10.1007/s10845-012-0717-7
https://doi.org/10.1007/s10845-012-0717-7
https://doi.org/10.1002/net.21831
https://doi.org/10.1002/net.21831
https://doi.org/10.1016/j.trb.2011.05.022
https://doi.org/10.1016/j.trb.2011.05.022
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
https://doi.org/10.1016/j.cie.2013.04.014
https://doi.org/10.1016/j.cie.2013.04.014
https://doi.org/10.1016/j.ejor.2016.12.005
https://doi.org/10.1016/j.ejor.2016.12.005

Rahmaniani, R., T. G. Crainic, M. Gendreau, and W. Rei (2018). Accelerating the Benders decom-

position method: Application to stochastic network design problems. SIAM Journal on Opti-

mization 28(1), 875–903.

Ramamoorthy, P., S. Jayaswal, A. Sinha, and N. Vidyarthi (2018). Multiple allocation hub interdic-

tion and protection problems: Model formulations and solution approaches. European Journal of

Operational Research 270(1), 230–245.

Ratliff, H. D., G. T. Sicilia, and S. Lubore (1975). Finding the n most vital links in flow networks.

Management Science 21(5), 531–539.

Rothlauf, F. (2009). On optimal solutions for the optimal communication spanning tree problem.

Operations Research 57(2), 413–425.

Sadati, M. E. H., D. Aksen, and N. Aras (2020). A trilevel r-interdiction selective multi-depot

vehicle routing problem with depot protection. Computers & Operations Research 123, 104996.

Salmeron, J., K. Wood, and R. Baldick (2004). Analysis of electric grid security under terrorist

threat. IEEE Transactions on power systems 19(2), 905–912.

Salmeron, J., K. Wood, and R. Baldick (2009). Worst-case interdiction analysis of large-scale

electric power grids. IEEE Transactions on Power Systems 24(1), 96–104.

Sarayloo, F., T. G. Crainic, and W. Rei (2021). A learning-based matheuristic for stochastic multi-

commodity network design. INFORMS Journal on Computing 33(2), 643–656.

Scaparra, M. P. and R. L. Church (2008a). A bilevel mixed-integer program for critical infrastructure

protection planning. Computers & Operations Research 35(6), 1905–1923.

Scaparra, M. P. and R. L. Church (2008b). An exact solution approach for the interdiction median

problem with fortification. European Journal of Operational Research 189(1), 76–92.

Shen, S. and J. C. Smith (2012). Polynomial-time algorithms for solving a class of critical node

problems on trees and series-parallel graphs. Networks 60(2), 103–119.

154

https://doi.org/10.1137/17M1128204
https://doi.org/10.1137/17M1128204
https://doi.org/10.1016/j.ejor.2018.03.031
https://doi.org/10.1016/j.ejor.2018.03.031
https://doi.org/10.1287/mnsc.21.5.531
https://doi.org/10.1287/opre.1080.0592
https://doi.org/10.1016/j.cor.2020.104996
https://doi.org/10.1016/j.cor.2020.104996
https://doi.org/10.1109/TPWRS.2004.825888
https://doi.org/10.1109/TPWRS.2004.825888
https://doi.org/10.1109/TPWRS.2008.2004825
https://doi.org/10.1109/TPWRS.2008.2004825
https://doi.org/10.1287/ijoc.2020.0967
https://doi.org/10.1287/ijoc.2020.0967
https://doi.org/10.1016/j.cor.2006.09.019
https://doi.org/10.1016/j.cor.2006.09.019
https://doi.org/10.1016/j.ejor.2007.05.027
https://doi.org/10.1016/j.ejor.2007.05.027
https://doi.org/10.1002/net.20464
https://doi.org/10.1002/net.20464

Shen, S., J. C. Smith, and R. Goli (2012). Exact interdiction models and algorithms for disconnect-

ing networks via node deletions. Discrete Optimization 9(3), 172–188.

Sherman, E. (2020). 94% of the fortune 1000 are seeing coronavirus supply chain disruptions:

Report.

Smith, J. C., C. Lim, and F. Sudargho (2007). Survivable network design under optimal and heuristic

interdiction scenarios. Journal of Global Optimization 38(2), 181–199.

Smith, J. C. and Y. Song (2020). A survey of network interdiction models and algorithms. European

Journal of Operational Research 283(3), 797–811.

Snyder, L. V., Z. Atan, P. Peng, Y. Rong, A. J. Schmitt, and B. Sinsoysal (2016). OR/MS models

for supply chain disruptions: A review. IIE Transactions 48(2), 89–109.

Snyder, L. V. and M. S. Daskin (2005). Reliability models for facility location: the expected failure

cost case. Transportation Science 39(3), 400–416.

Song, Y. and S. Shen (2016). Risk-averse shortest path interdiction. INFORMS Journal on Com-

puting 28(3), 527–539.

Stackpole, B. (2022). Ripple effects from Russia-Ukraine war test global economies.

Taherkhani, G., S. A. Alumur, and M. Hosseini (2020). Benders decomposition for the profit max-

imizing capacitated hub location problem with multiple demand classes. Transportation Sci-

ence 54(6), 1446–1470.

Tahernejad, S., T. K. Ralphs, and S. T. DeNegre (2020). A branch-and-cut algorithm for mixed

integer bilevel linear optimization problems and its implementation. Mathematical Programming

Computation 12(4), 529–568.

Tanergüçlü, T., O. E. Karaşan, I. Akgün, and E. Karaşan (2019). Radio communications interdiction

problem under deterministic and probabilistic jamming. Computers & Operations Research 107,

200–217.

155

https://doi.org/10.1016/j.disopt.2012.07.001
https://doi.org/10.1016/j.disopt.2012.07.001
https://doi.org/10.1007/s10898-006-9067-3
https://doi.org/10.1007/s10898-006-9067-3
https://doi.org/10.1016/j.ejor.2019.06.024
https://doi.org/10.1080/0740817X.2015.1067735
https://doi.org/10.1080/0740817X.2015.1067735
https://doi.org/10.1287/trsc.1040.0107
https://doi.org/10.1287/trsc.1040.0107
https://doi.org/10.1287/ijoc.2016.0699
https://doi.org/10.1287/trsc.2020.1003
https://doi.org/10.1287/trsc.2020.1003
https://doi.org/10.1007/s12532-020-00183-6
https://doi.org/10.1007/s12532-020-00183-6
https://doi.org/10.1016/j.cor.2019.03.013
https://doi.org/10.1016/j.cor.2019.03.013

Tilk, C. and S. Irnich (2018). Combined column-and-row-generation for the optimal communication

spanning tree problem. Computers & Operations Research 93, 113–122.

Towle, E. and J. Luedtke (2018). New solution approaches for the maximum-reliability stochastic

network interdiction problem. Computational Management Science 15(3), 455–477.

Ullmert, T., S. Ruzika, and A. Schöbel (2020). On the p-hub interdiction problem. Computers &

Operations Research 124, 105056.

Wang, X., T. G. Crainic, and S. W. Wallace (2019). Stochastic network design for planning sched-

uled transportation services: The value of deterministic solutions. INFORMS Journal on Com-

puting 31(1), 153–170.

Washburn, A. and K. Wood (1995). Two-person zero-sum games for network interdiction. Opera-

tions research 43(2), 243–251.

Wei, N. and J. L. Walteros (2022). Integer programming methods for solving binary interdiction

games. European Journal of Operational Research.

Wei, N., J. L. Walteros, and F. M. Pajouh (2021). Integer programming formulations for minimum

spanning tree interdiction. INFORMS Journal on Computing 33(4), 1461–1480.

Wood, R. K. (1993). Deterministic network interdiction. Mathematical and Computer Mod-

elling 17(2), 1–18.

Wood, R. K. (2010). Bilevel network interdiction models: Formulations and solutions. Wiley

Encyclopedia of Operations Research and Management Science.

Wu, X. and A. J. Conejo (2016). An efficient tri-level optimization model for electric grid defense

planning. IEEE Transactions on Power Systems 32(4), 2984–2994.

Wu, Y., Z. Chen, J. Dang, Y. Chen, X. Zhao, and L. Zha (2022). Allocation of defensive and

restorative resources in electric power system against consecutive multi-target attacks. Reliability

Engineering & System Safety 219, 108199.

156

https://doi.org/10.1016/j.cor.2018.01.003
https://doi.org/10.1016/j.cor.2018.01.003
https://doi.org/10.1007/s10287-018-0321-1
https://doi.org/10.1007/s10287-018-0321-1
https://doi.org/10.1016/j.cor.2020.105056
https://doi.org/10.1287/ijoc.2018.0819
https://doi.org/10.1287/ijoc.2018.0819
https://doi.org/10.1287/opre.43.2.243
https://doi.org/10.1016/j.ejor.2022.01.009
https://doi.org/10.1016/j.ejor.2022.01.009
https://doi.org/10.1287/ijoc.2020.1018
https://doi.org/10.1287/ijoc.2020.1018
https://doi.org/10.1016/0895-7177(93)90236-R
http://dx.doi.org/10.1002/9780470400531.eorms0932
https://doi.org/10.1109/TPWRS.2016.2628887
https://doi.org/10.1109/TPWRS.2016.2628887
https://doi.org/10.1016/j.ress.2021.108199
https://doi.org/10.1016/j.ress.2021.108199

Wu, Y., Z. Chen, H. Gong, Q. Feng, Y. Chen, and H. Tang (2021). Defender–attacker–operator:

Tri-level game-theoretic interdiction analysis of urban water distribution networks. Reliability

Engineering & System Safety 214, 107703.

Xu, S., X. Zhang, L. Feng, and W. Yang (2020). Disruption risks in supply chain management:

a literature review based on bibliometric analysis. International Journal of Production Re-

search 58(11), 3508–3526.

Yaghini, M., M. Karimi, M. Rahbar, and M. H. Sharifitabar (2015). A cutting-plane neighbor-

hood structure for fixed-charge capacitated multicommodity network design problem. INFORMS

Journal on Computing 27(1), 48–58.

Yu, G., W. B. Haskell, and Y. Liu (2017). Resilient facility location against the risk of disruptions.

Transportation Research Part B: Methodological 104, 82–105.

Zare, M. H., J. S. Borrero, B. Zeng, and O. A. Prokopyev (2019). A note on linearized reformula-

tions for a class of bilevel linear integer problems. Annals of Operations Research 272, 99–117.

Zenklusen, R. (2010). Matching interdiction. Discrete Applied Mathematics 158(15), 1676–1690.

Zenklusen, R. (2015). An o (1)-approximation for minimum spanning tree interdiction. In 2015

IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 709–728. IEEE.

Zetina, C. A., I. Contreras, and J.-F. Cordeau (2019). Exact algorithms based on Benders decompo-

sition for multicommodity uncapacitated fixed-charge network design. Computers & Operations

Research 111, 311–324.

Zetina, C. A., I. Contreras, E. Fernandez, and C. Luna-Mota (2019). Solving the optimum commu-

nication spanning tree problem. European Journal of Operational Research 273(1), 108–117.

Zetina, C. A., I. Contreras, and S. Jayaswal (2021). An Exact Algorithm for Large-scale Non-convex

Quadratic Facility Location. arXiv preprint arXiv:2107.09746.

Zhang, C. and J. E. Ramirez-Marquez (2013). Protecting critical infrastructures against intentional

attacks: A two-stage game with incomplete information. IIE Transactions 45(3), 244–258.

157

https://doi.org/10.1016/j.ress.2021.107703
https://doi.org/10.1016/j.ress.2021.107703
https://doi.org/10.1080/00207543.2020.1717011
https://doi.org/10.1080/00207543.2020.1717011
https://doi.org/10.1287/ijoc.2014.0609
https://doi.org/10.1287/ijoc.2014.0609
https://doi.org/10.1016/j.trb.2017.06.014
https://doi.org/10.1007/s10479-017-2694-x
https://doi.org/10.1007/s10479-017-2694-x
https://doi.org/10.1016/j.dam.2010.06.006
https://doi.org/10.1109/FOCS.2015.49
https://doi.org/10.1016/j.cor.2019.07.007
https://doi.org/10.1016/j.cor.2019.07.007
https://doi.org/10.1016/j.ejor.2018.07.055
https://doi.org/10.1016/j.ejor.2018.07.055
https://doi.org/10.48550/arXiv.2107.09746
https://doi.org/10.48550/arXiv.2107.09746
https://doi.org/10.1080/0740817X.2012.676749
https://doi.org/10.1080/0740817X.2012.676749

Zhang, P. and N. Fan (2017). Analysis of budget for interdiction on multicommodity network flows.

Journal of Global Optimization 67(3), 495–525.

158

https://doi.org/10.1007/s10898-016-0422-8

	List of Figures
	List of Tables
	Introduction
	Network Design under Stochastic Interdictions
	Spanning Tree Fortification under Stochastic Interdictions

	Distribution Network Design under Stochastic Facility Interdiction
	Introduction
	Literature Review
	Model Formulation
	Single-level Reduction of the Interdictor's Problem using Dual Formulation
	Extension to the Correlated Facility Disruptions

	Solution Methodology
	Benders Decomposition
	Dual Decomposition Algorithm for Solving the Subproblem
	Supervalid and Valid Inequalities

	Computational Experiments
	Test Instances
	Analysis of Algorithmic Refinements
	Performance on Larger-size Instances
	Sensitivity Analysis of Model Parameters on Computation Time
	Sensitivity Analysis of Model Parameters on Distribution Network Design
	Computational Results for the Correlated Facility Interdictions
	Value of using Stochastic Design Model

	Conclusion

	An Exact Algorithm for Multicommodity Network Design under Stochastic Interdictions
	Introduction
	Contribution

	Literature Review
	Problem Description and Formulation
	Formulation
	Extension to Uncertain Demand and Interdiction Budget
	Single-level Reformulation of the Bilevel Interdiction Problem

	Benders Decomposition
	Multicut Benders Reformulation
	Implementation of Branch-and-Benders-Cut Algorithm

	Acceleration Techniques
	Pareto-optimal Cuts
	Penalty Reformulation
	Supervalid and Valid Inequalities
	Additional Acceleration Techniques
	Enhanced Branch-and-Benders-Cut Algorithm

	Computational Experiments
	Test Instances
	Computational Performance of Warm Start, Variable Fixing, and Cut Selection
	Performance of BBC Algorithms
	Comparison with smith2007survivable's Algorithm
	Comparison with MibS Solver
	Results of Uncertain Demand and Number of Interdiction
	Sensitivity Analysis

	Conclusion

	Fortification of Spanning Trees under Stochastic Interdictions
	Introduction
	Contribution

	Literature Review
	Network Fortification and Interdiction
	MST and OCST Problems

	Mathematical Model
	Stochastic Model for the MST Problem
	Stochastic Model for the OCST Problem

	Solution Methodology
	BSF Algorithm for the Stochastic Model
	Waiting List Acceleration Technique

	Computational Experiments
	Test Instances
	Results of the MST Fortification Problem
	Results of the OCST Fortification Problem

	Conclusion

	Conclusion
	Appendix Details of Results: Chapter 2
	Tables of Computational Results

	Appendix smith2007survivable's Algorithm, Details of Test Instances, and Results: Chapter 3
	Details of smith2007survivable's Algorithm
	Detailed Input Data
	Detailed Results

	Bibliography

