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Abstract

Constrained Predictive Control Strategies for Feedback-Linearized

Autonomous Wheeled Vehicles

Cristian Tiriolo, Ph.D.

Concordia University, 2024

Autonomous vehicles are becoming increasingly widespread in various real-world appli-

cations, ranging from manufacturing and transportation to search and rescue operations. To

perform these tasks effectively, it is crucial for the vehicle to be capable of solving trajectory

tracking, path following, and obstacle avoidance problems. To improve the accuracy of the

performed trajectory, the input constraints acting on the robot’s model should be directly

included in the control design. Unfortunately, many of the available control algorithms are

unable to do so.

In the last two decades of research, Model Predictive Control solutions have been devel-

oped to solve the considered control problems for autonomous wheeled vehicles. Nonlinear

MPC schemes exploit accurate state predictions, however, the underlying computational de-

mand might not be affordable in strict real-time contexts or when the robot’s computation

capabilities are limited. Conversely, linearized MPC approaches, have the important ad-

vantage of drastically reducing computational burdens at the expense of more conservative

control performance.

This research proposes a novel control paradigm to solve trajectory tracking, path fol-

lowing and obstacle avoidance problems for input-constrained wheeled mobile vehicles. The

proposed solutions are applicable to both differential-drive and car-like robots, and they

are the result of the combination of Model Predictive Control strategies and feedback lin-

earization techniques. First, it is shown that if a feedback linearized model of the robot is

exploited for predictions in MPC, then the set of admissible inputs for the linearized model

is a nonconvex and state-dependant polyhedron, leading to non-convex and computation-

ally expensive optimization problems with local minima issues. Then, a novel worst-case

circular approximation of the state-dependent input constraints set is analytically derived

and used to design reference tracking controllers that are, by design, recursively feasible and

non-conservative.

The proposed predictive control paradigm has been successfully applied in real-time to

solve trajectory tracking, obstacle avoidance, and formation control problems for mobile

robots and autonomous cars. The effectiveness and benefits of the proposed control frame-

work are shown with simulations and laboratory experiments involving the Khepera IV

differential-drive robots and Quanser Qcar, and its performance contrasted with state-of-

the-art alternative control solutions.
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1 Introduction

1.1 Motivation

The field of mobile robotics and autonomous vehicles has witnessed remarkable growth and

innovation in recent years, driven by advances in computing power, sensor technology, and

artificial intelligence. This progression has led to the widespread adoption of robotic systems

and self-driving cars across various industries, ranging from manufacturing and logistics to

transportation and urban planning [1].

Wheeled mobile robots and self-driving cars represent two prominent examples of au-

tonomous systems that have gained significant attention due to their potential to revolu-

tionize transportation and mobility [2]. Wheeled mobile robots, ranging from small indoor

robots to large outdoor platforms, are employed in tasks such

• environmental surveillance [3] (Fig. 1.1-(a));

• military applications [4, 5](Fig. 1.1-(b));

• agriculture [6, 7](Fig. 1.1-(c));

• warehouse automation [8];

• disinfection of contaminated environments [9](Fig. 1.1-(d));

• search and rescue operations [10].

On the other hand, self-driving cars, also known as autonomous vehicles, aim to transform

personal and public transportation by enabling vehicles to navigate and operate on roads

without human intervention.

Mobile robots and autonomous vehicles are systems generally designed to autonomously

operate in known, partially or totally unknown, and unpredictable scenarios [2, 11]. Among

the available robot architectures, Wheeled Mobile Robots (WMRs) have attracted a ma-

jor interest [6] thanks to their relatively low cost, small dimensions, and simple kinematic

structure. Three well-known types of WMRs are:

• unicycle, a robot with a single driving wheel;

• differential-drive, consisting of two independently driven wheels;

• and the car-like robot, having the same kinematics as an automobile.
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(a) (b) (c) (d)
https://smprobotics.com/ archive of VOP CZ s.p.; author: Radim Horák) https://www.nytimes.com/2020/02/13/science/

farm-agriculture-robots.html
https://www.automationworld.com/home/

article/21126536

Figure 1.1: Common applications of Wheeled Mobile Robots

These systems are typical examples of nonholonomic mechanisms i.e., any lateral displace-

ment of the wheels is not allowed by the kinematic model of the robot.

In general, regardless of the specific application, WMRs and autonomous vehicles must

be capable of addressing the following control problems [2, 12–14]:

• Localization, i.e, the problem of estimating the robot’s position and orientation within

an environment.

• Mapping, i.e. building an accurate representation of the environment.

• Trajectory and/or path planning, i.e. the problem of computing an admissible path or

trajectory from a start to a final location. Although the terms path and trajectory are

often used synonymously, the first is a sequence of points in the workspace, while the

latter defines a timing law associated with each point of the trajectory.

• Trajectory and/or path tracking, i.e., the problem of accurately following the planned

path or trajectory.

• Obstacle avoidance, i.e., computing a control law that drives the robot toward the goal

by avoiding any obstacle present in the environment.

• Formation control, i.e. cooperative control for a fleet of robots or vehicles aimed at

following a predefined trajectory while maintaining a desired spatial pattern [15]

1.2 Literature Review

Of particular interest for this thesis are the above control problems when differential-drive,

unicycle, and car-like robots are considered. Specifically, from a control perspective, the

proposed work addresses four main research topics:

1. trajectory tracking and path following for mobile robots.

2. collision-avoidance control for mobile robots.
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3. platooning formation control for mobile robots

4. trajectory tracking for car-like vehicles.

In the following, a review of the existing literature for the above-mentionedcontrol prob-

lems is proposed.

1.2.1 Trajectory Tracking and Path Following for mobile robots and car-like

vehicles

In most of the application domains, the vehicle’s control system should be able to solve either

a path-following problem or a trajectory-tracking problem. Although the two problems are

similar, the first requires a sequence of points that the robot tracks sequentially, while the

second presupposes the knowledge of the trajectory timing law [16]. The main difficulty

in accomplishing such tasks relies on the presence of nonholonomic constraints, i.e., the

wheels cannot perform any lateral displacements [17]. Furthermore, due to the Brockett

conditions, posture stabilization of such systems cannot be achieved by a static state-feedback

law [18, 19]. Extensive research has been conducted on the trajectory tracking problem for

wheeled mobile robots [12] and most of the proposed solutions range from Lyapunov-based

design, [20–22], adaptive laws [23], and feedback linearization-based schemes [19,24].

In more recent years, thanks to the evolution of processing units and numerical algo-

rithms to address optimization problems, several Model Predictive Control (MPC) solutions

have been developed, see [18, 25–29] and references therein. Nonlinear MPC schemes ex-

ploit accurate state predictions, however recursive feasibility and stability properties are

usually difficult to prove [27, 30]. Besides, the underlying computational demand might

not be affordable in strict real-time contexts or when the robot’s computation capabilities

are limited [28, 31]. As the latter issue is concerned, an alternative solution, based on a

neural network, has been presented in [29] in order to obtain a computationally affordable

algorithm. Conversely, linearized MPC approaches, e.g., [18,25,32], have the important ad-

vantage of drastically reducing computational burdens at the expense of more conservative

control performance.

1.2.2 Collision-avoidance Control for Mobile Robots

When autonomous robots are required to operate in unknown obstacle environments, tasks

such as mission control, communication management, navigation, and motion control must

be adequately performed [33]. In [34], a deep analysis of navigation techniques for mobile

robots moving in obstacle-populated environments is provided.
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Particular attention has been devoted to those solutions leveraging the concepts of Ar-

tificial Potential Field (APF), machine learning, and Model Predictive Control. Strategies

based on APF typically do not require the introduction of a path planner and address the

navigation problem by means of the so-called reactive approaches. Anyway, such solutions

might suffer from local minima, sub-optimality of the solution, and the difficulty of ensur-

ing obstacle avoidance capabilities when constrained vehicles are considered [35]. Recently,

machine learning-based solutions have been gaining increasing attention for their potential

use in heterogeneous real-world obstacle environments. Although interesting, the resulting

algorithms suffer from their black-box nature and, as a consequence, it is difficult to provide

theoretical guarantees on the absence of collisions [36].

The intrinsic capability of MPC to simultaneously and formally deal with stability re-

quirements, disturbances, and constraints, makes it an appealing solution to the control of

mobile robots in obstacle scenarios. Different MPC-based approaches have been proposed in

order to address the navigation problem of mobile ground robots [34,37], where the absence

of collisions is embedded into the MPC optimization.

Both nonlinear [38–42] and linear [43–45] MPC formulations are available for collision

avoidance purposes. However, such solutions suffer from the same drawbacks highlighted

above.

1.2.3 Tracking control of platoons of wheeled mobile robots

Platoon in vehicular technologies is often defined as a group of vehicles traversing in a

coordinated manner while communicating with each other and by using autonomous driving

technology [46].

In the literature, different solutions have been proposed to control platoons of mobile

robots (see [47] and references therein). In [48], the problem is solved in a centralized fash-

ion via nonlinear controllers, while in [49] a collision-free solution is developed; on the other

hand, the authors of [50] propose a decentralized constant-time approach where an inter-

vehicle delay policy is designed to track a given reference trajectory while maintaining a

platoon structure. Although appealing, the above-mentioned control solutions share as a

common drawback the incapability to guarantee input constraint fulfillment, i.e., physical

limitations on the control signals of the vehicles are not directly considered in the control

design. Unfortunately, failing to address input constraints may lead to undesired satu-

ration phenomena, loss of tracking performance, and in the worst case collisions between

agents. Model Predictive Control has been successfully applied also to the control of vehicu-

lar platoons thanks to its peculiar capability to incorporate stability requirements, tracking
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performance, and state and input constraints directly in the control design.

In the last decade, nonlinear MPC has been investigated to solve platooning control

problems for autonomous vehicles, (see [51] and references therein), however, its high com-

putational burdens represent a major obstacle for real-time implementations. Furthermore,

nonlinear formulations are in general nonconvex and they suffer from local minima prob-

lems [52]. Conversely, simpler linear MPC formulations are more computationally affordable,

and preferred for real-time applications. In [53], the linear dual-mode Set-Theoretic MPC

(ST-MPC), first developed in [54] to stabilize a general linear system subject to bounded dis-

turbance, has been applied to the considered platooning control problem for mobile robots.

Such a control architecture combines the concept of control invariance and N-step control-

lability, to formulate a convex and recursively feasible optimization. However, the strategy

in [53] deals with agents described by linear time-invariant models. The latter may constitute

a restrictive assumption especially when time-varying reference trajectories are considered.

1.2.4 Tracking Control of Self-Driving Cars

Central to the autonomous vehicle’s operational integrity is trajectory tracking control, a

critical aspect for ensuring the safety, reliability, and comfort of these vehicles [13, 14]. The

term reference trajectory refers to a sequence of consecutive waypoints, with associated spa-

tial and temporal information, that the vehicle is required to accurately track [55]. Achieving

reliable trajectory tracking enables autonomous vehicles to navigate complex environments

with precision, adaptability, and safety, thus accelerating the integration of autonomous

technology into everyday transportation systems [12].

Extensive research has been conducted to develop control strategies to solve the tra-

jectory tracking problem for autonomous cars [56], ranging from simple non-model based

solutions like the well-established PID controllers [57, 58], to more sophisticated nonlinear

control solutions like sliding-mode controllers [59,60], and adaptive backstepping control [61].

In the last decade, deep learning-based approaches have been applied to the control of au-

tonomous vehicles due to their ability to self-optimize their behavior from data and adapt

to complex and dynamic environments. [62,63] offer an exhaustive review of the most recent

developments in the application of machine learning techniques to autonomous vehicle con-

trol. Despite their relatively high tracking performance, the biggest challenge pertaining to

this class of algorithms remains their dependence on large, annotated datasets for training,

which can be expensive and time-consuming to collect and maintain. Additionally, machine

learning models often act as “black boxes,” offering limited interpretability regarding how

decisions are made, which raises concerns about accountability and safety in critical appli-
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cations like autonomous driving. One common drawback of the above-discussed tracking

strategies is their incapability to address input constraints, i.e., physical limitations of the

computed control signal, which may lead to a lack of close-loop stability guarantees [64].

1.2.5 Model Predictive Control and Feedback Linearization

Model Predictive Control has emerged as a premier control strategy in this domain, owing

to its ability to anticipate the future behavior of the vehicle and handle multiple constraints

simultaneously [14,65]. In recent years, the application of MPC in autonomous vehicles has

been extensively studied, highlighting its potential in managing the complex dynamics and

uncertainties inherent to vehicular control [14]. Notable works [66,67] have underscored the

efficacy of MPC in navigating autonomous vehicles through dynamic environments. Despite

these advancements, the deployment of MPC in real-world scenarios faces significant diffi-

culties. Nonlinear MPC approaches [68, 69], while robust, are computationally demanding,

posing challenges to their real-time implementation [70,71]. Moreover, given the nonconvex

nature of the MPC optimization, the solver algorithms may be characterized by uncertain

convergence and suboptimality [70, 72]. Conversely, linear MPC techniques [71, 73, 74] offer

computational efficiency but at the expense of model fidelity. As a matter of fact, solutions

that exploit error dynamics linearized around the reference trajectory have been found to be

suboptimal [75].

Feedback Linearization (FL) is a popular technique used to recast nonlinear dynamical

models into equivalent linear descriptions by means of a proper change of variables and con-

trol input vector [76]. In [77,78], the FL has been combined with MPC formulations. There,

the authors have used FL to obtain exact linear state predictions for an unconstrained ve-

hicle model. Along similar lines is the approach presented in [79], where an unconstrained

FL-MPC scheme is derived to address the trajectory tracking problem for a wheeled in-

verted pendulum. In [80], the nonlinear model of an electric power wheelchair is linearized

via transverse feedback linearization. Moreover, the input constraints, arising from nonlin-

ear mapping operations between the vehicle and the linear model, are exploited for input

prediction purposes. Consequently, the resulting MPC optimization problem is nonlinear

and non-convex. This literature analysis puts to light that the combined use of FL argu-

ments and MPC philosophy leads to computationally affordable convex optimizations only

for unconstrained models. On the other hand, input constraints are always converted into

nonlinear and state-dependent constraints [81], leading to nonlinear MPC formulations. As

a matter of fact, it has been shown that non-convex MPC formulations can be avoided if

sequential approximations of the constraint set are performed along the prediction horizon.
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Unfortunately, this strategy turns out to be very conservative even for small values of the

prediction horizon, see, e.g. [81–83] .

1.3 Contribution of the Thesis

In the last decades, the nonlinear Model Predictive Control scheme outlined in Chapter 2 has

been successfully applied to solve trajectory tracking, motion planning, and path-following

problems for wheeled mobile robots and autonomous vehicles. However, despite the progress

made in these areas, there remains a pressing need for further research, particularly with

regard to the local minima problems and high computational complexity that such algorithms

suffer from when a nonlinear model is exploited for control design [72].

In light of this need, this thesis presents a novel control paradigm, based on the com-

bination of predictive control and feedback linearization arguments, for solving trajectory-

tracking and obstacle-avoidance and formation control problems for autonomous wheeled

vehicles, with the ultimate aim of providing a low-computational demanding but highly ef-

ficient control solution to the considered problems. To the best of the author’s knowledge,

it represents the first attempt to design guaranteed predictive control strategies for input-

constrained feedback linearized autonomous wheeled vehicles. The main contributions of the

thesis can be summarized as follows:

1. Formal characterization of the time-varying and state-dependent input constraint sets

to which the feedback-linearized model is consequently subject and analytical charac-

terization of worst-case inner approximation of such time-varying sets.

2. Handling of the nonlinear internal dynamics arising when the vehicle model is ap-

proached by partial-state input-output linearization techniques.

3. Formulation of real-time affordable quadratic optimizations that don’t introduce any

approximations in the model predictions.

4. Guarantee of the existence of a control law that solves the considered problem when

time-varying constraints act on the linearized model. The proposed control solutions

enjoy the recursive feasibility property, i.e., under mild assumptions, the proposed

MPC optimization problems are always feasible.

5. Real-time applicability of the proposed control paradigm. The developed control solu-

tions have been extensively validated via laboratory real-time experiments, involving

Khepera IV mobile robots and Quanser Qcars.

7



1.4 Structure of the Thesis

This thesis follows a manuscript-based format3 and it is organized as follows.

• Chapter 2 contains all the background material related to the proposed research.

Specifically, first, the kinematic modeling of wheeled autonomous vehicles is discussed,

then the theory pertaining to feedback linearization is proposed, with particular em-

phasis on the application of such a technique to the linearization of robots’ kinematics.

Finally, the theoretical material related to predictive control is presented.

• Chapters 3-4 proposes the work published in [84] ([J4]) and [85] ([J2]), respectively,

which address the trajectory tracking control problem for wheeled mobile robots.

Specifically, Chapter 3 proposes a receding horizon control solution based on feedback-

linearization arguments and linear matrix inequalities. On the other hand, in Chapter

4, such a control solution is extended by means of set-theoretic MPC arguments to

improve tracking performance. Among the main contributions, these two works repre-

sent the first attempt at the analytical characterization of the time-varying admissible

input constraint set to which the linearized model is subject.

• In Chapter 5, the set-theoretic MPC proposed in Chapter 4 is extended to solve the

trajectory tracking problem for a platoon of wheeled mobile robots while guaranteeing

absence of collisions between agents. The results are published in [86]([C1]).

• Chapter 6, whose results are published in [87] [C2], addresses the obstacle avoidance

problem for differential-drive robots via receding horizon control based on full-state

dynamic feedback linearization.

• Chapters 7-8 present the work published in [88] ([J3]) and [J1], respectively, which

address the trajectory tracking problem for self-driving cars using feedback lineariza-

tion arguments. Specifically, in Chapter 7 the input-output linearized model of the car

kinematics is discussed and its time-varying input constraint set is formally charac-

terized. Moreover, the chapter proposes a novel analytical design of control invariant

regions that makes use of the worst-case inner approximation of the input constraint

set, which is also analytically characterized. Such a control design is exploited in

Chapter 8 to design a novel MPC framework based on feedback linearization capa-

ble of ensuring bounded tracking error, guaranteed feasibility, and input constraint

fulfillment for feedback-linearized car-like vehicles.

3https://www.concordia.ca/content/dam/sgs/docs/handbooks/thesispreparationguide.pdf
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• Chapter 9 concludes this thesis discussing potential research implications.
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2 Background

In this chapter, the fundamental theoretical concepts pertaining to the proposed research

are presented. Specifically, in the following, first, an overview of the kinematic model of

some wheeled mobile robots is given. Then, different feedback linearization techniques are

outlined to derive exact linear models describing the kinematics of the considered wheeled

vehicles. Finally, the chapter concludes with a brief overview of Model Predictive Control

for the stabilization of discrete-time dynamic systems.

2.1 Wheeled Vehicles Models

The kinematics of a generic nonholonomic Wheeled Mobile Robot (WMR) can be modeled

as:

q̇ = G(q)w, G ∈ IRn×m (2.1.1)

where q ∈ IRn is a vector of generalized coordinates, and w ∈ IRm the vector of control

inputs [89]. The above nonlinear system describes a general driftless WMR and the matrix

G can assume different structures depending on the considered vehicle.

Such a system is nonholonomic since it is characterized by the presence of n −m non-

integrable differential constraints in the form:

A(q)q̇ = 0 (2.1.2)

This is due to the fact that the wheels of the vehicle cannot slip but can perform only

pure rolling motion. Consequently, the nonlinear kinematics (2.1.1) do not satisfy the so-

called Brockett necessary conditions for the smooth stabilizability [90]. One major negative

consequence is established by the following proposition.

Proposition 2.1. Since the number of inputs m is different from the number of states n,

asymptotic stability cannot be achieved by static control laws, and a time-varying feedback

control is instead required. [89]

In the following three different examples of nonholonomic WMR are analyzed: differential-

drive, unicycle, and car-like robots.
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2.1.1 Differential-Drive Robot model

A typical example of WMR is the differential-drive robot, consisting of two independent

drive wheels (see. Fig. 2.1). By assuming that the robot moves at relatively low speed, its

kinematic is described by

ẋ(t) = r
2
(ωR(t) + ωL(t)) cos(θ(t))

ẏ(t) = r
2
(ωR(t) + ωL(t)) sin(θ(t))

θ̇(t) = r
d
(ωR(t)− ωL(t))

(2.1.3)

where ωR, ωL are the control inputs, right and left wheels’ angular velocities, respectively,

(a)

d

Figure 2.1: Differential-drive vehicle

while q(t) = [x(t), y(t), θ(t)]T is the state vector of the system, consisting of the robot’s center

of mass position in the plane, x(t) and y(t), and its orientation θ(t). The nonholonomic

constraint (2.1.2) for such robot is given by:

ẋ sin(θ) = ẏ cos(θ) (2.1.4)

Moreover, the robot’s model is subject to input saturation constraints on the wheel angular

velocities, i.e.

|ωR| ≤ Ω, |ωL| ≤ Ω (2.1.5)
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which can be rewritten in a compact form as:

Ud = {[ωR, ωL]T ∈ IR2 : Hd [ωR, ωL]T ≤ 1}, where Hd =


− 1

Ω
0

0 − 1
Ω

1
Ω

0

0 1
Ω

 (2.1.6)

where Ω is the maximum angular velocity the wheels can perform. It is worth mentioning

that (2.1.6) defines an squared input constraint set, as shown in Fig. 2.2

Figure 2.2: Input constraint set of the differential-drive robot

2.1.2 Unicycle Robot model

Another type of nonholonomic WMR is the unicycle, illustrated in Fig. 2.3, consisting of a

single drive-wheel. Its kinematic can be obtained starting from the differetial-drive model

(2.1.3). Specifically, by defining the following input-transformation:

[
v(t)

ω(t)

]
= T

[
ωR(t)

ωL(t)

]
, T =

[
R
2

R
2

R
D
−R
D

]
(2.1.7)

where v(t) and ω(t) are the control inputs, respectively the linear and angular velocity of

the vehicle, the unicycle kinematics are described by:

ẋ(t) = v(t) cos(θ(t))

ẏ(t) = v(t) sin(θ(t))

θ̇(t) = ω(t)

(2.1.8)
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Figure 2.3: Unicycle vehicle

The transformation (2.1.7) defines a new rhombus-like constraint set Uu (see Fig. 2.4) for

the unicycle model (2.1.8), obtained by applying (2.1.7) to (2.1.6), i.e.:

Uu = {[v, ω]T ∈ IR2 : Hu [v, ω]T ≤ 1}, Hu = HdT
−1 (2.1.9)

Figure 2.4: Input constraint set of the differential-drive robot

2.1.3 Car-like Vehicle Model

Another example of nonholonomic WMR is the car-like vehicle depicted in Fig. 2.5. Defining

the vector of generalized coordinates q = [x, y, θ, ϕ]T ,the kinematic of a car-like vehicle in

Fig 2.5 with rear driving-wheels can be described by the following so-called bicycle model [91]:

q̇(t) =


ẋ(t)

ẏ(t)

θ̇(t)

ϕ̇(t)

 =


cos θ(t)

sin θ(t)
1
l

tan(ϕ(t))

0

 v(t) +


0

0

0

1

ωs(t) (2.1.10)
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Figure 2.5: Car-like vehicle

where l is the distance between front and rear wheels, x and y represents the position of

the center of mass of the vehicle within the Cartesian plane, θ is the orientation of the

vehicle, ϕ is the steering angle, and v, ωs are the control inputs, i.e., the linear velocity of

the vehicle and the steering angular velocity respectively. It is worth to point out that the

set of differential equation (2.1.10) admits a solution ∀ϕ ∈
(
−π

2
, π

2

)
. In other words, ϕ = ±π

2

constitutes a singularity for the car-vehicle model, i.e. the car gets jammed whenever the

front wheel is perpendicular to the axis of the car. However, as remarked in [91] such a

singularity is neglectable since the range of ϕ(t) is restricted in practical applications.

Since n−m = 2 for the car like vehicle, the system is subject to two different not-differentiable

nonholonomic constraints in the form (2.1.2), i.e.,

[
sin(θ + ϕ) − cos(θ + ϕ) −l cosϕ 0

sin θ − cos(θ) 0 0

]
ẋ(t)

ẏ(t)

θ̇(t)

ϕ̇(t)

 =


0

0

0

0

 (2.1.11)

The control inputs are assumed subject to the following rectangular constraints, depicted in

Fig. 2.6

Ucar = {[v, ωs]T ∈ IR2 : H [v, ω]T ≤ g}, (2.1.12)

H =


−1 0

0 −1

1 0

0 1

 , g =


v

ω

v

ω

 (2.1.13)

where v, ω > 0 are positive real numbers.
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Figure 2.6: Input constraint set of the differential-drive robot

2.2 Feedback Linearization

Feedback linearization is a popular technique to exactly linearize a nonlinear model by means

of a proper change of coordinates [92]. Consider a nonlinear system in the form:

ẋ = f(x) +G(x)u

y = h(x)
(2.2.1)

where x ∈ IRn, u ∈ IRm, y ∈ IRm are the state, input, and output vectors, respectively, f and

h, smooth vector fields, and G ∈ IRn×m is a matrix having smooth vector fields as columns.

The feedback linearization problem consists of finding a state-feedback control

u(x) = α(x) + E(x)v (2.2.2)

such that if the (2.2.2) is fed into the the nonlinear system (2.2.1), it cancels out (fully

or partially) the nonlinearities of (2.2.1), transforming it into an equivalent linear system.

Specifically, if the nonlinear system is completely linearized, i.e. all its equations are lin-

earized, then the linearization is said to be full-state, otherwise, if only a subset of the

equations is linearized, the linearization is said to be input-output.

2.2.1 Input-Output Feedback Linearization:

To apply the input-output feedback linearization, first of all, the output dynamics must be

rewritten as: 
y

(r1)
1
...

y
(rm)
m

 =


Lr1f h1(x)

...

Lrmf hm(x)

+ E(x)u (2.2.3)
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with E(x) ∈ IRm×m invertible over a certain compact set Ω, and y
(ri)
i denoting the ri−th

derivative of the output yi, and Lfh = ∇hf denoting the Lie derivative of h with respect to

f . Then, by considering the following input transformation

u = E−1


v1 − Lr1f h1

...

vm − Lrmf hm

 (2.2.4)

The nonlinear system (2.2.1) is equivalent to

y
(ri)
i = vi (2.2.5)

In general, by applying such a technique only a partial linearization is achieved, i.e. an

internal nonlinear dynamics decoupled by the linearized system must be considered. When

an internal dynamics is not obtained the linearization is said to be full-state.

2.2.2 Dynamic Feedback Linearization

When a static feedback linearization is not applicable, a dynamic feedback linearization ap-

proach may be an option [89]. The actual process may vary based on the specific nonlinear

system, but in its general formulation, the problem is solved by defining new outputs consist-

ing of a subset of the state variables. Then, the defined outputs are successively differentiated

until the inputs appear in the equations. If the obtained input-output relation is singular,

i.e. the decoupling matrix relating input and outputs is singular, then a certain number of

integrators must be added to a subset of the inputs, which convert the input of the system

into the state of a so-called dynamic compensator. The final result of such a procedure is a

dynamic feedback compensator in the form:

ξ̇ = a(x, ξ) + b(q, ξ)u

w = c(q, ξ) + d(q, ξ)u
(2.2.6)

such that under a transformation z = T (x, ξ), the nonlinear system (2.2.1) is equivalent to

a linear controllable form.
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2.2.3 Input-Output Linearization of the Unicycle model

The described linearization method can be applied to the unicycle model (2.1.8) to obtain a

linearized description of the vehicle’s kinematics, as outlined in [89]. Specifically, by defining

a new output:

z(t) =

[
z1(t)

z2(t)

]
=

[
x(t) + b cos θ(t)

y(t) + b sin θ(t)

]
(2.2.7)

representing the position of a point B external to the robot, translated with respect to the

vehicle’s center of mass (See Fig. 2.7). Notice that the geometrical parameter b > 0 defines

the translation of the point B. Let’s consider the derivative of the new output, i.e.,

Figure 2.7: Unicycle Representation for Input-Output Linearization

ż(t) =

[
ż1(t)

ż2(t)

]
=

[
ẋ(t)− b sin θ(t)θ̇(t)

ẏ(t) + b cos θ(t)θ̇(t)

]
(2.2.8)

By substituting the unicycle dynamics (2.1.8), (2.2.8) can be rewritten as:

ż(t) =

[
v(t) cos θ(t)− b sin θ(t)ω(t)

v(t) sin(θ(t)) + b cos θ(t)ω(t)

]
(2.2.9)

The latter can be written in a more compact matrix form as:

ż(t) = TNL(θ(t))

[
v(t)

ω(t)

]
, where TNL(θ(t)) =

[
cos θ(t) −b sin θ(t)

sin θ(t) b cos θ(t)

]
(2.2.10)
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It is worth to mention that if b > 0, then the matrix TNL is nonsingular and it admits the

following inverse matrix:

TFL(θ(t)) = T−1
NL(θ(t)) =

[
cos θ(t) sin θ(t)
− sin θ(t)

b
cos θ(t)

b

]
(2.2.11)

Therefore, by defining the linearizing inputs as:[
u1(t)

u2(t)

]
= T−1

FL(θ(t))

[
v(t)

ω(t)

]
=⇒

[
v(t)

ω(t)

]
= TFL(θ)

[
u1(t)

u2(t)

]
(2.2.12)

and substituting it in the nonlinear system (2.2.9), it is equivalent to the following two-single

integrator model

ż1(t) = u1(t)

ż2(t) = u2(t)
(2.2.13)

which is a Linear Time-Invariant (LTI) system in the form:

ż(t) = Bu(t), B = I2×2 (2.2.14)

where u = [u1, u2]T is the linearizing input vector. It is worth mentioning that the used lin-

earization method consists of a partial linearization. In fact, the dynamics of the orientation

θ(t) have been excluded by the linearized description. Such dynamics can be recovered by

applying the input transformation (2.2.12) to θ̇ = ω, obtaining;

θ̇(t) =
1

b
(u2(t) cos θ(t)− u1(t) sin θ(t)) (2.2.15)

The above equation is known as internal dynamics representing the nonlinear internal evo-

lution of θ(t) which cannot be directly controlled. However, the following lemma holds:

Lemma 2.2. If a control law u(t) stabilizes the linearized system (2.2.13), its internal dy-

namics remain bounded [89].

Although it is not possible to apriori characterize the evolution of θ(t) with respect to

its equilibrium, the carried out experiments have highlighted that under a proper choice of

the control law, the internal dynamics are confined within a reasonably small neighborhood

of the equilibrium. The interested reader shall refer to Chapter 3 for further details.
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2.2.4 Input-Output Linearization of the Car-like Model

Similarly to the previous case, the input-output linearization can be applied to the car-like

vehicle model (2.1.10). By defining a new output vector

z(t) =

[
z1(t)

z2(t)

]
=

[
x(t) + l cos θ(t) + ∆ cos(θ(t) + ϕ(t))

y(t) + l sin θ(t) + ∆ sin(θ(t) + ϕ(t))

]
(2.2.16)

where ∆ > 0 defines a point P displaced with respect to the midpoint of the rear axle of the

car (See Fig. 2.8). Let’s consider the time derivative of the new output

l

Figure 2.8: Car-like Vehicle Representation for Input-Output Linearization

ż(t) =

[
ż1(t)

ż2(t)

]
=

[
ẋ(t) + l sin θ(t)θ̇(t)−∆ sin(θ(t) + ϕ(t))(θ̇(t) + ϕ̇(t))

ẏ(t) + l cos θ(t)θ̇(t) + ∆ cos(θ(t) + ϕ(t))(θ̇(t) + ϕ̇(t))

]
(2.2.17)

By substituting the bicycle dynamics (2.1.10) in (2.2.17), it can be rewritten in a matrix

form as follows:

ż(t) = TNL(θ(t), ϕ(t))

[
v(t)

ωs(t)

]
,

TNL(θ(t), ϕ(t)) =

[
cos θ − tanϕ(sin θ + ∆

l
sin(θ + ϕ)) −∆ sin(θ + ϕ)

sin θ − tanϕ(cos θ + ∆
l

cos(θ + ϕ)) ∆ cos(θ + ϕ)

] (2.2.18)

It is worth mentioning that the matrix TNL(θ, ϕ) is not singular since

det(TNL(θ, ϕ)) =
∆

cosϕ
6= 0

19



The latter holds true since ∆ > 0 by definition. Thus, TNL admits the following inverse

matrix TFL(θ, ϕ) = T−1
NL(θ, ϕ):

TFL(θ, ϕ) =

[
cos θ+cos(2ϕ+θ)

2
sin θ+sin(2ϕ+θ)

2
∆ sin(θ)−∆ sin(2ϕ+θ)−2l sin(θ+ϕ)

2l∆
−∆ cos(θ)+∆ cos(2ϕ+θ)+2l cos(θ+ϕ)

2l∆

]
(2.2.19)

Therefore, by defining the input transformation

w = TNL(θ, ϕ) [v, ωs]
T (2.2.20)

the nonlinear system (2.2.18) is equivalent to the following two-single integrator model

ż1(t) = w1(t)

ż2(t) = w2(t)
(2.2.21)

which is a Linear Time-Invariant (LTI) system in the form:

ż(t) = Bw(t), B = I2×2 (2.2.22)

where w = [w1, w2]T is the vector of linearizing inputs. Similarly to the unicycle case,

the input-output linearization method generates nonlinear internal dynamics that can be

obtained by applying the transformation (2.2.20) to the dynamics of θ̇ and ϕ̇ described in

(2.1.10), obtaining

[
θ̇

ϕ̇

]
= O(θ, ϕ)FL

[
w1

w2

]

OFL(θ, ϕ) =

[
sinϕ cos(θ+ϕ)

l
sin(ϕ) sin(θ+ϕ)

l

− cos(θ+ϕ) sinϕ
l

− sin(θ+ϕ)
∆

− sin(θ+ϕ) sinϕ
l

+ cos(θ+ϕ)
∆

] (2.2.23)

However, differently from the unicycle case, the internal dynamics are 2-dimensional and

the stability of the overall control system depends on its boundedness. The stability of the

internal dynamics around a reference trajectory has been deeply analyzed in [93], and further

details will be given in chapter 7.
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2.2.5 Dynamic Feedback Linearization of the Unicycle

In order to obtain a full-state linearization of the unicycle, here a dynamic feedback lineariza-

tion method is discussed. Such a method has been successfully applied to the unicycle model

(2.1.8) in [89]. Similarly to the input-output linearization, the process start by defining a

new output, i.e., z = [x, y]T . Then, by taking the first-order time derivative and considering

the first two equations of the unicycle model we obtain:

ż(t) =

[
ẋ(t)

ẏ(t)

]
=

[
v(t) cos θ(t)

v(t) sin θ(t)

]
.

The latter can be further differentiated with respect to the time t obtaining:

z̈(t) =

[
ẍ(t)

ÿ(t)

]
=

[
v̇(t) cos(θ(t))− θ̇v(t)sin(θ(t))

v̇(t) sin(θ(t)) + θ̇v(t)cos(θ(t))

]
(2.2.24)

which can be rewritten in a matrix form as:

z̈(t) =

[
cos θ(t) −v(t) sin θ(t)

sin θ(t) v(t) cos θ(t)

][
v̇(t)

θ̇(t)

]
.

Then, by substituting the dynamics of θ(t) from the unicycle model (2.1.8), and defining a

new input variable a(t) = v̇(t), the latter can be rewritten as

[
z̈1(t)

z̈2(t)

]
= TFL(θ, v)

[
a(t)

ω(t)

]
, TFL(v, θ) =

[
cos θ(t) −v(t) sin θ(t)

sin θ(t) v(t) cos θ(t)

]
(2.2.25)

The above-described approach is known in the literature as dynamic extension [89,91] since

it consists of adding an integrator on the input v(t) that transforms the input variable into

the state of the following so-called dynamic compensator

v̇(t) = a(t)

ω(t) = u2(t) cos θ(t)−u1(t) cos θ(t)
v(t)

(2.2.26)

Finally, by applying the state-dependent input transformation[
a(t)

ω(t)

]
= T−1

FL(θ(t), v(t))

[
u1(t)

u2(t)

]
(2.2.27)
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to (2.2.25), the unicycle dynamics can be described by a two-double-integrator

z̈1(t) = u1(t)

z̈2(t) = u2(t)
(2.2.28)

which can be rewritten in a matrix form as follows:

ż(t) = Az(t) + Bu(t), A =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

 , B =


0 0

0 0

1 0

0 1

 (2.2.29)

where z = [x, y, ẋ, ẏ]T = [z1, z2, z3, z4]T , is the state vector of the feedback linearized system

and u = [u1, u2]T its input vector.

2.3 Model Predictive Control

Model Predictive Control, also commonly known as Receding Horizon Control (RHC), is a

popular technique to control dynamic systems. The control law is computed through the

solution, at each sampling time, of finite horizon control problems [94]. Such technique is

composed of three main ingredients:

• model of the plant;

• a performance-based cost function;

• a receding horizon logic.

Basically, RHC uses the mathematical model describing the plant to predict the future evolu-

tion of the system’s trajectory and determines the optimal control by solving an optimization

problem that minimizes a given performance cost [95].

Formally, here is assumed that the plant is modeled as a discrete-time nonlinear system

in the form:

x(k + 1) = ϕ(x(k), u(k)) (2.3.1)

where ϕ(·, ·) : IRn× IRm → IRn is a continuous function containing the origin, x(k) ∈ IRn

denotes the state vector, u(k) ∈ IRm the control inputs, and y(k) ∈ IRp the output of the

system. In addition, it’s assumed that the system is subject to state and input constraints
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defined as:
x(k) ∈ X ⊆ IRn, ∀k ∈ Z+, 0x ∈ X
u(k) ∈ U ⊆ IRm, ∀k ∈ Z+, 0u ∈ U

(2.3.2)

where X and U are compact and convex sets containing the origin.

In its general formulation [95], the objective of an RHC is to compute a state-feedback

control law u(·) = g(x(·)) such that:

• The closed-loop trajectory of the system (2.3.1) asymptotically converges to the equi-

librium 0x.

• x(k) ∈ X , u(k) ∈ U , ∀k ∈ Z+ i.e., the prescribed constraints are fulfilled.

As mentioned before, the solution is obtained by exploiting a prediction of the system state-

trajectory over a so-called prediction horizon Np i.e.,

x(k + 1|k) = ϕ(x(k), u(k))

x(k + 2|k) = ϕ(x(k + 1|k), u(k + 1))
...

x(k +Np|k) = ϕ(x(k +Np − 1|k), u(k +Np − 1))

(2.3.3)

Then, given an optimality criterion

J(k, x, u) =

k+Np−1∑
i=0

l(x(i), u(i)) + L(x(k +Np)) (2.3.4)

an optimal sequence of current and future control inputs of length Np

u∗ = {u∗(k), u∗(k + 1), . . . , u∗(k +Np − 1)} (2.3.5)

is computed by solving the following optimization problem:

min
u
J(t, x,u)s.t. (2.3.6)

x(k + i) = ϕ(x(k + i− 1), u(k + i− 1)), i = k, . . . k +Np − 1 (2.3.7)

u(i) ∈ U , i = k, . . . k +Np − 1 (2.3.8)

x(i) ∈ X , i = k, . . . k +Np − 1 (2.3.9)

x(k +Np) = 0x (2.3.10)

where u = {u(k), u(k + 1), . . . , u(k + Np − 1)} is the sequence of decision variables. In the
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above optimization, (2.3.7) are the model predictions, (2.3.8) and (2.3.9) are the prescribed

input and state constraints respectively, and (2.3.10) is the terminal constraint imposing that

the final sample of the predicted state must be the equilibrium 0x. If the optimization (2.3.6)-

(2.3.10) admits a solution, the sequence of inputs u∗ = {u∗(k), u∗(k+ 1), . . . , u∗(k+Np−1)}
brings the closed-loop trajectory to 0x in Np time steps.

The generic RHC algorithm is thereafter reported:

General RHC Algorithm

1: Compute the sequence u∗ by solving (2.3.6)-(2.3.10)

2: Apply u∗(0) to the system (2.3.1)

3: measure x(k + 1)

4: k ← k + 1, go to 1

Remark 2.1. (2.3.10) is a hard constraint that, although guarantees asymptotic stability,

might compromise the feasibility of the optimization i.e., the problem might not admit

a solution [94]. To avoid such a drawback, constraint (2.3.10) can be relaxed. Different

solutions are possible:

• The RHC can be formulated as an infinite horizon optimal control.

• The terminal state can be constrained to lie in a terminal control invariant region

containing the origin, instead of imposing it to reach 0x.

In the following, the second solution is analyzed.

First, it is worth formally defining the concept of control invariance [96].

Definition 2.1. A set Σ ⊂ X is said to be control invariant with respect to the system

(2.3.1), subject to constraints (2.3.2), if

∀x(k) ∈ Σ, ∃u ∈ U s.t. x(k + 1) ∈ Σ, ∀k ∈ Z+ (2.3.11)

In other words, if the trajectory of the system starts in the control invariant region Σ, then

there surely exists an admissible control law input that keeps the trajectory within Σ. Such

a region can be exploited to relax the constraint (2.3.10), as follows:

x(k +Np) ∈ Σ (2.3.12)

24



In the literature, different techniques have been proposed to design a state-feedback controller

and the associated control invariant region Σ [97]. By combining the RHC algorithm and a

state-feedback controller associated to Σ, it is possible to obtain a different control scheme,

known in the literature as Dual-Mode MPC [54]. The computed control law in the first Np

time instants is open-loop, while after the Np-th time step, a feedback control law associated

with the terminal region is used. The stability properties of such an algorithm have been

formally proven in the literature. A deep analysis pertaining to the closed-loop stability of

the RHC scheme can be found in [94].

Although formulated for a general class of dynamic systems, the MPC algorithm can be

successfully applied to solve practical problems related to the control of unmanned wheeled

vehicles.

2.4 Set-Theoretic Control

2.4.1 Preliminary Definitions

Definition 2.2. Given two sets A, B ⊂ IRn, their Minkowski/Pontryagin sum (⊕) and

difference (	) are [96]:

A⊕ B := {a+ b : a ∈ A, b ∈ B}

A 	 B := {a ∈ A : a+ b ∈ A, ∀b ∈ B}.

Definition 2.3. Given the ellipsoidal set

E := {z ∈ IRn : zTE−1z ≤ 1}, E = ET > 0, E ∈ IRn×n

and a matrix M ∈ IRn×n, then [98]

ME := {z ∈ IRn : zT (MEMT )−1z ≤ 1}

Property 2.1. Given two ball sets C1 and C2 in the form:

C1 := {z ∈ IR2 : zTQ−1
1 z ≤ 1}, Q1 = r2

C1I

C2 := {z ∈ IR2 : zTQ−1
2 z ≤ 1}, Q2 = r2

C2I
(2.4.1)
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where rC1 and rC2 are the radii of C1 and C2, respectively, the Minkowski sum of C1 and C2 is

defined as follows:

C1 ⊕ C2 = {z ∈ IR2 : zTQ−1
s z}, Qs = r2

sI, rs = rC1 + rC2

while, assuming rC1 > rC2 the Minkowski difference can be computed as follows:

C1 	 C2 = {z ∈ IR2 : zTQ−1
d z}, Qd = r2

dI, rd = rC1 − rC2

and given M ∈ IR2×2 = mI the affine transformation MC1 is given by:

MC1 = {z ∈ IR2 : zTQ−1
a z ≤ 1}, Qa = r2

aI, ra = mrC1

Definition 2.4. A function f(t) : IR → IRn is said uniformly bounded and smooth if

∀t, ∃Γ > 0 : ‖f(t)‖ < Γ and f(t) ∈ C2.

Let’s consider the following discrete-time autonomous nonlinear system subject to bounded

disturbance:

z(k + 1) = f(z(k), d(k)), d(k) ∈ D (2.4.2)

where k ∈ ZZ := {0, 1, . . .}, z ∈ IRn is the system’s state, d ∈ IRn is the bounded disturbance.

Moreover, D ⊂ IRn is a compact and convex set containing the origin.

Definition 2.5 ( [96]). The set S ⊂ IRn . is Robust Positive Invariant (RPI) for (2.4.2) if

∀z(0) ∈ S =⇒ z(k) ∈ S, ∀d ∈ D, ∀k ∈ ZZ+ (2.4.3)

If d(k) = 0m, ∀k ∈ ZZ+, then S is said to be Positive Invariant (PI).

Let’s now consider a generic discrete-time nonlinear system subject to bounded distur-

bance:

z(k + 1) = f(z(k), u(k), d(k)), u(k) ∈ U , d(k) ∈ D (2.4.4)

where k ∈ ZZ := {0, 1, . . .}, z ∈ IRn is the system’s state, u ∈ IRm the control inputs, d ∈ IRn

is the bounded disturbance. Moreover, U ⊂ IRm, D ⊂ IRn are compact and convex sets

containing the origin.
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Definition 2.6 ( [96]). The set S ⊂ IRn . is Robust Control Invariant (RCI) for (2.4.4) if

∀z(k) ∈ S =⇒ ∃u(k) ∈ U , s.t. f(z(k), u(k), d(k)) ∈ S, , ∀d(k) ∈ D, ∀k ∈ ZZ+

(2.4.5)

If d(k) = 0m, ∀k ∈ ZZ+, then S is said to be Control Invariant (CI).

Definition 2.7 ( [96]). Consider the constrained system (2.4.4) and a target set Z ⊂ IRn .

The set of states T c ⊂ IRn Robust One-Step Controllable (ROSC) to Z for (2.4.4) is defined

as:

T :={z ∈ IRn : ∃u ∈ U s.t. f(z, u, d) ∈ Z, ∀d ∈ D} (2.4.6)

Definition 2.8 ( [96]). Consider the constrained system (2.4.4) and a set Z ⊂ IRn . The set

of states T r ⊂ IRn Robust One-Step Reachable (ROSR) from Z for (2.4.4) is defined as:

T r :={z ∈ IRn : ∃z(0) ∈ Z, ∃u ∈ U , ∃d ∈ D s.t. z = f(z(0), u, d)} (2.4.7)

Let’s consider a discrete-time linear system subject to bounded disturbance

z(k + 1)=Az(k) + Bu(k) + d(k), u(k) ∈ U , d(k) ∈ D (2.4.8)

Definition 2.9 ( [96]). The set S ⊂ IRn is said to be Robust Control Invariant (RCI) for

(2.4.8) if

∀z(k) ∈ S, =⇒ ∃u(k) ∈ U s.t. Az(k) + Bu(k) + d(k) ∈ S, ∀d(k) ∈ D, ∀k ∈ ZZ+ (2.4.9)

Definition 2.10. Consider the constrained system (2.4.8) and a target set Z ⊂ IRn . The

set of states T c ⊂ IRn Robust One-Step Controllable (ROSC) to Z for (2.4.8) is defined as:

T c :={z ∈ IRn : ∃u ∈ U s.t. Az +Bu+ d ∈ Z, ∀d ∈ D} (2.4.10)

Such a set can be computed as follows:

T c = ((Z 	D)⊕ (−B ◦ U)) ◦ A (2.4.11)
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where the operator ◦ denotes an affine operation on sets.

Definition 2.11 ( [96]). Consider the constrained system (2.4.8) and a set Z ⊂ IRn . The

set of states T r ⊂ IRn Robust One-Step Reachable (ROSR) from Z for (2.4.8) is defined as:

T r :={z ∈ IRn : ∃z(0) ∈ Z, ∃u ∈ U , ∃d ∈ D s.t. z = Az(0) + Bu+ d} (2.4.12)

Such a set can be computed as follows:

T r = ((A ◦ Z)⊕ (B ◦ U))⊕D (2.4.13)

where the operator ◦ denotes an affine operation on sets.

2.4.2 Set-Theoretic Receding Horizon Control Scheme:

The constrained system (2.4.8) can be stabilized using the ST-RHC scheme proposed in [54].

Such a dual-mode receding horizon control strategy can be summarized as follows:

- Offline: First, by considering model (2.4.8) in a disturbance-free scenario (i.e., d(k) =

0, ∀ k), design a state-feedback controller u(k) = −Kz(k) such that A−BK is asymptotically

stable. Then, compute the smallest RCI region, namely T 0, associated to the controlled

system. Finally starting from T 0, recursively apply Definition 2.10 to build a family of

ROSC sets T i until the set growth saturates (i.e., T i+1 = T i) or the desired state-space

region is covered. Store the computed family {T i}Ni=1, where N is the number of computed

ROSC sets.

- Online (∀ k): Determine the smallest set-membership index i(k) of the ROSC set T i(k)

containing z(k). Then

• if i(k) = 0, then apply u(k) = −Kz(k)

• else solve the following convex optimization problem:

u(k) = arg min
u

J(z(k), u) s.t.

Az(k) + Bu ∈ (T i(k)−1 	D)

u ∈ U

(2.4.14)

where J(z(k), u) is a convex cost function.
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Figure 2.9: Modus operandi of Set-Theoretic Control algorithm

Property 2.2. The ST-RHC controller, whose modus operandi is depicted in Fig. 2.9,

enjoys the following properties [54]:

• The optimization (2.4.14) enjoys recursive feasibility.

• The state trajectory is uniformly ultimately bounded in T0. In particular, starting from

any z(0) ∈
⋃N
i=0 T i, the terminal RCI region T 0 is reached in at most N steps regardless

of any disturbance realization d(k) ∈ D.
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3 A Receding Horizon Trajectory Tracking Strategy

for Input Constrained Differential Drive Robots via

Feedback Linearization

In this chapter, a novel approach is proposed to solve the trajectory tracking control problem

for input-constrained differential-drive robots. In particular, a robust set-based receding

horizon tracking scheme is developed, which is capable of dealing with state-dependent input

constraints arising when the vehicle’s dynamics are approached by a standard feedback

linearization technique. First, the worst-case input constraint set is offline characterized

and an admissible, although not optimal, controller is proposed. Then, online, by leveraging

the knowledge of the robot’s orientation, the offline constraint set is enlarged in a receding-

horizon fashion, with a consequent improvement of the tracking performance. Recursive

feasibility and constraint fulfillment are formally proven. Finally, the approach’s effectiveness

is experimentally validated on a Khepera IV differential-drive robot by comparing the control

performance with several competitor schemes.

3.1 Problem Formulation

Let’s consider a differential-drive robot whose kinematics is described by the nonlinear model

(2.1.3), subject to the wheels’ angular velocity constraints (2.1.6), and a bounded reference

trajectory r(t) = [xr(t), yr(t)]
T defining the desired x and y position of the center of mass of

robot in the plane. The problem addressed in this chapter is known as Constrained Trajectory

Tracking problem and can be formally stated as follows:

Problem 1. Design a feedback control law [ωR(t), ωL(t)]T = φ(
[
pc(t)

T , θ(t)
]T
, r(t)) such that

the tracking error ξ(t) = r(t)− pc(t) is bounded and [ωR(t), ωL(t)]T ∈ Ud, ∀t ≥ 0.

To address such a problem, in the following the robot model is recast into a unicycle

model and linearized via the input-output feedback linearization presented in Chapter 2.2.3.

The time-varying input constraint set associated with the feedback linearized model is char-

acterized and its worst-case realization is analytically derived. Then, the trajectory tracking

problem is formulated as a discrete-time Receding Horizon Control (RHC) tracking problem

using the constrained input-output linearized description.
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3.2 Linearized Vehicle Model

In Sections 2.1.1-2.1.2 it has been shown how the differential-drive kinematics (2.1.3) can be

recast into the unicycle one (2.1.8) by using the input transformation (2.1.7). On the other

hand, the unicycle kinematics can be input-output linearized by another input transformation

(2.2.12) obtaining the following model:

ż(t) = Bu(t), B = I2×2 (3.2.1a)

θ̇(t) = D(θ)u(t), D(θ) =

[
−sin(θ(t))

b

cos(θ(t))

b

]
(3.2.1b)

where z(t) = [x(t) + b cos θ(t), y(t) + b sin θ(t)]T is the cartesian position of a point B trans-

lated with respect to the center of mass of the robot (See Fig. 2.7), and u(t) = [u1(t), u2(t)]T is

the vector of linearizing control inputs. As discussed in chapter 2.2.3, the unicycle is equiv-

alent to a two-single integrator model (3.2.1a) with a decoupled stable internal dynamics

(3.2.1b).

3.3 Input constraints characterization

(a) (b) (c)

Figure 3.1: Input constraints: (a) differential-drive, (b) unicycle, (c) feedback
linearized model.

As outlined in 2.1.2, under the transformation (2.1.7) and the unicycle model (2.1.8),

the input constraint set (2.1.6) is mapped into a rhombus-like set Uu on the liner angular

velocities of the robot (see Fig 2.4.b), i.e., [v, ω]T ∈ Uu, described by equation (2.1.9).

Moreover, by applying (2.2.12) to (2.1.9), the set Uu transforms according to the robot’s

orientation θ. As a consequence, the linearized model (3.2.1) is subject to state-dependent
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input constraints defined as rhombus-like sets U(θ), where

U(θ) = {[u1, u2]T ∈ IR2 : H(θ) [u1, u2]T ≤ 1},

H(θ) = HuTFL(θ) =


D sin θ−2 cos θb

2Ω̄Rb
−D cos θ−2 sin θb

2Ω̄Rb
−D sin θ−2 cos θb

2Ω̄Rb
D cos θ−2 sin θb

2Ω̄Rb
−D sin θ+2 cos θb

2Ω̄Rb
D cos θ+2 sin θb

2Ω̄Rb
D sin θ+2 cos θb

2Ω̄Rb
−D cos θ+2 sin θb

2Ω̄Rb

 (3.3.1)

The above-mentioned input set transformations are depicted in Fig. 3.1. Specifically, in the

differential-drive input set Udd is shown in Fig. 3.1-(a), the unicycle input set Uu in Fig. 3.1-

(b), and the time-varying input set U(θ) of the input-output linearized system is shown in

Fig. 3.1-(c) Notice that, although (3.3.1) is time-varying, a worst-case time-invariant input

constraint U set such that U ⊂ U(θ), ∀θ, can be defined as:

U :=
2π⋂
θ=0

U(θ) (3.3.2)

i.e. as the greatest circle inscribed in every-rotating polyhedron. Indeed, it will be shown

that the rotation of the polyhedron does not affect the diameter of such an inner circular

approximation.

3.4 Worst-case Inner Approximation of the Input Constraint Set

The following lemma analytically characterizes the worst-case inner approximation of the

time-varying input constraint set U(θ).

Lemma 3.1. The worst-case input constraint set (3.3.2) is equal to the following ball set

U(ru) = {u ∈ IR2 |uTu ≤ r2
u}, ru =

2Ω̄Rb√
4b2 +D2

(3.4.1)

Proof. The vertices Vi(θ), i = 1, . . . , 4 of the polyhedron (3.3.1) can be analytically computed

intersecting the four hyperplanes shaped by H[i,:](θ)[u1, u2]T = 1, i = 1, . . . 4, (with H[i,:](θ)

denoting the i− th row of H(θ)), obtaining

V1(θ)=
[
−Ω̄R cos θ,−Ω̄R sin θ

]T
, V3(θ) = −V1(θ)

V2(θ)=
[

2Ω̄Rb sin θ
D

,−2Ω̄Rb cos θ
D

]T
, V4(θ) = −V2(θ)

(3.4.2)
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Figure 3.2: Input constraint set U(0) and inscribed circle U(ru).

Then, by computing from (3.4.2) the lengths Li, i = 1, . . . , 4 of each side of U(θ), it is

straightforward to verify that they are all equal and independent of θ, i.e.,

Li = L =
Ω̄R

D

√
4b2 +D2, i = 1, . . . , 4 (3.4.3)

Therefore, the transformation (2.2.12) defines a rhombus set U(θ) centered in the origin and

rigidly rotating into the plane. As a consequence, the set U is equivalent to the biggest circle

inscribed into U(θ) for any θ. By considering for simplicity and w.l.o.g. only θ = 0 (see Fig.

3.2), the radius ru ∈ IR of the biggest circle within U(0) can be computed resorting to simple

geometric arguments:

ru =
sd1sd2√
sd2

1 + sd2
2

=
2Ω̄Rb√
4b2 +D2

(3.4.4)

where sd1 = [1, 0]V3(0) and sd2 = [0, 1]V4(0) are the length of the two semi-diagonals of

U(0).
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3.5 Proposed receding Horizon Tracking Controller

In the following, the input-output linearized system (3.2.1) will be used to design a receding

horizon controller that solved the tracking problem 1. Although such a system includes

the nonlinear internal dynamics describing the orientation θ, it has been proved that the

evolution of such internal dynamics remains bounded if the system (3.2.1a) is stable. The

following remark formally states such a property.

Remark 3.1. A linear tracking controller for (3.2.1a) allows the point B to track any

reference trajectory with stable internal dynamics for θ(t) [89, 93, Section 3.3].

Let Ts > 0 be a sufficiently small sampling time, the model (3.2.1a) can be discretized

by resorting to the forward Euler method, obtaining:

z(k + 1) = Az(k) + Bu(k) (3.5.1)

where, k ∈ ZZ+ := {0, 1, . . .} denotes the discrete-time instants, A = I2×2, and B = TsI2×2.

Note that the same state-space description is achieved when the zero-order hold discretization

method is used.

Property 3.1. The input-output feedback linearization (2.2.7),(2.2.12),(2.2.13) and forward

Euler discretization commute when the unicycle robot model (2.1.8) is considered.

Proof. By resorting to the forward Euler discretization method, the discrete-time character-

ization of (2.1.8) is

xc(k + 1) = xc(k) + Tsv(k) cos(θ(k))

yc(k + 1) = yc(k) + Tsv(k) sin(θ(k))

θ(k + 1) = θ(k) + Tsω(k)

(3.5.2)

By differentiating the outputs z1(t) and z2(t) in (2.2.7)

ż1(t) = ẋc(t)− b sin(θ(t))θ̇(t)

ż2(t) = ẏc(t) + b cos(θ(t))θ̇(t)

one obtains under discretization arguments

z1(k+1)−z1(k)
Ts

= xc(k+1)−xc(k)
Ts

− b sin(θ(k)) θ(k+1)−θ(k)
Ts

z2(k+1)−z2(k)
Ts

= yc(k+1)−yc(k)
Ts

+ b cos(θ(k)) θ(k+1)−θ(k)
Ts
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Then, by substituting xc(k + 1), yc(k + 1) and θ(k + 1) with the right-hand sides of (3.5.2),

the resulting discrete-time evolutions of z1 and z2 are

z1(k + 1) = z1(k) + Tsv(k) cos(θ(k))− Tsb sin(θ(k))ω(k)

z2(k + 1) = z2(k) + Tsv(k) sin(θ(k)) + Tsb cos(θ(k))ω(k)

whose compact form is z1(k + 1)

z2(k + 1)

 =

 z1(k)

z2(k)

+ TsT
−1
FL(θ(k))

 v(k)

ω(k)

 (3.5.3)

Finally, by using the input transformation (2.2.12), the discrete-time model (3.5.3) becomes

equal to (3.5.1). Hence, input-output linearization and discretization commute. As a conse-

quence, for a sufficiently small value of the sampling time Ts, the discrete-time linear system

(3.5.1) well approximates the input-output linearized continuos-time system.

In the following By denoting with rz(k) the reference signal for the B point model (i.e.,

obtained applying the transformation (2.2.7) to r(k)), and by considering (3.3.1) and (3.5.1),

a solution to Problem 1 can be, in principle, achieved via the following constrained optimiza-

tion problem over a prediction horizon Np :

min
{u(k+j|k)}

Np∑
j=0

||ξ(k + j|k)||Qx+||u(k + j|k)||Qu s.t.

z(k + j + 1|k) = Az(k + j|k)+Bu(k + j),

u(k + j|k) ∈ U(θ(k + j|k)),

j = 0, . . . , Np − 1,

(3.5.4)

where ξ(k) = rz(k) − z(k) = r(k) − pc(k) is the tracking error, and Qx = QT
x > 0 and

Qu = QT
u > 0 two weight matrices. Moreover, z(k + j|k), θ(k + j|k) are j−th step ahead

state and orientation prediction, respectively. Similarly, u(k + j|k) is the control move at

k + j.

Remark 3.2. Notice that the optimization (3.5.4) is nonlinear and non-convex. The latter

is due to the presence of the state-dependent input constraint U(θ(k+j|k)) whose prediction

involves, at each step, the nonlinear transformation (2.2.12). As a consequence, although ap-
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pealing, the optimization (3.5.4) does not present any tangible advantage when compared to

nonlinear MPC counterparts [27,28,30]. On the other hand, a viable approach would require

robustly approximating the state-dependent input constraint set over the prediction horizon

Np. Unfortunately, this leads to a computationally demanding solution that becomes very

conservative even for small values of the prediction horizon, see, e.g., [82, 83] and references

therein. Moreover, for a small horizon, closed-loop stability might not be ensured [94]. �

In the sequel, we tackle the constrained trajectory tracking problem by properly adapting

the infinite horizon (Np → ∞) receding horizon controller developed in [99, 100], where an

upper-bound of the cost function in (3.5.4) is minimized by means of constant state-feedback

control law.

First, by considering the worst-case realization (3.4.1) of the state-dependent input con-

straint set U(θ), we offline derive a guaranteed, although conservative, solution. Then, during

the online phase, the offline controller is updated by exploiting the knowledge of the cur-

rent robot orientations θ(k) and proper set-inclusions. This allows to drastically reduce its

conservativeness and preserve the recursive feasibility property.

Assumption 3.1. The robot is equipped with an onboard vision module and an online

trajectory planner providing a reference signal r(k) within a vision radius dr > 0. The latter

implies that r(k) − pc(k) ∈ B(dr), ∀ k, with B(dr) = {ξ ∈ IR2 : ξTB−1(dr)ξ ≤ 1}, B(dr)=d2
r 0

0 d2
r

 .
Definition 3.1. A set Σ ⊂ IRn is said Control Invariant (CI) for (3.5.1) under and admis-

sible control law u(k) ∈ U(θ) if ∀ z(k) ∈ Σ⇒ Az(k)+Bu(k) ∈ Σ [96].
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3.5.1 Offline solution:

Proposition 3.2. Consider the vehicle linearized model (3.5.1) and the worst-case input

constraint (3.4.1). If the following semidefinite programming problem

[Q∗0, Y
∗

0 , γ
∗
0 ] = arg min

γ,Q,Y
γ s.t. (3.5.5a) 1 ξT (0)

ξ(0) Q

 ≥ 0, Q = QT > 0 (3.5.5b)


Q QAT + Y TBT QQ

1
2
x Y TQ

1
2
u

AQ+BY Q 0 0

Q
1
2
xQ 0 γI 0

Q
1
2
uY 0 0 γI

≥0 (3.5.5c)

 r2
uI Y

Y T Q

 ≥ 0 (3.5.5d)

Q ≥ B(dr) (3.5.5e)

admits a solution and r(k) is a reference complying with Assumption 3.1, then the state-

feedback control law

[ωr(k), ωl(k)] = −T−1TFL(θ(k))Y ∗0 Q
∗−1
0 ξ(k) (3.5.6)

solves the constrained Problem 1. Moreover, ∀ k ≥ 0, ξ(k) belongs to the ellipsoidal control

invariant set E0 = {ξ ∈ IR2 : ξTQ∗−1
0 ξ ≤ 1}.

Proof. Initially, consider the scenario rz(k) = 0, ∀ k (i.e., a regulation problem). As shown

in [99], the state-feedback control law

u(k) = −Y ∗0 Q∗−1
0 ξ(k) (3.5.7)

obtained solving the optimization problem (3.5.5a)-(3.5.5d), guarantees closed-loop asymp-

totic stability of (3.5.1) and worst-case input-constraint (3.4.1) fulfillment for any ξ(0) ∈ E0,
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with E0 CI. By noticing that (r̄z, 02) is the equilibrium pair for (3.5.1) under any constant

admissible reference rz(k) = r̄z [101, Section 2], the tracking error dynamics have the same

structure of (3.5.1): ξ(k+1) = Aξ(k)+Bu(k). Moreover, since the equilibrium input is always

zero and no state constraints act on (3.5.1), then the tracking error dynamics are also subject

to the same worst-case input constraint (3.4.1). Consequently, an admissible setpoint track-

ing control law for (3.5.1) is given by the solution of (3.5.5a)-(3.5.5d) if ξ(k) = r̄z−z(k) ∈ E0

(i.e., the error signal remains confined within the controller’s domain). By generalizing such

a result to a generic reference signal r(k) complying with Assumption 3.1, the admissibil-

ity condition ξ(k) ∈ E0 is fulfilled ∀ k if E0 ⊇ B(dr). The latter translates into a further

Linear Matrix Inequalities (LMI) constraint, i.e., Q ≥ B(dr) (see (3.5.5e)) that must be

added to (3.5.5). Finally, since the control law (3.5.7) ensures bounded tracking error for

the linearized model (3.5.1) and the internal dynamics of θ(t) is stable (see Remark 3.1), the

nonlinear feedback control law (3.5.6), obtained applying the transformations (2.1.7) and

(2.2.12) to (3.5.7), solves Problem 1.
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3.5.2 Online receding horizon controller:

Proposition 3.3. If (3.5.5) admits a solution at k = 0 and r(k) is an admissible reference

complying with Assumption 3.1, then the following semidefinite programming problem

[Q∗k, Y
∗
k , γ

∗
k ] = arg min

γk,Qk,Yk
γk s.t. (3.5.8a) 1 ξ(k)T

ξ(k) Qk

 ≥ 0, Q = QT > 0 (3.5.8b)


Qk QkA

T + Y T
k B

T QkQ
1
2
x Y T

k Q
1
2
u

AQk +BYk Qk 0 0

Q
1
2
xQk 0 γkI 0

Q
1
2
uYk 0 0 γkI

≥0 (3.5.8c)

 Qk Y T
k H

T (θ(k))[i,:]

H(θ(k))[i,:]Yk 1

 ≥ 0, i = 1, . . . , 4 (3.5.8d)

Qk ≤ Q∗0 (3.5.8e)

admits a solution ∀ k > 0 and the receding horizon state-feedback control law

[ωR(k), ωL(k)]T=−T−1TFL(θ(k))Y ∗k Q
∗−1
k ξ(k); (3.5.9)

solves the constrained Problem 1.

Proof. First, the LMI (3.5.8d) is equivalent to the polyhedral input constraint U(θ(k)) [99,

100]. Therefore, the receding-horizon control law u(k) = −Y ∗k Q∗−1
k ξ(k), obtained solving the

optimization problem (3.5.8a)-(3.5.8d) with a constant input constraint set U(θ(k)) = U , ∀ k,

solves the regulation problem for (3.5.1), with Ek = {ξ ∈ IR2 : ξTQ∗−1
k ξ ≤ 1} the CI

region [100]. Conversely, if θ(k) varies at each time instant, it is no longer ensured that the

one-step evolution ξ(k+ 1) represents an admissible initial condition for (3.5.8a)-(3.5.8d) at

k + 1. However, such a drawback can be overcome by forcing the invariant region Ek to be

included in the worst-case domain of attraction E0 (obtained solving (3.5.5)). This translates

into the additional LMI constraint (3.5.8e) ensuring recursive feasibility of (3.5.8) ∀ k, i.e.,
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the offline solution [Q∗0, Y
∗

0 , γ
∗
0 ] is always an admissible, although not optimal, solution of the

problem. Finally, by resorting to the same arguments used in the proof of Proposition 3.2,

the control law (3.5.9) solves Problem 1

Remark 3.3. At each k, the control law (3.5.9) exploits the input constraint set U(θ) ⊃ U

corresponding to the mapping of the differential-drive input constraint Ud into the feedback

linearized robot model for the current orientation θ(k). Consequently ∀ k, the input constraint

set (3.5.8d) is a subset of (3.5.5d). �

Finally, the following algorithm summarizes all the above developments.

Algorithm 1 Reference Tracking - RHC Strategy

Configuration:

• Robot parameters and planner radius: Ω̄, R,D and dr

• LQ cost matrices and B point distance: Qx, Qu, b > 0

Offline:

1. Compute U(ru) as in (3.4.1) and solve opt. (3.5.5) with ξ(0) = r(0)− pc(0). Store Q∗0

Online (∀ k):

1. Obtain r(k) from the trajectory planner, compute TFL(θ) using (2.2.11), and H(θ)

using (3.3.1)

2. Solve opt. (3.5.8) with ξ(k) = r(k)− pc(k)

3. Compute ωR(k), ωL(k) using (3.5.9)

3.6 Experimental Results

Here, the experimental results, obtained using a Khepera IV robot, are presented to show

the effectiveness of the proposed tracking controller and compare it with the solutions de-

veloped in [18,19,22,25,102]. In particular, [18] and [25] are two popular linear MPC-based

controllers developed on the constrained and unconstrained robot’s model, respectively; [19]
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(a) (b)

Figure 3.3: Khepera IV differential-drive robot: top (a) and bottom (b) view.

is the landmark control solution for unconstrained robots controlled via feedback lineariza-

tion; [22] is a popular unconstrained Lyapunov-based solution; [102] is the preliminary RHC

constrained controller developed by the same authors.

3.6.1 Setup:

The Khepera IV (Fig. 3.3) is a differential-drive robot produced by the K-Team Corporation.

This wheeled robot presents two independent wheels driven by two DC brushed motors

equipped with incremental encoders. Each wheel has a radius R = 0.021m, and the rear

axis length is D = 0.0884m. Each wheel has a maximum speed of 1200 steps/s which

corresponds to a linear velocity of 0.813m/s, and an angular velocity of 38.7143 rad/s.

Nevertheless, in all the performed experiments, the maximum speed of the robot’s wheels

has been limited to |ωR| = |ωL| ≤ 250 steps/s (8.0655 rad/s) to avoid unmodeled dynamic

effects and wheel slips. A sampling time Ts = 0.15 s is considered and the robot’s position

has been estimated resorting to odometric calculations [89]. Moreover, Bluetooth has been

used to communicate between the robot and a Linux Ubuntu 16 computer, equipped with

an Intel Core I7 8750H processor, 16Gb of RAM, and running Matlab R2020a.

3.6.2 Configuration of the proposed controller:

To implement the above algorithm, the following parameters have been used: b = 0.1m,

Qx = I2 and Qu = 0.001I2. Moreover, the LMIs optimizations (3.5.5) and (3.5.8) have been

solved using the Matlab built-in LMI solver “mincx”.

3.6.3 Configuration of the competitor schemes:

Each competitor scheme has been tuned to obtain the best tracking results in the conducted

experiments. Since the algorithms in [19, 22] do not take into account the wheels’ velocity
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limitations, a saturation is enforced whenever necessary. For further details on the meaning

of the following parameters one car refer to [18,19,22,25,102]:

- the MPC solutions in [18], [25] have been tuned to use a prediction horizon Np = 10

with a cost function as in (3.5.4), where Qx =

[
I2 0

0 0.05

]
and Qu = 0.001I2. The opti-

mization problem resulting from [18] has been solved in Matlab using the built-in quadratic

programming solver “quadprog”. Whereas, the unconstrained optimization in [25] has been

analytically solved. In addition, a reference matrix Ar = 0.65I3 has been selected for the

algorithm of [25].

- The proportional-derivative controller in [19] has been implemented with kp1 = kp2 = 1,

and kd1 = kd2 = 0.7.

- The Lyapunov-based control law in [22] has been implemented with k = 5, kx = 0.5,

ks = 5, n = 2, a = 7.

- The receding-horizon controller in [102] has been implemented using the same param-

eters of the proposed controller.

3.6.4 Evaluation of the tracking performance:

The tracking performance have been evaluated by resorting to four error-based indices de-

scribed in [26]. By defining the instantaneous tracking error as

e(t) =
√

(xr(t)− xc(t))2 + (yr(t)− yc(t))2,

and by denoting with Tf the duration of the experiment, the used indices are: (i) integral

absolute error (IAE) (
∫ Tf

0
|e(t)|dt), (ii) integral square error (ISE) (

∫ Tf
0
e(t)2dt), (iii) integral

time-weighted absolute error (ITAE) (
∫ Tf

0
t|e(t)|dt), (iv) integral time squared error (ITSE)

(
∫ Tf

0
te(t)2dt).

Trajectories: Two trajectories r(k) have been considered:

(i)- An eight-shaped trajectory, where

r(t) =

[
xr(t)

yr(t)

]
=

[
0.6 sin( t

3.5
)

0.6 sin( t
7
)

]
, t ∈ [0, 44]

(ii)- A circular trajectory, where

r(t) =

[
xr(t)

yr(t)

]
=

[
0.3 sin( t

3.8
)

0.3 cos( t
3.8

)

]
, t ∈ [0, 24]
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Moreover, the vehicle initial’s state [pTc (0), θ(0)]T is [0.6, 0, π]T for the eight trajectory,

and [0.3, 0.3, π]T for the circular reference.

3.6.5 Results:

The obtained results are collected in Figs. 3.4-3.6 and Tables 3.1-3.4. Moreover, the addi-

tional Table 3.5 shows an averaged comparison based on all the performed experiments. For

the interested reader, videos of the performed experiments can be found at the following

web-link: https://tinyurl.com/mhsejcny

Two experiments have been performed:

Experiment 1: The operating scenario prescribes that the reference trajectory and its

first and second derivatives are available for any desired prediction horizon. Results and

comparisons are shown in Fig. 3.4 and Table 3.1 (for the eight-shaped trajectory) and in

Fig. 3.5 and Table 3.2 (for the circular trajectory). The obtained results show that,
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Figure 3.4: Eight-shaped trajectory - Experiment 1

for both trajectories, the proposed controller achieves better performance when compared

to [18, 25, 102]. On the other hand, the solutions [19, 22] show slightly better performance

with respect to some indices (i.e., IAE, ITAE, ITSE) when the eight trajectory is under

investigation. Indeed, the proposed controller only uses the current reference, while the

competitors exploit trajectory predictions or its derivatives.

Experiment 2: We consider a scenario where an onboard path planner computes the

trajectory in real-time. In this setup, only the current reference point r(k) is available,

and there is no information on the trajectory derivatives The obtained results are shown in
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Fig. 3.6 and Table 3.3 (for the eight-shaped trajectory) and in Fig. 3.7 and Table 3.4 (for the

circular trajectory). First, the proposed solution and the strategies in [22,102] perform as in
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Figure 3.6: Eight-shaped trajectory - Experiment 2

Experiment 1. This because such strategies do not use a preview of the reference trajectory

nor its derivatives. Moreover, the proposed approach outperforms all the competitor schemes,

except [22] that shows slightly better tracking performance (according to the indices IAE,

ITAE, ITSE) when the eight trajectory is considered. With respect to Experiment 1, the

predictive approaches in [18], [25] worsen because only one-step predictions can be exploited.
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Figure 3.7: Circular trajectory - Experiment 2

Moreover, the solution in [19] is affected by the absence of information about the trajectory’s

derivatives.

3.6.6 Overall performance:

In both experiments, the proposed controller can correctly track both trajectories while

fulfilling the vehicle’s velocity constraints. Moreover, the average CPU time required by the

proposed control algorithm is 4.1ms, which is much lower than the sampling time. Note

that the proposed controller outperforms, in any tracking performance index, the preliminary

solution [102]. The latter can be explained by looking at, e.g., the angular velocities plotted

in Fig. 3.4.b, where it is evident that the proposed solution can make use of the maximum

robot’s velocity, while [102] always remains very conservative. Finally, from the summary

Table 3.5, obtained averaging the results in all the experiments, it is interesting to note

that for almost all the indices the proposed strategy performs better than the competitor

schemes.

3.7 Conclusions

In this chapter, a novel receding-horizon reference tracking controller for input constrained

differential-drive robots has been presented. The proposed strategy has been designed by

properly leveraging two main ingredients: a feedback linearization technique and a receding-

horizon control framework. The obtained tracking controller has the peculiar capability of
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Table 3.1: Experiment 1 (Eight Trajectory): tracking performance.

IAE ISE ITAE ITSE

Proposed 2,502 0,390 38,026 2,248
[18] 3,084 0,761 36,805 3,436
[19] 2,002 0,394 16,952 1,042
[22] 2,163 0,454 17,454 1,145
[25] 3,467 0,467 63,512 4,711
[102] 13,505 4,765 317,567 113,990

Table 3.2: Experiment 1 (Circular Trajectory): tracking performance.

IAE ISE ITAE ITSE

Proposed 2,160 0,390 15,913 1,305
[18] 2,298 0,462 14,397 1,330
[19] 2,121 0,408 13,831 1,269
[22] 3,692 0,781 30,919 4,149
[25] 2,634 0,542 21,046 1,855
[102] 8,989 3,625 123,516 53,107

Table 3.3: Experiment 2 (Eight Trajectory): tracking performance.

IAE ISE ITAE ITSE

Proposed 2,502 0,390 38,026 2,248
[18] 9,452 2,458 162,222 31,162
[19] 6,631 1,247 122,173 17,206
[22] 2,163 0,454 17,454 1,145
[25] 27,730 26,152 707,647 707,830
[102] 13,505 4,765 317,567 113,990

Table 3.4: Experiment 2 (Circular Trajectory): tracking performance.

IAE ISE ITAE ITSE

Proposed 2,160 0,390 15,913 1,305
[18] 6,298 1,768 72,313 19,100
[19] 6,220 1,691 73,415 18,607
[22] 3,692 0,781 30,919 4,149
[25] 29,949 50,840 486,219 933,627
[102] 8,989 3,625 123,516 53,107

efficiently dealing with state-dependent input constraints acting on the feedback linearized
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Table 3.5: Average Tracking performance Indices.

IAE ISE ITAE ITSE

Proposed 2,331 0,390 26,970 1,776
[18] 5,283 1,362 71,434 13,757
[19] 4,243 0,935 56,593 9,531
[22] 2,927 0,617 24,186 2,647
[25] 15,945 19,500 319,606 412,006
[102] 11,247 4,195 220,541 83,549

vehicle model while ensuring recursive feasibility, stability, and velocity constraints fulfill-

ment. Extensive experimental results and comparisons have been carried out to highlight

the features and advantages of the proposed tracking controller.

47



4 A Set-Theoretic Control Approach to the

Trajectory Tracking Problem for Input-Output

Linearized Wheeled Mobile Robots

In this chapter, an extension of trajectory tracking RHC strategy, presented in Chapter

3, for input-constrained differential-drive robots. The proposed solution adapts the Set-

Theoretic Receding Horizon Control (ST-RHC) algorithm introduced in [54] to deal with

the time-varying constraints acting on the input-output feedback linearized model of the

robot. In particular, we characterize the linearized error dynamics as a constrained linear

system subject to a bounded disturbance depending on the reference trajectory. Worst-case

arguments on the disturbance and input constraint sets are leveraged to offline design a

stabilizing feedback controller associated with the smallest robust control invariant region.

Also, a family of robust one-step controllable sets is computed to enlarge the controller’s

tracking domain and allow large initial tracking errors. Online, the conservativeness of the

offline solution is mitigated by exploiting the knowledge of the current robot’s orientation

and trajectory-dependent disturbance. The effectiveness of the resulting RHC strategy is

validated by means of laboratory experiments. Although the proposed solution borrows

from [84] (Chapter 3) the worst-case characterization of the input constraint set acting on

the feedback linearized differential-drive robot (see Sec.3), there are some key differences

between the two strategies. The approach in [84] deals with a waypoint tracking problem,

while here a more challenging and general trajectory tracking problem is considered. The

consequence of the above is that unlike [84], the feedback-linearized vehicle’s error dynamics

are now subject to an additional bounded disturbance term related to the desired reference

trajectory. Moreover, differently from [84], the proposed solution is capable of exploiting

a larger set of information about the reference trajectory (e.g., reference timing law and

its derivatives), which results in improved tracking performance (see Table 3.1). In [84],

the waypoint tracking controller is developed by extending the LMI-based receding horizon

control framework developed in [99]. On the other hand, the proposed robust controller is

developed by extending the robust set-theoretic model predictive control paradigm developed

in [54]. Finally, unlike [84], the proposed solution ensures that the tracking error trajectory

is uniformly ultimately bounded, in a finite number of steps, in the smallest robust control

invariant region.
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4.1 Preliminaries and Problem Formulation

4.1.1 Discrete-time Robot’s Modeling:

Let’s consider a discretization of the nonlinear differential-drive kinematic model (2.1.3).

x(k + 1) = x(k) + Ts
R
2

(ωR(k) + ωL(k)) cos(θ(k))

y(k + 1) = y(k) + Ts
R
2

(ωR(k) + ωL(k)) sin(θ(k))

θ(k + 1) = θ(k) + Ts
R
D

(ωR(k)− ωL(k))

(4.1.1)

subject to the input-constraints (2.1.6).

Using transformation (2.1.7), the differential-drive discrete kinematics(4.1.1) can be re-

cast into a discrete-time unicycle model.

x(k + 1) = x(k) + Tsv(k) cos(θ(k))

y(k + 1) = y(k) + Tsv(k) sin(θ(k))

θ(k + 1) = θ(k) + Tsω(k)

(4.1.2)

which is subject to the rhombus-like constraints (2.4).

4.1.2 Problem formulation

Consider a bounded and smooth 2D-trajectory described in terms of Cartesian position

(xr(t), yr(t)), velocity (ẋr(t), ẏr(t), and acceleration (ẍr(t), ÿr(t)), where t ∈ IR+ . Then, the

robot’s reference orientation θr(t), longitudinal velocity vr(t) and angular velocity ωr(t) are

[19]: [
vr(t)

ωr(t)

]
=

[ √
ẋr(t)2 + ẏr(t)2

ÿr(t)ẋr(t)−ẍr(t)ẏr(t)
ẋr(t)2+ẏr(t)2

]
θr(t) = ATAN2 (ẏr(t), ẋr(t))

(4.1.3)

Remark 4.1. It is easy to show that the forward Euler discretization of (4.1.3) represents a

solution for the discrete-time unicycle model (4.1.2). Moreover, When the tangent velocity

vr(k) is null for some t ≥ 0, neither the nominal angular velocity nor the nominal orientation

can be computed via (4.1.3). Different solutions to such a drawback already exist in liter-

ature. For example, [19] proposes to use higher-order differential information about xr(k)

and yr(k) to determine a consistent reference orientation and angular velocity command.

Alternatively, one can keep the same orientation θr(k) = θr(k − 1), and use de L’Hôpital
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analysis to compute ωr(k). �

Problem 2. Consider the input-constrained differential-drive robot model (4.1.1) and a

bounded and smooth trajectory qr(k) = [xr(k), yr(k), θr(k)]T obtained by means of a forward

Euler discretization of (4.1.3), with k ∈ {0, 1, . . . , kf}. Design a trajectory tracking control

law [ωR(k), ωL(k)]T = φ(k, q(k), qr(k)) ∈ Ud such that the tracking error q̃(k) = q(k)− qr(k)

remains bounded ∀k ≥ 0.

4.2 Proposed Solution

In this chapter, first, the feedback-linearized tracking-error dynamics are derived, and its

time-varying input constraints are discussed. Then, the ST-RHC scheme (see Chapter 4.1)

is tailored to solve the considered problem.

Linearized Vehicle Model via Feedback Linearization:

In 3, it has been shown that the discrete-time unicycle model (4.1.2) is feedback linearizable.

Consider a scalar b > 0 and two new outputs

z(k) =

[
x(k) + b cos θ(k)

y(k) + b sin θ(k)

]
∈ IR2 (4.2.1)

representing the coordinates of an external point B displaced at a distance b from the robot’s

center of mass. Then, the following state-feedback law[
v(k)

ω(k)

]
=TFL(θ)

[
u1(k)

u2(k)

]
, TFL(θ)=

[
cos θ sin θ
− sin θ
b

cos θ
b

]
(4.2.2)

recasts the unicycle model (4.1.2) into the following two-single discrete-time integrator model

z(k + 1) = Az(k) + Bu(k), A = I2×2, B = TsI2×2 (4.2.3a)

θ(k + 1) = θ(k) + Ts
− sin θ(k)u1(k) + cos θ(k)u2(k)

b
(4.2.3b)

where u(k) = [u1(k), u2(k)]T ∈ IR2 are the control inputs of the feedback-linearized robot

model. Note that (4.2.3b) defines a nonlinear internal dynamics decoupled from (4.2.3a).
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4.2.1 Input-Ouput Linearized Error Dynamics:

Given qr(k), the reference trajectory for feedback linearized robot’s model can be computed

by means of the transformation (4.2.1) i.e.,

zr =

[
xr + b cos θr

yr + b sin θr

]
(4.2.4)

Thus, the feedback-linearized tracking-error dynamics is given by:

z̃(k + 1) = z(k + 1)− zr(k + 1) =

= Az(k) + Bu(k)− Azr(k)− Bur(k)

= Az̃(k) + Bu(k) + d(k) (4.2.5)

where z̃(k) = z(k)− zr(k), is the linearized system tracking error,

ur(k) = T−1
FL(θr(k))[vr(k), ωr(k)]T (4.2.6)

is the reference input associated to the trajectory, and d(k) = −Bur(k).

Remark 4.2. If the reference trajectory is bounded, then d(k) is a bounded disturbance

with d(k) ∈ D ⊂ IR2. Moreover, if d(k) is a-priori known, then D can be over-approximated

with a ball of radius rd, i.e,

D = {d ∈ IR2 : dTQ−1
d d ≤ 1}, Qd = r2

dI2×2 (4.2.7)

�

Lemma 4.1. [93] If a control law u(k) stabilizes (4.2.5), the point B tracks any reference

trajectory with a bounded internal dynamics. Consequently, also the tracking error q̃(k) is

bounded. �

Lemma 4.2. [84, Section III.B] The set of admissible inputs for the feedback linearized

error dynamics (4.2.5) is the following time-varying and orientation-dependent polyhedral
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set

U(θ) = {[u1, u2]T ∈ IR2 : H(θ) [u1, u2]T ≤ 1},

H(θ) = HdT
−1TFL(θ) =

=


D sin θ−2 cos θb

2ΩRb
−D cos θ−2 sin θb

2ΩRb

−D sin θ−2 cos θb
2ΩRb

D cos θ−2 sin θb
2ΩRb

−D sin θ+2 cos θb
2ΩRb

D cos θ+2 sin θb
2ΩRb

D sin θ+2 cos θb
2ΩRb

−D cos θ+2 sin θb
2ΩRb


(4.2.8)

which admits the following worst-case internal and circular approximation:

Û =
⋂
∀θ

U(θ) = {u ∈ IR2 |uTQ−1
u u ≤ 1}, Qu = r2

uI2×2 (4.2.9)

where ru = 2ΩRb√
4b2+D2 .

4.2.2 Proposed Receding Horizon Controller:

Here, the control scheme presented in Chapter 4.1 is customized to solve constrained trajec-

tory tracking problem starting from the tracking error dynamics (4.2.5) and its worst-case

input constraint set (4.2.9).

Assumption 4.1. The set BÛ contains D, i.e., the difference set BÛ 	 D 6= ∅. �

Remark 4.3. Assumption 4.1 ensures that the controller has sufficient authority over the

disturbance caused by the reference trajectory. It can be offline verified, and it imposes a

feasibility condition for the reference trajectory. �

The linearized robot error dynamics (4.2.5) are subject to the time-varying input con-

straint U(θ(k)) and bounded disturbance d(k) = −Bur(k) ∈ D. Consequently, to perform

the offline phase of the ST-MPC scheme, the only possibility is to consider the worst-case

input constraint Û ⊂ U(θ(k)), ∀θ(k) (see (4.2.9)) to compute the RCI region T 0 and a family

of ROSC sets T i that are valid ∀θ(k). Nevertheless, online, such a source of conservativeness

will be mitigated exploiting the knowledge of θ(k) to determine the actual input constraint

U(θ(k)), ∀ k.
The following propositions show that for the linearized robot error dynamics, the sets T 0

and ROSC sets T i can be analytically computed.
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Proposition 4.3. Consider the model (4.2.5) under the constraint u(k) ∈ Û and disturbance

d(k) ∈ D. The terminal set T 0 = D is the smallest RCI under the control law

u(k) = −B−1z̃(k) (4.2.10)

Proof. First, under Assumption 4.1, ∀ z̃ ∈ D, the control law u = −B−1z̃ ∈ Û , or equiv-

alently that B−1D ⊂ Û . Indeed, by noticing that B is invertible, B−1D ⊂ Û ⇐⇒

−B−1Qd(−B−1)T ≤ Qu ⇐⇒ rd
Ts
≤ ru. By cross multiplying the last inequality by B−1

on the left and (B−1)T on the right, we obtain BB−1Qd(B
−1)TBT ≤ BQuB

T ⇐⇒ Qd ≤

BQuB
T ⇐⇒ rd ≤ Tsru ⇐⇒ D ⊆ BÛ . Now, if d(k) = 0, ∀ k, and u(k) = −B−1z̃(k)

we have that z̃(k + 1) = Az̃(k) + B(−B−1)z̃(k) = z̃(k) − z̃(k) = 02. Consequently, for any

disturbance realization d(k) ∈ D, it is also true that the one-step evolution is bounded by D

and that T 0 = D is the smallest RCI set.

Proposition 4.4. Consider the model (4.2.5) under the constraint u(k) ∈ Û and disturbance

d(k) ∈ D. Given a target ball set T i−1 ⊂ IR2 of radius ri−1 > 0, the set of states ROSC to

T i−1 is

T i = {z̃ ∈ IR2 : z̃TQ−1
i z̃ ≤ 1}, Qi = r2

i I2×2 (4.2.11)

ri = ri−1 − rd + Tsru (4.2.12)

Proof. The set T i ROSC to T i−1 for (4.2.5) can be computed as T i = ((T i−1	D)⊕(−BÛ))A,

see [96, Sec. 11.3.2]. Since D, Û , Ti−1 are ball sets and A = I2×2, B = TsI2×2, then also T i

is a ball of radius ri computed as in (4.2.12) (see Property 2.1), concluding the proof.

Remark 4.4. Given the results of Propositions 4.3-4.4, it is possible to solve Problem 2 by

implementing the ST-RHC controller detailed in Chapter 4.1, where

• (2.4.8) is replaced by (4.2.5);

• K = B−1, T 0 = D as in Proposition 4.3;

• U = Û (i.e., the worst-case input constraint set (4.2.9));
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• {T i}Ni=1 are recursively computed as in Proposition 4.4.

• the set-membership index i(k) is computed as

i(k) := min{i : z̃(k)TQ−1
i z̃(k) ≤ 1} (4.2.13)

�

The solution described in Remark 4.4 is conservative because it uses the worst-case input

constraint set Û ⊂ U(θ), ∀θ and it assumes that d(k) = −Bur(k) is an unknown disturbance.

However, online and for any k, both d(k) and U(θ) can be determined starting from the

reference trajectory qr(k) and robot’s orientation θ(k), respectively. By taking advantage

of such information, the following proposition describes a non-conservative control strategy

solving Problem 2.

Theorem 4.5. For any z̃(0) ∈
⋃N
i=0 T i, the tracking ST-RHC strategy described in Algo-

rithm 2 provides a solution to Problem 2.

Proof. The proof can be divided in four parts:

(I) - Opt (4.2.14) always admits a solution. First, by construction, the optimization (5.4.9)

is feasible for any d ∈ D (see Property 2.1). Consequently, (4.2.14) is admissible because

the input constraint set is enlarged (i.e., U(θ) ⊃ Û , ∀θ(k)) and the conservative Minkowski

difference is replaced by the actual value of d(k).

(II) - Opt (4.2.16) is always feasible and T 0 is RCI under u(k) = −B−1z̃(k)+ ûr(k). Indeed,

ûr(k) = 0 is always a feasible solution that corresponds to the terminal control law for which

T 0 is RCI for any d(k) ∈ D, see Proposition 4.3. On the other hand, the opt. (4.2.16) selects

the optimal ûr(k), compatible with the input constraint U(θ), that compensates (totally or

partially) for the disturbance realization d(k) = −Bûr(k). Consequently, if z̃(k) ∈ T 0, then

z̃(k + j) ∈ T 0, ∀ j ≥ 1 and u(k + j) ∈ U(θ), ∀j ≥ 0.

(III) - Feasibility and Uniformly Ultimately Boundedness (UUB). Recursive feasibility triv-

ially holds since, by construction, both (4.2.14) and (4.2.16) always admits a feasible solution

compatible with the given constraints and worst-case disturbance realization. Consequently,

starting from any admissible initial tracking error z̃(0) ∈
⋃N
i=0 T i, the set-membership index

i(k) monotonically decreases, at each k, until i = 0 is reached. Consequently, the tracking
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error of the feedback linearized model reaches the RCI set T0 in at most N steps where it is

UUB under the effect of (4.2.15).

(IV) - Bounded tracking error. First, u(k) computed by Algorithm 2 stabilizes the feedback

linearized error dynamics. Therefore, given the result of Lemma 4.1, the input transforma-

tion (4.2.2), the control law (4.2.17) solves the considered reference tracking problem with a

bounded tracking error q̃(k), concluding the proof.

Remark 4.5. As prescribed by Algorithm 2, the quadratically constrained quadratic program

(4.2.14) must be solved, at most, for the first N steps (until T 0 is reached). Afterwards, the

linearly constrained quadratic program (4.2.16) is solved.
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Algorithm 2 Tracking Set-Theoretic Receding Horizon Controller (T-ST-RHC)

Offline:

1: Set U = Û , K = B−1, T 0 = D; Build {T i}Ni=1 using (4.2.11); Store {T i}Ni=0.

Online:

1: Measure x(k), y(k), and θ(k)

2: Compute z̃(k) = z(k)− zr(k), with z(k) as in (4.2.1), zr(k) as in (4.2.4);

3: Compute U(θ) as in (4.2.8) and ur(k) as in (4.2.6);

4: Find i(k) as in (4.2.13);

5: if i(k) > 0, then

u(k) = arg min
u
J(x, u) s.t. (4.2.14a)

Az̃(k) + Bu− Bur(k) ∈ T i(k)−1 (4.2.14b)

u ∈ U(θ) (4.2.14c)

6: else

u(k) = −B−1z̃(k) + ûr(k), where (4.2.15)

ûr(k) = arg min
ûr
‖ûr − ur(k)‖2

2 s.t. (4.2.16a)

−B−1z̃(k) + ûr ∈ U(θ) (4.2.16b)

7: end if

8: Compute

[ωR(k), ωL(k)]T = T−1TFLu(k) (4.2.17)

and apply it to the robot; k ← k + 1, go to 1;

4.3 Experimental Results

The proposed trajectory tracking control has been validated by means of hardware-in-the-

loop laboratory experiments carried out using a Khepera IV differential-drive robot. A
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demo of the hereafter presented experiment can be found at the following web link: https:

//youtu.be/A0Tlbgr08tY. The robot parameters are R = 0.021 [m] , D = 0.0884 [m] , the

maximum velocity is set to Ω = 10 [rad/sec] , and Ts = 0.15 [sec] The robot’s pose vector

has been estimated using the wheels encoder’s measurements and odometry calculations as

outlined in [89]. Algorithm 2 has been implemented on a Windows 10 computer equipped

with an Intel i7-8750H processor and Matlab R2022b. The optimizations (4.2.14) and

(4.2.16) have been solved using the Matlab’s functions fmincon and qaudprog, respectively.

Moreover, a wireless TCP channel has been used for communicating with the robot, see

Fig. 4.1.

The performance of the proposed tracking algorithm has been compared with four al-

ternative strategies: (i) the RHC strategy developed by the same authors in [84], (ii) the

Lyapunov-based controller in [22], (iii) the unconstrained linear MPC solution in [25], (iv)

the dynamic feedback-linearization controller in [89]. All the competitor schemes have been

configured using the same parameters described in [84, Sec. IV.A]. By denoting with

e(t) =
√

(xr(t)− x(t))2 + (yr(t)− y(t))2 the tracking error, the tracking performance have

been evaluated using four different indices: (a) integral absolute error (IAE) (
∫ kf

0
|e(t)|dt),

(b) integral square error (ISE) (
∫ kf

0
e(t)2dt), (c) integral time-weighted absolute error (ITAE)

(
∫ kf

0
t|e(t)|dt), (d) integral time squared error (ITSE) (

∫ kf
0
te(t)2dt).

In the the performed experiments the following lemniscate trajectory (see Fig. 4.2) has

been considered: [
xr(t)

yr(t)

]
=

[
0.6 sin( t

3.5
)

0.6 sin( t
7
)

]
, t ∈ [0, kf ] , kf = 44

with a robot’s initial pose q(0) = [x(0), y(0), θ(0)]T = [0.6, 0, π]T . It is straightforward

to verify that for the given trajectory and robot constraints, the associated disturbance

set (4.2.7) is a ball of radius rd = 0.0287 and that Û is a ball of radius ru = 0.1982 (see

(4.2.9)). Consequently, since BÛ is a ball of radius Tsru = 0.0297, the condition D ⊂ BÛ
is satisfied, see Assumption 4.1. To cover the initial tracking error z̃(0) = zr(0) − z(0) =

[0.4106, −0.0447]T , a family of N = 396 ROSC sets has been computed using (4.2.11).

Moreover, the ST-RHC algorithm has been configured to use a multi-objective cost function

J(z̃, u) = ‖Az̃(k) + Bu − Bur(k)‖2
2 + 0.5‖u‖2

2, where the first term takes into account the

tracking error and the second one the control effort.

The obtained experimental results are shown in Figs. 4.2-4.4 and Table 4.1. Fig. 4.2 shows

the reference robot’s trajectories where it can be noted that the proposed ST-MPC strategy,

similarly to [25, 84], allows the robot’s trajectory to quickly converges to the reference.

Indeed, from Fig. 4.4 it is evident that the tracking error enters the RCI region T 0 at

k = 1.8[sec] where it remains confined thereafter. Fig. 4.3 shows that the computed left
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and right wheel angular velocities fulfill the prescribed constraints and that the robot’s

orientation error remains bounded. In the same figure, it is possible to appreciate how the

compensated control action (4.2.15) allows z̃(k) to remain bounded in a neighbourhood of

the origin that is much smaller than the worst-case region T 0 (obtained for ûr(k) = 0, ∀ k).

Finally, Table 4.1 and Fig. 4.5 summarize and contrast the tracking performance of the

proposed T-ST-RCH strategy with the selected alternative schemes. The obtained numerical

results confirm that the tracking performance obtained by T-ST-RHC is superior to the ones

obtained by the competitors. The latter can be justified as follows. The controller in [84]

only used instantaneous information about the (xr, yr) coordinates of the reference trajectory,

while the proposed solution exploits their first and second derivatives. The solutions [19,

22, 25] are developed without explicitly taking into account the robot’s maximum velocity

constraints. Consequently, saturation phenomena arising from the large initial tracking error

degrade their performance. Finally, for average CPU times required by the proposed solution

to solve (4.2.16) and (4.2.14) are 1.58 [ms] and 13.02 [ms]. On the other hand, the CPU

times of the competitors are: 2.1 [ms] for [84], 0.78 [ms] for [25], 0.025 [ms] for [19], and

0.032 [ms] for [22].

Khepera IV T-ST-RHC 

Computer RobotWi-Fi

Figure 4.1: Hardware-in-the-loop setup with Khepera IV.

Table 4.1: Average Tracking performance Indices.

IAE ISE ITAE ITSE

T-ST-RHC 0.690 0.225 1.942 0.148
[84] 1.433 0.258 19.320 0.560
[19] 1.421 0.325 6.503 0.554
[22] 1.767 0.400 10.653 0.735
[25] 2.853 0.378 53.130 3.341
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Figure 4.2: Trajectories performed by the robot.
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Figure 4.3: Wheels angular velocities and robot’s orientation.

4.4 Conclusions

In this chapter, a novel set-theoretic receding horizon control strategy has been proposed

to solve the trajectory tracking problem for input-constrained differential-drive robots. By

considering an input-output linearized description of the vehicle kinematics, the strategy has

been designed to take into account the associated time-varying and orientation-dependent
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Figure 4.5: Comparison of trajectory tracking errors

constraints. To this end, a worst-case approximation of the constraint set has been exploited

to offline design the smallest control invariant region for the tracking error and a family of

robust one-step controllable sets whose union characterizes the worst-case domain of attrac-

tion of the proposed controller. Then, online, non-conservative and constraint-admissible
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control inputs have been computed resorting to a receding horizon strategy exploiting the

knowledge of the robot’s orientation and reference trajectory. Experimental results obtained

using a Khepera IV differential-drive robot and comparison with four alternative schemes

have shown the superior tracking performance of the proposed solution.
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5 Collision-Free Platooning of Mobile Robots

Through a Predictive Control Approach based on

Feedback-Linearization

In this chapter, a solution to achieve collision-free platooning for input-constrained differential-

drive robots is presented. The platooning policy is based on a leader-follower approach where

the leader tracks a reference trajectory while followers track the leader’s pose with an inter-

agent delay. First, the leader and the follower kinematic models are feedback linearized

and the platoon’s error dynamics and input constraints are formally characterized. Then, a

set-theoretic model predictive control strategy discussed in Chapter 4 is extended to address

the platooning trajectory tracking control problem. An ad-hoc collision avoidance policy is

also proposed to guarantee collision avoidance amongst the agents. The properties and the

results of the proposed control architec- ture are validated through experiments performed

on the formation of Khepera IV differential drive robots.

5.1 Formation setup and problem formulation

Agent-0

Agent-1

Agent-(n-1)

Figure 5.1: Platoon of N vehicles following the reference

Considered setup: Consider a formation of N mobile robots (i.e., the agents) described by

the following constrained kinematic model (see Chapter 2)

xi(k + 1) = xi(k) + Ts
R
2

(ωiR(k) + ωiL(k)) cos θi(k)

yi(k + 1) = yi(k) + Ts
R
2

(ωiR(k) + ωiL(k)) sin θi(k)

θi(k + 1) = θi(k) + Ts
R
D

(ωiR(k)− ωiL(k))

(5.1.1)
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where Ts > 0 is the sampling time, qi = [xi, yi, θi]T is the pose of the center of mass of the

robot. The left and the right wheel angular speeds ωiR, ω
i
L ∈ IR are the control inputs of the

system.

Furthermore, the control inputs are subject to box-like constraints, i.e., the set of admis-

sible wheels’ angular speed for the differential drive:

Ud = {[ωiR, ωiL]T ∈ IR2 : Hd [ωiR, ω
i
L]
T ≤ 1},

Hd =

[
−1
Ω

0 1
Ω

0

0 −1
Ω

0 1
Ω

]T
(5.1.2)

where Ω is the maximum angular speed the wheels’ motors can perform.

The differential-drive kinematics (5.1.1) can be transformed into equivalent unicycle kine-

matics via the following change of input variables:[
vi(k)

ωi(k)

]
= T

[
ωiR(k)

ωiL(k)

]
, T =

[
r
2

r
2

r
D
− r
D

]
(5.1.3)

obtaining:

xi(k + 1) = xi(k) + Tsv
i(k) cos θi(k)

yi(k + 1) = yi(k) + Tsv
i(k) sin θi(k)

θi(k + 1) = θi(k) + Tsω
i(k)

(5.1.4)

where vi, ωi ∈ IR are the linear and angular speeds of the robot respectively. Consequently

qi = [xi, yi, θi]
T

denotes the pose of the vehicle, and [ωiR, ω
i
L]
T

the control input vector.

The input constraint set (5.1.2), mapped into the unicycle input space, transforms into

a rhombus-like set, Uu ⊂ IR2, 02 = [0, 0]T ∈ Uu, which defines the admissible linear and

angular velocities for the unicycle, i.e.,

Uu={[v, ω]T ∈ IR2 : Hu

[
vi, ωi

]T ≤ 1}, Hu = HdT
−1 (5.1.5)

The agents are organized in a leader-followers configuration, where i = 0 denotes the index

of the leader robot and i = 1 . . . N − 1 the indexes of the followers.

We assume that the leader agent is equipped with an online path planner providing a

bounded and smooth 2D-trajectory in terms of reference position (xr(t), yr(t)), velocities

(ẋr(t), ẏr(t), and accelerations (ẍr(t), ÿr(t)) for the leader robot’s center of mass, where t ∈
IR+ . Then the leader’s pose and control inputs are broadcasted to all the follower’s agents.

To this end, different communication channels are established, i.e., between the leader agent
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and the followers, and between every two consecutive agents i and i+ 1, ∀i = 0, 1, . . . N − 2

(see the network topology in Fig.5.2). The latter requirement is essential to guarantee

collision avoidance capabilities between subsequent agents. We also assume that the leader’s

path planner module is capable of generating a safe trajectory that does not intersect the

followers’ positions, with a certain safe distance d, at any given time, i.e.,

dist(zr(k),B(d, zi(k)) > 0, ∀k ≥ 0, ∀i = 1, . . . , N − 1

where

B(d, zi(k) = {zi ∈ IR2 | (zi − zi(k))TQ−1

d
(zi − zi(k)) ≤ 1}

with Qd = d
2
I. Moreover, the reference longitudinal velocity is assumed to be lower bounded

by vr, i.e., vr(k) > vr, ∀k ≥ 0 All the vehicles are required to follow the same reference

trajectory with a desired inter-vehicles delay ηi > 0 where ηi > ηj if ∀i > j

Remark 5.1. In order to guarantee collision-avoidance requirements, the inter-agent delay

is assumed to be dynamically adjustable at runtime. To this end, in the following, the

inter-agent delay is treated as a function of time k, namely ηi(k) > 0.

Problem 3. Given the reference pose qr(k) = [xr(k), yr(k), θr(k)]T and the setup described

above, design a platooning control strategy such that all the agents can track a delayed ref-

erence trajectory while ensuring absence of collisions. Consequently, the leader and follower

subproblems of interest are:

[P1-1]: Design a trajectory tracking control law [ω0
R(k), ω0

L(k)]T = φ0(k, q0(k), qr(k)) ∈ Ud
such that the tracking error of the leader with respect to the reference trajectory, namely

q̃0(k) = q0(k)− qr(k) remains bounded ∀k ≥ 0.

[P1-2]: Design a trajectory tracking control law [ωiR(k), ωiL(k)]T = φi(k, qi(k), q0(k −

ηi(k))) ∈ Ud such that q̃i(k) = qi(k)−q0(k−ηi(k)) remains bounded ∀k ≥ 0, ∀i = 1 . . . N−1,

i.e. the followers track the leader pose delayed of ηi(k) ∈ N+ time instants while avoiding

collisions with the other robots.

Remark 5.2. ηi(k) is the inter-vehicle delay for the agent i, i.e. a time delay between the

leader’s reference trajectory and the one tracked by the agent i. It is worth it underlying that

such a delay is not a communication or processing latency, but rather a control parameter

adjusted at runtime to avoid collisions between agents.
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Remark 5.3. The robot’s reference orientation θr(t), longitudinal velocity vr(t) and angular

velocity ωr(t), fulfilling the unicycle kinematics, can be computed as [19]:

 vr(t)

ωr(t)

 =

 √ẋr(t)2 + ẏr(t)2

ÿr(t)ẋr(t)−ẍr(t)ẏr(t)
ẋr(t)2+ẏr(t)2


θr(t) = ATAN2 (ẏr(t), ẋr(t))

(5.1.6)

Figure 5.2: Vehicle to Vehicle (V2V) communication graph

5.2 Proposed Solution

In this chapter, the platooning formation control problem is solved by combining input-

output feedback linearizations and set-theoretic MPC arguments. Specifically, first feedback

linearization is used to derive an equivalent linear model describing the unicycle kinemat-

ics (5.1.4). Then, such a linearized model is exploited to derive a collision-free control

strategy that drives the platoon along a desired reference trajectory.

5.3 Linearized vehicle kinematics via input-output linearization

By introducing the following change of output coordinates:

zi(k) =
[
xi(k) + b cos θi(k), yi(k) + b sin θi(k)

]T
(5.3.1)
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with b > 0 i.e., representing the position of a point Bi displaced with respect to the center

of mass of the robot, and by using the following input transformation[
vi(k)

ωi(k)

]
=TFL(θi)

[
ui1(k)

ui2(k)

]
, TFL(θi)=

[
cos θi sin θi

− sin θi

b
cos θi

b

]

the unicycle model (5.1.4) is recast into the following two-single integrator model,

zi(k + 1) = Azi(k) + Bui(k), A = I2×2, B = TsI2×2 (5.3.2a)

θi(k + 1) = θi(k) + Ts
− sin θi(k)ui1(k) + cos θi(k)ui2(k)

b
(5.3.2b)

where ui(k) = [ui1(k), ui2(k)]T ∈ IR2 are the control inputs of linearized robot’s model,

while (5.3.2b) defines a decoupled nonlinear internal dynamics.

5.4 Agents’ error dynamics

Here, the feedback-linearized tracking error dynamics for each agent are derived. First, let’s

define the reference pose for the i-th agent as

qir(k) =



[xr(k), yr(k), θr(k)]T , If i = 0

[x0(k−ηi(k)), y0(k−ηi(k)), θ0(k−ηi(k))]
T

If i = 1 . . . N − 1

where, qir(k) = [xir(k), yir(k), θir(k)]T and its reference control inputs as

[
vir(k)

ωir(k)

]
=



[vr(k), ωr(k)]T , If i = 0

[v0(k − ηi(k)), ω0(k − ηi(k))]
T
,

If i = 1 . . . N − 1

i.e, the reference is defined as the generated reference trajectory for the agent 0, and as the

leader delayed reference for all the agents i = 1 . . . N − 1.

Remark 5.4. The reference pose and inputs are assumed to satisfy the unicycle kinematics
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(5.1.4), ∀i = 0, 1 . . . N − 1

Then, the feedback linearized tracking error is defined as

z̃i(k) = zi(k)− zir(k)

where

zir =
[
xir(k) + b cos θir(k), yir(k) + b sin θir(k)

]T
(5.4.1)

As shown in [85], the linearized tracking error dynamics can be computed as follows:

z̃i(k + 1) = Az̃i(k) + Bui(k) + di(k) (5.4.2)

where

di(k) = −Buir(k), uir(k) = T−1
FL(θir(k))

[
vir(k), ωir(k)

]T
(5.4.3)

Remark 5.5. Under the assumption of bounded reference, the disturbance d0(k) is also

bounded. Furthermore, since di(k), ∀i = 0, 1 . . . N −1, depends on the leader’s control inputs

and orientation which are assumed bounded, di(k) ∈ Di ⊂ IR2, ∀i = 0, 1 . . . N −1. Moreover,

knowing the bound of di(k), Di can be over-approximated with a ball of radius rdi , i.e,

Di = {di ∈ IR2 : diTQi
d

−1
di ≤ 1}, Qi

d = rid
2
I2×2 (5.4.4)

Lemma 5.1. [93] If a control law u(·) is such that (5.4.2) is stable, the point Bi tracks

any bounded reference trajectory with a bounded internal dynamic. Consequently, also the

tracking error q̃(k) is bounded. �

5.4.1 Input constraints characterization

In [103] it has been proved that the set of admissible inputs for the model (5.3.2a), and

consequently for the error dynamics (5.4.2), is the following orientation-dependent polyhedral

67



set
U(θi) = {[ui1, ui2]

T ∈ IR2 : H(θi) [ui1, u
i
2]
T ≤ 1},

H(θi) = HdT
−1TFL(θi) =

=


D sin θi−2 cos θib

2ΩRb
−D cos θi−2 sin θib

2ΩRb
−D sin θi−2 cos θib

2ΩRb
D cos θi−2 sin θib

2ΩRb
−D sin θi+2 cos θib

2ΩRb
D cos θi+2 sin θib

2ΩRb
D sin θi+2 cos θib

2ΩRb
−D cos θi+2 sin θib

2ΩRb


(5.4.5)

It has also been proved that there exists a worst-case circular inner approximation U(θi), ∀θi,
defined as follows:

Û i =
⋂
∀θi
U i(θi) = {ui ∈ IR2 |uiTQi−1

u ui ≤ 1}, Qi
u = ri2u I2×2 (5.4.6)

where riu = 2ΩRb√
4b2+D2 .

Lemma 5.2. U(θi) admits the following circular outer approximation, ∀θi (see Fig. 5.3):

Ũ =
⋃
∀θi
U(θi) = {ui ∈ IR2 |uiT Q̃−1

u ui ≤ 1}, Q̃u = r̃2
uI2×2 (5.4.7)

where r̃u = max{Ω̄R, 2Ω̄Rb\D}

Proof. Following the same arguments presented in [103], one finds that the lengths of the

semi-diagonals of the time-varying polyhedral set U(θi), ∀θi are:

sd1 = Ω̄R, sd2 = 2Ω̄Rb
D

Therefore, the radius of the smallest circle inscribing the polyhedron is given by

r̃u = max{sd1, sd2} = max{Ω̄R, 2Ω̄Rb\D}

Given the radius of the circle, the outer approximation can be written as (5.4.7), concluding

the proof.
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Figure 5.3: Outer approximation of the time-varying input constraint set
U(θ(k))

5.4.2 Set-Theoretic receding horizon control for trajectory tracking

To address the trajectory tracking requirements imposed by the considered platooning track-

ing control problem 3, we extend the set-theoretic RHC proposed in Chapter 4 [85] to solve

a trajectory tracking control problem for input-output linearized mobile robot described by

(5.4.2). Such a strategy can be summarized as follows.

Notation: in the following, T ij denotes the j-th set for the i-th robot.

The algorithm consists of two distinct phases:

- Offline: For each agent i = 0, 1, . . . N − 1, first, define the optimal state-feedback control

law

ui(k) = −B−1z̃i(k) (5.4.8)

which ensures that the disturbance-free model is asymptotically stable. Then, under the

assumption Di ⊂ BÛ i, the smallest RCI set T i0 (see definition 2.9) associated with the

feedback control law and with the worst-case input constraint Û i is given by T i0 = Di.
Finally, starting from T i0 , build a family of ROSC sets {T ij }

N i
s

j=1, N
i
s > 0, until a desired

region of the state-space is covered.

- Online (∀ k): First, compute the set-membership index

ji(k) := min
ji

s.t. {ji ≥ 0 : z̃i(k) ∈ T ij }

Then:
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• if ji(k) > 0 solve:

ui(k) = arg min
ui

J(z̃i(k), ui) s.t.

Az̃i(k) + Bui − di(k) ∈ (T ij(k)−1)

ui ∈ U(θi(k))

(5.4.9)

where J i(z̃i(k), ui) is a convex cost function.

• else ui(k) = −B−1z̃i(k) + ûir(k) where ûir(k) is computed such that ui(k) complies with

the current input constraints, i.e.,

ûir(k) = arg min
ûr
‖ûir − uir(k)‖2

2 s.t. (5.4.10)

−B−1z̃i(k) + ûir ∈ U(θi(k)) (5.4.11)

Property 5.1. In [103], it has been proved that

• ∀z̃i(0) ∈
⋃N
j=0 T ij ∀di(k) ∈ Di, the tracking-error state trajectory is Uniformly Ul-

timately Bounded (UUB) in T i0 , i.e., there exists a sequence of at most N i
s control

inputs that brings z̃i(k) into the terminal set T i0 .

• Optimization (5.4.9) is recursively feasible by construction.

• The offline computed terminal feedback control law (5.4.8), is optimal with respect to

a Linear-Quadratic (LQ) cost.

• Optimization (5.4.10)-(5.4.11) provides the best feed-forward term ur(k), compatible

with the time-varying input constraints, that cancels out, completely or partially, the

effect of the disturbance di(k).

• Given the circular structure of the sets Û i and Di, starting from T i0 a family of circular

ROSC sets can be built as follows:

T ij = {z̃i ∈ IR2 : z̃i
T

Qi−1

j z̃i ≤ 1}, Qi
j = rij

2
I2×2 (5.4.12)

rij = rij−1 − rid + Tsr
i
u (5.4.13)
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and the set-membership signal j(k) can be computed as:

j(k) := min{j : z̃i(k)TQi−1

j z̃i(k) ≤ 1} (5.4.14)

Remark 5.6. Since the bound of the set Di depends on the reference trajectory (see Eq.

(5.4.3)), the containment condition BU ⊂ Di, ∀ imposes a constraint the linear and angular

velocity of the reference trajectory. Moreover, to guarantee that the containment condition

is satisfied for each follower robot, the input constraint set of the leader, namely Û0, must

be such that Û0 ⊂ Û

5.4.3 Proposed Predictive Platooning Tracking Control

In the following, the above-discussed predictive control strategy is extended to solve the

platooning control problem 3 (see steps 5-7 of algorithm 3 and steps 9-11 of algorithm 4).

To this end, in the following, the leader’s and follower’s control algorithms are addressed

separately. In order to provide formal guarantees of the absence of collisions between the

agents a further assumption on the initial formation’s configuration is needed.

Assumption 5.1. Initial spatial configurations are sequentially assigned to agents depend-

ing on their indexes, i.e.,

‖z0(0)− z1(0)‖2
2 < ‖z0(0)− z2(0)‖2

2 < . . .

· · · < ‖z0(0)− zN−1(0)‖2
2

(5.4.15)

1) Leader’s control strategy:

Lemma 5.3. Algorithm 3 solves Problem P1-1.

Proof. See [85].
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Algorithm 3 Leader’s Tracking Algorithm

Offline:

1: Set U = Û0 with Û ⊂ Û0 ⊂ B−1D0, K = B−1, and T 0
0 = D0; Build {T 0

j }Nsj=1 using

(5.4.12); Store {T 0
j }Nsj=0.

Online:

1: Measure x0(k), y0(k), θ0(k) v0(k), ω0(k) and compute z̃0(k) = z0(k) − zr(k), with z0(k)

as in (5.3.1), zr(k) as in (5.4.1);

2: Send q0(k), v0(k), ω0(k) to each agent i = 1, . . . , N − 1

3: Compute U(θ0) as in (5.4.5) and ur(k) as in (5.4.3);

4: Find j(k) as in (5.4.14);

5: if j(k) > 0, then

u0(k) = arg min
u
J(x, u) s.t. (5.4.16a)

Az̃0(k) + Bu0 − Bur(k) ∈ T 0
i(k)−1, u ∈ Û0 (5.4.16b)

6: else

u0(k) = −B−1z̃0(k) + ûr(k), where (5.4.17)

ûr(k) = arg min
ûr
‖ûr − ur(k)‖2

2 s.t. (5.4.18a)

−B−1z̃0(k) + ûr ∈ Û0 (5.4.18b)

7: end if

8: Compute [
ω0
R(k), ω0

L(k)
]T

= T−1TFL(θ0(k))u0(k) (5.4.19)

and apply it to the robot; k ← k + 1, go to 1;

2) Follower’s control strategy: First, it is worth noting that Problem P1-1 is equivalent to

Problem P1-2 where qr = q0(k − Tsηi(k)), i.e., the reference trajectory is replaced with the

leader’s pose delayed of ηi(k) time instants. To this end, Algorithm 3, can be extended to

solve Problem P1-2. However, although the online planner module (see Chapter 5.1 ensures
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the absence of collisions between the leader robot and each follower, the possibility of collision

between followers may arise.

To provide collision-free guarantees, in the following, ROSC sets are exploited to ensure

there are no intersections between the trajectories performed by the agents. In particular,

by denoting with zi(k) the i-th follower robot’s position, and with Ri(zi(k)) its one step-

reachable set starting from the point zi(k) (see Definition 2.11), a collision-avoidance policy

can be stated as follows:

if Ri(zi(k))
⋂
Ri−1(zi−1(k)) 6= ∅

=⇒ ui(k) = 0, ηi(k)← ηi(k) + 1, ∀i = 1, . . . N − 1
(5.4.20)

i.e., if at any time k ≥ 0, the ROSR of agent i intersects the one of its immediate predecessor

then the agent i is stopped and its inter-agent delay ηi(k) incremented (see Fig.5.4). Such a

policy ensures that the robots’ trajectories never overlap.

STOP

(a) (b)

Figure 5.4: Collision-free (a) and potential collision (b) scenarios

Remark 5.7. By applying Definition 2.11, the ROSR set from the point zi(k) is given by:

R(zi(k)) = {z ∈ IRn : z ∈ Azi(k)⊕ (B · U(θi(k)))⊕Di}

where U(θi(k)) is a time-varying polyhedral set. Therefore, the computation of R(zi(k))

requires a numerical procedure. In order to provide an analytical way to compute such

ROSR sets, we over-approximate U(θi(k)) with a circular set Ũ (see Lemma 5.2. Then, the

ROSR set Ri(zi(k)) is the following circular set:
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Ri(zi(k))={zi∈ IR2 : (zi − zi(k))TQi
R
−1

(zi − zi(k))≤1}

Qi
R = riR

2
I2×2, riR = rid + Tsr̃

i
u

(5.4.21)

Proposition 5.4. Algorithms 3-4 solve Problem 3

Proof. First, as proved in [85] under the assumption BÛ i ⊃ BU0, algorithm 4 guaran-

tees bounded tracking error with respect to the delayed leader’s trajectory, i.e. q̃i(k) =

qi(k) − q0(k − ηi(k)) is bounded under the effect of the control law (5.4.22)-(5.4.24), which

is admissible with respect to U(θi(k)), ∀θi(k). Furthermore, the absence of collision holds.

The following arguments prove such a point. Under the collision-avoidance policy (5.4.20),

whenever the current DoA of agents i and i − 1 are overlapped, the agent i is stopped.

Therefore, starting from a feasible initial configuration, under the assumption of the feasible

trajectory (see Chapter 5.1, and given the result of Lemma 5.3, the trajectory performed

by the leader never intersects the one performed by the followers. Furthermore, since the

tracking error q̃i(k) with respect to the leader pose is bounded, each agent’s trajectory does

not intersect the one performed by its predecessors, which is sufficient to guarantee the ab-

sence of collisions. Finally, since vr(k) is assumed to be lower bounded by a value vr, then

the added incremental delay ηi(k)(k) is consequently upper-bounded by a certain constant

value η̂i which ensures the convergence of the platoon to a stable configuration, concluding

the proof.

Remark 5.8. It is worth mentioning that the proposed collision avoidance policy adjusts

the inter-agent delay ηi(k) by increasing it every time the policy is activated. However, the

adaptive mechanism, as illustrated in Algorithms 3-4, never decreases such a delay. Depend-

ing on the specific application and trajectory, the adaptive mechanism may be extended as

follows:

If Ri(zi(k))
⋂
Ri−1(zi−1(k)) = ∅ and η(k)i > ηi =⇒

=⇒ η(k)i = η(k)i − 1

i.e., every time the policy is not activated the inter-agent delay is decreased until it reaches

the desired value ηi. However, such an adaptive mechanism increases the number of times a

follower vehicle is stopped, and it has not been implemented for practical reasons.
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Algorithm 4 i−th follower’s Tracking Algorithm

Offline:

1: Set U = Û , K = B−1, and T i0 = Di; Build {T ij }Nsj=1 using (5.4.12); Store {T ij }Nsj=0.

Online:

1: Measure xi(k), yi(k), θi(k) and compute z̃i(k) = zi(k) − zr(k), with zi(k) as in (5.3.1),

zr(k) as in (8.2.9);

2: Receive q0(k), v0(k), ω0(k) from the leader and store them into a sequence;

3: Compute Ri(zi(k) as in (5.4.21) and send it to agent i+ 1

4: Receive Ri−1(zi−1(k)) from agent i− 1;

5: if Ri(zi(k))
⋂
Ri−1(zi−1(k)) 6= ∅ then ui(k) = 0, ηi(k)← ηi(k) + 1

6: else

7: Compute U(θi) as in (5.4.5) and u0(k) as in (5.4.3);

8: Find j(k) as in (5.4.14);

9: if j(k) > 0, then ui(k) = arg min
u
J(z̃i(k), ui) s.t. (5.4.22a)

Az̃i(k) + Bui − Bu0(k − ηi(k)) ∈ T ii(k)−1, u ∈ Û i (5.4.22b)

10: else

ui(k) = −B−1z̃i(k) + ûr(k), where (5.4.23)

ûr(k) = arg min
ûr
‖ûr − u0(k − ηi(k))‖2

2 s.t. − B−1z̃i(k) + ûr ∈ Û i

11: end if

12: end if

13: Compute [
ωiR(k), ωiL(k)

]T
= T−1TFL(θi(k))ui(k) (5.4.25)

and apply it to the robot; k ← k + 1, go to 1;
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Figure 5.5: Experimental results: performed trajectory, wheel’s angular veloc-
ity, and tracking error for agents i = 0, 1, 2.

5.5 Experimental Results and Conclusion

The proposed platooning control strategy has been validated through hardware-in-the-loop

experiments, conducted with a platoon of N = 3 Khepera IV differential drive robots. A

demo of the proposed experiment can be found at the following web link: https://youtu.

be/n5o0M-hr_rU?si=Wj_iZT6ymytNnb3O.

Each robot consists of two independently-driven wheels of radius R = 0.021[m], and axis

lengthD = 0.1047[m], capable of performing a maximum angular velocity Ω = 1200[steps/sec] =

38.71[rad/sec]. However, to avoid unmodeled dynamic effects the maximum allowed angular

velocity has been reduced to Ω = 700[steps/s] = 22.5833[rad/sec]. Furthermore, the robots’

kinematics have been feedback-linearized using b = 0.1 and discretized using a sampling

time Ts = 0.15. An ad-hoc Indoor Positioning System (IPS) has been realized using a Vicon

motion capture system and an unscented Kalman Filter algorithm [104], which is capable of

providing accurate measurements of each agent’s pose.

The performances of the proposed platooning tracking control algorithm have been con-

trasted with the solution presented in [50]. In both cases, the control strategy has been

implemented on a workstation equipped with an Intel 17-12700F processor, running Matlab

2022b. Each robot communicates with its own controller through a TCP communication

channel.

Control algorithm configuration: The proposed strategy has been configured with the fol-

lowing parameters: J(z̃, u) = ‖Az̃(k) + Bu‖2
2, r0

d = 0.0507[m], r0
u = 0.40[m], rid = 0.40[m],
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riu = 0.4202[m], ∀i = 1 . . . N − 1, r̃u = 0.9059[m], N i
s = 1000. On the other hand, the

configuration parameters for the competitor control scheme can be found in [50].

An admissible reference trajectory, complying with the assumptions made in Sec.5.1 is

generated by a planner module running on the same workstation. The generated reference

trajectory spans across an area of 3.5[m] × 4.25[m], and it is characterized by a constant

velocity along the path (approximately 0.32[m/sec]).

In order to compare the tracking performance, the following indexes are used, which

are based on the tracking error e(k) =
√

(xir(k)− xi(k))2 + (yir(k)− yi(k))2: (a) integral

absolute error (IAE) (
∫ kf

0
|e(k)|dk), (b) integral square error (ISE) (

∫ kf
0
e(k)2dk), (c) integral

time-weighted absolute error (ITAE) (
∫ kf

0
k|e(k)|dk), (d) integral time squared error (ITSE)

(
∫ kf

0
ke(k)2dk).

The results of the performed experiments are shown in Fig. 5.5 and Table 5.1. Specif-

ically, Fig. 5.5 shows the comparison in terms of trajectory performed by the agents (a),

angular velocities generated by the control algorithms (b)-(c), and considered tracking error

e(k) (d). Specifically, it can be appreciated how the proposed control algorithm is capable of

ensuring a small tracking error for all the agents. On the contrary, the algorithm presented

in [50] suffers from saturation phenomena that cause a loss of tracking performance for all

the agents, as justified by Fig. 5.5(d). Furthermore, in Figs. 5.5(b)-(c), it can be appreciated

how the control inputs fulfill the prescribed input constraint. On the other hand, the control

signals generated using the algorithm in [50], have been manually saturated to the value Ω,

in order to provide a fair comparison between the two algorithms. Finally, Tab. 5.1 shows

the comparison in terms of error indexes. It can be observed, how the tracking performance

is superior to the one obtained with a competitor control scheme for all the agents i = 0, 1, 2.

The obtained results confirm how the formation converges to a stable platoon configuration,

i.e., the inter-agents delay η(k)i → ηi, as k →∞,∀i = 0, 1, 2.
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Table 5.1: Tracking Performance index of Platoon

Index
Agent-0 Agent-1 Agent-2

Proposed [50] Proposed [50] Proposed [50]

IAE 2.2551 3.225 2.2785 2.7738 2.7161 3.3353

ISE 0.1206 0.2664 0.1634 0.2802 0.3708 0.5713

ITSE 2.6008 5.9389 2.5286 3.7351 3.5748 5.4430

ITAE 48.9147 72.0839 46.3983 52.8883 48.6321 55.7160

5.6 Conclusions

In this chapter, a novel control strategy has been proposed to address a platooning formation

control problem for mobile robots. The proposed solution has been derived by combining

feedback linearization and set-theoretic MPC arguments to achieve bounded trajectory track-

ing error for the considered platoon and deal with the input constraints of the considered

mobile robots. Based on the concept of one-step forward reachable sets, a collision avoidance

policy has been designed to guarantee the absence of collisions among agents formally. Fi-

nally, the proposed solution has been experimentally validated using a formation of Khepera

IV robots, and its performance has been contrasted with a competitor scheme. The obtained

results show that the proposed solution achieves better performance in terms of formation

tracking error.
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6 An Obstacle-Avoidance Receding Horizon Control

Scheme for Constrained Differential-Drive Robot

via Dynamic Feedback Linearization

In this chapter, a collision avoidance control strategy is proposed to control constrained

differential-drive robots moving in static but unknown obstacle scenarios. The robot is as-

sumed to be equipped with an on-board path planner providing a sequence of obstacle-free

waypoints, and an ad-hoc constrained control strategy is designed to ensure absence of col-

lisions and velocity constraints fulfillment. To this end, the nonlinear robot kinematics is

redefined via a dynamic feedback linearization procedure, while a receding horizon control

strategy is tailored to deal with time-varying state and input constraints. First, by consid-

ering the worst-case constraints realization, a conservative solution is offline determine to

guarantee stability, recursive feasibility, and absence of collisions. Then, online, the tracking

performance is significantly improved leveraging a non-conservative representation of the

input constraints and set-theoretical containment conditions. Simulation results involving a

differential-drive robot operating in a maze-like obstacle scenario are presented to show the

effectiveness of the proposed solution.

6.1 Preliminaries and Problem Formulation

The following definitions will be used in the following of this chapter to support the proposed

arguments.

Definition 6.1. A Linear Time-Invariant (LTI) system subject to structured norm-bounded

perturbation (uncertainty) can be model as [99]:

z(k + 1) = Az(k) + Bu(k) + Bρρ(k)

ρ(k) = ∆q(k)

q(k) = Cqz(k) +Dquu(k)

(6.1.1)

where k ∈ {0, 1, . . .} are discrete-time instants, z(k) ∈ IRn, u(k) ∈ IRm are the state and
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input vectors, and ρ(k), q(k) ∈ IRs, Bp ∈ IRn×s, Cq ∈ IRs×n, Dqu ∈ IRs×m and

∆ =


∆1

. . .

∆s

 , ∆i ≤ 1 (6.1.2)

describe the uncertainty, with ∆ a convolution operator such that

k∑
i=0

ρ(i)Tρ(i) ≤
k∑
i=0

q(i)T q(i), ∀k ≥ 0 (6.1.3)

Definition 6.2. The distance between a point p ∈ IRn and a set S ⊂ IRn is defined as

dist(p,S) = inf
s∈S
‖p− s‖2.

Problem Formulation:

Let’s consider a differential-drive robot whose kinematics is described by the nonlinear model

(2.1.3), subject to the wheels’ angular velocity constraints (2.1.6). The problem addressed in

this chapter is a navigation problem thereafter denoted as Waypoint-Tracking with Obstacle

AVoidance, which can be formally stated as follows.

Problem 4. (Waypoints Tracking with Obstacle Avoidance (WPT-OA)). Let

p(k) = [x(k), y(k)]T ∈ IR2 be the planar position of the differential-drive robot (2.1.3) at

time k, pf = [xf , yf ]
T ∈ IR2 the desired target location, and Of (k) the obstacle-free region

detected by an on-board perception module at k. Under the assumption that an obstacle-free

path exists from p(0) to pf , design a feedback control strategy

[ωr(k), ωl(k)]T = f(p(k), pf ,Of (k)), ∀k

such that the robot is asymptotically driven to pf , avoiding collisions and fulfilling the velocity

constraints (2.1.6), i.e.,

lim
k→∞

p(k)=pf , p(k)∈Of (k), [ωr(k), ωl(k)]T∈ Ud (6.1.4)

�

The proposed solution is hereafter organized as follows. First, the nonlinear robot model
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is recast into a norm-bounded linear uncertainty model via dynamic feedback-linearization

and the worst-case input constraint realization is formally characterized (Chapter 6.5). Then,

a receding-horizon controller is developed and its convergence and stability proved (Chap-

ter 6.6).

6.2 Linearized Vehicle Model

Following the procedure outlined in Chapter 2.2.5, the unicyle kinematics feedback linearized

using the input transformation (2.2.27) and the dynamic compensator (2.2.26) obtaining the

following linear system

ż(t) = Acz(t) + Bcu(t), Ac =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

 , Bc =


0 0

0 0

1 0

0 1

 (6.2.1)

where z = [x, y, ẋ, ẏ]T is the vector state, and u = [u1, u2]T is the vector of linearizing inputs.

Remark 6.1. The input transformation (2.2.27) has a potential singularity in v = 0. As

suggested in [19], such occurrence can be avoided by considering a saturation whenever the

variable v falls below a sufficiently small threshold v > 0.

By defining the sampling time Ts > 0, using the forward Euler discretization method,

(6.2.1) can be discretized obtaining

z(k + 1) = Az(k) + Bu(k) (6.2.2)

with

A = I + TsAc =


1 0 Ts 0

0 1 0 Ts

0 0 1 0

0 0 0 1

 , B = TsBc =


0 0

0 0

Ts 0

0 Ts


Remark 6.2. It can be proved that the above discretization and dynamic feedback lineariza-

tion commute, i.e., the discrete-time linear model obtained via dynamic FL and consequent

discretization is equal to the discrete-time linear model obtained by first discretizing the uni-

cycle kinematics (2.1.8) and then applying the dynamic feedback linearization. The proof
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follows the same arguments outlined in Property 3.1 for the input-output linearization case

and it has been omitted.

6.3 Input Constraint Mapping

Here, the set of admissible inputs for the unicycle is mapped into a set of admissible com-

mands for the previously derived feedback linearized model.

First, it is possible to write the unicycle velocity v(k) as

v(k) = Tsa(k) + v(k − 1) (6.3.1)

Therefore, the unicycle constraints Hu [v(k), ω(k)]T ≤ 1 in (2.1.9) can be re-written as

Hu

[
Ts 0

0 1

][
a(k) + v(k−1)

Ts

ω(k)

]
≤ 1, or

HuHTs

[
a(k)

ω(k)

]
+HuHTsη(k) ≤ 1

(6.3.2)

where

HTs =

[
Ts 0

0 1

]
, η(k) =

[
v(k−1)
Ts

0

]
(6.3.3)

Then, by applying the state-dependent input transformation (2.2.27) to (6.3.2) we obtain

HuHTsT
−1
FL(θ(k), v(k))u(k) +HuHTsη(k) ≤ 1 (6.3.4)

and by defining the shaping matrix

H(θ, v) = HuHTsT
−1
FL(θ, v)

the input constraint set acting on (6.2.2) is

U(θ, v, η)={u ∈ IR2 : H(θ, v)u+HuHTsη ≤ 1} (6.3.5)
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6.4 Model Representation via Norm-Bounded Uncertainty:

Since the input constraint set (6.2.2) is affine and it depends on three variables (θ, v, η), it

is not straightforward to find its worst-case inner approximation. To address such an issue,

we here propose an alternative constrained norm-bounded uncertainty representation [99] of

(6.2.2),(6.3.5). By introducing the input translation

u(k) = û(k)− TFL(θ, v)η(k) (6.4.1)

the linearized model (6.2.2) and the constraint set (6.3.5) become

z(k + 1) = Az(k) + Bû(k) + ζ(k) (6.4.2)

and

Û(θ, v) = {û ∈ IR2 : H(θ, v)û ≤ 1} (6.4.3)

where ζ(k) is the following affine term

ζ(k) =−BTFL(θ, v)η(k)

=− [0, 0, v(k − 1) cos θ(k), v(k − 1) sin θ(k)]T
(6.4.4)

Remark 6.3. Note that the transformation (6.4.1) has the purpose to obtain an affine

linearized model of the robot (6.4.2) subject to a zero-centered input constraint set (6.4.3).

Such a modeling is instrumental to describe the dependency of the constrained feedback-

linearized model from θ(k) as a structured norm-bounded uncertainty [99]. �

Proposition 6.1. The differential-drive feedback linearized model (6.4.2) is equivalent to a

norm-bounded uncertainty LTI model (6.1.1), where

Bρ =


0 0

0 0

−1 0

0 −1

, Cq =

 0 0 1 0

0 0 0 1

, Dqu =

 0 0

0 0

 (6.4.5)
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Proof. By recalling that [z3(k), z4(k)]T = [v(k) cos θ(k), v(k) sin θ(k)]T , if we define

q(k) =

z3(k)

z4(k)

 = Cqz(k)+Dquu(k)

it is straightforward to show that Cq, Dqu are equal to the matrices in (6.4.5). Moreover, by

defining

ρ(k) =

 v(k − 1) cos θ(k)

v(k − 1) sin θ(k)


we have that ζ(k) = Bρρ(k) if Bρ is as shown in (6.4.5). Finally, the norm-bound condition

(6.1.3) on the uncertainty ∆ is also satisfied, i.e.,

k∑
i=0

ρ(i)Tρ(i) =
k∑
i=0

v2(i− 1) ≤
k∑
i=0

q(i)T q(i) =
k∑
i=0

v2(i)

concluding the proof.

6.5 Worst-case Input Constraint Set Characterization

The input constraint set (6.4.3) is time-varying and its worst-case time-invariant inner ap-

proximation U ⊂ Û(θ, v), ∀(θ, v) is, by definition,

Û :=
⋂
∀(θ,v)

Û(θ, v) (6.5.1)

Lemma 6.2. The worst-case input constraint set (6.5.1) is equal to the following ball set

Û(02, ru)={u∈ IR2 |uTu ≤r2
u}, ru=

2Ω̄rv√
4v2T 2

s + d2
(6.5.2)

where v is the imposed minimum linear velocity (see Remark 6.1).
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Figure 6.1: Input constraint sets Û(θ, v) and Û(0, ru).

Proof. First, the shaping matrix H(θ, v) in (6.4.3) is equals to

H(θ, v)=


d sin θ−2Ts cos θv

2Ω̄rv
−d cos θ−2Ts sin θv

2Ω̄rv

−d sin θ−2Ts cos θv
2Ω̄rv

d cos θ−2Ts sin θv
2Ω̄rv

−d sin θ+2Ts cos θv
2Ω̄rv

d cos θ+2Ts sin θv
2Ω̄rv

d sin θ+2Ts cos θv
2Ω̄rv

−d cos θ+2Ts sin θv
2Ω̄rv

 (6.5.3)

Therefore, the vertices Vi(θ), i = 1, . . . , 4 of the polyhedron (6.4.3) can be analytically com-

puted intersecting the four hyperplanes shaped by H[i,:](θ, v)[û1, û2]T = 1, i = 1, . . . 4, (with

H[i,:] denoting the i− th row of H), obtaining

V1(θ, v) =
[
− Ω̄r cos θ

Ts
,− Ω̄r sin θ

Ts

]T
, V3(θ, v) = −V1(θ, v)

V2(θ, v) =
[

2Ω̄rv sin θ
d

,−2Ω̄rv cos θ
d

]T
, V4(θ, v) = −V2(θ)

(6.5.4)

Then, by computing the lengths Li, i = 1, . . . , 4 of each side of U(θ), it is straightforward to
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verify that they are all equal and independent of θ, i.e.,

Li(v) =
Ω̄r

dTs

√
4T 2

s v
2 + d2, i = 1, . . . , 4

As a consequence, (6.4.3) is a rhombus-like set centered in the origin, rotating into the plane,

according to the orientation θ (see Fig. 6.1). Furthermore, its two diagonals D1(v), D2 are

D1(v) = 4vΩr
d
, D2 = 2Ωr

Ts

showing that only the first diagonal is directly proportional to the linear velocity v. As a

consequence, the set Û is equivalent to the biggest circle inscribed into Û(θ, v) ∀ θ, and for

the worst-case minimum linear velocity v (see Remark 6.1). The radius of such a circle can

be analytically determined resorting to simple geometric formulas as

ru =
D1D2

2
√
D2

1 +D2
2

=
2Ω̄rv√

4T 2
s v

2 + d2
(6.5.5)

6.6 Proposed RHC Tracking Controller

Here, first, an admissible, although conservative, solution to WPT-OA is found starting

from the norm-bounded uncertain model (6.4.2), worst-case input constraint set (6.5.2) and

a sequence of viable waypoints. Then, by leveraging the available online state measurements

and proper set-membership containment conditions, a non-conservative control strategy, with

guaranteed recursive feasibility, is derived.

By denoting with zf = [xf , yf , 0, 0]T the equilibrium state of the affine model (6.4.2)

associated to target position pf , the objectives (6.1.4) can be re-formulated as

lim
k→∞

z(k)=zf , z(k)∈Ozf (k), û(k)∈ Û(θ, v) (6.6.1)

where Ozf (k) = Of × IR2 ⊆ IR4, is the obstacle-free region mapped in the augmented space

of the linearized model.

In principle, by denoting with w(j|k) the j−step ahead prediction of a generic signal

w(k), the above problem can be, in principle, solved by means of following infinite-horizon
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optimization problem

min
{û(j|k), j≥k}

J∞(k) s.t. (6.6.2a)

z(j + 1|k) = Az(j|k) + Bû(j|k) + ζ(j|k), j ≥ k (6.6.2b)

z(j|k) ∈ Ozf (j|k), j ≥ k (6.6.2c)

û(j|k) ∈ Û(θ(j|k), v(j|k)), j ≥ k (6.6.2d)

where

J∞(k)=
∞∑
j=k

(z(j|k)− zf)TQξ(z(j|k)− zf) + û(j|k)TQuû(j|k)

is the Linear-Quadratic (LQ) cost, and Qξ = QT
ξ > 0, Qu = QT

u > 0 matrices of proper

dimensions.

Remark 6.4. Although appealing, the optimization (6.6.2) is not of practical interest due

to two main issues:

• The vision radius R <∞ is limited, an Ozf (j|k) is typically non-convex and it cannot

be predicted.

• Given z(k), ζ(k|k), Û(θ(k|k), v(k|k)) are known. However, their prediction for j > k is

nonlinear and the associated constraints (6.6.2b),(6.6.2d) non-convex.

Hence, motivated by the above-mentioned difficulties, an ad-hoc customization of (6.6.2)

is instead developed.

Assumption 6.1. The robot is equipped with a vision module capable of detecting the ob-

stacle scenario, namely O(k), within a ball of radius R. Moreover, a path planning algorithm

is used to find a sequence of viable 2D waypoints pi ∈ IR2 from p(0) to pf such that

‖pi+1 − pi‖2 ≤ d̄− ε, ∀i (6.6.3)

dist(pi,Oj) ≥ d̄, ∀i and ∀Oj ∈ O(k) (6.6.4)

where d̄ > 0 and ε > 0, with d̄− ε > 0, are the desired safe distance from the obstacles and

a tolerance, respectively. �
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Remark 6.5. Note that Assumption 6.1 is not restrictive since it is trivially satisfied by dif-

ferent existing planners, such as Probabilistic Roadmap (PRM) [105], A∗ [106], and Rapidly-

exploring Random Tree (RRT) [107]. Moreover, Assumption 6.1 ensures the existence of an

obstacle-free ball B(pi, d̄) := {p ∈ IR2 |(p − pi)TQ−1
Bd̄

(p − pi) ≤ 1}, QBd̄ = d̄2I2 that includes

pi+1 and pi. �

6.7 Guaranteed Offline Feedback Controller

Let z̄i =
[
pTi , 0, 0

]T
be the equilibrium state of (6.2.2) associated to pi (for a zero input),

ξi(k) = z̄i − z(k). Moreover, we denote with Bξ(04, d̄) = B(02, d̄)× IR2 ⊂ IR4 the augmented

state constraint mapping B(02, d̄) into the augmented linerized model. For a waypoint pi,

a stabilizing sequence of control actions can be found using the norm-bounded uncertainty

model derived in Proposition 6.1, and the worst-case realization of the input constraint set

(6.5.2):

min
{û(k+j|k), j≥k}

max
∆

J∞(k), s.t. (6.7.1a)

ξi(j + 1|k)=Aξi(j|k)+Bû(j|k) + Bρρ(j|k), j ≥ k (6.7.1b)

ρ(j|k) = ∆q(j|k), j ≥ k (6.7.1c)

q(j|k) = Cqξi(j|k) +Dquû(j|k), j ≥ k (6.7.1d)

û(j|k)T û(j|k) ≤ r2
u, ξi(j + 1|k) ∈ Bξ(04, d̄) j ≥ k (6.7.1e)

As shown in [99], if an upper bound of the LQ cost in (6.7.1) is considered, a solution

can be obtained in a receding horizon fashion by means of a (LMI) optimization problem,

see [99, Sec. 3].

Proposition 6.3. Consider the norm-bounded uncertainty description (6.1.1) of the differential-

drive robot (see Proposition6.1), the worst-case input constraint set (6.5.2), the Assump-
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tion 6.1, and the LMI optimization problem:4

[Q∗0, Y
∗

0 ] = arg min
γ,Q,Y,Λ

γ s.t. (6.7.2a) 1 ξi(0)T

ξi(0) Q

 ≥ 0, Q = QT > 0 (6.7.2b)



Q ∗ ∗ ∗ ∗

Q
1
2
uY γI ∗ ∗ ∗

Q
1
2
ξ Q 0 γI ∗ ∗

CqQ+DquY 0 0 Λ ∗

AQ+BY 0 0 0 Q−BρΛB
T
ρ


≥ 0 (6.7.2c)

 r2
uI Y

Y T Q

 ≥ 0 (6.7.2d)

Λ =


λ1 . . . 0
...

. . .
...

0 . . . λs

 > 0 (6.7.2e)

 1 0 0 0

0 1 0 0

Q
 1 0 0 0

0 1 0 0

T = QBd̄ (6.7.2f)

If (6.7.2) admits a solution and the waypoints are switched according to the condition

||p(k)− pi||2 ≤ ε (6.7.3)

then the control law ωR(k)

ωL(k)

=T−1HTsT
−1
FL(θ(k), v(k))û0(k) + T−1HTsη(k) (6.7.4)

û0(k) = Y ∗0 Q
∗−1

0 ξi(k) (6.7.5)

solves the WPT-OA problem.

4The value of “∗” is inferred by symmetry.
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Proof. If (6.7.2a)-(6.7.2e) admits a solution, then the ellipsoid region E0 = {ξT ∈ IR4 |ξQ∗−1

0 ξ}

is robust positively invariant under the admissible and stabilizing control law (6.7.5) [99,

Sec. 3]. Moreover, the LMI (6.7.2f) imposes that the projection of the invariant region along

the (x, y) axis is equal to the safe ball B(0, d̄). This is instrumental to ensure that control law

is admissible under the waypoint switching rule (6.7.3). Indeed, if at k̄ > k, ||p(k̄)−pi||2 ≤ ε,

then the distance ||p(k̄) − pi+1||2 ≤ d̄ (see Assumption 6.1) and ξi+1(k̄) ∈ E0. Moreover, for

viability arguments (see e.g., [108, Proposition 1]) the switching condition (6.7.3) is activated,

in a finite time interval, i.e. k̄ − k ≤ ∞, ∀ pi. As a consequence, for a given finite sequence

of viable waypoints from p(0) to pf , the control law (6.7.4), obtained applying to (6.7.5) the

inverse transformation of (2.2.27) and (6.3.1), solves the WPT-OA problem, concluding the

proof.

6.8 Online receding-horizon controller

The admissible control law (6.7.5) has been offline determined considering the worst-case

realization of the affine linearized model (6.4.2) (i.e., the worst-case realization of ζ(k)) under

the worst-case input-constraint set (6.5.2). However, such a source of conservativeness can be

online eliminated using a receding-horizon approach. In particular, given the measurements

v(k − 1) and θ(k), the polyhedral constraint set (6.3.5) is exactly known and the linearized

nominal constrained model (6.2.2)-(6.3.5) can be directly used.

In what follows, by exploiting the above arguments and properly combining the controllers

proposed in [99,100,109], a non-conservative receding-horizon controller is designed.

Proposition 6.4. If (6.7.2) admits a solution at k = 0, and pi complies with Assumption 6.1
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∀i, then the following LMI optimization problem

[Q∗k, Y
∗
k ] = arg min

Q̄k≥0,γk,Qk,Yk

γ s.t. (6.8.1a) 1 ξi(k)T

ξi(k) Qk

 ≥ 0, Q = QT > 0 (6.8.1b)


Qk +QT

k − Q̄k ∗ ∗ ∗

AQk +BYk Qk ∗ ∗

Q
1
2
ξ Qk 0 γkI ∗

Q
1
2
uYk 0 0 γkI

 ≥0 (6.8.1c)

 Qk Y T
k H

T (θ(k))[j,:]

H(θ(k))[j,:]Yk 1

 ≥ 0 (6.8.1d)

j = 1, . . . , 4

Qk ≤ Q∗0 (6.8.1e)

has a solution ∀k ≥ 0, and the state-feedback control law ωR(k)

ωL(k)

=T−1HTsT
−1
FL(θ(k), v(k))u(k) + T−1HTsη(k) (6.8.2)

u(k) = Y ∗k Q
∗−1

k ξi(k)− TFL(θ, v)η(k) (6.8.3)

is non-conservative with respect to the robot’s input constraints. Moreover, the control law

(6.8.2), together with the switching rule (6.7.3), provides a solution to the WPT-OA problem.

Proof. First, if ζ(k) ≡ 0, then û(k) = Y ∗Q∗
−1
ξi(k), obtained solving the LMI (6.8.1a)-

(6.8.1d), defines a control law that fulfills the polyhedral input constraint (6.3.5) acting on

(6.2.2), see [100, 109]. Therefore, the control law (6.8.3) complies with (6.3.5) ∀ η(k) by

introducing a compensation for HuHTsη(k). Note that the norm-bounded uncertainty model

used to solve (6.7.2) includes, among all its admissible realizations, the nominal model (6.2.2)-

(6.3.5) used in (6.8.1). Moreover, since Û(θ(k), v) ⊃ Û , ∀ k, and Ek = {ξT ∈ IR4 |ξQ∗−1

k ξ} ⊆ E0

(see LMI (6.8.1d)), the offline solution of (6.7.2) is always admissible for (6.8.1). The latter
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is sufficient to ensure recursive feasibility of (6.8.1) and that under (6.7.3), the control

law (6.8.2) solves the WPT-OA problem. Finally, since at each time instant k, the non-

conservative constraint set Û(θ(k), v) ⊃ Û is directly exploited, then the proposed solution

does not present any conservativeness with respect to the robot input constraint set.

Finally, Algorithm 5 summarizes all the above developments.

Algorithm 5 WPT-OA Control Strategy

Configuration:

• Differential-drive robot parameters: Ω̄, r, d; Vision radius: R; LQ cost matrices:

Qξ, Qu; Obstacle-free ball shaping matrix QBd̄ = d̄2I2; Tolerance ε > 0;

• Set i = 0, k = 0;

Offline (k = 0):

1. Compute U(ru) as in (6.5.2)

2. Select p0 ∈ B(p(0), d̄), define z̄0 =
[
pT0 , 0, 0

]T
, ξ(0) = z̄0 − z(0), solve (6.7.2).

Store Q∗0

Online (∀ k > 0):

1. If ||p(k)− pi||2 ≤ ε then obtain the next waypoint pi+1 ∈ B(p(k), d̄) from the

planner. Set i← i+ 1;

EndIf

2. Compute z̄i =
[
pTi , 0, 0

]T
3. Compute TFL(θ, v) using (2.2.25), the input-constraint shaping matrix H(θ)

using (6.5.3), and the vector η(k) using (6.3.3)

4. Determine Q∗k, Y
∗
k by solving (6.8.1);

5. Compute [ωR(k), ωL(k)]T as in (6.8.2) and apply it to the robot
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6.9 Simulation Results

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25

Initial Location

Final Location

Robot’s Trajectory

x[m]

y
[m

]

Figure 6.2: Maze-like environment and robot’s trajectory.
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Figure 6.3: Wheels’ angular velocities.
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The effectiveness of proposed collision avoidance strategy is here verified by means of

a simulation campaign where a differential-drive robot moves in a maze-like working envi-

ronment (see the scenario in Fig. 6.2). The simulations have been carried in Matlab where

we have used the built-in semi-definite programming solver “mincx” to solve the LMI op-

timizations (6.7.2) and (6.8.1). Moreover, the built-in function “plannerHybridAStar” has

been used to implement the hybrid A∗ path planner developed in [110] and obtain a se-

quence of viable waypoints {pi}. The vehicle is a circular-shaped differential-drive robot

having two independently driven wheels of radius r = 2cm, connected to each other by an

axis of length d = 5cm. The two wheels are assumed to have a maximum angular velocity

ω̄r = ω̄l = Ω = 10 rad/sec. The vision module describes the obstacle scenario by means of

a binary occupancy map and its knobs are d̄ = 50cm and ε = 0.30cm. Moreover, to ensure

that the A∗ planner output complies with (6.6.4), the detected obstacles are enlarged by

d̄ = 50cm.

The control module has been implemented with Ts = 0.1 sec, Qξ = diag(100, 100, 0, 0),

Qu = 0.01I2×2 and v = 0.02m/s, where “diag(·)” is a function building a diagonal matrix

containing its arguments on the main diagonal.

By considering a robot initial position p0 = [3, 1]T and a target destination pf = [23, 18]T ,

the obtained simulation results are collected in Fig. 6.2-6.3. Fig. 6.2 shows that the robot’s

is able to reach pf avoiding collisions with the obstacles. Moreover, it is also possible to

appreciate how the the state trajectory is embedded in a worst-case tube of obstacle-free

admissible trajectories shaped by the offline computed control invariant ellipsoidal region

E0 (see the green circular sets in Fig. 6.2). Finally, Fig. 6.3 shows the angular velocities

of the wheels and contrasts the proposed solution with the strategy in [102]. In particular,

it is shown that the robot’s velocity constraints are always fulfilled and that the proposed

solution does not present any conservativeness w.r.t. the angular velocities, viz. the robot

is able to move to its maximum velocity. On the other hand, the solution in [102] presents

evident signs of conservativeness. This finds also confirmation in the fact that using the

proposed controller the target is reached in 173.5 sec while resorting to [102] the same target

is reached in 246.7 sec .

6.10 Conclusions

In this chapter, a solution to the obstacle avoidance problem for input-constrained differential-

drive robots has been presented. The proposed controller has been developed by taking ad-

vantage of a novel norm-bounded uncertainty description of the robot dynamics. This was

instrumental in offline characterizing the worst-case input realization of the time-varying
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input constraints acting on the feedback-linearized vehicle model. By resorting to a receding

horizon approach, it has been shown that the proposed solution does not suffer from any

conservativeness with respect to the input constraints. Moreover, under mild assumptions

on the capabilities of the on-board vision module, the resulting receding horizon controller

ensures the recursive feasibility property and the absence of collisions. Simulations, con-

ducted on a differential-drive robot moving in a maze-like environment, have testified the

main peculiarities of the proposed framework. Future research will be devoted executing the

controller in real-time scenarios and providing comparisons with existing competitors.
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7 On the Design of Control Invariant Regions for

Feedback Linearized Car-Like Vehicles

In this chapter, a novel procedure is presented to design control invariant regions for feedback-

linearized car-like vehicles subject to linear and steering velocity constraints. The input con-

strained kinematic model of a car-like vehicle and its input output linearized description are

considered (see Sections 2.1.3 and 2.2.4). It is formally proved that the linear and steering ve-

locity constraints recast into polyhedral time-varying constraints for the feedback lienearized

system. Is is also shown that such time-varying input constraints admit a worst-case circular

inner approximation. The proposed input constraint characterization is very important to

formally guarantee stability and constraint fullfillment when a trajectory tracking control

problem is considered. Specifically, the analytical design of a tracking controller with an

associated invariant region is proposed, which is capable of ensuring constraints fulfillment.

Finally, the proposed simulation results show the effectiveness of this solution and its po-

tential to enable the design, via control invariance, of a new class of constrained and model

predictive solutions for input-constrained feedback-linearized car-like vehicles.

7.1 Problem Formulation

Let’s consider a car-like vehicle (see fig. 7.1), whose kinematics is described by the bicycle

model (2.1.10), subject to linear and angular steering velocity constraints (2.1.12).

l

Figure 7.1: Car-like Vehicle Representation

Let’s also consider an arbitrary reference trajectory described in terms of cartesian po-

sitions xr(t), yr(t), velocities ẋr(t), ẏr(t) and accelerations ẍr(t), ÿr(t) of the vehicle. Then,

by considering the kinematic model (2.1.10), the reference values in terms of linear veloc-
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ity vr(t), steering angular velocity ωr(t), orientation θr(t), and steering angle ϕr(t) can be

computed as follows [91]:

vr(t) =
√
ẋr(t)2 + ẏr(t)2

ωr(t) = lvr(t)
(
...
y r(t)ẋr(t)−

...
x r(t)ẏr(t))v2

r(t)−3(ÿr(t)ẋr(t)−ẍr(t)ẏr(t))(ẋr(t)ẍr(t)+ẏr(t)ÿr(t))
v6
r(t)+l2(ÿr(t)ẋr(t)−ẍr(t)ẏr(t))2

θr(t) = ATAN2

(
ẏr(t)
vr(t)

, ẋr(t)
vr(t)

)
ϕr(t) = arctan

(
l(ÿr(t)ẋr(t)−ẍr(t)ẏr(t))

vr(t)3

) (7.1.1)

Assumption 7.1. The reference trajectory qr(t) = [xr(t), yr(t), θr(t), ϕr(t)]
T for (2.1.10) is

uniformly bounded and smooth, i.e., ∃Γ > 0 : ‖qr(t)‖ < Γ, ∀t ≥ 0, qr(t) ∈ C2. �

Definition 7.1 (Stable full-state tracking [93]). Consider the car model (2.1.10) and a

reference trajectory qr(t) complying with Assumption 7.1. By considering the tracking error

with respect to the reference trajectory, namely q̃(t) = qc(t)− qr(t), stable full-state tracking

is achieved if

∃δ > 0, t0 ≥ 0 s.t. ‖q̃(t0)‖ < δ =⇒ ‖q̃(t)‖ < ε, ∀t ≥ t0

�

In order to achieve stable tracking of the reference trajectory, the input-output lineariza-

tion procedure discussed in Chapter 2.2.4 can be deployed. Specifically, by using the state-

feedback control law: [
v

ωs

]
= TFLw (7.1.2)

where TFL is computed as in (2.2.19), the kinematic of the car can be equivalently described

via the following LTI system:

ż =

[
ż1

ż2

]
=

[
1 0

0 1

][
w1

w2

]
(7.1.3a)[

θ̇

ϕ̇

]
= O(θ, ϕ)

[
w1

w2

]
(7.1.3b)

where (7.1.3a) is the input-output linearized model and (7.1.3b) is a decoupled internal

dynamics (see Chapter 2.2.4). Moreover, by substituting the input transformation (7.1.2),

into the set of feasible control inputs (2.1.12), the following state-dependent and time-varying

97



input constraint set is obtained for the feedback linearized system (7.1.3):

[w1, w2]T∈U(θ, ϕ)={w ∈ IR2 : L(θ, ϕ)w ≤ g}, L(θ, ϕ) = HTFL(θ, ϕ) (7.1.4)

Also the reference can be translated into the linearized system space by applying the output

transformation (2.2.16), obtaining

zr =

[
xr + lcos(θr) + ∆ cos(θr + ϕr)

yr + lsin(θr) + ∆ sin(θr + ϕr)

]
(7.1.5)

Consequently, by defining the tracking error with respect to the reference trajectory for

(7.1.3a) as z̃(t) = z(t)− zr(t), the feedback-linearized error dynamics can be written as:

˙̃z(t) = w̃(t), (7.1.6a)

w̃(t) = w(t)− wr(t), wr(t) = M(θr(t), ϕr(t))ur(t) (7.1.6b)

where (7.1.6b) represents the time-varying input constraint whose the linearized system is

subject to.

The derived linearized error dynamics can be used to design a feedback control law and

associated control invariant region that jointly solve the constrained tracking control problem

for input-output linearized car-like vehicles.

Problem 5. Design a tracking controller with associated control invariant region for the

tracking error of the feedback linearized car-like model (7.1.3) guaranteeing stable full-state

tracking (see Definition 7.1) while fulfilling the time-varying input constraints (7.1.4).

7.2 Input constraints characterization

First step to design a control invariant region for the input-output linearized car-like vehicle

is formally characterize the state-dependent and time-varying input constraint set U(θ, ϕ).

The following proposition analytically states the geometrical properties of U(θ, ϕ).

Proposition 7.1. The time-varying input constraint set (7.1.4) is a parallelogram-shaped

set centered in 02 that rotates according to the state variables θ(t) and ϕ(t).
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Figure 7.2: Time-varying input constraint

Proof. The shaping matrix L(θ, ϕ) of the polyhedral set (7.1.4) can be explicitly re-written

as:

L(θ, ϕ) = HTFL(θ, ϕ) =
− cos(θ)+cos(θ+2ϕ)

2
− sin(θ)+sin(θ+2ϕ)

2

∆ sin(θ+2ϕ)−∆ sin(θ)+2l sin(θ+ϕ)
2∆l

−∆ cos(θ+2ϕ)+∆ cos(θ)−2l cos(θ+ϕ)
2∆l

cos(θ)+cos(θ+2ϕ)
2

sin(θ)+sin(θ+2ϕ)
2

−∆ sin(θ+2ϕ)−∆ sin(θ)+2l sin(θ+ϕ)
2∆l

−−∆ cos(θ+2ϕ)+∆ cos(θ)−2l cos(θ+ϕ)
2∆l


(7.2.1)

By intersecting the four hyperplanes characterizing the polyhedron, its vertices are (see

Fig. 7.2):

V1 =

 ∆ sin(θ+2ϕ)lω+∆ sin(θ)lω+∆v cos(θ)−∆v cos(θ+2ϕ)−2 cos(θ+ϕ)lv
(2l cos(ϕ))

−ω∆l cos(θ)−ω∆l cos(θ+2ϕ)−∆ sin(θ+2ϕ)v+∆ sin(θ)v−2 sin(θ+ϕ)lv
2l cos(ϕ)

 (7.2.2)

V2 =

 −∆ sin(θ+2ϕ)lω−∆ sin(θ)lω+∆v cos(θ)−∆v cos(θ+2ϕ)−2 cos(θ+ϕ)lv
2l cos(ϕ)

ω∆l cos(θ)+ω∆l cos(θ+2ϕ)−∆ sin(θ+2ϕ)v+∆ sin(θ)v−2 sin(θ+ϕ)lv
2l cos(ϕ)

 (7.2.3)

V1 = −V3, V2 = −V4
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Consequently, for symmetry, U(θ, ϕ) is centred in 0, ∀θ ∈ IR, ∀ϕ ∈ (−π/2, π/2). By resorting

to simple geometric arguments, the values of li, i = 1, 2, 3, 4 are

l1 = l3 = 2
√

∆2ω2

l2 = l4 = 2
√

v2
1(−∆2 cos(2ϕ)+∆2+2l2)

l2(cos(2ϕ)+1)

(7.2.4)

and m(L1) = m(L3), m(L2) = m(L4), i.e., L1 and L3, and L2 and L4 are mutually parallel

(see Fig. 7.2). Moreover, l1 and l3 are independent of θ(t) and ϕ(t) and their values de-

pend on the parameters ∆ and ω. On the other hand, l2 and l4 are time-varying and their

value is a function of ϕ(t). Furthermore, l2 and l4 are minimal for ϕ = 0 and monotonically

increase with the module of ϕ until π/2 (from the left) or −π/2 (from the right) is ap-

proached. Consequently, by collecting all the above, it results that U(θ, ϕ) is a time-varying

parallelogram-shaped region centred in 02 that rotates around the origin according to θ and

ϕ.

7.3 Worst-Case Inner Approximation

The following proposition describes the inner and time-invariant worst-case approximation

Û ⊂ U(θ, ϕ) complying with the cars’ input constraint (2.1.12) ∀θ ∈ IR, ϕ ∈ (−π/2, π/2).

Proposition 7.2. If l1 < l2, the worst-case constraint set inscribed in U(θ(t), ϕ(t)), ∀ θ(t) ∈

IR, ∀ϕ(t) ∈ (−π/2, π/2) is a circular region Û of radius r̂ > 0 centered in 02, i.e.,

Û = {w ∈ IR2 |wTw ≤ r̂2}, r̂ = ∆lω

√
1

∆2 + l2
(7.3.1)

Proof. First, for any fixed value of ϕ, the polyhedral set U(θ(t), ϕ(t)) rigidly rotates in the

plane around 02 describing a circle centered at the origin (see Fig. 7.3). Moreover, since only

l2 and l4 are a function of ϕ, the radius of the circle changes with ϕ ∈ (−π/2, π/2). By

observing the geometry of U(θ, ϕ) in Fig. 7.2-(a), if l1 < l2,, every segment orthogonal to the

edges l2 and l4 corresponds to the height of U(θ(t), ϕ(t)), namely d > 0, and to the diameter

of the inner circular region. On the other hand, d is equal to the length of the segment IV2,

where I is the intersection point between L2 and the line, namely Lh, passing by V2 and

orthogonal to L2. By noting that the equation describing L2 can be obtained considering
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Figure 7.3: Time-varying input constraint set and its worst-case approximation

the second row of L(θ, ϕ) and g, we have

L2 : α(θ, ϕ)w1 + β(θ, ϕ)w2 = γ

α(θ, ϕ) = L [2, 1] , β(θ, ϕ) = L [2, 2] , γ = g [2]
(7.3.2)

which can be re-written as:

L2 : w2 = m(θ, ϕ)w1 + h(θ, ϕ)

m(θ, ϕ) = −α(θ,ϕ)
β(θ,ϕ)

, h(θ, ϕ) = γ
β(θ,ϕ)

(7.3.3)

Consequently, the equation describing Lh is

Lh : w2 − V2 [2] = − 1

m(θ, ϕ)
(w1 − V2 [1]) (7.3.4)

Given L2 and Lh, the intersection point I is given by the following linear system: −m(θ, ϕ) 1

1
m(θ,ϕ)

1

 I =

 h(θ, ϕ)

V2[1]
m

+ V2 [2]

 (7.3.5)
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which admits a single solution

I =

 −m(θ, ϕ) 1

1
m(θ,ϕ)

1

−1  h(θ, ϕ)

V2[1]
m(θ,ϕ)

+ V2 [2]

 (7.3.6)

Then, the radius r(ϕ) of the circle inscribed in U(θ, ϕ) can be computed as:

r(ϕ) = 1
2
d = 1

2

√
(I − V2)T (I − V2) =

= ∆lω
√

1
∆2−∆2 cos(ϕ)2+l2

(7.3.7)

Hence, the value of r(ϕ) decreases as ϕ approaches π/2 from the left or −π/2 form the right.

In conclusion, the radius r̂ of the worst case (smallest) circular region can be obtained by

r(ϕ) for ϕ approaching ±π/2, i.e.,

r̂ = lim
|ϕ|→π

2

r(ϕ) = ∆lω

√
1

∆2 + l2

and Û can be written as in (7.3.1), concluding the proof.

Remark 7.1. Although ϕ could in principle vary in the range
(
−π

2
, π

2

)
in a practical ap-

plication the steering angle is restricted in the range
[
−π

3
, π

3

]
. Therefore, to reduce the

conservativeness of the inner approximation one may compute its radius by considering a

restricted range of the steering angle ϕ.

As an example, in Fig. 7.3-(b) the time-varying input constraint set is depicted consid-

ering a feedback linearized robot having l = 0.5, ∆ = 0.35, v = 0.5, ωs = π
4
. It can be

appreciated how such a polyhedron rotates in the plane ∀θ ∈ [−π, π], ∀ϕ ∈
[
−π

3
, π

3

]
. How-

ever regardless the specific realization of θ(k), ϕ(k), it is always possible to identify a circular

intersection set whose radius r can be computed through the formula (7.3.7), where ϕ = π
3
,

obtaining r = 0.2351

7.4 Tracking controller and associated control invariant set

In this subsection, the above characterization of the worst-case input constraint set Û is

exploited to design a constrained controller with associated control invariant region capable
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of solving problem 5.

The following lemma, which has been proved in [93], will be used in the following to

prove the overall stability of the proposed control scheme.

Lemma 7.3. Consider a reference trajectory qr(t) complying with Assumption 7.1 with vr(t)

and ωr(t) satisfying (7.1.1) and such that

0 < vr(t) ≤ V, V > 0 and ∀|ϕr(t)| ≤
π

2
, ∀t (7.4.1)

Then, the tracking-error zero dynamics with respect to qr, i.e., ˙̃θ

˙̃ϕ

 = OFL(θ̃, ϕ̃)TFL(θ̃, ϕ̃)

 vr

ωr

 (7.4.2)

are asymptotically stable [93, Theorems 1-3]. Consequently, if a generic control law w(t)

stabilizes (7.1.6a), then stable full-state tracking is achieved [93]. �

By considering a sufficiently small sampling time interval Ts > 0 and by resorting to a

ZOH discretization method, the discretized model of (7.1.6) is

z̃(k + 1) = Az̃(k) + Bw(k)− Bwr(k), (7.4.3a)

w(k) ∈ U(θ(k), ϕ(k)) (7.4.3b)

where A = I2×2, B = TsI2×2.

Remark 7.2. For the considered car-like model (2.1.10) and ZOH discretization method, it

is straightforward to prove that discretization and feedback linearization commute. �

Since the reference signal is bounded (see Assumption 7.1), then wr(k) in (7.4.3a) is

bounded and the term −Bwr(k) can be considered as a disturbance. As a consequence, a

stabilizing controller can be designed starting from the disturbance-free model

z̃(k + 1) = Az̃(k) + Bw(k) (7.4.4)

By considering the constraint-free model (7.4.4), a (LQ) state-feedback control law

w(t) = −Kz̃(k) (7.4.5)
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can be designed such that

z̃(k + 1) = (A− BK)z̃(k) (7.4.6)

is asymptotically stable. The following proposition shows that given the structure of (7.4.4),

the LQ design problem admits, for a proper choice of the cost, an analytical solution. Such

a point is instrumental in showing (see Theorem 7.5) the existence of a control invariant

region associated with the LQ controller.

Proposition 7.4. Consider the following discrete-time infinite horizon LQ cost

J(w(k))=
∞∑
k=0

z̃(k)TQz̃(k)+w(k)TRw(k), Q ≥ 0, R > 0 (7.4.7)

for the linear system (7.4.4) under the control law (7.4.5). If the LQ weighting matrices are

Q = qI2×2 and R = ρI2×2 with q, ρ > 0, the control gain K minimizing J(w(k)) is

K = κI, κ =
qT 2

s +
√
qT 2

s (T 2
s q + 4ρ)

(qT 2
s +

√
qT 2

s (T 2
s q + 4ρ) + 2ρ)Ts

(7.4.8)

Proof. Since for (7.4.4) the pair (A,B) is stabilizable, for any Q = QT
zQz ≥ 0 and R > 0

such that (A,Qz) is detectable, the gain K that ensure a finite and minimal value of J(w(k))

is

K = (BTPB +R)−1BTPA (7.4.9)

where P = P T > 0 is the only symmetric and positive-definite solution to the following

Discrete-time Algebraic Riccati Equation (DARE) [111]:

ATPA− P − ATPB(BTPB +R)−1BTPA+Q = 0 (7.4.10)

Since for (7.4.4), A = I2×2 and B = TsI2×2, if Q = qI2×2 and R = ρI2×2, the equation

(7.4.10) can be analytically solved, obtaining

P = pI2×2, p =
qT 2

s +
√
T 4
s q

2 + 4T 2
s qρ

2T 2
s

Finally, by substituting the obtained P into (7.4.9), the gain K in (7.4.8) is obtained, con-

cluding the proof.
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The above-designed LQ controller does not ensure that the input constraints (7.4.3b)

are fulfilled. Therefore, in what follows, a Positively Invariant (PI) region associated to the

closed-loop dynamics (7.4.6) and complying with (7.4.3b) is derived exploiting the worst-case

inner approximation Û of (7.4.3b).

Theorem 7.5. Consider a constant reference signal zr and the closed-loop error model

(7.4.6) where the gain K is designed as in (7.4.8). The set

Z̃ = {z̃ ∈ IR2 |z̃TSz̃ ≤ 1}, S =
κ2

r̂2
I2×2 (7.4.11)

is positively invariant and it complies with the input constraint set (7.4.3b) irrespectively of

any θ ∈ IR and ϕ ∈ (−π/2, π/2).

Proof. First, the set Z̃ ⊂ IR2 of initial states z̃(0) = z(0) − zr such that the LQ controller

(7.4.5), with the gain K as in (7.4.8), does not violate the input constraints ∀ θ ∈ IR, ϕ ∈

(−π/2, π/2) can be found substituting (7.4.5) in the worst-case input constraint set (7.3.1),

obtaining (7.4.11). As shown in [112], a generic ellipsoidal set

E = {z̃ ∈ IR2 |z̃TSz̃ ≤ 1} (7.4.12)

is positively invariant for (7.4.6) if the following matrix inequality is satisfied:

(A− BK)TS(A− BK)− S < 0 (7.4.13)

By noting that the set Z̃ is equal to (7.4.12) if S = KTQuK = κ2

r2 I2×2, the set (7.4.11) is

positively invariant for (7.4.6) if

κ2

r2
((A− BK)T I(A− BK)− I) < 0 (7.4.14)

Since A,B,K are scalar matrices, then A − BK is also a scalar matrix containing on the

diagonal the closed-loop eigenvalues, i.e., A − BK = λI2×2. Moreover, since w(k) = −Kz̃

is stabilizing, then |λ| < 1, (A − BK)T I(A − BK) − I < 0 and the condition (7.4.14) is

fulfilled.
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Note that the controller (7.4.5) has been designed considering the offset-free model (7.4.4).

Consequently, the actual tracking error (7.1.6a) is not guaranteed to remain in Z̃ for any

reference signal. However, since Z̃ enjoys contractivity under (7.4.5), then Z̃ is also robustly

invariant for (7.1.6a) under a sufficient small disturbance wr(k) [113]. Moreover, under

Assumption 7.1, wr(k) is bounded and can be over approximated (for a given reference

trajectory) as a circular set W(rd) of radius rd > 0, where W(rd) = {wr ∈ IR2 |wTrWrdwr ≤
1},Wrd = 1

r2
d
I2×2. Consequently, Z̃ is robustly invariant ∀wr(k) ∈ W(rd) if (A − BK)Z̃ ⊆

Z̃ ∼ BW(rd) [113], where ∼ is the Minkowski set difference operator. Given that all the

involved sets have a circular shape, the above set containment condition can be equivalently

rewritten as the following matrix inequality (adapted from [113, Section 3]):

η−1(A− BK)TS−1(A− BK) + (1− η)−1BTW−1
rd
B ≤ S−1 (7.4.15)

where η = 1−
√
ξ and ξ is the only repeated eigenvalue of the matrix GTBTW−1

rd
BG, with

G such that GTS−1G = I2×2.

Theorem 7.6. If the reference trajectory (7.1.1) complies with Assumption 7.1 and the con-

dition (7.4.15) is fulfilled, then Z̃ is robustly invariant for (7.4.3) under (7.4.5). Moreover,

if z̃(0) ∈ Z̃, the nonlinear state-feedback tracking control law

u(k) = −M−1(θ(k), ϕ(k))K(z(k)− zr(k)) (7.4.16)

ensures stable full-state tracking (see Definition 7.1) and input constraints (2.1.12) fulfillment

for the car-like vehicle (2.1.10).

Proof. First, as proved in Theorem 7.5, for any initial error in Z̃ and constant reference, the

control law (7.4.5), with K as in (7.4.8), asymptotically stabilizes (7.4.6) while fulfilling (by

worst-case) the input constraints (7.1.4). On the other hand, if zr(k) is a generic reference

trajectory complying with Assumption 7.1 such that the corresponding disturbance −wr(k)

in (7.4.3a) is bounded by a setW(rd) that fulfills the condition (7.4.15), then, the control law

(7.4.5) ensures that Z̃ is robustly invariant irrespective of wr(k) and that the evolution of

(7.4.3a) is stable. Consequently, given the results stated in Lemma 7.3, the nonlinear control

law (7.4.16) (obtained applying the inverse transformation of (7.1.2) to (7.4.5)) ensures full-

state tracking and constraint (2.1.12) fulfillment for the car-like model (2.1.10).
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7.5 Simulation Results

The effectiveness of the proposed tracking controller is thereafter discussed. The simulations

have been performed in Matlab, where the car-like model (2.1.10) has been configured with

the following set of parameters: l = 0.5m, v = 0.5m/s, and ω = π
4
RAD/s. Moreover, we

have assumed that the coordinates x(t) and y(t), the orientation θ(t), and steering angle

ϕ(t) of the car are available for control purposes. The car-like model has been feedback

linearized using the transformations (2.2.16)-(2.2.20) and setting ∆ = 0.35m. Consequently,

by applying the formula in (7.3.1), the radius of the worst-case input constraint set (7.3.1)

for the linearized model (7.1.6a) is r̂ = 0.2252. Then, the linearized car model has been

discretized using a sampling time Ts = 0.1 sec, and the used LQ parameters are q = 1 and

ρ = 0.01 (see Proposition 7.4). Consequently, the control gain K computed as in (7.4.8) is

K = 6.1803I2×2, and the positively invariant region associated to this controller is obtained

as in (7.4.11) and it is characterized by a shaping matrix S = 753.1737I2×2. The resulting

positively invariant region is shown in Fig. 7.6 by means of a red solid line. In the performed

simulation, the reference signal has an eight-shape and its timing law in the x − y plane is

(see the dashed red line in Fig. 7.4)

xr(t) = sin (t/10) , yr(t) = sin (t/20)

The reference velocities ẋr, ẏr and accelerations ẍr, ÿr have been obtained from the above

via differentiation, and the corresponding orientation θr and steering angle φr computed

via (7.1.1). For the chosen reference and control parameters, we have that rd = 0.1838,

η = 0.4956 and that the condition (7.4.15) is fulfilled. Moreover, the car’s initial conditions

are assumed to be x0 = 0, y0 = −0.035, θ0 = 0, ϕ0 = 0.

The obtained simulation results are collected in Figs. 7.4-7.6. Specifically, In Fig. 7.4, it

is possible to appreciate the tracking capability of the considered controller, even though the

initial car’s initial point (see the yellow star) is far from the desired trajectory. Fig. 7.5 shows

that the car’s linear and steering velocities (v(t) and ω(t)) fulfill the prescribed constraints

(see the dashed red line in the first two subplots) regardless of the robot’s angles θ(t) and

ϕ(t), confirming the correctness of the used worst-case approximation of the car’s constraints.

Moreover, the small discrepancies between the angles of the vehicle θ(k) and ϕ(k) and their

reference value θr(r) and ϕr(k), testify that the evolution of the tracking error internal

dynamics is bounded and actually in the proximity of the reference trajectories. Finally,

Fig. 7.6 shows that the linear system’s tracking error trajectory z̃(t) = z(t) − ẑr(t) (blue

solid line) is confined in Z̃ (red solid circle), confirming that the joint use of the proposed
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feasibility governor and constrained tracking controller make Z̃ positively invariant.
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7.6 Conclusions

In this chapter, we have shown that it is possible to design a constrained tracking controller

with associated control invariant region for an input constrained feedback linearized car-like

vehicle. This has been obtained by properly deriving a worst-case approximation of the

time-varying input constraints arising when the nonlinear car model is feedback linearized.

Such a characterization of the constraint set has been then exploited to design a state-

feedback controller where the associated invariant region is analytically derived. Although

the proposed solution can be used as a standalone constrained tracking controller, its features

might allow using it as the terminal controller of dual-mode mode predictive controller

strategies. Future studies will be devoted to investigating such a possibility.
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8 A Feedback-Linearized Model Predictive Control

Strategy for Input Constrained Self-Driving Cars

A novel real-time affordable solution is thereafter proposed to solve the trajectory tracking

control problem for self-driving cars subject to longitudinal and steering angular velocities

constraints. To this end, we develop a dual-mode Model Predictive Control solution starting

from an input-output feedback linearizated description of the vehicle kinematics. First, we

derive the state-dependent input constraints acting on the linearized model and characterize

their worst-case time-invariant inner approximation. Then, a dual-mode MPC is derived to

be real-time affordable and ensuring, by design, constraints fulfillment, recursive feasibility,

and uniformly ultimate boundedness of the tracking error in an ad-hoc built robust control

invariant region. The proposed invariant control design is based on the arguments outlined

in Chapter 7. The approach’s effectiveness and performance are experimentally validated

via laboratory experiments on a Quanser Qcar. The obtained results show that the proposed

solutions is computationally affordable and with tracking capabilities that outperform two

alternative control schemes.

8.1 Problem’s statement

Let’s consider a smooth reference trajectory described in terms of Cartesian positions xr(t),

yr(t), velocities ẋr(t), ẏr(t) and accelerations ẍr(t), ÿr(t) and jerks
...
x r(t),

...
y r(t) of the

rear axis center of the car. The corresponding reference car’s state is denoted as qr(t) =

[xr(t), yr(t), θr(t), ϕr(t)]
T , where θr(t) and ϕr(t) are the heading and steering angles associ-

ated to the given trajectory which can be computed as [114]:

θr(t) = ATAN2

(
ẏr(t)
vr(t)

, ẋr(t)
vr(t)

)
ϕr(t) = arctan

(
l(ÿr(t)ẋr(t)−ẍr(t)ẏr(t))

vr(t)3

) (8.1.1)

On the other hand, the reference inputs associated with the trajectory are given by ur(t) =

[vr(t), ωr(t)]
T , where

vr(t) =
√
ẋr(t)2 + ẏr(t)2

ωr(t) = lvr
(
...
y rẋr−

...
x r ẏr)v2

r−3(ÿrẋr−ẍr ẏr)(ẋrẍr+ẏr ÿr)
v6
r+l2(ÿrẋr−ẍr ẏr)2

(8.1.2)

Notice that the time dependency has been omitted on the right-hand side for compactness.
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Assumption 8.1. The reference trajectory qr(t) = [xr(t), yr(t), θr(t), ϕr(t)]
T for (2.1.10) is

uniformly bounded and smooth, i.e., ∃Γ > 0 : ‖qr(t)‖ < Γ, ∀t ≥ 0, qr(t) ∈ C2. �

Problem 6. Design a constrained state feedback controller

u(t) = φ(t, q(t), qr(t), ur(t)) (8.1.3)

such that u(t) ∈ Ucar, ∀ t ≥ 0 and stable full-state tracking is achieved, i.e.,

∃δ > 0, t0 ≥ 0 s.t. ‖q̃(t0)‖ < δ =⇒ ‖q̃(t)‖ < ε, ∀t ≥ t0

where q̃(t) = q(t)− qr(t) is the tracking error.

8.2 Proposed Solution

Here, the considered problem is addressed by combining feedback-linearization and MPC

arguments. First, the control problem is described as a standard nonlinear MPC over a

finite prediction horizon. Then, the nonconvex nature of the underlying MPC optimization

is analyzed, and a novel predictive framework based on feedback linearization is proposed to

recover a convex optimization problem that fulfills constraints while guaranteeing a bounded

tracking error.

8.2.1 Nonlinear MPC

Let’s define ũ = u− ur and a LQ cost

JN(k, q̃(k), ũ(k)) =
N−1∑
i=0

q̃(k + i+ 1|k)TQq̃(k + i+ 1|k)+

+ũ(k + i|k)TRũ(k + i|k)

where N > 0 is the prediction horizon, and Q = QT ≥ 0, Q ∈ IRn, R = RT > 0, R ∈ IRm

are weighting matrices for the state and control input tracking errors, respectively. Then,

the optimal control law that minimizes the defined cost function over the prediction horizon
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N can be computed as:

u(k) = arg min
u(k),...,u(k+N−1)

JN(k, q̃(k), ũ(k)) s.t. (8.2.1a)

q(k + i+ 1|k) = fcar(q(k + i|k), u(k + i)) (8.2.1b)

u(k + i) ∈ Ucar (8.2.1c)

q̃(k +N |k) ∈ QN (8.2.1d)

i = 0, 1 . . . N − 1

where QN is a predefined set, PI with respect to an offline-designed feedback terminal control

law uN(k) = φN(k, q(k), qr(k), ur(k)) ∈ Ucar, ∀k ≥ N . The above is known as dual-mode

MPC, i.e., for the first N steps, the control law is obtained by solving the above optimization

and applying the optimal solution in a receding horizon fashion, i.e., only the first sample

u(k) is applied to the system (2.1.10) and the optimization is solved at any sampling time.

Then, once the error trajectory q̃(k) reaches QN , the control law uN(k) associated to QN is

used.

Remark 8.1. The above dual-mode MPC strategy guarantees stability and input constraint

fulfillment, for any initial condition q̃(0) such that the optimization problem (8.2.1) is feasible

[94]. Consequently, under the effect of the dual-mode MPC control law, the tracking error

is bounded with respect to any trajectory complying with Assumption 8.1.

Remark 8.2. Although appealing, optimization (8.2.1) suffers from the following drawbacks:

• The optimization problem is highly nonconvex due to the presence of the constraints

(8.2.1b) and (8.2.1d). Moreover, the obtained solutions may suffer from local minima

problems [72];

• The computational burden associate to (8.2.1), especially for large prediction horizon

N , may not allow the real-time implementation of the control scheme;

• The computation of QN and associated state-feedback controller uN is not trivial for

the nonlinear vehicle kinematic model (2.1.10).

Motivated by the above drawbacks, in what follows a novel MPC formulation based on

feedback linearization arguments is proposed. In particular, first, the input-output lineariza-

tion proposed in [114] is exploited to obtain a linear description of the car’s kinematics.
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Then, inspired by the idea introduced in [88], the time-varying input constraints acting on

the linearized model and their worst-case realization are analytically characterized. Finally,

the obtained constrained model and worst-case arguments are used to design a tracking

control strategy that ensures stability, recursive feasibility, and input constraint fulfillment.

8.2.2 Input-Output Feedback Linearization

Here, the input-output feedback-linearization introduced in [114] is used to obtain a linearized

description of the car’s kinematic model.

Let’s define two new outputs

z =

[
z1

z2

]
=

[
x+ l cos(θ) + ∆ cos(θ + ϕ)

y + l sin(θ) + ∆ sin(θ + ϕ)

]
(8.2.2)

representing the Cartesian position of a point P at a distance ∆ > 0 from the center of

front wheels’ axis, and a new state vector η = [η1, η2]T = [θ, ϕ]T . Then, by resorting to the

following input transformation depending on η:

w = M(η)u,

M(η) =

[
cos(η1)− tan(η2)(sin(η1) + ∆

l
s1) −∆s1

sin(η1) + tan(η2)(cos(η1) + ∆
l
c1) ∆c1

]
(8.2.3)

where s1 = sin(η1 + η2) c1 = cos(η1 + η2), the kinematic model (2.1.10) is recast into

ż = w (8.2.4a)

η̇ = O(η)w (8.2.4b)

where

O(η) =

[
sin(η2)c1

l
sin(η2)s1

l
− sin(η2)c1

l
− s1

∆
− sin(η2)s1

l
+ c1

∆

]
Notice that (8.2.4a) defines a two-single-integrator model subject to a decoupled nonlinear

internal dynamics (8.2.4b). The above decoupled system can be discretized via forward Euler

discretization method, obtaining:

z(k + 1) = Az(k) + Bw(k), A = I2×2, B = TsI2×2 (8.2.5a)

η(k + 1) = η(k) + TsO(η(k))w(k) (8.2.5b)
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Property 8.1. The input output feedback-linearization (8.2.2)-(8.2.4) and forward Euler

discretization method commute for the car’s kinematic model (2.1.10).

Proof. Let’s consider the output transformation (8.2.2) and its first-order derivative

ż1 = ẋ− l sin(θ)θ̇ −∆ sin(θ + ϕ)(θ̇ + ϕ̇)

ż2 = ẏ + l cos(θ)θ̇ + ∆ cos(θ + ϕ)(θ̇ + ϕ̇)

Then, under forward Euler discretization arguments one obtains

z1(k + 1)− z1(k)

Ts
=
x(k + 1)− x(k)

Ts
− l sin(θ)

θ(k + 1)− θ(k)

Ts
−

−∆ sin(θ + ϕ)

[
θ(k + 1)− θ(k)

Ts
+
ϕ(k + 1)− ϕ(k)

Ts

]
z2(k + 1)− z2(k)

Ts
=
y(k + 1)− y(k)

Ts
+ l cos(θ)

θ(k + 1)− θ(k)

Ts
+

+ ∆ cos(θ + ϕ)

[
θ(k + 1)− θ(k)

Ts
+
ϕ(k + 1)− ϕ(k)

Ts

]
(8.2.6)

Let’s now consider the discrete-time kinematic model of the car, obtained via forward-Euler

discretization of (2.1.10), i.e.,

x(k + 1) = x(k) + Tsv(k) cos(θ(k))

y(k + 1) = y(k) + Tsv(k) sin(θ(k))

θ(k + 1) = θ(k) + Ts
v(k)
l

tan(ϕ(k))

ϕ(k + 1) = ϕ(k) + Tsω(k)

(8.2.7)

By substituting x(k+ 1), y(k+ 1), θ(k+ 1). ϕ(k+ 1) with the right-hand sides of (8.2.7) and

rewriting the equation in a compact form, the resulting discrete-time evolution of z1 and z2

is:

z(k + 1) = z(k) + TsM(η(k))u(k) (8.2.8)

Finally, by using the input transformation (8.2.3), the discrete-time feedback linearized sys-

tem (8.2.5) is obtained, which is equal to the discrete-time system obtained by discretization

of (8.2.4a). Similarly, the nonlinear internal dynamics (8.2.4b) can be discretized obtaining

(8.2.5b). Hence, input-output linearization and discretization commute.
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8.2.3 Tracking Error Model and Input Constraint Characterization

Here, the feedback-linearized tracking error model is formally derived. By applying the

output transformation (8.2.2), the reference output for the input-output linearized system

(8.2.4) is given by

zr =

[
xr + lcos(θr) + ∆ cos(θr + ϕr)

yr + lsin(θr) + ∆ sin(θr + ϕr)

]
(8.2.9)

Similarly, reference inputs for (8.2.4) can be computed via (8.2.3), obtaining

wr(t) = M(θr(t), ϕr(t))ur(t) (8.2.10)

By defining the error vectors z̃ = z − zr and w̃ = w − wr, η̃ = η − ηr, ηr = [θr, φr]
T , the

input-output linearized and internal tracking error dynamics are given by:

˙̃z(t) = w̃(t) (8.2.11a)

˙̃η(t) = κ(η̃, w̃, ηr, wr, t) = O(η(t))w(t)−O(ηr(t))wr(t) (8.2.11b)

which can be discretized by resorting to the Euler forward method and re-written as

z̃(k + 1) = Az̃(k) + Bw(k)− Bwr(k), (8.2.12a)

A = I2×2, B = TsI2×2 (8.2.12b)

η̃(k + 1) = η̃(k) + Tsκ(η̃(k), w̃(k), ηr(k), wr(k), k) (8.2.12c)

Remark 8.3. Since the reference trajectory is assumed to be bounded, then also wr(k) is

bounded and the set of admissible wr(k) can be over-approximated by a ball Wr ⊂ IR2 of

radius rd, i.e.,

wr ∈ Wr = {wr ∈ IR2 : wTrW
−1
r wr ≤ 1}, Wr = r2

dI2×2 (8.2.13)

Given the feedback linearized tracking error dynamics, the following lemma establishes

sufficient conditions for bounded internal dynamics.

Lemma 8.1. If the reference trajectory qr(t) complies with Assumption 8.1, vr(t) and ωr(t)

satisfies (8.1.2) and 0 < vr(t) ≤ V > 0, ∀t and ∀|ϕr(t)| ≤ π
2
, ∀t, then the tracking-error zero

dynamics ˙̃η = κ(η, 0, ηr, wr, t) are asymptotically stable [93, Theorems 1-3]. Consequently, if

(8.2.11a) is stable, stable full-state tracking is achieved [93]. �
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By applying the transformation (8.2.3) to the input constraints (2.1.12), the the tracking-

error dynamics (8.2.12) are subject to the following time-varying polyhedral input con-

straints, depending on the internal dynamics state η i.e.,

w∈U(η)={w ∈ IR2 : L(η)w ≤ g}, L(η) = TM−1(η) (8.2.14)

The following lemma analytically characterizes the polyhedral set U(η), which rotates and

resizes in function of η.

Figure 8.1: Time-varying input constraint set and its worst-case approximation

Lemma 8.2. The polyhedral input constraint set (8.2.14) is a time-varying parallelogram

that admits the following worst-case circular inner approximation (see Fig. 8.1):

Û =
⋂
∀η

U(η) = {w ∈ IR2 |wTw ≤ r̂2},

r̂ = min
(

∆lω√
∆2+l2

, v
) (8.2.15)
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(a) (b)

Figure 8.2: Possible side length configurations for U(η)

Proof. By defining s2 = sin(η1 + 2η2) and c2 = cos(η1 + 2η2), the shaping matrix of the

polyhedral set U(η) can be re-written as:

L(η)=


− cos(η1)+c2

2
− sin(η1)+s1

2

∆s1−∆ sin(η1)+2ls2
2∆l

−∆c2+∆ cos(η1)−2lc1
2∆l

cos(η1)+c2
2

sin(η1)+s1
2

−∆s1−∆ sin(η1)+2ls2
2∆l

−−∆c2+∆ cos(η1)−2lc1
2∆l


By intersecting the four hyperplanes, the four vertices have the following analytical expres-
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sion:

V1(η) =

 ∆s1lω+∆ sin(η1)lω+∆v cos(η1)−∆vc2−2c1lv
(2l cos(η2))

−ω∆l cos(η1)−ω∆lc2−∆s1v+∆ sin(η1)v−2s2lv
2l cos(η2)

 (8.2.16a)

V2(η) =

 −∆s1lω−∆ sin(η1)lω+∆v cos(η1)−∆vc2−2c1lv
2l cos(η2)

ω∆l cos(η1)+ω∆lc2−∆s1v+∆ sin(η1)v−2s2lv
2l cos(η2)

 (8.2.16b)

V1(η) = −V3(η), V2(η) = −V4(η) (8.2.16c)

By computing the Cartesian distances between the vertices, each side of the parallelogram

has the following length:

l1 = l3 = 2
√

∆2ω2

l2(η2) = l4(η2) = 2
√

v2
1(−∆2 cos(2η2)+∆2+2l2)

l2(cos(2η2)+1)

(8.2.17)

It can also be noted that the angular coefficients of the four lines L1, L2, L3, L4 defining the

polyhedron, namely m1(η1, η2), m2(η1, η2),m3(η1, η2), m4(η1, η2), are such that m1(η1, η2) =

m3(η1, η2), and m2(η1, η2) = m4(η1, η2), ∀η1 ∈ IR, η2 ∈ [−ϕ, ϕ]. Consequently, U(θ) is a

time-varying parallelogram whose side lengths depend on the state variable η2, and on the

car’s parameters ∆, l, v, ω.

In order to find the radius of the smallest circle inscribed in the polyhedral set, we resort

to geometric arguments. By referring to Fig. 8.2, two different cases must be considered

(a) l1, l3 < l2, l4 and (b) l1, l3 > l2, l4. Depending on the specific case, the diameter of the

inscribed circular set can be found either as the distance of vertex V2 from the point I1, or

the distance of vertex V1 from the point I2. Note that I1 is the intersection of the line L2

and the orthogonal to L2 crossing V2 (case (a)), whereas I2 is the intersection of the line L3

and the orthogonal to L3 crossing V1 (case (b)).

Formally, the lines L2 and L3 crossing (V1, V4) and (V4, V3), respectively are

L2 : w2 = m2(η1, η2)w1 + h2(η1, η2)

m2(η1, η2) = −L[2,1]
L[2,2]

, h2(η1, η2) = g[2]
L[2,2]

(8.2.18)
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L3 : w2 = m3(η1, η2)w1 + h3(η1, η2)

m3(η1, η2) = −L[3,1]
L[3,2]

, h3(η1, η2) = g[3]
L[3,2]

(8.2.19)

Moreover, by resorting to simple geometric arguments, the equations of the lines Lh1 and

Lh2 are:

Lh1 : w2 − V2 [2] = − 1

m2(η1, η2)
(w1 − V2 [1]) (8.2.20)

Lh2 : w2 − V1 [2] = − 1

m3(η1, η2)
(w1 − V1 [1]) (8.2.21)

Then, the points I1 and I2 can be computed intersecting L2 with Lh1 and L3 with Lh2,

obtaining

I1 =

[
−m2(η1, η2) 1

1
m2(η1,η2)

1

]−1 [
h2(η1, η2)

V2[1]
m2(η1,η2)

+ V2 [2]

]
(8.2.22)

I2 =

[
−m3(η1, η2) 1

1
m3(η1,η2)

1

]−1 [
h3(η1, η2)

V1[1]
m3(η1,η2)

+ V1 [2]

]
(8.2.23)

By noticing that the inscribed circles have diameters equal to d1 = V2I1 (case (a)) and

d2 = V1I2 (case (b)), the radii, namely r1(η2) and r2(η2), are

r1(η2) = 1
2
d = 1

2

√
(I1 − V2)T (I1 − V2) =

= ∆lω√
∆2−∆2 cos(η2)2+l2

(8.2.24)

r2(η2) = 1
2
d = 1

2

√
(I2 − V1)T (I2 − V1) =

=
√

v2

cos(η2)2

(8.2.25)

Furthermore, since η2 ∈ [−η2, η2] , η2 <
π
2
, the minimum value of r1(η2) and r2(η2) is obtained

for η2 = 0, that it is equals to

r1 = r1(0) =
∆lω√
∆2 + l2

, r2 = r2(0) = v

Consequently, (8.2.15) defines the worst-case circle inscribed in U(η), ∀η, concluding the

proof.
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8.2.4 Robust Invariant Control Design

By using similar arguments to the ones exploited in [88], the linearized tracking error dy-

namics can be exploited to design a state feedback controller that fulfills the prescribed

time-varying and state-dependent input constraints in a properly defined robust invariant

region.

Proposition 8.3. The circular set

ΣN = {z̃ ∈ IR2 |z̃TSz̃ ≤ 1}, S =
1

r̂2
KTK (8.2.26)

is RPI for (8.2.12a) under the state-feedback controller

w(k) = Kz̃(k) + ŵr(k) (8.2.27)

where ŵr(k) is the optimal solution of the following Quadratic Programming (QP) problem:

ŵr(k) = arg min
ŵr
‖ŵr − wr(k)‖2

2 s.t. (8.2.28a)

Kz̃(k) + ŵr ∈ U(η) (8.2.28b)

and K is such that

λ−1ATclS
−1Acl + (1− λ)−1BTW−1

rd
B ≤ S−1. (8.2.29)

where Acl = A − BK, λ = 1 −
√
ξ and ξ is the only repeated eigenvalue of the matrix

GTBTW−1
rd
BG, with G such that GTS−1G = I2×2.

Proof. For the disturbance-free model (i.e. obtained from (8.2.12a) when wr(k) = 0, ∀ k),

any stabilizing controller w(k) = Kz̃(k) fulfills the input constraint for any z̃ ∈ ΣN where

ΣN is as in (8.2.26). Specifically, the set ΣN is obtained by plugging the state-feedback

controller w(k) = Kz̃(k) into the circular region (8.2.15), representing the worst-case set of

admissible input for (8.2.12). Moreover, since in the disturbance-free case, (8.2.29) reduces

to a standard Lyapunov inequality (A − BK)TS−1(A − BK) − S−1 ≤ 0, then if K fulfills

(8.2.29) then ΣN is also a positively invariant region.

On the other hand, in the presence of wr(k) 6= 0 and under the control law w(k) =
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Kz̃(k) + ŵr(k), the closed-loop system is

z̃(k + 1) = (A− BK)z̃(k) + B(ŵr(k)− wr(k))

= Aclz̃(k) + Bwd(k)
(8.2.30)

with wd = ŵr(k) − wr(k). If ŵr(k) is given by the solution of (8.2.28), then the control

law w(k) = Kz̃(k) + ŵr(k) fulfils the input constraints for any z̃ ∈ ΣN . Moreover, wd is

bounded inside the set Wr (with the worst-case happening when ŵr(k) = 0). Finally, as

proven in [113, Section 3], if K fulfils (8.2.29), then ΣN is RPI for (8.2.30), concluding the

proof.

Remark 8.4. In [88], the authors have proposed an analytical design of the state feedback

controller such that it is optimal for a given linear quadratic cost. Also, it is worth mentioning

that (8.2.29) represents a sufficient condition to ensure RPI. For a more exhaustive discussion

on necessary and sufficient conditions, the interested reader may refer to [113].

8.2.5 Feedback Linearized Model Predictive Control

Under input-output linearization arguments, optimization (8.2.1) can be equivalently rewrit-

ten as follows:

min
w(k),...,w(k+N−1)

JN(k, z̃(k), w̃(k)) (8.2.31a)

z̃(k + i+ 1|k) = Az̃(k + i|k) + Bw(i)− Bwr(i) (8.2.31b)

η(k + i+ 1|k) = η(k + i|k) + TsO(η(k + i|k))w(k + i) (8.2.31c)

L(η(k + i|k))w(k + i) ≤ g (8.2.31d)

∀i = 0, 1, . . . N − 1

z̃T (k +N |k)Sz̃(K +N |k) ≤ 1 (8.2.31e)

Optimization (8.2.31) is still nonconvex due to constraints (8.2.31c)-(8.2.31d). Indeed, ∀i ≥
1, the input constraints depend on the predicted state of the internal dynamics which is a

nonlinear function of the control inputs. One possible way to convexify the optimization

problem is to substitute the polyhedral constraint (8.2.31d) with its quadratic worst-case

approximation (8.2.15) ∀i ≥ 1, which is independent of the nonlinear dynamics state η. On
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the other hand, to mitigate the conservativeness of the MPC controller, for i = 0, since η(k)

can be measured, the actual polyhedral constraint can be used. Consequently, optimization

(8.2.31) can be rewritten as:

min
w(k),...,w(k+N−1)

JN(k, z̃(k), w̃(k)) (8.2.32a)

z̃(k + i+ 1|k) = Az̃(k + i|k) + Bw(i)− Bwr(i) (8.2.32b)

∀i = 0, 1, . . . N − 1

L(η(k))w(k) ≤ g (8.2.32c)

w(k + i)Tw(k + i) ≤ r̂2, i = 1, . . . N − 1 (8.2.32d)

z̃T (k +N |k)Sz̃(K +N |k) ≤ 1 (8.2.32e)

which is a Quadratically Constrained Quadratic Programming (QCQP) problem.

Proposition 8.4. The QCQP problem (8.2.32) can be rewritten in the following standard

form:

w∗ = arg min
w

1

2
wTHw + pTw s.t. (8.2.33a)

L̂(η(k))w ≤ g (8.2.33b)

wT Q̂uw ≤ 1 (8.2.33c)

wTΘT
NSΘNw+2z̃T (k)ΨT

NSΘNw ≤ 1−z̃T (k)ΨT
NSΨN z̃(k) (8.2.33d)

where

H = ΘT Q̂Θ + R̂

and

p = ΘT Q̂Ψz̃(k)−ΘT Q̂Θwr − R̂wr

with

Ψ =


A

A2

...

AN

 , Θ =


B 0 . . . 0

AB B . . . 0
...

...
. . .

...

AN−1B AN−2B . . . B
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ΨN = AN , ΘN =
[
AN−1B, AN−2B, . . . , AB, B

]

Q̂ =


Q 0 . . . 0

0 Q . . . 0
...

...
. . .

...

0 0 . . . Q

 , R̂ =


R 0 . . . 0

0 R . . . 0
...

...
. . .

...

0 0 . . . R



Q̂u =


0 0 . . . 0

0 1
r̂2 I2×2 . . . 0

...
...

. . .
...

0 0 . . . 1
r̂2 I2×2


L̂(η(k)) = [L(η(k)), 0, . . . 0]

Proof. Let’s define the decision variables vector w = [w(k), w(k + 1), . . . w(k +N − 1)]T ,

and the predicted reference input vector wr = [wr(k), wr(k + 1), . . . wr(k +N − 1]T . Then,

using (8.2.32b), the model predictions z̃ = [z̃(k + 1|k), . . . , z̃(k +N |k)]T can be rewritten in

a compact form as z̃ = Ψz̃(k) + Θw. As a consequence the cost function JN(k, z̃(k), w̃(k)) =

1
2

N−1∑
i=0

z̃(k + i + 1|k)TQz̃(k + i + 1|k) + w̃(k + i|k)TRw̃(k + i|k) can be rewritten as J(w) =

1
2
[(Φz̃(k) + Θ(w −wr))

T Q̂ (Φz̃(k) + Θ(w −wr))+(w−wr)
T R̂(w−wr)] = 1

2
wTHw+pTw+

c. Notice that in optimization (8.2.33) the term c has been dropped since it does not

affect the optimal solution of the optimization. By applying the same arguments, it is

easy to show that L(η(k + i|k))w(k + i) ≤ g, i = 0, 1, . . . N − 1 ⇐⇒ L̂(η(k))w ≤ g,

w(k + i)Tw(k + i) ≤ r̂2, i = 1, . . . N − 1 ⇐⇒ wT Q̂uw ≤ 1, and z̃T (k +N |k)Sz̃(k +N |k) ≤

1 ⇐⇒ wTΘT
NSΘNw + 2z̃(k)ΨT

NSΘNw ≤ 1− z̃T (k)ΨT
NSΨN z̃(k)

Remark 8.5. The QCQP problem can be recast into a computationally more affordable

QP problem. Specifically, the quadratic constraints (8.2.33c) and (8.2.33d) can be replaced

with a polyhedral inner approximation. In particular, by defining two polyhedral sets Pw =

{w ∈ IR2 : Pww ≤ pw} ⊂ Û , Pw ∈ IRnw×2, pw ∈ IRnw and PN = {z̃ ∈ IR2 : Pz̃N z̃ ≤ pz̃N} ⊂

ΣN , Pz̃N ∈ IRnN×2, pz̃N ∈ IRnz̃N , where nw and nz̃N are the number of sides of the polyhedral
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approximations Pw and Pz̃N , respectively. Then, constraint (8.2.33c) can be replaced with

P̂ww ≤ p̂w (8.2.34)

where

P̂w =


0 0 . . . 0

0 Pw . . . 0
...

...
. . .

...

0 0 . . . Pw

 , p̂u =


0

pw
...

pw


Similarly, the quadratic constraint (8.2.32e) can be replaced with its polyhedral approxima-

tion Pz̃N z̃(k + N) ≤ pz̃N which can be rewritten as a function of the decision variable w,

i.e.,

Pz̃NΘNw ≤ pz̃N − Pz̃NΨN z̃(k) (8.2.35)

Therefore, replacing (8.2.33c)-(8.2.33d) with (8.2.34)-(8.2.35), a QP optimization is obtained.

Notice that the conservativeness of the derived QP problem depends on the number of sides

of the polyhedra approximations, i.e. nw and nN , which are additional design parameters.

All the above developments can be collected into the computable Algorithm 6, which, as

proved in the following theorem, provides a solution to Problem 6.
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Algorithm 6 Dual-Mode Feedback-Linearized Tracking MPC (Dual-Mode FL-MPC) algo-
rithm
Offline:

1: Find K solving (8.2.29) and set S as in (8.2.26)

2: Set the prediction horizon N such that (8.2.33) is feasible with the initial condition

z̃(0) = z(0)− zr(0)

Online:

1: Estimate x(k), y(k), θ(k), ϕ(k) and compute z̃(k) = z(k) − zr(k), and η(k) =

[θ(k), ϕ(k)]T .

2: Compute L(η(k)) as in (8.2.14) and wr(k) as in (8.2.10);

3: if z̃(k) /∈ ΣN then

4: Find w∗ solving (8.2.33) and set w(k) = w∗(k)

5: else

w(k) = Kz̃(k) + ŵr(k) (8.2.36)

where ŵr(k) is the optimal solution of (8.2.28)

6: end if

7: Compute

[v(k), ω(k)]T = M−1(η(k))w(k) (8.2.37)

and apply it to the car; k ← k + 1, go to 1;

Theorem 8.5. For any z̃(0) such that (8.2.33) is feasible, the tracking FL-MPC strategy

described in Algorithm 6 provides a solution to Problem 6.

Proof. The proof can be divided into two parts:

(I) Stability and input constraint fulfillment of the linearized tracking error dynamics:

First, let’s consider the input-output linearized model (8.2.5). If at the generic time k,

(8.2.33) admits a solution for a given initial condition z̃(k) and for some N > 0, then

the optimal control sequence {w∗(k), w∗(k + 1), . . . , w∗(k + N − 1)} with w∗(k + i) ∈

U(η(k)), ∀η(k), ∀i = 0, 1, . . . N − 1, is such that z̃(k + N) ∈ ΣN . At time k + 1, a fea-

sible solution to optimization (8.2.33) can be constructed from the optimal solution at time

k, i.e., {w∗(k + 1), w∗(k + 2) . . . , w∗(k +N − 1), Kz̃(k +N)}.
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Indeed, the last control move Kz̃(k+N) is, by construction, always constraint-admissible

inside the RPI region ΣN . As a consequence, the optimization (8.2.33) is recursively feasible

ensuring that, in at most N steps, z̃(k) is steered into ΣN . Then, given the RPI nature of

ΣN , we can also conclude that z̃(k) is UUB in ΣN . Furthermore, since the used input-output

linearization and discretization commutes (see property (8.1)), the linearized tracking error

dynamics (8.2.11) is stable under the effect of the proposed dual-mode MPC.

(II) Bounded Tracking Error for (2.1.10): As proven in part (I), w(k) computed by

Algorithm 6 stabilizes the feedback linearized error dynamics (8.2.12a). Therefore, given the

result of Lemma 8.1 and by applying the input transformation (8.2.3), the control law (8.2.37)

solves the considered reference tracking problem with a bounded tracking error q̃(k).

8.3 Experimental Results

Here, the experimental results, obtained using a Quanser Qcar5, are presented to show the

effectiveness of the proposed FL-MPC tracking controller and compare it with alternative

solutions. In particular, the chosen competitors are the nonlinear MPC tracking strategy

described in Chapter 8.2.1 (namely “Nonlinear MPC”), and the the constrained adaptive

backstepping controller developed in [61] (namely “Backstepping”). Two different versions

of the proposed FL-MPC scheme have been tested. The first one exactly follows Algorithm 6

(hereafter referred to as “Dual FL-MPC”). On the other hand, the second one (namely “FL-

MPC”) executes Algorithm 6 but it never activates the terminal control law, i.e., it solves

(8.2.33) for any k ≥ 0.

8.3.1 Experimental Setup

The considered experimental setup is depicted in Fig. 8.3, and it consists of:

a) a Quanser Qcar;

b) a camera-based (IPS);

c) a ground workstation;

d) a Wifi communication channel between the ground workstation and the car.

5https://www.quanser.com/products/qcar/
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Figure 8.3: Proposed experimental setup

The autonomous car-like vehicle is the Quanser Qcar open-architecture prototype, which is

designed for academic research experiments. The car has a size of 0.39 × 0.19 × 0.20m,

weights 2.7 kg, and its wheelbase measures l = 0.256m. Onboard, the car is equipped with

different sensors (encoders gyroscope, accelerometer, magnetometer, lidar, and depth and

RGB cameras) an NVIDIA® Jetson™ TX2 with 2 GHz quad-core ARM Cortex-A57 64-

bit + 2 GHz Dual-Core NVIDIA Denver2 64-bit CPU and 8GB memory. The considered

maximum longitudinal speed is v = 1m/s, while the maximum steering angular velocity is

ω = 10 rad/s. In addition, due to the vehicle’s mechanical construction, the front wheel’s

steering angle cannot exceed ϕ = 0.6 rad. The developed tracking algorithms have been

implemented and cross-compiled in C language and run onboard on the Nvidia Jetson CPU.

A sampling time Ts = 0.01 s has been used for all the performed tests.

The IPS consists of a set of 12 Vicon Vero cameras connected via a wired connection to

the ground workstation. The camera system is used to localize the car in the workspace,

similar to a standard GPS system. In particular, the cameras detect and track a set of

reflective markers placed on the Qcar. The positions of the markers are in real-time collected

and processed on the ground workstation by the Vicon Tracker software, which accurately

reconstructs, via a triangulation algorithm, the position and orientation of car.

The ground workstation is a desktop computer consisting of a 13th Gen Intel(R) Core(TM)
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i9-13900KF CPU, a NVIDIA GeForce RTX 4070 GPU, and 64GB of RAM. The worksta-

tion is used to estimate the pose of the car and broadcast it via a TCP/IP communication

channel.

8.3.2 Configuration of the proposed controller

To implement the proposed tracking controller strategy the following parameters have been

considered: ∆ = 0.35, Q = I2×2, R = 0.01 · I2×2, K = 4I2×2. The radius of the worst-

case circular input constraint set has been computed as in (8.2.15), obtaining r̂ = 1. The

reference trajectory is built to comply with (8.2.13), with rd = 11.54. As a consequence,

the feedback control gain K = 4I2×2 has been chosen such that RPI condition (8.2.29) is

satisfied, with Acl = 0.96I2×2, S = 16I2×2, G = 0.25I2×2, ξ = 4.69 · 10−8, λ = 0.9998,

computed as outlined in in Proposition 8.3. The idea described in Remark 8.5 has been used

to obtain a QP formulation of the derived QCQP optimization (8.2.33). In particular, the

quadratic constraints (8.2.33c)-(8.2.33d) have been inner approximated using two Decahedra,

i.e., two polyhedral sets defined as in (8.2.34)-(8.2.35), with nw = nN = 10. The control

optimization problem has been solved on the car’s processing unit considering a prediction

horizons N = 10 using an Active Set solver algorithm. The Active Set algorithm makes

use of a Cholesky decomposition of the hessian matrix H, which, being constant for the

proposed optimization, has been precomputed to reduce the online computational load. The

computational times obtained for the used solver are reported in Chapter 8.3.6.

8.3.3 Car’s state estimation

The state of the car q(k) is onboard estimated by means of an Unscented Kalman Filter

(UKF). In particular, the implemented UKF is outlined in [115] and it exploits the nonlinear

kinematic model (8.2.7) and different collected sensor information: (i) the estimated position

and orientation of the Car provided by the Vicon Camera System, (ii) encoder and (iii)

IMU (gyroscope and accelerometer) measurements. The UKF has been configured with the

following parameters: process and measurement covariance matrices

QUKF = diag([10−3, 10−3, 10−1, 10]), RUKF = diag([2 · 10−5, 2 · 10−5, 10−4, 10−5]),

initial state estimation covariance matrix

P 0
UKF = diag([10−5, 10−5, 10−6, 10−6]),
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and sigma-points parameters α = 0.9, β = 2, κ = 0 (the interested reader shall refer to [115]

for further details about the used parameters).

8.3.4 Reference trajectory generation

A reference trajectory complying with assumption 8.1 has been generated using a cubic

spline interpolation method. The interpolation algorithm received in input a sequence of

waypoints describing the desired path and, in output, it assigns a crossing time based on

path curvature and desired average speed. Then, each waypoint is interpolated using cubic

splines, obtaining the position xr, yr, velocity ẋr, ẏr, acceleration ẍr, ÿr, and jerk
...
x r,

...
y r,

needed to compute the reference car’s state qr, and inputs ur, as in (8.1.1)-(8.1.2).

8.3.5 Configuration of the competitor schemes

Each competitor scheme has been configured to obtain the best tracking performance in the

performed experiments. Specifically, the nonlinear MPC optimization (8.2.1) has been solved

considering the following LQ cost matrices, Q = diag([135, 135, 65, 65]), R = diag([0.3, 0.1]),

and a prediction horizon N = 5. The nonlinear optimization has been solved using Sequen-

tial Quadratic Programming (SQP) method. On the other hand, the backstepping algorithm

developed in [61] has been tuned using: dx = 0.3, σ = 0.3, αc = 0.3, k3 = 3.5. The inter-

ested reader shall refer to [61] for a detailed explanation of the used parameters. It is worth

mentioning that the steering command generated by the algorithm is subject to undesired

chattering effects, typical of backstepping control algorithms [116]. In order to mitigate such

an undesired effect, the control signal has been prefiltered using a low-pass filter with cut-off

frequency ωc = 100 rad
s

.

8.3.6 Evaluation of the tracking performance

To evaluate the tracking performance of the proposed controller and alternative schemes,

the Integral Square Error (ISE) (
∫ Tf

0
e(t)2dt) and Integral Time Squared Error (ITSE)

(
∫ Tf

0
te(t)2dt) indexes have been used. In particular, for each performed experiment, three dif-

ferent error signals are measured: path distance error exy(k) = ‖ [x(k), y(k)]−[xr(k), yr(k)] ‖2,

heading angle error eθ(k) = θ(k) − θr(k)), and steering angle error eϕ(k) = ϕ(k) − ϕr(k)).

Then, for each collected error signal the ISE and ITSE indexes are computed, i.e., ISEx,y,

ITSEx,y, ISEθ, ITSEθ, ISEϕ, ITSEϕ.
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8.3.7 Evaluation of computational times

To assess the computation complexity of the approaches Dual FL-MC and FL-MPC” and

Nonlinear MPC, the computational times required by each algorithm have been measured.

In the performed analysis, only the controller computation has been considered, i.e., the

state-estimation algorithm as well as the sensor processing have been neglected.

8.3.8 Results
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Figure 8.4: Experimental results: Trajectory

The obtained results are collected in Figs. 8.4-8.6 and and Tables 8.1-8.3. For the

interested reader, videos of the performed experiments can be found at the following web link:

https://youtu.be/aeHZKyRfcEo. The tracking performance has been evaluated considering

two reference trajectories generated along the same path. The first requires a maximum speed

of 0.6m
s

, while the second, a maximum speed of 0.75m
s

. It is worth mentioning that, for both

the considered trajectories, several tests have been run, and the obtained results have been

averaged in Table 8.1-8.2, respectively.
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Fig. 8.4 and Tables 8.1-8.2 show that for both trajectories, the proposed controller

achieves better tracking when compared to the Nonlinear MPC and Backstepping controllers.

In particular, the Nonlinear MPC showed poor tracking performance in all the performed

experiments. This finds justification in the highly nonconvex nature of optimization (8.2.1),

which converges to local minima and, consequently, to nonoptimal solutions. Moreover, as

shown in Table 8.3, the reference tracking performance cannot be improved by increasing

the prediction horizon. For example, for N = 10, the nonlinear optimization solver for

(8.2.1) can take up to approximately 40ms to obtain a solution, which is far above the

considered sampling time Ts = 10ms. On the other hand, the backstepping controller

shows slightly better tracking performance of the Nonlinear MPC. However, a chattering

phenomena affects the computed steering angle command (see the rapid and discontinuous

switching of the control signal). Moreover, as shown in Fig. 8.6, the control inputs computed

by the backstepping controller are conservative, i.e. the longitudinal and angular steering

velocities never reach the prescribed limits, v and ω, respectively. The two above mentioned

drawbacks justify why the tracking performance of the backstepping scheme are slightly

worse of the one achieved with the proposed tracking controller degrades.

Table 8.1: Comparison of tracking performance: Trajectory 1

Algorithm
Distance Error Heading Error Steering Error

ISExy ITSExy ISEθ ITSEθ ISEϕ ITSEϕ

FL-MPC 0.0279 0.3191 0.0201 0.1797 0.0244 0.2834

Dual-mode FL-MPC 0.0323 0.4160 0.0246 0.3195 0.0333 0.3117

Nonlinear MPC 0.2703 4.4197 0.0978 1.4305 0.0135 0.1642

Backstepping [61] 0.1629 2.0904 0.1375 1.6539 1.8797 30.5802
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Table 8.2: Comparison of tracking performance: Trajectory 2

Algorithm
Distance Error Heading Error Steering Error

ISExy ITSExy ISEθ ITSEθ ISEϕ ITSEϕ

FL-MPC 0.0321 0.4718 0.0127 0.1713 0.0132 0.1480

Dual-mode FL-MPC 0.0459 0.6006 0.0250 0.3571 0.0212 0.2439

Nonlinear MPC 0.2458 3.0141 0.0468 0.5247 0.0218 0.2568

Backstepping [61] 0.2634 3.2056 0.2378 2.6428 1.2098 20.9822

On the other hand, the performance obtained with the FL-MPC is slightly superior to

the ones obtained with the dual-mode MPC. The reason behind such a result is that FL-

MPC uses the RPI region (8.2.26) to ensure recursive feasibility, but it never directly relies

on the associated controller, which is by nature more conservative. However, the dual-mode

MPC implementation shows some computational advantage related to the fact that when the

tracking error enters the terminal regions, then a simpler optimization problem (8.2.28) is

solved. Moreover, for both performed experiments, the proposed FL-MPC controller fulfills

the vehicle’s input constraints, as shown in Figs. 8.4-8.6.

Table 8.3: Comparison of average and maximum computational times (in ms)
of Nonlinear and FL-MPC

Algorithm
N=3 N=5 N=10

MAX (ms) AVG(ms) MAX(ms) AVG(ms) MAX(ms) AVG(ms)

FL-MPC 3.3106 0.5416 3.8249 0.6455 3.1471 0.6954

Dual-mode FL-MPC 1.7726 0.3622 3.3520 0.3417 2.0981 0.3638

Nonlinear MPC 7.2283 3.1933 15.6261 5.2227 40.5351 6.8099

Concerning the computational analysis, the proposed Dual-mode FL-MPC and FL-MPC

solutions have been compared with the Nonlinear MPC considering the prediction horizons

N = 3, N = 5, N = 10. The obtained results are collected in Table 8.3. It can be appreciated

how the computational times, both maximum and average ones, of the proposed solutions

are significantly lower than the ones of the Nonlinear MPC, especially for larger values of N.
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8.4 Conclusions

In this chapter, a novel Feedback Linearized Model Predictive Control strategy for input-

constrained self-driving cars has been presented. The proposed strategy combines two main

ingredients: 1) an input-output FL technique and 2) a dual-mode MPC framework. The

obtained tracking controller has the peculiar capability of efficiently dealing with state-

dependent input constraints acting on the feedback linearized car’s model while ensuring

recursive feasibility, stability, and velocity constraints fulfillment. Extensive experimental

results and comparisons have been carried out to highlight the features and advantages of

the proposed tracking controller.
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9 Conclusions

This thesis introduces a novel predictive paradigm for autonomous vehicles and wheeled mo-

bile robots. The proposed control paradigm is based on the combination of Model Predictive

Control (MPC) and Feedback Linearization (FL) arguments and aims at solving challeng-

ing problems such as trajectory tracking, path following, obstacle avoidance, and formation

control for input-constrained wheeled autonomous vehicles.

The control framework offers a promising solution to improve trajectory accuracy while

considering nonholonomic constraints, input-saturation constraints, and bounded distur-

bances. The research demonstrates the benefits of exploiting feedback linearization for MPC

predictions, characterizing the derived state-dependent input constraint set, and its an-

alytical worst-case circular approximation. The proposed control solutions are designed

to be computationally affordable, recursively feasible, and non-conservative, ensuring real-

time implementation. Both simulations and laboratory experiments with the Khepera IV

differential-drive robot and Quanser Qcar validate the effectiveness and advantages of the

proposed approach compared to existing competitor schemes. This research paves the way

for more efficient and reliable control strategies for autonomous wheeled vehicles, enabling

their successful operation in real-world applications.

The thesis is structured to build a comprehensive understanding of the proposed control

strategies and their applications. Chapter 2 provides the necessary theoretical foundation,

discussing the kinematic modeling of wheeled autonomous vehicles, the principles of feedback

linearization, and the fundamentals of predictive control. This background material sets the

stage for the subsequent chapters, where the novel contributions are presented.

Chapter 3 represents the first attempt to analytically characterize the time-varying input

constraint set acting on input-output linearized wheeled mobile robots and its worst-case

inner approximation. These characterizations were directly exploited to design an LMI-

based receding-horizon controller capable of guaranteeing bounded tracking error, recursive

feasibility, and input constraint fulfillment. The work was extended in Chapter 4 by intro-

ducing a set-theoretic receding horizon control strategy to enhance tracking performance and

deal with time-varying constraints. The performance improvement is achieved by modeling

the reference input associated with the trajectory as a bounded disturbance acting on the

feedback linearized tracking error dynamics. The proposed set-theoretic control drives the

tracking error within a small robust positive invariant region, ensuring that it is bounded in

a neighborhood of the origin.

Additionally, Chapter 5 addressed formation control for mobile robot platoons, tailoring

the set-theoretic control strategy derived in Chapter 4 to formally ensure collision avoidance
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and bounded tracking error for a platoon of differential-drive robots. This work demonstrates

the flexibility of the proposed control framework in handling multiple autonomous vehicles

in a coordinated manner.

Chapter 6 tackled waypoint tracking under obstacle-avoidance requirements for differential-

drive robots using a receding horizon approach based on feedback linearization. This chapter

highlights the capability of the proposed control paradigm to navigate complex static envi-

ronments, avoiding obstacles while maintaining accurate tracking of the desired path.

Finally, the proposed predictive control paradigm was extended to deal with feedback-

linearized car-like vehicles in Chapters 7 and 8, where the trajectory tracking problem for self-

driving cars was considered. Similar to the differential-drive case, feedback linearization was

used to derive an equivalent linear model describing the car’s kinematics. Time-varying input

constraints and their approximation were analytically characterized and exploited to design

real-time affordable predictive controllers for self-driving cars. The tracking performance and

low computational complexity were validated by means of laboratory experiments conducted

on a Quanser Qcar. The obtained results were contrasted with several competitor control

algorithms, including nonlinear MPC, showcasing the advantages of the proposed approach

in terms of computational efficiency and robustness.

The extensive validation through simulations and real-time experiments underscores the

practical applicability of the proposed control strategies. The research outcomes demonstrate

significant improvements in tracking accuracy, obstacle avoidance, and formation control,

making substantial contributions to the field of autonomous vehicle control.

Despite the promising results, several aspects require further investigation to enhance

the proposed control framework:

• State constraints: State constraints have not been fully considered in the proposed

control framework. Although geometrical and collision-avoidance constraints were ad-

dressed for differential-drive robot models, limits on the heading angle of the vehicle,

steering angle of the car, or geometrical constraints on the car’s position have not been

directly tackled in this work. The integration of such constraints may not be trivial,

as they might be nonconvex and time-varying for the feedback linearized system. The

inherent problem is the difficulty in analytically characterizing inner approximations

of such time-varying state constraints.

• Model accuracy: The proposed control framework makes use of simple kinematic

models describing the robots and vehicles. Although it has been extensively validated

considering small vehicles showing promising performance, further experiments are

needed to validate such a framework when large-scale vehicles are considered. The
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proposed predictive control may suffer from model mismatches, especially at very high

speeds, necessitating further refinement of the models to account for dynamic effects

and higher-order nonlinearities.

• Trajectory planning: When dealing with the trajectory tracking problem, the pro-

posed control framework presupposes the availability of reference trajectories compat-

ible with the vehicle kinematic model, which enjoys properties such as continuity and

smoothness. A kinodynamic planner may be needed to meet such an assumption,

especially in unknown environments. The trajectory planning problem has not been

directly tackled in this thesis. Integrating state-of-the-art algorithms based on neural

networks to accomplish such a task and their incorporation within the proposed control

framework may be an interesting subject for further studies.

• Robustness to disturbances and uncertainties: While the proposed control

strategies have shown robustness to bounded disturbances, further work is needed

to enhance robustness against a wider range of uncertainties, including sensor noise,

actuator faults, and dynamic changes in the environment. Developing adaptive con-

trol mechanisms and incorporating robust optimization techniques could improve the

resilience of the control framework.

• Scalability to larger formations: The formation control strategies proposed for

platoons of mobile robots demonstrate the potential for cooperative control. However,

scalability to larger fleets and more complex coordination tasks requires further ex-

ploration. Investigating decentralized and distributed control approaches could enable

efficient management of larger groups of autonomous vehicles.

In conclusion, this thesis bridges the gap between nonlinear and linear MPC for au-

tonomous wheeled vehicles by formulating recursively feasible predictive solutions based on

feedback linearization, which are computationally affordable and do not introduce any ap-

proximation in the model prediction. These optimizations are convex by design and do not

suffer from local minima problems typical of nonlinear MPC formulations. Their real-time

effectiveness and performance have been extensively validated, showing promising results

for their applicability in real-time scenarios. Further studies may be devoted to extending

the predictive framework to deal with state constraints and integrating it with trajectory

planning algorithms for unknown or partially known scenarios. This research lays a solid

foundation for future advancements in the control of autonomous wheeled vehicles, con-

tributing to their safe and efficient operation in diverse real-world environments.
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