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Abstract

Trajectory Planning and Control of Cooperative Robotic System for Automated
Fiber Placement

Ningyu Zhu, Ph.D.

Concordia University, 2024

Cooperative robotic system for automated fiber placement (AFP) is a promising so-

lution to fulfill the requirement of manufacturing fiber composites on intricate structures.

This project works on the trajectory planning and control of a 13-degree-of-freedom (13-

DOF) AFP system. A 1-DOF rotary stage is attached to the end-effector of a 6-Revolute-

Spherical-Spherical (6-RSS) parallel robot to hold a Y-shape mandrel, while an AFP head

is attached to the end-effector of a 6-DOF serial robot to place fiber with the desired degree.

A photogrammetry sensor C-Track 780 can measure the real-time end-effector pose of the

robots.

To ensure the desired cooperation performance and limit the communication cost, a dis-

tributed control structure with an event-triggered network is developed, based on the mea-

sured end-effector pose of the serial robot. An adaptive Kalman filter (AKF) is employed

to address uncertain noises in pose estimation. A leader-follower trajectory planning strat-

egy is proposed with the serial robot as the leader and the parallel robot as the follower. A

time-jerk optimal trajectory planning scheme is designed for the serial robot considering

the kinematic and dynamic constraints. To compensate the serial robot motion and satisfy

the AFP geometric constraints, a vision-based trajectory generation approach is developed

for the parallel robot.
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A position-based visual servoing (PBVS) strategy is proposed for the parallel robot in

Cartesian space. To enable the robot to effectively track different trajectories under time-

varying conditions, an adaptive sliding mode control method using radial basis function

(RBF) neural network is developed to guarantee system robustness and realize the self-

tuning of the control gains. In the presence of dynamic uncertainties and external distur-

bances, a distributed control approach based on adaptive sliding mode controller (ASMC)

is developed for the two robots. A deep recurrent neural network (DRNN) is employed to

estimate the lumped system uncertainties. The DRNN demonstrates superior learning capa-

bility and dynamic adaptability compared to shallow feedforward neural networks. Based

on Lyapunov theorem, the stability analyses of the controllers have been done.

The effectiveness and superiority of the proposed algorithms have been validated by

simulation and experiment, and comparisons are made with the previous published work.
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Chapter 1

Introduction

1.1 Background

With the characteristics in terms of great impact flexibility, light weight, and high

stiffness/strength-to-weight ratios [1], fiber composites have been extensively applied in

a number of industrial sectors including aerospace, automobile, renewable energy, and in-

frastructure [2]. By taking place of conventional materials such as steel, aluminum and

titanium alloys, fiber composites contribute a lot to the reduction in operational cost and

industrial emissions. According to the 2024 State of the Industry Report from American

Composite Manufacturers Association, the demand for lightweight aircraft with high fiber

penetration is keeping increasing, i.e. Boeing 787 Dreamliner, Airbus A350XWB and Air-

bus A380 [3]. Furthermore, transportation can become more energy-efficient using fiber

composites in automotive structures. A 10% decrease in the weight of traditional vehicles

may result in a 10% boost in fuel economy for electric vehicles and a 6%-8% enhancement

for internal combustion engines [4].

Automated fiber placement systems can manufacture fiber composites with less pro-

duction time, higher accuracy and lower cost, which has become the preferred manufac-

turing technique for producing composite components in industry. In recent years, it has
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(a) (b)

(c) (d)

Figure 1.1: Automated fiber placement systems in industry. (a) Coriolis C1 [5]. (b) Elec-
troimpact AFP 4.0 machine [6]. (c) Mikrosam Discovery [7]. (d) Scalable Composite
Robotic Additive Manufacturing Carbon/Carbon [8].

witnessed the appearance of different kinds of advanced AFP machines, as presented in

Figure 1.1. Coriolis C1, complied with aerospace standards, is able to fabricate fibers on

the convex or concave panels with double curvatures and complex parts with narrow ra-

dius. AFP 4.0 machine manufactured by Electroimpact can realize the modern composite

airframe production with fewer lamination tools and lower utility consumption. Mikrosam

Discovery employs Kuka Fortec robot to conduct multi-tow or single-tow AFP process

with high reliability. Scalable Composite Robotic Additive Manufacturing Carbon/Carbon
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(a) (b)

(c)

Figure 1.2: Closed-loop structures with complex geometry. (a) Bicycle frame. (b) Turbine
blade. (c) Y-shape and T-shape Tubes.

from Northrop Grumman is capable of layering continuous fiber-reinforced thermoplastics

into components that satisfy the unique demands of hypersonic vehicles.

Nowadays, most of the AFP systems can only produce composite components with

open surfaces or simple revolution shapes. Due to the insufficiency of the system DOFs,

they are not able to manufacture closed-loop structures with complex geometry, such as

bicycle frames, turbine blades of the jet engines, and tubes with T shape or Y shape, as

shown in Figure 1.2. To address this issue, some researchers employ an extra serial robot

or parallel robot to hold the mandrel to improve the DOFs of the system, as indicated in

Figure 1.3. The benefits of large workspace and superior dexterity for fiber layup on com-

plicated geometrical structures can be obtained by integrating two serial robots in the AFP

3



(a)

(b)

Figure 1.3: AFP systems with two robots [9]. (a) Two serial robots. (b) One serial robot
and one parallel robot.

4



system. However, due to the cantilever structure of the serial robot, the precise positioning

ability and load carrying capacity are poor [10]. Parallel robots exhibit better character-

istics than serial robots regarding stiffness, load-to-weight ratio, accuracy and speed [11].

By introducing a parallel robot to the AFP machine, better precise positioning capability

can be achieved. What’s more, parallel robots usually operate in narrower workspace than

serial robots, which can reduce the manufacturing cost of the AFP systems.

To enhance the system stiffness and dexterity for dealing with complex closed-loop

structures, a 13-DOF cooperative AFP system is developed in [12], as presented in Figure

1.4. A 1-DOF rotary stage is adopted for holding a Y-shape mandrel and attached to the

end-effector platform of a 6-RSS parallel robot. An AFP head is manufactured to lay fiber

on the mandrel and attached to the end-effector of a 6-DOF serial robot. A photogrammetry

sensor C-Track 780 is employed to measure the end-effector pose of the robots. Although

cooperative manipulation can achieve good performance in complicated tasks, the control

of cooperative multiple robots poses the major challenges to the researchers in composite

manufacturing areas. Effective control of industrial robots is a challenging task due to a

variety of constraints imposed by the complex kinematics and nonlinear dynamics. Gen-

erally, a two-step solution including trajectory planning and trajectory tracking is used to

cope with robot control problem. Trajectory planning is to calculate a time history of the

robot’s desired positions and velocities, while trajectory tracking aims to ensure that the

robot’s actual positions and velocities match the desired ones. The trajectory planning and

tracking control algorithms considering robot kinematics and dynamics should be investi-

gated for the desired AFP tasks.

1.2 Problems and Motivations

With the aim of successfully placing fiber on the Y-shape mandrel, the efficient trajec-

tory planning and accurate tracking control of the cooperative robotic system are essential.

5



Figure 1.4: 13-DOF cooperative robotic system for AFP.

It is a challenging topic because of the complicated kinematics and nonlinear dynamics of

the two different 6-DOF robots and the complexity of the AFP task.

The cooperation tasks performed by multiple manipulators is usually accompanied by

the design optimization of a communication network [13]. A functional control structure

with real-time data transmission between the 6-DOF serial robot and the 6-RSS parallel

robot is crucial for the success of the AFP task. Trajectory planning of the 6-DOF serial

robot is significant since the kinematic and dynamic constraints of the robot could cause

the interruption of the AFP process [14], which can deteriorate the quality of the composite

components. By considering the inherent motion constraints in the trajectory planning, the

trajectory of the AFP head may be deviated from the desired fiber path [15]. To ensure that

fiber is placed along the desired path, the cooperative motion of the 6-RSS parallel robot

is necessary to compensate the serial robot motion for the purpose of satisfying the AFP

6



geometric constraints.

Due to the fact that the dynamic behavior of high-DOF industrial robots is extremely

anisotropic and nonlinear, the kinematics-based controllers are inadequate to satisfy the

growing demands regarding accuracy and stability in robotic manufacturing. In this case,

it is essential to take into account the dynamics of the robots in the controller develop-

ment, in order to attain the required performance. With the existence of dynamics model-

ing errors, external disturbances, and uncertain noises, discrepancies often arise between

the real robotic system and its nominal dynamic model [16]. To guarantee good track-

ing performance, various advanced control strategies have been proposed to address such

discrepancies in robotic systems. The mechanical tolerances and deflections in the robot

structure can lead to typical differences between a real robot model and its mathematical

model [17]. The relatively low accuracy of industrial robots poses a critical obstacle to ad-

vanced trajectory planning and control techniques integrating computer-aided simulation

and implementation. Therefore, the accuracy enhancement of the robots in the cooperative

AFP system is necessary and worth exploring.

1.3 Scope and Objectives

This Ph.D. project focuses on the trajectory planning and control of the 13-DOF coop-

erative robotic system for fiber placement on the Y-shape mandrel with the desired 0◦ path.

The AFP process generally includes two steps: reference curve generation and offset curve

generation, as demonstrated in Figure 1.5. The orientation of the 0◦ fiber path is parallel

to the axis of each cylinder [18]. Once the reference curve is completed, the 1-DOF rotary

stage will rotate by a defined small angle, then the offset curve can be generated by offset-

ting in the orthogonal direction of the reference curve with a constant geodesic distance.

In this case, it can avoid the large movements of the serial robot between the placement of

two adjacent fiber curves, and the trajectory planning of the two robots can be done with

7



Figure 1.5: 0◦ fiber path on the Y-shape mandrel.

only little adjustments at each step [19].

In order to fulfill the requirement of the cooperative control for the 13-DOF AFP sys-

tem, an efficient communication network for motion information exchange between the

two robots should be developed. To accomplish the fiber placement process, a coopera-

tive trajectory planning approach needs to be designed to ensure that the motion of the

two robots are continuous and smooth without any interruptions, while subjecting to robot

inherent constraints and AFP geometric constraints. To obtain desired trajectory tracking

performance, advanced nonlinear controllers will be proposed for each robot to cope with

system uncertainties. In addition, vision-based pose measurement techniques are adopted

for improving the flexibility and accuracy of the robotic system by measuring the end-

effector pose of the robots in real time. It plays a vital role in the cooperative planning and

control algorithm development in this project.
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The research work of this Ph.D. project is carried out in the following phases. First,

a distributed control structure with an event-triggered communication network is designed

for the cooperative control of the robotic system. Then, a leader-follower trajectory plan-

ning scheme with the serial robot as the leader and the parallel robot as the follower is

proposed. Additionally, a position-based visual servoing approach based on adaptive slid-

ing mode control is developed for the 6-RSS parallel robot. Furthermore, a distributed

adaptive sliding mode control strategy based on deep recurrent network is designed for the

two robots. Simulation and experiment are also conducted in each part for the validations

of the proposed trajectory planning and control algorithms.

1.4 Contributions

Effective trajectory planning and control schemes for the 13-DOF cooperative robotic

system have been developed in this Ph.D. project. The main contributions are summarized

as follows.

(1) A distributed control structure with event-triggered condition is proposed for the

6-DOF serial robot and the 6-RSS parallel robot in the AFP system, based on the measured

real-time pose of the serial robot. It can guarantee the desired cooperation performance and

constrain the workload of the communication network.

(2) With the 6-DOF serial robot as the leader and the 6-RSS parallel robot as the fol-

lower, a cooperative trajectory planning strategy is developed. Considering the robot dy-

namic and kinematic constraints, a time-jerk optimal trajectory planning approach is de-

signed for the serial robot. Relying on the photogrammetry sensor C-Track 780, a vision-

based trajectory generation method is proposed for the parallel robot to compensate the

serial robot motion to satisfy the AFP geometric constraints.

(3) A position-based visual servoing scheme using adaptive sliding mode control is

designed for the 6-RSS parallel robot. An RBF neural network is employed to realize the
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auto-tuing of the control gains in the sliding mode controller. The stability of the controller

is analyzed utilizing Lyapunov theorem. The trajectory tracking performance of the robot

can be enhanced with the real-time pose measurements from the vision sensor and the

proposed controller.

(4) A distributed DRNN-based adaptive sliding mode control approach is proposed

to address the dynamic uncertainties and external disturbances in the cooperative robotic

system. A deep recurrent neural network is designed to approximate the lumped system

uncertainties in a model-based sliding mode controller. Based on Lyapunov theorem, the

stability analysis of the controller is provided. It demonstrates strong robustness and can

realize good trajectory tracking performance for the 6-DOF serial robot and the 6-RSS

parallel robot.

(5) Simulation and experiment have been conducted on the 13-DOF cooperative robotic

system to verify the effectiveness and superiority of the proposed trajectory planning and

tracking control strategies.

1.5 Publications

The following are the publications related to my Ph.D. project and the research work I

got involved during my Ph.D. study, including journal papers and conference papers that

are published, accepted or submitted.

Journal Paper

• N. Zhu and W.-F. Xie, “Distributed adaptive sliding mode control with deep recurrent

neural network for cooperative robotic system in automated fiber placement,” IEEE Trans-

actions on Systems, Man and Cybernetics: Systems. (Submitted)

• R. Zhang, W. Xie, Y. Wang, H. Tan, N. Zhu, and L. Song, “Adaptive finite-time coordina-

tion control of a multi-robotic fiber placement system with model uncertainties and closed

architecture,” IEEE/ASME Transactions on Mechatronics. (Submitted)

10



• H. Shen, W.-F. Xie, and N. Zhu, “Degeneracy-aware full-pose path planning strategy for

robot manipulator,” IEEE Transactions on Systems, Man and Cybernetics: Systems, pp.

1-11, 2024.

• N. Zhu, W.-F. Xie, and H. Shen, “Trajectory planning of cooperative robotic system for

automated fiber placement in a leader-follower formation,” International Journal of Ad-

vanced Manufacturing Technology, vol. 130, no. 1, pp. 575–588, 2024.

• N. Zhu, W.-F. Xie, and H. Shen, “Position-based visual servoing of a 6-RSS parallel

robot using adaptive sliding mode control,” ISA Transactions, vol. 144, pp. 398-408, 2024.

Conference Paper

• N. Zhu, W.-F. Xie, and O. Toker, “Deep-recurrent-neural-network-based adaptive sliding

mode control for a 6-DOF industrial serial robot,” IEEE 22nd International Conference on

Industrial Informatics (INDIN), 2024. (Accepted)

• N. Zhu, W.-F. Xie, and H. Shen, “A leader-follower trajectory planning approach for co-

operative robotic system in automated fiber placement,” IEEE International Conference on

Mechatronics and Automation (ICMA), pp. 1829-1834, 2023.

• N. Zhu, W. Xie, and H. Shen, “Adaptive sliding mode control with RBF neural network-

based tuning method for parallel robot,” 48th Annual Conference of the IEEE Industrial

Electronics Society (IECON), pp. 1-6, 2022.

1.6 Thesis Organization

The organization of the 7 chapters in this thesis is described as follows. In Chapter

1, a brief introduction to this Ph.D. work is provided. In Chapter 2, the literature review

results regarding the trajectory planning and control of cooperative robotic systems are

presented. The experimental setup of the cooperative robotic system and a distributed

control structure with an event-triggered communication network are introduced in Chapter

3. In Chapter 4, a leader-follower trajectory planning scheme for the cooperative robotic
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system is explained. A PBVS-based adaptive sliding mode control approach for the 6-RSS

parallel robot is described in Chapter 5. In Chapter 6, a distributed DRNN-based adaptive

sliding mode control strategy for the cooperative robotic system is illustrated. Conclusion

and potential future work are given in Chapter 7. Simulation and experimental results are

presented in Chapters 4-6 to demonstrate the feasibility and advantages of the proposed

trajectory planning and control strategy.
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Chapter 2

Literature Review

2.1 Introduction

In this chapter, the literature review results on the relevant topics involved in this Ph.D

research work are given. The following topics are discussed: cooperative manipulation

of multiple robots, control structure of cooperative robotic systems, trajectory planning of

cooperative robotic systems, advanced nonlinear control for robotic systems, and visual

servoing for robotic systems.

2.2 Cooperative Manipulation of Multiple Robots

Industrial serial robots can perform operations accurately and repeatedly in various

manufacturing sectors such as casting, painting, sorting, stacking, welding, and so forth

[20]. A serial robot is designed as a series of anthropomorphic links extending from a base

platform to an end-effector with multiple motor-actuated joints [21]. Parallel robots have

extensive applications in industry such as flight simulators [22], radio telescopes [23], reha-

bilitation devices [24], vibration isolators [25], motion simulators [26], and manufacturing

tools [27]. A parallel robot owns a closed-loop mechanism structure and the end-effector
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is actuated by multiple serial chains [28]. The dynamic models of high-DOF serial robots

and parallel robots are quite nonlinear and coupled with time-varying parameters.

Cooperative manipulation is to maintain certain kinematic relationships among robots

during the tracking process [29]. Two cooperative manipulation tasks have been widely

investigated in the past decades, as depicted in Figure 2.1. One is that multiple robots

collaboratively grab a common object to move along the desired trajectories, the other is

that multiple robots track the desired trajectories to achieve a required formation. In [30],

the synchronized control of two cooperative robotic manipulators are studied for rigidly

grasping a circular disc under base coordinate uncertainties. A distributed cooperative

control strategy is proposed in [31] for multirobot systems tracking the desired trajectories

with unknown object dynamics, grabbing positions and external disturbances. In [32],

a constrained optimization approach is designed for the navigation of a team of mobile

manipulators in dynamic environments. The robots can reconfigure the formation to avoid

collisions with static and dynamic obstacles while carrying a rigid object. In [33], the

robust adaptive synchronization formation control of a group of two-link manipulators is

investigated, with the existence of uncertain nonlinearities and parametric uncertainties.

A decentralized formation-based iterative learning impedance control architecture for the

cooperative control of multiple robot manipulators is presented and discussed in [34]. The

mutual synchronization control of multiple robot manipulators with unknown dynamics

and external disturbances is considered in [35], under the circumstance that the desired

trajectory is only available to part of the team robots.

The AFP manufacturing process in the 13-DOF cooperative robotic system is more

complicated than the above-mentioned tasks for the following reasons: (1) Most of the pre-

vious work deals with a group of homogeneous robots, while the cooperative AFP system

is composed of two different types of robots (serial robot and parallel robot). (2) The two

robots hold two different objects (AFP head and Y-shape mandrel). How to satisfy the

14



(a)

(b)

Figure 2.1: Two cooperative manipulation tasks. (a) Grabbing a common object [30]. (b)
Achieving a required formation [33].

15



tracking performance requirements in control of industrial robots has become a sophisti-

cated issue. Therefore, the trajectory planning and control of the cooperative AFP system

is worth investigating and needs to be addressed.

2.3 Control Structure of Cooperative Robotic Systems

The endeavor to accomplish cooperative manipulation by multiple robots normally falls

into three categories [36–38]: centralized control, decentralized control and distributed

control. A brief demonstration of the three control structures with model predictive control

is presented in Figure 2.2. Centralized control systems operate from a central control unit

and exhibit exceptional performance. Nevertheless, they involve increased communication

requirements and are vulnerable to single-point failures and external attacks. In contrast, in

decentralized control, every agent calculates its own control signal and is actuated by the in-

dividual controller. The action decisions are made without exchanging information among

each other, which may lead to a less performant system. Enabling a certain level of com-

munication among agents can enhance the performance of decentralized control, leading to

distributed control. It can avoid complicated communication structures and guarantee the

desired cooperation performance with only limited interacted correspondence.

In practice, high communication workload among multiple agents may impair system

performance and destabilize the entire network. Event-triggered communication structure

[39], where the agents exchange information only upon the fulfillment of specific trigger-

ing conditions, has been served as a solution for saving communication and computational

resources. The distributed control with event-triggered communication network for co-

operative manipulation among multiple homogeneous robots has been explored by some

researchers. In [40], a distributed and event-triggered adaptive control strategy is devel-

oped for cooperative object manipulation with unknown dynamic parameters and rolling
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(a) (b)

(c)

Figure 2.2: Different control architectures based on model predictive control [37]. (a)
Centralized control. (b) Decentralized control. (c) Distributed control. X1, ..., XN and
u1, ..., uM represent system states and actions, respectively.
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contacts. A distributed impedance control algorithm with flexible control design is pro-

posed for cooperative object grasping task in [38], and an event-triggered update method is

designed to decrease the communication rates. In [41], the adaptive fault tolerant control

incorporating collision avoidance is studied for a team of wheel mobile robots, using dis-

tributed state estimators and an event-triggered network with communication constraints.

In [42], a fully distributed event-triggered control network is designed for the formation

control of multiple robots, addressing the problems of dynamic coupling, limited velocity

information, and network transmission load. The proposed cooperative control approaches

in [38, 40–42] have been validated by simulation and experiment. Nonetheless, the topic

regarding distributed control structure with event-triggered conditions remains unresolved,

within the domain of cooperative manipulation with two different kinds of robots, i.e. the

13-DOF AFP system.

2.4 Trajectory Planning of Cooperative Robotic Systems

For the purpose of executing the robot motion, trajectory planning aims to generate the

reference inputs for the robot control system. The geometric path and the kinematic and

dynamic constraints of the robots serve as the inputs to the trajectory planning method. The

output is the desired joint or end-effector trajectory, which is expressed as a time sequence

of position, velocity and acceleration [43].

Trajectory planning of robotic systems based on optimal control has attracted great

attention. Optimal control is to determine the inputs to a dynamic system that minimize a

performance metric and satisfy the motion constraints [44]. Execution time is important for

the applications of industrial robots, thus lots of trajectory planning approaches focus on

generating time-optimal trajectory. Besides, some researchers work on trajectory planning

based on time-jerk optimality by adding a regularization term to penalize jerk in the cost

function. Limiting joint jerks is essential since the excessive jerks can increase actuator
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wear, cause vibrations, and deteriorate tracking speed and accuracy, which will result in

non-smooth robot motion [45].

In [46], for a 4-DOF parallel manipulator with a four-to-two leg structure, a time-

optimal trajectory planning method is developed. It improves the motion performance

by simplifying the kinematics analysis and reducing the kinematics nonlinearity. A time-

optimal trajectory planning scheme is designed for a hyper-redundant manipulator in [47].

It generates an end-effector trajectory for the manipulator considering the presence of ob-

stacles and the velocity and acceleration constraints. In [48], a convex time-optimal tra-

jectory planning approach incorporating jerk constraints is proposed to efficiently gener-

ate smooth trajectories for robotic manipulators. Considering the execution time and the

squared jerk in two objective functions, an optimal trajectory planning method is presented

in [49] for smooth trajectory generation of robot manipulators based on multiquadric ra-

dial basis functions. In [50], multi-objective non-dominated sorting genetic algorithm is

utilized to cope with time-jerk trajectory optimization problem with nonlinear constraints

for robot manipulators. In [51], a path-constrained and collision-free time-jerk optimal tra-

jectory planning algorithm is developed for articulated robots in the presence of obstacles

and kinematic and dynamic constraints of the robot.

Leader-follower control has been broadly studied for the tracking control of cooper-

ative multi-agent systems. The followers have access to the measurement information

of the leader, and the continuous tracking control algorithms are designed for all the

robots [52, 53]. In the presence of parameter uncertainties, actuator failures, and uncertain

time-varying boundary disturbances, a leader-follower consensus control scheme is imple-

mented for a network composed of multiple flexible manipulators in [54]. With the undi-

rected interconnection graph and variable interconnection time-delays, [55] investigates

the leader–follower problem for a team of nonidentical flexible-joint robot manipulators.

In [56], the trajectory tracking control of a 4-DOF leader–follower robotic manipulator
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system is solved based on a grey-box modelling approach and a fuzzy logic controller. In

[57], a synchronized control strategy based on RBF neural network and adaptive control is

developed, for multiple robotic manipulators utilizing the leader–follower communication

topology.

Regarding the cooperative manipulation among multiple robots, the trajectories of the

followers can be determined according to the trajectory of the leader to maintain the re-

quired kinematic relationships. For the 13-DOF cooperative robotic system in this project,

with the existence of the motion constraints of the robots, how to regulate the trajecto-

ries of the serial robot and parallel robot to accomplish the complex AFP task should be

considered.

2.5 Advanced Nonlinear Control for Robotic Systems

To eliminate the discrepancies between the nominal dynamic model and the real robotic

system for enhancing the tracking control performance, many advanced nonlinear control

techniques considering robot dynamics have been developed.

Sliding mode control is recognized for its exceptional robustness against parameter un-

certainties and external disturbances in robot control [58]. Neural networks are known with

powerful mapping and learning abilities to approximate any nonlinear function, which can

effectively address the dynamic uncertainties within model-based nonlinear controllers for

robotic systems [59]. Typically, one-hidden-layer shallow feedforward neural networks re-

quire substantial neurons for adequate approximation of complex functions. This necessity

can result in long training time and high computational complexity. In contrast, deep neu-

ral networks with multiple hidden layers can exhibit superior approximation capabilities

with less computational consumption, especially for complicated dynamic systems with

high DOFs [60]. Feedforward neural networks with multi-layer perceptrons normally lack
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inherent dynamic properties. On the contrary, recurrent neural networks incorporate addi-

tional feedback loops to store and process the dynamic information of the previous steps,

endowing them with stronger dynamic estimation and representation capabilities [61].

In [62], a robust centralized control scheme based on sliding mode control and model

predictive control is presented, for impedance control and reference tracking of redundant

robotic manipulators in operational space. In [63], a robust cascaded vision and force

control approach is designed for industrial robots with model uncertainties and unknown

workpiece interaction. A robust continuous integral sliding mode controller is proposed

using modified supertwisting algorithm for reducing the chattering problem. In [64], an

adaptive incremental sliding mode control approach, including a nominal controller and an

sliding mode controller based on positive semi-definite barrier function, is developed for

a robot manipulator. A second-order-sliding-mode-based synchronization control scheme

is proposed for cable-driven parallel robots in [65]. It aims to guarantee desired trajectory

tracking performance and improve the synchronization motion relationship among all the

cables, in the presence of model uncertainties and external disturbances. A robust finite-

time non-singular terminal sliding mode controller for the trajectory tracking of robot ma-

nipulators with full-state constraints is introduced in [66]. A time-varying gain is designed

to solve the singularity problem in the classical terminal sliding mode controller.

Taking into consideration control input saturation and output error constraints, a tra-

jectory tracking controller for the robot manipulator is presented in [67]. A simplified

RBF neural network structure is employed to approximate the lumped uncertainties of the

robot. In [68], an adaptive admittance control method is proposed for robots to interact

with time-varying environments to guarantee the trajectory tracking performance. An RBF

neural network with a dynamic learning framework is developed to deal with dynamic un-

certainties of the system. In order to minimize the position tracking errors for a five-bar

parallel robot, the differential evolution and a deep neural network are adopted in [69]
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to find the optimal control gains in a cascaded proportional-derivative (PI) controller. In

[70], the adaptive neural trajectory tracking control with bounded inputs is investigated for

cable-driven parallel robots, and an adaptive multi-layer neural network is used to com-

pensate the modeling uncertainties in the system. In [71], a deep convolutional neural

network structure is designed to identify the tool dynamics in bilateral teleoperation. It

can achieve accurate force sensing with fast computation and noise robustness. In [72], the

motion-force control problem for redundant manipulators considering physical constraints

and torque optimization is studied, and a recurrent neural network is established to solve the

modified quadratic-programming problem. In [73], a neural-learning Cartesian admittance

control scheme is proposed for robotic manipulator control. An improved recurrent neural

network is designed to solve the multi-task optimization problem using remote center of

motion constraints.

Recent decades have witnessed the integration of above control techniques for the con-

trol of robotic systems. In [74], an RBF-neural-network-based sliding mode controller

is designed for an uncertain robot. The switching gain is presented as a dynamic model

approximated value, which is generated through the adaptation to the unknown dynamics

and disturbances using the neural network. A neural-network-based sliding mode con-

trol scheme for uncertain industrial robotic manipulator systems with switching loads is

developed in [75]. An RBF neural network is applied for approaching to the plant and

addresses the limitation of the accurate model of the robotic system. In [76], an adaptive

chattering free sliding mode control approach is proposed for the tracking control of re-

dundant parallel manipulators, with an RBF neural network for the estimation of a control

term including modeling uncertainties, frictional uncertainties, and external disturbances.

In [77], a sliding mode control approach based on neural network is proposed for a 6-DOF

robotic manipulator, addressing system uncertainties, input deadzone, and external pertur-

bations. As introduced in [78], for the tracking control of rigid robotic manipulators, a
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deep convolutional neural network is utilized to compensate the uncertainties of the sys-

tem in a fractional-order terminal sliding mode controller, without the prior knowledge of

the upper-bounds. In [79], an optimal integral sliding mode controller for mobile robotic

manipulators under time-varying system uncertainties and external disturbances is studied.

A double feedback recurrent neural network is proposed to approximate nonlinear systems

for enhancing the robustness against system uncertainties.

Although sufficient and valuable research results have been obtained, there are still a

large number of topics to be investigated for the control of high-DOF robotic systems with

the combination of sliding mode control techniques and various neural networks. In this

project, some novel control algorithms regarding this topic will be studied for the 13-DOF

cooperative robotic system.

2.6 Visual Servoing for Robotic Systems

With the increasing demands of highly accurate pose measurements of the robots, the

laser-based and the vision-based tracking systems have been extensively applied in indus-

try. In [80], an autonomous welding strategy using laser structure light is proposed to en-

hance the accuracy of recognizing the complex spatial weld seam. In [81], the weld seam

positioning accuracy in robotic arc welding is increased with the measurements of laser and

vision sensors. Nevertheless, the laser-based tracking technique relies on the laser tracker

with high cost and requires a large and open workspace. In contrast, pure vision-based

system can measure the robot pose using low-cost cameras. By employing the visual guid-

ance technique, an error compensation method is developed to improve the pose accuracy

of industrial robots in [82]. In [83], a monocular-vision-based pose estimation system us-

ing long short-term memory neural network and sparse regression for robotic machining is

presented.

Visual servoing is effective for enhancing the flexibility and accuracy of robotic system.
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The robot is controlled to move from the current pose to the desired pose using the visual

measurement information. There are three kinds of visual servoing schemes: position-

based visual servoing, image-based visual servoing (IBVS), and hybrid visual servoing.

Based on different positions of the vision sensor, the configuration of visual servoing sys-

tem is classified as eye-in-hand and eye-to-hand. In the eye-in-hand configuration, the

camera is mounted on the end-effector of the manipulator, so it is only able to observe the

target. The prior information of the pose transformation between the camera and the end-

effector should be known for the estimation process. In the eye-to-hand configuration, the

camera is located in the workspace of the manipulator as a global sensor. It can observe

the target and the environment simultaneously, and the image information and the robot

motion are completely decoupled.

In PBVS, the control error is represented as the difference between the desired pose and

the current pose of the target in 3D Cartesian space. In [84], an acceleration-based con-

troller is designed within a second-order PBVS framework for a robot manipulator. In [85],

a PBVS strategy using instantaneous inverse kinematic model is developed for a 6-DOF

cable-driven parallel robot to displace heavy payloads. [86] proposes a PBVS control sys-

tem based on dual gradient neural dynamic models for the position and orientation control

of dual robotic arms. For IBVS, the control law is computed based on the image features in

2D image space. In [87], an adaptive switch IBVS controller for industrial robots is devel-

oped. The translational motion and the rotational motion of the camera are decoupled, and

the IBVS control is decomposed into three separate stages with various gains. In [88], an

IBVS method for robot regulation using an uncalibrated eye-to-hand camera is proposed,

and the composite learning mechanism is integrated to improve parameter convergence of

the camera. In [89], a motion sensing system using a 6-Spherical-Prismatic-Spherical (6-

SPS) Stewart platform based on IBVS is established and tested in real-time experiment. In

terms of hybrid visual servoing, it utilizes the 2D and 3D features simultaneously for pose
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estimation. In [90], a trajectory-tracking-based control approach is proposed for a 6-DOF

cable-driven parallel robot to improve the robustness of the hybrid visual servoing, and a

tension correction algorithm is developed further in [91] to deal with cable slackness. In

[92], a hybrid visual servoing approach is designed for omnidirectional mobile manipulator

using a single mounted camera. It can guarantee the system robustness with the appearance

of kinematic uncertainties.

For PBVS, the camera model and target geometric model should be known as the prior

information. It can realize the pose estimation of the target in Cartesian space, which

is important for industrial applications requiring accurate end-effector trajectory tracking.

IBVS is robust to camera calibration errors and target modeling errors, but it encounters

the problems of singularity and local minima of the image Jacobian matrix [93]. Although

hybrid visual servoing combines the advantages of PBVS and IBVS, it suffers from high

computational complexity and is more sensitive to image noises. In this project, a pho-

togrammetry sensor C-Track 780 in the eye-to-hand configuration is able to measure the

real-time pose of the robot end-effector, which makes it convenient and flexible to apply

PBVS for trajectory tracking.

2.7 Summary

A comprehensive literature review on the trajectory planning and control of cooperative

robotic systems is conducted in this chapter. First, current trends of cooperative manipula-

tion tasks are introduced. Most of the previous research focuses on either common object

grasping or formation control of multiple robots. Then, different control structures for

cooperative robotic systems, including centralized control, decentralized control and dis-

tributed control are described. Especially, distributed control with event-triggered commu-

nication network is analyzed. Besides, the introduction to optimal-control-based trajectory

planning technique and leader-follower control of multiple robots is given. In addition,
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advanced nonlinear control techniques for robotic systems, consisting of sliding mode con-

trol and neural network control are presented. Finally, the widely investigated robotic visual

servoing techniques are introduced.
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Chapter 3

Distributed Control of the Cooperative

Robotic System

3.1 Introduction

In this chapter, the experimental setup of the 13-DOF cooperative robotic system with

the control network is introduced. For the effective cooperative control of the AFP system,

a distributed control structure with event-triggered condition is proposed. Different from

[38, 40–42], where the control of multiple homogeneous robots is investigated, the serial

robot and the parallel robot in the system are controlled by individual controllers. The

photogrammetry sensor C-Track 780 in the eye-to-hand configuration is applied to accu-

rately measure the 3D target pose. Therefore, an event-triggered communication network

with low workload and limited information exchange, is established based on the measured

end-effector pose of the serial robot in real time. The principle of the vision-based pose

estimation is also described in this chapter.

The uncertain noises in robotic visual measurements may lower the pose estimation ac-

curacy. Kalman filter (KF) has been widely utilized for localization, navigation, tracking,

perception, estimation, and motion control [94]. It can obtain the estimation results close

27



to the true values with visual measurements containing noises and uncertainties. While

the measurement noise covariance matrix can be predetermined by experiments, the pro-

cess noise covariance matrix should be tuned with the change of the robot motion speed

[95]. However, the dynamics of the robot motion regarding the vision sensor may not be

predicted accurately, which makes it difficult to tune the process noise covariance matrix.

Insufficient noise estimates probably cause the filter divergence and deteriorate the system

performance [96]. To address this issue, an adaptive Kalman filter is employed to update

the covariance matrix of the process noise in this project.

3.2 Experimental Setup of the Cooperative AFP System

The experimental setup of the cooperative robotic system for AFP has been demon-

strated in Figure 1.4. The 6-DOF serial robot is Fanuc M-20iA, a wrist-partitioned ar-

ticulated robotic manipulator with six revolute joints. The 6-RSS parallel robot is Model

710LP-6-500-220 provided by Servo & Simulation Inc. The base platform is connected

with the end-effector through six serial chains. Each serial chain is composed of a link and

a wrench. The end-effector motion is actuated by six revolute joints, while twelve spherical

joints are used to concatenate the links with the end-effector and the wrenches, respectively.

The schematics of the two robots are presented in Figure 3.1. The 1-DOF rotary stage is

AGR75-NC-9DU-BMS-R-3 provided by Aerotech Inc. One three-jaw chuck is attached to

the rotary stage to hold the Y-shape mandrel. The AFP head shown in Figure 3.2 includes

four main subsystems: tow tensioning, feeding and cutting parts, and compaction roller

[97]. The compaction roller is utilized to compress and adhere the fiber to the mandrel

surface. The photogrammetry sensor C-Track 780 is provided by Creaform Inc. It is a dual

camera with the ability of tracking a set of reflectors for real-time pose estimation. The

maximum measuring volume is 7.8 m3, and the sampling frequency is 29 Hz. The two

robots and AFP head can be modeled with frame definitions in the software VXelements,
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(a)

(b) (c)

Figure 3.1: Schematics of the two robots in the AFP system. (a) Fanuc M-20iA robot. (b)
6-RSS parallel robot. (c) Single serial chain of the parallel robot.

and some reflectors are attached on them as the feature points. The pose of the frames

defined in Figure 1.4 w.r.t. the sensor frame Fs can be measured and tracked in real time.
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Figure 3.2: AFP head.

The control network of the cooperative AFP system is presented in Figure 3.3. One

computer is adopted for the control of the serial robot and C-Track 780, the other computer

is employed to control the parallel robot. The real-time communications between the two

computers are established using a DTech RS232 USB to DB9 female serial port cable. The

information of the end-effector pose of the two robots measured by C-Track 780 can be

transmitted from Computer 1 to Computer 2.

3.3 Distributed Control with Event-triggered Communi-

cation Network

Regarding the 0◦ fiber path on the Y-shape mandrel in Figure 1.5, it has been proved in

[14] that the AFP head can place fiber on Branch 1 smoothly by just following the desired

fiber path. However, for Branch 2 and Branch 3, due to the kinematic and dynamic con-

straints of the serial robot, the cooperation of two robots is needed for the accomplishment

of AFP.
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Figure 3.3: Control network of the cooperative AFP system.

The proposed distributed control structure with event-triggered condition is indicated in

Figure 3.4. In this project, the trajectory planning and tracking control of the two robots for

a continuous fiber layup process on Branches 1 and 2 with 0◦ fiber path is investigated. The

desired trajectories can be pre-planned offline, and individual controllers are applied for

the control of the two robots. As for Branch 1, the serial robot can successfully move along

the intended fiber path while the parallel robot keeps stationary. The cooperative motion of

the parallel robot should be executed for Branch 2. As the AFP head reaches the start point

of the fiber path on Branch 2, the end-effector pose information of the serial robot can be

received by the photogrammetry sensor C-Track 780. Then the triggering condition for the

parallel robot movement is satisfied, a triggering signal will be sent from Computer 1 to

Computer 2 to start the motion of the parallel robot.

31



Figure 3.4: Distributed control structure of the cooperative robotic system.

3.4 Pose Estimation

The photogrammetry sensor C-Track 780 can measure the pose of a target with a se-

ries of reflectors serving as the feature points. In this section, the pose estimation prin-

ciple is explained for measuring the end-effector pose of the 6-DOF serial robot. The

objective is to measure the pose of Fes w.r.t. Fs in Figure 1.4, which is defined as Es =

[xs, ys, zs, αs, βs, γs]T , where [xs, ys, zs]T and [αs, βs, γs]T represent position and orienta-

tion, respectively.

Assuming the number of reflectors is n, the homogeneous coordinate of each feature

point in Fs is given as sPi = (xsi , y
s
i , z

s
i , 1), i = 1, 2..., n, and the homogeneous coordinate

of each feature point on the jth image plane is denoted as mPij = (uij, vij, 1), j = 1, 2.

The projection matrix and camera matrix of the jth camera are defined as m
j T and Bj ,

respectively, which can be known by calibration process. The perspective projection of
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C-Track 780 is described as

mPij = m
j T

sPi,
m
j T = Bj

m
s Tj (3.1)

where m
s Tj is the homogeneous transformation matrix between Fs and the jth camera

frame.

The homogeneous transformation matrix between Fes and Fs is calculated as

s
esT =

R(αs, βs, γs) (xs, ys, zs)T

0 0 0 1

 (3.2)

where R(αs, βs, γs) is the rotational matrix given as

R =


cαscβs cαssβssγs − sαscγs cαssβscγs + sαssγs

sαscβs sαssβssγs + cαscγs sαssβscγs − cαssγs

−sβs cβssγs cβscγs

 (3.3)

where sαs = sin(αs) and cαs = cos(αs). The homogeneous coordinate of each feature

point in Fes can be known as esPi = (xesi , y
es
i , z

es
i , 1) after Fes is defined. The transforma-

tion between esPi and sPi is formulated as

sPi = s
esT

esPi (3.4)

where sPi can be computed using Eq. (3.1). According to [98], by selecting more than

three non-collinear feature points, a unique solution for Es can be obtained using Eqs.

(3.2)-(3.4). Therefore, the pose of Fes w.r.t Fs at different moments can be tracked.
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3.5 Adaptive Kalman Filter

An adaptive Kalman filter is utilized to deal with sensor noises in visual measurements

to guarantee the pose estimation accuracy. The measurement noise covariance matrix can

be determined based on the residual errors of the static measurements from the vision

sensor [99], thus the AKF is only applied for updating the covariance matrix of the process

noise. The details of this approach are presented as follows.

Let k be the sampling step, the state vector of the serial robot including pose and veloc-

ity is given as

Ψk,k = [x(k), y(k), z(k), α(k), β(k), γ(k), ẋ(k), ẏ(k), ż(k), α̇(k), β̇(k), γ̇(k)]T . (3.5)

The predicted state Ψ̂k,k−1 at step k can be calculated based on the estimated state

Ψ̂k−1,k−1 at step k − 1, and the prediction of error covariance Pk,k−1 at step k can also be

obtained. The prediction is expressed as

Ψ̂k,k−1 = AΨ̂k−1,k−1 +Wk−1 (3.6)

Pk,k−1 = APk−1,k−1A
T +Qk−1 (3.7)

where A ∈ R12×12 is the state transition matrix, the diagonal elements of A are all given

as 1, Ai,i+6 = T , T is the sampling interval, and i = 1, 2, ..., 6. The process noise Wk−1 is

zero-mean Gaussian noise with the covariance matrix Qk−1.

The state measurement equation is given as

Zk = HΨk + Vk (3.8)

whereZk ∈ R6 is the pose measurement at step k,H ∈ R6×12 is the measurement transition
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matrix, and the measurement noise Vk is zero-mean Gaussian noise with the covariance

matrix Sk. In this project, Zk can be acquired from the C-Track 780 directly, and Hk is

defined as [I6∗6, 06∗6].

The Kalman gain Kk, estimated state Ψ̂k,k and estimated error covariance Pk,k at step

k can be updated as follows:

Kk = Pk,k−1H
T (HPk,k−1H

T + Sk)
−1 (3.9)

Ψ̂k,k = Ψ̂k,k−1 +Kk(Zk −HΨ̂k,k−1) (3.10)

Pk,k = Pk,k−1 −KkHPk,k−1. (3.11)

According to [96], an adaptation law is performed to update Qk. The process noise is

estimated as

ζ̂j = Ψ̂j,j−1 − AΨ̂j−1,j−1 (3.12)

where j = k − N, ..., k, and N is the window length of the previous measurements for

adaptation. Then one defines

∆k = APk−1,k−1A
T − Pk,k. (3.13)

The process noise covariance matrix is updated using

ζ̄k = ζ̄k−1 +
1

N
(ζ̂k − ζ̂k−N) (3.14)

Qk = Qk−1 +
1

N − 1

(
(ζ̂k − ζ̄k)(ζ̂k − ζ̄k)T − (ζ̂k−N − ζ̄k)(ζ̂k−N − ζ̄k)T

+
N − 1

N
(∆k−N −∆k) +

1

N
(ζ̂k − ζ̂k−N)(ζ̂k − ζ̂k−N)T

)
.

(3.15)

The diagonal elements of Qk should be set as their absolute values to ensure that Qk is
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positive definite.

3.6 Summary

In this chapter, the hardware setup and control network of the 13-DOF cooperative

robotic system are introduced. To maintain the functional collaborative control of the AFP

system, a distributed control structure based on an event-triggered communication network

is proposed. Two individual controllers are applied to control the serial robot and the par-

allel robot, respectively. The photogrammetry sensor C-Track 780 is employed to realize

the accurate end-effector pose estimation of the serial robot. The information transmission

between the two robots starts only when the predefined condition is satisfied. An adaptive

Kalman filter is adopted to address the uncertain noises in visual pose estimation.
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Chapter 4

Leader-follower Trajectory Planning for

the Cooperative Robotic System

4.1 Problem Formulation

The desired trajectory generation for the two robots is crucial for the accomplishment

of the AFP task. One main obstacle is that the kinematic and dynamic constraints of the

serial robot may disrupt the AFP process, which has severe influence on the final product

quality. Trajectory planning of industrial robots with the consideration of time and jerk

optimality can guarantee the desired execution time and trajectory smoothness. Taking into

account the complicated geometry of the Y-shape mandrel and the desired 0◦ fiber path,

this Ph.D. project aims to design an optimal trajectory planning algorithm in joint space

for the serial robot, while subjecting to the motion constraints and maintaining the smooth

AFP operational process.

Considering the efficient real-world applications, it is judicious to solve optimal con-

trol problems by numerical methods, which are categorized into two types: indirect and

direct. Since it is sophisticated to realize the initialization and derivation of the optimal

conditions in indirect methods [100], direct methods have been more widely applied. For
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direct methods, the continuous-time optimal control problem is converted into a discrete

nonlinear program (NLP) by transcription, and a nonlinear optimization solver is imple-

mented to get the optimal solutions [101]. Direct methods are classified into two classes:

shooting and collocation. Shooting approaches approximate the system states through a

simulation. However, for complicated problems, the nonlinear relationships between the

decision variables and the objective functions may not be well approximated using the lin-

ear or quadratic models in the NLP solvers [102]. Collocation approaches are much more

powerful to cope with optimal control problems. The system states are represented using

decision variables at the collocation points directly. When the roots of orthogonal poly-

nomials such as Chebyshev or Legendre are selected as the collocation points, it is known

as orthogonal collocation [103]. To address the trajectory optimization of the serial robot,

pseudospectral method is adopted to realize the transcription, and interior point method

together with automatic differentiation is employed for solving NLP.

The required kinematic relationships should be maintained among robots in cooperative

manipulation tasks. As illustrated in [15], by following the planned optimal trajectory, the

AFP head path may deviate from the desired fiber path, and the AFP head roller direction

may not satisfy the requirement of keeping perpendicular to the mandrel surface. Under this

circumstance, the 6-RSS parallel robot should move to compensate the serial robot motion

and satisfy the AFP geometric constraints, which can guarantee that fiber is placed with

the desired angle 0◦. Vision-based tracking systems have seen widespread applications in

industry by satisfying the demands of precise pose measurements for robots. In this Ph.D.

project, the photogrammetry sensor C-Track 780 is able to measure the pose of a given

target with high accuracy and reliability, which can contribute to the trajectory generation

of the parallel robot.
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4.2 Contributions

Regarding the trajectory planning of the 13-DOF cooperative AFP system, [14] designs

a synchronized semi-offline trajectory planning method by adding real-time corrections to

the pre-planned trajectory. When the serial robot reaches the singularities or joint con-

straints, the offset motion will be generated for the parallel robot. In order to maintain

certain kinematic relationships with the parallel robot, the compensation motion of the se-

rial robot will be computed, which can free the robot motion from the singularities and

joint constraints. The C-Track 780 is adopted to acquire the pose measurements of the two

robots for calculating the compensation and offset motion.

This Ph.D. project works on the cooperative trajectory planning from a new perspective.

The main contributions are described as follows:

(1) To deal with the cooperative manipulation problem in the 13-DOF AFP system, a

leader-follower trajectory planning strategy is proposed. The 6-DOF serial robot with the

AFP head is employed as the leader, while the 6-RSS parallel robot holding the Y-shape

mandrel through the 1-DOF rotary stage serves as the follower. It is different from the

leader-follower formation utilized for the synchronization control of the AFP system in

[104].

(2) Considering the robot kinematic and dynamic constraints, a time-jerk optimal tra-

jectory planning scheme is designed for the serial robot. Compared with [14], the trajectory

planning in this project is conducted in joint space rather than Cartesian space. The planned

joint-space trajectory can effectively avoid the joint singularities, which may occur in the

calculation of inverse kinematics if a specific Cartesian-space trajectory is given [51]. In

addition, the joint constraints associated with the physical limitations of the robot actuators

are also considered.

(3) For the serial robot trajectory optimization, a cost function different from the ones

in [49–51, 105] is defined to balance the motion time and the trajectory smoothness. While
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B-splines and multiquadric radial basis functions are employed for trajectory interpolation

in [49, 50], respectively, pseudospectral method is adopted in our work to realize the tran-

scription. It can increase the solution accuracy using high-order orthogonal polynomials

[44] and achieve the exponential convergence rate in the order of the polynomials [103].

Interior point method together with automatic differentiation is implemented for solving

NLP. Our work focuses on generating the trajectory with high smoothness and reasonable

motion time, while [105] aims to plan the time-optimal trajectory with certain smooth-

ness. Additionally, our work involves the cooperation of two robots rather than just one

serial robot, it requires more accurate positioning at the initial and final time and results in

narrower reachable workspace of the serial robot end-effector.

(4) A vision-based trajectory generation approach is proposed for the parallel robot. It

ensures that fiber can be placed along the desired path by compensating the serial robot

motion to satisfy the AFP geometric constraints. With the pose measurements of the C-

Track 780, the desired parallel robot trajectory can be planned according to the desired

trajectory of the start point on the given fiber path. In [106, 107], the trajectory planning of

the parallel robot is conducted based on the robot kinematics and the constant-orientation

workspace method, where the 3D workspace can be obtained by tracking the position of

a defined point on the motion platform with a constant orientation. However, the visual

measurement technique is not involved for improving the positioning accuracy.

(5) Simulation and experimental validations of the proposed trajectory planning strat-

egy have been conducted on the 13-DOF cooperative robotic system, and comparison re-

sults demonstrate its superiority over the trajectory planning algorithm in [14].

The organization of the remainder in this chapter is described as follows. At first,

the leader-follower trajectory planning strategy is described. Then, the time-jerk optimal

trajectory planning scheme for the 6-DOF serial robot is illustrated, and the vision-based
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Figure 4.1: Leader-follower trajectory planning strategy.

trajectory generation approach for the 6-RSS parallel robot is introduced. Moreover, simu-

lation and experimental results are demonstrated. The final section concludes the work of

this chapter.

4.3 Leader-follower Trajectory Planning

The frame definitions of the 13-DOF cooperative AFP system are shown in Figure 1.4,

including serial robot base frame Fbs and end-effector frame Fes, AFP head roller frame

Fr, parallel robot base frame Fbp and end-effector frame Fep, and vision sensor frame Fs.

Note that the orientation of Fr is defined the same as the orientation of Fes along all the

three axes, and there is a translation between the origins of the two frames. During the AFP

process, the relative pose between Fr and Fes will remain constant.

According to [14], the AFP head is able to place fiber along the desired path on Branch

1 without any interruptions. Unfortunately, due to the dynamic and kinematic constraints of
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the serial robot, the AFP head cannot move freely along the desired fiber path on Branches

2 and 3, thus the cooperative motion of the two robots is necessary to accomplish the AFP

work. The proposed trajectory planning strategy is demonstrated in Figure 4.1. The serial

robot works as the leader and the parallel robot works as the follower. A time-jerk optimal

trajectory planning scheme is proposed for the serial robot. To compensate the motion of

the serial robot, a vision-based trajectory generation method is designed for the parallel

robot based on the geometric constraints of AFP. In the following sections, the details of

the trajectory planning strategy are presented.

4.4 Trajectory Planning of the 6-DOF Serial Robot

4.4.1 Time-jerk Optimal Trajectory Planning Problem

The dynamics of the 6-DOF serial robot is represented as [10]

M (q) q̈ + C (q, q̇) q̇ +G (q) + τf = τ (4.1)

where q ∈ R6, q̇ ∈ R6 and q̈ ∈ R6 are position, velocity and acceleration of the robot

joints, respectively. M (q) ∈ R6×6, C (q, q̇) ∈ R6×6, G (q) ∈ R6, τf ∈ R6, and τ ∈ R6

represent inertia matrix, Coriolis and centrifugal matrix, gravitational term, frictional term,

and control input, respectively.

Let the system state be X = [XT
1 , X

T
2 ]T , where X1 = q and X2 = q̇, and control input

U = τ . Trajectory optimization is a technique to get an open-loop solution to an optimal

control problem. Given the initial and final joint states, by adjusting the decision variables

including final time tf , state sequence X , as well as control sequence U , the robot should

be able to move from the start point to the end point freely and smoothly, while satisfying

the motion constraints and minimizing a cost function J .
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The cost function J has great influence on the optimization performance and determines

the robot motion quality. Regarding the AFP manufacturing, it is a wise choice to define

a cost function consisting of a term related to the final time tf and a regularization term

related to the trajectory smoothness. To achieve the time-jerk optimality, the cost function

in this work is established as

J = λtf + (1− λ)

∫ tf

0

...
q T (t)R

...
q (t)dt (4.2)

where 0 < λ < 1 is the weight,
...
q (t) is the joint jerk, and R is a positive diagonal matrix.

Minimizing joint jerks can reduce actuator wear and vibration, and guarantee high tracking

accuracy.

The dynamic and kinematic constraints of the 6-DOF serial robot are introduced as

follows, where i = 1, 2, ..., 6.

(a) System dynamics

To describe how the system changes through time, a group of differential equations can

be formulated for modeling the nonlinear dynamics of the robot. The dynamic model of

the robot is rewritten as
Ẋ1 = X2

Ẋ2 = M−1(X1) (U − C (X1, X2)X2 −G (X1)− τf )
=: F. (4.3)

Therefore, the dynamics of the robot can be represented as

Ẋ(t) = F (X(t), U(t)). (4.4)

(b) Path constraints

To enforce the restrictions along the trajectory, the path constraints in terms of position,
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velocity, torque and torque rate of each joint are assigned as

Position : qmini ≤ qi(t) ≤ qmaxi ,

Velocity : q̇mini ≤ q̇i(t) ≤ q̇maxi ,

Torque : τmini ≤ τi(t) ≤ τmaxi ,

Torque rate : τ̇mini ≤ τ̇i(t) ≤ τ̇maxi .

(4.5)

(c) Boundary constraints

Assuming the robot is stationary at the initial and final time, the boundary constraints

that impose restrictions on the initial and final states, including position, velocity and ac-

celeration are given as

Position : qi(0) = q0
i , qi(tf ) = qfi ,

Velocity : q̇i(0) = 0, q̇i(tf ) = 0,

Acceleration : q̈i(0) = 0, q̈i(tf ) = 0,

(4.6)

where q0
i and qfi represent the joint positions at the initial and final time, respectively.

4.4.2 Trajectory Optimization Scheme

Direct method is employed to deal with the trajectory optimization of the serial robot.

It mainly includes two aspects: transcription and optimization. First, the continuous-time

optimal control problem is discretized into a nonlinear program through transcription. In

general, the state and control sequences are discretized along the time slot and represented

using the values at the discrete points or knots. Second, a specific nonlinear optimiza-

tion solver is utilized to solve NLP to get the optimal results. Pseudospectral method is

adopted to realize the transcription in this work, and the implementation of this method is

via Chebfun [108] in MATLAB. The details of pseudospectral method are introduced as
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follows.

(a) Knots calculation

Regarding optimal control, the functions in the time domain t ∈ [0, tf ] need to be

mapped to the interval ξ ∈ [−1, 1]. The mapping can be done by

ξ = 2
t

tf
− 1. (4.7)

The interpolation points are often defined as the roots of orthogonal polynomials. The

Legendre orthogonal polynomials are popularly utilized, but there are no closed-form so-

lutions for the roots and they must be calculated numerically [103], while the roots of the

Chebyshev orthogonal polynomials are easier to compute. In this work, the Chebyshev-

Lobatto points are chosen as the interpolation points, given as

ξi = cos

(
πi

N

)
, (4.8)

where i = 0, 1, ..., N , and the number of interpolation points is defined as N + 1.

In review of Eqs. (4.7) and (4.8), the interpolation knots for t ∈ [0, tf ] can be calculated

as

Ki =
tf
2

(
cos

(
πi

N

)
+ 1

)
. (4.9)

In the transcription, X(t) and U(t) will be discretized at different knots as {X(Ki), i =

0, 1, ..., N} and {U(Ki), i = 0, 1, ..., N}, respectively.

(b) Interpolation

Barycentric Lagrange interpolation [109] is an efficient way to evaluate high-order

polynomials. The function value at each point is represented by a weighed combination

of the function’s value at the interpolation knots. The system state and control sequences
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can be formulated as

Xj(t) =
N∑
i=0

Xj(Ki)Li(t),

Uj(t) =
N∑
i=0

Uj(Ki)Li(t),

(4.10)

where j = 1, 2, ..., 6, and Li(t) is the ith Lagrange polynomial as illustrated in [109], which

is given as

Li(t) =
∏
n 6=i

(t−Kn)

/∏
n 6=i

(Ki −Kn)

=
N∏
n=0

(t−Kn)

/(
(t−Ki)

∏
n 6=i

(Ki −Kn)

)
, t 6= Ki.

(4.11)

If t = Ki, then Li(Ki) = 1, otherwise the interpolation weights µi can be described as

µi =
1∏

n 6=i(Ki −Kn)
. (4.12)

By defining L(t) =
∏N

n=0(t−Kn), then Eq. (4.11) can be formulated as

Li(t) =
L(t)µi
t−Ki

. (4.13)

The interpolation will be adopted to obtain the solution to the continuous-time optimal

control problem after the discrete NLP has been solved.

(c) Differentiation

Orthogonal polynomials are easy to differentiate. The calculated differentiation matrix

can establish a series of constraints to enforce the system dynamics. The state and control
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sequences at different interpolation knots can be integrated and expressed as

X̃j =


Xj(K0)

...

Xj(KN)

 , Ũj =


Uj(K0)

...

Uj(KN)

 . (4.14)

The derivatives of Eq. (4.14) are calculated as

dX̃j

dK
=

2

tf
DxX̃j,

dŨj
dK

=
2

tf
DuŨj (4.15)

whereDx andDu are the differential matrices introduced in [109] for computing the deriva-

tives of X̃j and Ũj , respectively. The element in the kth row and mth column of the differ-

entiation matrix can be calculated as

Dkm =


µm/µk
ξk − ξm

, k 6= m,

−
∑
k 6=m

Dkm, k = m.
(4.16)

(d) Integration

Since the Chebyshev-Lobatto points are employed, the Clenshaw-Curtis quadrature rule

[110] is adopted for the calculation of integrals. The integral term in Eq. (4.2) can be

computed as ∫ tf

0

...
q T (t)R

...
q (t)dt =

N∑
i=0

wi
...
q T (Ki)R

...
q (Ki) (4.17)

where wi is the quadrature weight at the ith interpolation knot as mentioned in [110], which

is expressed as

wi =

∫ tf

0

Li(t)dt. (4.18)
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Figure 4.2: Principles of four differentiation approaches [111]: manual differentiation,
numerical differentiation, symbolic differentiation and automatic differentiation.

Referring to ξ ∈ [−1, 1], Eq. (4.18) can be rewritten as

wi =

∫ tf

0

Li(t)dt =
tf
2

∫ 1

−1

L′i(ξ)dξ (4.19)

where

L′i(ξ) =
(−1)i

ξ − ξi

/[
N−1∑
a=1

(−1)a

ξ − ξa
+

1

2

(
1

ξ − ξ0

+
(−1)N

ξ − ξN

)]
. (4.20)

The gradient-descent-based techniques are commonly utilized as the optimization

solvers. In particular, interior point method has been successfully implemented for lin-

ear, conic and nonlinear optimization. The details of interior point method can be referred

in [112].

Several approaches for the computation of derivatives have been applied in the field of
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machine learning, as shown in Figure 4.2. Manual differentiation is prone to errors and

time-consuming. Numerical differentiation may be highly inaccurate due to round-off er-

rors and cause high computation consumption for the inputs with large dimensions [113].

Symbolic differentiation is able to avoid the problems of manual differentiation and nu-

merical differentiation, but it can result in complex expressions and inefficient codes [113].

Numerical differentiation and symbolic differentiation also encounter difficulties for calcu-

lating high-order derivatives. To address the above problems, automatic differentiation has

been developed and broadly applied for engineering design optimization. By incorporating

derivative values and redefining the operator semantics to propagate derivatives according

to the chain rule of differentiation calculus [111], it performs better than the other three dif-

ferentiation methods. To apply interior point method and automatic differentiation, CasADi

[114] is incorporated in MATLAB to solve the NLP in this work.

4.5 Vision-based Trajectory Generation of the 6-RSS Par-

allel Robot

In terms of the desired fiber path AB on Branch 2 in Figure 1.5, a time-jerk optimal

trajectory can be planned for the AFP head from point A to point B subject to the dynamic

and kinematic constraints of the serial robot. Under this circumstance, the AFP head path is

deviated from the desired fiber path, and the direction of the roller in the AFP head cannot

meet the demand of keeping perpendicular to the mandrel surface. To address this problem,

the parallel robot needs to move to compensate the serial robot motion in order to satisfy

the AFP geometric constraints.

The trajectory planning in this section aims to maintain the kinematic relationships

between the roller in the AFP head and the Y-shape mandrel surface. In order to ac-

complish the AFP task, the desired trajectory of the start point A on the mandrel can
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Figure 4.3: Trajectory generation approach for the start point A.

be defined. Thanks to C-Track 780, the pose of different frames w.r.t. Fs in Figure 1.4

can be measured. As a result, the desired trajectory of the parallel robot end-effector can

be generated thereafter. The trajectory generation approach for the start point A is il-

lustrated in Figure 4.3, where ACB denotes the desired fiber path, and AC0B denotes

the time-jerk optimal trajectory for the AFP head. Assuming there are m waypoints on

AC0B along the time slot t = [t1, t2, ..., tm]T , and the corresponding positions of Fr are

ζj = [xrj , y
r
j , z

r
j ]
T , j = 1, 2, ...,m. With the origin located at point A, Fa is defined with the

same orientations as Fr along the three axes at the initial time. The homogeneous transfor-

mation matrix between Fa and Fep should remain constant during the AFP process, which

will be referred as T0 in the following parts. When the AFP head moves to point C0 at time

tc, a frame Fc0 can be defined the same as Fr in all the six dimensions. The tangent at point

C0 can be obtained in 3D space with the direction vector P = [p1, p2, p3]T given as

pi =
ζc(i)− ζc−1(i)

tc − tc−1

, i = 1, 2, 3. (4.21)

The Y-shape mandrel is a rigid model, and the roller direction should be perpendicular

50



to the mandrel surface at time tc, thus we can define
−→
AB⊥

−−→
C0C and

∣∣∣−−−→A0C0

∣∣∣ =
∣∣∣−→AC∣∣∣, then

the position of point A0 in Figure 4.3 can be determined. At time tc, the start point A

needs to be located at the position of point A0 such that the AFP geometric constraints

can be satisfied. Therefore, the desired trajectory of point A within the time slot t can be

generated.

In Figure 4.3, Fa0 is defined with the origin located at point A0, thus the translation

[x0
ac, y

0
ac, z

0
ac]

T between the origins of Fa0 and Fc0 is known, and the homogeneous trans-

formation matrix between the two frames can be computed as

c0
a0T =



1 0 0 x0
ac

0 1 0 y0
ac

0 0 1 z0
ac

0 0 0 1


. (4.22)

The desired homogeneous transformation matrix s
epT between Fep and Fs at time tc can

be calculated by

T0 = s
epT

−1s
c0T

c0
a0T (4.23)

where s
c0T is the homogeneous transformation matrix between Fc0 and Fs.

The desired homogeneous transformation matrix between Fep and Fbp at time tc can be

obtained as

bp
epT = s

bpT
−1s

epT (4.24)

where s
bpT is the homogeneous transformation matrix between Fbp and Fs. Therefore, the

desired end-effector pose of the parallel robot at time tc is determined. Based on such

principle, the desired end-effector trajectory within the time slot t can be obtained, which

will be utilized as the reference trajectory for the control of the parallel robot.

The desired end-effector motion of the parallel robot needs to satisfy the workspace
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(a)

(b)

Figure 4.4: Simulation results of the leader-follower trajectory planning approach.

limit analyzed in [106]. The joint states of the parallel robot can be uniquely determined

from the end-effector pose based on inverse kinematics. The desired joint states should be

calculated to ensure that the actuator motion is within the singularity-free and bifurcation-

free range (−0.9948 rad, 0.9948 rad) [107].
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(a)

(b)

(c)

Figure 4.5: Scaled joint velocities, torques and torque rates in the simulation.
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Figure 4.6: AFP head movements along Branch 1 and the intersection part between Branch
1 and Branch 2 at different moments in Test 1.

4.6 Simulation and Experimental Results

4.6.1 Simulation Tests

In the simulation, the time-jerk optimal trajectory planning method for the serial

robot and the trajectory generation approach for the start point A are validated. The

modeling of the AFP head is not considered, and Fr is defined the same as Fes. The

initial and final joint states of the serial robot are designed as [0, 0, 0, 0, 0, 0]T and

[π/6, π/6,−π/3,−π/6, π/4, π/6]T , respectively, λ in Eq. (4.2) is given as 0.3, and the

number of knots in pseudospectral method is defined as 10. The positions of the start point

A and the end point B can be calculated using robot forward kinematics. The optimal tra-

jectory is planned for the serial robot first, then the desired trajectory of the start point A is

generated.

The trajectory planning results are shown in Figure 4.4. It is obvious that the planned

trajectories for the serial robot and point A are smooth, which is crucial to finish the AFP

task in real applications. The scaled joint velocities, torques and torque rates along the

optimal trajectory are illustrated in Figure 4.5. It can be seen that they are all bounded

within the actuator limits, thus the optimal trajectory planning method is implementable

for the serial robot. The motion time is 3.5218 s, which can be adjusted by tuning λ. The

smaller λ will lead to smoother trajectory but longer motion time.
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4.6.2 Experimental Tests

The experimental tests focus on validating the trajectory planning strategy for the coop-

erative robotic system without laying the real fiber on the mandrel surface. The geometric

constraints that should be satisfied in the experiment include two aspects: (1) The roller

direction should be perpendicular to the mandrel surface during the motion. (2) A small

constant distance d = 0.015 m along the roller direction is defined and needs to be main-

tained between the roller and the mandrel surface. The trajectory planning strategy is tested

with a continuous fiber path along Branch 1 and 2 on the Y-shape mandrel, as indicated in

Figure 1.5.

The AFP head movements along Branch 1 and the intersection part of the two branches

at different moments are illustrated in Figure 4.6, where the AFP head can successfully

follow the desired fiber path. In order to pass the intersection part, the constant distance

d is maintained but the roller direction is not strictly perpendicular to the mandrel surface

along Branch 1. In this case, the desired fiber path can still be followed due to the fact that

the roller is with a cylindrical shape. While for Branch 2, the roller direction will be set

as perpendicular to the mandrel surface at the start point and the end point. The time-jerk

optimal trajectory will be planned for the AFP head first, then the desired trajectory of the

parallel robot will be generated. The comparisons will be made between the leader-follower

trajectory planning strategy and the trajectory planning algorithm in [14].

When the AFP head is at the start point and the end point, the initial joint state q0 and

the final joint state qf of the serial robot can be obtained as


q0 = [−55◦, 55◦,−40◦,−0.7◦, 95◦,−13◦]T ,

qf = [−45◦, 35◦,−50◦,−0.7◦, 95◦,−13◦]T .

(4.25)

Test 1: The motion time regarding the optimal trajectory planning along Branch 2 can

be adjusted by tuning λ in Eq. (4.2). Larger λ can lead to higher trajectory smoothness and
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(a)

(b) (c)

(d) (e)

Figure 4.7: Time-jerk optimal trajectory planning results for the serial robot.
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(a)

(b)

(c)

Figure 4.8: Desired end-effector pose and joint motion of the parallel robot.
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Figure 4.9: Cooperative motion of the two robots for the fiber placement on Branch 2 at
different moments in Test 1.

longer motion time. In this experiment, λ is set as 0.08, and the number of interpolation

knots in pseudospectral method is designed asN+1 = 10. The generated time-jerk optimal

trajectory for the serial robot, the desired joint positions, and the scaled joint velocities,

torques and torque rates are demonstrated in Figure 4.7. The motion time is 6.2128 s,

and it is obvious that the joint velocities, torques and torque rates are all bounded within

the robot actuator limits. According to the vision-based trajectory generation approach,

the desired trajectory of the parallel robot, namely, the desired pose of Fep w.r.t. Fbp can

be generated, as shown in Figure 4.8 (a) and (b). Based on the inverse kinematics of the

parallel robot, the desired joint motion can be calculated, as illustrated in Figure 4.8 (c).

The desired end-effector motion is within the reachable workspace, and the joint motion is

singularity-free and bifurcation-free.
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(a)

(b)

Figure 4.10: Joint position tracking errors of the serial robot in Test 1.

The cooperative motion of the two robots for the fiber placement on Branch 2 at dif-

ferent moments are demonstrated in Figure 4.9. The motion of the two robots are con-

tinuous and smooth without any interruptions, and the AFP geometric constraints can be

maintained at the same time. The joint position tracking errors of the serial robot are

presented in Figure 4.10. To further evaluate the tracking performance, the error indexes

including mean absolute error (MAE) and root mean square error (RMSE) are presented

in Table 4.1. The trajectory tracking can converge fast and small tracking errors can be
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(a)

(b)

Figure 4.11: Pose tracking errors of the parallel robot in Test 1.

achieved for all the six joints. No actuator limits, joint singularities or joint limits have

been encountered. The planned time-jerk optimal trajectory is implementable for the se-

rial robot. The pose tracking errors of the parallel robot end-effector are shown in Figure

4.11, and the error indexes MAE and RMSE are given in Table 4.2. Good convergence

speed and high tracking accuracy can be realized for all the six dimensions. A video of

the leader-follower trajectory planning results in Test 1 can be found through the following
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(a)

(b)

Figure 4.12: Position tracking errors of the serial robot end-effector in the two tests. (a)
Test 1. (b) Test 2.

link https://www.youtube.com/watch?v=yOt-Kp1m0J0.

Test 2: As indicated in [14], while the AFP head is following the desired fiber path on

Branch 2, joint 5 will reach to its limit 120◦, which makes the robot stop at the limit point

and interrupts the AFP process. In this test, when joint 5 reaches to 119◦, the offset motion

of the parallel robot is generated, and then the compensation motion of the serial robot is

calculated. In this way, the limit point of joint 5 can be avoided and the serial robot can

complete the rest of the trajectory. Since the trajectory planning of the serial robot is done
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Table 4.1: Joint position tracking error indexes of the serial robot in Test 1

Position (10−3 rad) MAE RMSE

Joint 1 1.82 2.5

Joint 2 1.9 2.64

Joint 3 2.55 3.1

Joint 4 1.49 1.79

Joint 5 1.61 1.91

Joint 6 1.63 1.92

in Cartesian space, the end-effector speed is set as 30 mm/s. The total motion time in Test

2 is around 6.9 s.

The comparisons between the two tests are made by evaluating the position tracking

performance of the serial robot end-effector. The tracking errors are shown in Figure 4.12,

and the error indexes MAE and RMSE are given in Table 4.3. Good convergence speed can

be achieved for the trajectory tracking of the serial robot in both tests, and smaller tracking

errors can be obtained in Test 1. In Test 2, there are sharp increases and oscillations of

the tracking errors during the time intervals 2.5 s to 2.65 s and 4.55 s to 4.75 s. This

phenomenon is caused by the start and the end of the compensation motion of the serial

robot to maintain the kinematic relationships to the parallel robot. Compared with the

trajectory planning algorithm in [14], which generates the offset motion of the parallel

robot and the compensation motion of the serial robot in real time, the advantages of the

proposed trajectory planning strategy can be summarized as follows: (1) The trajectory

of the serial robot is smoother without any sudden changes and higher tracking accuracy

can be realized. (2) The trajectories of the serial robot and the parallel robot can be pre-

planned, which guarantees better cooperation performance. The generated trajectories can
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Table 4.2: Pose tracking error indexes of the parallel robot in Test 1

Pose MAE RMSE

X position (mm) 0.47 0.53

Y position (mm) 0.54 0.59

Z position (mm) 0.56 0.65

X orientation (10−3 rad) 0.67 0.88

Y orientation (10−3 rad) 1.68 2.06

Z orientation (10−3 rad) 1.54 1.79

Table 4.3: Position tracking error indexes of the serial robot end-effector in the two tests

Position (mm) Indexes Test 1 Test 2

X position
MAE 0.12 0.16

RMSE 0.15 0.26

Y position
MAE 0.07 0.11

RMSE 0.08 0.15

Z position
MAE 0.1 0.13

RMSE 0.14 0.24
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be used as the reference inputs for robot control in real applications. It provides flexibility

for designing nonlinear controllers to improve the trajectory tracking performance.

4.7 Summary

This chapter introduces a novel trajectory planning strategy in a leader-follower for-

mation for the 13-DOF cooperative AFP system. The objective is to finish the AFP task

on the Y-shape mandrel along the desired 0◦ path without any interruptions. Taking into

consideration the robot dynamic and kinematic constraints, a time-jerk optimal trajectory

planning scheme is designed for the 6-DOF serial robot, which holds the AFP head and

serves as the leader to place fiber. Pseudospectral method, interior point method, and auto-

matic differentiation are employed for solving the trajectory optimization problem. In order

to compensate the serial robot motion and satisfy the AFP geometric constraints, a vision-

based trajectory generation approach is proposed for the 6-RSS parallel robot, which holds

the mandrel using the 1-DOF rotary stage and works as the follower. Simulation and exper-

imental results demonstrate the effectiveness and superiority of the proposed cooperative

trajectory planning strategy.
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Chapter 5

PBVS-based Adaptive Sliding Mode

Control of the 6-RSS Parallel Robot

5.1 Problem Formulation

The trajectory tracking control of parallel robots is a challenging task due to their com-

plicated kinematics and dynamics. The joint-space controller based on inverse kinematics

has attracted researchers’ attention. The joint positions of a parallel robot can be uniquely

determined from the end-effector pose through inverse kinematics [115]. Nevertheless, the

tracking accuracy of the joint-space controller can be decreased due to the inverse kinemat-

ics modeling errors. The Cartesian-space controller has also been popularly investigated,

which can directly regulate the control of the end-effector pose to guarantee the desired per-

formance. Unfortunately, the forward kinematics solution of a parallel robot is not unique,

which means that the same joint positions may lead to various end-effector poses [116].

In this case, if the end-effector pose is estimated in an appropriate way, the calculation of

forward kinematics can be avoided [117].

The dynamic behavior of a parallel robot is anisotropic and nonlinear due to various

system uncertainties and dynamic coupling between the serial chains [118]. Consequently,
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the pure kinematics-based controllers may not be able to meet the increasing demands of

high accuracy and stability in real applications. To realize the desired performance of a

parallel robot more efficiently, the dynamics of the robot should be considered in the con-

troller design. In this chapter, the control of the 6-RSS parallel robot in the AFP system

is studied. The kinematic parameter errors normally occur after the manufacturing of the

robot, and the approximate dynamic parameters of the robot are provided by the manu-

facturer specifications. The uncertainties of the kinematic and dynamic parameters have

negative impacts on the controller design and performance. By determining more accurate

kinematic parameters, kinematic calibration can increase the positioning accuracy of the

robot end-effector. Moreover, dynamic identification is a promising approach to determine

the uncertain dynamic parameters with higher accuracy. The dynamic identification and

kinematic calibration of the 6-RSS parallel robot have been done in [119].

Generally, the discrepancies between the nominal model and the actual robot can dete-

riorate the trajectory tracking accuracy and cause system oscillations. Sliding mode control

techniques owning strong robustness to system uncertainties have been applied for paral-

lel robots to eliminate such discrepancies. In [120], an improved adaptive fuzzy sliding

mode controller for the position and force control of a Stewart robot is introduced. An

integral sliding mode controller with a continuous twisting control algorithm is developed

for a 6-DOF Stewart platform in [121]. In [122], a sliding mode control method with an

improved equivalent-input-disturbance is designed for a Stewart platform to enhance the

disturbance-rejection and tracking performance. Additionally, neural network has been ex-

tensively applied in the control of parallel robots. Equipped with strong self-learning and

approximation capability, neural network is widely implemented for the auto-tuning of the

Proportional-Integral-Derivative (PID) control gains. An RBF-neural-network-based PID

controller with online tuning parameters is proposed for a Stewart platform in [123]. To

address the issue of vibration isolation, an adaptive PID controller using single neuron is
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developed for a hydraulically actuated Stewart robot in [124]. In [125], the parameters

of a PID controller for a SCARA parallel robot with pneumatic artificial muscle actua-

tor are tuned based on back-propagation (BP) neural network. In industry, parallel robots

track various trajectories with different speeds, and the system frictions and disturbances

are time-varying [126]. Under this circumstance, the online updates of the control gains

in sliding mode controllers are necessary in order to achieve the desired performance. In

[127–129], researchers incorporate neural networks into sliding mode controllers to achieve

the auto-tuning of the control gains for serial robots, but the sufficient stability analyses of

the controllers are not provided. Moreover, similar work for parallel robots has been mostly

done regarding the computed torque controllers without involving the sliding mode control

techniques, as introduced in [69, 130–132]. To this day, for the combination of sliding

mode control techniques and neural networks in the field of parallel robots, the majority

of the work employs neural networks to estimate the dynamic uncertainties in the control

laws, as shown in [76, 133–135]. Furthermore, in terms of the visual servoing of paral-

lel robots, not much work integrating sliding mode control has been published in the past

decades.

5.2 Contributions

For the purpose of enhancing the trajectory tracking performance, this chapter develops

a position-based visual servoing strategy using an adaptive sliding mode controller for the

6-RSS parallel robot. It can realize highly accurate trajectory tracking based on the real-

time pose measurements from the photogrammetry sensor C-Track 780 in the eye-to-hand

configuration. The detailed contributions are described as below:

(1) Compared with [85, 136], where only the kinematics of the robot is considered in

PBVS, the proposed PBVS approach takes into account the full kinematics and dynamics

of the parallel robot to obtain better tracking performance. The adaptive Kalman filter in
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Chapter 3 is adopted to cope with uncertain noises in pose estimation.

(2) Sliding mode control technique is utilized to deal with dynamic uncertainties to

guarantee system robustness. Due to the fact that parallel robots work with time-varying

conditions in real applications, RBF neural network is employed for the auto-tuning of

the control gains. From [69, 76, 127–135], it can be seen that this topic has been rarely

investigated for parallel robots. Additionally, the dynamics of the parallel robot is modeled

using the dynamic identification results in [119].

(3) Different from [124, 125, 127–132], where single neuron, multi-layer neural net-

work and BP neural network are used for the auto-tuning of the control gains, RBF neu-

ral network is adopted in this project. By employing radial basis function as the activa-

tion function, RBF neural network works as the local approximator, which demonstrates

stronger learning ability and higher approximation accuracy and speed with a simple struc-

ture [59].

(4) In [123], RBF neural network is utilized in PID controller, but the stability analysis

of the controller is not provided. In terms of the adaptive sliding mode controllers for serial

robots in [127–129], the stability analyses are not done or just partly presented. In this

project, the detailed stability analysis of the proposed adaptive sliding mode controller is

provided based on Lyapunov theorem.

(5) Experiments have been done to demonstrate the effectiveness of the PBVS scheme.

Simulation and experimental results illustrate the superiority of the designed controller

over the sliding mode controller, and the adaptive sliding mode controllers using BP neural

network and single neuron, respectively.

In the rest of this chapter, a brief description of the system model and the PBVS scheme

is given, and the adaptive sliding mode control strategy is discussed. Simulation and ex-

perimental results are presented, and a summarized conclusion is provided.
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Figure 5.1: Position-based visual servoing system.

5.3 System Description

The schematic of the PBVS system, including a 6-RSS parallel robot and a dual camera

in the eye-to-hand configuration, is illustrated in Figure 5.1. The vision sensor frame with

the origin at the center of the camera is defined as
∑
C. The end-effector frame and the

base frame of the parallel robot are denoted as
∑
E and

∑
O, respectively, whose origins

are chosen as the symmetrical centers of the platforms. The dual camera is employed to

measure the end-effector pose X = [ψT , φT ]T = [x, y, z, α, β, γ]T ∈ R6 w.r.t.
∑
O in real

time, where ψ = [x, y, z]T is the position variable, and φ = [α, β, γ]T is the Euler angle.

The angular velocity ω ∈ R3 and velocity v ∈ R6 can be calculated as

ω =


1 0 sβ

0 cα −cβsα

0 sα cβcα

 φ̇ = Jeφ̇ (5.1)
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v =

I3×3 03×3

03×3 Je

 Ẋ = JsẊ. (5.2)

where sα = sin(α), cα = cos(α), and Je and Js are Jacobian matrices.

The dynamic model of the parallel robot is represented as [10]

M (X) Ẍ + C(X, Ẋ)Ẋ +G (X) + τf = τ (5.3)

where Ẋ ∈ R6 and Ẍ ∈ R6 represent end-effector velocity and acceleration, respectively.

M (X) ∈ R6×6, C(X, Ẋ) ∈ R6×6, G (X) ∈ R6, τf ∈ R6 and τ ∈ R6 denote inertia ma-

trix, Coriolis and centrifugal matrix, gravitational term, frictional term, and control torque,

respectively. The detailed dynamic and kinematic models of the parallel robot can be found

in [119].

The following properties of the dynamic equation will be employed for the controller

development in this work [10].

Property 1: M(X) is a symmetric and uniformly positive definite matrix.

Property 2: Ṁ(X) − 2C(X, Ẋ) is a skew-symmetric matrix such that W T (Ṁ(X) −

2C(X, Ẋ))W = 0 for any W ∈ R6.

5.4 Position-based Visual Servoing Scheme

The position-based visual servoing scheme for the 6-RSS parallel robot in Cartesian

space is presented in Figure 5.2. It mainly includes four parts: 6-RSS parallel robot with the

built-in controller, adaptive sliding mode control strategy, torque to position transformer,

and vision-based pose estimation method.

The PBVS control problem in Cartesian space can be stated as: given a desired end-

effector trajectory Xd(t), an adaptive sliding mode controller is developed to make the real
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Figure 5.2: Position-based visual servoing scheme.

end-effector pose Xa(t) track the desired trajectory. For industrial robots, only the built-in

controller can get access to the robot parameters and generate the motion commands. The

torque to position transformer for the 6-RSS prallel robot has been designed in [119]. It

can covert the torque signals sent by the adaptive sliding mode controller to the position

signals the robot can use. Through image processing, the C-Track 780 can send out the

measured end-effector pose of the parallel robot in a continuous time sequence. Then, the

adaptive Kalman filter is adopted to estimate the uncertain noises in visual measurements.

The filtered end-effector pose serves as the feedback signal to the adaptive sliding mode

controller. The pose estimation method using C-Track 780 and adaptive Kalman filter have

been introduced in Chapter 3.

5.5 Adaptive Sliding Mode Control

The structure of the RBF-neural-network-based adaptive sliding mode control strategy

is shown in Figure 5.3. The details are introduced as follows.
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Figure 5.3: Adaptive sliding mode control strategy.

5.5.1 Sliding Mode Controller

The sliding mode controller is designed to cope with dynamic uncertainties in the

robotic system. The pose and velocity tracking errors of the end-effector are defined as

e = Xd −Xa

ė = Ẋd − Ẋa

(5.4)

where Xa and Ẋa are the filtered pose and velocity by AKF, respectively, and Xd and Ẋd

denote the desired pose and velocity, respectively.

The sliding surface is given as

s = ė+ γe (5.5)

where γ ∈ R6×6 is a positive diagonal matrix.

The sliding mode controller is developed as

τ = τc + u+ τr (5.6)
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where

τc = M0 (Xa) Ẍr + C0(Xa, Ẋa)Ẋr +G0 (Xa) + τf0 (5.7)

u = Kps+Ki

∫ t

0

s dt (5.8)

τr = Krsat
(s
ε

)
(5.9)

Ẋr = s + Ẋa, and Ẍr = Ẍd + γė. M0 (Xa), C0(Xa, Ẋa), G0 (Xa), and τf0 are the

estimated dynamic parameters. Kp ∈ R6×6, Ki ∈ R6×6 and Kr ∈ R6×6 are positive

diagonal matrices. sat(·) is the saturation function to reduce the chattering problems, given

as

sat(
si
ε

) =


si
ε
, |si| ≤ ε

sgn(si), |si| > ε

(5.10)

where i = 1, 2, ..., 6, and ε is a small positive constant. The dynamic uncertainties are

defined as
∆M =M(Xa)−M0(Xa)

∆C =C(Xa, Ẋa)− C0(Xa, Ẋa)

∆G =G(Xa)−G0(Xa)

∆τf =τf − τf0.

(5.11)

5.5.2 Auto-tuning of the Control Gains Based on RBF Neural Net-

work

In this work, RBF neural network is adopted due to its strong self-learning capability

and high approximation accuracy. The designed RBF neural network structure for the

parallel robot is demonstrated in Figure 5.4. It is composed of six single neural networks.

There are three layers in each neural network structure: input layer, hidden layer and output

layer, and there are six nodes in each hidden layer.
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Figure 5.4: RBF neural network structure.

The activation function of the jth node in the hidden layer of the nth neural network is

designed as Gaussian function

hjn(x) = exp

(
−‖xn − cjn‖2

2bjn
2

)
, n, j = 1, 2, ..., 6 (5.12)

where xn = [un(k), Xan(k)]T is the input, bjn and cjn denote the width and the center vector,

respectively, and k is the sampling step. The neural network output Xfn(k) is computed as

Xfn(k) =
6∑
j=1

wjnh
j
n (5.13)
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where wjn is the weight linking the jth node in the hidden layer to the node in the output

layer.

The RBF-neural-network-based auto-tuning approach includes two steps: identification

and auto-tuning. In the first step, RBF neural network identifies the robot dynamics, and

the neural network parameters are tuned. In the second step, the auto-tuning of Kp and Ki

in Eq. (5.8) can be realized.

Regarding the dynamic identification, the index function is given as

Jn(k) =
1

2
(Xan(k)−Xfn(k))2. (5.14)

The gradient descent method is adopted to realize the automatic tuning of the parame-

ters including weight, width and center vector. The update process is formulated as

wjn (k) = wjn (k − 1) + ∆wjn + α(wjn (k − 1)− wjn (k − 2))

bjn (k) = bjn (k − 1) + ∆bjn + α(bjn (k − 1)− bjn (k − 2))

cjin (k) = cjin (k − 1) + ∆cjin + α(cjin (k − 1)− cjin (k − 2))

(5.15)

∆wjn = µ(Xan(k)−Xfn(k))hjn

∆bjn = µ(Xan(k)−Xfn(k))wjnh
j
n‖xn − cjn‖2/bjn

3

∆cjin = µ (Xan(k)−Xfn(k))wjnh
j
n(xin − cjin )/bjn

2

(5.16)

where α is the momentum coefficient, µ is the learning rate, and i = 1, 2. The Jacobian

information representing the sensitivity of the system output to the change of the control

input is calculated as

∂Xan(k)

∂∆un(k)
≈ ∂Xfn(k)

∂∆un(k)
=

6∑
j=1

wjnh
j
n

cj1n −∆un(k)

bjn
2 . (5.17)
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For the auto-tuning process, the index function is defined as

En(k) =
1

2
(Xdn(k)−Xan(k))2. (5.18)

Based on the gradient descent method, the control gains can be tuned using

Kpn (k) = Kpn (k − 1) + ∆Kpn

Kin (k) = Kin (k − 1) + ∆Kin

(5.19)

∆Kpn = −η ∂En(k)

∂Kpn(k)
,∆Kin = −η ∂En(k)

∂Kin(k)
(5.20)

where η is the learning rate, and

∂En(k)

∂Kpn(k)
=

∂En(k)

∂Xan(k)

∂Xan(k)

∂∆un(k)

∂∆un(k)

∂Kpn(k)

∂En(k)

∂Kin(k)
=

∂En(k)

∂Xan(k)

∂Xan(k)

∂∆un(k)

∂∆un(k)

∂Kin(k)

(5.21)

∂En(k)

∂Xan(k)
= −en(k),

∂∆un(k)

∂Kin(k)
= sn(k),

∂∆un(k)

∂Kpn(k)
= sn(k)− sn(k − 1).

(5.22)

5.5.3 Stability Analysis

Based on Lyapunov theorem, the stability analysis of the adaptive sliding mode con-

troller is conducted.

Lemma 1: Considering a nonlinear system with the differential equation ẋ = f(x), and

suppose V (x) is a continuous function defined on an open neighborhood of the origin. If

V (x) is positive definite, and V̇ (x) + c(V (x))β ≤ 0, where c > 0 and 0 < β < 1 are real

numbers. The convergence time T (x) of the control system starting from the initial state
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x(0) satisfies [137]

T (x(0)) ≤ 1

c(1− β)
V (x(0))1−β. (5.23)

Theorem 1: For the closed-loop system in Figure 5.3 under the control of the sliding

mode controller, if |sm| > ε,m = 1, 2, ..., 6 is satisfied in Eq. (5.10), and then Kr =

diag([Kr1, Kr2, ..., Kr6]) in Eq. (5.9) can satisfy

Krm ≥ σ + |upm|+ |uim|+ |∆Hm| (5.24)

where σ is a small positive constant, up = Kps, ui = Ki

∫ t
0
s dt, ∆H =

[∆H1,∆H2, ...,∆H6]T , and ∆H = ∆MẌr + ∆CẊr + ∆G + ∆τf , then the trajectory

tracking convergence can be achieved.

Proof : The Lyapunov function of the sliding mode controller is defined as

V =
1

2
sTMs. (5.25)

By differentiating V w.r.t. time, we can get

V̇ = sT
(
Mṡ+

1

2
Ṁs

)
= sT (Mṡ+ Cs) . (5.26)

Based on the designed controller, Eq. (5.3) can be formulated as

τ = M(Ẍr − ṡ) + C(Ẋr − s) +G+ τf

= M0Ẍr + C0Ẋr +G0 + τf0 + ∆H −Mṡ− Cs.
(5.27)

According to the kinematic calibration and dynamic identification results of the 6-RSS

parallel robot in [119], it guarantees that ∆H is bounded as

|∆Hm| ≤ Hm. (5.28)
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From Eqs. (5.7)-(5.10) and (5.27), one has

Mṡ+ Cs = −Kps−Ki

∫ t

0

s dt−Krsgn (s) + ∆H. (5.29)

Substituting Eq. (5.29) into Eq. (5.26) yields

V̇ = −sT
(
Kps+Ki

∫ t

0

s dt+Krsgn (s)−∆H

)
. (5.30)

If Kr satisfies Eq. (5.24), we can get

V̇ ≤ −
6∑

m=1

σ |sm| ≤ −σ(sT s)
1
2 ≤ 0. (5.31)

As a result, |sm| will keep decreasing. According to Lemma 1, the boundary layer

|sm| ≤ ε can be reached within a finite time, and then sm will remain inside. When

|sm| = ε, it can be obtained that em = em(0)e−γt ± ε
γ

, thus |em| →
∣∣∣ εγ ∣∣∣ and ėm → 0

with t → ∞. Therefore, only the uniformly ultimately bounded stability rather than the

asymptotic stability can be achieved.

Theorem 2: The stability analyses of an adaptive PID neural network controller and a

PID-like neural network nonlinear adaptive controller have been done in [138] and [139],

respectively. For the RBF-neural-network-based auto-tuning approach in this chapter, if

Eqs. (5.32)-(5.35) can be satisfied, then the stability of the controller can be guaranteed.

(1) If
∑6

n=1 (e∗n(k − 1)∆wjn(k − 1)/hjn) < 0, we have

µ

α + 1
≤ 1

2

∑6
n=1

(
∆wj

n(k−1)

hjn

)2

∑6
n=1

(
e∗n(k−1)∆wj

n(k−1)

hjn

) . (5.32)
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If
∑6

n=1 (e∗n(k − 1)∆wjn(k − 1)/hjn) > 0, we have

µ

α + 1
≥ 1

2

∑6
n=1

(
∆wj

n(k−1)

hjn

)2

∑6
n=1

(
e∗n(k−1)∆wj

n(k−1)

hjn

) . (5.33)

(2) If
∑6

n=1 (∆Kpn(k)q(k)sn(k − 1)/en(k)) < 0, we have

η ≥ −1

2

∑6
n=1

(
∆Kpn(k)q(k)

en(k)

)2

∑6
n=1

(
∆Kpn(k)q(k)sn(k−1)

en(k)

) . (5.34)

If
∑6

n=1 (∆Kpn(k)q(k)sn(k − 1)/en(k)) > 0, we have

η ≤ −1

2

∑6
n=1

(
∆Kpn(k)q(k)

en(k)

)2

∑6
n=1

(
∆Kpn(k)q(k)sn(k−1)

en(k)

) . (5.35)

Proof : The Lyapunov function is given as

V (k) = V1(k) + V2(k). (5.36)

V1(k) and V2(k) are defined as follows:

V1(k) =
1

2

6∑
n=1

e∗n
2(k)

V2(k) =
1

2

6∑
n=1

s2
n(k)

(5.37)

where e∗n(k) = Xan(k)−Xfn(k).
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(1) The change of V1(k) is

∆V1(k) = V1(k)− V1(k − 1)

=
1

2

6∑
n=1

(e∗n(k) + e∗n(k − 1)) (e∗n(k)− e∗n(k − 1))

=
6∑

n=1

(
e∗n(k − 1)∆e∗n(k) +

1

2
∆e∗n

2(k)

)
.

(5.38)

From Eqs. (5.15) and (5.16), we can get

e∗n(k) =
1

µhjn
((wjn(k)− wjn(k − 1))− α(wjn(k − 1)− wjn(k − 2))). (5.39)

Therefore

∆e∗n(k) =
∂e∗n(k)

∂wjn(k − 1)
∆wjn(k − 1) = −α + 1

µhjn
∆wjn(k − 1). (5.40)

Then Eq. (5.38) can be formulated as

∆V1(k) = −α + 1

µ

6∑
n=1

(
e∗n(k − 1)∆wjn(k − 1)

hjn

)
+

(α + 1)2

2µ2

6∑
n=1

(
∆wjn(k − 1)

hjn

)2

.

(5.41)

If µ and α can satisfy Eqs. (5.32) and (5.33), then ∆V1(k) ≤ 0.

(2) The time difference of V2(k) is

∆V2(k) = V2(k)− V2(k − 1)

=
1

2

6∑
n=1

(sn(k) + sn(k − 1))(sn(k)− sn(k − 1))

=
6∑

n=1

(
sn(k − 1)∆sn(k) +

1

2
∆s2

n(k)

)
.

(5.42)
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(a)

(b)

Figure 5.5: Trajectory tracking performance of the adaptive sliding mode controller with
RBF-neural-network-based tuning method and the sliding mode controller with constant
control gains.
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In view of Eqs. (5.17), and (5.20)-(5.22), we can get

∆sn(k) = −∆Kpn(k)

/(
η
∂En(k)

∂Xan(k)

∂Xan(k)

∂∆un(k)

)
=

∆Kpn(k)

ηen(k)

6∑
j=1

bjn
2

wjnh
j
n(cj1n −∆un(k))

.

(5.43)

Let

q(k) =
6∑
j=1

bjn
2

wjnh
j
n(cj1n −∆un(k))

. (5.44)

We have

∆sn(k) =
∆Kpn(k)q(k)

ηen(k)
. (5.45)

Then Eq. (5.42) can be rewritten as

∆V2(k) =
1

η

6∑
n=1

∆Kpn(k)q(k)sn(k − 1)

en(k)
+

1

2η2

6∑
n=1

(
∆Kpn(k)q(k)

en(k)

)2

. (5.46)

If η can satisfy Eqs. (5.34) and (5.35), then ∆V2(k) ≤ 0.

Since ∆V1(k) ≤ 0 and ∆V2(k) ≤ 0, then ∆V (k) ≤ 0 can be satisfied for any sampling

step k, thus the control system is stable.

5.6 Simulation and Experimental Results

5.6.1 Simulation Tests

In the simulation, the proposed adaptive sliding mode control approach is compared

with the sliding mode controller with constant control gains. The desired end-effector

trajectory is defined as the Finite Fourier series-based trajectory with varying frequency,
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Tracking errors of the adaptive sliding mode controller with RBF-neural-
network-based tuning method and the sliding mode controller with constant control gains.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Tracking errors of the adaptive sliding mode controller with RBF-neural-
network-based tuning method and the sliding mode controller with constant control gains,
in the time periods after the tracking convergence.
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which is given as

Xdi(t) =
n∑
j=1

(
sin(ω0jt)

ω0j
sji −

cos(ω0jt)

ω0j
cji

)
+X0i (5.47)

where Xdi denotes the desired trajectory in the i-th column, the fundamental frequency

ω0 is set as 0.1 rad/s, and n is the harmonic number and defined as 5. sji , c
j
i , and

X0i are known as trajectory parameters. The initial end-effector pose is chosen as

[0(m), 0(m), 0.118(m), 0(rad), 0(rad), 0(rad)], and the initial velocity and acceleration are

all zero. The initial values of Kp and Ki are set as diag([100, 100, 100, 100, 100, 100]).

The trajectory tracking performance of the two controllers are shown in Figure 5.5,

and the tracking errors are illustrated in Figure 5.6. As we can see, both controllers can

achieve good tracking performance for the rotational motion in all the three axes and the

translational motion along X-axis and Y-axis. It takes longer time for the Z-axis position

tracking to converge in both controllers, but the proposed controller can speed up the con-

vergence process. For further comparisons, the tracking errors in the time periods after

the tracking convergence are presented in Figure 5.7, and the error indexes including mean

absolute error and root mean square error are analyzed in Table 5.1. It can be concluded

that the proposed control scheme can greatly reduce the tracking errors for Z position, and

the tracking accuracy of rotational motion has also been improved along all the three axes.

For the translational motion along X-axis and Y-axis, the two controllers can obtain similar

tracking accuracy.

5.6.2 Torque to Position Transformer

In general, only the built-in controller of industrial robots is able to get access to the

robot parameters and generate the motion commands. For the 6-RSS parallel robot, the
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Table 5.1: Comparison of the error indexes in the simulation

Pose Indexes RBF-SMC SMC

X position (mm)
MAE 0.248 0.25

RMSE 1.22 1.23

Y position (mm)
MAE 0.373 0.375

RMSE 1.92 1.93

Z position (mm)
MAE 1.31 3.31

RMSE 3.26 5.83

X orientation (10−3rad)
MAE 0.7 0.91

RMSE 3.23 3.26

Y orientation (10−3rad)
MAE 0.8 1

RMSE 3.79 3.82

Z orientation (10−3rad)
MAE 0.58 0.8

RMSE 2.58 2.61

built-in controller is designed as PID controller, given as

τθ = kpeθ + ki

∫ t

0

eθ dt+ kdėθ (5.48)

where kp, ki and kd are the control gains, τθ is the internal torque signal, eθ = θd − θ is the

joint position tracking error, θd is the desired joint position, and θ is the actual joint position

measured by the potentiometer. In [119], the values of kp, ki and kd have been determined

according to the dynamic identification results.

The torque to position transformer can covert the torque signals sent from the designed

controller to the position signals the robot can use. Then the torque signals generated by

the built-in controller can be the same as the external torque signals. According to [140]
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Figure 5.8: Control network of the hardware setup.

and [141], the desired joint position signal θd can be obtained as

θd =
1

kp + kip−1 + kdp
τex + θ (5.49)

where τex is the external torque signal, and p represents the differential operator.

5.6.3 Experimental Tests

The control network of the experimental setup is presented in Figure 5.8. The parallel

robot is modeled in the software VXelements, and twelve reflectors on the upper platform

and seven reflectors on the base platform are detected. The base frame and the end-effector

frame can be defined by regulating more than three non-collinear reflectors on each plat-

form, and then the end-effector pose can be obtained and tracked. The controller sampling
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interval is set as 34.483 ms, which is the same as that of the C-Track 780. Two data ac-

quisition cards Sensoray Model 626 provided by Quanser Inc. are adopted for the joint

position communication between the robot and the robot computer. The QUARC software

is integrated into MATLAB/Simulink program for real-time control application.

In the experiment, the designed controller is compared with the sliding model con-

troller, and the adaptive sliding mode controllers using single neuron and BP neural

network, respectively. The end-effector pose at the initial time is defined as X =

[0(m), 0(m), 0.116(m), 0(rad), 0(rad), 0(rad)], while the end-effector velocity and accel-

eration are initialized as 0. The initial learning rates and momentum factor in the RBF

neural network are defined as µ = 0.2, η = 0.2, and α = 0.05. They may be updated

at each sampling step in order to satisfy the stability conditions in Eqs. (5.32)-(5.35).

The initial values of the elements in the width bn and the center vector cn in the Gaus-

sian function are defined as 1 and 1.5, respectively. The activation function in BP neural

network and single neuron is sigmoid function, and the threshold is set as 0.6. The learn-

ing rates in the BP neural network and the single neuron are all set as 0.2. The weights

in the three neural networks are all initialized as 1. The initial Kp and Ki are defined

as 10−3 ∗ diag([15, 15, 15, 15, 15, 15]) and 10−3 ∗ diag([8, 8, 8, 8, 8, 8]), respectively. For

the noise covariance matrices in the adaptive Kalman filter, Qk is initialized as 10−5 ∗

diag([6, 6, 8, 10, 12, 15, 5, 5, 5, 8, 8, 8]), and Sk is given as 10−4∗diag([2, 2, 2.8, 2.5, 2.5, 3]).

Two different kinds of desired trajectories are applied for the comparisons between the four

controllers.

Case 1: The desired trajectory is defined as the sinusoid trajectory with frequency 0.5

rad/s. The tracking errors of the four controllers are illustrated in Figure 5.9. For further

evaluation, the error indexes MAE and RMSE are presented in Table 5.2.

Due to the strong robustness of the sliding mode control techniques to system uncer-

tainties, all the controllers can realize good convergence speed and accuracy for trajectory
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Trajectory tracking errors in Case 1. SMC: sliding mode controller; RBF-SMC:
adaptive SMC with RBF neural network; BP-SMC: adaptive SMC with BP neural network;
SN-SMC: adaptive SMC with single neuron.
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Table 5.2: Comparison of the error indexes in Case 1

Pose Indexes RBF-SMC BP-SMC SN-SMC SMC

X position (mm)
MAE 0.31 0.48 0.56 0.65

RMSE 0.38 0.54 0.61 0.78

Y position (mm)
MAE 0.44 0.57 0.71 0.92

RMSE 0.48 0.64 0.8 0.99

Z position (mm)
MAE 0.62 0.85 1.06 1.35

RMSE 1.64 1.89 2.34 3.0

X orientation (10−3rad)
MAE 0.82 1.37 1.67 2.1

RMSE 1.1 1.71 1.93 2.48

Y orientation (10−3rad)
MAE 0.86 1.13 1.34 1.57

RMSE 1.08 1.32 1.53 1.88

Z orientation (10−3rad)
MAE 1.74 2.42 2.57 2.9

RMSE 2.36 3.08 3.42 3.87

tracking. By employing neural networks to automatically tune the control gains, the track-

ing errors of the three adaptive sliding controllers are smaller for all the six dimensions

than the sliding mode controller. Moreover, the proposed controller using RBF neural net-

work can obtain higher tracking accuracy compared with the other two adaptive sliding

mode controllers. The orientation tracking errors are larger and the responses are with

more oscillations compared to the position tracking along all the three axes. The reason is

that more sensor noises appear in the orientation measurements than the position measure-

ments. Different from X position and Y position tracking, there exist large transient errors

at the initial stage of Z position tracking, which could be caused by the robot modeling

errors in VXelements. The X-axis and Y-axis of the base frame and the end-effector frame

can be easily defined since the upper platform and the base platform are with symmetrical

structures. The initial end-effector positions w.r.t. the base frame along X-axis and Y-axis

90



are both set as zero. Based on the kinematic calibration results in [119], the modeling value

is set as 0.116 m for the initial Z position w.r.t. the base frame, which may cause a larger

deviation from the actual value than X position and Y position.

Case 2: To further test the robustness of the developed controller, the finite Fourier

series-based trajectory with varying frequency is selected as the desired trajectory, given as

Eq. (5.47). The fundamental frequency ω0 is set as 0.12 rad/s, and the harmonic number

n is given as 5. The tracking errors of the four controllers in Case 2 are shown in Figure

5.10. The error indexes MAE and RMSE are analyzed in Table 5.3.

With the sliding mode control techniques, good tracking performance can be achieved

for all the controllers in the presence of system uncertainties and varying trajectory fre-

quency. Similar to Case 1, the tracking accuracy of the sliding mode controller is lower than

the three adaptive sliding mode controllers. It is clear that with the RBF-neural-network-

based auto-tuning approach, the proposed controller can obtain the smallest tracking errors

for all the six dimensions. Besides, more oscillations and larger tracking errors still appear

in the orientation tracking than the position tracking. The large transient tracking errors for

Z position at the initial stage also exist due to the robot modeling errors in VXelements.

Different from Case 1, the tracking errors in Case 2 increase when it comes to the high fre-

quency part of the desired trajectory, which could be caused by the fact that the uncertain

frictions and noises may increase greatly with the growing velocity. In the case of higher

frequency, the designed adaptive sliding mode controller exhibits stronger robustness with

smaller transient tracking errors.

For the adaptive sliding mode controller using single neuron, the approximation per-

formance is inevitably sacrificed due to the limited number of neurons. BP neural network

is a global approximator since each hidden node has equal influence on the output, but

it may encounter the issue of local minima and normally takes longer time for training

with a complicated structure. In RBF neural network, the response of a hidden node is
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Trajectory tracking errors in Case 2. SMC: sliding mode controller; RBF-
SMC: adaptive SMC with RBF neural network; BP-SMC: adaptive SMC with BP neural
network; SN-SMC: adaptive SMC with single neuron.
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Table 5.3: Comparison of the error indexes in Case 2

Pose Indexes RBF-SMC BP-SMC SN-SMC SMC

X position (mm)
MAE 0.37 0.76 0.92 1.13

RMSE 0.49 0.91 1.12 1.37

Y position (mm)
MAE 0.5 0.77 0.96 1.18

RMSE 0.63 0.98 1.24 1.53

Z position (mm)
MAE 0.83 1.44 1.71 2.0

RMSE 1.05 1.75 1.98 2.4

X orientation (10−3rad)
MAE 1.32 2.11 2.48 2.9

RMSE 1.65 2.46 2.92 3.47

Y orientation (10−3rad)
MAE 1.2 1.58 1.87 2.24

RMSE 1.81 2.39 2.85 3.33

Z orientation (10−3rad)
MAE 1.3 2.05 2.43 2.9

RMSE 1.67 2.6 3.07 3.74

larger when the Euclidean distance between the input and the center vector of the activa-

tion function is smaller. The output of RBF neural network is more related to the hidden

nodes where the inputs are closer to the center vector, thus RBF neural network works as a

local approximator. Compared with single neuron and BP neural network, RBF neural net-

work demonstrates stronger approximation ability with higher learning accuracy and speed.

Therefore, the proposed adaptive sliding mode controller can obtain smaller tracking errors

and stronger robustness to system uncertainties in the two experimental tests.

In addition, the root mean square (RMS) values of the control signals in the four con-

trollers are calculated, as given in Figure 5.11, which indicate how energetically expensive

of all the controllers. The sliding mode controller can obtain the smallest RMS values

due to its simplicity. For the three adaptive sliding mode controllers, the one using single

neuron realizes smaller RMS control action values because of the simpler neural network
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Figure 5.11: RMS values of the control signals in the two cases.

structure. The RMS values of the controller using BP neural network are higher than those

of the controller with RBF neural network, since the BP neural network owns more com-

plex structure, which causes larger computational cost of the training process.

5.7 Summary

In this chapter, the position-based visual servoing of the 6-RSS parallel robot is investi-

gated. The photogrammetry sensor C-Track 780 together with the adaptive Kalman filter is

able to achieve the accurate end-effector pose estimation. An RBF-neural-network-based

adaptive sliding mode controller is developed to cope with system uncertainties and tune

the control gains automatically. Detailed stability analysis of the controller utilizing Lya-

punov theorem has been provided. The effectiveness of the proposed PBVS approach has

been validated by experiments. Simulation and experimental results illustrate that in terms

of robustness and tracking accuracy, the designed controller presents better performance
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compared with the sliding mode controller and the adaptive sliding mode controllers using

BP neural network or single neuron.
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Chapter 6

Distributed DRNN-based Adaptive

Sliding Mode Control of the Cooperative

Robotic System

6.1 Problem Formulation

In model-based sliding mode controllers, the system uncertainties including modeling

errors, frictions and external disturbances can degrade the trajectory tracking performance

of the robotic systems. To address this issue, some intelligent algorithms have been em-

ployed for the approximation of the system uncertainties.

Neural network serves as one of most popular techniques among all the intelligent al-

gorithms [142]. It is equipped with strong nonlinear learning and approximation abilities

for the compensation of the system uncertainties in robotic systems. Deep recurrent neural

network, which take advantages of both deep neural network and recurrent neural network,

has attracted much attention in recent years. By adopting multiple hidden layers and extra
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feedback loops in the neural network structure, deep recurrent neural network can demon-

strate more powerful dynamic representation and estimation capabilities. It can store and

process the dynamic information of the previous steps, and consumes less computation re-

sources than shallow feedforward neural networks with substantial neurons, for complex

dynamic system estimation.

As described in Chapter 2, sliding mode control and neural network control are broadly

applied in the control of diverse robotic systems. Researchers have also explored integrat-

ing sliding mode control with deep recurrent neural networks for the control of nonlinear

systems. As presented in [143], a recurrent neural network with two hidden layers is em-

ployed to estimate the system uncertainties in a global sliding mode controller for three-

phase active power filter system. In [144], a terminal sliding mode control scheme utilizing

a deep fuzzy recurrent neural network is developed. It is validated on second-order inverted

pendulum system and active power filter system, respectively. Nevertheless, it is worth not-

ing that the nonlinear systems investigated in [143] and [144] are simple systems with low

DOFs. In [145], a robust adaptive sliding mode control strategy is proposed for a 3-link

industrial robot manipulator. It relies on a deep recurrent fuzzy wavelet neural network to

approximate the control terms that encompass the dynamic parameters of the robot. As

described in [146], the lumped dynamic uncertainties in a second-order non-singular fast

terminal sliding mode controller for a 2-link manipulator, are estimated through a deep

fuzzy wavelet neural network incorporated with multiple feedback loops. However, due

to the presence of substantial feedback loops within the neural network structure and the

absence of experimental validation, it raises concerns about the potential compromise in

approximation accuracy and efficiency in real applications.

It can be seen that the DRNN-based adaptive sliding mode control techniques have

not been fully investigated for robotic systems, especially when it comes to the robots with

high DOFs. In the presence of dynamic uncertainties and external disturbances, this topic is
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worth exploring for the 6-DOF serial robot and the 6-RSS parallel robot in the cooperative

AFP system.

6.2 Contributions

To enhance the trajectory tracking performance of the two robots in the AFP system,

a DRNN-based adaptive sliding mode control approach is designed to cope with dynamic

uncertainties and external disturbances in this chapter. Experimental validations are done

on the 13-DOF cooperative AFP system using the distributed control structure described in

Chapter 3 and the planned leader-follower trajectories in Chapter 4. The detailed contribu-

tions are given as follows:

(1) According to the distributed control structure with event-triggered condition in

Chapter 3, one joint-space controller for the serial robot and one task-space controller for

the parallel robot are designed, respectively, using the DRNN-based adaptive sliding mode

control method.

(2) In the proposed controller, a DRNN with three hidden layers and one feedback loop

between the output layer and the input layer, is employed to estimate the lumped system

uncertainties. The DRNN can obtain better approximation and dynamic capabilities than

traditional shallow feedforward neural networks. The adaptation laws of the neural network

parameters are derived using Lyapunov theorem to guarantee the stability of the controller.

(3) Compared with the proposed controller in [146], the DRNN-based ASMC is more

implementable for high-DOF system by adding one more hidden layer and reducing the

number of feedback loops. In addition to estimating the lumped system uncertainties

through DRNN, the nominal dynamic parameters are also incorporated into the controller,

which makes it more reliable than the control approach outlined in [145]. Moreover, the

kinematics and dynamics of the two robots in the AFP system are much more intricate than

those of the nonlinear systems in [143] and [144].
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(4) Simulation and experiment have been conducted to demonstrate the effectiveness

of the proposed distributed control scheme. The advantages of the designed DRNN-based

ASMC are presented by making comparisons with the ASMCs using different kinds of

neural networks and SMC.

(5) The cooperative control of the 13-DOF AFP system has been investigated in [14]

and [104], where only PID controllers are applied. In [14], the proposed synchronized

control strategy can lead to complicated communication structure and high workload. In

[104], a coordination control approach is developed, with the parallel robot in the leading

role and the serial robot in the role of follower. In this chapter, the two robots are controlled

in a distributed manner, the parallel robot performs the role of follower and the serial robot

is in the role of leader, and the DRNN-based ASMC is designed to enhance the tracking

performance of the robots.

The remainder of this chapter is organized as follows. The distributed control structure

with the proposed controller is explained first. Then, the models of the serial robot and

parallel robot are described. Furthermore, the DRNN-based adaptive sliding mode control

approach is introduced, and simulation and comparative experimental results are presented.

Finally, a brief summary of this chapter is given.

6.3 Distributed Control Structure Using DRNN-based

ASMC

The distributed control structure using the DRNN-based adaptive sliding mode control

approach for the cooperative robotic system is demonstrated in Figure 6.1. For the trajec-

tory planning in Chapter 4, the serial robot trajectory is planned in joint space to avoid

joint constraints and singularities, while the trajectory of the parallel robot is generated in

task space to compensate the motion of the serial robot. Therefore, a joint-space controller

99



Figure 6.1: Distributed control structure of the cooperative robotic system using DRNN-
based ASMC.

for the serial robot and a task-space controller for the parallel robot are developed, respec-

tively. Besides, the position-based visual servoing technique is utilized for the task-space

controller design. Moreover, in order to deal with the uncertain noises, the adaptive Kalman

filter is utilized to improve the pose estimation accuracy of the two robots.

The definitions of the notations in Figure 6.1 are introduced as follows. For the serial

robot, qd: desired joint position; q: real-time joint position; es: joint position error; E: real-

time end-effector pose; Ev: measured end-effector pose by photogrammetry sensor; Ea:

filtered end-effector pose by AKF. As for the parallel robot, Xd: desired end-effector pose;

X: real-time end-effector pose; Xv: measured end-effector pose by photogrammetry sen-

sor; Xa: filtered end-effector pose by AKF; ep: end-effector pose error. The pre-planned

leader-follower trajectories serve as the desired trajectories for the cooperative robotic sys-

tem. For a continuous fiber layup process on Branches 1 and 2 with 0◦ fiber path, the

parallel robot is stationary when the AFP head can successfully follow the desired fiber

path along Branch 1. Since the motion constraints of the serial robot may be encountered
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for Branch 2, the cooperative motion between the two robots should be considered to finish

the task. The triggering condition for the parallel robot movement is designed as Ea = Eat,

where Eat is the filtered end-effector pose of the serial robot by AKF, at the moment while

the AFP head reaches the start point of the fiber path along Branch 2. As long as the trig-

gering condition is satisfied, a triggering signal will be sent to the parallel robot to start its

movement.

6.4 Robot Dynamic Models

In this section, the dynamic models of the two robots in the 13-DOF cooperative AFP

system are given.

Let’s define q ∈ R6, q̇ ∈ R6 and q̈ ∈ R6 as joint position, velocity and acceleration,

respectively, the dynamics of the serial robot can be described as [10]

M (q) q̈ + C (q, q̇) q̇ +G (q) + τf = τ − τd (6.1)

where M (q) ∈ R6×6 is the inertia matrix, C (q, q̇) ∈ R6×6 is the Coriolis and centrifugal

matrix, G (q) ∈ R6 is the gravitational term, τf ∈ R6 denotes the friction term, τd ∈ R6

denotes the external disturbance, and τ ∈ R6 denotes the control input. The dynamic

uncertainties can be represented as

∆M = M(q)−M0(q)

∆C = C(q, q̇)− C0(q, q̇)

∆G = G(q)−G0(q)

∆τf = τf − τf0.

(6.2)

where M0(q), C0(q, q̇), G0(q), and τf0 are the nominal dynamic parameters.
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The three properties of the robot dynamic equation are listed below.

Property 1 : M(q) is symmetric and uniformly positive definite [10].

Property 2 : Ṁ(q) − 2C(q, q̇) is a skew-symmetric matrix. ∀ x ∈ R6, ∃ xT (Ṁ(q) −

2C(q, q̇))x = 0 [10].

Property 3 : τd is assumed bounded as ‖τd‖ ≤ τe, where τe is a positive constant.

Similarly, by denoting X ∈ R6, Ẋ ∈ R6 and Ẍ ∈ R6 as end-effector pose, velocity

and acceleration, respectively, the dynamics of the parallel robot can be represented as

M ′ (X) Ẍ + C ′(X, Ẋ)Ẋ +G′ (X) + τ ′f = τ ′ − τ ′d (6.3)

where M ′ (X) ∈ R6×6, C ′(X, Ẋ) ∈ R6×6, G′ (X) ∈ R6, τ ′f ∈ R6, τ ′d ∈ R6, and τ ′ ∈ R6.

The objective of this chapter is proposing effective dynamics-based nonlinear con-

trollers to improve the trajectory tracking performance of the two robots. The principle

of the designed DRNN-based adaptive sliding mode control approach will be illustrated

by introducing the joint-space controller for the serial robot, and the introduction to the

task-space controller for the parallel robot will be omitted. Both controllers will be tested

by simulation and experiment.

6.5 DRNN-based Adaptive Sliding Mode Control

The structure of the adaptive sliding mode control approach using DRNN for the serial

robot is illustrated in Figure 6.2. A DRNN is designed to approximate the lumped system

uncertainties within a model-based sliding mode controller.

6.5.1 Sliding Mode Controller

The model-based sliding mode controller is proposed to cope with dynamic uncertain-

ties and external disturbances in the robotic system. The joint position and velocity tracking
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Figure 6.2: DRNN-based adaptive sliding mode control approach.

errors of the serial robot are described as

e = qd − q

ė = q̇d − q̇
(6.4)

where qd and q̇d represent the desired joint position and velocity, respectively, and q and q̇

denote the actual joint position and velocity, respectively.

The sliding surface is denoted as

s = ė+ ζe (6.5)

where ζ ∈ R6×6 is a positive definite diagonal matrix.

For further controller design, let’s define

q̇r = s+ q̇ = q̇d + ζe

q̈r = ṡ+ q̈ = q̈d + ζė.

(6.6)
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Then the sliding mode controller can be developed as

τ =M (q) q̈r + C (q, q̇) q̇r +G (q) + τf + τd +Kss

+Ki

∫ t

0

s dt+Krsgn(s)

=τn + ∆U +Kss+Ki

∫ t

0

s dt+Krsgn(s)

(6.7)

where Ks ∈ R6×6, Ki ∈ R6×6 and Kr ∈ R6×6 are all positive diagonal matrices, and

τn = M0 (q) q̈r + C0 (q, q̇) q̇r +G0 (q) + τf0, (6.8)

∆U = ∆Mq̈r + ∆Cq̇r + ∆G+ ∆τf + τd, (6.9)

sgn(sn) =


1, |sn| > 0

0, |sn| = 0

− 1, |sn| < 0

(6.10)

where n = 1, 2, ..., 6.

6.5.2 Deep Recurrent Neural Network Structure

The proposed DRNN in this chapter is depicted in Figure 6.3. Compared with shallow

neural networks, which need a significant number of neurons for complex function approxi-

mation, the deep neural network incorporating three hidden layers possesses stronger learn-

ing ability with less computational consumption. The input layer in the DRNN can receive

the feedback signals from the output layer with time delays. The presence of the feedback

loop enhances the dynamic capabilities of the neural network structure. By taking advan-

tages of both deep neural network and recurrent neural network, the system can achieve

superior approximation performance. The DRNN is adopted to estimate the lumped sys-

tem uncertainty ∆U in Eq. (6.9). The number of nodes in each hidden layer is set as 6,
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Figure 6.3: Deep recurrent neural network structure.

respectively. All the activation functions in the hidden layers are Gaussian function. The

different layers of the DRNN are introduced as follows.

(a) Input layer

The input layer receives two kinds of signals: input signal X = [e1, ė1, ..., e6, ė6]T ∈

R12 and feedback signal Y = [∆u1, ...,∆u6]T ∈ R6 from the output layer associated with

the weight Wn = [Wn1,Wn2, ...,Wn6]T ∈ R12×6, where

Wn =



Wn11 Wn21 · · · Wn121

Wn12 Wn22 · · · Wn122

...
... . . . ...

Wn16 Wn26 · · · Wn126



T

. (6.11)

The output of the input layer can be formulated as

X1 = X +WnY. (6.12)
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(b) First hidden layer

The output signal of the first hidden layer is given as G1 = [G11, ..., G16]T ∈ R6, and

G1i = exp

(
−‖X1 − c1i‖2

2b2
1i

)
(6.13)

where b1i ∈ R, c1i ∈ R12, and i = 1, 2, ..., 6. The width and the center vector of the nodes

in the first hidden layer are described as b1 = [b11, b12, ..., b16]T and c1 = [c11, c12, ..., c16]T ,

respectively.

(c) Second hidden layer

The output signal of the second hidden layer is defined as G2 = [G21, ..., G26]T ∈ R6,

and

G2j = exp

(
−‖G1 − c2j‖2

2b2
2j

)
(6.14)

where b2j ∈ R, c2j ∈ R6, and j = 1, 2, ..., 6. The width and the center vector

of the nodes in the second hidden layer are formulated as b2 = [b21, b22, ..., b26]T and

c2 = [c21, c22, ..., c26]T , respectively.

(d) Third hidden layer

The output signal of the third hidden layer is given as G3 = [G31, ..., G36]T ∈ R6, and

G3m = exp

(
−‖G2 − c3m‖2

2b2
3m

)
(6.15)

where b3m ∈ R, and c3m ∈ R6, and m = 1, 2, ..., 6. The width and the center vector

of the nodes in the third hidden layer are denoted as b3 = [b31, b32, ..., b36]T and c3 =

[c31, c32, ..., c36]T , respectively.

(e) Output layer

The output of the DRNN is a linear combination of the output of the third hidden layer
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with the weight W = [W1,W2, ...,W6] ∈ R6×6, where

W =



W11 W21 · · · W61

W12 W22 · · · W62

...
... . . . ...

W16 W26 · · · W66


. (6.16)

The final output of the DRNN is

Y = W TG3. (6.17)

6.5.3 DRNN-based Adaptive Sliding Mode Controller

The estimated system uncertainty ∆Û through DRNN is expressed as

∆Û = Ŵ T Ĝ3 (6.18)

where Ĝ3 is the estimated output of the third hidden layer using the estimated neural net-

work parameters Ŵ , b̂1, ĉ1, b̂2, ĉ2, b̂3, ĉ3 and Ŵn.

Assuming there exist the optimal neural network parameters W ∗, b∗1, c∗1, b∗2, c∗2, b∗3, c∗3

and W ∗
n , leading to the optimal estimation value of ∆U as ∆U∗ = W ∗TG∗3, The actual

lumped system uncertainty is represented as

∆U = ∆U∗ + ε (6.19)

where ε is the mapping error, ||ε|| ≤ εt, and εt is a small positive constant.

Then the control law in Eq. (6.7) can be rewritten as

τ = τn + ∆Û +Kss+Ki

∫ t

0

s dt+Krsgn(s). (6.20)
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Therefore, the estimation error for ∆U can be computed as

∆U −∆Û =W ∗TG∗3 − Ŵ T Ĝ3 + ε

=W ∗T (Ĝ3 + G̃3)− Ŵ T Ĝ3 + ε

=W̃ T Ĝ3 + W̃ T G̃3 + Ŵ T G̃3 + ε

=W̃ T Ĝ3 + Ŵ T G̃3 + εc

(6.21)

where W̃ = W ∗ − Ŵ , G̃3 = G∗3 − Ĝ3, and εc = W̃ T G̃3 + ε.

6.5.4 Stability Analysis

The stability analysis of the proposed adaptive sliding mode controller using DRNN is

conducted based on Lyapunov theorem.

Consider the Lyapunov function as

V =
1

2
sTMs+

1

2k1

tr(W̃ T W̃ ) +
1

2k2

tr(b̃T1 b̃1)

+
1

2k3

tr(b̃T2 b̃2) +
1

2k4

tr(b̃T3 b̃3) +
1

2k5

tr(c̃T1 c̃1)

+
1

2k6

tr(c̃T2 c̃2) +
1

2k7

tr(c̃T3 c̃3) +
1

2k8

tr(W̃ T
n W̃n)

(6.22)

where k1, k2, k3, k4, k5, k6, k7 and k8 are positive constants.

Taking the Taylor expansion of G̃3 leads to

G̃3 =dGb1 b̃1 + dGb2 b̃2 + dGb3 b̃3 + dGc1 c̃1 + dGc2 c̃2

+ dGc3 c̃3 + +dGWnW̃n +Or

(6.23)

where dGb1 = ∂G̃3

∂b1

∣∣∣∣
b1=b̂1

, dGb2 = ∂G̃3

∂b2

∣∣∣∣
b2=b̂2

, dGb3 = ∂G̃3

∂b3

∣∣∣∣
b3=b̂3

, dGc1 = ∂G̃3

∂c1

∣∣∣∣
c1=ĉ1

, dGc2 =

∂G̃3

∂c2

∣∣∣∣
c2=ĉ2

, dGc3 = ∂G̃3

∂c3

∣∣∣∣
c3=ĉ3

, dGWn = ∂G̃3

∂Wn

∣∣∣∣
Wn=Ŵn

, b̃1 = b∗1− b̂1, b̃2 = b∗2− b̂2, b̃3 = b∗3− b̂3,
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c̃1 = c∗1 − ĉ1, c̃2 = c∗2 − ĉ2, c̃3 = c∗3 − ĉ3, W̃n = W ∗
n − Ŵn, and Or is a high-order term.

Let
Q =

1

2k1

tr(W̃ T W̃ ) +
1

2k2

tr(b̃T1 b̃1) +
1

2k3

tr(b̃T2 b̃2)

+
1

2k4

tr(b̃T3 b̃3) +
1

2k5

tr(c̃T1 c̃1) +
1

2k6

tr(c̃T2 c̃2)

+
1

2k7

tr(c̃T3 c̃3) +
1

2k8

tr(W̃ T
n W̃n).

(6.24)

From Eqs. (6.2), (6.6), (6.8) and (6.9), Eq. (6.1) can be formulated as

τ = M(q̈r − ṡ) + C(q̇r − s) +G+ τf + τd

= τn + ∆U −Mṡ− Cs.
(6.25)

Based on Eqs. (6.20) and (6.25), we can get

Mṡ+ Cs = ∆U −∆Û −Kss−Ki

∫ t

0

s dt−Krsgn(s). (6.26)

Taking the derivative of V yields

V̇ = sTMṡ+
1

2
sTṀs+ Q̇ = sT (Mṡ+ Cs) + Q̇. (6.27)

According to Eqs. (6.21), (6.23), (6.24) and (6.26), Eq. (6.27) can be described as

V̇ =− sT
(
Kss+Ki

∫ t

0

s dt+Krsgn(s)

)
+ sT Ŵ T (dGb1 b̃1 + dGb2 b̃2 + dGb3 b̃3

+ dGc1 c̃1 + dGc2 c̃2 + dGc3 c̃3 + dGWnW̃n +Or) + sT (W̃ T Ĝ3 + εc)

+
1

k1

tr(W̃ T ˙̃W ) +
1

k2

tr(˙̃bT1 b̃1) +
1

k3

tr(˙̃bT2 b̃2) +
1

k4

tr(˙̃bT3 b̃3)

+
1

k5

tr( ˙̃cT1 c̃1) +
1

k6

tr( ˙̃cT2 c̃2) +
1

k7

tr( ˙̃cT3 c̃3) +
1

k8

tr( ˙̃W T
n W̃n).

(6.28)
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Let 

sT W̃ T Ĝ3 +
1

k1

tr(W̃ T ˙̃W ) = 0

sT Ŵ TdGb1b̃1 +
1

k2

tr(˙̃bT1 b̃1) = 0

sT Ŵ TdGb2b̃2 +
1

k3

tr(˙̃bT2 b̃2) = 0

sT Ŵ TdGb3b̃3 +
1

k4

tr(˙̃bT3 b̃3) = 0

sT Ŵ TdGc1c̃1 +
1

k5

tr( ˙̃cT1 c̃1) = 0

sT Ŵ TdGc2c̃2 +
1

k6

tr( ˙̃cT2 c̃2) = 0

sT Ŵ TdGc3c̃3 +
1

k7

tr( ˙̃cT3 c̃3) = 0

sT Ŵ TdGWnW̃n +
1

k8

tr( ˙̃W T
n W̃n) = 0.

(6.29)

Thus the adaptation laws of the DRNN parameters can be obtained as



˙̃W = −k1Ĝ3s
T

˙̃bT1 = −k2s
T Ŵ TdGb1

˙̃bT2 = −k3s
T Ŵ TdGb2

˙̃bT3 = −k4s
T Ŵ TdGb3

˙̃cT1 = −k5s
T Ŵ TdGc1

˙̃cT2 = −k6s
T Ŵ TdGc2

˙̃cT3 = −k7s
T Ŵ TdGc3

˙̃W T
n = −k8s

T Ŵ TdGWn .

(6.30)

Then Eq. (6.28) can be rewritten as

V̇ = −sT
(
Kss+Ki

∫ t

0

s dt+Krsgn(s)− εc −Owr

)
. (6.31)

where Owr = Ŵ TOr. Assuming εc and Owr are bounded as ||εc|| ≤ εe and ||Owr|| ≤ Oe,
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where εe and Oe are small positive constants. If Kr = diag([Kr1, Kr2, ..., Kr6]) in Eq.

(6.7) satisfies

Krk ≥ γ + |usk|+ |uik|+ εe +Oe (6.32)

where k = 1, 2, .., 6, γ is a small positive constant, us = Kss, and ui = Ki

∫ t
0
s dt, it can

lead to

V̇ ≤ −
6∑

k=1

γ |sk| ≤ −γ(sT s)
1
2 ≤ 0. (6.33)

If the DRNN parameters can converge to the optimal values through the adaption laws

indicated in Eq. (6.30), the sliding surface s will keep decreasing. According to Lemma 1

in Chapter 5, it can be concluded that the sliding surface s = 0 will be reached within a

finite time, and the stability of the system can be guaranteed.

6.6 Simulation and Experimental Results

6.6.1 Simulation Tests

To verify the effectiveness of the designed DRNN-based adaptive sliding mode control

approach, it is tested on the two robots in the simulation, respectively. The desired joint

trajectory for the serial robot is chosen as sinusoid trajectory, and the frequency is set as 0.5

rad/s. The desired end-effector trajectory for the parallel robot is selected as finite Fourier

series-based trajectory with changing frequency, as indicated in Eq. (5.47).

The initial joint position of the serial robot is defined as

[0(rad), 0(rad), 0(rad), 0(rad), 0(rad), 0(rad)]T, and the initial end-effector pose for

the parallel robot is given as [0(m), 0(m), 0.116(m), 0(rad), 0(rad), 0(rad)]T. The

nominal dynamic parameters are expressed as M0 = 0.8M , C0 = 0.8C, G0 = 0.8G

and τf0 = 0.8τf , respectively. The external disturbance is defined w.r.t. time t as

τd = [2sin(t), 2sin(t), 2sin(t), 2cos(t), 2cos(t), 2cos(t)]T . The initial values of the weights
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in the DRNN are set as 1, and the elements of the width b and the center vector c in the acti-

vation functions are all initialized as 1.2 and 1.5, respectively. In the joint-space controller

for the 6-DOF serial robot, Ks and Ki are set as diag([180, 180, 180, 180, 180, 180])

and diag([120, 120, 120, 120, 120, 120]), respectively. The initial value of Kr is

chosen as diag([50, 50, 50, 50, 50, 50]). Regarding the task-space controller for the

6-RSS parallel robot, Ks and Ki are given as diag([160, 160, 160, 160, 160, 160]) and

diag([100, 100, 100, 100, 100, 100]), respectively. The initial value of Kr is defined as

diag([40, 40, 40, 40, 40, 40]).

The trajectory tracking performance of the serial robot and parallel robot are demon-

strated in Figure 6.4. With the DRNN for system uncertainty estimation and the robust

sliding mode control techniques, high tracking accuracy and convergence speed can be

realized in both joint-space controller and task-space controller. Besides, as presented in

Figure 6.5, the approximated lumped system uncertainties can converge to the optimal val-

ues fast with small estimation errors through the designed DRNN in the two simulation

tests. It can be concluded that the DRNN-based adaptive sliding mode control approach is

able to achieve good trajectory tracking performance for the serial robot and parallel robot,

in the presence of dynamic uncertainties and external disturbances.

6.6.2 Experimental Tests

The distributed control strategy using DRNN-based ASMC is validated on the coopera-

tive robotic system in the experiment. The kinematic relationships that need to be satisfied

during the cooperative motion include two main points: (1) The compaction roller direc-

tion should be kept perpendicular to the surface of the mandrel. (2) A distance defined as

dist = 0.015 m between the mandrel surface and the roller should be maintained along the

roller direction. The desired trajectories of the two robots are the generated leader-follower
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(a)

(b)

(c)

Figure 6.4: Trajectory tracking errors of the two robots in the simulation. (a) Serial robot
joint position. (b) (c) Parallel robot end-effector pose.
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(a)

(b)

Figure 6.5: Estimation results of the lumped system uncertainties. (a) Serial robot. (b)
Parallel robot.

trajectories in Chapter 4, for a continuous 0◦ fiber layup on Branches 1 and 2 of the man-

drel. Furthermore, comparative experiment is conducted between the following control

approaches for the two robots, respectively. In the hidden layers of all the neural network

structures, the number of nodes is set as 6.

(a) DRNN-based ASMC developed in this chapter.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.6: Cooperative motion of the two robots using the distributed DRNN-based adap-
tive sliding mode control strategy.

(b) ASMC using shallow recurrent neural network (RNN).

(c) ASMC using shallow RBF neural network.

(d) SMC without using neural networks for the estimation of the lumped system uncer-

tainties.

The nominal dynamic parameters of the two robots and the external disturbance in

the experiment are defined same as the ones in the simulation. For the parameters in

the three neural network structures, the initial values of the weights are set as 1, and

the elements in the width b and the center vector c are initialized as 1.5 and 1.8, re-

spectively. Regarding the joint-space controller for the serial robot, Ks and Ki are set as

10−2 ∗ diag([30, 30, 30, 20, 20, 20]) and 10−2 ∗ diag([12, 12, 12, 6, 6, 6]), respectively. The
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Trajectory tracking errors of the serial robot using the three ASMCs with dif-
ferent kinds of neural networks and SMC.
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Table 6.1: Error Index Comparison for the Serial Robot

Position (10-3rad) Indexes DRNN-ASMC RNN-ASMC RBF-ASMC SMC

Joint 1
MAE 0.4 0.76 0.92 1.07

RMSE 0.5 0.92 1.12 1.32

Joint 2
MAE 0.42 0.58 0.82 0.91

RMSE 0.66 0.74 1.04 1.18

Joint 3
MAE 0.68 1.04 1.21 1.5

RMSE 0.91 1.27 1.46 1.82

Joint 4
MAE 0.44 0.62 0.73 0.85

RMSE 0.54 0.74 0.88 1.03

Joint 5
MAE 0.38 0.48 0.56 0.65

RMSE 0.61 0.71 0.85 1.01

Joint 6
MAE 0.42 0.61 0.7 0.78

RMSE 0.56 0.79 0.91 1.02

initial value of Kr is defined as 10−3 ∗ diag([50, 50, 50, 40, 40, 40]). In the task-space con-

troller for the parallel robot, Ks and Ki are defined as 10−3 ∗ diag([20, 20, 20, 20, 20, 20])

and 10−3 ∗ diag([15, 15, 15, 15, 15, 15]), respectively. The initial value of Kr is given as

10−3 ∗ diag([10, 10, 10, 10, 10, 10]).

The cooperative manipulation results using the distributed DRNN-based adaptive slid-

ing mode control strategy are given in Figure 6.6. The parallel robot is stationary as the

AFP head follows the desired fiber path along Branch 1. As shown in Figure 6.6 (c), the

AFP head reaches the start point of the fiber path along Branch 2. At this moment, the

C-Track 780 receives the real-time end-effector pose of the serial robot, which satisfies the

triggering condition described in Section 6.3, then the parallel robot starts to move. The two

robots move smoothly and continuously without any disruptions, and the AFP kinematic
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(a) (b)

(c) (d)

(e) (f)

Figure 6.8: Trajectory tracking errors of the parallel robot using using the three ASMCs
with different kinds of neural networks and SMC.
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Table 6.2: Error Index Comparison for the Parallel Robot

Pose Indexes DRNN-ASMC RNN-ASMC RBF-ASMC SMC

X position (mm)
MAE 0.25 0.33 0.39 0.43

RMSE 0.29 0.37 0.44 0.48

Y position (mm)
MAE 0.31 0.41 0.46 0.5

RMSE 0.33 0.45 0.51 0.55

Z position (mm)
MAE 0.32 0.41 0.52 0.63

RMSE 0.84 0.86 0.92 0.93

X orientation (10−3rad)
MAE 0.31 0.54 0.62 0.81

RMSE 0.38 0.64 0.74 0.98

Y orientation (10−3rad)
MAE 0.64 0.83 0.96 1.06

RMSE 0.75 0.89 1.1 1.22

Z orientation (10−3rad)
MAE 1.03 1.44 1.52 1.94

RMSE 1.39 1.77 1.86 2.4

relationships are maintained simultaneously. It is clearly seen that the distributed control

structure with the event-triggered communication network is able to realize the efficient

control of the cooperative AFP system.

Regarding the comparative experiment using different control approaches, the trajec-

tory tracking performance of the serial robot and the parallel robot are demonstrated in

Figure 6.7 and Figure 6.8, respectively. As given in Table 6.1 and Table 6.2, the error

indexes MAE and RMSE are computed, in order to further evaluate and compare the test

results. With the strong robustness to dynamic uncertainties and external disturbances us-

ing sliding mode control techniques, the four controllers can all achieve high accuracy and

convergence speed for trajectory tracking. In comparison to the model-based SMC, smaller
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Figure 6.9: RMS values of the control signals for the two robots.

tracking errors can be obtained for the three ASMCs by adopting neural networks to es-

timate the lumped system uncertainties. The designed DRNN-based ASMC can acquire

the highest tracking accuracy among the three ASMCs. The DRNN possesses stronger

dynamic approximation ability by combining the advantages of deep neural network and

recurrent neural network. We can conclude that the proposed DRNN-based ASMC can re-

alize good trajectory tracking performance and demonstrates strong robustness in dealing

with the system uncertainties for the two robots.

As in Chapter 5, the RMS values of the control signals in the four controllers are also

computed in this chapter, as presented in Figure 6.9. The model-based sliding mode con-

troller without neural network compensation owns the lowest RMS value. Although supe-

rior tracking performance can be obtained in the DRNN-based ASMC, the increase of the

number of hidden layers and the extra feedback loop in the DRNN definitely lead to the

highest computation consumption.
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6.7 Summary

To fulfill the efficient control of the 13-DOF cooperative AFP system, a novel dis-

tributed control strategy using DRNN-based ASMC is developed in this chapter. The co-

operative control of the serial robot and the parallel robot in the system is conducted in a

distributed formation with an event-triggered communication network. An adaptive sliding

mode control approach is proposed for the robotic system with the existence of dynamic

uncertainties and external disturbances. A DRNN with three hidden layers and a feedback

loop from the output layer to the input layer, is designed to approximate the lumped system

uncertainties in the controller. The stability analysis of the controller is given according

to Lyapunov theorem. The feasibility of the distributed control strategy has been validated

by simulation and experiment. The superiority of the DRNN-based ASMC regarding tra-

jectory tracking performance, has been illustrated by the comparisons with ASMCs using

different neural networks and SMC.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Aiming to improve the efficiency and accuracy in producing composite components,

automated fiber placement system has been extensively applied to manufacture fiber com-

posites in industry. Unfortunately, due to the insufficient system DOFs, the majority of the

AFP systems are not able to manufacture composite components with complicated struc-

tures. A 13-DOF cooperative robotic system has been developed to deal with this issue, for

completing the fiber layup process on a Y-shape mandrel. An AFP head is attached to the

end-effector of a 6-DOF serial robot, while the mandrel is held by a 1-DOF rotary stage

attached to the end-effector of a 6-RSS parallel robot. A photogrammetry sensor C-Track

780 is adopted for 3D pose estimation in real time.

Efficient control of industrial robots is key to the success of automated manufacturing

work, while subject to various motion constraints caused by the complicated kinematic

structure and nonlinear dynamics of the robots. The robot control problem is commonly

treated by a two-level solution. The first level is trajectory planning, and the second level

is trajectory tracking. Trajectory planning computes a time history of the desired positions

and velocities. The objective of trajectory tracking is to make the actual values of the
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robot’s positions and velocities reach the desired values.

The AFP task is more sophisticated than the traditional cooperative manipulation tasks,

which focus on either coordinated grabbing of common objects or formation control of

multiple robots. The aim of this Ph.D. project is proposing cooperative trajectory planning

and control algorithms for the robotic system to place fiber on the Y-shape mandrel with

the desired path angle 0◦. The research achievements can be summarized as follows.

(1) Distributed control of the cooperative robotic system

Practically, to avoid the excessive communication demands among the two robots,

which can degrade system performance and disrupt the overall stability of the network,

a distributed control structure with event-triggered condition is developed. Two individual

controllers are applied for the control of the serial robot and the parallel robot, respectively.

According to the detected end-effector pose of the serial robot by the photogrammetry

sensor C-Track 780, the information exchange between the two robots starts solely upon

meeting the predefined triggering condition. An adaptive Kalman filter is utilized to esti-

mate the uncertain noises in pose estimation.

(2) Leader-follower trajectory planning for the cooperative robotic system

This work investigates a leader-follower trajectory planning strategy for the two robots.

The serial robot with the AFP head is employed as the leader, while the 6-RSS parallel

robot holding the Y-shape mandrel serves as the follower. Due to the fact that the dynamic

and kinematic constraints of the serial robot could disrupt the fiber layup process, a time-

jerk optimal trajectory planning method is formulated for the serial robot. It enables the

planning of an optimal trajectory for the AFP head while adhering to the robot motion con-

straints. However, deviations may occur between the AFP head path and the desired fiber

path, and the orientation of the roller in the AFP head could fail to maintain perpendicular

to the mandrel surface. For satisfying the AFP geometric constraints, a vision-based tra-

jectory generation strategy is developed for the parallel robot utilizing C-Track 780. Based
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on the visual measurement results, the desired parallel robot trajectory can be determined

according to the desired trajectory of the start point on the given fiber path.

(3) PBVS-based adaptive sliding mode control of the 6-RSS parallel robot

The trajectory tracking control of the 6-RSS parallel robot in Cartesian space is studied

in this project. A position-based visual servoing approach is proposed for the parallel

robot using adaptive sliding mode control. The C-Track 780 is employed to measure the

end-effector pose of the robot in real time, which serves as the feedback signal to the

controller. The adaptive Kalman filter is also utilized to deal with uncertain noises in visual

measurements to increase the pose estimation accuracy. A sliding mode controller with

strong robustness is designed to cope with system uncertainties, and an RBF neural network

is incorporated to realize the auto-tuning of the control gains, which can guarantee the

desired system performance under varying conditions. The stability of the controller has

been validated using Lyapunov theorem.

(4) DRNN-based adaptive sliding mode control for the cooperative robotic system

In this work, with the existence of dynamic uncertainties and external disturbances,

a distributed adaptive sliding mode control scheme using deep recurren neural network

is proposed for the cooperative robotic system. A model-based sliding mode controller

is developed to maintain the strong robustness of the robotic system. A deep recurrent

neural network is designed to estimate the lumped uncertainties in the control system. It

consists of a feedforward structure through three hidden layers and a feedback loop from

the output layer to the input layer, which exhibits more powerful online learning ability and

dynamic property than shallow feedforward neural networks. Based on Lyapunov theorem,

the adaptation laws of the neural network parameters are derived, and the stability of the

controller can be guaranteed.

(5) Simulation and experimental validations

Sufficient simulation and experiment have been conducted to verify the feasibility of
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the proposed trajectory planning and tracking control schemes. The advantages of the al-

gorithms are demonstrated through the comparisons with the previously published research

work.

To sum up, the trajectory planning and tracking control of the 13-DOF cooperative

robotic system for AFP, have been successfully addressed by algorithm development, the-

oretical analysis, simulation, and hardware experiment. The distributed control structure

with event-triggered configuration is able to realize the collaborative control of two robots

in real experiment. The leader-follower trajectory planning approach can satisfy the AFP

geometric constraints for 0◦ fiber path on the Y-shape mandrel, while ensures the com-

pliance to the motion constraints of the robots. The PBVS-based adaptive sliding mode

control strategy and the DRNN-based adaptive sliding mode control approach contribute to

the enhancement of the robustness and trajectory tracking performance of the cooperative

robotic system.

7.2 Future Work

Regarding the trajectory planning and control of the 13-DOF cooperative robotic sys-

tem for AFP, there still exist several interesting and meaningful topics to investigate, as

indicated below.

(1) The traditional sliding mode controller is only insensitive to matched uncertainties,

which exist in the same channel as that of the control input [147]. It is worth noting that

mismatched uncertainties acting via different channels from that of the control input may

appear in the mechanical systems. For example, the uncertainties of the payload dynamics

are the mismatched ones while involving the actuator dynamics in the system modeling

[148]. In the future, more investigation regarding dealing with the payload in the presence

of mismatched uncertainties will be conducted in the controller design for the two robots.
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(2) In this work, the PBVS-based adaptive sliding mode control using RBF neural net-

work is only explored for the 6-RSS parallel robot. Since the inverse kinematics solution

of a serial robot is not unique, a distinct PBVS control scheme should be developed for

the 6-DOF serial robot. Besides, to further test the effectiveness of the proposed control

scheme, simulation and experiment using PBVS and DRNN-based adaptive sliding mode

controller are worth conducting for the two robots.

(3) Although the employment of neural networks in nonlinear controller development

can surely enhance the system robustness to dynamic uncertainties and external distur-

bances and guarantee the desired tracking performance, it also leads to higher RMS values

of the control signals, which makes the controllers more energetically expensive in real

applications. More efforts need to be made to decrease the computation cost without com-

promise on system performance.

(4) In the near future, the experiment of placing the real fiber on the Y-shape mandrel

will be implemented. As mentioned in [18], the fiber path with the angles 45◦ and 90◦ have

also been planned on the Y-shape mandrel. The leader-follower trajectory planning of the

cooperative robotic system can be explored in terms of different fiber path angles.

(5) The leader-follower trajectory planning with the parallel robot as the leader and the

serial robot as the follower is a potential solution to be studied. Additionally, the trajectory

planning for the parallel robot based on optimal control may be considered.

(6) Reinforcement learning can improve the self-learning ability of the robots by en-

abling the robots to autonomously discover an optimal behavior through the interactions

with the environment [149]. The combination of reinforcement learning with sliding mode

control or/and deep neural network for robot control can be found in [150–152]. In the

future, we will try to integrate the three control techniques for the control of the 13-DOF

cooperative robotic system.
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(7) Comparisons between distributed control, centralized control and decentralized con-

trol using the DRNN-based adaptive sliding mode controller can be investigated on the

13-DOF cooperative robotic system.

(8) The proposed trajectory planning and tracking control strategy can provide inspira-

tions for various cooperative manipulation tasks and the control of different kinds of robots.

We will try to implement it on the mobile robots, UAVs and other types of serial robots in

our lab for improving the system performance.
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