
Neural Real-Time Recalibration for Image-based

Multi-Camera Systems

Reza Talakoob

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Computer Science at

Concordia University

MontrÂeal, QuÂebec, Canada

July 2024

© Reza Talakoob, 2024

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Reza Talakoob

Entitled: Neural Real-Time Recalibration for Image-based Multi-Camera

Systems

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Ching Yee Suen

Examiner
Dr. Ching Yee Suen

Examiner
Dr. Mirco Ravanelli

Supervisor
Dr. Charalambos Poullis

Approved by
Dr. Joey Paquet, Chair

Department of Computer Science and Software Engineering

2024
Dr. Mourad Debbabi, Dean

Faculty of Engineering and Computer Science

Abstract

Neural Real-Time Recalibration for Image-based Multi-Camera Systems

Reza Talakoob

Traditionally, multi-camera calibration relies on physical objects and a controlled environment

to achieve high-accuracy results, but this cannot be extended to real-time. Recent advancements in

deep learning (DL) have enabled image-based camera calibration, offering real-time operation but

often sacrificing accuracy for speed. In this thesis, we address this trade-off by proposing a novel

approach that leverages DL models for online and real-time multi-camera calibration with high

precision. Current DL methods for camera calibration, while fast, often struggle with real images

captured in the wild due to varying conditions. Our approach tackles this challenge by introducing a

deep learning model designed for online calibration scenarios from images with low inference time.

This model adapts to various camera poses efficiently, ensuring robust calibration across diverse

viewpoints.

Central to our approach is the introduction of perturbations into the camera parameters, leveraging

known initial parameters and 3D fiducial coordinates. This technique allows the model to learn and

predict accurate camera parameters even in uncontrolled settings. Extensive experiments demon-

strate the effectiveness of our proposed approach, particularly in scenarios requiring real-time cali-

bration with high precision.

iii

Acknowledgments

Hereby I would like to express my gratitude to my supervisor, Professor Charalambos Poullis

for the amazing opportunity to work in the Immersive and Creative Technologies Lab. I greatly

enjoyed working with and learning along the way of such a person, appreciating his exceptional

field knowledge and commitment to professional ethics.

Also, I cannot appreciate my loving parents enough for their unconditional support and love. My

friends, especially my partner, Dorsa, whom I could not imagine living and researching far from

home without their presence.

Forever grateful!

iv

Contents

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Single-Camera Calibration . 1

1.2 Multi-Camera Calibration . 2

1.3 Online multi-Camera Calibration . 2

1.4 Motivation and Challenges . 2

1.5 Proposed Solution . 3

1.6 Contribution . 3

1.7 Thesis Outline . 3

2 Literature Review 4

2.1 Camera Models . 4

2.1.1 Pinhole Camera Model . 5

2.1.2 Fisheye Camera Model . 5

2.2 Relative Camera Poses in Multi-Camera Setups 6

2.3 Deep Learning Models . 6

2.3.1 Convolutional Neural Networks(CNNs) 7

2.3.2 Residual Neural Network (ResNet) . 9

2.3.3 Transformers and Attention Mechanism 9

v

3 Neural Real-Time Recalibration for Infrared Multi-Camera Systems 12

3.1 Introduction . 13

3.2 Related Work . 15

3.3 Camera Model . 16

3.4 Methodology . 18

3.4.1 Dynamic Camera Pose Synthesis . 18

3.4.2 Network Architecture . 21

3.4.3 Loss . 21

3.4.4 Training . 22

3.5 Experimental Results . 22

3.5.1 Generalization to Arbitrary Configurations & Calibration Objects 23

3.5.2 Comparison with CMM-calibrated multi-camera system. 24

3.6 Conclusion . 24

4 Supplementary Material 26

4.1 Network Architecture . 26

4.1.1 Point-based variant. 27

4.1.2 Image-based variant. 28

4.1.3 Ablation Study . 28

4.2 Comparison with Standard Calibration and Optimization Techniques 30

4.2.1 Inference vs. Recalibration . 30

4.2.2 Inference vs. Minimizing Reprojection Errors 32

4.3 Qualitative Results . 33

4.4 Training: Less Effective Strategies . 34

4.4.1 Regularization terms . 34

4.4.2 Losses . 35

4.5 Limitations & Discussion . 36

4.5.1 Adhering to Operational Specifications 36

4.5.2 Limited Range of Motion for Image-based 37

vi

4.5.3 Model Customization . 37

4.5.4 Decalibration Detection . 37

4.6 Model Training Progression Animation . 38

5 Extension to Fisheye Camera Model 39

5.1 Fisheye Camera Model Training and Test Results 39

5.2 Detection and Tracking of Bright Points in Image Sequences 41

5.2.1 Image Preprocessing, Blob Detection and Gaussian Fitting 41

5.2.2 Point Tracking Across Images . 41

5.3 Evaluation Metrics . 42

5.3.1 Normal Vector Comparison . 42

5.3.2 Angle Comparison . 42

5.3.3 Midpoint Reprojection Error . 43

6 Conclusion and Future work 44

Bibliography 45

vii

List of Figures

Figure 2.1 Same scene captured by a standard and a fisheye lens. Source: [1] 5

Figure 2.2 Convolutional Neural Network pipeline for a classification task. Source: [2] 7

Figure 2.3 Convolutional filtering process. Source: [2] 8

Figure 2.4 Max Pooling vs Average Pooling. Source: [2] 8

Figure 2.5 a residual block showing the concept of residual learning by adding skip

connection as described in [3]. 9

Figure 2.6 VIT Model review as shown in [4]: Splitting input image into fixed-size

patches, linearly embedding each of them, adding positional embedding, and feed-

ing the resulting sequence of vectors to a standard Transformer. 11

Figure 3.1 Discontinuities introduced by quaternions and Euler angle representations

hinder network learning efficiency as shown in [5]. 17

Figure 3.2 Technical overview. Our methodology begins with the synthesis of dy-

namic camera poses (see top fig.). Given spherical angles ϕ (azimuth), θ (elevation),

along with the intrinsic rotation angle α, the OEM calibration parameters, the max-

imum perturbation limit κ, and known 3D fiducials (e.g. a cube calibration object),

this module performs two primary functions: (i) it synthesizes poses for the multi-

camera system, and (ii) it computes the projected 2D points. Subsequently, it em-

ploys point splatting to render images of these points. During training (see bottom

fig.), the synthesizes poses and projected points (alternatively rendered images) are

used to train the neural network. A differentiable projection ensures the propagation

of gradients from the loss L back to the predicted camera parameters. 19

viii

Figure 3.3 Dynamic Camera Pose Synthesis. Our framework supports arbitrary con-

figurations of multiple cameras as well as a wide range of calibration objects. To

synthesize camera poses, we employ a random uniform sampling strategy across

three dimensions to ensure a comprehensive exploration of the pose space: az-

imuth (θ), elevation (ϕ), and roll (α), where θ ∼ U(0, 2π), ϕ ∼ U(0, π2), and

α ∼ U(0, 2π). Additionally, Original Equipment Manufacturer (OEM) calibration

parameters and a predefined maximum perturbation limit (κ) are incorporated. . . . 21

Figure 4.1 Visualization of predicted vs ground truth camera poses. The calibration

object is a sphere with 64 fiducials. The multi-camera system configuration is O-

shaped comprising 10 cameras. For closer inspection please refer to the interactive

visualization in the cameras.html file. 29

Figure 4.2 Runtime for traditional camera calibration. Exponential growth in cal-

ibration time with increasing number of images (red; 1 camera). Linear increase

w.r.t. LM iterations on 100 images (blue; 1 camera). Ours; real-time (τ i=1
min =

0.0026s, τ i=10
max = 0.012s) for increasing number of cameras 2i, 1 ≤ i ≤ 10 (black). 31

Figure 4.3 Effect of decalibration on reprojection error (RMSE). OEM intrinsic pa-

rameters are perturbed by 20%, i.e., κ ∈ [−10%, 10%], simulating potential decal-

ibration. Reprojection error without intervention (red), with 1 iteration of Bundle

Adjustment (green), with 25 iterations (blue); 1000 trials. 32

Figure 4.4 Reprojection of 3D Fiducials with Predicted Camera Poses (With 5%

Perturbation). This figure illustrates the resilience and accuracy of our pose es-

timation model during decalibration of the camera parameters of up to 5% pertur-

bation. The calibration cube and the O-shaped arrangement of 10 cameras remain

constant as in Figure 4.5, allowing for a direct comparison across different testing

conditions. Note: The reprojected points are shown in white. For optimal visibility,

please zoom in. 33

ix

Figure 4.5 Reprojection of 3D Fiducials with Predicted Camera Poses (Test Data

Generated Without Perturbation). This figure demonstrates the reprojection ac-

curacy in a O-shaped multi-camera setup comprising 10 cameras, with the calibra-

tion object being a cube with 8 fiducials. The comparison between the predicted (in

white) and ground-truth (color-coded; enlarged for visualization purposes) projec-

tions demonstrates the precision of our model in the absence of perturbation. Note:

The reprojected points are shown in white. For optimal visibility, please zoom in. . 34

Figure 4.6 Illustration of the proposed loss compared to auxiliary regularization

and loss terms. This figure demonstrates that minimizing the proposed loss leads

to a reduction in auxiliary losses. However, this is a non-reciprocal relationship

where the inclusion of auxiliary losses does not further improve model performance

beyond the capabilities of the proposed loss which is a combination of the repro-

jection error, the RMSE error of the parameters, and the geodesic error. Here, we

present the training loss graphs for the point-based variant. As previously described,

the distortion coefficients are scaled by scaling factor λscale = 1000. 36

Figure 5.1 Synthetic image of the Fisheye camera setup, with 6 cameras and 8 key points. 40

Figure 5.2 The training loss of the fisheye camera model with 5% perturbation. 40

x

List of Tables

Table 3.1 Experimental results. RE20K
avg is the average RMSE reprojection error on 3

different trials (synthetic test sets, each comprising 20,000 data samples). Training

on all models includes adding a Max Perturb. κ ∈ [min%,max%] to the OEM

camera intrinsic and extrinsic parameters respectively. Nfid. and NC are the num-

ber of 3D fiducials and the number of cameras, respectively. The rotation angle α

remains the same in all experiments i.e., α ∼ U(0, 2π). The parameters for Pt and

Img models are ∼33m and ∼86m, respectively. 23

Table 4.1 Ablation study results. Training on all models includes a perturbation of

Max Perturb. κ ∈ [-2.5%,+2.5%] of the OEM intrinsic parameters, utilizing 10

cameras (NC = 10) and a calibration object with 8 fiducials (Nfid. = 8). Pt models

have been trained for 300k epochs and Img models for 150k epochs. 30

Table 5.1 Experimental Results: RE20K
camera is the average RMSE reprojection error on

3 different trials (synthetic test sets, each comprising 20,000 data samples). Training

on all models includes adding a Max Perturb. κ ∈ [min%,max%] to the OEM

camera intrinsic and extrinsic parameters respectively. The number of 3D fiducials

and the number of cameras are 8 and 10 respectively in these experiments. The

rotation angle α remains the same in all experiments i.e., α ∼ U(0, 2π). 40

xi

Chapter 1

Introduction

In this chapter, we introduce the fundamental concepts of the camera calibration process, em-

phasizing its application in multi-camera systems. We delve into the motivation behind real-time

multi-camera calibration, highlighting the associated challenges. Lastly, we provide a brief overview

of our proposed solution to these challenges. This introduction set the foundation for understanding

the complexities in our approach to achieving efficient and accurate calibration in dynamic environ-

ments.

1.1 Single-Camera Calibration

Single-camera calibration is the problem of estimating the parameters of a camera, including

the intrinsic and extrinsic parameters, which consist of the focal length, principal points, and lens

distortion coefficients. Extrinsic parameters describe the camera’s rotation and translation with

respect to the world coordinates, defining its position and orientation in space. These parameters

are essential for accurate 3D reconstruction, object recognition, and other applications requiring

precise geometric information. Traditional single-camera calibration involves capturing images of

a known calibration pattern, such as a checkerboard, from multiple angles and distances. Such

calibration algorithms then process these images to estimate the camera parameters, correcting for

distortions and aligning the camera’s view with the real-world scene.

1

1.2 Multi-Camera Calibration

In multi-camera systems, multiple cameras are used simultaneously to capture different perspec-

tives of the same scene. Multi-camera systems are widely used in many applications in computer

vision, especially when we need accurate and robust 3d construction and measurements across mul-

tiple cameras. In Multi-Camera Calibration we aim to find the relative position and orientation of

each camera in the setup with respect to the base camera. This allows us to reconstruct the scene in

3d and determine the location of the cameras within that scene.

1.3 Online multi-Camera Calibration

While offline and precise calibration of the multi-camera setup is essential for tasks requiring

high precision, online calibration allows adjustments to the camera parameters in real-time In an

online setup, calibration needs to be performed dynamically, as cameras may be moved during an

operation. This is particularly needed in scenarios where the multi-camera configuration is subject

to change after deployment, such as a surgery room.

1.4 Motivation and Challenges

The primary challenge in online multi-camera calibration lies in both efficiency and the ac-

curacy of estimating the camera parameters without disrupting the system operation. Traditional

calibration methods involve capturing calibration patterns from all the cameras in a multi-camera

setup simultaneously, followed by an off-line process to compute the cameras’ parameters which

is not suitable for online setups because it requires system downtime. Instead, the online approach

relies on iterative refining of the camera parameters. these methods often employ feature-based

tracking algorithms to detect and track calibration patterns or objects in real-time. By leveraging

information across multiple cameras, these algorithms can estimate camera parameters efficiently

while the system is still in operation.

2

1.5 Proposed Solution

In response to the challenges discussed above, our approach utilizes deep learning architecture

to learn the representation and regress the camera parameters. To have sufficient training data for

a deep neural network we also propose a way of generating synthetic data in various views. This

allows the model to see the training data in different camera poses and learn the underlying patterns

from the images, generalizing well on possible views. This ensures the production of precise and

detailed results. The goal of our approach is to achieve precise calibration and robust generalization

through extensive training while ensuring efficient real-time inference.

1.6 Contribution

The result of my work was a joint publication1 titled ºNeural Real-Time Recalibration for In-

frared Multi-Camera Systemsº which is currently under review. Specifically, my contribution to

this work was introducing the camera synthesis module given the initial configuration of the camera

setup, designing an image-based variant of the neural calibration model, and exhaustive experimen-

tation to achieve the best performance on different scenes and camera configurations given RGB

images as input. Beyond the publication, we extend our experiments to also support calibration for

another common camera model, such as the fisheye, which is typically used for capturing a wider

field of view.

1.7 Thesis Outline

This thesis is organized into 5 chapters. Chapter 2 offers the foundational knowledge necessary

for comprehending the proposed method. It covers the topics of different camera models and the

deep learning architectures and mechanisms utilized in our proposed solution. In Chapter 3, we

present our paper titled Neural Real-Time Recalibration for Infrared Multi-Camera Systems. In

Chapter 4, we provide the supplementary materials for our main paper. Finally, in Chapter 5, we

conclude the thesis, showing the possible extension to our methods.

1I share first authorship with Benyamin Mehmandar

3

Chapter 2

Literature Review

In this chapter, we explain various camera models and their associated parameters that provide

an understanding of the fundamental concepts behind camera functionality and imaging. We ex-

plore two different camera models, the pinhole camera model, and the fisheye. following this model

overview, we shift our focus to the Deep-learning approaches used for the image-based camera cali-

bration. This section provides a detailed review of the commonly used neural network architectures,

such as convolutional neural networks (CNNs), residual networks (ResNets), and transformer-based

models. These architectures serve as the backbone of our deep learning models, processing input

images to extract image features.

By leveraging these deep learning techniques, we aim to enhance a robust and precise real-time

camera calibration which is also efficient for inference. This chapter also includes the fundamental

concepts behind the architecture and the mathematical theories needed for the camera calibration

process.

2.1 Camera Models

Understanding the characteristics of different camera models is paramount for camera calibra-

tion. Two widely used camera models are the pinhole camera model and the fisheye camera model,

each offering distinct advantages and limitations. Figure 2.1, from [1] shows the effect of a Fisheye

lens, enabling the capturing of a wider field of view.

4

Figure 2.1: Same scene captured by a standard and a fisheye lens. Source: [1]

2.1.1 Pinhole Camera Model

The pinhole camera model, also known as the perspective camera model, is the simplified form

of how light rays enter a camera and form an image. In this model, the light passes through a single

point that is called the pinhole (camera center) and projects onto an image plane at a certain dis-

tance from the center. This projection results in perspective distortion where objects further from

the camera would be smaller in image space. Equation 1 shows the distortion equation for the pin-

hole projection given the radial distortion k1, k2, k3 and p1, p2 the tangential distortion coefficients,

where r2 = x2 + y2. Here (x,y) are the coordinates of the projected point using the projection

matrix Mprojection = Mcamera-to-image ·Mworld-to-camera and Pimage = Mprojection ·Pworld

xdist = x(1 + k1r
2 + k2r

4 + k3r
6) + 2p1xy + p2(r

2 + 2x2),

ydist = y(1 + k1r
2 + k2r

4 + k3r
6) + p1(r

2 + 2y2) + 2p2xy

(1)

2.1.2 Fisheye Camera Model

In contrast to the Pinhole model, Fisheye cameras provide a wider field of view which can cap-

ture a broader range of the scene with reduced perspective distortion. Fisheye lenses are specialized

optics designed to provide an ultra-wide field of view, spanning up to 180 degrees. Unlike tradi-

tional lenses, these lenses utilize complex optical elements to capture a nearly hemispherical view

of the scene, resulting in significant distortion near the edges of the images. Equation 2 shows the

distortion equation where θ = tan−1(r) and r2 = x2 + y2. The Fisheye distortion model only

includes radial Fisheye distortion, k1, k2, k3, k4. Unlike the rectilinear lens model, the polynomial

5

describing the radial distortion is a function of an angular distance from the center of perspective,

rather than a linear distance in the image

xdist =
θ

r
(1 + k1θ

2 + k2θ
4 + k3θ

6 + k4θ
8)x,

ydist =
θ

r
(1 + k1θ

2 + k2θ
4 + k3θ

6 + k4θ
8)y

(2)

2.2 Relative Camera Poses in Multi-Camera Setups

One important aspect of a multi-camera system in our design is the relative pose of each camera

with respect to the base camera. This will help us with the reconstruction, triangulation, and param-

eter optimization. In this part, we assume that we have the Rotation and Translation of each camera

in the world coordinate system. Assume Ri and Ti to be the camera i’s Rotation and Translation

w.r.t the world, and R0 and T0 are the Rotation and Translation of the base camera. Then we can

calculate the relative Rotation and Translation using equation 3.

Ri0 = R−1
0 Ri,

Ti0 = R−1
0 (Ti − T0)

(3)

2.3 Deep Learning Models

Convolutional Neural Networks(CNNs) have revolutionized Computer Vision to tackle complex

image-based tasks with high accuracy. Since the introduction of CNNs, many variations have been

proposed to learn the underlying representation of the raw images for tasks such as image classifica-

tion, Object Detection, and Segmentation. CNNs capture spatial and temporal dependencies within

data and find the underlying patterns and structures. With the emergence of large-scale datasets such

as ImageNet [6], different architectures icnluding AlexNet [7], VGG [8], Resnet [3] and others have

further improved performance and efficiency, candidating them as potential backbones for image-

based tasks. While Resnet benefits from skip connections and addresses the vanishing gradient

issue, VIT [4] adopts a transformer-based architecture inspired by the improvements in the field of

Natural Language Processing, demonstrating remarkable performance in image classification tasks

by processing image patches. This alternative family of architectures offers further exploration in

6

image-based tasks, suggesting a departure from the conventional CNN paradigm.

2.3.1 Convolutional Neural Networks(CNNs)

One of the most popular deep neural networks is convolutional neural networks (also known

as CNN or ConvNet), which are mostly applied to visual imagery in deep learning. ConvNets are

specifically designed to process an image in a grid-like manner, with notable efficiency and ef-

fectiveness. ConvNets, as shown in 2.2 from [2] consists of interconnected layers, each serving a

specific function in the feature extraction process. The core components are convolutional layers,

pooling layers, and fully connected layers. These networks perform feature extraction by applying

convolution operation to input images, and then the pooling layers reduce spatial dimensions to

overcome overfitting. Activation functions tend to introduce some non-linearity to the ConvNets.

Rectified Linear Unit (Relu) ensures sparse activation and accelerates convergence during training.

Other functions such as tanh and sigmoid are among other nonlinear options. Finally, fully con-

nected layers are the head for classification or regression. In the following subsections, we delve

deeper into the functionality of the convolution and pooling layers.

Figure 2.2: Convolutional Neural Network pipeline for a classification task. Source: [2]

Convolutional Operation

The convolutional operation involves sliding a kernel over the input image to extract local pat-

terns. Each convolutional layer may have several filters or kernels that capture different aspects of

7

their input. The output of the filters are called feature maps which highlight the spatial information

of the input. Figure 2.3, from [2] demonstrates the convolutional filtering process while sliding a

kernel window on it. When we slide a kernel filter over an input in a CNN, the output size may

reduce depending on the size of the filter. To manage the output size changes, there are different

padding strategies such as zero padding and full padding.

Figure 2.3: Convolutional filtering process. Source: [2]

Pooling Layers

Pooling layers serve the purpose of downsampling the feature map size, reducing the complex-

ity while keeping the essential information. Max pooling and average pooling are the two most

commonly employed to create compact representations. Pooling also enhances robust feature ex-

traction. Figure 2.4 from [2] shows the max pooling and average pooling process, demonstrating

their functionality as suggested by their names. In max pooling, the maximum value from each

region is selected, whereas in average pooling, the average value of each region is calculated.

Figure 2.4: Max Pooling vs Average Pooling. Source: [2]

8

2.3.2 Residual Neural Network (ResNet)

Residual Networks (ResNet) addresses a fundamental challenge in training deep neural net-

works. It has revolutionized the field by presenting a novel architectural paradigm that helps us to

train exceedingly deep networks, surpassing the limitations caused by vanishing gradients. The core

idea of Resnets lies in the introduction of residual blocks, as shown in 2.5, which enables propaga-

tion through deep layers while mitigating the problem encountered in traditional deep networks. By

adding skip connections bypassing one or more layers, Resnets pass information from earlier layers

to the subsequent ones, enabling the network to learn the residual mappings. The added Identity

mapping helps preserve the input information of the residual block, ensuring that the deep layers

can learn the residuals without missing the information flow. This means the gradient can flow

effectively through the network, improving the overall performance and addressing the vanishing

gradient problem. Equation 4 shows the formula for the l-th residual block, with the input denoted

as xl and the output xl+1.

xl+1 = xl + F(xl, {Wl,i}) (4)

Figure 2.5: a residual block showing the concept of residual learning by adding skip connection as

described in [3].

2.3.3 Transformers and Attention Mechanism

Transformers [9] introduced in the context of sequence-to-sequence tasks like machine trans-

lation, are a type of neural network architecture designed to capture long-range dependencies and

information effectively. Unlike recurrent or convolutional architectures, transformers rely on the

self-attention mechanism to process input sequences and generate the embedded representations.

9

Self-Attention Mechanism

The self-attention mechanism is a key component of transformers. It allows the model to focus

only on relevant parts of the sequence by assigning different weights to the tokens based on their

importance. This enables the model to capture the patterns within the data. Mathematically self-

attention is described in the equation 5. Given an input sequence represented by the matrix X ∈

R
n×d, where n is the sequence length and d is the dimensionality of the embeddings, the self-

attention mechanism computes three matrices: Query Q, Key K, and Value V , which are linear

transformations of X:

Q = XWQ, K = XWK , V = XWV .

Attention(Q,K, V) = softmax

(︃

QKT

√
dk

)︃

V
(5)

where WQ,WK ,WV ∈ R
d×dk are learned parameter matrices and dk is the dimensionality of

the query, key, and value vectors. The attention scores are computed by taking the dot product of

the query and key vectors, scaling by the square root of dk, and finally applying a softmax function.

Positional Encoding

Transformers lack the inherent sequential nature of recurrent neural networks. To address this,

positional encoding is added to the input embeddings to provide information about the position of

each token in the sequence. The positional encoding can be defined using sine and cosine functions

of different frequencies:

PE(pos,2i) = sin
(︂ pos

100002i/d

)︂

PE(pos,2i+1) = cos
(︂ pos

100002i/d

)︂

(6)

where pos is the position and i is the dimension. These encodings are added to the input em-

beddings to incorporate positional information and make use of the order.

10

Vision Transformer (VIT)

Vision Transformers have recently emerged as an alternative to CNNs. In many computer vi-

sion tasks, the attention mechanism is used in conjunction with CNNs or used to substitute certain

aspects of CNNs. However, a pure transformer-based model applied to image patches can work

exceptionally well on image tasks. VIT extends the capabilities of transformers to the domain of

visual data. Self-attention is the fundamental building block of transformer architectures, which

enables global interactions between the input tokens.VIT treats images as sequences of 16 flattened

patches. These patches are further embedded into high-dimensional features, which are processed

by transformer layers to capture dependencies within the entire image. By leveraging self-attention,

VIT mitigates the need for architectural components such as convolutional filters. VIT shows re-

markable generalization capabilities, surpassing the performance of CNN-based models on various

benchmarks, often requiring fewer parameters. Figure 2.6 shows an overview of the vit model and

the transformer encoder block used within it.

Figure 2.6: VIT Model review as shown in [4]: Splitting input image into fixed-size patches, lin-

early embedding each of them, adding positional embedding, and feeding the resulting sequence of

vectors to a standard Transformer.

11

Chapter 3

Neural Real-Time Recalibration for

Infrared Multi-Camera Systems

The following is a verbatim copy of the manuscript currently under review, titled ºNeural Real-

Time Recalibration for Infrared Multi-Camera Systemsº, authored by Benyamin Merhandar1, Reza

Talakoob2, and Charalambos Poullis.

Abstract

In this work, we address the challenge of real-time, highly-accurate calibration of multi-camera

infrared systems, a critical task for time-sensitive applications. Unlike traditional calibration tech-

niques that lack adaptability and struggle with on-the-fly recalibrations, we propose a neural network-

based method capable of dynamic real-time calibration. The proposed method integrates a differ-

entiable projection model that directly correlates 3D geometries with their 2D image projections

and facilitates the direct optimization of both intrinsic and extrinsic camera parameters. Key to our

approach is the dynamic camera pose synthesis with perturbations in camera parameters, emulating

realistic operational challenges to enhance model robustness. We introduce two model variants: one

designed for multi-camera systems with onboard processing of 2D points, utilizing the direct 2D

projections of 3D fiducials, and another for image-based systems, employing color-coded projected

1equal contribution
2equal contribution

12

points for implicitly establishing correspondence. Through rigorous experimentation, we demon-

strate our method is more accurate than traditional calibration techniques with or without perturba-

tions while also being real-time, marking a significant leap in the field of real-time multi-camera

system calibration.

3.1 Introduction

Camera calibration is the fundamental process of estimating the camera’s intrinsic and extrin-

sic parameters and is an essential part of many computer vision systems. Accurate calibration is

important in various applications, ranging from 3D reconstruction to augmented reality, especially

in settings demanding high accuracy, like surgical environments. Traditional calibration methods

provide analytical frameworks for addressing camera calibration. However, they require captur-

ing an object of known geometry from multiple viewpoints, then extracting points and establishing

correspondences. The inherent computational complexity of these conventional methods tends to

increase dramatically with the number of cameras, images, and correspondences, making them im-

practical for real-time applications.

In time-critical applications requiring high accuracy, standard commercial multi-camera sys-

tems have a fixed camera configuration and come pre-calibrated from manufacturers. However, the

calibration of these systems deteriorates over time because of wear and tear and, more commonly,

because of the buildup of debris on critical components like the fiducials or lenses. In the field of

vision-based computer-assisted surgery, calibration problems frequently prevent multi-camera sys-

tems from meeting the exact specifications and stringent accuracy standards required for surgical

procedures. Such discrepancies can compromise the effectiveness and safety of medical procedures.

This deterioration in calibration emphasizes the need for sophisticated calibration methods. Co-

ordinate Measuring Machines (CMM) are commonly used to improve calibration accuracy, offering

a potential solution to this problem. Nonetheless, CMMs are expensive, and manufacturers typically

calibrate the multi-camera system before delivery, failing to account for potential discrepancies after

deployment. Traditional methods for detecting calibration errors, such as those based on epipolar

13

geometry, face significant computational challenges in multi-camera setups and do not support on-

the-fly recalibration, making them ineffective in dynamic environments.

System Context and Problem Statement. This work addresses the calibration challenges in-

herent in infrared multi-camera systems designed for time-critical applications, specifically vision-

based computer-assisted surgery. These systems function exclusively within a fixed distance from

a central point of interest, allowing rotation while maintaining a constant radius to ensure compre-

hensive visual coverage. This operational design is very important for three main reasons: first,

to comply with the manufacturer’s operating specifications and maintain system integrity and per-

formance; second, to ensure that the area of interest is in-focus across all cameras for accurate

tracking of medical instruments; and third, to minimize occlusions and reduce instances where

tracked markers are not visible in all camera views. By customizing our approach to accommodate

these multi-camera configurations and optimizing calibration for a fixed range of motion, we are

able to significantly improve the accuracy and achieve the real-time calibration required for such

time-critical applications.

In this work, we introduce a novel real-time multi-camera calibration method that leverages neu-

ral networks to provide on-the-fly recalibration. Our model is trained on synthesized camera poses

resulting from OEM calibration parameters, with perturbations applied to the intrinsic and extrinsic

parameters. The perturbations emulate real-world operational challenges, thereby enhancing the

model’s practical applicability. We demonstrate, through rigorous experimentation, that our method

not only adapts to alterations in calibration parameters in real time but also surpasses conventional

calibration techniques in accuracy. Our key technical contributions are threefold:

• First, we introduce a real-time neural calibration method for multi-camera systems, marking

a departure from traditional offline calibration methods. Our method employs a differentiable

projection model to flow gradients between 3D geometries and their 2D projections, allowing

for direct optimization of camera parameters.

• Second, we enhance the robustness and applicability of our method by dynamically synthe-

sizing camera poses at each epoch and incorporating perturbations to the OEM calibration

intrinsic and extrinsic parameters to simulate realistic operational challenges.

14

• Finally, we introduce two variants of our model: the first is designed for multi-camera systems

equipped with onboard processing, directly outputting the 2D projections of the 3D fiducials;

the second variant is designed for image-based multi-camera systems.

The work is structured as follows: Section 3.3 provides a brief overview of the pinhole camera

model. Section 3.4 discusses our methodology, including the dynamic camera pose synthesis for

multi-camera systems and details on the loss functions and training strategy. Finally, Section 4.2

reports on our experimental results.

3.2 Related Work

Camera calibration is fundamental in computer vision for determining geometric parameters

essential for image capture, playing a vital role in applications that require accurate scene mea-

surements. Despite the development of various methods to calculate camera parameters, tradi-

tional techniques like the Radial Distortion Model [10], Direct Linear Transform (DLT) [11], Tsai’s

method [12], Zhang’s approach [13], and [14] rely heavily on handcrafted features and model as-

sumptions. These methods, while effective, are often labor-intensive and not suited for real-time

or multi-camera calibration due to their complexity and the static nature of their required setup.

The perspective-n-point (PnP) problem has seen advancements with [15], [16], [17], and further

improvements in [18] through direct optimization methods. However, these solutions still face chal-

lenges in terms of real-time execution.

The advent of artificial neural networks has prompted a significant shift in camera calibration

research. Techniques like [19], [20], and PoseNet [21] for extrinsic calibration and others [22],

[23], [24], [25] for intrinsic parameter estimation leverage deep learning for more adaptable and

potentially real-time calibration. Yet, these neural network approaches require extensive datasets

for training, have low accuracy, and cannot generalize well across varying conditions.

In multi-camera calibration, research has extended towards self-calibration methods for setups

in shared environments, as seen in the works of Svoboda . [26], HeikkilÈa and SilvÂen [27], and

also [28], [29], [30]. These methods facilitate 3D reconstruction and multi-view analysis but re-

main challenged by the demands of real-time processing and dynamic scenes. Recent developments

15

have also explored joint estimation of intrinsic and extrinsic parameters, as demonstrated by [31],

[32], [33], [34]. These approaches promise more integrated calibration processes through deep

learning, highlighting the potential for efficient real-time calibration. Nonetheless, achieving a bal-

ance between computational efficiency and accuracy remains a critical challenge for these advanced

methods.

In contrast to the aforementioned techniques, our method enables real-time recalibration, effec-

tively predicting camera parameters in the presence of perturbations to the OEM intrinsic calibration

parameters. Additionally, a streamlined procedure for dynamic camera pose synthesis facilitates its

generalization to arbitrary configurations of multi-camera systems and arbitrary calibration objects.

3.3 Camera Model

For the sake of completeness, this section provides an overview of the classic pinhole camera

model, incorporating lens distortion to establish the relationship between the 3D world coordinates

of a point P and its 2D image projection p = [x, y]. Consider P = [X,Y, Z]T as a point in

world coordinates, with R and t representing the camera’s rotation matrix and translation vector,

respectively. The transformation of the 3D point into camera coordinates PC = [XC , Y C , ZC]T is

given by PC = RP+ t. The projection from 3D to 2D coordinates is given by:

⎡

⎢

⎢

⎢

⎢

⎣

x

y

1

⎤

⎥

⎥

⎥

⎥

⎦

=
1

ZC

⎡

⎢

⎢

⎢

⎢

⎣

fx 0 cx

0 fy cy

0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

PC , (7)

where ZC is the third component of PC , fx and fy the focal lengths, and cx, cy the principal point

coordinates.

Lens Distortion. In order to accurately represent lens distortion, which commonly occurs in real

camera systems, we include both the radial and tangential distortion. The distortion is represented

using a polynomial model, where the radial distortion is captured by a sixth-order polynomial and

the tangential distortion is addressed through first-order terms. The equations for the distorted

16

coordinates xdist and ydist are given as follows:

xdist = x(1 + k1r
2 + k2r

4 + k3r
6) + 2p1xy + p2(r

2 + 2x2),

ydist = y(1 + k1r
2 + k2r

4 + k3r
6) + p1(r

2 + 2y2) + 2p2xy,

(8)

where r2 = x2+y2, and k1, k2, k3 are the radial distortion coefficients, and p1, p2 are the tangential

distortion coefficients.

6D Rotation Parameterization. In line with the approach proposed in Zhou . [5], our work

adopts a 6D parameterization for the representation of 3D rotations, diverging from traditional

quaternion and Euler angle representations. The latter are known to introduce parameter space

discontinuities, as depicted in Figure 3.1, complicating the learning process for neural networks due

to the inherent discontinuities. Furthermore, a critical limitation of these traditional approaches is

their inability to guarantee that the network outputs are orthogonal rotation matrices, which is often

a desirable property for ensuring the physical plausibility of rotations in 3D space. These limita-

tions are particularly pronounced in tasks requiring the learning of continuous and smooth rotation

spaces. For the purpose of training, a 3D rotation matrix R is parameterized by a 6D vector r6D,

which encapsulates the elements of R’s first two columns. This parameterization provides a direct

mapping to a rotation matrix without the need for complex conversions or the risk of introducing

discontinuities. Specifically, during loss computation, the r6D vector is seamlessly transformed

back into an orthogonal rotation matrix R. This approach not only aligns with the findings from [5]

that direct regression on 3x3 rotation matrices can lead to larger errors, but also addresses the need

for generating orthogonal matrices directly from the network.

Figure 3.1: Discontinuities introduced by quaternions and Euler angle representations hinder net-

work learning efficiency as shown in [5].

Differentiable Projection. The image formation process with the pinhole camera model is

17

designed to be differentiable, facilitating the backpropagation of gradients from the loss -a function

of the difference between the observed and projected points- to the camera parameters.

3.4 Methodology

Our methodology employs a neural network designed to estimate the intrinsic and extrinsic pa-

rameters of a multi-camera system, leveraging a known calibration object in the scene. This tailored

approach ensures that, once trained, the model is specifically attuned to the multi-camera system

and calibration object utilized during its training phase. We invert the traditional image formation

process, enabling our model to deduce camera parametersÐsuch as rotations (R), translations (t),

focal lengths (fx, fy), principal points (cx, cy), and distortion coefficients (k1,2,3, p1,2)Ðfrom 2D

projections of 3D fiducial points on the calibration object.

At the core of our methodology is the dynamic camera pose synthesis, imperative for simulating

realistic conditions that a multi-camera system might encounter. We introduce controlled perturba-

tions into the OEM camera parameters, dynamically synthesizing diverse training samples. Given

the synthesized camera parameters, the process starts with projecting the 3D fiducials of the cali-

bration object onto the image plane. These 2D projected points serve as input to our model, which

then predicts the intrinsics and extrinsics of the multi-camera system. Utilizing these predicted

camera parameters, we project the known 3D fiducials back onto the image plane through a differ-

entiable process. The deviation between the projections from the synthesized and predicted camera

parameters is quantified using a loss function. Figure 3.2 provides an overview of our method.

3.4.1 Dynamic Camera Pose Synthesis

Dynamic camera pose synthesis begins with the OEM calibration parameters of a multi-camera

setup, typically determined by the manufacturing process. We represent a multi-camera setup of

NC cameras as Ci, 0 ≤ i < NC , where COEM
i denotes the initial calibration of each camera.

18

Figure 3.2: Technical overview. Our methodology begins with the synthesis of dynamic camera

poses (see top fig.). Given spherical angles ϕ (azimuth), θ (elevation), along with the intrinsic ro-

tation angle α, the OEM calibration parameters, the maximum perturbation limit κ, and known

3D fiducials (e.g. a cube calibration object), this module performs two primary functions: (i) it

synthesizes poses for the multi-camera system, and (ii) it computes the projected 2D points. Sub-

sequently, it employs point splatting to render images of these points. During training (see bottom

fig.), the synthesizes poses and projected points (alternatively rendered images) are used to train the

neural network. A differentiable projection ensures the propagation of gradients from the loss L
back to the predicted camera parameters.

Perturbations

To create a robust model capable of handling changes in calibration, we introduce perturbations

to the OEM camera parameters, generating perturbed parameters Cpert
i = COEM

i × (1 + δ), where

δ represents the perturbation defined as δ = κ × U(0, 1), with κ controlling the maximum desired

perturbation.

Camera Pose Synthesis

For the synthesis of camera poses, we employ a two-step process, ensuring both focus towards

the fiducial points and variability in camera orientation to prevent model overfitting. The procedure

19

is as follows.

The centroid of the camera system is dynamically positioned on a hemisphere’s surface, en-

suring varied perspectives. The radius of the hemisphere is determined in advance based on the

application requirements and the range of motion of the multi-camera system. Specifically, the

centroid’s position Pcentroid on the hemisphere is determined by:

Pcentroid = (xc, yc, zc) = ρ · (sin(ϕ) · cos(θ), sin(ϕ) · sin(θ), cos(ϕ)), (9)

where ρ denotes the hemisphere radius, and θ ∼ U(0, 2π), ϕ ∼ U(0, π/2) are angles sampled from

a uniform distribution, ensuring the centroid is randomly positioned over the hemisphere.

Next, a rotation Rfocus is applied to align the camera’s viewing direction towards the fiducials’

centroid, ensuring that the camera is oriented towards the area of interest. This alignment is critical

for simulating realistic camera setups where the fiducials are within the camera’s field of view. To

introduce additional randomness and prevent the network from overfitting to specific camera loca-

tions, a secondary random rotation Rrandom is applied by an intrinsic rotation angle α ∼ U(0, 2π)

around the centroid point. The combination of Rfocus and Rrandom ensures that each camera is

not only oriented towards the fiducials but also positioned and rotated in a manner that provides a

diverse set of viewing angles and positions. This diversity is imperative for training a robust model

capable of generalizing across various camera orientations and positions.

As a final validation step, we conduct a visibility check to ensure all fiducials are within the

field of view of all cameras. This step is essential, since the random placement of cameras on the

hemisphere might result in scenarios where not all fiducials are visible from all cameras.

The dynamic camera pose synthesis for each training epoch diversifies the dataset, improving

model generalization. Figure 3.3 illustrates synthesized camera poses for various multi-camera

systems e.g. T-shape (NC = 4), U-shape (NC = 7), O-shape (NC = 10), and different

calibration objects e.g. cube (Nfid. = 8), cube (Nfid. = 27), sphere (Nfid. = 64).

20

(a) T; cube(8) (b) O; cube(27) (c) U; sphere(64) (D) T; sphere(64)

Figure 3.3: Dynamic Camera Pose Synthesis. Our framework supports arbitrary configurations

of multiple cameras as well as a wide range of calibration objects. To synthesize camera poses,

we employ a random uniform sampling strategy across three dimensions to ensure a comprehensive

exploration of the pose space: azimuth (θ), elevation (ϕ), and roll (α), where θ ∼ U(0, 2π), ϕ ∼
U(0, π2), and α ∼ U(0, 2π). Additionally, Original Equipment Manufacturer (OEM) calibration

parameters and a predefined maximum perturbation limit (κ) are incorporated.

3.4.2 Network Architecture

We introduce two variants: the first one, known as the point-based model (Pt), is intended for

multi-camera systems with onboard processing that directly outputs the 2D projections of the 3D

fiducials, which is the typical case for IR multi-camera systems; the second one is the image-based

model (Img), designed for multi-camera systems that output images for subsequent processing,

rather than the point coordinates. The architecture of both variants is detailed in the supplementary

material along with an ablation study on the components.

3.4.3 Loss

Our loss function is crafted to encapsulate multiple facets of camera parameter estimation. The

primary term Lϵ is incorporated to enforce geometric consistency. It measures the RMSE between

2D points x, x′ obtained by projecting the 3D points using the predicted and ground-truth param-

eters, respectively, and is given by Lϵ = RMSE(x, x′). For rotation, we use geodesic loss Lgeo,

computed from the predicted and ground-truth rotation matrices, to penalize deviations in the ori-

entation. Additionally, Ldiff is the root mean square error (RMSE) that quantifies the difference

between the predicted and ground-truth parameters. We also employ a scaling value for the rotation

and distortion coefficients since their values are very small compared to other camera parameters,

as illustrated by the experiments in the ablations in the supplementary material.

21

3.4.4 Training

In the initial phase of 10,000 epochs, we utilize a simplified loss function focused on Ldiff and

Lgeo to establish a robust baseline, formulated as L = λ1 × Ldiff + λ1 × Lgeo. Subsequently, we

introduce the full compound loss, expressed as L = λ1 × Ldiff + λ1 × Lgeo + λ2 × Lϵ. In all

experiments, the coefficients are set to λ1 = 100, λ2 = 0.01, with the batch size of 512 and 8 for Pt

and Img variants, respectively.

Our training strategy is based on introducing a random perturbation to the camera parameters

in every epoch, to simulate a wide spectrum of deviations that may occur due to buildup of debris

on critical components like the fiducials or lenses. This methodical addition of perturbation aids in

better exploration of the parameter space and enhances the robustness and accuracy of the estimated

camera parameters. We employ an Adam optimizer with parameter-specific learning rates. The rates

are adaptively adjusted via a ReduceLROnPlateau scheduler based on the compound loss function.

Furthermore, the backpropagation step employs gradient clipping for stability.

3.5 Experimental Results

There are no learning-free or neural techniques for real-time recalibration of infrared multi-

camera systems. In the supplementary material, we adopt standard calibration and optimization

techniques for infrared cameras and demonstrate the impracticality of using traditional methods

for on-the-fly calibration. Below, we provide a comprehensive evaluation of our method’s accuracy

across various scenarios, demonstrating its suitability for time-sensitive, high-accuracy applications.

We conclude with an assessment of the generalizability of our approach to diverse multi-camera

system configurations and calibration objects.

In Table 3.1, we detail the performance of our model under various conditions, reporting the

average RMSE reprojection error RE20K
avg across three trials on synthetic test sets, each comprising

20,000 data samples. Our model demonstrates robust adaptability to different levels of perturba-

tions, where performance gracefully degrades as perturbations reach extreme values. For example,

with an O-shape camera system comprising 10 cameras (NC = 10), and a calibration object

with 8 fiducials (Nfid. = 8), our method achieves a RE20K
avg of 9.93± 1.4×10−4, 11.53± 1.5×10−4,

22

Table 3.1: Experimental results. RE20K
avg is the average RMSE reprojection error on 3 different

trials (synthetic test sets, each comprising 20,000 data samples). Training on all models includes

adding a Max Perturb. κ ∈ [min%,max%] to the OEM camera intrinsic and extrinsic parameters

respectively. Nfid. and NC are the number of 3D fiducials and the number of cameras, respec-

tively. The rotation angle α remains the same in all experiments i.e., α ∼ U(0, 2π). The parameters

for Pt and Img models are ∼33m and ∼86m, respectively.

Row

#

Variant θ φ Nfid.

(object)

NC

(config.)

Max Perturb.

κint., κext. ∈ [min%,max%]
RE20K

avg

(pixels)

1 Pt ∼ U(0, 2π) ∼ U(0, π/2) 8 10 ±2.5,±2.5 9.93± 1.4× 10−4

2 Pt ∼ U(0, 2π) ∼ U(0, π/2) 8 10 ±5,±5 11.53± 1.5× 10−4

3 Pt ∼ U(0, 2π) ∼ U(0, π/2) 8 10 ±10,±10 14.21± 1.8× 10−4

4 Pt ∼ U(0, 2π) ∼ U(0, π/2) 8 7 ±2.5,±2.5 14.67± 3.5× 10−4

5 Pt ∼ U(0, 2π) ∼ U(0, π/2) 8 4 ±2.5,±2.5 12.89± 2.1× 10−4

6 Pt ∼ U(0, 2π) ∼ U(0, π/2) 64 10 ±2.5,±2.5 14.92± 7.3× 10−5

7 Pt 0 0 8 6 0, 0 1.12± 5× 10−7

8 Pt 0 0 8 6 ±2.5, 0 3.08± 9.5× 10−6

9 Pt 0 0 8 6 ±10, 0 8.04± 7.2× 10−4

10 Img 0 0 8 6 ±2.5, 0 4.55± 1.8× 10−4

11 Img 0 0 8 10 ±2.5,±2.5 4.12± 2.4× 10−6

12 Img 0 0 8 10 ±5,±5 6.01± 1.6× 10−5

13 Img 0 0 8 10 ±10,±10 6.97± 1.1× 10−5

and 14.21± 1.8 × 10−4, for perturbations of up to 5%, 10%, 20%, respectively, as shown in rows

1-3. As we explain in the subsequent section, the range of motion is often constrained in real-world

scenarios due to operational limitations. Nevertheless, our approach demonstrates robust perfor-

mance and effectively predicts camera poses across a wide range of motion, i.e., θ ∼ U(0, 2π),

ϕ ∼ U(0, π/2), and α ∼ U(0, 2π).

3.5.1 Generalization to Arbitrary Configurations & Calibration Objects

We conducted comprehensive experiments with various camera configurations and calibration

objects to evaluate the generalization of our method. Cameras were positioned in geometric config-

urations common to real-world scenarios, such as the O-shaped (NC = 10), U-shaped (NC = 7

) and T-shaped (NC = 4) arrangements. As shown in Table 3.1 (in rows 1, 4, and 5),

even with a small number of fiducials i.e., Nfid. = 8, the reprojection errors RE20K
avg are low with

9.93± 1.4× 10−4, 14.67± 3.5× 10−4, 12.89± 2.1× 10−4, for the O-shape, U-shape, and T-shape

configurations, respectively.

The versatility of our approach is further demonstrated through tests involving calibration ob-

jects with different shapes and numbers of fiducials. Specifically, we evaluated our model using a

23

calibration cube with Nfid. = 8 and a calibration sphere with Nfid. = 64 fiducials. As shown in

Table 3.1(rows 1, 6), our method maintains a consistent error profile for both calibration objects.

3.5.2 Comparison with CMM-calibrated multi-camera system.

As previously stated, it is important to recognize that regressing camera poses under the con-

ditions that θ ∼ U(0, 2π), ϕ ∼ U(0, π/2) is more challenging than in typical real-world scenarios

where multi-camera systems have predefined operational ranges for θ and ϕ. Our method, when

practically tested in a surgical setting using a multi-camera system with a predefined operational

range of motion (specifically, an overhead fixed O-shaped system (NC = 6) where θ = ϕ = 0,

and a calibration object with Nfid. = 8), demonstrated superior performance. This system was

previously calibrated (offline) using a high-end CMM. Our approach surpassed the CMM calibra-

tion in terms of reprojection error within this motion range. CMM calibration parameters without

perturbations led to an average reprojection error of 1.80 pixels. In contrast, our method led to

an average reprojection error of 1.12± 5 × 10−7 on a model trained without perturbations (Table

3.1; row 7), and an average reprojection error of 3.08±9.5 × 10−6 (Table 3.1; row 8) and 8.04±

7.2 × 10−4 (Table 3.1; row 9) for perturbations of up to 5% and 20%, respectively. Additionally,

with an average inference time of 0.0026 seconds on a system equipped with a Nvidia RTX 4090

GPU, our method proves capable of supporting real-time applications.

3.6 Conclusion

Our work presents a neural calibration method tailored for the real-time and adaptive calibration

of multi-camera systems. Central to our approach is the combination of dynamic camera pose

synthesis with a differentiable projection model, which facilitates the direct optimization of camera

parameters from image data. Comprehensive experimental analysis demonstrated the robustness

of the method and its capacity to accurately predict calibration parameters while accommodating

random perturbations.

We further elaborated on the practicality of our method, contrasting the impracticality of recal-

ibrating or optimizing camera parameters at each step in real-time applications. Our evaluations

24

revealed our method’s superior accuracy and generalizability across different scenarios. The intro-

duction of two variantsÐcatering to systems with either direct 2D projections of 3D fiducials or

color-coded 2D projected pointsÐproves our method’s flexibility and broad applicability in diverse

operational contexts. Future research directions include the integration of perturbations into the

extrinsic parameters of the camera models. This holds the potential to significantly broaden the

applicability of our approach in more dynamically varied environments.

25

Chapter 4

Supplementary Material

The following is a verbatim copy of the manuscript submitted as supplementary material for the

paper titled ºNeural Real-Time Recalibration for Infrared Multi-Camera Systemsº.

Abstract

In the supplementary material, we present details on the network architectures and an ablation

on their components, comparisons with standard calibration and optimization techniques, qualitative

results and training nuances of the real-time neural multi-camera system calibration method. Ad-

ditionally, through a series of visualizations, we illustrate the precision of our model in predicting

camera poses against ground truth, with an emphasis on robustness in the presence of perturbations.

Lastly, we address the limitations and discussions.

4.1 Network Architecture

We introduce two variants: the first one, known as the point-based model (Pt), is intended for

multi-camera systems with onboard processing that directly outputs the 2D projections of the 3D

fiducials, which is the typical case for IR multi-camera systems; the second one is the image-based

model (Img), designed for multi-camera systems that output images for subsequent processing,

rather than the point coordinates. The architecture of both variants is summarized in the supplemen-

tary material.

26

4.1.1 Point-based variant.

Given an input tensor X ∈ R
NC×Nfid.×2, where NC is the number of cameras, and Nfid. is the

number of fiducials, the point-based model performs the following operations:

(1) Embedding Layer fembed: Maps input fiducial points to a higher-dimensional space: Xenc =

fembed(X), where Xenc ∈ R
NC×512.

(2) Camera Identity Encoding CIE: Incorporates camera-specific information: X
′

enc = Xenc+

CIE(NC , 512), where X
′

enc ∈ R
NC×512.

(3) Transformer Encoder fTE: Processes embeddings through a transformer encoder to model

complex relationships: X
′′

enc = fTE(X
′

enc), X
′′

enc ∈ R
NC×512.

(4) Downstream Heads hM∗ : Process the encoder output through separate prediction heads for

different outputs X∗
out ∈ R

M (rotation r6D, translation t, focal lengths fc = (fx, fy), princi-

pal point pp = (cx, cy), and distortion coefficients kc = (kc1,2,3, p1,2)):

Xr6D
out = h6R(X

′′

enc), Xt
out = h3t (X

′′

enc),

Xfc
out = h2fc(X

′′

enc), Xpp
out =h2pp(X

′′

enc), Xkc
out = h5kc(X

′′

enc)

(5) In a final step, the outputs X∗
out are combined to form the output tensor X̂out representing the

combined camera parameters:

X̂out = (γ(Xr6D
out), X

t
out, X

fc
out, X

pp
out, X

kc
out)

where X̂out ∈ R
NC×21, γ(.) is a function that expands the 6D parameterized rotation to a

rotation matrix as described in Section 3 in the main paper, and 21 is the number of calibration

parameters per camera.

Incorporating camera identity encoding CIE into our architecture significantly improves perfor-

mance by disambiguating camera perspectives, as shown in the ablations in Section 4.1.3. The

CIE applies a simple one-hot encoding strategy where each camera is assigned a unique identifier

27

in this embedding space. To accommodate scenarios where the number of cameras exceeds the

embedding dimension, it introduces a small amount of noise to each encoding, ensuring that each

camera’s encoding remains distinct. This enhances robustness and accuracy for spatially-aware

tasks and supports generalization to new configurations and arbitrary camera setups.

4.1.2 Image-based variant.

The image-based variant utilizes a Vision Transformer (ViT) to process the input image tensor

Xin ∈ R
NC×Ch×H×W and predict camera parameters.

(1) Encoder fencoder. The input image tensor is resized to 224× 224 pixels and passed through

a ViT encoder. The ViT model is adapted by replacing its classification head with an identity

layer, allowing the model to output a feature representation directly Xenc = fencoder(Xin),

where Xin ∈ R
N×3×224×224, and Xenc ∈ R

NC×768.

(2) Bottleneck Layer fbottleneck. The encoded features are further processed through a bottle-

neck layer to reduce dimensionality and focus on relevant features for parameter prediction:

Xbottleneck = fbottleneck(Xenc), and comprises a linear layer, reducing features to R
NC×128.

(3) Downstream Heads: Similar to the point-based model variant, separate heads are used for

predicting the camera parameters from the bottleneck features Xbottleneck, and combined to

form the output tensor X̂out ∈ R
NC×21.

4.1.3 Ablation Study

We conducted an ablation study to demonstrate the impact and significance of individual com-

ponents of our network. All models have been trained following the training strategy in Section 4.4

in the main paper, given the conditions explained in Table 4.1.

28

Figure 4.1: Visualization of predicted vs ground truth camera poses. The calibration object

is a sphere with 64 fiducials. The multi-camera system configuration is O-shaped comprising 10

cameras. For closer inspection please refer to the interactive visualization in the cameras.html file.

Impact of Value Scaling

We highlight the significant role of scaling rotation and distortion coefficients prior to RMSE

loss calculation. Given the inherently small magnitudes of these coefficientsÐelements of the rota-

tion matrix (0 < ri < 1) and distortion parameters (kc1,2,3, p1,2 ≲ 0.1)Ðtheir contribution to the

overall loss is minimal. Introducing a scaling factor, λscale, amplified their effect, as evidenced by

the increased prediction errors observed when omitting this factor, detailed in Table 4.1.

Camera Identity Encoding CIE

We showcase the significance of Camera Identity Encoding (CIE). The results in Table 4.1

clearly indicate that incorporating CIE leads to notable performance improvements. By integrating

CIE, our model distinctly differentiates between camera perspectives, leading to marked improve-

ments in accuracy for spatially-aware tasks.

29

Table 4.1: Ablation study results. Training on all models includes a perturbation of Max Perturb.

κ ∈ [-2.5%,+2.5%] of the OEM intrinsic parameters, utilizing 10 cameras (NC = 10) and a cali-

bration object with 8 fiducials (Nfid. = 8). Pt models have been trained for 300k epochs and Img

models for 150k epochs.

Row

#

Variant #

Params

θ φ Encoder Scaled

λscale = 1000
Camera

Identity

Encoding

CIE

RE20K
avg

(pixels)

1 Pt ∼ 33m ∼ U(0, 2π) ∼ U(0, π/2) Transformer ✓ ✓ 12.47± 6× 10−4

2 Pt ∼ 33m ∼ U(0, 2π) ∼ U(0, π/2) Transformer ✓ 421.26± 9.6× 10−3

3 Pt ∼ 33m ∼ U(0, 2π) ∼ U(0, π/2) Transformer ✓ 25.49± 2× 10−2

4 Pt ∼ 8m ∼ U(0, 2π) ∼ U(0, π/2) CNN-1D ✓ ✓ 96.93± 3.9× 10−2

5 Img ∼ 86m 0 0 ViT ✓ - 6.89± 5.8× 10−5

6 Img ∼ 24m 0 0 CNN-2D ✓ - 20.62± 2.8× 10−5

Impact of Encoder

We contrast the performance impact between utilizing a transformer encoder and a 1D con-

volutional (CNN-1D) encoder within our model. As detailed in Table 4.1, the integration of a

transformer encoder significantly enhances model accuracy. Similarly, for the image-based model,

the ViT encoder results in increased precision when compared with CNN-2D.

4.2 Comparison with Standard Calibration and Optimization Tech-

niques

In this section, we explore the differences between recalibrating and optimizing infrared cam-

eras at every step in real-time applications. We start our discussion in Section 4.2.1, examining the

drawbacks of recalibrating at each step using standard methods. Through experiments, we demon-

strate the significant time required for this process, thereby illustrating the impracticality of using

traditional methods for on-the-fly calibration in multi-camera systems. Following this, Section 4.2.2

presents experiments that emphasize the difficulties in minimizing reprojection errors using Bundle

Adjustment (BA).

4.2.1 Inference vs. Recalibration

In this section, we address the limitations of traditional calibration methods. Traditional cal-

ibration methods require a large number of images, especially for applications demanding high

30

accuracy. In such scenarios, the requirement can escalate to thousands of images, leading to a pro-

hibitive increase in execution time (i.e., > 1000 images for vision-based computer-assisted surgical

multi-camera systems). Even in the hypothetical scenario where capturing thousands of images

instantaneously were possible, the calibration process itself remains time-consuming and scales

poorly as image quantity increases. As depicted in Figure 4.2 for a single camera, this execu-

tion time grows exponentially with the number of images, rendering a recalibration at every step

impractical within real-time applications. Additionally, increasing the number of iterations in the

Levenberg-Marquardt refinement step leads to a linear time increase, as illustrated by the blue curve

in Figure 4.2.

Figure 4.2: Runtime for traditional camera calibration. Exponential growth in calibration time

with increasing number of images (red; 1 camera). Linear increase w.r.t. LM iterations on 100

images (blue; 1 camera). Ours; real-time (τ i=1
min = 0.0026s, τ i=10

max = 0.012s) for increasing number

of cameras 2i, 1 ≤ i ≤ 10 (black).

In contrast, our method operates on a fixed number of cameras, NC , which inherently caps the

inference time to τ i=1
min = 0.0026s, τ i=10

max = 0.012s for increasing number of cameras 2i, 1 ≤ i ≤ 10

on an Nvidia RTX 4090, as shown in Figure 4.2 by the black curve. This translates to ∼ 387

inferences per second, demonstrating a significant advantage in the context of real-time applications.

31

4.2.2 Inference vs. Minimizing Reprojection Errors

We now pivot our experiments to investigate the feasibility of minimizing reprojection error

at every step using Bundle Adjustment (BA) as an alternative to recalibrating at every step, in the

context of real-time optimization amidst decalibration.

We conducted 1000 trials, each applying random perturbations within a range of κ ∈ [−10%, 10%]

to the OEM intrinsic parameters. For every trial, our objective was to minimize the reprojection er-

ror with BA, utilizing data from Nfid. = 8 points and NC = 6 cameras.

Our findings highlight a significant constraint: the time taken for a single BA iteration, averaging

0.0385 seconds, substantially exceeds our execution time of 0.0026 seconds for a single inference,

and proves that optimizing camera parameters by minimizing reprojection errors at every step is not

a viable choice for real-time applications.

Figure 4.3: Effect of decalibration on reprojection error (RMSE). OEM intrinsic parameters are

perturbed by 20%, i.e., κ ∈ [−10%, 10%], simulating potential decalibration. Reprojection error

without intervention (red), with 1 iteration of Bundle Adjustment (green), with 25 iterations (blue);

1000 trials.

Furthermore, a single iteration of BA resulted in minimal improvement in reprojection error, as

illustrated in Figure 4.3 in green vs red. Subsequent experiments showed that achieving a noticeable

reduction in reprojection error required an average of 25 BA iterations per system’s capture, culmi-

nating in an untenable average execution time of 1.2892 seconds for real-time processing. Despite

32

these efforts, the reprojection error remained significantly high (Figure 4.3; blue), compared to our

method (Table 1 in the main paper; rows 9, 10).

4.3 Qualitative Results

In Figure 4.1, we show a qualitative result of the calibration from the multi-camera system

calibration. The blue-shaded spheres represent the ground truth values. The red-shaded spheres

represent the predicted values. The single yellow sphere per multi-camera system represents the

first camera, and is singled out for visualization purposes only, to demonstrate the in place rotation

Rrandom i.e. that the multi-camera system does not always have the same vertical orientation. For

closer inspection please refer to the interactive visualization in the supplementary material.

Figure 4.5 illustrates the reprojection accuracy of 3D fiducials using predicted camera poses

(white dots) contrasted against the ground-truth projections (color-coded). In this example, a point-

based model was trained with 5% perturbation, and the input points to the model were generated

with no perturbation to the camera parameters. The multi-camera system is arranged in an O-shape,

consisting of 10 cameras, with a cube with 8 fiducials as the calibration object.

Figure 4.4: Reprojection of 3D Fiducials with Predicted Camera Poses (With 5% Perturba-

tion). This figure illustrates the resilience and accuracy of our pose estimation model during decal-

ibration of the camera parameters of up to 5% perturbation. The calibration cube and the O-shaped

arrangement of 10 cameras remain constant as in Figure 4.5, allowing for a direct comparison across

different testing conditions. Note: The reprojected points are shown in white. For optimal visibility,

please zoom in.

Figure 4.4 shows the same model as Figure 4.5, i.e., trained with a 5% perturbation. However,

33

in this example we simulate a decalibration by generating the test data from perturbed camera

parameters of up to 5%. Beyond the quantitative evaluation presented in the previous section, these

figures facilitate a direct qualitative comparison of model performance and clearly demonstrate the

robustness of our pose estimation technique under conditions of uncertainty.

4.4 Training: Less Effective Strategies

In this section, we describe our exploration of various loss and regularization terms intended to

improve model performance. Despite their theoretical potential, these methods did not enhance our

results in practice.

4.4.1 Regularization terms

• A regularization term, denoted as Lκc , was introduced to encourage minimal distortion coef-

ficients (k1, k2, k3, k4, k5) by minimizing the sum of the absolute values of these coefficients.

• A regularization term, Lfc, was designed to ensure consistency in the focal lengths fx and fy

by minimizing the squared difference between these focal lengths.

Figure 4.5: Reprojection of 3D Fiducials with Predicted Camera Poses (Test Data Generated

Without Perturbation). This figure demonstrates the reprojection accuracy in a O-shaped multi-

camera setup comprising 10 cameras, with the calibration object being a cube with 8 fiducials. The

comparison between the predicted (in white) and ground-truth (color-coded; enlarged for visualiza-

tion purposes) projections demonstrates the precision of our model in the absence of perturbation.

Note: The reprojected points are shown in white. For optimal visibility, please zoom in.

34

• The regularization term Lpp aimed to align the principal points (cx, cy) with the image center

by minimizing the squared Euclidean distance between the principal points and the center of

the image.

• A regularization term, Llargefc, is formulated to discourage small focal lengths by imposing

a penalty on the inverse of the sum of the focal lengths along both the x and y axes.

• Applying an L1 norm regularization to our model’s parameters aimed to encourage sparsity

and reduce overfitting by penalizing large weights, thus simplifying the model. This tech-

nique, intended to improve generalization, unfortunately did not yield the expected perfor-

mance enhancements in our camera parameter prediction task.

4.4.2 Losses

We investigated the log-cosh loss function, attracted by its theoretical benefits such as smooth

gradients, outlier robustness, and balanced error sensitivity. These characteristics suggested that

log-cosh could enhance prediction precision and stability. The log-cosh loss is given by,

Llogcosh =
1

N

N
∑︂

i=1

((yi − ŷi) tanh(yi − ŷi)−

log(2) + log
(︂

1 + e−2|yi−ŷi|
)︂

)

where yi represents the target values, and ŷi represents the predicted values. However, contrary to

our expectations, empirical testing revealed that log-cosh loss did not outperform our existing loss

function described in Section 4.3 in the main paper.

Figure 4.6 illustrates a key observation: minimizing our proposed final loss also reduces the

auxiliary losses we initially investigated-except from the L1 norm which relates to the network

weights rather than the calibration error, and whose purpose is to enforce sparsity. However, this

effect is not reciprocal; directly incorporating these auxiliary terms into our model did not further

enhance performance beyond the improvements achieved with the final loss alone described earlier.

This indicates that while our final loss effectively captures the essence of the auxiliary losses, adding

them explicitly does not provide additional benefits. In the figure, we present the training loss

35

Figure 4.6: Illustration of the proposed loss compared to auxiliary regularization and loss

terms. This figure demonstrates that minimizing the proposed loss leads to a reduction in auxiliary

losses. However, this is a non-reciprocal relationship where the inclusion of auxiliary losses does

not further improve model performance beyond the capabilities of the proposed loss which is a

combination of the reprojection error, the RMSE error of the parameters, and the geodesic error.

Here, we present the training loss graphs for the point-based variant. As previously described, the

distortion coefficients are scaled by scaling factor λscale = 1000.

patterns for the point-based variant. Comparable trends are observed with the image-based variant.

4.5 Limitations & Discussion

4.5.1 Adhering to Operational Specifications

Our camera pose synthesis methodology is specifically designed to meet the manufacturer’s

usage requirements, prioritizing high-accuracy predictions in real-world applications, particularly

in time-critical contexts such as surgical applications. An important component of our methodology

involves simulating a field of view that ensures comprehensive coverage of the area of interest,

closely mimicking the actual setup. This is accomplished by ensuring a constant radius for the

hemisphere, in accordance with the operational guidelines of the multi-camera system. Unlike some

multi-camera systems that are statically affixed with no or limited range of motion, our methodology

introduces a significant enhancement by allowing an extended range of motionÐalbeit at a fixed

distanceÐover the entire hemisphere. The decision to adhere to the specified fixed radius is a

deliberate design choice aimed at ensuring that our synthesized camera poses accurately reflect the

real-world configuration.

36

4.5.2 Limited Range of Motion for Image-based

Our assessment of the image-based variant shows promising results in multi-camera setups hav-

ing a limited range of motion. However, to achieve broader generalization across diverse vantage

points -especially at glazing angles-, a more advanced architecture is imperative. This is based

on the observation that accuracy drops when using the full range of motion on the hemisphere,

attributed to the complexity of input images. Specifically, the challenge arises as only a fraction,

Nfid. pixels, are relevant to the task amidst the backdrop of the remaining H ×W −Nfid. pixels,

which significantly narrows the dataset’s utility for network learning.

4.5.3 Model Customization

Our methodology demonstrates a tailored approach, achieving high accuracy in predicting cam-

era parameters when applied to the particular multi-camera system, calibration object, and operating

distance utilized during its training phase. This high level of accuracy reflects how well the method

is customized to fit its specific training conditions, including the perturbations, up to the extent the

model has been trained to withstand. However, it is important to note that the model’s performance

is finely tuned to this particular setup. Any deviation from the original camera setup, use of a dif-

ferent calibration object, or change in the desired maximum perturbation level requires the training

of a new model tailored to those new conditions.

4.5.4 Decalibration Detection

Our method also extends beyond real-time calibration to effectively identify decalibration. By

continuously comparing the predicted calibration parameters in real-time with those of the OEM,

one can swiftly identify any deviations indicative of decalibration. This dual functionality positions

our method as both a calibration tool and an operational integrity monitor, ensuring continuous

accuracy and reliability of multi-camera systems through early detection and prompt recalibration

response.

37

4.6 Model Training Progression Animation

Included in the supplementary materials is a fast-forward animation, which illustrates the evo-

lution of our network’s learning process throughout the training phase. This animation presents

key stages of the network’s training progression at intervals of every 20 epochs, for a total of 50K

epochs.

38

Chapter 5

Extension to Fisheye Camera Model

In this chapter, we first show an extension of the work presented in Chapters 3 and 4, which

is the fisheye camera model training and test results. Later we explore an alternative approach to

extract 2D points from a sequence of images, captured from a scene containing 8 fiducials in 3D

space, with the goal of tracking them consistently as the camera moves around the scene. This will

ensure a reliable method for identifying the key points in our image sequence. Finally, we discuss

other metrics used for the evaluation of the calibrated camera setups, which can be used besides the

usual reconstruction and reprojection error.

5.1 Fisheye Camera Model Training and Test Results

While the work in Chapter 3 shows the result for multi-camera calibration for the pinhole camera

model, here we tried to achieve similar results for the fisheye camera model. As discussed in Chapter

2, the fisheye camera model differs in the way it distorts the projected points so that we get a wider

-close to 180-degree- field of view. Figure 5.1 is a sample image captured from a scene with 6

cameras with fisheye lens and 8 fiducials in 3D space. A fisheye lens creates a wide-angle view

with significant barrel distortion, causing straight lines to appear curved and objects near the edges

to be stretched while compressing the center, resulting in an exaggerated perspective.

For this experiment, we had to modify the projection function and other related components of

39

Figure 5.1: Synthetic image of the Fisheye camera setup, with 6 cameras and 8 key points.

the code, as well as the multi-camera configuration file, to train for such a setup. The training process

converges delicately as depicted in figure 5.2 for the training with up to 5% perturbation. Other

training strategies remain unchanged and similar to the pinhole camera model training process.

Figure 5.2: The training loss of the fisheye camera model with 5% perturbation.

Finally, we conducted several tests on 20000 samples with different levels of perturbation which

is shown in table 5.1. In these experiments, the number of cameras is equal to 10 and there are 8

fiducials captured in the common field of view of those cameras. This shows the capability of the

proposed model and solution to support regressing the camera parameters of a camera setup with

the fisheye lens, achieving a comparable error rate as the pinhole camera model.

Table 5.1: Experimental Results: RE20K
camera is the average RMSE reprojection error on 3 different

trials (synthetic test sets, each comprising 20,000 data samples). Training on all models includes

adding a Max Perturb. κ ∈ [min%,max%] to the OEM camera intrinsic and extrinsic parameters

respectively. The number of 3D fiducials and the number of cameras are 8 and 10 respectively in

these experiments. The rotation angle α remains the same in all experiments i.e., α ∼ U(0, 2π).
Max Perturb.

κint., κext. ∈ [min%,max%]
RE20K

Pinhole

(pixels)

RE20K
Fisheye

(pixels)

2.5 4.12± 2.4× 10−6 5.50± 3.2× 10−6

5 6.01± 1.6× 10−5 6.43± 3.4× 10−5

10 6.97± 1.1× 10−5 7.20± 1.5× 10−5

40

5.2 Detection and Tracking of Bright Points in Image Sequences

In this section, we present a method for image processing, detecting and tracking a set of bright

points across a series of images. This is a mandatory step for a special case we encountered with

IR emitters on an IR multi-camera setup. This robust and efficient method enables precise tracking

of bright points in various applications, including medical setups. The main steps involved in this

process are as follows:

5.2.1 Image Preprocessing, Blob Detection and Gaussian Fitting

Each image is converted to grayscale, and a threshold is applied to isolate the brightest regions,

which correspond to the points of interest. This binary image highlights the potential bright points

as distinct blobs. The connected components (blobs) in the binary image are then labeled, with each

blob representing a candidate point. For each detected blob, a two-dimensional Gaussian function

is fitted to the brightness distribution. This involves first estimating the initial parameters of the

Gaussian and then applying a fitting algorithm, such as the Levenberg-Marquardt optimization, to

refine the estimated parameters. This fitting improves the precision of the bright point’s location to

sub-pixel accuracy, which is essential for accurate tracking.

5.2.2 Point Tracking Across Images

The identified points are tracked across consecutive images by matching them based on their

spatial proximity. This ensures that each bright point is consistently identified throughout the image

sequence, allowing for accurate tracking. The sampling rate is generally constant during image

data capture, providing a suitable environment for applying point matching algorithms, such as

the simple nearest neighbor approach, while effectively detecting and discarding any instantaneous

movements of the setup. This step is crucial for establishing the 2D-3D correspondence of key

points in the camera calibration process.

41

5.3 Evaluation Metrics

Inspired by the design of real markers in our tests, we explore the case with four fiducial points

with known 3D coordinates on a marker. We propose the following metrics to evaluate different

modes of camera de-calibration. These metrics are used to assess the accuracy of the reconstructed

points compared to the actual 3D points. They comprehensively evaluate reconstruction perfor-

mance by considering both geometric and reprojection errors.

5.3.1 Normal Vector Comparison

The first metric compares the normal vectors of triangles formed by the reconstructed points

with those formed by the actual points. The steps are as follows:

(1) Identify two triangles from the set of reconstructed points and the corresponding triangles

from the actual points.

(2) Compute the normal vectors for both sets of triangles.

(3) Compare the normal vectors to assess the alignment and orientation of the reconstructed

points relative to the actual points.

This comparison can be quantified using the dot product of the normal vectors, which indicates the

cosine of the angle between them. A dot product close to 1 signifies a high degree of alignment,

while a dot product of zero shows no alignment in the vector space.

There are 4 different possible choices of triangles that we can use to perform an averaging or

maximization process on the errors among them.

5.3.2 Angle Comparison

The second metric involves comparing the angles within the identified triangles:

(1) Calculate the internal angles of the triangles formed by the reconstructed points.

(2) Calculate the internal angles of the corresponding triangles formed by the actual points.

42

(3) Compare these angles to evaluate how closely the reconstructed geometry matches the actual

geometry. This can be done by computing the absolute differences between corresponding

angles.

Same as the previous metric, here there are 4 different possible choices of the triangles, each con-

taining three different angles to compare with the corresponding angle in the actual reconstructed

triangle. We can again perform an averaging or maximization process on the errors among them.

5.3.3 Midpoint Reprojection Error

The third metric focuses on the reprojection error of midpoints between actual and reconstructed

points:

(1) Compute the midpoints between pairs of corresponding actual and reconstructed points.

(2) Reproject these midpoints back into the image plane using the camera parameters.

(3) Calculate the error between the reprojected points and the actual image points.

This reprojection error provides insight into the accuracy of the 3D reconstruction in relation to

the 2D image coordinates. The error can be quantified using the Euclidean distance between the

reprojected points and the actual 2D points in the image.

43

Chapter 6

Conclusion and Future work

In this thesis, we began with a comprehensive literature review of the networks and backbones

utilized for the image-based camera calibration task. Subsequently, we introduced the online camera

calibration problem and proposed our solution for dynamic environments. Our method demonstrates

promising results and compatibility with various camera setups, models, and scenes. While our

method effectively addresses the problem of a camera setup with known initial parameters, we

achieved an acceptable error rate even with different percentages of perturbation, making it suitable

for critical medical applications. A key aspect of our design is the development of the camera

synthesis module, which provides access to unlimited training samples. This capability allows us to

train our models extensively while maintaining low inference times when deployed in real-time.

The results indicate desirable error rates for the image-based task with the overhead setup. How-

ever, there remains room for improvement in more general cases. This challenge arises from the

inherent difficulty in addressing sparse images with few key points and some color-coded key points

using the current method and backbones tested in our work. Future research can focus on designing

more complex artifacts and scenes, which will enable the model to train on richer, more complex

data points. This approach could lead to successful calibration in general cases with different multi-

camera setup positions and orientations.

44

Bibliography

[1] idigitaldarwin, ªNormal lens vs fisheye ±.º https://shorturl.at/10mXn. Accessed:

2024-5-31.

[2] Koushik, ªUnderstanding convolutional neural networks (CNNs) in depth.º https://

shorturl.at/HrQYp, Nov. 2023. Accessed: 2024-5-31.

[3] K. He, X. Zhang, S. Ren, and J. Sun, ªDeep residual learning for image recognition,º 2015.

[4] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-

hghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, ªAn image is worth

16x16 words: Transformers for image recognition at scale,º 2021.

[5] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, ªOn the continuity of rotation representations

in neural networks,º in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), June 2019.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ªImagenet: A large-scale hierar-

chical image database,º in 2009 IEEE Conference on Computer Vision and Pattern Recogni-

tion, pp. 248±255, 2009.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ªImagenet classification with deep convolu-

tional neural networks,º in Advances in Neural Information Processing Systems (F. Pereira,

C. Burges, L. Bottou, and K. Weinberger, eds.), vol. 25, Curran Associates, Inc., 2012.

[8] K. Simonyan and A. Zisserman, ªVery deep convolutional networks for large-scale image

recognition,º CoRR, vol. abs/1409.1556, 2014.

45

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and

I. Polosukhin, ªAttention is all you need,º in Advances in Neural Information Processing Sys-

tems (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and

R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.

[10] C. B. Duane, ªClose-range camera calibration,º Photogramm. Eng, vol. 37, no. 8, pp. 855±866,

1971.

[11] Y. Abdel-AzizandH and M. Karara, ªDirectlineartransformation into object space coordinates

in close-range photogrammetry,º in Proceedings of the Symposium Close-Range Photogram-

metry, pp. 1±18.

[12] R. Tsai, ªA versatile camera calibration technique for high-accuracy 3d machine vision metrol-

ogy using off-the-shelf tv cameras and lenses,º IEEE Journal on Robotics and Automation,

vol. 3, no. 4, pp. 323±344, 1987.

[13] Z. Zhang, ªA flexible new technique for camera calibration,º IEEE Transactions on pattern

analysis and machine intelligence, vol. 22, no. 11, pp. 1330±1334, 2000.

[14] S. Shah and J. Aggarwal, ªA simple calibration procedure for fish-eye (high distortion) lens

camera,º in Proceedings of the 1994 IEEE international Conference on Robotics and Automa-

tion, pp. 3422±3427, IEEE, 1994.

[15] G. Nakano, ªA versatile approach for solving pnp, pnpf, and pnpfr problems,º in Computer

Vision±ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-

14, 2016, Proceedings, Part III 14, pp. 338±352, Springer, 2016.

[16] S. Urban, J. Leitloff, and S. Hinz, ªMlpnp-a real-time maximum likelihood solution to the

perspective-n-point problem,º arXiv preprint arXiv:1607.08112, 2016.

[17] S. Haner and K. Astrom, ªAbsolute pose for cameras under flat refractive interfaces,º in Pro-

ceedings of the IEEE conference on computer vision and pattern recognition, pp. 1428±1436,

2015.

46

[18] M. W. Cao, W. Jia, Y. Zhao, S. J. Li, and X. P. Liu, ªFast and robust absolute camera pose

estimation with known focal length,º Neural Computing and Applications, vol. 29, pp. 1383±

1398, 2018.

[19] A. D. Nguyen and M. Yoo, ªCalibbd: Extrinsic calibration of the lidar and camera using a

bidirectional neural network,º IEEE Access, vol. 10, pp. 121261±121271, 2022.

[20] R. Itu, D. Borza, and R. Danescu, ªAutomatic extrinsic camera parameters calibration using

convolutional neural networks,º in 2017 13th IEEE International Conference on Intelligent

Computer Communication and Processing (ICCP), pp. 273±278, IEEE, 2017.

[21] A. Kendall, M. Grimes, and R. Cipolla, ªPosenet: A convolutional network for real-time 6-

dof camera relocalization,º in Proceedings of the IEEE international conference on computer

vision, pp. 2938±2946, 2015.

[22] S. Workman, C. Greenwell, M. Zhai, R. Baltenberger, and N. Jacobs, ªDeepfocal: A method

for direct focal length estimation,º in 2015 IEEE International Conference on Image Process-

ing (ICIP), pp. 1369±1373, IEEE, 2015.

[23] A. Cramariuc, A. Petrov, R. Suri, M. Mittal, R. Siegwart, and C. Cadena, ªLearning camera

miscalibration detection,º in 2020 IEEE International Conference on Robotics and Automation

(ICRA), pp. 4997±5003, IEEE, 2020.

[24] A. Hagemann, M. Knorr, and C. Stiller, ªDeep geometry-aware camera self-calibration from

video,º in Proceedings of the IEEE/CVF International Conference on Computer Vision,

pp. 3438±3448, 2023.

[25] O. Bogdan, V. Eckstein, F. Rameau, and J.-C. Bazin, ªDeepcalib: A deep learning approach

for automatic intrinsic calibration of wide field-of-view cameras,º in Proceedings of the 15th

ACM SIGGRAPH European Conference on Visual Media Production, pp. 1±10, 2018.

[26] T. Svoboda, D. Martinec, and T. Pajdla, ªA convenient multicamera self-calibration for virtual

environments,º Presence: Teleoperators & virtual environments, vol. 14, no. 4, pp. 407±422,

2005.

47

[27] J. Heikkila and O. SilvÂen, ªA four-step camera calibration procedure with implicit image cor-

rection,º in Proceedings of IEEE computer society conference on computer vision and pattern

recognition, pp. 1106±1112, IEEE, 1997.

[28] O. D. Faugeras, Q. T. Luong, and S. J. Maybank, ªCamera self-calibration: Theory and exper-

iments,º in Computer VisionÐECCV’92: Second European Conference on Computer Vision

Santa Margherita Ligure, Italy, May 19±22, 1992 Proceedings 2, pp. 321±334, Springer, 1992.

[29] C. S. Fraser, ªDigital camera self-calibration,º ISPRS Journal of Photogrammetry and Remote

sensing, vol. 52, no. 4, pp. 149±159, 1997.

[30] R. I. Hartley, ªSelf-calibration from multiple views with a rotating camera,º in Computer Vi-

sionÐECCV’94: Third European Conference on Computer Vision Stockholm, Sweden, May

2±6, 1994 Proceedings, Volume I 3, pp. 471±478, Springer, 1994.

[31] Y. Hold-Geoffroy, K. Sunkavalli, J. Eisenmann, M. Fisher, E. Gambaretto, S. Hadap, and J.-F.

Lalonde, ªA perceptual measure for deep single image camera calibration,º in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2354±2363, 2018.

[32] T. H. Butt and M. Taj, ªCamera calibration through camera projection loss,º in ICASSP 2022-

2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pp. 2649±2653, IEEE, 2022.

[33] M. Lopez, R. Mari, P. Gargallo, Y. Kuang, J. Gonzalez-Jimenez, and G. Haro, ªDeep single

image camera calibration with radial distortion,º in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pp. 11817±11825, 2019.

[34] N. Wakai and T. Yamashita, ªDeep single fisheye image camera calibration for over 180-

degree projection of field of view,º in Proceedings of the IEEE/CVF International Conference

on Computer Vision, pp. 1174±1183, 2021.

48

	List of Figures
	List of Tables
	Introduction
	Single-Camera Calibration
	Multi-Camera Calibration
	Online multi-Camera Calibration
	Motivation and Challenges
	Proposed Solution
	Contribution
	Thesis Outline

	Literature Review
	Camera Models
	Pinhole Camera Model
	Fisheye Camera Model

	Relative Camera Poses in Multi-Camera Setups
	Deep Learning Models
	Convolutional Neural Networks(CNNs)
	Residual Neural Network (ResNet)
	Transformers and Attention Mechanism

	Neural Real-Time Recalibration for Infrared Multi-Camera Systems
	Introduction
	Related Work
	Camera Model
	Methodology
	Dynamic Camera Pose Synthesis
	Network Architecture
	Loss
	Training

	Experimental Results
	Generalization to Arbitrary Configurations & Calibration Objects
	Comparison with CMM-calibrated multi-camera system.

	Conclusion

	Supplementary Material
	Network Architecture
	Point-based variant.
	Image-based variant.
	Ablation Study

	Comparison with Standard Calibration and Optimization Techniques
	Inference vs. Recalibration
	Inference vs. Minimizing Reprojection Errors

	Qualitative Results
	Training: Less Effective Strategies
	Regularization terms
	Losses

	Limitations & Discussion
	Adhering to Operational Specifications
	Limited Range of Motion for Image-based
	Model Customization
	Decalibration Detection

	Model Training Progression Animation

	Extension to Fisheye Camera Model
	Fisheye Camera Model Training and Test Results
	Detection and Tracking of Bright Points in Image Sequences
	Image Preprocessing, Blob Detection and Gaussian Fitting
	Point Tracking Across Images

	Evaluation Metrics
	Normal Vector Comparison
	Angle Comparison
	Midpoint Reprojection Error

	Conclusion and Future work
	Bibliography

