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Abstract

Computational Design of Hammerhead Ribozymes for Logic Computing
and Disease Treatment

Nicolas Kamel, Ph.D.
Concordia University, 2024

This thesis explores the intersection of two techniques: evolutionary algorithms (EAs)

and allosteric ribozymes (ARs). EAs are population-based search heuristics inspired by

natural evolution and ARs are catalytic non-coding RNA (ncRNA) whose activity can be

modulated via shape changes induced by external molecules. We present two EAs that de-

sign biological devices based on ARs. The first, TruthSeqEr, designs ribogates, logic gates

that take short RNA strands as inputs and produce a short RNA output strand as output.

Compared to existing approaches, TruthSeqEr is easy-to-use and produces ribogates that

are more versatile and that have a greater computational capacity. In silico results show that

TruthSeqEr successfully designs ribogates implementing all instances from representative

sets of 1, 2, and 3-input functions, including linearly inseparable functions. Motivated by a

desire to understand these complex ribogates at an intuitive level, we developed an abstract

model that represents each ribogate as a small graph. Analysis of these graphs showed that

ribogates can be classified into families of varying complexity based on shared structural

motifs and that ribogates act as a more general version of an artificial neuron. Our sec-

ond EA, TriCleaver, designs selective ribozymes (sRzs) that cleave the pathogenic mutant

mRNA transcript associated with a trinucleotide repeat expansion disorder (TRED) while

leaving the functional wild-type (WT) transcript intact. TREDs are debilitating genetic dis-

orders that result in a severe reduction in quality of life, and in many cases, death. In silico

results reveal that compared to existing approaches, TriCleaver is more general, being able

to design sRzs that target TREDs in which the mutant is much longer than the WT, as well

as TREDs in which the mutant and WT are close in length. In addition, in vitro results

in mammalian cells showed that two sRzs designed by TriCleaver selectively silenced the

mutant transcript associated with a TRED called OPMD. Altogether, these results highlight

the therapeutic promise of combining EAs and ARs.
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Chapter 1

Introduction

1.1 Protein
All living organisms are made of cells, and each cell is a sophisticated biochemical fac-
tory. The "machines" of this factory are macromolecules called proteins. Proteins perform
a remarkable set of functions, which include, but are by no means limited to: converting
energy from one form to another, generating linear and translation motion, acting as struc-
tural supports, relaying biological signals, and accelerating chemical ractions [4]. Proteins
are comprised of units called amino acids linked together by peptide bonds. There are 20
standard amino acids, each with a unique set of chemical properties. By chaining together
different sequences of amino acids, proteins with different structures and functionalities are
obtained [41].

1.2 DNA
The instructions to synthesize a cell’s proteins are encoded in another type of macro-
molecule called deoxyribonucleic acid (DNA). DNA is a polymer composed of monomers
called nucleotides. Each nucleotide is composed of three functional groups: a phosphate,
a sugar called deoxyribose, and a nucleobase, often simply referred to as a base. Deoxyri-
bose contains 5 carbon atoms, labeled 1’ through 5’. Carbons 1’ to 4’ are arranged in a
ring, along with an oxygen atom (O). In addition, the 1’ carbon is attached to the nucle-
obase, the 2’ carbon to a hydrogen atom (H), the 3’ atom to a hydroxyl group (OH), the 4’
carbon to the 5’ carbon, and the 5’ carbon to the phosphate group. There are four different
DNA bases: adenine, cytosine, guanine, and thymine, abbreviated as A, C, G, T, respec-
tively. DNA strands are formed by a polymerization reaction, in which the 3’ carbon of
an upstream nucleotide becomes linked to the 5’ carbon of a downstream nucleotide via
ia phosphodiester bond. The most upstream nucleotide contains a free phosphate attached
to its 5’ carbon, this is denoted as the 5’ end of the strand, while the most downstream
nucleotide contains a free hydroxyl attached to its 3’ carbon, this is denoted as the 3’ end
of the strand. In general, the phosphodiester bonds and sugar groups are uniform along
the DNA strand; what distinguishes one DNA strand from another is the sequence of bases
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encountered when traversing the strand from the 5’ end to the 3’ end. One can therefore
view DNA as a sequence of bases attached to a sugar-phosphate backbone. This sequence
is often represented as a string of characters from the set {A,C,G,T } [4]. Not all regions
of DNA code for proteins, but in those that do (called coding genes), a well-established ge-
netic code provides a mapping from bases to amino acids [4]. In other words, a gene’s base
sequence determines the amino acid sequence of the protein it codes for, and ultimately that
protein’s structure and function. Certain pairs of bases can bind to each other via hydrogen
bonds; they are said to form a base-pair. There are two types of standard base-pairs: A-T
and C-G. In cells, DNA is not single stranded, but instead consists of two complementary
strands, in which each base of one strand is base-paired with a base from the other strand.
This extensive base-pairing results in the folding of the two strands into a three dimensional
structure called the double helix [4].

1.3 RNA
So far, we have been introduced to two biomolecules: proteins which perform various
cellular tasks, and DNA which acts as a store of information. There is, however, a third
molecule missing from this picture: ribonucleic acid (RNA). RNA is generated from DNA
by a process called transcription [4], and it shares characteristics with both DNA and pro-
tein. Its chemical structure is similar to that of DNA: it consists of four types of nucleobases
attached to a sugar-phosphate backbone. Three of these bases (A, C, and G) are shared with
DNA, and the fourth, uracil (U) is similar to DNA’s thymine. Like DNA bases, RNA bases
are able to form base-pairs. The standard base-pairs are A-U and C-G, although the non-
standard wobble base-pair G-U also plays an important role [54]. Like DNA, RNA can
store information: such RNA is called messenger RNA (mRNA), and it is used as a template
to synthesize protein by a process called translation [4].

Despite the similarities between DNA and RNA, there are important differences [25]
that enable non-coding RNA (ncRNA) to perform roles other than information storage. Un-
like DNA which is usually double-stranded, RNA is usually single-stranded. Whereas
DNA bases are (usually) constrained to form inter-molecular base-pairs with their com-
plementary strand, RNA bases can form intra-molecular base-pairs with other bases in the
same strand. These intra-molecular base-pairs cause the backbone to bend and the RNA
strand to fold into a secondary structure consisting of regions base-paired RNA called he-
lices (also known as stems) connected by regions of unpaired RNA called loops [99]. Once
the secondary structure has formed, different types of molecular interactions between the
loops and helices cause it to adopt a more elaborate tertiary structure [25]. RNA strands
with different sequences will form different sets of base-pairs and therefore adopt dif-
ferent secondary and tertiary structures. In other words, RNA’s sequence determines it
structure [54]. The structures RNA adopts serve various roles such as sequestering impor-
tant regions of RNA [9], serving as recognition motifs for RNA-binding proteins (RBPs)
[38], and tightly binding to small molecules [45]. Another consequence of RNA being
single-stranded is that it frees it up to bind to many possible RNA strands, and not just
a single complementary strand as for DNA. Furthermore, RNA bases can base-pair with
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DNA bases, enabling the formation of RNA-DNA duplexes [95]. Via complementary base-
pairing, an RNA strand can recognize and bind to specific regions on DNA or other cellular
RNAs. Many ncRNAs are associated with proteins, and they guide these proteins to com-
plementary RNA or DNA targets [65, 94]. In addition to being more structurally versatile
than DNA, RNA is also more chemically reactive than DNA. This is due to RNA’s sugar
group being a ribose instead of a deoxyribose, meaning that it has a hydroxyl group on its
2’ carbon instead of a hydrogen atom [25].

1.4 Ribozymes
RNA’s increased chemical reactivity and structural versatility allow it to function as an en-
zyme and accelerate naturally occurring chemical reactions by orders of magnitude [25].
RNA enzymes are called ribozymes, and as will become soon apparent, form the corner-
stone of this thesis. Since RNA is capable of both storing information and performing
chemical catalysis, it is hypothesized that RNA evolved before DNA and protein, and was
able to catalyze its own replication [4]. This is called the RNA world hypothesis. While
ribozymes were once believed to be common, today ribozymes are much rarer than protein
enzymes [10]. Indeed, there are only three known chemical reactions catalyzed by natural
ribozymes in modern cells: peptidyl transferase, hydrolysis, and transesterification [59].
Peptidyl transferase is catalyzed by a large protein/RNA complex called the ribosome (in-
troduced in Section 2.3.3) which joins two amino acids via a peptide bond during protein
translation. Hydrolysis is catalyzed by an enzyme called RNase P which splits a specific
ncRNA into two strands by cleaving its backbone. Transesterification is catalyzed by two
types of ribozymes. The first is a large protein/RNA complex called the spliceosome (intro-
duced in Section 2.3.2) which removes RNA segments from percursor mRNA. The second
is a class of small ribozymes called nucleolytic ribozymes which cleave their own back-
bone. In this thesis, we will make extensive use of a type of nucleolytic ribozyme called
the hammerhead ribozyme. We will therefore discuss in more detail the mechanism by
which nucleolytic ribozymes catalyze their own clevage.

As previously explained, RNA is more chemically reactive than DNA due to its 2’
hydroxyl (OH) group. This is because the oxygen atom of the hydroxyl group is more
electronegative than the hydrogen, resulting in a partial negative charge on the oxygen. This
negative charge makes the hydroxyl a nucleophile that is attracted to the positively charged
nucleus of certain atoms such as the phosphorus in the phosphodiester bond linking two
nucleotides. Consider a nucleotide M connected to an immediate downstream nucleotide
N via a phosphodiester bond. The 2’ hydroxyl of M can chemically attack the phosphorus
atom in the phosphodiester bond, resulting in a bond forming between the phosphorus and
the oxygen of the hydroxyl, and a bond breaking between the phosphorus and the 5’ oxygen
of N [25]. In other words, the RNA backbone will be cleaved between the nucleotide M and
N, resulting in two separate strands. Under normal physiological conditions, this reaction
is slow, but nucleolytic ribozymes significantly accelerate it [25]. The ribozyme’s structure
and sequence both play key roles in catalyzing the cleavage reaction. The structure can help
correctly position the atoms involved in the reaction, while certain specific nucleobases
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participate in the reaction by acting as general bases or general acids which accept or
donate protons (H+), respectively [25].

Since an enzyme’s function is determined by its structure, it is clear that changes in its
structure can result in changes to its function. Indeed, an important class of enzymes are
allosteric enzymes that change shape upon the binding of an effector molecule [4]. This al-
lows cellular pathways to tightly modulate an enzyme’s function based on the concentration
of its effector molecule [4]. In nature, virtually all allosteric enzymes are proteins; indeed,
currently there is only one known example of an allosteric ribozyme (AR) [78]. However,
several synthetic ARs have been designed [84, 11, 55]. In one especially relevant case [81],
one of the hairpins of a hammerhead ribozyme was replaced with an oligonucleotide bind-
ing site (OBS) complementary to a DNA or RNA effector strand. In absence of the effector,
the OBS interfered with proper ribozyme folding, preventing it from adopting the structure
required for it to catalyze the cleavage of its backbone. However, when the effector strand
was added, the OBS base-paired with the effector instead of the ribozyme, allowing the
ribozyme to correct fold and cleave itself. One exciting application of ARs is using them
to construct biological logic circuits [81, 80] that can potentially operate in cells of living
organisms. These circuits could sense various biochemical signals and conditionally trig-
ger a response based the values of these signals [18]. For example, a logic circuit could
determine whether small RNA strands were present in a cell in a combination indicative
of cancer, and if so, trigger an immune response attacking that cell [76]. The focus of this
thesis is the design of new, more sophisticated devices based on ARs (specifically allosteric
hammerhead ribozymes). Figure 1 recaps several features of RNA that we have discussed
so far.

1.5 RNA structure prediction
We have seen that an RNA strand’s sequence determines the structure it folds into, and
that its structure plays a key role in its cellular function. Therefore, being able to predict
the structure of an RNA strand from its sequence greatly facilitates the study of natural
RNA and the design of synthetic RNA. Unfortunately, simulating the three-dimensional
conformation of a molecule such as RNA, at the molecular level and in near real-time, is
completely unfeasible [41]. Therefore, folding algorithms such as ViennaRNA [61] make
several simplifications to make RNA structure prediction computationally tractable. First,
they usually neglect tertiary structure and only predict secondary structure. For RNA, this
is a reasonable assumption because tertiary interactions only make a minor contribution
to the structure’s stability [99]. Second, instead of integrating a set of physical equations
to predict how an RNA structure changes over time, algorithms like ViennaRNA compute
its associated partition function [39]. We will briefly explain the meaning of the partition
function. The probability of a strand sampling a given secondary structure in equilibrium
is governed by the Boltzmann equation [54]. Each secondary structure has an associated
free energy; the lower the free energy, the more stable the structure and the more likely it
is to be observed in equilibrium. In order to evaluate the probability of observing a given
secondary structure, the denominator of the Boltzmann distribution must be computed: this
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Figure 1: RNA summary. a) An RNA strand’s structure is determined by its sequence of
nucleotides from the set {A,G,C,U}. The start (upstream end) and end (downstream end) of
the strand are denoted by the symbols 5’ and 3, respectively. b) RNA folds into a secondary
structure consisting of base-paired regions called stems linked together by unpaired regions
called loops. This example contains three stems and three loops (two hairpins and a multi-
loop). b1) Two consecutive nucleotides, uracil and guanine, attached to the sugar-phosphate
backbone by covalent bonds. The sugar molecule (ribose), contains 5 carbons, labeled 1’
through 5’. RNA is distinguished from DNA by the OH group on its 2’ carbon. b2) Base-
pair between uracil and adenine. The two bases are linked with hydrogen bonds, which are
weaker than covalent bonds, meaning that base-pairs form and break much more frequently
than the backbone. b3) The RNA strand depicted is actually a ribozyme that catalyzes its
own self-cleavage, causing the backbone to break at the location indicated by the straight
arrow (the cut site). Cleavage is caused by 2’ OH initiating a nucleophilic attack on the
phosphorus. Nucleolytic ribozymes accelerate this reaction through various means such
as providing nucleobases that act as general acids and general bases. b4) An allosteric
ribozyme is obtained by replacing one of the hairpin loops with a site complementary to
an effector RNA strand (black). When the effector is absent, the ribozyme folds into an
inactive state; when the effector strand is present, the ribozyme folds into an active state.
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is the partition function [54]. From the partition function, ViennRNA can generate several
outputs [39], two of which are relevant for this work: the base-pairing probability matrix
(BPPM) and the minimum free energy (MFE) structure. The BPPM encodes the probability
of any two bases being paired and the MFE structure is the most probable structure that the
strand adopts.

1.6 Evolutionary algorithms
Equipped with folding software, we can now develop computational methods to automat-
ically design RNA devices that perform various tasks. In this thesis, we will craft cus-
tomized evolutionary algorithms (EAs) that design new types of allosteric-ribozyme based
devices. An evolutionary algorithm (EA) generates a population of candidate solutions to
a given problem by performing repeated cycles of selection and reproduction with varia-
tion. The performance of an individual on the target task is quantified by its fitness; fitter
individuals are more likely to produce offspring and/or survive to the next generation. Off-
psring are not carbon copies of their parents, but are varied to a certain extent by operations
such as mutation and crossover. The initial population of candidate solutions is randomly
generated and will generally have low fitness. If the elements of the EA (i.e. representa-
tion, fitness evaluation, selection, etc.) are appropriately crafted and a sufficient amount of
compute is available, the EA will eventually converge to a set of satisfactory solutions to
the specified problem.

EAs have several advantages over other search heuristics: they can easily be paral-
lelized over multi cores, they do not require the problem domain to differentiable, they can
overcome local optima, they find multiple solutions instead of a single one, and they can
easily handle multiple objectives. An exciting class of EAs are quality diversity (QD) ap-
proaches. These EAs focus not just on maximizing the performance of the population on
the provided task, but also reward individuals that exhibit novel behaviors [58]. In other
words, they can evolve solutions that all solve the given problem, but by exploiting differ-
ent strategies. We believe that this is relevant to the design of biological devices because it
helps mitigate the lack of a complete computational model of the cell. Much about the cel-
lular environment remains a mystery, and even if it wasn’t, simulating the cell in its entirety
would be computationally intractable. As we saw, major simplifications must be made to
predict the structure of just a single RNA strand. Therefore, even the best search heuristic is
ultimately limited by the model it uses to assess the performance of its candidate solutions.
Biological interventions that are predicted to work in silico often fail in vitro and in vivo
for unforeseen reasons. If a computational method designs biological devices that all use
the same mechanism, and if for some reason that mechanism fails in reality, all the designs
would fail. We believe that a quality diversity approach can help mitigate this uncertainty
by developing RNA devices that use many different mechanisms to achieve the same goal.
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1.7 Contributions
We have now laid the groundwork to summarize our contributions. In this thesis, we present
two evolutionary algorithms, TruthSeqEr and TriCleaver, both of which follow a quality
diversity approach, and both of which design RNA devices based on allosteric ribozymes.
TruthSeqEr designs ribogates, logic gates that take small RNA strands as input and that
produce a small RNA strand as output via ribozyme self-cleavage. TruthSeqEr accepts as
input the truth table of a 1, 2, or 3-input Boolean function and produces a diverse popu-
lation of ribogates. Our in silico results show that ribogates can implement sophisticated
3-input linearly inseparable functions. In order to study how such ribogates functioned,
we developed an abstract model called additive segment competition (ACS), in which each
ribogate is represented by a mechanism graph. By comparing and contrasting different
mechanism graphs, we were able to group ribogates into different families and uncover de-
sign principles shared within families. Through mechanism graph analysis we also showed
that a ribogate acts as a more general version of an artificial neuron, further highlighting
its computational power. TriCleaver designs selective ribozymes (sRzs), ribozymes that
silence a target pathogenic mutant mRNA transcript, while sparing a similar, but shorter,
healthy wild-type transcript. TriCleaver accepts as inputs a wild-type and a mutant mRNA
transcript associated with a type of genetic disorder called a trinucleotide repeat disor-
der (TRED) and produces a diverse population of sRzs. Our in silico results show that
TriCleaver can successfully design sRzs targeting two different TREDs, OPMD and Hunt-
ington’s disease (HD). Further in vitro results show that two of these sRzs are functional
against OPMD in mammalian cells.

The rest of this thesis is structured as follows. In Chapter 2, we explore RNA in more
depth, examining its synthesis, processing, function, and degradation. In Chapter 3, we
introduce TruthSeqEr, overviewing related work, explaining its computational methodol-
ogy, and presenting and analyzing ribogates generated by it. In Chapter 4, we introduce
our graph-based ribogate model and use it to analyze ribogates evolved by TruthSeqEr in
the previous chapter. In Chapter 5, we introduce TriCleaver, overviewing related work, ex-
plaining its computational methodology, and presenting and analyzing sRzs generated by
it. Finally, in Chapter 6, we present our conclusions and outline future work.
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Chapter 2

Background

2.1 Life of an RNA
In this section, we provide a high level view of the life of an RNA molecule, from its
synthesis to its destruction.

2.1.1 Synthesis
RNA is produced from DNA by a protein enzyme called RNA polymerase via a process
called transcription. Transcription consists of three steps: initiation, elongation, and ter-
mination. During initiation, RNA polymerase is recruited to a promoter, a region of double
stranded DNA located near the transcription start site (TSS), where transcription begins.
During elongation, the double stranded DNA helix is progressively unwound as RNA poly-
merase moves along it. One of the strands serves as a template strand, and the other as a
coding strand. One by one, nucleotides that are complementary to the template strand are
added to the growing RNA strand. The resulting RNA strand has the same base sequence
as the coding strand, but with uracils in place of thymines. Transcription terminates when
RNA polymerase encounters a termination signal, which causes it to release the RNA strand
and dislodge from the DNA [4]. Initiation, elongation, and termination are all sophisticated
processes in their own right, each compromising several sub-steps and involving many ad-
ditional protein factors [25]. Furthermore, the details of these processes vary depending on
which class of RNA polymerase is doing the transcribing. There are (at least) three types
of eukaryotic RNA polymerases: Pol I, Pol II, and Pol III. Each type is responsible for
transcribing certain types of RNA, and each does so in different ways [25].

2.1.2 Processing and localization
Depending on its ultimate function in the cell, RNA can be processed into a more mature
form, either co-transcriptionally (while transcription is occurring) or post-transcriptionally
(after transcription has finished). This processing can consist of removing certain regions
of RNA, adding special sequences, or even chemically modifying specific nucleotides [4].
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In addition, RNAs often assemble with other proteins into ribonucleoprotein (RNP) com-
plexes [25].

Eukaryotes contain several membrane-bound organelles that act as specialized com-
partments. Transcription occurs inside an organelle called the nucleus [4]. The nucleus
also contains several compartments that do not contain a membrane. These membraneless
compartments behave in a liquidlike manner due to multiple weak interactions between
their constituent proteins and RNAs. They accelerate specific cellular processes by bring-
ing the factors involved in such processes in close proximity with each other [4].

Depending on the type of RNA, it may stay in the nucleus after transcription or may
it be exported out of the nucleus and into the cytoplasm [85]. In some cases, the RNA
is exported out of the nucleus where it associates into a ribonucleoprotein complex and is
then reimported back into the nucleus [65].

2.1.3 Function
Once an RNA strand has been processed into its mature form and has been transported to
an appropriate location, it can perform a variety of functions. An overview of some of these
functions and the types of RNA that perform them are shown below [25]:

1. Messenger RNA (mRNA). Contains the instructions necessary to synthesize a given
protein.

2. Primer RNA. Required for DNA polymerase to begin replicating segments of DNA.

3. Small nuclear RNA (snRNA). Forms part of the spliceosome RNP that removes seg-
ments called introns from pre-mature messenger RNA.

4. Ribosomal RNA. Forms part of the ribosome RNP that synthesizes proteins from
messenger RNA.

5. Small nucleolar RNA (snoRNA). Helps process pre-ribosomal RNA into mature ri-
bosomal RNA.

6. Small Cajal body associated RNA. Helps process small nuclear RNA into a more
mature form.

7. MicroRNA (miRNA). Guides protein complexes to target mRNA strands to silence
them.

8. Long non-coding RNA (lncRNA). Serves various roles such as acting as an miRNA
sponge and recruiting protein factors to activate or silence transcription.

9. tRNA. Serves as a molecular adapter between RNA and amino acids.

Many of these RNAs will be explained in more detail in Section 2.3.
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2.1.4 Destruction
Eventually all RNA molecules are degraded by cellular enzymes called nucleases. There
are three classes of nucleases [98]:

1. 5’-3’ exonucleases which degrade RNA starting from the 5’ end.

2. 3’-5’ exonucleases which degrade RNA starting from the 3’ end.

3. Endonucleases which cleave RNA at an internal location.

RNA strands with unprotected 5’ and/or 3’ ends are vulnerable to exonuclease attack and
are quickly degraded. The ends of RNAs with extended half-lives typically contain special
features such as:

1. Complex secondary and tertiary structures. For example, two lncRNAs, MALAT1
and NEAT1, have a tertiary triplex structure on their 3’ end which prevents exonu-
clease loading [85].

2. Chemical modifications. For example, mRNA (see Section 2.3.1) possess a chemical
structure on its 5’ end that prevents 5’ to 3’ exonucleases from binding to it [22]. In
addition, synthetic RNA strands used in therapeutics are often heavily modified to
extend their half-life and increase their potency [93].

3. RNA-binding proteins. For example, microRNA (see Section 2.3.5) is stable when
bound to the Argonaute protein, but when released it is quickly degraded [94].

4. Poly(A) tails. The 3’ end of mRNA contains a tail comprised of multiple adenine (A)
bases (an average of 200 in mammals). The tail serves as a binding site for multiple
poly(A) binding proteins (PABPs) which protect the mRNA from exonucleases [79].

5. Being non-existent. Some RNAs are circularized, meaning that their 5’ and 3’ ends
are covalently linked together [13].

The stability of a specific RNA molecule can be tightly regulated through the actions of
proteins that make it more vulnerable to exonuclease attack. Such proteins can remove the
5’ cap [22], shorten the poly(A) tail [79] and unwind complex secondary structures [47].
In addition, certain RNAs contain sequence motifs that result exonucleases being recruited
to that RNA. Some of these motifs are intrinsic to the RNA itself while others are added by
enzymes as a degradation signal. AU-rich elements, segments of adenines (A) and uracils
(U) present in certain mRNAs are examples of the former [47], whereas tails of uracils
added to RNAs with short poly(A) tails are examples of the latter [60, 27]. RNA stability
is regulated for two main reasons: to control gene expression (i.e. longer lived mRNA
transcripts can serve as templates for more proteins) and degrade faulty transcripts [25].

Endonucleases cleave RNA internally, with different types of endonucleases often tar-
geting RNA with specific structures and/or sequences. For example, RNase H degrades the
RNA strand that is part of a DNA-RNA duplex [88], Drosha cleaves primary microRNA
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(pri-miRNA) with certain conserved nucleotides and structural features [94], and Ago2
cleaves a target mRNA with a region fully complementary to a small interfering RNA
(siRNA) [93]. Endonuclease cleavage results in two strands, one with an exposed 3’ end
and one with an exposed 5’ end. These exposed ends are vulnerable to exonuclease attack
and are quickly degraded [4].

2.2 Transcriptional regulation
Complex organisms such as mammals are comprised of many different cell types. Although
all cell types are genetically identical, they can differ widely in terms of morphology and
function [6]. This is possible because two cells via the same genes can produce different
levels of proteins and ncRNA by regulating gene expression [6]. The central dogma of
molecular biology states that DNA is transcribed into messenger RNA which is translated
into protein. Much of the cell’s machinery is dedicated to regulating this process through
four main approaches [4]. First, the act of transcription can be regulated. Second, mRNA
can be modified after it is transcribed but before it is translated. Third, the act of translation
can be regulated. Fourth, proteins can be modified after translation. These are referred
to as transcriptional, post-transcriptional, translational, and post-translational regulation,
respectively. In this section, we concentrate on transcriptional regulation.

2.2.1 The preinitiation complex and chromatin
Eukaryotic RNA polymerase cannot initiate transcription on its own; instead, a preinitiation
complex (PIC) must form at the promoter. This complex consists of RNA polymerase and
set of proteins called general transcription factors (GTFs) [34]. The preinitiation complex
forms sequentially, with one GTF recognizing a specific motif on the promoter [25]. This
GTF in turns recruits other GTFs which serve roles such as correctly positioning RNA
polymerase, unwinding the DNA double helix, and chemically modifying RNA polymerase
so that it assumes an active form [64].

However, by default, it is difficult for the PIC to assemble at the promoter. The reason
for this is that eukaryotic DNA is packed with proteins into a much more condensed form
called chromatin, which makes the promoter less accessible to the PIC proteins [34]. The
main units of chromatin are nucleosomes, which consist of short stretches of DNA wrapped
around a core composed of eight proteins called histones. These nucleosomes are chained
together by short stretches of unpacked linker DNA. Multiple nucleosomes can stack on
top of each other, further compacting the DNA structure. The tightness of the chromatin
packing can be regulated by various means, and the tighter the packing, the more difficulty
proteins will have binding to DNA [6].

2.2.2 Transcription factors
Given the inaccessibility of chromatin, robust transcription usually requires the interven-
tion of additional proteins called activators. Activators bind to regulatory elements on the
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genome called enhancers. Activators are a type of transcription factor (TF), but unlike
the general transcription factors involved in the direct recruitment of RNA polymerase,
activators are more specific, with a given activator only being recognized by certain en-
hancers. This specificity allows for tailored control of transcription. Another type of TF
is the repressor which inhibits transcription by a binding to regulatory element called a
silencer [50]. The physical proximity between the enhancer/silencer and the promoter is
of paramount importance. Chromatin is arranged in loops, and regions within these loops
are more likely to interact with each other than with regions in other loops [50]. In some
cases, these loops can be modified [31], bringing some enhancers closer in contact to the
promoters they modulate while moving others further away.

TFs exert their effect on transcription by recruiting other proteins called cofactors, with
three categories of cofactors having be proposed [50]. The first category consists of nucle-
osome remodelers, protein complexes that alter the structure of chromatin [6]. They can
make chromatin more accessible by moving or ejecting nucleosomes, or make it less ac-
cessible by assembling more chromatin or removing activating histone markings (discussed
shortly) [16]. The second category consists of histone modifiers. The histone proteins that
make up the core of the nucleosome contain long tails that are readily accessible by other
proteins. Histone modifiers alter these tails by adding or removing various types of chemi-
cal markings. Through means that are not completely understood, certain markings activate
transcription while others repress it [6]. For example, some loosen chromatin through elec-
trostatic interactions [6], others stabilize units of the pre-initiation complex [57], and many
are recognized by nucleosome remodelers, facilitating their recruitment [16]. The third
category includes a single cofactor called Mediator. Mediator is a large protein complex
that can enhance transcription by various means [5], three of which we list here. First, it is
involved in DNA loop formation, which as previously discussed, brings enhancers closer to
their associated promoters. Second, it can simultaneously bind to multiple GTFs, thereby
stabilizing the PIC. Third, it participates in the chemical modification of RNA polymerase
required for its activation.

We have seen that by binding to enhancers, TFs help the PIC overcome nucleosome
barriers and enable RNA polymerase to initiate transcription. However, this leads to an-
other question: how are the TFs themselves able to bind to nucleosome dense regions in
enhancers? One mechanism is cooperative binding, in which the binding of one TF makes
it easier for subsequent TFs to bind and displace nucleosomes. Another explanation is
that some TFs are especially equipped to bind to nucleosome dense regions. Such TFs are
called pioneering factors [4].

2.3 Types of RNA
We have seen at a high level how RNA is transcribed, modified, and degraded. In this
section, we shall examine the various roles of RNA in more depth. Unless otherwise noted,
it is assumed that these RNAs are operating in eukaryotic cells. The goal this chapter is not
to be comprehensive, but rather to provide a glimpse into RNA’s versatility.
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2.3.1 Messenger RNA (mRNA)
mRNA stores the information required to synthesize proteins. mRNA is not directly tran-
scribed; instead, it is generated via the co-transcriptional processing of precursor mRNA
(pre-mRNA) [4]. pre-mRNA is transcribed from Pol II, and during transcription, three types
of processing events occur [4]. First, a chemical structure called the 5’ cap is added to the
5’ end of the growing pre-mRNA strand. Second, segments called introns are spliced out of
the pre-mRNA, one after another, by a ribonucleoprotein complex called the spliceosome.
Third, a sequence on the pre-mRNA called the polyadenylation signal is recognized by a
protein complex which cleaves the strand at a nearby downstream site. After cleavage,
a poly(A) tail consisting of a large number of adenine (A) nucleotides is added to the 3’
end of the strand. The resulting mRNA strand consists of five components [91]: a 5’ cap,
a 5’ untranslated region (UTR), an open reading frame (ORF), a 3’ UTR, and a poly(A)
tail. The 5’ cap and 3’ tail protect the mRNA from exonuclease degradation and also serve
many other roles [22, 79]. The ORF is translated into a protein, and as their names suggest,
the 3’ and 5’ UTRs are not [4]. Certain proteins bind to the mature mRNA’s 5’ cap and
facilitate its export from the nucleus into the cytoplasm [22]. In the cytoplasm, translation
is performed by the ribosome, a complex comprised of both RNA and protein. For every
three consecutive nucleotides in the ORF, called codons, the ribosome adds one amino acid
to the growing protein [4]. The are 64 possible codons: 61 of them code for amino acids
while the other 3 are stop codons that act as signals for translation termination [4]. The
mapping from codons to amino acids is called the genetic code [4]. Since there are more
(non stop) codons (61) than amino acids (20), it means that the genetic code is degenerate
[4]. In other words, multiple codons can specify the same amino acid.

2.3.2 Spliceosomal RNA
pre-mRNA consists of an alternating series exons and introns. Exons are segments that
remain in the mature mRNA while introns are segments that are removed by splicing.
Splicing is performed by the spliceosome, a sophisticated ribonucleoprotein complex. It
consists of five small nuclear RNAs (snRNA) (U1, U2, U4, U5, and U6) and a large number
of proteins [25].

U1, U2, U4, and U5 are transcribed by Pol II but are processed differently than mRNA.
Their 5’ end is capped, allowing them to be exported to the cytoplasm, but their 3’ end is
not polyadelynated. Instead, their 3’ end forms a stem-loop structure and contains binding
sites for multiple Sm proteins. Once in the cytoplasm, they assemble into RNP complexes
with these Sm proteins and undergo more processing. Their 5’ cap is then modified, al-
lowing them to be reimported back into the nucleus, specifically to regions known as Cajal
bodies. Once in the Cajal bodies, they are further modified, this time by another class of
ncRNA called small Cajal body RNAs (scaRNA) [65]. Although U6 is similar in structure
to the other snRNAs (it contains a 3’ stem loop and protein binding sites), its biogenesis
is markedly different. It is transcribed by Pol III instead of Pol II, and it assembles with a
different class of protein. Crucially, it has a non-standard 5’ cap which prevents its export
from the nucleus [65].
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Although different pre-mRNAs generally have different sequences, they share certain
conserved sequences at specific locations that are recognized by the splicesome, allowing
it to distinguish introns from exons [25]. Consider two exons, denoted as the 5’ and 3’
exons, respectively, separated by an intron. The spliceosome recognizes three sites [25]:

• The 5’ splice site, which marks the boundary between the 5’ exon and the intron.

• The 3’ splice site, which marks the boundary between the intron and the 3’ exon.

• The branchpoint, located inside the intron.

Splicing proceeds via two consecutive transesterification reactions, similar to the one de-
scribed in Chapter 1 [25]. The specific mechanism of splicing is beyond the scope of this
thesis, but the end result is that the intron is released in the form of a loop called a lariat,
and the 3’ end of the 5’ exon is joined to the 5’ end of the 3’ exon [25].

Usually, the removed introns serve no further purpose and are quickly degraded, but
in some cases they are functional and avoid degradation. For example, some microRNAs
(miRNA) and most small nucleolar RNAs (snoRNA) [25] are derived from introns. Since
identification of the introns and exons depends the spliceosome recognizing splice sites,
splicing can be regulated by masking splice sites [88] or sequestering splicing factors [102].
In some cases, such alternative splicing is desirable, since it allows a single gene to code for
multiple proteins; such proteins are called isoforms [4]. Changing the splicing pattern can
also generate new types of RNAs such as circular RNAs [13]. On the other hand, incorrect
splicing is associated with various diseases such as cancer [32]. Although the splicesome
consists of both RNA and protein, it appears that the actual splicing reactions are catalyzed
in large part, if not entirely, by RNA and not protein [105]. This makes the spliceosome a
ribozyme.

2.3.3 Ribosomal RNA (rRNA)
The ribosome is an RNP that synthesizes protein from mRNA. It is comprised of two sub-
units: the small subunit and the large subunit, both of which consist of proteins associated
ribosomal RNA (rRNA). rRNA is transcribed and processed in a membraneless compart-
ment of the nucleus called the nucleoulus. The small subunit contains one type of rRNA,
called 18S, while the large subunit contains three types: 5.8S, 27S, and 5S. 5S is tran-
scribed from Pol III while 18S, 5.8S, and 28S are generated from a precursor strand called
47S. The 47S rRNA is transcribed by Pol I and its 5’ end is not capped, nor is its 3’ end
polyadenylated [4]. 47S rRNA undergoes several rounds of cleavage performed by all three
types of nucleases: 5’-3’ exonucleases, 3-5’ exonucleases, and endonucleases [37]. Addi-
tional factors are required for the correct cleavage of 47S, including a type of a ncRNA
called small nucleolar RNA (snoRNA) [37]. snoRNA is generated from introns removed
from certain genes during splicing [25]. Several ncRNAs (such as U3, U14, and U17) are
believed to function as chaperones, ensuring that the rRNA folds correctly and is cleaved
at the appropriate locations [107]. In addition to being cleaved into smaller strands, rRNA
undergoes another type of processing: chemical modifications [65]. These modifications
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are performed by proteins that are guided to specific locations on the rRNA by snoRNAs
[4]. Not only do ncRNAs have a key role in the processing of ribosomal RNA, the ribosome
is itself a ribozyme, with the rRNA in the large subunit catalyzing the reaction that joins
two amino acids together [24].

2.3.4 Primer RNA
When a cell divides, its DNA is replicated by an enzyme called DNA polymerase. How-
ever, unlike RNA polymerase which can synthesize a new RNA strand from scratch, DNA
polymerase can only append nucleotides to a base-paired 3’ end of an existing nucleic
acid strand. Therefore, a special type of RNA polymerase synthesizes short RNA strands
called primers [4]. During replication, the DNA double helix is opened, allowing the sin-
gle stranded DNA to form RNA-DNA duplexes with the primers. DNA polymerase uses
these primers to start synthesizing DNA fragments. The RNA is then removed, replaced
with DNA, and the fragments are ligated together. The primer RNA is removed by an en-
zyme called Rnase H which specifically cleaves the RNA strand of DNA-RNA duplexes
[106]. This cleavage activity can be leveraged by a form a gene therapy involving antisense
oligonucleotides (ASOs). ASOs are short DNA strands that are antisense (i.e. reverse com-
plementary) to a target mRNA molecule. Since they are reverse complementary, the ASO
and target mRNA form a strong DNA-RNA duplex that is recognized by Rnase H, which
cleaves the mRNA strand, resulting in gene silencing [88].

2.3.5 MicroRNA (miRNA)
MicroRNAs (miRNAs) are small ncRNAs involved in post-transcriptional gene silencing
[4]. There are many ways in which miRNA is generated, but the following pathway is by
far the most common [94]. First, primary miRNA (pri-miRNA) is transcribed by Pol II.
pri-miRNA has a secondary structure consisting of a terminal loop, an upper stem, and a
lower stem that is recognized by a protein complex called Microprocessor. Microprocessor
cleaves the pri-miRNA at a specific location, resulting in a new strand called pre-miRNA.
pre-miRNA has a secondary structure consisting of a terminal loop, a stem, and 3’ overhang
that is recognized by a protein called Dicer. pre-mRNAs are exported to the cytoplasm,
and are cleaved by Dicer at a specific location, resulting in an miRNA duplex. One strand,
the guide, is loaded onto a protein called Argonaute, while the other, the passenger is
discarded. Other proteins such as GW182 then interact with Argonaute to form an RNA-
induced silencing complex (RISC). Although rarer, miRNA can also be generated from
different precursors, such as introns of spliced pre-mRNA [100]. The guide strand leads
RISC to a target mRNA by binding to a complementary region in the mRNA strand [100].
The outcome of this interaction depends on the specific type of Argonaute protein and the
extent of the base-pairing between the miRNA and its target mRNA. If the miRNA binds
completely to the target region, and if it is assembled with a specific Argonaute protein
called Ago2, Ago2 will cleave the target mRNA [25]. However, if the base-pairing is
limited to a seed region, or if one of the other argonaute proteins is involved, silencing
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will occur via another pathway [25]. For instance, proteins may be recruited that remove
the 5’ cap and 3’ poly(A) tail, making the mRNA strand vulnerable to degradation by
exonucleases [43]. There is also a different pathway which does not directly degrade the
mRNA, but instead prevents translation initation [43]. Interestingly, if both ends of the
miRNA strand are base-paired with the mRNA, but the middle is not, then the miRNA will
be degraded instead of the target mRNA [94].

2.3.6 Small interfering RNA (siRNA)
Small interfering RNAs (siRNAs) are small ncRNAs involved in post-transcriptional gene
silencing, in a manner similar to miRNAs [4]. A key difference between miRNA and
siRNA lies in the way in which they are produced. As we just saw, miRNAs are en-
dogenously produced by the cell. In contrast, siRNAs are derived from long regions of
double-stranded RNA typically associated with viral genomes [4]. The vast majority of
viruses produce double-stranded RNA during replication, and in plants and invertebrates,
this double-stranded RNA is detected by Dicer and cleaved into siRNAs [19]. These are
loaded into catalytically active argonaute proteins which are guided to other viral RNAs via
base-pairing, resulting in viral supression [19]. In mammalian differentiated cells, Dicer
is unable to cleave this type of double-stranded RNA (although it can cleave pre-miRNA
as previously discussed) [83]. Instead, viral defense is performed by the immune system.
However, in stem cells, an isoform of Dicer (generated via alternative splicing), is able to
cleave double-stranded viral RNA [83]. Finally, miRNA and siRNA can be synthetically
generated, allowing researchers to silence target genes for experimental and therapeutic
purposes. Different types of miRNA and siRNA precursors such as short hairpin RNA,
Dicer substrate siRNA, and single-stranded siRNA can be introduced into the cell and pro-
cessed into mature miRNA or siRNA via existing pathways [93].

2.3.7 Long non-coding RNA (lncRNA)
Long non-coding RNAs (lncRNAs) are RNAs greater than 200 nucleotides in length that do
not code protein [85]. Many, but not all, lncRNAs are synthesized in a manner similar to
mRNA: they are transcribed by Pol II, and undergo 5’ capping and poly(A) tail addition
[85]. lncRNAs often act in cis, by remaining near their transcription site in the nucleus,
but they can also act in trans and move to distal genes in the nucleus or be exported to
the cytoplasm [31]. lncRNAs are versatile molecules that perform a variety of a functions
through unique mechanisms[108]. Enumerating all reported roles of lncRNAs is beyond
the scope of this thesis; instead we will focus on a small subset of these.

Cis-acting lncRNAs play a key role in transcriptional regulation [31]. Some contain
binding sites for protein complexes such as nucleosome remodelers [111] or histone mod-
ifiers [20] and they guide these complexes to a nearby promoter. This results in the epige-
netic state of the promoter being altered, resulting in the activation or repression of tran-
scription. Other lncRNAs regulate the three-dimensional organization of the gene. For
example, one lncRNA interacts with Mediator which results in increased DNA looping and
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transcription of nearby genes [56].
Some lncRNAs are circular. These circular RNAs (circRNA) are generated by back-

splicing which can occur if exons are spliced out of order [13]. As previously mentioned,
circular RNAs do not have any exposed 5’ or 3’ ends, and are thus very stable. Some cir-
cRNAs act as miRNA sponges. The binding of miRNAs to circRNAs spares their target
mRNAs from RISC silencing, thus upregulating their expression [13].

One lncRNA, NEAT1, acts a protein scaffold and is essential for the formation of mem-
braneless compartments called paraspeckles [29]. Paraspeckles can regulate gene express-
ing by sequestering RNAs containing a certain type of hairpin structure [29]. They can also
co-localize pri-miRNAs with Microprocessor (see Section 2.3.5), thereby accelerating the
processing of pri-miRNA into pre-miRNA by Microprocessor [42].

Finally, in one reported case, a circRNA interacts with a target mRNA via hairpin sec-
ondary structure motifs [112]. This interaction stabilizes the mRNA by disrupting the
binding of a protein that induces the decay of mRNAs containing AU-rich elements [112].

2.3.8 Nucleolytic ribozymes
In this chapter, we have seen two ribozymes: the spliceosome and the ribosome, both
of which are large molecular machines consisting of multiple ncRNAs and proteins. In
Chapter 1 we were also introduced to the nucleolytic ribozymes, a class of small ribozymes
that cleave their own backbone. To date, nine nucleolytic ribozymes have been discovered:
pistol, hatchet, twister, twister-sister, hairpin, VS, HDV, glmS, and hammerhead [70]. In
this work, we design two types of devices (ribogates and selective ribozymes) that depend
on a nucleolytic ribozyme switching ON or OFF under different conditions. Specifically,
we utilize a variant of the hammerhead ribozyme called the minimal hammerhead ribozyme
(mhRz). The structure and sequence required for the mhRz to cleave itself are known [82]
and are shown in Figure 2 a). An advantage of working with the mhRz is that it has no
long range tertiary interactions; this means that knowledge of its secondary structure is
sufficient to predict its activity. The mhRz is active if four secondary structural motifs
are present: three stems and one 3-part loop called the core [82]. A stem consists of a
series of contiguous base-pairs. It can be viewed as two paired nucleotide segments. Note
that for a stem to form, the strand must fold back on itself in such a way that the first
nucleotide of the first segment is paired with the last nucleotide of the second segment. In
other words, the two segments must be reverse complementary. An n-part loop consists
of n unpaired nucleotide segments linked together by n base-pairs. A 1-part loop called
a hairpin is located at the end of stems 2 and 3 of the mhRz. The 3-part core links the
three stems together. While the stems can generally assume any pair of complementary
nucleotides (indicated by Ns in the figure), much of the core is constrained to have a specific
sequence. The mhRz shown in Figure 2 a) is cis-acting: when it is active, it cleaves itself
into two uneven segments at the location indicated by the arrow. The smaller segment will
eventually dissociate from the larger one, allowing it to be used as an output signal.

By splitting the cis-acting ribozyme into two strands, one obtains a trans-acting ri-
bozyme, shown in Figure 2 b). The trans-acting ribozyme contains stem 2 in its entirety,
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Figure 2: Active structure of a minimal hammerhead ribozyme (mhRz). a) A cis-acting
mhRz consists of a single strand. Its active structure consists of three stems attached to a
catalytic core. When active, the ribozyme will cleave itself into two at the position indicated
by the arrow. b) A trans-acting mhRz consists of two strands: the ribozyme strand and the
substrate strand (black). The active structure of the trans-acting mhRz also consists of three
stems and a loop, but these motifs are split between the two strands. When the ribozyme
strand binds to the substrate strand correctly, it will cleave the substrate at the location
indicated by the arrow. In both the cis and trans-acting cases, nucleotides at certain position
in the core must have specific values, indicated by letters. An H indicates any possible
nucleotides except for a G. A lack of a letter indicates that the nucleotide is unconstrained.

but only half of stem 1, half of stem 3, and part of the core. The halves of stem 1 and
stem 3 are referred to as arms. When the trans-acting ribozyme’s arms bind to a second
strand called the substrate, stem 1, stem 3, and the core are completed, and the substrate is
cleaved.
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Chapter 3

TruthSeqEr

3.1 Introduction
In the introductory chapter, we argued for the potential of smart biological devices to help
with the diagnosis and treatment of diseases. We saw that these devices consist of three
types of components: sensors, a logic circuit, and an actuator. There are many ways to
build biological logic circuits, each with their own sets of advantages and disadvantages.
They can operate at the transcriptional [75], post-transcriptional [33], translational [49]
levels, or post-translational [15]. They can utilize biological components that already exist
in nature [75] or design them de novo [33, 15, 90]. The logic circuit can consist of a single
co-localized device [80, 33], or a network of multiple simpler components [75, 30]. The
circuits also differ in the types of environments in which they were validated. Some are
more theoretical and have only been validated in silico, while others have been validated in
test tubes [81], bacteria [75], yeast [14], or even mammalian animal models [76]. Many of
these biological logic circuits are designed in part or in entirely using computational tools
[81, 90, 75].

In this chapter, we focus on logic circuits designed using allosteric ribozymes (ARs)
(see Section 1.4). Using ARs for circuit implementation offers several theoretical advan-
tages over alternative approaches. First, they are composed entirely of RNA, which makes
predicting their structure easier compared to devices that based on proteins [99]. Second,
they operate at the post-transcriptional level, meaning they don’t require translation to oc-
cur, thereby accelerating logic computation and reducing energy consumption [33]. Third,
they are intrinsically catalytically active, and therefore don’t need to divert endogenous
proteins from their natural pathways [7].

Penchovsky & Breaker [81], designed logic gates by replacing one of the hairpins of a
hammerhead ribozyme with an extension region. Input signals were represented by short
DNA or RNA strands called oligonucleotides. A 1 was represented by adding an input
strand to a test tube and a 0 was represented by leaving it absent. The input strands had
a strong affinity for segments of the extension region called oligonucleotide binding sites
(OBSs). Different combinations of input strands binding to the extension region caused it to
adopt different structures. The extension region had the potential to bind to the ribozyme,
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thus disrupting its structure, rendering it inactive, and preventing the output signal from
being cut and released. Whether it actually did so was determined by the sequences of the
logic gate and input strands, as well as the specific combination of input strands placed in
the test tube. Penchovsky & Breaker used random search to find sequences of ribozyme-
based logic gates that implemented YES, NOT, AND, and OR functions. These gates were
then validated in vitro. Many random candidate sequences were generated, subjected to a
multi-stage evaluation, and rejected if they failed any stage. For each input state (combi-
nation of input strands), the BPPM of the gate was predicted using folding software. The
BPPMs were then assessed to see whether the ribozyme was active for target ON states
(i.e. states where the target function outputs a 1) and inactive for target OFF states. Surviv-
ing candidates were then subjected to additional criteria such as ensuring an optimal free
energy gap between the ON and OFF states.

While this method was a significant contribution to the field of biological logic circuits,
we highlight some important limitations. The algorithm is powered by random search, and
as we will show in Section 3.4, random search scales extremely poorly, and the solutions it
does find have little diversity. In addition, the designs were not created from scratch: they
were obtained by modifying a relatively small portion of an existing well-characterized
ribozyme. It is also unclear how applicable some of the evaluation criteria and their param-
eters are to more general sets of gates or to different conditions, such as cellular or in vivo
environments. Finally, the method was specific to four particular 1 and 2-input gates, and
one could not specify another target Boolean function by simply providing its formula (or
equivalent truth table).

Some of these limitations were addressed in subsequent in work. In [80], 2-input AND
and OR gates designed using the method in [81] were manually modified to produce exper-
imentally validated 3-input AND and multiplexer gates. While this showcased the compu-
tational power of a single ribozyme-based logic gate, we must point out that creating these
gates required specialized molecular biology knowledge. Ramlan & Zauner [86], used a
more sophisticated inverse folding algorithm instead of random search. This method was
shown to generate all possible 2-input logic gates (in silico; no in vitro validation was per-
formed). However, they did not attempt to generate 3-input gates. Furthermore, the inverse
folding algorithm required the user to specify partial target structures for each state of the
device. We stress that this requires serious domain knowledge on the part of the user, and
the number of partial structures that need to be provided increases exponentially with the
number of inputs to the device. These partial structures also limit the diversity of the gener-
ated logic gates. Therefore, despite the potential of ribozyme-based logic gates, there is at
present no published method that accepts a user-specified 1-3 input Boolean function and
generates a set of diverse ribozyme-based logic gates.

To help address these limitations, we introduce a multi-objective evolutionary algorithm
called TruthSeqEr that designs ribozyme-based logic gates that we refer to as ribogates.
TruthSeqEr advances the state of the art in three ways. First, it is easy to use and requires
no biological domain knowledge: the user simply specifies a target Boolean function and
TruthSeqEr produces a population of ribogates implementing that function. Second, it is
able to design 3-input ribogates that implement sophisticated linearly inseparable functions.
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Third, it produces populations of ribogates that are structurally diverse. In the next section,
we present in detail our ribogate model, and in Section 3.3, we provide an algorithmic
description of TruthSeqEr.

3.2 Ribogate model
Our ribogate template is very similar to the allosteric ribozyme-based logic gate introduced
in [81]. It consists of an extension region attached to a minimal hammerhead ribozyme.
The extension region contains binding sites complementary to specific short RNA inputs.
Inputs binding to the ribogate will cause it to change conformation and hence logical state.
An input with a logical value of 1 is represented by the corresponding RNA input strand
being present in the biological environment, whereas a 0 is represented by that RNA strand
being absent. An output value of 1 is represented by the ribozyme folding into its ac-
tive conformation, cleaving itself into two uneven strands, and releasing the shorter of the
strands into the environment. Unlike previous work, we allow for up to 3 inputs, and con-
sequently, the extension region may contain up to three binding sites. In addition, we add
a new type of segment to the extension region called a negator. The purpose of the negator
is to disrupt the ribozyme when all binding sites are occupied. The negator is only present
for functions that output a 0 when all inputs are present (e.g. NOT, NAND). In Figure 3,
we show the ribogate model for a 2-input XNOR gate. Note that the secondary structures
presented in this thesis were visualized in entirety or in part using the FORNA software
package [46].

3.3 Computational methodology
TruthSeqEr designs a population of ribogates over several generations. The first generation
proceeds as follows. First, the representation of candidate ribogates is configured based on
the target Boolean function. A population of random individuals is initialized and these
individuals are each assigned a fitness measuring their performance on a set of objectives.
Certain individuals are then selected as parents, who produce offspring through mutation.
These offspring also have their fitness evaluated and a set of survivors is selected from the
combined set of parents and offspring. This concludes the first generation. Subsequent
generations cycle through parent selection, reproduction, fitness evaluation, and survivor
selection. The survivors at the end of one generation become the population at the be-
ginning of the next generation. This cycle terminates after a fixed number of generations.
The final population may then undergo an optional post-processing step called reliability
assessment which eliminates designs that are deemed biologically unreliable. Finally, the
results are reported to the user. An overview of the TruthSeqEr algorithm is shown in
Figure 4.
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Figure 3: XNOR gate ribogate model. a-d) A ribogate contains all the segments necessary
to fold into an active ribozyme: two halves of each stems and three parts of the catalytic
core. However, also contains an OBS that modulate ribozyme activity by binding to short
input strands. Each logical state is represented by a given combination of input strands.
Some combinations cause the ribozyme to fold into an active conformation and release an
output strand via self-cleavage. This represents an output value of 1. Other combinations
render it inactive, so that no output strand is released. This represents an output value of 0.
By changing the sequences of the inputs and the various ribogates segments, different logic
functions can be implemented. e-h) show the actual structures that the XNOR ribogate
adopts for each input combination. The ribozyme is active for states in which the three
stems and catalytic core form.
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Figure 4: Flowchart of the TruthSeqEr evolutionary algorithm.
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3.3.1 Configuration
Each individual consists of a gate strand and one or more input strands. The set of pos-
sible nucleotide sequences that these strands can assume is constrained by a nucleotide
dependency graph (NDG). During the configuration stage, the NDG is first generated from
a more abstract segment dependency graph (SDG). Then, a mutation weight and a set of
valid nucleotide assignments are computed for each component of the NDG. The entire
configuration stage is illustrated in Figure 6.

Segment dependency graph

The nodes of the segment dependency graph correspond to segments of the ribogate and the
input strands. Edges represent two segments that must have the potential to bind together
(i.e. they must be reverse complementary). Note that this does not mean that they will bind
together. Each node is labeled with a string that constrains the sequence of nucleotides that
the segment can assume. The SDG of an n-input ribogate contains the following segments:

1. n input segments, for one each input strand

2. 10 ribozyme segments

(a) 1 pair of segments for each of the three stems

(b) 3 segments for the catalytic core

(c) 1 segment for the stem 3 hairpin

3. n or n+ 1 extension region segments

(a) n OBS segments

(b) 1 negator segment if the target Boolean function outputs a 0 in the state when
all inputs are 1

When traversing the gate strand from the 5’ end to the 3’ end, the segments are encoun-
tered in the following order:

1. First half of stem 1 (S1A)

2. First part of core (C1)

3. First part of stem 2 (S2A)

4. Negator (if applicable) (N)

5. OBS1 (O1)

6. OBS2 (if applicable) (O2)

7. OBS3 (if applicable) (O3)
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8. Second half of stem 2 (S2B)

9. Second part of core (C2)

10. First half of stem 3 (S3A)

11. Hairpin of stem 3 (S3H)

12. Second half of stem 3 (S3B)

13. Third part of core (C3)

14. Second half of stem 1 (S1B)

We designate these segments as low-level or L-segments. Later in this work, we will use
an alternative partitioning scheme to divide the ribogate into high-level or H-segments. In
high level partitioning, the ribozyme is treated as a single segment. The other segments (in-
puts, extension region) are handled the same as way as in low-level partitioning. Examples
of low-level and high-level partitioning are shown in Figure 5.

The topology of the SDG is simple: it consists of connected components of size 1 (iso-
lated segments) or 2 (reverse complementary segments). The two segments of each stem
must be reverse complementary to each other: their corresponding nodes in the SDG are
therefore connected by an edge. The same is true for each OBS and its corresponding input
segment. In addition to these structural constraints, each node is labeled with a constraint
string. This string is composed of characters representing the nucleotides A, U, G, C, as
well as the wild-card characters N and H. An N indicates the nucleotide can assume an A,
U, G, or C, while an H indicates that the nucleotide can assume an A, U, or C [17]. The
SDG for XNOR is shown in Figure 6 a).

Nucleotide dependency graph

The SDG has an equivalent nucleotide dependency graph (NDG) [36] which encodes con-
straints between individual nucleotides instead of segments. An NDG is generated from
the SDG by:

• Splitting each unpaired segment of length L into L unpaired nodes (representing
nucleotides).

• Splitting each pair of segments of length L into L pairs of nodes. Since paired seg-
ments must be reverse complementary, the ith nucleotide of the first segment is paired
with the L− 1− ith nucleotide of the second segment.

• Splitting the constraint strings into individual characters and applying them to the
appropriate nodes of the NDG.

The NDG for XNOR is shown in Figure 6 b).
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Figure 5: Two ways of partitioning ribogates into segments. At a low level (a-c), both the
ribozyme and extension region are subdivided into segments. At a high level (d-f), only
the extension region is subdivided: the ribozyme is treated as a single segment. In general,
the extension region may contain up to three OBSs and a negator (a, d), but its specific
composition depends on the target function. (b,e) show a 2-input gate with a negator while
(c,f) depict a 3-input gate with no negator. List of abbreviations: Rz (ribozyme), On (OBS
n), N (negator), Cn (segment n of catalytic core), SnA (first half of stem n), SnB (second
half of stem n), S3H (hairpin loop of stem 3).
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Figure 6: Configuration example. a) The SDG for an XNOR function (1001). List of
abbreviations: In (input n), On (OBS n), N (negator), Cn (segment n of catalytic core),
SnA (first half of stem n), SnB (second half of stem n), S3H (hairpin loop of stem 3).
Since XNOR outputs a 1 when all inputs are 1, the negator segment is not included. This is
represented by it being faded out in the figure. Also, since XNOR has two inputs, the OBS3
- input 3 pair is not included. Each component of the SDG is annotated with a nucleotide
constraint string. The notation N6 is equivalent to NNNNNN. b) The NDG is obtained
by splitting the SDG into nucleotide components. c) Each component has an constraint
character, a set of valid nucleotide assignments, and a mutation weight. These are shown
for only certain components in the figure. d) The NDG constrains the possible sequences
of the gate and inputs strands. A gate strand with a valid nucleotide assignment is shown.
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Mutation weights and valid nucleotide assignments

During the initialization and mutation stages of TruthSeqEr, the gate and input strands are
assigned nucleotide values that respect the NDG. In general, generating valid nucleotide
assignments is non-trivial [36], especially when sequence constraints are imposed. Fortu-
nately, due to the structural simplicity of the NDG (each connected component consists of
at most two nodes), TruthSeqEr can generate valid nucleotide assignments using the fol-
lowing straightforward approach. Each component of the NDG is considered one at a time.
Each component has a set of valid nucleotide assignments. An isolated nucleotide can
assume any value permitted by its constraint character. A pair of nucleotides can assume
any pair of complementary values that respect the constraint characters of both nucleotides.
Components with a greater number of valid nucleotide assignments are more likely to be
selected for mutation. Each connected component C has an associated mutation weight
equal to:

# of valid nucleotide assignments of C - 1
# of nucleotides in C

(1)

Valid nucleotide assignments and mutation weights for selected components of the NDG
are shown in Figure 6 c).

3.3.2 Initialization
During initialization, each component of the NDG is selected and its corresponding nu-
cleotides are assigned a random set of valid nucleotide values. An example of nucleotide
assignment is shown in 6 d).

3.3.3 Fitness evaluation
TruthSeqEr’s primary objective is to discover ribogates with a maximal viability score. Ri-
bogates with high viability scores are ON in states where the target logical output is a 1 and
OFF in states where the target logical output is a 0. However, directly optimizing a single
viability score does not produce ideal results. Instead, TruthSeqEr is guided toward viable
individuals by a set of secondary objectives. These secondary objectives also increase the
diversity of the discovered logic gates. During fitness evaluation, the viability score is cal-
culated as well as three secondary objective scores: ON, OFF, and novelty [58]. The ON
score measures how active the ribozyme is in states where the target logical output is a
1, the OFF score measures how inactive the ribozyme is in states where the target logical
output is a 0, and the novelty score measures how structurally unique the ribogate is com-
pared to other ribogates in the population. To increase selection pressure, the secondary
objectives are nullified if an individual’s viability drops below a certain threshold.

Fitness evaluation is broken into five sub-stages. Folding predicts the structures that
an individual’s gate strand will adopt for each input combination. Phenotype generation
processes the folding output into a more compact phenotype. Novelty assessment calcu-
lates a novelty score for each individual by measuring the distance between its phenotype
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Figure 7: Folding constraints. a) In a ribogate, when an input binds to its OBS, a pseudo-
knot is formed because it crosses other base-pairs such as those in stem 1. b) We assume
that the input always binds completely to its OBS. c) If the OBS is occupied, it cannot bind
elsewhere on the gate strand. From the point of view of the other nucleotides, it is the same
as if the OBS was constrained to be unpaired. d) This constraint is specified by means of a
folding constraint string. Nucleotides above a dot are unconstrained. Nucleotides above an
x are forced to be unpaired, even if they want to form base-pairs.

and those of the rest of the population. Performance assessment calculates the individual’s
viability, as well as its ON and OFF scores, from the predicted structures. Finally, viabil-
ity nullification sets the secondary objectives scores to zero if the viability drops below a
certain threshold.

Folding

Fitness evaluation begins by predicting the structure that the gate strand adopts for each
input combination. Existing folding algorithms can predict the structure that the gate strand
will adopt in isolation with reasonable accuracy and computational efficiency. However,
they cannot do so when the input strands must be considered in addition to the gate strand.
This is because a pseudoknot occurs when an input strand binds to the gate strand. A
pseudoknot consists of two base-pairs that cross each other. This is shown in Figure 7 a).

Predicting the formation of pseudoknots accurately and efficiently is not possible in
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general. For example, the algorithm presented in [23] runs in O(n5) time compared to the
O(n3) time required for pseudoknot-free prediction. In addition, it can only predict a cer-
tain subset of pseudoknots. Fortunately, we can exploit a priori knowledge to circumvent
this issue. We know that each input is reverse complementary to its corresponding OBS. In
addition, since the input and OBS are long, many base-pairs form when they bind to each
other. It is therefore reasonable to assume that each input will bind to its corresponding
OBS, Since the OBS nucleotides are bound to the input nucleotides, they cannot bind to
any other nucleotide on the gate strand. We can simulate this effect by means of a folding
constraint string which forces these OBS nucleotides to remain unpaired. The effect of
folding constraints is illustrated in Figure 7 b-d. For each state, the folding algorithm out-
puts a base-pairing probability matrix (BPPM) and an MFE structure. The MFE structure
plays no role in the design of a ribogate, but it is useful for its analysis (Section 3.4).

Phenotype generation

An individual’s phenotype is a vector that measures the amount of base-pairing between
certain H-segments. The BPPM of each state is first coarse-grained into a segment-pair
magnitude matrix (SPMM). The SPMMs are then processed, merged and flattened into a
single vector (called the phenotype).

SPMMs. An entry of the SPMM encodes the amount of base-pairing between an ex-
tension region (ER) segment and another ER segment (possibly itself) or between an ER
segment and the ribozyme (Rz). The ribozyme is treated as a black-box, meaning that base-
pairs between any two nucleotides of the ribozyme are ignored. The amount of base-pairing
between two segments is equal to the sum of the probabilities of all possible base-pairs that
can form between these two segments. An example of coarse-graining a BPPM into a
SPMM is shown in Figure 8 a) and b).

Phenotype. Next, the SPMMs of target ON states (i.e. states for which the output value
of target Boolean function is 1) are selected for further processing. Specifically, the entries
encoding the base-pairing between each extension region segment and the ribozyme are
removed. The SPMMs of target OFF states are not modified. The processed SPMMs are
then flattened and merged into a phenotype vector. This is shown in Figure 8 c). Excluding
the ER-Rz entries of the target ON state SPMMs from the phenotype prevents novelty
search from exploring solutions that are guaranteed to be non-viable.

Novelty assessment

Next, the novelty of an individual is assessed and a novelty score is calculated. Novelty as-
sessment begins by calculating the phenotypic distance between each pair of individuals in
the population. The phenotypic distance d between two individuals x and y with respective
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Figure 8: Phenotype generation example. a) The BPPM of state 00 of an individual target-
ing an XNOR gate. b) This BPPM is coarse-grained into a SPMM. We can see that there
are significant interactions between the two OBSs (O1, O2) and the ribozyme (Rz). There
are only weak interactions between the two OBSs and within each OBS. The BPPMs of
the other three states are not shown, but their corresponding SPMMs are. c) The SPMMs
are flattened and merged into a phenotype vector. Note that the OBS-ribozyme interactions
are grayed out for states 00 and 11, and are excluded from the phenotype. The XNOR gate
should be ON in those states and we do not want to reward individuals with OBS-ribozyme
interactions. List of abbreviations: On (OBS n), Rz (ribozyme), BPPM (base-pair proba-
bility matrix), SPMM (segment-pair magnitude matrix).
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phenotypes xp and yp is defined as:

d(X, Y ) =
n∑

i=1

|xp[i]− yp[i]| (2)

where n is the number of entries in the phenotype vector. Each individual x is then assigned
a novelty score defined as

fnov =
∑
y∈K

d(x, y) (3)

where K is the set of x’s k-nearest neighbors. The novelty score rewards individuals that
are in sparse regions of the phenotype space (i.e. that are far away from their nearest
neighbors).

Performance assessment

Next, the performance of an individual is assessed and viability, ON, and OFF scores are
calculated. An individual is considered high performing if its ribozyme is active (inactive)
in each target ON (OFF) state.

Motif scores. So far we have considered ribozyme activity in binary terms: it is either
ON or OFF. In this section, we quantify the ribozyme activity level more precisely. In
Section 2.3.8, we explained that the ribozyme is active if four motifs form: the three stems
and the core. Therefore, the activity level of a ribozyme can be predicted by measuring the
degree to which these motifs are present in each state. TruthSeqEr calculates four motif
scores from each BPPM. Three stem scores measure the average probability of a stem
base-pair being present. A stem score of 1 indicates each base-pair in the stem has a 100%
probability of being present. A single core score measures the average probability of a core
nucleotide being unpaired. This score is 1 if every nucleotide has a 100% probability of
being unpaired. The motif scores of a device with k states are stored in a k by 4 matrix.
Each row corresponds to a state, and each column to a motif. Column 0 corresponds to
the core motif and columns 1-3 to the stem motifs. Motif score calculation is illustrated in
Figure 9 a-b).

ON and OFF matrices. The motif scores matrix is split into an n by 4 ON matrix, and a
(k− n) by 4 OFF matrix, where n is the number of target ON states. Note that 0 < n < k.
The ON (OFF) matrix stores the motif scores for target ON (OFF) states .

ON and OFF vectors. From the ON (OFF) matrix, TruthSeqEr calculates an ON (OFF)
vector vON (vOFF ) that measures how close the ribozyme is to being active (inactive) for
each target ON (OFF) state. The ON and OFF vectors are calculated slightly differently.
In this work, we assume that the ribozyme is fully active if all four of its motifs form, and
we assume that it is fully inactive if one of its stems is completely disrupted (i.e. none of
the nucleotides in the stem are properly paired). The ith entry of the ON vector is equal to
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Figure 9: Performance assessment example. a) The BPPM of state 00 of an individual
targeting an XNOR gate. The partners of the core nucleotides are shown inside the dashed
polygon. For the core to form properly, this polygon must be empty. Since it is not, the
core score for state 00 is low. The 3 stems are shown in bold boxes. For them to fold
properly, there must be strong base-pairs along the diagonal. This is the case for stems 1
and 3, but not for stem 2. Therefore, stems 1 and 3 have high scores, and stem 2 has a low
score. b) These scores are stored in the motifs matrix. c) The motifs scores matrix is split
into two matrices representing the scores for target ON (00 and 11) and target OFF (01 and
10) states. d) The matrices are processed into vectors. e) The minimum and average values
of these vectors are calculated. f) Pairs of averages and mins are themselves averaged into
ON, OFF, and viability scores. Since stem 2 is disrupted for each target OFF state, the OFF
score is high. However, stem 2 is also disrupted in state 00 when the ribozyme should be
active. Therefore, the ON score is low.
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the average of the motif scores of the ith row of the ON matrix. The ith entry of the OFF
vector is equal to 1, the minimum stem score of the ith row of the OFF matrix. ON and
OFF vector calculation is illustrated in Figure 9 d).

Scores. From these two vectors, we calculate an ON score fON and an OFF score fOFF

as follows:
fON = ama vON (4)

fOFF = ama vOFF (5)

where we define ama as:
ama x = avg [avg x,min x] (6)

We also calculate the viability score as:

f via =
min vON + min vOFF

2
(7)

ON, OFF, and viability score calculation are illustrated in Figure 9 e-f).

Primary vs secondary objectives. Maximizing the viability of the logic gates is our
primary objective. The viability score is stringent: it judges the performance of a logic
gate by its worst performing ON and OFF states. However, using viability to guide the
search is not ideal since it does not reward improvement in states that are not the worst
performing. On the other hand, the ON and OFF scores are less stringent. They take into
account the performance of the gate across all states, although they apply a disproportionate
weight to the worst performing state. Therefore, the ON and OFF secondary objectives are
used to guide TruthSeqEr instead of viability. Also note that the ON and OFF scores are
kept as two separate objectives and not summed together. This strategy is called multi-
objectivization [101] and it has been shown to improve the performance of EAs for certain
tasks.

Viability nullification

Finally, the ON, OFF, and novelty scores are nullified if the viability score of the indi-
vidual drops below a certain threshold. The viability threshold is initially set low to give
TruthSeqEr the opportunity for exploration. It is subsequently raised for every generation,
following one of two possible schedules. The first schedule interpolates between an initial
value v0 and a final value vf . The viability threshold vt(i) at the ith generation (with i being
0-indexed) is equal to

vt(i) = v0 + i
vf − v0
N − 1

(8)

where N is the total number of generations in the TruthSeqEr run. The second schedule
interpolates between an initial value v0 and a breakpoint value vb prior to a breakpoint
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generation b, and then interpolates between the breakpoint value and a final value vf after
the breakpoint generation. The viability threshold vt(i) at the ith generation is equal to{

vt(i) = v0 + ivb−v0
b

i < b

vt(i) = vb + (i− b)
vf−vb
N−1−b

i ≥ b
(9)

An individual is considered viable at the end of a TruthSeqEr run if its viability score is
greater than or equal to 0.95.

3.3.4 Parent selection and reproduction with mutation
First, each individual is selected as a parent. Next, each parent is copied and mutated
R times, where R is the mutation rate. Mutation consists of selecting a component of the
NDG and assigning its corresponding nucleotides a new set of valid values. The probability
of a component being selected for mutation is proportional to its mutation weight.

3.3.5 Survivor selection and termination
The population and offspring are merged into a set of 2N individuals and the fittest N
individuals are selected as survivors. Since each individual has multiple objective scores,
NSGA-ii [21], a multi-objective sorting algorithm, is used to rank the individuals. NSGA-ii
sorts the individuals into a set of non-dominated fronts. An individual x dominates another
individual y if all of x’s objective scores are equal to or greater than y’s and at least
one of x’s is strictly greater than y’s. All members of the same non-dominated front are
dominated by the same number of individuals. The individuals of the first non-dominated
front are not dominated by any other individual. Once they are sorted into non-dominated
fronts, TruthSeqEr selects the N individuals dominated by the smallest number of other
individuals as survivors. TruthSeqEr terminates after 200 generations.

3.3.6 Reliability assessment
If reliability assessment is enabled, the members of the final population of the EA are
measured against additional criteria to determine their biological plausibility. Two new
scores are calculated: thermobalance and affinity. An individual is eliminated if any of
these scores falls outside its specified range.

Thermobalance

In previous steps of the algorithm, each state was considered in isolation. However, in
reality the states are linked together through a dynamic process. In general, each state has
multiple successor states. These are the next possible states that the gate can transition to
upon the binding of specific input strands. For example, a 3-input ribogate in state 000 (no
inputs bound to it) has three possible successor states: 001, 010, and 100, corresponding to
the binding of the third, second, and first input strand, respectively. The proper functioning
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of a ribogate depends on its ability to transition to the correct successor state when the
relevant input strand binds, and to avoid unwanted transitions in the absence of that input.
This requires the free energy gap between a state and its successor to be large enough to
prevent unwanted transitions, but not so large as to prevent desired transitions when the
correct input is present. The thermobalance score is equal to the average energy gap for
every possible state transition. The acceptable range of this score is between 6 and 10.

Affinity

Recall that due to limits in pseudoknot prediction, we did not co-fold the gate and input
strands directly. Instead, we assumed that each input was specific to its corresponding
OBS, Unfortunately, in reality the input strand may bind elsewhere on the strand. It is
therefore important to assess the validity of this original assumption. Although co-folding
was too inaccurate to predict the global structure of the input-gate duplex, it is still useful
for predicting local substructures involving the input strands. We therefore co-fold each
input with the gate strand, and use the resulting BPPM to calculate the average probability
of an input nucleotide binding to its corresponding OBS partner. The acceptable range for
this score is 0.85 or above.

3.3.7 Experimental setup
Test cases

There are 22
n possible functions of n variables. This means that there are 256 possible

3-input functions. In order to reduce the computational cost of generating designs and
the future experimental cost of validating them in a biological environment, we test our
algorithm on a subset of the possible functions. First, we only consider n-input functions
that depend exactly on n variables. For example, we do not consider the 3-input function
a + b. We do however consider it as a 2-input function. Next, we observe that the set of
possible functions can be partitioned into a set of equivalence classes. In this work we
consider two types of equivalence classes: P and NPN. Two functions are part of the same
P equivalence class if one can be obtained from the other by applying a permutation to
its inputs [96]. Two functions are part of the same NPN equivalence class if one can be
obtained from the other by applying a permutation to its inputs, negating any subset of its
inputs (including possibly none or all of them), and/or negating its output [96].

With this in mind, we form representative sets of 1, 2, and 3-input functions. The 1-
input set is simply the two 1-input functions of exactly 1 variable. The 2-input set consists
of one member of each P equivalence class [26]. Finally, the 3-input set consists of one
member of each NPN equivalence class [96]. A Boolean function can be denoted by its
truth vector or its function number, the integer equivalent of its truth vector [96].

These functions exhibit varying degrees of complexity: some functions are linearly sep-
arable while others are linearly inseparable. In the case of a (Boolean) linearly separable
function, states with an output value of 0 can be distinguished from states with an output
value of 1 using a single hyperplane (e.g., a line in 2D or a plane in 3D). This hyperplane
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Function
number

Truth vec-
tor

Boolean expression Description Linearly
separable?

f-1-1I 01 a YES YES
f-2-1I 10 a’ NOT YES
f-1-2I 0001 ab AND YES
f-2-2I 0010 ab’ YES
f-6-2I 0110 ab’ + a’b XOR NO
f-7-2I 0111 a + b OR YES
f-8-2I 1000 a’b’ NOR YES
f-9-2I 1001 ab + a’b’ XNOR NO
f-11-2I 1011 a + b’ YES
f-14-2I 1110 a’ + b’ NAND YES
f-1-3I 00000001 abc AND YES
f-7-3I 00000111 ab + ac OR with enable YES
f-9-3I 00001001 abc + ab’c’ XNOR with enable NO
f-22-3I 00010110 abc’ + ab’c + a’bc ON for exactly 2 inputs NO
f-23-3I 00010111 ab + ac + bc ON for at least 2 inputs YES
f-25-3I 00011001 bc + ab’c’ NO
f-27-3I 00011011 ac’ + bc Multiplexer NO
f-105-3I 01101001 abc + ab’c’ + a’bc’ +

a’b’c
Parity check NO

f-129-3I 10000001 abc + a’b’c’ ON for 0 or 3 inputs NO
f-135-3I 10000111 ab + ac + a’b’c’ NO

Table 1: Representative functions used as test cases for TruthSeqEr. The 1-input and 2-
input functions are representatives from each P equivalence class. The 3-input functions
are representatives from each NPN equivalence class.

serves as a decision boundary between the two classes of output values [8]. For linearly
inseparable functions, a hyperplane is inadequate and more complex decision boundaries
are required. Linear separable functions are generally considered easier to represent than
linear inseparable functions. For instance, a single artificial neuron is sufficient to repre-
sent a linearly separable function, whereas a neural network comprised of multiple neurons
is required to represent a linearly inseparable function [72]. The representative sets for 1,
2, and 3 inputs are shown in Table 1, with equivalent Boolean expressions and linearly
separability clearly indicated [26] .

Parameters

We executed 4 runs of TruthSeqEr in addition to a random search run (to provide a compar-
ison to [81]). All 5 runs performed 60,000 fitness evaluations. For the 4 TruthSeqEr runs,
this was divided into 200 generations of 300 individuals. A mutation rate of 4 was used
for all TruthSeqEr runs. Each TruthSeqEr run had a different set of objective scores: (ON,
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Run 1 Run 2 Run 3 Run 4
Number of generations 200 200 200 200
Population size 300 300 300 300
Mutation rate 4 4 4 4
Objective scores ON, OFF ON, OFF ON, OFF,

Novelty
ON, OFF,
Novelty

Viability nullification? No Yes No Yes
Viability threshold (min, max) N/A (0, 0.9) N/A (0, 0.9)
Breakpoint (generation, value) N/A (49, 0.45) N/A (49, 0.45)
Novelty neighborhood size N/A N/A 30 30

Table 2: TruthSeqEr parameters.

Score Min value Max value
Thermobalance 6 10
Affinity 0.85 N/A

Table 3: Acceptable ranges for the two reliability scores.

OFF), (ON,OFF, viability nullification enabled), (ON, OFF, novelty), (ON, OFF, novelty,
viability nullification enabled). The novelty score was calculated using a neighborhood
size of 30. The EA parameters are summarized in Table 2. Folding was performed using
the RNAFold and RNACofold programs from the ViennaRNA package [61]. The partition
function option was enabled. Also, the MaxLoop parameter in the source code was changed
from 30 to 300 before recompiling the package. This change prevented the folding software
from incorrectly predicting the structure of larger ribogates. Experiments were performed
on a system running Windows 10 Pro with an AMD Ryzen Threadripper 3970X 32-Core
Processor and 64 GB of RAM. Each run used 12 processes in parallel and 4 runs were
simultaneously executed. 1-input, 2-input, and 3-input runs took approximately 2, 4, and
8 hours, respectively. The acceptable ranges for the reliability scores are summarized in
Table 3.

3.4 Results and discussion
TruthSeqEr successfully found diverse ribogates implementing every test function. We will
first present results at a population level. We will discuss which combinations of objectives
yielded the best results. We will visualize the phenotype space of different functions. We
will also quantify and discuss the impact of reliability filtering. We will then present ex-
amples of individual ribogate designs. Three levels of abstraction will be considered, with
each level revealing different information about ribogate operation.
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3.4.1 Evaluating the performance of the TruthSeqEr EA
The results of random search and the 4 TruthSeqEr EA runs are summarized in Figure
10. For each (function, run) combination, the number of viable individuals at the end
of the run was recorded and a diversity score was calculated (see Appendix for details).
Figure 11 provides an in-depth look at the runs of functions f-1-1I, f-6-2I, and f-105. These
functions are all instances of an n-input parity check circuit and make an informative case
study in how different search methods scale. The phenotype space of these functions is
visualized using a non-linear dimensionality reduction technique called multidimensional
scaling (MDS) [52]. We now discuss these results in detail.

Rigobate design is non-trivial

In [81], random search was used to design simple 1 and 2-input ribogates. It was therefore
an open question as to whether it could handle more complex designs. Our results indicate
that this is not the case. Random search found many viable solutions for the 1-input func-
tions, significantly fewer solutions for the 2-input functions, and barely any solutions for
the 3-input functions. Indeed, it found no viable solutions for 8 of the 10 3-input functions.
Although it found a very small number of viable solutions for functions 1-3I and 7-3I,
these are both linearly separable. In all cases, the solutions found by random search had
low diversity. The poor performance of random search across more complex test functions
underscores the challenges of ribogate design.

Multi-objective EAs are suitable for ribogate design

All 4 TruthSeqEr runs found viable individuals for each test function. In all cases, its
performance was consistent across test functions, regardless of their complexity or arity.
Run 1 (ON, OFF) found few viable solutions and the solutions it did find had low diversity.
Run 2 (ON, OFF, viability) found many viable solutions of low diversity. Run 3 (ON, OFF,
novelty) found few viable solutions, but those that it did find were diverse. Finally, run 4
(ON, OFF, novelty, viability) struck the best balance between viability and diversity. With
the exception of two functions (f-22-3I and f-135-3I) every member of the final population
was viable and even in those two cases the majority of the population was viable. Most
impressively, this viability did not come at the cost of diversity.

To better understand the impact of viability nullification, we consider run 1 in more de-
tail. Since two objectives were enabled (ON and OFF), each generation of this run had not
just one fittest solution, but rather a Pareto front of non-dominated solutions. Unfortunately,
this front was large compared to the population size, and it contained many individuals with
marginally higher ON scores, but very low OFF scores. For example, two individuals with
respective (ON, OFF) scores of (0.95, 0.98) and (0.96, 0.05) do not dominate each other,
but the first is significantly more viable than the second. The large size of this front hin-
dered the convergence of TruthSeqEr. Viability nullification mitigated this by severely
penalizing individuals below the current viability threshold, even if they were members of
the non-dominated front. This prevented TruthSeqEr from spending significant resources
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Figure 10: Summary results for random search and four Truth-Seq-Runs on the 1, 2, and
3-input representative functions. The size of a square represents the number of viable indi-
viduals and its color represents their diversity. Random search fails to find viable solutions
to most of the 3-input representative functions. All four TruthSeqEr runs find viable solu-
tions for each 1, 2, and 3-input representative function. The ON and OFF scores used in
each run guide the search to solutions with active ribozymes in the ON states and inactive
ribozymes in the OFF states. The number of viable solutions is increased by enabling vi-
ability nullification (via). The diversity of the solutions is increased by enabling novelty
search (NS).

40



Figure 11: A matrix of scatter plots of the phenotype space of populations of ribozyme
designs implementing 1, 2, and 3-input even parity checkers. Multidimensional scaling
(MDS) was used to reduce the high dimensional phenotype space to a two dimensional
space (Dim 1 and Dim 2). Each row represents a given number of inputs and each column
represents a TruthSeqEr run. Viable individuals are shown in black and non-viable are
shown in gray. Note that due to their much greater number, the non-viable individuals of
the random search run are not shown. The number of viable solutions discovered by random
search plummets as the size of the function increases. (ON, OFF) finds viable solutions for
all three cases, but a significant portion of the population is non-viable. Enabling viability
nullification results in the entire population being viable. Enabling novelty search without
viability nullification increases the diversity of the population, but a significant portion of
it is non-viable. Enabling both viability nullification and novelty search achieves the best
of both worlds: a completely viable, diverse population.
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exploring far-from-viable candidate solutions, as evidenced by the increased number of vi-
able individuals generated in runs 2 and 4. Although performance-based multi-objective
EAs generally promote more diversity than single-objective EAs, the results of runs 1 and
2 indicate that, in our case, this diversity was limited. Adding an explicit novelty objective
significantly increased diversity, as demonstrated in runs 3 and 4.

3.4.2 Reliability assessment
The final population of run 4 (ON, OFF, novelty, viability) was evaluated against more
stringent criteria (affinity and thermobalance) that aim to measure biological plausibility.
Ribogates that fell outside the specified range for either criterion were eliminated. The
results of this filtering are shown in Table 4. Multiple designs meeting the reliability criteria
were found for each function, but their numbers were substantially reduced. There was a
lot of variance in the data. At one extreme, only 9.7% the population met the criteria (f-
7-2I) while at the other extreme, 74% of the population did (f-27-3I). This outcome is not
too concerning since the designs were not explicitly optimized against these criteria in the
EA loop. Indeed, this showcases the robustness that diversity grants a population. If all
individuals were confined to a specific region of the phenotype space, then it is possible
that that one region would be unreliable. By encouraging novelty, TruthSeqEr distributes
the risk among various solutions, preventing over reliance on a single design strategy. This
especially important since there is no well-established universal set of ribogate reliability
criteria. As a matter of fact, TruthSeqEr could help biologists devise those criteria by
providing them with a large, diverse, and unbiased dataset of ribogates that they could use
for experimentation and characterization.

Figure 12 plots the reliable and non-reliable designs in phenotype space. Despite being
fewer in number, the reliable individuals are still quite dispersed, suggesting that it is pos-
sible to meet these reliability criteria without severely compromising structural diversity.

3.4.3 Ribogate secondary structures
We now showcase some ribogates designed by TruthSeqEr. In this section, we view the
secondary structures of ribogates that met the reliability criteria. In Figure 13 a) and b) we
show an XNOR gate and in b) an XOR gate, both 2-input functions. These two gates are the
inverse of each other: their truth vectors are 1001 and 0110, respectively. This opposition
is also apparent in their secondary structures. In the XNOR gate, the two OBSs are initially
bound to each other and do not disrupt the ribozyme. If either input is added, the corre-
sponding OBS will be occupied and the other OBS will be free to disrupt the ribozyme.
However, if both inputs are added, no OBS can disrupt the ribozyme. Conversely, the XOR
gate contains a negator segment in its extension region. Initially, both OBSs are bound to
each other and the negator is free to bind to the ribozyme. If either input is added, the un-
occupied OBS will be free, and instead of binding to the ribozyme as in the XNOR case, it
will bind to the negator instead, rendering the ribozyme active. However, if both inputs are
present, there is no OBS to bind to the negator, allowing it to disrupt the ribozyme freely.
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Function num-
ber

Affinity sur-
vivors (%)

Thermodynamics
survivors (%)

Combined
survivors
(%)

f-1-1I 79.7 40.7 33.0
f-2-1I 86.7 18.0 17.3
f-1-2I 75.7 59.3 45.3
f-2-2I 49.0 48.7 24.7
f-6-2I 40.3 64.0 26.0
f-7-2I 28.3 32.0 9.7
f-8-2I 73.0 18.0 16.3
f-9-2I 58.3 27.0 17.7
f-11-2I 54.7 50.3 32.0
f-14-2I 77.0 28.3 24.7
f-1-3I 56.7 74.3 40.7
f-7-3I 20.0 61.0 14.7
f-9-3I 57.3 35.0 26.3
f-22-3I 76.3 89.0 70.3
f-23-3I 16.0 79.3 12.0
f-25-3I 45.7 88.3 38.3
f-27-3I 81.7 87.3 74.0
f-105-3I 51.3 60.0 33.0
f-129-3I 62.0 77.7 47.7
f-135-3I 33.3 78.7 24.3

Table 4: Percentage of run 4 (ON, OFF, via, NS) ribogates that met the affinity and ther-
mobalance reliability criteria,
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Figure 12: Scatter plot matrix of the phenotype space of the 10 3-input test functions. Dots
represent viable individuals obtained at the end of run 4 (ON, OFF, novelty, viability). Gray
dots fail to meet the reliability criteria while black dots succeed.

In Figure 14, we examine a ribogate implementing the 3-input function f-129-3I. This
function has a truth vector of 10000001 and it can be seen as a generalization of the XNOR
gate: it is active when either all or none of the inputs are present. It also has a mechanism
of action similar to that of XNOR. In the initial state, all OBSs are bound to each other and
the ribozyme is active. When all OBSs are occupied, none are available to disrupt it so it
remains is active. If any single OBS is unoccupied, it will bind to the ribozyme. However,
unlike the XNOR gate, if 2 OBSs are free, they will bind to the gate and not to each other.

3.5 Conclusions
Logic gates can be realized in biological matter instead of silicon. One promising approach
is to use catalytic RNA that changes shape in response to different inputs signals. These
ribogates are an attractive solution due to their low energy footprint, fast dynamics, versa-
tility, ability to interface with cellular environments, and their suitability for computational
design. Despite these advantages, designing ribogates is challenging for a multitude of
reasons. Current approaches require extensive domain knowledge which limits their ac-
cessibility and generality. In addition, the ribogates that can be designed are of limited
complexity and diversity. Furthermore, devices that are predicted to function in silico may
fail in practice,

In response to these shortcomings, we presented a multi-objective evolutionary algo-
rithm called TruthSeqEr. TruthSeqEr combines handcrafted performance-based objective
functions, novelty search, and a novel technique called viability nullification, allowing it
to generate diverse populations of ribogates implementing every member of a representa-
tive set of 1, 2, and 3-input functions, including both linearly separable and inseparable
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Figure 13: Secondary structures for each state of two 2-input ribogates. Input strands are
not shown. a) XNOR. In states 00 and 11, the three stems and the catalytic core of the
ribozyme form and the gate outputs a 1. In states 01 and 10, the unoccupied OBS disrupts
the ribozyme active structure and the gate outputs a 0. b) XOR. The extension region
contains a negator segment which disrupts the ribozyme in states 00 and 11. In states 01
and 10, the negator binds to the unoccupied OBSs instead. Refer to Figure 5 a) for segment
color coding and main text for a more detailed description of these gates.
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Figure 14: Secondary structures for each state of a 3-input ribogate implementing function
f-129-3I. Input strands are not shown. The three stems and catalytic core of the ribozyme
only form when all inputs are absent (state 000) or present (state 111). Refer to Figure 5 a)
for segment color coding and main text for a more detailed description of this gate.

46



functions. Using TruthSeqEr, devices such as multiplexers and parity check circuits can
be implemented by a single ribogate. Unlike existing approaches, no domain knowledge is
required of the user: all they have to do is specify the target function.

One limitation of this work is that we cannot guarantee that ribogates designed by
TruthSeqEr will function as expected in in vitro or in vivo biological conditions. This
is due in part to limitations in RNA folding algorithms, which have difficulty predicting
complex structural motifs such as pseudoknots and hybridized structures involving multiple
strands. These algorithms also struggle to efficiently predict the dynamic behavior of RNA
as well as the interactions between RNA and existing cellular machinery. Furthermore,
the ribogates designed by TruthSeqEr exhibit many complex interactions between their
segments, which makes them more likely to misfold. That being said, we have implemented
measures to reduce the risk of ribogate failure. Reliability filtering ensures more stringent
checks, while the diversity of generated designs helps minimize the impact of unforeseen
issues. These diverse ribogates also serve as a rich dataset that can be explored by synthetic
biologists and used to develop more accurate measures of ribogate fitness. In addition, the
extracted mechanism graphs can serve as a roadmap for future experimentation in which
devices with fewer interactions are tested before devices with more interactions.

To conclude, this work highlights the power of ribogates as a computational medium
and the demonstrates the effectiveness of evolutionary algorithms such as TruthSeqEr in
their design. We hope that our contributions encourage further research in ribogate design,
modeling, and applications.
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Chapter 4

Ribogate abstraction

4.1 Introduction
In the previous chapter, we presented an EA called TruthSeqEr, and used it to design
ribozyme-based logic gates (ribogates) implementing a representative set of Boolean func-
tions. A fascinating result was that a single ribogate could implement functions with a
wide range of complexity. Consider the following two functions: a 3-input AND gate and
a 3-input parity check circuit. These are donated by function numbers f-1-3I and f105-3-I,
respectively. f-1-3I is linearly separable and can be realized by a single artificial neuron
whereas f105 is not linearly separable and a network of multiple neurons is required to
realize it. f-1-3I’s Boolean expression is simple (abc) whereas f-105-3I’s is much more
sophisticated (abc + ab’c’ + a’bc’ + a’b’c), meaning that a much larger digital logic circuit
is required to implement the latter than the former. And yet we showed that each function
can be implemented by a single ribogate. This chapter is motivated by the following ques-
tion: what distinguishes ribogates implementing simple functions from those implementing
much more complex functions? To answer this question, we will gradually abstract away
the details of a ribogate’s set of secondary structures until we arrive at predictive graphical
representation of its logical behavior. By analyzing these graphs, the source of a ribogate’s
computational power will be revealed.

4.2 Segment structures
The secondary structures presented in the previous chapter showcase the ribogate’s char-
acteristics in detail. However, their size and the number of ribogate states can make them
somewhat cumbersome to interpret. While color-coding nucleotides based on L-segments
improves visualization, it is not a perfect solution. Consequently, we introduce a coarse-
grained alternative to secondary structures, referred to as segment structures. This approach
simplifies the representation of ribogates, allowing for more accessible analysis and under-
standing of their properties.

The segment structure nodes correspond to H-segments, which include the extension
region (ER) segments (OBSs and optional negator) and the single ribozyme (Rz) segment.
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Figure 15: An XNOR gate viewed at two levels of abstraction. a) Secondary structures.
Nodes represent nucleotides and edges represent base-pairs. Nucleotides that are bound to
one of the input strands (not shown) are prevented from forming base-pairs with the rest
of the ribogate. In states 00 and 11, the three stems and the catalytic core of the ribozyme
form and the ribogate outputs a 1. In states 01 and 10 the ribozyme is disrupted and outputs
a 0. b) Segment structures. Nodes represent H-segments: OBS1 (O1), OBS2 (O2) and
the ribozyme (Rz). Structural edges (solid) represent segment pairs. In state 00, the two
OBSs share base-pairs in the secondary structure; they are therefore paired together in the
segment structure. In states 01 and 10 one OBS is paired with the ribozyme. When no
structural edge is incident on the Rz node, the ribozyme is active (states 00 and 11). This is
denoted by a dashed logical edge connecting the ribozyme to itself. Although the ribozyme
contains base-pairs with itself in all four states, as a convention we do not draw a self-
incident Rz structural edge. OBSs that are bound to their corresponding input strand (not
shown) are grayed out and are unable to bind to other segments. Compared to secondary
structures, segment structures have significantly fewer nodes and edges.

There are two types of segment structure edges: structural and logical. Structural edges
may form between two ER segments or between an ER segment and the ribozyme, but not
between the ribozyme and itself. A structural edge between two segments indicates that
they share at least one base pair. The fact that a segment comprises multiple nucleotides
introduces properties in segment structures that are forbidden in secondary structures (e.g.
self-pairing, multiple partners). However, as a convention, we do not allow a structural
edge to form between the ribozyme and itself. Instead, a logical edge is added between
the ribozyme and itself, if and only if, it is in its active conformation. In each state, an
input binding to the OBS is represented by labeling that OBS node as being unavailable.
No edges may be incident on an unavailable node. Figure 15 shows the correspondence
between secondary and segment structures for an XNOR gate. Equipped with a more
convenient way of visualizing ribogates, we will now delve deeper in our analysis.
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4.3 Canonical devices
We have previously seen that TruthSeqEr designs viable and diverse ribogates for an entire
set of representative functions. In this section, we seek to uncover a canonical ribogate
for each 3-input function: this ribogate is the simplest one capable of realizing a given
function. Identifying these ribogates can help us discover design principles while avoiding
excessive focus on details.

We define a ribogate’s complexity as the total number of edges over all its segment
structures. To determine the simplest ribogate, we start from the final population of run
4 (ON, OFF, novelty, viability) without subjecting it to reliability filtering. We set this
population as the initial population of a new Truth-Seq-Run that utilizes an alternative
set of objectives that reward simpler structures. The details of this run are explained in
the Appendix. Figure 16 shows the segment structure of the canonical devices of fives
functions which we will examine in detail:

1. f-1-3I. No OBS-OBS interactions are observed. However, whenever an OBS is avail-
able it will bind to the ribozyme. Therefore, the gate is only active when all inputs
are present. This is the expected behavior of an AND gate.

2. f-23-3I. Similar to f-1-3I, but if exactly one OBS is unoccupied, it will remain un-
paired instead of disrupting the ribozyme

3. f-9-3I. Also similar to f-1-3I, but in state 100, OBS2 and OBS3 will bind to each
other instead of the ribozyme.

4. f-105-3I. OBS-OBS interactions are prominent: whenever two OBSs are free, they
will bind to each other. If a single OBS is free, it will bind to the ribozyme. Therefore,
the ribozyme is active only if an odd number of input strands are present. This is the
expected behavior of a parity checker.

5. f-22-3I is the one 3-input test function that requires a negator. Its canonical device
exhibits no OBS-OBS interactions, but plenty of plenty of Negator-OBS interactions.
The negator plays two opposing roles. If a single OBS is free, the negator will bind
to it and prevent it from disrupting the ribozyme. However, if no OBSs are free, the
negator itself binds to the ribozyme and deactivates it.

These examples show the usefulness of canonical devices and segment structures for
understanding ribogate functionality. The segment structures of the remaining 3-input NPN
canonical devices (f-7-3I, f-25-3I, f-27-3I, f-129-3I, f-135-3I) are shown in the Appendix.

4.4 Mechanism graphs
Segment structures provide a more compact way of displaying structural information. How-
ever, they are still limited: they describe what structures a ribogate adopts, but not why it
adopted those structures. In this section we hypothesize that these structures are generated
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Figure 16: Segment structures of 5 canonical ribogates. There is one structure for each of
the 8 states (000 to 111). Any segment binding (solid edge) to the ribozyme (Rz) disrupts
it. Occupied OBSs (O1, O2, O3) are grayed out and are prevented from pairing with other
segments. f-1-3I, f-23-3I and f-9-3I exhibit similar binding patterns involving many OBS-
Rz interactions. Slight variations change the states in which the ribozyme is active (denoted
by the dashed Rz self-loop). f-105-3I is characterized by extensive OBS-OBS interactions
that cause the ribozyme to only be active for an odd number of inputs. f-22-3I is the only
one of these five functions that contains a negator segment (N): this allows it to be inactive
when all inputs are present. Unlike secondary structures, segment structure nodes may
have multiple partners. This is observed for the Rz segment in all functions except f-105-
3I. Refer to the main text for a detailed description of these devices.

51



through a process called additive segment competition. The key features of this model are
listed below:

1. Segments compete for the opportunity to bind to each other. Unless otherwise speci-
fied (point 7), a segment may only have one partner per state.

2. Different pairs of segments have different binding strengths.

3. In a given state, there are multiple valid candidate structures that a ribogate may
adopt. The structure that it actually adopts will be the one with the highest stability.

4. The stability of a segment structure is obtained by adding the binding strengths of all
segments pairs present in the structure.

5. An input binding to an OBS removes all segment pairs involving that OBS from con-
tention. This in general causes a change in the optimal (highest stability) structure.

6. A ribogate is represented as a weighted mechanism graph. The nodes of this graph
correspond to H-segments, its edges denote segments pairs that are permitted to form,
and the weights encode the strength of these pairs.

7. Segment competition can be relaxed by grouping certain edges into sets called bun-
dles. Edges that are part of the same bundle may concurrently bind to the same
segment in a given state. By default, any number of edges in a bundle may be si-
multaneously present in the same segment structure. However, some bundles are
considered partial, meaning that only a maximum number of edges in a bundle may
be simultaneously present in the same segment structure.

The mechanism graph for a 2-input OR gate is shown in Figure 17 a). It consists of
three edges: one structural edge between each OBS and the ribozyme, and one logical self-
incident ribozyme edge. The two OBS-Rz edges are grouped into a bundle. Figure 17 b)
illustrates how this mechanism graph generates segment structures for each input state. We
now consider these states one at a time.

1. State 11 (2 inputs present, 0 unoccupied OBSs). There is only one edge to consider:
the Rz-Rz logical edge. The stability is maximized for the structure that includes this
edge, and the ribozyme is active.

2. States 01 and 10 (1 input present, 1 unoccupied OBS). The Rz-Rz logical edge
(weight: 3) competes with the one available OBS-Rz edge (weight 2). The Rz-Rz
edge has the higher weight and wins: the ribozyme is active.

3. State 00 (0 inputs present, 2 unoccupied OBSs). Neither OBS-Rz edge is strong
enough to displace the Rz-Rz edge on its own. However, since they are part of a
bundle they can both be present. Since the sum of their weights (2 + 2 = 4) is greater
than the Rz-Rz weight, the two OBS-Rz edges win, the Rz-Rz edge does not form,
and the ribozyme is inactive.
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Figure 17: a) Mechanism graph of a 2-input ribogate implementing OR. The O1, O2, and
Rz squares denote segments OBS1, OBS2, and the ribozyme, respectively. Solid lines
denote structural edges, the dashed line denotes the logical edge, the edge weights denote
segment binding strengths, and the ellipse denotes a bundle. b) Determining the structure
with the highest stability. In each state, there are multiple candidate segment structures
that are subgraphs of the mechanism graph. The rows represent the four different input
combinations (00, 01, 10, and 11). Black lines depict mechanism graph edges that are
present in a given candidate structure. The structure’s stability is equal to the sum of these
edges. Faded out lines depict mechanism graph edges that are not present in the structure.
They have no effect on stability. In each row, the structures are sorted by descending
stability. Candidate structures in the same column have the same stability (shown on top).
Only certain candidate structures are valid. For example, edges OBS1-Rz and Rz-Rz cannot
both be present in the same structure because they are both incident on Rz, but not part of
the same bundle. However, OBS1-Rz and OBS2-Rz are part of the same bundle, allowing
OBS1 and OBS2 to simultaneously bind to Rz. As more inputs are added, the mechanism
graph has fewer candidate structures. This is because occupied OBSs (shown as faded
out) are not permitted to bind to other segments. The most stable structure in each state is
denoted by an asterisk. The logical Rz-Rz edge indicates ribozyme activity and it appears in
the segment structure for all states where at least one input is present. This is the expected
behavior of an OR gate. Refer to the main text for a more detailed description of this
device.
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4.5 Mechanism graph analysis
The mechanism graphs for the 10 3-input NPN functions are shown in Figure 18. They
were obtained through a mostly-automated method described in the Appendix. We group
these graphs into 5 families based on structure. Members of the same family have the same
segment interactions; the only difference is the strength of these interactions. Members of
different families have different segment interactions. Indeed, when comparing different
families, we notice a clear progression in terms of structural complexity. In families 1-4,
all three OBSs interact with the ribozyme. What distinguishes one family from the other
is the number of OBS-OBS interactions. Family 1 has 0 OBS-OBS interactions, family 2
has 1, family 3 has 2, and family 4 has 3. Family 5 is a special case since it consists of
the only function that requires a negator segment. It has 0 OBS-OBS interactions, but 3
OBS-Negator interactions. We now describe each family in detail:

1. Family 1. There are no OBS-OBS interactions. All three OBS-Rz edges are part
of a bundle, allowing them to concurrently bind to the ribozyme and deactivate it.
However, for this to happen in a given state, the cumulative weight of the available
OBS-Rz edges must exceed the weight of the dashed ribozyme self-edge. In the f-1-
3I graph, each OBS-Rz edge is strong enough to deactivate the ribozyme on its own,
meaning that the ribogate outputs a 1 only when all OBSs are occupied by inputs.
In the f-7-3I and f-23-3I graphs, certain OBS-Rz edges are weakened, allowing the
ribogate to remain active in additional states.

2. Family 2. There is now a potential OBS2-OBS3 interaction. Since the OBS2-OBS3
and the Rz-Rz edges do not have any segments in common, they can both be present
in the same structure. This makes it harder to deactivate the ribozyme, since the cu-
mulative weight of the OBS-Rz edges must now exceed not just the Rz-Rz weight,
but rather the sum of the Rz-Rz and OBS2-OBS3 edge weights (if OBS2 and OBS3
are both unoccupied). Weakening certain edges within this family increases the num-
ber of states in which the ribogate is active.

3. Family 3. OBS1 and OBS2 can non-competitively bind to OBS3 because the OBS1-
OBS3 and OBS2-OBS3 edges are part of the same bundle. Since the three OBS-Rz
edges are part of a partial bundle (indicated by the dashed oval), up to two of the
three OBSs can concurrently bind to the ribozyme, rendering it inactive. For this to
happen, the cumulative weight of these OBS-Rz edges must exceed that of the Rz-
Rz edge plus the OBS1-Rz and OBS2-Rz edges (if they are available). Weakening
certain edges within this family increases the number of states in which the ribogate
is active.

4. Family 4. The one member of this family contains no bundles, meaning that each seg-
ment can have at most one partner. All OBSs have the potential to bind to each other,
as well as to the ribozyme. The weight of each OBS-Rz edge exceeds that of the Rz-
Rz edge, meaning that any single OBS can deactivate the ribozyme. However, the
weight of each OBS-OBS edge exceeds that of every OBS-Rz edge. Consequently,
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Figure 18: Mechanisms graphs for each of the 10 3-input NPN functions. They are grouped
into 5 families: members have the same edges but different weights (binding strengths).
Family 1 implements the simplest functions (linearly separable) and also has the simplest
structure. Families 2-5 are more sophisticated, allowing them to implement linearly insep-
arable functions. A set of segment structures can be obtained for each mechanism graph
using the procedure illustrated in Figure 17. Detailed explanations for each family are pro-
vided in the text. Solid ovals represent bundles with edges that can all be concurrently
present in a segment structure. The dashed ovals in family 3 represent partial bundles,
where only a maximum of 2 OBS-Rz edges can be simultaneously present.
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two unoccupied OBSs will prefer to bind to each instead of the ribozyme. Therefore,
the ribozyme is active if an even number (0 or 2) OBSs are unoccupied. This is the
expected behavior of a parity check circuit.

5. Family 5. The one member of this family contains a negator segment that can interact
with any of the OBSs as well as the ribozyme itself. In addition, OBS2 or OBS3 can
interact with the ribozyme. Since the OBS2-Rz, OBS3-Rz, and N-Rz edge weights
each exceed the Rz-Rz weight, they can deactivate the ribozyme on their own. How-
ever, whether they do so also depends on any available OBS-N edges.

We have seen that we can change the function implemented by a ribogate by chang-
ing its weights. This property is shared by another bio-inspired component: the artificial
neuron. Loosely inspired by biological neurons, an artificial neuron computes a weighted
sum of its inputs and passes this value through a non-linear activation function. Figure 19
a) shows a mechanism graph and an artificial neuron implementing a 2-input AND gate.
In Figure 19 b), the mechanism graph and neuron weights are changed so that they both
implement an OR gate instead. We have also seen that the addition of OBS-OBS and
OBS-Negator interactions allow the ribozyme to implement new functions, specifically the
linearly inseparable functions in families 2-5. However, adding more interactions within
a single neuron is not possible: to compute a linearly inseparable function, a neural net-
work of multiple neurons is required. This principle is illustrated in Figure 19 c). We now
perform a detailed analysis and discussion of how a single ribogate is able to implement
linearly inseparable functions.

4.6 Linear inseparability and OBS-OBS interactions
In this analysis, we consider base structures that are in competition with each other. In
each state, the candidate segment structures are substructures of these base structures. The
specific structure of a candidate (and by extension its stability) depends on which edges are
available, which in turn depends on which OBSs are unoccupied by inputs. This allows us
to express the stability of each candidate in terms of the input state.

In the case of family 1, two base structures compete with each other: 1) the three OBS-
Rz edges and 2) the Rz-Rz edge. These are illustrated in Figure 20 b). The stabilities of
these two base structures are expressed by Equations 13 and 14, respectively:

i′1wO1R + i′2wO2R + i′3wO3R (10)
wRR (11)

The i′n term is equal to 0 when the nth input is present and 1 when it is absent. Therefore,
the i′nwOnR term indicates than an OBS-Rz edge only contributes to the stability when its
corresponding input is absent. The ribogate is active if the candidate derived from the
second base structure is more stable than the candidate derived from the first one. This
occurs if the following inequality holds true:
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Figure 19: Comparison between ribogates and artificial neurons. a) A ribogate mechanism
graph (left) and an artificial neuron (center) both implementing a linearly separable AND
function (right). Each binary input to the neuron is multiplied by its corresponding edge
weight. The constant 1 term allows for a bias to be applied to the neuron, regardless of
the input state. The outputs of the multiplication operations are summed together and
then passed through an activation function which returns 0 if its input is negative, and 1
otherwise. This is indicated by the edges flowing into the shaded circle. b) By changing
the weights of the mechanism graph (left) and the neuron (center), a new linearly separable
function, OR, is obtained (right). c) The addition of an OBS1-OBS2 edge allows a single
ribogate (left) to implement a linearly inseparable function (XNOR, right). However, a
single neuron is incapable of representing this function. Instead, a neural network of two
neurons is required (center).
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Figure 20: Stability equation for family 1 and family 2 ribogates. a) Mechanism graph of a
family 1 ribogate. There are three OBS-Rz edges with weights wOnR. There is also an Rz-
Rz edge with weight wRR. c) Mechanism graph of a family 2 ribogate. It is the same as the
family 1 graph, but it contains an addition OBS2-OBS3 segment with weight wOO. b, d)
In each state, the ribogate adopts a structure that is a subset of one of these base structures.
The stability (S) of that structure is represented by the equation at the bottom of the box.
Its value depends on which OBSs are unoccupied by inputs (in).
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i′1wO1R + i′2wO2R + i′3wO3R < wRR (12)

In the case of family 2, three base structures now compete with each other: 1) the
three OBS-Rz edges, 2) the Rz-Rz edge and the OBS2-OBS3 edge, and 3) the OBS1-Rz
edge and the OBS2-OBS3 edge. These are illustrated in Figure 20 d). Their stabilities are
expressed by Equations 13, 14, and 15, respectively:

i′1wO1R + i′2wO2R + i′3wO3R (13)
wRR + i′2i

′
3wOO (14)

i′1wO1R + i′2i
′
3wOO (15)

The non-linear i′2i
′
3wOO term indicates that the OBS2-OBS3 edge only contributes to

the stability when inputs 2 and 3 are both absent. The ribogate is active if the candidate
derived from the second base structure is more stable than both the one derived from the
first and third ones. This occurs if the following two inequalities holds true:

i′1wO1R + i′2wO2R + i′3wO3R < wRR + i′2i
′
3wOO

i′1wO1R < wRR

(16)

The above analysis shows that ribogates governed by the additive segment model intrin-
sically implement linear (Inequality 12) and non-linear (Inequalities 16) decision bound-
aries as they change shape in response to various inputs. Crucially, the factor that distin-
guishes these two types of decision boundaries is not the number of segments, but rather the
complexity of the interactions between them. This enables a single ribogate to implement
functions that would require multiple standard logic gates or artificial neurons.

4.7 Additive segment competition vs secondary structure
prediction

In this work, we have used RNA secondary structure prediction to design ribogates and
additive segment competition (ASC) to analyze them. We now take a moment to compare
the two processes. ASC is an abstract version of RNA secondary structure folding and the
two processes have many similarities. Both treat structure prediction as an optimization
problem: folding uses dynamic programming [67] to find the secondary structure with the
lowest free energy whereas ASC uses exhaustive search to find the segment structure with
the highest stability. Both impose limits on the number of partners that their nodes may
have. Finally, both apply constraints to certain nodes (OBS nucleotides in folding and
OBS segments in ACS) to prevent them partnering with other nodes, thereby changing the
optimal structure.

Despite these many similarities, there are some key differences. Segment structures
generated by ACS may have nodes with self-loops and multiple partners. They are also
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much more concise: they have a maximum of 5 nodes whereas their corresponding sec-
ondary structures have more than 100. Critically, ACS models a structure’s stability as a
sum of independent edge weights. This allows us to easily reason about the effect of adding
or removing certain edges. This is not the case in folding: the free energy of an RNA sec-
ondary structure is not simply the sum of the independent contributions of its base-pairs.
Rather, it is the result of many non-additive effects such as base-pair stacking and loop
entropy [103].

4.8 Conclusion
In this chapter, we proposed a simple, graph-based model of ribogate operation called ad-
ditive segment competition (ACS). For each representative 3-input function, we extracted
a simple graph illustrating the mechanism of action of a canonical ribogate implementing
that function. By examining these mechanism graphs, we were able to arrange ribogate
gates into families and discover shared design principles and identify the structural motifs
allowing certain ribogates to implement sophisticated linearly inseparable functions. De-
spite its simplicity, ACS appears to be a plausible model of ribogate behavior, being able to
reproduce the observed segment structures of each canonical ribogate with virtually no er-
ror. Because of its simplicity, we have seen that ribogates can be grouped into families, and
that OBS-OBS or OBS-Negator interactions are required for linear inseparability. We have
also seen that like artificial neurons, ribogates can implement different functions by chang-
ing their weights, but that unlike neurons, they can solve entirely new classes of problems
by changing their interactions. These insights suggest that ACS is not only a useful model
of ribogate behavior, but a potential new form of unconventional computing that requires
further investigation.

60



Chapter 5

TriCleaver

5.1 Introduction
Certain genes contain a region of DNA in which the same triplet of bases is repeated mul-
tiple times, one after another; such regions are called trinucleotide repeats. A key feature
of these trinucleotide repeats is their ability to adopt non-canonical DNA structures such
as DNA stem loops [104]. These structures have the potential to interfere with cellular
processes such as DNA replication, DNA repair, and transcription in a way that causes
the repeats to expand (i.e. increase in number) [63]. This expansion can occur in the
germ line during gametogenesis, particularly spermatogenesis, resulting in offspring with a
larger number of repeats than their parents [104]. The expansion can also occur in somatic
cells, even post-mitotic (i.e. non-dividing) ones such as neurons [104]. Furthermore, as the
number of repeats increases, they become less stable, meaning that they are more likely
to expand in the germ line or somatic cells [68]. Below a certain threshold, trinucleotide
repeats do not impede normal function. However, above that threshold, debilitating and
life-threatening trinucleotide repeat expansion disorders (TREDs) can occur [68]. TREDs
can cause disease via the expanded mRNA transcript itself, and/or the protein it is trans-
lated into, with the precise mechanism depending on which gene is expanded [63]. The
majority of TREDs are autosomal dominant [63], meaning that they are inherited from one
of the non-sex chromosomes, and that one copy of the gene, called the mutant, is sufficient
for disease to manifest. The other copy of the gene, called the wild-type (WT, is unaf-
fected and may play a key role in cellular function. A promising class of treatments for
TREDs are gene therapies which aim to downregulate expression of the mutant allele [1].
However, the similarity between the mutant and wild-type (generally only differing in the
number of repeats) poses a major challenge: treatments that downregulate the mutant can
also inadvertently downregulate the WT.

In light of this, an ideal gene therapy will be allele selective, meaning that only the
mutant allele is downregulated, not the wild-type. Several studies have reported allele
selectivity using nucleic acid based approaches [66] such as antisense oligonucleotides
(ASOs) [77] (see Section 2.3.4), RNA interference (RNAi), via the small interfering RNA
(siRNA) (see Section 2.3.6) [71, 40] or microRNA (miRNA) [109] pathways (see Section

61



2.3.5), RNA-targeting CRISPR [73], and ribozymes [2, 80]. In order for selective silencing
to occur, the target gene must exhibit some features that allow the therapeutic RNA or
DNA strand to distinguish the mutant from the wild-type. The studies just cited exploit one
(or more) of four possible features: single nucleotide polymorphisms (SNPs), synonymous
codons, secondary structure differences, and repeat length differences.

Like all species, humans exhibit a certain amount of genetic variation. Most of this
variation [4] is due to single nucleotides being mutated at certain locations in the genome.
If this single nucleotide mutation is present in at least 1% of the population, it is called
a single nucleotide polymorphism (SNP). Some SNPs are heterozygous, meaning that the
maternal and paternal alleles have different nucleotides at the SNP’s genomic location.
Heterozygous SNPs that occur within genes associated with TREDs provide a marker for
the mutant allele to selectively targeted [12, 77, 71]. A main drawback of this approach,
however, is that different populations afflicted with a given TRED will have different SNPs,
meaning that multiple therapies will have to be designed, each targeting a different SNP
[44].

Another way to achieve allele selectivity is to take advantage of the degeneracy of
the genetic code. As explained in Section 2.3.1, multiple codons map to the same amino
acid. In [2], ribozymes were computationally designed to target the coding region of a gene
associated with a TRED called OPMD. We note that on its own, this treatment would not be
selective since the coding region between the wild-type and mutant was identical. However,
the wild-type mRNA transcript was replaced with a synthetic one that coded for the same
amino acid sequence as the original gene, but that used different codons [2]. This meant
that the coding sequence of the synthetic wild-type mRNA was different than the one of
the endogenous mutant, thereby protecting the synthetic mRNA from ribozyme cleavage.
While effective, we note that this approach complicates therapeutic delivery, because not
only does a smaller ribozyme strand have to be delivered, but so does a large mRNA one.

Another approach is to design small nucleic acid strands such as ASOs [77], siRNAs,
[71, 40], microRNA [109], and CRISPR guide RNAs [73] that target the stretch of trin-
ucleotide repeats. At a first glance, it may appear that this would not result in selective
silencing, since both the wild-type and repeat contain repeats the same type of repeats.
This is indeed true in some cases, where both the wild-type and mutant were downregu-
lated [71, 40]. However, in other cases, a selective effect was observed [40, 109, 73]. The
mechanisms behind this selectivity are not known with complete certainty, but the mutant
mRNA strand containing more binding sites for the therapeutic DNA/RNA strands and the
mutant repeats region adopting a secondary structure distinct from that of the wild-type
repeats region are two plausible explanations [40, 109, 73]. A limitation of this approach
is that the selectivity decreases as the number of mutant repeats approaches the number
of wild-type repeats [44]. Another concern is that many other functional genes in the cell
contain a certain number of repeats, potentially making them off-targets [44]. While such
off-target affects have not been reported so far in cells and animal models [109, 73], it
doesn’t guarantee that such affects won’t occur in human trials [44].

Finally, in [80], it was shown that an allosteric ribozyme could differentiate between
two strands of different lengths, cleaving only the longer one. The starting point of this
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work was a computationally designed AND gate that cleaved itself only when both of its
OBSs were occupied by oligonucleotides. This cis-acting ribozyme was converted into
trans-acting form by removing the stem 3 hairpin. This resulted in two strands: a trans-
acting ribozyme and a substrate that binds to the ribozyme arms. The substrate was then
extended by adding a variable length sequence of GCG repeats as well as effector regions
complementary to the ribozyme’s OBSs. Two versions of the substrate were synthesized:
one contained 7 GCG repeats (typical of a wild-type PABPN1 transcript) while the other
contained 11 (typical of a mutant PABPN1 transcript). It was shown that only the 11 repeat
transcript was long enough to bind the OBSs and the ribozyme arms at the same time and
activate the ribozyme. Consequently, the 11 repeat strand was cleaved but the 7 repeat
strand was not. This selective cleavage only occurred in the presence of an additional
antisense oligonucleotide which was required to unravel a hairpin that the GCG repeats
would fold into. While this work is an interesting proof of concept, we believe its real-
world applicability is limited. The target strands did not correspond to an actual TRED, but
were instead designed to be cleaved by a modified version of a pre-existing ribozyme.

Despite exciting progress in the field of TRED therapeutics, it is clear that abundant
challenges remain. To help address some of these, we designed TriCleaver, an EA that
designs selective ribozymes (sRzs) that cleave the mRNA transcript of the mutant allele but
not the mRNA transcript of the WT allele. In the next section, we will explain how sRzs
function. Then, in Section 5.3, we will describe the TriCleaver evolutionary algorithm.

5.2 Selective ribozyme model
For each transcript we consider three regions: the repeats segment, the region upstream
of the repeats segment (which we simply denote as the upstream segment), and the region
downstream of the repeats segment (which we simply denote as the downstream segment).
We consider the general case in which no SNPs are available to target and the wt and
mutant transcripts have identical upstream and downstream segments. The only difference
between them is that the repeats segment of the mutant is longer than the repeats segment of
the wild-type. The sRz consists of an extension region attached to a trans-acting minimal
hammerhead ribozyme. The arms of the sRz are designed to bind to a region of the mRNA
transcript called the ribozyme binding site (RzBS). The RzBS is located in the downstream
segment; it is therefore present on both the wild-type and mutant transcript. The extension
region of the sRz consists of a sensor flanked by a linker segment on each side. The sensor
is complementary to a certain number of repeats. Specifically, it is longer than the repeats
segment of the wild-type transcript, and it is shorter than (or the same length as) the repeats
segment of the mutant transcript. This means that the entire sensor will be bound to the
mutant repeats segment, but only part of the sensor will be bound to the wild-type repeats
segment. This discrepancy causes the sRz to adopt different structures depending on the
number of repeats of the transcript. When it is bound to the wild-type, it adopts an inactive
conformation, but when it is bound to the mutant, it adopts the active conformation. The
sRz model is illustrated in Figure 21.
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Figure 21: Selective ribozyme (sRz) model. a-b). A sRz is a trans-acting ribozyme that
binds to a ribozyme binding site (RzBS) that is present on the both the WT and mutant
transcripts associated with a TRED. In addition to the usual ribozyme segments, a sRz also
contains a sensor that is complementary to the repeats on both transcripts. a) The WT
repeats are shorter than the sensor and will only partial bind to it. The unbound portion
of the sensor will interfere with ribozyme folding, thus preventing WT cleavage. b) The
mutant repeats completely bind to the sensor, making it unable to deactivate the ribozyme.
The mutant is thus cleaved. c) Secondary structure of an inactive sRz bound to the WT. d))
Secondary structure of an active sRz bound to the mutant.
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5.3 Computational methodology
TriCleaver is a multi-objective EA that designs a population of selective ribozymes (sRzs)
over several generations. The first generation proceeds as follows. First, the representa-
tion of candidate sRzs is configured based on the WT and mutant transcripts provided by
the user. A population of random individuals is initialized and these individuals are each
assigned a fitness measuring their performance on a set of objectives. Certain individu-
als are then selected as parents, who produce offspring through mutation. These offspring
also have their fitness evaluated and a set of survivors is selected from the combined set
of parents and offspring. This concludes the first generation. Subsequent generations cy-
cle through parent selection, reproduction, fitness evaluation, and survivor selection. The
survivors at the end of one generation become the population at the beginning of the next
generation. This cycle terminates after a fixed number of generations. Finally, the results
are reported to the user.

5.3.1 Configuration
The configuration stage of TriCleaver is similar to that of TruthSeqEr, but exhibits a few
important differences since sRzs are trans-acting ribozymes, instead of cis-acting as in the
case of ribogates. Cis-acting ribozymes contain all segments required for activity on the
same strand (two halves of each stem and the three catalytic core segments). However, in
the case of trans-acting ribozymes, they are split between the strands: the ribozyme (which
contains S1A, S2A, S2B, S3, C1, and C2) and the substrate (which contains S1B, S3B,
and C3). In addition, the substrate is not co-evolved with the sRz, but is instead provided
beforehand by the user when they specify the target TRED. Therefore, the sequences of
S1B, S3B, and C3 depend on the RzBS, the region of the substrate where the sRz ribozyme
arms bind. This in turn constrains S1A and S3A, since they must be complementary to
S1B and S3B, respectively. In TriCleaver, the location of the RzBS is part of each indi-
vidual’s representation and is evolved during the EA. The RzBS location is subject to two
constraints. First, it must be located on a region downstream of the repeats stretch. Second,
it must contain a specific sequence (NUH) at specific nucleotides in order to respect the
sequence constraints of an active hammerhead ribozyme. Another important difference is
that unlike ribogates, sRzs do not sense small oligonucleotide inputs. Instead, they have a
single sensor segment that binds to both the wild-type and mutant repeats. As explained in
Section 5.2, the length of the sensor is chosen so that it is longer than the length of the WT
repeats, but shorter (or equal) to the length of the mutant repeats. It is important to note
that in TREDs with many WT repeats, there will be extensive base-pairing between the
sensor and the repeats. This could potentially trigger undesirable responses such as RNAi
or the PKR pathway [25]. To mitigate this, the sensor is not perfectly complementary to the
repeats: it contains periodic mismatches. These mismatches should also increase the flexi-
bility of the sensor-repeats duplex, maximizing the probability that the sRz folds correctly
when bound to the substrate. Flexibility is further increased by adding linker segments on
each side of the sensor. Configuration begins by generating a set of valid RzBSs from the
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downstream segment of the user-provided TRED transcripts. Next, the length of the sensor
segment is determined, Then, a nucleotide dependency graph (NDG) is generated from a
segment dependency graph (SDG). Finally, a mutation weight and a set of valid nucleotide
assignments are computed for each component of the NDG.

Segment dependency graph

The nodes of the segment dependency graph correspond to segments of the sRz and the
target substrate. In general, edges represent two segments that are reverse complementary.
In TriCleaver, mismatches are allowed between the sensor and repeats segment. This is
represented by a Boolean mismatch vector of the same length as the sensor. At 1 at a
given index indicates that a mismatch is allowed between the corresponding nucleotides;
a 0 indicates no mismatch is allowed. Each node in the SDG is labeled with a string that
constrains the sequence of nucleotides that the segment can assume. The RzBS segments
contain multiple possible constraint strings; an additional parameter called RzBS location
determines which one is used. The SDG of an sRz contains the following segments:

1. 9 sRz segments

(a) 6 ribozyme segments

i. 1 stem 1 segment (S1A)
ii. 2 stem 2 segments (S2A and S2B)

iii. 1 stem 3 segment (S3A)
iv. 2 catalytic core segments (C1 and C2)

(b) 3 extension region segments

i. 1 sensor segment
ii. 2 linker segments

2. 4 substrate segments

(a) 1 repeats segment

(b) 3 RzBS segments

i. 1 stem 1 segment (S1B)
ii. 1 stem 3 segment (S3B)

iii. 1 catalytic core segment (C3)

Nucleotide dependency graph

The SDG has an equivalent nucleotide dependency graph NDG which encodes constraints
between individual nucleotides instead of segments. An NDG is generated from the SDG
by:

• Splitting each unpaired segment of length L into L unpaired nodes (representing
nucleotides).
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• Splitting each pair of segments of length L into L pairs of nodes. Since paired seg-
ments must be reverse complementary, the ith nucleotide of the first segment is paired
with the L− 1− ith nucleotide of the second segment.

• Splitting the constraint strings into individual characters and applying them to the
appropriate nodes of the NDG.

• Splitting the sensor-repeats mismatch vector into individual bits and applying each
bit to the corresponding pair of nucleotides in the NDG.

Mutation weights and valid nucleotide assignments

Each component of the NDG has a set of valid nucleotide assignments. An isolated nu-
cleotide can assume any value permitted by its constraint character. In general, a pair of
nucleotides can assume any pair of complementary values that respect the constraint char-
acters of both nucleotides. However, if a mismatch is specified, this pair of nucleotides
must assume a pair of non-complementary values that respect the constraint characters of
both nucleotides Components with a greater number of valid nucleotide assignments are
more likely to be selected for mutation. Each connected component C has an associated
mutation weight equal to:

# of valid nucleotide assignments of C - 1
# of nucleotides in C

(17)

5.3.2 Initialization
During initialization, a RzBS location is randomly selected. Next, each component of
the NDG is selected and its corresponding nucleotides are assigned a random set of valid
nucleotide values.

5.3.3 Fitness evaluation
During fitness evaluation, the structure that each candidate adopts in the wild type and
mutant states is predicted using folding software. These structures are then assessed for
performance (i.e. how inactive is the ribozyme in the WT state and how active is it in the
mutant state) and novelty.

Folding

In principle, two structures must be predicted in order to evaluate the fitness of an individ-
ual: the sRz bound to the WT and the sRz bound to the mutant, However, we do not directly
fold the sRz with the entire WT or mutant substrate. This is for two reasons. First, the sub-
strate can be very long, resulting in a prohibitively long folding time since pseudoknot-free
folding has a cubic time complexity. Second, when the sRz is bound to the RzBS off the
substrate and the sensor is bound to the repeats segment of the substrate, a pseudoknot is
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formed. As explained in Section 3.3.3, pseudoknot prediction possess significant difficul-
ties. Therefore, we only fold the sRz with part of the substrate, specifically the RzBS, and
possibly short segments flanking it on either side. The effect of the repeats binding to the
sensor is simulated using a folding constraint. When the sRz is bound to the mutant, we
force all nucleotides to be unpaired, with the exception of nucleotides that are specified to
be mismatches. We denote this state as a target ON state, since we want the sRz to cleave
the mutant. When the sRz is bound to the wild type, only a subset of the sensor nucleotides
are forced to be unpaired. This is because the sensor is shorter than the mutant repeats,
but longer than the wild-type repeats. Note that there are many potential subsets of sen-
sor nucleotides that the WT repeats can bind to. We therefore consider multiple possible
binding patterns and treat each one as a separate folding state. We denote each of these
states as a target OFF state since we don’t want the sRz to cleave the wild-type. Finally, we
also consider the state where the sRz has bound to the RzBS but the repeats haven’t had a
chance to bind to the sensor yet. In this case, no folding constraint is specified. We denote
this state as a target OFF state.

Phenotype generation

An individual’s phenotype is a vector that measures the amount of base-pairing between
certain segments. The BPPM of each state is first coarse-grained into a segment-pair mag-
nitude matrix (SPMM). The SPMMs are then processed, merged and flattened into a single
vector (called the phenotype). Note that TriCleaver uses lower level L-segments, in con-
trast to the higher level H-segments used by TruthSeqEr. This results in a more fine-grained
phenotype.

SPMMs. An entry of the SPMM encodes the amount of base-pairing between two seg-
ments. The amount of base-pairing between two segments is equal to the sum of the prob-
abilities of all possible base-pairs that can form between these two segments.

Phenotype. The SPMMs of target ON states (i.e. states for which the output value of
target Boolean function is 1) are then selected for further processing. Specifically, the en-
tries encoding the base-pairing between each extension region segments and the ribozyme
segments are removed. The SPMMs of target OFF states are not modified. The processed
SPMMs are then flattened and merged into a phenotype vector.

Novelty assessment

Next, the novelty of an individual is assessed and a novelty score is calculated. Novelty as-
sessment begins by calculating the phenotypic distance between each pair of individuals in
the population. The phenotypic distance d between two individuals x and y with respective
phenotypes xp and yp is defined as:

d(X, Y ) =
n∑

i=1

|xp[i]− yp[i]| (18)
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where n is the number of entries in the phenotype vector. Each individual x is then assigned
a novelty score defined as

fnov =
∑
y∈K

d(x, y) (19)

where K is the set of x’s k-nearest neighbors.

Performance assessment

Next, the performance of an individual is assessed and viability, ON, and OFF scores are
calculated. An individual is considered high performing if its ribozyme is active (inactive)
in each target ON (OFF) state.

Motif scores. TriCleaver then calculates four motif scores from each BPPM. Three stem
scores measure the average probability of a stem base-pair being present. A stem score of
1 indicates each base-pair in the stem has a 100% probability of being present. A single
core score measures the average probability of a core nucleotide being unpaired. This score
is 1 if every nucleotide has a 100% probability of being unpaired. The motif scores of a
device with k states are stored in a k by 4 matrix. Each row corresponds to a state, and each
column to a motif. Column 0 corresponds to the core motif and columns 1-3 to the stem
motifs.

ON and OFF matrices. The motif scores matrix is split into an n by 4 ON matrix, and a
(k− n) by 4 OFF matrix, where n is the number of target ON states. Note that 0 < n < k.
The ON (OFF) matrix stores the motif scores for target ON (OFF) states .

ON and OFF vectors. From the ON (OFF) matrix, TriCleaver calculates an ON (OFF)
vector vON (vOFF ) that measures how close the ribozyme is to being active (inactive) for
each target ON (OFF) state. The ON and OFF vectors are calculated slightly differently.
In this work, we assume that the ribozyme is fully active if all four of its motifs form, and
we assume that it is fully inactive if one of its stems is completely disrupted (i.e. none of
the nucleotides in the stem are properly paired). The ith entry of the ON vector is equal to
the average of the motif scores of the ith row of the ON matrix. The ith entry of the OFF
vector is equal to 1 minus the minimum stem score of the ith row of the OFF matrix. ON
and OFF vector calculation is illustrated in Figure 9 d).

Scores. From these two vectors, TriCleaver calculates an ON score fON and an OFF
score fOFF as follows:

fON = ama vON (20)

fOFF = ama vOFF (21)

where we define ama as:
ama x = avg [avg x,min x] (22)
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We also calculate the viability score as:

f via =
min vON + min vOFF

2
(23)

Viability nullification

Finally, the ON, OFF, and novelty scores are nullified if the viability score of the indi-
vidual drops below a certain threshold. The viability threshold is initially set low to give
TriCleaver the opportunity for exploration. It is subsequently raised for every generation,
following one of two possible schedules. The first schedule raises the threshold at a con-
stant rate ∆, interpolating between an initial value v0 and a final value vf . Formally,

∆ =
vf − v0

N
(24)

where N is the total number of generations in the TriCleaver. The second schedule raises
the threshold at a rate ∆1 during the first Nb generations, interpolating between an initial
value v0 and a breakpoint value vb, and at a rate ∆2 during the remaining generations,
interpolating between the breakpoint value and final value vf . Formally,

∆ =

{
∆1 =

vb−v0
Nb

i < Nb

∆2 =
vf−vb
N−Nb

i ≥ Nb

(25)

where i is the current generation. An individual is considered viable at the end of a Tri-
CleaverEr run if its viability score is greater than or equal to 0.90.

5.3.4 Parent selection and reproduction with mutation
First, each individual is selected as a parent. Next, each parent is copied and mutated R
times, where R is the mutation rate. TriCleaver uses two types of mutation operators. The
first, used 85% of the time, consists of selecting a component of the NDG and assigning
its corresponding nucleotides a new set of valid values. The probability of a component
being selected for mutation is proportional to its mutation weight. The second mutation
operator, used 15% of the time, randomly changes the individual’s RzBS location. Care
must be taken when mutating the RzBS location, since the ribozymes arms (S1A and S3A)
will in general no longer be complementary to the new RzBS. In this case, any conflicting
S1A and S3A nucleotides are randomly assigned different nucleotides compatible with the
new RzBS.

5.3.5 Survivor selection and termination
The population and offspring are merged into a set of 2N individuals and the fittest N
individuals are selected as survivors. NSGA-ii is used to sort the individuals into a set of
non-dominated fronts and TriCleaver selects the N individuals dominated by the smallest
number of other individuals as survivors. TriCleaver terminates after 200 generations.
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Disease OPMD HD
Target transcript PABPN1 HTT
Repeat type GGC CAG
Number of WT repeats 7 19
Number of generations 10 109
Population size 300 300
Mutation rate 6 6
Objective scores ON, OFF,

Novelty
ON, OFF,
Novelty

Viability nullification? Yes Yes
Viability threshold (min, max) (0, 0.90) (0, 0.90)
Breakpoint (generation, value) (49, 0.20) (49, 0.20)
Novelty neighborhood size 30 30

Table 5: TriCleaver parameters.

5.3.6 Experimental setup
We executed two runs of TriCleaver. The first run targeted PABPN1 transcripts associ-
ated OPMD, while the second one targeted HTT transcripts associated with Huntington’s
disease (HD). For each disease, we were provided with WT and mutant transcripts by Dr.
Aida Abu-Baker of the Montreal Neurological Institute (MNI). For OPMD, the provided
PAPBN1 wild-type and mutant transcripts had 6 and 9 GCG repeats, respectively. Note
that the first repeat is proceeded by a G and the last one is followed by a GC. Therefore,
we decided to target 7 and 10, GGC repeats, respectively, since we are not bound by the
ribosome reading frame. For HD, the provided HTT wild-type and mutant transcripts had
19 and 109 CAG repeats, respectively. Each run used viability nullification and the same
set of objectives scores: ON, OFF, and novelty (with a neighborhood size of 30). In both
cases, 200 generations of 300 individuals were used. The EA parameters are summarized
in Table 5. Folding was performed using the RNAFold and RNACofold programs from the
ViennaRNA package [61]. The partition function option was enabled. Also, the MaxLoop
parameter in the source code was changed from 30 to 300 before recompiling the package.
Experiments were performed on a system running Windows 10 Pro with an AMD Ryzen
Threadripper 3970X 32-Core Processor and 64 GB of RAM. Each run used 12 processes
in parallel.

5.3.7 Biological methods
21 sRzs were selected from the final population of the OPMD run for further validation.
They were constructed and tested in human embryonic kidney (HEK) cells by Dr. Aida
Abu-Baker and Ms. Pegah Hadavi of the Montreal Neurological Institute. The experi-
mental procedure they followed is described in detail [35]; here we provide an adapted,
self-contained description of this procedure.
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sRz plasmid construction

1. Each sRz selected for validation was packaged into a cassette containing a partial
tRNA-val sequence, a complete constitutive transport element (CTE) sequence, and
restriction enzyme cut sites [35].

• The constitutive transport element (CTE) serves as a binding site for proteins
called helicases, which unwind the target substrate, facilitating the binding of
the selective ribozyme to the target cut region [74].

• The tRNA-val allows the selective ribozyme to be efficiently exported from the
nucleus (where the selective ribozyme is transcribed) into the cytoplasm (where
the target substrate is located) [74]

• The restriction enzyme cut sites are recognized by restriction enzymes which
cut double-stranded DNA (dsDNA) [4]

2. dsDNA for each cassette was ordered from IDT [35]

3. Restriction nucleases (KpnI-HF and BstBI) were used to cut out a ribozyme from
an existing pUC-KE-tRNA-CTE plasmid [35] provided by Dr. Barbara Nawrot [74].
The KpnI-HF and BstBI nucleases were also used to create staggered ends on the
cassette dsDNA [35]

4. The cassette dsDNA was then inserted into the linearized plasmid "using the Quick
Ligase kit (NEB) and the corresponding protocol" [35]

sRz cloning

1. The plasmid DNA was introduced into bacterial cells in a process called transforma-
tion. The transformed cells consisted of a strain called XL 10-Gold Ultracompetent
from Agilent Technologies, which had an increased ability to uptake DNA [35]

2. The transformed cells were then incubated on an agar plate until visible colonies
appeared [35]

3. Bacteria from these colonies were then transferred to a liquid broth which promoted
replication [35]

4. Next, a miniprep procedure was performed, which involved lysing the cultured bac-
teria and extracting and purifying the plasmid DNA [35]. Specifically, the "QIAprep
Spin Miniprep Kit (QIAGEN) [was used with] the [manufacturer’s] protocol but
eluted in lower volumes of 20 µL, instead of the recommended volume of 50 µL"
[35]

5. Sanger sequencing was then performed on the plasmids to verify that the selective
ribozyme sequences were correct [35]
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PABPN1 gene cloning

1. In addition to the selective ribozyme plasmid, three types of PABPN1 plasmids were
constructed and cloned [35]. The first contained the wild-type PABPN1 gene car-
rying 10 alanine repeats, the second contained a mutant PABPN1 gene carrying 13
alanine repeats, and the third contained a longer mutant PABPN1 gene carrying 17
repeats [35]. Note that the sRzs were designed to target the 13-alanine mutant and
no selectivity was observed when testing them on the 17-alanine variant [35]. Con-
sequently, the 17-alanine mutant will not be further discussed in this thesis.

2. "The plasmids, ... provided by [the] Rouleau lab [2, 3] ... were prepared by cloning
cDNAs of PABPN1 wild type and mutant gene into [the] pEGFP-C2 vector (Clon-
tech, Palo Alto, CA, USA) as described in [69]. This resulted in each plasmid coding
a PABPN1-GFP fusion from which the fluorescent signal [could] be used to confirm
transfection." [35]

Transfection

1. Different combinations of the sRz and wild-type / mutant PABPN1 plasmids were
transfected into human embryonic kidney cells (HEK293E). See table 2 in [35] for
more details.

2. The HEK cells "were cultured in DMEM (Invitrogen) containing 10% fetal bovine
serum in cell culture incubator at 37 C" [35]

3. "The cells were seeded in 12-well plates and were transfected at 70% to 80% con-
fluency using the jetPRIME transfection reagent (Polyplus) and the corresponding
supplier’s protocol" [35]

RNA extraction

1. 300 µL of TRIZOL was added to the cell samples, causing the cells to break (lyse)
and their contents to become soluble [35]

2. Next, 70 µL of chloroform was added to the TRIZOL solution [35]

3. "The mixture was then vigorously vortexed for 15 seconds and incubated at room
temperature for 2 to 3 minutes before being centrifuged for 15 minutes at 12000
RPM" [35]

4. These latter two steps caused three layers (phases) to form, each containing specific
biomolecules. The organic phase contained proteins, the interphase contained DNA,
and the aqueous phase contained the RNA that we wished to extract [89]

5. The aqueous phase "was then collected and 150 µL of isopropyl alcohol was added
to precipate the RNA" [35]

73



6. After being "incubated at room temperature for 10 minutes ... the samples [were]
then centrifuged for 10 minutes at 12000 RPM" [35]

7. This resulted in a dense RNA pellet underneath a liquid supernatant layer. The su-
pernatant was then discarded [35]

8. The following two steps were then performed twice

(a) The pellet was washed with 300 µL of 75% ethanol to remove impurities [35]

(b) Following addition of the ethanol, "the samples were incubated in -80 degrees
Celsius overnight, ... centrifuged at 12000 rpm for 5 minutes, [and the] ethanol
was discarded" [35]

9. To ensure complete ethanol evaporation, "the caps were left open for about 10 min-
utes" [35]

10. "The RNA pellet was then re-suspended in 18 µL of nuclease-free water and the
samples were stored in -80 degrees Celsius" [35]

mRNA PAPBN1 expression quantified via RT-PCR

1. Once purified, the RNA was used a template to synthesize complementary DNA
(cDNA) [35]

2. This cDNA was then amplified in a PCR reaction that included two types of TaqMan
probes [35]

• The first was an RNA polymerase II probe that served as a baseline measure of
fluorescence [35]

• The second was a PABPN1 probe used to quantify the relative expression of
PABPN1 mRNA by normalizing it with respect to the value of RNA polymerase
II probe [35]

3. PCR was performed under the following conditions: "50°C for 2 min, 95°C for 2
min, and then 40 cycles of 95°C for 1s and 60°C for 20s" [35]

Protein extraction

1. Scraping and centrifugation (6000 RPM for 5 minutes) were used to collect the cells
into a pellet, which was isolated by discarding the supernatant [35]

2. The pellet was then washed by "adding 300 µL of PBS and centrifuging at 6000 RPM
for 5 minutes" [35]
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3. The cells were lysed via the addition of 60 µL of buffer, followed by sonication [35].
The buffer consisted of 8M urea, 2% β-mercaptoethanol, and 0.5% SDS [35] which
denatured and made the proteins more soluble by disrupting hydrogen bonds, disrupt-
ing hydrophobic interactions, and reducing disulfide linkages, respectively [62, 4]

4. Finally, a Bradford assay was performed in order to determine the protein concentra-
tion of each sample [35]

Western blot

1. The solubilized proteins were then loaded onto a polyacrylamide gel and separated
by size via electrophoresis [35]

2. An electric current was then used to transfer the proteins from the gel onto a nitro-
cellulose membrane [35]

3. "The blots were incubated with PABPN1 antibodies (Abcam, ab75855) (1:2000) and
milk (5%, w/v) overnight before being developed using the Clarity western Blotting
Substrate (Bio-Rad) in the ChemiDoc System (Bio-Rad)" [35]. The role of the milk
was to prevent the antibodies from binding non-specifically to the membrane [97].

A subset of sRzs from the HD run are also being tested; as of the time of writing, we
are waiting for experimental results.

5.4 Results and Discussion

5.4.1 TriCleaver designs selective ribozymes that function in silico
Figure 22 shows a snapshot of the population of the OPMD run at five different time points
(generations). We can see that the viability of the initial population is low. During the first
half of the run, the fitness and diversity of the population increases. During the second
half of the run, viability continues to increase, while the diversity slightly decreases. The
low viability of the initial population indicates that sRz design is non-trivial; we can’t just
generate a set of random sequences. The high viability of the final population (all 300 sRzs
were predicted to be selective) indicates that TriCleaver is an effective search algorithm.
Furthermore, the fact that the final population did not lose diversity compared to the initial
population underscores the effectiveness of novelty search.

5.4.2 TriCleaver designs selective ribozymes that function in cells
Of the 300 sRzs generated by TriCleaver during the OPMD run, 21 were tested in HEK
cells and 2 (designated as Rzb5 and Rzb8) where determined to be selective. Figure 23
shows that the Rzb5 and Rzb8 downregulate expresion of the mutant allele, both at the
mRNA and protein level, while minimally affecting the WT allele. These results show
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Figure 22: OPMD run timelapse. The population of sRzs at 5 generations during the
OPMD run was visualized using multi-dimensional scaling (MDS). Each dot represents a
candidate sRz. Dots that are close together have similar structures. An individual’s viability
is represented by its color; low viability is depicted as dark purple while high viability is
depicted as bright yellow.

that sRzs are able to discriminate between strands with a very similar number of repeats
(the mutant PABPN1 transcript is only 4 repeats longer than the WT). This is exciting
since other approaches that target the repeats have been shown to be less effective when
the WT and mutant repeats are close in length. Figure 24 shows the predicted structure of
Rzb5 and Rzb8, as well as their location in phenotype space. We can see the secondary
structures of both sRzs in the active state (when bound to the mutant) is nearly identical.
This expected since the ribozyme must fold into a specific active structure leaving no room
for variation. However, in the inactive state (when bound to the wild-type), they adopt
noticeably different strutures. This shows that there is more than one way for an sRz to
selectively silent the mutant.

5.4.3 Novelty search helps compensate for an incomplete model
All of the sRzs that were experimentally tested were predicted to be functional. However,
only 2 out 21 (9.5 %) were functional in HEK cells. This indicates that our model is in-
complete and factors are at play. This is not surprising, because as we saw in Chapter 1,
it is impossible to model a cell’s behavior with complete accuracy. Some of this uncer-
tainty can be reduced by augmenting the fitness evaluation function with more stringent
criteria, as was done for TruthSeqEr 3, but establishing these criteria would require much
more experimentation and risks over-constraining the search space. Furthermore, while
this approach can reduce uncertainty, it cannot eliminate it altogether. A key advantage of
TriCleaver is that it generates functional sRzs without trying to account for every factor
that could affect sRz function. This feature becomes even more important as more uncer-
tainty is introduced into the biological environment. For example, as explained in 2.1.4,
therapeutic RNA strands are often chemically modified to extend their half-life. However,
these modifications can change how the strands interact with other molecules in the cell,
sometimes in unpredictable ways [109]. TriCleaver is intrinsically designed to deal with
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Figure 23: Experimental validation of sRzs. Rzb5 and Rzb8, two sRzs tageting the
PABPN1 transcript associated with OPMD where shown to have a selective effect in HEK
cells. a) qPCR results quantifying the relative expression levels of the WT and mutant
mRNA when targeted with a negative control, Rzb5, and Rzb8. b) Western blot results
quantifying the expression levels of the WT and mutant protein when targeted with a nega-
tive control, Rzb5, and Rzb8. Data provided courtersy of Dr. Aida Abu-Baker of Montreal
Neurological Institute.
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Figure 24: Visualization of the validated OPMD sRzs. a) MDS plot of the final population
of the TriCleaver OPMD run. Each dot represents a sRz. Dots that are closer together
have closer predicted structures. The dot’s color indicates whether the sRz was untested in
HEK cells, whether it was tested and found to be non-functional, or whether it was tested
and demonstrated selectivity. b) Predicted secondary structures of the two experimentally
validated sRzs, Rzb5 and Rzb8. Only one binding state of the WT is shown.
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this unpredictability. We emphasize that TriCleaver does not just generate a population of
random sequences. While this would maximize sequence diversity, the vast majority of the
candidate sRzs would have no chance whatsoever of being functional, as can be seen by
the low fitness of the initial random population in Figure 22. Instead, TriCleaver’s perfor-
mance objectives (ON and OFF) rely on a rational model of selective ribozyme behavior to
generate plausible candidates, while its novelty objective prevents it from over-relying on
it.

5.4.4 TriCleaver is general
TriCleaver also successfully designed a population of sRzs targeting Huntington’s disease.
Figure 25 shows the predicted secondary structures of sRzs targeting the HTT transcript.
These structures highlight a major difference between the HTT and PABPN1 transcripts:
the number of repeats. The WT and mutant PABPN1 transcripts are close in length: they
only differ by 4 repeats. In contrast, the WT and mutant HTT transcripts differ by 90 re-
peats. This showcases another advantage of TriCleaver: its generality. The sRzs it designs
are able to distinguish between alleles with similar repeat counts (as seen in OPMD) as
well as alleles with very different repeat counts (as seen in Huntington’s). Furthermore,
TriCleaver does not require the identification of specific SNPs, allowing its designs to be
used across an entire population afflicted by a given TRED. However, we must temper
our excitement, since we currently only have in silico results for the sRzs targeting HTT
(experiments in cells are currently being performed at the Montreal Neurological institute).

5.4.5 Selective ribozymes use a unique mechanism to achieve selectiv-
ity

Many other approaches require the recruitment of proteins in order to downregulate their
targets. A key distinction between sRzs and many other selective approaches is that sRzs
perform the silencing themselves and do not require the recruitment of endogenous proteins
such as RNase H (in the case of ASOs) or AGO2 (in the case of miRNA). This prevents the
sRzs from diverting these proteins from their usual functions, which could have devastating
consequences [7]. Another distinguishing features of sRzs is that they need to bind to two
regions in order to be active: the RzBS and the mutant repeats region. This theoretically
increases their specificity compared to other approaches that only target repeats.

5.5 Conclusion
Trinucleotide repeat expansion disorders (TREDs) are serious genetic diseases caused by
an expanded number of trinucleotide repeats in certain genes. Autosomal dominant cases
are characterized by a healthy wild-type allele, and a pathogenic mutant allele. An emerg-
ing class of treatments are nucleic acid based gene therapies that selectively downregulate
the mutant allele. While promising, these therapies currently suffer from limitations such
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Figure 25: Predicted secondary structures of two sRzs targeting Huntington’s disease. Due
to the large number of repeats (and consequently large sensor size), the sensor and repeats
are not shown.

as reduced selectivity when the wild-type and mutant are close in length, lack of generality,
and potential off-target effects. In this chapter, we presented TriCleaver, an easy-to-use,
customized evolutionary algorithm (EA) that designs selective ribozymes (sRzs) targeting
TREDs provided by users. The user provides the sequences of the wild-type and mutant
transcripts associated with a given TRED, and TriCleaver produces a diverse population of
sRzs that are predicted to cleave the mutant, but not the wild-type. In this study, we ran
TriCleaver against two TREDs: OPMD and Huntington’s disease (HD). In silico results
show that TriCleaver can design diverse populations of sRzs targeting each of these dis-
eases. This suggests TriCleaver is a general solution for designing TRED therapies since
OPMD and HD are characterized by different repeat types and lengths. In addition, in vitro
results in mammalian cells show that two sRzs designed by TriCleaver selectively silenced
the mutant allele of PABPN1, the gene associated with OPMD. Altogether, these results
indicate that TriCleaver is a promising solution for designing TRED treatments.
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Chapter 6

Conclusions and Future Work

This thesis explored the intersection of two techniques: evolutionary algorithms (EAs)
and allosteric ribozymes (ARs). EAs are population-based search heuristics inspired by
natural evolution and ARs are catalytic non-coding RNA (ncRNA) whose activity can be
modulated via shape changes induced by external molecules. By combining EAs and ARs,
we enabled the successful design of two promising classes of biological devices: ribogates
and selective ribozymes (sRzs).

Ribogates are logic gates that take short RNA strands as inputs and produce a short
RNA output strand as an output via a catalyzed self-cleavage reaction. The presence of a
given input or output strand represents a HIGH logical state (1), while its absence repre-
sents a LOW logical state (0). AR-based logic gates have been around for quite some time,
but their computational capacity and versatility is limited. Furthermore, the computational
methods used to design them are not user-friendly, require biological domain knowledge,
and cannot easily be adapted to create new ribogates. To address these limitations, we cre-
ated TruthSeqEr, an EA that designs populations of ribogates. TruthSeqEr is easy to use and
requires no biological domain knowledge: the user simply provides a truth table of a target
function. TruthSeqEr is also versatile, it was able to successfully design (in silico) ribo-
gates implementing all instances from representative sets of 1, 2, and 3-input functions. In
addition, TruthSeqEr can design ribogates with a larger computational capacity than other
methods: it is able to design 3-input ribogates implementing linearly inseparable functions.
In order to analyze these ribogates at a deeper level, we developed a model called additive
segment competition (ACS) which represents each ribogate as a small mechanism graph.
Comparing the mechanism graphs of different ribogates revealed two exciting properties:
ribogates can be classified into families of varying complexity based on shared structural
motifs and ribogates act as more general version of an artificial neuron.

sRzs are ribozymes that selectively cleave the mutant mRNA transcript associated with
a specific trinucleotide repeat expansion disorder (TRED). TREDs are a type of genetic
disorder caused by an expanded number of trinucleotide repeats. The majority of TREDs
are autosomal dominant, meaning they exhibit an expanded disease-causing mutant allele
and a shorter functional wild-type (WT) allele. sRzs are an attractive option since they
can downregulate the pathogenic allele while sparing the WT allele that might be essential
to proper cell function. Other selective therapies for TREDs have been proposed, but they
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suffer limitations such as lack of generality, failure to discriminate between WT and mutant
alleles close in length, and potential off-target effects. To address these limitations, we
created TriCleaver, an EA that designs populations of sRzs. TriCleaver is easy to use:
the user simply provides the mutant and WT transcripts associated with a given TRED.
TriCleaver is also a general method: in silico results show that it can design sRzs targeting
both OPMD and Huntington’s disease (HD), two TREDs characterized by different repeats
and different WT and mutant lengths. In addition, two sRzs where shown to be effective
against OPMD in mammalian cells. We also note that both TruthSeqEr and TriCleaver
use a quality diversity approach to generate diverse ribogates and sRzs. This prevents the
designs over-exploiting strategies that are incorrectly predicted to work due to limitations
in modeling RNA and cellular behavior. In summary, the work in this thesis highlights
the power of both EAs and ARs, as well as the utility of the TruthSeqEr and TriCleaver
algorithms we developed.

6.1 Limitations
Although TruthSeqEr and TriCleaver show promise, they exhibit many limitations that
could reduce the real-world impact of the ribogates and sRzs they design. We now high-
light the most important of these limitations and suggest possible research avenues towards
mitigating them.

6.1.1 Artificial model system
The selective ribozymes targeting the PABPN1 gene were tested on a relatively artificial
system consisting of PABPN1 wild-type and mutant genes being cloned into plasmids and
transfected into HEK cells. While such experiments were an important milestone, in order
to assess the real-world therapeutic value of the sRzs, more realistic biological models
will be required. To address this, our colleagues at the Montreal Neurological Institute
(MNI) have begun testing sRzs targeting the PAPBN1 and HTT genes in patient-derived
cells. In addition, we are finalizing the creation of an easy-to-use web service that hosts the
TriCleaver and TruthSeqEr algorithms, making it easy for future researchers to generate
designs for model organisms such as c. elegans and mice.

6.1.2 Slow testing rate
Both TruthSeqEr and TriCleaver can generate hundreds of diverse designs in a less than a
day on a consumer workstation. However, it has taken years to test a relatively small num-
ber of ribogates and selective ribozymes in biological environments. This makes it difficult
and time-consuming to evaluate the performance of the current version of the algorithms.
This slow feedback loop also makes it impractical to use the gathered experimental data to
improve the algorithms. There are two ways in which biological validation can be accel-
erated. The first is to automate the experimental protocols used to test ribogates and sRzs.
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This is already been done to some extent: our partners at the Montreal Neurological Insti-
tute (MNI) have begun collaborating with Concordia’s Genome Foundry to automate steps
such as plasmid construction. However, the experimental protocol (described in Section
5.3.7), contains multiple steps, and not all of these steps can be cost-effectively automated.
In the future, it is likely that automation will become more prevalent and cheaper, but
currently, biological experimentation remains a bottleneck. Therefore, we have begun ex-
ploring a second avenue: amending the algorithms so that the designs they generate are
more amenable to automation. In collaboration with Jonathan Perreault’s lab at INRS, we
have crafted an altered version TruthSeqEr that generates ribogates with special features
such as barcode sequences and OBSs that respond to an identical set of inputs. This al-
lows us to order hundreds of ribogates at once for low cost using an oligo pool [53, 51],
simultaneously test these ribogates using a single test tube per input state (instead of one
tube per ribogate per input state), and quantify ribozyme cleavage using high-throughput
sequencing [87]. It is our hope that these techniques will greatly increase the rate at which
ribogates and selective ribozymes can be tested.

6.1.3 Limited prediction accuracy
9.5% of the tested sRzs selectively down-regulated expression of the mutant PABPN1 gene.
In qualitative terms this was a success since two sRzs with therapeutic potential were de-
signed. However, in quantitative terms there is much room for improvement because a vast
majority of the sRzs that were predicted to be functional in silico failed in cells. This lack
of accuracy is caused in large part by limitations in the folding algorithm used to predict
the ribogate and sRz secondary structures.

Recall from Section 3.3.3 that an input binding to its corresponding OBS (or the re-
peats binding to the sensor) resulted in the formation of an interactive pseudoknot. Al-
though algorithms exist that can predict pseudoknots, they are limited to certain classes
of pseudoknots and have an increased computational complexity [110]. We circumvented
the pseudoknot problem by making certain assumptions on how the inputs (repeats) would
bind to their corresponding OBS (sensor) and encoding these assumptions into folding
constraints. However, the accuracy of our computational model depends on the validity
of these assumptions. Also, it was only possible to make these assumptions because we
knew a priori that interactive pseudoknots would occur. However, it is quite possible that
certain ribogate and sRz designs contain additional pseudoknots whose existence cannot
be reasoned about without actually folding the strands. Therefore, the lack of pseudoknot
prediction is concerning. It may therefore be beneficial to incorporate pseudoknot-capable
foldings algorithms, even if they can only predict a subset of pseudoknot classes. To mit-
igate the increased computational footprint of these algorithms, we might call them only
once as a post-processing step instead of every generation during the EA loop.

In current version of TriCleaver, we did not co-fold the sRz with the entire substrate.
Instead, we only co-folded it with the ribozyme binding site (RzBS), the region of the
substrate targeted by the ribozyme arms. This significantly reduces computation time, since
the shorter the strand, the faster its structure can be predicted by the folding software.
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However, this approach may be too drastic and prediction accuracy might be increased by
considering a longer region around the RzBS.

Note that even in the pseudoknot-free case, folding algorithms are not 100% accurate.
One possible way to address this is to use multiple folding algorithms instead of a just one.
In a given state, each folding algorithm would produce a base-pairing probability matrix
(BPPM). These multiple BPPMs could then be aggregated into a single BPPM using a
statistical measure such as the mean or distance-weighted mean.

Furthermore, we have only considered the secondary structures that would be observed
once equilibrium has been reached. However, it might take an intractable amount of time
to reach the equilibrium state. This means that in practice, the ribogates and sRzs might
not adopt the structures predicted by the folding algorithm, but instead get trapped in a
local minimum. It is plausible that the extensive OBS-OBS binding in advanced ribogates
increases this possibility. To mitigate this, we could predict folding trajectories instead
of just the equilibrium structure by using algorithms such as Kinfold [28]. Indeed, this
approach was used in [81] as part of the algorithm that designed simple 1 and 2-input
logic gates. Unfortunately, we found that using it as part of the EA loop when designing
more sophisticated devices was too time-consuming. That being said, it could be worth
investigating using it as filter during a post-processing step.

In addition to the aforementioned folding limitations, there are other factors that make
it difficult to predict the functionality of ribogates and sRzs. Indeed, even if we were
able to predict with complete accuracy the ensemble of structures that a ribozyme adopts
in a given state, mapping this ensemble to single real number quantifying the ribozyme’s
activity level is not trivial. In this work, we calculated a set of motif scores from the base-
pairing probability matrices and aggregated them into activity and inactivity scores, but it
is possible that better metrics exist.

Machine learning is an exciting approach that could potentially solve both structural
prediction and ribozyme activity quantification. A model could be trained that predicts
ribozyme activity from the sRz/ribogate and the substrate/input sequences. However, ma-
chine learning methods typically require copious data, and as was previously explained,
gathering experimental data is time-consuming.

6.1.4 Utilization of only a single type of ribozyme
Currently, TriCleaver and TruthSeqEr utilize only one type of ribozyme: the minimal ham-
merhead. However, as discussed in Section 2.3.8, there are many more types cleavage-
catalyzing ribozymes. These ribozymes exhibit different properties that may be beneficial
to synthetic biologists. For example, the extended hammerhead ribozyme [92] has a faster
cleavage rate the minimal variant. One possible avenue of improvement is to modify Tri-
Cleaver so that it may support multiple types of ribozyme. However, this is not trivial.
For a ribozyme to be used as an sRz or ribogate, it must meet certain criteria such as hav-
ing well-defined active structure and a location to place the extension region that doesn’t
interfere with the active structure,

84



6.1.5 Palindromic repeats of lengths other than 3 are not considered
TriCleaver currently only designs sRzs that target substrates with a repeat unit of length 3
(e.g. GCG, CAG, etc.). However, although less common, some diseases have transcripts
with repeats of lengths other 3 nucleotides. For example, some cases of amyotrophic lateral
sclerosis (ALS) are caused by a hexanucleotide repeat expansion (GGGGCC) [48]. It may
therefore be worthwhile to update TriCleaver so that it can handle arbitrary repeat unit
lengths.

6.1.6 Cut site diversity may be limited
By using novelty search, TriCleaver successfully designs sRzs that are structurally diverse.
However, we have noticed that certain RzBSs are over-represented in the sRz population.
This may be problematic, since certain RzBSs might be sequestered by other RNAs or
proteins. Therefore, we may want to explicitly promote RzBS diversity by modifiying to
the phenotypic distance calculation so that it considers RzBS locations in additional to
secondary structures.
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Appendix A

Appendix

A.1 Diversity score
We calculated a diversity score equal to the average phenotypic distance between each pair
of viable individuals in the final population. For each function, this diversity is normalized
by dividing it by the largest diversity measured for a run on that function. Normalization is
performed because some functions have more potential for diversity than others.

A.2 Finding canonical devices
Simplicity search is a Truth-Seq-Er run with an additional objective: minimize the number
of H-segments that bind to each other. In exploratory work (not shown), this new objective
considered all possible H-segments interactions. However, this did not produce acceptable
results. Results were significantly improved when only OBS and negator self-interactions
were considered. It appears that these interactions are largely non-essential unlike the
interactions between two different segments. These self-interactions are represented by a
new fitness term, fSI , which is equal to sum of the diagonal entries of the SPMMS.

In addition to the self-interactions fitness term, three other minor changes are made to
Truth-Seq-Er. Instead of initializing a random population, simplicity search begins with
the final population of a Truth-Seq-Er run. Furthermore, in order to compensate for a new
fitness term being added, the two performance scores (fON , fOFF ) are averaged into a
single switch score: f sw. Finally, the viability nullification parameters are set more aggres-
sively. The fitness parameters of simplicity search are shown in table A.1. For each 3-input
function, the canonical device is the viable individual with the least number of segment
interactions from the final simplified population.
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Number of generations 200
Population size 300
Mutation rate 4
Objective scores Switch, self-interactions, novelty
Viability nullification? Yes
(Start, End) threshold values (0.9, 0.95)
Threshold Breakpoint (generation, value) N/A
Novelty neighborhood size 30

Table A.1: Simplicity search fitness parameters.
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A.3 Canonical devices for functions f-7-3I, f-25-3I, f-27-
3I, f-129-3I, f-135-3I

Figure A.1: Segment structures of canonical devices.

A.4 Simulation
In the main text, we generated segment structures from a given mechanism graph by hand.
Here we present an algorithm called simulation which automates the process. It uses ex-
haustive search to calculate the stability of all candidate structures and it returns the most
stable one. The pseudocode for simulation is shown in Algorithm 1.
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Algorithm 1: Simulate mechanism graph
1 Inputs: (E, V , B) // The edges, nodes, and bundles of the mechanism graph
2 W // A dictionary storing the weight assigned to each edge
3 VO // The set of occupied nodes (OBSs bound to their respective input)

4 // Generate the set of candidate structures
5 edges← the set of all e ∈ E such that e is not incident on any node ∈ VO

6 provisional_candidates← powerset(edges) // All possible subsets of edges

7 // Remove invalid structures from the set of candidates
8 candidates← copy provisional_candidates
9 for each c in provisional_candidates do

10 for each node in V do
11 node_bundles← ∅
12 node_edges← the set of all edges ∈ edges that are incident on node
13 // If multiple edges are incident on a node, they must share a bundle
14 // If at least one node violates this condition, the structure is invalid
15 if |node_edges| > 1 then
16 for each edge in node_edges do
17 edge_bundles← all bundles that include edge
18 node_bundles← node_bundles ∪ {edge_bundles}
19 end for
20 common_bundles←

⋂
node_bundles

21 if |common_bundles| == 0 then
22 remove c from candidates
23 break
24 end if
25 end if
26 end for
27 end for

28 // Calculate the stability of each candidate
29 stabilities← empty list
30 for each c in candidates do
31 stability =

∑
e∈c

W [e] // Sum the edge weights

32 append stability to stabilities

33 end for

34 // Select the candidate with the highest stability
35 indices← argsort stabilities (by descending value)
36 L← length of indices
37 index_1← indices[0] //index of candidate with the highest stability
38 max_stability_structure← candidates[index_1]
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39 // Determine whether the highest stability structure is unique
40 // This is necessary for mechanism extraction (discussed in Section A.5)
41 bool_degenerate← 0
42 // If there was more than one candidate
43 if L > 1 then
44 index_2← indices[1] //Index of the candidate with the second highest

stability
45 if stabilities[index_1] == stabilities[index_2] then
46 bool_degenerate← 1 // The highest stability structure is not unique
47 end if
48 end if
49 return (max_stability_structure, stabilities[index_1], bool_degenerate )

A.5 Mechanism extraction
Mechanism extraction is an algorithm that takes as input a list of target segment structures
and it outputs a mechanism that can reproduce these structures without error when it is
simulated. Mechanism extraction consists of two steps. First, the target segment structures
are merged into an unweighted graph. Then, the edges of this graph are assigned weights
using an iterative procedure similar to simulated annealing. A full example of mechanism
extraction is shown in Figure A.2.

A.5.1 Merging
The unweighted mechanism graph represents TO segments that interact with each other
in at least one state. The unweighted mechanism graph is equal to the union of the target
TO structures. In addition, certain edges of the unweighted mechanism may be grouped
together into sets called bundles. Edges are part of the same bundle if they are incident
on the same node in the same segment structure. Merging is detailed in Algorithm 3. An
example unweighted mechanism graph is shown in Figure A.2 a).
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Algorithm 2: Merge target segment structures
1 Inputs: segment_structures // There is one segment structure per state

2 E ← ∅
3 V ← ∅
4 provisional_bundles← ∅
5 for each structure in segment_structures do
6 (e, v)← (edges, nodes) of structure
7 //Take the union of the segment structures
8 E ← E ∪ e
9 V ← V ∪ v

10 for each node in v do
11 node_edges← the set of all edges in e that are incident on node
12 if |node_edges| > 1 then
13 bundle← node_edges
14 provisional_bundles← provisional_bundles ∪ bundle

15 end if
16 end for
17 end for

18 // Discard any bundles that are strict subsets of other bundles
19 bundles← copy provisional_bundles
20 for each bundle_i in provisional_bundles do
21 for each bundle_j in provisional_bundles do
22 if bundle_i ⊂ bundle_j then
23 remove bundle_i from bundles
24 break
25 end if
26 end for
27 end for
28 return (E, V, bundles) // Unweighted mechanism graph
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Figure A.2: Mechanism extraction example. a) The target segment structures are merged
into an unweighted mechanism graph (UMG). The UMG has the same nodes as the target
segment structures. Its edges are equal to the union of the edge sets of the target seg-
ment structures. Since O1 and O2 are both incident on Rz in the same state (00), they are
grouped into a bundle. b) The UMG is assigned a set of random weights. Each iteration,
the mechanism graph is simulated with its current weights. An error is calculated based on
how dissimilar the target and predicted segment structures are. Then, a random weight of
the mechanism graph is mutated. If this mutation results an error reduction, it is always ac-
cepted. Otherwise, it is only accepted with a certain probability. If the mutation is rejected,
a new one is applied to the parent graph. If the target and predicted structures match, the
current candidate mechanism graph is returned as the solution. List of abbreviations: On

(OBS n), Rz (ribozyme).
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A.5.2 Weight assignment
Once the unweighted mechanism graph has been obtained, weights are assigned to it.
In general, mechanism graphs having identical edges, nodes, and bundles, but different
weights, will produce different segment structures when simulated. The weight assignment
algorithm searches for weights such that the mechanism reproduces the target segment
structures. Each edge of the unweighted mechanism is initially assigned a random weight,
and these weights are mutated through an iterative process until a solution is found. The
weights at iteration i are denoted by w(i). Each iteration, the current mechanism graph
is simulated to generate a list of predicted segment structures. The similarity between the
predicted and target segment structures is assessed, and an error is calculated. The higher
the similarity, the lower the error. If the error of w(i) is smaller than or equal to the error of
w(i−1) (i.e. the current iteration is an improvement over the previous one), then w(i) is al-
ways accepted. Otherwise, w(i) is only accepted with a certain probability. As explained in
the main text, the segment structure of each state is the candidate structure with the highest
stability. Note that for certain weight assignments, multiple candidate structures of a state
may have maximum stability. In this case, the candidate mechanism graph is considered
invalid and it is assigned a very high error as a penalty. The reason for this is that we want
the segment structures generated by simulation to be non-ambiguous. Weight assignment
is detailed in Algorithms 4 and 5, and is illustrated in Figure A.2 b). Note that the graphs
generated by mechanism extraction are not unique. Two mechanism graphs with different
weights and/or bundles can generate the same segment structures when simulated.

A.5.3 Experimental setup
We performed mechanism extraction for each 3-input NPN function. For each function, the
input to the mechanism extraction algorithm was the segment structures of that function’s
canonical ribogate. Before running the algorihtm, we made slight changes to the second
segment structures of two functions. For f-135-3I, we removed the OBS2-OBS2 self-loop
in states 000 and 101. For f-27-3I, we added an edge an OBS3-Rz edge in state 000.
None of these modifications affect the output state of the ribogate and they result in cleaner
mechanism graphs.

A.5.4 Manual post-processing
The mechanism extraction algorithm does not natively handle partial bundles. Instead,
some graphs will have partially overlapping bundles. In this step, we manually remove
these bundles and replace them with a partial bundle that allows a maximum of two con-
current edges. Specifically, for f-127 and f-135, we remove the {OBS1-RZ, OBS2-Rz},
{OBS1-Rz, OBS3-Rz}, and {OBS2=Rz, OBS3-Rz} bundles and replace them with a {OBS1-
Rz, OBS2-Rz, OBS3-Rz} (max 2) partial bundle.
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Algorithm 3: Assign mechanism weights
1 Inputs: (E, V , B) // The edges, nodes, and bundles of the mechanism graph
2 target_structures // The segment structures we wish for the mechanism
3 graph to reproduce when simulated

4 // Score a random initial weight assignment
5 min_weight← 1
6 max_weight← 8
7 prev_weights← empty dictionary
8 for each edge in E do
9 w ← random integer between min_weight and max_weight

10 prev_weights[edge]← w

11 end for
12 prev_error ←

score_mechanism_graph(E, V,B, prev_weights, target_structures)

13 // Iterate until a solution is found or the max # of iterations is exceeded
14 num_iterations← 2000
15 for i from 0 to num_iterations− 1 do
16 weights← prev_weights
17 // Mutate weight
18 edge← random edge from E
19 weights[edge]← random integer between min_weight and max_weight

20 // Score mechanism graph
21 error ← score_mechanism_graph(E, V,B,weights, target_structures)

22 // Accept or reject mutation
23 if error == 0 then
24 return (E, V,B,weights) // Return the complete mechanism graph
25 else if error <= prev_error then
26 prev_error ← error
27 prev_weights← weights

28 else
29 jump_probability ← exp(prev_error − error)
30 jump_sample← random floating point number between 0 and 1
31 if jump_probability > jump_sample then
32 prev_error ← error
33 prev_weights← weights

34 end if
35 end for
36 return NULL // No solution
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Algorithm 4: Score mechanism graph
1 Inputs: (E, V , B) // The edges, nodes, and bundles of the mechanism graph
2 W // A dictionary storing the weight assigned to each edge
3 target_structures // The segment structures we wish for the mechanism
4 graph to reproduce when simulated

5 num_states← length of target_structures
6 occupied_nodes_all ← the set of occupied nodes for each state
7 error ← 0
8 for i from 0 to num_states - 1 do
9 occupied_nodes← occupied_nodes_all[i]

10 predicted_structure, stability, bool_degenerate←
simulate_mechanism_graph(E, V,B,W, occupied_nodes)

11 if bool_degenerate == 1 then
12 // Severely penalize mechanism graphs that generate non-unique structures
13 error ← 1000
14 break
15 else
16 Ep ← edges of predicted_structure
17 Et ← edges of target_structures[i]
18 // The error is equal to the # of edges that are in the predicted,
19 // but not the target structure (and vice versa)
20 state_error ← |(Ep ∪ Et)\(Ep ∩ Et)|
21 error ← error + state_error
22 end if
23 end for
24 return error
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