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A B S T R A C T   

Obtaining accurate information of defective areas of infrastructures helps to perform repair actions more effi
ciently. Recently, LiDAR scanners have been used for the inspection of surface defects. Moreover, machine 
learning methods have attracted the attention of researchers for semantic segmentation and classification based 
on point cloud data. Although much work has been done for processing visual information with images, research 
on machine learning methods for semantic segmentation of raw point cloud data is still in its early stages. 
Moreover, LiDAR technology is commonly used to create as-is BIM models. Therefore, the BIM model needs to be 
integrated with the results of defect semantic segmentation after the LiDAR-based inspection. Addressing the 
above issues, this paper has the following objectives: (1) Developing a method for point cloud-based concrete 
surface defects semantic segmentation; and (2) Developing a semi-automated process for as-inspected modeling. 
The challenges related to the size of the dataset and imbalanced classes are studied. Sensitivity analysis is applied 
to capture the best combination of hyperparameters and investigate their effects on the network performance. 
The proposed method resulted in 98.56% and 96.50% recalls for semantic segmentation of cracks and spalls, 
respectively. Furthermore, post-processing of the results of the concrete surface defects semantic segmentation is 
done to semi-automate the process of as-inspected modeling. As-inspected BIM includes the updated information 
of the facilities at the time of data collection. This semi-automated process made it possible to manage and 
visualize the detected defects by extracting their dimensions and identifying the conditions on the 3D model.   

1. Introduction 

Advanced technologies (e.g., scanners, sensors) have made the in
spection process more accurate and reliable [1]. Light Detection and 
Ranging (LiDAR) scanners can collect high-quality 3D point cloud 
datasets. In order to automate the process of concrete surface inspection, 
it is important to collect proper datasets and use an efficient approach to 
analyze them and find the defects. Moreover, Deep Neural Networks 
(DNNs) have been recently used for detecting 3D objects within point 
clouds collected by a LiDAR scanner [2]. In order to detect concrete 
surface defects, the CNN approach can be applied to point cloud data
sets. Each neural network is trained for a unique purpose. Adaptation of 
the right algorithm to a specific purpose can greatly improve the per
formance. On the other hand, the detected surface defects information 
can be linked to the BIM model. Therefore, the inspection process can be 
more efficient by utilizing an integrated process of surface defect se
mantic segmentation and defect modeling. 

The key problems of this research can be attributed to the issues as 
follows: The first issue is related to the automated concrete surface se
mantic segmentation of point cloud data. Visual inspection using non- 
equipped eyes is the principal method of detecting structural surface 
defects, which is unsafe, time-consuming, expensive, and subjective to 
human errors [3]. Using remote sensing, such as cameras and LiDAR 
scanners, is one solution to overcome these shortcomings. The captured 
point cloud data from the real environment can assist in detecting the 
defects and taking further actions. It will also provide a database for 
other maintenance measures after creating an integrated 3D model for 
existing structures. Image-based inspection using cameras is based on 
pattern recognition techniques [4]. Several studies focused on detecting 
defects automatically (e.g. spalling [5] or cracks [6]) and determining 
some characteristics such as the width of cracks [7,8]. Several crack 
detection algorithms have been developed, which can be practically 
used for real-time crack analysis [9,10], crack classification [11], and 
automating crack sealing [12,13]. There are several challenges in 
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supporting concrete inspection using image-based methods. Such 
methods are mostly defined for simple flat concrete surfaces and may 
fail in analyzing more complex geometries and materials [12]. Good 
lighting conditions are one of the main issues that should be considered 
during implementing these methods [14]. Another shortcoming is the 
necessity of providing supplementary information, such as camera lens, 
focal length, or the distance from the camera to the target surface, before 
analyzing the images [15]. Moreover, in comparison to image data, 
measuring the defects dimensions such as depth is more accurate and 
reliable in point cloud-based methods. Although the initial cost of LiDAR 
scanners is more than cameras, it may be more profitable and 
economical in the long term. 

In order to automate the process of point cloud-based inspection, 
appropriate datasets and an efficient approach such as defect semantic 
segmentation are essential. Recently, machine learning methods have 
attracted the attention of researchers for semantic segmentation and 
classification based on point clouds. Unlike other methods, such as the 
Hough Transform (HT) [16] and the Random Sample Consensus 
(RANSAC) approach [17], machine learning methods are robust and 
flexible. However, they rely on the point cloud density and size of the 
dataset. Moreover, training based on large datasets is time-consuming 
[18] and converting the point cloud into other representations in
creases the dataset size. Different methods such as classification, part 
segmentation, and semantic segmentation can be used to process the 
raw point cloud data [19]. This research focuses on semantic segmen
tation, which is based on the detailed information of each point. 
Although much work has been done for processing visual information 
with images, research on machine learning methods for semantic seg
mentation of raw point cloud data is still in its early stages [20]. 
Moreover, no deep learning method is currently available for semantic 
segmentation of the surface defects based on point clouds without 
converting the raw data to other representations (e.g. images). 

The second issue is related to as-inspected modeling. Most existing 
structures do not have a 3D model; and even when available, it is not a 
complete model. LiDAR technology is commonly used to create as-is BIM 
models. However, the as-is model does not include the inspection results 
[21]. Therefore, the BIM model needs to be integrated with the results of 
defect semantic segmentation after the LiDAR-based inspection. 

Given the problems explained above, the main objectives of this 
paper are: (1) Developing a method for point cloud-based concrete 
surface defects semantic segmentation; and (2) Developing a semi- 
automated process for as-inspected modeling. This paper is an exten
sion of our previous work [22]. This paper focuses on developing a 
method for point cloud-based defect semantic segmentation called 
Normal Vector Enhanced Dynamic Graph Convolutional Neural 
Network (NVE-DGCNN) to automate the inspection process of concrete 
surface defects, including cracks and spalls. The paper investigates two 
main characteristics related to surface defects, including normal vector 
and depth. The paper starts with an adapted DGCNN [19], and then the 
main network of this research, which is NVE-DGCNN, is investigated. 
Furthermore, post-processing of the results of the concrete surface de
fects semantic segmentation is done to semi-automate the process of as- 
inspected modeling. The rest of the paper is structured as follows: Sec
tion 2 contains the literature review. The methodology is explained in 
Section 3. Section 4 explains data collection and pre-processing, Sections 
5 and 6 show the implementation results and the case study. Finally, the 
conclusions and future work are presented in Section 7. 

2. Literature review 

2.1. LiDAR-based defect detection 

LiDAR scanning is a non-contact measurement technology that has 
proven its potential in capturing accurate and instant point cloud data 
from object surfaces [23,24]. However, the resolution and noise level of 
point cloud data pose some challenges in detecting small cracks [25]. 

Therefore, to overcome this limitation, an additional feature, which is 
the RGB color, is considered in deep learning models [3,20]. Various 
methods have been applied to the point cloud data to detect surface 
defects. Geometry analysis and machine learning methods are two main 
approaches for detecting concrete surface defects. 

Gaussian curvature distribution can be used to calculate volume loss 
[26]. Another method to detect concrete surface defects is the crossing 
section methods [27]. Laefer et al. [15] used fundamental mathematics 
to define the smallest width of unit-based masonry cracks, which can be 
detected with LiDAR scanner by considering the main parameters of 
depth and orientation of crack, orthogonal offset, and interval scan 
angle. Anil et al. [28] focused on the performance of LiDAR scanners, by 
using an automated algorithm on point cloud data from reinforced 
concrete surfaces and asserted the possibility of detecting 1 mm crack 
based on point cloud data. Xu and Yang [29] used the Gaussian filtering 
method and image-generated data from the point cloud to detect the 
cracks of a concrete tunnel structure. Teza et al. [26] proposed an 
automatic method for the inspection of damaged areas of concrete 
bridge surfaces using a LiDAR scanner and Gaussian mean curvature 
computation. Makuch and Gawronek [30] proposed an automatic in
spection system for reinforced concrete cooling tower shells using point 
cloud data and local surface curvature computation. Olsen et al. [27] 
proposed using cross sectional analysis to detect surface damage based 
on LiDAR scanner data. Liu et al. [31] utilized the distance and gradient- 
based method to detect the defective area of bridge surfaces using laser 
scanner data. An automated classification algorithm for detecting his
torical building defects is suggested by Armesto-Gonzalez et al. [32]. 
Valença et al. [33] proposed a method combining image processing and 
LiDAR scanning technology to automate the process of capturing the 
geometrical characteristics of cracks on concrete bridges. Kim et al. [34] 
proposed a technique to indicate the location and measure the quantity 
of concrete surface spalling defects larger than 3 mm using LiDAR 
scanner data. Truong-Hong et al. [24] presented an approach to detect 
the bridge cracks using a LiDAR scanner and developed a tool to measure 
the length and width of cracks based on point cloud data and RGB color 
produced from an external camera. Tsai and Li [35] assessed the prob
ability of using point cloud data to detect cracks with the dynamic- 
optimization-based segmentation method and assess the cracks seg
mentation performance using the linear-buffered Hausdorff scoring 
method. Cabaleiro et al. [36] developed an automatic cracks detection 
algorithm using LiDAR data for timber beams inspection to identify the 
cracks geometrical characteristics. Mizoguchi et al. [37] proposed a 
customized region-growing algorithm along with an iterative closest 
point algorithm to detect the surface defects of concrete structures based 
on LiDAR scanner data. Nasrollahi et al. [38] proposed a method for 
detecting concrete surface defects based on collecting point cloud data 
from LiDAR scanners and using a Deep Neural Network (DNN). Guldur 
et al. [3] proposed a method to detect the defects using point clouds’ 
intensity and RGB values to define a threshold and extract the defect’s 
geometrical features [3]. However, their method is not based on using 
the point cloud geometrical features in the detection process and is not 
suitable for complicated structures [39]. Guldur and Hajjar [40] 
developed damage detection algorithms for automatic surface normal- 
based defect detection and quantification using LiDAR scanner data. 

So far, different deep learning methods have been used to identify 
concrete surface defects using images, and progress in this area has 
reached an acceptable level [41]. Image-based methods are usually 
affected by the consistency and stability of light conditions for the 
captured images, and these methods are usually suitable only for simple 
flat surfaces [12,14]. Although the papers discussed in this section have 
significant value in the field of defect detection, there is no deep learning 
method for semantic segmentation of concrete surface defects using raw 
point cloud data. 
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2.2. Semantic segmentation of point clouds 

The use of point cloud-based deep learning methods is a break
through in identifying concrete surface defects in 3D points data. Point 
cloud-based deep learning methods are currently in their early stages, 
and very little research has been done in this area [41]. Data quality is 
critical in determining the best fitting function for any neural network. 
The datasets should reflect the appropriate parameters and provide 
various cases depending on the requirements. As a result, gathering 
sufficient datasets is required to obtain an accurate model. A point cloud 
is a set of data that includes the geometric information of sparse points 
collected in three dimensions. RGB and density information could also 
be included in point cloud datasets. Pixel-based, voxel-based, and 3D 
point-based approaches are three main categories of CNN approaches 
based on data representation. 3D data is transformed into 2D repre
sentation in pixel-based approaches [42]. In voxel-based approaches, 
the 3D points are used to create voxels [43]. Qi et al. [44] presented 3D 
point-based approaches to process point cloud data using 3D CNN and 
utilizing 3D recognition tasks such as object classification, part seg
mentation, and semantic segmentation. Since pixel and voxel-based 
methods are more common than point-based methods, 3D point cloud 
datasets are frequently converted into images or 3D-voxel grids before 
being used in deep learning. In certain circumstances, the trans
formation produces enormous data with uncertain invariances. An 
intriguing characteristic of point clouds lies in their inherent invariance 
under transformations. This property implies that when point clouds are 
transformed into alternative representations, the underlying geomet
rical properties of the points may undergo changes. Furthermore, point 
cloud data are easier to learn because of their clarity and consistent 
structure, but meshes are complicated and contain contradictory 
compositional patterns [45]. 

2.3. Local feature learning on point sets 

The Dynamic Graph CNN (DGCNN) is a recent network proposed by 
Wang et al. [19]. It is a new point-based CNN suitable for high-level 
tasks, such as object classification and semantic segmentation. DGCNN 
can improve capturing local geometric functions as it creates a local 
neighborhood graph and dynamically updates the graph with the 
nearest neighbors after each layer of the network. DGCNN rather than 
operating on individual points, iteratively performs convolution on 
edges, associating the neighborhood point pairs. The operation layer for 
edge feature generation in DGCNN is called EdgeConv, which can define 
the relationships between a point and its neighbors [19]. 

The segmentation model of DGCNN involves a series of three Edge
Conv layers and three fully connected layers. The parameter K in the 
model is the number of the edge features for each point, which is 
computed in each EdgeConv layer for the input of n points. Edge feature 
is the most important feature in concrete surface defect semantic seg
mentation. Wang et al. [19] stated that the model with their developed 
DGCNN improved the accuracy for classification task in comparison of 
PointNet++ for the same ModelNet40 [46] dataset. Furthermore, for 
the semantic segmentation task, they used Stanford large-scale 3D in
door spaces dataset (S3DIS) [47] and compared their work with Poin
Net, for which their work achieved a higher accuracy. In another study, 
Pierdicca et al. [48] compared the performance of PointNet++ and 
DGCNN for semantic segmentation of historical architectural elements. 
They used a publicly available digital cultural heritage dataset with 11 
labeled points clouds. 

2.4. As-inspected modeling 

Several studies explored extending BIM for Inspection Information 
Modeling. Davila Delgado et al. [49] proposed an extension to the In
dustry Foundation Classes (IFC) data model standard for structural 
monitoring systems. Their extension could model the structural 

monitoring systems, store and retrieve obtained data, and visualize the 
BIM model’s data. Chen et al. [50] proposed an approach to monitor the 
state of assets using an embedded sensing system and IFC-based BIM 
model. Hammad et al. [51] proposed a framework for life-cycle infra
structure information modeling and management. However, they did 
not discuss the details of the formal definition of this information. Some 
previous work, such as Mailhot and Busuio [52], focused on the manual 
recording of the inspection data in a 2D or 3D location-based sketching. 
Hammad et al. [53] demonstrated the applicability of 4D visualization 
of bridge lifecycle information based on a standard model. They pro
posed a framework for a mobile model-based bridge lifecycle manage
ment system to link all the information related to the design, 
construction, inspection, and maintenance to a 4D model of the bridge, 
combining different scales of space and time. However, their proposed 
system did not include measured data. 

Hamledari et al. [54] proposed a computational solution that uses 
IFC schema to automatically update as-designed BIM based on con
struction and facility inspection data. Ma et al. [55] proposed an in
formation model based on the IFC schema for damaged reinforced 
concrete structures from earthquake events. Based on their study, cracks 
can be represented as a texture on the element’s surface, and structural 
damages such as breakage can be represented by trimming the building 
elements. Tanaka et al. [56] proposed an information model based on 
IFC to support the bridge inspection process. Moreover, a web-based 
system was developed based on Web Graphics Library (WebGL) to 
show the inspection information and images of degraded parts. Tanaka 
et al. [57] continued their work and proposed a system to extract in
spection and repair reports. However, their work did not cover the 
detailed semantic information for inspection and repair processes. Sacks 
et al. [58] proposed a SeeBridge system for bridge information modeling 
based on inspection data. Their approach was not independent of the 
type of structure, and a detailed model for defect data was not covered in 
their work [59]. Hüthwohl et al. [60] proposed a framework to integrate 
bridge defect information with BIM. In their approach, some defect 
characteristics (e.g. type and size) were considered, and texture images 
were used to represent defects. Hamdan and Scherer [61] presented a 
framework for representing structural damages in BIM. Their approach 
was based on the multi-model approach, and in their study, a layered 
structure was developed to represent and visualize the damage geome
try. In another study, Hamdan et al. [62] proposed a framework for 
semi-automatic generation of damage models and machine-based 
interpretation of the recorded structural damage data using ontology. 
Their work was based on a linked model approach, and a separate file 
was used to represent the damage model. This approach does not have 
all inspection data in one BIM model. Furthermore, their study relied on 
images that do not represent the defect’s geometry as accurately as point 
cloud data. 

Artus and Koch [63] presented two ways for modeling physical de
fects using IFC based on surface and void approaches. The texture im
ages on top of the 3D component can represent the defect information in 
the surface-based approach. In the void-based approach, the defect ge
ometry was subtracted from component geometry. Meshes from the 
point cloud can represent the spalling defect on the void element. 
Moreover, their void-based approach still has a problem with cracks 
geometry as cracks were modeled as an extrusion of triangular profile. In 
another study, Artus et al. [64] presented a framework that generates 
spalling defect geometries from photos and saves them into a data model 
using IFC based on surface and void features. However, their work was 
based on image data, which does not contain the depth of defects. 
Isailović et al. [65] proposed a use case for enhancing an IFC-based 
bridge model using the image-based classification to identify the spal
ling defect features. Their approach depends on collected images from 
the inspection, and defect characteristics were directly identified from 
photos, which is not as accurate as point cloud data. 
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3. Methodology 

As explained in Section 2.3, DGCNN [19] is a deep neural network 
for classification, part segmentation, and semantic segmentation of 
point clouds, which is modified and adapted in this study to detect 
concrete surface defects. This algorithm is originally designed to detect 
indoor building elements. The semantic segmentation of DGCNN is 
adapted to detect surface defects using point cloud datasets from scan
ning concrete bridge surfaces, as will be explained in Section 4. DGCNN, 
rather than operating on individual points, iteratively performs convo
lution on edges associating the neighborhood point pairs. As the edge is 
an important feature of the surface defects (e.g. cracks), using a deep 
learning method that can consider the edge feature and the relationship 
between neighboring points can improve the learning model’s accuracy 
and efficiency. 

The section starts with an adapted DGCNN, and then the main 
network of this research, which is the NVE-DGCNN is investigated in the 
next step. Furthermore, this section also proposes a method that includes 
post-processing of semantic segmentation results for the semi- 
automated as-inspected modeling purpose. The results of the defect se
mantic segmentation will be used to locate the defects in the BIM Model. 
This section focuses on the conceptual parts of the proposed method
ology. More details about data collection and pre-processing are 
explained in Section 4. Section 5 gives the details of the implementation 
of the modified DGCNN models, while Section 6 shows the case study of 
as-inspected modeling. 

3.1. Modified DGCNN models 

(a) Adapted DGCNN: The following modifications have been done:  

• Network input parameters: The network input parameters such as 
the class number, number of points per block, block size, and stride 
are modified based on annotated segments, sizes of the structural 
defects, and density of segmented parts. Wang et al. [19] used the 
block size of 1 m × 1 m on the XY surface for rooms with a height of 3 
m to detect indoor building elements using DGCNN. The number of 
points of 4096 is used for their training process. This setting results in 
a very low density of points for detecting most types of defects in this 
study (e.g. medium-sized spalls). In the adapted DGCNN, the block 
size of 40 cm × 40 cm is set based on the sizes of the structural defects 
in the dataset. Moreover, the density of points in each block is 
increased by raising the number of points as explained in Section 
3.2.6.  

• KNN of the EdgeConv layer: In this study, in contrast with the 
original DGCNN, using the normalized X, Y, and Z coordinates of 
points for the KNN of the EdgeConv layer was considered to be un
suitable because normalization can destroy the critical information 
about the depth in the Y direction, which is much smaller than X and 
Z coordinates. A test was performed based on the original DGCNN to 
examine the effect of using the normalized location values for the 
KNN, which will be shown in Section 5.1. The test result showed that 
the models’ performance declined significantly by considering the 
normalized location values for KNN. Therefore, the KNN for the 
EdgeConv layer of the adapted DGCNN is modified to compute the 
KNN based on the XYZ coordinates. 

Fig. 1. Architecture of NVE-DGCNN (adapted from [19]).  
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• Convolving direction: The X-axis is set along the concrete surface, 
the Z-axis is set in the vertical direction of the canonical coordinate 
system, and the Y-axis is set perpendicular to the surface and in the 
direction of the depth of the defects. The depth of defects is set to 
have positive Y values.  

• Modification related to the normalized coordinates: The input 
point variables are changed from a 9-dimensional vector (XYZ, RGB, 
and X’Y’Z’) to a 7-dimensional vector (XYZ, RGB, and Y′) by 

removing the normalized values of the X and Z coordinates, and this 
vector is fed to the network. X’, Y′, and Z’ are the normalized co
ordinates of X, Y, and Z, which have values between 0 and 1. As the 
depth of defects are in the Y direction, therefore this value can help 
the model to consider another feature related to the depth of defects.  

• Loss function: As the defects’ number of points in this research is 
less than the no defect number of points (defect points are almost 
14% of the whole point cloud), which is known as the issue of 
imbalanced datasets, a weighted softmax cross entropy loss function is 
utilized to adapt the DGCNN models to the prepared dataset, and the 
corresponding weight vector is set based on the distribution of points 
label among the three classes. The method of distribution-based loss 
function is selected as a label weight score of classes is not dependent 
on how the instances are sampled, which can be more practical in 
this case. The label weight score of class i is calculated statically and 
added to the model using Eq. 1 and Eq. 2 [66,67]. 

Distribution of points with classi label =

∑N

i=1
Ci

Ci
(1)  

Label weight score of classi =
Distribution of points with classi label

∑N

i=1
Distribution of points with classi label

(2) 

Where N is the number of classes and Ci is the total number of points 
for each class. 

(b) NVE-DGCNN: The only modification in addition to those in 
adapted DGCNN is the consideration of the normal vector in NVE- 

Table 1 
DGCNN, adapted DGCNN and NVE-DGCNN hyperparameters.  

Parameter DGCNN Adapted DGCNN NVE-DGCNN 

Classes 
Building 
indoor objects 
(11 classes) 

Cracks, spalls, 
no defect 

Cracks, spalls, 
no-defect 

Input Variables 
X, Y, Z, R, G, B, 
X’, Y′, Z’ 

X, Y, Z, R, G, B, Y′ X, Y, Z, R, G, B, Nx, 
Ny, Nz,Y′ 

Number of points 
in each block 

4096 pts 8192 pts 8192 pts 

Size of blocks (m) 1 m × 1 m ×
Zmax 

0.4 m × Ymax ×

0.4 m 
0.4 m × Ymax ×

0.4 m 
Stride N.A. 0% 25% 
Convolving 

direction XY surface XZ surface XZ surface 

Number of nearest 
neighbors (k) 20 20 20 

Number of epochs 100 50 50 
Optimizer Adam Adam Adam 
Weight vector for 

loss function 
Softmax cross 
entropy 

Weighted Softmax 
cross entropy 

Weighted Softmax 
cross entropy 

Learning rate 1e-3 (decays exponentially to a minimum of 1e-5)  

Fig. 2. Proposed method for concrete surface defect semantic segmentation using adapted DGCNN and NVE-DGCNN.  
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DGCNN. The adapted DGCNN method was enhanced by considering the 
normal vector feature in the NVE-DGCNN. NVE-DGCNN is modified to 
consider a 10-dimensional vector by adding the components of the 
normal vector (Nx, Ny, and Nz) as additional point features to the 7- 
dimensional vector in adapted DGCNN. The input variables are XYZ, 
RGB, NxNyNz, and Y′. Fig. 1 shows the architecture of the NVE-DGCNN. 
In the NVE-DGCNN segmentation model, the parameter K represents the 
number of edge features computed for every point within each Edge
Conv layer, taking into account an input of n points. The model archi
tecture encompasses a sequence of three EdgeConv layers, designed to 
capture and extract local edge features. Following these layers, a max- 
pooling layer is employed to aggregate global features from the block. 
Subsequently, three fully connected (FC) layers are utilized, incorpo
rating a dropout layer in the middle, to classify the n points into three 
distinct classes. A weighted softmax cross entropy loss function is 
employed to optimize the classification performance, allowing for the 
incorporation of class-specific weights. 

The adapted DGCNN and NVE-DGCNN hyperparameters are shown 
in Table 1. 

3.2. Steps of applying the modified DGCNN models 

There are six main steps in applying the modified DGCNN models: 
(1) data collection, (2) manual annotation, (3) data pre-processing, (4) 
training and evaluation, (5) testing, (6) sensitivity analysis. Fig. 2 shows 
the proposed method for concrete surface defect semantic segmentation 
using adapted DGCNN and NVE-DGCNN in detail. However, the normal 
vector estimation and sensitivity analysis steps are only implemented for 
NVE-DGCNN. 

3.2.1. Data collection 
The geometric features of defects, particularly the depth, play a 

significant role in extracting important features and having accurate 
results. Currently, most of available online datasets for concrete surface 
defects are image-based. Therefore, data collection is an important step 
and has to be done accurately. The scanner position and the scanning 
parameters, such as resolution, quality, Field of View (FOV), and the 
number of scanned points, are the factors that can affect the visibility of 
defects in the collected point cloud data. 

3.2.2. Data preparation 
After data collection, irrelevant points of the point cloud data in each 

scan need to be eliminated, and all the scans will be prepared for 
registration. The irrelevant points elimination process involves the 
removal of those data points that are considered unwanted or extra
neous resulting from the scanning process. Then, different areas are cut 
from the registered point cloud data, and different parts are segmented 
in each area. The selected parts need to be manually annotated based on 
the types of targeted surface defects. As shown in Fig. 2, in this research, 
two main types of surface defects, which are cracks and spalls, are 
considered. Each part of the dataset is annotated into three categories of 
cracks, spalls, and no defect. Furthermore, in this research, to enlarge 
the size of the dataset, the augmentation method of flipping the point 
cloud is used, where the annotated parts are flipped with respect to the 
YZ plane. The authors developed a Python code to facilitate the flipping 
of annotated parts. This process involved reorienting the parts to achieve 
a flipped orientation. 

3.2.3. Data pre-processing 
This research considers two approaches for preparing the dataset and 

feeding the MLP classifier of the DGCNN network. In the first approach, 
the original dataset files are converted into data label files, which are 2D 
matrices with XYZRGBL in each line. Then, each part is split into blocks, 
and for each block, normalized location values on the Y surface are 
added [19]. Each point is represented as a 7-dimensional vector of XYZ, 
RGB, and Y′. XYZ refers to points coordinate values in point cloud data. 

RGB (Red, Green, and Blue) refers to the color of each point in the point 
cloud. L refers to the annotated label for each point (cracks, spalls, and 
no defect). These features were used for the training process of the 
adapted DGCNN. In the second approach, an additional hand-crafted 
point feature, which is the normal vector (Nx, Ny, and Nz) is added to 
feed a MLP classifier of NVE-DGCNN. Previous works, such as Hyeon 
et al. [68] investigated the effect of considering normal vectors as an 
additional feature for semantic segmentation of building elements and 
stated that considering the normal vectors in CNN networks can improve 
the model’s performance. 

Then, the sizes of blocks are defined based on the sizes of the 
structural defects (smallest segment or the largest defect) in the dataset. 
In this research, the smallest dimension of segments is 46 cm, and the 
largest defect size is 60 cm. Hence, the selected block size in the data pre- 
processing step is assumed to be at least 40 cm × 40 cm on the XZ sur
face, with the depth of the defects as the third dimension, which is equal 
to the depth of the deepest defect in each segment. As shown in Fig. 2, in 
this step, the wrapped and normalized points inside the blocks are 
converted to Hierarchical Data Format (HDF) [69], and HDF5 files are 
used for the training process in the next step. 

3.2.4. Training and evaluation 
After the data pre-processing step, the dataset will be fed as input for 

the modified model. Each CNN layer receives inputs through the pre
vious layer’s local receptive fields. Neurons extract basic geometric 
features such as edges, boundaries, and corners using local receptive 
fields, which are also known as filters or kernels. While the model is 
being trained, about 20% of the data is used to assess initial accuracy, 
observe how the model learns, and adjust hyperparameters. As discussed 
in Section 3.1, a series of three EdgeConv layers followed by three fully- 
connected layers are included in the segmentation model of DGCNN, 
and the number of the K-nearest neighbors of a point for EdgeConv 
layers is specified for the input of n points in the model. The number of 
the K-nearest neighbors of a point for EdgeConv layers is set equal to 20 
following the suggested value by Wang et al. [19]. The details of the 
training and evaluation are given in Section 5. 

3.2.5. Testing 
To validate the model accuracy, the unseen parts of the dataset, 

which are not used in the training and evaluation steps, are used for the 
testing step. The confusion matrix is used to describe the model’s per
formance using the equations presented in Table 2. In this research, the 
term overall accuracy refers to the percentage of correct predictions for 
the test data. Furthermore, the recall is assumed to be more relevant than 
precision as the process of concrete surface inspection aims to minimize 
the chance of missing actual defect points, which can be achieved by 
minimizing the False Negative prediction of the model. 

3.2.6. Sensitivity analysis 
As shown in Fig. 2, sensitivity analysis was done in this research to 

investigate the effect of different input variables on the network’s 

Table 2 
Model performance metrics.  

Performance metrics Equation 

Precision TP
TP + FP 

Recall TP
TP + FN 

F1 score 2×
Precision × Recall
Precision + Recall 

Intersection over Union (IoU) TP
FP + TP + FN 

Overall accuracy 
TPCrack + TPSpall + TPNo defect

All perdiction of the points  

Note: TP refers to true positives, FP refers to false positives, and FN refers to false 
negatives 
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performance. The dataset’s density depends on the block size and the 
number of points per block. Blocks with densities more than the pre-set 
value result in up-sampling. On the other hand, densities less than the 
pre-set value for each block result in down-sampling. Therefore, the 
distribution of segments based on their densities should be considered. 
The hyperparameters related to the dataset, which are considered in this 
research, are: (1) number of points, (2) size of the block, and (3) size of 
stride. The number of points per block is selected based on the density 
range and the pre-set default block size (40 cm × 40 cm). The number of 
points per block of 8192 is selected as the first acceptable value. Then 
the density of points in each block is increased by raising the number of 
points. The density of most segments of the prepared dataset is between 
9049 and 329,369 pts/m2. Fig. 3 shows the list of number of points per 

block, block sizes, and their densities. Increasing the number of points to 
more than 12,288 could not be applied due to computation resource 
limitations (i.e., RAM). Moreover, the density of the block with the size 
of 20 cm × 20 cm and number of points of 14,336 is more than 329,369 
pts/m2, which is out of the range for this research. Then the block size is 
decreased for the same pre-set number of points to increase the density 
of points in each block. Stride can be added to shift the number of points 
per block over the input matrix. Considering the overlapped number of 
points per block may improve the results. Therefore, the effect of stride 
on the results is considered in the sensitivity analysis. 

Fig. 3. List of number of points per block, block sizes (cm), and their densities.  

Fig. 4. Workflow of as-inspected modeling.  
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3.3. As-inspected modeling 

The current BIM information does not support the representation and 
integration of defect information. Integrating detected defect informa
tion with BIM will facilitate accessing and updating the inspected defect 
information at different phases of the lifecycle resulting in improved 
efficiency and reduced rate of data input errors. As-inspected modeling 
will help to store the inspection in an efficient and precise way. It can 
also enable the tracking and analysis of the changes throughout the 
lifecycle. The as-inspected BIM model not only contains the basic ge
ometry of defects but also semantic information about their type, 
severity, etc. Fig. 4 shows the workflow of the as-inspected modeling 
process. The following main steps are used to semi-automate the process 
of as-inspected modeling: 

(1) Defects semantic segmentation: The as-built bridge model is 
assumed to be available. The semantic segmentation results of NVE- 
DGCNN for crack and spall defects are used for the as-inspected 
modeling purpose. 

(2) Clustering of segmented defects: Density-based spatial clus
tering, which is proposed by Liu et al. [70], is used in this step to create 
spatial proximity relationships to cluster the defects [71]. The density- 
based spatial clustering algorithm uses the concept of reachability, 
which refers to how many neighbors a point has within a given radius. 
This algorithm does not need a specific number of clusters and works 
well for noisy datasets. 

(3) Calculating main dimensions of each defect: An algorithm is 
used to find the Minimum Bounding Box (MBB) for each cluster [72,73], 
and geometrical information of cracks and spalls including the defects’ 
length, width, and depth are calculated based on the Euclidean distance 
between the corners of the associated bounding box. 

(4) Defining the severity level of each defect and condition of 
element: The severity level of each defect is defined based on Table 3. 
This table shows the severity levels of crack and spall defects based on 
the Ontario Structure Inspection Manual (OSIM) [74]. The element 
condition is also defined based on the severity level, as discussed in 
OSIM. 

(5) Aligning segmented defects to the initial coordinate system: 
The segmented defects are aligned to the initial coordinate system by 
considering each point’s normal vector using the Normal Iterative 
Closest Point (NICP) algorithm [75], which is proposed by Serafin and 
Grisetti [76]. NICP is an iterative technique that leverages the normal 
distribution transform to generate an initial estimation of the relative 
transformation between two point clouds. This algorithm iteratively 
refines the transformation by aligning the corresponding points in the 

source and target point clouds, with the aim of minimizing the overall 
registration error. By utilizing the normal distribution transform, which 
characterizes the local surface geometry, NICP enables the algorithm to 
effectively handle complex and non-rigid deformations in the point 
cloud data. Although some tools such as CloudCompare software can be 
used to align the point clouds manually by picking at least four pairs of 
reference points in the source and target point clouds, this process is 
time-consuming. 

(6) 3D meshing of segmented defects: In this step, the clusters of 
detected defects are converted into a 3D mesh product using 3DRe
shaper software [77] to have an accurate model of the defect objects. 

(7) Importing defects as objects in BIM model: In this step, a 
Dynamo script using Mesh Toolkit [78] is utilized to import the 3D mesh 
defects into the BIM model. Although the case study that will be 
explained in Section 6 is about bridge inspection, where the structure 
model is referred to as Bridge Information Model (BrIM), the term BIM 
will be used in the rest of this paper. 

4. Data collection and dataset pre-processing 

This study used point cloud datasets from four reinforced concrete 
bridges in Montreal, scanned using a FARO Focus3D scanner [79]. The 
specifications of this scanner are presented in Table 4. The images of the 
scanned bridges are shown in Fig. 5. The position of the scanner was at a 
distance of 5 to 10 m from the scanned surfaces. Table 5 shows the 
scanning parameters. CloudCompare software [80] is used to register 
and eliminate the irrelevant points of the point cloud data. The scanned 
data’s quality depends on the two main parameters of density and ac
curacy [81]. The number of points in a specific area represents the point 
cloud density [82]. The resolution parameter represents the number of 
points that the scanner uses to measure the environment during the 
scanning process (between 1 (710.7 million points) - 1/32 (11.1 million 
points)), and the quality represents the number of times the scanner hits 
the same point during the scanning (between 1× - 8×) [83]. Therefore, 
the distance between two points next to each other depends on the 
resolution parameter. 

The scanning process in this step is affected by several factors, such 
as the battery capacity and performance limitations, especially in severe 
weather conditions, scanning time, and traffic constraints. For this 
reason, different settings, including different numbers of stations, were 
used to scan each of the bridges. In some scans, the FOV was reduced to 
avoid scanning irrelevant objects (e.g. moving vehicles). 

A careful selection process was conducted within each scanned area 
to identify several parts that exhibited defects. Subsequently, within 
each selected part, a comprehensive annotation procedure was under
taken to categorize the specific instances of cracks, spalls, and no defect 
regions. Careful consideration was given to selecting the most optimal 
scans for this analysis, ensuring that the quality of the available scans 
from the scanned surfaces was of the highest standard. Ultimately, a 
total of 102 selected segmented parts were chosen based on the afore
mentioned criteria, facilitating a comprehensive examination and 
analysis of the identified defects in the subsequent stages of the study. 
The number of annotated cracks in the selected parts is 595, and the 
number of annotated spalls is 773. The annotation process is done 
manually in CloudCompare software using the following rules based on 
experience: (1) a specific range of 150,000 pts. to 400,000 pts. is 
considered for the number of points of each selected part; (2) the 
scanned surfaces are classified into rectangular parts because of the box 

Table 3 
Severity of crack and spall defects based on OSIM [74].  

Surface 
defect types 

Severity (all dimensions in mm) 

Crack 
Hairline 
(width <
0.1) 

Narrow 
(0.1 ≤ width ≤
0.3) 

Medium 
(0.3 < width ≤
1.0) 

Wide 
(1.0 <
width) 

Spall 

Light 
(Any 
direction 
<150 
or depth <
25) 

Medium 
(150 ≤ Any 
direction ≤300 
or 25 ≤ depth 
≤ 50) 

Severe 
(300 < Any 
direction ≤600 
or 50 < depth 
≤ 100) 

Very severe 
(600 < Any 
direction 
or 100 <
depth)  

Table 4 
FARO Focus3D LiDAR scanner specifications [83].  

LiDAR Points per Second Field of View Angular Resolution Accuracy Measurement Range 

Vertical Horizontal 

FARO Focus 3D 976,000 305◦ 360◦ 0.009◦ ±2 mm 1.5 m – 120 m  
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shape of the blocks in the model; and (3) the part size should consider 
the higher density of points in some parts and it should not contain more 
than the maximum defined number of points, which is 400,000 pts. To 
achieve this, all areas, excluding the surface edges, were carefully 
delineated. Each area was then further segmented into individual parts. 
The specific focus of the segmentation was on identifying and dis
tinguishing two types of defects, which are cracks and spalls. Further
more, the handcrafted normal vector feature (Nx, Ny, and Nz) is 
computed in CloudCompare software to prepare the NVE-DGCNN 
dataset. The annotated datasets are split into five areas. Areas 1 to 3 
are used for training, Area 4 is used for evaluation, and Area 5 is dedi
cated to testing. The total number of segmented parts after adding the 
flipped data is 204 parts. The statistical information of the dataset, 
including the flipped data, is given in Table 6. Fig. 6 shows the structure 

of preparing the dataset including a sample of an annotated segment, 
where the light-gray background represents no defects, black areas 
represent spalls, and dark-gray thin areas represent cracks. 

5. Implementation of the modified DGCNN models 

5.1. Implementation of adapted DGCNN 

A Compute Canada cluster is used to implement this case study using 
4 NVIDIA V100 Volta GPUs with 32 GB RAM per GPU, 24 CPUs, and 123 
GB of memory. The number of epochs is set to 50. The initial learning 
rate is 0.001, and it decays exponentially to a minimum of 1e-5. The 
percentage of the defect points is almost 14% of the whole point cloud 
and is much less than the no-defect points (86%). Therefore, as discussed 

Fig. 5. Scanned bridges.  

Table 5 
Scanning parameters of four scanned bridges in Montréal.  

Scans Number of Stations Resolution Quality Horizontal FoV Vertical 
FoV 

Number of Points (Mpts) 

Bridge 1 
Scan 1 8 1/4 6× 23◦ to 259◦ − 42.5◦ to 71◦ 25.5 
Scan 2 4 1/4 6× 23◦ to 259 ◦ − 42.5◦ to 71◦ 25.5 

Bridge 2 Scan 3 6 1/1 2× 0◦ to 360◦ − 60◦ to 90◦ 710.7 
Bridge 3 Scan 5 4 1/2 4× 0◦ to 360◦ − 45◦ to 71◦ 134.5 
Bridge 4 Scan 6 2 1/2 4× 0◦ to 360◦ − 60◦ to 90◦ 177.7  

Table 6 
The statistics of the prepared dataset.  

Dataset Number of segmented parts Number of points Defects No defect 

Cracks Spalls Number of points 

Number of cracks Number of points Number of spalls Number of points 

Training 
(59.5%) 

Area 1 32 10,418,902 264 104,256 226 715,768 9,598,878 
Area 2 44 11,003,768 334 112,436 266 282,822 10,608,510 
Area 3 42 10,651,316 160 67,714 356 744,356 9,839,246 

Evaluation 
(19.6%) Area 4 44 10,552,584 192 80,454 328 762,156 9,709,974 

Testing 
(20.9%) Area 5 42 11,257,240 240 128,538 370 1,365,228 9,763,474 

Total 204 53,883,810 1190 493,398 1546 3,870,330 49,520,082  

F. Bahreini and A. Hammad                                                                                                                                                                                                                 



Automation in Construction 159 (2024) 105282

10

in Section 3.1, a weighted softmax cross entropy loss function is defined 
in the model based on the points distribution of the classes (cracks, 
spalls, and no defect), which is [0.714, 0.271, 0.016]. By using a 
weighted loss function, the effective weight of points of each class in the 
correcting process of backpropagation can be adjusted. 

In the first step, to implement the adapted DGCNN, three cases are 
defined with different numbers of input points of 8192, 10,240, and 
12,288 (Case A1 to C1), which are sampled for each block during the 
training process. The training and evaluation results, including the 
overall accuracy and mean loss of Cases A1 to C1, are presented in 
Table 7. Precision, recall, F1 score, IoU, and overall accuracy are 
calculated to evaluate the semantic segmentation results for Cases A1 to 
C1. The test results of the adapted DGCNN (Table 8) show that the 
detecting recall for cracks and spalls for Case C1 (12,288 points) are 

58.67% and 87.40%, respectively. Increasing the number of points from 
8192 to 12,288 improved the cracks semantic segmentation recall from 
55.20% to 58.67%. However, this increase resulted in decreasing the 
spall recall from 89.77% to 87.40%, and no defect recall from 97.17% to 
96.64%. This is because increasing the number of points sometimes can 
cause overfitting [84]. 

As the depths of segmented parts are different, and the learning 
process depends on the maximum depth of the part’s defects, the recall 
result of the tests is categorized based on the depth of segmented parts 
used in the test as shown in Table 9. As shown in this table, deeper parts 
can increase recall up to 80.04% for cracks and 93.33% for spalls. 

Furthermore, as explained in Section 3.1, a test was performed based 
on the original DGCNN to examine the effect of using the normalized X, 
Y, and Z values for the KNN. The test was performed for the number of 
points of 8192, and block size of 40 × 40 cm with no stride. The com
parison of the DGCNN with original KNN and adapted DGCNN with 
modified KNN shows that the models’ performance declined signifi
cantly by considering the normalized location values for KNN. The recall 
results of DGCNN with original KNN were 41.17% for cracks and 
41.27% for spalls. The recall results of adapted DGCNN with modified 
KNN were 55.20% for cracks and 89.77% for spalls. 

Three samples of the test results for Case C1 from the adapted 
DGCNN are shown in Fig. 7. The light-gray background represents no 
defect, black areas represent spalls, and dark-gray thin areas represent 
cracks. 

This part of the implementation defines fifteen cases based on the 

Fig. 6. The structure of the dataset  

Table 7 
Training and evaluation results for adapted DGCNN.  

Case Number of sampled points for each block Block size (cm) Training Evaluation Training time 

Mean loss Overall accuracy (%) Mean loss Overall accuracy (%) 

A1 8192 40 × 40 0.0022 97.54 0.0081 97.50 13 h 44 m 
B1 10,240 40 × 40 0.0024 97.39 0.0090 97.65 16 h 35 m 
C1 12,288 40 × 40 0.0030 97.04 0.0082 96.88 20 h 18 m  

Table 8 
Testing results for adapted DGCNN (%).  

Case Overall accuracy Cracks Spalls No defect 

Precision Recall F1 score IOU Precision Recall F1 score IOU Precision Recall F1 IOU 

A1 95.94 69.98 55.20 61.76 44.68 79.30 89.77 84.2 72.72 98.54 97.17 97.85 95.79 
B1 95.59 68.95 55.31 61.38 44.28 77.47 89.41 83.0 71.0 98.48 96.82 97.64 95.39 
C1 95.24 49.73 58.67 53.83 36.83 77.00 87.40 81.9 69.3 98.48 96.64 97.55 95.22  

Table 9 
Defect semantic segmentation recall based on the depth of defects for adapted 
DGCNN (%).  

Case Number of 
sampled 
points for each 
block 

Depth (cm) 

D ≤ 3 3 < D < 7 7 ≤ D 

Cracks Spalls Cracks Spalls Cracks Spalls 

A1 8192 35.22 90.78 44.87 87.59 76.91 92.68 
B1 10,240 36.65 88.48 42.52 86.99 79.00 93.22 
C1 12,288 39.22 81.91 48.07 84.39 80.04 93.33  
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NVE-DGCNN to identify the effect of the hyperparameters on the 
performance. 

The training and evaluation results, including the overall accuracy 

and mean loss of Cases A2 to O2, are presented in Table 10. Precision, 
recall, F1 score, IoU, and overall accuracy are calculated to evaluate the 
testing of the cases as shown in Table 11. The processing time for testing 

Fig. 7. Test results from three samples of adapted DGCNN (Case C1).  

Table 10 
Training and evaluation results for NVE-DGCNN.  

Case Number of points per block Block size (cm) Stride 
(cm) 

Training Evaluation Training time 

Mean loss Overall accuracy (%) Mean loss Overall accuracy (%) 

A2 8192 
40 × 40 40 (0%) 

0.0012 98.60 0.0097 98.58 14 h 46 m 
B2 10,240 0.0008 99.12 0.0077 98.36 18 h 35 m 
C2 12,288 0.0009 98.76 0.0070 98.62 20 h 26 m 
D2 8192 

30 × 30 30 (0%) 
0.0013 98.74 0.0092 95.16 21 h 01 m 

E2 10,240 0.0007 99.13 0.0104 95.50 27 h 05 m 
F2 12,288 0.0013 98.67 0.0069 95.26 31 h 46 m 
G2 8192 

20 × 20 20 (0%) 
0.0011 98.97 0.0090 94.84 41 h 44 m 

H2 10,240 0.0008 99.14 0.0117 98.14 52 h 50 m 
I2 12,288 0.0016 98.46 0.0148 97.58 65 h 14 m 
J2 8192 

40 × 40 30 (25%) 
0.0004 99.53 0.0064 97.47 19 h 50 m 

K2 10,240 0.0006 99.34 0.0077 98.05 24 h 35 m 
L2 12,288 0.0006 99.29 0.0087 96.63 29 h 4 m 
M2 8192 

40 × 40 20 (50%) 
0.0003 99.62 0.0084 97.88 36 h 41 m 

N2 10,240 0.0003 99.62 0.0091 97.56 44 h 55 m 
O2 12,288 0.0004 99.59 0.0080 97.28 55 h 31 m  
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the dataset in the inspection of one defect is less than one minute. The 
results show that decreasing the block size to 20 × 20 cm or adding the 
50% stride for the block with the size of 40 × 40 cm will decrease the 
cracks and spalls recall. The best test results of the NVE-DGCNN show 
that the recall for cracks and spalls for Case J2 (8192 points and 25% 
stride) are 98.56% and 96.50%, respectively. 

For sensitivity analysis of NVE-DGCNN, fifteen cases (Case A2 to O2) 
are defined and validated using three numbers of points of 8192, 10,240, 
and 12,288, and three block sizes of 40 × 40 cm, 30 × 30 cm, and 20 ×
20 cm. Moreover, the stride could not be applied to 20 × 20 cm due to the 
computation resource limitations (i.e., RAM size). Therefore, the effect 
of stride size is investigated for the block size of 40 × 40 cm by applying 
0%, 25%, and 50% strides (40, 30, and 20 cm). Nine cases were studied 
with 0% stride (A2 to I2). In all cases with the same block size and stride, 
the number of points increased from 8192 to 12,288 (Case A2 to O2). In 
three cases (J2 to L2), the stride was decreased by 25%, and in the 
remaining cases (M2 to O2), the stride considered was 50%. 

Increasing the number of points will decrease the average recall of 
defects in the NVE-DGCNN network. Based on [19], this can be 
explained by the mismatch between the density and the value of the 
number of the K-nearest neighbors. Moreover, increasing the number of 
points may occasionally result in overfitting [84]. Decreasing the block 
size to 25% (30 cm × 30 cm) will increase the cracks average recall by 
1.17%. However, the accuracy of spall decreased by 0.17%. The average 
recall of both cracks and spalls was decreased by decreasing the block 
size to 50% (20 cm × 20 cm). Decreasing the stride to 25% (30 cm) 
improved the cracks average recall by 1.63%. The average recall of both 
cracks and spalls was decreased by decreasing the stride to 50% (20 cm). 

NVE-DGCNN improves the semantic segmentation performance of 
cracks a little more than spalls (almost 2% in Case J2). Adding the 
normal vector feature to the points specifies additional geometric in
formation. On the other hand, the range of the change of normal vector 
in cracks is less than in spalls. Therefore, considering the normal vector 
may increase the chance of detecting cracks more than spall. In the 
testing phase, most unforeseen cracks points were considered as no 
defect in adapted DGCNN, but where correctly classified as cracks in 
NVE-DGCNN. 

Furthermore, the EdgeConv layer can detect the edges by applying 
an operation on edges to define the relationships between a point and its 
neighbors [19,85]. Three samples of the best results for Case J2 from the 
NVE-DGCNN are shown in Fig. 8. As shown in this figure, the NVE- 
DGCNN detected most of the cracks when the normal vector feature 
was added to the points. In addition, in Sample 2, the network efficiently 
detected a line that looks like a crack as a no defect. This example in
dicates the advantage of point cloud-based methods over image-based 
methods. 

As shown in Table 12, deeper parts can increase recall up to 99.38% 
for cracks and 99.41% for spalls for Cases J2. 

As shown in Table 13, the comparison between adapted DGCNN and 
NVE-DGCNN shows that using the normal vector as an additional point 
feature improved the model’s accuracy for the same number of points of 
8192, 10,240, and 12,288, and block size of 40 × 40 cm with 0% stride.. 

In addition, to determine the effect of K-nearest neighbors in the 
model, five cases with different numbers of K (5, 10, 15, 20, and 25) are 
defined for Case J2, which has the best performance. As Table 14 shows, 
the case of K equal to 20 (suggested value by Wang et al. [19]) still has 
the best performance, and increasing the number of K will decrease the 
network’s performance. As explained earlier in this section, mismatch 
between the density and the value of the number of the K-nearest 
neighbors may decrease the performance [19]. 

6. Case study of as-inspected modeling 

This section aims to automate the process of as-inspected modeling 
based on the results of the concrete surface defects semantic segmen
tation, including cracks and spalls. The goal of the case study is to Ta
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implement as-inspected modeling. The case study involves one of the 
scanned bridges in Section 4.4. The scan stations were located under the 
bridge on Rue Lucien-L’Allier between Rue Saint-Antoin West and René- 
Lévesque Boulevard West, Montreal. Fig. 9 shows the images of bridge. 

The point cloud registration process is done with Trimble RealWorks, 
and the point cloud of the bridge is cleaned up from most unrelated data 
using Recap Pro. Fig. 10(a) shows an instance of the raw point clouds in 
their initial state prior to undergoing the clean-up process. Fig. 10(b) 
shows the cleaned-up scan of the bridge. 

The inspector usually focuses on scanning the areas that are expected 
to have defects. However, in this study, an additional step of scan-to-BIM 

Fig. 8. Test results from three samples of NVE-DGCNN (Case J2).  

Table 12 
Semantic segmentation recall based on the depth of defects for NVE-DGCNN 
(%).  

Case Number of 
sampled 
points for each 
block 

Depth (cm) 

D ≤ 3 3 < D < 7 7 ≤ D 

Cracks Spalls Cracks Spalls Cracks Spalls 

J2 8192 94.67 94.75 99.32 97.36 99.38 99.41  

Table 13 
Comparison of the results of adapted DGCNN and NVE-DGCNN (recall %).  

Number of sampled points 
for each block 

Block size 
(cm) 

Adapted 
DGCNN 

NVE-DGCNN 

Cracks Spalls Cracks Spalls 

8192 40 × 40 55.20 89.77 96.20 95.30 
10,240 40 × 40 55.31 89.41 95.49 94.60 
12,288 40 × 40 58.67 87.40 95.32 95.53  

Table 14 
Results of best NVE-DGCNN case with different numbers of K-nearest neighbors.  

Case Number of sampled 
points for each block 

Stride 
(cm) 

Number of nearest 
neighbors (K) 

Cracks Spalls 

Recall Recall 

J2–1 

8192 30 
(25%) 

5 98.14 95.22 
J2–2 10 97.67 94.23 
J2–3 15 98.21 94.21 
J2–4 20 98.56 96.50 
J2–5 25 97.34 94.98  
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was done, as the 3D model of the bridge was not available. In this step, 
the registered scan file was exported to “.rcs” format, and then imported 
into Autodesk Revit 2019 software. Fig. 11(a) shows the imported cloud 
data in Revit software. Fig. 11(b) shows the 3D model of the bridge 
based on point cloud data. 

As Fig. 12 shows, a sample of the point cloud on the abutment surface 
of the bridge is selected for defect semantic segmentation. 

Fig. 13(a) shows crack and spall defects on point cloud data. Fig. 13 
(b) shows detected crack and spall defects using NVE-DGCNN. As dis
cussed in Section 3.3, detected crack and spall defects’ length, width, 
and depth were calculated using density-based spatial clustering and the 
MBB algorithm. Figs. 14(a) and (b) show the clusters of the cracks and 
spalls, respectively. Fig. 15(a) shows an example of the MBB of crack 
cluster Number 0 of in the sample. Fig. 15(b) shows an example of the 
MBB for spall cluster Number 2 in the sample. Tables 15 and 16 show the 
geometrical and semantic information of cracks and spalls of the sample, 
respectively. 

The 3D model of the as-inspected bridge based on point cloud data is 
used for defect product modeling. After applying clustering and MBB 
algorithms, the segmented defects are aligned to the initial coordinate 
system using NICP algorithms, as explained in Section 3.3. Then, the 
segmented defects with an aligned coordinate system are saved as new 
files to be used in the 3D modeling step. The results of aligned segmented 
defects look similar to Fig. 12. 

The clusters of detected defects are converted to 3D mesh products to 

have an accurate model of the defect objects. A Dynamo script using 
Mesh Toolkit [78] is utilized to import the 3D mesh defects into the BIM 
model. The average processing time for the 3D defects presentation in 
the BIM model is a few seconds. Fig. 16 shows the imported defect ob
jects into the model of the bridge abutment in Revit. Finally, the se
mantic information of each defect, including the defect’s type, severity 
levels, and the condition of the defected element, are added manually to 
the BIM model. Fig. 17 shows an example of semantic information for 
cluster Number 4 of spalls in the BIM model. 

7. Discussion 

In previous works, such as [63,64], it is evident that image-based 
processes have demonstrated the ability to provide visually appealing 
and informative visualizations of inspected defects. However, it is 
important to note that while these image-based processes excel in 
visualization, they often lack crucial depth information. The advantage 
of the post-processing stage lies in its ability to complement the visual 
representation of defects with additional depth information. By incor
porating depth data, the post-processing stage enhances defect quanti
fication, characterization, or spatial understanding, which is crucial for 
detailed inspection. 

In another research, Bolourian et al. [86] investigated the effect of 
adding normal vectors to an adapted PointNet++ (SNEPointNet++). 
The best results of this network along with the best results of the NVE- 
DGVNN are shown in Table 17. Compared to SNEPointNet++, NVE- 
DGCNN recalls in detecting cracks and spalls are 5.56% and 4.50% 
better, respectively. 

Table 18 shows that the current image-based classification methods 
have reached 99.5% recall in concrete surface crack defects classifica
tion. However, this study aimed to determine the semantic information 
of each point separately, while the classification methods are not suit
able for this purpose. Moreover, the proposed method focused on mul
ticlass point cloud semantic segmentation while the image-based 
methods focused on binary classification or binary semantic segmenta
tion. To this end, the performance of NVE-DGCNN recall is higher than 
previous image-based semantic segmentation methods. 

Moreover, the previous point cloud-based works for concrete defects 
such as [24,33,34,40] utilized different metrics (i.e. error) or visuali
zation approaches to show the results. Therefore, the results are 
incomparable. 

8. Summary, conclusions, and future work 

This paper developed a new method for point cloud-based defect 
semantic segmentation (NVE-DGCNN) to automate the inspection pro
cess of concrete surface defects, including cracks and spalls, without 
transforming the point cloud into other representations. Moreover, this 
paper investigated two main characteristics related to surface defects (i. 
e. normal vector and depth). The challenges related to the size of the 
dataset and imbalanced classes were studied. Sensitivity analysis was 
applied to capture the best combination of hyperparameters and 
investigate their effects on the network performance. Furthermore, post- 

Fig. 9. Images of the bridge.  

Fig. 10. Cleaned up scan of the bridge.  
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processing of the results of the concrete surface defects semantic seg
mentation was done to semi-automate the process of as-inspected 
modeling. 

The network’s performance was improved by modifying the network 
(e.g., KNN for EdgeConv and the loss function) and by augmenting the 
dataset (i.e. by flipping the point cloud data). The testing showed the 
usefulness and robustness of the proposed method in detecting concrete 
surface defects from 3D point cloud data. Moreover, the results showed 
that the normal vector can be an important factor in the learning process 
of the model and detecting the edge of cracks. 

This research results in the following contributions: (1) Developing a 
method (NVE-DGCNN) for point cloud-based concrete surface defects 
semantic segmentation; and (2) Developing a semi-automated process 
for as-inspected modeling. 

The following conclusions can be drawn from the above contribu
tion: (1) NVE-DGCNN resulted in 98.56% and 96.50% recalls for se
mantic segmentation of cracks and spalls, respectively. NVE-DGCNN is 

more accurate than other point cloud-based methods; (2) The sensitivity 
analysis results showed that decreasing the size of blocks to less than 30 
× 30 cm decreased the recall, as increasing the density of blocks can 
cause overfitting or failure in Euclidean distance computing. Moreover, 
decreasing the stride to 25% improved the network performance in 
terms of recall for the block size of 40 × 40 cm. However, decreasing the 
stride to 50% was not beneficial and decreased the recall. Finally, the 
sensitivity analysis showed that NVE-DGCNN is not very sensitive to the 
points density; (3) The case study showed that deeper cracks and spalls 
in the dataset are easier to detect. In deeper samples, the recalls for 
cracks and spalls reached 99.38% and 99.41%, respectively; and (4) The 
semi-automated process of as-inspected modeling made it possible to 
manage and visualize the detected defects by collecting their dimensions 
and identifying the conditions on the 3D model. 

Despite the above-mentioned contributions, this paper has some 
limitations that should be addressed in the future. The limitations can be 
organized in two categories as follows: 

Fig. 11. 3D model of the bridge based on point cloud data.  

Fig. 12. Selected part from point cloud data.  

F. Bahreini and A. Hammad                                                                                                                                                                                                                 



Automation in Construction 159 (2024) 105282

16

(1) Limitations related to the point cloud-based semantic 
segmentation 

• The implementation of the model for point cloud semantic segmen
tation may entail practical challenges, such as significant time con
sumption and computational resource requirements.  

• A larger dataset is expected to improve the learning process resulting 
in better performance of the model. Therefore, future work will focus 
on collecting and preparing more data to enlarge the dataset. 

Fig. 13. Visualization of detected cracks and spalls of the sample.  

Fig. 14. Clusters in the sample.  

Fig. 15. An example of MBBs for cracks and spalls clusters in the sample.  

Table 15 
Geometric and semantic information of crack defects in the sample.  

Cluster 
number 

Length 
(mm) 

Width 
(mm) 

Depth 
(mm) 

Severity Condition 

0 423 45 4 Wide Poor 
condition 1 339 41 4 Wide  
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Moreover, due to computing resource limitations (i.e. memory and 
processors limitation), it was impossible to study the effect of 
increasing the number of input points of the model to more than 
12,288 per block. Having more computing resources will make the 
opportunity to expand the sensitivity analysis.  

• The proposed method only considered flat surfaces. The performance 
of the network on curved surfaces needs more investigation.  

• In the future, the dataset can be classified into more classes in order 
to consider the levels of severity as described in OSIM.  

• The effects of each point feature on the performance of the NVE- 
DGCNN network were not examined independently (e.g. color). 
Therefore, in the future, it is important to investigate the impact of 
each feature on network performance.  

• The resolution of the point cloud data utilized in the study poses a 
limitation on the achievable accuracy and level of detail in the seg
mentation results. Lower point cloud resolutions may lead to reduced 
precision and potential loss of important semantic information, 
thereby impacting the overall effectiveness of the segmentation 
model.  

• The general applicability of the method in other civil infrastructures 
will be tested in our future work. The applicability of the developed 
method in other civil infrastructures may be subject to constraints 
and variations inherent to different types of structures. Factors such 
as varying geometric complexities, and material properties can in
fluence the performance and generalizability of the segmentation 
method, necessitating careful consideration and adaptation when it 
is applied to different infrastructure scenarios.  

(2) Limitations related to the as-inspected modeling 

• As-inspected modeling will help store the inspection results effi
ciently and precisely, resulting in tracking and analysis of the defect 
changes throughout the lifecycle. The version control (i.e. time- 
series) and tracking of the changes of the as-inspected BIM models 
will be investigated in the future.  

• In this research, the defect’s semantic information, such as the 
severity level, is added manually to the BIM model. Future work will 

Table 16 
Geometric and semantic information of spall defects in the sample.  

Cluster 
number 

Length 
(mm) 

Width 
(mm) 

Depth 
(mm) 

Severity Condition 

0 90 69 8 Light 

Poor 
condition 

1 376 108 35 Medium 
2 391 324 68 Medium 
3 127 53 3 Light 

4 1168 495 64 
Very 
sever  

Fig. 16. Imported bridge abutment’s defect objects in Revit.  
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focus on a fully automated approach to integrate the defect’s se
mantic information with as-inspected modeling. 
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Universitätsverlag der TU Berlin, 2020, https://doi.org/10.14279/depositonce- 
9977. 

[64] M. Artus, M.S.H. Alabassy, C. Koch, A BIM based framework for damage 
segmentation, modeling, and visualization using IFC, Appl. Sci. 12 (6) (2021), 
https://doi.org/10.3390/app12062772. 
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