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Abstract

Enhancing Visual Interpretability in Computer-Assisted Radiological Diagnosis: Deep
Learning Approaches for Chest X-Ray Analysis

Zirui Qiu

This thesis delves into the realm of interpretability in medical image processing, focusing on

deep learning’s role in enhancing the transparency and understandability of automated diagnostics

in chest X-ray analysis. As deep learning models become increasingly integral to medical diagnos-

tics, the imperative for these models to be interpretable has never been more pronounced. This work

is anchored in two main studies that address the challenge of interpretability from distinct yet com-

plementary perspectives. The first study scrutinizes the effectiveness of Gradient-weighted Class

Activation Mapping (Grad-CAM) across various deep learning architectures, specifically evalu-

ating its reliability in the context of pneumothorax diagnosis in chest X-ray images. Through a

systematic analysis, this research reveals how different neural network architectures and depths in-

fluence the robustness and clarity of Grad-CAM visual explanations, providing valuable insights

for selecting and designing interpretable deep learning models in medical imaging. Building on

the foundational understanding of interpretability, the second study introduces a novel deep learn-

ing framework that enhances the synergy between disease diagnosis and the prediction of visual

saliency maps in chest X-rays. This dual-encoder, multi-task UNet architecture, augmented by a

multi-stage cooperative learning strategy, offers a sophisticated approach to interpretability. By

aligning the model’s attention with that of clinicians, the framework not only enhances diagnos-

tic accuracy but also provides intuitive visual explanations that resonate with clinical expertise.

Together, these studies contribute to the field of medical image processing by offering innovative

approaches to improve the interpretability of deep learning models. The findings underscore the

potential of interpretability-enhanced models to foster trust among medical practitioners, facilitate
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better clinical decision-making, and pave the way for the broader acceptance and integration of AI in

healthcare diagnostics. The thesis concludes by synthesizing the insights gained from both projects

and outlining prospective pathways for future research to further advance the interpretability and

utility of AI in medical imaging.
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Chapter 1

Introduction

Medical image processing plays an indispensable role in modern healthcare, particularly in ex-

tracting precise and actionable insights from imaging data to significantly influence diagnostic and

therapeutic decisions. With the advent of deep learning, the capabilities of image processing have

expanded tremendously, introducing a new era of accuracy and efficiency. However, the inherent

opacity of these deep learning models, often described as ”black-box” approaches, poses a signifi-

cant challenge in clinical adoptions and regulataroy approvals, especially in the context of medical

decision-making, where understanding and trust are paramount.

This thesis focuses on enhancing the interpretability of deep learning models used in medical

image processing, specifically targeting lung-related diseases in chest X-ray (CXR) images. It aims

to bridge the gap between advanced AI technologies and their practical, understandable applications

in healthcare. One of the primary methods explored is the generation of saliency maps that align

with the visual attention of clinicians during their diagnostic processes. By ensuring that these

saliency maps closely mimic the areas doctors focus on in CXR images, the thesis strives to make

the diagnostic outcomes derived from AI models more transparent and convincing.

In addition to saliency maps, this work also incorporates techniques like Gradient-weighted

Class Activation Mapping (Grad-CAM), which provides visual explanations for the decisions made

by deep learning models. Figure 1.1 illustrates an example of Grad-CAM for CXR imgages. Grad-

CAM uses the gradients of any target concept flowing into the final convolutional layer to produce a

coarse localization map highlighting the important regions in the image for predicting the concept.
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Figure 1.1: An illustration of Grad-Cam for Chest X-Rays (from [17]).

By applying these interpretability techniques to CXR images, particularly those that capture pul-

monary conditions, the thesis aims to elucidate the decision-making processes of AI models. This

clarification helps build trust between medical professionals and AI models by allowing them to

understand and verify the AI-generated insights, thereby facilitating more informed and accurate

clinical decision-making.

1.1 A Deeper Look Into Chest X-Ray Disease Classification

Chest X-ray (CXR) classification is a crucial component in the diagnostic processes within

healthcare, particularly in the detection and management of various pulmonary conditions. X-rays

are among the most common and widely utilized diagnostic imaging tools due to their accessibility,

cost-effectiveness, and the ability to quickly provide valuable insights into numerous health condi-

tions, ranging from pneumonia and tuberculosis to lung cancer and COVID-19. The classification

of these images, therefore, holds paramount importance, as it aids clinicians in making rapid and

accurate medical decisions that are crucial for patient care [37].

The advent of deep learning has significantly revolutionized the field of CXR classification by
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introducing models capable of achieving and sometimes surpassing human-level accuracy in iden-

tifying pathologies. These advancements have not only enhanced diagnostic precision but have also

streamlined workflow in medical settings, reducing the burden on radiologists and allowing more

timely intervention for patients. However, despite these benefits, the deployment of deep learn-

ing models in clinical practice has been hampered by the ‘black-box’ nature of these technologies,

where the reasoning behind their predictions is not always clear [25].

This opacity in AI-driven tools poses a significant challenge, as medical professionals seek not

only predictive accuracy, but also transparency and interpretability in automated clinical decisions.

Addressing these concerns involves navigating complex ethical and operational considerations, en-

suring that AI technologies augment healthcare in a manner that is both ethical and beneficial to

patient care [9].

1.2 The Need for Interpretability in Chest X-Ray Classification

The necessity for interpretability in chest X-ray (CXR) classification arises from several critical

demands in the healthcare domain, particularly around ensuring the safety, reliability, and clinical

utility of artificial intelligence (AI) applications. CXRs are instrumental in diagnosing a wide range

of pulmonary diseases, from common conditions like pneumonia to more severe pathologies such as

lung cancer. While deep learning models have significantly enhanced the accuracy of CXR analysis,

their adoption in clinical practice hinges on more than just high-performance metrics; it requires a

clear understanding of how these models arrive at their conclusions.

• Transparency and Trust: In medical practice, decisions that affect patient care must be

based on transparent and reliable methods. Deep learning models, with their complex ar-

chitectures, often function opaquely. Without a clear understanding of how decisions are

made, clinicians may be hesitant to trust and rely on these tools, irrespective of their accu-

racy. Interpretability helps demystify the decision-making process of AI systems, fostering

trust among healthcare providers by aligning model outputs with clinical expectations and

reasoning.[38, 20]

• Clinical Validation and Debugging: Interpretability facilitates the clinical validation of AI
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models by allowing medical experts to assess the rationale behind specific diagnostic sugges-

tions. This review process is essential not only for integrating AI tools into routine clinical

workflows but also for identifying and correcting potential errors or biases in the models. By

understanding the features and patterns that a model considers important, clinicians and data

scientists can fine-tune these systems to improve their accuracy and generalizability across

diverse patient populations.[55]

• Incorporating Clinical Expertise: Despite the advances in visual explanation methods like

Grad-CAM, these tools often fall short in precisely highlighting areas of importance iden-

tified by clinical experts. Studies have shown that Grad-CAM heatmaps (e.g., Fig. 1.2) do

not always align with the critical regions marked by radiologists, potentially leading to mis-

interpretations and diagnostic oversights [22]. To address these limitations, integrating direct

inputs such as eye-gaze data from radiologists into the training and validation of these models

is crucial. This integration can enhance the model’s focus, ensuring that the AI’s attention

coincides with clinically relevant features, thereby improving both the interpretability and

reliability of the outputs.

1.3 Thesis Contributions

This thesis advances the interpretability of deep learning models in medical image processing,

specifically within the realm of chest X-ray (CXR) classification. Here are the detailed contributions

based on the comprehensive analysis presented in the two published/submitted papers:

(1) Grad-CAM Effectiveness Across Different Architectures: The first contribution of this

thesis is a systematic investigation of Gradient-weighted Class Activation Mapping (Grad-

CAM) across a variety of deep learning architectures. Detailed in Chapter 3, this study

evaluates the robustness and effectiveness of Grad-CAM in generating interpretable visual

explanations for various popular CXR classification models. It explores how variations in

network depth and architectural design influence the quality of Grad-CAM visualizations,

4



Figure 1.2: Qualitative comparison of the interpretability of U-Net based probability maps in com-
parison with GradCAM for a few example use cases. (a) Congestive Heart Failure (CHF). The
physician’s eye gaze tends to fall on the enlarged heart and hila, as well as generally on the lungs,
(b) Pneumonia. The physician’s eye gaze predictably focuses on the focal lung opacity and (c).
Normal. Because the lungs are clear, the physician’s eye gaze skips around the image without
focus[22]
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offering crucial insights for selecting optimal models that balance interpretability with diag-

nostic accuracy.

(2) Novel Multi-task Learning Framework for Enhanced Interpretability: The second and

more theoretical contribution of this thesis, which will be extensively discussed in Chapter

4, involves developing a novel multi-task learning framework. This framework is designed

for simultaneous disease diagnosis and clinical visual attention prediction using chest X-rays.

By integrating a dual-encoder, multi-task UNet architecture that combines a DenseNet201

backbone with a Residual and Squeeze-and-Excitation block-based encoder, this approach

significantly improves the generation of visual saliency maps. The introduction of a multi-

stage cooperative learning strategy enhances the model’s performance and alignment with

clinical diagnostic processes, making this approach a major step forward in making deep

learning tools more interpretable and clinically viable.

1.4 Thesis Outline

This thesis is organized into a structured format to systematically explore the interpretability of

deep learning models in chest X-ray (CXR) analysis. Chapter 2 sets the stage with a background and

literature review, detailing the evolution of medical image processing and focusing on the integra-

tion of deep learning techniques in CXR analysis. It also reviews existing interpretability methods

such as Grad-CAM and saliency maps, discussing their application and relevance in clinical diag-

nostics. Chapter 3 delves into the initial study of the thesis, which examines the effectiveness of

Grad-CAM across different neural network architectures, analyzing how variations in model design

influence the clarity and utility of visual explanations. Chapter 4 presents the major contribution of

the thesis, a novel multi-task learning framework designed for simultaneous disease diagnosis and

visual attention prediction, showcasing a dual-encoder, multi-task UNet architecture enhanced by a

multi-stage cooperative learning strategy. The final chapter, Chapter 5, concludes the thesis by sum-

marizing the findings and discussing their implications for medical image processing. It reflects on

the potential future directions for research, emphasizing how ongoing advancements could further

refine the interpretability and clinical applicability of AI tools in healthcare diagnostics.
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Chapter 2

Background and Literature Review

2.1 Deep Learning in Medical Imaging

Transformative technologies in medical imaging such as deep learning have substantially im-

proved the analysis and interpretation of diagnostic images. In this section, deep learning techniques

in medical imaging are explored with consideration to their theoretical bases, major structures, and

definite implementations for chest X-ray (CXR) analysis.

2.1.1 Fundamentals of Deep Learning for Medical Imaging

Deep learning algorithms, particularly those based on neural networks, excel in identifying com-

plex patterns in large datasets. In medical imaging, these algorithms automate the feature extraction

and classification processes, traditionally performed manually by radiologists, thereby augmenting

diagnostic precision and efficiency.

2.1.2 Key Architectures in Medical Imaging

• Convolutional Neural Networks (CNNs): CNNs have transformed the field of medical

imaging through their ability to process and analyze complex image data efficiently. The

Figure 2.1 shows these networks utilize layers of convolutional filters to extract features from

images at various levels of abstraction. In the context of chest radiography (CXR), CNNs can

detect subtle visual cues that are indicative of various diseases, ranging from simple infections
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Figure 2.1: Convolutional Neural Network Architecture (from [1]).

to complex conditions such as lung cancer. The strength of CNNs lies in their capacity to learn

feature hierarchies directly from the data, eliminating the need for manual feature selection,

which is often subjective and labor-intensive [27]. This automation significantly enhances the

diagnostic process, allowing for high-throughput analysis and greater diagnostic accuracy.

• U-Net: Originally designed for segmenting biomedical images, U-Net’s architecture is par-

ticularly well-suited for medical tasks that require precise localization of features within an

image. Its architecture shows in Figure 2.2, which includes a contracting path to capture

context and an expansive path that enables precise localization, is ideal for tasks such as de-

lineating the boundaries of tumors or identifying regions affected by pathological changes

in CXRs. U-Net has been pivotal in improving the performance of medical imaging tasks

by providing detailed and accurate segmentation maps that are crucial for treatment planning

and monitoring disease progression [43]. Its effectiveness in medical imaging stems from its

ability to work with a limited amount of data and still produce high-quality results, which is

often the case in medical scenarios where annotated images are scarce.

• Transformer: Transformers [56] have revolutionized the field of deep learning, initially

gaining prominence in natural language processing due to their unique ability to manage

long-range dependencies within datasets. Unlike traditional convolutional neural networks

(CNNs) that process input data through localized filters, Transformers look at all parts of

the data simultaneously, which is incredibly useful in medical imaging where a contextual

8



Figure 2.2: UNet model architectur (from[43]).

analysis is often crucial.

Vision Transformer (ViT) is an adaptation of the transformer architecture. In ViT, each image

is split into several pieces, known as patches. As illustrated in Figure 2.3, these patches are

then converted into a series of flat, linear pieces of data or embeddings and lined up like

sentences in a text for the transformer to process. As a result, ViTs have a knack for spotting

patterns and connections across the whole image, which often lets them outperform traditional

models like CNNs that look at images piece by piece [12].

Adapting Transformers for medical imaging not only boosts diagnostic accuracy, but also

expands the potential of AI in new medical image processing applications. Their ability

to process entire images at once is a big improvement over models that tend to focus on

local features. This could lead to more informed and reliable diagnostic decisions with the

consideration of richer contextual information.
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Figure 2.3: ViT model architecture (from[12]).

2.1.3 Application to Chest X-Ray Analysis

The utilization of deep learning in CXR analysis has significantly enhanced the detection and di-

agnosis of critical pathologies, such as pneumonia and pneumothorax, surpassing traditional image

processing methods in both accuracy and speed.

Pneumonia Detection: Pneumonia, often characterized by an increase in lung opacity due to

fluid or infection, presents specific challenges in radiographic interpretation. Convolutional Neu-

ral Networks (CNNs) are particularly effective in distinguishing these opacities from other benign

conditions. Deep learning models, trained on large datasets of annotated CXR images, have demon-

strated a remarkable ability to detect pneumonia, significantly reducing diagnostic time and en-

hancing accuracy. This is crucial for timely intervention, which can be life-saving in severe cases

[37].

Pneumothorax Identification: Pneumothorax, the presence of air or gas in the chest cavity, is

another area where deep learning models excel. The condition, which can lead to a collapsed lung,

requires rapid detection and intervention. Deep learning algorithms, especially those employing
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U-Net architectures for segmentation tasks, have proven adept at identifying subtle signs of pneu-

mothorax that may be missed during manual review. These models enhance the radiologist’s ability

to diagnose pneumothorax quickly and accurately, thereby improving patient outcomes [25].

These deep learning applications not only achieve high diagnostic accuracy, but also reduce the

time required for analysis, an essential factor in emergency medical scenarios where quick decision-

making is critical. The ability of these models to continuously learn and improve from new data

ensures that their effectiveness grows over time, keeping pace with evolving medical standards and

practices.

2.1.4 Challenges in Deep Learning Applications

Despite the significant advancements deep learning has brought to medical imaging, several

challenges persist that complicate its deployment. One of the primary challenges is data dependency

and the need for extensive annotated datasets. Deep learning models require large volumes of

high-quality, annotated images to train effectively. In the medical field, obtaining such datasets

is particularly arduous due to the need for expert annotation, which is time-consuming, costly, and

often constrained by the availability of specialists. Moreover, concerns about patient privacy and

stringent regulatory requirements complicate the collection and sharing of medical data [3].

Another critical issue is the inherent complexity of these models, which often results in a lack of

transparency about how decisions are made. This opacity is problematic in clinical settings, where

trust and reliability are paramount. Without clear insight into the decision-making processes of these

models, clinicians may hesitate to rely on them, hindering their integration into routine medical

practice [20]. Additionally, the ability of these models to generalize across different demographics

and medical equipment without bias is a significant concern. Models trained on limited datasets

may not perform well universally, leading to diagnostic discrepancies and potential patient safety

risks [62].

Regulatory and ethical considerations also pose substantial challenges. As regulatory bodies

scramble to catch up with rapid technological advancements, there remains a significant gap in the

guidelines and standards governing the use of AI in healthcare. Ethical concerns such as potential

increased patient surveillance, data misuse, and decisions made without sufficient human oversight
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further complicate the deployment of AI technologies in clinical environments [9]. Moreover, inte-

grating deep learning models into existing healthcare systems presents practical challenges related

to scalability, compatibility with existing hardware, and workflow integration. These factors must be

carefully considered to ensure that the introduction of AI technologies enhances rather than disrupts

clinical practices [13].

2.2 Deep Learning Model Interpretability Techniques

Deep learning model interpretability techniques are crucial when dealing with machine learning

models that are not inherently interpretable. These techniques aim to make the decision-making

process transparent by showing how predictions are derived from given inputs. The most commonly

used methods for achieving interpretability include feature importance methods and instance-based

approaches.

2.2.1 Feature Importance Methods

Feature importance methods identify which input features significantly impact the model’s out-

put, offering insights into the predictive elements within the data. Two primary types of feature

importance methods are:

• Perturbation-based: This approach assesses the impact of altering one or more input fea-

tures on the model’s predictions. While straightforward and widely applicable, these methods

can be slow and may not fully capture the complexities of nonlinear interactions in advanced

models [31, 41].

• Gradient-based: These methods calculate the gradient of the output with respect to each

input feature, offering a more efficient way to gauge feature significance. Methods like

DeepLIFT compare activations to a reference to assign importance scores efficiently [49].
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2.2.2 Instance-based Methods

Instance-based methods form a core part of the interpretative framework in this thesis, focusing

on making AI decisions in medical imaging comprehensible by mimicking human expert behav-

ior. These methods are particularly effective in providing explanations that are local to specific

instances, which in the context of medical imaging, involves using saliency maps that replicate how

doctors visually assess diagnostic images.

In this thesis, instance-based methods have been applied by training AI models to generate

saliency maps that align with those observed in human experts, such as radiologists. By doing so,

the AI models learn to highlight the same areas of interest that a doctor would, thereby making

the model’s diagnostic reasoning transparent and understandable. This approach not only enhances

trust in AI-driven diagnostics by providing clear visual evidence of the model’s focus but also helps

in verifying the clinical relevance of the features identified by the AI.

2.3 Techniques to Generate Saliency Map for Enhancing Interpretabil-

ity

In medical imaging, particularly in chest X-ray (CXR) analysis, interpretability of AI-driven

diagnostic tools is fundamental. The ability to visually interpret what a model “sees” and “considers

important” not only aids clinicians in understanding and trusting AI, but also plays a crucial role in

validating the diagnostic decisions made by these models.

2.3.1 Gradient-weighted Class Activation Mapping (Grad-CAM)

Grad-CAM as shown in Figure 2.4 is a visualization technique that enhances the interpretability

of convolutional neural networks by highlighting the regions within an image that are important for

a specific classification decision. The process begins by forwarding an image through the CNN to

generate feature maps, followed by performing task-specific computations that produce a score for

a target category. To isolate the influence of the desired class, gradients are set to zero for all other

classes except the targeted one, which is set to one. These gradients are then backpropagated to the
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Figure 2.4: Grad-CAM overview (from [47]).

convolutional feature maps, and the resulting data are combined to produce a coarse localization

heatmap, illustrating where the model focused to make its decision. This heatmap can be further

refined by combining it with guided backpropagation, resulting in Guided Grad-CAM visualizations

that offer high-resolution and concept-specific insights into the model’s reasoning process [47].

2.3.2 Attention Maps from Transformers

Transformers utilize self-attention mechanisms that assess the importance of all parts of the

image relative to each other, rather than being restricted by the local regions typically prioritized

by convolutional neural networks. This method allows the model to dynamically adjust its focus

across the entire image, making attention maps from transformers particularly valuable for tasks

where global context and fine details are crucial. For instance, in tasks like image captioning or

object detection in natural scenes, attention maps can vividly illustrate how the model shifts its

focus to different objects and background elements, providing a visual explanation of how various

components of the image contribute to the final prediction [12] (see Figure 2.5)

2.3.3 Human Gaze Tracking

Complementing machine-generated attention maps, human gaze tracking captures the visual

attention of expert radiologists during diagnostic evaluations. By comparing these human-derived

attention maps with those produced by transformer models, researchers and clinicians can assess
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Figure 2.5: Sample attention map results from Hila et al. study of attention map [10], showcasing
six different methods: 1. Rollout, which aggregates attention across all layers, highlighting gener-
alized areas of interest. 2. Raw-attention, focusing sharply on specific features like animal faces
and bodies. 3. GradCAM, emphasizing critical features through gradients of the last convolutional
layer. 4. LRP, illustrating both positive and negative influences on classification. 5. Partial LRP, fo-
cusing on selected layers’ contributions. 6. Hila et al. improved method, integrating various aspects
for a refined visualization of model focus areas.
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whether AI systems are focusing on the same key diagnostic features as human experts. This com-

parison not only validates the AI’s diagnostic reasoning, but also ensures alignment with expert

human judgment, crucial for clinical acceptance and reliability [6].

2.4 Multi-Task Learning

Multi-task learning (MTL) is a subset of machine learning that enhances learning efficiency and

prediction accuracy by simultaneously solving multiple related problems using a shared representa-

tion. This approach is particularly beneficial in medical imaging, where the complexity of diagnostic

tasks often benefits from the simultaneous learning of correlated objectives, such as detecting vari-

ous diseases from chest X-rays or segmenting multiple anatomical structures. This section explores

the principles of multi-task learning, its specific applications in medical imaging, and its integration

into the systems developed in the second major work of this thesis.

2.4.1 Foundations of Multi-Task Learning:

Multi-task Learning (MTL) optimizes the efficiency and effectiveness of machine learning by

addressing multiple related tasks simultaneously using a shared representation. As depicted in the

Figure 2.6, the architecture of an MTL system typically features shared layers at the base, which

extract and process core features from input data applicable across all tasks. These universal features

then feed into task-specific layers tailored to the unique requirements of each task (e.g., Task A, Task

B, Task C). This structure allows the system to leverage commonalities across tasks to improve

generalization while preserving the ability to specialize through task-specific adaptations. The dual

benefit of this approach is especially valuable in medical imaging, where complex diagnostics can

be enhanced by learning correlated objectives concurrently, thereby enhancing diagnostic accuracy

and reducing computational redundancy [44].

2.4.2 Applications in Chest X-ray Analysis:

In the context of chest X-rays, multi-task learning is particularly helpful. For example, the MT-

UNet model discussed by Zhu et al. [64] demonstrates how simultaneous tasks—saliency prediction
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Figure 2.6: General Multi-Task Learning overview (inspired from[44]).

and disease classification—can synergistically improve each other. Saliency prediction helps focus

the model’s attention on significant areas of the image, potentially leading to more accurate disease

classification. Conversely, insights gained from disease classification tasks can inform and refine

the processes of identifying key salient features in images.

2.5 Common Metrics for Saliency Evaluation

This section discusses three key metrics commonly used to measure the effectiveness of saliency

predictions.

2.5.1 Kullback-Leibler Divergence (KLD):

KLD is a statistical measure used to determine how one probability distribution diverges from

a reference probability distribution. In the context of saliency maps, KLD measures the difference

between the predicted saliency map and the ground truth (typically derived from expert annotations

or eye-tracking data). A lower KLD value indicates that the predicted saliency distribution more

closely matches the ground truth, suggesting higher accuracy in the model’s attention focusing. The
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formula for KLD is:

DKL(P k Q) =
X

x

P (x) log

✓
P (x)

Q(x)

◆
(1)

where P is the predicted saliency distribution within the map and Q is the ground truth distribution.

2.5.2 Pearson’s Correlation Coefficient (PCC):

PCC assesses the spatial correlation between the predicted and actual saliency maps. It pro-

vides a value between -1 and 1, where 1 means perfect positive correlation, -1 indicates perfect

negative correlation, and 0 signifies no correlation. Higher values of PCC indicate that the model’s

predicted saliency map aligns well with the ground truth in terms of distribution patterns, reflecting

the model’s ability to focus on relevant areas in the image as human experts do. The formula for

PCC is:

r =

Pn
i=1(Xi �X)(Yi � Y )qPn

i=1(Xi �X)2
qPn

i=1(Yi � Y )2
(2)

where Xi and Yi are the values of the predicted and actual saliency at the ith pixel, respectively, and

X and Y are the means of these distributions.

2.5.3 Histogram Similarity (HS):

HS evaluates the similarity between the histograms of the predicted and ground truth saliency

maps. This metric is particularly useful for understanding whether the overall values of saliency

across the entire image match, even if their exact spatial distribution does not. HS can be a useful

complement to other metrics by providing an aggregate measure of similarity that is less sensitive

to precise spatial alignment but focuses on the general distribution of saliency values.
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Chapter 3

Is visual explanation with Grad-CAM

more reliable for deeper neural

networks? a case study with automatic

pneumothorax diagnosis

A version of this chapter was presented at the the Machine Learning in Medical Imaging (MLMI

2023) workshop co-hosted with the 26th International Conference on Medical Image Computing

and Computer Assisted Intervention – MICCAI 2023.

• Qiu, Z., Rivaz, H., & Xiao, Y. (2023, October). Is visual explanation with Grad-CAM more

reliable for deeper neural networks? a case study with automatic pneumothorax diagnosis.

In International Workshop on Machine Learning in Medical Imaging (pp. 224-233). Cham:

Springer Nature Switzerland. [35]
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3.1 Introduction

With rapid development, deep learning (DL) techniques have become the state-of-the-art in

many vision applications, such as computer-assisted diagnosis. Although initially proposed for nat-

ural image processing, staple Convolutional Neural Networks (CNNs), such as VGG and ResNet ar-

chitectures, have become ubiquitous backbones in computer-assisted radiological applications due

to their robustness and flexibility to capture task-specific, complex image features. Furthermore,

the more recent Vision Transformer (ViT), a new class of DL architecture that leverage the self-

attention mechanism to encode long-range contextual information is attracting great attention in

medical image processing, with evidence showing superior performance than the more traditional

CNNs [11]. Although these DL algorithms can offer excellent accuracy, one major challenge that

hinders their wide adoption in clinical practice is the lack of transparency and interpretability in

their decision-making process. So far, various explainable AI (XAI) methods have been proposed

[2], and among these, direct visualization of the saliency/activation maps has gained high popu-

larity, likely due to their intuitiveness for fast uptake in clinical applications. With high flexibility

and ease of implementation for different DL architectures, the Gradient-weighted Class Activation

Mapping (Grad-CAM) technique [47], which provides visual explanation as heatmaps with respect

to class-wise decision has been applied widely in many computer-assisted diagnostic and surgical

vision applications. However, in almost all previous investigations, Grad-CAM outcomes are only

demonstrated qualitatively. To the best of our knowledge, the impacts of different deep learning ar-

chitectures and sizes on the robustness and effectiveness of Grad-CAM have not been investigated,

but are important for the research community.

To address the mentioned knowledge gap, we benchmarked the performance of Grad-CAM on

DL models of three types of popular architectures, including VGG, ResNet, and ViT, with varying

network depths/sizes of each one. We explored the impacts of DL architectures on GradCAM by us-

ing pneumothorax diagnosis from chest X-ray images as a case study. Pneumothorax is a condition

that is characterized by the accumulation of air in the pleural space, and can lead to lung collapse,

posing a significant risk to patient health if not promptly diagnosed and treated. As the radiological

features of pneumothorax (i.e., air invasion) can be subtle to spot in X-ray scans, the task provides an
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excellent case to examine the characteristics of different DL models and Grad-CAM visualization.

In summary, our work has two main contributions. First, we conducted a comprehensive evaluation

of popular DL models including CNNs and Transformers for pneumothorax diagnosis. Second,

we systematically compared the effectiveness of visual explanation using Grad-CAM across these

staple DL models both qualitatively and quantitatively. Here, we analyzed the impact of network

architecture choices on diagnostic accuracy and effectiveness of Grad-CAM results.

3.2 Related Works

The great accessibility of public chest X-ray datasets has allowed a large amount works [33]

on the diagnosis and segmentation of lung diseases using deep learning algorithms, with a com-

prehensive review provided by Calli et al. [7]. So far, many previous reports adopted popular

DL models that were first designed for natural image processing. For example, Tian et al. [54]

leveraged ResNet and VGG models with multi-instance transfer learning for pneumothorax classi-

fication. Wollek at al. [60] employed the Vision Transformer to perform automatic diagnosis for

multiple lung conditions on chest X-rays. To incorporate visual explanation for DL-based pneu-

mothorax diagnosis, many have adopted Grad-CAM and its variants [60, 61] for both CNNs and

ViTs. Yuan et al. [61] proposed a human-guided design to enhance the performance of Saliency

Map, Grad-CAM, and Integrated Gradients in visual interpretability of pneumothorax diagnosis us-

ing CNNs. Most recently, Sun et al. [53] proposed the Attri-Net, which employed Residual blocks

and multi-label explanations that align with clinical knowledge for improved visual explanation in

chest X-ray classification.

3.3 Material and Methodology

3.3.1 Deep Learning Model Architectures

Our study explored a selection of staple deep learning architectures, including VGG, ResNet and

ViT, which are widely used in both natural and medical images. Specifically, the VGG models [50]

are characterized by their multiple 3x3 convolution layers, and for the study, we included VGG-16
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and VGG-19. The ResNet models [18] leverage skip connections to enhance residual learning and

training stability. Here, we incorporated ResNet18, ResNet34, ResNet50, and ResNet101, which

comprise 18, 34, 50, and 101 layers, respectively. Lastly, the Vision Transformers initially proposed

by Dosovitskiy et al.[12] treat images as sequences of patches/tokens to model their long-range

dependencies without the use of convolution operations. To test the influence of network sizes, we

adopted the V iT small and V iT base variants, both with 12 layers but differing in input features,

and the V iT large variant with 24 layers. All these models were pretrained on ImageNet-1K and

subsequently fine-tuned for the task of Pneumothorax vs. Healthy classification using the curated

public dataset.

3.3.2 Grad-CAM Visualization

To infer the decision-making process of DL models, the Grad-CAM technique [47] creates a

heatmap by computing the gradients of the target class score with respect to the feature maps of

the last convolutional layer. Specifically, for VGG16 and VGG19, we applied Grad-CAM to the

last convolution layer. For ResNet models, we targeted the final bottleneck layer and in Vision

Transformer variants, the technique was applied to the final block layer before the classification

token is processed. Ideally, an effective visual guidance should provide high accuracy (i.e., correct

identification of the region of interest by high values in the heatmap) and specificity (i.e., tight bound

around the region of interest). Note that for each Grad-CAM heatmap, the value is normalized to

[0,1].

3.3.3 Dataset Preprocessing and Experimental Setup

For this study, we used the SIIM-ACR Pneumothorax Segmentation dataset from Kaggle 1. It

contains chest X-Ray images of 9,000 healthy controls and 3,600 patients with pneumothorax. In

addition, regions related to pneumothorax were manually segmented for 3576 patients. For our ex-

periments, we created a balanced subset of 7,200 cases (50% with pneumothorax) from the original
1SIIM-ACR Pneumothorax Segmentation:https://www.kaggle.com/competitions/

siim-acr-pneumothorax-segmentation/data
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dataset. From the curated data collection, we divided the cases into 7,000 for training, 1,000 for val-

idation, and 1,000 for testing while balancing the health vs. pneumothorax ratio in each set. For DL

model training and testing, each image was processed using Contrast Limited Adaptive Histogram

Equalization (CLAHE) and normlaized with z-transform. In addition, all images were re-scaled

to the common dimension of 224⇥224 pixels. In terms of training, the VGG and ResNet models

utilized the cross-entropy loss function with the Adam optimizer, and were trained at a learning rate

of 1e-4 for 50 epochs. The ViT models employed a cross-entropy loss function and the Stochastic

Gradient Descent (SGD) method for optimization with a learning rate of 1e-4. They were trained

for 300 epochs. Finally, to boost our model’s performance and mitigate overfitting, we used data

augmentations in training, including the addition of random Gaussian noise, rotations (up to 10

degrees), horizontal flips, and brightness/contrast shifts.

3.3.4 Evaluation Metrics

To evaluate the performance of different DL models in pneumothorax diagnosis, we assessed the

accuracy, precision, recall, and area under the curve (AUC) metrics. In terms of assessing the effec-

tiveness of the Grad-CAM results for each model, we propose to use two different measures. First,

we compute the difference between the means of the Grad-CAM heatmap values within and outside

the ground truth pneumothorax segmentation, and refer to this metric as DiffGradCAM . We hy-

pothesize that an effective Grad-CAM visualization should generate a high positive DiffGradCAM

because the ideal heatmap should accumulate high values primarily within the pathological region

(i.e., air invasion in the pleural space). The scores from the models were further compared by a

one-way ANOVA test and Tukey’s post-hoc analysis, and a p-value < 0.05 indicated a statistically

significant difference. Second, we compute the Effective Heat Ratio (EHR) [60], which is the ratio

between the thresholded area of the Grad-CAM heatmap within the ground truth segmentation and

the total threshold area. The thresholds were computed in equidistant steps, and the Area Under the

Curve (AUC) is calculated over all EHRs and the associated threshold values to assess the quality

of Grad-CAM results. Both metrics reflect the accuracy and specificity of visual explanation for the

networks.
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3.4 Results

3.4.1 Pneumothorax Diagnosis Performance

The performance of pneumothorax diagnosis for all DL models is listed in Table 3.1. In terms of

accuracy, ResNet models offered the best results, particularly with ResNet50 at 88.20%, and the ViT

and VGG ranked the second and the last. The similar trend held for precision and AUC. However,

as for recall, the obtained scores were similar across different architecture types. When looking into

different network sizes for each architecture type, the results showed that deeper neural networks

did not necessarily produce superior diagnostic performance. Specifically, the two popular VGG

models didn’t result in large discrepancy in accuracy, recall, and AUC while VGG16 has better

precision. For the ResNet models, ResNet18, ResNet34 and ResNet101 had similar performance,

with the accuracy, recall, and AUC peaked slightly at ResNet50. This likely means that ResNet18

has enough representation power to perform the classification, and therefore deeper networks do not

improve the results. Finally, for the ViTs, V iT base resulted in better performance than the small

and large versions, with slight performance deterioration for V iT large .

Table 3.1: Pneumothorax diagnosis performance across all DL models
Model Accuracy Precision Recall AUC
VGG16 83.70% 0.8224 0.8800 0.9069
VGG19 83.20% 0.7747 0.9080 0.9098
ResNet18 87.60% 0.8821 0.8680 0.9420
ResNet34 87.20% 0.8758 0.8600 0.9417
ResNet50 88.20% 0.8802 0.8820 0.9450
ResNet101 87.60% 0.8798 0.8780 0.9434
ViT Small 85.80% 0.8137 0.8820 0.9302
ViT Base 86.20% 0.8602 0.8740 0.9356
ViT Large 84.40% 0.8356 0.8640 0.9197

3.4.2 Qualitative Grad-CAM Evaluation

We present the Grad-CAM heatmaps for three patient cases across all tested DL models in

Fig. 3.1, with the ground truth pneumothorax segmentation overlaid in the X-ray scans. In the

presented cases, all the heatmaps correctly indicated the side of the lungs affected by the disease.

However, the overlap with the pneumothorax segmentation varied. The VGG16 and VGG19 models
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pinpointed the pneumothorax areas for the first two cases while VGG19 failed to do so for the third

case. Note that both models presented a secondary region. The ResNet18, 34, and 50 models

successfully highlighted the problematic area, with the heatmap of ResNet18 slightly off-center,

while the ResNet101 model showed activation in two regions. In comparison, ViT models exhibited

more dispersed Grad-CAM patterns than the CNNs, and the amount of unrelated areas increased

with the model size.

Figure 3.1: Demonstration of Grad-CAM results across different deep learning models for three
patients X-ray images (one patient per row), with the manual pneumothorax segmentation overlaid
in white color.

3.4.3 Quantitative Grad-CAM Evaluation

Table 3.2: Difference of mean Grad-CAM values within and outside the manual pneumothorax
segmentation (DiffGradCAM ).

VGG16 VGG19 ResNet18 ResNet34 ResNet50 ResNet101 ViT small ViT base ViT large

mean 0.186 0.166 0.162 0.133 0.142 0.183 0.052 0.081 0.051
std 0.212 0.220 0.262 0.273 0.251 0.265 0.143 0.166 0.164
min -0.213 -0.365 -0.366 -0.452 -0.287 -0.320 -0.251 -0.233 -0.319
max 0.773 0.715 0.787 0.782 0.801 0.780 0.652 0.786 0.685

For the Grad-CAM heatmap of each tested model, we computed the DiffGradCAM and EHR

AUC metrics across all test cases to gauge their effectiveness of visually interpreting the decision-

making process of DL algorithms. Here, DiffGradCAM and EHR AUC are reported in Table
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3.2 and Fig. 3.2, respectively. For DiffGradCAM , the ANOVA test showed a group-wise differ-

ence (p<0.001). In general, the CNNs offered better results than the ViT models, despite ViTs’

good pneumothorax diagnosis accuracy. VGG16 and ResNet101 ranked the best (p<0.05), but the

associated standard deviations of CNN models were also higher. Within each architecture type,the

scores for VGG16 and VGG19 were similar (p>0.05), the ViT models also don’t differ significantly

(p>0.05), and ResNet101’s score was significantly higher than ResNet34 (p<0.05). Between VGG

and ResNet models, comparisons between ResNet18, ResNet50, VGG16, and VGG19 did not yield

any significant differences (p>0.05). Among all the tested models, ResNet50 achieved the high-

est max score and ResNet34 had the lowest min score. As for EHR AUC, similar to the case of

DiffGradCAM , the CNN models also outperformed the ViT ones, with ResNet101 leading the

scores at 0.0319 and VGG16 ranking the second at 0.0243. Compared with VGG16, the EHR AUC

score of VGG19 was very similar. Among the ResNet variants, ResNet18, ResNet34, and ResNet50

scored similary in the range of 0.21⇠0.23, generally lower than those of VGG models. With the

deepest architecture among the ResNet models, ResNet101 had a large increase of the EHR AUC

metric even though its pneumothorax diagnosis accuracy was similar to the rest. For the ViT mod-

els, the EHR AUC improved gradually with the increasing size of the architecture, ranging from

0.0145 to 0.0171.

Figure 3.2: EHR AUC results of of different models
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3.5 Discussion

Deep learning architectures like VGG, ResNet, and ViT all achieved commendable diagnostic

performance in the range of 0.84⇠0.88%. As far as the experiments are concerned, deeper networks

and the use of ViT do not contribute to better accuracy. Furthermore, with limited performance dis-

crepancies between all tested models in pneumothorax diagnosis, the quality of Grad-CAM visual-

izations didn’t necessarily correlate with the model’s accuracy. The observed distinct behaviors of

the Grad-CAM heatmaps may largely be due to the DL model’s respective architecture types (pure

CNN vs. Residual blocks vs. Transformer) and varying network sizes/depths. In our case study,

while the Grad-CAM heatmaps of VGG16 and VGG19 accurately pinpointed areas of interest,

VGG19 sometimes missed the pathological region, indicating that depth alone doesn’t guarantee

perfect feature localization. In addition, their activation maps often captured the upper chest areas,

which may not be directly relevant for clinical interpretability. On the other hand, ResNet models,

particularly ResNet18, 34, and 50, consistently highlighted relevant regions with a single cluster,

albeit with slight deviations from the pneumothorax region in some cases. This could be attributed

to the network’s ability to focus on the most critical features through its residual connections. How-

ever, the much deeper ResNet101 model was prone to have two distinct areas in the Grad-CAM

heatmaps. This was also noted by Seo et al. [48] in their vertebral maturation stage classification

with ResNets, likely due to the fact that deeper architectures can capture more intricate representa-

tions [50]. In contrast, ViT models produced more dispersed Grad-CAM patterns compared to the

included CNN ones. The inherent global contextual perception ability of Transformers might be

responsible for this observation. As we only employed a single Chest X-ray dataset with a limited

size, it’s plausible that the ViTs could benefit from a larger dataset, potentially leading to better

visualization outcomes [51]. Moreover, as the size of the ViT model increases, the proportion of

irrelevant areas in the Grad-CAM visualizations also appears to increase, implying the interplay

between model architecture and dataset size and the adverse cascading effects in deep Transformer

models [63]. In previous investigations for DL-based computer-assisted diagnosis [28][48], multi-

ple network models of different designs and natures were often benchmarked together. However, to

the best of our knowledge, a systematic investigation for the impact of network architecture types
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and network depths on Grad-CAM visualization, especially with quantitative assessments has not

been conducted to date. As transparency is becoming increasingly important for the safety and

adoptiblity of DL algorithms, the relevant insights are of great importance to the XAI community.

The presented study has a few limitations. First, a typical issue in medical deep learning is the

lack of large, well-annotated datasets. To facilitate the training process, we employed DL models

that were pre-trained using natural images and then fine-tuned using domain-specific data. As noted

by Lee et al. [28], in comparison to training from scratch, model fine-tuning also has a better

advantage to provide more sparse and specific visualization for the target regions in Grad-CAM

heatmaps. Furthermore, additional data augmentation was also implemented to mitigate overfitting

issues. Second, as visual explanation of the DL algorithms is intended to allow easier incorporation

of human participation, user studies to validate the quantitative metrics would be beneficial [42].

However, this requires more elaborate experimental design and inclusion of clinical experts, and

will be included in our future studies. Lastly, we utilized pneumothorax diagnosis in chest X-ray

as a case study to investigate the impact of DL model architectures on Grad-CAM visualization.

It is possible that the observed trend may be application-specific. To confirm this, we will explore

different datasets with varying disease types and imaging contrasts in the future.

3.6 Conclusion

In this study, we performed a comprehensive assessment of popular DL architectures, including

VGG, ResNet and ViT, and their variants of different sizes for pneumothorax diagnosis in chest

X-ray, and investigated the impacts of network depths and architecture types on visual explanation

provided by Grad-CAM. While the accuracy for pneumothorax vs. healthy classification is similar

across different models, the CNN models offer better specificity and accuracy than the ViTs when

comparing the resulting heatmaps from Grad-CAM. Furthermore, the network size can affect both

the model accuracy and Grad-CAM outcomes, with the two factors not necessarily in synch with

each other. We hope the insights from our study can help better inform future explainable AI

research, and we will further confirm the observations with more extensive studies involving more

diverse datasets and DL models in the near future.

28



Chapter 4

Joint chest X-ray diagnosis and clinical

visual attention prediction with

multi-stage cooperative learning:

enhancing interpretability

A version of this chapter was submitted to the 15th Machine Learning in Medical Imaging

(MLMI) workshop co-hosted with the 27th International Conference on Medical Image Computing

and Computer Assisted Intervention – MICCAI 2024.

• Qiu, Z., Rivaz, H., & Xiao, Y. (2024). Joint chest X-ray diagnosis and clinical visual attention

prediction with multi-stage cooperative learning: enhancing interpretability. arXiv preprint

arXiv:2403.16970.[36]

4.1 Introduction

The continuous advancement of deep learning (DL) in medical imaging has led to a new era in

diagnostic radiology, offering diagnostic tools with unprecedented accuracy and efficiency. Partic-

ularly in the realm of chest X-ray (CXR) analysis, where the imaging modality has poor soft tissue
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contrast, DL models have shown significant potential and efficiency in identifying and classifying

various pulmonary conditions [16][25]. However, despite their prowess, the black-box nature of

many DL-based computer-assisted diagnosis algorithms poses barriers for their clinical adoption,

as medical professionals seek not only predictive accuracy, but also transparency and interpretability

in automated clinical decisions. So far, there have been great efforts in explainable AI (XAI) to im-

prove the credence of DL-based diagnostic algorithms. Notably, the flexible Class Activation Map

(CAM) [46] and architecture-dependent attention maps from various attention mechanisms (e.g.,

self-attention [39] and attention gates [34]) have been widely adopted to provide human-attention-

like visual interpretations for classification and regression tasks. Nevertheless, their resemblance to

the real visual attention of radiologists, which could provide richer insights regarding the diagnos-

tic process, is still limited. Recently, several DL models [23],[58] have been proposed to leverage

recorded gaze data as an input or as an auxiliary task to enhance diagnostic accuracy. As gaze

data collection requires specialized devices and postprocessing, the latter strategy in a multi-task

learning framework appears more attractive in practice. Although multi-task learning could poten-

tially boost the performance of individual tasks in synergy [64], the loss of each task can overfit at

different rates if care is not taken, and may limit their performance.

To address the aforementioned challenges, we introduce a novel multi-task DL model based on a

cooperative learning strategy to enhance classification performance and clinical visual saliency map

prediction simultaneously for chest X-ray. Our contributions are threefold: First, to mitigate the

issue of asynchronous training schedules of individual tasks, we proposed a multi-stage cooperative

learning strategy, which helps with robust training of the designed multi-task network. Second, we

designed a novel dual-encoder UNet with multi-scale feature-fusion to enhance multi-task collabo-

ration for optimal outcomes. Lastly, our experiments demonstrated the superior performance of the

proposed method than existing methods, and we share the trained model publicly.

4.2 Related Works

Public datasets have catalyzed data-driven advancements in chest X-ray image analysis, utiliz-

ing networks like ResNet, DenseNet, and EfficientNet for CXR-based disease classification [40].
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Besides these advancements, with the potential benefits of enhancing the performance and/or inter-

pretability of relevant DL models, a few groups have directly integrated tracked gaze data during di-

agnosis into their DL approaches. In GazeRadar, Bhattacharya et al. [4] fused radiomics and visual

attention features to perform pulmonary disease classification. Later, the same group [5] proposed

RadioTransformer that utilizes visual attention in a cascaded global-focal Transformer framework

for CXR classification. Zhu et al. [65] used the visual attention maps to guide the class activation

mapping to boost diagnostic accuracy. More recently, Wang et al. [58] proposed GazeGNN, which

uses gaze duration to weigh local image features for CXR diagnosis through a graph neural network.

Finally, Zhu et al. [64] proposed a multi-task UNet for joint CXR diagnosis and clinical attention

map prediction by adopting an elaborate uncertainty-based loss balancing scheme with trainable

parameters. In our study, we decided to tackle the challenge with a multi-stage cooperative learning

strategy to boost the outcomes further.

4.3 Methods and Materials

An overview of our proposed technique is illustrated in Fig. 4.1, which is composed of a dual-

encoder residual squeeze-and-excitation UNet (Res SE-UNet) to predict visual saliency maps, a

DenseNet-201 to encode image features, and a classifier module with multi-scale feature-fusion to

provide CXR diagnosis. In our cooperative learning framework, these components were trained in

three main stages, in the order of the DenseNet-201 feature encoder, residual squeeze-and-excitation

UNet, and multi-scale feature-fusion classifier, to allow a gradual introduction of cooperation of the

two learning tasks.

4.3.1 Stage 1: DenseNet-201 Feature Encoder

As DenseNets have shown great performance in image classification tasks, we used the DenseNet-

201 as a key feature encoder for the designated tasks. To augment its robustness in feature repre-

sentation, we first pretrained the network using the CXR data with a contrastive triplet loss [19],

which minimizes the distances between similar image pairs while maximizing those between dis-

similar ones. Then, the pretrained DenseNet201 was finetuned for the task of classifying a CXR
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scan into normal, pneumonia, or heart failure, with a cross-entropy loss. Here, we used all layers of

the DenseNet-201 before the last dense block as our image feature encoder.

4.3.2 Stage 2: Visual Saliency Map Prediction

The objective of Stage 2 was to generate a visual saliency map for an input CXR scan that mir-

rors the attention patterns of medical professionals when diagnosing conditions. Following Stage 1,

the feature from the trained DenseNet201 encoder was fed into a modified UNet model at the be-

ginning of its decoding path, together with the compressed feature of the same input image from the

UNet’s encoding branch [43]. Note that here, we modified the UNet’s encoder blocks with Resid-

ual and Squeeze-and-Excitation (SE) blocks (see Fig. 4.1) to enhance its robustness and training

stability [29]. By leveraging features from two distinct image encoders to extract richer and more

nuanced information from the CXR images, we intended to enhance the accuracy of visual saliency

map prediction at the decoder end. During training, the DenseNet201 feature encoder was kept

frozen, while the Res SE-UNet was trained using paired CXR images and visual attention maps,

and a Kullback–Leibler (KL) divergence loss.

4.3.3 Stage 3: Multi-Scale Feature-Fusion Classifier

In the final stage, we concatenated the feature from the DenseNet-201 encoder and that from

the last upsampling layer of the Res SE-UNet, and fed them into a simple CNN classifier (Fig. 4.1)

to conduct CXR diagnosis (normal, pneumonia, or heart failure). This enabled full collaboration

of two designated tasks. Here, both the DenseNet-201 encoder and Res SE-UNet were frozen, and

only the classifier was trained based on a cross-entropy loss.

4.3.4 Dataset and Evaluation Metrics

In our study, we used the “chest X-ray dataset with eye-tracking and report dictation” dataset

[22] to develop and validate our proposed algorithm. The dataset contains 1083 chest X-ray scans

from the MIMIC-CXR dataset [21], with their corresponding diagnostic results (normal, pneumo-

nia, or heart failure), anatomical segmentation, radiologists’ audio with dictation, and finally, addi-

tional eye-tracking data collected during radiological diagnosis. The eye-tracking data was obtained
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with a GP3 gaze tracker by Gazepoint (Vancouver, Canada), with an accuracy of around 1° of visual

angle at a sampling rate of 60 Hz. For our study, we utilized the visual saliency maps that represent

the gaze location and attention over time as a heat map. As the X-ray images have different reso-

lutions and dimensions, we padded and resampled them to the resolution of 640 × 512 pixels, and

normalized the pixel intensity to [0,1] per image.

For the proposed algorithm and comparison methods, we focus on the accuracy evaluation of

CXR diagnosis (classification of normal, pneumonia, or heart failure) and visual saliency map pre-

diction. Specifically, for diagnostic quality, we measured the area under the curve (AUC) metric for

multi-class classification [15] and classification accuracy (ACC) for the overall classification perfor-

mance, as well as AUCs for three individual classes. In terms of visual saliency prediction quality,

we adopted the KL divergence, Pearson’s correlation coefficient (PCC), and histogram similarity

(HS), which measure the distribution similarity between the predicted and gaze heat maps. While

a lower KL divergence is preferred, higher values for the rest of the metrics signify better results.

For the metrics that assess the quality of visual saliency map production, two-sided paired sample

t-tests were performed to confirm the superiority of our proposed technique against the comparison

methods, and a p-value lower than 0.05 was used to declare statistical significance.

Figure 4.1: An overview of the proposed dual-encoder multi-task UNet architecture with multi-
stage cooperative learning.
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4.3.5 Experimental Setup and Ablation Studies

For our experiment, 100 CXR scans, along with the corresponding labels and visual saliency

maps, were randomly selected as a test set while the remaining 983 samples were allocated for

training purposes [58]. Our proposed method involved training at different stages, with the steps

detailed in Section 3.1 ⇠ 3.3. For each stage, the training process is conducted over 50 epochs.

We utilized the Adam optimizer with its default parameters [24] (�1 = 0.9, �2 = 0.999, and

✏ = 1⇥10�8) with a learning rate of 0.0001. Early stopping was employed to avoid overfitting, and

model training was performed on a desktop computer with Intel Core i9 CPU, Nvidia GeForce RTX

3090 GPU, and 24GB RAM. To validate the performance of our proposed technique, we compared

it against the previously established MT-UNet [64], GazeGNN [58], Inception ResNet v2 [14], and

UNet [43] for the two target tasks, using the same training setup as our proposed method.

To help gain further insights into the individual elements of our proposed architecture, we con-

ducted a series of four ablation studies. First, to investigate the benefit of adopting Residual and

SE blocks in UNet for visual saliency prediction, we compared the heatmap generation quality

between only using the Res SE-UNet and a standard UNet (UNet S), without the boosting from

the DenseNet-201. Second, to confirm the contribution of the pretrained DenseNet-201 encoder,

we further compared the saliency map prediction accuracy with and without the encoder mod-

ule (full network vs. Res SE-UNet). Third, the image classification accuracy of full network vs.

DenseNet-201 with contrastive learning was investigated to inspect the benefit of multi-scale feature

fusion. Finally, to reveal the advantage of contrastive learning for pretraining the DenseNet-201,

we compared the results with and without contrastive learning pretraining for the network in CXR

classification.

34



4.4 Results

4.4.1 Performance of the proposed method

The quantitative accuracy assessments of CXR classification and saliency map prediction for

our proposed dual-encoder feature-fusion UNet and the comparison techniques. including the eval-

uations for ablation study purposes are presented in Tables 4.1 and 4.2. The arrows within the tables

indicate the desired trends of the associated metrics. Overall, our proposed method has achieved

an AUC of 0.925 and an accuracy of 80% for CXR diagnosis, outperforming all the comparison

methods, including GazeGNN [58], which ranked as the second best method and uses both the X-

ray scan and gaze data as inputs. When looking at the AUC results per class, our method achieved

the best score for all class-wise AUCs, except for the category of Normal CXR. In terms of visual

saliency prediction, our proposed technique significantly outperformed the MT-UNet and standard

UNet (p<0.01) in all evaluation metrics while reaching better scores on average over our proposed

Res SE-UNet (p>0.05 for CC, p<0.01 for KL and HS). In addition, to qualitatively assess the visual

saliency map generation, we present the results from our proposed method, against those produced

by the MT-UNet [64], the gradCAM results from the DenseNet-201 component of our proposed DL

architecture, and the ground truths. We can see that our proposed method has a higher resemblance

to the ground truths while the gradCAM outputs have a large discrepancy from the human gaze

pattern.

Table 4.1: Accuracy assessment of chest X-ray classification for our method, MT-UNet [64],
DenseNet201 with contrastive pretraining (DNet201-CL), DesenNet201 (DNet201), Inception
ResNet v2 (IRNetv2)[14], and GazeGNN [58].

Metric Ours MT-UNet DNet201-CL DNet201 IRNetv2 GazeGNN
AUC (Normal) " 0.953 0.935 0.961 0.964 0.878 0.899
AUC (Heart failure) " 0.927 0.881 0.865 0.897 0.873 0.881
AUC (Pneumonia) " 0.894 0.687 0.859 0.849 0.602 0.823
AUC " 0.925 0.847 0.889 0.880 0.794 0.868
Accuracy " 0.800 0.640 0.750 0.690 0.600 0.730
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Table 4.2: Accuracy assessment of visual saliency map prediction (mean±std) for our method, MT-
UNet [64], UNet with a modified Residual-Squeeze-and-Excitation encoder (Res SE-UNet), and a
standard UNet (UNet S).

Metric Ours MT-UNet Res SE-UNet UNet S
KL # 0.706 ± 0.183 0.747 ± 0.185 0.747 ± 0.193 0.781 ± 0.202
CC " 0.576 ± 0.113 0.545 ± 0.109 0.560 ± 0.108 0.531 ± 0.109
HS " 0.552 ± 0.055 0.535 ± 0.055 0.539 ± 0.058 0.527 ± 0.056

4.4.2 Ablation studies

We performed four ablation studies for our proposed framework. First, when comparing the

saliency map generation between the Res SE-UNet and the standard UNet, we observed a signifi-

cant improvement in all metrics (p<0.05), indicating the positive impact of SE and residual blocks to

better capture task-relevant image features. Second, when incorporating the pretrained DenseNet-

201 encoder into the Res SE-UNet to form the dual-encoder setup (i.e., the full model), the quality

of visual saliency prediction was further enhanced, with a noticeable drop of KL divergence from

0.747 to 0.706. Third, in terms of CXR classification, the full model of our proposed technique

was compared against the DenseNet-201 pretrained with contrastive learning, and showed great im-

provement (Accuracy: 80% vs. 75%). Here, both the second and third studies showcased boosted

performance by leveraging the collaboration of the classification and prediction tasks. Lastly, to

confirm the benefit of contrastive pretraining for the DenseNet-201 feature encoder, the CXR clas-

sification performance of the network with and without CL pretraining were compared in Table 4.1.

With the AUC and accuracy increases of 0.009 and 6%, respectively, the version with CL pretraining

is shown to be superior.

4.5 Discussion

One major feature of our proposed DL framework is to employ a three-stage cooperative learn-

ing strategy to address the challenge in multi-task learning, where the loss functions of individual

tasks fail to converge at the same rate, resulting in sub-optimal outcomes. Although Zhu et al. [64]

successfully demonstrated the adoption of the uncertainty-based training strategy, it requires more

elaborate setups and additional learnable parameters to achieve the best outcomes. In contrast, our

strategy first used a DenseNet-201 feature encoder pretrained on CXR classification to facilitate

visual saliency map prediction, and then further enhance the classification quality by allowing full
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Figure 4.2: Qualitative evaluation of visual saliency map prediction across our proposed model and
the MT-UNet [64], against the gradCAM outputs from the DenseNet-201 from our proposed model,
the original X-ray scan and the ground truths for exemplary heart failure, normal, and pneumonia
cases.

cooperation of the saliency map and DenseNet-201 features. Based on the ablation studies (see Sec-

tion 4.2), we showed that such task collaboration with dual-encoder and multi-scale feature-fusion

has boosted the performance. In addition, our proposed method outperformed the relatively recent

MT-UNet [64] and GazeGNN [58], as well as other baseline techniques in the designated tasks. As

in the related reports [64], [58], both MT-UNet and GazeGNN have been validated against several

state-of-the-art DL models, including ResNets, EfficientNet, Swin Transformers, and VGGSSM [8],

and showed better results, we decided not to expand the comparison to these models in our study.

In our ablation studies, we confirmed the positive role of contrastive learning with a triplet loss

in pretraining the DenseNet-201 feature encoder. Although more recent self-learning techniques

have provided better results, they could also be resource demanding. We will further explore these

methods in the near future. For saliency map prediction, we proposed the Res SE-UNet, with Resid-

ual and SE blocks. While the SE block can increase feature representation by dynamic channel-wise

feature recalibration, the residual block facilitates gradient flow during training. This modification
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was proven to be instrumental in our method. As the gaze attention during diagnosis reflects the po-

sitions and importance of local features relevant to a diagnosis, such information may efficiently

guide DL-based algorithms for radiological tasks. In previous investigations [59][45],[26][30],

many have confirmed the constructive impacts of incorporating gaze attention maps on improv-

ing radiological diagnosis, either as input features with the medical scans or through auxiliary tasks

(e.g., regularization of CAM results). This is also well echoed in our study. As shown in Fig. 4.2,

although the highly flexible CAM has been widely used to provide visual explanation for various

DL models, in terms of CXR diagnosis, the CAM pattern does not necessarily coincide with real

human attentions. Interestingly, in Fig. 4.2, CAM highlighted the heart for the heart failure case

while the human attention focuses on a broader area. Thus, it could be beneficial to employ both

visual explanations jointly, and our proposed method can support this option.

In our current study, we utilized the visual attention map, which is an accumulation of tempo-

rally sampled gaze locations to provide a potential explanation for the diagnostic results. However,

additional representation of the gaze pattern, such as the scanpaths can also be used to enrich the

understanding of the diagnostic procedure, identify the skill levels of clinicians to ensure data qual-

ity [57], and further enhance the accuracy of the diagnostic algorithm to open doors for additional

human-machine-interaction. Although it is still a challenging task and has not been adopted for clin-

ical scans, ongoing scanpath prediction research in natural images [52] is progressing steadily. We

will seek to explore venues to incorporate such information in radiological diagnosis in the future.

4.6 Conclusion
We have proposed a novel multi-task DL model using a dual-encoder UNet with multi-scale

feature-fusion for CXR diagnosis and visual saliency prediction. The proposed DL model benefits

from our multi-stage cooperative learning strategy to best optimize the training of individual tasks,

with a gradual introduction of collaboration. With excellent results, our proposed technique tackles

the important challenge of transparency in DL-based radiological diagnosis, with a great potential

to be extended for other applications.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis has significantly advanced the field of interpretable medical image processing through

two main contributions. The first contribution detailed in the MLMI 2023 paper involved a com-

prehensive evaluation of the Gradient-weighted Class Activation Mapping (Grad-CAM) across dif-

ferent deep learning architectures for pneumothorax diagnosis in chest X-ray images. This study

highlighted the variability in Grad-CAM’s effectiveness depending on the architecture depth and

type, providing valuable insights into the adaptability and utility of visual explanation tools in med-

ical diagnostics.

The second, and major, contribution presented in the MICCAI MLMI2024 workshop submis-

sion introduced a novel multi-task learning framework that effectively combines disease diagnosis

with clinical visual attention prediction. This work utilized a dual-encoder multi-task UNet archi-

tecture, enhancing the interpretability of automated diagnostic decisions by aligning AI-generated

saliency maps with clinician attention patterns. The introduction of a multi-stage cooperative learn-

ing strategy improved the synergy between these tasks, significantly boosting both diagnostic per-

formance and the quality of visual explanations.

Both studies not only address the critical need for transparent and interpretable AI in medical

imaging but also demonstrate practical implementations that could facilitate wider adoption in clin-

ical settings. The improvements in both the reliability of visual explanations and the accuracy of
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automated diagnostics hold great promise for enhancing patient outcomes and supporting medical

professionals in their decision-making processes.

5.2 Future Work

5.2.1 Expansion to Other Imaging Modalities:

First, future research should explore the applicability of the developed methodologies, such as

Grad-CAM and the novel multi-task learning framework, to other imaging modalities like MRI, CT

scans, and ultrasound. Extending these interpretability approaches to a broader range of imaging

techniques could offer valuable insights into their generalizability and effectiveness across different

clinical settings. This expansion would not only validate the robustness of the proposed methods

but also enhance the scope and impact of AI-assisted diagnostics across various forms of medical

imaging, potentially improving diagnostic accuracy and interpretability in a more extensive clinical

context.

5.2.2 Integrating Cooperative and Federated Learning:

The concepts of cooperative learning, as discussed in this thesis, and federated learning both rep-

resent powerful strategies for enhancing AI systems. While cooperative learning focuses on lever-

aging the synergy between multiple related tasks to boost model performance and interpretability,

federated learning offers a pathway to train models on decentralized datasets without compromising

data privacy. Combining these approaches could lead to the development of robust, interpretable

models that are trained on diverse, multi-institutional data while ensuring that each participating

entity retains control over its own data. This integration promises significant advancements in cre-

ating AI tools that are both powerful and privacy-preserving, making them suitable for widespread

adoption in diverse healthcare environments.[32]
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5.2.3 Enhancing Model Interpretability:

A significant aspect of the research presented in this thesis is its focus on enhancing inter-

pretability through a result-oriented, instance-based approach. This method models the decision-

making process of AI systems on how experts, such as medical professionals, analyze and reason

about medical images. By simulating human cognitive processes and decision patterns, the AI

system’s outputs become more intuitive and understandable to practitioners. This instance-based

approach not only helps in aligning the AI’s focus with that of human experts but also ensures that

the outputs are relevant and easily interpretable in a clinical context.

Continuing to enhance the interpretability of AI systems remains a pivotal area for future re-

search. Given the promising results of the instance-based approach in this thesis, further develop-

ment and refinement of this methodology could yield even more robust and intuitive systems. Future

work could explore:

• Deepening Instance-based Methodologies: Enhancing the current models to more closely

mimic complex human reasoning processes, potentially incorporating more nuanced aspects

of expert decision-making to improve the depth and accuracy of the interpretability.

• Exploring Alternative Models of Explainability: While instance-based methods are effec-

tive, diversifying interpretability approaches could include developing complementary tech-

niques such as counterfactual explanations, rule-based systems, or causal inference models.

These models could provide different perspectives on AI decisions, offering a more compre-

hensive understanding of model behavior.

• Hybrid Approaches: Combining instance-based methods with other interpretability frame-

works could provide a more holistic view of AI decisions. This hybrid approach would lever-

age the strengths of various interpretability methods, ensuring that AI systems are not only

effective but also fully accountable and transparent in their operations.
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ent evaluation metrics tell us about saliency models? IEEE transactions on pattern analysis

and machine intelligence, 41(3):740–757, 2018.

[7] Erdi Çallı, Ecem Sogancioglu, Bram van Ginneken, Kicky G van Leeuwen, and Keelin Mur-

phy. Deep learning for chest x-ray analysis: A survey. Medical Image Analysis, 72:102125,

2021.

42



[8] Ge Cao, Qing Tang, and Kang-hyun Jo. Aggregated deep saliency prediction by self-attention

network. In Intelligent Computing Methodologies: 16th International Conference, ICIC 2020,

Bari, Italy, October 2–5, 2020, Proceedings, Part III 16, pages 87–97. Springer, 2020.

[9] Danton S Char, Nigam H Shah, and David Magnus. Implementing machine learning in health

care—addressing ethical challenges. The New England journal of medicine, 378(11):981,

2018.

[10] Hila Chefer, Shir Gur, and Lior Wolf. Transformer interpretability beyond attention visualiza-

tion. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,

pages 782–791, 2021.

[11] Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L

Yuille, and Yuyin Zhou. Transunet: Transformers make strong encoders for medical image

segmentation. arXiv preprint arXiv:2102.04306, 2021.

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,

et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv

preprint arXiv:2010.11929, 2020.

[13] Kelly N DuBois. Deep medicine: how artificial intelligence can make healthcare human again.

Perspectives on Science and Christian Faith, 71(3):199–201, 2019.

[14] Khalid El Asnaoui, Youness Chawki, and Ali Idri. Automated methods for detection and

classification pneumonia based on x-ray images using deep learning. In Artificial intelligence

and blockchain for future cybersecurity applications, pages 257–284. Springer, 2021.

[15] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861–874,

2006.

[16] Shimpy Goyal and Rajiv Singh. Detection and classification of lung diseases for pneumonia

and covid-19 using machine and deep learning techniques. Journal of Ambient Intelligence

and Humanized Computing, 14(4):3239–3259, 2023.

43



[17] Ameer Hamza, Muhammad Attique Khan, Shui-Hua Wang, Majed Alhaisoni, Meshal Alharbi,

Hany S Hussein, Hammam Alshazly, Ye Jin Kim, and Jaehyuk Cha. Covid-19 classification

using chest x-ray images based on fusion-assisted deep bayesian optimization and grad-cam

visualization. Frontiers in Public Health, 10:1046296, 2022.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern recogni-

tion, pages 770–778, 2016.

[19] Elad Hoffer and Nir Ailon. Deep metric learning using triplet network. In Similarity-Based

Pattern Recognition: Third International Workshop, SIMBAD 2015, Copenhagen, Denmark,

October 12-14, 2015. Proceedings 3, pages 84–92. Springer, 2015.

[20] Andreas Holzinger, Chris Biemann, Constantinos S Pattichis, and Douglas B Kell. What

do we need to build explainable ai systems for the medical domain? arXiv preprint

arXiv:1712.09923, 2017.

[21] Alistair EW Johnson, Tom J Pollard, Seth J Berkowitz, Nathaniel R Greenbaum, Matthew P

Lungren, Chih-ying Deng, Roger G Mark, and Steven Horng. Mimic-cxr, a de-identified

publicly available database of chest radiographs with free-text reports. Scientific data, 6(1):

317, 2019.

[22] Alexandros Karargyris, Satyananda Kashyap, Ismini Lourentzou, Joy T Wu, Arjun Sharma,

Matthew Tong, Shafiq Abedin, David Beymer, Vandana Mukherjee, Elizabeth A Krupinski,

et al. Creation and validation of a chest x-ray dataset with eye-tracking and report dictation

for ai development. Scientific data, 8(1):92, 2021.

[23] Sota Kato, Masahiro Oda, Kensaku Mori, Akinobu Shimizu, Yoshito Otake, Masahiro

Hashimoto, Toshiaki Akashi, and Kazuhiro Hotta. Classification and visual explanation for

covid-19 pneumonia from ct images using triple learning. Scientific Reports, 12(1):20840,

2022.

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

44



[25] Paras Lakhani and Baskaran Sundaram. Deep learning at chest radiography: automated clas-

sification of pulmonary tuberculosis by using convolutional neural networks. Radiology, 284

(2):574–582, 2017.

[26] Ricardo Bigolin Lanfredi, Ambuj Arora, Trafton Drew, Joyce D Schroeder, and Tolga Tas-

dizen. Comparing radiologists’ gaze and saliency maps generated by interpretability methods

for chest x-rays. arXiv preprint arXiv:2112.11716, 2021.

[27] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–

444, 2015.

[28] Yeon-Hee Lee, Jong Hyun Won, Seunghyeon Kim, Q-Schick Auh, and Yung-Kyun Noh. Ad-

vantages of deep learning with convolutional neural network in detecting disc displacement of

the temporomandibular joint in magnetic resonance imaging. Scientific Reports, 12(1):11352,

2022.

[29] Hao Liu, Jiancheng Luo, Bo Huang, Haiping Yang, Xiaodong Hu, Nan Xu, and Liegang Xia.

Building extraction based on se-unet. Journal of Geo-Information Science, 2019.
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