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ABSTRACT
With the advances in sensing and communication tech-

niques, data collection has become much easier in manufacturing
processes. Machine learning (ML) is a vital tool for manufactur-
ing data analytics to leverage the underlying informatics carried
by data. However, the varieties of data formats, dimensionality,
and manufacturing types hugely hinder the learning efficiency of
ML methods. Data preparation is critical for exploiting the po-
tential of ML in manufacturing problems. This paper investigates
how data preparation affects the ML efficacy in manufacturing
data. Specifically, we study the influences of data normaliza-
tion and dimension reduction on the ML performance for various
types of manufacturing problems. We conduct comparison stud-
ies of data with/without pre-processing on different manufactur-
ing processes, such as casting, milling, and additive manufac-
turing. Experimental results reveal that different pre-processing
methods have a distinct effect on learning efficiency. Normaliza-
tion is helpful for both numerical and image data, while dimen-
sion reduction – this paper uses principal component analysis
(PCA) – is not useful for low-dimensional numerical manufac-
turing data. Combining both normalization and PCA can signifi-
cantly enhance the learning efficiency of high-dimensional data.
After that, we summarize several practical guidelines for manu-
facturing data preparation for ML, which provide a valuable basis
for future manufacturing data analysis with ML approaches.

∗Corresponding Author.

1 Introduction
Smart manufacturing system is one of the critical elements

for the fourth stage of the industrial revolution (Industry 4.0) [1].
One foundation for implementing the smart manufacturing sys-
tem is data. Through data analysis, the manufacturing systems
can understand the current operational status and predict the pro-
cess condition to achieve the prognostics. In this paradigm, data
has become a precious resource for systematic computational
analysis of the manufacturing process, thus leading to more in-
formed decisions and enhancing the efficacy of smart manufac-
turing [2, 3]. With the advances of sensing and communication
technologies, data becomes much more accessible, and manufac-
turing data is experiencing explosive growth, which has reached
over 1000 EB annually [4]. With the hidden intelligence of
big data, manufacturing systems have become more “smart” to
achieve the all-around monitoring, simulation, and optimization
of production activities [5].

To leverage the value of information and knowledge embed-
ded in data, machine learning (ML) has been a vital tool for
exploring data capability. Currently, the primary use cases of
ML in manufacturing are predictive quality and predictive main-
tenance. With machine learning approaches, predictive quality
and yield automatically identify the root causes of process-driven
production losses using continuous, multivariate analysis, pow-
ered by machine learning algorithms that are uniquely trained to
understand each production process intimately [6]. ML methods
help reduce common, painful process-driven losses (e.g., yield,
waste, quality, and throughput) and optimize the production pro-
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FIGURE 1: Applying normalization to a solid model by its x-,
y-, and z-coordinates separately breaks the spatial relationship of
the geometry.

cess, enabling the growth and expansion of product lines. Pre-
dictive maintenance ensures manufacturing systems continue to
function without unnecessary interruptions by preempting a fail-
ure with ML algorithms. Predictive maintenance also leads to
less maintenance activity, lower labor costs, and reduced inven-
tory and materials wastage. To fully exploit the capability of ML
methods for manufacturing systems, manufacturers need to know
which data-driven solution is best suited for their own unique sets
of challenges.

To find a suitable ML solution for a specific problem, the
first thing is to cope with the data, known as data preparation.
Since different manufacturing processes generate distinct data,
it entails a great variety of formats, scale, and representations.
Before selecting appropriate ML method, we need to handle the
data variety and get the data prepared to applying ML for man-
ufacturing problems. In data preparation, normalization and di-
mension reduction are two most fundamental methods for pre-
processing the data. Studies [7,8] have shown that normalization
is crucial to the performing ML. On one side, data normaliza-
tion eliminates the biased weight because of the range of data
and ensures the equity of features’ numerical contribution from
data. On the other side, it breaks the spatial relationship of the
data. Fig. 1 illustrates that normalizing a solid model by its x-, y-,
and z-coordinates separately makes a circle become an oval. As
the features of the object may not equally important for the ML
method, some features in the data can have a varying relevance
while others are entirely irrelevant and redundant. The presence
of unwanted features complicates the learning process and in-
creases the feature space size. These features interfere with the
useful features which confuse the learning algorithm and result
in deterioration of the learning performance. It also increases the
computational complexity of a machine learning algorithms [9].
Thus, the impact of normalization on the learning efficiency of
manufacturing data needs investigation.

Dimensionality reduction also plays a vital role in machine
learning, especially when working with data encompassing high-
dimensional features (e.g., an image with a resolution of 64×64
contains 4096-pixel features). As manufacturing data may often
contain noise or irrelevant information, which negatively affects

the generalization capability of ML algorithms [10], dimension
reduction can reduce the noise or irrelevant information of the
data and also be beneficial for the computational efficiency of
ML methods. However, reducing the dimension of the data loses
some amount of information ingrained in data. Among various
dimension reduction algorithms, Principal Components Analy-
sis (PCA) is one of the most widely used methods [11]. PCA
helps in data compression and hence reduces storage space and
computation time. It also eliminates redundant features of data.
However, PCA finds linear correlations between variables, which
are sometimes undesirable. PCA can fail where mean and covari-
ance are not enough to describe the datasets. Therefore, the im-
pact of dimension reduction on the learning efficiency, especially
for manufacturing data, needs further investigation.

The impact of data preparation on ML efficacy motivates
the research question of this work. How do the data normal-
ization and dimension reduction affect the performance of the
ML methods for manufacturing data? To answer this question,
we conduct normalization and dimension reduction (specifically
PCA) on various types of data from typical manufacturing pro-
cesses (e.g., CNC milling, 3D printing), and then compare the
learning performance (in terms of the computational efficiency
and prediction accuracy) of ML methods with and without data
preparation. Through a comparison study, we can examine how
normalization and dimension reduction affect the ML methods.
Based on this, we derive the general manufacturing data prepa-
ration strategies, which could serve as guidelines for future man-
ufacturing data preparation for ML.

We organized the rest of this paper as follows. Section 2 re-
views the state-of-the-art data preparation for ML, and Section 3
introduces the study. Then, Section 4 presents the experiments
and case studies, and Section 5 discusses the results and sum-
marizes the design guideline for applying data preparation for
manufacturing data. Finally, Section 6 concludes the paper and
mentions the limitations and future directions of the work.

2 Related Works
There are abundant works that studied the integration of ML

methods for manufacturing problems [12–15]. However, most
of the current works focus on how to align the data-driven ap-
proaches with the manufacturing problem in specific applica-
tions. Other works [3,16] are focused on discussing the opportu-
nities of embracing artificial intelligence with the manufacturing
environment. For instance, Wang et al. [17] presented a review
of deep learning methods and applications for smart manufactur-
ing, and Wuest et al. [18] discussed the advantages, challenges,
and applications of ML in manufacturing.

However, few works concentrate on the data preparation for
ML in the manufacturing domain. Grzegorzewski et al. [19] dis-
cussed a systematic data pre-processing paradigm, including data
quality and data preparation in industrial manufacturing. Some
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works [7, 8] investigated the effect of normalization on the ML
performance, while others [20, 21] studied the dimension reduc-
tion methods for specific manufacturing problems. Rare works
discussed the data preparation for learning efficiency. With the
rapid development of artificial intelligence and the advances in
manufacturing techniques, it urges the need of a systematic quan-
titative study of the influences of data preparation in ML methods
for manufacturing data. This work does a comparative analysis
of the data pre-processing methods on the effectiveness of ML
methods.

3 Methodology
To investigate the impact of data preparation approaches

on ML performance, we need to establish a fairly comparative
framework. Figure 2 presents the overview of the proposed study
paradigm. This method will first collect various types of data
from typical manufacturing processes and then pre-process the
collected raw data with and without the normalization and PCA.
After that, it will apply the prepared data to ML methods and
investigate the learning results comparatively.

FIGURE 2: Overview of the proposed framework for machine
learning of manufacturing data.

3.1 Data Collection
We mainly focus on analyzing data from the manufactur-

ing domain in this work. Thus, we collect data from different
manufacturing processes, such as milling, casting, and 3D print-
ing. These data contain various features and represent typical
manufacturing processes and products. Since each dataset will
have its physical meanings and represented formats, this work
will study two main categories: numerical parameters and image
data. Numerical parameters usually describe the physical pro-
cess parameters, while image data are directly the snapshots of
the manufacturing processes or products.

3.2 Data Pre-Processing
This work will apply normalization and dimension reduction

to the manufacturing data. This section presents the details of the

two data pre-processing methods.

Normalization. The manufacturing datasets mainly include
two types: numerical values and image data. The normaliza-
tion for numerical data uses the standard score (z-score), which
normalizes the data with center 0 and standard deviation 1. The
main reason for selecting this method is that the parameters’
value in the manufacturing process varies extensively, and there
could be outliers. The z-score normalization transforms these
different data scales into a similar numerical range without being
affected severely by outliers exist. In terms of image data, since
the intensity value of a pixel ranges from 0 to 255, there are no
extremely large or small outliers. We apply a min-max normal-
ization, transforming the minimum value of an image into 0 and
the maximum value into 255. As image data contains the spatial
relation of features, the min-max normalization helps preserve
the relationships among the original input data.

Dimension reduction. This work mainly uses PCA for dimen-
sion reduction. PCA is a mathematical algorithm that reduces the
dimensionality of the data while retaining most of the variation
in the dataset [22]. Suppose the data has n observations with p
numerical variables. The raw data can be represented as a n× p
data matrix X, whose j-th column is the vector x j of observa-
tions on the j-th variable. We seek a linear combination of the
columns of matrix X with maximum variance. Such linear com-
binations are given by ∑

p
j=1 β jx j = Xβ , where β is a vector of

constants β1,β2, · · · ,βp. The variance of any such linear combi-
nation is given by var(Xβ ) = β T Sβ , where S is the sample co-
variance matrix associated with the dataset. Hence, identifying
the linear combination with maximum variance is equivalent to
getting a p-dimensional vector, which maximizes the quadratic
form β T Sβ . Viewed as an optimization problem, there are many
approaches to find the optimal β values, such as singular value
decomposition (SVD) [23].

3.3 Comparative Study Methods
To examine the impact of normalization and dimension re-

duction on learning efficiency, we employed ML methods to
study various problems in manufacturing processes. We conduct
the four pre-processing data options as shown in Fig. 2 on the
input manufacturing data: ‘None’ means we take the raw data
directly as input for ML methods, and we conduct normalization
only, PCA only, and both on the raw data. We apply a fully con-
nected neural network (NN) to both numerical and image data re-
garding the ML method. We also deploy the convolutional neural
network (CNN) for the image data. With the different combina-
tions of data pre-processing strategies and ML methods, we study
and compare the learning efficiency in manufacturing data, thus
providing insights on selecting appropriate data preparation for
different manufacturing processes.
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4 Experimental Results
We need to split the data for training, validation, and testing

for the machine learning methods. In this work, we split the nu-
merical manufacturing data (Section 4.1−4.3) into 0.7, 0.15, and
0.15, respectively; while for image data in Section 4.4−4.6, we
separate them into 0.64, 0.16, and 0.2. We include the most sig-
nificant components in dimensional reduction using PCA until
the explained variance reaches 99%. All experiments are imple-
mented in tensorflow1 and run on a machine with 3.6 GHz 8-Core
Intel Core i9 CPU and 16GB RAM.

4.1 Steel plates faults
Steel plates have many uses, ranging from household appli-

ances to military. To manufacturing quality products from steel
plates, it is important to inspect and correctly classify the type of
surface defects in them. Here, we employ the Steel Plates Faults
dataset [24], donated by Semeion, Research Center of Sciences
of Communication, and it is licensed under a Creative Commons
Attribution 4.0 International (CC BY 4.0) license. The dataset
has 34 fields, including both inputs and outputs. The input vec-
tor comprises 27 indicators that describe the steel plate and the
geometric shape of the defect, such as steel types, plate thickness,
defect positions, areas, and perimeters. The output vector is a set
of 7 one-hot encoded class labels (true or false) that classify the
type of surface defects, e.g., stains, scratches, bumps.

TABLE 1: Accuracy of classifying the type of steel plate faults
with various pre-processing options. (The larger the better)

Methods NN size Total Train Validate Test

Raw 27-24-6 65.93% 63.63% 69.47% 73.16%

Norm 27-24-6 94.16% 95.27% 93.16% 90.00%

PCA 2-14-6 54.65% 55.07% 52.63% 54.74%

Both 16-18-6 94.32% 95.72% 92.63% 89.47%

We use cross-entropy minimization for training the classifi-
cation model, and Table 1 summarizes the accuracy results for
each pre-processing option, together with the size of NN. When
the NN directly learns from the raw data, it finds the best result
when the hidden layer has a size of 24, and the accuracy is about
65%. After normalization, the accuracy improves dramatically
to about 94%, which reveals the importance of normalizing the
data to eliminate the bias because of their ranges. When apply-
ing PCA to the raw data, it reduces the input dimension from 27
to 2 even when it requires holding 99% of the variance. This
means that the bias is so significant, making all other parameters

1www.tensorflow.org

trivial. Because of this unfaithful loss of information, the accu-
racy reduces to about 55%, being the worst performance. After
normalization, PCA reduces the input dimension to 16 instead of
2, which further confirms that the bias comes from the different
ranges of data. Here, the accuracy is about 94%, similar to the
one with only normalization. This shows that dimension reduc-
tion is not bad as long as the data is not biased, but it does not
have much benefit for data that already has a small dimension.

4.2 Tool wear detection in CNC milling
In CNC milling, operators have to spend a lot of time check-

ing if the tool is still good to use. There is a need for the identifi-
cation of worn and unworn cutting tools based on the data from
the machine’s built-in sensors. We use the CNC milling dataset
generated by the System-level Manufacturing and Automation
Research Testbed (SMART) Lab at the University of Michigan.
The dataset collects time-series data from 18 machining experi-
ments with a sampling rate of 100 ms. The experiments carved
an ‘S’ shape into the top surface of 2” × 2” × 1.5” wax blocks.
Eight experiments used an unworn tool, while ten used a worn
tool. The machining data contains the measurements from the
4 motors in the CNC (x-, y-, and z-axes and spindle), including
tool condition, feed rate, clamping pressure, etc. We take every
CNC measurement during the active machining operations as an
independent observation and perform a supervised binary classi-
fication of the tool being unworn or worn. The input vector has
41 parameters, and there is only a Boolean output.

TABLE 2: Accuracy of tool wear detection with various pre-
processing options. (The larger the better)

Methods NN size Total Train Validate Test

Raw 41-42-1 61.52% 61.88% 59.66% 61.47%

Norm 41-36-1 92.10% 93.61% 88.77% 88.41%

PCA 2-46-7 55.58% 55.36% 56.16% 56.05%

Both 28-44-1 92.07% 94.19% 87.27% 86.91%

Table 2 summarizes the accuracy results for this test case.
The results have the same trend as that of steel plates faults in
Sec. 4.1. In short, the accuracy of learning from the raw data is
about 62%, and normalization improves it to 92%. PCA on the
raw data results in only 2 components remained and has a low ac-
curacy of about 56%. Applying both normalization and dimen-
sion reduction gives a similar result (92%) to the one with only
normalization. This further supports that normalization is impor-
tant to the numeric manufacturing data, and dimension reduction
is not meaningful because of the already small dimension.
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4.3 Surface roughness prediction in FFF 3D printing
Surface roughness is a major concern in 3D printing. It is

useful to find out how the 3D printing parameters affect the sur-
face roughness. We use a 3D printer dataset, which comes from
the research by the Department of Mechanical Engineering at
Selcuk University. The experiments used the Ultimaker S5 3D
printer and filaments, and there are 50 observations. The dataset
has both setting and measured parameters. The input vector takes
11 parameters, including later height, infill density, temperatures,
print speed, etc.; and the output is the surface roughness.

TABLE 3: Mean squared error for predicting surface roughness
from 3D printing parameters. (The smaller the better)

Methods NN size Total Train Validate Test

Raw 11-11-1 7918 8093 7675 7418

Norm 11-19-1 311 59 809 883

PCA 4-10-1 8640 8424 9913 8288

Both 7-13-1 348 94 1183 590

For this regression problem, we use the scaled conjugate gra-
dient to train the NN, and Table 3 reports the mean square errors
in each case. Although the nature of this problem differs from
the previous two (classification vs. regression), the learning per-
formance has the same trend. With no pre-processing of the data,
the error is as high as 7918. It decreases to only 311 with nor-
malization. PCA on raw data reduces the input dimension from
11 to 4, and it has a large error of 8640; while PCA on normal-
ized data has a slightly larger error than normalization only. This
again confirms that normalization is important but not dimension
reduction for numeric data, in both classification and regression
problems.

4.4 Casting surface classification
Casting is one of the fundamental manufacturing processes,

which usually pours a liquid material into a mold that contains
a hollow cavity of the desired shape, and then allows the melt
to solidify. A casting defect is undesired irregularities in the
metal casting process. However, there are different defects arise
in the casting process, like blowholes, pinholes, burr, shrinkage
defects, mold material defects, pouring metal defects, metallurgi-
cal defects. These defects are unexpected anomalies and need to
be detected timely in the casting process. Thus, an efficient qual-
ity inspection is critical to eliminate defective products. In this
experiment, we use a dataset that contains images of parts from
the casting process [25]. The dataset has 7348 gray-scaled im-
ages with the size of 100×100 pixels, and 57% of the images are

defective parts. This experiment studies the effects of data with
and without normalization and PCA on the neural network per-
formance. Since the data format is in an image, we also applied
the convolutional neural network (CNN) to study the learning ef-
ficiency. In CNN, the layers before the fully connected ones are
also a dimension reduction process, since the filters and pooling
operations reduce the original image size. Table 4 summarizes
the learning accuracy and training time of different methods.

TABLE 4: Comparison of different approaches on defect detec-
tion accuracy of casting data. (The larger the better)

Methods NN size Train Validate Test
Train time

(s/epoch)

Raw 10000-224-112-1 76.40% 77.87% 76.78% 2.27

Norm 10000-224-112-1 89.71% 79.66% 89.79% 2.28

PCA 1050-224-112-1 99.41% 96.43% 75.66% 0.53

Both 1050-224-112-1 99.35% 97.11% 97.20% 0.66

ConV 4608-224-112-1 98.87% 97.76% 98.88% 29.38

Table 4 shows that if we are using the raw data for the
learning, each image contains 10,000 pixels, which is high-
dimensional data, and the neural network achieves a 76.78%
classification accuracy (part is good or defective) for the testing
data. With normalization, the classification accuracy improves to
89.79%. This reveals that normalization is beneficial for elimi-
nating the bias brought by the range within the original image.
PCA reduces the dimension to 1050, and the training and vali-
dation accuracies improve significantly to 99.41% and 96.43%,
but the testing one remains similar (75.66%). This reveals that
the PCA can improve the training accuracy by reducing data di-
mensions. However, such dimension reduction is not beneficial
to learn a faithful relation between the original data and the ex-
pected output, thus leading to the prediction ability on new data
(testing data in this case) with lower fidelity. With normalization
and PCA, we can see the prediction accuracy increases (97.2%).
This confirms that the normalization is crucial for eliminating the
bias included in original manufacturing data, no matter what type
of formats (e.g., numerical values, image) the data is. After nor-
malization, the PCA eliminates the redundant features carried by
high-dimensional data, thus improving the testing accuracy from
89.79% to 97.2%. For image learning, CNN has been an effec-
tive method [26]. In this experiment, we apply it to the casting
data. From Table 4, we can see the CNN (ConV2 in the table)
achieves a slightly better result than NN with both normaliza-
tion and PCA; however, the training time of CNN is significantly

2The input dimension is the filters after convolution layers multiple the re-
duced image size, e.g., the image is reduced to 6× 6 after pooling layers with
128 convolutional filters will result in 36×128 = 4608 features.
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larger (29.38 s/epoch). This is mainly because there are a larger
number of filters in convolution layers, even though the pooling
operation has reduced the image size. The feeding dimension
to the fully connected layer is 4608. The casting data studies
show that both normalization and PCA are necessary for high-
dimensional manufacturing data, and they are comparable to, but
much faster than, CNN.

4.5 Steel surface defect classification
Defect inspection is a crucial step in guaranteeing the qual-

ity of industrial production. This experiment uses a steel plate
defect inspection dataset [27]. This dataset collected six kinds of
typical surface defects of the hot-rolled steel strip, i.e., rolled-in
scale (RS), patches (Pa), crazing (Cr), pitted surface (PS), in-
clusion (In), and scratches (Sc). The original database includes
1,800 gray-scale images: 300 samples each of six different typ-
ical surface defects. Figure 3 illustrates some example images.
To increase the variations and sufficiency for machine learning
methods, it augmented the original data to six times the original
data size, i.e., the augmented size of image data is 18,000. The
image size in the dataset is 200× 200 pixels, and thus the di-
mension of the raw data is 40,000. This experiment studies the
effect of data with/without normalization and PCA on the neural
network. Again, we also apply the CNN to study the learning
efficiency.

FIGURE 3: Example images of the steel plates defects [27].

Table 5 summarizes the learning accuracy and training time
of different methods. This experiment shows that normaliza-
tion can only slightly increase the defect detection accuracy in
terms of training, validation, and testing. This reveals the data
range bias within the high-dimensional data is not critical to the
learning efficiency. PCA reduces the dimension largely from
40,000 to 721 and has a significant improvement in the testing
accuracy from 14.72% to 66.39%. This reveals that the features
highly correlate to each other within an image for defect detec-
tion. By eliminating the range bias among the data, the test-
ing accuracy of PCA further improves to 81.76%. From these
comparison studies, both PCA and normalization are critical to
learning efficiency. It shows the effectiveness of eliminating the
data range bias and finding the correlation encompassed within
high-dimensional data. We also conducted the CNN on the steel
surface classification. From the results, we can see that CNN
achieves 95.28% testing accuracy. This is mainly because it can
preserve the spatial correlation between features in convolution
layers, while other methods transform the image into a vector,
which loses the spatial relation. However, the computational cost
of CNN is much higher than the NN with PCA and normaliza-
tion. This implies that PCA and normalization with NN are still
attractive if the computational time is a concern.

TABLE 5: Steel surface defect classification accuracy. (The
larger the better)

Methods NN size Train Validate Test
Train time

(s/epoch)

Raw 40000-224-112-1 17.15% 14.93% 14.72% 3.027

Norm 40000-224-112-1 28.12% 18.40% 17.01% 3.347

PCA 721-224-112-1 76.67% 68.89% 66.39% 0.052

Both 721-224-112-1 88.75% 82.29% 81.67% 0.050

ConV 9216-224-112-1 96.88% 95.83% 95.28% 21.53

4.6 Metal nut anomaly detection
The last dataset comprises manufacturing parts (specifically,

metal nuts) anomaly detection, and it comes from Bergmann et
al. [28, 29]. The dataset categorized the metal nuts into five
classes: good (normal part with no defects), bent (the part is
bent), color (the part has colors at a specific area), flip (the part is
in an opposite orientation), and scratched (the part has scratches).
Figure 4 shows some example images of these five categories.
For the sake of computational efficiency, this experiment resizes
the original images into 244×224. Thus, the raw data dimension
is 50,716. We also conduct data augmentation on the dataset (in-
creased from 313 images to 11,560). Table 6 summarizes differ-
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FIGURE 4: Example images of the metal nuts [28].

ent data pre-processing and their effects on learning efficiency.

TABLE 6: Metal nut defect detction accuracy. (The larger the
better)

Methods NN size Train Validate Test
Training time

(s/epoch)

Raw 50716-224-28-5 48.52 49.33 45.70 9.5459

Norm 50716-224-28-5 51.45 50.67 54.30 9.4434

PCA 4833-224-28-5 41.67 42.22 42.26 0.4151

Both 580-224-28-5 92.84 74.76 74.44 0.2529

ConV 25088-224-28-5 98.47 86.12 85.62 144.659

From the experimental results, we can observe that normal-
ization slightly improves the learning accuracy, while only the
PCA is not working. With both pre-processing of the high-
dimensional data, the learning accuracy significantly improves
to around 70-90%. This further confirms that elimination of the
data range bias and correlation encompassed within data together
is beneficial to the learning capability of NN. Similarly, CNN
performs best by preserving the spatial relationship of features
within the image while sacrificing the training time.

5 Discussion
In this work, we conduct a comparative study of the effect of

data pre-processing on the learning efficiency of manufacturing
data. Based on the analysis of the experimental results, we found
several common patterns of the data pre-processing influences on
manufacturing data across different applications. Based on the
analysis of the experimental results, we found several common
characteristics of the data preprocessing influences on manufac-
turing data across different manufacturing applications. There-
fore, we summarize a few guidelines for data preparation for ML
in manufacturing problems::

(1) Normalization: Normalization is essential for eliminating
the bias brought by the scale of the data from different man-

ufacturing processes either numerical values or images. It
is especially important for numerical data, such as process
parameters, to enhance the learning ability of ML methods.

(2) PCA: As a key dimension reduction method, PCA is benefi-
cial to preserve the indispensable features of data. However,
numerical manufacturing data usually contains low dimen-
sional parameters, most of which have contributions to the
learning objectives. Thus, PCA is undesired for numeric
data pre-processing. While the image data is in a high-
dimensional space, thus PCA is crucial for eliminating the
redundancy information embedded in the data.

(3) Image data: We can get image data easily in manufactur-
ing processes nowadays, and its structural nature brings the
high-dimensionality of data. Thus, both normalization and
PCA are inevitable pre-processing steps for image learning.
A convolution neural network is attractive for manufacturing
data analysis when computational resources are available.

Data pre-processing is crucial for the learning efficiency of
ML methods in manufacturing data. This work summarizes the
influences of data preparation for manufacturing data and pro-
vides several guidelines for the future developments of the ML
paradigm in the intelligent manufacturing domain. We hope
these guidelines serve as the groundwork for integrating the ML
methods into manufacturing data analysis and solidify the basis
for the establishment of the smart manufacturing system.

6 Conclusion
This paper studied the influences of data pre-processing on

machine learning efficiency on various types of manufacturing
data. We compared the data prepared with and without nor-
malization and dimension reduction (PCA) for machine learning
(ML). Based on the experimental results, we summarized sev-
eral common design guidelines for data pre-processing within
the manufacturing domain, thus providing a data preparation ba-
sis for future ML development in the manufacturing area. This
work does not consider the size effect of image and other dimen-
sion reduction methods, such as manifold learning, which could
be the future directions for data preparation in smart manufactur-
ing.
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