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Abstract

A Comparison of Students’ Models of Knowledge to be Learned in an Intro-
ductory Linear Algebra Course with Results from Prior Research on Such
Models in College Calculus Courses

Hadas Brandes, Ph.D.

Concordia University, 2024.

Research done from an institutional perspective has found students to develop non-
mathematical practices in college calculus courses that emphasize routinization of knowl-
edge. The knowledge students are expected to learn, as indicated by tasks determin-
ing their grade in the course, enables students to routinize techniques and use non-
mathematical considerations, such as didactic and social norms from their course, to
justify their techniques. Such research has mostly been done in the calculus context. To
calibrate the study of the effects of institutionalized routinization of knowledge, I investi-
gated these in the context of a course in a different domain of mathematics and regulated
by institutional mechanisms similar to those regulating college calculus courses. To this
end, I adapted, to an introductory college linear algebra course at a large urban North
American university, the framework and methodology from a body of research that qual-
ifies students’ activity by attending to institutional mechanisms that regulate it. The
framework appends to the Anthropological Theory of the Didactic (ATD) (Chevallard,
1985, 1999) notions from the Institutional Analysis and Development framework (IAD)
(Ostrom, 2005). The ATD provides tools through which to model activities that occur in
institutions and the IAD elaborates institutional mechanisms that regulate activity that
occurs in institutions. I analyzed curricular documents to develop task-based interviews
(TBI) that could draw out the nature of the knowledge students mobilize. I conducted
interviews with ten students shortly after they had completed the course. The qualitative
approach I used included an analysis of curricular documents to model knowledge to be
learned in the course that relates to each TBI task, as well as an analysis to model the
knowledge students mobilized in response to each TBI task. I found students mobilized
non-mathematical practices: what they activated was conditioned by and delimited to
knowledge normally expected of students in the course, and their mobilization contrasted
in various ways with mathematics intrinsic to the tasks they were offered. I also propose
an operationalization of the institutional notion of positioning previously proposed and
examined as a mechanism regulating students’ activity in didactic institutions.
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Chapter 1

Introduction

This thesis is an anthropological study of the effects of institutionalized routinization of
knowledge in mathematics courses. Research has shown that what students learn in col-
lege calculus courses is a mixture of didactic, social, and mathematical norms established
in these courses1. This mixture of norms does not attend to the calculus targeted by these
courses and is rather fixed on algebraic considerations. Given the disconnect between the
knowledge driving students’ activity in college calculus courses and the mathematics
targeted by these courses, research has qualified students as building non-mathematical
practices. These practices can present as an obstacle to students’ learning when they
progress in the calculus stream as mathematical situations that had been the norm in
previous courses are no longer so.

Research that brought to light the way students’ activity consisted of non-mathematical
(e.g., social, didactic) norms was done from the perspective that mathematics education
research is a study of mathematical activity occurring in institutions (Chevallard, 1985).
Students’ approaches to acquiring knowledge and this knowledge itself are artefacts of
the didactic institutions in which they exist2. This perspective looks to mechanisms of
didactic institutions to explain students’ practices and difficulties. These mechanisms
include administrative and academic conditions and constraints that delimit the math-
ematics targeted by the teaching and learning in a course. The prevailing state of the
college calculus institution is such that its emphasis is in routinization of mathematical
knowledge. Research has shown how an emphasis on routinization regulates students’
practices toward a non-mathematical direction.

College students have long been observed to routinize mathematics in ways that con-
strict their learning of the mathematics; this finding predates research taking an insti-
tutional perspective. This perspective came with increasing awareness in the 1990s of
the role played by social, cultural, and institutional contexts on the teaching and learn-
ing of mathematics. A vast body of research done from other perspectives has found
epistemological, conceptual, and cognitive sources for students’ difficulties in calculus.
Meanwhile, the institutional perspective on college students’ learning has only addressed
institutional sources of difficulties in the context of calculus courses. Given the difficulties
that are known to be inherent to the learning of calculus, the role of the routinization that
characterizes calculus learning merits further investigation. Does institutional emphasis

1A literature review is presented in Chapter 2.
2This perspective is addressed in my theoretical framework in Chapter 3.
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on routinization regulate students’ learning in similar ways regardless of the targeted
mathematics?

1.1 Research questions and framework

The works of Lithner (2004); Barbé et al. (2005); Bergé (2008); Hardy (2009a); Brandes
(2017); Broley (2020) constitute the main body of research to which I seek to contribute,
though they are part of a broader field of study focused on routinization in college and
university calculus courses. This field of study has produced classifications of tasks in
calculus courses across the globe and found them to be amenable to routinization of
techniques: textbook and assessment tasks can be solved by mimicking the template
offered in solved examples that have similar surface-level features (Bergqvist, 2007; Bran-
des, 2017; Brehmer et al., 2016; Jäder et al., 2020; Lithner, 2004; Mac an Bhaird et al.,
2017; Maciejewski & Merchant, 2015; Palm et al., 2006; Raman, 2004; Tallman et al.,
2016, 2021). These studies have proposed that the learning environment sends students
a message that encourages imitative strategies and neglect of knowledge that is not at
the surface-level of a technique; in turn, other studies found this message to have been
received. Such studies (e.g., Lithner, 2000; Hardy, 2009; Broley, 2020) investigated what
students enact in response to calculus tasks and found students learn a restricted set of
procedures, recognize tasks not by calculus-specific properties of their components but
by surface-level properties such as algebraic symbols that typify certain types of calculus
tasks, and do not learn the mathematical justifications that produce the procedures they
mimic as these are unecessary for the short-term goal of passing their exams. Others
have elaborated on the potential of routinization in earlier calculus courses to become an
obstacle in real analysis courses later on in the calculus stream (Broley, 2020; see also
Bergé, 2008; Raman, 2004).

The study of the effects of routinization on students’ learning of calculus is rooted in
the premise that students’ learning is strongly influenced by mechanisms of institutions
in which this learning happens—institutions including the course, the department coor-
dinating a course, the university, etc. This is the foundational assumption of Chevallard’s
(1985) Anthropological Theory of the Didactic (ATD): that the learning of mathematics
(that is subject of mathematics education research) is a product of the context in which
it occurs. The focus of the ATD is on contexts in which there is didactic intent: an intent
to teach knowledge and an intent for knowledge to be learned.

At the core of a didactic institution—one driven by a mandate to facilitate the teach-
ing and learning of some given knowledge—is the didactic system: a triad made up of
teacher, student, and knowledge. To understand the learning that gets accomplished in a
didactic institution, the ATD looks to the knowledge transmitted in this institution and
proposes didactic transposition as a mechanism that regulates its transmission.

The notion of didactic transposition captures the conditions and constraints that
operate a didactic institution. This includes, for example, didactic intentions of its stake-
holders (which range from broader society to subject-matter experts). In Section 3.1.1, I
explain why this transposition of knowledge occurs and how, inevitably and not necessar-
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ily by design, knowledge is different at different layers of a didactic institution: relative to
any morsel of mathematical knowledge targeted by a didactic intent, there is the knowl-
edge of the scholarly experts, the knowledge of those in charge of the teaching, and the
knowledge of those expected to learn.

Hardy (2009a) showed that students’ knowledge is not a subset of the knowledge at
other levels of didactic transposition. Hardy used task-based interviews (TBI) (Goldin,
2000) to identify students’ praxeologies (Chevallard, 1999) for limit-finding tasks in a col-
lege calculus course: that is, models that describe students’ activity in terms of the task
being accomplished, the technique used to accomplish it, and the discourse that produces
and justifies the technique. In the TBI, students completed tasks designed to elicit the
knowledge they had built relative to limit-finding tasks as well as their perception of
what they were expected to learn. In analysing students’ activity and comments in the
TBI, Hardy aimed to identify the techniques they had developed in their course and their
justifications for using these techniques. Hardy found that students’ praxeologies—that
is, what they perceived a task to be, the techniques they used, and their justifications for
using them—were not a subset of what a mathematician’s or teacher’s praxeologies for
limit-finding tasks might be. Students’ praxeologies were rather a mixture of (didactic,
social, cognitive, and mathematical) norms of the college calculus course.

The framework Hardy (2009a) used to come to this finding took into account the insti-
tutional mechanisms elaborated in the ATD as well as mechanisms defined in a framework
for the analysis of institutions (Ostrom, 2005). This combination was first elaborated by
Sierpinska et al. (2008).

Sierpinska et al. (2008) and Hardy (2009a) point to two mechanisms in particular
that regulate students’ post-secondary learning of mathematics. Mechanism number one
is borrowed from Chevallard’s didactic transposition process: the knowledge students are
expected to learn, as indicated by course assessments. Mechanism number two is bor-
rowed from Ostrom’s (2005) Institutional Analysis and Development framework (IAD): a
student’s positioning relative to their course. A student is positioned toward the objective
they (un)wittingly have as participants in their course: it may be to pass the course, to
develop understanding of a topic, to obtain a degree, or perhaps to achieve some profes-
sional aspiration. A student’s position is not necessarily fixed—they may move in and out
of it at different moments—but it accounts for how a student engages with ‘mechanism
number one’: the knowledge they need to acquire to pass their course.

Sierpinska et al. (2008) describe how institutional mechanisms might encourage stu-
dents to adopt certain positions over others: in courses such as college calculus, which
is a prerequisite requirement to many university programs, students are more likely to
have, as their main (if not only) objective, the goal to pass the course.

Through this combination of the ATD and the IAD, Hardy (2009a) and Broley (2020)
identified positions available to students in different mathematics courses and mediating
their acquisition of knowledge to be learned. For example, Hardy found that students
whose comments in the TBI suggested they had positioned themselves as Students (to get
a certain grade in the course) exhibited knowledge that predominantly reflected course
norms. In her analysis of students’ practices in a real analysis course, Broley identified
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in one student the position of a Mathematician in Training: the students’ comments and
activity reflected one whose objective was to join a community of mathematicians.

The research described in this thesis adopts the frameworks and TBI methodologies
used in Hardy and Broley’s studies of the praxeologies students build in their post-
secondary mathematics courses. They had found students to build non-mathematical
praxeologies and traced these to the routinization that is institutionally emphasized in cal-
culus courses. My goal is to determine whether students build such praxeologies in other
courses that emphasize routinization; as such, I adapted the frameworks and method-
ology to an introductory college linear algebra course (LA1) offered at a large North
American urban university. I expected LA1 to be a suitable basis for comparison based
on my experience in teaching this course. I knew, from experience, that the knowledge
to be learned in the course—which I took to mean the knowledge needed to pass course
assessments—would similarly be marked by routinization of knowledge. Apart from this
similarity, this course is regulated by institutional rules3 similar to those that apply to
the college calculus course (Calculus 1) examined by Hardy (2009a): it is a prerequisite
mathematics course students need to pass to gain entry to the same university courses
that have college calculus as a prerequisite.

A preliminary analysis of tasks from midterm and final exams administered in recent
years confirmed the knowledge to be learned in this introductory linear algebra course is
similarly characterized by routinization. The preliminary analysis consisted in identifying
types of tasks on exams and expected techniques. I used the course textbook to identify
expected techniques; this was possible as exam tasks were of the same type as those in
the textbook examples and textbook problems recommended on the course outline.

Once I determined this course was suitable as a target for comparison with the prior
research, I established my research questions:

� What is the nature of what students are expected to learn in LA1? (Does it align
with the nature of what students are expected to learn in Calculus 1?)

� What is the nature of the practices students develop in LA1?

� Research on the learning of calculus has found that students develop non-mathematical
practices; are such practices replicated in linear algebra?

I ultimately reformulate these questions in terms of the ATD notion of praxeology;
I present these reformulations in Section 3.4 after further elaborating on the theoretical
framework for this research.

I used task-based interviews (Goldin, 2000) to identify the nature of students’ prac-
tices. The first step was to design tasks that could stand to reveal students’ praxeologies
(that is, the tasks they perform, the techniques they use, and the discourse that produces
and justifies their techniques). Based on the preliminary analysis of past exams, and from
my experience in teaching the course, I knew students are expected to use techniques from

3I elaborate in Section 3.2.1 on the IAD concepts of rules and norms. For now, I distinguish between
them as follows: rules are enforced and prescribe which actions are allowed and which are prohibited,
whereas norms are precepts that establish what constitutes moral or prudent behavior in an institution.
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the topic of linear systems and their solutions to solve various task types in the course.
I therefore identified all exam tasks where these would be the expected techniques. I
identified features of the tasks (e.g., mathematical objects involved, syntactic norms) to
determine properties that aided in their routinization and inform my task design.

I designed eight tasks for use in the TBI. Seven of the tasks could be tackled using
routinized linear-system techniques, but other knowledge from the course could be used
more effectively (e.g., in terms of number of steps involved and in terms of suitability to
the nature of the task). I added one task that did not correspond to any linear-system
technique. Among the eight tasks, some resembled routine tasks from the course and
others did not. Students were asked to think aloud as they attempted the task, and I
followed a semi-structured script to guide my interventions; the aim of these interventions
was to help elicit the techniques students were using and the justifications they had for
their techniques.

To analyse the praxeologies students mobilized and determine their (non-)mathematical
nature, I modelled the knowledge to be learned in the course (in terms of praxeologies:
blocks of tasks, techniques, and justifying discourse) and which could be used to complete
each task. These models confirmed the linear algebra course emphasized routinization,
even if the available mathematics was amenable to routinization in a different way than
how mathematics is routinized in calculus courses. In this thesis, I use “routinized” and
“normative” and variants on their root words interchangeably. I found that tasks are
routine (normal, normative, etc.) in that there is a limited set of task types that occur
in LA1 final exams and the variety of tasks that occur in a final exam is stable from
one semester to the next. Another praxeological element that is routinized is the way
in which technologies are to be used: the types of tasks that are routinized limit what
students need to know about each technology. In turn, students’ praxeologies revealed
surprising ways in which this routinization, along with the nature of the routinized alge-
braic representations and grading norms from the course, enable students to strip routines
of their underlying reasoning and representations of their mathematical meaning. This
showed through students’ discourse as well as their struggle or failure to adapt routines
to non-routine tasks.

I found students’ praxeologies were often similar in nature to those observed in the
research on calculus learning. The tasks they perceived were sometimes those that were
normal in their course rather than the ones that were actually posed; the techniques they
mobilized where conditioned by and delimited to the ones routinized in the course; and
their justifications for the suitability or validity of their techniques were not reasoned
based on the mathematics but rather on what was usual in the course. A few exceptions
to this came about in select students’ responses to certain triggers that signaled a per-
mission to mobilize knowledge in a non-normative way.

By attending to the knowledge students mobilized and through reflection on the op-
erationalization I proposed for the positioning framework elaborated by Sierpinska et al.
(2008), Hardy (2009a), and Broley (2020), along with a posterior analysis of this oper-
ationalization, I determined how institutional mechanisms regulate the contribution of
course norms of routinization to students’ mobilization of non-mathematical praxeologies.
That knowledge to be learned lends itself to routinization may not, on its own, suffice
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to push students to build non-mathematical praxeologies. Institutional rules incentivize
Student positioning, however, and course norms indicate to Students what behaviors best
serve their objective (to get a certain grade in the course). Course norms that institu-
tionalize routinization of knowledge call for behaviors that contribute to the development
of non-mathematical praxeologies.

The aim of this thesis was to sharpen the focus on the effect of institutional rou-
tinization in students’ learning of mathematics. I did this by adopting a framework and
methodology from a body of research that investigated routinization through an anthro-
pological and institutional lens; I adapted this approach to examine students’ learning in
a course also marked by routinization but set in a different domain of mathematics. My
findings highlight the importance, in the context of research on the effects of routinization
(or other course norms, more generally) on students’ learning, of coordinating an inves-
tigation of the knowledge transposed in a didactic institution with other institutional
mechanisms (such as positioning) that regulate students’ mobilization of knowledge.

1.2 Structure of this thesis

This thesis is structured as follows. In Chapter 2, I review literature pertinent to this
research; this includes the body of research on calculus learning that motivated this
research as well as a review of research on linear algebra education. In Chapter 3, I
present my theoretical framework. I present my methodology in Chapter 4 and follow
with the analysis of the data produced by this methodology in Chapter 5. The analysis
is split into 9 sections, the first 8 of which correspond one-to-one with a TBI problem.
My analysis of each TBI problem is divided into three parts: I first present my reference
model4, as a researcher, of the knowledge at stake in the problem; second, my model
of the knowledge to be learned in LA1 that is pertinent for the problem; and third, an
analysis of the knowledge students mobilized in response to the problem along with a
synthesis of what this analysis implies about students’ praxeologies. In the last section
of the Analysis chapter, I present the analysis of students’ positioning. The last chapter
of this thesis is a discussion in four parts. In Section 6.1, I synthesize my results relative
to each of my research questions. In Section 6.2, I discuss contributions of this work to
research on linear algebra education. I finish in Section 6.3 with final remarks: my main
conclusions, limitations of this research, and potential avenues for future work.

4I define the notion of reference model in Chapter 3.
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Chapter 2

Literature Review

The aim of this literature review is to situate my study in the context of the research
that led to the questions I aim to answer.

2.1 The affordances of the institutional perspective

to the study of the teaching and learning of post-

secondary mathematics

I start with an example of how institutional practices can shape the teaching (and learn-
ing) of post-secondary mathematics courses. These courses are marked by institutional
strategies aiming to deal with the massification of tertiary education. One result is a
diverse student population. This implies a diversity in mathematical foundations, inter-
ests, and goals. Administrative and academic measures answer the needs of a sizeable
and diverse student population: one such measure is universities’ offering of prerequi-
site math courses (e.g., remedial high-school algebra, single-variable calculus courses, an
introductory linear algebra course on matrices and vectors). These are courses some stu-
dents had not yet passed (e.g., in high-school or colleges) but must pass to gain entry
into many university programs. The massification of tertiary education also impacts the
allocation of financial and human resources. To manage the sizeable student populations
of prerequisite math courses, for example, courses are split into several sections of 70
students each, all mediated by common syllabus, curricular documents, and assessment
modes selected by a course examiner (a full-time faculty member of the mathematics
department). Departmental funding needs may be such that teachers of different sec-
tions range from full-time faculty to graduate students teaching the course for the first
time. A hefty curriculum has to be covered in a short amount of time (e.g., 3-5 hours
per week for 13 weeks) and in some cases is delivered through “lectures” and “tutorials,”
with the former consisting of sessions (perhaps taught by a teaching assistant and not
by the teacher) focused on types of problems set in the material to be covered in the
corresponding lectures. These and other didactic conditions shape the teaching of the
mathematics identified by educational ministry and departmental teaching committees
as the target of these courses.

The aim of this section is to walk through the affordances of an institutional perspec-
tive on education, as used over the last few decades, to trace out how students’ difficulties
in mathematics courses more broadly, and in calculus courses more specifically, can root
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in institutional practices such as (but not limited to) those in the above example.

Before the turn of the century, research on the teaching and learning of mathematics
mainly attended to cognitive and epistemological perspectives: researchers turned to as-
pects of human biology to make sense of the processes by which mathematics is learned.
The institutional perspective emerged in the 1990s as recognition turned to the role of
social, cultural, and institutional aspects in the teaching and learning of mathematics
(Artigue et al., 2007, summarize the state of research on post-secondary mathematics
at the time, including the beginning of research from sociocultural and anthropological
perspectives). The shift to an institutional perspective drew on the increasing awareness
of the role played by teaching and assessment practices in students’ learning experiences
(Artigue, 2022). In the context of calculus courses, this new perspective shifted attention
toward institutional aspects that constrain and enable the teaching and learning of con-
cepts such as limits (Hardy, 2009a,b) and the completeness property of R (Bergé, 2008),
among other material targeted by calculus courses. This brought new understandings of
sources of students’ difficulties apart from those in the established library of cognitive
and epistemological constraints on the teaching and learning of calculus: epistemological
obstacles (Cornu, 1991; Davis & Vinner, 1986; Sierpinska, 1985), concept image (Tall &
Vinner, 1981), difficulties rooted in the logic involved in limit definitions (Dubinsky &
Yiparaki, 2000), difficulties inherent to the notion of rate of change (Thompson, 1994),
difficulties inherent to types of representations (Monaghan, 1991; Richard, 2004), etc.

In this section, I attend first to how the institutional perspective has so far played
out on research on teaching and learning in tertiary mathematics education: the basic
premises of this perspective, the ways in which teaching and learning of mathematics are
organized by institutional elements, and the affordances this perspective brings for ad-
dressing issues in post-secondary teaching and learning of mathematics. Second, I address
the contributions of the institutional perspective to the study of the learning students
accomplish in calculus courses.

Institution is used here in a broad sense: it refers to any structure that organizes social
activity. One premise of the institutional perspective is that mathematics emerge from
human practices, which, in turn, are institutional and sociocultural; another premise is
that learning is both an individual activity and an institutional and sociocultural activ-
ity (Artigue et al., 2007). In light of these perspectives, the meaning of a mathematical
object is determined by the institution in which it is regarded. These premises are at the
basis of various theoretical frameworks set in the institutional perspectives.

I focus my discussion of the institutional perspective on the form it takes through the
Anthropological Theory of the Didactic (ATD) and its affordances to research on post-
secondary teaching and learning of mathematics. Chevallard (1985, 1991, 1992, 1999,
2002, 2019) developed this framework specifically for mathematics education research,
though it has since been used to investigate institutionalized teaching and learning in
other domains of human activity. I focus on the affordances of the ATD for two reasons,
the first of which is subordinate to the second: first, it is the theoretical framework for
the research I set to build on (Barbé et al., 2005; Bergé, 2008; Brandes, 2017; Broley,
2020; Hardy, 2009a; Sierpinska et al., 2008); and second, the ATD is recognized for its
important role in the “increasing awareness of the role played by university teaching
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practices and assessment modes in the difficulties experienced by students” and in the
“increasing influence of socio-cultural perspectives in mathematics education research at
large” (Artigue, 2022).

I expand on the ATD in Section 3.1 but briefly review its three main assumptions for
the purposes of this literature review. A first assumption is that of didactic transposi-
tion: knowledge that is actually taught and learned is transformed from knowledge that
is expected to be taught, which itself is a transformation of some scholarly knowledge
(Chevallard, 1985; see also Bosch & Gascón, 2006; Winsløw et al., 2014). This is not to
say that any one of these is a subset of the other—Hardy (2009a) shows this indeed is not
the case, with knowledge actually learned by students about limits of rational expressions,
in a first differential calculus course in a North American university, existing in a different
plane from knowledge to be taught or scholarly knowledge about such limits: students
classify such limits according to their algebraic appearance, and not according to prop-
erties intrinsic to the calculus at stake (e.g., type of indetermination, type of technique
to be applied, convergence or divergence, etc.). Knowledge to be taught (i.e., knowledge
indicated by curricular documents such as ministerial descriptions of a course or course
textbooks) is not simply selected from a library of scholarly knowledge; it is produced
and transformed to fulfill certain didactic purposes (e.g., as in how the notion of function
is transformed to fit the purposes of a grade 10 algebra course). Knowledge actually
taught is transformed by virtue of considerations to which teachers must attend and con-
ditions under which they operate (e.g., the teacher’s knowledge, amount of class time,
class sizes, students’ prior mathematical knowledge, national tests, etc.). Other processes
(e.g., expected outcomes, as communicated by teachers and curricular documents, etc.)
eventually contribute to the knowledge actually learned by students in a course. The
notion of didactic transposition therefore implies that to understand learning processes,
a researcher must attend to different stages of a didactic transposition of knowledge.

The ATD’s second assumption gives a tool through which to capture mathematical
activity. The assumption is that human activity (and, therefore, mathematical activity)
can be modeled by a praxeology (Chevallard, 1999): an organization of activity accord-
ing to theoretical and practical blocks. The practical block [t; τ ] consists of a task t
accomplished in an activity and a technique τ through which to accomplish t. (These,
too, are institutional: for example, Broley (2020) notes how students are expected to
use algebraic manipulations to complete limit-finding tasks in a North-American college
differential calculus course, whereas the expectation for limit-finding tasks in a first real
analysis course in a mathematics degree is for students to use an ε-δ argument.) Cheval-
lard (1999) contends that every activity includes a theoretical component [θ,Θ]: the
discourse, or technology θ, that produces and justifies τ , and the theory Θ that gives
legitimacy to θ. Hardy (2009a) found college calculus students’ theoretical blocks need
not be mathematical: a validation (θ) for their choice of technique was that it’s how the
teacher had shown to do a given task; the theory Θ framing this technology is that, as
the authority in the course, the teacher determines what is valid or not. The notion of
praxeology therefore allows for a concrete, fine-grained analysis of institutional mathe-
matical activity (Winsløw et al., 2014).

The third assumption of the ATD is the importance of attending to the ecology of
mathematical and didactic praxeologies (Chevallard, 2002; Winsløw et al., 2014): the
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conditions that enable the development of a praxeology in an institution and the con-
straints that impede it. Chevallard (2002, 2019) proposes a hierarchy of didactic code-
termination—a scale of the levels at which exist conditions and constraints that impact
the transformation of a praxeology: humanity, civilization, society, school, pedagogy (the
supra-didactic levels), and discipline, domain, sector, theme, topic/question (the didac-
tic levels). This hierarchy can help analyse the ecology of a mathematical and didactic
praxeology. Artigue (2022) gives this example:

Considering the field of functions, for instance, the teaching of a topic such as
the variation of exponential functions is shaped by a diversity of conditions
and constraints which go beyond those associated with its inscription in a
particular theme (exponential functions), sector (transcendent functions of
one real variable) and domain (Calculus or Analysis) of the mathematics
discipline. It is also shaped by more global conditions and constraints for
instance regarding the role given to digital tools (level of pedagogy), the
curricular choices which may more or less emphasize connections between
scientific disciplines and shape assessment practices (level of school). These
choices, in turn, are constrained by society expectations, habits and values
(level of society), which, for many of them, transcend a particular society
(level of civilization or more in our globalized world).

The lens and tools of the ATD have helped to pinpoint the ways in which mathematics
teaching practices and assessment modes have contributed to students’ learning difficul-
ties from primary to tertiary education. We’ll take a walk through a series of studies done
since the turn of the century to exemplify the affordances of the framework for examining
post-secondary mathematics; given my overarching aim to review work pertinent to the
teaching and learning of calculus, I narrow this walk-through to studies devoted to this
discipline.

Praslon (2000) used the ATD to examine technical and conceptual breaches in the
secondary-to-tertiary transition in France relative to the notion of derivative in the Cal-
culus/Analysis domain. Artigue (2022) identifies this doctoral thesis as the first research
using ATD to study the secondary-university transition. Praslon combined the ATD with
already-established knowledge about the teaching and learning of Calculus/Analysis: con-
structs from cognitive and epistemological perspectives such as the tool and object dimen-
sions of mathematical concepts, the notions of semiotic register, of procept, etc. Praslon
constructed and analysed praxeologies from curricular documents, textbooks, teaching
material, and assessments. A partial result of Praslon’s analysis is the identification of
the following breaches in the secondary-to-university transition in the domain of Calculus
(relative to the notion of derivative), which informed his design of tasks set in the gap
between the secondary and university practices relative to the notion of derivative:

� rapid increase in the introduction of new objects;

� routinization is harder due to a greater diversity of tasks;

� students have greater autonomy in problem-solving and in the choice and use of
semiotic registers;

� a new balance between the tool and object dimensions of mathematical objects;
and
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� greater reliance on definitions for manipulation of objects, more systematic demon-
stration of results, and proofs acting in the role of mathematical methods.

Barbé et al. (2005) used the ATD to study how institutional restrictions could affect
teachers’ spontaneous practices relative to the teaching of limits of functions in Spanish
high schools. This involved, first, characterizing the mathematical organization around
the limits of functions in the knowledge to be taught; second, showing the effect of
mathematical and didactic constraints on the didactic process; and third, following the
observation of 14 sessions in a Spanish high school class (with 15 to 16-year-old students),
showing how didactic restrictions shape the knowledge actually taught in class.

Barbé et al. (2005) turned to scholarly knowledge, knowledge to be taught, and knowl-
edge actually taught to highlight the transformation process teachers have to produce to
create a mathematical organization for the teaching of the limits of functions. The teacher
is informed by the educational institution about what to teach through certain data (cur-
ricular documentation, textbooks, assessment tasks, national tests, etc.); these indicate
praxeologies that are proposed to be taught as well as pedagogical elements.

Barbé et al. (2005) note that already, in the knowledge to be taught about limits
of functions, what is left are traces left by two mathematical organizations in scholarly
knowledge about limits of functions: one (MO1) is the algebra of limits (starting with
the assumption that a limit of a function exists, MO1 is concerned with how to find the
value of a limit) and the second (MO2) is the topology of limits (which is concerned
with the problem of the existence of the limit of various functions types). MO1 and MO2
are closely related (e.g., the theoretical blocks that produce the calculation techniques for
tasks in MO1 correspond to practical blocks in MO2). In textbooks, however, what is left
of MO1 is only its practical block, meaning students are not expected to use the theory or
technology that frame the practical; and what is left of MO2 are traces of its theoretical
block (some definitions and expository comments)—its practical block is absent.

Barbé et al. (2005) identified two didactic consequences of the mathematical orga-
nization around limits of functions in the knowledge to be taught. When the teacher
chooses what to teach (i.e. what tasks to demonstrate, which techniques to use, and
what justifications are needed), the most likely scenario is that the teacher choose MO1
as the only knowledge to teach, as this circumvents the problem of the existence of limits.
This does lead to another issue: the broader mathematical organization, where these two
“local” mathematical organizations are related, is missing. This leaves the teacher with
no motivation for teaching, for instance, the definition of limits of functions.

Knowledge actually taught was identified through students’ notes and the teaching
practices carried out by the teacher in the classroom. The task types Barbé et al. (2005)
identified in what the teacher taught essentially served the technological function of justi-
fying the tasks and techniques for which students would eventually held responsible; but
the justifications were of a different nature than those found in the scholarly knowledge
at the origin of the knowledge to be taught. For example, the observed teacher chose, as
a first encounter with the mathematical organization around limits of functions, the task
to find the slope of a straight line; this task served as preparation for a task of type “find
the slope of the tangent to a curve in a given point.” Altogether, the tasks serving this
technological function belonged to the practical block of MO1 as they were essentially
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variations of the tasks in the practical block students would eventually be expected to
know.

The aim of the above few paragraphs was to illustrate some of the didactic restrictions
that can arise from the didactic transposition of knowledge about limits of functions, as
well as the ways in which a teacher might act as a result of these restrictions. Considering
the hierarchy of levels of didactic codetermination, the teacher’s actions are at the narrow
end of the scale: the teacher has no control over the problems to be raised in a course.
For example, the mathematical questions to be asked in an educational institution are
determined at the societal and school levels; the sector in which a question is asked is also
out of the teacher’s control (Barbé et al., 2005, note that the case of limits of functions
may be decided to belong to the study of differentiability). The decisions available to a
teacher are strictly in how to organize a limited mathematical organization around the
limits of functions. Barbé et al. (2005) and Chevallard (2002) note that one of the major
outcomes of teachers’ limited authority over knowledge to be taught is the disappearance
of the raison-d’être for the material being studied.

Barbé et al.’s 2005 study of constraints arising from didactic transposition and the
different levels of didactic codetermination, and of how these constraints shape the knowl-
edge to be taught and actually taught in a high-school calculus course, suggests the in-
evitability of potentially problematic characteristics of what teachers can teach about
limits in similarly-structured educational institutions, including, for instance, an absence
of mathematical justifications for the activity teachers offer their students. Hardy (2009a)
studied students’ experience with limits in a calculus course at a different educational
institution.

Hardy (2009a) combined the ATD and a conceptualization of institutions from the
Institutional Analysis and Development (IAD) framework Ostrom (2005) developed in
political science to study the influence of institutional practices on students’ perceptions
of the knowledge to be learned about limits in a differential Calculus course at a North-
American college. Given the heavy weight assigned to final examinations in students’
final course grades, given the institutional rule of a common final exam for students en-
rolled in different sections of the same course, and given the norm that final exams are
stable throughout the years (i.e., task types stay the same; functions in limits to be cal-
culated may change but function types stay the same), she presumed limit-finding tasks
from past final exams to be representative of the knowledge to be learned about limits
in the course. She therefore used these tasks and text from the textbook to create a
theoretical model of instructors’ perception of knowledge to be learned; the praxeologies
constructed in this model showed this knowledge consisted of task-technique blocks and
an absent mathematical theoretical block (substituted, instead, by an auto-technological
technology: the techniques are valid since they are what is to be taught in the course).

To produce the praxeologies that make up students’ models of knowledge to be learned
about limits, Hardy conducted 28 “task-based interviews” (Goldin, 2000). To this end,
she designed tasks that visually resembled final exam tasks, but which differed concep-
tually. Students’ responses revealed they produce “non-mathematical” praxeologies.

One way in which students’ praxeologies were non-mathematical was that they iden-
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tified tasks via surface-level features, usually in the algebraic representation of a function
(e.g., rational expressions), instead of calculus-related features intrinsic to the tasks (such
as, for example, the type of indetermination at stake). For example, one of the tasks was
to find the limit

lim
x→1

x− 1

x2 + x

The task is to find the limit of a rational function at a number in its domain. Direct
substitution suffices. But students acted as if the task was to find the limit of an indeter-
minate form: they factored the algebraic expressions so as to find some common factor.
Students did not pay attention to the entirety of the limit expression (i.e., the number
at which the limit was to be evaluated) and focused instead on the algebraic expression:
the denominator could be factored. This reflects a strategy that suffices in the knowledge
to be learned (as indicated by final exam and textbook tasks): in these tasks, such alge-
braic expressions (polynomials that can be factored using one of a handful of factoring
techniques taught in high school) usually occur in tasks where the goal is to evaluate an
indeterminate form. This strategy corresponds to one of the mathematically-superficial
strategies Lithner (2004) identified to be sufficient to complete most of the exercises in an
undergraduate calculus textbook similar in content and pedagogy to popular American
calculus textbooks (I return to Lithner’s research in Section 2.2 in a broader discussion
of the imitative reasoning made available to students through the routinization of tasks
in calculus courses).

Students’ explanatory comments confirm this feature of knowledge to be learned (i.e.,
that certain task types have a one-to-one relationship with certain algebraic expressions)
as the source of the practice they exhibited in the interview: one justification they gave
for their choice of technique was that it was what was “usually” done in the course when
they encountered a certain type of algebraic expression. This comment is an example
of a second feature Hardy (2009a) found to characterize students’ praxeologies as non-
mathematical: their theoretical blocks were of social, cognitive, or didactic nature.

Hardy (2009a)’s results were facilitated by her attention to another core theme of the
ATD: the part of the ecology of the college Calculus course which consists of the conditions
and constraints that come from students’ personal experiences, aspirations, and needs.
To this end, Hardy (2009a) used the institutional framework elaborated in Sierpinska et
al. (2008) and which introduced the notion of institutional positioning. Sierpinska et al.
(2008) had blended Chevallard’s ATD and Ostrom’s IAD frameworks (among others) to
produce a framework for the institutional analysis of sources of frustration for students
in prerequisite mathematics courses (PMC) at a large urban North-American university.
The ATD addresses the formal positions of teacher and student in the educational insti-
tution. One construct from the IAD is the notion of the positions available to members
of an institution depending on the objectives they aim to achieve. In the case of PMC,
Sierpinska et al. (2008) identified the following positions available to students:

� a student behaves from the position of a Student when their actions aim to obtain
the objective of passing a course;

� a student behaves from the position of a Learner when their actions aim to obtain
the (cognitive) objective of gaining understanding;
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� a student behaves from the position of a Client when their actions aim to obtain
the objective of receiving a service for which they are paying;

� a student behaves from the position of a Person when their actions aim to obtain
personal objectives that are external to the course.

Attending to students’ comments in their task-based interviews helped Hardy conjecture
about positions they had occupied as participants in their course; this helped to charac-
terize the (non-mathematical nature of the) praxeologies students had developed around
limit-finding tasks.

Another use of the ATD to study the teaching and learning of Calculus is in Bergé
(2008)’s attempt to find clues for the increased failure rate as students transition from
Calculus to Analysis courses. She studied the evolution in the treatment of the com-
pleteness property of R in four successive courses in the Calculus/Analysis stream at
a university in Argentina. Using the lens of the ATD, she analysed the mathematical
content of the four courses in terms of praxeologies and showed the four courses operated
as disconnected institutions. Bergé (2008) noted the value of the completeness property
comes through mainly in the work of validating mathematical work, but this is not made
explicit in the courses. For example, in Course II, which aims to establish standards for
validation, students are asked to prove statements that are obvious to them as they had
been expected to treat the same statements by observation in Course I. The change in
validation standards is mainly a reflection of changes in didactic contract, as the unre-
liable nature of geometric intuition and graphical representations is not baked into the
tasks with which students are expected to engage. Altogether, Bergé (2008) found that
each course had its own perspective on the completeness property, but this perspective
was not made explicit, and students did not need to have this perspective to complete
related tasks.

Bergé (2008)’s study of the evolution in the institutional practices around a math-
ematical property at the core of a sequence of Calculus/Analysis courses, like Praslon
(2000)’s study of breaches in the secondary-to-tertiary transition relative to the notion of
derivative in the Calculus/Analysis domain, fits into a body of research that investigates
transition problems in mathematics education to find causes for increased failure and
dropout rates in university mathematics. Research based in the ATD to study issues
in the transition to and within university has found sources for students’ difficulties in
the impact of institutional practices on the mathematical organizations of knowledge at
different stages of a didactic transposition (Artigue, 2022; Winsløw et al., 2014).

Winsløw et al. (2014) use the ATD to identify two types of transitions students must
make as they move to and within university mathematics. Students arriving to a uni-
versity mathematics program have praxeologies that consist only of a practical block; as
they progress in their studies, students are expected to attend to theoretical blocks of
the same praxeologies, in addition to the practical blocks for which they were previously
responsible. This is a first transition. A second transition has to occur when students’
practice has to inhabit what was once theory that justifed and produced their practice:
for example, when students in Analysis courses are tasked with proving and engaging
with properties that had been absent in their Calculus courses (despite their role in pro-
ducing and justifying the tasks and techniques with which students engaged).
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Brandes & Hardy (2018) elaborate on the placement of a multivariable Calculus
course, a second-year course in a mathematics major’s program at a large urban North
American university, along the transitions outlined by Winsløw et al. (2014). This was
a partial result of my master’s thesis (Brandes, 2017), where I used the ATD notion of
praxeology to model the knowledge students need to learn in this course. By contrasting
praxeologies that model the knowledge to be taught (as proposed by the course outline
and textbook) with those that model the knowledge to be learned (as indicated by tasks
in final exams, which constitute the bulk of the weight of students’ final grades in the
course, and which had been given and stable over the span of a recent few years), I found
the praxeologies expected of students in this second-year course of their mathematics
degree align with the activities known to suffice in single-variable differential Calculus
courses (Hardy, 2009a; Lithner, 2004): praxeologies sufficient for completing final exam
tasks consisted of recognition of task types (from solved examples) and the recollection
of appropriate techniques. This multivariable Calculus course therefore does not require
students to have made the first of the transitions proposed by Winsløw et al. (2014).

The results reported by Barbé et al. (2005), Bergé (2008), Hardy (2009b), and Bran-
des & Hardy (2018), along with research on the routinization of tasks in Calculus courses
and which enables imitative problem-solving strategies in students’ work (I elaborate
on this research in Section 2.2), shows that institutional practices in single-variable and
multivariable Calculus courses at the start of university programs may enable the devel-
opment of praxeologies that are non-mathematical. Activities offered to students lend
themselves well to the use surface-level features of tasks as a guide for selecting an ap-
propriate technique (as in the example I previously gave from Hardy’s 2009a work), and
students can pass their courses by learning routinized techniques and without acquiring
any of the mathematical theories that produce and validate these techniques.

Broley (2020) set to examine the nature of praxeologies that make up students’ ac-
tivity as they progress in the Calculus/Analysis stream. Framing her study in the ATD,
she analysed curricular documents in a first Real Analysis course at a large urban North-
American university to determine the knowledge students are expected to learn (so as
to pass the course); she used the praxeological models created in this analysis to in-
form her design of task-based interviews (Goldin, 2000) in a methodology inspired by
Hardy (2009a). The purpose of these interviews was to draw out the practices students
had developed in the course so as to identify the knowledge actually learned. The re-
sults from the 15 task-based interviews she conducted showed students’ practices were
(non-)mathematical (that is, at times mathematical and other times not, in the sense of
reflecting practices that may be viewed as desirable in a general community of professional
mathematicians). Broley (2020) identified two elements of the educational institutional
at the origin of these (non-mathematical) practices. The first of these is the activities
offered to students in the Real Analysis course as well as those offered in previous Cal-
culus courses. Elaborating on a partial result of this doctoral thesis, Broley & Hardy
(2022a) discuss a potential didactic obstacle in the compartmentalization of knowledge
in the Calculus/Analysis stream: when types of tasks in the Analysis course (such as to
“prove a specified limit”) resemble types of tasks in Calculus courses (to “find a spec-
ified limit”), most students do not activate the knowledge they had been expected to
learn in Analysis. A second institutional element Broley (2020) found to contribute to
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the variably (non-)mathematical nature of students’ practices is in the positions (in the
sense defined by Sierpinska et al., 2008) they may adopt in a university mathematics
course institution and which may variable encourage students to engage in different ways
(ranging from non-mathematical to mathematical) with the activities offered to them in
their course.

Studies such as those of Barbé et al. (2005), Bergé (2008), Hardy (2009a), Brandes
(2017), and Broley (2020) help to show the institutional (as opposed to, say, cognitive) ori-
gin of students’ difficulties as they transition to and within post-secondary mathematics
courses (Winsløw et al., 2014). Mathematical organizations are compartmentalized: top-
ics are organized in terms of “point praxeologies” (praxeologies modeling activity centred
on a single task type) and point praxeologies are not integrated into local praxeologies
(types of tasks centred on a given technology) or regional praxeologies (point and local
praxeologies unified by a given theory) (Winsløw et al., 2014). The compartmentaliza-
tion of mathematical organizations (e.g., around the notions of limits or the completeness
property of R) within and across courses in the same domain (Calculus/Analysis) is such
that it is up to students to connect seemingly-disconnected but conceptually related ob-
jects in their personal activity.

Bergé (2008), Broley & Hardy (2022a), and Hardy (2009b) show, however, how in-
stitutional practices within a course and even across courses set in the same mathemat-
ical domain might discourage such activity in students. Didactic constraints result in a
mismatch between point praxeologies belonging to the same local or regional praxeolo-
gies; this mismatch, a result of institutional conditions, may well be the source of what
may have once been construed as a “student misconception” originating in individuals
(Winsløw et al., 2014). Broley’s 2020 finding that students revert to techniques learned
in Calculus for task types in Analysis that resemble Calculus ones (such as limit-proving
and limit-finding tasks) gives an example of the potential fall-out from the compartmen-
talization of knowledge into point praxeologies across courses targeting the same material.

The institutional perspective, the form it takes through the ATD, and other theoretical
additions (such as the positioning framework developed by Sierpinska et al., 2008, Hardy
2009a, and Broley, 2020) have increased awareness of the ways in which students’ difficul-
ties in post-secondary mathematics can originate in institutional practices, independently
of cognitive or epistemological phenomena (Artigue, 2022; Winsløw et al., 2014). The
constructs proposed by the ATD—didactic transposition, praxeologies, didactic codeter-
mination—allow for a fine-grained analysis of the teaching and learning of mathematics.
Institutional (mathematical and didactic) conditions and constraints can constrict the
mathematical organizations available to be knowledge actually taught in courses (Barbé
et al., 2005; Bergé, 2008), potentially stripping them down to point praxeologies that are
no longer integrated in local and regional praxeologies that are needed to motivate the
material students are expected to learn. Similar and other institutional (administrative,
academic, didactic, mathematical) conditions and constraints (such as those described
in Hardy, 2009a, and Sierpinska et al., 2008) further enable and encourage students to
develop praxeologies that, at least in the Calculus courses examined by Hardy (2009a),
Brandes (2017), and Broley (2020) and as suggested by other research on the routiniza-
tion of tasks in Calculus courses (which I discuss in the next section of this literature
review), need not be mathematical in nature.
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2.2 The effect of routinization on Calculus students’

practices

The studies I address in this section have used a partially sociocultural perspective to
address the consensus that students’ activity in Calculus courses—variously offered in
the last years of high school, in the first year of university, or in the in-between, college,
depending on the educational system—is characterized by rote learning and an absence
of conceptual understanding (Artigue et al., 1990; Cox, 1994; Hiebert, 2003; Lithner,
2003; Orton, 1983; A. Schoenfeld, 1985; J. Selden et al., 1994; A. Selden et al., 1999;
Verschaffel et al., 2000; White & Mitchelmore, 1996). While research from the late twen-
tieth century attended to cognitive and epistemological difficulties inherent to Calculus
to explain the dearth of conceptual understanding and overreliance on routinization of
procedures observed in students (e.g., Sfard, 1991; Tall & Vinner, 1981), the emerging
sociocultural perspective took to task the environment that shapes students’ engagement
with Calculus. This meant a focus on the nature of the school tasks to which students are
exposed: tasks demonstrated or assigned to students in class, tasks assigned as homework
or recommended as practice, tasks that show as examples and/or suggested problems in
a course textbook, and tasks students are given on graded assessments. Altogether, this
research has qualified Calculus school tasks as heavily routinized, lending themselves
well to mimicry and allowing students to pass their courses with minimal engagement of
mathematics intrinsic to the tasks they are given.

To illustrate how research has come to this conclusion, I start in Section 2.2.1 by
addressing studies that have classified tasks in curricular materials (e.g., textbooks) by
the type of reasoning they enable relative to mathematical properties intrinsic to the
tasks. I then address in Section 2.2.2 studies that show learning environments centred
on an emphasis on routine tasks in Calculus courses may indicate to students a message
to prioritize imitative reasoning—that is, reasoning based in the copying of procedures
for routinized tasks and which could allow students to avoid engaging with mathematical
properties intrinsic to tasks. I follow in Section 2.2.3 with empirical studies that have
documented students’ practices to examine their responses to (non-)routine tasks and
contrast these with the routinized nature of the majority of tasks in Calculus. These
studies overwhelmingly qualify students’ activity as rote, as failing to engage mathemat-
ical properties intrinsic to tasks they are given, and as failing to include mathematical
(problem-solving) activity other than that of activating established procedures. I end in
Section 2.2.4 with comments some of the researchers have made on potential implications
of this routinized nature of students’ activity in Calculus.

2.2.1 Classifications of Calculus school tasks

In this section, I focus on the classifications mobilized by researchers who have sought to
characterize the activity enabled and encouraged by learning environments in Calculus
courses. I address the results of these classifications in the following section.

Lithner (2004) classified (598) tasks in a Calculus textbook (similar in content and
pedagogy to American calculus textbooks) by the level to which reasoning sufficient to
complete them depended on the mathematics intrinsic to the components of the tasks.
Motivation: “[s]ince it seems that superficial reasoning dominates among Swedish stu-
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dents and they spend most of their learning time with textbook exercises, it is important
to try to understand what kind of reasoning that may be enhanced by these exercises.”
Starting from the premise that in school, it is acceptable to complete tasks using reasoning
that is plausible but does not guarantee certainty or truth (unlike, for instance, scholarly
mathematical activity), Lithner classified tasks according to one of the following:

� identification of similarities (IS), wherein the strategy choice is made by identifying
in a task surface-level features that resemble those in an example, rule, definition,
theorem, or other situation given in the textbook, and the strategy implementation
is done by mimicking the procedure in the identified situation;

� local plausible reasoning (LPR), wherein at least one of the following holds:

– the strategy choice is made as in IS, but where components between the given
task and identified situation differ in one or a few local parts, and the problem-
solver reasons as to the plausibility (i.e., uses “plausible reasoning”) that the
procedure can copied for the given task; or

– the strategy implementation is done, like in IS, by mimicking the procedure in
the identified situation, but also modifying the few locally-different steps;

� global plausible reasoning (GPR), wherein at least one of the following holds:

– the strategy choice is made by attending to mathematical properties that are
intrinsic to the components of the given task, and a solution is produced by
plausible reasoning; or

– the strategy implementation is done mainly by engaging in plausible reasoning
based in intrinsic mathematical properties.

If a task could be completed by IS, Lithner classified it as such; if it could not but LPR
sufficed, Lithner classified it as an LPR task; otherwise, the task was classified as re-
quiring GPR. Using this approach, Lithner classified 85% of the textbook tasks as IS,
8% as LPR, and 7% as GPR. I return to the results of Lithner’s classification in Section
2.2.2, where my aim is to attend to the activity enabled, encouraged, or sufficient for
completing school Calculus tasks; the aim for this section is to review the classification
systems proposed for analysing tasks to which Calculus students are exposed.

Lithner’s classification of tasks has since developed into a conceptual framework about
the reasoning that mathematics school tasks enable and/or encourage students to use.
Several studies have contributed to the development of the framework and used it to
classify tasks in other situations in mathematics education (Bergqvist, 2007; Brehmer et
al., 2016; Jäder et al., 2020; Mac an Bhaird et al., 2017; Palm et al., 2006).

To examine the reasoning required of Swedish university students in mathematics on
their exams, Bergqvist (2007) used Lithner’s 2008 framework to classify over 200 tasks
from 16 introductory Calculus course exams. Bergqvist (a student of Lithner’s) showed
these exams largely consisted of tasks that could be solved by imitative reasoning, one
similar in nature to IS—Lithner’s original classification had, at this point, grown to dis-
tinguish between imitative reasoning (IR) and creative reasoning, wherein the former
includes IS and the latter GPR.
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Palm et al. (2006) used Lithner’s conceptual framework to classify 1186 assessment
tasks in terms of their reasoning requirements in (8) Swedish national tests and in (52)
Swedish teacher-made tests at the upper secondary level.

Mac an Bhaird et al. (2017) used Lithner’s framework to compare three first-year Cal-
culus courses in two Irish universities. They classified 632 tasks from a textbook using the
procedure proposed by Lithner (2008) and Bergqvist (2007): construct, first, a solution
to each task, compare it to course notes and textbook examples, and assess which of the
reasoning types identified in the framework sufficed to solve the task.

Jäder et al. (2020) used Lithner’s framework and same procedure to analyse 5700 tasks
in secondary school mathematics textbooks from twelve countries on five continents. In
all these studies, the motivation was to determine the reasoning students are encouraged
or enabled to use in their course.

Brehmer et al. (2016) adapted Lithner’s (2008) conceptual framework on mathemat-
ical reasoning to define a notion of “mathematical problem” (MP) as one which requires
creative reasoning (plausible reasoning based in mathematical properties intrinsic to com-
ponents of a task); Brehmer et al. (2016) used this adaptation to classify as MP or not
5722 calculus tasks in mathematics textbooks for Swedish upper secondary school.

Brandes (2017) classified tasks from 12 final exams given in a multivariable Calculus
course at a large urban North-American university. The motivation was to examine how
the activity encouraged in students of this course stands against the type of activity en-
abled by and encouraged in single-variable Calculus courses, as characterized by Barbé et
al. (2005), Bergé (2008), Hardy (2009a), and Lithner (2000, 2004). To this end, Brandes
(2017) aimed to identify the knowledge students needed to have to pass the course; in
the case of this course, this amounts to passing the final exam given its heavy weight in
the grading scheme. Using the conceptualization from the Anthropological Theory of the
Didactic that any activity can be modeled via a praxeology (Chevallard, 1999), that is,
in terms of the task(s) involved, the technique(s) used to complete the task(s), and the
justification and dicourse that produces the technique(s), Brandes (2017) modeled the
activity expected of students in terms of tasks, techniques students are expected to use,
and the justifications they are expected to provide. Since tasks in final exams do not
always indicate the expected techniques, Brandes (2017) organized the model of knowl-
edge to be learned (as indicated by final exams) in parallel to a model of the knowledge
to be taught in the course, as indicated by expository text in the textbook and textbook
exercises recommended on the course outline. The course textbook was representative
of textbooks used for multivariable Calculus courses in North America. Brandes created
models of the activity needed to complete the exercises, turning to the expository text in
the textbook section associated with a given exercise to identify the expected techniques
and justifications.

The results of Brandes’ (2017) classification helped to qualify the mathematical ac-
tivity expected of students in the multivariable Calculus course in language similar to
that of Lithner (2003, 2004) and J. Selden et al. (1994), that is, in terms of the level to
which imitation strategies are enabled by course tasks and the extent to which students
are required to engage mathematical properties intrinsic to components of these tasks.
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Similarly to Lithner’s 2008; 2017 framework, which classifies tasks by the cognitive
load demanded by their conceptual focus (i.e., in terms of the extent to which a technique
to a task is routinized in curricular documents), Maciejewski & Merchant (2015) classi-
fied tasks in mathematics courses to document their cognitive demand. Maciejewski &
Merchant (2015) aimed to explore correlations between students’ grades and their study
approaches in undergraduate mathematics courses throughout all four North-American
undergraduate years at a major Canadian university. Maciejewski & Merchant (2015)
used Bloom’s taxonomy, a tool for analyzing the cognitive demands of (educational)
tasks (e.g., remembering, understanding, applying, analysing, etc.), to classify tasks stu-
dents experience in final exams of mathematics courses from all four undergraduate years.

Tallman et al. (2016) set to classify tasks in a large number of final exams in Calcu-
lus courses at various post-secondary U.S. institutions after noting the gap in knowledge
about these tasks in comparison to the classifications amassed about other courses or at
other educational institutions (such as the body of research using Lithner’s (2008; 2017)
conceptual framework to characterize tasks in mathematics courses in Sweden). Tallman
et al. (2016) developed the Exam Characterization Framework (ECF) to characterize
tasks in a first post-secondary Calculus course (“Calculus 1”). THis framework classifies
exam tasks according to three criteria: the cognitive demand required (a modification
of Bloom’s taxonomy), the mathematical representations used in the task statement and
those expected in the solution (applied/modeling, symbolic, tabular, graphical, defini-
tion/theorem, proof, example/counterexample, explanation), and the format of the task
(on a scale from open-ended to the availability of multiple-choice answers). Tallman et
al. (2016) used the ECF to code 150 final exams in Calculus 1; Tallman et al. (2021)
set to build on the results of the earlier study by adopting a conceptual focus as they
analysed 254 Calculus 1 final exam (altogether comprising 4167 tasks) from various U.S.
colleges and universities. Tallman et al. (2021) used the previous ECF in a first phase
of analysis to categorize tasks by the item being assessed (e.g., modeling, derivatives,
functions, Riemann sums, etc.) and conducted a second phase of analysis to produce
precise descriptions of how meanings of these items are expected to be used to reason a
solution for the task.

Raman’s 2004 classification aims differed from those I addressed so far; Raman (2004)
aimed to document how a specific mathematical concept (continuity) was treated in three
courses set in the same domain (pre-Calculus, Calculus, and Analysis) so as to explore
possible sources for students’ difficulties relative to the concept in the learning envi-
ronment. Raman classified tasks related to continuity in the three textbooks: one for
pre-Calculus, one for Calculus, and one for Analysis. Raman chose the textbooks to be
representative of popular texts in courses at each level. Motivation: “Many American
students have difficulty making a transition from high school to college-level mathematics.
This difficulty can be traced, at least in part, to students’ beliefs about what mathemat-
ics is. Several studies have indicated how students’ beliefs can conflict with the beliefs
needed to succeed at a particular level (Schoenfeld, 1989; Schommer et al., 1992; Tall,
1992). The focus of this study is on one possible source for conflicting beliefs: the mes-
sages sent by high school and college-level mathematics textbooks which, for better or
for worse, tend to have a strong influence on the way mathematics is taught and learned.”
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Raman (2004) aimed to decrypt epistemological messages about continuity from each
of the texts. This included an analysis of how each text defined continuity of a function
and of how students are expected to use this definition (as indicated by textbook tasks).
Raman (2004) categorized tasks by their objective (e.g., in pre-Calculus, one set of tasks
had as objective to determine whether functions given by their graphs were continuous or
discontinuous over given intervals), by the mathematical objects students are expected
to use to complete the task (e.g., in the pre-Calculus task in the previous example, this
was graphs and the informal definition of a continuous function as one whose graph can
be traced without lifting the pencil), by whether students are actually expected to use
the definition to complete the task (or, for instance, a syntactic argument), and whether
the tasks help to motivate the (need for the) concept of continuity. Using this categories,
Raman (2004) found that each of the three textbooks used “a different definition of con-
tinuity with a different purpose to be used by students in three different ways,” thereby
sending conflicting messages about the concept.

The studies cited in this section conducted classifications of textbook and assessment
tasks to document what these tasks indicate about baseline knowledge and ways of rea-
soning that suffice for students to pass Calculus courses in various educational systems in
North-America and Europe. The classifications are largely conceptually-focused in that
they set to identify the ways in which mathematical properties intrinsic to components
of a task are needed to complete the task. In conjunction with the extent to which such
properties are (un)necessary for the completion of these tasks, many of these studies
developed frameworks describing their cognitive demand: Lithner’s framework classifies
tasks by whether they allow for imitative reasoning or require creative reasoning, and Ma-
ciejewski & Merchant (2015) and Tallman et al. (2016, 2021) used variations on Bloom’s
taxonomy to classify tasks by a similar range of cognitive activity (from remembering
to creating). These frameworks share in their characterization of available or encour-
aged activity as ranging from imitation of templates available in curricular documents
to production of procedures based on knowledge of mathematical properties intrinsic to
components of a task. In the next section, I address the results of these studies along
with those of others that examined what is expected of students in Calculus learning
environments.

2.2.2 Messages to students from their learning environment
that encourage imitative strategies

The results of the Calculus task classifications conducted in (Bergqvist, 2007; Brandes,
2017; Brehmer et al., 2016; Jäder et al., 2020; Lithner, 2004; Mac an Bhaird et al., 2017;
Maciejewski & Merchant, 2015; Palm et al., 2006; Raman, 2004; Tallman et al., 2016,
2021) are consistent: the overwhelming majority of Calculus tasks could be solved by
mimicking the template offered in the solution of curricular document tasks that have
similar surface-level features. The studies variously refer to reasoning based in this strat-
egy as imitative and algorithmic reasoning (Lithner, 2008, 2017), surficial approach (Ma-
ciejewski & Merchant, 2015) and problems enabling such strategies as non-mathematical
(Brehmer et al., 2016); what the task-classification tasks have found is an emphasis on
such problems in curricular and assessment documents. Reasoning based in mathematical
properties intrinsic to components of a task is rarely needed; they can be circumvented
as soon as a procedure is routinized.
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So Calculus tasks can be qualified as routine: the tasks students are required to solve
are made in the image of tasks to which they are exposed in class and in their textbooks.
Tasks offered as practice problems in textbooks or as problems in graded assessments are
repetitive in that they mimic one another (within textbook sections), are stable through-
out the years (in the case of final exams, which usually consist of the same types of
questions from one year to the next, e.g., as per Hardy’s 2009a analysis of limit-finding
tasks in Calculus exams at a large North-American college), and can be solved by copy-
ing templates given in class and in textbooks via examples, definitions, rules, and other
situations—in most cases, though, by copying templates given in solved examples.

Task-classification studies had turned to textbook (and assessment) tasks to document
how they may encourage the superficial student activity observed in various small-scale
studies such as those of Artigue et al. (1990), Cox (1994), Lithner (2000, 2003), and Orton
(1983). One reason for looking to textbook and assessment tasks is the acknowledgment
of their role in shaping students’ learning (Lithner, 2004). Bergqvist (2012), for example,
cite national Swedish surveys that confirm, first, that students spend large amounts of
their mathematics-studying time in solving textbook exercises, and second, that teachers
rely heavily on textbooks as a basis from which to develop their lessons. Teachers use
textbooks as guides for what content to teach and for how to organize this content (Hag-
garty & Pepin, 2002; Pepin & Haggerty, 2004). Institutional frameworks such as the ATD
(Chevallard, 1985) examine the many layers involved in educational systems and which
bequeath onto textbooks this important role in shaping what teachers actually teach.

The classification studies discussed in the previous section show that assessment tasks
are made in the image of textbook tasks. This makes it possible for students to routinize
techniques. Bergqvist (2012), Cox (1994), and Törner et al. (2014) point to elements of
Calculus learning environments, other than the deterministic role of textbooks on teach-
ers and students’ practice, that may encourage students to routinize techniques.

In Cox’s 1994 study of first-year university students’ retention of core A-level mathe-
matics skills, results show students focus on routine tasks and use superficial reasoning;
interviews with A-level mathematics teachers brought up the matter that focus on routine
tasks and superficial reasoning is a way of coping with the content overload in A-level
syllabi. Teachers report a difficulty of achieving in-depth coverage of core topics because
of this content overload, and note that strategic learning allows students to obtain even
the highest grades on examinations. Even with the diversity of routine tasks, the excess
breadth of the content allows students to drill only select content and still obtain good
grades.

Törner et al. (2014) point to another element in the Calculus learning environment
that may encourage students to invest in the IR made possible by the bulk of their
textbook and exam tasks: a broader norm in national curricula that emphasis in the
teaching of Calculus be procedural and unconcerned with the conceptual. From inter-
views with teachers from France, Germany, UK (England), Belgium, Italy, Greece and
Cyprus, Törner et al. (2014) found the emphasis on procedure to be especially true in
UK, Greece, and Cyprus. The teaching occurring in classes is usually aligned to national
testing philosophies, indicated, for instance, by trends in final examinations. Törner et
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al. (2014) cite a trend of “teaching students to the test” which leads to a reduction and
compartmentalization of content.

Some of these teaching practices may be explained in part by a finding from Bergqvist’s
2012 interviews with university mathematics teachers who had produced the final exams
analysed by Bergqvist (2007). The teachers were content with the main result of the pre-
vious study—that it’s possible to pass their exams using only imitative reasoning. This
main result of Bergqvist’s 2007 study was replicated by Palm et al. (2006). Teachers
interviewed by Bergqvist 2012 believed tasks requiring creative reasoning (CR) would be
too difficult for students and lead to high failure rates. It is reasonable that such a belief,
together with a concern with passing rates, would encourage teachers to construct exams
heavy on IR.

In discussing whether CR tasks need automatically be more difficult to solve than
imitative reasoning (IR) tasks (which may, for example, require heavy memorization),
Bergqvist (2012) points to one characteristic of textbooks that may make it so in the cur-
rent learning environment. Textbook design contributes to students’ lack of engagement
with this reasoning: tasks at the beginning of textbooks’ exercise sections can be solved
via IR, whereas only those at the end of the sections require CR and involve additional
(e.g., conceptual) difficulties. This pattern is confirmed by Brehmer et al.’s 2016 classi-
fication of tasks in Swedish calculus textbooks. Brehmer et al. (2016) attended to tasks’
location in chapters and to their conceptual load: 84.62% of CR tasks appeared at the
end of the chapter, were given only in pure mathematical contexts, and were treated as
problems that summarize all content to be learned in that chapter. Additionally, only
5.75% of the 5722 Brehmer et al. (2016) had analysed in several Calculus textbooks ac-
tually required CR—and the proportion was similar on a textbook-by-textbook basis.
Brehmer et al. (2016) note this emphasis on procedural skill and operations is reflected
in textbook studies in other countries. Given the placement of already-scarce CR tasks,
students are less likely to reach them and therefore unlikely to engage with the reason-
ing and mathematical knowledge needed for these tasks. The message delivered by the
placement of tasks may also contribute to students’ avoidance of these tasks: Sidenvall
et al.’s 2015 analysis of students’ engagement with textbook tasks labelled by difficulty
level found students did not attempt the more difficult tasks. Indeed, 84% of students’
attempted tasks were among those labelled in the easiest level of difficulty, 16% belonged
to the intermediate difficulty, and no attempt was made at tasks labelled as most difficult.

Calculus tasks make it possible for students to pass their courses by acquiring rou-
tinized procedure, and messages from authorities in their learning environment—textbooks,
teachers, and, if available, past final exams—encourage students to do so. In Section
2.2.3, I address research that has shown Calculus students do predominantly develop the
imitative-reasoning-type practices enabled and encouraged by the emphasis on routine
tasks in their courses.

2.2.3 The practices students have been observed to enact in
response to (non-)routine Calculus tasks

It is long known that students struggle with non-routine (or novel) tasks not only in intro-
ductory Calculus courses but in secondary mathematics as well (Orton, 1983; A. Schoen-
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feld, 1985; J. Selden et al., 1994; Verschaffel et al., 2000). Task-classification studies
(Section 2.2.1) and those addressing elements of the learning environment related to the
emphasis on routine tasks (Section 2.2.2) propose the struggle students experience with
non-routine tasks can be attributed to the disproportionate emphasis by Calculus learn-
ing environments on routine tasks. In this section, I address research that has sought to
empirically study students’ activity in response to non-routine and routine tasks (that is,
(non-)routine relative to their Calculus courses) to contrast their actual practices with
the practices enabled and encouraged by the emphasis on routine tasks in their learning
environments.

Cox (1994) administered tests to first-year university students in the UK to examine
their retention of core A-level skills (including differentiation and integration) and fol-
lowed up in discussions with students, with A-level teachers from several schools, and
with academics with knowledge or experience of mathematics teaching. The results of
the study suggest it is common for students to pass (and get good grades) on the A-levels
by strategically learning the knowledge strictly needed to complete routine tasks and
engaging with this knowledge at a superficial level.

A. Selden et al. (1999) found that students enrolled in an ordinary differential equa-
tions course after having completed 1-1.5 years of first Calculus course struggled with
non-routine tasks: more than half were unable to solve any of the problems administered
to them and most were unable to progress toward any solution. This was in spite of
engagement with routine tasks in the study which confirmed the students’ familiarity
with calculus concepts needed to solve the non-routine problems.

In a study aiming to examine students’ conceptual knowledge relative to rates, White
& Mitchelmore (1996) found that students search for symbols to which they could apply
known procedures, without regard for what the symbols represented in the given context,
and identified procedures via the symbols used when they were taught.

Lithner (2000) administered two Calculus school tasks—neither purely routine nor
non-routine—to students at the end of their first semester of university studies in mathe-
matics in Sweden. Lithner found students’ strategy to be controlled by reasoning based in
established experiences (EE): experiences established in their learning environment rather
than in mathematical properties intrinsic to a task. Lithner’s (2003) investigation of un-
dergraduate students’ textbook-based homework activity revealed their strategy choices
and strategy implementations were controlled by IS reasoning and not based in mathe-
matical properties intrinsic to components in the given tasks. Lithner conjectured the
focus on IS reasoning while completing homework with the aid of textbook is a preface to
students’ reliance on EE reasoning when no textbook is available (as observed by Lithner,
2000).

Boesen et al. (2010) used Lithner’s (2008) conceptual framework on mathematical
reasoning to analyse the relation between task types and the mathematical reasoning
triggered in students by tasks in a national test situation in Sweden. This analysis re-
vealed that test tasks that had important properties in common with textbook tasks
triggered EE reasoning in students; test tasks that did not have important properties
in common with textbook task triggered creative reasoning founded in mathematical
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properties intrinsic to components of the task. This finding suggests that students are
not doomed to failure when confronted with non-routine Calculus tasks (as suggested by
Selden et al., 1994), but that exclusive exposure to routine tasks—or the lack of require-
ment to ever engage in non-routine tasks—may rob students of opportunities to engage
in creative mathematically-founded reasoning.

Sidenvall et al. (2015) used Lithner’s (2008) conceptual framework on mathematical
reasoning to analyse students’ textbook task-solving in Swedish upper secondary school.
The analysis revealed students correctly solved 80% of tasks they attempted using imita-
tive strategies. The textbook tasks were labelled according to three levels of difficulties;
students made no attempt at those labelled as most difficult and which may have required
them to use creative mathematically-based reasoning.

Hardy (2009a) investigated the influence of routine tasks on students’ practices. Hardy
did this through a study of instructors’ and students’ perceptions of the knowledge to
be learned about limits of functions in a single-variable differential Calculus course at a
North American college. The study revealed that the institutional emphasis on routine
tasks conditioned students to exclusively expect these types of tasks. For example, given
four limit-finding tasks that a mathematician or college Calculus teacher would classify
as the same type of task, students only classified three of them as the same type, go-
ing by the algebraic symbols used in their appearance to associate the tasks with the
procedure usually used in routine tasks involving these symbols, rather than by the cal-
culus implied by the task. Students’ reasoning was algorithmic, in conformity with the
predictions suggested by the task-classification studies discussed in Section 2.2.1. They
identified tasks by surface-level features rather than mathematical properties intrinsic
to their components. The absence of mathematical theoretical discourse enabled by the
routine tasks, which enable students to rely only on algorithmic thinking and bypass us-
ing mathematical properties intrinsic to the components of the task, caused difficulty as
students struggled with non-routine problems (as these could not be solved by the rou-
tinized techniques) and relied heavily on memorized steps—steps whose requisite order
was difficult to remember in the absence of the mathematical discourse that produces
them.

Broley & Hardy (2022a) point to another fallout from the routinization of techniques
afforded by institutional practices in single-variable Calculus courses at the college and
university levels. They report on a partial finding of Broley’s (2020) study of the task-
solving practices developed by students in a first course in Real Analysis—the first theory-
heavy course in the university Calculus stream. An ideal model of students’ progression
along this stream proposes the focus on theory in later courses builds on familiarity gained
by procedure in earlier courses; as elaborated by Broley & Hardy (2022a), however, a di-
dactic obstacle to this idealized model is made evident when students are confronted with
familiar tasks. In task-based interviews conducted with 15 students who had recently
completed the Analysis course, Broley found that most students reverted to routinized
Calculus techniques when given a type of Analysis task (e.g., “to prove a specified limit”)
that resembled a type of Calculus task (e.g., “to find a specified limit”).

Hardy (2009a) and Broley (2020) incorporated into their study a conceptualization
of institutions from a political science framework (Ostrom, 2005) and which allowed for
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an analysis of institutional mechanisms that can help to trace the way in which rou-
tine tasks shape students’ practices. Two of the mechanisms, for example, are rules
and norms: institutional rules describe the behavior required of members of the insti-
tution and sanctions exist to enforce members’ compliance; institutional norms describe
the behavior usually accepted and expected by members. Hardy (2009b) elaborates on
the mixture of mathematical, social, cognitive, and didactic norms that constituted part
of her (28) task-based interview participants’ models of the knowledge to be learned. In
comparing these students’ models with teachers’ models, Hardy (2009a) found that math-
ematical justifications and descriptions of tasks in teachers’ models were substituted by
non-mathematical (i.e., social, cognitive, didactic) elements. The latter reflected norms
enabled by the exclusively-routine tasks students had been administered in their Calculus
course. Broley (2020) cites a comment, made by one of her participants, which exemplifies
how institutional practices other than routinization of tasks might nevertheless encourage
students to strategize by routinizing tasks: in anticipation of the little amount of time
available for problem-solving during final exams, students “grind problems at home” so
they may recognize tasks and activate a routinized technique (i.e., as in Lithner’s 2017
notion of algorithmic reasoning based in established experiences).

In response to the large body of research raising alarm on the emphasis on procedure
in the first years of undergraduate mathematics courses, Maciejewski & Star (2016) warns
of the false dichotomy insinuated by pitting emphasis on procedure against emphasis on
conceptual knowledge. Research shows heavy routinization of procedure in tertiary math-
ematics education (Maciejewski & Merchant, 2015) restricts students’ ability to engage
with novel contexts. The issue is less so with emphasis on procedure than it is with its
routinization, which enables rigid use of procedures and fails to require that procedures
be learned with depth and flexibility (Maciejewski & Star, 2016). In a study of university
students’ justifications for the steps they take in row-reducing matrices (a procedures
these students will have learned in their introductory linear algebra course), Maciejew-
ski & Star (2019) found that even within this routinized activity, the freedom to make
certain decisions along the way leaves room for students to mobilize various criteria for
what they perceive as appropriate for a solution. Maciejewski & Star (2016) posit that
flexible procedural knowledge can be taught: the argument is based on findings from an
intervention designed to help undergraduate Calculus students use procedures flexibly.
Participants in the intervention were students from two sections of the same course; one
section was randomly assigned a treatment and another served as a control. Treatment
consisted of a set of derivative-finding tasks which had students use alternative methods
and compare resulting solutions. Control students were given a set of functions to differ-
entiate. Treatment students were more likely to use flexible procedural knowledge (i.e.,
various procedures) without prompt than students from the control group.

My aim in this section was to outline the practices students have been observed to
enact in response to (non-)routine Calculus tasks. Boesen et al. (2010), Broley & Hardy
(2022a), Cox (1994), Hardy (2009a), Lithner (2000), Orton (1983), A. Schoenfeld (1985),
J. Selden et al. (1994), A. Selden et al. (1999), Sidenvall et al. (2015), Verschaffel et
al. (2000), and White & Mitchelmore (1996) show the institutional emphasis on routine
Calculus tasks is indeed accompanied by students developing strategies that capitalize
on this emphasis: students learn a restricted set of procedures, recognize tasks not by
mathematical properties intrinsic to their components (such as type of indetermination,
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in the case of limit-finding tasks) but by surface-level properties such as algebraic sym-
bols that resemble those used in textbook examples for a certain task type, and do not
learn the mathematical justifications that produce the procedures they mimic as these
are unecessary for the short-term goal of passing their exams. These strategies limit
students’ ability to adapt to different types of tasks and even to recognize that a given
task is different from a routine one when these look alike (Broley & Hardy, 2022a; Hardy,
2009b). Routine tasks in Calculus enable students to use procedures in rigid ways and
side-step acquiring knowledge that is ostensibly part of the intended curriculum.

2.2.4 The heavy routinization of Calculus tasks enables stu-
dents to succeed by operating only along surface-level fea-
tures of a restricted set of procedures; so what?

A little learning is a dangerous thing;
drink deep, or taste not the Pierian
spring:
there shallow draughts intoxicate the
brain,
and drinking largely sobers us again.

Alexander Pope, 1902

Some of the researchers cited in this section identified criticisms that could be levelled
against the alarmist tone of research that has revealed the diagnosis of students’ knowl-
edge as superficial and their practices as imitative—conditions seemingly contracted by
the routine tasks they are administered in their mathematics courses. In this section, I
gather from the literature explanations that address these criticisms one by one. The last
remark in this list is one I have made and which has determined the research objectives
for this dissertation.

Criticism 1: Routinization is not non-mathematical. While some have classi-
fied as “mathematical” only tasks that require a modicum of creative reasoning (e.g.,
Brehmer et al., 2016), the implication in the body of research examining the routiniza-
tion of Calculus school tasks is by no means that routinization itself is amathematical. It
is, after all, an affordance of results in mathematics, and recall of similar tasks and related
structures has an important role in problem-solving (Lithner, 2004; Maciejewski & Star,
2016; Pólya, 1945). The use of the term “mathematical” to describe only problems that
require creative reasoning beyond imitation of algorithms for similar tasks, as in the work
of Brehmer et al. (2016), or to describe a practice that is not exclusively restricted to imi-
tative reasoning and reliance on surface-level features of tasks, as in the work of Broley &
Hardy (2022b), is rather a nod to two characteristics a practice incited by a problem may
(fail to) have: one, that it be guided by consideration of mathematical properties intrinsic
to components of the problem, and two, that it involve various behaviors known to be
productive for problem-solving in mathematics (Schoenfeld, 1985, and Mason, 2016, are
but two examples among a large collection of research about problem-solving behaviors
and ways of thinking useful in varied domains of mathematics).

27



It’s not that routinization and the imitative reasoning it affords are de facto amath-
ematical. The issue is that it’s the only activity students are encouraged to develop by
the tasks they are offered and the institutional conditions under which these are adminis-
tered, such as limited time across the board - from class time, to time in which to acquire
an excess of diverse content, to the time available during in-class exams (Broley, 2020;
Cox, 1994; Sierpinska et al., 2008). Students’ activity is restricted to reasoning guided by
expected experiences (Lithner, 2000). This comes at the expense of plausible reasoning
based in mathematical properties of the components of a task. When confronted with a
task that looks like a familiar one but differs in substance, students resort to procedures
that had always worked (in their course) for the superficially-similar task even as these
procedures may be more complicated or altogether inappropriate for the given task (Bro-
ley, 2020; Hardy, 2009a). When confronted with tasks that are obviously non-routine,
students struggle, having no established experience from which to draw an algorithmic
approach (Hardy, 2009a; Lithner, 2000, 2003; J. Selden et al., 1994; A. Selden et al., 1999).

Some of the studies that exposed students to non-routine problems showed that stu-
dents are not incapable of engaging in creative mathematically-based reasoning (Lithner,
2017). Boesen et al. (2010), for instance, showed that while Swedish national test tasks
that resembled those from textbooks did trigger EE reasoning in students, tasks that
did not have important properties in common with textbook tasks did trigger creative
reasoning based in mathematical properties intrinsic to components of the task. Hardy
(2009a) similarly noted from her participants’ activity in task-based interviews that they
were not “doomed to failure” when confronted with non-routine tasks, as the obviously
non-routine nature of tasks prompted students to attempt to engage with them in non-
imitative ways. These two studies found students to engage in non-imitative reasoning
in a circumstance with a shared characteristic: students had no choice but to engage
with these non-routine tasks. This does not typically occur in Calculus courses. Given
the institutional emphasis on routine tasks, there is no motivation for students to opt,
for example, for those end-of-section exercises known to require activity beyond that ex-
pected of students. Sidenvall et al.’s (2015) study gives evidence of what likely happens
as students spend time studying for their course by doing textbook exercises (of which
the overwhelming majority are amenable to algorithmic/imitative reasoning): given the
choice between tasks known to be “easier” and those known to be “hardest,” students
simply do not attempt the latter.

No, routinization is not non-mathematical. It has heuristic value. But courses that
exclusively encourage routinization enable students to avoid engaging with mathemat-
ical properties that are intrinsic to the tasks they are given. Students’ difficulty with
non-routine tasks that could be solved using concepts from their course show students
pass their courses without having to acquire substantial portions of knowledge that are
ostensibly part of the intended curriculum.

Criticism 2: Sure, students are limited in their activity at this level, but
clearly some students—namely, those who go on to graduate studies in math-
ematics and beyond—manage to escape the shackles of routinized tasks. Sure.
Those who go on to graduate studies in mathematics, however, form a significantly small
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portion of students required by university rules to complete Calculus courses. This leads
to question whether the superficial knowledge and procedural rigidity students develop
in these courses meet the objective behind the rule that students must pass first courses
in Calculus to gain entry into various programs apart from mathematics. Second, several
of the studies cited herein were conducted with an empirical problem in mind: transition
issues marked by high failure and dropout rates as students progress from secondary to
tertiary mathematics as well as within tertiary mathematics (Artigue et al., 2007; Ar-
tigue, 2022; Barbé et al., 2005; Bergé, 2008; Brandes, 2017; Broley, 2020; Raman, 2004;
Winsløw et al., 2014). I address two transition issues suggested by the literature to be
sourced in the routinization of Calculus tasks.

One consequence of the institutional and exclusive emphasis on routine tasks is that,
in enabling students to mimic established procedures, students are not confronted with
genuine problems in the sense proposed by Schoenfeld (1985) and Mason (2016). This is
a missed opportunity to confront students with problems that could help to motivate the
knowledge they are expected to learn. This is an issue as students transition into higher-
level mathematics courses such as Analysis. For example, Broley (2020) found students
can fail to grasp the need for using newer constructs such as formal definitions when
routinized procedures from Calculus suffice. Bergé (2008) similarly noted the potential
issue in knowledge being compartmentalized into routine tasks across four courses in the
Calculus stream (from a single-variable differential Calculus course to a course on metric
spaces). Bergé’s (2008) analysis revealed that each course compartmentalizes knowledge
about the completeness of R into certain types of tasks where the completeness property
does not always need to be treated as intrinsic to the task. The link between the tasks
across the courses (the link being their root in the completeness property) is not made
explicit to the students, who are then left to their own devices to even become aware of
a thread being attempted to be woven from one course to the next to develop in them a
fuller conception of the completeness of R. Raman (2004) has similarly found the treat-
ment of the notion of continuity across courses (pre-Calculus, Calculus, and Analysis) to
suffer from the curse of tasks that do not require students to engage with mathematical
properties intrinsic to continuity, having students engage rather with other mathematical
components instead (e.g., as in pre-Calculus where tasks that appear to be about classify-
ing functions as continuous or not are in fact about identifying intervals on a graph—an
exercise serving to strengthen algebraic concepts rather than that of continuity). The
tendency to turn Calculus tasks into algebraic ones is similarly noted by (Hardy, 2009b),
here pointing to how routine tasks can lead to the erasure of knowledge intrinsic to Cal-
culus (the purported aim of the course).

A second consequence of the institutional and exclusive emphasis on routine tasks
is in the message it sends to students about mathematics, about what it takes to learn
mathematics, and about what it means to do mathematics. Studies have shown how stu-
dents’ beliefs can be at odds with what it takes to succeed at certain levels (Schoenfeld,
1989; Tall, 1992). Raman (2004) suggests that the epistemological messages from high
school and college-level mathematics textbooks and the tasks they offer to students can
contribute to conflicting beliefs, giving as one example the suggestion, in pre-Calculus
textbooks, that definitions are appendages fit for amputation come task-solving time
(with textbooks disguising an informal description of continuity as a definition and fail-
ing to call on this definition in the solutions illustrated for tasks of determining the
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continuity of functions), which eventually conflicts with the norm in Analysis textbooks
whereby definitions directly produce the techniques through which similar types of tasks
are completed.

Mesa et al. (2012) note another way in which (college algebra) textbooks can shape
students’ beliefs about mathematics: the disproportionate emphasis on less cognitively-
demanding tasks limit students’ opportunities to learn about skills needed to develop
problem-solving strategies. Lithner (2000) similarly notes that the emphasis in text-
books in exercises that enable imitative reasoning can contribute to a belief that to do
mathematics is to follow ready-made procedures. Schoenfeld (1992) notes the common
belief that students cannot expect to actually grasp mathematics or engage in any be-
havior other than imitating what a teacher demonstrates. This belief is likely reinforced
by textbook design norms such as that found by Brehmer et al. (2016) in the analysis
of Swedish upper secondary school textbooks: tasks that cannot be solved by imitative
reasoning (IR) and rather require creative mathematically-founded reasoning (CR) are
scarce and pushed to the ends of exercise sections. Palm et al.’s (2006) reflection shows
how the message sent by textbooks about IR and CR tasks is reinforced by teachers’
tests: “memorisation of facts and procedures based on superficial properties of the tasks
is a competence that is sufficient for handling mathematical tasks. In fact, this kind
of superficial reasoning may to a large extent be interpreted to define the school sub-
ject mathematics.” A belief that the construction of solutions is outside the purview of
students, belonging solely to that of teachers and textbooks, may impinge on students’
sense of agency (Sierpinska et al., 2008) and willingness to attempt constructive reasoning
(Sidenvall et al., 2015).

In sum: the routinization that operates along surface-level features of tasks and tech-
niques can contribute to students’ difficulties as they transition within tertiary math-
ematics in at least two ways. One is the resulting compartmentalization of knowledge
(into routine tasks), as it conflicts with the presumption teachers may have that students’
familiarity with concepts from earlier courses helps them progress in their engagement
with these concepts, when in reality the established experiences may even impinge on
students’ activity with the same concepts in later courses. Another is the beliefs that
may be created and reinforced by the institutional emphasis on routine tasks: they enable
and encourage students to mimic ready-made procedures, contributing to the belief any
remotely constructive activity is beyond the scope of a student’s capacity and conflicting
with the activity that is eventually expected of students as they progress in university
mathematics courses.

Caveat: studies focused on the emphasis of routine tasks at the post-secondary
level have mainly considered pre-Calculus and Calculus courses, and studies
that empirically contrasted these routine tasks against students’ practices
have only done so in the Calculus context. The literature on the institutional
emphasis on routine tasks and its potential impact on students’ practices at the early
stages of university mathematics has been done almost exclusively within the domain of
Calculus. In the last section of this literature review, I attest to the absence of research
that has similarly examined the practices students develop in introductory Linear Alge-
bra, the only other mathematics course as widely-required as a prerequisite to university
programs as differential and integral single-variable Calculus. Given the vast documen-
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tation of the cognitive and epistemological difficulties inherent to concepts students are
exposed to in these early Calculus courses, it is reasonable to wonder whether, in the
mixture of cognitive, epistemological, and institutional features of Calculus courses that
can explain students’ disengagement from mathematical properties intrinsic to calculus
tasks, the institutional emphasis on routine tasks has a dominating role in this cocktail.

Is there a similar institutional emphasis on routinization in a course set in a different
domain of mathematics but at a similar stage of students’ mathematics studies? Based on
my experience teaching an introductory Linear Algebra course on matrices and vectors,
offered in both colleges and universities in North America, it seems there is. This is also
suggested by Maciejewski & Merchant (2015) in their report on a classification study of
tasks in mathematics courses set across all four North-American undergraduate years. If
there is an institutional emphasis on routinization in a non-Calculus course given at a
similar stage in students’ mathematical studies—does this emphasis present in students’
practices in the same way it does in their Calculus courses?

2.3 Research on the Teaching and Learning of Linear

Algebra

Research on the teaching and learning of linear algebra started in the late 1980s when
researchers in mathematics education noted difficulties students were having with linear
algebra concepts (e.g., Harel, 1989; Hillel and Sierpinska, 1993). The publication of the
influential volume On the Teaching of Linear Algebra, edited by Dorier (2000a), came
soon after amid a wealth of research about cognitive and conceptual sources for students’
difficulties in the discipline. Stewart et al. (2019) give a more recent report on the global
state of research in the field of linear algebra education. The report appears in a special
issue of ZDM Mathematics education devoted to research on the teaching and learning
of linear algebra. The issue was published as an extension of discussions at the 13th
International Congress in Mathematics Education (ICME 13) and the ICME 13 series
volume. Stewart et al. (2019) synthesize themes, questions, results, and perspectives in
the papers from this issue as well papers published between 2008 and 2017 identified by
surveying the 20 most cited English language journals covering mathematics education
research, along with the International Journal for Research in Undergraduate Mathemat-
ics Education and Linear Algebra and its Applications.

I draw from Dorier (2000a) and Stewart et al. (2019) to summarize the frameworks
most commonly used in the field (Section 2.3.1) and the themes most commonly addressed
in this research (Section 2.3.2). A survey of papers published in 5 majors journals in math-
ematics education research1 confirmed the trends in research on linear algebra education
have held since Stewart’s 2019 report. I follow with observations on gaps in the state of
the field that my study seeks to fill (Section 2.3.3).

1ZDM Mathematics Education, Educational Studies in Mathematics, International Journal of Re-
search in Undergraduate Mathematics Education, Journal of Mathematical Behavior, and Recherches en
Didactique des Mathématiques [Research in the Didactics of Mathematics]
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2.3.1 Frameworks commonly used for research on the teaching
and learning of linear algebra

Some of the earliest attempts at identifying sources for students’ difficulties in linear alge-
bra did so through a historical and epistemological lens (Dorier, 2000b). One of the main
results of this research looked at the last stage in the development of the field, after 1930:
the axiomatization of linear algebra. The theoretical reconstruction and new axiomatic
central theory did not, on its own, allow for the resolution of new problems (with some
exceptions; Dorier & Sierpinska (2001) note that of problems in non-denumerable infinite
dimension). The power of the development was rather in its unifying and generalizing
effect and the consequent simplification of methods for solving problems in mathematics.

There are two stages in unification and generalization:

� recognition of similarities among components of a situation (e.g., objects and meth-
ods); and

� reorganization of old knowledge through the construction of an object that makes
explicit a unifying and generalizing concept.

It’s through these necessary stages in the unification and generalization process that
Dorier (2000b) identifies a source for students’ difficulties. If a problem is accessible to a
student of an introductory linear algebra course, then that problem can be solved without
axiomatic theory. These students’ knowledge needs to somehow be assimilated for their
similarities to become visible, and the gains brought by unification, generalization, and
simplification are not within reach of novices. The structural aspect of linear algebra can
therefore seem gratuitous to students.

The work done in the direction of epistemological and historical analyses frames stud-
ies that seek to generate solutions to problems of the type described above. Some push
to axe theory of vector spaces from undergraduate linear algebra courses; for example,
Hillel (2000) questions the purpose of including it in courses where the focus is in finite
dimensensional spaces and where the isomorphism between Rn and n-dimensional spaces
is on the lineup of knowledge to be taught. Others have explored strategies for equipping
students with tools through which to grasp the need for axiomatic theory. For example,
(Dorier et al., 2000) propose “meta-level activities,” including explicit discourse from the
teacher about axiomatic concepts, about the unifying and generalizing significance of the
theory, and about its methodological affordances. Discourse from the teacher may help
students acknowledge that axiomatic structure is a thing of importance to mathemati-
cians, and some students may even be convinced of its significance, but discourse on its
own is unlikely to turn the axiomatic structure of linear algebra “part of the ‘cognitive
furnishing’ of the students’ minds” (Dorier & Sierpinska, 2001). For such discourse to not
diffuse into didactic ether, it needs to be accompanied by mathematical problems that
expose students to the affordances of axiomatic theory.

Another lens through which sources for students’ difficulties are examined deals with
the language of linear algebra (e.g., Hillel, 2000; Duval, 2006). Apart from the difficulties
students encounter when confronted by mathematical activity driven by formal language
(definitions, theorems, etc.), there are those rooted in the geometric, the algebraic, and
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the abstract components of linear algebra (as Hillel, 2000, puts it) or the graphical, tab-
ular, and symbolic registers of this language (Duval, 2006).

“Geometric” language consists of objects in two- and three-dimensional spaces (line
segments, lines, planes, etc.); “algebraic” refers to objects in Rn more broadly (e.g., n-
tuples, matrices, rank, linear systems and their solutions, etc.); and “abstract” is that
of the broader theory of vector spaces (e.g., vector spaces, dimension, eigenheory, etc.).
Hillel (2000) showed students struggled with the ‘opaqueness’ of each language (e.g., an
n-tuple in Rn relative to a standard basis versus its representation relative to a non-
standard basis) and with teachers’ unexplained shifts between the languages.

Duval’s (2006) notion of semiotic representations does with the productions needed
to capture mathematical objects—objects that can’t be directly perceived. Semiotic rep-
resentation have double use: communication and cognition. The productions made using
signs from a system of representation are needed to communicate and for mental pro-
cesses. Duval distinguished two components acting together in any cognitive process
involving a mathematical object: one, the comprehension or production of a representa-
tion (via signs), and two, the conceptual comprehension of the represented object. Duval
and researchers who built on his framework claimed that, among the activities involved
in the cognitive processing of an object, teaching does not address the conversions made
to transform semiotic representations from one register to another (e.g., graphical, such
as arrows, tabular, such as n-tuples, and symbolic, such as an abstract vector in a vector
space).

Language and registers are among the characteristics of linear algebra that determine
ways of thinking needed to understand it. Reflecting on research done so far on the
subject, Dorier & Sierpinska (2001) identify cognitive flexibility (e.g., as explored in the
work of Alves Dias and Artigue, 1995, which I give as a next example), trans-object level
of thinking (Hillel & Sierpinska, 1993), theoretical and practical thinking (Sierpinska,
2000), and the synthetic-geometric, analytic-arithmetic, and analytic-structural modes of
thinking in linear algebra (Sierpinska, 2000). To help convey some of the ideas addressed
here, I elaborate on the first and last in this list.

Alves Dias & Artigue (1995) found students did not have the cognitive flexibility
needed to move freely between semiotic registers (building on the work of Duval, 2006)
and in conjunction with various concepts (e.g., such as the integration of the concepts
of rank and duality in problems involving transformations between Cartesian and para-
metric representations of vector spaces). Alves Dias & Artigue (1995) observe that linear
algebra textbooks generally do not expose students to tasks that require cognitive flexi-
bility.

Sierpinska’s (2000) modes of thinking run parallel to the three languages of linear
algebra. Synthetic-geometric thinking is that needed to engage with objects that seem
directly accessible (e.g., lines in 3-space); analytic (-arithmetic or -structural) is that
needed to engage with objects constructed by a language and conceptual system. Sier-
pinska (2000) refers to studies that showed a point of difficulty for students is wielding
control over the three different modes, knowing where each is appropriate and moving
flexibly (Alves Dias & Artigue, 1995) between them.
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Tall’s (2013) three worlds of mathematical thinking—embodied, symbolic, and for-
mal—similarly deal with ways of thinking needed to coordinate activity in linear algebra;
Tall’s three worlds are commonly used to frame research on the learning of linear algebra
(Stewart et al., 2019). Tall (2013) distinguishes between the ‘conceptual-embodied’ world
of perception (developed cognitively), the ‘proceptual-symbolic’ world of calculation and
algebraic manipulation, and the ‘axiomatic-formal’ world of concepts (captured by defi-
nitions) and mathematical proof.

APOS theory (Dubinsky & McDonald, 2001) is a framework frequently used in re-
search on the learning of linear algebra (Stewart et al., 2019) and in other mathematical
fields as well. The theory classifies mental constructions an individual can have relative
to a mathematical object: action, process, object, or schema. An action perception of an
object is restricted to step-by-step instruction on how to perform an operation involving
that object. A process is a mental construction wherein an individual can reflect on an
action without being restricted to a specific object on which that action can be performed
(e.g., a process construction of function views it an input-output machine, whereas an
action construction is limited to a particular function, as represented by some specific
formula). An object construction occurs when a process is viewed as a whole which itself
can be acted upon, and a schema is developed as an individual forms and links actions,
processes, objects, and other schemas relative to a given concept. Aydin’s (2014) appli-
cation of APOS theory to linear algebra education had students generate examples: this
study found that students’ focus for determining linear (in)dependence was mainly on
row reduction processes, and not on the structure of linear combination relations between
the vectors.

Finally, another type for framework used in much research on linear algebra education
deals with how mathematics should be taught. One commonly used framework is Harel’s
(2008) DNR perspective (duality, necessity, and repeated reasoning), which posits three
principles for the teaching of linear algebra (and mathematics more broadly) to respond
to learners’ intellectual need (e.g., as produced by a state of being puzzled) and respect
the mathematical integrity of the content taught. Another frequently-used framework
is that of Realistic Mathematics Education (RME), a framework refined by various re-
searchers in the 1990s and which views mathematics as a human activity that can be
meaningful for students. RME proposes that ‘realistic’ situations be centred in the di-
dactic process—realistic in that students can imagine them.

2.3.2 Themes most commonly studied in research on the teach-
ing and learning of linear algebra

In this section, I list the themes most commonly addressed in the research on linear al-
gebra education. I emphasize themes more pertinent to this dissertation.

Earlier works on the teaching and learning of linear algebra contributed to the de-
velopment of some of the conceptual and cognitive frameworks listed in the previous
section. This was mainly research that looked to identify sources for students’ difficulties
in epistemological and historical analyses, in analyses of the language of linear algebra,
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and characterizations of thinking needed to understand linear algebra; in accordance
with these analyses, some studies into the teaching of linear algebra proposed principles
for its teaching and examined how they are violated in practice, others investigated the
affordances and limitations of geometry-based linear algebra courses, others conducted
(long-term) teaching experiments, and some examined student-tutor interactions in rela-
tion to a linear algebra course (Dorier, 2000a; Dorier & Sierpinska, 2001).

In the decades since, geometry has retained its prominence in research on the study of
linear algebra. This includes research on the role of geometry in students’ understanding
of eigenvalues and eigenvectors, linear independence, and linear transformations; studies
were framed in various frameworks (including, e.g., Sierpinska’s (2000) three modes of
thinking, Tall’s (2013) three worlds of mathematical thinking, and Duval’s (2006) semi-
otic representations). Some teaching experiments (e.g., with software) showed geometry
could help students develop understanding and other results show students perform bet-
ter in more routine algebraic problems (Stewart et al., 2019); this extends on the earlier
observation made by Dorier & Sierpinska (2001) that, while geometry can help students
grasp more abstract concepts, its introduction prior to algebraic concepts in a linear
algebra course can be counterproductive. The relation between linear algebra and geom-
etry, from an epistemological perspective, is not as natural as often presumed by teachers
and researchers (the basics of vector space theory were produced in the context of linear
equations or field theory—not in a geometric context—though the role of geometry in
the genesis of linear algebra grew with the development of functional analysis) (Dorier,
2000a); Chartier’s study (see Dorier, 2000a, pp. 262-264) of textbooks from various coun-
tries and across different periods, together with questioners for teachers at students at
different levels of university, showed geometry can even act as an obstacle in the learning
of linear algebra, with the use of geometry often being superficial.

Many of the papers surveyed by Stewart et al. (2019) were framed by APOS theory
and only a few studies focused on proofs in linear algebra. Many papers focused on stu-
dents’ content-specific understandings. Much attention is given to topics related to linear
combinations of vectors, especially those of span and linear independence. Some focus
is on students’ understanding of eigen theory, and very few studies focused on systems
of equations; Stewart et al. (2019) note the scarcity of work done on students’ geometric
and algebraic understandings of systems and their solutions. There are similarly few
papers investigating students’ understandings of properties of linear transformations and
orthogonality.

A last set of studies converge under the heading of research on instructional innova-
tions and analyses, including the role of technology (Stewart et al., 2019). This includes
general instructional approaches (such as flipped classrooms) and their relations with
grades and student affect. Two studies on instructors’ practices (reasoning, moves, role,
and collaboration) suggest phenomena similar to that of routinization of tasks observed
in calculus courses. Grenier-Boley (cited in Stewart et al., 2019) found that a priori insti-
tutionalization of ideas sometimes transformed exercises into “simple and isolated tasks”
that stopped “students from being exposed to the main difficulties of these concepts.”
Rensa’s study (see Stewart et al., 2019) of an engineering student’s notes in a linear
algebra class showed the student used these notes mainly to develop instrumental un-
derstanding (e.g., to find solutions). Other research on instructional approaches include
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application-based approaches (often drawing on the RME framework) and studies on the
role of technology. Of note, Stewart et al. (2019) observe there is room for research on
the use of textbooks and online videos as resources for learning, as well as of homework
materials: their content, presentation of content, and how they are used by students and
instructors.

2.3.3 Gaps in linear algebra education research that are perti-
nent for this dissertation

It is commonly claimed in the discussions about the teaching and learning of
linear algebra that linear algebra courses are badly designed and badly taught,
and that no matter how it is taught, linear algebra remains a cognitively and
conceptually difficult subject. This leads to (a) curricular reform actions, (b)
analyzing the sources of students’ difficulties and their nature, as well as (c)
research based and controlled teaching experiments. (Dorier & Sierpinska,
2001)

Theory of vector spaces was introduced to secondary level education in the 1960s in many
countries and constituted one of the main ussies of the reform of modern mathematics
education of that period (Dorier, 2000a). The study of linear equations was overshadowed
by formalism and axiomatic theory; these became a unifying and generalized model for all
linear problems (finite and infinite-dimensional). It was thought that the mathematical
simplicity offered by this formalism would translate to mathematics that is simpler and
more accessible to students. It shortly became clear this formalism was a great source
of difficulties for students and the reform movement was progressively abandoned in the
early 1980s. Vector space theory was now consecrated for first-year mathematics studies
in university (Dorier, 2000a).

A curricular reform movement for the teaching of linear algebra (at the tertiary level)
began in the United States in 1989; in 1990, a group of mathematicians formed a study
group (the Linear Algebra Curriculum Study Group, or LACSG) to propose recommen-
dations based on teaching experiences and in research on algebra in the United States
(Dorier & Sierpinska, 2001). Curricular changes similarly went underway on a global scale,
and countries where the teaching of linear algebra had previously emphasized theory (e.g.,
as in France, Poland, and Morocco) turned to a focus on numerical computations. These
changes were informed by the studies discussed in the seminal work edited by Dorier
(2000a) and which has led to many of the frameworks that are now often used to frame
studies in linear algebra education: Dorier’s epistemological and historical analysis and
resulting observations about difficulties inherent to the unifying and generalizing aspect
of linear algebra, Hillel’s modes of description and the problem of representation in linear
algebra, Sierpinska’s three modes of thinking and practical versus theoretical thinking,
Harel’s principles for the teaching of mathematics (his 2008 DNR framework developed
in consequence to earlier work; in fact, Harel was the main mathematics education re-
searcher in the LACSG), the need for cognitive flexibility, the role and place of geometry
in the teaching of linear algebra, etc.

The frameworks and themes that typify research in linear education research are
centred on conceptual and cognitive sources for students’ difficulties in the domain and
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otherwise focus on teaching experiments. The institutional perspective that had started
to gain traction in research on calculus education, in light of the increasing recognition
in the 1990s of social and cultural contexts’ role in students’ learning trajectories, is
practically absent from this research. Only one study among those surveyed by (Dorier,
2000a) used this perspective: Behaj’s (1999) doctoral dissertation (discussed in the work
of Dorier, 2000a) used the Anthropological Theory of the Didactic to investigate how
university instructors’ structuring of knowledge and institutional constraints may shape
how their students structure their knowledge and use it for problem-solving. The exper-
imental portion of the study included one-on-one interviews with teachers, asking them
to describe how they usually present to students the notions of vector (sub)space, linear
(in)dependence, generators, basis, rank, and dimension, as well as an experiment with
students from second to fifth years of university mathematics and science programs in
France and Morocco; these students were asked to create a lesson plan about the same
concepts for first-year students, and to elaborate on how they would use examples, exer-
cises, and proofs. They were also asked about their understanding of linear algebra and
how it has evolved throughout their studies. One of the main results of the study was
the importance of students’ maturity and the time (over a long term) needed to learn;
another main result is in the non-continuous nature of students’ learning in university, in
that it occurs in selective, intense periods of individual work.

None of the papers identified in Stewart et al. (2019)’s survey of research in linear
education from 2008 to 2019 were framed by an institutional framework, and my search
for such papers among 5 major mathematics education research journals only yielded a
paper reporting on Behaj’s (1999) doctoral dissertation. This is not to say that no studies
have attended to curricular elements in linear algebra courses, but those that have are few
and far in between2. Stewart et al. (2019) refer to a 2018 paper by Harel about varieties
in the use of geometry in the expository parts of six popular introductory linear algebra
textbooks, some of which are widely used in the United States. Stewart et al. (2019)
also refer to a 2014 paper by Rensaa reporting on a study whose aim was to investigate
how note-taking and other class notes may impact a student’s rationale while studying
for a course. The study attended to class notes taken by an engineering student as well
as notes provided by the teacher to this student (e.g., solutions to mini-tests). Results
showed that the main use of these notes was likely instrumentalist, that is, to be used to
identify rules and ways to find correct answers.

I found two papers (published past Stewart et al.’s 2019 survey) that have investigated
textbook use in linear algebra courses, both reporting on studies conducted by students
of Vilma Mesa as part of a broader research project on student and instructor use of open
software and textbooks in undergraduate mathematics. Castro-Rodŕıguez et al. (2022)
examined how students engage with digital textbooks in a linear algebra course taught
at four universities in the United States. Analysis targeted students’ real-time viewing
and use, students’ responses to bi-weekly open-ended surveys, and other curricular docu-
ments (e.g., syllabi). Castro-Rodŕıguez et al. (2022) found engagement with the textbook
dropped when the algebraic language and textbook content weren’t institutionally legit-
imzed and when the textbook didn’t directly correspond to students’ goals for earning

2I know of one study, apart from Behaj’s, that used an institutional perspective to investigate a
higher-lever linear algebra course: De Vleeschouwer (2010) also used the Anthropological Theory of the
Didactic.
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a degree. Gerami et al. (2024) analysed an interactive textbook’s presentation of the
notion of span along with student responses to two “reading questions” associated with
these expository texts; “reading questions” are problems intended to motivate students
to read textbook content before attending a lesson in which that content is to be covered.
Analysis targeted students’ strategies for determining whether a vector was in the span of
a given set of vectors, as indicated by students’ input in the interactive textbook software.
This analysis revealed students’ strategies were not confined to those presented in the
textbook; the authors note this result echoes earlier studies (such as that of Castro, 2022)
which found students attempt the reading questions without reading the corresponding
text and also use resources other than the textbooks themselves (e.g., perhaps peers or
popular resources on the Internet).

As Stewart et al. (2019) point out, there is ample room for analysis of textbooks and
assignments—to which I add, of curricular documents more generally—with a focus on
their content and on how they are used by instructors and students. There is similarly
ample room, more broadly, for analysis conducted from an institutional perspective to
look for sources for the practices students develop (e.g., as in Aydin’s 2014 finding that
students prioritize row-reduction as a technique to verify linear dependence over verifying
the structure of the linear combination relations among vectors) in the activities offered
to students and the ways in which such activities may enable and encourage certain prac-
tices over others.

A lack of institutional perspective is one gap in the slurry of studies performed to
investigate students’ difficulties since the reform which overhauled introductory linear
algebra courses in university in the 1990s, reducing their theoretical load and incorporat-
ing numerical competencies. Another gap is in the topics targeted by the studies, which
perhaps favor content directly set in the language of vector spaces. Stewart et al. (2019)
point out there is a strong research base in students’ reasoning relative to the topics of
span, linear independence, eigenvectors, and eigenvalues; some additional papers address
the areas of geometric reasoning related to linear transformations and of vector spaces.
Few papers investigate students’ reasoning in the topics of linear systems and their so-
lutions, properties of linear transformations, orthogonality, and least squares (Stewart et
al., 2019).
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Chapter 3

Theoretical Framework

I frame my work in Chevallard’s (1985, 1992, 1999) Anthropological Theory of the Didac-
tic (ATD) along with a perspective on institutional practices from Ostrom’s (2005) Insti-
tutional Analysis and Development (IAD) framework and a theory of non-mathematical
practices developed by Sierpinska et al. (2008), Hardy (2009a), and Broley (2020), stud-
ies framed by this same mixture of the ATD and IAD. In Section 1.1, I explained the
pertinence of the ATD framework and its affordances to my questions about students’
practices in post-secondary mathematics courses; I also elaborated the notion of non-
mathematical practices developed through applications of the ATD and IAD to study
similar questions, and stated my objective to investigate whether such practices develop
in introductory linear algebra courses.

I elaborate further in Section 3.1 on the two major tenets of the ATD: the notions of
didactic transposition (Section 3.1.1) and praxeology (Section 3.1.2). The perspectives
afforded by the notions of didactic transposition and praxeology clarify the mechanisms
regulating the situation I intend to study—the learning accomplished in the college linear
algebra institution. These two notions give the setup needed for two more elements to
my theoretical framework: the theory of non-mathematical practice (Section 3.3) and a
perspective of institutional positioning borrowed from the IAD, a framework developed in
political science (Section 3.2). I use notions from this framework to present an actionable
iteration of the research questions in Section 3.4.

3.1 The Anthropological Theory of the Didactic

The ATD (Chevallard, 1985, 1992, 1999) proposes that the learning accomplished in a
didactic institution is regulated by transformation of knowledge. The research programme
defines mechanisms that operate this transformation of knowledge and offers a way to
model the knowledge being exchanged. In Section 3.1.1, I explain these mechanisms,
which Chevallard ties together in the notion of didactic transposition, and relate the idea
to my overarching questions. The notion of didactic transposition is a first tenet of the
ATD; the notion of praxeology is a second. Praxeology is a tool with which to model
students’ activity. I explain this in Section 3.1.2.
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3.1.1 First tenet of the ATD: didactic transposition

The ATD describes learning that takes place in didactic systems: triads involving a
teacher, a student, and knowledge at stake. The ATD maintains that knowledge targeted
by the didactic system must be examined to study the learning taking place in it. In the
case of mathematics education, a knowledge-centered approach means that the mathe-
matics that is subject in school must be subject to investigation to examine the teaching
and learning accomplished in the institution. In this section, I recount Chevallard’s (1985,
1992) reasoning for this approach: the premise of didactic transposition. This premise
leads to a definition of the researcher’s role in examining the knowledge transposed in a
given institution.

Why must the mathematics targeted by a didactic institution be investigated
to understand the teaching and learning that occur in this institution?

A mathematician works on a problem for some time, attempts, fails, revisits, perhaps the
problem changes, others work on the same or related problems, and somewhere along the
way results are established and formalized with axioms, definitions, theorems, proofs, and
the like. This and other, similarly-synthesized knowledge are selected as reference for the
knowledge to be taught in schools. A popular axiom-definition-theorem presentation may
seem to lend itself well for teaching and learning processes, but this structure of knowl-
edge is free of the problems and difficulties that triggered the creation of this knowledge
in the first place (Chevallard, 1985). The absence of the situations that necessitated the
creation of this knowledge is an obstacle; it makes it difficult to teach this knowledge.
Teachers, along with many others involved in the teaching establishment, therefore re-
design this knowledge to make it palatable for the classroom environment (Brousseau,
2002).

The process described above oversimplifies but captures the essence of the phenomenon
of didactic transposition: knowledge that is taught in schools does not originate in schools.
It originates in other (perhaps academic) circles and is reorganized for the purpose of
teaching. This reorganization is the phenomenon Chevallard targets with the theory of
didactic transposition.

Chevallard introduced this theory at a time when didactics of mathematics was form-
ing as a scientific field of study; its objectives were just getting established. In the
1970s, Brousseau introduced his Theory of Didactic Situations and shifted the focus in
mathematics education research (in French, eventually in Spanish, and later, in English-
speaking communities) to the didactic system made up of teacher, student, and milieu;
up until then, the prevailing paradigm in mathematics education focused mostly on psy-
chological elements of learning (Bosch & Gascón, 2006; Brousseau, 2002). Chevallard’s
work fit in the prevailing focus on the didactic system as a source of explanation for the
learning students accomplish. Chevallard proposed a focus on the ecology of didactic
systems (Chevallard, 1999).

Chevallard’s focus on ecology consists, first, in looking at the conditions and con-
straints that shape the transposition of knowledge into teachable and learnable knowledge,
and second, to look at the knowledge that results from this transposition to understand
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what teachers ultimately teach and what students ultimately learn.

The notion of didactic transposition draws its purpose from an axiomatic shift in
the understanding of didactic systems: they are now seen as a triad between teacher,
student, and knowledge, rather than the result of interaction between teacher and stu-
dent. (Chevallard, 1988, contrasts the expressions “I teach something,” “I teach,” and
“I teach something to someone.”) To understand the teaching and learning accomplished
in a didactic system, it’s necessary to grasp the knowledge at stake. I borrow an ex-
ample from Chevallard (1985): students trained to solve for x in equations of the type
2x = 12, 3x = 12, 4x = 12 transfer the knowledge gained from this training to solve for
x in equations of the type 2x = 0, 3x = 0, 4x = 0; the expectation that the value of x
vary in relation to that of its coefficient leads to the erroneous conclusion, from 2x = 0,
that x = −2, 1

2
, or −1

2
. This erroneous conclusion respects the contract established by

the previous task type (ax = 12). Difficulties observed at one stage of learning can be
understood in light of the knowledge taught and learned previously.

The shift to view didactic systems as a teacher-student-knowledge triad calls for a
study of this knowledge, but the knowledge at stake in a didactic institution is not a
given nor constant. This premise is core to Chevallard’s elaboration of a theory of didac-
tic transposition. The mathematics in a didactic institution is in flux: there is scholarly
mathematics, but this is distinct from the mathematics in the sphere of those in charge
of disseminating it in a given institution, and this, in turn, is distinct from the math-
ematicsof those in charge of learning it in that institution. Mathematics targeted by a
didactic system is transposed within that system; it transforms as it slides along a path
between scholarly mathematics and the mathematics of those who learn it in a given
didactic institution.

This transposition doesn’t occur only by choice and design. It’s a result of conditions
and constraints on didactic systems. Such systems live on a tightrope strung between ex-
pert and socioeconomic needs and expectations. Consider elementary and high schools,
for example: their mandate and functioning are mediated, revisited, and continuously
prodded by stakeholders that include parents, education ministries, publication houses,
subject-matter experts, and pontifications of various agents ranging from industry moguls
to political pundits. Chevallard calls “noosphere” the collective of stakeholders of a given
didactic institution, along with their mediations and concerns (Chevallard, 1985). This
is where decisions are made—decisions that determine which parts of scholarly mathe-
matics are the target of a didactic institution.

I’ll sidestep, briefly, to identify the noosphere of one of the didactic institutions at
stake in this research. The Quebec chapter of the college linear algebra (LA1) institution
takes the form of a linear algebra course usually offered in CEGEPs1; the course is also
offered at Quebec’s universities for students who did not complete it in a CEGEP degree
(e.g., mature, Canadian out-of-province, and international students) but need it to enter
a given university program. The noosphere of this institution includes Quebec’s Min-

1“Collège d’enseignement général et professionnel” - General and professional teaching college - is
a post-secondary educational system unique to Quebec; it offers technical career-oriented programs as
well as 2-year programs between high school and university education, which are mandatory for entry to
university by Quebec students who are below 21 years of age.
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istry of Education and of Higher Education, which establishes official course conditions
(e.g., 75 hours of instruction over one semester at a CEGEP), objectives, and standards,
and produces official documents to disseminate these - see, for instance, Figure 3.1 be-
low. The noosphere also includes scholarly experts involved in the development of these
standards and objectives; publication houses whose textbooks have become standards in
the North American college linear algebra institution; mathematicians in departmental
teaching committees; teachers in charge of the course; students, who are typically (young)
adults when registered in these courses, and who have their own expectations as students
and clients of these institutions; since the turn of the century, the noosphere includes a
selection of well-established internet sensations (YouTube channels, websites) by whom
students faithfully abide as go-to sources of information about what they are expected to
study for their course, and whose teachings inform students’ (and clients’) expectations
from their linear algebra course.

Figure 3.1: Quebec ministry objectives and standards for LA1 (Ministère de l’Éducation
et de l’Enseignement supérieur, 2017)

The decisions made in the noosphere determine what knowledge is targeted, what
knowledge is to be taught, which knowledge actually gets taught, which knowledge is
to be learned, and which knowledge eventually gets mobilized by students. The ex-
pectations of the stakeholders mediate, first, the knowledge that a didactic institution
targets. Chevallard (1985) gives, for example of a mediating constraint on elementary
mathematics education, the tension between the mathematics parents already know and
the mathematics of the teachers. For a school to survive, for teachers to maintain their
didactic purpose, the knowledge they teach cannot be knowledge that parents could teach
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their children themselves, if only they had the time. This example underscores an impor-
tant property of the conditions and constraints that shape the transposition of knowledge:
they are not necessarily the motivations held by, for instance, teachers, when they trans-
pose mathematics into knowledge that they teach. (A teacher likely has reasons other
than “I need to teach something my students’ parents don’t know” for the choices they
make in class.) Chevallard includes conditions and constraints borne out of the need for
didactic institutions to survive and function - these may include, but are not limited to,
the motivations and intentions of those in the noosphere.

One moment at which the transposition of knowledge can be traced is when it is
put down to text (Chevallard, 1985). For instance, one such moment is when objectives
and standards are officialized, as in Figure 3.1. Another is the development or selection
of a textbook for a given course. Knowledge to be taught is determined by the selec-
tion, presentation, and organization of knowledge in a given textbook; boundaries to the
knowledge are established and a logical scaffolding is implied. This process explicitly
defines the knowledge to be taught and suggests a norm for the progression of learning
(Chevallard, 1985).

The process of rendering knowledge to text, in addition to delimiting what knowledge
is to be taught, depersonalizes knowledge and thereby renders it legitimate: knowledge
sanctioned by a publisher or social institution is depersonalized and legitimized when
compared with knowledge a particular teacher chooses to teach (even if such knowledge
is otherwise identical). The explicit definition of knowledge and its depersonalization ren-
der it into knowledge suitable for didactic purposes (Verret, 1975, as cited in Chevallard,
1985).

Knowledge rendered teachable - by virtue of being depersonalized and legitimized,
delimited, made suitable for didactic planning - differs from knowledge that is ultimately
taught and learned because of properties of what Chevallard (1985) calls didactic time.
This refers to the time, and organization of knowledge within that time, needed for knowl-
edge to be acquired. One of the main issues at play here is the tension between new and
old knowledge: for instance, new knowledge draws its sense from previously established
knowledge (e.g., one isn’t ready to learn how to hold a violin by its neck without, at the
least, knowing what a violin is, what its neck is, and what it means to hold something),
but old knowledge may also contradict or become an obstacle in the acquisition of new
knowledge. Another property of didactic time is that it is absent of the (scientific, his-
torical) problems that called for the creation of the new knowledge.

The difficulties inherent to didactic time result in yet further transpositions of knowl-
edge: teachable knowledge is transposed into knowledge actually taught, and the latter is
transposed into knowledge students actually learn. An important factor at stake is that
learning is institutionally mediated by ways of verifying the learning students accomplish:
this process makes explicit what students are expected to learn, and, given students’ goal
to survive or succeed in the institution, influences what students actually learn.

The theory of didactic transposition thus defines the conditions and constraints that
drive the mutation of knowledge targeted by a didactic institution, wherein there is intent
to teach items that belong to some socially-sanctioned sphere of knowledge. Knowledge
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is transformed as it shifts back and forth between scholarly knowledge, knowledge to
be taught, knowledge actually taught, knowledge to be learned, and knowledge actually
learned.

A word to the notion of knowledge “learned” by students: to avoid overstepping with
claims about knowledge (not) “acquired” (and privately held) by students, which can be
intractable, I suggest instead to address the knowledge students mobilize. I suggest this
in part due to the pragmatic matter that what students mobilize is currency available for
study; while it is possible to draw out what knowledge students do or do not have, this
is not always the case. The main reason for my suggestion to attend to what students
mobilize, though, is that it is a blend of the knowledge they acquire and the knowledge
they choose to use in response to certain prompts. I reflect further on the affordances of
this distinction between what students mobilize and what they know in the Discussion
and Conclusions chapter (see Section 6.1.3).

Finally, one last word about the theory of didactic transposition: the transposition
doesn’t occur in a one-directional linear flow. Conditions and constraints of the didactic
system mutate scholarly mathematics into teachable knowledge - and this into knowledge
that is taught and then that which is mobilized. But there is regurgitation. Knowledge
mobilized influences knowledge taught (e.g., when a teacher shifts gears upon noticing
some gap between what students are expected to have learned and what they are mobi-
lizing) and so on and so forth.

Given the existence of didactic transposition, that is, the flow of knowledge between
spheres of learners and teachers and experts, mediated by the overarching educational
and societal systems in which a didactic system exists, the knowledge that is currency
in this system must be examined to understand the teaching and learning accomplished
in this system. To understand problems in a didactic system, the transposition of the
knowledge at stake is a pivotal unit of analysis. The didactic researcher’s task, then, is
to examine the knowledge at its various stages of transposition.

How is the didactician to investigate the mathematics at stake in a didactic
institution?

If the didactician’s task is to examine the didactic transposition of mathematical knowl-
edge, the next question is how the didactician is to go about this task. Given the theory
that the knowledge transposed at each each layer of a didactic institution can elucidate
students’ learning, the didactician needs a backdrop against which to analyse the knowl-
edge at each stage, a backdrop that helps compare knowledge at a particular stage with
the didactic transposition of the knowledge across the institution. Such a backdrop can
then help to answer a variety of questions:

For instance, what are the ‘limits of functions’ taught at undergraduate level?
Or what kind of ‘proof’ or ‘problem solving’ are I considering? Is it something
existing in ‘scholarly mathematics’? In what way? Does it exist as knowledge
to be taught? Since when? In what terms? What kind of restrictions does
it impose on the teachers’ practice? On the students’ practice? (Bosch &
Gascón, 2006)
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Chevallard (1985) proposes that the researcher make explicit a reference model : a model
of knowledge at stake in an institution. Such a model incorporates scholarly knowledge as
well as knowledge of those in charge of teaching and those expected to learn. The refer-
ence model should not be subject to the dominance of knowledge at any one of the stages
of didactic transposition under investigation (e.g., knowledge to be taught, or scholarly
knowledge), as such a model would fail in its function as a backdrop against which to
analyse the knowledge at each stage. A reference model must account for all stages of
the transposition of a given morsel of knowledge.

With the didactic researcher’s task established - make a reference model to examine
the knowledge at any stage of a didactic transposition - there is the question of how
knowledge might be modeled. Now comes the second major tenet of the ATD: that doing
mathematics, and, by extension, learning mathematics, is but one human activity among
all others. This premise, along with assumptions about what human activity involves,
brings forth the notion of praxeology : a way to model human activity, and therefore a
way to model the knowledge that is currency in a didactic transposition.

3.1.2 Second tenet of the ATD: praxeologies

The second basic tenet of the ATD starts from the observation that doing mathemat-
ics is a human activity (Chevallard, 1999). This assumption places the act of doing
mathematics within the social sphere—within the realm of institutions. I complement
Chevallard’s description of institution with Ostrom’s (2005) Institutional Analysis and
Development (IAD) framework. I borrow from the IAD framework an understanding of
institutionalized human activity; the characterization of activity that occurs in institu-
tions, as given by the IAD, has proved useful in the body of research to which this study
belongs (Broley, 2020; Hardy, 2009a). A characterization of institutionalized activity is
pertinent here given the aim to characterize students’ activity (mobilization of knowl-
edge) in didactic institutions (post-secondary mathematics courses). I elaborate on the
mechanisms I borrow from the IAD framework in Section 3.2 and focus first on the im-
plications of the assumption that doing mathematics is a human activity among all others.

Any human activity can be described in terms of the tasks it involves, the ways in
which the tasks are performed, and the reasoning that produces, justifies, and explains
why these ways-of-doing accomplish the desired tasks (Chevallard, 1999). Doing mathe-
matics—or mobilizing mathematical knowledge—can therefore be described in terms of
the task(s) involved, the technique(s) used to perform the task(s), and the theory that
produces the technique(s) and validates the technique(s) (validates that they accomplish
what they are expected to accomplish).

Chevallard (1999) proposes to model human activity according to the task(s) T in-
volved (or, perhaps, a type of task T , such as, for instance, “to solve a linear system,”
and tasks t ∈ T , such as “to solve a linear system of 2 equations in 2 unknowns” and
“to solve a linear system of m equations in n unknowns), the technique(s) τ needed to
accomplish the task(s), and a theoretical block - made up of a technology θ and a theory
Θ (which I elaborate on shortly) - that produces and justifies the techniques. [T, τ, θ,Θ]:
Chevallard calls this model of human activity a praxeology.
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A praxeology therefore models human activity according to its practical block [T, τ ]
and its theoretical block [θ,Θ]. The practical is the “know-how” while the theoretical
block is the “know-why.” What’s critical to the notion of praxeology is that it is institu-
tional in nature (Chevallard, 1999); that is, the technique(s) and theory involved (and, for
that matter, the task itself) in the performance of any task are relative to the institution
in which an activity is performed. The same task may be the target of a performance in
different institutions, each of which privileges a different technique for performing that
task. This is because institutional goals, expectations, and preferences privilege certain
techniques over others.

For instance, consider this task t: to solve a linear system of 2 equations in 2 un-
knowns. The task is performed in Quebec secondary mathematics classes, but also in the
LA1 college linear algebra institution. In Quebec’s high schools, the task is performed
graphically by determining the slope and y-intercept of the line represented by each
equation and graphing the lines represented by the equations (let’s call this technique
τHS
1 ) , and algebraically by using the so-called comparison, substitution, or elimination
techniques (τHS

2 , τHS
3 , τHS

4 , respectively)2. For instance, to solve the system

x − y = 5
2x − 2y = 10

graphically, τHS
1 is to rewrite each equation in point-slope form,

y = x − 5
y = x − 5

wherein both lines, having the same slope 1 and y-intercept -5, can be seen to overlap,
so the system is concluded to have infinitely many solutions. To solve the system by the
method of comparison, the technique is to isolate one of the variables - say, y, and to
determine the value of x for which the two expressions for y equal one another. In the
current example, isolating x in x − 5 = x − 5 to the equation 0 = 0. In the high-school
algebra institution, the conclusion can now be drawn that the system has infinitely many
solutions. To solve the system by the method of substitution, the technique is to isolate
one of the variables in one of the equations - say, to isolate y in the first equation:
y = x− 5, to substitute this expression for y into the second equation:

2x− 2(x− 5) = 10,

and to solve this last equation in terms of x:

2x− 2x+ 10 = 10

10 = 10

10− 10 = 10− 10

0 = 0,

2These are the techniques listed and described on the page about la résolution de systèmes d’équations
linéaires (solving systems of linear equations) in Alloprof (n.d.). Alloprof is a non-for-profit supported
by the Montreal School Service Centre; it offers phone and internet services to help students in their
studies. The services offered are developed by Quebec teachers and subject-matter experts, so I assume
the techniques on the webpage are representative of the techniques used in Quebec high schools.
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wherein it follows that the system has infinitely many solutions. The mathematical the-
oretical block supporting both algebraic techniques τHS

2 and τHS
3 includes the technology

of substitution, the notion of equivalent equations, the algebraic operations that can
produce equivalent equations, and the notion that the equation 0 = 0 is true; these tech-
nologies may or may not be included in knowledge students are taught.

τHS
2 and τHS

3 are the institutionally-suggested techniques when the linear system in-
cludes an equation in which one of the unknowns is already isolated (Alloprof, n.d.).
When this is not the case, that is, when neither equation includes an isolated variable
and a few additional steps of algebraic manipulation are needed to achieve that form,
the method of elimination (τHS

4 ) is the suggested technique: manipulate the equations
algebraically so the coefficient of one of the unknowns is the same in both equations
(alternatively, so the coefficients are negative inverses of one another); then “subtract
(alternatively, add) the equations from one another” (as per the description normative
in high schools), so as to eliminate that unknown (whose coefficients were the same or
negative inverses of each other in the two equations):

Multiply both sides of the first equation by 2:

2x − 2y = 10
2x − 2y = 10

Subtract the second equation from the first equation:

2x − 2y = 10
− (2x − 2y = 10)

The result of the subtraction is 0 = 0, and the institutionally-accepted conclusion at
this point is that the system has infinitely many solutions.

In LA1, only the graphical technique τHS
1 and algebraic technique τHS

4 for accomplish-
ing the task t “to solve a linear system of 2 equations in 2 unknowns” are brought up
as knowledge to be taught (or rather, reviewed); perhaps these techniques are privileged
because they and the theoretical blocks by which they are framed are at the heart of the
knowledge be taught in the course (as indicated by the course textbook). For instance,
τHS
4 is (in the knowledge to be taught in LA1) the technology that produces the technique
of Gauss-Jordan elimination, τLA1

1 , through which t may be performed. I’ll build on the
previous example: [

1 −1
∣∣ 5

2 −2
∣∣ 10

]
Add -2 times row 1 to row 2: [

1 −1
∣∣ 5

0 0
∣∣ 0

]
This corresponds to the linear system

x − y = 5
0 = 0
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where x is a leading variable and y is a free variable, so, assigning a parameter to y,
y = t, where t ∈ R, leads to the general solution (x, y) = (t + 5, t). Since the parameter
can have any real value, the system has infinitely many solutions.

τLA1
1 is justified by τHS

4 and builds on the same theory as that on which τHS
4 is

based—the notion of equivalent equations and the algebraic operations that produce
equivalent equations—but shifts to a new symbolic representation for these notions: an
augmented matrix and row operations. The technique thus operates only on what’s
to be understood, in LA1, as the components that determine the solutions of a linear
system (its coefficients and constant terms). This new focus on the coefficients and
constant terms, and on the algebraic operations that produce equivalent equations, is
expanded upon in LA1 in theory about linear systems of the form Ax = b, where
A ∈ Mm×n(R), x ∈ Rn, and b ∈ Rn (m,n ∈ N); in turn, this theory produces other
techniques for the task t (to solve a linear system in 2 equations and 2 unknowns) and
the broader task type T , to solve a linear system of m equations in n unknowns.

The praxeologies that model how to solve linear systems of two equations in two un-
knowns are dependent on the institution in which the activity (solving linear systems) is
performed. But, within a given didactic institution, the praxeology of a teacher differs
from that of a student. Within each institution, the praxeologies held by any given indi-
vidual are further dependent on the institutional position held by that individual (in the
sense of Ostrom, 2005, which I address in Section 3.2): simply put, this refers to an in-
dividual’s objectives as members of an institution. This take on institutional positions is
more expansive than that in the ATD, which only takes into account officially-sanctioned
positions in an institution (e.g., those of student and teacher). Examples of positions
students might occupy, as identified by Hardy (2009a) and Broley (2020), include those
of a Learner whose mission is to acquire knowledge; a Mathematician-in-Training whose
mission is to develop the practices shared by a certain community of mathematicians; or
a Student whose mission is to acquire grades and a degree. Hardy (2009a) and Broley
(2020) found there is some relation between the position held by a student and the prax-
eologies they develop.

The example elaborated above highlights how techniques associated with similar tasks
may differ across institutions. The theoretical blocks that frame these techniques also
vary across institutions and institutional positions. This block is made up of technol-
ogy θ that gives authority to, justifies, and produces the technique(s) to be used, and
theory Θ, which is the discourse from which technology draws its authority and validity.
Chevallard (1999) avows that the distinction between θ and Θ can be murky and suffers
from a self-iterative property (theory may then have a theory justifying it, and this latter
must have its own theory, and so on and so forth); nevertheless, Chevallard holds that
the notion of praxeology need only be tailored to the case in which it is applied. To this
end, some clarity can be brought by considering the institutional nature of a praxeology.

For instance, Hardy (2009a) found that students who had recently completed Cal-
culus 1 had theoretical blocks that were non-mathematical in nature. One justification
students gave for why they expected their techniques to work was the technology θ: this
was how the instructor did things. The theory Θ here is that the instructor is an author-
ity on what is mathematically accurate, as well as the authority on what it takes to pass
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that course. Chevallard (1999) notes the auto-technological nature of techniques: that
a technique is used in a given institution, by virtue of being established as a technique,
suggests it is accepted as a correct and appropriate tool for accomplishing a task. But
the purpose of a technology is beyond giving authority to a technique; it’s also to impart
(to those who use said technique) why a technique works as it does, and this is where a
non-mathematical theoretical block can prove problematic. Sierpinska (2007) addresses
this in her discussion of prerequisite mathematics students’ tendency to depend on their
teachers’ validation. I return to the notion of non-mathematical praxeology and its role
in my theoretical framework in Section 3.3).

The theoretical block of the knowledge to be taught in LA1 about the task to solve
a linear system and related technique use Gauss-Jordan elimination, as indicated by the
course textbook, includes the technologies of augmented matrices, row operations, the
notion of reduced row echelon form of an augmented matrix, and the claim that the al-
gorithm described by Gauss-Jordan elimination produces the reduced row echelon form
of the augmented matrix. The theory that gives validity to this technology is based in
referential authority - the claim about the results of Gauss-Jordan elimination is true
because it’s been proven, presumably by a trusted source (as Chevallard, 1999, puts it,
theory at times involves throwing responsibility elsewhere - “you’ll see this in some other
course,” “mathematicians said so”). Referential authority aside, the technology in this
theoretical block does impart why the technique of Gauss-Jordan elimination works as it
does, and it also serves the third function of technology (Chevallard, 1999): to produce
technique.

I give a last example to relay how technology and theory of a praxeology can be dis-
tinguished in light of the institutional nature of a praxeology. Recall the notion of the
didactic researcher’s model (discussed toward the end of Section 3.1.1); in my reference
model of the LA1 activities related to the task to solve a linear system and related tech-
nique use Gauss-Jordan elimination, I view technology to be, essentially, the knowledge
found within the definitions, theorems, and proofs in the course texts. These consti-
tute the knowledge that produces the techniques to be used to complete tasks in LA1.
These technologies take their legitimacy from the logico-formal structure of mathematics
and the view that the axioms that underpin linear algebra and Euclidean geometry are
founded in the physical reality humans inhabit; altogether, these form Θ. This theoretical
block suits my need, as a researcher, to have a backdrop against which to analyse the
knowledge transposed in the LA1 institution.

The notion of praxeology can serve to model activities of varied breadth. Chevallard
(1999) classifies praxeologies by the breadth of the activity that they model. A single type
of task, T , along with its related technique(s) τ , technology θ, and theory Θ, combine
to form a point praxeology denoted by [T, τ, θ,Θ]. A collection of point praxeologies may
agregate under the umbrella of a given technology θ to form a local praxeology denoted by
[Ti, τi, θ,Θ], and a set of these may cluster around a theory Θ and form a regional praxe-
ology [Tij, τij, θj,Θ]. A global praxeology, [Tijk, τijk, θjk,Θk], refers to the body of regional
praxeologies coordinated by a set of theories within a given institution. These notions
and notations can be useful to model the knowledge at stake in a didactic institution.

This completes what I need from the ATD to inform my theoretical framework. I now
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turn to two more components that I coordinate with the ATD to form this framework:
the notion that students form non-mathematical praxeologies (see Section 3.3) and the
notion of institutional positions from Ostrom’s (2005) IAD framework. I conclude in
Section 3.4 by rephrasing the research questions of this thesis in terms of the notions
defined in this theoretical framework.

3.2 Positioning and institutions

To clarify how the mechanisms of mathematics course institutions regulate the practices of
its participants, Hardy (2009a) took to Ostrom’s (2005) perspective on institutions. This
lens helped to reveal the normative quality to the practices that occur in mathematics
courses (Chevallard, 1999; Hardy, 2009b): practices reflect what is normal in the given
institution, in the sense of how things are usually done in this institution. In Section
3.2.1 I overview terms and notions from Ostrom’s Institutional Analysis and Development
framework needed to define the positions held by participants of an institution and how
positions relate participants to the practices they form. I follow in Section 3.2.2 with a
review of the repertoire of the use, conceptualization, and implementations of the notion
of institutional positioning in mathematicseducation research.

3.2.1 The Institutional Analysis and Development (IAD) frame-
work

In Ostrom’s IAD framework, an institution is any rule-structured, repetitive, and on-
going situation in which humans interact. With this definition, universities, faculties
within these universities, departments within these faculties, courses administered in
these departments, and the mathematical fields of analysis and abstract algebra are in-
stitutions—as are family units, friendships, supermarkets, souks, and international gov-
ernmental alliances. Individuals that engage in structured interactions “face choices re-
garding the actions and strategies they take, leading to consequences for themselves and
for others” (Ostrom, 2005, p. 3). The IAD framework traces how rules shape interactions
in rule-structured situations and gives tools with which to attend to how the structure of
institutions regulates the behavior of its participants.

Institutions are structured via rules, strategies, and norms. In the IAD framework,
a rule consists of the “enforced prescriptions concerning what actions (or outcomes) are
required, prohibited, or permitted” (Ostrom, 2005, p.18). Rules allow certain actions
and prohibit others. Individuals in the institution are assigned positions that require,
prohibit, or permit them to enforce the rules; these individuals can be monitored or sanc-
tioned should they fail to do so. Rules are not necessarily written nor created via formal
procedures, but are usually “crafted by individuals to change the structure of repetitive
situations that they themselves face in an attempt to improve the outcomes that they
achieve” (Ostrom, 2005, p. 18). This aligns, for example, with Chevallard’s (1985) notion
that one of the drivers of didactic transposition is to improve, in some sense, the outcomes
achieved by the didactic institution (e.g., students’ learning of particular knowledge).

Strategies are the ways in which participants act within an ongoing and structured
situation. For example, the prescription “to acquire the knowledge to be learned, consult
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solutions of tasks from past exams” is a strategy in the LA1 institution. Strategies are
individual plans of actions that have been deemed effective for accomplishing tasks in a
given institution. Strategies may be recommended plans of actions, but, unlike rules, are
not “enforced, rescinded, or reinstated” (Ostrom, 2005, p. 17).

Norms are precepts that establish what constitutes moral or prudent behavior in a
community. For instance, a norm in many human societies is for people to greet one
another upon meeting and different societies have different strategies for acting upon this
norm—shaking hands, hugging, or bowing. Norms are not subject to regulation (e.g., in
the form of prosecution or revocation).

The structure of an institution by rules, strategies, and norms informs its participants
on how to act within the institution. The rules, strategies, and norms define the behaviors
and values accepted and expected in the institution; in short, they define institutional
actions.

A participant in an institution has a set of actions available to him: depending on
the action they choose to undertake at any moment, they may simultaneously occupy
more than one institutional position at a time. For example, a student-participant in
LA1 may simultaneously be in the position of Learner, as someone trying to understand
why a point-normal equation represents a plane, and in the position of Client, as someone
expecting their teacher to use a certain type of discourse to explain why point-normal
equations represent planes. A position is a “slot” into and out of which a participant can
move; it’s the connection between a participant and the action they engage in.

3.2.2 A positioning framework developed in and for mathemat-
ics education research

The positioning framework I outline was first proposed by Sierpinska et al. (2008): they
operationalized institutional mechanisms defined in the IAD to construct a positioning
framework. This framework was proposed as a lens through which to investigate stu-
dents’ frustrations in prerequisite mathematics courses offered at the university level.
Hardy (2009a) and Broley (2020) adopted and further developed this framework in their
studies of students’ models of knowledge to be learned in two courses in the university
calculus stream.

Sierpinska et al. (2008), Hardy (2009), and Broley (2020) mobilized the notion of
position defined in the ATD and in the IAD frameworks. The ATD (Chevallard, 1991,
1992) distinguishes between the formal positions of teacher and student and the impact of
these positions on the knowledge held by members of the institution: a teacher’s knowl-
edge functions according to their charge of transmitting and evaluating knowledge and
a student’s according to their charge of acquiring knowledge. Ostrom’s (2005) notion
that members in an institution organize themselves according to objectives points to the
availability of further, but informal, positions: a student may act according to an objec-
tive to get a certain grade; to gain certain knowledge; to gain entry into a professional
or social community; etc. A position is a frame of reference that traces a student’s ac-
tions to their objective(s). A student may occupy different positions at different moments.
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3.2.2.1 Positions identified in the literature

Sierpinska et al. (2008) define the positions of Student, Learner, Client, and Person:

� The Student acts according to the goal to get a certain grade. In the case of
a mathematics university course, since grades are determined by the teacher, it
is the teacher and course materials (as opposed to the mathematics targeted by
the course) that are authorities over what is accurate, pertinent, and appropriate.
These authorities determine the criteria for grading. The Student’s strategy is
therefore to gain the knowledge deemed as accurate, pertinent, and appropriate by
these authorities.

� The Learner acts with the goal to gain knowledge for the sake of gaining this
knowledge. A Learner might therefore spend their time attempting to gain certain
knowledge until they perceive themselves to have gained it (the criteria for whether
knowledge has been gained, in this scenario, are not necessarily shared by anyone
other than this student); Sierpinska et al. (2008) qualify this position as a cognitive
one.

� The Client has expectations relative to a product they are purchasing. A student is
said to act from the position of a client when their behavior reflects a concern with
whether the product they receive aligns with their expectations for this product;
for example, students may have expectations about what their teacher ought to
expect of them on an exam, and these expectations guide the practices they choose
to develop.

� The Person is mediated by concerns external to their experience in a didactic
institution, which can nevertheless impact this experience (e.g. professional goals,
personal difficulties, etc.).

Broley (2020) added three positions to this list following her investigation of stu-
dents’ practices in a Real Analysis course: the Skeptic, driven by expectations about
the courses they (do and do not) need to achieve the purported aims of the program
in which they are registered; the Enthusiast, driven by interest in the knowledge they
believe they are to learn in a course; and the Mathematician in Training, driven by
a professional goal to join a community of mathematicians.

Reflecting on Broley’s (2020) definitions of Skeptic and Mathematician in Training, I
view these as types of Client and Person, respectively, and which are relevant to note in
the context of university mathematics courses (UMC) given their potential to regulate a
student’s practices. Reflecting on Broley’s (2020) definition of an Enthusiast, I view it as
potentially a type of Learner, but possibly a behavior both Learners and Students may
exhibit.

Broley (2020) characterizes the Skeptic as a student who, as someone in a degree that
forces them to take a course whose pertinence to the student is not clear, questions the
value of the course to themselves. The student who inspired this position in Broley’s work
was in a program designed to prepare students to be actuaries. The student questioned
the requirement that they must take a course in Real Analysis: they felt the mathematics
(rules) targeted by the course (such as limit laws of real-valued functions) regurgitated
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what they’d already acquired in Calculus courses, and they did not view the underlying
theory as pertinent to their objectives for being in the program. A Client is motivated by
expectations they have relative to a product (in this case, a degree or a course) for which
they are paying; I therefore view the Skeptic as a type of Client relevant in the context
of UMC (and in post-secondary education more broadly).

I also view the Mathematician in Training as a type of a position defined by Sierpin-
ska et al. (2008): specifically, the Person. Broley (2020) qualifies the Mathematician in
Training as a student who aspires to join a community of mathematicians. A student
with this objective tries to develop practices they perceive to be needed to gain entry
into such a community. In turn, the position of Person is that of a member of society
at large. A Person has aspirations ranging between and beyond social and professional.
In the context of a didactic mathematics institution, a Person is a member (of society)
for whom mathematicsis a part of the world (Sierpinska et al., 2008); I therefore view a
Mathematician in Training as a Person for whom “this part of the world” (mathematics)
is what they hope to be the setting for their profession.

Broley (2020) defines the Enthusiast as “devoting themselves to what they perceive to
be the practices to be learned in [a] course.” Broley (2020) identified this position through
a participant who expressed “keen interest” in the knowledge they perceived they had to
learn and defined the position of Enthusiast to capture the effect such interest can have
on the practices a student develops. In the Methodology chapter, I elaborate an opera-
tionalization of the positioning framework that I propose to regulate its implementation.
The choice to bring this operationalization came about after reflecting on how to qualify
whether a participant is exhibiting signs of having occupied one position of another. In
the operationalization I developed, I propose to consider students’ behavior relative to
norms from their course to determine the position reflected in their behavior (I explain
this in more detail in Section 4.3.3 of the Methodology chapter). Reflecting on this,
along with the emphasis on devotion as the characteristic trait that led Broley (2020)
to propose an Enthusiast position, I consider the possibility that enthusiasm toward or
devotion to a practice is a behavior that students can exhibit as Students or as Learners;
the practice to which this devotion is held would indicate the position occupied (e.g.,
devotion to a cognitive aim would indicate a Learner position).

My view of the positioning framework developed thus far, first by Sierpinska et al.
(2008), and then by Hardy (2009a) and Broley (2020), is that students in university
mathematics courses may variously act from the positions of Student, Learner, Client(-
Skeptic), and Person(-Mathematician in Training). Part of my contribution to this frame-
work is the proposal that positions present through certain behaviors, that is, through
students’ activity, and that superimposing this activity with those sanctioned institu-
tionally can help to determine the “slot” (position) occupied by an individual at any
moment. I elaborate on how institutional mechanisms regulate participants’ positions in
the following section.

3.2.2.2 The regulatory effect by institutional mechanisms on positioning

When I claim a member of an institution “occupies a position,” I do not mean they
selected that position; I identify positions by a member’s objectives. The terms Student,
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Learner, Client(-Skeptic), Person(-Mathematician in Training) refer to objectives a stu-
dent claims to have or to objectives indicated by their behaviors. For example, one of my
participants said that to study for LA1, he did all the problems in past final exams to
which he had access. In LA1, it is a rule that the final exam makes up 90% of a student’s
final grade in the course and the norm is that final exams consist mostly of the same
types of tasks from one semester to the next. This participant’s activity geared toward
obtaining a certain grade on the final exam and therefore in LA1. Since the target is the
grade obtained in the course, I see this participant as having occupied the position of
Student in engaging with the practice of doing past final exams.

A student’s objectives are a result, in part, of who they are—their experiences, di-
dactic and otherwise. In the context of a given didactic institution, however, the norms,
strategies, and rules (Ostrom, 2005) of that institution also influence the objectives a
student may have. In the following paragraph, I discuss how norms, strategies, and rules
may shape a student’s objectives and their activity for attaining these objectives. I use
the case of prerequisite mathematics courses (PMC) as a basis for examples.

The requirement for students to pass PMC to gain entry into various university pro-
grams may encourage students to take on the positions of Student and/or Client. A
student whose goal is to gain entry into a given program is incentivized to position them-
selves as a Students, as they need to pass the PMC; they may also be prompted to
position themselves as Clients, given their goal to gain entry to a program they may
perceive to have little to no footing in the content targeted by PMC. Sierpinska et al.
(2008) document the frustration experienced by Clients in response to the requirement
to pass PMC. This is one example of how an institutional mechanism may encourage
students to occupy certain positions more than others.

Institutional mechanisms also encourage participants holding a given position to invest
in certain activities over others. For example, an institutional rule of PMC is a heavy
weight assigned to final exams in grading schemes (e.g., 90% of the final grade). This
rule, together with the high volume of knowledge to be taught in PMC (Sierpinska et
al., 2008), are institutional mechanisms that make it such that a Student’s goal is best
served by acquiring the knowledge strictly needed to pass their course. Indeed, in the
absence of time needed and motivation to gain a high volume of knowledge (Sierpinska
et al., 2008), Students are propelled to focus on surface-level features of the knowledge
needed to complete final exams, as these features suffice to pass calculus PMC (Hardy,
2009a; Lithner, 2004).

3.2.2.3 The value of looking at students’ positions in an anthropological
framework

In what follows, I propose a synthesis of the positioning framework elaborated so far
in mathematics education research (Broley, 2020; Hardy, 2009a; Sierpinska et al., 2008)
with the context of the anthropological framework in which it has been developed. This
synthesis sets the stage for the operationalization I propose in the Methodology chap-
ter (Section 4.3.3) for examining students’ positioning. In actuality, this synthesis came
about as a result of the operationalization I developed for determining students’ posi-
tions; the choice to develop this operationalization, in turn, was a result of difficulties
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encountered in identifying students’ positions in this research and the resulting need to
clarify how a student’s position can present in their activity. The synthesis I propose
affirms its consistency with the ATD lens and, in so doing, brings clarity to the position-
ing framework and highlights its affordances to the study of the effect of routinization on
students’ learning—and to the study of students’ learning in mathematics courses more
generally.

My view of activity, in line with that proposed in the ATD (Section 3.1.2), is that
it consists of a theoretical and a practical block. This brings clarity to the position-
ing framework: a student’s position, that is, the objective they hold in a given instance
relative to their participation in a course, and properties of such a position, form the
reasoning that produces what their behavior. By ‘behavior,’ I mean what a student tries
to accomplish (their task) and how they go about accomplishing it (their technique).

Given the view of activity as institutional, in that its theoretical and practical blocks
exist in a given institution, it follows that positions (as elements of theoretical blocks)
are institutional. This does not necessarily mean that certain positions exist in some
didactic institutions and not in others. It rather means that the way a position presents
depends on the didactic institution being considered. For example, Studenting3 could
imply drastically different activity depending on the course a student is in; this is be-
cause a Student—defined by their objective to get a certain grade in their course—is
incentivized to conform to course norms, and norms can vary from one course to another.
Sierpinska et al. (2008) and Hardy (2009a) provide a characterization of Student activity
in calculus courses that emphasize routinization: behaviors indicative of this position
include identification of routine exam tasks and assimilation of surface-level features of
expected techniques.

I addressed in Section 3.2.2.2 the regulatory effect by institutional mechanisms on
positioning. One aspect of this regulation is in what it may mean to Student, to Learn,
to Client, or to be otherwise positioned in a given course. This means, for example,
that some course norms may bring behaviors of a Student closer to or further from those
of a Learner. This highlights the importance of looking at positions in the context of
a framework that looks at the effects of routinization on the learning accomplished by
students.

3.3 Non-mathematical praxeologies

Praxeologies model how activities unfold in a given institution. In broad terms, a math-
ematical praxeology is one corresponding to what a community of mathematicians (in a
certain domain) would understand the task, technique, and theoretical block as the way
an activity goes. In the context of a particular mathematics course, a praxeology is math-
ematical if all its components (practical, theoretical) reflect the mathematics at stake in
an activity. If any part of a praxeology deviates from this—for instance, if a theoreti-
cal block includes considerations such as what a teacher usually accepts as sufficient—a

3For literary convenience, I’ll use position labels in grammatically flexible ways, maintaining the
position labels as root words. By Studenting and to Student, for example, I refer to the state of occupying
a Student position.
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praxeology is non-mathematical. The theory that students develop non-mathematical
praxeologies is based in the assumption that the teaching and learning of mathematics
occur within institutions, and the assumption that norms of these institutions—as op-
posed to mathematical theory—regulate the mathematical activity of its students and
teachers (Chevallard, 1985; Hardy, 2009b; Sierpinska et al., 2008).

Hardy’s (2009a) integration of the ATD and IAD frameworks illustrates how norms
of didactic institutions can and do regulate students’ (non-)mathematical activity. When
students are engaged with tasks in their mathematics courses, their activity is regulated
by mechanisms of the didactic institution rather than (exclusively) by mechanisms of the
mathematics at stake. Institutional norms affect every component of students’ activity:
what students perceive a task to be, the techniques they use, as well as the technology
that produces and justifies their choice of technique and the theory that gives discourse
to their technology. I explain how each of these components can be regulated by institu-
tional norms in the following paragraphs.

Given a mathematical task, what students perceive the task to be can differ from
what a teacher or a mathematician would perceive this task to be (Hardy, 2009b). For
instance, in Hardy’s (2009a) study, students faced with the task to find the limit

lim
x→1

x− 1

x2 + x

acted as if the task was to find the limit of an indeterminate form: their technique in-
cluded factoring the algebraic expressions, with the goal of finding some common factor.
The task is to find the limit of a rational function at a number in its domain. Direct
substitution suffices. But students did not pay attention to the entirety of the limit ex-
pression (i.e., the number at which the limit was to be evaluated) and focused instead
on the algebraic expression: the denominator could be factored. In the college calculus
course, such algebraic expressions (polynomials that can be factored using one of a hand-
ful of factoring techniques taught in high-school algebra) usually occur in tasks where
the goal is to evaluate an indeterminate form. Further, limit-related tasks in the college
calculus institution are routinized. The routine is to manipulate algebraic expressions;
the focus is on the algebra, and not on limit expressions in their entirety. These institu-
tional norms condition students to perceive tasks in certain ways and, in turn, regulate
their choice of technique (Hardy, 2009b).

Apart from the way institutional norms shape students’ perceptions of tasks and
choice of technique, these norms also make up students’ technology and theory. For ex-
ample, to perform the previous task of finding the limit of a rational expression (at a
given number), students’ technique was to factor and to use direct substitution (both,
and in no particular order). Students’ technology (justification for their choice of tech-
nique) was that this was what was usually done in this type of circumstance. In other
words, the technique is valid because it is the normative technique in the college calculus
institution. Chevallard (1985) refers to the auto-technological nature of techniques that
are used in an institution: a technique must be valid because it is the accepted technique.
This normative quality of techniques in the college calculus institution extends to (and
is reinforced by) teachers’ models of the knowledge to be learned: Hardy (2009b) points
out the norm to reuse the same types of tasks on final exams from one year to the next,
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and the norm that teachers expect students to use normative techniques correctly but do
not expect students to use the mathematical theory that underlies these techniques.

If the normative practices of the college calculus institution (the expectation that
students solve routinized exercises) are a source for students’ strategies, then a theory
that explains why this technology is reasonable is that teachers, textbooks, and solutions
to past final exams are an authority on what is valid (Hardy, 2009b; Sierpinska et al.,
2008). The absence of mathematical theory in students’ mathematical activity leaves a
void, which must therefore be filled (Sierpinska et al., 2008): human activity is regulated
by theory (Chevallard, 1999), so something must take the place of the mathematical the-
ory that would otherwise inform students’ practice. Students’ institutional position can
fill this void. Indeed, the teacher has the power to determine a student’s outcomes (as
per Sierpinska et al., 2008, I use “power” in the sense of Ostrom, 2005, as a function
of opportunity - potential outcomes in a situation - and the extent of control over this
opportunity); hence, the teacher has authority on what is valid, and students are subor-
dinate to this judgment. From the position of a Student, whose purpose is to pass their
course (as opposed to the purpose of Learner, who aims to acquire knowledge), there’s
no need to assess mathematical validity; the appropriate action is to follow the teacher’s
example.

Apart from the impact of positioning on students’ praxeologies, and that of norma-
tive tasks and techniques, there are also institutional strategies at play. Sierpinska et al.
(2008) identify mechanisms of the prerequisite mathematics course institution that result
in an absence of mathematical theory. The fast pace of PMC is an important factor (Sier-
pinska et al., 2008): the little amount of time allotted to cover significant quantities of
mathematics, contrasted with the conceptual difficulties students are known to have with
the mathematics at stake, mean that teachers might choose to not attend to theory and
to prioritize examples instead. Others have also explored the potential of institutional
strategies to regulate autonomy in students’ mathematical practice; Boaler & Greeno
(2000), for example, argue that “didactic-teaching” classrooms, wherein a teacher gives
a lecture and students receive this lecture, reinforce this problem, and that discussion-
based classrooms have the potential to give students greater autonomy in establishing
mathematical truth.

One of the problematic consequences of a lack of mathematical theory is that it makes
students dependent on predetermined routines (Boaler & Greeno, 2000; Sierpinska et al.,
2008) and they lose autonomy in their mathematical practice. For example, if they stick
to solved examples too rigidly, they may be unable to solve a problem where the un-
derlying mathematical theory is the same but surface characteristics are different. This
‘worst case scenario’ aside, though, Hardy (2009b) points out that a lack of autonomy
over mathematical theory gives an arbitrary quality to the normative techniques: they
are a list of steps, and there are no guiding principles as to when to apply which step - no
guiding principles to help students remember the order in which to apply these steps. For
example, without knowing why direct substitution or why factorization are appropriate
techniques for evaluating limits, students struggle to remember whether to substitute or
factor first or may not even know when factoring is (un)necessary, as in Hardy’s (2009)
study. A lack of autonomy over mathematical theory contributes to students’ learning
difficulties.
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My research questions, which I first presented in Chapter 1 in broad terms, and
which I shortly rephrase using language from this theoretical framework, are framed by
this theory that students develop non-mathematical practices, and that such practices
can be identified by students’ tasks (that is, what students perceive a task to be), their
choice of technique (when it’s reflective of techniques students have been conditioned
to use, rather than informed by mathematical properties of the written task), and the
justifications they give for their choice of technique (when these justifications are free of
mathematical theory).

3.4 The research questions rephrased in terms of this

theoretical framework

This is the first iteration of the research questions targeted by this thesis (from Chapter
1):

� What is the nature of what students are expected to learn in LA1? (Does it align
with the nature of what students are expected to learn in Calculus 1 and Analysis
1?)

� What is the nature of the practices students develop in LA1?

� Research on the learning of calculus has found that students develop non-mathematical
practices; are such practices replicated in linear algebra?

The second iteration of the research questions takes into account language and notions
from the theoretical framework:

1. What are the praxeologies expected when considering problems posed in linear
algebra final exams?

2. What is the nature of the knowledge linear algebra students mobilize when they
solve linear algebra tasks? What kind of (mathematical or non-mathematical) prax-
eologies do they activate?

3. Research on the learning of calculus has modeled students’ practices and found them
to consist of routinizing techniques and building non-mathematical praxeologies; are
these practices replicated in linear algebra?

For the first research objective, I need a praxeological model of the knowledge needed
to complete linear algebra final exams. By “praxeological model,” I mean a description of
the knowledge in terms of the task(s) to be performed, the techniques needed to perform
these tasks, and the theoretical block that produces and justifies these techniques. To
answer the second question, I need a praxeological model of the knowledge linear algebra
students mobilize to solve LA1 tasks: given a task, what do they perceive it to be? What
techniques do they use? What produces these techniques, and what is students’ reasoning
for the validity of these techniques?
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For the third research objective, I need to contrast the practices students build in their
linear algebra course with those they have been documented to build in calculus. Given
the considerations outlined in of this theoretical framework, I need to account also for
the institutional mechanisms that characterize calculus courses and those characteristic
of the linear algebra course under investigation. This includes a comparison of the nature
of the knowledge to be learned in the courses (e.g., to determine if routinization is a
shared norm), the knowledge students mobilize, and the positions students seem to have
occupied during their course.
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Chapter 4

Methodology

In this chapter, I describe the research procedures for this study. I start with considera-
tions from the theoretical framework that determined the research instruments I would
use. I then describe these research instruments and finish with the data analysis proce-
dures.

4.1 Considerations in light of the theoretical frame-

work

To attend to the research questions, I analysed curricular documents and interviews with
students who had completed LA1 in the version of this course offered at a large North
American urban university. In this section, I address considerations that guided the
methodology in light of the overarching goals and framework of this research.

4.1.1 What knowledge to target?

In this research, following in the notions proposed by the ATD, knowledge to be learned
is the knowledge students need to complete exam tasks. At the institution from which I
collected my data, two grading schemes are offered, so a student’s final grade is the best
of two options:

1. 10% for the assignments, 25% for the midterm exam, and 65% for the final exam
(LA1);

2. 10% for the assignments, 10% for the midterm exam, and 80% for the final exam
(LA1).

Students pass LA1 on the basis of their performance in the midterm and primarily
final exams; this is why I consider midterm and final exams tasks to indicate the knowl-
edge to be learned in LA1. The textbook, along with the course outline and past exams,
communicate to all returning and new instructors the knowledge to be taught and what
students are expected to learn; I therefore used the course textbook to identify the tech-
niques students are expected to use to complete exam tasks. The textbook for LA1 at
the institution in which I conducted interviews is popular in colleges throughout North
America for equivalent courses.
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For pragmatic purposes, I could not model all knowledge to be learned and all knowl-
edge a student might mobilize, and for my research purposes, this was not necessary. The
overarching goal was to determine the (non-)mathematical nature of students’ (expected
or mobilized) praxeologies, and to this end, I did not need an anthology of all knowledge
to be learned, nor of all knowledge students might mobilize; it sufficed to have models
of the knowledge about a few core blocks of content in the course—blocks of knowledge
without which a LA1 student cannot pass their course.

4.1.2 How to find the knowledge students mobilize?

To identify knowledge students activate, I conducted Task-Based Interviews (TBI) (Goldin,
2000) with students who had completed LA1 a month prior to the interviews. These were
semi-structured interviews in which I instructed students to think aloud as they performed
tasks similar to the problems they had to solve on their LA1 final exam. I describe the
task and interview designs in Section 4.2. In this section, I justify the choice to conduct
TBI to achieve the aims of this research.

Goldin (2000) describes the use of task-based interviews as research instruments in
mathematics education research. Such interviews involve at least one subject and an
interviewer interacting relative to some task(s) introduced in some structured way. The
subject’s interactions with the task(s) and with the interviewer are used to make infer-
ences about their “mathematical thinking, learning, and/or problem solving” (Goldin,
2000). TBI allow to elicit knowledge students develop apart from mathematical proce-
dures, cognitive representations they hold, beliefs—information pertinent for qualifying
learning that takes place in didactic institutions.

Hardy (2009a) and Broley (2020) used TBI to investigate students’ practices in re-
lation to institutional norms. Their framework was the same combination of the ATD
and IAD framework described in Chapter 3. From this perspective, they viewed the
knowledge students are expected to learn to be the knowledge needed to complete final
exam tasks (given their weight in determining students’ performance in their course).
To achieve their research aims, part of their work was to develop models of students’
knowledge; they used TBI to create data whose analysis would yield these models.

Hardy (2009a) and Broley (2020) analysed course documents (e.g., exams, textbooks)
to inform their construction of tasks that could elicit the knowledge students had learned
in their course, as well as students’ perception of what they were expected to learn in
their course. They used textbook and exam tasks to determine what is normally expected
of students, and used these norms to inform their TBI design. For example, Hardy de-
signed tasks that resembled a routine limit-finding task from a college calculus course
but which differed in the calculus needed to complete it: the resemblance was in the
type of rational function at stake (one with a common factor in numerator and denom-
inator) and the difference was in the type of limit at stake (the limit was to be taken
at a point of continuity of the function, whereas the normative task with such functions
always involved an indeterminacy that would require students to factor out the common
factor). The intent of such task design is to determine whether students’ response would
reflect the course norm (always factor out the common factor) or mathematics intrinsic
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to the task. This is just one example among various design principles Hardy and Bro-
ley used to create tasks that would help to situate students’ knowledge relative to course
norms and to determine how amenable these are to the mathematics targeted in a course.

In addition to the design of the TBI tasks, Hardy and Broley used a semi-structured
script (Goldin, 2000) to guide their questions and interventions throughout the inter-
views. The purposes of these questions and interventions were to clarify what students
were doing and to elicit the justifications they had for what they were doing. Comments
students made throughout their interview, along with their activity in response to the
tasks, allowed for inferences about the non-mathematical nature of their practices: taken
together, students’ comments and activity brought out considerations to which they paid
attention and which were not about (and at time inconsistent with) the mathematics
(e.g., students spoke of what was “usual” in their course).

4.2 Research instruments

To identify knowledge students activate, I conducted Task-Based Interviews (TBI) (Goldin,
2000) with students who had recently completed LA1 at a large North American urban
university. In these interviews, I asked students to think aloud as they worked on prob-
lems similar to the ones they had to solve to pass their course. The tasks in these problems
were similar enough to those given in the final exams, so participants were able to engage
with them, but I designed them so they would reveal which knowledge participants do or
do not have in relation to these tasks (as discussed in Section 4.1.2).

4.2.1 The tasks

In this section, I first explain the high-level reasoning and process that guided my design
of these problems and then present specific expectations relative to each of the problems.

4.2.1.1 Principles for task design

The TBI problems needed to be recognizable to participants so they could engage with
them, but also designed so as to reveal the knowledge students choose to mobilize and
allow me to make inferences about the nature of the praxeologies they mobilize.

To create problems that are recognizable, I created problems that involve praxeolog-
ical components (e.g., tasks, technologies) of tasks in midterm and final exam problems.
I looked to 4 midterm and 6 final exams given in LA1 from the years 2014 to 2019 to
identify tasks that would be recognizable to students and to identify the knowledge likely
to be routinized in students’ praxeologies.

After a preliminary review of a few past final exams for LA1, in which I identified
the tasks and types of tasks to be performed, I decided to focus most attention to tasks
that relate to topics of linear systems and their solutions. Tasks, techniques, and theory
pertaining to solving linear systems appear in various topics in the course, so the practices
students developed in relation to this topic are a pertinent target. I then identified all
exam tasks where the required technique would relate to this topic and to make note
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of properties typical to mathematical objects in these tasks (e.g., linear systems have
coefficient matrices A ∈ Mm×n(Z) where m,n ∈ {2, 3, 4}). This amounted to 87 of the
116 tasks on the final exams. I identified the following task types:

� To solve a linear system.

� To determine the number of solutions of a linear system.

� To find a basis for the solution space of a homogeneous system.

� To find the algebraic representation of a geometric object that is determined by the
intersection of geometric objects whose algebraic representations are given or can
be found using techniques and/or theoretical constructs from real vector spaces.

� To solve a vector equation.

� To determine whether a set of vectors is linearly independent.

� To show a set of vectors is a basis for R3.

The purpose of this process - identifying tasks that involve techniques originating from
the solution of linear systems - was not to create a complete model of the knowledge to
be learned about linear systems on LA1 exams; the goal was only to identify tasks that
would be recognizable and that might trigger routinized knowledge. For each of these
exam problems, I identified the technique used in LA1 to solve it, as indicated by the
course textbook; this helped to identify knowledge that stands to be routinized. These
tasks, together with their related techniques, informed my design of tasks that could
generate useful data in the TBI. By “useful data,” I mean responses that would reveal
participants’ routinized knowledge, but also whether they have mathematical praxeolo-
gies that would give them autonomy in making choices of which techniques to apply.

The main objective that guided my task design was to determine whether students
produce their techniques on the basis of mathematics at stake in a task or on the basis of
what they were used to associating with that task. I expected that students’ spontaneous
reaction to the problems would reveal the type of practice they had developed in relation
to routinized knowledge. I wanted to determine whether students would mobilize other
knowledge in addition.

I designed one set of problems to visually resemble routine tasks but which either can-
not be solved by the routine technique or can be solved significantly more efficiently by
non-routine use of knowledge to be learned. The idea was to see if students are triggered
(or ‘deceived’) by surface-level features to mobilize normative technique that is inappro-
priate for a task (in that it would not achieve the objective a student might seek). The
guiding principle for the design of such task types mimics that proposed by Hardy (2009a).

I designed a second set of problems to include explicitly non-routine components yet
be amenable to routine approaches that are computationally much heavier than non-
routine approaches drawing on LA1 knowledge. The goal was to see whether students
would favor computationally hefty routine approaches, and, if they did, two more things:
first, whether they would be able to apply routines to non-routine tasks (where surface-
level features of techniques may not apply); and second, whether they would be able to
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mobilize less routine knowledge as well.

4.2.1.2 Application of the task design principles to each TBI problem

I designed 8 problems for the TBI. In this section, I briefly describe the reasoning behind
the design of each. In Chapter 5, where I elaborate my analysis, I address the knowledge
to be learned in LA1 and which is relevant to each of the TBI problems; this includes
more detail on the routines I had identified in past exam tasks and which informed spe-
cific choices in the design of each task (e.g., such as choice of scalars and matrix sizes).

Problem 1

Solve the following equation for C.(
1 0
0 −1

)
A

(
1 2
0 1

)(
2 3
4 6

)
BC =

(
1 0
0 1

)
This resembles the task of type “to solve a matrix equation” in which the task is to

manipulate matrices using matrix operations. In LA1, by applying properties of matrix
addition, multiplication, and scalar multiplication, students can isolate the matrix for
which they are meant to solve. These operations do not suffice to complete Problem
1. The knowledge needed is that the product of matrices is invertible if and only if all
matrices in the product are invertible. All matrix symbols in this task are recognizable
to students, and the notion of matrices being invertible or not is part of the knowledge to
be learned in the course, but is never relevant in the LA1 task of type “to solve a matrix
equation.”

I wanted to see if students’ spontaneous reaction would be to mobilize the normative
technique for this task, and whether and if students would be able to mobilize any other
knowledge productively.

Problem 2

The coefficient matrix below is invertible. Solve the system:
9 16 3 4
5 6 0 8
−2 3 0 4
3 6 1 1



w
x
y
z

 =


−9
−5
2
−3


This resembles the task of type “to solve a linear system,” for which the usual tech-

nique in LA1 is to use row-reduction on the augmented matrix or, if explicit instruction
is given, to use Cramer’s rule. The affirmation in Problem 2 that the coefficient matrix is
invertible is meant to trigger the knowledge that the system has one solution, and consid-
eration of the scalars at stake a trigger to find the solution by observation. I considered
the possibility that students might not even consider solving the system by observation,

64



as this is never done in LA1, and if they do, that they may struggle to do so; but I did
wonder whether the affirmation that the matrix is invertible might prompt students to
use Cramer’s rule, and in that case, whether they would have the technical dexterity to
capitalize on the proportionality between the first column of the coefficient matrix and
the column of constants to the right of the equation.

In light of routines associated with techniques for solving linear systems, I expected
two possibilities. One, that the statement that the coefficient matrix is invertible may
deceive students into using (lengthy) matrix inversion to solve the system, given the LA1
task type most visually similar to this one and which is solved by multiplying both sides
of the equation by the inverse of the coefficient matrix. The second possibility was that
students would row-reduce the augmented matrix, in an ironic twist on the purpose of
row-reduction as a technique meant to produce an equivalent system whose solution can
be readily observed.

Problem 3

Show that (w1, w2, w3) = (29,−9, 3.2) × (11, 2.1397, 41) is a solution of the
following system.

29x − 9y + 3.2z = 0
11x + 2.1397y + 41z = 0

The task resembles the LA1 task of finding a basis for the solutoin space of a homoge-
neous linear system of two equations in two unknowns, where the technique is to reduce
the augmented matrix so as to find a general solution. Problem 3 differs from this task
in that it does not instruct to find a basis of the solution space of the system, let alone
its general solution. Problem 3 is also distinct in its inclusion of an object that never ap-
pears in the “find a basis” task—a cross product. I wondered if students would mobilize
geometric knowledge about cross products and planes or even make a comment about
the repetition of the scalars in the cross product vectors and coefficients of the equations.
Given that tasks and techniques in which cross products appear always require students
to compute the cross product, I expected students to compute the cross product and plug
it into the system; I wondered if the non-integer scalars would prompt students to seek a
different technique.

Problem 4

Find a non-trivial solution of the following system:

−5.2x + 2y + πz = 0
4x − 1.3y + 4z = 0

This problem is intentionally placed right after Problem 3. I wondered if students
would address any similarity between the two tasks, and if so, what similarity they would
note. I wondered if students would use what they did in Problem 3 to produce a technique
for Problem 4—and if so, what justification they would have for doing so. I wondered
if students would just mobilize the technique for the basis-finding task whose algebraic
symbols resemble those in this task—or if the non-integer scalars would prompt students
to seek a different technique (and if so, for what reason).
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Problem 5

Given k ∈ R, the vectors (−k, 1, 1), (−1, 1, k), and (1, 0, 1) form a paral-
lelepiped of volume 0. Find the values of k for which the vectors are linearly
independent.

This task is non-routine but does include a component that students could latch on
to as a prompt to engage in a routine task: the instruction to find some condition under
which some vectors are linearly independent. Students may see this as similar to the LA1
task to check whether a given set of vectors (often three in R3) is linearly independent.
Given this similarity, I expected students to mobilize the technique normative for this
task: either reduce the appropriate matrix (built from the given vectors) to its reduced
row echelon form or compute the determinant (of the appropriate matrix) whose (non-
)zero value would indicate whether the vectors are linearly (in)dependent. I expected that
students may struggle to use elementary row operations accurately with one entry be-
ing an unknown, though one LA1 task does have students do this for a different task type.

I wondered if, rather than or at least in addition to engaging in the computationally-
heavier routine approach, students would mobilize the geometry that is an intrinsic com-
ponent of the task. From the affirmation that the vectors form a parallelepiped of volume
0, would they infer the vectors are coplanar? If yes, would they (attempt to) mobilize
this to make an inference about the linear dependence of the vectors?

Problem 6

Solve the following system of equations:

x2 + x + 1 = 0
2x2 + 4x − 6 = 0

The task is ostensibly non-routine; the equations are not even linear. Solving quadratic
equations is, however, a routine from high-school algebra, which is prerequisite to LA1.
I wondered if students would solve the first equation, find it has no (real) solution (I
presumed students would only know of real numbers at this stage in their mathematics
education), and conclude the system has solution. But I also wondered if students would
be ‘tricked,’ given the overarching context of the interview, to sidestep this approach and
instead adapt the usual system-solving technique: row-reduction. If this were to be the
case, I wanted to see students if students would be able to mobilize the technique to a
non-routine system.

Problem 7

Determine the number of solutions of this system of equations:

(x, y) = (1, 3) + t(1, 5)

(x, y) = (3, 7) + r(−2, 1)
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This problem coordinates a non-routine algebraic representation into the routine LA1
task “to determine the number of solutions of a linear system of equations.” The routine
task has its linear equations in point-normal form—never in vector equation form—and
is usually solved by row reduction. It’s possible to find point-normal equations corre-
spoding to these vector equations, though I wondered whether students would be able
to do so. I rather expected students to equate corresponding components in the vector
equations and use high-school techniques for solving linear systems (substitution, etc.).
Such an approach would most closely resemble routines students are accustomed to in
LA1. I wondered whether students would mobilize the geometric representation of vec-
tor equations to observe the given equations represent lines that are not parallel, and
conclude they have exactly one point of intersection, and the system has exactly one
solution. Students do not usually have to mobilize geometric representations of vector
equations, though an explanation of why vector equations correspond to lines is part of
the knowledge to be taught in the course.

Problem 8

Find the length of the vector v⃗, which has B as terminal point and is orthog-
onal to the line that goes through the points A and C.

There was no intent to ‘trick’ students into any routine technique here—this is rather
an open problem designed to examine how students go about a task that does not pre-
scribe a technique (by virtue of resembling some routine task in LA1).

This problem can be solved using the formula for the distance between a point and
a line in R2. It can also be solved by mobilizing the view of v⃗ as the component of−→
AB orthogonal to

−→
AC. It’s possible to view the length of v⃗ as the height of triangle

ABC relative to a base that can be calculated using a LA1 formula for norms, and it’s
possible find the area of the triangle using a LA1 formula for areas of parallelepipeds in
2-space. It’s also possible to find the area of the triangle using a LA1 formula for areas
of parallelepipeds in 3-space, but this would require mobilizing a projection of R2 into R3

(e.g., by working with the points (1, 1, 0), (5, 2, 0), and (3, 9, 0). None of the techniques
described here are routinized in LA1 in the sense that, when students are to use any of
the formulas involved in these techniques, they are instructed to do so either explicitly or
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implicitly (by virtue of a course norm that a certain task type is always completed using
a certain formula).

A rather more normative, but still not routinized technique for Problem 8 would be
to produce a linear system whose solution would be the initial point of v⃗. This isn’t rou-
tinized in that tasks in LA1 do not require students to use geometric representations to
produce equations. But it’s rather more normative than the techniques proposed above
because, in LA1, it is a norm that linear systems are used in many different task types,
including some that are nominally about lines or planes (“nominally” in the sense that a
task statements might refer to a given equation as an equation of a “line” or “plane”). I
expected that most students would mobilize a technique of this sort, but wondered what
knowledge they would mobilize to produce relevant equations.

In all, I wanted to see how students might mobilize normative knowledge in non-
normative ways when given the opportunity. The opportunity, here, is the unavailability
of routine technique to be mimicked.

4.2.2 The interviews

I conducted 10 task-based interviews with students who had completed LA1 about a
month prior to the interview. I planned 2 hours for each interview; most interviews
lasted the full 2 hours. In these interviews, I presented students with the tasks in Section
4.2.1.2, one by one and in the same order as above, and instructed students to think aloud
as they worked on these tasks. I provided blank paper, pencils, pens, and a calculator.

The interviews were semi-structured; I designed an interview protocol (see Appendix
A) to guide my interventions. The general considerations for interventions were as follows:

1. If a student does not know a definition or formula, give it to them.

2. If a student is quiet for 1 minute, remind them to think out loud.

3. If a student asks a direct question, keep in mind the goal to see how they do a
problem and the reason they give for doing it that way, and respond accordingly
(e.g., turn the question back to them; if it’s a request for validation of what they
are doing, respond to “do what [they] think is most appropriate,” and when they
finish, ask why they chose that method and whether it is what they would do on
an exam.

4. If a student is stuck

a) on something that requires knowledge not taught in LA1 but which I expect
them to know from previous courses (e.g., finding solutions of a quadratic
equation), provide the information needed to proceed. Otherwise,

b) ask what they would have done if they were stuck on this problem on an
assignment or exam.

c) If they are stuck on something that requires knowledge taught in LA1, give
a series of increasingly directive hints (without saying what to do) without
giving the answer away (Appendix A include problem-specific guidelines made
in mind of the objectives behind the design of each TBI problem)
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d) If they are still stuck, suggest moving on to another problem and returning to
this one if there is time after they’ve attempted all the other problems.

5. If a student going in a wrong or overly time-consuming direction,

a) do not let them go on for more than 10 minutes.

b) If what they are trying to do is not clear, ask for clarification.

c) Ask what it is they’re hoping will happen.

d) Acknowledge what they are trying to do and ask if they can think of another
approach. If they cannot, suggest moving on to another problem and returning
to this one if there is time after they’ve attempted all the other problems.

6. If you must improvise, keep in mind the goal is to see how the participants solve
the problems and why they do what they do as they solve.

7. While a student is attempting a problem, ask about how they solve problems for
themselves and for exams. E.g., given a set of vectors that are linearly independent,
what do they need, as an individual, to be convinced that the vectors are or aren’t
linearly independent?

8. After a student attempts a problem, time permitting,

a) Ask follow-up questions about anything the participant had produced (e.g.,
ask for clarification if reasoning was unclear, ask if what they did is something
they would have done on an exam, ask if they would have received full marks,
ask if they would be convinced by what they did if they were just doing it
on their own, ask if they had thought of any other approaches to the problem
and, if so, why they used one approach rather than another; if not, ask if they
can think of another approach).

9. Once all problems had been attempted and problem-specific follow-up questions
asked, time-permitting,

a) Ask follow-up questions I was unable to ask about specific problems.

b) If a student had exhibited strong emotions at any point, ask them to explain
how they felt during the interview or about some of the problems.

c) If a participant had mentioned, while solving the problems, that they would
use the computer to accomplish some tasks, offer a computer and ask if they
can show what they would have done.

I made this guide in anticipation of potential responses students might have to the
problems. Broley (2020) elaborates six anticipated scenarios for a given problem: a stu-
dent may be immediately stuck, off track/on track to a lengthy production, stuck during,
and may have unexplained or unclear thinking, unexpected production, or meaningful
production. I used Broley’s (2020) protocol for her task-based interviews as a starting
point to reflect on potential responses, adapting them to the linear algebra context as
needed (e.g., I anticipated that given the nature of the mathematics at stake, students
were more likely to be on track to a lengthy solution—or production—than one that is
altogether off track).
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The interviews were audio-recorded and all materials written by the participants dur-
ing the interview collected.

4.3 Data analysis procedure

In this section, I describe my analysis procedures for identifying knowledge to be learned,
for identifying and qualifying the knowledge students mobilized, and for identifying and
qualifying students’ positions. My data analysis is in Chapter 5 and organized as follows:
the ith section corresponds to Problem i of the TBI (1 ≤ i ≤ 8) and, in the last section,
I present my analysis of students’ positioning.

4.3.1 Analysis procedure for identifying knowledge to be learned

I made models of knowledge to be learned (KtbL) in LA1 that is relevant for each TBI
problem. To produce these models, I first identified the exam tasks targeting praxeologies
relevant for each problem.

To identify exam tasks targeting praxeologies relevant for each problem, I first identi-
fied LA1 technologies pertinent to each problem. For instance, for Problem 1, I identified
“matrix equation” and “matrix inverse.” I then identified all tasks, from 4 midterm and
6 final exams given between 2014 and 2019 in LA1, that involved these technologies. I
tagged each such task by a code to trace it to its location in the exam in which it was
given. I recorded the task stated in the problem, the problem statement’s (mathematical)
components (e.g., scalars, symbols used, fields or vector spaces involved, any LA1-specific
knowledge explicitly stated in the problem), and the TBI problem technology to which
the task relates. The data produced in this way was organized in an Excel table; this
table, along with others produced from it (described below) are not included in an ap-
pendix in this document because they are not amenable to PDF format, but are in a
shareable digital file that can be viewed upon request.

I filtered the tables I produced to view all exam tasks related to each LA1 technology.
This showed, for example, that there were 7 “matrix equation” tasks, all of the type “to
solve a matrix equation for a matrix X” where one side of the equation was an expression
involving X and 1-3 matrix operations involving other (given) matrices, and the other
side of the equation was a given matrix; in all cases, X could be isolated by multiplying
by the inverse of another matrix and possibly using 1 or 2 other matrix operations (e.g.,
addition or using a distributivity property). Wherever a LA1 technology was associated
with a larger number or variety of exam tasks, I produced pivot tables (an Excel function)
to facilitate finding the task types to which the tasks belonged.

For each task type, I identified the technique(s) students would have been expected
to activate. In some cases, the exam task instructed students on which technique to use
(e.g., “use Cramer’s rule”). Otherwise, I turned to expository text (including examples)
in the textbook to determine the expected techniques. In most cases, the exam task
corresponded (almost) identically to a task in a textbook example. I used these solved
examples as templates for the techniques expected of students, but also relied on my
experience grading exams in LA1 in conjunction with other LA1 instructors to inform
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my description of what’s expected of students on an exam (e.g., from this experience, I
knew instructors do not usually expect students to include justifications that are given
in solved examples). I similarly identified any theoretical block elements (technologies,
theory) that students need to have to deliver on a technique (e.g., formulas) or may be
expected to address in their exam submissions.

Through the procedure described above, I created models of knowledge students are
expected to learn and which relates to each TBI problem: the models are praxeologi-
cal, indicating tasks to be completed, techniques through which these tasks are to be
completed, and any theoretical block components that may be needed. I present these
models in Section 5.i.2 (for each i = 1, . . . , 8) as part of the analysis of data pertaining
to Problem i.

The analysis of KtbL that relates to each TBI task corresponds to 75% of the tasks in
the exams to which I had access; I take this into account in the discussion of the results
(presented in Sections 5.i.2, for each i = 1, . . . , 8) to make observations about the nature
of the praxeologies students are expected to develop in LA1.

4.3.2 Analysis procedure for identifying and qualifying the knowl-
edge students mobilized

In this section, I first describe the procedure I used to identify the knowledge students
mobilized in response to each TBI problem, and second my procedure for qualifying it as
(non-)mathematical.

I identified students’ mobilized knowledge from transcripts of their TBI and what
they wrote on paper as they attempted each problem. I time-stamped sections of their
written productions to match students’ written activity with the transcripts. This was
the data I analysed to identify and qualify students’ mobilized knowledge.

The analysis procedure for identifying students’ mobilized knowledge, in response to
a given TBI problem, and qualifying it as (non-mathematical), consisted of three steps.
I organize this section accordingly.

4.3.2.1 Step 1 of the analysis procedure for identifying and qualifying stu-
dents’ mobilized knowledge

I first split students’ activity into steps in chronological order. I considered a unit of their
activity a “step” when:

� it indicated the task the student was attempting to complete, as indicated by the
technique they activated or comments they made (e.g., as in Problem 1, where
students’ multiplication by symbols for inverses of matrices indicated the task they
were attempting to complete was “to isolate a matrix in an equation”); or

� the student had not identified a task to undertake and was stuck, as indicated by
their comments and/or lack of activated technique.

I categorized a student’s activity in a new step if they presented it as such; if I prompted
for another approach and a participant described one that is essentially equivalent, I still
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categorized it as a new step.

In one column, categorized each step in terms of the task-technique pairing (i.e., the
practical block) the student had activated. In a second column, I described the student’s
engagement with the practical block indicated in the first column. For example, if the
task a student had activated was to isolate a matrix in an equation, and their technique
was to multiply by inverses, then column 2 indicated more detail about what the student
activated in this technique (e.g., if they had computed any inverses, if they had isolated
a matrix by expressing it in terms of symbols for the inverse of a matrix, but without
actually computing the inverse; I also indicated if the student had completed the task or
only started to enact the practical block in column 1). In a third column, I copy-pasted
from the transcripts any comments they had made which indicated their theoretical block
(i.e., the reasoning producing or justifying the practical block they had activated). In a
fourth column, I included comments a student had made in that step and which didn’t
fit into a description of their practical or theoretical block, but which seemed to indicate
a characteristic of their positioning. In a fifth (and sometimes additional) column(s), I
included screenshots of a student’s written production if it was needed to convey their
engagement with a practical block.

As I progressed from parsing one student’s activity into steps to parsing another
student’s activity in this way, some practical blocks recurred. When this happened, I
consolidated students’ “engagement with a practical block” in the row corresponding to
that practical block.

This constituted the first step of analysis of students’ mobilized knowledge. This
produced (Excel) tables of substantial size, as I included large blocks of text from the
transcripts—essentially, I had parsed students’ transcript (portion related to Problem i)
into chronological steps, each conveying one praxeology the student had activated. For
practical purposes, I produced one such table for each step; that is, I produced a table
that included what all participants had activated in Step 1 of their engagement with
Problem i, another table that included what all participants had activated in Step 2 of
their engagement with Problem i, etc. Some students’ activity consisted of more steps
than others’. The tables corresponding to each step sometimes included practical blocks
that show in previous steps.

The first step of analysis of students’ mobilized knowledge is organized in 8 Excel files,
each conveying the paths of participants’ activity as they worked on each TBI problem.
The content of these files is not included in an appendix in this document because it is
not amenable to PDF format; the files can be shared upon request.

4.3.2.2 Step 2 of the analysis procedure for identifying and qualifying stu-
dents’ mobilized knowledge

The second step of analysis of students’ mobilized knowledge was to produce a table
that would summarize the paths of participants’ activity as they engaged with Problem
i (for each i = 1, . . . , 8). Each such table, captioned “Paths of LA1 Students’ Activity
in Problem i,” is presented at the start of Section 5.i.3 (for each i = 1, . . . , 8), where I
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lay out my analysis of the knowledge students activated in response to Problem i. This
summary table consists of a two main columns, each split into further columns.

The first main column indicates practical blocks [t, τ ] that appeared in students’ mo-
bilized knowledge. In some cases, students’ task/technique corresponded to the same
practical block but differed in some way; in such cases, the first main column was split
into two columns. For example, Table 5.1 (summarizing paths of students’ activity in
Problem 1) shows many students attempted to isolate C (in an equation of the form
M1AM2M3BC = I) by multiplying both sides of the equation by inverses; among these
students, there were students who could again be grouped by their choice to multiply
by inverses of the matrices M1, A,M2,M3, B; other students, in later steps, suggested to
multiply by C−1, as they believed this would isolate C−1 and allow them to find C by
computing the inverse of C−1.

The second main column includes a summary of participants’ engagement with the
practical blocks (from the first main column). This is organized by the steps previously
identified. Step 1 refers to the activity a participant spontaneously engaged in upon
reading the problem statement; I grouped students according to Step 1 and color-code
the groups to help trace students’ paths thereafter.

The purpose of the summary table for each TBI problem was to have a single display
that captures the paths of students’ activity in each problem. This table does not include
participants’ theoretical blocks, but these can be found by consulting the tables described
in Section 4.3.2.1.

4.3.2.3 Step 3 of the analysis procedure for identifying and qualifying stu-
dents’ mobilized knowledge

The final step of the analysis procedure produced the analysis of the knowledge students
activated in response to Problem i, as presented in Section 5.i.3 (for each i = 1, . . . 8).

In this final step, I used the summary table described in Section 4.3.2.1, together with
comments from students’ theoretical blocks (recorded in the tables described in Section
4.3.2.1), to infer the praxeologies students had mobilized in response to each problem.
I then qualified the praxeologies students mobilized toward Problem i (for each i) as
(non-)mathematical by comparing their praxeologies with the models of knowledge to be
learned in LA1 that is relevant to the given problem (presented in Section 5.i.2), as well as
with those described in my reference model for that problem (presented in Section 5.i.1).
I describe the notion of a reference model as a research instrument in Section 3.1.1. The
model presented in Section 5.i.1 is my model, as a researcher, of all knowledge at stake in
LA1 relative to Problem i; it accounts for knowledge at various levels of didactic trans-
position. The goal of comparing students’ praxeologies with those that model KtbL and
those from the reference model was to determine whether students’ practical and/or the-
oretical blocks reflect, exlusively, the mathematics at stake in a problem, or whether they
incorporate other knowledge (that determined by course norms); additionally, I aimed to
determine whether course norms would reflect or contrast with the mathematics intrinsic
to a problem.
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The analysis procedure here consisted of a guideline for the types of inferences I sought
to make. For example, I took students’ spontaneous response to each problem to indicate
norms they had formed in LA1. I attended to the trajectories in their activity, after
their initial response, to determine whether students would or could activate any other
knowledge, and if so, what it was. I compared students’ knowledge from different steps of
their activity, and when relevant with their activity in other problems, to make reliable
inferences about what students knew or did not know (whenever possible) and what they
were mobilizing.

In addition to students’ practical blocks, I also attended to comments they had made.
I did this to gain insight about the techniques they were activating. I also attended to stu-
dents’ comments, contrasting them with the totality of their activity pathway—relative
to a given problem but also relative to praxeologies students had activated in response to
other problems—to infer, whenever possible, what students knew or did not know (when-
ever possible), to contrast these with what they mobilized, and also to make inferences
about their theoretical blocks (i.e., and whether these consisted of mathematics intrinsic
to a problem or were a mixture of didactic, social, and mathematical norms from their
course).

These general principles meant I conducted comparisons of different moments from a
student’s activity until I reached a ‘stable’ model of the knowledge they had mobilized
(and, when possible, of what they did or did not know). By ‘stable,’ I mean that it
captured students’ mobilization of knowledge not only in given moments of their activity,
but overall, throughout this activity.

I organized the results by sections that group students by praxeologies that shared
certain components (practical or theoretical). I coordinated my analysis in different
sections to infer and qualify the (non-)mathematical nature of students’ praxeologies.

4.3.3 Analysis procedure for identifying positions

In this section, I explain the analysis procedure I created to infer positions students had
occupied during their tenure as LA1 students, as well as positions students might be
prompted to occupy by certain task features.

The data targeted by this analysis are students’ mobilized praxeologies, as elaborated
in Sections 5.i.3 (i = 1, . . . , 8), rather than the transcripts and written productions from
the TBI. This is because, to determine if a student’s activity or comment indicates the
position of, say, a Student, or that of a Client, or a Learner, or some other potential
position, I need to consider the comment or activity in relation to norms of the didac-
tic institution. This is due to the institutional relativity of the positions available to
students in a didactic institution. I explain. The position of a Student is defined by a
students’ objective to pass their course (with a certain grade). To achieve this position,
the student needs to determine what is expected of them. What’s expected of students
can change from one course to another and be more or less amenable to, for example,
the objective of a Learner. While some comments students make may clearly indicate a
position they occupy, the knowledge they mobilize can only indicate a position they had
occupied in LA1 if it is held up against what was expected of students in LA1. Since this
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is the analysis completed in Sections 5.i.3 (i = 1, . . . , 8), I can maintain consistency by
using this analysis rather than reenacting a similar analysis for the purpose of identifying
positions.

To analyse to infer students’ positioning from the analysis presented in Sections 5.i.3
(i = 1, . . . , 8), I first classified instances of a participant’s activity (or comments) in
terms of behaviors that put the activity (or comments) in relation with course norms.
For example, I classified the instances described in

Problem 5; sections 2.5.3.2.1, 2.5.3.3.3; P2 was able to perform the task by
activating this representation but only once I had prompted him to do so;
further, he did not believe he would get full marks if he submitted such an
“analysis” for grades but did think his calculations would award him full
marks, and, further yet again, he said this “analysis” would not have con-
vinced him if he had been working on his own (“usually, I do calculations”);
P2’s model of what’s expected of students in LA1 included τ42 but not the ge-
ometric representation: the calculations, he said, would grant him full marks
on a submission in the course, but the explanation of the geometry would not.

in terms of this “behavior”:

believes students are expected to demonstrate calculations, not use concepts

Next, I reflected on whether a behavior contributes to the objectives of a Student, Learner,
Client, Person, or possibly an as-of-yet unelaborated position. Once I determined that
a behavior contributes to the objectives of a certain Position (I use the term as a place-
holder for Student/Learner/Client/etc.), I identified how the behavior contributes to this
Position by classifying it by a property of that position. For example, I identified the
behavior listed above by this position property:

belief about expectations of students produced by normative LA1 KtbL

Some instances were amenable to classification by more than one behavior. Some behav-
iors, in turn, were amenable to classification by more than one position property; this
is because the position properties were not necessarily mutually exclusive (e.g., there is
overlap between “lacking agency and sense of agency over mathematics at stake” 1 and
“surface-level grasp of KtbL”). I classified a behavior by the position property to which
they contributed most directly (in the given instance), and other times it was appropri-
tate to classify a behavior by more than one position property.

As I progressed through each section, classifying instances by behaviors, position
property, and position, I endeavored to use already-identified behaviors and position
properties when possible. I also examined whether identified behaviors (or position prop-
erties) were replicates of other behaviors (or position properties) and, when this occurred,
synthesized the behaviors into a single one. I similarly synthesized behaviors (or posi-
tion properties) that were not replicates of one another but shared in an overarching trait.

Constraints unrelated to this work prevented further synthesis of the behaviors and
position properties I used to infer, from a given instance of a student’s activity, a position

1Sierpinska et al. (2008) describe the former as lacking the capacity to use the mathematics as needed
and the latter as lacking confidence in one’s capacity to use this mathematics.
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they had occupied in LA1 or a position they may be prompted to occupy by certain tasks.
Further synthesis could be achieved, for instance, by using triangulation to classify the
instances chosen for analysis by the identified behaviors and position properties.

The operationalization of the positioning framework, as described above, was the first
step for analyzing students’ positioning. The result is organized in an Excel file. The
content of this file is not included in an appendix in this document because it is not
amenable to PDF format; the file can be shared upon request.

The second step consisted in presenting the data produced in the first step in ways
that can help to answer questions I had about students’ positioning. One question, for
example, was whether some TBI problems triggered only certain positions (e.g. that of
a Student) while other TBI problems had triggered others (e.g., Learner) as well. to this
end, I used the pivot table function in Excel to organize the data from the first step in
various ways. For example, to answer the question just posed, I produced a pivot table
that indicated, for each TBI problem, which positions it had triggered in students, as well
as the number of instances associated with each position (for that problem). The analysis
I present in Section 5.9 is organized according to charts; each chart corresponds to a pivot
table designed to answer a particular question I had about students’ positioning.
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Chapter 5

Analysis LA1

This chapter is organized as follows: Section i corresponds to Problem i of the TBI (for
each i = 1, . . . , 8) and in Section 9 I present my analysis of students’ positioning. The
answers to the research questions are in this chapter. I present the praxeologies expected
of students, when considering LA1 exam tasks, in Sections 5.i.2 (for each i = 1, . . . , 8):
these are the models of knowledge to be learned that relates to each of the TBI problems.
I present the praxeologies students mobilize and examine their (non-)mathematical nature
in Sections 5.i.3 (for each i).

5.1 LA1 Problem 1

The following was the first problem presented to the 10 LA1 students in the TBI:

Solve the following equation for C.(
1 0
0 −1

)
A

(
1 2
0 1

)(
2 3
4 6

)
BC =

(
1 0
0 1

)

5.1.1 Reference model for LA1 Problem 1

I define, in Section 3, the ATD construct of reference model (Chevallard, 1985) as a back-
drop against which to examine the knowledge students are expected to learn in a didactic
institution as well as the knowledge they eventually mobilize. Additionally, there is the
ATD tenet that any human activity (including mathematical) can be described by a prax-
eological model (Chevallard, 1999): a model that identifies task(s) t to be accomplished
in that activity, techniques τ through which to accomplish a task, and a theoretical block
[θ,Θ] consisting of technology θ that frames and produces tasks and techniques and theory
Θ that frames and produces technology θ. A reference model is the didactic researcher’s
model of knowledge pertinent to a given task. In the case of mathematical activity, this
model includes knowledge from various levels of didactic transposition, from knowledge
of scholars, to that of teachers, to that of students; the reference model is meant to be
used as a backdrop against which to analyse knowledge at any stage of this transposition.

The task t in Problem 1 is to solve a matrix equation in M2×2(R). The technologies
underlying this task combine to form what’s commonly called matrix algebra. Without
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rehashing a comprehensive account of this field in linear algebra, I list some of the tech-
nologies pertinent to Problem 1, given the nature of the equation at stake (wherein the
left-hand side is a product of 2 × 2 matrices and the right-hand side is I2): the defini-
tions of matrices, of linear maps between vector spaces and of matrix multiplication, of
equality between matrices, the notions of identity matrix, of inverses of matrices, and
any technology (such as the inversion algorithm, determinants, formulas for the inverse
of a matrix A when it exists, such as A−1 = 1

detA
adj(A), and various theorems) related

to inverses of matrices and their existence. I will broadly refer to this list of technologies
by θ1. The theory Θ from which springs this technology is the axiomatic and logical
discourse that frames the discipline of linear algebra.

Below, I refer by M1,M2, and M3 to the matrices that are given in Problem 1:

M1 =

(
1 0
0 −1

)
, M2 =

(
1 2
0 1

)
, M3 =

(
2 3
4 6

)
As the right-hand side of the equation in Problem 1 is the identity matrix, the task is

to solve for a matrix C whose product with M1AM2M3B is I2. M3 is not invertible (e.g.,
detM3 = 0); hence, the product M1AM2M3BC is not invertible and so cannot equal I2
(an invertible matrix), no matter the entries of C. So there is no matrix C for which
M1AM2M3BC = I2 is a true equation.

Another variation of the argument might go like this: since M3 is not invertible,
M1AM2M3B is not invertible, and so there is no matrix C for which (M1AM2M3B)C is
I2. The argument presented in this and the previous paragraphs (and any other variation
thereof) forms one technique τ1 by which to perform task t.

Another technique through which to complete the task t is τ2: assign variables to the
entries of A, B, and C, and solve the system of equations obtained by equating the corre-
sponding components of the matrices on either side of the equation. τ2 can be completed
without directly mobilizing the fact that the matrices at stake are not invertible, but the
approach I propose does involve calculation of a determinant.

Let

A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
, C =

(
c11 c12
c21 c22

)
.

The equation given in Problem 1 is thus equivalent to

AB =

(
1 0
0 1

)
,

where

A = M1AM2M3 =

(
10a11 + 4a12 15a11 + 6a12
−10a21 − 4a22 −15a21 − 6a22

)
B = BC =

(
b11c11 + b12c21 b11c12 + b12c22
b21c11 + b22c21 b21c12 + b22c22

) .

1In the reference models for the TBI problems, I sometimes use the symbolic notation suggested in
the ATD to refer to a single technology and sometimes to a collection of technologies. One reason for
which I might denote a particular technology using symbolic notation is if it helps to communicate the
results of my analysis—for example, if that technology is knowledge whose mobilization by students is,
or is likely to be, a subject of investigation.
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This corresponds to the following system of equations:

A11B11 + A12B21 = 1 (1)
A21B12 + A22B22 = 1 (2)
A11B12 + A12B22 = 0 (3)
A21B11 + A22B21 = 0 (4)

It can be shown this system has no solutions using the fact that the determinant of
A is 0. (That detA = 0 can be shown by calculating it.) It is useful, first, to note the
entries of A must be non-zero for the equation to hold. (This is stronger than necessary.)

If A21 = A22 = 0, then AB is a 2 × 2 matrix whose second row is made up of 0’s,
so the equation AB = I2 is false. If A22 = 0 (that is, if a21 ̸= 6

15
a22) and A21 ̸= 0 (that

is, a21 = 4
10
a22), or vice-versa, there is a contradiction. Hence, A21 ̸= 0 and A22 ̸= 0. It

similarly follows that A11 ̸= 0 and A12 ̸= 0.

Here is one way of showing the system above has no solutions: since detA = 0, it
follows that

A11A22 = A12A12.

Multiplying both sides of equation (3) by A22 yields

A11A22B12 +A12A22B22 = 0
⇒ A12A21B12 +A12A22B22 = 0 since A11A22 = A12A12

⇒ A12(A21B12 +A22B22) = 0

Since A12 ̸= 0, this implies
A21B12 +A22B22 = 0,

which contradicts equation (2).

While τ2 does not explicitly require knowledge that any matrix product involving a
singular matrix is also singular, this knowledge does guide the calculations in τ2 through
the choice to consider detA. Ultimately, the failure of the equation to have a solution is
driven by θ1: any matrix product is singular if one of its factors is singular.

The reference model for Problem 1 is summarized by the praxeological models [t; τi; θ, θ1; Θ]
(i = 1, 2).

5.1.2 Knowledge to be learned in LA1 that relates to Problem
1

The type of task in which students are to solve a given matrix equation for a particular
matrix (say, X) appears in 7 of the 10 past exams to which I had access from 2014 to
2019; I denote this task type by t1. In LA1, t1 has the following characteristics: the
equation is usually in the form AX = B or AXB = C (or can be made to be in this
form after one operation is applied), and any matrix by which X is multiplied is always
invertible. The given matrices have 2-3 rows or columns and their entries are single-digit
integers, usually with absolute value at most 4. I distinguish between t1 and a different
type of task that also involves matrix equations, but which is different in nature and
which I will denote by t2. This task type involves equations of the form Ax = b, where
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A is a matrix of size m × n where m,n ≤ 6 (and if m ̸= n, one is usually less than or
equal to 4), x and b are column matrices, and the entries of x are unknowns. As with t1,
matrix entries (of A and b) are usually single-digit integers. Task t2 is usually phrased in
terms of linear systems: that is, the problem statement is to solve a linear system, and
not “to solve an equation [between matrices].” I distinguish between t1 and t2 because of
this difference in the problem statements but also because of the techniques assigned to
them in LA1.

For t1, the task to solve for a matrix X is synonymous with isolating X. To isolate
X, the technique is to multiply both sides of the equation (on the appropriate side) by
the inverses of the matrices by which X is multiplied. That this is the technique can be
inferred, partially, from how the task is typically presented on LA1 exams: for 4 of the
7 tasks of type t1 on past exams, the task was in part (b) of a problem where part (a)
instructed students to find the inverse of some unrelated 3 × 3 matrix; and another one
of these 7 tasks started off with the equation (6A− 4I)−1 = B where B was a given and
invertible 2× 2 matrix. For example, to solve AXB = C, the technique is as follows:

A−1(AXB)B−1 = A−1CB−1 ⇒ X = A−1CB−1

Students needn’t write, to get marks on an exam, that A−1A = I, but this is the
knowledge to be taught to students to justify the suitability of multiplying by a matrix
inverse. And then what is left is to compute the product A−1CB−1. Hence, to complete
tasks of type t1, students are expected to know to isolate a matrix by multiplying by
inverses of matrices by which it is multiplied, and so are also required to know how to
find inverses of 2×2 or 3×3 matrices (students also need to know how to find the inverse
of a matrix in other LA1 tasks in past exams: diagonalizing matrices or finding a large
power of a given 2× 2 matrix).

To find inverses of matrices, LA1 students are to be taught a formula for determining
whether a matrix is invertible, a formula for determining its inverse if it exists, as well
as an inversion algorithm (IA) by which they can simultaneously determine whether a
matrix is invertible, and if it is, find its inverse.

Formula-wise, students are expected to know A is invertible if and only if detA ̸= 0.
If A is invertible, then its inverse is given by the formula

A−1 =
1

detA
adj(A)

or the version of this formula specific to 2 × 2 matrices:(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

LA1 students are expected to know how to calculate determinants: 9 of the 10 exams
I consulted included the task to find the determinant of a matrix, and 9 of the 10 exams
required students to use Cramer’s rule (and so to compute determinants).

Alternatively, to find the inverse of a matrix, students can use the IA, wherein they
apply elementary row operations to reduce A to its reduced row echelon form (which I
denote by RREF (A)) and the same operations are applied, in the same order, to I. If
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RREF (A) is found to have a row of 0’s, then A is not invertible. Otherwise, RREF (A)
is an identity matrix; in this case, the matrix obtained (by applying the same elementary
row operations to I), once A is reduced to I, is A−1. Students are expected to know of
certain technologies (e.g., elementary matrices) that produce the IA—for instance, there
is a textbook section in which the syllabus-recommended problems are to find a row op-
eration and the corresponding elementary matrix that would restore a given elementary
matrix to the identity matrix—but students are not expected to demonstrate any knowl-
edge about the IA on LA1 exams apart from a capacity to apply it (if they choose to
use the IA instead of the determinant-adjoint formulas).

For t2, the norm is that exam problems instruct students on which technique to use to
solve linear systems Ax = b; I discuss this further in my model of knowledge to be learned
to do tasks such as that in Problem 2 (see Section 5.2.2). The most commonly-required
technique is Gauss-Jordan elimination (this was required in tasks on all 10 of the past
exams I consulted); students are also often instructed to use Cramer’s rule (as in 9 of
the 10 past exams I had) and on one exam were instructed to use A−1 to solve a given
linear system. Knowledge to be taught about linear systems includes a proof that wields
the technique for t1 as technology that frames t2: if the coefficient matrix A of a linear
system Ax = b is invertible, then

Ax = b ⇔ x = A−1b,

in which case A−1b is the unique solution to the system.

In sum, the knowledge students are expected to know relative to matrix equations
and matrix inverses is procedural and has a normative quality to it. What students must
know about matrix inverses is procedural: to use formulas or an algorithm to determine
whether a matrix is invertible, and if it is, what its inverse is. The procedure for matrix
equations in LA1 is, normally, to multiply by the inverse of 1 or 2 invertible matrices. The
knowledge to be taught explains the suitability of this technique (an inverse of a matrix
A is defined as a matrix B for which AB = BA = I), and, perhaps, students might use
this knowledge to verify whether a matrix they find is indeed the inverse of a given matrix.

While knowledge to be taught in LA1 does specify that an inverse of a matrix A is a
matrix B for which AB = BA = I, LA1 tasks which students are required to complete
don’t engage students with the flip side of this definition: a matrix A is not invertible if
there is no matrix B for which AB = I. Knowledge students are expected to learn about
a matrix not being invertible is restricted to procedures. Is the determinant 0? Is the
reduced row echelon form not an identity matrix? Theory and technology to be taught
that produces the inversion algorithm, and in the lead up to the knowledge that a matrix
is invertible if an only if its reduced row echelon form is I and if and only if its determi-
nant is non-zero, includes the knowledge about how, if a matrix A is not invertible, then
nor is AB or BA for any B. But, in LA1 knowledge-to-be-learned, the notion of whether
a matrix is invertible is related to the notion of products of matrices through only one
logical implication: if A is invertible, then A−1A = A−1A = I, and this is relevant for
matrix-isolating tasks as IB = B for any B.

In light of these considerations, the intent behind my design for Problem 1 is to see
whether students fall into the trap: will they immediately start to multiply by inverses
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to isolate C? Will they realize the task involves a question about the invertibility of
matrices, given that the left-hand side of the equation is a product in which C is a factor,
and the right-hand side is I? And if so, will they be able to use any other LA1 knowledge
about invertibility, once they know—apart from the fact that A and B are only invertible
if one imposes that condition—M3 is not invertible?

If students spontaneously mobilize the knowledge normally used to perform a LA1
task that, on one hand, resembles one of the TBI tasks, but on the other hand, differs
from it in substance (e.g., as in Problem 1, which has the appearance of LA1 t1 but is
not the task to isolate a matrix), the behavior triggered in them by the task points at
the norm(s) they had developed in LA1 in association with these tasks2. This, in turn, is
evidence of the normative quality of the knowledge students mobilize after completing a
course, and evidence of the gap between the normative behavior and behavior guided by
knowledge of the mathematics at stake. Hence, students “falling into a trap” points to
non-mathematical practice engendered by what students are expected to learn in LA13.

5.1.3 Knowledge LA1 students activated in response to Prob-
lem 1

Table 5.1 summarizes the paths of participants’ activity as they worked on Problem 1.
Step 1 refers to the activity a participant spontaneously engaged in upon reading the
problem statement; I group students according to Step 1 and color-code the groups to
help trace students’ paths thereafter. I categorize a student’s activity in a new step if
they presented it as such; if I prompted for another approach and a participant described
one that is essentially equivalent, I still categorized it as a new step. If a participant does
not appear in the column for Step i (i ≥ 2), it is because they did not engage in any new
activity after Step i− 1.

Participants were unable to complete Problem 1. Some (P1, P3, P4, P6) hypoth-
esized there might be no solution to C, but were not certain and had a mathemati-
cally incorrect justification for this hypothesis: that C might not exist because C =
B−1M−1

3 M−1
2 A−1M−1

1 and M−1
3 does not exist. Participants’ activity was mostly to iso-

late C by multiplying by inverses of matrices, at times even after they found these do not
exist (as was the case for M3: participants mobilized M−1

3 even after knowing it does not
exist) or exist only conditionally (as is the case for A,B). I will refer to this technique by
τ1, to reflect that students mobilized the technique for the LA1 task t1: to solve matrix
equations of form AXB = C (where A and B are invertible). I discuss how participants’
engagement with Problem 1 was conditioned by τ1 in Section 5.1.3.1. In preface to that
section, I summarize students’ engagement with Problem 1 below.

2A process studied in psychological research on decision-making is that of the priming effect (Bargh
et al., 1996; Molden, 2014): the influence a stimulus (a prime) can exert on a person’s behavior, even
without their awareness of its effect; a stimulus can affect behavior by, for example, activating concepts
a person had previously related with that stimulus, activating a given behavioral response, activating
certain goals, or activating certain perceptions, e.g. in that a certain stimulus might direct what a person
notices in a certain situation.

3By “what students are expected to learn” in a course, I do not refer to what a teacher might hope
their students to acquire; I refer, rather, to the minimal core of knowledge students can mobilize to
obtain a passing grade in that course.

82



Table 5.1: Paths of LA1 Students’ Activity in Problem 1

Practical block [t, τ ]

Participant’s engagement with [t, τ ]

S
te
p
1

S
te
p
2

S
te
p
3

S
te
p
4

S
te
p
5

S
te
p
6

S
te
p
7

τ1: isolate
C by mul-
tiplying
both sides
of EQ by
inverses

multiply by (the
symbols) M−1

1 ,
A−1, M−1

2 and
M−1

3 or (M2M3)
−1,

and B−1, or
(M1AM2M3B)−1.

P1
enacts and gets stuck: gets C = C−1B−1(M2M3)

−1A−1M−1
1 ⇒ C2 = B−1(M2M3)

−1A−1M−1
1 , does not know how to

manage the excess of C’s

P2 describes, finds M−1
i (i = 1, 2, 3), gets stuck upon finding M3 is not invertible, and says “there’s no way to solve this.”

P3 enacts; after I point out M2M3 is not invertible, P3 says there is not enough information to solve the problem.

P4

enacts, then asks if to find a “numerical answer” (I say “whatever you think is appropriate”), says he doesn’t think
there’s “enough information to have a final answer,” leaves B−1 as is, and finds M−1

3 does not exist; concludes there is
“no solution to C” because “if [M3] is not invertible, that means there’s no inverse, but that’s part of the expression
for C.” Hypothesizes “A and B are not given because there’s no solution to the problem in the first place.”

P5

describes, finds M−1
1 , M−1

2 , uses IA on M3 and finds M3 has a RREF with a row of 0’s (“so I kind of forget what to do
once they get to a matrix that.. can’t be put, like can’t be reduced like that. Um, I guess let’s put into RREF because
I don’t know what else to do”), multiplies both sides of equation by the matrix corresponding to RREF (M3) in the

IA (it is incorrect as P5 did steps that are not elementary row operations). Gets C = B−1

[
1
2

0
−1 1

2

]
M−1

2 A−1M−1
1 .

P6

enacts, then asks if the goal is to find “a numerical solution” (I say “whatever you think is appropriate”); finds
M−1

1 ,M−1
2 , notes detM3 = 0, using IA findsM3 reduces to a matrix with a row of 0’s; findsM2M3, finds detM2M3 = 0,

determines it’s not invertible; gets stuck (“I already know that C−1 is equal to this long string of numbers. But that
doesn’t solve anything [pause] [...] The determinant is zero so it’s not invertible”).

P8
is initially confused because “usually [she] would do inverses” but does not know what A and B are (I say they are
matrices); finds M−1

1 , multiplies both sides of EQ by M−1
1 , finds M2M3, asks if she “should get numbers in the end”

(I say “whatever you think is appropriate”), multiplies both sides by A−1, finds M2M3 is not invertible; stuck

P9
enacts, finds M−1

1 , says “I don’t know what A is so I leave A as A−1, finds M−1
2 , uses IA to find M−1

3 but gets a row
of 0’s and says “I forgot how to get the inverse of this matrix,” then finds detM3 = 0, saying this means M3 does not
have an inverse so C can’t be found because M−1

3 is a factor of C

P2
finds M2M3 and, applying IA incorrectly (choice of row operations incorrect and applied incorrectly), finds it is
invertible; then isolates C

P7 describes and concludes the method may or may not work since A and B are unknown

P1
finds M2M3, M

−1
1 , finds that M2M3 is not invertible, hypothesizes there is no solution to EQ because

“normally” C would be B−1(M2M3)
−1A−1M−1

1 but (M2M3)
−1 does not exist

assign values to en-
tries of A, B, then
isolate C

P7
describes; says this would not work if B is not invertible, in which case an alternative
method would be needed (assign unknowns to the entries of A,B,C, solve the linear
system corresponding to EQ)

multiply by (the
symbol) C−1 to iso-
late C−1 and then
find its inverse C

P1 enacts partially and abandons

P5
enacts, reaches unclear conclusion: C−1 is some matrix but C “isn’t a matrix” or “you can’t inverse [C−1]”
because the expression for C−1 is a product involving a non-invertible matrix

P6
claims M1AM2M3B = C−1 because MN = I ⇒ N = M−1, and if he multiplies both sides of EQ on the right
by C−1, he’d get that C−1 = C−1, “which doesn’t help”; stuck

P9 describes

if A,B are invert-
ible, isolate C

P4 enacts, stops once he finds M2M3 is not invertible, says is convinced there is no solution to C

assign
entries to
A,B,C
and solve
the system
corre-
sponding
to the
matrix EQ

assign unknowns to
matrix entries

P10
refers to M1,M2,M3, I by D,E, F,G, respectively, moves C and G to either side of EQ and attempts to solve EQ
GDAEFB = C by assigning the unknowns A,B,C,D to the entries of B and multiplying matrices, and then the
unknowns E,F,G,H to the entries of A. Gets stuck. Did not mean that the entries A, ..., H are the matrices A, ..., H.

P3
assigns unknowns to the entries of A and B and finds the product M1AM2M3B (as a single matrix), abandons
because “it makes it super difficult”; had hoped to determine if M1AM2M3B is invertible

P9 describes as an alternative to attend to the problem that M3 cannot be “remove[d]”

P7 describes; later says to use this method if B is not invertible

use correspondence between EM
(E an elementary matrix), and
applying to M the elementary
row operation that produces E

P7 describes and dismisses because the matrices by which C is multiplied are not all elementary

address θ: whether M being not
invertible implies MN is not in-
vertible

P3
P3 had mentioned in Step 2 wanting to figure out if M1AM2M3B is invertible, and I asked if she could
think of a way to do that without doing all the calculations; P3 wonders about θ, but does not know

P6
says he thinks that if M is not invertible, it’s possible to multiply by some N such that MN is invertible;
tries examples, this fails; begins an attempt at a proof by multiplying two general 2 × 2 matrices (with
variables as entries); suspects θ is true because of my line of questioning

use knowledge about multiplica-
tion by matrices as linear trans-
formations (symmetry about x or
y axis)

P7
says that multiplying A by M1 (as in M1AM2M3BC, the right-hand side of the EQ) would be “like”
doing a symmetry across the horizontal or vertical axis (in 2-space), and dismisses

use the notion of degree of free-
dom to gauge how many possibil-
ities there are for C

P7
suggests, giving parabolas in R2 as an example in that 3 points specify a parabola, so there
are 3 degrees of freedom in that situation; says there may be infinitely many combinations of
A,B,C that satisfy EQ, asks “are you sure I have got a one unique solution to the C?”

use eigenvalues P7
suggests (points out the right-hand side of EQ is I and brings up the formula λI −
A = 0), dismisses immediately.

M1 =

(
1 0
0 −1

)
, M2 =

(
1 2
0 1

)
, M3 =

(
2 3
4 6

)
, IA: inversion algorithm, RREF (M): reduced row echelon form of M , RREF: reduced row echelon form,

EQ: the given equation.
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P10 was the only participant who did not activate τ1. P10 struggled to come up with
any technique through which to do Problem 1. She assigned unknowns to the entries of
A,B, and C, multiplied some of the matrices, and got stuck. Three other participants
also brought up the idea of assigning unknowns to the entries of A,B and C, though
unlike P10, had a more explicit goal in mind for doing this. I will refer by τ3 to the
strategy of assigning entries to A, B, and/or C. P3 had hoped to use τ3 to determine
if M1AM2M3B is invertible (she knew, at this point, that M3 was not) by representing
it as a 2 × 2 matrix (as opposed to its representation as a product of 5 matrices). P3
abandoned this because she found the expressions involved “ma[de] it super difficult”
(to complete the task). P9 and P7*’s goal for τ3 was different. For them, τ3 was an
alternative to τ1 once they abandoned τ1 due to the presence of non-invertible matrices:
P9 knew it is not possible to multiply by the inverse of M3 as it does not exist, and P7*
knew A and B are not necessarily invertible. (P9 did return to τ1 in his third and last
attempt at Problem 1; his turn-around to using the non-existent inverse of M3 was to
multiply both sides of the equation by C−1, and then to find the inverse of C−1 once C−1

is isolated. P9 did not acknowledge any deficiency in this suggestion.)

Two students (P3 and P6) turned to the question of whether a product AB can be
invertible if A is not invertible—and both were unable to answer this question. I denote
the notion at stake by θ. Addressing θ was the third and last step of both participants’
engagement with Problem 1.

P3 had just abandoned τ3 as a technique for determining if M1AM2M3B is invertible,
with M3 not being invertible. P3 wondered about θ but was unable to wield knowledge
through which to examine it, concluding that “if [...]4 [the product M1AM2M3B] is in-
vertible, then the solution is [C = B−1M−1

3 M−1
2 A−1M−1

1 ]. But if it is not, it is impossible
to get the solution.” It is not clear if P3 meant there would not be any solution or if it
would not be possible to “get” it: she had also said that “maybe [she has] to assume that
[M1AM2M3B] is invertible if [she] really want[s] to get C” and added, in response to the
prompt “and the fact that [M3 or M2M3] is not invertible,” that she is “not sure.”

P6 had fibbled with two takes on τ1: first, he isolated C and expressed it in terms
of inverses of M1, A,M2,M3, and B, and got stuck once he found M3 is not invertible;
and then, he isolated C−1 by multiplying both sides of the equation by C−1, but got
stuck after having done so and asked for help. It was the prompt I gave P6 at this
point that pointed him in the direction of θ. I pointed out two things P6 had said: that
M1AM2M3B is the inverse of C since their product is I; that M3 is not invertible; and I
added there’s a question about A and B: what if they are not invertible? This prompted
P6 to ask if I’m “saying that there’s no solution.” He added that even if a matrix is not
invertible, its product with another matrix could turn out to be invertible. He attempted
to verify this. He tried two examples, multiplying M3 by two matrices and found these
products were not invertible. He then said that “two examples, where [he’s] just trying
to think of some random [numbers], it’s not a proof” and attempted “a general case” as
he believed it “better to abstract [the situation] into letters or variables.” P6 had written
two general 2× 2 matrices with unknown entries, found their product, and seemed to try

4I use “[...]” to indicate that a part of the quote was omitted; I only remove parts whose omission
from a quote does not change its potential analysis. I use “...” to indicate a momentary (e.g., 1-2 second)
pause in a student’s speech and “[pause]” to indicate any significantly longer pauses in their speech.
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to find conditions under which something (not clear what) would equal 0. While P6 was
unable to demonstrate anything, he concluded a product AB would not be invertible if
B is not invertible, but this conclusion seemed rather to reflect inferences he made from
social cues (“all these questions you’re asking me, you’re making me very uncertain”)
than knowledge about mathematics relevant to θ.

Finally, P7* was the only participant who brought up knowledge other than τ1, as-
signing entries to A,B,C, or θ—but none of the knowledge he proposed proved helpful
to the task. His spontaneous reaction to Problem 1 was to bring up multiplication by
elementary matrices; the “identity matrix on the right-hand side of the equation” and
the product of “many matrices” on the left-hand side brought to his mind a “method”:
from P7*’s description, I recognize a task type in the problems listed at the end of the
course textbook section about elementary matrices and inverses5. The task type is to
find A given an equation of the form EA = B (or even E1 · · ·EmA = B, where m is some
single-digit whole number), where the E’s are elementary matrices. P7* characterized
elementary matrices as a “recording [of elementary row] operations.” P7* dismissed this
approach as he noticed at least one of the matrices in Problem 1 is not an elementary
matrix.

P7*’s second suggestion was τ1 (to isolate C by multiplying by matrix inverses); his
third τ3 (to assign unknowns to the entries of A,B,C and solve the system corresponding
to the matrix equation); his fourth was to use knowledge about multiplication by matrices
as a linear transformation, and while he explained the sense in which multiplying by

M1 =

(
1 0
0 −1

)
has the effect of instigating symmetry across one of the axes in R2, P7* did not address
the fact that M1 was not multiplying elements of R2 but elements of M2×2(R). He dis-
missed this suggestion too.

P7*’s fifth suggestion was to use the notion of degree of freedom to gauge how many
possibilities there are for C. To explain what he meant, he brought up parabolas and
the expression ax2 + bx+ c, saying there are 3 degrees of freedom when it comes to these
objects. A parabola is fixed in 2-space once three points on the parabola are known. In
application to Problem 1, P7* did not suggest anything more specific than this broad
concept, but did speculate there may be infinitely many combinations of matrices A,B,
and C that satisfy the equation, and asked if I was “sure [there is] one unique solution
for C.”

P7* next returned to τ1 and τ3, suggesting to assign values to A and B and then apply
τ1, but dismissed this again, saying it would not work if B is not invertible. P7* quickly
dismissed his next and last suggestion: he pointed to the presence of I in the equation,
brought up the formula λI − A = 0, and then the notion of eigenvalues, but dismissed
this suggestion almost as soon as he made it.

In sum, my participants’ attempts at Problem 1 were limited to the knowledge nor-
mative in LA1 for completing task types t1 (isolate a matrix by multiplying by inverses)

5It is possible this task appears in LA1 assignments, but I did not have access to these.
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and t2 (to solve the linear systems produced by finding the product Ax in Ax = b and
equating corresponding components). Given the design of Problem 1, the task at stake
is not t1, and t2 would involve far more variables than LA1 students are accustomed to
handling when solving a system of equations (and, to add to that, the resulting system is
not linear). In what follows, I focus on the extent to which τ1 conditioned participants’
engagement with Problem 1, including how it shaped what participants made of M3 not
being invertible and of the possibility that A and B may not be invertible.

5.1.3.1 9 of 10 students’ responses were conditioned by τ1

All students but P10 isolated C spontaneously as a reaction to Problem 1, and discov-
ered M3 is not invertible only in the process of trying to find an expression for C more
succinct than one of type “B−1M−1

3 M−1
2 A−1M−1

1 .” Students reacted in different ways
to the discovery that M3 (or M2M3) is not invertible. (As for A and B, some students
said they “assume[d]” them to be invertible, when asked questions similar to “what if A
isn’t invertible?”) The differences between students’ reactions notwithstanding, they did
predominantly reflect τ1 know-how. P8 got stuck upon the discovery that the product
M1AM2M3B included a non-invertible factor; for P2, P7*, and P9, this meant C cannot
be isolated via τ1 and an alternative technique is needed to solve for C; P1, P4, and
P5 determined C does not exist because C is B−1M−1

3 M−1
2 A−1M−1

1 and this product
involves matrices that do not exist; and P2, P3, and P6 toyed with the hypothesis that
a product involving a non-invertible matrix could be invertible (a calculation error P2
made confirmed, to him, this false hypothesis as true). For all three participants, the
hypothesis being true would make it possible to solve the equation via τ1; the potential
of the hypothesis to be false, however, left P3 feeling “confused” and P6 “uncertain.”

5.1.3.1.1 P8 activated τ1 and got stuck upon finding the product on the
left-hand side of the equation involved a matrix that is not invertible P8’s
spontaneous reaction to Problem 1 was to “[try] to understand,” though she claimed
she “definitely should use inverses.” Her initial confusion had to do with what A and B
represented, but once I said they are matrices, she applied τ1. When P8 got to M2M3,
she found the product and then applied the inversion algorithm to find its inverse. A row
of 0’s appeared. It “doesn’t make sense... so it’s not invertible.” A pause. “I don’t know
what to do next.” Another pause. “I need a hint.” I said the matrix on the right-hand
side of the equation is an identity matrix and asked if that told her anything. For P8,
this meant the product to the left of C “should be an inverse of C, because an inverse
multiplied by the original matrix should give you an identity matrix.” “Is that right,”
she asked. P8 was stuck.

P8 did not side-step the norm of applying τ1 and was stuck in the logical fallacy
that the given equation was a truth statement. When I asked how she knew the inversion
algorithm works (that is, that it does what it’s advertised to do), she knew (as some other
students did too) it has “something to do with the fact that the matrix can be represented
as a product of elementary matrices” (she struggled to give more of an explanation,
though; she said “the inverse of elementary matrix should be... also an elementary
matrix”). P8 did not return to the problem at hand after this explanation and I did not
prompt her to do so.
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5.1.3.1.2 For P2, P7*, and P9, the left-hand side of the equation being a
product with a non-invertible factor implied τ1 cannot be applied and an
alternative technique must be used—but the alternatives they proposed in-
variably included variations on τ1. P7* said τ1 is not applicable because A and B
are not known and may not be invertible. That said, this did not mean, for P7*, that
there is no solution for C; it simply meant a different technique was needed to complete
the task. Indeed, P7* made 7 (albeit failed) attempts at Problem 1. P2 and P9 came to
a similar conclusion after finding M3 is not invertible: an alternative to τ1 must be used
to solve for C.

When P2 found M3 is not invertible, he said: “there’s no way to solve this, because
this one [M3], the determinant equals 0, so I can’t inverse it, so I can’t take it to the other
side to isolate C.” The inference from M3 not being invertible was that C could not be iso-
lated—not that there was no solution: indeed, P2 went on to another approach through
which to isolate C. He found M2M3, and through an incorrect use of the inversion algo-
rithm, determined the product is invertible and used its ‘inverse’ to isolate C. I asked P2
about A and B; he said he assumed they are invertible. What if they weren’t? He would
do what he did with M2M3 to fix the M3 issue: he’d multiply A or B by some matrix such
that the product is invertible. What if he couldn’t find such a matrix? “I would give up.”

P9 knew to isolate C upon reading Problem 1: “so here I have to solve for C, so I have
to have C on one side and all the other matrices on the other side.” After he isolated C,
he started to ask: “so I have to...” This seemed a question as to whether to actually do
any calculations; I said “yeah, go ahead,” and P9 proceeded to the inversion algorithm
(IA). He first found M−1

1 and M−1
2 . Applying the IA to M3, he found the matrix reduced

to a matrix with a row of 0’s and initially said he “forgot how to get the inverse of this
[type of] matrix.” He quickly realized the matrix is not, in fact, invertible, “because the
determinant is 0,” and came to a conclusion:

I cannot find C, because I will have the matrix [M−1
3 ] as a [factor of] C [...]

C is equal to the inverse of the rest times this one. So I cannot find that if
its determinant is 0.

By “we cannot find C,” P9 did not intend that there is no solution for C, but that C
cannot be isolated via τ1. “So I would have to expand C... And then I would equate each
[entry] from the matrix with the [corresponding] one on the other side. Because I cannot
remove [M3], so I would write C in terms of x1, x2, x3, x4. And then I would multiply this
by that.” This brings to mind the LA1 norm of solving linear systems corresponding to
matrix equations of the form Ax = b. I then asked P9 if he could think of “any other way
of going about this [problem].” His (next and last) suggestion was to “find the inverse of
C and then find the inverse again.” This is a variant of τ1: instead of isolating C, isolate
C−1. Then, find its inverse C.

Unlike P2 and P9, P7* did not find out M3 is not invertible until I told him as
much. This is because, as per his style throughout the interview, P7* rarely actually
went through with calculations. I had told P7* that M3 is not invertible toward the end
of his engagement with Problem 1; he got stuck and, despite having offered 7 techniques
through which to tackle the task, did not offer any knowledge appropriate for the given
situation.
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For P2, P7*, and P9, then, the information about M3 was a signal about which
procedure (not) to use to find the entries of C. They knew it is not possible to multiply
by the inverse of a matrix with no inverse. However, their proposed alternatives invariably
fell back on τ1. P2 thought M2M3 would be invertible, and his incorrect application of
the inversion algorithm made it seem it was; and so he applied τ1, but multiplied by the
apparent inverse of M2M3 as a salve to the non-existent inverse of M3. P6, whose case I
discuss further below, also thought it possible to overcome the M3 obstacle in this way
but ultimately, after having found M2M3 is not invertible, and following some prompts I
had given and an attempt to theorize on the matter, hypothesized it may not be possible
to multiply a non-invertible matrix by another matrix and obtain an invertible one. P9
also knew it is not possible to multiply by the inverse of a matrix with no inverse, but
presumed C would be invertible and as an alternative to τ1 inadvertently proposed τ1
yet again: if you can’t multiply by M3, multiply by C−1! P7* was less susceptible than
others to the magnetism of τ1, though he did bring it up twice: the first time (Step 2 of
his engagement with Problem 1) he dismissed it due to the unknown quality of A and
B, and the second time (Step 6), dismissed it for the same reason. Unlike the other
participants, P7* did not return to τ1 once he knew M3 is not invertible, though he did
get stuck. These participants sought a technical alternative to τ1 but had none.

5.1.3.1.3 P1, P4, and P5 approached a thesis of C not existing, justifying it
on a claim that C is a product that involves matrices that do not exist. These
students did not have the knowledge needed to support their hypothesis accurately and
one of them (P5) did not clearly state that C may not exist.

P5’s spontaneous reaction to M3 having a row echelon form with a row of 0’s was
to side-step the obstacle; “[she didn’t] know what else to do,” so she still used what she
found through the inversion algorithm to isolate C. That is, after having applied the
same operations to M3 and I successively to find the reduced row echelon form of M3,
the matrix resulting from I was [

1
2

0
−1 1

2

]
and P5 used this matrix in the role of M−1

3 to isolate C. She explained this choice
afterwards:

I didn’t know if it was 100%. I know I did something wrong, but I didn’t
know what I did wrong. So I just kind of went with it. Because that’s what
I would do on a test. Yeah. So, because I knew that this, this was weird,
because it wasn’t 1 0 0 1. [...] That was the only matrix I could end up with
so I just went with it.

P5’s activity therefore reflected that of a Student: the main goal is to produce a solu-
tion, regardless of whether it is correct or not—and even when knowing it might not be.
P5 knew that “because the bottom rows have two zeros at the bottom, if you’re going
to multiply it with [M3], you’re not going to get an identity matrix because one of the
bottoms... are going to end up being not right. There’s no, like, 1 to multiply by, so
it’s automatically going to be zero.” I asked, then, if she was saying that what she found
was the inverse of M3. P5 checked and confirmed the product is not I. I then confirmed
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M3 was not invertible and asked how that affects things. My intervention (and perhaps
my “authority” over the mathematics, akin to that of a teacher or textbook for one who
Students) prompted P5 to think beyond how to isolate C.

P5 brought up the argument that C = B−1M−1
3 M−1

2 A−1M−1
1 but M3 is not invertible:

“you want to take C to this side and C isn’t, technically, can’t be invertible? Because if
C is equal to all of these, this one’s not invertible, then C’s not invertible.” P5 struggled
to qualify what this meant about C and the equation: all she could say about C is that it
“isn’t, like, a matrix.” (“I don’t know if that makes sense.”) Her mind had “go[ne] blank
on the invertible thing.”

P1 had a misstep in his initial and spontaneous mobilization of τ1, and this led to the
equation

C2 = B−1(M2M3)
−1A−1M−1

1 .

(P1 had multiplied both sides of the original equation by C−1B−1(M2M3)
−1A−1M−1

1 , and
had not noticed that C−1C is I, not C.) P1 was stuck with this first approach. His second
was to apply τ1 again but this time by isolating C−1 (by multiplying both sides of the
equation on the right by C−1). He then said he had “another idea” and moved on to his
third approach—which was, in fact, a reiteration of his first use of τ1. This time, however,
he multiplied both sides of the equation by one matrix at a time and calculated inverses
before multiplying by them. And so he discovered M2M3 is not invertible. (“That makes
things difficult.”) “Maybe... the solution doesn’t exist?” His reasoning: C, “normally,
should be”

B−1

(
10 15
4 6

)−1

A−1

(
1 0
0 −1

)
,

“but this one

[(
10 15
4 6

)−1
]
doesn’t exist. So maybe its solution doesn’t exist also.” It

is not clear P1 was convinced by this argument (“we can’t invert this one [pause] so...
this equation is not right, but... Is that possible?”) but he was unable to mobilize any
other knowledge.

P4’s spontaneous reaction to Problem 1 was also to activate τ1. After he isolated C, he
said he doesn’t think there’s “enough information to have a final answer,” because A and
B are not given, but then decided to “leave [B−1] as that.” He then got to M3 and found
its determinant is 0. “Okay, so it’s not even invertible in the first place. [laughs] Okay, so
there’s no solution.” Why? “If [M3] is not invertible, that means there’s no inverse here,
but that’s part of the expression for C.” He then hypothesized that “A and B are not
given because there’s no solution to the problem in the first place.” (“Probably, I would
guess that. It’s maybe a proof to us that the problem does not work.”) P4 assessed A
and B from the lens of a Student: their inclusion is designed as a hint to the problem-
solver—they are not merely part of the equation, as their function is extramathematical.

When I prompted P4 to again explain the “link between” C and M3, his explanation
was again based in the procedure of τ1: “we need to find C with our given information
through the inverse of [M3], and [M3] is not invertible. So I cannot find C.” Note the
wording: “we need to find C [...] through the inverse of [M3]” [emphasis added]. For P4,
the task to solve for C was inherently to isolate C by multiplying by inverses, as is the
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norm in LA1.

P4, like P1, did not seem convinced by his argument: “I don’t really like how it ended,
the problem.” What didn’t he like? “Just... the expression contains... the expression
for C contains a value that I cannot have. I don’t like this. Doesn’t sit well with me,
and especially because I don’t have information on A and B, but it gets me to think
that maybe there is some trick about A and B that I should spot. [...] But still, [M3]
inverse is part of the expression and if [M3] inverse does not exist then C doesn’t exist.”
Much as this argument did not “sit well with” P4, he did not mobilize knowledge beyond
the scope of τ1. Indeed, after P4 mentioned that “maybe there is some trick about A
and B that [he] should spot,” I prompted him to consider the case in which A is not
invertible. He said this would “further support [his] proposition.” I gave another prompt:
“let’s say they’re both invertible.” P4 went again for τ1, this time multiplying M2M3

first and discovering this matrix, too, is not invertible. This finally “convinced [him
of his] answer,” that is, that there is no solution for C, though still he did not propose
any explanation apart from the one in which C is isolated using matrices that do not exist.

For P1, P4, and P5, that M3 did not exist signaled there is no solution for C. But
their justification was based in an application of τ1 to a case in which it does not apply:
they multiplied by M−1

3 , a matrix they knew does not exist, to get an expression for
C—a matrix they suspected to not exist. In spite of P1 and P4’s comments attesting to
their dissatisfaction with this argument, they did not mobilize any other knowledge. I
presume P1, P4, and P5 lacked the knowledge needed to justify why C does not exist.
Further, the normative quality of τ1 was such that they did not recognize, as P2, P7*,
and P9 had (to an extent), that τ1 cannot be applied as M3 is not invertible. In LA1,
matrix equations in the task t1 are such that it is always possible to solve them via τ1.

5.1.3.1.4 Two students (P3, P6) kept one foot in τ1 as they gingerly toed
a theoretical line of query: can a product involving non-invertible matrices
be invertible? P3 and P6 were prompted onto this theoretical question by two things:
first, that M1AM2M3B included M3, a matrix that is not invertible, amid their attempt
to use τ1, and second, prompts I gave about what this meant for the equation. I give
more detail about P3 and P6’s disengagement from τ1 below.

When I asked P3 about the possibility that A might not be invertible (“what if A
is not invertible?”), she said it is invertible, “because [the product] of these matrices is
[the identity matrix].” I then pointed out that the product she found for M2M3 is not
invertible. P3 calculated its determinant. It was 0. I asked what this tells her about the
equation. “It tells me there is not enough information to solve this problem.”

P3 was stuck. I rephrased the task: “the goal is to find a matrix C that would make
this equation true.” Perhaps the prompt about what it takes to “make the equation true”
implied the potential of the equation to not be true6. P3’s first suggestion was to assign

6As participants’ activity in Problem 1 reveals, the phrase “solve the equation,” given a matrix equa-
tion, did not usually include the possibility of there being no solution; this contrasts with students’ knowl-
edge in Problem 6, where students knew that a real quadratic equation may not have solutions—which
they justified with normative high-school knowledge about discriminants of quadratic equations. In LA1,
matrix equations in the task t1 (“to solve” a matrix equation) always have a solution.
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variables to the entries of A and B so as to express the product M1AM2M3B as a matrix,
and then check if this matrix is invertible. P3 found the product but abandoned the
approach—there were many unknowns in the matrix entries (“wow, no, it makes it super
difficult”). I asked if she could “think of any other way to reach that kind of conclu-
sion, without doing all the calculations.” She couldn’t. While she did wonder whether
a product involving a non-invertible matrix could be invertible, it’s not clear she would
have known what to make of the product not being invertible. She did know that if
M1AM2M3B is invertible, then C could be isolated via τ1. But it’s not clear she’d have
known what to make of it not being invertible: she said that “if it is not [invertible], it is
impossible to get the solution,” but did not elaborate on what she meant by “impossible
to get the solution.” She did not “remember exactly how to handle the non-invertible
matrix, [it] ma[de] [her] really confused.”

For P6, upon receiving Problem 1, the task was “basically [...] to go through all of
these inverses into here, from the left, until I get to C, and then C is equal to whatever
that is.” That is, for P6, the task was “basically” t1. He isolated C. He found M−1

1 and
M−1

2 . He noted M3 has determinant 0. Started the inversion algorithm. Upon finding
it reduces to a matrix with a row of 0’s, he started the algorithm from scratch. Same
result. He swerved and calculated M2M3 instead. He wondered if it is invertible, and
found it is not. “Did I make a mistake? Are you allowed to tell me?” He “[felt] like
[he’s] making a mistake” and said he was “getting a little bit sick” because “you can’t
invert something that [has] determinant zero.” “So... What do I do here?” He knew he
can’t apply τ1 “from the left” and said he “can take C out... From the right.” P6 did
not have a well-defined operation in mind: he said “you can factor it [C] but it doesn’t
do anything [...] because you can’t do matrix division.” For P6, C−1 was the product to
the left of C in the equation “because if you multiply C by something, and it is equal
to I, then it has to be [its] inverse.” He briefly suggested to multiply both sides of the
equation by C−1 on the right, but rejected this idea: “if I multiply by C−1, I get... C−1

equals C−1, if I do it from the right [pause] multiply it by the inverse of C−1, just get C
equals C, which doesn’t help me now. Okay, I’m stuck.”

He asked me to help. I responded: “the fact that here you have an identity ma-
trix—you said you’re thinking this would be the inverse of C. And you said that this, this
one [either M3 or M2M3], is not invertible.” P6 asked if this was right and I confirmed it
was. I added that “there’s also the question about A and B: what if they’re not invert-
ible?” P6’s inference was this: “so what you’re saying is there’s no solution?” This did
not correspond to P6’s understanding of the mathematics at stake: “but I thought, but
it doesn’t matter—like, if a matrix is not invertible, if you multiply by another matrix,
it’s not necessarily still not invertible? [I thought] that... it can become invertible. After
you multiply it, surely...” He thought that multiplying a non-invertible matrix, say, A, by
some appropriate matrix B, could ‘fix’ the numerical pattern that leads to a determinant
being 0: “I think this matrix here [the product M2M3], I have it’s not invertible because
these add to 60 and these add to 60, so it’s 60 minus 60 equals zero. So I just have
to find something that, I don’t know, changes one value” [emphasis added]. P6 then
attempted an example wherein he multiplied M2M3 by a matrix to check if the determi-
nant would be zero. It was (though I had pointed out a calculation error which had first
led to a non-zero determinant). “Okay, so you’re trying to tell me is that if something’s
not invertible, it’s always not invertible, doesn’t matter how much you multiply it.” P6’s
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wording—“you’re trying to tell me”— brings to mind his earlier one (“so what you’re
saying is there’s no solution?”); both suggest a lacking sense of agency7. I said I wanted
to know what he thought about that and P6 said he “just chose a poor example.” He
tried another example. “Surely this doesn’t add up to zero... It does!” But P6 knew
examples are not a proof:

I still don’t think... because two examples like this, where I’m just trying
to think of some random thing, it’s not a proof of any kind. I still feel like
there’s definitely some kind of determinant, some kind of thing here where
you would add zero, right? Or I wouldn’t add to zero. What if this was like
six? If it was like a higher even... or like, 32... this is... [multiplies M2M3 by
another matrix on the left] this would be 14, 21... it wouldn’t matter ’cause
it’s still the same issue.

P6 then attempted a proof (“if you want something to be more or less general, it’s
better just to abstract it into letters, or variables”). He found the product(

a b
c d

)(
e f
g h

)
and seemed to try to find conditions under which something would equal 0 (“let’s say
this is equal to 0... show that that’s equal to 0”). And he “start[ed] to believe [pause]
that if something’s not invertible, then you can multiply by [another] matrix and make
it invertible.” Nevertheless, despite his belief that a matrix that is not invertible can be
multiplied by some matrix such that the product is invertible, “all [the] questions [I was]
asking [made him] very uncertain” and he concluded, in what seemed like deference to
my authority, that multiplying a non-invertible matrix by another matrix would give a
matrix that is not invertible.

P3 and P6’s questioning was this: could M1AM2M3B be invertible even if M2M3 is
not? If yes, then τ1 could be applied. In the case that M1AM2M3B is not invertible, both
participants threw a hypothesis about there being no solution to the equation, though
P3 did not say so in such explicit terms—it’s not clear if “if it is not [invertible], it is
impossible to get the solution” was a statement about the existence of a solution so much
as a statement about the operation of “get[ting]” a solution (this brings to mind Sfard’s
1991 theory of reification, which maintains that operational approaches precede structural
approaches in students’ development of algebraic knowledge, in that the understanding
of an algebraic expression, such as 1 + x, as an object in and of itself can only come
after students spend time perceiving this expression in terms of the operations implied
within it—Sfard (1991) points out the precedence of operation over structure is reflected
in the history of algebra as a domain, with thousands of years of focus on computational
procedures preceding the advent of modern algebra).

The only explicit conclusions P3 and P6 made relative to the matrices that were
not invertible were how they felt about these: P3, “confused” about how to handle a
non-invertible matrix, and P6, “a little bit sick” as “you can’t invert something that has

7Sierpinska et al. (2008) contrast “lacking agency”—lacking the capacity to use the mathematics as
needed—with a “lacking sense of agency”: lacking confidence in one’s capacity to use this mathematics.
One can lack agency yet have a sense of agency.
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determinant 0.” (“I’ll be honest, I really thought that this interview is more gonna be...
I’m feeling very uncertain all of a sudden,” P6 said after attempting to investigate his
theoretical query.)

5.1.3.1.5 Summary: participants struggled to extricate themselves from τ1
even as they knew M3 is not invertible. Participants were restricted by the LA1
norm of τ1 for solving matrix equations. First, the various inferences they made, about
the impact of M3 not being invertible, were erroneously justified through τ1. And second,
their perception of the task of solving the equation for C was married to the notion of
isolating C.

As P8 tried to mobilize τ1, she got stuck when she found M3 had no inverse.

P2, P7*, and P9 inferred that since M3 has no inverse, τ1 can’t be applied and an
alternative technique is needed. But the alternatives they proposed were not always alter-
natives. Indeed, P2’s alternative was to find M2M3 so as to deal with its inverse instead;
one of P9’s alternatives was another variant of τ1 (isolate C−1 instead of C); and P7*
twice suggested τ1 even though he’d already rejected the technique the first time around
due to the unknown nature of A and B. Even though P2 and P9 knew τ1 could not be
applied using M3, they toyed with the notion of applying a variant of τ1 that, on surface,
seemed to not involve M3.

P1, P4, and P5 suspected the equation had no solution, but their justification was an
abuse of τ1: they claimed C is B−1M−1

3 M−1
2 A−1M−1

1 , and since M3 is not invertible, this
meant C may not exist.

P3 and P6 did extricate themselves from the LA1 norm of τ1, but only after prompts I
had given them, and still within the context of τ1. They both broached a theoretical ques-
tion: if M3 is not invertible, can M1AM2M3B be invertible? They related this question to
τ1: if M1AM2M3B is invertible, then τ1 could be applied and the mission accomplished.
P3 and P6 did not mobilize mathematical knowledge that helped to answer the ques-
tion, though P6 did attempt to do so (he briefly tried to check, computationally, if the
product of two general 2×2 matrices could be invertible, if one of them was not invertible).

In addition to participants’ inability to use knowledge other than τ1 (and various
misinterpretations of τ1), participants’ perception of the task (solve for C) was that the
task was to mobilize τ1—that is, to isolate C. A comment P4 made when he suspected
the equation had no solution alludes to this: “I would not like the question to not have
specified that... Like, ‘if any’. Because ‘solve the following equation,’ it implies a solu-
tion.” The perception that there is a solution was shared by most other students; this
contrasts with participants’ ready acceptance, in Problem 6, that “to solve a quadratic
equation” may mean to conclude it has no solution.

It’s not only P4’s comments that suggest that for my participants, it was a given that
the task was to isolate C. First, there’s the matter that the spontaneous reaction to
Problem 1 of 8 of my 10 participants was to isolate C via τ1. But even as they sought
alternatives, even as they thought they had “another idea” (P1), the idea turned out to
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be a variant of τ1 that differed from their first suggestion only superficially (e.g., instead
of multiplying both sides of the equation by M−1

1 , A, M−1
2 , etc., multiply both sides of

the equation by C−1). The perception that the task was to isolate C via τ1 was such that
many held onto τ1, without reservation, even as they found M3 has no inverse. Recall
P9’s reaction when he found M3 reduced to a matrix with a row of 0’s: “I forgot how
to get the inverse of this [type of] matrix.” His spontaneous reaction was not that M3

had no inverse; it was that he, a student who had recently completed LA1, had forgotten
“how to get the inverse.” Recall P5’s reaction to the same finding: she plodded on and
applied τ1 using what she’d found to correspond to the reduced row echelon form of M3,
despite knowing she “did something wrong”; she “didn’t know what [she] did wrong, so
[she] just kind of went with it. Because that’s what [she] would do on a test.” What she
would do on a test is what would most likely get her marks. What would most likely get
her marks is to plod on with τ1 no matter what. Incorrect math (or not-math) was par
for the course. Recall P6’s reaction; he found detM3 = 0 and even though he knew “you
can’t invert something that [has] determinant zero,” still applied the inversion algorithm
to M3; and when a row of 0’s appeared, he started the algorithm all over again; and
when this resulted in the same obstacle, he went for M2M3 instead, expecting it to be
invertible and allow him to apply τ1. M2M3 was similarly P3’s hope for τ1 and P2’s res-
olution to the τ1/M3-has-no-inverse problem, as his incorrect application of the inversion
algorithm made him believe M2M3 is indeed invertible. P2, P3, P5, P6, and P9 (half
my participants) directed their efforts toward finding a way to accomplish τ1; P1, P4, P5
were under the impression they accomplished the task via τ1 (having isolated C using
M−1

3 even as they knew it does not exist); and P8 offered no alternative to τ1.

This activity is not surprising. In LA1, as I discuss in Section 5.1.2, matrix equations
students have to solve typically have the form AXB = C and are always satisfied by some
matrix X. τ1 is always the way to go8. This is different from types of equations with
which students are confronted in previous math courses and even in LA1. It is a norm in
LA1 that systems of linear equations, as in Problem 2, might have no solutions; and it is
a norm in high-school algebra courses that quadratic equations, as in Problem 6, might
have no solutions. Comments my participants made in the context of Problems 2 and 6
show they had this knowledge. But the norm in LA1 relative to matrix equations in the
context of a task that looked like t1 includes one option only: use τ1. The practical block
[t1, τ1] from knowledge to be learned in LA1 proved to be an epistemological obstacle for
students: knowledge that was once effective began to be inadequate or inconsistent in a
new scenario. In the absence of conditions that allow for τ1, students still perceived the
task to be “to apply τ1” and abused it in the process. Knowledge from their experience
with equations in other task types (such as “solve Ax = b” or “solve ax2 + bx+ c = 0”)
emerged tentatively but was not supported by knowledge about matrices: P1, P4, and
P5 hypothesized the equation may have no solution, but based this on the claim that
C equaled a product of matrices that do not all exist; P6’s inference that the equation
may have no solution was not based on the mathematics at stake, but rather made from
comments I made (“so what you’re saying is there’s no solution?”); and neither P3 nor
P6 were able to support their hypothesis using mathematical knowledge.

8I exclude, here, matrix equations of type Ax = b, where x and b are column matrices, and the
former a matrix of unknowns, as these are normatively associated with systems of linear equations,
which students most typically are expected to solve using Gauss-Jordan elimination, as I discuss in my
model of knowledge to be learned in relation to Problem 2; see Section 5.2.2.
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5.1.3.2 P3’s theoretical inquiry and emotions expressed by P1, P3, P4, and
P6 suggest the didactic potential of tasks like Problem 1

By “tasks like Problem 1,” I refer to the trap it has set: it mimics a LA1 task, so a student
who’s recently completed LA1 is likely to perceive it as that LA1 task, but the normative
LA1 technique cannot be applied, so the student is unable to complete the task using the
normative technique. For Problem 1, the trap had students multiply by inverses. This
trap triggered problematic emotions in some of my participants: P3 was “confused,” P6
felt “a little bit sick” and “uncertain,” and P1 and P4 seemed unsettled by their argu-
ment (that C does not exist because it equals a product that involves matrices that do
not exist; P1 had acknowledged that since M3 is not invertible, the equation C = . . . “is
not right,” and P4 said he did not “really like how it ended, the problem”), though they
lacked the knowledge needed to refute this argument or produce another one. The trap,
along with prompts I had given, had also triggered in P3 and P6 a question: if a matrix
B is not invertible, could a product AB be invertible?

Most students did not problem-pose, but I take the problem-posing of P3 (and, to
an extent, that of P6) as a sign of the potential of tasks like Problem 1. Its potential
is two-fold. First, it has potential to trigger in students a shift from using techniques
(here, τ1) to engaging with the theory that produces these techniques, as in the transition
from secondary to tertiary education; see Winsløw et al. (2014). Second, it has potential
to prompt students to engage in mathematical behavior such as problem-posing (e.g.,
Hersant & Choquet, 2019; Schoenfeld, 1985).

To assess whether these potentials are rooted in the task itself, or if P3 and P6’s
problem-posing was simply rooted in qualities they had as participants, I take into ac-
count the positioning they displayed. The two participants’ positioning throughout the
interview differed in substantial ways from one another.

Throughout his interview, P6’s comments and activity predominantly pointed to his
having occupied the position of a Student in LA1 (e.g., seen through a lacking sense of
agency relative to the mathematics at stake) but also the position of a Learner in math-
ematics learning contexts other than LA1 but within the university (he said he enjoyed
reading mathematics books in his free time—he mentioned number theory—and that
he sometimes approached professors in the postsecondary institution’s Mathematics De-
partment with questions about material he read; and at the end of his engagement with
Problem 1, he said: “now you have to tell me the trick”). In Problem 1, the knowledge
he mobilized was mainly that built as a Student in LA1. He commented about his expec-
tations regarding the interview, attempted to glean information from my prompts as an
interviewer, and asked for validation. “Are you allowed to tell me—I can just multiply
[M2 and M3], right?”; “did I make a mistake? Are you allowed to tell me?” Was his ap-
proach right? Were his arguments correct? Can the interviewer tell him certain things?
If I, as the authority on mathematics in the context of this TBI, asked certain questions,
he inferred something he was doing or saying must be wrong: “all these questions you’re
asking me, you’re making me very uncertain.” “I’ll be honest, I really thought that this
interview is more gonna be... I’m feeling very uncertain all of a sudden.” He sought my
validation as interviewer but also my help: “so help me out here. How do you solve this?”
These emotions reflect a lacking sense of agency brokered by the failure of knowledge that
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normally worked in LA1 (“I’m getting a little bit sick... you can’t invert something that
[has] determinant zero,” and “I don’t think I actually did any questions like this [...] you
have to tell me for my own sanity... The determinant is zero so it’s not invertible”).

I bring up P6’s positioning to make the point that his problem-posing (if B is not
invertible, can AB be invertible?) did not build on relevant mathematics. It was shaped
by two other factors. First, a conflict between LA1 norms and the properties of the task
at stake: M3 had no inverse, and he was used to multiplying by inverses in LA1. P6 had
encountered a problem (Mason, 2016), in that something in the task bothered him (he
felt “a little bit sick”). The second factor that led to P6’s problem-posing was a lacking
sense of agency, which I view as a result of his having occupied a position as Student in
LA1, and a Learning behavior triggered by this lack of confidence. Indeed, the point at
which he extracted himself from LA1 norms and engaged in problem-posing overlapped
with expressions of concern about his performance in the interview and an attempt to
decrypt what I (as the interviewer) implied when I spoke: “okay, so you’re trying to tell
me that if something’s not invertible, it’s always not invertible, doesn’t matter how much
you multiply it” [emphasis added].

The didactic potential of Problem 1 can’t be presumed from P6’s activity, given the
positions he occupied. It can, however, be gleaned from P3’s activity. P3’s positioning
throughout the interview was mostly that of a Student. The techniques she proposed
reflected normative LA1 knowledge(-to-be-learned) and its limitations (e.g., that tasks
lend themselves well to the strategy Lithner, 2004, dubs “identification of similarities”
and which is what my participants had all done in reaction to Problem 1: find an example
with surface-level features similar to those in a task to be solved, and mimic the proce-
dure in the example; the didactic limitation of such tasks is that it limits the knowledge
students must acquire to the procedures in such examples). The justifications she gave
(when I asked how she knew certain techniques worked, for instance) were references to
what her LA1 teacher had said or what the LA1 textbook had shown. This positioning
was not unique to P3 (indeed, most of my participants presented with qualities belong-
ing to a Student). This positioning, however, did not stop the potential of Problem 1.
The problem, along with a prompt I gave and which shifted P3 from an operational per-
spective on “solving for C” (as in, isolating C) to a structural perspective (determining
whether there is a C for which the equation can be true) (Sfard, 1991), led P3 to engage in
problem-posing about theoretical knowledge: if a matrix is not invertible, can its product
with another matrix be invertible?

The potential failure of τ1 as a technique for a task they had initially identified as
similar (Lithner, 2004) to a familiar LA1 task had triggered, in P1, P3, P4, and P6,
emotions of confusion and uncertainty. This reaction shows the potential of a task like
Problem 1 to pose a problem (Mason, 2016) to students, not in the sense of a task to
be solved in a mathematics course, but in the sense of a source of frustration they may
be compelled to resolve. This did not suffice to push students away from τ1, however.
P3, the only student who did so (and not as a result of her position), posed a theoretical
query only after receiving an appropriate prompt—one that targeted the operational
perspective that possibly accompanies students’ resolve to use a technique like τ1.
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5.2 LA1 Problem 2

The following was the second problem presented to the 10 LA1 students in the TBI:

The coefficient matrix below is invertible. Solve the system:
9 16 3 4
5 6 0 8
−2 3 0 4
3 6 1 1



w
x
y
z

 =


−9
−5
2
−3



5.2.1 Reference model for LA1 Problem 2

The task T in Problem 2 is to solve a matrix equation of the form Ax = b, where A is a
square matrix (of order 4) with integer entries, x is a column matrix of unknowns, and
b is a column matrix with integer entries. Given the definitions of matrix multiplication
and of equality of matrices, this task is effectively the task to solve a linear system:

9w + 16x + 3y + 4z = −9
5w + 6x + 8z = −5
−2w + 3x + 4z = 2
3w + 6x + y + z = −3

Problem 2 can be solved by inspection (τ1): since the column of constants b, where

b =


−9
−5
2
−3

 ,

is equal to minus one times the first column of the coefficient matrix A, (−1, 0, 0, 0) (in
its form as a column vector) is a solution of the system, and since the coefficient matrix
is invertible, the system has a unique solution (see θ1 below), so (−1, 0, 0, 0) is the only
solution of the system. The technology θ1, framed by the theoretical discourse of matrix
algebra and logic, is this:

∃A−1 ⇒ A−1(Ax) = A−1b ⇒ (A−1A)x = A−1b ⇒ Ix = A−1b ⇒ x = A−1b

Not all systems can be solved by inspection; the technique τ2 of row reduction ad-
dresses this issue. The process is produced by the principle that when the solutions of
a linear system are not readily apparent, algebraic operations can produce an equivalent
linear system whose solutions are readily apparent. This technique is framed by the
technology θ2 = [θ21/θ22

9; θ23]:

θ23 Every linear system Ax = b can be expressed in terms of an augmented matrix
[A|b] (and vice-versa).

9I use a slash to indicate either technology could be used.
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θ21 Elementary row operations correspond to algebraic operations that produce equiv-
alent equations. Any matrix A can be reduced by elementary row operations to a
row echelon form (REF) or to a unique reduced row echelon form (RREF): the algo-
rithm of Gaussian elimination can be used to find a REF and that of Gauss-Jordan
elimination to find RREF(A). (Other algorithms exist.) The REF and RREF cor-
respond to linear systems, equivalent to the initial system, where the solutions are
readily apparent. If ∃A−1, then RREF(A) = I so the augmented matrix can be
reduced to one of the form 

1 0 · · · 0 B1

0 1 · · · 0 B2
...

...
. . .

...
...

0 0 · · · 1 Bn


Each unknown is therefore isolated in the linear system that corresponds to the
RREF of the augmented matrix or can be made so via back-substitution (in the case
of a REF). If ∄A−1, then any REF of A would have at least one row whose entries
are all 0; if any such row, in the augmented matrix, corresponds to an equation
of the form 0 = a where a ̸= 0, then the system has no solutions; otherwise, any
reduced form of the augmented matrix has variables that are free to have any value,
and once their value is fixed, so is the value of the other variables. In this case, any
free variables may be assigned parameters and the general solution of the system
can be expressed in terms of these parameters. For example, if the RREF of the
augmented matrix of a system in the unknowns x, y, z is1 2 3 4

0 0 0 0
0 0 0 0


then y, z may be treated as free variables and therefore assigned parameters: y =
r, z = s, where r, s ∈ R and a general solution of the system is (−2r− 3s+ 4, r, s).
In this case, the system has infinitely many solutions.

θ22 Patterns among entries of a given matrix can be taken advantage of to obtain a
REF more conveniently than strict adherence to Gaussian elimination (when doing
this process by hand). For example, in Problem 2, three of the entries in R2 (row
2 of the augmented matrix) are equal to 2 times the corresponding entries in R3,
and three of the entries in R1 are equal to 3 times the corresponding entries in R4.
Using the row operation Ri + aRj → Ri to take advantage of the proportionalities
can produce, for example, the solution

9 16 3 4 −9
5 6 0 8 −5
−2 3 0 4 2
3 6 1 1 −3

 →


0 −2 0 1 0
9 0 0 0 −9
−2 3 0 4 2
3 6 1 1 −3



→


0 −2 0 1 0
1 0 0 0 −1
0 3 0 4 0
0 6 1 1 0

 →


0 −2 0 1 0
1 0 0 0 −1
0 1 0 5 0
0 0 1 4 0
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From the last matrix and through back-substitution, it can be deduced that the
system has (−1, 0, 0, 0) as a unique solution.

I bring θ22 up because in the context of LA1, it is pertinent, as the matrices given in
tasks of type T in the course are amenable to θ22; students could benefit from it as it
would allow them to more quickly finish tasks of these types on exams or when studying
for their course, and the technology is mentioned in the course textbook. Students, how-
ever, are not required to use θ22 to get marks10.

The technique τ2 of row-reducing the augmented matrix is applicable to any task of
type T and produces a general solution no matter what - whether the coefficient matrix
is invertible or not. The two techniques I describe next are applicable only to the tasks
of sub-type T∃A−1 : the same as task T , but where the coefficient matrix is known to be
invertible or to have non-zero determinant.

One technique is τ3: Cramer’s rule. The theorem gives a formula for the value of each
unknown: xi =

detAi

detA
. To calculate determinants, one technology is θ31, the definition

of a determinant as a cofactor expansion along any row or column (there is a theorem
that ascertains the uniqueness of the number obtained by cofactor expansions) and θ32,
properties that relate row and column operations with determinants (which are proved
via the cofactor-expansion definition of determinant). Given square matrices A and B of
the same size, θ32 is made up of three parts:

θ321 If B can be obtained from A by doing a row (or column) operation of the type “swap
rows Ri and Rj (or columns Ci and Cj) of A, where i ̸= j”, then detB = − detA.

θ322 If B can be obtained from A by doing a row (or column) operation of the type
“multiply Ri (or Ci) by a scalar c.” then detB = c detA.

θ323 If B can be obtained from A by doing a row (or column) operation of the type “add
a scalar multiple of Ri to Rj (or of Ci to Cj), where i ̸= j,” then detB = detA.

In the case of Problem 2, the statement that the coefficient matrix A is invertible
implies that Cramer’s rule is applicable; to apply it, one calculates all the requisite
determinants using any advantageous combination of θ31 (e.g., one of the columns has
several entries that are 0) and θ32 (to produce a row/column with even more entries that
are 0). For instance, since

b =


−9
−5
2
−3


is proportional to one of the columns in A, there is no need to calculate detA. Indeed,
from θ322 and θ323 and the theorem that ∃A−1 ⇒ detA ̸= 0, it follows that

10I infer this from my experience as a LA1 teacher, but also from the lack of explicit instruction to
use θ22 in final exam tasks.
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w =
detA1

detA
=

∣∣∣∣∣∣∣∣
−9 16 3 4
−5 6 0 8
2 3 0 4
−3 6 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
9 16 3 4
5 6 0 8
−2 3 0 4
3 6 1 1

∣∣∣∣∣∣∣∣
=

− detA

detA
= −1

x =
detA2

detA
=

∣∣∣∣∣∣∣∣
9 −9 3 4
5 −5 0 8
−2 2 0 4
3 −3 1 1

∣∣∣∣∣∣∣∣
detA

=

∣∣∣∣∣∣∣∣
9 0 3 4
5 0 0 8
−2 0 0 4
3 0 1 1

∣∣∣∣∣∣∣∣
detA

=
0

detA
= 0,

where the determinant in the numerator can be found to be 0 by cofactor expansion
along the second column. It similarly follows that y = z = 0.

The last technique (for performing a task of type T ) which I will mention in my
reference model is τ4: find A−1, multiply both sides of Ax = b to find that x = A−1b (as
per θ1), and then to find the product A−1b using the definition of matrix multiplication.
The inverse can be found via

θ41 the inversion algorithm: reduce A to its RREF and apply the same elementary
row operations to I; the sequence of operations that produces RREF(A) from A
ultimately produces A−1 from I, as can be proven by a theoretical discourse that
uses the property that each elementary row operation corresponds to multiplication
by an elementary matrix; or

θ42 the formula A−1 = 1
det (A)

adj(A).

Given that both the inversion algorithm and τ2 are made up of row-reducing the coef-
ficient matrix, and given that τ4 involves the additional step of multiplying A−1 by b, τ2 is
a more efficient approach. τ4 is a valid approach, but its value is mostly in the theoretical
discourse about matrix equations of the type Ax = b and what the invertibility of (or
lack thereof) of A means for the solutions of the equation.

The theoretical discourse Θ about matrix equations of the type Ax = b that are
targeted by T frames the techniques τi (i = 1, 2, 3, 4) (and their related technologies)
and is part of the knowledge to be taught in LA1. The theory includes the algebraic
and logical discourse that frames and proves the following theorem: if A ∈ Mn×n(R) and
x, b ∈ Mn×1(R), then the following statements are equivalent:

(a) A is invertible.

(b) The equation Ax = b has a unique solution for any b.

(c) RREF(A) = In
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(d) A is a product of elementary matrices.

(e) detA ̸= 0.

(f) The equation Ax = b is consistent for any b.

I summarize the reference model for Problem 2 in Table 5.2 on p.101.

Table 5.2: Reference model for LA1 Problem 2

Task type Technique Theoretical discourse

T

to solve by
hand Ax = b
or the linear
system to
which it

corresponds,
where

A ∈ Mm×n(R)

and

x,b ∈ Mn×1(R)

(m,n ∈
N ∩ [1, 6])

τ1 by inspection θ1
ifm = n and ∃A−1 then any observed
solution is the only one

Θ

The algebraic and logical
discourse that frames the
following statements and

proves they are
equivalent:

(a) ∃A−1

(b) Ax = b has a
unique solution ∀b

(c) A =
∏k

i=1 Ei, k ∈
N, where Ei is an
elementary matrix
∀i ∈ 1, ..., k

(d) detA ̸= 0.

(e) The equation Ax =
b is consistent ∀b.

τ2 row reduction
θ2 [θ21, θ22;
θ23]

θ23 definition of augmented matrix
and choice of row operations guided
by θ21 (Gauss-Jordan and Gaussian
elimination) or θ22 (numerical pat-
terns of the entries of a given matrix)

τ3
Cramer’s rule
(formula)

θ3 [θ31, θ32;
θ33]

θ33 if m = n and ∃A−1 then
Cramer’s rule (theorem) applies; cal-
culation of determinants according to
θ31 (cofactor-expansion definition of
determinant) or θ32 (properties of de-
terminants and row/column opera-
tions, θ32i, i = 1, 2, 3, on p.99)

τ4
find A−1 and
use x = A−1b

θ4 [θ41, θ42;
θ43; θ44]

θ44 if m = n and ∃A−1 then Ax =
b ⇒ x = A−1b; calculation of A−1

using θ41 (the inversion algorithm) or
θ42 (A−1 = 1

det(A)
adj(A)), calculation

of A−1b according to θ43 (definition
of matrix multiplication)

T∃A−1

T when A is
known to be
invertible

τ1, τ2, τ3, τ4 θ1, θ2, θ3, θ4

[τ2, θ23, θ21] is in general the more effi-
cient technique, but numerical prop-
erties specific to a given matrix mean
that T∃A−1 can be accomplished more
efficiently by other approaches:

[τ1, θ1], [τ2, θ23, θ22], [τ3, θ3]

[τ4, θ4] involves the same steps as
[τ2, θ2] and requires more calcula-
tions, so there is no benefit to τ4 over
τ2 in the practical block for T ; the
benefit is in the related theoretical
discourse or in other, related tasks
(e.g. to solve Ax = bi for several
bi, though this too can be done effi-
ciently via τ2).

Θ

T∄A−1

T when A is
known to be
non-invertible

τ2 θ2

If ∄A−1 and b ̸= 0 then the system
has either infinitely many solutions
or no solutions; if b = 0 then the
system has one solution (x = 0) if
m > n and infinitely many if m ≤ n

Θ and the discourse that
proves that if ∄A−1 and
b ̸= 0 then the system has
either infinitely many so-
lutions or no solutions.

5.2.2 Knowledge to be learned in LA1 to perform tasks of the
type in Problem 2

Table 5.3 on p.103 summarizes the knowledge to be learned in LA1 to perform tasks of
the type T (as defined in the reference model in Section 5.2.1: to solve Ax = b or the
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linear system to which it corresponds, by hand). On past exams, tasks that require stu-
dents to solve a linear system either specify which technique to use (that is, task ti states
students are to use technique τi, i = 2, 3, 4), or the linear system involves a non-square
coefficient matrix (as in task t1), in which case, the only viable technique is τ2. Tasks
of type T in problems recommended on the course outline also correspond to one of ti
(i = 1, 2, 3, 4): they similarly indicate which technique to use, either because the problems
appear at the end of the textbook section in which the related technique (and theoret-
ical discourse) is covered, or because the problem explicitly states which technique to use.

Apart from being a task students are expected to be able to perform (for its own
sake), solving systems by row reduction is the normative technique for many of the other
types of tasks students have to perform in LA1: I refer by t5 to the LA1 task type “to
solve a linear system so as to accomplish a different LA1 type of task.” In these other LA1
types of tasks, students either have to row-reduce a given linear system with an objective
other than finding its solutions, or they have to use given information to produce a linear
system that they then have to solve. These tasks types are the following11:

� to find the values of b for which the system Ax = b has no solutions, one solution,
or infinitely many solutions;

� to find a basis for the solution space of a homogeneous linear system Ax = 0;

� to find intersections of lines and/or planes in R3;

� to solve vector equations (e.g., to find the values of the coefficients for which

c1v1 + c2v2 + c3v3 = v

is true, where the vectors vi, v∈ R3 are given);

� to check if a set of vectors is linearly independent (a problem which reduces to the
task “check if

c1v1 + c2v2 + c3v3 = 0

implies that ci = 0∀i,” where the vectors vi ∈ R3 are given; in LA1, the task is
accomplished by producing the matrix A whose column vectors are v1, v2, v3 and
then either row-reducing the augmented matrix [A|0] or finding detA);

� to show a set of vectors is a basis for R3 (here too, the problem can alternatively
be tackled by checking if an appropriate determinant is non-zero);

� to find the eigenvectors corresponding to eigenvalues of a matrix.

Considering Problem 2 in light of the model of the knowledge to be learned to perform
tasks of type T (Table 5.3 on p.103), I expected students to interpret it either as t4 (be-
cause of the affirmation that the coefficient matrix is invertible) or as task t = [T, τ2]: to

11I gather these are the task types from my study of 10 past (final and midterm) LA1 exams to which I
had access from the years 2014 - 2019; the solutions (normative to LA1) of these task types, as indicated
by similar problems and examples in the course textbook, involve the production and/or resolution of a
linear system.
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Table 5.3: Model of knowledge to be learned to perform exam tasks of type T (as in LA1
Problem 2)

Task Count Technique Theoretical discourse

t1 ∈ T∄A−1

to find all solutions of
a linear system
A ∈ Mm×n(S),m ̸=
n,
m, n ∈ {3, 4, 5} (with
at least one of m,n
equal to 3)

1
[τ2, θ2] None expected

t2 ∈ [T, τ2]

to use Gauss-Jordan
elimination to find all
solutions of a linear
system
where A ∈ M3×m(S),
m ∈ {3, 4, 5},
or A ∈ M4×3(S)

11
[τ2, τ2−eq, θ2]

in LA1, row reduction (τ2)
includes τ2−eq, writing one
of the augmented matri-
ces obtained by reduction
in terms of the correspond-
ing linear system and us-
ing equation notation to
complete the task; reduc-
ing an augmented matrix to
its RREF (the purpose of
θ21, Gauss-Jordan elimina-
tion) may not be required
to successfully complete this
task

the task requires that θ21 be used for marks
to be obtained

t3 ∈ [T, τ3]

to use Cramer’s rule to
solve a linear system,
A ∈ M3×3(S)

9
[τ3, θ31/θ32]

the task requires that τ3 be used for marks
to be obtained; some instructors may expect
θ33 (acknowledgement that Cramer’s rule is
applicable after finding that detA ̸= 0), but
the task explicitly instructs students to use
Cramer’s rule, so any such expectation can
have only limited weight in the grading

t4 ∈ [T∃A−1 , τ4]

to use A−1 to solve a
linear system
A ∈ M3×3(S)

1
[τ4, θ41/θ42,

θ43]

a previous task requires students to find
A−1; t4 requires students to use it for marks
to be obtained

t5

to solve a linear sys-
tem so as to accom-
plish a different LA1
type of task

30
τ2

If the coefficient matrix is
square and the task can be
about the number of so-
lutions of the system (in-
stead of identifying the so-
lution), τ2 can be replaced
by calculating the determi-
nant of the coefficient ma-
trix and using the technol-
ogy det (A) ̸= 0 ⇔ Ax =
b has a unique solution ∀
b. Students are free to
choose their technique in
these cases.

None expected

Count is the number of exam problems, among 4 midterm and 6 final examinations between 2014 - 2019, in which this was the task
to accomplish. Total number of problems on these midterm and final examinations is 116.
This count does not account for the number of times these tasks appear in problems recommended on the course outline or in assignment
problems. Apart from midterm and final exams, students perform tasks in assignments that correspond to the weeks in which
the related praxeologies are to be taught in class.
A: the coefficient matrix of the linear system.
S: the set of scalars in LA1 exam tasks t1, t2, t3: mostly integers in [−5, 5], occasionally including an integer in [−20,−7].
T, τ , and θ: the task types, techniques, and technology defined in the reference model (see Table 5.2 on p.101).
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solve a linear system by row reduction12. Indeed, τ2 is the normative technique for solving
linear systems whenever no instruction is given as to which technique to use (as in tasks
t1 and t5). Additionally, τ2 is the technique required for t2, a task that appeared on each
of the 12 exams to which I had access. I therefore expected students to spontaneously
use the normative techique τ2 (row reduction) when given Problem 2 in the TBI, but also
expected the affirmation that the coefficient matrix is invertible to prompt some students
into the more time-consuming τ4 (find A−1 and use A−1Ax = A−1b ⇒ x = A−1b).

In the case of Problem 2, the affirmation that A is invertible indicates Cramer’s rule
([τ3, θ3]) is applicable, and the proportionality between the first column of A and b is
amenable to calculations (using θ32) that can make finding the solutions quicker than
row reduction. However, it is not a norm in LA1 to decide, among τ1, τ2, τ3, τ4, which
technique to use to solve a linear system; the norm is to use Cramer’s rule (τ3) only upon
instruction to use it. In contrast, row reduction is the normative technique for 42 of the
116 problems in the midterm and final exams to which I had access13.

I wondered whether any of the participants would solve the system by inspection (as
in τ1 of the reference model), and if none of them would, whether this would be because
they do not notice that b is equal to -1 times the first column of A, or in spite of noticing
that.

5.2.3 Knowledge LA1 students activated in response to Prob-
lem 2

Table 5.4 summarizes the paths of participants’ activity as they worked on Problem 2.
Step 1 refers to the activity a participant spontaneously engaged in upon reading the
problem statement; I group students according to Step 1 and color-code the groups to
help trace students’ paths thereafter. Students moved on to a new step (e.g., Step 2,
Step 3) mostly after a prompt from myself, the interviewer (e.g., “can you think of any
other approaches?” or pointing out A is invertible and asking if that makes them think
of any other approach), though in some cases students shifted tasks/techniques without
a prompt from the interviewer. I categorize a student’s activity in a new step if they
presented it as such; if I prompted for another approach and a participant described one
that is essentially equivalent, I still categorized it as a new step. If a participant does not
appear in the column for Step i (i ≥ 2), it is because they did not engage in any new
activity after Step i− 1.

Among the 10 participants, 7 spontaneously began to row-reduce to solve the system,
1 spontaneously started to calculate det (A) to check if A is invertible (but immediately
switched to row-reduction upon noticing the affirmation in the problem statement that A
is invertible), 1 spontaneously began to use the inversion algorithm to solve the system by
using Ax = b ⇒ x = A−1b, and 1 spontaneously used Cramer’s rule to find the solution
of the system. Only this last participant came close to solving the system: this was P8.
P8 found that x = y = z = 0 by activating [T∃A−1 ; τ3; θ32, θ33] and taking advantage of the
proportionality between b and the first column of A; P8 determined w is equal to “some

12I distinguish t from t2 as follows: while t2, in LA1, explicitly states to use Gauss-Jordan elimination,
t does not and rides instead on the norm that row-reduction is the way to go.

13This is the number of exam problems that correspond to tasks t1, t2, and t5.
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Table 5.4: Paths of LA1 Students’ Activity in Problem 2

Step 1 Step 2 Step 3 Step 4

Practical block [t, τ ]

P
ar
ti
ci
p
an

t

Type of engagement
with [t, τ ]

P
ar
ti
ci
p
an

t

Type of engagement
with [t, τ ]

P
ar
ti
ci
p
an

t

Type of engagement
with [t, τ ]

P
ar
ti
ci
p
an

t

Type of engage-
ment with [t, τ ]

[t; τ2, τ2−eq; θ21, θ23]
row-reduce to find the

solution set of the system

P1
P4
P5
P9
P10

enacts, does not
complete t

P5

enacts theoretical
block to predict the
system has one solu-
tion

P3 describes τ2−eq

P3
enacts τ2, does not
complete t

P6
enacts τ2 but on A
(instead of [A|b]),
does not complete t

P2 describes how to use
(incorrect choice of
augmented matrix)P7*

P7* describes how to use P8 mentions

[t4; τ4; θ41, θ44]
find A−1 so as to multiply
each side of Ax = b by A−1

and find the solution of the
system

P2 partially enacts
P1
P6
P9

mentions

calculate det (A) to check if
A is invertible or to check
the expected number of

solutions

P3

enacts det (A) calcu-
lation, abandons once
aware of the affirma-
tion that A is invert-
ible

P4

describes own theoret-
ical block, concludes
det (A) calculation is
“useless” for type T
tasks

P7*

describes how to use
(determinant calcula-
tion for incorrect ma-
trix: [A|b] instead of
A), dismisses

[T∃A−1 ; τ3; θ3]
use Cramer’s rule to find
the solution of the system

P8

enacts, nearly
completes: finds
x = y = z = 0, w =
some number

P4 mentions, dismisses

P9 describes how to use

use the fact that A is
invertible, but no task

identified

P5 mentions

P8

mentions formula

A−1 =
1

det (A)
adj(A),

dismisses (as not
“helpful”)

talk about linear
transformations (reflection,

symmetry)
P7*

describes, dis-
misses (may not
be “helpful”)

number” but did not “really want to calculate it further because the only thing that’s left
is just algebra.” None of the other participants identified a (correct or incorrect) value
for any of the unknowns.

The knowledge participants activated in response to Problem 2, beyond their sponta-
neous reactions, still mostly related to one of the four categories of spontaneous activity:

τ2 row-reduce to find the solution set of the system

τ4 find A−1 so as to multiply each side of Ax = b by A−1 and find the solution
of the system

find det (A)14 calculate det (A) so as to check if A is invertible or to check the expected
number of solutions, but dismiss before implementing

τ3 use Cramer’s rule to find the solution of the system

In what follows, I discuss the knowledge participants activated relative to each of these
four categories. I do not discuss the knowledge activated by P7* in step 4 of his engage-

105



ment with the problem (see Table 5.4 on p.105) except to note it had little to no basis
in the mathematics at hand and mainly reflected P7*’s general behavior throughout the
interview, in that he always suggested to activate a variety of technologies, not always
relevant to the mathematics at stake, without describing a concrete way through which
to activate a technology, and usually dismissing the suggestion soon after making it. I
finish the analysis of participants’ engagement with Problem 2 with an examination of
their activity and explanations: the goal is to address the question of whether students’
normative practices align with or impinge on the mathematics at stake in Problem 2.

5.2.3.1 Row reduction

All 10 participants brought up or engaged with row reduction as a technique for finding the
solution set of the system; in terms of the reference model and model of knowledge to be
learned, all participants brought up [t, τ2] and engaged with parts of [τ2, τ2−eq; θ21, θ23; Θ].
This was the spontaneous activity of 8 of the 10 participants: these 8 consist of 7 who
immediately engaged in row-reduction upon reading the problem statement (P1, P4, P5,
P6, P7*, P9, P10), as well as 1 participant (P3) who initially set to find the determinant
of the coefficient matrix, but I categorize their spontaneous activity in the practical block
[t1; τ2, τ2−eq] due to their subsequent explanation and activity.

P3’s spontaneous reaction was to calculate det (A) to check if A is invertible; I in-
tervened 2 minutes into this activity to ask the participant why she was looking for the
determinant, and she then noticed the affirmation in the problem statement that A was
invertible (“so I don’t really need to check its determinant here [. . . ] because it is in-
invertible. That means the determinant [...] it’s not zero.”); she then spontaneously
started to row-reduce. P3 later claimed her practice is to first check whether det (A) = 0
to decide whether to row-reduce to get the RREF of the augmented matrix, or rather to
reduce it to some REF, find the corresponding equations, and then use back-substitution
(“I’m not really sure how to handle the [non-]invertible matrix and that is the only reason
that I chose the different ways”). Given P3’s claim she checks whether det (A) = 0 to
inform her approach to τ2, I categorize P3’s spontaneous activity as row reduction.

Apart from the 8 who spontaneously engaged in row reduction, the remaining 2 par-
ticipants (P2 and P8) brought it up after a first prompt from the interviewer asking them
if they could think of any other approach. P8 alleged that row reduction would have been
her spontaneous activity if not for the affirmation that the coefficient matrix is invertible.

In the next section, I describe participants’ engagement with [t, τ2]. I will follow by
addressing threads I found in participants’ techniques and explanations that can help to
characterize the practices they had developed in relation to [t, τ2].

5.2.3.1.1 Practical blocks of students’ activity relative to [t, τ2] All partici-
pants engaged with τ2. They either implemented it or suggested it as a technique to
accomplish task t. Here I describe the practical block of students’ engagement with this
technique.
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7 of the participants implemented τ2: P1, P3, P4, P5, P6, P9, and P10 did row op-
erations on paper. 3 of them (P5, P6, P9) explicitly identified the linear equations in
the system before engaging in row operations. Participants’ row operations were guided
by the goal of getting leading ones (mostly in R1, but in some cases elsewhere) and 0’s
either above or below this leading 1; the choice of row operations and speed at which
participants did their arithmetic (with and without calculators) were such that partici-
pants would not have finished row reducing the system within 12 minutes (for most of
those who enacted τ2, I intervened around 9 minutes into their activity as this became
clear and I had allotted an average of 15 minutes per problem in the TBI).

P2, P7*, P8 engaged with τ2 but did not implement it. P2 suggested an incorrect
use of τ2, where the augmented matrix would have involved the transpose of A instead
of A; P7* stated the technique (“Gaussian elimination” of the 4× 5 augmented matrix),
described elements of Θ and types of outcomes that result from τ2 (in terms of RREF
of the matrix), and then proposed an incorrect use of τ2, where the augmented matrix
would have been a 3 × 5 submatrix of the original augmented matrix; P8, who had es-
sentially solved the system in her first approach (using Cramer’s rule), only mentioned
the technique.

None of the participants managed to solve the system via τ2 in the allotted time. I
did ask all the participants, except for P8 (who had essentially solved the system pre-
viously, with Cramer’s rule) what they expected to find as they kept going. I describe
participants’ responses in the following paragraphs.

P3 said that since the coefficient matrix is invertible, row-reducing the augmented
matrix would lead to a matrix of the form [I4|B] where B is the column matrix made
up of the values of the unknowns that solve the system. P1 and P2 also described this
final result, but did not justify it (and I did not prompt for an explanation). P10 also
described the same final result, and when I prompted to ask how she knew this would
be the case, she did not refer to A being invertible; instead, she said she could verify the
solution by plugging it in to the original equation.

P4, P5, P7* gave a general description of the potential results of row reduction: the
case of 1 solution (using a description similar to P3’s), the case of no solutions (the par-
ticipants referred to the potential that one row would imply 0 = a where a ̸= 0), or the
case of infinitely many solutions (where one of the rows is made up entirely of zeros).

After I pointed out to P5 that A is invertible, P5 said this implies that det (A) ̸= 0
and that row-reducing the augmented matrix would lead to a matrix of the form [I4|B]
where B is the column matrix made up of the values of the unknowns that solve the
system (much like the description given by P1, P2, P3, and P10).

After I pointed out to P7* that A is invertible, P7* said this implies its reduced
row echelon form would have a row of 0’s and so the system would have infinitely many
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solutions. P7* wrote the following:
0 0 0 0 0


It seems that P7* had confused “coefficient matrix” with the augmented matrix. In this
instance, P7* spoke of augmented matrices as matrices that can be invertible; this error
persists into P7*’s next suggestion, when he talks about the determinant of a 4×5 matrix
(he writes (| |)4×5 in reference to the determinant of the matrix). Prior to either sugges-
tion, P7* had said that he “would try to figure out what’s going to be the characteristics
of the invertible matrices ‘cause [he] kind of forg[o]t a lot about them.” Nevertheless, that
P7* associated the notions of invertibility and determinants with the notion of augmented
matrices suggests a superficial grasp of the notion of augmented matrix.

Some time after I pointed out to P4 that A is invertible, he asked whether it was a
rule that if the matrix is invertible, then the system has a solution; I turned the question
back on him and he claimed that if it is a rule (my emphasis), then he would expect to
find a solution.

When I asked P9 what he expected to happen if he kept going, he said there would be
infinitely many solutions because the last matrix he had produced (before I interrupted
his row reduction process) had 

−1
0
0
0


as its right-most column, and if 0t = 0, then t can be any number, so there are infinitely
many solutions. None of the rows in P9’s last matrix were made up entirely of 0’s or
appeared to be leading to that result.

Finally, when I asked P6 what he expected to happen as he kept going, P6 started
to answer but switched approaches almost immediately to τ4 (multiplying both sides of
Ax = b by A−1), and I did not return to discuss τ2.

Table 5.5 on p.109 summarizes participants’ predictions.

5.2.3.1.2 The theoretical blocks that drive students’ use of [t, τ2] Below, I
share the theoretical blocks that influence participants’ use of τ2. These theoretical blocks
include the concerns and difficulties participants had when it comes to this technique:
these concerns and difficulties seem to shape how participants engage with τ2, so in the
sense of the notion of praxeology (a way to model an activity in terms of its practical
block and its theoretical block, the latter of which consists of the theory and technology
that produce and justify the techniques in the practical block), these concerns and diffi-
culties form what we’d call the theoretical block of participants’ activity. I also include,
in participants’ theoretical blocks, the justifications they have for the validity of τ2 as a
technique for accomplishing the task t. I discuss these theoretical blocks, together with
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Table 5.5: LA1 participants’ predictions about what they would find if they continued
with row reduction (τ2) in Problem 2

Prediction P

Participants who made P

initially
after
I said
∃A−1

“Option 1 solution”: a matrix
of the form [I4|B]
where w = B11, x = B21, . . .

because A is invertible P3 P5

no justification P1, P2, P10

3 options:
“Option 1 solution”;
a matrix where one row looks
like [0 · · · 0|a] where a ̸= 0 so
there are no solutions;
or a matrix where one row
looks like [0 · · · 0|0] so there are
infinitely many solutions

“the teacher emphasizing”
these are the only
3 options, and from experi-
ence, had “never [gone]
through a solution other than
those three”

P4

3 options:
the left side of RREF (A|b) is
I so there is 1 solution;
a matrix where one row looks
like [0 · · · a|0] where a ̸= 0 so
there are no solutions;
or a matrix where one row
looks like [0 · · · 0|0] so there are
infinitely many solutions

1 solution since there’s no row
made up of 0’s;
no solutions since non-zero
number can’t equal 0;
infinitely many solutions since,
if 0=0, the variable can be any
number and 0=0 still holds

P5

2 options:
“Option 1 solution”;
or a matrix where one row
looks like [0 · · · 0|0] so there are
infinitely many solutions

P7*

there will be infinitely many
solutions

because of the row of 0’s in
RREF (A|b) (incorrect prop-
erties: ∃[A|b]−1, “∃A−1 ⇒
RREF (A) has a row of 0’s”)

P7*

because of 0’s in the right-most
column of the matrix he had
last found, and the fact that
“if 0t = 0 then t can be any
number”

P9

if it is a rule that ∃A−1 ⇒ Ax = b has a solution,
then there is a solution

P4

no prediction made got distracted by thought of τ4 P6
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the practical component of participants’ activity, to examine whether their activity was
driven by consideration of the specifics of the problem at hand, by mathematics inherent
to t, or primarily by normative practices they’ve built in LA1, and whether the latter
supports or impinges on the mathematics at stake.

5.2.3.1.2.1 Students use τ2 and know it works because it’s a norm in LA1.
The prevalence of τ2 in participants’ activity is not surprising. As explained in 5.2.2,
τ2 is the normative technique for 42 of the 116 problems in the past midterm and final
exams to which I had access. Given Problem 2, 8 of the participants spontaneously en-
gaged with τ2 and it was the second technique of choice for the participants who hadn’t
spontaneously engaged with it (P8 and P2). That said, both P8 and P2’s explanations
suggest their practice is also driven, to a significant extent, by the normative practices
of LA1: P8 claimed she’d have used τ2 from the get-go if not for the affirmation that
A is invertible, and P2 proposed an incorrect use of τ2 (he had suggested to row-reduce
[At|b]) and was not confident in his suggestion because it wasn’t the usual: “usually on a
test they would put like uh, questions everyone can solve [. . . ] I don’t think other people
would think this way.”

That τ2 was the spontaneous activity for nearly all participants suggests participants’
approach to Problem 2 was driven in large part by their normative practice from LA1;
the scalars I had chosen for the system make of τ2 one of the less effective approaches
for solving the system (indeed, it can be solved by inspection, and the proportionality
between b and the first column of A make Cramer’s rule amenable thanks to the poten-
tial to use column operations when calculating determinants). The explanations given
by four participants (P4, P5, P8, and P10) further indicate that participants rely on
τ2 primarily because it the norm in the institution (LA1). (Meanwhile, P2 was unsure
of his incorrect use of τ2 and the only explanation he gave for this uncertainty was that
his suggestion wasn’t the norm in LA1.) I address P4, P5, P8, and P10’s comments below.

According to P4, P8, and P10, using τ2 is the “usual,” it is the “obvious”; it is a
knee-jerk reaction. P8 qualified τ2 as “the usual”: “if I wouldn’t [have seen] it says it’s
invertible, I will [sic] probably think about the usual [. . . ] basically, to solve the system
of equations and to use either Gaussian elimination or Gauss-Jordan elimination.” P10’s
only explanation for how she knew τ2 would work to find the solutions was that “it’s
how [she’d] always done it”; she added that “there were some questions like this, in the
past papers as well. [She] had seen some answers. Stuff like this. And also, normally if
[she sees] a question like this, it’s kind of obvious [she] has to do this.” When P10 was
asked if she could think of another approach to the problem, P10 suggested to “move”
the matrix of unknowns “to the other side [of the equation]”; given this suggestion is not
founded, in any way, in the mathematics involved in τ2, I infer that P10’s use of τ2 is a
norm acquired from LA1 and is not informed by any other knowledge. As P4 said: “the
second I see Ax = b, oh ok, REF. I mean, I need to reach REF and start solving toward
that.”

Part of participants’ reasoning for using τ2 is auto-technological: they use it because
it works. The reduced form of [A|b] that is the target of τ2 produces solutions. As P7*
puts it: “eventually, the left four columns become [...] ideally it becomes something like
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identity matrix [...] so this right column is just the solution here. So that’s why I know
that [τ2] works.” P4 also addresses what row operations can produce: “in my ideal case,
I would - or maybe not ideal [laughs], but in a normal case, I would, 0 0 0, and then
expect to have a rough identity matrix, and I could just pick out my w, x, y, z.” He also
describes the possibility that parameters be involved in the solution set and the possi-
bility that the system has no solutions. P6 characterizes the possibilities afforded by τ2
as “nice”: “[there are] some nice-looking, easy simplifications I can do here. Because
I can just completely get a leading one in the second row with all zeros.” Participants
know τ2 produces a “rough identity matrix” - a (reduced) row echelon form - and so, row
operations are the “way to victory” (P4).

P4’s explanations for how he knows τ2 works - that it is his “way to victory” - came
down to experience and what the teacher had taught in LA1. Asked how he knew using
row operations on the augmented matrix would lead to a solution, P4’s response was
this: it’s “just the way that we were taught; so yeah, so to find a unique solution, I
need to reach REF or RREF and if REF I need to back substitute.” In the context of
LA1, back-substitution involves finding the linear system corresponding to a reduced form
of an augmented matrix and then using substitution to solve the system of equations.
To explain other knowledge he had about τ2, P4 was again only able to rely on norms
established in LA1, though he did attempt to refer to the mathematics at hand: he main-
tained that the possible results from τ2 are that there would be one solution, “parametric
solutions,” or no solutions, and asked how he knows this, this was his response:

I never studied or encountered a problem where it wasn’t. But anyways
also, I either have one solution, or I have countable solutions, which means
parameter, or have no solutions. There’s nothing else in the, my number line,
I could have like one, I could have two, three, which means parameter. [...]
the two solutions, three solutions fall under the parametric solution [despite
prompts to try and have P4 clarify what he meant by this, his intent remains
unclear] [...] the teacher emphasizing, was emphasizing a lot that those are
my three cases. So it just stuck in my head like that. And also through, well,
I never went through a solution that was other than those three.

In contrast to P4’s knee-jerk reaction to the problem (“the second I see Ax = b, oh
ok, REF”), P5 seemed to not recognize the task at first; she only recognized it when she
perceived it to be about a system of linear equations (as opposed to an equation between
matrices). At first, she did not know the role played by the matrix on the right side of
the equation. She wrote

9w + 16x+ 3y + 4z =

and then multiplied A and x incorrectly:
9w 16x 3y 4z
5w 6x 0 8z
−2w 3x 0 4z
3w 6x


[...]make P5 realize that Ax = b corresponds to a linear system: “I’m trying to jog

my memory [. . . ] I don’t know what to do with [the numbers on the right side of the
equation] [. . . ] Oh wait, I know what this is!” At this point, P5 recognized that Ax = b
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was a system of linear equations. Asked how she knows τ2 would end up giving her the
solutions, she gave a reason that aligned with P4’s and P10’s: “when you multiply like,
this matrix by the second matrix, you’re gonna get pretty much a system... it’s like a
system of equations to solve algebraically with – this is the way I learned how to do it
this year” [emphasis added].

P4, P5, P8, and P10’s comments reflect the normative quality of τ2 as a technique for
performing task t. P5’s additional comments about the technique, and explanations given
by other participants, point to another justification LA1 students have for the validity of
τ2 as a technique for solving linear system: a superficial grasp of its equivalence to τ2−eq,
the set of techniques students learn in high-school for solving linear systems. I address
this justification below.

5.2.3.1.2.2 Students may know τ2 is equivalent to and simpler than τ2−eq,
but even when they do, this knowledge is superficial. Participants P5, P6, and
P9 justified using τ2 with the claim that it’s like solving linear systems using the equations
(τ2−eq) but is simpler, or nicer-looking. This justification aligns with the knowledge to be
taught in LA1: τ2 is introduced as an equivalent version of τ2−eq that saves time because
it does away with the need to write the unknowns and equal signs. As P6 put it, τ2−eq is
“the gross way” whereas τ2 offers “nice-looking, easy simplifications.” P9 addressed the
utility of τ2 in the case of larger linear systems: “over here, you’re multiplying [A and x].
And you’re doing it by the equation. So you’re going to rewrite the equation and all the
coefficients and stuff. So because it works for small matrices, the same process applied to
bigger matrices where you cannot prove it, it’s easier to do it by matrix, which is why I
believe [it] is correct.” To understand what P9 meant by “you cannot prove it,” I turn to
his previous comments about “doing it [solving the system] by equation” (that is, solving
the linear system via τ2−eq): I presume he was referring to the hassle (or, perhaps, the
impossibility) of solving larger linear systems via τ2−eq.

Before I address the knowledge some participants did have about the relation between
τ2 and τ2−eq, I address the case of three participants (P2, P7*, and P10) whose engage-
ment with τ2 severed any connection to τ2−eq. P2 suggested to apply τ2 to [At|b]; P7*
suggested to apply it to a 3 × 5 submatrix of the initial augmented matrix; P10 used
τ2 appropriately, but when asked if she can think of another approach, she suggested to
“move” the matrix of unknowns “to the other side” (“Maybe. I don’t know if it would
work or not. But maybe, I dunno”). I address P2 and P7*’s approaches in the next two
paragraphs.

P2 had spontaneously engaged with [t4, τ4; θ41, θ44] (use x = A−1b) and expressed self-
doubt: P2 found the row reduction in the inversion algorithm to be “tricky” and said
he would “skip it if it were on a test.” When I asked P2 if he could think of another
approach, he suggested row reduction, but on the augmented matrix made up of the
transpose of A (that is, P2 suggested to row-reduce [At|b]). To explain this, P2 said each
row of A “is like” one of the variables, so once the row and columns are swapped, each
column of AT “[would be]” one of the variables. P2 was not confident in this approach,
but did not pinpoint that the issue was an absence of θ23 (the definition of augmented
matrix); instead, his lack of confidence in using τ2 on [At|b] had to do with the fact that
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it’s not the norm in LA1. He was “not sure if this is right. . . the obvious, obvious way
to do it is to invert [A] and multiply it by the matrix here” (as in his first approach,
with τ4); the second approach he suggested might not be right because “usually on a test
they would put like uh, questions everyone can solve [. . . ] [P2 didn’t] think other people
would think this way. Obvious way would be to invert this and multiply.”

P7* did not enact [t, τ2] but rather invoked elements of its mathematical practical and
theoretical blocks: “the row operations [...] are reversible [...] so that means the initial
augmented matrix I have and the final augmented matrix I simplify, or the reduced row
echelon form, they are equivalent, in, in - I mean in terms of the rows. Which means
the linear system has not had [...] structural change in between.” He described the types
of results that can be obtained via row operations: “eventually, the left four columns
become [...] ideally, it becomes something like identity matrix [...] Which means, well, at
this point, if I write in [the form of a matrix equation], it’s going to be identity matrix
times something equals to something, which is the last, the right column. So this right
column is just the solution here.” To clarify, P7* did not mean that here, the left side of
the augmented matrix would reduce to I, rather that in general it reduces to a RREF:
when I asked what P7* expected would be found here, if he’d get the identity matrix on
the left side, he said it’s possible the last row or two might be completely zero (in which
case, “this matrix [would] have infinitely many solutions”). When I asked P7* if he could
think of any other approach, his suggestion was still to use row operations, but this time
he suggested to do so on a 3× 5 submatrix: since A is invertible, “it means there’s gonna
be at least one row after the Gaussian elimination that’s gonna be completely 0, which
means I may just [...] cancel out [...] any row here and it will not [...] change the final
solution [...] so it will make the calculation easier [...] by [...] doing this 3× 5 elimination
in the augmented matrix.” P7* continued:

A matrix is invertible, it means the vectors, the columns are [...] not linearly
independent. They are linearly dependent. No, the row. . . wait a minute.
Yes, let’s assu... I’m not sure, but let’s assume that the row columns, they
are not. They are not linearly independent, which means I can just cancel
any of them and still the others. . . the others may be linearly independent,
but they may also be linearly dependent, but let’s just use the other 3 to do
the calculation and it will still work.

P7* refers to several concepts from linear algebra which have properties that relate
them to one another: the notion of invertibility of a matrix, its reduced row echelon form,
and linear dependence of column or row vectors of a matrix. P7*’s third suggestion for
how to approach Problem 2 involved the determinant of the 4 × 5 augmented matrix.
P7* has incorrect versions of these interrelated properties. Further, P7*’s attempt to
apply properties of matrices to an augmented matrix shows P7* is glossing over the very
definition of augmented matrix (θ23); it’s just a matrix like any other. This suggests that
P7*’s grasp of the concepts he discusses - including τ2 and any notion of equivalence of
rows in this process - is superficial.

P6 similarly engaged with τ2 in a way that was initially severed from τ2−eq and θ23,
but, unlike P2 and P7*, acknowledged the error later on. Nevertheless, and despite P6’s
explicit claim that τ2 and τ2−eq are “functionally” equivalent, his activity in relation to
Problem 2 suggests his knowledge of the relation between τ2 and τ2−eq is superficial. At
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first, P6 applied row reduction to the coefficient matrix, instead of the augmented matrix.
While doing this, P6 expressed doubt about what he was doing and eventually stopped
the approach: “now I’m just getting myself... Should I just do the systems of equations?
I feel like I’m making a mistake... 1 2 3.. plus 2... is... honestly, I’m experiencing some
real doubt here.” He then switched to τ2−eq and said “I know this is a little bit messy
this way, but I like algebra.” Later in the interview, P6 said he stopped because he had
realized he should have been using the augmented matrix—but then asked if row reduc-
tion (τ2) would have led him to a solution. I turned the question back to ask him what
he thinks: “I’m not sure actually, I’m not, because... it doesn’t mean - I mean, even if I
did, it doesn’t look like a very, like, pretty reduction.”

The comment that it “doesn’t look like a [...] pretty reduction” might have suggested
that P6 is considering the efficiency of his techniques, but his next suggested approach -
τ4, finding A−1 by row reduction and multiplying each side of Ax = b by A−1 to isolate x,
and his claims that this technique “should have been obvious, [it] seems like a much easier
way to do it than [τ2],” that “the math is probably faster to invert it,” betray a superficial
grasp of the procedure involved in τ2 and τ4. After all, both involve row reduction, and
τ4 involves more calculations since the row operations applied to A must be applied to I4
in parallel (and then there’s the multiplication of A−1 with b). Even if P6 wishes to act
efficiently, a superficial grasp of these techniques may impede this inclination.

When I asked why row reduction might or might not work, P6 acknowledged that
“eventually, you just get, like, the one coefficient and you get [inaudible] w x y etc.
equals” and (after a prompt to explain why this happens) said this happens because
“you’re just setting these equations all equal to each other, and then like, subtracting
them out,” “you just like move this over to the side and say plus [inaudible] equals zero,
minus two equals zero and set that equal to each other,” “sort of like reduce until you
have one equation left. I know, that’s not exactly how it works. But it’s kind of, that’s
sort of how I think about reduction, it’s like that,” “you’re taking, like, some of this away
from another and you’re messing with the constants that they’re, like, the equations are
equal to.”

P6’s description of “setting equations all equal to each other,” “subtracting them out,”
and reducing “until you have one equation left” are reminiscent of a high-school technique
for solving linear systems called “method of elimination” or “method of reduction.” When
I asked P5 how she knew that the process of row reduction would end up solving the
system, she explicitly referred to the method of elimination:

P5: You’re solving like a system of equations. And that method is always going to work
to solve a system of equations.

I: which method? Like the... this, with the augmented matrix?

P5: Yeah, it’s pretty much like solving it like you would, like, elimination, for like a
normal set of equations.

Mathematically, this method corresponds to the elementary row operation of adding a
multiple of one row to another row, often used to get an entry of 0 in a desired location.
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To illustrate the high-school technique of elimination, I borrow an example from Alloprof
(n.d.)15. To solve the linear system

15y − 9x = 6
−5y − 2x = −10

the technique is to “find the operation that makes the coefficients of y equal in both
equations” (perhaps this is what P6 meant by “setting equations all equal to each other”)
and “[e]liminate by subtracting term by term the two equations to form a first-degree
equation with one variable” (similarly to P6’s “subtracting them out” and reducing “until
you have one equation left”) (Alloprof, n.d.):

15y − 9x = 6
−(15y + 6x = 30)
0y − 15x = −24

This last equation is then solved for x and the value found is substituted into either
one of the first equations to find the value for y.

On surface, the high-school technique of elimination looks different from its row-
reduction equivalent, even if it is produced by the same algebraic and logical discourse:(

15 −9 6
−5 −2 10

)
3R2+R1→R1−−−−−−−→

(
0 −15 −24
−5 −2 10

)
This row-reduction of the augmented matrix mimics the following algebraic and logical

manipulations of the system of equations:

15y − 9x = 6
−5y − 2x = −10

⇔ (15y − 9x) + 3(−5y − 2x) = 6 +3(−10)
−5y − 2x = −10

⇔ − 15x = −24
−5y − 2x = −10

If only the procedural components of the high-school technique of elimination are
known, it can be difficult to bridge the relation between τ2 and τ2−eq. This can make it
difficult for students to know their equivalence in more than a superficial manner. Indeed,
the procedural component of the technique doesn’t require knowledge of equivalent equa-
tions/systems (equations/systems whose solutions are the same) nor of any logic (“this
equation is true and that equation is true if and only if ...”).

None of the participants explained why τ2−eq works as a method for solving linear sys-
tems. P7* did say that augmented matrices are equivalent to their RREF, and that this
means that the corresponding linear system has not had “structural change” in between,
but his subsequent explanations question whether P7* had the algebraic discourse that
supports this claim; P7*’s mention of “structural change” could have been a nominal
description.

15Alloprof is a not-for-profit digital service delivered by Quebec teachers and subject matter experts
to help elementary and high-school students in their studies.
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In addition to the potentially superficial grasp of how the row operations involved in
τ2 relate to the operations done in τ2−eq, there is a normative quality to how students
interpret what they find by reducing an augmented matrix with row operations: students
have rules about types of rows that can appear in a reduced form of an augmented matrix
and the number of solutions a system has. For example, I stopped P9’s row-reduction
process when he had finished producing the following matrix and asked what he expected
to happen as he kept going: 

1 2 1
3

1
3

−1
0 1 2

3
2
3

0
0 0 −13

3
59
3

0
0 0 4

3
−17

3
0


He described the remainder of the process: get 0’s, “get a diagonal,” and “values

on the side.” P1, P2, P3, P4, P5, P7*, and P10 also initiated their predictions with a
description of what a reduced augmented matrix might look like, before describing how
they interpret the solutions from a reduced form. (P6 got distracted by his idea of using
τ4, and so did not make a prediction, and P8 had already nearly-solved the system using
Cramer’s rule, so I did not ask her to make a prediction of what would happen if she used
τ2.) In P9’s case, he predicted the system would have infinitely many solutions because
of the 0’s in the rightmost column and because, if 0t = 0, then t can be any number; but
there was nothing in the work he had done so far to ensure any row would give rise to
such an equation. Rather, the 0 on the right side of the augmented matrix seemed to
have triggered a rule P9 had about reduced forms of augmented matrices. I prompted
him to describe what the left side of the bar (of the augmented matrix) would look like,
in case this might change his prediction. He drew the following to show what the left
side of the reduced form would look like:

w 0 0 0
0 x 0 0
0 0 y

z

(“And then over here, I have numbers, with zeros all around.”) P9 was not the only
participant to have a rule associating reduced forms of augmented matrices and the case
of infinitely many solutions: P4, P5, and P7* said that if there is a row of the form
[0 · · · 0|0], then the system would have infinitely many solutions. This is false. Consider,
for instance, the systems corresponding to the following augmented matrices:1 0 4

0 1 5
0 0 0

 ,

(
0 0 4
0 0 0

)
But the tasks students are usually given in LA1 do not involve such situations. Stu-

dents’ predictions, which inferred conclusions about linear systems from rules about types
of rows that might appear in a row reduction, suggest there is a normative element to
students’ interpretation of reduced forms of augmented matrices. These rules normally
work in the tasks students are expected to complete.
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Some of the rules participants gave had other mathematical inaccuracies (more sig-
nificant than in their failure to account for cases like those above); these, along with some
participants’ explanations, show these rules are not founded in a definition of augmented
matrices. P5, for example, had the rule that if there is a row of the form

[
0 0 0 5 0

]
then there would be no solutions “because a number can’t equal 0.” P5 brought this rule
up again in Problem 4, when she said a row of the form[

0 0 0 16 0
]

would mean that 16 = 0. She struggled to justify this and tried to appeal to the knowledge
she was taught in LA1:

I’m trying to think about how that would [pause] I learned like, why. Like, if
one variable is a five and then it’s equal to 0, 0 0 5 0. Like, why that makes
sense. [. . . ] Yeah, so there’s no solutions if [pause] the variable... So is - this
one, right here? With the [...] z section, [it’s] five and that’s equal to zero,
then there’s going to be no solutions in the matrix because you can’t have a
[non-zero] number equal to zero.

P5 interpreted the vertical bar in the augmented matrix as an equal sign and spoke of the
entries (e.g., the “z section”) as if they were values of the unknowns, rather than their
coefficients; this brings to mind P9’s representation of a reduced form of his augmented
matrix (see above): he had denoted the entries along the main diagonal by w, x, y, z.

Eventually, P5 moved on to explain the reasoning behind the rule that a row of zeros
implies there are infinitely many solutions. It was only in the context of this rule that
she used the definition of augmented matrices, possibly aided by a rule that sounded like
P9’s “if 0t = 0, then t can be any number.” Indeed:

If you have a row of zeros, then... that number can be, that variable can be
any number, like all real numbers [...] because... it’s a variable... or no, if the
co - sorry these are for coefficients. If the coefficient is... zero, then, and it’s
equal to zero, then the variable can be any number and it’s still going to be
equal to zero.

P4, P5, and P7*’s predictions about τ2 were descriptions of (seemingly mutually exclu-
sive) cases of the types of rows one might find by reducing [A|b]; this, and the explanations
they gave, show their practice is regulated by mathematically incorrect norms and are
only superficially connected to τ2−eq. P4’s explanation for how he knows that “one solu-
tion,” “parametric solutions,” or “no solutions” are the only three options suggests from
where students draw validity for their rules: “we never studied or encountered a problem
where it wasn’t. But anyways, also, I either have one solution, or I have countable so-
lutions, which means parameter, or have no solutions [...] the teacher emphasizing, was
emphasizing a lot that those are my three cases. So it just stuck in my head like that.
And also through well, I never went through a solution that was other than those three.”

In the knowledge to be taught in LA1, there is emphasis on the theorem that a linear
system in Rn has either 1 solution, no solutions, or infinitely many solutions. This is
reinforced by tasks students have to perform, wherein students either have to determine
whether a system has 1 solution, no solutions, or infinitely many solutions, or to find
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values of augmented matrix entries for which the system has 1 solution, no solutions, or
infinitely many solutions. P4, P5, and P7*’s predictions and explanations suggest stu-
dents form rules about reduced forms of augmented matrices, rules that perhaps bypass
the need for a definition of augmented matrices, and associate them with each of the
possible cases. I hypothesize these rules came about from their experience in performing
tasks of type T in LA1, as the options students described do capture the possibilities that
arrise in the problems given in the course.

The rules proposed by some of my participants are not founded in the underlying
mathematics, which helps to explain the brittle quality of these rules. P5 mis-remembered
the type of row that would lead to a conclusion of no solutions, and deduced that if a
matrix has a row of the form

[
0 0 0 5 0

]
, then there would be no solutions. P7*

did not even mention the option of no solutions even though he was giving a general
description of what might happen when an augmented matrix is row-reduced. And P9’s
prediction of infinitely many solutions was made purely on the basis of the 0’s of the right
side of the bar (in the augmented matrix). His prediction prioritized his rules over the
specifics of the matrix he was dealing with. LA1 students may be getting by with their
normative rules, without needing to make recourse to the mathematics at stake.

The only participant whose prediction spontaneously took into account a property
that was specific to the problem at hand was P3. P3 invoked the invertibility of A
to predict that by continuing τ2, she would find a matrix of the form [I4|B] where
w = B11, x = B21, . . .. This spontaneous and accurate use of the property that A is
invertible, however, may just reflect a practice P3 developed as a strategy for tackling
a certain type of problem: P3 explained she has a practice of calculating det (A) prior
to using row operations so as to decide, in advance, whether to reduce [A|b] to a REF
or to its RREF. If det (A) ̸= 0, then P3 knows that the RREF of A would be I, and
P3 knows that if A is invertible, then det (A) ̸= 0. In this case, P3 reduces [A|b] to its
RREF. If det (A) = 0, then P3 reduces it to a REF and uses back-substitution (with the
corresponding equations) because she’s “not really sure how to handle the [non-]invertible
matrix.”

P3 was not the only participant who seemed more at ease with reverting to the linear
equations than using τ2 on the augmented matrix in certain situations. P6 reverted to
τ2−eq when he noticed he should have used the augmented matrix, rather than the coef-
ficient matrix, to solve the system. He said: “I’ve done way more algebra. So I just feel
more comfortable doing it. Whereas [row reduction], I understand, functionally, is kind of
the same.” Indeed, elementary row operations correspond to the algebraic operations that
can be used on an equation to produce an equivalent equation. But no elementary row
operations correspond to the method of substitution (substituting the value/expression
found for one unknown into other equations), which was part of what P6 suggested to
do and what he claimed was “functionally [...] kind of the same” as row reduction. A
combination of τ2 and substitution (or, rather, back-substitution, as it’s called in LA1)
is part of the knowledge to be taught in LA1: when a REF is found, an accepted nor-
mative practice is to write the corresponding equations and then use substitution (with
the equations) to find the solution(s). In the knowledge to be taught, this combination is
marketed as sometimes quicker than using row operations until a RREF is found; but P6
made no reference to this. P6 suggested to use algebra out of habit. P3, meanwhile, said
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she usually reverts to the equations corresponding to a reduced form of an augmented
matrix based on a rule she’d formed: this is the technique to use when the coefficient
matrix is not invertible. In P3 and P6’s cases, then, τ2−eq is a crutch they can rely on,
from the position of Students, to compensate for a lack of confidence or knowledge rela-
tive to τ2. This practice is driven by personal preferences (e.g., for high-school normative
techniques for solving linear equations) that are not founded in the mathematics at stake
in a problem.

In LA1, the knowledge to be taught introduces and validates τ2 (row reduction) as
a technique equivalent to τ2−eq (algebraic manipulations of systems of linear equations).
But the theory that explains this equivalence is not part of the knowledge students are
expected to learn, and the procedural elements of τ2−eq which students used successfully
in high-school do not lend themselves to τ2 on the surface; this can make it difficult to
know how τ2−eq produces τ2 as a technique if a student’s related knowledge is only su-
perficial (e.g., if it’s restricted to the practical block of high-school τ2−eq). The absence
of the discourse that produces τ2 from τ2−eq is most glaring when the definition of aug-
mented matrix (θ23) is absent from students’ proposed or enacted techniques for solving
Ax = b (P2, row-reducing [At|b], P7*, row-reducing 3 × 5 submatrix of [A|b] or calcu-
lating det [A|b], and P6, row-reducing A) and from students’ rules about reduced forms
of augmented matrices and the number of solutions a system has (P5, for whom a row
of the form

[
0 0 0 5 0

]
implies a system has no solutions because 5 ̸= 0). Students’

engagement with augmented matrices seems superficial: they can produce them, use row
operations to modify them, but they don’t know why these row operations produce valid
results, and they might even modify augmented matrices via strategies that are not based
in θ23 (as in P7*’s deletion of a row of the augmented matrix or P2’s suggestion to use
the transpose of A).

Students’ superficial grasp of augmented matrices and row operations on these ma-
trices comes through even when students know τ2 is equivalent, somehow, to techniques
they’ve learned in high-school (P5, P6, P9); their vague explanations suggest they do
not know what the equivalence is. And despite the equivalences that are shared by τ2
and τ2−eq, some students (P3, P6) prefer τ2−eq for reasons that aren’t based in the math-
ematics: the preference is based either in their habits (P6) or in confusion about the
mathematics (e.g., when the coefficient matrix is non-invertible, as in P3’s case).

That students’ row reduction of augmented matrices operates on a superficial level
shows particularly in the rules they develop to interpret the results they find by oper-
ating on augmented matrices. All students’ predictions about what might happen as
they complete τ2 started with a description of what a reduced augmented matrix might
look like, and ended with how they infer solutions from this reduced form (P1, P2, P3,
P4, P5, P7*, P9, and P10). Four students’ predictions (P4, P5, P7*, P9) brought out
normative rules for reduced forms of augmented matrices (either it’s I and the values of
the unknowns are on the right, or there is a row of 0’s and then there are infinitely many
solutions; P4 and P5 recalled the possibility of no solutions, though P5 associated it with
a row of the type

[
0 0 0 a 0

]
where a ̸= 0). These students did not spontaneously

consider the invertibility of A, and only P5 was able to come to a correct conclusion (that
there would be one solution) once I pointed out A was invertible. P3 had spontaneously
made this conclusion, but her spontaneous recognition of the link between the invertibil-
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ity of A and RREF (A|b) may have been supported by a strategy P3 used to cope with
confusion about matrices whose RREF is not the identity matrices. In their predictions,
some participants (P7*, P9) prioritized normative rules (that are not, in general, true)
instead of considering the specifics of the matrix with which they were dealing (P7* con-
flated various incorrect rules - an invertible matrix has a RREF with a row of 0’s, and an
augmented matrix can be invertible - to predict [A|b] would have a RREF with a row of
0’s; P9 concluded from the 0’s in the right-most column in the last matrix he’d produced
that the RREF would have a row of 0’s).

Altogether, these patterns suggest that the practice students form in relation to τ2 is
driven by normative rules that work in LA1 and some element of personal preference, all
of which only superficially connect with τ2−eq. The absence of a discourse that connects
τ2 with τ2−eq may make it difficult for students to remember the rules correctly (P5,
P7*). The absence of a discourse that connects these also impinges on the mathematical
meaning students can attach to the process involved in τ2. This brings to mind P4’s
comment about his initial perception of augmented matrices in LA1: “I did not know
what I was looking at, you know what I mean? [...] When I first went to [LA1] and
looked at matrices, I was looking at a box with numbers, not an actual problem.”

5.2.3.2 Find A−1 and use Ax = b ⇒ A−1Ax = A−1b ⇒ x = A−1b (τ4)

Finding A−1 so as to isolate x in Ax = b (τ4) was the next most frequently-made sugges-
tion after row operations on the augmented matrix (τ2), though τ4 was nowhere nearly
as popular as τ2: 1 participant engaged in it spontaneously (P2) and 3 participants (P1,
P6, and P9) mentioned τ4 when asked if they could think of a second approach (they all
had τ2 as their spontaneous approach). While working on Problem 2, P1, P2, and P6
exclusively activated and mentioned τ2 and τ4; after mentioning τ4 and giving his favor-
able opinion of this technique, P9 spontaneously brought up Cramer’s rule and concluded
it would be the ideal technique for the problem (we’ll address his reasoning in Section
5.2.3.4).

None of these participants found a solution via τ4. P2 was the only one to activate
it and abandoned it because he found the inversion algorithm “tricky.” The inversion
algorithm (τ41) involves using row operations to reduce A to its reduced row echelon
form (RREF) and applying the same operations to I; once RREF (A) is found (and if
RREF (A) = I), the matrix produced by applying the operations to I is A−1. P2’s calcu-
lations had produced decimals, which to him signaled something was off: “[the] calculator
is giving me a decimal answer so [pause] I think I’m doing something wrong. There is no
way I should invert it. If the answer is alright because it’s. . . gonna take like. . . a year.”
I asked P2 if he could think of another approach and he suggested to use row operations
on the augmented matrix (albeit an incorrect one - he suggested [At|b]).

P9 specified he would use the inversion algorithm. P1 and P6 did not specify which
technique they would use to find A−1.

5.2.3.2.1 Theoretical blocks of students’ activity relative to τ4: P1, P2, P6,
and P9 expressed opinions about the suitability and utility of τ4 in the given context. I
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address these opinions in the next few paragraphs.

P2 and P6’s discourse suggested they viewed the task in Problem 2 as t4, the LA1 task
in which students are required to use A−1 to solve a linear system given in the form of a
matrix equation (Ax = b). To P2 and P6, it was “obvious” that the task was to use the
inverse of A to solve the system by multiplying both sides of Ax = b by A−1. As P2 put
it, “the obvious, obvious way to do it is to invert [A] and [to] multiply it by the matrix
here”; after he rejected a different approach he had suggested (row-reducing [At|b], which
he wasn’t sure about because he thought other people wouldn’t “think this way”), he
reinstated that the “obvious way would be to invert [A] and multiply,” that “the obvious
[method] is [τ4]. Because when I [want to solve] an equation, I keep the variable here
and I take everything to the left side.” For P2, τ4 is simply how a task of type “solve a
matrix equation” is done—it is a norm. (This brings to mind participants’ interpretation
of the task in Problem 1: participants perceived the task to be to solve a matrix equation
of a form ABC = D by multiplying, successively, by A−1 and B−1.) P6, for his part,
had spontaneously engaged in τ2 but was unsure of his approach: he kept wondering
why it mattered that A is invertible, and abandoned his row-reduction approach when he
realized he was reducing the coefficient matrix instead of the augmented matrix. When
I asked P6 what he had hoped would happen via row-reduction, P6 brought up it was
bothering him not to know why it matters that A was invertible, and suddenly proposed
τ4: “[τ4] should have been obvious.” P6 did not explain why it should have been obvious,
but did list (his perception of) the benefits τ4 has over τ2.

P1 and P9 did not seem to view Problem 2 as a task of type t4, as P2 and P6 seemed
to have done. P1 rejected τ4 because it would involve the additional step of multiplying
A−1 and b; because of this, on an exam, he would stick to row-reducing the augmented
matrix (τ2), though at home, he said he would do both techniques for practice. P9 was
enthusiastic about τ4 as a technique for this problem— he claimed it is easier and faster
than τ2—but ended up proposing Cramer’s rule as a more efficient approach.

In addition to their opinions on the suitability of τ4 as an approach for Problem 2, P6
and P9 made claims about its utility. Whether P6 and P9 would stand by these claims
if they thought them through or actually activated τ4 is another matter, but their claims
do, at least, point to what students might be concerned about when they solve tasks of
type T (to solve linear systems).

First, P6 and P9 both claimed that the result obtained by τ4 is easier to check than
that obtained via τ2: “once you get an inverse you can immediately know what’s wrong
if you just multiply it” (P6), “this way [finding A−1], it was kind of very concrete. Either
you really, you can check it and you got it right or you could check and you got it wrong”
(P6), and “finding the inverse you could, it’s a little bit easier, and you could verify if
it’s true or not” (P9), whereas “sometimes when you’re solving like, other equations, you
get an answer and even if you - like, there are usually ways to check but sometimes it’s
like, you can check and still feel unsure” (P6) and “to find if [the solutions found via τ2
are] correct or not, it will take a lot of time to prove that it’s right” (P9).

P6 and P9’s claims that τ4 yields a result that is easier to check than τ2 is mathemati-
cally baseless; after all, if A−1 exists, then τ2 would yield a unique solution, and validating
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it would involve less calculations than the multiplication needed to verify that the calcu-
lated inverse is indeed the inverse of A (as per P6 and P9’s suggestions). Nevertheless,
these comments do suggest that students are concerned about validating the solutions
they find, and that students may not always know how to validate solutions they find by
row reducing an augmented matrix. I hypothesize this uncertainty may rather be about
the cases where a linear system has no solutions or infinitely many solutions.

Apart from their comparison of the results produced by the two techniques, P6 and P9
also viewed τ4 as more suitable and useful an approach to Problem 2 than τ2 on the basis
that it is faster and easier. As P9 put it: “[τ4] is way easier and [τ2] [...] [is] very long and
[. . . ] [can have] many calculation mistakes along the way.” P6 said that “[τ4] seems like
a much easier way to do it than [τ2]” and that “the math is probably faster to invert it.”
This perception, too, is mathematically baseless. The inversion algorithm, for instance,
involves the same row operations as those needed to row-reduce the augmented matrix,
and while the augmented matrix reduction has row operations applied to A and b, the
inversion algorithm has the operations applied to A and I4 (so τ4 involves 3 additional
columns - and then there’s the multiplication of A−1 and b). Only P2 and P9 explicitly
involved the inversion algorithm (θ41) in their activity, but I surmise P6 likely would have
as well, as it’s the normative technique in LA1 for finding the inverse of a matrix in A;
the alternative is the formula A−1 = 1

det (A)
adj(A), which students are rarely expected to

use except in the case of 2 × 2 matrices, though in that context the normative formula
appears different:

A−1 =
1

ad− bc

(
d −b
−c a

)
.

I do note that as P9 described what the inversion algorithm would look like, he sponta-
neously brought up Cramer’s rule and concluded that this would be “the fastest method.”
That said, his reasoning for Cramer’s rule being faster was not founded in the specifics
of the matrices involved in Problem 2 (I return to this in Section 5.2.3.4).

P6 and P9 did not into account the mathematics involved when they claimed τ4 is
faster and easier than τ2, and P2 doesn’t seem to have done so either when he suggested
row reducing the augmented matrix as an alternative approach to τ4 when he found the
row operations involved in the inversion algorithm to be “tricky.” P6 and P9’s compar-
isons and P2’s suggestion of a not-so-alternative approach point to the surface-level grasp
students might have on elementary row operations and the LA1-normative techniques τ2
and τ4.

Finally, even if P6 and P9’s claim about τ4 being “faster” and “easier” than τ2 is
mathematically baseless, it does bring out students’ concern with the arithmetic required
in row operations and the time and mistakes it can involve. I recall here that of the 7
participants who activated τ2 to do Problem 2, none had come close to finding the solu-
tions to the system, even though most had spent at least 9 minutes doing row operations
before I put a stop to their activity. Students struggle to use row operations efficiently;
I hypothesize this relates not only to difficulties some may have with arithmetic but also
to students’ activity operating on a superficial level, where they blindly enact techniques
from LA1, in an almost knee-jerk reaction and using surface-level characteristics to guide
their calculations, without even looking at the specifics of tasks they are given (such as
the values of the entries in a matrix). I return to this point in Section 5.2.3.6, as stu-
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dents commented on their concerns about time and calculations throughout their activity
for Problem 2 (and not only in relation to τ4, which was my focus for the current section).

Finally, the value of the technology invoked by τ4 (Ax = b ⇒ A−1Ax = A−1b ⇒ x =
A−1b) is, arguably, in its role in the theory that unifies matrix algebra with systems of
linear equations; but if students’ practice in LA1 exists mostly in the practical blocks
produced by this theory, they may superficially produce other justifications (it’s faster,
it’s easier) to find value in the different techniques (such as τ4) they are expected to know.

5.2.3.3 Finding the determinant of A

Three participants (P3, P4, P7*) brought up the option of calculating det (A) and sub-
sequently dismissed it. In this section, I will address each participant’s engagement with
the option of calculating det (A).

For P3, calculating det (A) was a spontaneous reaction to Problem 2. She stopped her
calculation once she noticed (because of a prompt I gave) the affirmation that A is invert-
ible and said it wasn’t necessary to find det (A) because, if A is invertible, then she knows
det (A) is non-zero; she then switched to τ2 and her activity remained in row-reducing the
augmented matrix thereafter. Her justification for calculating det (A) was that it helped
her decide whether to row-reduce [A|b] to its RREF (in the case that det (A) ̸= 0) or to
a REF and then use back-substitution (in the case that det (A) = 0). This strategy is re-
dundant; row-reducing the augmented matrix would reveal whether the coefficient matrix
is invertible. P3 said she does this because she’s not sure how to handle non-invertible
matrices. That she uses “det (A) ̸= 0 ⇔ ∃A−1 ⇔ RREF (A) = I” as a rule to guide her
application of τ2 is evidence of a superficial grasp of notions involved in the rule and in τ2.

The equivalence det (A) ̸= 0 ⇔ ∃A−1 ⇔ RREF (A) = I and underlying proof are
core to the theory that produces and justifies the techniques students need to know. The
equivalence itself is emphasized in the knowledge students are to be taught but they are
not required to know its underlying proof, even though constructs involved in the proof are
part of the knowledge students are to be taught and are expected to learn. For instance,
elementary matrices (the building blocks of much of the theory) are knowledge to be
taught and make an appearance in the knowledge students are expected to learn (at the
very least on one assignment throughout the semester). It is up to instructors’ discretion
whether they cover the proofs of the equivalence (between determinants, invertibility, and
reduced row echelon forms), and midterm and final exams do not include problems that
require knowledge of these proofs. The equivalence between det (A) and the invertibility
of A is likely reinforced by formulas students need to know in LA1, such as

A−1 =
1

ad− bc

(
d −b
−c a

)
and A−1 =

1

det (A)
adj(A).

P3 was not the only student to bring up the full set of equivalences (det (A) ̸= 0 ⇔
∃A−1 ⇔ RREF (A) = I) as a package deal in reaction to the affirmation that A is in-
vertible: P5 brought it up when making her prediction that row-reducing [A|b] will lead
to [I4|B], where w = B11, x = B21, etc. The determinant of A is irrelevant to the bridge
between invertibility of A and its RREF being I.
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P4 also seemed triggered by the invertibility of A to think of det (A): his first reac-
tion, upon reading the problem, was to say that since A is invertible, its determinant is
non-zero. He again brought det (A) up after I pointed out the affirmation that A was
invertible (later on in his engagement with Problem 2); his explanation (“usually [em-
phasis added] when I see invertible, it means oh ok, related to determinant. Because that
was the first thought that I had, actually, before doing anything”) suggested that, in P4’s
practice, there’s a normative quality to the relation between det (A) and the existence of
A−1.

P4 explained that when he “saw ‘invertible,’ [he] tried to think if there’s anything to
do maybe to solve for w, x, y, z, if there’s any more optimal way than solving it by hand”
and said it “was actually a haste on [his] side, [he] should have maybe thought that there
is more optimal way, because that’s actually very important throughout the exams to see
if there’s any quicker way to solve the problem.” But, from experience, he determined
that det (A) would be of no use here: “[he has] solved tons of similar problems so this
would end up being useless. And then if [he] actually found a no-solution solution or
parameter solution [presumably, P4 refers to the possibility that det (A) = 0) then [...]
this [calculating det (A)] [will have been] useless.” He then wondered whether there is
a rule that says that if A is invertible, then Ax = b has a solution, and concluded he
didn’t know. In Problem 1, P4 activated the technique of multiplying by inverses to solve
an equation of the form ABC = I, where the task was to solve for C. Here, P4 was
trying to recall a rule from the knowledge to be taught in LA1; from that position, he
did not activate knowledge he did activate to complete a task that normally called for
that knowledge (multiplying by inverses).

Like P4, P8 was also triggered by the invertibility of A to think of det (A). Upon
reading the problem statement, she said: “invertible, solve this system. . . that’s prob-
ably said for a reason. I think it’s invertible if its determinant is not zero. But I could
solve it without, without it as well. . . So I guess, if it’s about matrix being invertible
then I have to use the determinant, I think the Cramer’s rules.” (Unlike P4, P8 was able
to identify a practical application of the relation ‘determinant-invertible.’)

P7*, finally, brought up the notion of determinant after I had pointed out to him that
column b has some similarity with column 1 of A; I had asked if P7* can think of another
approach, and he responded that “when the two columns, they are proportional, it means
that the determinant it’s going to be 0, which has a characteristic of, of it means that the
matrix is in - invertible. Yes. When the determinant is zero, it is in - sorry, I always, I.
It’s not invertible. Yes, I think that may help. That may help.” He also wrote “(| |)4×5”
on paper. When I pointed out his matrix has size 4 × 5, he agreed about the size, and
when I asked “so determinants?” he immediately responded: “oh, no, no, no. Yes. Yes.
So it’s not a determinant. For sure. It has no determinant because it’s not an n by n
matrix. But still.” He then moved on to another idea.

The image of proportional columns seems to have triggered the notion of determinants
in P7*, and the same appears to have occurred with P4. When I prompted him to think
of another approach (after he finished explaining why calculating the determinant is, in
general, a useless strategy in the context of solving linear equations), P4 took another
look at the matrix and finally noticed the proportionality between the first column of A
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and b: “Ah, yeah! I did not notice that at all. This is the same as this, right? Oh no,
it isn’t. No, minus 9, minus. Oh! It’s the minus of that! Okay. I need to pay more
attention before starting problems.” He continued: “Does this mean anything? Because
what happened was, I realized that one of the columns I had was... the minus of my b
column. [pause] Trying to think of what that could imply. [pause] I don’t think I remem-
ber anything that I could benefit from that.” 15 seconds later, P4 brought up Cramer’s
rule and dismissed it: “Oh yeah, and also I wouldn’t - I just thought of this, I wouldn’t
solve it using Cramer because it’s four by four, so the determinant would be hard to find.
I’m trying to see if there’s any relation between the other columns and the b matrix. But
there isn’t.”

To summarize: P3 brought up det (A) because it’s an object she uses to guide her
application of τ2, despite knowing the rule det (A) ̸= 0 ⇔ ∃A−1 ⇔ RREF (A) = I, and
she stopped her calculations once she realized A is not invertible (and so det (A) ̸= 0); P4
brought it up because the invertibility of A automatically triggered in him the concept of
determinant, but he saw no practical use in calculating the determinant of a coefficient
matrix in the context of solving a linear system; and P7*’s notion of determinant was
triggered by the image of proportional columns. P7* also brought up the relation between
det (A) and the invertibility of A, though he fumbled with whether a determinant that is
0 implies that A is invertible or not invertible.

I discuss my inferences from participants’ comments about the determinant of A
in Section 5.2.3.6, where I draw from the different elements of participants’ activity in
Problem 2 to address their incapacity to behave efficiently despite having a will to do so.

5.2.3.4 Cramer’s rule

Three participants brought up Cramer’s rule as an approach to Problem 2: P8, who did
so spontaneously, and P4 and P9, who brought it up only after I prompted them a second
time if they could think of any other approach. This is not surprising. In LA1, students
are always explicitly told when to use Cramer’s rule to solve a linear system.

The participant who spontaneously used Cramer’s rule upon reading the problem
statement was the only one to come close to solving the system. P8 decided to use
Cramer’s rule because the affirmation that A is invertible, to her, suggested the problem
was “about” A being invertible: “invertible, solve this system... that’s probably said for
a reason. I think it’s invertible if its determinant is not zero. But I could solve it without,
without it as well... So I guess, if it’s about matrix being invertible then I have to use
the determinant, I think the Cramer’s rules.”

P8 started by calculating det (A): this took 9.5 minutes and yielded an incorrect
value. She then wrote out the entries for the matrix A1 and asked if she could just
describe what she’d do next. She said that w would be det (A1)

det (A)
and, when asked if she

had any idea what det (A1) might be, without going through all the calculations, she
said that maybe there’d be something to do with the first column of A1 being “the same
numbers [as in the] first column [of A], but with the opposite sign,” using rules that relate
row/column operations with the determinant that she knows from “the instructor,” “the
book,” and from examples that demonstrate the rules. She described the appropriate
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rule, and eventually concluded that “w = number” but did not “really want to calculate
it further. But - because this, the only thing that’s left is just algebra.” Although she
wasn’t able to spontaneously activate the rule she had described to find detA1, she did
find that x = y = z = 0 by activating the row/column-determinant properties she’d
mentioned and the fact that column 1 of A is equal to -b. She explicitly wrote this for x:

x =
det (A2)

det (A)
, A2 =


9 −9 3 4
5 −5 0 9
−2 2 0 4
3 −3 1 1

 ,

concluded that x = 0 (specifically, she mentioned adding a column to another column,
knew it would have no effect on the determinant, and mentioned a cofactor expansion
along the column of 0’s). She then inferred that y = 0, and z = 0. I note that P8 had
not activated any of these properties to facilitate her calculations of det (A), which had
taken nearly 10 minutes to find, even though she had considered them a minute into the
start of her calculations (“maybe I should reduce it... No, I won’t”); instead, she did
a cofactor expansion along the column that had two entries that were 0, and stuck to
cofactor expansions thereafter. She only activated the properties that relate determinants
with row and column operations after writing out the entries in A2, pausing, and making
the following observation: “honestly, I don’t remember. But this might look a bit weird.
I think there was something that if a column or a row is proportional, like if two rows
or columns are proportional, proportional then, they should be, they can be converted.
Like I can make a column of zeros and then the determinant is zero.” She only activated
the rules she’d recalled about row/column operations and determinants after recalling
another rule: “there was something that if a column or a row is proportional, like if
two rows or columns are proportional, proportional then, they should be, they can be
converted.”

Apart from P8, only two other participants (P4 and P9) mentioned Cramer’s rule. I
discuss P4 and P9’s activity (relative to Cramer’s rule) in the next two paragraphs.

Both participants had row-reduction (τ2) as their spontaneous reaction, and brought
up Cramer’s rule after (but not immediately after) I had pointed out the affirmation that
the coefficient matrix is invertible. P9 had initially misread the problem and thought
it stated the coefficient matrix was not invertible (“it’s an ininvertible [non-invertible]
matrix. So [...] you cannot multiply by the inverse”); once P9 was aware it was in-
vertible, he spent a minute addressing τ4 and then spontaneously brought up Cramer’s
rule. P9 described ways to calculate determinants: cofactor expansion, rules that relate
row/column operations with determinants, and a LA1 rule for determinants of 3× 3 ma-
trices (a mnemonic device that helps to recall the result of cofactor expansion for matrices
of this size, without actually doing a cofactor expansion), but did not actually do any
calculations to find the value of any of the unknowns. P9 noticed here that column 1 of
A is equal to −b but said this can’t be used, and when asked if he could predict the value
of x, P9 said he’d have to do the calculations to find it (and did not do them).

When P9 thought of Cramer’s rule as an approach for Problem 2, he exclaimed that
it “is the easiest” approach, that it’s “the fastest method,” that it is “faster and easier
[than τ4]. You just row reduce and then you have the matrix.” But, despite his recol-

126



lection of rules that relate row operations with determinants, his claim that the relation
between column 1 of A and b can’t be used puts to question why P9 thought Cramer’s
rule would be faster and easier than τ4. Without the relation we’d designed into A
and b, Cramer’s rule would require P9 to calculate 5 different determinants (det (A) and
each one of det (Ai), where Ai is the matrix obtained by substituting column i of A by b).

P4, the only other participant who mentioned Cramer’s rule, dismissed it as a viable
technique on the basis that the size of the matrix would make the determinant hard to
find. P4 brought Cramer’s rule up after I asked a second time if he could think of another
approach, and after he had noticed the relation between column 1 of A and b. This was
the interaction:

P4: Isn’t a coefficient matrix a... Isn’t it a special case?

I: What do you mean?

P4: Ah, yeah! I did not notice that at all. This [b] is the same as this [column 1 of A],
right?

I: Yes.

P4: Oh no, it isn’t. No, minus 9, minus. Oh, it’s the minus of that. Okay. I need to pay
more attention before starting problems. Does this mean anything? Because what
happened was, I realized that one of the columns I had was... the minus of my b
column. [pause] Trying to think of what that could imply. [pause] I don’t think I
remember anything that I could benefit from that.

I: Ok.

P4: Yeah.

I: Ok.

P4: Oh yeah, and also I wouldn’t - I just thought of this, I wouldn’t solve it using
Cramer because it’s four by four, so the determinant would be hard to find.

I: Ok.

P4: I’m trying to see if there’s any relation between the other columns and the b matrix.
But there isn’t. So... yeah I think I would continue solving it... Even if it was a...
some sort of coincidence. And I will just continue solving.

While both P4 and P9 had noticed that column 1 of A is equal to -b, neither partic-
ipant used this to facilitate calculating the relevant determinants and neither ended up
solving the system. They were hindered by the prospect of calculating determinants: P4
said it would be hard to find the determinant of a 4× 4 matrix, and P9 did not activate
the properties of determinants and row/column operations despite having described these
“rules” he’d seen in his textbook.

P8 and P9 had both recollected the properties that relate column/row operations
to determinants but were unable to activate them completely to calculate the values of
w, x, y, and z. P8 only activated them to calculate x, y, and z after having retrieved
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another rule, a rule about determinants with columns that are proportional; P7* had
also mentioned this rule after I had pointed out to him that b was similar to column 1 of
A and asked him if he could think of another approach. P9 did not attempt to calculate
the values of any of the unknowns despite having noticed that column 1 of A is equal
to -b, and when I asked if he could predict the value of x, P9 did not attempt to do
so. His answer (saying he’d have to calculate it) suggested he might have expected these
calculations to be at least somewhat laborious. P8, who did succeed in activating the
rules to quickly find that x = y = z = 0, did not want to do the calculations needed to
find the value of w (despite my prompt for her to do so, after she’d found the values of
the other unknowns).

P4, meanwhile, had a norm that determinants of 4× 4 matrices are hard to find, and
he did not activate any knowledge that could have helped him take advantage of the
pattern he had noticed in A and b.

P8 and P9 struggled to activate the row/column operation-determinant relations they
had recollected (P8 explained that “you have to be careful to not make any mistake here.
And again, you should make sure that you add everything according to the row operations
that you made. And again, sometimes you can forget that”), and P4 did not bring them
up; instead, he had the norm that 4× 4 matrices are hard to find. The relations between
determinants and row/column operations may be difficult for LA1 students to remember.
For example, consider P8’s confusing description of one such rule:

If I divide or multiply by something, then it’s... So the new matrix that I
created will be the determinant of that original matrix, A, multiplied but by
that same number, but because I need to find the determinant of the... my
original, both my original matrix and not the new that I created, I should do
the opposite. So I should divide by the number.

These “rules” can be especially difficult to remember if students only know them su-
perficially and do not know the reasoning, based in cofactor expansions, that explains a
relation between the determinants of two matrices A and B, where A can be obtained
from B via one row or column operation.

In LA1, students are taught to calculate determinants using cofactor expansions
(which they’re encouraged to wield on rows/columns that have the greatest number of
0’s) and using properties that relate determinants with row and column operations. How-
ever, students are never explicitly told which technology to use; they are free to choose
which one to activate, and the matrices whose determinants they are required to find
are rarely of a size greater than 4 × 4. Indeed, in the past midterm and final exams to
which I had access, each exam had one problem in which students were required to find
the determinant of a matrix; one exam involved a 5 × 5 matrix (which had a row with
three entries that were 0) and the rest all involved 4 × 4 matrices, the vast majority of
which included at least one row or column with two entries that were 0. These tasks are
amenable to cofactor expansion and, for someone acting from the position of a Student,
do not justify acquiring difficult-to-remember rules that don’t significantly reduce the
labor needed to calculate determinants.

Cofactor expansion involves a predetermined algorithm (students only have to choose
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along which row or column to expand), while the relations between row/column opera-
tions and determinants do not—to be used fruitfully, it’s necessary to consider the entries
in a matrix; my participants’ choice of row operations, when activating τ2, suggests stu-
dents do not consider the entries in a matrix before activating their techniques. Finally,
P9 pointed out a third LA1 technique for calculating determinants (of 3 × 3 matrices
specifically): this technique is a mnemonic device in the textbook for LA1, a visually-
memorable rule determinants of 3×3 matrices (the rule is actually the result of a cofactor
expansion of such matrices, but highlights instead a mnemonic pattern which students
likely favor). Since students normally calculate determinants of 4×4 matrices, then, they
can use this mnemonic device, along with the formula(

a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
,

and successfully compute determinants using one application of cofactor expansion along
a row or column half of whose entries are 0’s, and using zero application of any property
about determinants of matrices that differ by one row/column operations.

5.2.3.5 What students made of the affirmation that the coefficient matrix is
invertible

A feature of Problem 2 that distinguished it from the tasks normally given in LA1 of
task type T (to solve a linear system) was the affirmation that the coefficient matrix
was invertible. I wondered whether and how students would use this affirmation. For
instance, if any student found a solution by inspection (an achievable option only if the
entries in the matrices are considered before a method is selected), then the affirmation
that the coefficient matrix is invertible would confirm the observed solution is the only
one; otherwise, the affirmation that the coefficient matrix is invertible would confirm that
Cramer’s rule is applicable, and, if the entries in the matrices are considered, Cramer’s
rule can be seen to be more efficient than row-reducing the augmented matrix (since the
first column of A is −b).

Neither situation arose in my interviews. P8 did choose to use Cramer’s rule because
of the affirmation that A is invertible, but this choice had nothing to do with the entries
in the matrices; P8 inferred from the affirmation A is invertible that she “[has]” to use
the property. P8’s comments and activity gave no sign that P8 made this inference on
the basis of anything other than the fact that A was affirmed to be invertible—perhaps
as a ‘hint’ from an authority. When I asked P5, another participant, if she would do
anything differently on an exam (her only suggestion was to use τ2) her answer suggested
she also interpreted the affirmation A as a ‘hint’ from an authority: she said she didn’t
know if τ2 is the most “efficient” or “fastest” way, and when asked what would be faster,
she said that “they tell you that the matrix is invertible. There must be some sort of
faster way that [she] just [doesn’t] know.”

Participants were not able to use the affirmation A is invertible to act more effectively.
But the affirmation did help to reveal the fragmented map of associations students link
with the concept “∃A−1”—a fragmented map likely supported by the tasks students are
expected to perform in LA1. I address these in the last paragraphs of this section.
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For some students, the affirmation A is invertible triggered technical knowledge: P2
(spontaneously), P1, P6, and P9 suggested the technique τ4 (find A−1 and multiply both
sides of Ax = b by A−1). τ4 is the least efficient technique for the problem at hand.
Notably, P4 did not suggest this technique (though he had used a similar one to solve
Problem 1:

WXAY BC = I ⇒ (WXAY B)−1(WXAY B)C = (WXAY B)−1I,

and in that context there was no affirmation as to whether A or B are invertible). I
highlight P4’s case because he had overtly asked whether there is a rule about A being
invertible and Ax = b having a solution. A potential distinction between P4 and P1, P2,
P6, and P9 is that P4 was inquiring about a “rule,” which, from the position of Student,
he may perceive to be theory that is outside of his reach; meanwhile, P1, P2, P6, and P9
were activating a technique they needed to learn in LA1.

The affirmation A is invertible also revealed a ritualistic component of some partic-
ipants’ knowledge: for P3, P4, P5, P7*, and P8 the concept of invertibility triggered
the image of a determinant being equal to 0 or not (P7* struggled to remember the
accurate relation). P4’s explanations suggest what may have inculcated this knowledge
in students’ memory: he said he knew this “rule” because his teacher had said it and
“whenever [he] studied, [he] looked at [his] notes, and okay, determinant is not zero means
that it’s invertible.” The equivalence det (A) ̸= 0 ⇔ ∃A−1 is emphasized in the knowledge
to be taught in LA1: it’s at the core of a theorem that is revisited and expanded upon in
2 of the 4 chapters of knowledge to be taught in LA1. This equivalence may also be rein-
forced in the knowledge to be learned through formulas for A−1: these formulas involve
the expression 1

det (A)
, and students are expected to memorize and use these formulas. For

P3 and P5, the affirmation A is invertible also triggered the image of the reduced row
echelon form of A being an identity matrix and they were able to deduce from this (when
asked to make a prediction) that the system would have one solution. This knowledge
(∃A−1 ⇔ RREF (A) = I) may be a result of the inversion algorithm students need to
know in LA1, wherein they discover whether A is invertible by finding out if its RREF
is I. P5’s explanation suggests this is indeed the case:

I: So how do you know that if it’s invertible, you can get that form? 1 0 0 0 0 1 0 0?
And so on.

P5: Um, because when you’re trying to like inverse something, it’s going to, like, re-
member the thing I said in the last problem, with the matrix is equal to 1 0 1?

She’s referring here to the inversion algorithm she used in Problem 1.

The techniques and explanations participants proposed, in reaction to the affirmation
A is invertible, were fragments of knowledge about invertibility, determinants, and the
equation Ax = b. This may seem like theoretical knowledge, but students’ explanations
(throughout Problem 2, and especially in relation to row-reductions of augmented matri-
ces) suggests it rather reflects knowledge that is emphasized by techniques students need
to learn in LA1 (row-reducing augmented matrices, the inversion algorithm, formulas
for inverses). In any case, participants did not, in general, wield the affirmation A is
invertible to behave more efficiently.
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5.2.3.6 Summary: students struggle to optimize their approaches because
their practice is restricted to superficial features of the problem of
solving linear systems

In this section, I infer from my participants’ activity and explanations that students’
normative practice from LA1 may be restricted to superficial features of the problem
of solving linear systems and that this might contribute to the difficulty they can have
in solving linear systems accurately and efficiently. Students’ dependence on superficial
features of Problem 2 prevented them from making efficient choices—from the choice of
technique all the way to choices of row and/or column operations when reducing aug-
mented matrices, using the inversion algorithm, or calculating determinants. This helps
to explain what seemed to be their main concern about tasks of type T (solving linear
systems): the time and accuracy of calculations involved in τ2, τ3, and τ4.

In Sections 5.2.3.1, 5.2.3.2, 5.2.3.3, and 5.2.3.4, I focused on participants’ engagement
with a task of type T. I examined their explanations for using τ2, τ3, and τ4 and found
students had fragments of knowledge from the theoretical blocks that frame them. Some
students knew that τ2 reflects the algebra done to solve systems of linear equations; several
students knew the equivalence det (A) ̸= 0 ⇔ ∃A−1; some students knew that a linear
system has either 1 solution, no solutions, or infinitely many solutions; some students
knew that if A is invertible then it can be reduced to an identity matrix; some students
had the technology that produces τ4: ∃A−1 ⇒ Ax = b ⇒ A−1Ax = A−1b ⇒ x = A−1b
(which, essentially, is the matrix multiplication technique they also activated in Problem
1); and some students knew that if A is invertible, then Cramer’s rule is applicable.

But students did not know how τ2 reflects the algebra done to solve linear equa-
tions, and some students’ activity stripped τ2 from any relation to linear equations when
they brought up “augmented” matrices that were not, in fact, augmented matrices (e.g.,
[At|b], or the rule that a row of type

[
0 0 0 5 0

]
means there are no solutions because

5 ̸= 0). And to explain the fragments of theory they knew (e.g. the relation between
det (A), A−1, RREF (A)), participants were only able to rely on the authority of their
teachers, textbook, and experience (e.g., from the inversion algorithm, there is the rule
that associates A having an inverse with its potential to be reduced to I). One student
had activated matrix multiplication to solve the equation WXAY BC = I in Problem
1 but wondered whether there is a rule that says that if A is invertible, then the ma-
trix equation Ax = b has a solution. Students had only superficial and disconnected
fragments from Θ, the theoretical discourse that frames and produces the techniques for
solving linear equations whose solutions aren’t self-evident.

The fragments of theoretical knowledge students had are features of practical knowl-
edge students typically use in LA1. For instance, when students are first taught the
notion of determinant in LA1, it is through a theorem, early on in the semester, about

2 × 2 matrices and their invertibility. The theorem states that a matrix A =

(
a b
c d

)
is invertible if and only if its determinant is non-zero and, in that case, the inverse of

the matrix is 1
det (A)

(
d −b
−c a

)
(students know ‘you can’t divide by 0’). The equivalence

det (A) ⇔ ∃A−1 is established early on and emphasized throughout LA1: in a theorem
that’s recurrently revisited throughout the first half of LA1, through a similar formula
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for inverses of larger square matrices, and through the normative technique for several
types of LA1 tasks. Another example of theoretical knowledge that, for LA1 students, is
a feature of their practical knowledge: one participant referred to the inversion algorithm
as evidence for the equivalence ∃A−1 ⇔ RREF (A) = I. And students knew that a
linear system has either 1 solution, no solutions, or infinitely many, but explained this
knowledge either by referring to the authority of their teachers and textbooks or notes,
to the authority of the examples they’ve solved, or to the authority of incomplete or
incorrect rules about what an augmented matrix might look like when it’s reduced (rules
that reflected students’ experience with augmented matrices in LA1).

Considering the knowledge students are expected to learn in LA1 relative to tasks
of type T , it’s not surprising that students’ knowledge of the theoretical discourse that
frames these tasks is localized to features that come up in practice. Students are not
expected to activate theoretical knowledge; they are expected to activate practical knowl-
edge. But participants’ activity, as they engaged with Problem 2, showed that the norms
they develop in LA1 (such as automatically activating τ2 to solve linear systems when no
instruction is given as to what technique they should use) contribute to difficulties they
have in activating practical knowledge.

Participants relied on superficial features of Problem 2 to guide their activity. When
they were presented with Problem 2, they mostly responded in a way that reflected their
normative technique as students from LA1 (use τ2 to solve linear systems). Eight stu-
dents spontaneously activated the normative LA1 technique for solving linear systems:
row-reducing the augmented matrix (τ2). One of these eight was unable to activate any
other technique (P10). Another student spontaneously fell into the trap of solving the
system by calculating the inverse of A, and when prompted for another approach, could
only suggest to apply τ2 to [At|b] (and three participants who spontaneously engaged in
τ2 made τ4 as their follow-up suggestion). τ4 is a technique students are expected to learn
in LA1, though the technology that produces it (∃A−1 ⇒ Ax = b ⇒ A−1Ax = A−1b ⇒
x = A−1b) has its value mainly in the theoretical discourse that supports the techniques
for tasks of type T (e.g. if A is invertible then Ax = b has a unique solution for any b;
one participant, who had not activated τ4, wondered if there was such a rule). Another
student, P8, used Cramer’s rule, but only because the affirmation that A is invertible
struck her as an indication that she has to use Cramer’s rule. She did not consider
the entries in the matrix before deciding on her approach, and even claimed later (af-
ter having found that x = y = z = 0) that τ2 would probably have been a faster approach.

None of the participants considered the entries in the matrices before activating their
technique. This is perhaps most evidenced by the fact that only three students actu-
ally addressed the similarity between the matrix b and the first column of A, and even
they only did so toward the end of their activity with A, and only after questions from
the interviewer intended to prompt their attention away from their spontaneous reactions.

That students did not take entries in the matrices into account—or did so only su-
perficially—is also evidenced in their poor choice of row operations. When it came to τ2
and τ3, their choices rendered the task more laborious or increased their risk of error and
dependence on a calculator. For instance, P5 got some 0’s and leading 1’s and then did
operations that undid those 0’s and leading 1’s. Others (P2, P9, P10) divided the first
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row by the value of A11 to get a leading 1 in that row, and then used the leading 1 to
get 0’s in the column underneath it; but this produced many entries that were fractions
(cue P9: “it’s tricky,” “it’s... gonna take like... a year”). Some participants did take
entries of the matrix into account, but their considerations seemed restricted to the case
of the “entry whose value is 1”: P1 used an entry that was a 1 from the get-go to get
0’s in the same column, and P4 and P6 took advantage of entries (in the same column)
whose difference was 1 to get an entry whose value was 1 (in that column). Altogether,
participants consistently spent significant amounts of time on these reductions and got
nowhere near solving the system after nearly 10 minutes of calculations.

If not for my interventions, most participants’ activity seemed bound to remain in their
row operations (with the exception of P7*, who, at the other extreme, bounded from one
suggestion to the next without actually engaging in any operation). It’s not surprising,
then, that participants’ primary concern when it came to solving linear equations was the
accuracy of their calculations and the time it took to complete them. They commented
about the calculations involved in Problem 2 (“that’s harder than [the] exam,” said P1)
but also about how they’d prioritize these in an exam or as they practiced at home.

Participants commented on the accuracy of their arithmetic. P6 mentioned he doesn’t
always indicate which row operations he does (e.g., R1 +2R3 → R1) and that this makes
him “mistake-prone”: “I just do in my head. [. . . ] I just find... I mean, sometimes it
makes me a little mistake-prone. It’s harder to find my errors.” P4 was concerned about
arithmetic errors on exams: “to maximize my marks, I’m gonna need to probably go
through it like five times to make sure I didn’t make any arithmetic mistake. I would [...]
try to... work slowly. Because I would not like to write 10 lines and then need to scratch
everything out.” P2 mentioned a Student technique for identifying his errors: “calculator
is giving me a decimal answer so [pause] I think I’m doing something wrong,” “it’s, uh,
usually when I get like uh. Lot of tricky numbers. I, I assume something is uh, wrong.
Honestly, if it was on a test, I would skip it.” P9, in reference to the mnemonic device
for calculating determinants of 3× 3 matrices, said that “when [he] was studying for the
final, this was the method where [he] had least mistakes and was the fastest.”

Speed seemed a top concern for participants. P5 said that “for the final - final exam,
[she’d] just go a little faster, because this might not be the fastest way” but, when I asked
what would be faster, did not have an answer (she guessed there’d be something to do
with invertibility, but did not know what). P6 said he doesn’t indicate, on exams, which
row operations he does because this “eats into the time.” P6’s opinion of linear algebra
was marred by how much time it eats up: “the thing I don’t like about linear is that all
these like basic operations seems to take a very long time.” (“I just like algebra [...] I just
like numbers like that. Like, the things that I read for fun are not linear. It’s more like. . .
abstract algebra. Number theory.”) At least one participant relied on the time needed
to perform a task to gauge the validity of his technique: P2 abandoned τ4 because the
inversion algorithm would take too long. The “calculator is giving me a decimal answer
so [pause] I think I’m doing something wrong. There is no way I should invert it. If the
answer is alright because it’s. . . gonna take like. . . a year” (nevertheless, P2’s only other
suggested technique was τ2, which still requires row operations to solve the system). On
an exam, P2’s strategy for dealing with time-consuming problems is to postpone them:
“if it takes a long time on the test, I usually skip it and keep it for the [end] if I have time.”
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When prompted to think of other techniques, some students suggested techniques and
exclaimed they’d likely be faster, but they clearly did not actually consider the mathe-
matics involved when saying this. For example, when P6 thought of τ4 (after engaging
with τ2), he said that “the math is probably faster to invert it.” It isn’t. After engaging
with τ2, P9 also decided τ4 would be less time-consuming than τ2: “it [τ4] is way easier
and [τ2] [...] [is] very long and [...] [can have] many calculation mistakes along the way.”
After P8 found that x = y = z = 0 using Cramer’s rule (τ3), I asked if she could think
of any other approach. She said that if it weren’t for the affirmation that A is invertible,
she’d have used her “usual” technique, τ2, and said that “maybe that would actually be
faster [than Cramer’s rule, for Problem 2]. You know, probably.” It isn’t. P9, who had
engaged with τ2 and temporarily claimed τ4 would be faster than τ2, eventually claimed
that “Cramer’s rule is the easiest [approach],” it’s “the fastest method,” “Cramer’s rule is
faster and easier [than τ2]. So you just row reduce and then you have the matrix.” But P9
also said that the similarity between b and the first column of A can’t be used, so given
that Cramer’s rule would normally involve the calculation of 5 determinants, P9’s claim
that “Cramer’s rule is faster and easier [than τ2]” seems superficial: it is not informed
by the mathematics involved in Cramer’s rule, in general, nor by the mathematics that
could be involved in Problem 2 specifically.

I found only two instances in which participants accurately took into account the
math involved in a technique to make an inference about the time needed to enact it.
P1 said that on an exam, he would use τ2 and not τ4, because τ4 involves another step
(multiplication). Asked what he’d do differently or similarly on an exam, P4 said he
wasn’t sure he’d bother swapping rows to get leading 1’s into their ‘ideal’ spots “because
of the time,” and that he’d “try to optimize how much [he] can combine operations,”
“[he tries] to combine as much row operations as possible in one step [...] try to show the
least amount of matrices [he] could show but still in a.. a coherent way, so [instructors]
can understand.”

When P4 noticed, well into his activity in Problem 2, that the first column of A is
the negative of b, he exclaimed that “[he needs] to pay more attention before starting
problems.” This brings to mind his earlier desire to behave optimally, which he expressed
while discussing the relation det (A) ⇔ ∃A−1: “I should have maybe thought that there
is more optimal way, because that’s actually very important throughout the exams to
see if there’s any quicker way to solve the problem.” P4’s comments show he wants to
behave optimally, but his activity in Problem 2 shows he is not equipped to do so. When
he activated τ2, he knew to avoid operations that would produce fractions, but did not
otherwise take the entries in the given matrix into account to inform his choice of row
operations. When asked what he expected to find at the end of the row-reduction pro-
cess, he described the three potential options for a linear system (1 solution, no solutions,
infinitely many solutions), and was not able to use the fact that A−1 is invertible to
predict there would be one solution; he wondered if there was a rule that said that if A is
invertible, then Ax = b has a solution. When he noticed that the first column of A was
equal to -b, and thought of Cramer’s rule, he said he wouldn’t use Cramer’s rule because
finding the determinant of a 4 × 4 matrix is difficult. P4’s normative knowledge got in
the way of his desire for efficiency.
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P4 seemed aware that he does not always behave optimally. In addition to his claim
that “[he needs] to pay more attention before starting problems,” his perception of instruc-
tion in LA1 suggests he feels he is missing strategies for using LA1 techniques efficiently:

I would really like if the instruction gave us a strategy [he claimed he came
up with the strategy of getting 0’s and 1’s on his own, from experience solv-
ing problems at home], because especially for the introduction courses, like
[Calculus 1], [LA1], [Calculus 2], I think the problems are, I wouldn’t, some
are actually challenging but at least something like this. I think it’s more
primitive. So I think if I have maybe, manual, so oh okay, so, what I’m -
because I did this on my own, so I want this to be zero, and then this to be
zero, this to be zero, and then work.

He also seemed to feel he has a surface-level grasp of the tasks in LA1, and that this
impinges on his capacity to tackle them efficiently: “I would like to, if the instruction has
maybe more information about the, how I should think about the problem or the nature
of the problem for us to see it as a problem, not as a bunch of numbers, I think that
would greatly enhance my. . . problem approaching skills.”

P4 was not the only participant who seemed aware he might be lacking knowledge and
therefore behaving inefficiently. When P8 started to calculate det (A) (to use Cramer’s
rule), she considered using row-reduction and decided against it. She explained later why
she stuck to cofactor expansion throughout her (9.5-minute) calculation (which had led
to an incorrect answer):

I know [cofactor expansion] is lengthier... I know there’s a lot of numbers
in algebra, but like reducing should be faster, but you have to be careful
to not make any mistake here. And again, you should make sure that you
add everything according to the row operations that you made. And again,
sometimes you can forget that. Or just [you make a] mistake, and... I have a
lot of these with algebra. So like, at least, like, if I will write everything here.
I have fewer chances. But yeah, it’s probably, it probably takes more time.

P8 had prioritized LA1 techniques that could be grasped superficially, even if she knew
that other techniques could allow her to do calculations more efficiently. In the LA1
exam task in which students are asked to find the determinant of a matrix, the matrix
usually has size 4× 4, its entries are exclusively (smaller) single-digit integers, and it has
a column or row with (at least one but usually) two entries that are 0. It’s not necessary,
in LA1, to develop efficient determinant-calculating techniques.

Students’ descriptions of what they would do differently or similarly if they were doing
Problem 2 at home, as practice, give a glimpse into practices that privilege surface-level
features of LA1 problems. P1 said he would do both τ2 and τ4 for practice; but the bulk
of the two techniques involves the exact same process of row-reducing A. P4 said he’d
“probably go on a matrix calculator, make sure that he’s doing it correctly.” (No word
about attempting to do anything efficiently or optimally, which he said he’d try to do on
exams.) P5 said she’d do the same she had done in the interview (activate τ2).

Participants’ normative techniques for tasks of type T (to solve a linear system) in-
volve using row operations to manipulate a “bunch of numbers” (P4) into a form that
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involves many 1’s and 0’s. Their practice is centered on a concern with getting to that
final form quickly and without making calculation errors, but they do not take into ac-
count the specifics of the “bunch of numbers” they’re given to guide their calculations;
they automatically engage in the techniques that LA1 tasks had trained them to activate
in response to certain triggers, and as they engage in their techniques, they either activate
the given algorithms religiously (multiply R1 trough by 1

A11
to get a leading 1 in entry

A11) or use surface-level features (such as existing 1’s) to avoid producing fractions in
their calculations.

Students were dependent on their normative techniques and these techniques did not
include taking the features of a problem into account to guide their choice or implementa-
tion of technique. This led students to perform operations that may have been lengthier
than what they were used to (as P1 put it: this was “harder than [the] exam”). The way
the problem was designed, meanwhile, meant the given system could have been solved
by inspection. But this is not a norm in LA1, and students struggled to get out of their
norm. They are not used to looking at the “bunch of numbers” in the matrices they are
given; their job is to algorithmically manipulate this bunch of numbers into submission.
In the most extreme cases, some students’ mistakes (P2 and P7* with their incorrect
augmented matrices, P6’s initial use of a coefficient matrix while using τ2 and later ques-
tion as to whether τ2 would actually produce a solution, given that the reduction looked
messy, and P5’s interpretation of a row of the form

[
0 0 0 5 0

]
as the equation 5 = 0)

suggest that, even as students know, on paper, that row operations and augmented ma-
trices correspond to linear systems and the algebra that’s used to solve them, students’
normative engagement with linear systems and augmented matrices is superficial enough
that it suffices to know augmented matrices as “a bunch of numbers”—a bunch of num-
bers divorced from their connection to the linear system they’re meant to capture.

The purpose of row-reduction is to manipulate the matrix in a way that allows you to
find a solution by inspection or a substitution that allows you to easily find the solutions
of the system. It doesn’t seem students knew this is what they’re doing. They applied
an algorithm; but a human who views the objective of row reduction as to simplify
the situation may not automatically do row-reduction. Students are given tasks that
have them use row-reduction to demonstrate their capacity to use it. Inspection or easy
substitution are not techniques they are expected to use. If students were trained to view
row reduction as a technique whose goal is to simplify, they might be more inclined to
begin with an inspection of the system they are given. I see two possibilities: one, that
students are unaware of the simplification objective of row-reduction; or they are aware,
but they have a normative approach because they are Studenting and they know row
reduction is what they are expected to do.

5.3 LA1 Problem 3

The following was the third problem presented to the 10 LA1 students in the TBI:
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Show that (w1, w2, w3) = (29,−9, 3.2) × (11, 2.1397, 41) is a solution of the fol-
lowing system.

29x − 9y + 3.2z = 0
11x + 2.1397y + 41z = 0

5.3.1 Reference model for LA1 Problem 3

Problem 3 is a task of the type “show that a given element is a solution of a given linear
system,” but I will focus this reference model on a more narrow task type T to which it
belongs: “show that a given element is a solution of a homogeneous linear system of two
equations in R3.” I had actually designed Problem 3 with a yet more specific task t in
mind: “show the cross product of normals of two planes (that contain the origin) is in
the intersection of the two planes.”

Planes in R3 are defined by equations of the form ax + by + cz = d. This definition
is produced by the following reasoning in R3: a plane can be uniquely identified by a
point it contains and a vector orthogonal to that plane. This reasoning can be supported
by a visual aid (which is the reasoning given in LA1 in the knowledge to be taught).
That this conception of planes is well-defined is confirmed algebraically using the dot-
product definition of orthogonality (two vectors are said to be orthogonal if their dot
product is zero; this, in turn, has its roots in the definition that two vectors in R2 or
R3 are perpendicular if the smaller angle between them is π

2
). If P1 and P2 are two

planes containing a point (x0, y0, z0) and orthogonal to the vector (a, b, c), then P1 and
P2 coincide. Indeed, if (x, y, z) ∈ P1, then the vector with terminal point (x, y, z) and
initial point (x0, y0, z0) is parallel to P1 so by definition of vector addition and the negative
of a vector, (x− x0, y − y0, z − z0) is parallel to P1 and therefore orthogonal to (a, b, c):

(a, b, c) · (x− x0, y − y0, z − z0) = 0. (5.1)

Similarly, if (x, y, z) ∈ P2 then equation (5.1) holds as well; any point in P1 is therefore
in P2 and vice-versa, so the equation corresponds to a unique plane. Applying the
definition of dot product to equation (5.1) produces what’s called the “point-normal
equation of a plane”:

a(x− x0) + b(y − y0) + c(z − z0) = 0
⇔ ax+ by + cz − (ax0 + by0 + cz0) = 0
⇔ ax+ by + cz = d, where d = ax0 + by0 + cz0.

Any plane given by an equation of such a form has (a, b, c) as a normal (a vector
orthogonal to the plane), and d is the dot product of this normal with a point on the
plane. The conceptualization of a plane in terms of a normal, then, is key to the equation
definition of a plane.

A dot-product representation helps to highlight the orthogonality between points on
a plane through the origin and a normal of that plane:

ax+ by + cz = 0 ⇔ (a, b, c) · (x, y, z) = 0.

137



Any solution of a system of homogeneous linear systems is a point that belongs to
each plane in the system; the dot-product representation highlights the property that
(x, y, z) is a solution if and only if it is orthogonal to the normals of all the planes. In the
context of a homogeneous linear system of two equations (as in Problem 3), the concept
of cross product is particularly useful: given the system

n1 · (x, y, z) = 0
n2 · (x, y, z) = 0

,

the cross product of the normals n1 and n2 is orthogonal to n1, which is orthogonal to
P1, so n1×n2 is parallel to P1; this plane goes through the origin and n1×n2 (the vector
from the origin to the point n1×n2) is parallel to it, so n1×n2 is a point on P1. Similarly,
n1×n2 is a point on P2. So the cross product is a solution of the system. (The algebraic
reasoning for this is more direct, since two vectors are defined to be orthogonal if their
dot product is 0.) Conversely, any solution P of the homogeneous linear system would
be a point on P1 and a point on P2; since the vector P is parallel to both planes, it is
orthogonal to both of their normals, so it is parallel to n1×n2. Hence, n1×n2 generates
the solution space of the system.

This discourse is what produced my design of Problem 3. My reference model for the
task of type t (show the cross product of normals of two planes (that contain the origin)
is in the intersection of the two planes) consists of the technologies I used in the design
of this problem (the technologies that produced the choice to have the task focus on the
cross product of the normals of planes that go through the origin). I will refer to the
collective of these technologies (the above discourse) by θ. The theory Θ at the backdrop
of these technologies is the algebraic, geometric, and logical discourse (axioms, defini-
tions, properties, theorems, proofs) that gives authority to those technologies and the
view that the axioms that underpin linear algebra and Euclidean geometry are founded
in the physical reality humans inhabit.

We’ll now outline techniques for performing task t: to show the cross product of nor-
mals of two planes through the origin is in the intersection of the two planes.

The system in Problem 3, in terms of dot products, can be represented as follows:

(29,−9, 3.2) · (x, y, z) = 0
(11, 2.1397, 41) · (x, y, z) = 0

Since (29,−9, 3.2)×(11, 2.1397, 41) is orthogonal to both (29,−9, 3.2) and (11, 2.1397, 41),
it is a solution of the given system. I will refer to this approach by τ1: it is one technique
through which to perform the task t.

Another technique, τ2, leans on the geometric discourse from θ: since the first equa-
tion corresponds to the plane through the origin with normal (29,-9,3.2), and since the
vector w = (29,−9, 3.2) × (11, 2.1397, 41) is orthogonal to that normal, this vector is
parallel to the plane; the plane goes through the origin, so the endpoint of w is a point on
the plane and therefore solves its equation. Similarly, w is also a solution to the second
equation. So it solves the system.
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Another technique is τ3: to show that (w1, w2, w3) = (29,−9, 3.2)× (11, 2.1397, 41) is
a solution of the given system, find the values of wi (i = 1, 2, 3) by calculating the cross
product and plug them into each equation to verify if the system is satisfied.

Techniques τ1 and τ2 are produced and justified by the theoretical block [θ,Θ]. The
theoretical block [θ3,Θ3] needed to activate τ3 is a definition of cross product, the notion
of what it means for an element to be a solution to an equation, and knowing how to
multiply and add real numbers. My reference model, then, consists of the following
praxeologies:

� [t; τ1; θ; Θ];

� [t; τ2; θ; Θ]; and

� [t; τ3; θ3; Θ3].

5.3.2 Knowledge to be learned in LA1 that relates to Problem
3

In LA1, tasks of type “show that a given element is a solution of a given linear system”
do not appear on midterm and final exams nor on the problems recommended to students
as practice on the course outline. It’s possible students perform this task to verify their
solution when they solve linear systems and find one solution. It follows that the subtype
T (show a given element solves a homogeneous linear system of two equations in R3)
and the task t (show the cross product of normals of two planes through the origin is in
the intersection of two planes) do not show up on any midterm and final exam tasks either.

For my model of knowledge to be learned, I’ll focus instead on tasks from LA1 that
involve the mathematical constructs present (explicitly or implicitly) in Problem 3: ho-
mogeneous linear systems, cross products, dot products, and point-normal equations of
planes. In LA1, as I will show below, tasks usually target one such construct at a time
(contrarily to Problem 3, which combines them into a single task). To help trace the
knowledge students activated in the TBI (examined in Section 5.3.3) to knowledge stu-
dents are expected to know about these usually-disjointed constructs, I will use ATD
praxeological notation to a higher degree of specificity than I had in the models of knowl-
edge to be learned that is relevant for some of the other TBI problems (e.g., Problems 1
and 2).

I will start with t4
16, the only LA1 task about homogeneous linear systems in past

midterm and final exams and in the problems recommended as practice problems on the
course outlines: to find the basis of the solution space of a homogeneous linear system. I
found this task on 6 past exams; there, the task always included a system of 3 equations
in 4 to 7 unknowns. In 4 of the 6 exam problems, the coefficient matrix was in RREF
and in another one of the exam problems, it was in REF. The entries in the coefficient
matrices on all exam problems were integers between -2 and 8 (and mostly closer to 1).

16t1, t2, and t3 are not defined here nor in the reference model for Problem 3, but I index this task as
t4 to distinguish its related technique (τ4) from the techniques denoted by τ1, τ2, and τ3 in the reference
model for this problem.
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To perform t4 in LA1, the technique τ4 is to row-reduce the augmented matrix (this
was only actually needed in one of the past exams, as the others gave coefficient matrices
that were already in RREF or in a REF), find the general solution in terms of param-
eters, possibly express the parametric solutions in vector form (though instructors may
not require this), and infer the basis from (the vector form of) the parametric solutions
(e.g., if the general solution is found to be x = t, y = 4t, z = 5t, then the solutions are
vectors of the form (t, 4t, 5t) = (1, 4, 5)t so {(1, 4, 5)} is a basis for the solution space).
No theoretical discourse is needed.

There were two types of tasks related to cross products on past final exams: t5, to
find a vector orthogonal to the plane of a triangle in R3, given the vertices A,B,C of
the triangle (this appeared in 2 exams); and t6, to find the area of a triangle, given the
vertices of the triangle (this appeared in 3 exams, one of which also had t5). In both
cases, the vertices were integers between -2 and 5.

To perform t5, the technique τ5 is first to find two vectors parallel to the plane (e.g.,
−→
AB and

−→
AC) and then compute their cross product. The technology θ5 = [θ51, θ52, θ53]

17

includes the formula for a vector given its initial and terminal points (θ51), the definition
of cross product or any mnemonic device that produces an accurate cross product (θ52),
and the property that the cross product of two vectors is orthogonal to both vectors (θ53).
The knowledge to be taught in LA1 includes a discourse that combines geometric and
component definitions of vector, vector addition, and additive inverses to produce the

formula
−→
AB = (xb − xa, yb − ya, zb − za), but students need only know this formula and

how to add and subtract vectors in component form. The knowledge to be taught in LA1
includes a component-based proof that shows (using dot products) u× v is orthogonal to
u and v; this is not part of the knowledge students need to learn.

To perform t6, the technique τ6 is to use the formula for the area A of a parallelogram
with edges AB and AC:

A = ∥
−→
AB ×

−→
AC∥.

To activate this technique, students need to know θ51 (the formula for the vector given its
initial and terminal points), θ52 (the definition of cross product or any mnemonic device
that produces an accurate cross product), and θ6, the above formula for the area of a
parallelogram and that the area of the triangle formed by vertices A,B, and C is half of
A. Students do not need to know the discourse that produces the formula for the area
of a parallelogram, though it is included in the knowledge to be taught.

Only one LA1 exam included tasks that involved dot products, and this is the same
exam that included both types of cross product tasks (t5 and t6). One task, t7, was to
“show that if u is orthogonal to v and w then u is orthogonal to av+bw, where a and
b are numbers.” To perform this task, students need to know θ7 = [θ71, θ72]: properties
of dot product, addition, and scalar multiplication of vectors, which mimic properties of
multiplication and addition of real numbers (θ71), and the definition that two vectors are

17For the model of knowledge to be learned that relates to geometry, I find it may be useful to use
praxeological notation to a higher-level of specificity. This a priori reflection may help bring attention
to the nature of the properties of geometric technologies that are retained in the praxeologies students
mobilize.
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orthogonal if their dot product is 0 (θ72). The second task, t8, was to find (u+v)·(2u-v)
given only the numerical values of u·u, u·v, and v·v. To perform this task, students
needed to know θ71.

Only three LA1 exams included tasks that (potentially) involve point-normal equa-
tions.

One exam had the task t9, to find the point-normal form of a plane that contains a
given point P = (x0, y0, z0) and has a given normal n = (a, b, c) (a second part of this task
requires students to write the equation of the plane in the form “ax+ by + cz + d = 0”).
The technology needed to perform t9 is θ9, the formula for the point-normal equation of
a plane: a(x− x0) + b(y − y0) + c(z − z0) = 0.

One exam had the task t10, to find the equation of a plane P1 containing a given point
P and parallel to a plane P2 ax+ by + cz = d. The technique τ10 is to use the normal n
of the plane P1 and the point P it contains to produce a point-normal equation for P1.
To activate this techique, the technology is θ10 = [θ9, θ10−1], where θ9 is the formula for
the point-normal equation of a plane. θ10−1 is the knowledge that parallel planes have
parallel normals.

Another exam had two tasks that involved planes in point-normal equations, but the
techniques needed to accomplish these tasks did not require any knowledge about point-
normal equations. One task included finding a line L of intersection of two planes (both
given in the form ax+by+cz = d), using L to produce an equation for a plane containing
L and a given point P ; the other task instructed students to find the coordinates of the
intersection of L and a third plane (also given in the form ax+by+cz = d). I won’t detail
all the techniques and technologies needed to perform this task in their entirety, as they
are not all relevant for Problem 3. But one major technology (θ11), that is needed for
these tasks (which I will denote by t11) is relevant to Problem 3: it is the knowledge that
solutions of systems of linear equations in R3 correspond to intersections of planes; and
that a line in R3 corresponds to the intersection of two planes, and therefore corresponds,
algebraically, to the solution set of a system of two linear equations.

I summarize, in Table 5.6, the knowledge students need to learn in LA1 to engage
with the mathematical constructs that appear (implicitly or explicitly) in Problem 3.

In light of the knowledge students need to learn about the mathematical constructs
in Problem 3, I wondered whether the homogeneous linear system in the problem would
prompt students to spontaneously engage in their usual linear-system-solving techniques
(row-reducing the augmented matrix), that is, whether students would treat Problem
3 as a task of type t4; or, perhaps, whether students would be triggered to calculate
the cross product as tasks involving cross products in LA1 always require students to
calculate them; or whether the cross product representation and the fact that this is a
homogeneous linear system (where the constant to the right of the equations is 0) might
be sufficient to trigger, in students, the relation between dot and cross products that is
in some of the knowledge they need to learn (θ53, θ72).
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Table 5.6: Model of the knowledge students need to learn in LA1 to engage with mathe-
matical constructs in Problem 3

Task Count Technique Theoretical discourse

t4

to find the basis of the solution
space of a homogeneous linear
system

6 τ4

row-reduce the augmented matrix
find the general solution in terms
of parameters
possibly express the parametric
solutions in vector form
infer the basis from (the vector
form of) the parametric solutions

none

t5

to find a vector orthogonal to the
plane of a triangle
in R3, given the vertices of the tri-
angle

2 τ5

use triangle vertices to find two
vectors parallel to the plane and
compute their cross product

θ5 = [θ51, θ52, θ53] formulas
(θ51 for vector between two
points, θ52 for cross prod-
uct) and θ53 property that
u × v is orthogonal to both
u and v

t6
to find the area of a triangle R3,
given the vertices of the triangle

3 τ6

activate [θ51, θ52, θ6] to find the
area of the parallelogram formed
by two edges of the triangle, di-
vide by 2

[θ51, θ52, θ6] where θ6 is the

formula A = ∥
−→
AB ×

−→
AC∥

t7

show that if u is orthogonal to
v and w then u is orthogonal to
av+bw, where a and b are num-
bers

1 activate θ7

θ7 = [θ71, θ72] properties of
dot product, addition, and
scalar multiplication of vec-
tors (θ71); two vectors are
orthogonal if their dot prod-
uct is 0 (θ72)

t8

to find (u+v)·(2u-v) given only
the numerical values of u·u, u·v,
and v·v

1 activate θ71 θ71

t9

to find the point-normal form of a
plane that contains a given point
P = (x0, y0, z0) and has a given
normal n = (a, b, c)

1 activate θ9

θ9 formula for the point-
normal equation of a plane
(a(x−x0)+b(y−y0)+c(z−
z0) = 0)

t10

to find the equation of a plane P1

containing a given point P and
parallel to a plane P2 : ax+ by +
cz = d

1 τ10

to use the normal n of the plane
P1 and the point P it contains to
produce a point-normal equation
for P1

θ10 = [θ9, θ10−1], where
θ10−1: parallel planes have
parallel normals

t11

to find intersections of loci in R3

and use these to find equations of
other loci

1

θ11 solutions of systems of
linear equations in R3 cor-
respond to intersections of
planes; a line in R3 cor-
responds to the intersec-
tion of two planes, and
therefore corresponds, alge-
braically, to the solution set
of a system of two linear
equations
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5.3.3 Knowledge LA1 students activated in response to Prob-
lem 3

Table 5.7 summarizes the paths of participants’ activity as they worked on Problem 3. As
before, Step 1 refers to the activity a participant spontaneously engaged in upon reading
the problem statement; I group students according to Step 1 and color-code the groups
to help trace students’ paths thereafter. I categorize a student’s activity in a new step if
they presented it as such; if I prompted for another approach and a participant described
one that is essentially equivalent, I still categorized it as a new step. If a participant does
not appear in the column for Step i (i ≥ 2), it is because they did not engage in any new
activity after Step i− 1.

Table 5.7 reveals that most participants’ activity landed in one of three categories:
activating techniques and technologies normative to LA1 (calculating cross products us-
ing θ52 and/or row-reducing augmented matrices of homogeneous linear systems to find
their parametric solutions, as in τ4), being stuck trying to recall LA1 norms related to
cross products (what teachers had said, past homework, practice exams), or being stuck
trying to use or recall geometric properties of cross products or linear systems and their
solutions (as planes and lines). Of the seven students who completed the task, four did
so using θ52 and/or τ4. Two (P2, P4) completed the task by combining these two: for
them, the task was to check if the cross product was one of the (parametric) solutions
of the system. I will denote this approach by [τ4, θ52] in reference to these elements of
knowledge to be learned in LA1; see Table 5.6. P2 and P4 found the components of the
cross product, the parametric solutions of the system, and found a value of the parameter
that generated (approximately) the cross product they had found (e.g., if z = t, then they
looked at the z-component of the cross product to identify the value of t that would gen-
erate the cross product). Two other students (P5, P6) completed the task by calculating
the cross product, plugging it into the left side of the equations, and finding this produces
(approximately) 0; this is technique τ3 from the reference model. Three students (P1,
P7*, P9) completed the task by operating in a fourth category—to avoid operating θ52:
they activated τ1 (from the reference model for Problem 3), which includes the definitions
of dot product and orthogonality and the property that u×v is orthogonal to both u and v.

The three students who did not complete the task are P10, P8, and P3. P10 and
P8 had also suggested [τ4, θ52] but did not activate it and did not complete the problem,
though they got stuck for different reasons. P10 had initially calculated the cross product
and was confused because the cross product has three components while the system has
two equations; I asked if she could think of another approach, and she suggested [τ4, θ52],
but was not sure and tried to think of a different approach. Eventually, I asked how she
“normally check[s] if something is a solution of a system,” and P10 responded: “not sure,
maybe [pause] grades do it? Like I don’t know. Not sure.” P8 was also unsure of her
suggestion to use [τ4, θ52] (and had chosen not to actually calculate the cross product,
after having written an expression for w1, w2, w3); but P8’s hesitation was because she
was trying to recall, instead, theoretical knowledge about cross products. P3, finally, had
calculated the cross product but did not see the point in doing this. Most of P3’s activity
in relation to Problem 3 was in trying to recall LA1 norms related to cross products and
geometric representations of cross products and linear systems; she correctly described
the system of two equations as corresponding to planes intersecting along a line, but also
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Table 5.7: Paths of LA1 Students’ Activity in Problem 3

Step 1 Step 2 Step 3 Step 4 Step 5

Practical block [t, τ ]

P
ar
ti
ci
p
an

t

Type of engagement with
[t, τ ]

P
ar
ti
ci
p
an

t

Type of engagement with
[t, τ ]

P
ar
ti
ci
p
an

t

Type of engagement with
[t, τ ]

P
ar
ti
ci
p
an

t

Type of engagement with
[t, τ ]

P
ar
ti
ci
p
an

t

Type of engagement with
[t, τ ]

find
cross
prod-
uct
(CP)

no goal identified

P5
start to enact (incor-
rect vectors include un-
knowns)

P5

enact (finds CP) (I had
prompted P5 to notice
the vectors in her CP
were incorrect)

P3
enact and dismiss (knowing
the values doesn’t show the
CP solves the system)

P10 enact (finds CP)

P1
start to enact (writes ex-
pression for CP)

P8
start to enact (writes ex-
pression for CP)

[τ4, θ52]: to check if
the CP is equal to
one of the solutions
in the system’s

parametric solutions
(PS)

P2

enact (finds CP, finds
PS, finds a parameter
value that generates a
solution approx. equal
to the CP)

P8
suggest and start to en-
act, hesitates

P4
enact and get stuck (finds
PS, generating vector does
not equal CP)

P4

enact (observes CP is
multiple of vector
generating the general
solutions); also gives
planes/line interpretation
of system (prompted for
alternative approach, says
this is geometric
representation, approach
would stay same)

P10 suggest and get stuck

P4
start to enact (writes
augmented matrix)

P4 start to enact (finds CP)

τ3: to plug CP
entries into

equations to check
it’s a solution

P6

enact (finds CP; plugs
into equation, does not
get 0; finds error; con-
cludes approach is fine)

P5

enact (CP doesn’t give
exactly 0 when plugged in,
P5 assumes rounding
error); completes task

P7* describe

P9
start to enact (writes ex-
pression for CP, calcula-
tions for w1)

τ1: definitions of dot product
and orthogonality, and
property that u× v

is orthogonal to u and v

P1 enact

P7* enact/describe

P9 enact/describe

stuck

does not know what
the task is

P3

tries to recall relation be-
tween CP and system;
thinks system is miss-
ing an equation; rewrites
first equation as a matrix
equation Ax = 0

try to recall LA1
norms related to CPs

P3

I reworded the prob-
lem, P3: “I forgot how
to handle this.” Vague
recollections from LA1
(“teacher” said...)

P5

I asked if P5 thought of
an approach that wouldn’t
involve calculating the CP.
Recalls from “past home-
work,” “doing problems in
the past”: CP, 0’s, vec-
tors and coefficients trigger
memory of relation between
CP, dot product, orthogo-
nality, and 0, but cannot ac-
tivate anything

P5

I asked if P5 can think of
geometric relation between
CP, vector (29,−9, 3.2), and
vector (11, 2.1397, 41); men-
tions right-hand rule, CP
has something to do with
height of vector (from right-
hand rule), may relate to
hypotenuse (dismisses this)

try to use/recall
geometric property
of CP or linear

equations
(planes/lines)

P6

P6 had brought up τ1
(from the reference model
for Problem 3); I asked if
he could use this to do the
problem, but P6 cannot ac-
tivate it. Does not know
why “this being orthogonal
[. . . ] means these are equal
to zero”

P4

the calculated CP is not
equal to the vector found
to generate the general so-
lution; tries to recall what
CP represents, recalls its
norm is area of parallelo-
gram made up of vectors,
dismisses (not useful here)

P3

I asked if P3 can think of
geometric relation between
the CP, the vector
(29,−9, 3.2), and the
vector (11, 2.1397, 41);
confusing interpretation of
system and CP in terms of
planes and intersections

P8

I asked why P8 hesitates:
“there probably was some
geometric explanation or
something like that, not ge-
ometric but... some proofs
about the CP that I didn’t
read [. . . ] I remember
there were some parts that
I skipped. In the book”

P3

represents the system as
planes that intersect along
a line, says the CP is an-
other plane (confusing de-
scriptions)

plug components
of (11, 2.1397, 41)
into first equation,
components of
other vector as

well, doubts utility

P6

I asked if P6 can think of
a way to do the problem
without calculating the
CP; P6 enacts and dis-
misses (does not see why
it would “prove”/“mean
anything”)

said the cross product was another plane intersecting with these two planes.

Problem 3 did not directly correspond to any normative task in LA1. At its surface,
it most closely resembles the normative LA1 task t4, wherein students are to find (a basis
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of) the solution space of a homogeneous linear system; the technique for that task is
τ4, which was the technique activated by P2, P4 and suggested by P8, P10, but with
a different purpose in mind: their goal was to confirm that the cross product (once its
components are found) is equal to one of the parametric solutions of the system. There
is no need to produce all the solutions of the system to do Problem 3; τ4 is superfluous to
the task. But P2, P4, P8, and P10 spontaneously activated τ4 and were unable to activate
any other technique when asked if they could think of another approach—even when the
question was whether they could think of an approach that wouldn’t involve calculating
the cross product or an approach that wouldn’t involve finding all the solutions of the
system. This shows their practice was driven by LA1 norms, and that these norms had
participants behave counter to the mathematics at stake.

Apart from P2, P4, P8 and P10’s roundabout application of LA1 norms, all ten
participants’ spontaneous activity also reflects an LA1 norm: every participant, as their
intial step toward performing the task, wrote out the expressions needed to calculate
w1, w2, w3. For example, w1 would be∣∣∣∣ −9 3.2

2.1397 41

∣∣∣∣ .
I discuss students’ intentions in this first step in Section 5.3.3.1.

Nevertheless, features of the problem, which differ overtly from what students are
used to in LA1, seem to have propelled students to operate or try to operate outside
of their norms from LA1. In light of the activity and comments that were triggered in
participants in response to Problem 3, I surmise that these features are responsible for
students’ attempts to operate outside of their norm and act more efficiently through-
out their engagement with Problem 3. As we’ll discuss in Sections 5.3.3.2 and 5.3.3.3,
much of students’ spontaneous activity and decisions was in reaction to hesitation re-
garding features of the problem. These features include the non-integer values of the
scalars, the presence of a vector given in the form of a cross product (and not in terms
of its components, in a task of type “check this is a solution of the system,” where
cross products do not usually appear in LA1), and the fact that the entries of vectors
u = (29,−9, 3.2) and v = (11, 2.1397, 41) are the coefficients in the first and second equa-
tion, respectively.

Even though students’ comments and activity were reactions to overtly abnormal fea-
tures of the problem, only three students (P1, P7*, P9) were able to mobilize knowledge
that allowed them to not depend on the technical LA1 norms of calculating cross products
when they appear and of solving linear systems by row-reducing their augmented matrix;
and these three students behaved in this abnormal way only in reaction to the abnormal
features of the problem. Additionally, only four students (P5, P6, and again P7* and P9)
proposed a technique (other than τ1) appropriate to the given task: to check the given
element is a solution by plugging its components into the equations (τ3). This means
that five students (P2, P3, P4, P8, and P10) were unable to mobilize LA1 knowledge to
perform their task in a way that reflects only the task (and not their norms from LA1).

In Section 5.3.3.2, I examine students’ spontaneous and non-spontaneous activity
after their initial decision to write out the expressions for the components w1, w2, w3 of

145



the cross product; this activity, together with students’ theoretical blocks (that is, the
justifications, beliefs, reasonings that drove the techniques they activated to perform the
task), suggests that the norms students developed in LA1 impinged on their ability to
mobilize knowledge from the course (knowledge to be taught in LA1) to perform the task
more effectively. I refer here to two norms in particular: the norm that row-reducing
augmented matrices is a cure-all—it always works ; and the norm that students need only
operate at the surface-level when performing tasks, without knowing the mathematics
that frames their techniques.

5.3.3.1 Students’ initial spontaneous reaction was to compute the cross prod-
uct

7 participants (P1, P2, P3, P5, P8, P9, P10) needed confirmation as to what the symbol
× represented, and all participants spontaneously started to compute the cross product
when they knew that’s what it was. To compute the cross product, 6 participants (P1,
P2, P6, P8, P9, P10) activated the following:

u× v =

∣∣∣∣∣∣
i j k
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
and made a cofactor expansion along the first row; 3 participants used the form of cross
product given in its definition (I had given P3 a copy of the definition as she was stuck),
and 1 participant did not actually get to computing it (P7*), but computing the cross
product was part of his first suggested approach.

Table 5.8 summarizes participants’ justifications in their choices to and not to find
the components (w1, w2, w3) of the cross product. The rest of this section outlines par-
ticipants’ activity and explanations in more detail; I invite the reader to consult the
summary table first.

P3 only set to find the components of the cross product after I gave her the definition
of cross product to help her get un-stuck, as she was unable to suggest any approach
upon reading the problem and even after I reworded the question: she had initially tried
to recall knowledge that would relate the cross product with the system, then thought
the system was missing an equation (specifically, 0x+0y+0z = 0), and then rewrote the
first equation in the form of a matrix equation (Ax = 0). After I reworded the problem
for P3, she said “she forgot how to handle this” and tried to recall what the “teacher”
had said: “I remember like during the class. The teacher was like, keep talking about
like, after this calculation it should not be 0 or [pause] oh, it’s about independency.” P3
was stuck so I gave her the definition of cross product; she said that “[she’s] trying to
remember... The way that [she] solved this kind of question before” and then calculated
the components of the cross product. But P3 did not activate this to complete the task.
She did not see the value in knowing the components:

P3: what I’ve done is just finding the values of w 1 2 3. I don’t really think that that
can be an exact

I: Why is it relevant to have the values?
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Table 5.8: Summary of participants’ justifications for and against finding (w1, w2, w3)

find (w1, w2, w3),
no plan for what to do with it

stuck
P3-1

P10-1 P1-1 P3-2 P8-1 P5-1

[τ4, θ52]:
find

(w1, w2, w3)
and use τ4

complete
task

P2 P4 P6 P5-2
complete

task τ3: find
(w1, w2, w3)
and plug

into
equations

hesitate
and not
complete

task

P8-2 P10-2 P7*-1 , P9-1
suggest

but switch
approach

P1-2 P7*-2
P9-2

P3-3 P8-3

it’s not
necessary to find
(w1, w2, w3), and
activate τ1 to
complete task

it’s not relevant
to find

(w1, w2, w3), but
unable to recall

theory to
complete task

decide theory is more appropriate so

Pn-m : m indicates the pathway in Pn’s reasoning relative to finding (w1, w2, w3);
colorbox indicates Pn’s final reasoning.

P3: Yeah, because like finding value [sic] is not really [...] they’re not asking me to find
the values, they’re just asking, explain why this is the answer of this.

The rest of P3’s activity relative to Problem 3 was to recall geometric properties of
linear systems: each equation is a plane, the intersection of the planes is a line, which
corresponds to the solution of the system, and the cross product is a plane that also
intersects with the first two planes. She reiterated that knowing the components of the
cross product wouldn’t help because “calculation is just a calculation. It’s not the theory.”

Two participants (P2 and P4) found the cross product with the express goal of check-
ing that it’s equal to one of the solutions in the general solution of the system. To clarify:
P2 and P4 calculated the cross product, found the parametric solutions of the system,
and identified the parameter that would generate the cross product. This is approach
[τ4, θ52]. P4 had briefly tried to activate theory about cross products when he thought
his application of [τ4, θ52] was faulty; but P4 was not able to activate relevant theory
(he recalled that the norm of a cross product is the area of the parallelogram formed by
the vectors) and, in response to prompts from the interviewer, concluded his application
of [τ4, θ52] was appropriate. When P2 and P4 concluded their approach, satisfied with
their application of [τ4, θ52], I asked if they could think of a way to approach the problem
without finding all the solutions to the system. They could not. (Nor could P2 suggest
a different approach when asked if he could think of a way to do the problem without
calculating the cross product.)

Four participants (P1, P5, P8, P10) set to find the components of the cross product
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upon reading the problem statement and identified a reason for doing so only after they
started to write out expressions for w1, w2, w3. P1 and P8 did not end up calculating
the cross product; P1 activated other knowledge instead and P8 attempted to activate
other knowledge (more on this in the next paragraph). P5 and P10 did calculate the
cross product; P5 used it to complete the task and P10 suggested how she could use it to
complete the task (but did not use it; more on both cases in the paragraph after the next).

P1 and P8 started to do the necessary computations (they wrote the expressions
needed to calculate w1, w2, w3) but stopped short of doing any calculations; writing these
expressions out seems to have prompted them to think of another approach. P1 instead
activated τ1 (cross product property of orthogonality) to complete the task and P8, after
suggesting [τ4, θ52], still hesitated. I asked P8 why she was hesitating: “there probably
was some geometric explanation or something like that, not geometric but... some proofs
about the cross product that I didn’t read [...] I remember there were some parts that I
skipped. In the book I mean.” She continued: “I’m not sure how to... How the relation
between the cross product and... the... the matrix. I’m not sure how... I can... what
exactly it is that I could use.” Asked if she could think of any other approach, P8 did
not answer. Asked if she could use any of what she’s written so far: “probably not.”

P5 and P10 did the calculations needed to find the cross product. P10 struggled to
know what to do with the cross product once she found it; she suggested [τ4, θ52], but
hesitated and did not actually do this. She then tried to think of what else she could do;
after she was stuck for a minute, I asked how she “normally check[s] if something is a
solution of a system” and she said: “not sure, maybe [pause] grades do it? Like, I don’t
know. Not sure.” P5 plugged the components of the cross product into the equations to
check that it satisfies them.

Finally, 3 participants (P6, P7*, P9) set out to find the cross product with the goal
of plugging its components into the equation to check the cross product is a solution. P6
completed this approach, but P7* and P9 did not. P9 had started to write the expres-
sion for cross product and the calculations needed to find w1 and spontaneously changed
approaches: he activated τ1 instead. P7* had only described this approach (as was his
style throughout the interview), and when he thought of his second approach (to activate
τ1), concluded it was more elegant.

5.3.3.2 Most students’ ‘post-cross-product’ activities were driven by LA1
norms that impinged on their ability to mobilize knowledge other
than θ52 and τ4

While participants’ initial spontaneous activity was to calculate the cross product, par-
ticipants’ paths diverged as they started to enact these calculations. I identified three
paths. One path had participants spontaneously mobilize normative LA1 knowledge and
not spontaneously suggest any other knowledge (see Section 5.3.3.2.1): prompted to think
of an approach that would involve less calculations (e.g., an approach that doesn’t require
finding the cross product), some of these participants were unable to suggest any (P2,
P10), while others recalled there exists theoretical knowledge about cross product but
were either unable to recall what it is or unable to mobilize it (P4, P5, P6). Another path
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was of students who spontaneously wanted to mobilize theoretical knowledge about cross
products but did not have the knowledge (P3, P8) (see Section 5.3.3.2.2). A third path
was of students who mobilized theoretical knowledge about cross product spontaneously
and successfully (P1, P7*, P9) (see Section 5.3.3.2.3).

In my discussion of each type of path, I look to students’ explanations to highlight
how norms from LA1 may have inhibited students’ capacity to engage with Problem 3
using knowledge other than how to calculate a cross product (θ52) and how to solve a
linear system by row-reducing its augmented matrix (τ4).

5.3.3.2.1 Some students spontaneously mobilized normative LA1 knowledge
and did not spontaneously suggest any other knowledge (P2, P10; P4, P5,
P6) I identified two categories of students here.

5.3.3.2.1.1 Some of these students, when prompted to think of approaches
that do not involve certain calculations, could not think of any (P2, P10).
P10 and P2 were unable to suggest approaches other than the one they had initially
made ([τ4, θ52]); the techniques they had suggested reflected a technique students usually
activate in LA1 to perform tasks that look like Problem 3 (t4, to find the solution space
of homogeneous linear equations). P10’s spontaneous and only activity was to compute
the cross product and to then suggest τ4 (row-reduce the augmented matrix to solve
the system). P10 did not mobilize τ4 and was unable to suggest any other technique.
P2’s spontaneous and only activity was the same, though P2 did mobilize [τ4, θ52] and
completed the task. When P2 was asked if he can think of a way of doing this without
finding all the solutions, he said: “I’m not sure if there is another way. To do it. [...]
Usually, when uh. I have to find like an answer. In vector form. I would solve it uh, in
this way and I would find the. A vector in a parameter form and then I choose th- choose
the parameter based on what the question wants. Yeah. So I’m not sure that there’s
another way.” P2’s answer is from the perspective of an LA1 student: “usually, when
[...] I have to find” an answer, τ4 is the way to go. Recall that row-reducing augmented
matrices is the normative technique for 42 of the 116 exam problems to which I had
access. P2 was unable to suggest another technique even after a prompt asking him if
there is “a way of doing this without calculating the cross product,” “without actually
finding what the vector is.” (“I don’t think so.”)

5.3.3.2.1.2 Some of these students, when prompted to think of approaches
that do not involve certain calculations, recalled there is theoretical knowl-
edge about cross products, but were either unable to recall what it is or
unable to mobilize it (P4, P5, P6). P4, P5, and P6 had completed the task: P4
spontaneously activated [τ4, θ52], and P5 and P6 spontaneously activated τ3 (they found
the cross product and plugged it into the equations). After P5 and P6 had finished their
approach, I asked if they could think of one that would not involve calculating the cross
product. After P4 had finished his approach, I asked if he could think of one that would
not involve finding the all the solutions of the system. All three recalled that cross prod-
ucts have certain properties but either did not know what these are, or were unable to
mobilize the properties they recalled.
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The explanations given by P4, P5, and P6 when they were prompted to think of other
approaches point at how the norms they’d developed from the position of Students in
LA1 impinged on their ability to mobilize knowledge other than the formula for cross
products (θ52) and row-reduction of augmented matrices (τ4).

P5 recalled there are things her teacher taught about cross product but does not
remember what. She also remembered surface-level features of LA1 tasks involving cross
products:

From like, doing problems in the past that had me, like, jig [sic], which thing
would make like the cross product zero, and like, the numbers were like, you
just like flip... like a number. Or, like, put it like plug in numbers that are
like similar. I don’t know how to, like, explain it! Like it would be... Like
I would have... Like, I’m just trying to remember like past homework. Like,
we’d have like, two equations like this. And it’d be like, what would... I don’t
know if it was exactly like a similar question. It’s like, find two vectors that
would like... that are like perpendicular or parallel. or whatever. I don’t
know. I think I’m like confusing a bunch of different ideas together.

I followed by asking P5 if she could think of any geometric relation between the cross
product, the vector (29, -9, 3.2), and the vector (11, 2.1397, 41). She could not. This
is not surprising; P5’s attempt at recollecting knowledge from LA1 drew on superficial
features of techniques she had used in the course (“you just like flip... like a number,”
“plug in numbers that are similar”). This left her with a “confusing [...] bunch of [...]
ideas.” As for P5’s vague recollection that cross products have something to do with
vectors that are “perpendicular or parallel,” this too was a byproduct of P5’s experience
solving problems in LA1 (and not of any underlying mathematical knowledge): asked
what made her say the word perpendicular, P5 said “those are a lot of the problems that
[she] did at the end of the term. And this is kind of around the time [she] remember[ed]
like doing... things like that.”

When I initially asked P6 if he could think of an approach that wouldn’t involve
calculating the cross product, he proposed an approach with no basis in the mathematics
(plug components of (11, 2.1397, 41) into first equation, do the same with the components
of the other vector in the cross product). P6 did not see why doing this would be
relevant and dismissed it: “I just don’t see why that would indicate that the vectors are
orthogonal. In like a 3d space.” I then asked if P6 could think of a way to use the fact
that the cross product would be orthogonal to the two vectors it’s made up of, but he
was unable to mobilize this. All he could mobilize was the formula cos 90 = 0 (and he
needed confirmation that this is the cosine, and not the sine). He explained his difficulty:

I guess I just don’t understand. Like, the point is that I don’t understand
why this being orthogonal, it means that these are equal to zero. This kind
of like where I’m, I’m failing at the geometry part. It’s like, I don’t have that
like, relationship in my brain. But I’d be happy for you to explain it to me
afterwards.” From P6’s perspective, his difficulty is rooted in visualization:
“the weakest part of my linear algebra was definitely... like the visualization
aspect. So stuff like cross product and dot product and like, point to a plane,
that kind of stuff... Was... I, if I could turn it into just like a numerical thing?
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I would do that. I just haven’t done a lot of visualization. Geometry [has]
always been like my worst part. I’ve been enjoying trig a lot recently. So I’ve
been getting a bit better at it. But I’m still like, you know, if I look at an
equation or something, I still have to sort of think for a while and figure out
what shape is.

P6’s comments suggest his position in LA1 was that of a Student: the tasks students
are expected to do not require students to know the reasoning that establishes the rela-
tion between algebraic and geometric representations of planes, lines, cross products, or
dot products and orthogonality. These relations are part of the knowledge to be taught
(though I don’t know what knowledge is actually taught), but tasks students have to
perform do not require students to know of any of these relations beyond surface-level
knowledge such as “planes have equations that look like ax+ by + cz = d.”

P4’s spontaneous activity was [τ4, θ52]. P4 had initially interpreted his parametric
solutions (PS) superficially (his solution set had the form tv, and v was not equal to
(w1, w2, w3)) so he got stuck. Being stuck prompted P4 to try to recall what a cross
product represents geometrically; he recalled its norm is the area of the parallelogram
formed by the vectors, and dismissed this as useless for the current problem. After I
prompted P4 to explain why he thought his cross product is different from the parametric
solutions he found, he eventually rectified his error and found his cross product was
approximately the same as an element of the parametric solutions. After P4 finished
with his approach, I asked if he could think of an approach that wouldn’t involve finding
the parametric solutions and he gave a geometric interpretation of the problem:

These are planes, now that I think about it [...]. So this is the intersection of
a plane, which is a line, the intersection of a plane, it’s going to be a line, and
this, the cross product of these two is parallel to the equation of the line. So
this is just a geometric interpretation of my solution, but it’s not a different
way, I would solve it the exact same way [...] the math is the same [...] the
math being I need to solve this, with b is equal to zero, I - I - b [inaudible]
zero, I need to search, find for xyz and find the vector. So the math is same,
but conceptually, this is how I would understand it.

P4’s recollection is a memory P4 has from his experience in LA1:

I recognize from memory that when I tried to set up the - a system equations
like this one, I would recognize that I was trying to find the intersection of
two planes, which is a line. And this - this is based on ex - exactly just one
question that I solved. [inaudible] I remember that question. I don’t think
that yeah, other than the lecture information. A lot, a lot of my knowledge
was gained from the past exam questions. So like one, one question I - I
tackled was - would always be in the back of my head when approaching
another problem. Especially because it’s an intro course and the questions
are similar to each other.

P4 “recognize[d] from memory” that the system in Problem 3 was of a certain type of
task he’d previously accomplished. P4 had brought up that the norm of a cross product
is the area of a parallelogram; P4’s justification for his knowledge (of the geometry of a
linear system) is based in his experience; P4 did not bring up (at any point in the 27 min-
utes spent on this problem) that a cross product is orthogonal to the vectors of which it
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is made; P4 had an unnecessarily bulky approach to the task of checking whether a given
element of R3 is a solution of a linear system, and it was a combination of the only two
normative LA1 techniques that relate to Problem 3. I agree with P4’s self-assessment that
most of his knowledge is “gained from past exam questions.” The knowledge he shared
reflected knowledge needed to do questions on past exams; the geometric interpretations
he was able to give reflected the knowledge needed to perform a type of task he’s found
on practice exams. He knew that “the intersection of a plane, it’s going to be a line, and
this, the cross product of these two is parallel to the equation of the line” because this
was the reasoning expected for that type of problem. P4 did not bring up, in the context
of Problem 3, that the cross product of vectors is orthogonal to the vectors, and this is
the technology needed to produce the knowledge that “the cross product of [the normals
of a plane] is parallel to the [...] line.”

P4 seems to have acquired his knowledge from the position of a LA1 Student: his
task, from this position, is to perform tasks that appear in final exams, and he is enti-
tled to draw authority for his techniques from teachers, textbooks, and solved problems.
P4 consistently referred to these authorities when asked how he knew what he said was
valid; P4 was unable to activate any technique other than a circuitous combination of
a technique and a technology ([τ4, θ52]) that are normative in LA1; and the theoretical
knowledge he was able to activate may only reflect the reasoning needed to do a type of
task he expected to possibly encounter on a final exam. The issue is that P4’s normative
knowledge is restricted to the surface level of the techniques needed to perform normative
LA1 tasks, and this inhibited his capacity to act in a way that was appropriate for the
task at hand in Problem 3.

P5 and P6’s comments, outlined earlier, suggest their knowledge from LA1, like P4’s,
is also limited to the surface level of the techniques needed to perform normative LA tasks:
they knew cross products have certain geometric properties, but as LA1 students, they
did not need to learn these. For P5, such properties were things the teacher had taught.
And P6 was able to get by having only algebraic representations of cross products, dot
products, points on planes, without knowing their geometric equivalents: “stuff like cross
product and dot product and like, point to a plane, that kind of stuff... Was... I, if I
could turn it into just like a numerical thing? I would do that.”

5.3.3.2.2 Some students (P8, P3) spontaneously wanted to mobilize theo-
retical knowledge about cross product but did not have it. Instead, P8 and
P3 were only able to recall such knowledge exists, referring to their textbook (P8) and
teacher (P3), and P3 recalled surface-level features of problems she’d seen in LA1.

P8’s initial spontaneous reaction was to compute the cross product; she wrote out the
expressions needed to find the components but did not do calculations. When I asked
what she expected to happen by calculating the cross product, she said she “didn’t ac-
tually want to calculate it. [She] just wanted to see how it looks. In the end, it will give
[her] a vector.” She then suggested to mobilize τ4, but again did not do any calculations
and paused. When I asked why she hesitated, she said: “there probably was some ge-
ometric explanation or something like that, not geometric but... some proofs about the
cross product that I didn’t read [...] I remember there were some parts that I skipped.
In the book I mean.” She continued: “I’m not sure how to... How the relation between

152



the cross product and... the... the matrix. I’m not sure how... I can... what exactly it
is that I could use.” Asked if she could think of any other approach, P8 did not answer.
Asked if she can use any of what she’d written so far: “probably not.”18

P3 was also eventually stuck because she thought there was theoretical knowledge
that could be mobilized here. At first, P3 did not know what the task was and was
unable to start, so I gave her the definition of cross product. Her spontaneous reaction to
this was to calculate the cross product, but she dismissed this right after and did not see
a point to knowing its components. For P3, the task was “not [...] to find the values,” it
was to “explain why this is the answer of this.” For P3, “calculation is just a calculation.
It’s not the theory”: “I feel like this is, this is requiring me to define... Why this. Um.
Why this is... A solution of this system. But what I’ve—what I’ve done is just solving
the problems, which means I just got the values of w 1 2 3, but it doesn’t really mean
that... I found... The... It doesn’t mean that I can explain why those are the same.” I
then asked what P3 thinks it would take to explain that, and P3 proceeded to make her
sketch. She sketched 3 planes that intersect along a line and explained: “this is a space
and I would have... One single line. So I have to find. The equation of the line, right? Or.
But from here I found... Wait, wait, wait. [pause] So I—so this is not exactly what—this
is not the, the, wait. So this is not the, the equation of... The in-in... [I interjected:
“intersection?”] Yeah intersection. But this is the, the space. Like another space. Third
space. And they have. They all have... The intersection, at the same point.” The planes
refer to “the first two systems” and the line to the “solution.” A third plane “is another
plane which shared the same intersection with the system”; asked where this third plane
comes from, P3 was unsure:

The cross product to be [sic] defined by [pause] um, no... Where it comes
from? Um [pause] no... This is not the value of xyz, and this is the only
element of a vector here, like... So, that means that this is not the... This
is not the equation of the intersection, and this is the plane which. Has the
same intersection with the, with the system here.

This explanation reflects the surface-level knowledge that equations of the form ax+by+
cz = d correspond to planes and that the intersection of these planes are lines, which
are then solutions of systems of two such equations. I maintain that, for P3, this is
surface-level knowledge (as in, P3 does not have knowledge beyond what’s written in the
previous sentence) because of her suggestion that the cross product is somehow related
to a third plane in this situation.

The features of Problem 3 seemed to have prompted P3 to try and use theoretical
knowledge, but she did not have this knowledge. In my last attempt to help P3 get
unstuck, I asked if she could think of any geometric relation between the cross product,
the vector (29, -9, 3.2), and the vector (11, 2.1397, 41); she could not. P3’s knowledge
drew on surface-level features of tasks that are normative in LA1 and did not include
any of the theory needed to produce the techniques for those normative tasks. When P3

18It’s possible that P8 didn’t mean that it’s not possible to do the problem by calculating the cross
product and using it somehow, but rather that she didn’t like the calculations this would involve—I
recall her hesitation, in Problem 2, to calculate the value for w (after explaining what the calculation
would involve and finding that x = y = z = 0 using Cramer’s rule) because it would just be some more
“algebra.”
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initially read Problem 3, she was quiet for a minute and then said: “I was trying to find
some relationship between this [the cross product] and this [the system].” Her suggestions
were then to add a third equation (0x + 0y + 0z = 0) or rewrite the first equation as a
matrix equation (Ax = 0); she rejected both immediately. I then reworded the problem
for her and her immediate reaction was that she did not remember how to do this type of
problem (“I forgot how to handle this”) and recalled LA1 tasks with surface-level features
similar to Problem 3: “something should not be 0,” “I remember like during the class.
The teacher was like, keep talking about like, after this calculation it should not be 0 or
[pause] oh, it’s about independency.” She was recalling what she knew about LA1 task
types whose techniques focalized on “0”s. P3 could only (try to) mobilize surface-level
knowledge from LA1 tasks, and this was not enough to support P3 in her attempt to
accomplish Problem 3.

5.3.3.2.3 Some students mobilized theoretical knowledge about cross prod-
uct spontaneously and successfully (P1, P7*, P9) in spite of their norms. The
initial spontaneous reaction of P1, P7*, and P9 was to calculate the cross product. P7*
and P9 had suggested to plug its components into the equations; P1 had not given a
reason for finding the cross product. The three participants stopped themselves before
actually doing any of the calculations and instead activated τ1.

All three said they were convinced by this approach. They preferred this approach
to their initial suggestion, as it had involved calculating the cross product. They aban-
doned their initial suggestions as soon as they thought of τ1. P1 characterized that first
approach as “useless” and said it would make him “cry”; P7* acknowledged his initial
approach would have taken more time and that activating τ1 is an “elegant way” to do
the problem—he called it “outstanding.”

P1, P7*, and P9’s comments suggest they do not view activating τ1 as part of their
norm in the context of LA1. When I asked P1 what he’d have done if he had something
like this on an exam, he said: “I would have done this [his first approach] first and then
I’m gonna cry.” He did say he’d have crossed it out and gone for his second approach,
but still, he said his spontaneous reaction is to immediately do calculations. This is also
the case for P7*: “I will definitely - if I have any idea of the second one, I will definitely
use the second one because that’s going to be, hm, outstanding, but I will not - you
know, spend a lot of time thinking about the structures or figure out the patterns in
this one. I will still use the first one because the first one is the first one that I [would]
probably reach [in] my mind.” As a LA1 student, it’s not part of P7*’s norm to spend
time “thinking about the structures” or “the patterns” in a problem.

P1 and P7* said their initial approach would suffice (and take more time) on a LA1
exam, but did say their second approach would be acceptable. P9’s comments suggest he
views mobilizing τ1 as an extra—not what’s expected in LA1, but something that can be
accepted in addition to what’s expected: on an exam, “the only thing [he would] do is
calculate and then replace here and [he would] get zero eventually. [...] I can also write
the analysis that this is because of this [τ1].”
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5.3.3.3 Students reacted strongly to the unusual features of the problem

Immediately or shortly after reading Problem 3, many participants explicitly commented
on features of the problem that differ from what they usually see in LA1 tasks related
to linear systems: participants commented on the non-integer numbers (P1, P2, P4, P6,
and, toward the end of her engagement with Problem 3, P5), on the fact that the compo-
nents of the vectors in the cross product were also the coefficients in the equations (P1,
P4, P5), and on the cross product symbol itself (most students needed confirmation as to
what the symbol was). There is no correlation between whether a participant explicitly
commented on these patterns and their choice of approach to the problem (this had rather
more to do with whether they were able to recall and activate τ1); but other participants’
hesitation in their approaches (P3, P8, P10) or choice to engage in an approach that
bypasses the need to do any calculations (P1, P7*, P9) suggest that all participants were
influenced, somehow, by this departure from the features normally seen in LA1.

The comments some of the participants made indicated that, to them, these features
were a signal to operate outside of the norm—a signal to use knowledge other than how
to calculate the components of a cross product or how to solve a linear system. To P1,
the decimal was “confusing”; the 0’s to the right of the equal signs and the fact that
the cross product vector entries were the coefficients in the equations, to P1, indicated
there was a “trick” to the problem. He identified this “trick” shortly after writing out an
expression for the cross product sign (he later said calculating the cross product would
have made him “cry” on a test), and activated τ1 to complete the task. P9 said the 0’s on
the right side of the equation and the cross product triggered the notion of a dot product;
his suggestion to activate τ1 confirms this. P7* also explicitly addressed features of the
problem: “I see some pattern here. That pattern is these coefficients, they have these
vectors,” and then activated τ1 to complete the task and concluded this takes less “time,”
is “elegant,” and is “outstanding.”

Other participants (P3, P8) tried to take the features of the problem into account
to produce a technique, but could not do so. P8 was unable to activate knowledge that
would bypass the need to calculate the cross product, but her comments suggest she may
have been motivated by the presence of decimals and the fact that the entries of the cross
product vectors were coefficients in the equations. Indeed, regarding the cross product,
P8 said she “didn’t actually want to calculate it. [She] just wanted to see how it looks. In
the end, it will give [her] a vector.” In any case, the inclusion of the cross product symbol
did indicate to P3 and P8 that they should operate outside of the norm: they hesitated to
do any calculations and instead tried to recall theoretical knowledge about cross products.

Other participants (P2, P4, P5, P6) commented on features of the problem but still
chose to operate within the norm, unable to activate anything else when asked if they
could think of an approach that wouldn’t involve calculating the cross product or para-
metric solutions. For P5, it was “right off the bat” that she “noticed that... the solutions
[the vectors in the cross product], this is the coefficients of each variable.” P2 pointed
out the numbers were unusual: “Usually on the test, don’t put, er, fractions.” P6: “it’s
really hitting me with a big decimal... I like fractions a lot more [laughs].” And P4: “I
do not like the numbers I’m seeing [laughs].” He also “realized that the two vectors that
were given, the cross product, are the two rows here that I have.” Nevertheless, P2, P4,
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P5, and P6 were not triggered by these features to search for approaches different from
their norm of calculating cross products and solving linear systems.

5.3.3.4 Summary: in response to non-normative features of the problem,
some students successfully and spontaneously activated knowledge
that is not normative in LA1; other students also reacted to these
features but were limited by norms

Students had strong reactions to features of the problem (Section 5.3.3.3) and this is what
propelled some of them to spontaneously try to act outside of their norm (see Sections
5.3.3.2.2 and 5.3.3.2.3). Three of the participants (P1, P7*, P9) succeeded to do so; their
comments and activity suggested they operated outside of the norm because the features
of the problem were such that this norm was overtly unpalatable—and P1, P7*, P9 had
knowledge that could help them get out of that entanglement.

The rest of the participants were not able to activate knowledge that is not normative
in LA1 tasks. Two participants (P3, P8) wanted to, but could not. Four participants
(P2, P4, P5, P6) were satisfied activating their usual knowledge (calculating the cross
product and plugging its components in or finding the parametric solutions of the sys-
tem), despite having explicitly reacted to the ‘unusual’ features of the problem. They
were unable to activate any other knowledge, despite being prompted to think of ap-
proaches that wouldn’t involve calculating the cross product or finding the parametric
solutions (P6 acknowledged that if I’m asking that, there likely was another option). One
participant (P10) was unsure even of the normative technique she had suggested ([τ4, θ52]
is normative in that it’s a combination of techniques needed to perform LA1 tasks that
are most similar-looking to Problem 3). P10’s other comments (e.g., when she thought
there was an issue because the cross product has 3 components, w1, w2, w3, while there
are only 2 equations) suggest her grasp of the normative knowledge was weak, so it is not
surprising that she struggled when given Problem 3—a problem that does not directly
correspond to any of the normative tasks in LA1.

These seven participants were unable to activate knowledge other than calculating
cross products and row-reducing the augmented matrix to find parametric solutions, in
spite of the fact that the features of the problem made this knowledge inefficient (and,
indeed, all participants who activated it did so inefficiently: they all ended their activ-
ity with rounding errors). At the same time, these participants all seemed aware of the
distinctive features of the problem. But it seems that their norms as Students in LA1
prevented them from acting on this awareness. P3, P4, P5, and P6’s attempts to talk
about theoretical knowledge from LA1 showed all they had was fragmented knowledge;
they drew these fragments from surface-level features of tasks they’d done in LA1. This
makes sense, as LA1 students do not need to know the mathematics that frames the
techniques they use.

When P2 was asked if he can think of a way of doing Problem 3 without finding all
the solutions, he said: “I’m not sure if there is another way. To do it. [...] Usually, when
uh. I have to find like an answer. In vector form. I would solve it uh, in this way.” “This
way,” for P2, was to row-reduce the augmented matrix to find the parametric solutions.
In LA1, tasks that involve linear systems are usually accomplished via row-reduction,
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and, of course, this does always work; and tasks students are required to perform do not
make this technique so unpalatable that students are encouraged to activate any other
knowledge. Altogether, I infer that the norm that row-reducing augmented matrix is a
cure-all, together with the norm that students need only operate at the surface-level when
they perform tasks in LA1, impinged on participants’ ability to mobilize knowledge that
could have allowed them to do Problem 3 more effectively.

5.4 LA1 Problem 4

The following was the fourth problem presented to the 10 LA1 students in the TBI:

Find a non-trivial solution of the following system:

−5.2x + 2y + πz = 0
4x − 1.3y + 4z = 0

5.4.1 Reference model for LA1 Problem 4

Problem 4 is a task of type “find a non-trivial solution of a homogeneous linear sys-
tem,” but my focus is on the narrower task type t: “find a non-trivial solution of a
homogeneous linear system of 2 equations in 3 unknowns in R3.” In LA1, the normative
technique would be to row-reduce the augmented matrix to find the general solution of
the system and then pick a value for the parameter to find a non-trivial solution. I focus
on t because I designed Problem 4 as a follow-up to Problem 3 in the TBI on purpose:
if students activated, for Problem 3, a technique that was not normative (i.e., if they
activated knowledge other than computing the cross product or row-reduction), would
they spontaneously transfer knowledge from Problem 3 to Problem 4? And if not, would
students be able to transfer any knowledge when prompted?

My reference model for Problem 4 is therefore centered on the task of type t.

The reference model for Problem 3 captures some of the theoretical knowledge rele-
vant to t. Two homogeneous linear equations in 3 unknowns, in R3, correspond to two
planes P that go through the origin. I refer by θ1 to the technologies in the reference
model for Problem 3 that include and relate planes P that go through the origin to their
equations, the intersection of a pair of planes P to its algebraic representation, as well as
the notions of orthogonality and dot and cross products. I refer by Θ1 to the discourse
that frames these technologies: the algebraic, geometric, and logical discourse that gives
them authority, along with the view that linear algebra and Euclidean geometry are built
axiomatically from our physical reality.

A technique produced by [θ1,Θ1] is to find a vector that generates the intersection of
planes P that go through the origin.

If the normals of planes are scalar multiples of one another, then they are parallel, and
so the planes overlap; in this case, any point on one plane is on the other as well, so a tech-
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nique for finding a non-trivial solution of the equation is to plug values for two unknowns
into one of the equations and solve for the third. I refer to this technique by τ1−overlap

and its framing discourse by θ1−overlap. This is praxeology [t; τ1−overlap; θ1, θ1−overlap; Θ1].

If the normals of the planes are not scalar multiples of one another, then the planes are
not parallel. The discourse in [θ1,Θ1] produces a technique for finding a non-zero vector
in their intersection: since the normals n1 and n2 are not parallel, their cross product
is non-zero, and the discourse in θ1 shows this cross product is in the intersection. So
n1 × n2 is a non-trivial solution of the system. I will denote this technique by τ1−line and
the related praxeology is then [t; τ1−line; θ1; Θ1].

Task t can be accomplished without recourse to the geometric representation of the
equations. In this case, the reference model for Problem 2 provides the needed theoretical
discourse. Equations of the form Ax = 0 (of the type discussed in Problem 2) have at
least one solution (x = 0). The theoretical discourse in the reference model for Problem
2 shows that consistent systems of linear equations have either one solution or infinitely
many. In the case that there are more unknowns than equations (say, m unknowns and n
equations), then A has more columns than rows. Since RREF (A) has at most n leading
ones, there are m− n free variables. The general solution therefore involves parameters,
which can have any value, so the system has infinitely many solutions. This is the case
for a task of type t (2 equations, 3 unknowns). I refer by [θ2,Θ2] to this discourse, in
conjunction with the theoretical discourse from the reference model for Problem 2 (about
augmented matrices, row operations, and linear systems and their potential number of
solutions).

A technique produced by [θ2,Θ2] is τ2: to row-reduce the augmented matrix for the
system to find the parametric solutions of the system. To accomplish task t, where the
goal is to find a non-trivial solution, τ2 concludes with plugging in a non-zero value for
the parameter. This praxeology is [t; τ2; θ2; Θ2].

My reference model for tasks of type t therefore consists of the following praxeologies:

� [t; τ1−overlap; θ1, θ1−overlap; Θ1],

� [t; τ1−line; θ1; Θ1], and

� [t; τ2; θ2; Θ2].

5.4.2 Knowledge to be learned in LA1 to perform tasks of the
type in Problem 4

The task in Problem 4 resembles a task normally given on final exams in LA1: to find
a basis for the solution space of a homogeneous linear system (usually of 3 equations in
4-7 unknowns). This is the only LA1 task I found on past midterm and final exams that
related to homogeneous linear systems.

I discussed the LA1 task “to find a basis for the solution space of a homogeneous linear
system” in the model of knowledge to be learned that is relevant to Problem 3 (Section
5.3.2); I will denote it here as I did there, by t4. This task normally had the coefficient
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matrix already in RREF, so students’ technique was mostly in finding the parametric
equations corresponding to this RREF and using these equations to find a basis for the
solution space (possibly by explicitly writing the parametric equations in vector form,
but this is not required). τ4 involves these steps: row-reduce the augmented matrix, find
the general solution in terms of parameters, possibly express the parametric solutions in
vector form, and use the (vector form of the) parametric solutions to identify a basis for
the solution space.

No theoretical discourse is needed for task t4, though the theoretical discourse about
the geometric representation of this system (discussed in my reference model for Problem
3, in Section 5.3.1) is part of the knowledge to be taught in the course. The expression
“trivial solution” is also part of the discourse in the knowledge to be taught in LA1.

In addition to t4, another related task on LA1 exams is that of using Gauss-Jordan
elimination to find all the solutions of a linear system; I will denote this task by t5. I
discussed what students have to know to accomplish tasks of type t5 in my model of
knowledge to be learned for Problem 2 (see Section 5.2.2; specifically, see the row about
“t2” in Table 5.3). The technique τ5 is to row-reduce the augmented matrix; if a row of
the form [0 · · · 0|a] is found, where a ̸= 0, the conclusion is that there are no solutions,
and otherwise the technique is to write one of the reduced forms of the augmented matrix
in the form of equations, and use these to solve the system.

Finally, there are other types of tasks in LA1 where the normative technique is to
(produce and) solve a homogeneous linear system and activate [t4,nb, τ4,nb], where I write
t4,nb (instead of t4) to mean that these tasks involve solving a homogeneous linear system
but do not involve finding a basis for the solution space (the subscript nb is for ‘no basis’).
I addressed these in my models of knowledge to be learned that is relevant to Problem
2 (in Section 5.2.2) and Problem 3 (in Section 5.3.2). I mention them here but refer the
reader to these sections for more information:

� to find intersections of lines and/or planes in R3 (Section 5.3.2); and

� to check if a set of vectors is linearly independent (Section 5.2.2).

The model of knowledge to be learned in LA1 to perform tasks of the type in Problem
4 thus consists of the praxeologies [t4; τ4], [t4,nb; τ4,nb], and [t5; τ5], where the techniques
τ4, τ4,nb, and τ5 mostly consist of the same activity: row-reducing an augmented matrix
so as to find a general solution.

5.4.3 Knowledge LA1 students activated in response to Prob-
lem 4

Table 5.9 (on p.161) summarizes the paths of participants’ activity as they worked on
Problem 4. As before, Step 1 refers to the activity a participant spontaneously engaged in
upon reading the problem statement; I group students according to Step 1 and color-code
the groups to help trace students’ paths thereafter. I categorize a student’s activity in a
new step if they presented it as such; if I prompted for another approach and a partici-
pant described one that is essentially equivalent, I still categorized it as a new step. This
table has a slightly different layout compared to the tables of students’ activity in other
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problems; this is mainly to accommodate students’ responses to prompts I planned to
give students at the end of Problem 4. There were three types of prompts. One, which
I will call P-T1 (prompt of type 1), was to ask students (who hadn’t commented about
this) whether they see any similarity (or differences) between Problems 3 and 4. Another
prompt (P-T2) was to ask students if they know of any geometric relation between a
cross product u × v and the vector u, and u × v and the vector v. Yet another prompt
(P-T3) was to tell students that u × v is orthogonal to both u and v.

These prompts were designed to check whether students could mobilize the knowledge
that a cross product u × v is orthogonal to u and v. Problem 4 was given immediately
after Problem 3; both problems involve a homogeneous linear system of two equations in
three unknowns, with non-integer coefficients. In Problem 3, students are asked to show
that u × v is a solution of the system, where the first, second, and third components
of the vectors u and v are the coefficients of x, y, z, respectively, in the first and second
equations. In Problem 4, students are asked to find a non-trivial solution. I wondered
whether students who mobilized the orthogonality of cross products in Problem 3 would
mobilize the knowledge from Problem 3 and say that a non-trivial solution for the system
in Problem 4 is such a cross product; and if they did, would this be their spontaneous
reaction to Problem 4 or would they still engage in row-reducing augmented matrices,
the technique normative to the LA1 task that looks like Problem 4 (to find the basis of
a homogeneous linear system, which requires students to find its solution space). This
question, in the TBI, therefore targets the case of participants P1, P7*, and P9. I also
wondered whether students who hadn’t brought up or used the orthogonality property
of cross products (in Problem 3) would be able to mobilize it if I told them about it.
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Table 5.9: Paths of LA1 Students’ Activity in Problem 4

Practical block [t, τ ]

Type of engagement with [t, τ ] Response to
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t

Step 1

P
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1

P
-T

2

P
-T

3

P
ar
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p
an

t Step 2

P
ar
ti
ci
p
an

t

Step 3

τ4: row-
reduce
aug-
mented
matrix

to perform t4,nb (find parametric solutions, PS) and
(on prompt) plug value (specifically, 1) into parame-
ter to find non-trivial solution (NTS)

P1 enacts (completes t4,nb using incorrect augmented matrix, finds NTS on prompt)

P2 enacts (completes t4,nb, finds NTS)

P9 enacts (completes t4,nb, finds NTS on prompt)

P4
enacts (completes t4,nb via combination of τ4 and algebraic manipulation of original equations,
finds NTS on prompt)

P6
partially enacts (uses combination of τ4 and algebraic manipulation of original equations), does
not want to finish because of non-integer numbers, describes expected result (PS)

P8
partially enacts (reduces augmented matrix partially), and on prompt describes the rest of what
she would do (find PS, plug value into parameter to find NTS); uses 3.14 instead of π

P7* describes (τ4, find PS, plug value into parameter to find NTS)

P3
partially enact (wrote augmented matrix and did one row operation), describe the rest
of τ4, describe expected result (an equation in which x is expressed in terms of y and z),
and on prompt, describe how to use this to find a NTS

not sure what to do with expected result because of
incorrect rules

P5
partially enacts (reduces augmented matrix partially), hesitates because of non-integer num-
bers, describes expected result (row of type [0 · · · a|0] where a ̸= 0), gets stuck (expected row
means a = 0 to P5, but problem statement suggests system has solutions)

no goal identified, used afterwards in Step 2 approach P10 enacts (reduces augmented matrix nearly to RREF)

produce
new equa-
tion(s)
from the
given ones
so as to
solve the
system

find components of (−5.2, 2, π)× (4,−1.3, 4) so as to
produce a third equation

P3 partially enacts (finds components of cross product), describes goal (to find a third equation)

use combination of row operations on augmented ma-
trix and algebraic operations on original equations to
produce new system of equations, use incorrect alge-
bra to solve the latter and find a single solution to
the system

P10
enacts (finds z = 8, describes how to use this to solve for x in an equation P10 produced
in x and z, describes how to use this to find the value of y); uses approximations

plug a value (specifically, 0) into one unknown and solve the equa-
tions for the other unknowns (possibly by inspection)

P1
suggests and gives incorrect example (one equation instead of system, incorrect solution
suggested: if 3x+ 2y = 0 then take x = 2

3
, y = −3

2
)

P5
suggests (considered only 1 equation instead of system, suggests inspecting ax + by = 0,
has (−b, a) as solution)

P6 suggests

use determinants, but no concrete suggestion P2 thinks there is a way to accomplish something using determinants, does not know what

mobilize cross product (CP) orthogonality and compute CP P7*
describes (if a and b are vectors of coefficients in equations 1 and 2, respectively, then
their cross product is a solution; cross product can be calculated)

P9

find a cross or dot product to see if anything would come out of it,
decide to plug into equation after finding CP components

P5
enacts, dismisses because z gets a particular value and P5 expects z to act like a
parameter, on prompt from interviewer (how can you check what you found?) plugs
solution she found into equation, does not get 0

P5

Problem 3 is a verification problem, Problem 4 is a solving problem; compute CP and plug into equations to validate P10

compute CP to mobilize Problem 3’s [τ4, θ52] P8

does not
mobilize
CP
orthogo-
nality
despite
knowing it

Problem 3 is a verification problem, Problem 4 is a solving problem (used CP orthogonality in Problem 3) P1

mentions CP orthogonality but cannot mobilize P2

mentions CP orthogonality but ignores P4

tries to mobilize CP, no mathematical foundation for technique P4

concludes that plugging in the CP components in Problem 4 should work because it worked in Problem 3 P5

given P-T3, cannot mobilize CP orthogonality

P3

P8

P10

no prompt for P6 because he had brought up cross product orthogonality in Problem 3 and was unable to use it then

prompt type 1 (P-T1): do you see any similarity between problems 3 and 4?

prompt type 2 (P-T2): in problem 3, do you see a geometric relation between u × v and u? u× v and v?

prompt type 3 (P-T3): referring to problem 3: u × v is orthogonal to u and u× v is orthogonal to v, does that help (to think of another approach)
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5.4.3.1 Practical blocks of students’ activity in response to Problem 4

All students spontaneously used the normative LA1 technique for problems involving
homogeneous equations, τ4, to engage with Problem 4 (see Section 5.4.3.1.1). Asked
if they could think of an approach other than τ4, some students suggested approaches
other than τ4 (see Section 5.4.3.1.2). In the end, to complete Problem 4 successfully,
eight participants (all but P5, P10) mobilized τ4 and could not mobilize anything else,
and three participants (P5, P7*, P9) mobilized Problem 3 (see Section 5.4.3.1.3); among
these, only P7* and P9 were able to mobilize the orthogonality property of cross product,
which they’d already brought up and used in Problem 3. Indeed, in reaction to prompts
P-T1, P-T2, and P-T3, most students were not able to mobilize Problem 3 and the
orthogonality property of cross products to suggest an approach other than τ4 for Problem
4 (see Section 5.4.3.1.4). I had given these prompts to try and get students to mobilize the
orthogonality property of cross products but only one student was triggered to do so, and
this was a student who had already mobilized it in Problem 3 (see Section 5.4.3.1.4.1).
In response to prompts P-T1, P-T2, and P-T3, most students either couldn’t make any
suggestion, engaged with superficial features of the prompts, or reactivated their LA1
norms (see Section 5.4.3.1.4.2).

5.4.3.1.1 All students spontaneously used the normative LA1 technique for
problems involving homogeneous equations, τ4, to engage with Problem 4.
From Table 5.9, I see that 9 of the 10 participants spontaneously engaged in row-reducing
the augmented matrix (τ4). The remaining participant (P3) did so as well after I inter-
vened to put a stop to her spontaneous approach, where she used an approach (with no
accurate mathematical basis) so as to produce a third equation; P3 believed a system of
2 equations in 3 unknowns needs a third equation to be solved (I hypothesize P3 would
have then engaged in τ4 to row-reduce the augmented matrix of that new system). So
all the participants mobilized τ4 spontaneously or nearly so. Eight (P1, P2, P3, P4, P6,
P7*, P8, P9) used τ4 with the goal of finding the parametric solutions of the system;
half of them spontaneously mentioned plugging in a value for the parameter to find a
non-trivial solution, and half did so when I asked how they’d find a non-trivial solution
(after they had found their parametric solutions). One participant (P5) used τ4, but
as she described what she expected to happen, got stuck: she expected a row of the
type

[
0 · · · 0 16 0

]
to appear, which (for P5) would mean 16 = 0, so the system

would have no solutions, but, for P5, this contradicted the suggestion from the problem
statement that there is a (non-trivial) solution. (P5 had also brought up this incorrect
rule in Problem 2; I discuss it on p.117). Finally, P10 activated τ4 but it was not clear
that she expected to get parametric solutions; she switched approaches after getting a
REF of her augmented matrix, reverting to the original system of equations and using
algebraic operations to produce a new equation (EQ1); P10 then found the RREF of
her augmented matrix, used it to produce an equation (EQ2) corresponding to one of its
rows, and solved the system of equations EQ1-EQ2 algebraically (where incorrect algebra
led P10 to find a single solution for the system).

5.4.3.1.2 Asked if they could think of an approach other than τ4, some stu-
dents suggested approaches other than τ4. The other approaches suggested by
participants, before I brought up prompts P-T1, P-T2, and P-T3, include the following:
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� to plug a value (specifically, 0) into one unknown and solve the equations for the
other unknowns, possibly by inspection (P1, P5, P6)

– this was P5’s second suggested approach, after she got stuck using τ4 and I
had clarified (in response to what I thought was confusing her, at the time)
that a non-trivial solution is one where “not all three [of x, y, z] are 0”;

– this was P1 and P6’s second suggested approach when I asked if they could
think of a way to do Problem 4 without finding all the solutions of the system;
I note here that to do Problem 3, P1 had mobilized the orthogonality property
of cross products, and P6 had plugged the components of the cross product
into the equations;

– in their descriptions of this approach, P1 and P5 specifically described how
they’d solve an equation in 2 variables, and with integer coefficients, by in-
spection.

– None of the participants addressed what would be involved in solving the sys-
tem of two equations that would result by plugging 0 into one of the unknowns
in Problem 4; if they had, they might have realized this would lead to the trivial
solution (x = y = z = 0). The task was to find a non-trivial solution;

� to use determinants, but no technique actually identified (P2); I had asked P2 if he
could think of an approach that wouldn’t use as many calculations (as τ4).

� to mobilize the orthogonality property of cross products and compute the cross
product (P7*, who had also mobilized this property in Problem 3); I had asked
P7*, after his first suggested approach, if he could think of another approach;

� to find a cross or dot product to see if anything would come out of this (P5)

– this was P5’s third suggested approach; I had asked if she could think of
another one as she did not know how to proceed in her previous approaches.
P5 then computed n1 × n2, where n1 was the vector of coefficients in the first
equation (n1 · (x, y, z) = 0) and n2 the vector of coefficients in the second
equation (n2 · (x, y, z) = 0). P5 dismissed this approach because the cross
product had a particular value for z, and she had expected z to be a parameter.
I asked P5 how she could check what she had found, and she plugged the
components of n1 × n2 into one of the equations. It did not yield 0.

5.4.3.1.3 To complete Problem 4 successfully, eight participants (all but P5,
P10) could only mobilize τ4, and three participants (P5, P7*, P9) mobilized
Problem 3. Apart from P5, whom I had asked if she could think of a new approach
because she was stuck with τ4, and P10, who changed approaches spontaneously and fin-
ished her approach to Problem 4 without stopping, the rest of the participants completed
Problem 4 successfully using τ4 (and in the case of P4 and P6, reverting early on to
the equations corresponding to the matrix they’d partially reduced). Participants either
completed Problem 4 by enacting τ4 in full (P1, P2, P4, and P9 found parametric solu-
tions and plugged 1 into the parameter to find a non-trivial solution); or they activated τ4
partially and then described the rest of what they would do (P3, P6, P8 said they’d find
parametric solutions and plug 1 into the parameter to find a non-trivial solution); and
P7*, as per his usual in his TBI, described the entirety of his approach without enacting
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any of it (he’d row-reduce, find parametric solutions, and plug 1 into the parameter to
find a non-trivial solution).

The two other approaches participants mobilized to successfully complete Problem 4
reflected their prior engagement with Problem 3. P7*, asked if he could think of a second
approach, said he “think[s] there’s some direct relationship with [Problem 3]” and then
brought up the orthogonality property of the cross product he had used in Problem 3
(n1 × n2, where n1 was the vector of coefficients in the first equation, n1 · (x, y, z) = 0,
and n2 the vector of coefficients in the second equation); P9 brought it up after I asked if
he saw any similarity between Problems 3 and 4. P7* and P9 were two of the three par-
ticipants who both brought up and mobilized this property in Problem 3; P7* explicitly
acknowledged he only thought of this approach because of Problem 3, and this is clearly
the case for P9, who only brought the approach up when asked to compare Problems 3
and 4.

P5, meanwhile, didn’t complete her previous approaches (τ4, plugging 0 into the equa-
tions and solving the remaining system) and eventually decided to compute the cross
product. She initially decided this approach was incorrect (the cross product had a value
for z and she expected z to be a parameter), but after I asked how she could check what
she found, she plugged the cross product components into an equation, did not get 0, and
eventually (after being prompted with P-T3), decided that the cross product should have
worked, that she must have made a calculation error, because it had worked in Problem
3. P5’s approach to Problem 3 was to calculate the cross product and plug it into the
equations to verify it satisfied them; she said it was from Problem 3 that she got the idea
to try out the cross product in Problem 4.

5.4.3.1.4 In reaction to prompts P-T1, P-T2, and P-T3, most students were
not able to mobilize Problem 3 and the orthogonality property of cross prod-
ucts to suggest an approach other than τ4 for Problem 4. When students finished
suggesting approaches to Problem 4, I said I wanted to return to Problem 3 and gave
them one or more of the following prompts:

P-T1 do you see any similarity between problems 3 and 4?

P-T2 in Problem 3, do you see a geometric relation between (29,−9, 3.2)×(11, 2.1397, 41)
and (29,−9, 3.2)? (29,−9, 3.2)× (11, 2.1397, 41) and (11, 2.1397, 41)?

P-T3 (29,-9,3.2)×(11, 2.1397, 41) is orthogonal to (29,−9, 3.2) and (29,-9,3.2)×(11, 2.1397, 41)
is orthogonal to (11, 2.1397, 41); does that help (to think of another approach)?

I gave these prompts in the order indicated by their numbering, sometimes skipping
P-T1 and/or P-T2, depending on participants’ activity in Problems 3 and 4 (e.g., as P4
started to use row-reduction in his spontaneous reaction to Problem 4, he said “I just go
through the way I did it last time,” which I took to mean that he already had Problem 3
in mind when approaching Problem 4, so I skipped prompt P-T1 and directly gave P-T2).
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5.4.3.1.4.1 Prompts P-T1, P-T2, and P-T3 were designed to get students
to mobilize the orthogonality property of cross products; most students did
not do so. Only P9 was triggered by one of these prompts to mobilize the orthogonality
property; P9 had already mobilized this property in Problem 3, and was triggered to do
so when I gave prompt P-T1.

P2 and P4 brought up the orthogonality property when I gave prompt P-T2 but were
unable to mobilize it; I stated the orthogonality property again for P4 but he still did
not mobilize it.

The participants to whom I gave prompt P-T3 were unable to mobilize it (P3, P4,
P5, P8, P10). P8 and P10 said that for vectors to be orthogonal, their dot product must
be zero, but were unable to mobilize this.

I did not remind P1 of the orthogonality property; he had brought it up and mobilized
it in Problem 3, though when I gave prompt P-T1, he did not bring it up (unlike P9,
who did). I did not give P6 any of the prompts; in Problem 3, he had brought up the
orthogonality property and was unable to use it. I did not give P7* any of these prompts
either; when I first asked if he could think of a second approach (his first was to use τ4),
he had already suggested to mobilize the orthogonality property of the cross product.

5.4.3.1.4.2 In response to prompts P-T1, P-T2, and P-T3, most stu-
dents either couldn’t make any suggestion, engaged with superficial features
of the prompts, or reactivated their LA1 norms P9 was the only student who
was prompted by P-T1 to mobilize the orthogonality property of cross products. Some
students did not offer any approach in response to these prompts (P1, P2, P3). The
other students (P4, P5, P8, and P10) kept engaging with normative LA1 techniques in
response to these prompts. (I remind the reader that P6 and P7* did not receive any of
these prompts, so they are not included in the current discussion.)

When given prompt P-T1, P1 classified Problems 3 and 4: Problem 3 is a verification
problem (the solution was given and the task was to verify it) while Problem 4 is a solving
problem (the task is to find a solution). P1 had mobilized the orthogonality of the cross
product in Problem 3 but did not bring it up here. P2, in response to P-T2, mentioned
the orthogonality of cross products and said there must be a way to do the problem other
than row-reducing the augmented matrix, but that he doesn’t know what that would
be. To do Problem 4, P2 was only able to mobilize row-reduction; to do Problem 3, he
was only able to check if the cross product was equal to one of the parametric solutions
he’d found by row-reducing the augmented matrix. When I gave P-T3 to P3, I asked
if that tells her anything about the cross product (in Problem 3) and the system, and
her response was as follows: “I remember that I heard about it [laughs], but I don’t
remember what it is... Um, if it is. [pause] There is, like, no. Like, no. [pause] The trivial
solution, like no. [pause] No, no, I don’t remember exactly what it is.” When P3 was
given Problem 3, she was stuck most of the time, saying she was trying to recall theory
from LA1. She had calculated the components of the cross product but dismissed their
relevance to the problem, reverting to trying to remember theoretical knowledge from
LA1. Prompt P-T3 gave her the knowledge that she couldn’t recall, but she was unable
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to mobilize it.

Given prompt P-T2, P4 brought up the orthogonality property of cross products but
ignored it, so I proceeded to give P-T3. P4 responded by saying that the dot products
(of u × v with u and also with v, where u and v are the coefficient vectors in Problem
4) would be 0, and asked if I was trying to “hint [him] to another way of solving the
problem.” I said I was. P4 then proceeded to enact a mathematically unsound technique
that, ultimately, circled back to τ4. He calculated the cross product and found it would be
(approximately) (−375,−26, 161). He then described the rest of what he would do: take
the dot product of (29x,−9y, 3.2z) (equation 1 in Problem 3 was 29x − 9y + 3.2z = 0)
with this cross product and the dot product of (11x, 2.y, 41z) (from the second equation,
11x + 2.1397y + 41z = 0; P4 wrote 2. instead of 2.1397) with the cross product. He
said he’d get “a system of equations and then probably reach this parameter or probably
maybe a multiple of” the vector generating the parametric solutions he had found when
he solved the system in Problem 3. He mentioned using an augmented matrix and getting
“another version of our, the solution space they give us in the problem.” He wrote0

0
0

+ t

 −4
−14
2

 ,

where the vector of coefficients of t is 2 times the vector generating the parametric solu-
tions he had found in Problem 3. He concluded “this [would] be [his] solution,” saying
he’d expect to then notice that the solutions found by solving this ‘new’ linear system
are related to the solutions he had originally found: “and then, “oh!,” this is also related
to this one.”

P5 had mobilized her approach from Problem 3 to do Problem 4 before I prompted
her to think back to Problem 3, but after her two other approaches hadn’t panned out.
P5 mobilized the cross product “just to see” what would happen; she explained, later,
that it was a test-taking strategy (“when I took my linear algebra tests, if I didn’t know
how to solve a problem, I would just like go, to like, just some of like, the definitions in
that class, like, cross product, dot product or like, big ones. So I would just like, see if
anything would come out of it”). In Problem 3 she had computed the cross product and
plugged its components into the equations to confirm it’s a solution of the system; this
strategy worked. She computed the cross product in Problem 4 but was initially confused
because the z-component of the cross product had a given value, and she had expected z
to be a parameter (this might be explained by participants P1, P2, P4, P6, P7*, P8, and
P9’s prediction, at the start of Problem 4, that the solutions would involve one parameter
because it’s a system of 2 equations in 3 unknowns; P5 seems to have tried to allude to
this as well, but her explanation was less clear than others’). After I asked P5 how she
could check what she did, she plugged the components of the cross product (as she had
in Problem 3) into one of the equations, but (because of an earlier calculation error) the
equation was not satisfied. I then gave P5 prompts P-T1 and P-T3 (in this order). In
response to P-T1, P5 said she got her idea (to compute the cross product) for Problem 4
from Problem 3. In response to P-T3, P5 said that the cross product she calculated (in
Problem 4) should have given a solution, that it could have been a math error on her part.
I asked what made her think this. She said it’s because the cross product in Problem 3
did give her 0 when she plugged it into the equations there, “so [she] just think[s] there’s
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a math error somewhere on [her] page.” She did not address the orthogonality property
I had brought up.

P10’s initial response to P-T1 was to classify the problems like P1 had: in Problem
4, the task was “to find the solution,” whereas in Problem 3, the task was “just to” show
that what was given is indeed a solution. She then suggested to plug the cross product
components she’d previously found (in Problem 3) into the equations to verify that she’d
get 0. I asked what she’d do if she didn’t get 0. She said she vaguely remembers that the
cross product would be “the normal.” And so I asked what she meant: she remembered
that “using the cross product, you can find the normal” but could not say what a normal
would be. I then gave her prompt P-T3 and asked if this helps in any way to do the
problem. She paused, asked me to reconfirm what would be orthogonal to what, and
eventually said: “there’s something else, there’s cross product or dot product. I’m not
sure which one but it would be zero. I think the cross product would be 0...” Shortly
thereafter, she said it’s the dot product that would be zero, but wasn’t sure. She tried to
say what she’d do next; tried “to remember what... to do [...] with this [pointed at the
definition of orthogonality I had given her] and this [pointed at the system].” She could
not remember.

Given prompt P-T1, P8 suggested a technique for solving Problem 3 that she had
suggested but dismissed while engaging with Problem 3 because she thought she should
be using theory (that she could not recall) to perform this task (see Table 5.8 on p.147).
She suggested to mobilize the Problem 3 technique [τ4, θ52], wherein the strategy is to
find the parametric solutions of the system, compute the cross product, and check if a
particular value for the parameter would yield the cross product. I then gave P8 prompt
P-T3. Would she be able to mobilize the orthogonality property of the cross product?
She had tried and failed, in Problem 3, to recall theory she thought might be relevant.
P8 paused when I gave prompt P-T3. Then, she laughed. “I hadn’t even thought about
orthogonality because when I see equations, [I put] that away!” She then stayed quiet for
some time, and eventually said she’s trying to find the relation between x, y, z in the sys-
tem and her sketch of two vectors (arrows) v1 and v2 and a vector (arrow) w orthogonal
to both (all with same initial point).

Participants P4, P5, P8, and P10’s attempts at tackling Problem 3—and explanations
for their attempts—after being prompted with P-T3 help to identify the knowledge they
were missing and which may have blocked them (as well as P2, P3, and P6, all of whom
were unable to mobilize the orthogonality property of cross products despite being aware
of it) from mobilizing the orthogonality property of cross products. P4 activated superfi-
cial features of the prompt and of Problem 3, so as to circle back to a norm from LA1: use
the cross product in Problem 3, take its dot product with vectors made up of the terms in
the equations (that is, the vectors (29x,−9y, 3.2z), (11x, 2.y, 41z)), and get a new system
of equations and solve it using τ4 (the normative technique). He expected this to produce
the same solution space as the one he’d previously found in Problem 3. P5, meanwhile,
used prompts P-T1 and P-T3 to gain confidence in her suggestion to calculate the cross
product made up of the ‘coefficient vectors’ in Problem 4 (to find a non-trivial solution
of the system); after P-T3, she concluded this approach should have worked because it
worked in Problem 3 (and made no reference to the orthogonality property stated in P-
T3). P10’s responses to P-T1 and P-T3 show her knowledge from LA1 is limited to the
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surface. She recalled words (“normal,” orthogonal) but did not know what they meant.
She knew that from a technical perspective, finding a cross product produces a normal
(whatever this may be); and she knew that orthogonal means that either the cross or
dot product is 0, but was not sure which. P8, given prompt P-T1, suggested a circuitous
technique for Problem 3 (compute the cross product, find the parametric solutions of the
system, and find a parameter that generates the cross product) that is a combination
of norms from LA1 (compute cross products when you see them, row-reduce augmented
matrices when you see homogeneous linear systems). P8’s explanation was most reveal-
ing: when she sees equations, she puts away orthogonality. And she was unable to use
orthogonality when it was brought back out by P-T3.

5.4.3.2 Summary: students row-reduce augmented matrices when they see
homogeneous linear systems and cannot mobilize much more than
this

There was a clear distinction between students’ capacity to activate augmented ma-
trix reduction and calculate cross products and their (in)capacity to activate geometric
knowledge related to linear systems and cross products. In this section, I will refer to
the activity and explanations triggered in students by Problem 4, in addition to those
students had in Problem 3, to argue this distinction is the result of algebraic and ge-
ometric knowledge being disjoint units of knowledge in what students are expected to
learn in LA1; further, the privilege given to row reduction (as knowledge to be learned)
encourages students not to acquire more than a surface-level grasp of other knowledge
that relates to linear systems.

Students spontaneously and accurately activated practical knowledge about aug-
mented matrix reduction: upon reading Problem 4, the initial response of several students
(P1, P4, P6, P7*) was to predict there would be infinitely many solutions and that there
would be one parameter. They also had some of the knowledge that justifies this: there
were 2 homogeneous equations and 3 unknowns, so, as P9 put it when he got to his para-
metric solutions, there would be no “constraints” on one of the unknowns. Apart from
these predictions, 9 of the 10 participants spontaneously and immediately row-reduced
the augmented matrix of the system to perform the task in Problem 4; the one student
who didn’t do so (P3) instead thought she had to produce a third equation because there
were 3 unknowns, and when I told her it wasn’t necessary to have a third equation, she
reverted to row-reducing the augmented matrix of the system.

Row-reduction is not an inappropriate technique for finding a non-trivial solution of a
system of two equations in three unknowns. But I do want to underscore that students’
activation of this technique had a normative quality; they did not necessary activate it
from the perspective that it would allow them to produce a non-trivial solution. Indeed,
one student (P2) stopped, midway through his row-reduction, to wonder how he would
use his results. He expected to find parameters and wasn’t sure, in advance, how this
would be useful: “I’m not sure if this is the way to do it because uh [pause] you can
get a parameter [...] I’m not sure, once I obtain the parameters, I’m not sure like uh. . .
What do I do?” It could be P2 had assumed, upon starting his row-reduction, he would
find a unique (and non-trivial) solution; but his pause, mid-way through row reduction,
to say he’s “not sure this is the way to do it” (and his capacity to predict he’d have a
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parameter) suggests he hadn’t necessarily thought of whether row-reduction would work
when he started to activate it.

P2’s pause and hesitation, midway through his row reduction, suggests he had engaged
in row reduction because that’s what he was used to doing when he saw homogeneous
linear systems. In LA1, tasks that involve such systems always require students to ei-
ther find all the solutions (e.g., to find the basis of the solution space) or to determine
the number of solutions it would have (e.g., to determine if a set of vectors is linearly
independent). In light of other students’ comments and activity throughout Problem
4, it seems that this norm developed tunnel vision in participants. I say this in part
because of some students’ spontaneous prediction (upon reading the problem statement)
that the system would have 1 parameter and students’ choice to find all the solutions
of the system so as to find one solution. I also recall P2, P4, and P8’s suggestions to
find the parametric solutions of the system in Problem 3 so as to check that the given
cross product was one of these solutions. But it’s two examples in particular (involving
5 participants in Problem 4) that highlight the tunnel vision triggered in students by
homogeneous linear systems. In Problem 4, P5 and P9 had engaged in row-reducing
the augmented matrix and, afterwards, also computed the cross product u × v, where u
and v are the vectors made up of the coefficients in equations 1 and 2, respectively (I
choose to not call them normals of the planes to avoid suggesting students knew these
were normals). When they found the cross product components to have specific values,
their immediate reaction was to say this was a contradiction: they had expected z to
“be” a parameter. They did resolve this confusion, but that they even had this reaction
suggests students hyperfocus on the results found via row reduction. The other example
of students’ tunnel-focus on row reduction is from the activity of P1, P7*, and P9, who
were the only ones, after a prompt from the interviewer, to mobilize the orthogonality
property of cross products to do Problem 3. Upon receiving Problem 4, all three reverted
to row-reducing the augmented matrix; P7* only recalled his approach from Problem 3
after I asked if he could think of an alternative approach, P9 only did so after I asked if
he saw any similarity between Problems 3 and 4, and P1 did not bring up his knowledge
from Problem 3 when I gave him the same prompt I had given P9.

Row-reducing linear systems does work, and a signification portion of LA1 tasks can
be accomplished using only this technique. This may encourage Students, whose goal
is to succeed in their tasks (and not to acquire linear algebra knowledge, which is the
task of the Learner), to develop tunnel vision that accounts for the cure-all technique
of row-reduction but not for other knowledge about linear systems. Through students’
engagement with Problems 3 and 4, it seems that the geometry of linear systems is pe-
ripheral vision that is lost; I make the case for this claim in the coming paragraphs. And
this is the issue with students having tunnel vision: anything other than row reduction
falls to the periphery. Participants either didn’t have other knowledge related to linear
systems or were unable to mobilize it. They struggled to remember geometric knowledge
and most could not mobilize it. I will address, first, the case of the two students who
were able to mobilize geometric knowledge (P7* and P9), and then the case of those who
were not able to do so.

In both Problems 3 and 4, P7* and P9 spontaneously row-reduced the augmented
matrices of the linear systems; in Problem 4, P7* activated the orthogonality property of
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cross products only when asked if he could think of a different approach, and P9 activated
it when asked if he saw any similarity between Problems 3 and 4. It was the design of
Problem 3 that led P7* and P9 to mobilize their knowledge in non-normative ways - at
least, the design of the problem was part of what triggered this activity. I hypothesize
that the other factor—the factor that enabled P7* and P9 to behave differently from
the rest of the participants—is the difference in their experience or positioning in linear
algebra courses. When I asked P9 how he knew, in Problem 4, that the cross product
would lead to a non-trivial solution (that is, that the cross product wouldn’t be the zero
vector), P9 had said he knew this from high school (not from LA1): he knew a cross prod-
uct of vectors is zero if and only if the vectors are parallel or identical. P7*, meanwhile,
behaved differently from how the other participants did. Even though this knowledge was
often fragmented, he consistently invoked a larger collection of knowledge from LA1 than
the other participants had; he enthusiastically tried to identify, without prompt, various
techniques through which to complete the TBI problems, and, in extreme contrast with
the other participants, rarely engaged with arithmetic; he expressed acute interest in
the problems and some of the techniques he conjured (“outstanding,” “elegant”). Given
these aspects of P7*’s activity, I infer his positioning throughout his tenure as a LA1
student to have included that of a Learner. I hypothesize P7*’s broader knowledge and
lesser focus on arithmetic may be explained by this positioning; it may, additionally, be
explained by a previous experience in university-level mathematics studies: he had begun
an undergraduate degree in applied mathematics at a different university, where he com-
pleted analysis, advanced algebra, and advanced geometry courses, and began courses on
ordinary and partial differential equations as well as abstract algebra.

Before I address the case of the participants who did not mobilize geometric knowledge
in Problem 4, I outline the geometric knowledge shared by P7* and P9. I wondered if, in
Problem 3, participants who mobilized the orthogonality property of cross products (P1,
P7*, P9) had only the algebraic knowledge needed to mobilize this property. First, they
did know that an equation of the form

ax+ by + cz = 0

can be represented using a dot product:

(a, b, c) · (x, y, z) = 0.

They also knew the orthogonality property of cross products and that vectors u and v
are orthogonal if u · v = 0. I wondered if P7* and P9 had the geometric knowledge that
frames these algebraic representations.

P7* and P9’s descriptions of the geometry were not entirely coherent, but did have
traces of appropriate geometric knowledge. When I asked P9 why the cross product he
found in Problem 4 contradicts what he had found earlier (that the system has parametric
solutions), he actually turned to the geometry of the situation to make sense of it:

If I do the cross product, I get... Oh no! Okay. Okay. Okay. Okay. No, no,
no, okay. So I will get... No no, okay. I will get a line, which is this, and
z is equal to t and then I replace the parameter so - no no, okay. Okay. So
it’s whatever point on this line, so I get the first point or the closest point so.
Okay, yes, it works. Okay.
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The line P9 referred to is “the line perpendicular to both the vectors. The vector
perpendicular to this vector and this vector”; but P9 did not relate “this vector and this
vector” to the equations, nor to any planes, so I don’t know if he knew these vectors would
be normals of the planes represented by the equations. P7* also eventually brought up a
line perpendicular to two vectors, and points on this line, when I asked what the solution
set (obtained via row reduction) would look like graphically: “let me think of it [pause]
so a and b forms a plane [draws vectors a and b with coinciding initial point and the
plane formed by the (linear combinations of) the vectors], and w is going to be a vector
that is perpendicular or normal to it [draws w with initial point coinciding with those of
a and b, w perpendicular to a, b].” P7* also eventually spoke of a line related to this w:

If we, you know, fix the starting point of w as the starting point of a and b,
then the w is just going to be any point it’s just going to be on this line [drew
a line going through the shared initial point of a,b, and w, and parallel to w].
Okay. Yes. Which means that the endpoints of w [are] just gonna be on this
line, it’s just going to be a line. It’s a line. Yes. This is a line. Yes. [pause]
Okay, I think I think this is correct answer, okay.

Neither P7* nor P9 made specific references to Problems 3 and 4 in these explana-
tions. They had a concept image that links the cross product of two vectors with a line
parallel to the cross product and orthogonal to the two vectors; presumably, they associ-
ated such a line somehow with the solutions of a system of two linear equations in three
unknowns. P9 also drew on geometric knowledge to explain why the cross product of
the vectors (made up of the coefficients in equations 1 and 2, respectively) in Problem 4
wouldn’t be the zero vector: the vectors weren’t parallel. But P7* and P9’s explanations
did not account for the geometry of the homogeneous linear systems in Problems 3 and
4. Indeed, P7*’s sketch of vectors a and b that generate a plane rather reflects vector
equations of planes (equations of the form (x, y, z) = t1v1+t2v2+c, which are constructed
on the basis of two non-collinear vectors vi (i = 1, 2) parallel to a plane and a point c
on the plane); his talk of a vector w orthogonal to a and b, and a line parallel to w (and
going through its initial point, a point on the plane) is reminiscent of two types of LA1
practice problems that relate cross products with planes (“find a point-normal equation
of a plane, given its vector equation” and “find the equation of a line perpendicular to a
plane and going through a given point”). Regardless of the source of P7*’s concept image,
the geometric knowledge he (and P9) proposed only attended to the cross product, and
not to the equations themselves.

Before I continue to other participants’ knowledge about the geometry of homogeneous
linear systems, I wish to attend to the other geometric explanation P7* offered when I
asked what the solution set of the system would look like graphically. Midway through
his explanation (about the vectors a and b and the vector w perpendicular to them), P7*
deviated and thought again about the form (“x = ( ) + ( )s”) of the general solution of
the system. The mishmash of concepts that ensued suggests P7* had a library of surface-
level knowledge that wasn’t founded in the mathematics that underlies either algebraic
or geometric representations of vectors, lines, and planes:

This is very tricky, very, very tricky. I think, I think this is gonna be, so for
example, I have an s [the parameter]. I, I’ve, I’ve read this somewhere that
it’s gonna be two parallel lines. And the result is just gonna be this whole
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line parallel to the line that is going through this initial point of s [drew two
parallel lines and a point on one of them]. I think it’s very, like, this and
that reminds me of, you know, of the parameter equation of a line, which is
something like you know, 3+2t. Yes, I may be wrong, but I do remember this
thing. I think that this is just, kind of, these two parallel lines [...] they may
be useful here. But these have no [...] relationship between a and b here [from
his initial sketch] [pause] let’s put it this way, when we are adding here, this
is a vector s, right? Now, when we are adding vector [sic], as we’re adding,
we’re adding another vector is just gonna be, it’s just gonna, I’m thinking
of the transformation, is it going to be parallel? Is it gonna be, you know,
shifting [underlines column of constants in x = ( ) + ( )s] ? Or is it gonna be
rotating [underlines column of coefficients of s in x = ( )+( )s]? I’m thinking
that this one may be rotating. This one is going to be rotating, but this one
is going to be shifting. So it’s going to be rotating this s? No, no, no, it’s
going to be rotating this vector, and then do the shift. So rotating first shape
later, it depends on what this s is. So s is going to just, can’t be which rotate
in this one. That’s what I’m thinking of. Okay.

(This was the third problem in a row in which P7* brought up transformations.) This
description showed P7* was confused about the meaning of the objects in the expression
x = ( ) + ( )s. For example, he first spoke of the parameter s as a point (“the result is
just gonna be this whole line parallel to the line that is going through this initial point of
s”) and then he spoke of “rotating” s; and even though he noticed this may be off—“[s]o
it’s going to be rotating this s? No, no, no, it’s going to be rotating this vector [not
clear to which vector he referred here]”—he persisted in his interpretation of the equa-
tion x = ( ) + ( )s as a representation of transformations.

The rest of the participants could not mobilize geometric knowledge in Problem 4,
even once they observed or were told that u×v is orthogonal to both u and v (where u and
v are the vectors in Problem 3), nor did they call upon the algebraic representations that
P1, P7*, and P9 had mobilized in Problem 3; what they were all missing, specifically, was
the representation of ax+by+cz = 0 as (a, b, c)·(x, y, z) = 0. I expect students who know
how point-normal equations (such as ax + by + cz = 0) are constructed from the visual
representation of planes would be equipped to spontaneously view an equation such as
ax + by + cz = 0 in dot-product form; after all, it’s the result of taking the dot product
of vectors (x, y, z) parallel to the plane with a normal (a, b, c) of the plane. P7* and P9’s
explanations of geometric elements of Problems 3 and 4 put to question whether they had
this theoretical knowledge, and their comments in Problem 3 suggest they had mobilized
the orthogonality property of cross products mainly because the problem included a cross
product, the constants in the linear system were 0, and the scalars in the cross product
vectors were repeated in the system (P9: “when I first looked, I thought zero, there’s
something about it and then what I thought further, I said ‘oh, yes; dot product, cross
product’”; and P7*: “I see some pattern here. That pattern is these coefficients, they
have these vectors”).

In the remainder of this section, I address comments other participants made that
help to clarify students’ position relative to geometric knowledge in LA1.
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P6 knew he did not have geometric knowledge: “stuff like cross product and dot prod-
uct and like, point to a plane, that kind of stuff... Was... I, if I could turn it into just like
a numerical thing? I would do that.” P6 seems to view this as a personal choice, but in
light of the LA1 tasks students are expected to perform in relation to linear systems and
cross products, I surmise it’s rather the heavy institutional weight on computations in
LA1 that steered P6 away from the need to have geometric knowledge. P5 and P10’s com-
ments support this: P5 remembered (in Problem 3) “problems that [she] did at the end
of the term” involved cross products and the notion of perpendicularity, and in Problem
4, P10 recalled cross products produce something called a “normal,” but did not know
what a normal is and could not contextualize this memory. P10’s recollection of a link
between “cross product” and “normal” is likely from experience she had practicing LA1
problems in which the task is to find the normal (or point-normal equation) of a plane,
given vectors parallel to the plane (P10 made no mention of planes). P10’s knowledge
was limited to surface features of this type of problem: she knew that calculating a
cross product would produce something called a “normal.” P5’s knowledge also seems re-
stricted to surface-level features of LA1 problems, as all she had was a fragile grasp of the
geometry of cross products: she knew that cross products have something to do with vec-
tors that are “perpendicular or parallel” (my emphasis; she did not know whether cross
products have something to do with perpendicularity or whether they had something to
do with parallel vectors) and she said she’s “confusing a bunch of different ideas together.”

The geometric knowledge that LA1 tasks require students to have, when it comes to
linear systems, is superficial. They need to have the associations that link certain words
with certain procedures (e.g., such as P10’s association of “normal” with “cross product”)
or certain words with certain algebraic expressions (e.g., such as the association of the
word “plane” with equations of the form ax + by + cz = d). But they do not need to
know the theoretical knowledge that creates these associations. P8’s reaction to prompt
P-T3, wherein I told her that the cross product in Problem 3 is orthogonal to the vectors
of which it’s made, is a symptom of the disconnect between the knowledge students are
expected to learn in LA1: “I hadn’t even thought about orthogonality because when I see
equations, [I put] that away!” In P8’s (LA1) experience, one thing (homogeneous linear
systems in 3 unknowns) has nothing to do with the other (orthogonality). As she tried
to find a link, her focus was on finding a link between x, y, z (in a1x+ b1y + c1z = 0 and
a2x+b2y+c2z = 0) and a sketch she made of a vector w orthogonal to two vectors v1 and
v2. In terms of the reference model, what was missing for P8 (and for the other students)
was the construction of equations (for planes) using a normal (a, b, c) of a plane, vectors
(x, y, z) parallel to the plane, and the orthogonality of the normal with vectors parallel
to this plane.

Participants did generally know, on surface, that linear systems are related to lines
and planes in 2 or 3 dimensions. But this association was superficial and in some cases
even led to confusion about the algebra. For example, consider this mashup of algebra
and geometry from P5 (she was talking about the augmented matrix of the system in
Problem 4):

I know that there’s only two - there’s only two, like, lines - two rows. And
so... that will make like any other additional rows, like all 0 0 0. 0. It’s like
the only - so these two are the only ones that matter. I think... it’s going to
be 2d. And then... So z wouldn’t make sense in like a 2d space. [Because]
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this is only x and y, so z can be like... it’s like not important as a value. And
so it would have to cancel out.

Another symptom of the confusion that might be triggered in students when they
attempt to merge algebra and geometry is P3’s fuddled description of her initial attempt
at Problem 4. Her spontaneous activity was to compute the cross product (−5.2, 2, π)×
(4,−1.3, 4). Before doing this, she had asked me to clarify what a non-trivial solution is (I
explained what a trivial solution is, and then said that a non-trivial solution is a solution
different from the trivial one). P3 then said: “oh, so what I have to do is the same with
the previous one, I guess,” and set to compute the cross product. After P3 did calcula-
tions to find components of the cross product, I asked her to explain what she was doing:
“I just did the... Uh, cross product, uh vector. To find... the third. Equation. [pause]
Which is an intersection.” I asked why the cross product would give “the intersection”
and P3 initially said she “ha[s] no idea” and then: “if I want to find the three variables
I, I need, and there’s three variable – three equations. And that is why I tried to find
another equation to solve this problem.” This description brings to mind P3’s struggle to
describe the geometric representation of the linear system and cross product in Problem
3: her description suggested the cross product is related to a third plane (see Section
5.3.3.2.2). Equations, intersections, cross products—P3 seemed to know, on surface, that
there is a link between them, but was missing the knowledge to substantiate that link.

P4 also knew that the linear systems in Problems 3 and 4, geometrically, were related
to the intersection of planes; for instance, in Problem 3, he explained that

this is a cross product. And it is the same vector as the solution. That means
the solution could be the normal of a plane [emphasis added], for example.
And these are planes, now that I think about it, and so the intersection of
those planes. [...] So this is the intersection of a plane, which is a line, the
intersection of a plane, it’s going to be a line, and this, the cross product of
these two is parallel to the equation of the line. So this is just a geometric
interpretation of my solution.

I won’t put too much stock in P4’s claim that a solution of an equation could be the
normal of the plane (represented by the equation), in case it was a slip of the tongue.
But his activity and explanations in Problem 4 revealed his knowledge was skimmed from
the surface of LA1 tasks (“a lot of my knowledge was gained from the past exam ques-
tions”) and was not rooted in any theoretic (algebraic or geometric) knowledge. Indeed,
in response to prompt P-T3 (where I pointed out that the cross product in Problem 3
is orthogonal to the vectors of which it was made, as P4 had brought up this property
himself in response to P-T2 but ignored it), the activity P4 suggested had no substance.
He suggested to take the dot product of vectors (aix, biy, ciz) (taken from the Problem 4
equations aix+ biy+ ciz = 0, i = 1, 2) with (a1, b1, c1)× (a2, b2, c2). He hypothesized that
doing so would produce a system equivalent to the system in Problem 4; their solution
spaces would be the same. The choice to invoke vectors of the form (aix, biy, ciz) shows
P4’s knowledge (about vectors, dot products, cross products, equations, lines, planes)
was superficial; it was not founded in any algebraic and geometric knowledge that can
substantiate the association P4 had between linear systems, planes, and equations.

From participants’ activity and explanations in Problems 3 and 4, I can conclude
that they know of a technique that always works to solve a linear system: row-reducing
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its augmented matrix. They also know how to compute a cross product. They know
what it means that two vectors are orthogonal. They associate equations like those in
Problems 3 and 4 with planes. Some know such planes might have a line as their intersec-
tion. Students’ activity and explanations show these are surface-level units of knowledge
left over from their experience performing LA1 tasks. Such tasks overemphasize (and
over-privilege) row reduction of augmented matrices as a technique for anything related
to (homogeneous) linear systems: students do not need to mobilize any knowledge other
than row-reduction, and their experience in LA1 developed in them an instinct to sponta-
neously pop an augmented matrix and row-reduce it when they see a linear system. The
algebraic and geometric discourse that substantiates the correspondence between linear
systems and their geometric representations is peripheral, and even when students have
some of the relevant geometric discourse, it is limited.

5.5 LA1 Problem 5

The following was the fifth problem presented to the 10 LA1 students in the TBI:

Given k ∈ R, the vectors (−k, 1, 1), (−1, 1, k), and (1, 0, 1) form a parallelepiped
of volume 0. Find the values of k for which the vectors are linearly independent.

5.5.1 Reference model for LA1 Problem 5

Problem 5 is a task of type t: “determine the conditions under which a given set of three
vectors in R3 is linearly independent,” where “conditions” refers to the value(s) of an
unknown in the components of the given vectors.

A set of vectors S = {v1, . . . , vk} in a vector space V is said to be linearly indepen-
dent if the trivial linear combination is the only linear combination of S that produces
the zero vector 0: that is, if c1v1+ c2v2+ · · ·+ ckvk = 0 implies that ci = 0 ∀i = 1, . . . , k.
Otherwise, S is said to be linearly dependent. This stems from the conception of linear
dependence of a set of vectors as the possibility of expressing one vector as a linear com-
bination of the others.

If V is finite-dimensional of dimension n, then any set of more than n vectors is lin-
early dependent. A set S of one vector v is linearly independent if and only if v is not the
zero vector. And a set of two vectors is linearly independent if and only if neither vector
is a scalar multiple of the other. It is due to the last three properties that I selected the
feature in task t as I did: the task concerns sets of three vectors in R3, a vector space of
dimension 3.

Depending on the given vectors, a task of type t may be performed by inspection or
by activating the definition of linear independence. For instance, if S = {v1, v2, v3} is in
R3, the technique is to check the conditions under which the truth of the equation

c1v1 + c2v2 + c3v3 = 0
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would imply that c1 = c2 = c3 = 0 (where c1, c2, c3 ∈ R). If the vectors vi are expressed
in terms of their components, that is, if

v1 = (v11, v12, v12)

v2 = (v21, v22, v23)

and v3 = (v31, v32, v33)

then the above equation corresponds to a system of linear equations:

c1v11 + c2v21 + c3v31 = 0
c1v12 + c2v22 + c3v32 = 0
c1v13 + c2v23 + c3v33 = 0

If this system has only one solution (where c1 = c2 = c3 = 0), then the vectors are
linearly independent. One technique for verifying this is to use Gauss-Jordan elimination
(we’ll refer to this by τ1) and the other (τ2) is to check whether the determinant of the
coefficient matrix is non-zero; if it is, then the system has a unique solution.

Problem 5 can be performed using τ1 as follows: the vectors (−k, 1, 1), (−1, 1, k) and (1, 0, 1)
are linearly independent only for the values of k for which

c1(−k, 1, 1) + c2(−1, 1, k) + c3(1, 0, 1) = (0, 0, 0)

has only the trivial solution c1 = c2 = c3 = 0. That is, the vectors are linearly independent
only for the values of k for which

−kc1 − c2 + c3 = 0
c1 + c2 = 0
c1 + kc2 + c3 = 0

(5.2)

has only zero as the value for the coefficients. The augmented matrix of this system
is −k −1 1 0

1 1 0 0
1 k 1 0


If k = 1, then the reduced row echelon form of the augmented matrix is1 1 0 0

0 0 1 0
0 0 0 0


In this case, the solutions of the system have the form (−1, 1, 0)t (t ∈ R). Indeed, if

c1 = −t, c2 = t, c3 = 0 for some t ∈ R, then (recalling this is the case in which k = 1)

−t(−k, 1, 1)+t(−1, 1, k)+0(1, 0, 1) = −t(−1, 1, 1)+t(−1, 1, 1) = (t−t,−t+t,−t+t) = (0, 0, 0).

If k ̸= 1, then the reduced row echelon form of the augmented matrix is1 0 − 1
k−1

0

0 1 1
k−1

0

0 0 0 0
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In this case, the solutions of the system have the form ( 1
k−1

,− 1
k−1

, 1)t (t ∈ R). Indeed,
if the coefficients (c1, c2, c3) have this form, then:

t

k − 1
(−k, 1, 1)− t

k − 1
(−1, 1, k) + t(1, 0, 1) = (

−kt+ t

k − 1
+ t,

t− t

k − 1
,
t− kt

k − 1
+ t) = (0, 0, 0)

Since t can have any real value, this shows that no matter the value of k, there exist
non-trivial linear combinations of (−k, 1, 1), (−1, 1, k) and (1, 0, 1) that produce the zero
vector. So the vectors are not linearly independent for any value of k.

As previously stated, another way to check if the linear system in (5.2) has only
(c1, c2, c3) = (0, 0, 0) as a solution is to check if the determinant of the coefficient matrix
is non-zero; this is technique τ2. The determinant can be calculated using θ21, a cofactor
expansion along any row or column, and/or θ23, properties that relate row operations
with determinants (as discussed in the reference model for Problem 2). In the case of the
coefficient matrix in 5.2, these calculations would lead to the result that the determinant
is 0. Alternatively, the formula for the volume of a parallelepiped could be mobilized
to conclude that the determinant of the coefficient matrix is 0. Indeed, the volume of a
parallelepiped generated by the vectors u = (u1, u2, u3), v = (v1, v2, v3),w = (w1, w2, w3)
is the absolute value of

det

u1 u2 u3

v1 v2 v3
w1 w2 w3

 .

We’ll denote this last technology by θ23. Mobilizing it for Problem 5, which states that
the volume of the parallelepiped formed by (−k, 1, 1), (−1, 1, k) and (1, 0, 1) is 0, leads to
the result that the absolute value of

det

−k 1 1
−1 1 k
1 0 1


is 0. Since detA = detAt, it follows that the determinant of the coefficient matrix of

the linear system in (5.2) is 0, so (c1, c2, c3) = (0, 0, 0) is not its only solution; the vectors
are therefore linearly dependent for any value of k.

The theoretical discourse that produces both techniques is the same as that outlined in
the reference model for Problem 2 in Section 5.2.1 (see Table 5.2 on p.101). I will denote
the theoretical discourse specific to Gauss-Jordan elimination by [θ1,Θ1] and the theoret-
ical discourse specific to the determinant of the coefficient matrix by [θ21, θ22, θ23, θ24; Θ2]
(where θ24 is the theorem stating that if detA = 0, then Ax = 0 has infinitely many
solutions).

When V = R3, linear independence has a geometric representation that builds on the
construction of R3 as a vector space from the definition of geometric vectors (arrows).
For instance, two vectors v1 and v2 are defined to be parallel if they are scalar multiples
of one another. This definition reflects the notion that if two arrows (geometric vectors)
are parallel, then their direction is the same (or directly opposite) while the length of one
is a multiple of the other (and, in turn, the definition of length in vector spaces agrees
with this construction). A set of parallel vectors is linearly dependent because there is
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a non-trivial combination of the vectors that produces the zero vector (for instance, if
v1 = 5v2, then −5v1 + 5v2 = 0).

A set of three vectors in R3 is linearly independent if and only if the vectors are
non-coplanar (I denote this technology by θ31). Vectors are said to be coplanar (parallel
to the same plane) if they lie on the same plane when positioned so their initial points
overlap. This technology produces a third technique for performing tasks of type t: if
three vectors in R3 are known to be (non-)coplanar (under certain conditions), then they
are linearly (in)dependent (under those conditions). I denote this technique by τ3.

One last notion pertinent to Problem 5 is that of a parallelepiped. A parallelepiped is
the shape generated by three vectors in R3. (More precisely, it is the shape generated by
all linear combinations of three vectors, where the coefficients are real numbers between
0 and 1, inclusively, and when the vectors are positioned so their initial points coincide
with the origin.) If such a shape has volume 0, then the three vectors must be coplanar
(otherwise, the parallelepiped would have non-zero height and its volume would be larger
than 0). I denote this technology by θ32; this, together with θ31 and τ3, shows that the
vectors given in Problem 5 are linearly dependent for all values of k; indeed, since the
given vectors form a parallelepiped of volume 0 for any k ∈ R, they are coplanar for all
values of k, and hence are not linearly independent for any value of k.

I denote by Θ3 the theory that gives authority to the technologies that produce τ3:
Θ3 is the algebraic, geometric, and logical discourse that frames the technologies that
relate algebraic constructs (such as vectors, linear independence, linear combinations,
parallelepipeds) with geometric constructs (such as vectors, linear independence, linear
combinations, parallelepipeds), as well as the view that the axioms on which linear alge-
bra and Euclidean geometry are founded reflect human perception of physical reality.

My reference model for tasks of type t therefore consists of the following praxeologies:

� [t; τ1; θ1; Θ1]: using the algebraic definition of linear independence together with the
component form of vectors to produce a homogeneous linear system (whose number
of solutions determines whether the vectors are linearly independent or not), and
using Gauss-Jordan (or Gaussian) elimination to determine whether the system has
a unique solution or not, and using this to determine whether it is only the trivial
linear combination that produces the zero vector;

� [t; τ2; θ21/θ22/θ23, θ24; Θ2]: using the algebraic definition of linear independence to-
gether with the component form of vectors to produce a homogeneous linear system
(whose number of solutions determines whether the vectors are linearly indepen-
dent or not), and finding the determinant of the coefficient matrix (using either
knowledge about determinant calculations or a formula for the volume of a paral-
lelepiped) to determine whether the system has a unique solution or not, and using
this to determine whether it is only the trivial linear combination that produces
the zero vector;

� [t; τ3; θ31, θ32; Θ3]: using geometric knowledge about the volume of the parallelepiped
formed by three vectors to conclude whether three vectors are coplanar, and us-
ing knowledge about the geometric interpretation of linear independence in R3, to
determine whether three vectors are linearly independent.
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5.5.2 Knowledge to be learned in LA1 to perform tasks of the
type in Problem 5

In LA1, the task of the type “determine the conditions under which a given set of three
vectors in R3 is linearly independent” is not normative, though a task of similar type
did occur on one final exam problem in the exams to which I had access. That task
was to find the conditions under which three vectors in R3 would be parallel to the same
plane (that is, coplanar). There too, the vectors were given in component form and some
of the components were expressed in terms of an unknown k. I will denote this task by t3.

More normative tasks in LA1 when it comes to the linear independence of vectors are
those of type t4, to determine whether a given set of three vectors v1 = (v11, v12, v13), v2 =
(v21, v22, v23), v3 = (v31, v32, v33) is linearly independent (as in 2 past exam problems) or to
show that a given set of three vectors is linearly independent (as in 1 past exam problem);
the task of type “to determine if...” is also the only one recommended to students on the
list of practice problems associated with the textbook section about linear independence.

There are two normative techniques for accomplishing t4 in LA1. One is to set up an
augmented matrix where the first column is the vector v1, the second column is v2, the
third is v3, and the column to the right of the bar is made up of 0’s; then, this matrix is
reduced so as to determine if the RREF of the coefficient matrix is I3 or not. If it is, then
the set of vectors is linearly independent; otherwise, the set is linearly dependent. It is
up to instructors’ discretion as to how many marks (if any at all) are allocated towards
a statement of the type “v1, v2, v3 are linearly independent only if c1v1 + c2v2 + c3v3 = 0
implies that c1 = c2 = c3 = 0.” It is also up to instructors’ discretion as to how many
marks (if any at all) are allocated towards showing that the augmented matrix is con-
structed from this initial equation (c1v1+c2v2+c3v3 = 0). I will refer to this technique by
τ41. The second normative technique for accomplishing t4 is τ42 and builds on the same
initial equation (as in my reference model). The focus instead is on the determinant
of the matrix whose first column is the vector v1, second column is v2, and third is v3;
the technique is to compute this determinant. If the determinant is non-zero, then the
vectors are linearly independent; if the determinant is zero, then the vectors are linearly
dependent. Again, it is up to instructors’ discretion as to whether students have to justify
any part of this technique.

We’re now equipped to describe the technique for the less normative task t3, which
appeared in a problem on one past final exam: “to find the conditions under which three
vectors in R3 are parallel to the same plane.” The vectors v1, v2, v3 are given in component
form, and some of the components are expressed in terms of an unknown k. To do this
task, students would have to activate the technology θ3: a set of vectors in R3 are parallel
to the same plane only if they are linearly dependent. One this technology is activated,
the task is similar to t4: to find the conditions under which three vectors in R3 are linearly
dependent. Both τ41 and τ42 can be adapted here. Adapting τ42, for instance, might look
like this: find the determinant of the matrix whose first column is the vector v1, second
column is v2, and third is v3. This determinant would be an algebraic expression in terms
of an unknown. For the vectors to be linearly dependent, the determinant must be equal
to 0. The technique is then to find the values of the unknown for which the determinant
equals 0. I will denote this technique by τ3.

179



Another normative type of task in LA1 that is related to the question of linear inde-
pendence of vectors is t5: to show a set of n vectors in Rn (where n = 2, 3) is a basis for
Rn. One of the normative techniques for t5 in LA1 involves showing the set of vectors is
linearly independent (using either τ41 or τ42) and then activating the knowledge that a
linearly independent set of n vectors in an n-dimensional vector space is a basis for the
space. I found only one past exam problem to have this task, but I consider this task as
normative (as opposed to t3) because one of the course outline’s recommended problems
(in the textbook section about bases) is a task of type t5.

Finally, the only type of task in LA1 that has to do with parallelepipeds is t6: to find
the volume of the parallelepiped determined by three vectors in R3, given the endpoints
of these vectors (and the endpoints, as per the usual in LA1, are single-digit integers).
This task appeared in two past LA1 exams as well as in one of the course outline’s
recommended problems (in the textbook section about cross products; here, the vectors
were given in terms of their components, and not in terms of their endpoints). The
technique for task t6 is to first find the vectors in terms of their components, using the
formula −→

AB = (xB − xA, yB − yA, zB − zA),

and then to find the volume of the parallelepiped (e.g., generated by the vectors u =
(u1, u2, u3), v = (v1, v2, v3),w = (w1, w2, w3)) using the theorem stating that the volume
is the absolute value of

det

u1 u2 u3

v1 v2 v3
w1 w2 w3

 .

In summary, the praxeologies LA1 students are expected to have relative to constructs
pertinent to Problem 5 include:

� [t3; τ3]: to use row-reduction or determinants to determine the conditions under
which three vectors in R3 are coplanar (this occurred in 1 exam problem);

� [t4; τ41/τ42]: to use row-reduction or determinants to determine whether or to show
that a given set of three vectors in R3 is linearly independent (this occurred in 3
exam problems and appeared in the list of recommended practice problems);

� [t5; τ41/τ42]: to show a set of n vectors in Rn (where n = 2, 3) is a basis for Rn by
showing they are linearly independent and activating the knowledge that a set of
n linearly independent vectors in an n-dimensional vector space is a basis for that
space (this occurred in 1 exam problem and appeared in the list of recommended
practice problems);

� [t6; τ6]: to use the formula for the volume of a parallelepiped formed by 3 vectors
in R3 to find its volume (this occurred in 2 exam problems and appeared in the list
of recommended practice problems).

The geometric interpretation of linear independence of vectors in R3, as described in
my reference model for Problem 5, is part of the knowledge to be taught in LA1. How-
ever, in light of the heavier focus in LA1 on the algebraic techniques pertinent to linear
independence (techniques that circle back to the LA1 norm of row-reducing matrices

180



or calculating their determinant), I wondered whether and how students would activate
their knowledge about parallelepipeds and their volumes to do Problem 5. Would they
consider the geometric implications of a parallelepiped having volume 0 (that is, that it
must have no height, so the 3 vectors of which it’s formed must be coplanar)? If so, would
they be able to use this knowledge to make an inference about the linear independence
of the vectors? Would they only (be able to) activate the formula for the volume of such
an object? Or would they ignore the information about the volume of the parallelepiped,
and only activate τ41 or τ42 to do the task?

5.5.3 Knowledge LA1 students activated in response to Prob-
lem 5

Table 5.10 (on p.183) summarizes the paths of participants’ activity as they worked on
Problem 5. As before, Step 1 refers to the activity a participant spontaneously engaged in
upon reading the problem statement; I group students according to Step 1 and color-code
the groups to help trace students’ paths thereafter. I categorize a student’s activity in a
new step if they presented it as such; if I prompted for another approach and a participant
described one that is essentially equivalent, I still categorized it as a new step.

It will be useful for the discussion below to recall that the volume of a parallelepiped
formed by three vectors u = (u1, u2, u3), v = (v1, v2, v3),w = (w1, w2, w3) is the absolute
value of

det

u1 u2 u3

v1 v2 v3
w1 w2 w3

 . (5.3)

I will refer by vi (i = 1, 2, 3) to the vectors given in Problem 5. They are v1 =
(−k, 1, 1), v2 = (−1, 1, k), and v3 = (1, 0, 1).

Students generally attempted to activate knowledge about the volume of a paral-
lelepiped (formed by three vectors) to do Problem 5. Two students (P1 and P10) mobi-
lized the formula in (5.3) (as their first activity when engaged with Problem 5) and the
given information (that the volume is zero) to deduce

det

−k 1 1
−1 1 k
1 0 1


is zero, but did not know what to make of this and got stuck. It is not clear if P10
understood the problem statement to mean this determinant would equal 0 for all k; in
P1’s case, I surmise he did not know this, because he later came back to this determinant,
calculated it, found it was 0, and concluded “[the determinant does] not help. Because
you just have 0 equals 0.” For three students (P2, P8, P9), it was clear they did not imme-
diately infer, from the problem statement, that the three vectors form a parallelepiped of
volume 0 for all k, as they had mobilized τ6 and used the formula in (5.3) to calculate the
volume of the parallelepiped and got stuck upon finding it to equal 0. They had expected
to find an expression in terms of k which they could then set equal to 0 (since the volume
ought to equal 0). But they could not establish such an equation. Three other students
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(P4, P6, and P5) did not immediately activate formula (5.3); they focused, instead, on the
geometric implication of the parallelepiped having volume 0. They knew the vectors must
be “on” the same plane; I do not use the term “coplanar” because not all participants had
such a lucid interpretation of the situation (P1, P6, and P9 visualized the vectors to form
a parallelogram). The implication the vectors are coplanar (or form a parallelogram) was
not sufficient for many participants to complete the task, and they alternated between
the geometric and algebraic representations to do so. For example, for P6, it was con-
tradictory that linearly independent vectors in 3-space would form a 2-dimensional shape.

Apart from participants’ focus on geometric and/or algebraic representations of a par-
allelepiped having volume 0, participants (P1, P2, P4, P9, P10) also mobilized algebraic
knowledge they related with the notion of linear independence (in the form of τ41 and/or
τ42). Two participants (P3, P5) only mobilized (algebraic) knowledge that was not rele-
vant to the task; their activity seemed motivated by a goal of establishing equations in
which k could be isolated.
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Table 5.10: Paths of LA1 Students’ Activity in Problem 5

Practical block [t, τ ]

Participant’s engagement with [t, τ ]

S
te
p
1

S
te
p
2

S
te
p
3

S
te
p
4

S
te
p
5

S
te
p
6

S
te
p
7

S
te
p
8

infer that since volume is 0, de-
terminant of matrix (where Ri is
vi) is 0, get stuck

P1 enacts

P10 describes

activate τ6 (use formula to find
the volume of parallelepiped
(scalar triple product (STP) or
determinant form, where determi-
nant is of matrix where Ri is vi)
so as to set it equal to 0 (volume
is 0) and solve for k to infer the
value(s) of k for which the vectors
are LI)

P8 enacts, gets stuck: finds STP is 0, stuck because there is no k to isolate

P9
partially enacts: finds STP is 0, concludes volume is 0 for any k (briefly says this is not so for k = 1 because in that case, two of the vectors are
equal to one another, but then reconsiders and concludes volume is 0 no matter what)

P6
enacts, doubts: finds two identical rows; states again that if volume is 0, one vector must be LD, wonders whether there are values of k for
which they are LI; says the two vectors (that led to identical rows) must be collinear. Double-checks for calculation errors.

P4
determines that no matter what value k has, volume is 0 so vectors are on the same plane, so there are no values of k for which
they are LI

P6 determines that for any value of k, the determinant is 0, so for any k the vectors are LD

P1 partially enacts: finds determinant is equal to 0 and says “that will not help because you just have 0 equals 0”

give formulaic interpretation of a
prism having volume 0

P5 from volume formula, height or length or base must be 0

give geometric interpretation of a
parallelepiped having volume 0

P4 vectors must be on the same plane

P6 says vectors form a 2-dim. parallelogram in 3-space, but thinks this is a contradiction: LI vectors in 3-space can’t form 2-dimensional shape

P2
says vectors are coplanar, tries to infer whether this means they are LI or LD; struggles; I give definition of linear independence and then
P2 concludes coplanar means LD.

P3
partially enacts: draws 3-dim. Cartesian graph, plots points (0,1,0), (-1,0,0), (-1,0,1), (1,0,1) after I say that if a parallelepiped has volume
0 then it’s flat. Describes what seem to be the points in her sketch. Seems to consider what the points could be for different values of k.

P4 vectors must be on the same plane

P6 for the vectors to be LI, parallelepiped must have volume greater than 0; one vector must be scalar multiple of one of the other vectors

P8 vectors are on the same plane so they are LD, there does not exist k for which they are LI

P9
two vectors must be overlapping; so no value of k for which the vectors are LI; after I draw the possibility of 3 vectors where
none are overlapping but volume is 0, P9 says “they are coplanar” so belong to the same subspace so they can be written in
terms of each other so they are not LI

P10 I asked if P10 could do this, P10 is unable to mobilize (“I have no idea”)

P1
describes: “It’s gonna be the xy plane. No, it’s like a part of... Volume is 0, so it’s gonna be just like this,” draws
parallelogram

P7*
enacts: object has volume 0 so 3-dim. vectors are on same plane. Confused because v1 + v3 is not parallel to
v2; realizes linear combination could have coeff. other than 1; concludes 3 vectors “on a plane” are LD

give geometric interpretation of 3
vectors in R3 being LI

P7* describes: v1 + v2 “should not be on the same line” as v3 (should not be “parallel”)

[t4, τ42]
(calculate the determi-
nant of the matrix made
up of the given vectors)

P2 enacts, doubts: finds determinant is 0, wonders if determinant 0 means vectors are all LI or all LD

P4 enacts, doubts: finds determinant is 0, double-checks, wonders if this means k can have any value, wonders if he should be using STP.

use cross products to create equa-
tions in which k can be isolated

P3
enacts: finds the cross product of two of the given vectors, use its components as coeff. to produce the equation (k−1)x−(−k2+1)y+(−k+1)z = 0
and concludes k − 1 + (−k + 1) = 0 (may have plugged the coeff. of (1, 0, 1) to get this); starts over with the cross product of another pair of
vectors, but this time adds up the cross product components and sets them equal to 0.

[t4, τ41] (row-reduce a matrix)

P1 partially enacts: writes −kk4 + k4 + k4 = 0 and augmented matrix where coeff. matrix has vi as Ri (incorrect matrix for τ41), and constant
terms all 0.

P10 suggests and then dismisses: isn’t sure, but considers row-reducing the matrix where Ri is vi (incorrect matrix for τ41)

P7* suggests: writes the matrix A where Ci is vi, and writes Ax = 0 (where 0 is the 3× 1 zero matrix)

P7* partially enacts: reduces the coeff. matrix to a form in which A21 = A31 = 0 and identifies a value of k for which A32 = 0 and A33 ̸= 0

P9
partially enacts: row-reduces the matrix where column i is vector vi (with k = 5) and gets a row of 0’s. Concludes in this case vectors
are LD. Writes the matrix where Ci is vector vi (with k = 0) and says vectors are LI in this case.

P7* partially enacts: writes augmented matrix made up of matrix obtained in Step 3 and a right-most zero column.

P1
enacts: row-reduces (incorrect) matrix from Step 2, eventually gets two identical rows and concludes there are infinitely many
solutions so “for LI I have multiple case.” Stuck.

P4
wants to row-reduce augmented matrix where Ci is vi and right-most column is the zero vector; expects to find no
solutions, to confirm what he found with the determinant (no solution would mean no k for which the vectors are LI)
and gives incorrect rules about what the results of row reduction would mean for linear independence

P7*
enacts: sets to find values of k for which the augmented matrix from Step 4 is consistent; checks cases k = 1,−1, 2
and finds conclusions to contradict his previous result that the vectors are LD when k = 2 and LI otherwise.

check
if one
vector is
a linear
combi-
nation
of the
others

by inspection, particu-
lar values for k

P8
suggests: describes writing one vector as a linear combination of the other two, given a value for k (e.g., k = 0); does not conclude anything
about values of k but does say (1, 0, 1) is not a linear combination of the other two because of the 0 in the second component.

P9
enacts: observes that if k = 1 then the first two vectors are equal, in which case they are LD and one of them is “redundant”; says vectors
are LD when k = 0 and LI when k > 1

P1 says no combination of (−1, 1, k), (1, 0, 1) would give (−k, 1, 1); when asked why, says “oh no, never mind” but backtracks on this as
well. Tries to find useful linear combinations in the case that k = 0. Stuck.

P4 checks k = 1, sees two vectors are identical and thinks that’d always be the case; tries k = 5 and sees it isn’t

knows relevance, does
not mobilize

P10 states vectors are LI if they are not linear combinations of one another. Stuck.

for values of k found in
a previous step

P5
plugs k = −2,−1, 0 into the 3 vectors and considers whether the set of vectors (corresponding to each k) is LI or LD; says the vectors
with k = 0 are LD because two sum up to give the third; says the vectors with k = 1 are LI (note that 2 vectors are identical here);
says the vectors with k = −2 are LI (checked by inspection, adding/subtracting the vectors)

check if two vectors
add up to a scalar mul-
tiple of the third vector

P7*

enacts: finds v1 + v2 to check if it’s a scalar multiple of v3, dismisses because v1 + v2 has 0 as a component and the
corresponding component for v3 is not 0; similarly with v2+v3 and v1; finds v1+v3 = (1−k, 1, 2) and, since v2 = (−1, 1, k),
solves 1−k

−1
= 1

1
= 2

k
to find values of k for which the vectors are LD. Concludes vectors are LD if k = 2 and LI otherwise.

P7*
stuck, then partially enacts: finds values of k for which v1 + v3 is not proportional to v2 so as to find values of
k for which the vectors are LI. Wonders whether proportionality would mean vectors are LD.

use dot products to create equa-
tions in which k can be isolated

P5
takes dot product of each pair of the given vectors; sets each dot product equal to 0 and also sets each dot product equal to each other.
Gets 3 values of k (0,1,-2) by solving some of the equations, is reminded of how a 3 × 3 matrix can have 3 eigenvalues.

LI: linearly independent; LD: linearly dependent; STP: scalar triple product; v1 = (−k, 1, 1), v2 = (−1, 1, k), v3 = (1, 0, 1).
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Table 5.10 shows participants’ zigzagged engagement with Problem 5: they alter-
nated between activating (or trying to activate) algebraic and/or geometric knowledge
about linear independence and/or the volume of a parallelepiped. Some students sponta-
neously alternated between algebraic and geometric representations, and in some cases, I
prompted students to alternate when they got stuck with one representation or the other.
Participants P2, P4, P6, P7*, P8, and P9 completed the task successfully in this way;
P1, P3, P5, and P10 did not, despite interventions designed to help them get unstuck. I
discuss participants’ activity relative to each attempted technique first.

5.5.3.1 Students produced equations with the aim to isolate k (P1, P3, P5,
P6, P8, P9, P10).

Two produced equations that were irrelevant to the task (P3, P5). Others (P1, P6, P8,
P9, P10) activated a formula for the volume of the parallelepiped and, given the infor-
mation that the volume is 0, set the expression for the volume equal to 0 (or, in the case
of P10, only suggested to do so).

For all these participants, the choice to produce an equation in which to solve for
k was spontaneous—that is, I had not intervened to prompt students in this direction.
Students either engaged in this activity as their initial response to Problem 5 (P1, P3,
P8, P9, P10) or turned to it after having considered the implications of a parallelepiped
having volume 0 in terms of the formula for a rectangular prism (P5) or in terms of the
geometric vectors that form the parallelepiped in R3 (P6).

The two students (P3, P5) who produced equations that were irrelevant to the task
were unable to mobilize other LA1 knowledge productively and did not complete the task
in Problem 5. I discuss their cases in Section 5.5.3.1.1.

In Section 5.5.3.1.2, I discuss the activity of P1, P6, P8, P9, and P10 as they pro-
duced an equation of the form “volume of the parallelepiped equals 0.” P10 stated this
equation but did not mobilize it; P8 and P9 activated the formula for the volume of a
parallelepiped, found the volume is 0, and did not use this to conclude anything about
the linear independence of the vectors; P1 decided the equation was not helpful because
it led to the equation 0 = 0; and P6 interpreted the equation’s solution accurately after
having also inferred that a parallelepiped of volume 0 is a parallelogram, but went back
and forth between the equation and his geometric interpretation before settling on the
conclusion that the vectors are linearly dependent for all k.

5.5.3.1.1 Students who produced equations irrelevant to the given task were
also unable to mobilize other LA1 knowledge productively (P3, P5). P3’s
initial and spontaneous reaction to Problem 5 was to produce an equation in k. P3
mobilized technical knowledge from LA1 (how to calculate cross products) to produce
equations that had no relevance to Problem 5 (see Table 5.10 for more information on
these equations). P3 was not the only participant to produce equations in which k could
be solved but which had no value in the task at hand; after P5’s initial formulaic interpre-
tation of the parallelepiped having volume 0, she used dot products to create equations in
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which k could be isolated; she had assumed the parallelepiped to be a right rectangular
prism and decided to find the values of k for which the vectors are orthogonal. Her cal-
culations were correct but irrelevant to the task. P5 then used the values she had found
for k to check if one of the given vectors could be expressed as a linear combination of
the others (for those values of k); this part of P5’s activity showed she knew the LA1
definition of linearly independent vectors. Nevertheless, she was unable to do the task
by inspection: for instance, she did not notice that when k = 1, two of the vectors were
identical, even though she had written out the three given vectors in the case that k = 1.
P5 was unable to mobilize any other knowledge to do the task.

P3’s knowledge was more limited than P5’s: after she said that she “forgot how to
verify that the vectors are linearly independent or not,” I gave her the LA1 definition of
linear independence (a finite set of two or more vectors is linearly independent if none of
the vectors can be written as a linear combination of the others), but P3 did not mobilize
it. As stated above, P3 produced equations (irrelevant to the task) in which k could
be isolated; her justification for doing so was an incoherent mutation of LA1 knowledge
(“the cross product is the intersection of these two systems, which means this equation
is the intersection of these two planes”). I therefore prompted P3 to focus instead on
the information about the volume of the parallelepiped, to see if she would mobilize any
geometric knowledge. She did not. Instead, she sketched a Cartesian graph with axes
x, y, z and plotted a few points (with components 0, 1, and -1). P3 did not mobilize any
other knowledge to do the task.

5.5.3.1.2 Among the students who activated algebraic knowledge about vol-
umes spontaneously (P1, P6, P8, P9, P10), only two (P6, P8) spontaneously
activated a geometric interpretation of a parallelepiped having volume 0.
Among the students whose equation was based in a formula for the volume of a par-
allelepiped, three eventually completed the task (P6, P8, P9) and two did not (P1, P10).
P1 and P10’s initial reaction to the problem was to reference the LA1 formula for the
volume of a parallelepiped but they did not (at least, at this initial stage) activate the
formula to calculate the volume; instead, for P1 and P10, the volume formula may have
influenced how they activated (surface-level features of) the normative LA1 technique τ41
for task t4 of determining whether vectors are linearly independent. P6, P8, and P9 did
activate the LA1 formula to calculate the volume but struggled with the result that the
volume is 0.

For all the participants who mobilized the formula for the volume of a parallelepiped,
what seemed to produce their technique (based on the comments they made as they found
the volume to be 0, which I will get to shortly) was the knowledge that if the volume
of a parallelepiped is 0, then the expression for the volume (given by the LA1 formula)
must equal 0; in this case, k could be isolated and part of the task (“find the value(s)
of k for which...”) completed. It’s possible some of the students interpreted the problem
statement to mean that vectors v1, v2, v3 form a parallelepiped of volume 0 only for some
k.

Among these participants, for whom the choice to activate a LA1 formula for the vol-
ume of the parallelepiped was spontaneous, only two (P6, P8) chose, without a prompt
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on my part, to activate a geometric interpretation of a parallelepiped having volume 0.
For P6, the initial reaction to Problem 5 was to visualize a parallelepiped of volume 0
(his interpretation was that two of the vectors must overlap, perhaps with one longer
than the other, and so that the vectors formed a parallelogram); P8 chose to visualize
the vectors as a third step in her approach to Problem 5; her interpretation was that the
vectors are on the same plane. The others did not spontaneously attempt to visualize the
situation. I prompted P9 to do so after his third failed attempt to tackle the problem:
like P6, he also visualized two of the vectors to overlap. For P1, my prompt came after
his fifth failed attempt at the problem; like P6, he also visualized a parallelogram. P10
was unable to visualize the situation (“I have no idea”). I will return to participants’ geo-
metric interpretations in Section 5.5.3.6, but are outlining what and how P1, P6, P8, P9,
and P10 activated their geometric knowledge here so as to contrast it with what and how
they activated LA1 algebraic(-formulaic) knowledge about the volume of a parallelepiped.

I will discuss the case of P1 and P10 first and that of the other participants second.

For P1 and P10, engaging the volume formula was a spontaneous reaction
and ultimately a springboard for activating surface-level features of τ41. P1
and P10 started out by inferring that since the volume of the parallelepiped formed by
v1, v2, and v3 is 0, the determinant of the matrix (where Ri is vi) is zero. (P1 knew
the formula; P10 had said she could not remember it so I offered it.) P1 and P10 both
got stuck at this stage. P1 couldn’t “find the link [between the volume being 0 and] the
question,” which was about the linear independence of the vectors that were given.

P1 and P10 proceeded to use the matrix from the volume formula to activate a dif-
ferent technique for the task. P10 suggested to row-reduce the matrix (where Ri is vi)
and did not follow through with her suggestion. P1 wrote the corresponding augmented
matrix, with constant terms 0, and, like P10, did not follow through with row-reducing it.

P10’s suggestion to row-reduce the matrix where Ri is vi seems based in surface-level
features of the formula I had shown her (for the volume of a parallelepiped) as well as
surface-level features of the LA1 technique τ41 for checking whether three vectors are lin-
early independent. The discourse that produces τ41 leads to an augmented matrix where
Ci (not Ri) is vi (for i = 1, 2, 3) and where the entries in the right-most column are all 0.
P10’s suggestion to row-reduce the (non-augmented) matrix (identical to the one in the
volume formula) reflects the surface-level feature of τ41 wherein a matrix made up of the
given vectors gets row-reduced.

P10 did not explain why row-reducing the matrix would work or help to solve the
problem. When I asked what she thought would happen if she reduced the matrix, she
said she doesn’t “think that would work” and did not make any other suggestions. P10
did not clarify what she had in mind when she suggested to row-reduce the matrix: I
don’t know if she thought of τ41 as a technique for performing t4 (determining if a set of
vectors is linearly independent), or if she was suggesting to row-reduce a matrix made up
of the vectors she’d been given because, for instance, row-reducing a matrix features in
many of the techniques relevant to LA1 tasks.
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P1’s suggested matrix was augmented (and so, marginally closer in appearance than
P10’s to the one in τ41), but, like P10’s, mimicked the matrix in the volume formula rather
than the one that would occur when τ41 is activated. P1’s matrix and the justification
he gave for it suggest P1 had fused the volume formula with a surface-level grasp of the
discourse that produces τ41: he had written the equation

−kk4 + k4 + k4 = 0

to demonstrate an implication of the equation k1v1 + k2v2 = 0, which he had written
alongside the descriptor “k1,2 = 0.” This equation and descriptor were the “one thing”
P1 said he remembered about linear independence when he returned to Probem 5 at the
end of the interview. P1 said this equation would lead to the same approach he’d already
used, and after a minute pause in which he said he was “confused,” P1 decided “it should
be a different k for each one,” and this equation would then lead to the augmented matrix
he used. The coefficients of the k4’s in P1’s equation are the components of the vector
(−k, 1, 1). His equation incorrectly calques the equation in the question at the crux of
τ41: do there exist a, b, c, not all zero, for which the equation

a(−k, 1, 1) + b(−1, 1, k) + c(1, 0, 1) = (0, 0, 0) (5.4)

is true? If yes, then any one of the vectors can be expressed as a linear combination of
the others, and so they are linearly dependent. Otherwise, the vectors are linearly inde-
pendent. In LA1, equation (5.4) and its related discourse are part of the technique to be
taught in LA1, as per examples in the course textbook. But students are not required to
produce the discourse attached to equation (5.4); at most, some instructors may expect
students to produce the equation (if the task is t4: to determine if a set of vectors is
linearly independent) for partial marks, but this is up to the discretion of each instructor
and so is not a norm of the LA1 institution.

That P1 wrote the equations he did (k1v1 + k2v2 = 0, −k(k4) + k4 + k4 = 0) shows
he knew the augmented matrix in τ41 captures some homogeneous equation. But P1’s
equations show he did not know the reasoning that produces τ41 and relates its results to
linear independence. After P1 worked with the augmented matrix he produced, he asked
for the definition of linear independence; after reading this definition, P1 verified, by
inspection, whether one of the given vectors was a linear combination of the other two;
and after this, P1 returned to and row-reduced the matrix he had initially produced.
Throughout this activity, P1 did not activate knowledge that relates the definition of
linear independence to τ41. P1’s homogeneous equation, then, shows that despite intent
to justify the augmented matrix he’d formed, P1 was still activating only a figment of
τ41: an operation involving the vectors is set equal to 0.

For P1 and P10, the observation that the determinant (of the matrix made up of the
given vectors) is zero was a surface-level remark; they knew that since the volume is 0,
the expression in the formula for the volume should equal 0. But they did not make
any substantive inference from this observation or demonstrate they had more than a
surface-level grasp of that volume formula (and related equation) throughout the remain-
der of their engagement with Problem 5. After P1’s suggestion to row-reduce a matrix, he
asked to see the definition of linear independence and proceeded to check, by inspection,
if one of the vectors was a linear combination of the other two (for some cases of k); after
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her suggestion to row-reduce a matrix, I asked P10 what it would take for the 3 vectors
to be linearly independent, and she knew this means “they’re not linear combination[s]
of each other” but said she “[doesn’t] know how to solve this.” Since P10 was stuck,
I asked her what the vectors might look like, if they form a shape that has volume 0.
P10 had “no idea.” P1’s (second) response to this question was to draw a parallelogram.
(This supplanted his first response: the “xy plane.”) P10 did not activate anything else
for Problem 5. P1, before I had prompted him to visualize the vectors, had actually re-
turned to row-reducing the matrix (discussed above) and found there would be “infinitely
many solutions” (because his reduction led to a matrix in which two rows were identical)
but got stuck (he was “confused with the problem”). After this, P1 decided to calculate
the determinant (same as the one in the volume formula) and found it to equal 0: “that
will not help, because you just have 0 equals 0.” His conclusion: “I... can’t find anything.”

P1 did not interpret the “infinitely-many solutions” result of his row-reduction (to
make a conclusion about the linear independence of the given vectors) and dismissed
the technique in which he calculated the determinant (“that will not help, because you
just have 0 equals 0”). This suggests his mobilization of the volume formula and re-
lated equation (‘it equals 0’) was akin to P3 and P5’s activating their LA1 knowledge to
produce an equation (any equation) so as to isolate k; P1’s surface-level grasp of knowl-
edge about equivalent equations, equations of the form 0 = 0, linear independence, and
parallelepipeds did not equip P1 to mobilize this equation (or the volume formula) in
a more productive way. (This is different from the cases of P6, P8, and P9, who also
seemed, like P1, P3, and P5, to have initially expected the task to be to isolate k in some
equation, but were able to mobilize a geometric interpretation of the scenario, even if
only to compensate for the fact that k could not be isolated—and not necessarily because
they privileged a geometric interpretation as more suitable than an algebraic one for a
problem about a parallelepiped of volume 0.) It’s not clear what P10 perceived the task
to be, because she did not vocalize much or offer enough suggestions, but that all she did
offer was surface-level features of either a formula and, potentially, a LA1 technique (τ41)
shows her LA1 knowledge, like that of P1, did not suffice to perform the task in Problem 5.

P8 and P9 created an equation so as to find the value(s) of k for which the
volume of the parallelepiped is 0. P8 and P9 created an equation in which an ex-
pression for the volume of the parallelepiped was set equal to 0. The expression P8 and
P9 activated for the volume of the parallelepiped had the form of a scalar triple product:
a dot product of one of the vectors (say, v1) with the cross product of the other two
(v2, v3). From a geometric perspective, for this scalar triple product to equal 0, v1 must
be orthogonal to a vector orthogonal to both v2 and v3; that is, the three vectors must be
coplanar. I highlight this property because, unlike the determinant formulation for the
volume of a parallelepiped (as in equation (5.3)), the scalar triple product formulation
readily lends itself to a geometric interpretation.

For P8 and P9, this activity was their initial and spontaneous reaction to Problem 5.
They didn’t infer, from the problem statement, that the volume would be 0 for any k. P8
got stuck when she found the scalar triple product to be 0 (“oh my god, not good”). She
did not know how to interpret this because it didn’t “give [her] any k.” P9 did know how
to interpret this: he surmised the volume of the parallelepiped is 0 for any k. Neither
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P8 nor P9 made any conclusion, at this point, about the values of k for which the given
vectors are linearly independent.

After this initial reaction to Problem 5, P8 and P9 tried to activate other algebraic
knowledge but it did not suffice to complete the task. P8 and P9 eventually reflected
back on their initial equation when they proceeded to a geometric interpretation of the
scenario. P8 had drawn a sketch in which 3 arrows had a coinciding initial point and
were coplanar, and a fourth arrow that was orthogonal to the rest of the lot. For P8,
this explained what she had found earlier about the volume: “it’s all here in the same
plane and that’s why it’s zero.” (She then activated knowledge she recalled from her LA1
textbook: “there was a graph or something in the book that [showed that] if they lie in
the same plane they are dependent.”) When I asked P9 if he could use the fact that the
parallelepiped has volume 0, he had a narrow perspective on the characteristics of vectors
that form a parallelepiped of volume 0:

It has volume zero because two of them are [pause] oh no [pause] okay... So
here, it’s zero because two of them overlap. So you don’t have a volume.
Therefore I have to... But there is no value, because whatever the value of k,
the volume is zero, therefore they overlap, two of them overlap all the time,
therefore, there is no value for which they are [linearly independent]—so, okay,
I believe that’s my answer.

P8 and P9 were able to complete the task once they’d made a geometric interpretation
of the volume being 0; but that’s not the point I wish to highlight here. My focus, here,
is on P8 and P9’s handling of the equations they had initially proposed as an approach
for Problem 5. Neither P8 nor P9 had concluded anything about the linear independence
of the vectors after they’d calculated the volume and found it to be 0; P9 had only
concluded that the volume is 0 for any k (and P8 was stumped). Further, they did not
spontaneously make any geometric interpretation to make sense of what they had found
by activating the formula for the volume of a parallelepiped. P8 turned to a geometric
interpretation only once she’d exhausted other avenues, and P9 turned to it only because
I had prompted him to do so. P8 and P9’s initial reaction to Problem 5 was guided by
their knowledge of a LA1 formula (for the volume of a parallelepiped) and, perhaps, the
norm (from LA1 and its prerequisite mathematics courses) of solving equations when a
task is to find the value(s) of an unknown.

P6 mobilized the LA1 formula for the volume of a parallelepiped to cope with
the contradiction he perceived between the problem statement and the con-
clusion he’d reached with his geometric interpretation. P6 expected there to be
values of k for which the vectors are linearly independent. In his initial and spontaneous
reaction to Problem 5, he had inferred the vectors form a “2-dimensional parallelogram”
in 3-space. While P6’s visualization was restrictive, he did surmise, from this, that the
vectors must be linearly dependent: “how can I have a 2-dimensional parallelogram in
3d space with three vectors that are linearly independent?” Indeed, he had taken the
problem statement to mean there are values of k for which the vectors are linearly inde-
pendent. It’s this confusion that prompted P6 to mobilize an equation to perform the
task: “I guess I can just take the determinant, and then set it equal to zero to find a
parallelepiped of volume zero, [to find] what value k might be. So I guess I can do that.
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Let’s see. Gotta start somewhere.”

But P6 found the volume to be zero for any k. He stated again that “the question
kind of implies that there are” values of k for which the vectors are linearly independent;
he had “trouble with this idea of how three vectors [could] be linearly independent and
[form] a parallelepiped of volume zero.” In LA1 and in pre- and co-requisite mathematics
courses, the norm is that problems involving unknowns have solutions, unless a problem
normatively can “have no solutions” (such as the task to solve a given linear system);
otherwise, the norm is that the problem statement includes the phrase if any (P4 alluded
to this: “I would like it if it was [an] ‘if any’ question”). The assumption, from the word-
ing of Problem 5, that there are values of k for which the vectors are linearly independent
brings to mind students’ reactions to Problem 1, where they assumed the matrices are
invertible, based on what was normative in LA1, and, similarly, that the equation has
a solution; again, this contrasts with students’ readiness in Problem 6 to accept that a
quadratic equation may have no solution, knowledge that is part of what students are
expected to learn in high-school algebra. I am highlighting, here, the normative quality
of students’ interpretation of tasks, and how it is not, in the current case, based in the
mathematics at stake.

After repeating his first two steps twice (visualize the vectors, check the values of k
for which the volume equals 0), P6 did eventually gain confidence in his conclusion that
the vectors are linearly dependent for all k: “I’m not sure. But I guess I’m starting to
think that maybe what I did is okay.” When I asked why he thinks this, he referred to
“the determinant equation”: “that determinant is zero, so for all values of k, all real
values of k, there’s no solution where [the vectors] aren’t linearly dependent.” To answer
my question about why he thinks “what [he] did is okay,” P6’s final reference was to the
determinant being 0—not to his geometric interpretation. Despite his initial and spon-
taneous inclination to examine the geometry of the situation, his algebraic formulations
were key to building his confidence in the conclusion he had reached.

5.5.3.2 Some students mobilized τ41 (P1, P4, P7*, P9, P10) or τ42 (P2, P4)
to find values of k for which the vectors are linearly independent.

For one student (P2), the spontaneous reaction to Problem 5 was to activate τ42, a LA1
technique for task t4: to determine whether vectors are linearly independent. Other
students (P1, P4, P7*, P9, P10) turned to a LA1 technique for this task (either τ41 or
τ42) later in their approach to Problem 5. P7*’s initial reaction was to give a geometric
interpretation of three vectors in R3 being linearly independent: he said v1 + v2 “should
not be on the same line” as v3, that the sum of two vectors should not be parallel to the
third vector. After this initial reaction, P7* activated τ41; I identify four stages in P7*’s
mobilization of τ41 and note them as steps 2, 3, 4, and 6 of his engagement with Problem
5. P1, P4, P9, and P10’s initial reactions had to do with the volume of the parallelepiped:
for P4, the volume being 0 meant the vectors are on the same plane, but he did not make
any inference from this about the vectors’ linear independence; P1 and P10 had brought
up the formula for the volume of a parallelepiped and said the expression must equal
0, but did not activate this any further; and P9 had also brought this formula up, and
after calculating the volume using this formula, concluded the volume is 0 for any k. For
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P4, the next approach to Problem 5 was to activate τ42; τ41 was P1 and P10’s second
approach as well. P9 brought up τ41 as a third approach; his second was to check, by
inspection, whether one vector is a linear combination of the others for particular values
of k. Among his observations was that the vectors are linearly independent when k > 1.
He activated τ41 when I asked how he knew this.

Below, I first describe P2 and P4’s engagement with τ42, then P1, P4, P7*, P9, and
P10’s engagement with τ41. Throughout, I will attend to their activity as well as to
the comments they made to determine the theoretical blocks that had prompted these
participants to activate τ41 and/or τ42.

5.5.3.2.1 Students who mobilized τ42 were able to use it to complete the task
(P2, P4). Upon reading Problem 5, P2 said he “forgot if” a “determinant” being zero
means vectors “are dependent.” For him, the question of vectors being linearly indepen-
dent had “something to do with determinants so [...] the way to do [the problem] [was]
to write the vectors in matrix form” and then to “find the determinant of this” matrix.
He then calculated the determinant and found it to be 0. Since he had found that “the
determinant equals 0,” he wasn’t “sure if [he] did something wrong.” After a pause, he
proposed an explanation: “oh, it’s right. Equals 0. So for all values of k, the vectors
are linearly independent.” But he wasn’t “sure”: “I’m not sure if when the determinant
equals zero, they are dependent or independent. I forgot which one. If for determinant
equals zero, they are independent, I would [say that] for any value of k, the vectors are
independent. And [if] for determinant equal zero they are dependent, I would [say] there
are no values [of] k” for which the vectors are linearly independent.

For P2, linear independence “[had] something to do with determinants” and the mat-
ter of whether a determinant is 0 or non-zero would determine whether vectors are linearly
dependent or independent. But he forgot which result (zero, non-zero) implies which con-
clusion (dependent, independent). Since he was stuck, I pointed out that he hadn’t used
the information from the first part of the problem statement—the volume of the paral-
lelepiped formed by the vectors is 0. For P2, this meant the vectors are “coplan[ar].” But
again, he couldn’t remember which of the two possible conclusions (dependent or inde-
pendent) is implied by this result: “[I] imagine that if they are coplanar, they are on the
same plane. [This] means one cannot depend on the other, because... Imagining the 3D
world, if they are in the same plane [pause] I forgot if they are independent or dependent.”

In short, P2 knew linear (in)dependence had “something to do with determinants”
and with the question of whether a vector “depend[s] on the other,” but did not know,
between linear dependence and independence, which was which. I therefore offered to
show him a definition of linear independence (the definition to be taught in LA1: a finite
set of vectors is said to be linearly independent if none of the vectors in the set can be
expressed as a linear combination of the others). P2 read the definition and concluded
the vectors are dependent because, if they are on the same plane, “they can be expressed
as a combination of the others.”

P4 knew, by the time he mobilized τ42, that the vectors are “on the same plane.”
Upon reading Problem 5, he said “cross product of three” (“I directly think of that”)
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but, before mobilizing this, he first gave his geometric interpretation of the volume of the
parallelepiped being 0: “of volume zero, okay [laughs]. And now everything’s shattered
[laughs]. Of volume zero. Ah okay, so they’re all on the same plane.” For P4, the
vectors being “on the same plane” “mean[t] that [he will] use a scalar triple product.” He
decided to find “the scalar triple product such that it is not zero, and then k would be
anything other than” whatever would yield a scalar triple product that is 0. P4 looked
up an expression for the scalar triple product on the internet (“I forget, the scalar triple
product was the determinant of... putting them on top of each other? [...] Ah, yeah yeah,
correct. [laughs] It’s the... the cross product of two times the dot product of the other.
But you can also do it as the determinant of [...]”) and decided to calculate the scalar
triple product “the determinant way.” P4 found the scalar triple product to be zero:

Okay, that’s weird. Because the scalar triple product, no matter what k is,
is zero. Which is weird to me, because I would expect it to be... a number.
I don’t know. Scalar triple product. Yeah, so I - I would probably do...
Determinant of this such that it is not zero, and then solve - solve for k, but k
is gonna cancel out. So does that mean k belongs to R? Because any va—no
[pause] so no matter what value I would put in, I’m gonna have zero is equal
to zero. That makes things a bit complicated.

Like P2, P4 knew that whether the vectors are linearly independent or not depends on
whether the scalar triple product is zero or non-zero. P2 did not remember which result
leads to which conclusion but knew that the scalar triple product being zero meant that,
for all k, the vectors are linearly (in)dependent. P4 wanted to find the values of k “such
that [the scalar triple product] is not zero” and so intended to solve an equation of the
form “an expression in k equals 0” but had found that “no matter what value [he] would
put in, [he would get that] zero is equal to zero.” For P4, this result was a sign to recon-
sider the suitability of the knowledge he had activated: “let me make sure now that this
truly means that I should use a scalar triple product.”

P4 then revisited his geometric interpretation and concluded, again, the vectors “must
be on the same plane.” To him, this “justifie[d] [his] use for the scalar triple product”
yet again. (I specify that he concluded this “yet again” because he had made a similar
comment the first time he observed the vectors are “on the same plane”: “[this] means
that I’m gonna use a scalar triple product.”) P4’s comments help to explain what the
“justif[ication]” was for him (that is, his comments bring to light the theoretical block
that was producing P4’s activity in Problem 5): “directly, when I think of vectors on the
same plane, I think of two things, the scalar triple product or linear dependence.” P4’s
justification for bringing up the scalar triple product is that he knows there is a relation
between vectors being “on the same plane,” the scalar triple product of the vectors, and
the linear dependence of these vectors. He “knows that [if] the scalar triple product [is]
not zero, it means [the vectors are] not on the same plane. If it is zero, that means that
they are in the same plane and the linear combination... So the linear dependence means
they are on the same plane.” That “the scalar triple product is zero” implies “they lie
on the same plane” is something P4 knows “as a fact, [from] studying.” And “as for the
linear dependence,” he “remember[s] [that] in class, [they] related the scalar product to
the linear dependence part.” He also had a geometric interpretation of these notions: “to
visualize linear dependence of vectors, [he] would visualize them being on the same plane.
That’s why [he] connects those two together.” This visualization came from “lectures”:
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the “professor showed pictures of vectors being on the same plane or not being on the
same plane; dependence, independence.”

P4 had only a surface-level grasp of the knowledge of a relation between a scalar
triple product of vectors, whether the vectors are coplanar, and whether they are linearly
independent. He did not mobilize the geometric knowledge that relates the scalar triple
product of three vectors to their linear (in)dependence: the absolute value of this scalar
triple product is the volume of the parallelepiped they form, and this volume (being 0 or
not) indicates whether the vectors are coplanar, and therefore whether they are linearly
dependent. It’s possible P4 knew the volume is the absolute value of the scalar triple
product (as a formula among others from LA1), but he did not mobilize it to progress in
his path toward examining the linear independence of vectors (that form a parallelepiped
of volume 0). I infer this from P4’s activity: after he inferred that the vectors are “on
the same plane” because they form a prism of volume 0 (as per pre-LA1 formulaic and
geometric knowledge about prisms: “there’s no width, there’s no height - that means
they’re all in the same plane”), he proceeded to calculate their scalar triple product to
determine the value(s) of k for which it is (not) zero. And the comments P4 made about
τ41 (which I discuss in 5.5.3.2.2) suggest he did not have the algebraic knowledge that re-
lates the scalar triple product of three vectors to their linear independence: the discourse
that produces both τ41 and τ42.

In P4’s second return to the scalar triple product, he wanted to check whether he
could get a non-zero value for the scalar triple product: he knew that for values of k
for which the scalar triple product isn’t 0, the vectors would be linearly independent
(“that’s how I would expect it to be”). Given that he got “0 is equal to 0,” he said he
“need[s] to do some logic to decide” whether the vectors are “always on the same plane or
never on the same plane.” He eventually concluded that, in the current case, the vectors
“are on the same plane”: “no matter what values k are, I would always get zero, which
would imply that no matter what k is, they’re always on the same plane.” He paused and
concluded this “mean[s] that there are no values of k for which” the vectors are linearly
independent. He chuckled as said he’d have “like[d] it if it was an ‘if any’ question.”

P4 brought up the vectors being on the same plane on several occasions, but it was
only when he activated this in conjunction with τ42 (calculate the scalar triple product,
check whether it’s zero or non-zero) that he completed the given task. Upon reading
Problem 5, he knew that since the vectors form a parallelepiped of volume 0, they must
be on the same plane “because there’s no width, there’s no height.” But what he had
thought of “directly” upon reading the problem was the scalar triple product. He knew
there is a relation between vectors being on the same plane, their scalar triple product
(being zero or non-zero), and their linear (in)dependence. He knew, “as a fact, [from]
studying,” that a zero scalar triple product implies vectors “lie on the same plane,” and
he recalls his “professor show[ing] pictures of vectors being on the same plane or not” in
the context of the question of linear dependence. But P4 did not mobilize this knowledge
as a direct means to complete the task. Instead, the normative LA1 knowledge P4 was
activating had him calculate a scalar triple product (to determine the linear independence
of given vectors) in spite of the observation he’d already made about the vectors lying
“on the same plane.” For P4, the vectors being on the same plane was not, initially, a
justification for the vectors being linearly dependent. Instead, twice in a row, it was a
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justification for calculating a scalar triple product. For P4, the conceptual association
between “scalar triple product,” “linear dependence of vectors,” and “coplanar vectors”
was primarily a guide toward which algebraic technique to activate.

P2 and P4’s mobilization of τ42 and comments they made as they activated it reveal the
effects LA1 norms, relative to constructs with algebraic and geometric representations (be
it the notion of linear independence, of a parallelepiped, or of a scalar triple product), can
have on students’ practices. Students may know of a relation between terms (e.g., linear
dependence, scalar triple product, coplanar) and, given a task and an interviewer’s prompt
designed to encourage them to act on this relation, may mobilize conceptual relations
and geometric representations: P2 did so (and was able to reach a conclusion about linear
independence once he’d reviewed the definition) but P4 did not. Additionally, from P2
and P4’s activity and related comments, it follows that the practice they developed in
LA1 (and, likely, prerequisite mathematics courses) privileges calculations over activating
geometric representations of concepts. Even though he knew the geometric representation
of linearly dependent vectors (they are coplanar), P4 did not mobilize it to do the task.
And P2 was able to perform the task by activating this representation but only once I
had prompted him to do so; further, he did not believe he would get full marks if he
submitted such an “analysis” for grades but did think his calculations would award him
full marks, and, further yet again, he said this “analysis” would not have convinced him
if he had been working on his own (“usually, I do calculations”).

5.5.3.2.2 Students were unable to complete the task via τ41 (P1, P4, P7*,
P9, P10). None of the participants activated τ41 in their initial reaction to Problem
5. P1 and P10 turned to it after they got stuck—they had initially said that since the
volume of the parallelepiped is 0, the determinant of the matrix (where Ri is vi) is 0,
but they did not activate this any further. P7* activated τ41 in steps 2, 3, 4, and 6 of
his engagement with Problem 5. P9 turned to τ41 as a third step in his engagement
with Problem 5: initially, he had activated τ6 (use the LA1 formula for the volume of a
parallelepiped to calculate the volume) and had concluded the volume is 0 for any k, but
had made no conclusions about the linear independence of the vectors. When I prompted
him to address the vectors’ linear independence, he turned to checking, by inspection,
if one vector is a linear combination of the others. Among his observations was that if
k > 1, the vectors are linearly independent. I asked P9 how he knew this and that’s when
he activated τ41. P4, finally, turned to τ41 after he had already concluded, from τ42, that
the vectors are linearly dependent for all k.

P1 and P10’s mobilization of τ41 involved a matrix that loosely reflected the matrix
that should have been activated in this technique. I remind the reader of the discourse
that produces τ41, as it would apply to Problem 5: the given vectors are linearly inde-
pendent if and only if the only values of a, b, c for which

a(−k, 1, 1) + b(−1, 1, k) + c(1, 0, 1) = (0, 0, 0) (5.5)

holds are a = b = c = 0. Equating the corresponding components produces a linear sys-
tem of three equations in the unknowns a, b, and c. The augmented matrix of this system
has, as column C1, the vector (−k, 1, 1) (which I denote by v1), vector (−1, 1, k) (v2) as
C2, (1, 0, 1) (v3) as C3, and the zero vector as its column of constants. If the reduced row
echelon form of this matrix has the form [I3|0], then the system has a unique solution
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(a = b = c = 0) and the vectors are linearly independent. Otherwise, the system has
infinitely many solutions; specifically, it includes non-trivial solutions and so the vectors
can be expressed as linear combinations of one another.

P1 and P10 mobilized a matrix that is superficially similar to the one appropriate
for τ41: P1’s matrix was augmented, the entries in the right-most column all 0, but the
vectors corresponded to the rows of the matrix rather than its columns. P10’s matrix was
not augmented; it was a 3× 3 matrix in which Ri was vi. Perhaps P1 and P10’s matrices
were mimickeries of the matrix in the formula for the volume of a parallelepiped, which
they had activated in their initial response to Problem 5: that matrix has vi as Ri.

In addition to his matrix, P1 also wrote the equation −kk4 + k4 + k4 = 0. This equa-
tion incorrectly reflects the equation that produces τ41. The components of the vector
(−k, 1, 1) are coefficients of some unknown (k4) and the equation is homogeneous.

Neither P1 nor P10 mobilized their matrices any further at this stage. P10 was “not
sure what to do to go about the problem” and did not “know if [she] should just solve
the matrix”; when I asked her to clarify what she meant, she said: “solving as in [find-
ing its] reduced echelon form.” I asked what she thought would happen if she did that,
and she said she “[doesn’t] think that would work.” She did not mobilize τ41 beyond her
suggestion to reduce the matrix where Ri is vi. P1, for his part, asked for a definition
of linear independence (I gave the definition on a piece of paper: a finite set of vectors
is said to be linearly independent if none of the vectors in the set can be expressed as a
linear combination of the others) and proceeded to check, by inspection, whether two of
the vectors could combine to generate the third.

P1 returned to τ41 after he got stuck checking by inspection whether some of the
vectors are linear combinations of the others. He wondered about the case k = 0; when
I asked about the case that k ̸= 0, he jumped ship and revisited τ41: “I’m just going
to try to solve this.” He proceeded to reduce the augmented matrix he had previously
written. Eventually, he produced a matrix in which rows 1 and 2 were identical and
concluded “it’s clear [there are] infinitely many solutions for this problem, because you
have the same row here and here.” I asked P1 what this tells him. He said that “for
linear independence [there are] probably multiple cases.” But then, he paused. He was
“confused with the problem.” He did not resolve this confusion and changed course again:
he mobilized the formula for the volume of a parallelepiped with the intention of finding
the value(s) of k for which that volume is 0 (as discussed in Section 5.5.3.1.2). P1 made
no further comments about τ41.

P4 and P9 mobilized matrices that were appropriate for τ41. Prior to mobilizing τ41,
P9 had been checking by inspection whether one vector could be written as a linear com-
bination of the others. He claimed the vectors are linearly independent when k > 1 and I
asked how he knew this. That’s when P9 activated τ41. He did so to examine whether the
vectors are linearly independent if k = 5: his matrix had vector vi (with k = 5) as column
i. He row-reduced this matrix and found a row made up entirely of 0’s. He concluded
that, in this case, the vectors are linearly dependent. Why? “When you row-reduce, you
should have a diagonal with values and then the rest is zero.” I presume he meant that
when vectors are linearly independent, “when you row-reduce,” you get a diagonal matrix
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(where no row is entirely made up of 0’s). He then wrote the matrix corresponding to
the case in which k = 0 and, without reducing the matrix, said the vectors are linearly
independent in this case.

Before P9 proceeded to the case k = 0, I had asked questions to gauge whether
P9 had the discourse that produces τ41. Did he have the knowledge that relates linear
independence to τ41, or was he activating the rule “a row of zero in an augmented matrix
implies there are infinitely many solutions,” and another rule, “infinitely many solutions
means vectors are linearly dependent”? P9 knew a row of 0’s implies vectors “are linearly
dependent because you can write one vector in terms of the others.” I asked P9 how this
works. He “forgot how to explain it”; “in this case, you can write the third, the last one,
in terms of...” He paused and eventually said he “forgot about this one.” After P9 said
the vectors are linearly independent when k = 0, I asked how he knows this. “Oh no. I
forgot linearly independent - how I used to do it. I wish to reduce. If I have a diagonal,
then it is linearly independent.” He remembered “the first example”: “1, 0, 0, and then
0, 1, 0, and 0, 0, 1” (the 3× 3 identity matrix). He said “these three vectors are linearly
independent” and continued: “but how do I do it? I don’t remember.” Ultimately, P9 did
not explain how he knew that the case “infinitely many solutions” means that “you can
write one vector in terms of the others.” His last attempt to do so was this explanation:

When you have three linearly independent vectors, when you put them in a
matrix, to see what their span is, you want to see that the only thing that
this span contains is 000. Therefore, in this case, I don’t have it: because
[of the] last row of zeros, I have infinitely many solutions. Therefore it is not
independent.

P4 activated τ41 in his last attempted engagement with Problem 5. He had already
concluded, after mobilizing τ42, that the vectors are not linearly independent for any
k. After he had done this, he decided to check, by inspection, whether the vectors can
be expressed as linear combinations of one another. He started with the case in which
k = 1, observed two vectors are identical, briefly thought this would always be the case
no matter the value of k, then realized it wasn’t so in the case k = 5. After writing
out the matrix corresponding to the case in which k = 5, he said that “because [he]
know[s] that it could also relate to linear independence, [he’s going to] try to solve it
as [Ax = b] with the b column equal to zero.” So he decided to “augment the matrix
with the b column [equal to] zero.” Which matrix? P4: “Sorry. I’m going to make a
linear combination, sorry.” This comment brings P4’s engagement with τ41 closer to the
discourse that produces it than other participants’ mobilization of the technique; none of
the participants demonstrated discourse any more explicit than P4’s claim of “mak[ing]
a linear combination.”

The matrix P4 wrote had vector vi as Ci and the zero vector as its right-most vector.
He did a few row operations, including one in which he multiplied a row by 1

k
. (He did

not address the possibility that k = 0.) He then decided against this last operation and
stopped this activity: “No! I don’t know.” P4 had “difficulty doing the augmented matrix
with the k.”

P4’s goal in activating this technique, which I recognize as the LA1 technique τ41, was
to “try to solve for k”; he “expect[ed] there to be no solution, [based on his] previous
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analysis.” He knew that “if there is no solution, that means that there is never a k for
which they are linearly independent. They’re always dependent. They’re always on the
same plane.” He knew that if there is only “a trivial solution for the linear combina-
tion, it means no coefficient will [make it so] they are not on the same plane, they’re
not independent.” This explanation, together with P4’s previous claim of “mak[ing] a
linear combination,” suggests P4 knew of the left side of equation (5.5) but not of its
right side; he knew that the linear independence of vectors has something to do with the
linear combinations of these vectors, but he did not have the knowledge that completes
the link between “linear independence” and “linear combinations.” He tried an example:
“let’s say I had a solution with, for example, 2 1 3, unique solution, but that means there
is a solution for them being independent. But if there is no solution for k, that means
there is no value for which I can make them...” By “solution,” P4 meant “a solution of
the system Ax = b,” but he could not explain where this equation came from. (In other
words: still, P4 made no reference to equation 5.5.)

P4 “[could not] explain [where the equation Ax = b comes from] because [he hadn’t]
grasped the concept of Ax = b enough to be able to explain [this]; [he] just [knew] that
when [he’s] solving an augmented matrix like [the one had written], [he’s] tackling [an
equation of the form Ax = b].” When I asked P4 a last time what the connection was
between his augmented matrix and linear independence, P4 seemed to understand my
question: “between solving this and linear independence? I just know that when I want
to find the linear combination of a system, I want to solve the vectors as columns and...
with the zero matrix.” He said he “think[s] there’s something [he] lack[ed] in the course;
[he] didn’t really understand why [he was] doing [what he was doing]. [He] would just
categorize the problems as much as possible.” (Problems from “past exams,” for instance.)

P4 said that if he had to submit something for Problem 5 to get grades, one of his
methods would have sufficed. He knew it would suffice to explain that “for any value of
k in R, the scalar triple product is always zero, which means that the system is always
linearly dependent.” But, “to prove it to [himself],” to convince himself the vectors are
dependent no matter what, he would want to see τ41 all the way through. He would
“expect for there to be no solution to this system. And if there isn’t, then [he] would say
that there’s no value of k. If there was a solution, [he] would be a bit confused, because
it wouldn’t work with [his previous] hypothesis.”

Like P1, P4, P9, and P10, P7*’s mobilization of τ41 was rickety. Initially, P7* said the
vectors would “form the kernel of R3.”19 Prompted to clarify what he means, P7* said
the “algebraic approach” would be to “use these three vectors as the column vectors,”
wrote the matrix A where column i is vector vi, and wrote

Ax =

0
0
0

 .

P7* did not attempt to solve the equation but did describe his expectations:

19The term “kernel” is not used in LA1 nor in its co- and pre-requisite courses; I distinguish P7*
from the other participants because of his previous educational experience, which includes higher-level
mathematics courses (including courses in analysis, advanced algebra, ordinary and partial differential
equations, abstract algebra, and advanced geometry) taken in an unfinished degree in applied mathe-
matics.
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Since they are linearly independent, this linear system will have only the
trivial solution, because they cannot be expressed by one combination, so if I
do Gaussian elimination on the augmented matrix, I will see that the last row
would become something like 0 0 0, and 0. But here, there’s something with
k. There will be a formula in k. For example, −2 + k. And to make [pause]
no, wait a minute, wait a minute, oh! This will not work because it will have
no solution. Yes, no solution. No solution; no solution means that this one is
not going to be zero. But here, this one is zero, just give me a second, let me
fix it.

P7*’s next move clarifies what issue P7* perceived to need “fixing.” He reduced the
coefficient matrix to the following:1 k 1

0 1− k −1
0 k2 − 1 k + 1


What he wanted, here, was for k2−1 to be zero and for k+1 to be non-zero: “we want to
make sure that the last row becomes something that’s 0, 0, and then something not 0.”
He expected to find the condition(s) (on k) such that the coefficient matrix would reduce
to “a beautiful identity matrix.” This would ensure the vectors are linearly independent.
Prompted to find the values of k for which the reduced row echelon form would be an
identity matrix, P7* proceeded by focusing on the third row of the matrix. He found the
third row could reduce to

(
0 0 1

)
if k = 1 and deduced that in this case, the matrix

would reduce to the identity matrix. I pointed out to P7* that rows 2 and 3 of the matrix
would be

(
0 0 −1

)
and

(
0 0 2

)
, respectively, if k = 1. P7* paused and concluded:

“Perfect. Yeah. So I only need one row to tell us it’s going to be linearly independent,
but I have two rows; even better!”

P7*’s certainty was temporary; he knew that to solve a linear system, the coefficient
matrix does not suffice. The augmented matrix is necessary:

Wait a minute [pause] no, no, I think I need to fix that. So, actually, I need
to use the augmented matrix, I need to put another column here to figure
out if there is a linear combination between these three matrices [columns], I
cannot just do the massage on this matrix. Yes. But the final answer will be
very close to [the one obtained by reducing the coefficient matrix], I just need
to add an all-zero column on the right side [to the matrix found previously]
because it’s a homogeneous system.

P7* produced this augmented matrix, paused, and said: “that’s the thing I have just
figured out, it will be all 0’s here, I cannot use this one to directly figure out if it’s linear
dependent or not. I cannot have something like 0 0 0 and a number, right?” He wrote
the row 0 0 0 1 underneath the matrix.

At this point, P7* abandoned τ41 (“let’s just forget about this matrix”) and opted to
revive his initial approach, wherein he sought to find values of k for which the sum of
two vectors would be a scalar multiple of a third vector. This led P7* to conclude the
vectors are linearly dependent when k = 2 and linearly independent otherwise.
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I asked P7* what would give him the most marks if he had this question on an exam
(his last approach, or what he had done with the matrices?). His answer circled the
reason for which he struggled to mobilize τ41:

I would definitely use [the approach wherein the vectors were found to be
linearly independent when k ̸= 2]. Gaussian elimination is always easy to do,
but you have to understand its structural meanings before going through it,
otherwise, it’s going to just be nonsense.”

P7*’s difficulty mobilizing τ41 suggests he did not know why the technique works—why
a coefficient matrix having an identity matrix as its reduced row echelon form means the
columns are linearly independent vectors. P7* used relevant words to describe the goal
of the technique (“we need to put [a zero column] here to figure out if there is a linear
combination between the [three columns]”) but the inappropriate use of the qualifier (“if
there is” a linear combination of the vectors), together with how he mobilized τ41, point
to a weak grasp of the mathematical theoretical knowledge underlying the technique.

P7* continued: “we want to create a row that looks like 0 0 0 1. However, in a ho-
mogeneous system, the very right column is going to be all zero entries.” In the absence
of knowledge that ties the objective of τ41 to the definition of linear independence, P7*
activated rules about what the matrix or its rows ought to look like. Earlier, when he
worked the coefficient matrix, he knew he wanted it to reduce to an identity matrix. Now,
he wanted to “create a row that looks like 0 0 0 1.” His knowledge of τ41 depended on
surface-level features of matrices and he struggled to mobilize their “structural meanings.”

P7*’s last attempt to mobilize τ41 came after he mentioned his “0 0 0 1” objective.
He suddenly switched goals: “if I want to use Gaussian elimination to check linear de-
pendence, I need this matrix to be consistent.” For P7*, his previous finding, wherein
a reduced form of the coefficient matrix, with k = 1, had the rows

(
0 0 −1

)
and(

0 0 2
)
, was of an “inconsistent” matrix. For P7*, these two rows meant the “third

variable [in the system presumably represented by his initial augmented matrix] won’t
be unique” because its value is both -1 and 2. After P7* said this, he caught and cor-
rected himself, having seemingly remembered that -1 and 2, here, are coefficients of that
variable, and that the augmented matrix corresponded to a homogeneous linear system:
“oh! It’s zero. Yes, yes. Sorry. So these two [rows] both give us that the third variable
is zero.” He then (correctly) deduced the second variable would be a free variable, so
“the answer is not unique but [the vectors are] linearly dependent because [the system]
is consistent.”

Finally, P7* checked what the augmented matrix would look like if k = 1 and found
that one row would be made up entirely of 0’s. 0, 0, 0, 0. “This is something that I love,
right? The last row becomes all zero entries. So for sure, the third variable becomes the
free variable, and there are infinitely many solutions, but it is still linearly dependent.”
(P7* had previously concluded the vectors are linearly independent whenever k ̸= 2.)
P7* then made more computations to examine the matrix in the case that k ̸= −1, 1.
Throughout, he was concerned with “making sure there are solutions,” “making sure the
matrix is consistent.” No matter what, the system would be consistent; it is homogeneous.
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From the rule if the augmented matrix is consistent then the column vectors are lin-
early dependent, P7* concluded the vectors are linearly dependent no matter the value of
k. This contradicted his previous finding that the vectors are linearly independent when
k ̸= 2: “ I’m not sure. I am not sure where this went wrong, I have these conflicting
answers. But I think I have done it correctly. I think this one is definitely correct. Things
must happen. Mistakes must happen in that proportional thing [checking whether v1+v3
is proportional to v2].”

P7*’s struggle was marked by a lack of knowledge that relates the linear system cap-
tured by his augmented matrix and the definition of linear independence. Without this
theoretical knowledge (theoretical in the ATD sense of “theory that produces and justifies
technique”), P7*’s technique was instead driven by rules about surface-level properties of
a matrix whose columns are the vectors in question: if it reduces to an identity matrix,
then the vectors are linearly (in)dependent; if it reduces to a matrix with a row of 0’s,
then the vectors are linearly (in)dependent; if the “matrix” is consistent (that is, if it
does not reduce to a matrix with a row of type 0 0 · · · 0 | t, where t ̸= 0), then the
vectors are linearly independent.

P6 did not mobilize τ41 but did mention it toward the end of his engagement with
Problem 5. P6’s attempt to explain why τ41 works helps to highlight the difficulty un-
derlying participants’ mobilization of τ41. P6 had established the vectors are linearly
dependent for any k but fussed over whether his approach constituted a proof of the
matter. Once he’d established that it did, he continued: “while I was calculating the de-
terminant, I noticed that if I was going to do just linear independence, then I would just
start off doing the row reduction.” He knew that the only difference between row-reducing
a matrix and calculating its determinant “is that he could do column operations.” He
did not know, off the top of his head, why row reduction would work to check linear
independence (I asked): “I’m not sure honestly, that’s just what I was taught.” But he
continued:

Why would that work? I can try to think about it for a second [pause] Why
would row reduction work? [pause] Because row reduction is basically just
linear combination. Right? So what you’re doing is you’re taking the three
vectors or whatever. And you’re just adding a scalar and then subtracting
them or adding them to each other. You’re trying to figure out a way to make
sure that... There’s some, some, some combination where, you know, if I can
get it to where it’s, you know, is it... Gauss-Jordan is [for finding] the RREF?
So if I get into Gauss-Jordan [if the RREF is I], then obviously, there are no,
there are no scalars that I can multiply these by where they would all equal 0.
[Emphasis added.]

P6’s description of τ41 brings to mind P7*’s: “we need to use the augmented matrix
[...] to figure out if there is a linear combination between these three [columns].” The
notion of linear combination appears in both P6 and P7*’s description of the technique,
but only P6 managed to make a statement that nears the relevant one: the goal of τ41 is
to examine, somehow, linear combinations of the vectors that produce the zero vector.

Part of the struggle may well be inherent to the mathematics at stake: qualifiers are
at the core of the question targeted by τ41: “do there exist values of a, b, c, different from
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0, such that av1+ bv2+ cv3 = (0, 0, 0)?” Logical quantifiers are known to pose difficulties
to students even in advanced university mathematics courses (Chellougui, 2009; Harel &
Sowder, 2007; J. Selden & Selden, 1995). Apart from the lack of institutional need to
know why τ41 works, the difficulty inherent to the mathematics at stake may underlie
P6’s struggle in his attempt to explain τ41. He knew that row-reducing the augmented
matrix at stake in τ41 corresponds to finding “scalars, a, b, c, such that they [sic] are equal
to some matrix—some other vector, w1,w2,w3. When we’re checking for linear indepen-
dence, they’re all equal to zero.” But he struggled to explain τ41 further: his explanation
was that if the coefficient matrix reduced to an identity matrix, then “there are no scalars
that I can multiply [the vectors] by where they would all equal 0.” It’s possible P6 strug-
gled to mobilize logical quantifiers. None of the other participants who used τ41 mobilized
a description as close to the relevant one.

The LA1 norm relative to τ41 has students produce a matrix made up of given vectors,
reduce the matrix, and make an appropriate deduction from a row echelon form of the
matrix to conclude whether given vectors are linearly (in)dependent. The norm does not
require students to justify the matrix they produce. Students do not need to explain the
relevance of their matrix to the task of determining if given vectors are linearly inde-
pendent. The norm also does not require students to justify the conclusion they reach
(about the linear independence of given vectors). This norm allows students to activate
only surface-level features of τ41. For P1 and P10, this meant that a few weeks after the
end of the semester in which they passed LA1, they produced a matrix similar to the
appropriate one on a surface-level, but inappropriate for the given task. They knew their
matrix ought to be made up of the vectors, but did not know the vectors ought to make
up the columns of the matrix, rather than its rows. P4 and P9 did position their vectors
appropriately. But P9’s interpretation of the row echelon form he had found was dubious:
he was activating the rule “row of 0’s” means “infinitely many solutions,” but could not
justify this rule. P4 had “difficulty with doing the augmented matrix with the k,” and
his description of what he hoped to find (“no solution to this system”) was inappropriate
(the system was homogeneous - it would have a solution, no matter what). For P4 and
P9, the LA1 norm was insufficient for them to apply τ41 productively to a task where
the vectors differed from the norm: vectors in R3 with an unknown component (k), as
opposed to vectors in R3 with components that are known single-digit integers. P6 did
not mobilize τ41 but did mention the technique and attempt to explain why it is valid
for checking linear independence: the difficulty he seemed to have in putting things to
word suggests that part of the difficulty at stake here has to do with mobilizing logical
quantifiers, a concept core to the theory that produces τ41.

In Section 5.5.3.3.3, I look to an element of P1, P4, and P9’s activity (as they engaged
with Problem 5) that might have prompted them (but did not) to mobilize the definition
of linear dependence to apply τ41 in an accurate and productive way to perform the task
in Problem 5. Prior to mobilizing τ41, P1, P4, and P9 had all decided to check, by
inspection, whether one of the vectors was a linear combination of the others. After I
take this part of P1, P4, and P9’s activity into account, I re-examine (in Section 5.5.3.3.3)
how the LA1 norm relative to τ41 supported and inhibited P1, P4, and P9’s activity as
they engaged with Problem 5.
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5.5.3.3 Some students inspected the vectors to check if they’re linearly de-
pendent (P1, P4, P5, P8, P9, P10).

This was either a second, third, or fifth approach for the participants who activated the
definition of linear independence. They tried to activate the definition of linear inde-
pendence directly by inspecting, either for specific values of k or in general, whether
one of the given vectors was a linear combination of the other two. Below, I start by
describing the context in which each participant opted to activate the definition of linear
independence as an approach for Problem 5. I then describe what students did as they
activated it, and I conclude by addressing what students’ follow-up activity was after they
stopped inspecting the vectors: I do this to examine whether students made anything of
the definition of linear independence beyond a direct or case-specific application (such as
considering the three vectors in the case that k = 1).

5.5.3.3.1 For most students (P1, P4, P8, P9, P10), inspecting whether one
of the vectors was a linear combination of the others was a salve for their
uncertainty and perhaps a way to get insight into the given vectors or into
the problem. P5 was an exception: inspecting whether one of the vectors was a linear
combination of the others was not a salve for her uncertainty and was not about gaining
insight into the problem. It was the only part of P5’s activity of which she seemed certain
and built on what she had found in her earlier engagement with the problem. Unlike P1,
P4, P8, P9, and P10, P5 could not propose any other knowledge for examining the linear
independence of the given vectors.

P5’s initial and spontaneous technique in Problem 5 was to take the dot product
of each pair of the given vectors and set each equal to zero (she had thought, initially,
that the edges forming a parallelepiped could not be orthogonal, and I had shown her
a kleenex box to show this was false; her follow-up reaction was that she could assume
the vectors are orthogonal). As P5 continued, she eventually also set the pairs of dot
products equal to each other. From her manipulations, P5 found various values for k:
k = 1, k = 0, k = −2. This made her think of “things [she] kn[e]w”: having found three
values for k “remind[ed]” her of “how a three by three matrix would have three eigenval-
ues.” At this point, I interjected to remind P5 the goal of the task was to find values of
k for which the vectors are linearly independent. P5 then used the values she had found
for k, along with the definition of linear independence, to check, by inspection, whether
one of the vectors was a linear combination of the others.

It’s not clear if P5’s goal, from the get-go, was to identify values of k and then plug
them into the vectors to check, case by case, whether the vectors are linearly independent.
P5’s activity and comments seemed to have no relation to the task, and my intervention
(reminding her of the task), after P5 had come to associate k with the values 1, 0, and −2,
led to P5 plugging these values in to the vectors. It’s not clear whether P5 would have
done this without my intervention, but what is clear is that this is the only knowledge
P5 activated in relation to the notion of linear independence. When I asked P5 if she’d
do anything differently on an exam, she said she couldn’t think of anything else. I asked
if she would get full marks for her work: “I’m not confident in my answer. So probably
not.” I asked what she thought was missing and she said she “[doesn’t] think [she’s] nec-
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essarily missing anything, but” she had “started off by assuming the parallelepiped [had
edges that were at 90 degree angles with respect to one another].” She didn’t “think [her]
approach [was] necessarily 100% correct.”

What set P5’s approach apart from that of the rest was that, for her, checking the
linear independence of the vectors by inspection built on what she had previously ac-
tivated, and what she had previously activated had no relevance to the task. She had
found values for k and decided to check, by inspection, whether the vectors are linearly
independent in those cases. And she did not activate any other notion or technique rele-
vant to the given task. Other participants’ trajectories prior to activating the definition
of linear independence suggests it as a salve for uncertainty they had relative to a previ-
ous approach (sometimes spontaneously, sometimes in response to a question I’d asked,
usually to bring their attention back to the task: identifying values of k for which the
vectors are linearly independent).

P8 and P9 brought this definition up as a second step in their engagement with Prob-
lem 5; their first was to use a formula to calculate the volume of the parallelepiped formed
by the vectors, but they had found this to equal 0 and did not use this to consider the
linear independence of the vectors. P8 had gotten stuck when she found the volume to be
0, so I asked if she had thought of a way to do the problem without solving the equation
“scalar triple product equals 0.” P9 had said the volume is 0 for any k and declared that
was “[his] answer.” Since he hadn’t addressed the question (for what values of k are the
vectors linearly independent?), I prompted him to answer it. These were the interven-
tions that had prompted P8 and P9 to activate the definition of linear independence.

For P1 and P10, the definition of linear independence came up in the third step of
their engagement with Problem 5. Both had begun the problem by observing that the
formula for the volume of a parallelepiped, here, would equal 0; they had then abandoned
this observation and brought up (an incorrect version of) τ41 (a LA1 technique for deter-
mining whether vectors are linearly independent). After P1 had written his augmented
matrix and an equation to which he related this matrix, he asked for the definition of
linear independence. I gave him the LA1 definition on a piece of paper. After P10 had
written her matrix and suggested to row-reduce it, she said she wasn’t sure this approach
would work. She was stuck; and so, I asked her what it would take for the three vectors
to be linearly independent. These were the prompts that led P1 and P10 to address the
definition of linear independence.

P4 decided to activate the definition of linear independence after he had already com-
pleted the task successfully (through τ42). Even though he had completed the task, the
comments he made at the end of his engagement with Problem 5 show he was not con-
vinced by what he had found: to convince himself that the vectors are linearly dependent
no matter the value of k, P4 wanted to activate τ41 to completion. τ41 was the technique
P4 activated after he checked, by inspection, whether one of the vectors could be ex-
pressed as a linear combination of the others (in the cases k = 1 and k = 5). P4 had
activated this latter approach immediately after he had completed the task successfully
via τ42. I therefore surmise that when P4 activated the definition of linear independence,
he, like P1, P9, and P10, was attempting to salve uncertainty relative to his mobilization,
toward Problem 5, of LA1 techniques associated with the notions of volumes and linear
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independence.

5.5.3.3.2 Participants checked by inspection whether one vector was a linear
combination of the others, sometimes without assigning a value to k, and oth-
erwise assigning small integer values (mostly 0, 1). P10 was an exception; she
knew that for vectors to be linearly independent, they must not be linear combinations
of one another. But she did not mobilize this.

Two participants (P1, P8) tried to check, by inspection, whether one of the vectors
was a linear combination of the others without assigning a particular value to k. P8’s
attempt at this was explicitly written out on paper, whereas P1 only said he was trying
to do this. P8 had initially tried to orally describe the notion of a vector being a linear
combination of others, and when I asked her to clarify, she wrote out the equation−k

1
1

 = a

−1
1
k

+ b

1
0
1


and then wrote that “k = −a+ b [sic].” She explained that, in general, she’d find a value
for k using a and b. I asked how she’d do this, but her response targeted something
different. She responded that it wouldn’t be possible to write (1, 0, 1) as a linear com-
bination of the other two because of the 0; it would have to equal 1 plus a multiplied
by 1, but that’s not possible “unless everything is 0.” P1 said he thinks no combina-
tion of (−1, 1, k), (1, 0, 1) would give (−k, 1, 1); when asked why, he said “oh no, never
mind”—and proceeded to assign a value to k.

P1 tried to find pertinent linear combinations in the case k = 0; it’s not clear which
combinations P1 attempted as he did not describe them. He couldn’t “see if [the vectors
are] independent or not” and asked for a “practical example for linear independence.” I
wrote down the vectors (1, 2) and (3, 4) and said these vectors are linearly independent
of each other because it’s not possible to write one as a linear combination of the other;
one is not a scalar multiple of the other. P1 returned to the case k = 0 and said he
still wasn’t sure if “zero works or not.” (At this point, I asked: “what if k isn’t 0?” P1
returned to τ41, which he had started to activate before he saw the definition of linear
independence.)

Like P1, P9 and P4 also assigned value(s) for k and checked, for these cases, if a
vector is a linear combination of other vectors. P9 started with k = 1. He observed that,
in this case, two of the vectors are equal. He said these vectors are “linearly dependent.”
One of them is “redundant.” He then said, without justifying his claims, that the vectors
are linearly dependent when k = 0 “and when k is equal to more than one, [the vectors
are] linearly independent.” I asked P9 how he knew that if k > 1, the vectors are linearly
independent, and he proceeded to mobilize τ41 to the case in which k = 5. P4, like P9,
also verified k = 1 first (“I picked k = 1 to try to compare”—he had already determined
the vectors are linearly dependent for all k). He saw two of the vectors were identical
when k = 1. At first, he thought this would be the case for any value of k, but he realized
this might be a “coincidence” and decided to assign a different value (k = 5) to check;
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he saw none of the vectors were equal to one another in this case.

Unlike P1, P9, and P4, whose choice of values to assign to k (0, 1, 5) seemed driven
by a desire to be able to examine whether one vector was a linear combination of the
others, P5’s choice of values for k showed this step was a continuation of her previous
engagement with Problem 5. In that previous activity, P5 had created equations in k
(that were irrelevant to the task) and, upon solving them, found −2,−1, and 0 as values
for k. These are the values she assigned to k when she checked whether one of the vectors
is a linear combination of the others. She crossed out the option in which k = 0: she said
these vectors are linearly dependent because two of them added up to give the third. She
said the vectors are linearly independent when k = 1: in this case, the vectors were−1

1
1

 ,

−1
1
1

 ,

1
0
1

 .

Unlike P4 and P9, P5 did not say anything about two of these vectors being identical.
For the case in which k = 2, P5 wrote out the vectors and “did the math in [her]
head”: “for example, if I was taking the two... subtracting the second vector, and then
adding the third vector, that would make this equal to two. But then, the second row
wouldn’t be equal to the one. So none of the combinations work.” She determined the
vectors are linearly independent when k = 2 despite having checked only a handful of
linear combinations. When I asked P5, at the end of her engagement with Problem
5, whether she would get full marks for her work, she said she did not “think [she’s]
missing anything”; she only pointed out, as a potential issue, that she had assumed the
parallelepiped would have orthogonal edges, and that this may not always be the case.

5.5.3.3.3 Participants’ subsequent activity built on their exploration of linear
combinations in a way that mimics LA1 norms but does not account for the
mathematics at stake (P1, P4, P8, P9). These students activated τ41 when they
could not determine whether the vectors are linearly independent by inspection, but their
activation of τ41 did not always reflect the relevant mathematics. Of the six participants
who activated the definition of linear independence, three (P1, P4, and P9) proceeded to
τ41, a technique for determining whether vectors are linearly independent. The technique
builds on the definition of linear dependence that P1, P4, and P9 had been activating:
a finite set of vectors {vi} (i = 1, ..., n) is linearly dependent if any one of the vectors
can be expressed as a linear combination of the other vectors. Without loss of generality,
suppose

v1 = a2v2 + · · ·+ anvn

for some ai (ai ̸= 0 for some i). Then

v1 − a2v2 − · · · − anvn = 0

and there is a non-trivial linear combination of the vectors that produces the zero vector.
Conversely, if there exist ai, not all zero, for which

a1v1 + · · ·+ anvn = 0,

then, since aj ̸= 0 for some j ∈ 1, ..., n,

vj =
∑

i∈{1,...,n}\{j}

−ai
aj

vi
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so {vi}ni=1 is linearly dependent.

The discourse outlined above is knowledge to be taught in LA1 but students are not
required to learn it. P1, P4, and P9’s mobilization of τ41 (discussed in Section 5.5.3.2.2)
suggests they did not know the role played by the definition of linear independence in the
validity and suitability of τ41 as a technique for determining whether vectors are linearly
independent. In any case, if they did know the role played by that definition, they did
not mobilize it: I discuss the case of each of these participants in the following paragraphs.

P1 activated a matrix that does not match that which would result by applying the
discourse that links linear independence to τ41; the matrix he brought up was the same
as the matrix in the formula for the volume of a parallelepiped formed by three vectors,
which P1 had activated in his initial reaction to Problem 5. Both matrices (in the for-
mula for the volume and the one that results in an application of τ41) are made up of
the given vectors: in the case of the volume formula, the vectors form the rows of the
matrix, whereas in the case of τ41, the vectors form the columns of the matrix. Further,
P1’s interpretation of what he had found via τ41 shows a focus on surface-level features
of τ41 that are not rooted in the notion of linear independence. Indeed, when he found
his original matrix to reduce to a matrix with two identical rows, he said: “it’s clear
we’re going to have infinitely many solutions for this problem because I have the same
row here and here.” (Recall the rules I had witnessed students activating in Problem 2:
“row of 0’s means infinitely many solutions” and “proportional rows lead to a row of
0’s.”). P1 deduced that “for linear independence, I have multiple cases”: the vectors are
linearly independent for several values of k. But, given P1’s setup of his original ma-
trix, this finding rather means there exist non-trivial linear combinations of the vectors
(−1, 1,−k), (1, 0, 1), (k, 1, 1) which produce the zero vector. This means these vectors
(which are not the ones given in Problem 5) are linearly dependent.

P1’s engagement with τ41 skated along surface-level features of τ41: he produced a
matrix made up of the given vectors and found it reduces to a matrix with a row of
0’s, so the “row of 0’s” rule implies “infinitely many solutions.” The inaccuracy of these
surface-level features (relative to accurate start and endpoints for τ41) further shows P1
was not mobilizing any relation between τ41 and the definition of linear independence,
even though he had just engaged it with prior to activating τ41. P1’s transition from
exploring linear combinations of the given vectors to activating τ41 suggests that when it
comes to the normative LA1 relation between τ41 and the notion of linear dependence,
what this relation develops in students is the practice of activating τ41 when a linear
dependence relation between vectors is not obvious (e.g., such as the case of two vectors
that are (not) scalar multiples of one another). τ41 is merely one of the steps students
can take after having inspected potential linear dependence.

Such a practice may not seem inherently unproductive, but P4’s activity brings out
its potential failings. After P4 checked whether one of the given vectors was a linear
combination of the others in the cases k = 1, 5, he proceeded to τ41. Unlike P1, P4
activated a matrix appropriate for τ41. He struggled to reduce the matrix because of the
entries with the unknown (k). P4’s explanations of what he expected to find by activating
τ41 suggests that he, like P1, was focused on surface-level features of the technique. He
knew, from his previous mobilization of τ42, the vectors are not linearly independent for
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any k; given this “previous analysis,” he expected to find “no solution” by activating τ41.
“What I would want is no solution. If there is no solution, that means that there is never
a k for which they are linearly independent. They’re always dependent. They’re always
on the same plane.” What P4 was expecting belonged to a surface-level feature of τ41:
reducing an augmented matrix amounts to determining if a linear system has a unique
solution, infinitely many solutions, or no solutions. But reducing the matrix appropriate
to τ41 amounts to determining if a linear system has a unique solution or infinitely many
solutions. There is no option in which there are “no solutions”; after all, the augmented
matrix corresponds to a homogeneous linear system. Further, any solutions are values
of coefficients which form a linear combination of the given vectors that equals the zero
vector. The solutions are not values of k.

τ41 can reveal information about values of k for which the vectors are linearly inde-
pendent; but a surface-level grasp of τ41, free of the discourse connecting the technique
to the notion of linear independence, makes it difficult to apply τ41 productively to Prob-
lem 5. Indeed, in the case of P4’s matrix, no matter the value of k, the reduced row
echelon form corresponds to a linear system with at least one free variable; this implies
there are non-trivial linear combinations of v1, v2 and v3 that produce the zero vector.
If the vectors I had given had been designed differently, it could have happened that for
some values of k, v1, v2 and v3 would produce the zero vector only by taking their trivial
linear combination. But P4’s expectations from τ41 focused on surface-level features of
the technique: he seemed to refer to the solutions of the linear system corresponding to
the matrix he intended to reduce. These expectations did not match up with how τ41
could help to perform the task at hand.

It is possible that when P4 said that “what [he] would want is no solution,” he did not
consistently mean to use “solution” in the sense of a “solution of the linear system that
corresponds to his augmented matrix.” (I specify that he did not consistently mean this
because he did explicitly say this was his intention: when he said “if there is no solution
for k,” I asked “a solution of what?” and he clarified he meant “a solution of the system
Ax = b.”) Students at this level of post-secondary mathematics courses do not always
use mathematical terms consistently. P4 expected his activation of τ41 to lead to the
discovery that no value of k could produce vectors that are linearly independent. And he
struggled to activate τ41 as soon as he attempted to deal with the entry that involved k;
he did an operation involving that entry which would not have led him closer to resolving
the task, decided against that operation, and ended his attempt to mobilize τ41: “No!
I don’t know.” This, along with what he said he hoped would happen by applying τ41,
suggests two possibilities: the first is that P4 did not know how to reduce a matrix with
unknown entries,20 and the second is that P4 did not know what to aim for in applying
τ41 to the current task.

A lack of know-why relative to τ41 would make it difficult to adapt the normative LA1
application of τ41 to Problem 5—especially if the norm relative to τ41 allows students
to merely activate surface-level features of the technique. P4 confirmed he did not have
the knowledge that relates τ41 to a definition of linear dependence (the “know-why”); he

20Though there is a normative LA1 task that involves such matrices: the task to find values of an
unknown entry in an augmented matrix such that the related linear system has either one solution,
infinitely many solutions, or no solutions.
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activated τ41 because he “just kn[e]w” it’s the thing to do. This was the norm in LA1:

I What does [your augmented matrix] have to do with linear independence? What’s
the connection?

P4 Between solving this and linear independence?

I Yeah.

P4 I just know, as a fact, that when I want to find the linear combination of a system,
I want to solve [an equation of the form Ax = b with] the vectors as [the] columns
[of A] and with the zero matrix [as b].

I Okay.

P4 Yeah. I think something I lacked in the course was that I didn’t really understand
why I was doing [what I was doing].

P4 felt he did not know why he used the techniques he used in LA1; from the theoretical
perspective that students who pass a course do so by adhering to the norms of a course,
P4’s perception makes sense. For instance, the norm in LA1 relative to τ41 does not
require students to know why it works. Students need only know to use it given the
normative task to verify if so-and-so(-and-so) are linearly independent vectors. The inco-
herence in P4’s justification for his approach (“when I want to find the linear combination
of a system,” “if I only have a trivial solution for the linear combination, it means no
coefficient will give me that they are not on the same plane, they’re not independent”)
supports P4’s perception.

P9 transitioned from activating the definition of linear dependence to mobilizing τ41
after I asked how he knew the vectors to be linearly independent when k > 1. He applied
τ41 to the case of k = 5. His justification was incoherent: “to prove they are linear
independent, you [need to show you] cannot write these three—[you need to show] these
three cannot write a vector that belongs to their span. So if you put over here a, b, c,
it becomes (−5, 1, 1)(−1, 1, 5)(1, 0, 1), so you’d have to reduce it.” Here’s what he wrote
(verbatim): a

−5
1
1

 b

−1
1
5

 c

1
0
1


Underneath this, he wrote the matrix whose columns are the above vectors (respec-

tively). He was activating the notion of linear combination which relates linear depen-
dence to τ41. But he seemed to be activating only a surface-level feature of this relation:
his explanation (“these three cannot write a vector that belongs to their span”) was both
inaccurate (by definition, vectors in the span of a set of vectors are vectors that “can be
written” in terms of those vectors) and was not about the notion of linear dependence.
When P9 found his matrix reduced to a matrix with a row of 0’s, he said the vectors
are linearly dependent “because you can write one vector in terms of the other.” This
is accurate, but P9 struggled to explain why this is so: “I forgot how to explain it [...]
in this case you can write the third the last one in terms of or [pauses] I forgot about
this one.” What he did remember was a mashup of the notions of linear independence,
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of the span of a set of vectors, and of LA1 techniques that regularly have students “put
[vectors] in a matrix”: “when you have three linearly independent vectors, when you put
them in a matrix, to see what their span is, you want to see that the only thing this span
contains is 000.” I suspect this mashup is a result of a normative LA1 task taught shortly
after students are exposed to the notion of linear independence: to determine whether a
set of 3 given vectors is a basis for R3. This task has students determine whether a given
set of vectors is linearly independent and whether its span is all of R3.

In Section 5.5.3.2.2, I had already examined how participants had activated τ41. P1
and P10’s application of τ41 was divorced from what it would mean for v1, v2, and v3 to
be linearly independent; they knew their matrix ought to be made up of these vectors,
but used these vectors as the rows of their matrix (when these vectors should have been
its columns). A surface-level grasp of τ41 would make it difficult to remember how to
position the vectors. P4 and P9 positioned their vectors appropriately but struggled to
explain why the results of τ41 would tell them anything about linear independence. Recall
the LA1 norm relative to τ41: students need to produce an appropriate augmented matrix
whose entries are always known small integers; students need to reduce this matrix; and
students need to decide whether the reduced row echelon form implies the vectors are
linearly (in)dependent. P9 shared the rules for making this last decision: “if I have a
diagonal then it is linear independent” and a “row of zeroes” means “we have infinitely
many solutions” and therefore the vectors are “not independent.” Students know τ41
works for checking whether vectors are linearly independent, and they can form rules
that operate on surface-level features of τ41 to help them apply τ41 successfully. Students’
application of τ41 to Problem 5 suggests what they know of the relation between “linear
dependence of vectors” and τ41 is this: τ41 works to check if vectors are linearly dependent.

P1, P4, and P9’s transition from activating the definition of linear independence to
τ41 confirms students do not have more knowledge about this relation. They had tried
to check, by inspection, if one vector could be written as a linear combination of other
vectors. This was trivial in one case (e.g., with k = 1, where both P4 and P9 observed
two vectors are identical). But they could not, by inspection, make a general conclusion.
And so they activated τ41. I had thought that, perhaps, given P1, P4, and P9’s transition
from mobilizing a definition of linear independence to mobilizing τ41, they might be able
to make (at least partially) explicit the relation between the definition and the technique.
This could have helped to guide their application of τ41 to a task that differed from the
LA1 norm. But they did not activate any such relation. The LA1 norms related to linear
independence allow students to operate only surface-level features of τ41. This made it
difficult for them to adapt τ41 to Problem 5, which did not adhere to the LA1 norms for
the task of examining the linear independence of a set of vectors.21

Reflecting on P2 and P4’s capacity to activate τ42 successfully and contrasting it with
P4, P1, and P9’s struggle to mobilize τ41 for Problem 5, I note that τ42 leads to a result to
which a normative LA1 rules applies: applying τ42 to Problem 5 leads to the result that
the determinant of a matrix formed by the given vectors is 0. The LA1 rule for τ42 is that
a determinant equal to 0 implies the vectors are linearly dependent. This rule applies
to Problem 5 accurately; there’s no need for further discourse. τ41 does not transfer as
neatly; a surface-level application of τ41 such as P1 and P4’s (whose comments suggested

21In particular, the LA1 norm whereby the components of vectors are always known.
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they expected the solutions of the system corresponding to the augmented matrix to be
values of k) would rather lead either to the incorrect conclusion (such as P1’s) that there
are several values of k for which the vectors are linearly independent or to the incorrect
expectation (such as P4’s) that the system has no solutions (because he knew the vectors
are not linearly independent for any k).

P8’s follow-up activity (after inspecting the vectors’ potential for linear independence)
diverged from P1, P4, and P9’s focus on algebraic representation: she spontaneously mo-
bilized a geometric interpretation. She made two sketches. One was of 4 arrows with
coinciding initial point, where 3 vectors were parallel to the same plane and the other
vector was orthogonal to the 3 coplanar vectors. The second sketch seemed to be of a
parallelogram and was crossed out. P8 explained “there was a graph in the book that
[depicted vectors that] lie in the same plane [and it was stated] they are dependent.” She
concluded that “there doesn’t exist any k that [would] make [the vectors] independent.”
P8 had mobilized knowledge she recalled from the textbook but she did not trace it back
to the definition of linear dependence she had just activated. Indeed, when I asked how
she knew that vectors being in the same plane means they are linearly dependent, she
said: “there was a graph, which I barely remember... Something [about how] if they are
in the same plane, then I have three coordinates here but the third one actually doesn’t
exist in this one plane.” I asked her to clarify this last part. “For example, here, I can
move it here, here, but not upwards, because that is everything I have: the plane. So
they will be expressed—one of them will be a linear combination of the [other] two.” I
asked how she would know one of them would be a linear combination of the other two. I
wanted to see if she would use her sketch to demonstrate how one geometric vector might
be a linear combination of the other two geometric vectors. But P8’s responses derailed
from the geometry at stake and rerouted onto normative technical LA1 knowledge: “I
guess it’s because again, using these vectors, if I would put them in rows, as equations,
I will end up with a... row of zeroes. And basically, I will get a parameter and I will
have to express the third one using the other two.” P8 was “not sure about [any]thing,”
though, and said: “I’m pretty sure I remember the graphs. Seeing that if they lie in the
same plane, they are dependent. I’m not sure of my explanations.”

P8 spontaneously retrieved a graph wherein three vectors are coplanar to answer a
question about the linear dependence of a set of vectors. This suggests LA1 norms re-
lated to linear independence inculcated her with the knowledge that linear dependence of
vectors has a geometric representation. But, prompted to explain how she knew that if
vectors are coplanar, then one could be expressed as a linear combination of the others,
P8 did not return to her sketch. And she stopped talking about the geometry at stake.
Instead, she leaped to τ41. This raises doubt as to whether P8 knew why coplanar vectors
could be expressed as linear combinations of one another; in any case, even if she would
have summoned this knowledge given the appropriate combination of prompts, she did
not summon it. Asked how she knew that, given coplanar vectors, one vector would be a
linear combination of the other two, P8 did not mobilize the sketch she had summoned
from memory from LA1. She referred to τ41 instead—an algebraic technique for deter-
mining the linear dependence of a set of vectors.

P8 gave a pockmarked explanation of the relation between τ41 and the notion of
linear dependence. Her explanation leapt from “parameters” to one vector being a linear
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combination of the others: “I will get a parameter and I will have to express the third
one using the other two.” From this, it’s not clear P8 knows that there being a parameter
means that, given the equation

c1v1 + c2v2 + c3v3 = (0, 0, 0),

one of the coefficients can be assigned a parameter and the other coefficients might be
expressed in terms of this parameter. Since a parameter could have any real value, and
in particular, non-zero values, there would then be a non-trivial linear combination of
v1, v2, v3 that produces (0, 0, 0). That P8 omitted this discourse from her explanation
(“basically I will get a parameter and I will have to express the third one using the other
two”) brings to question whether P8 had the knowledge that relates τ41 to the definition
of linear dependence. P8 seemed hesitant as she explained the relation of τ41 to linear
dependence so I asked her about this hesitation: “I’m pretty sure I remember the graphs.
Seeing that if they lie in the same plane, they are dependent. I’m not sure of my expla-
nations.” P8’s confidence lay in what she recognized as a recollection from LA1 (graphs
she had seen in the textbook). What she was not confident in was explanations she gave
in an attempt to relate the different pieces of knowledge she did recollect from LA1 (a
definition, a sketch, and τ41).

P8’s lack of confidence in her explanations of the concepts underlying τ41 and the
sketch she made, in addition to her return to algebraic technique in response to my
question (“how would you know one of them would be a linear combination of the other
two?”), which I had asked in response to P8’s description of the geometry at stake, brings
to mind P2’s comment that he “usually [does] calculations” when I asked what would
convince him of his conclusion (that the vectors are linearly dependent) if he had been
working on his own. Between his explanation of the geometry (the vectors are coplanar so
one is a linear combination of the other two) and his mobilization of τ42, he said he would
be convinced by the latter but not the former: he “usually [does] calculations.” Further,
P2’s model of what’s expected of students in LA1 included τ42 but not the geometric
representation: the calculations, he said, would grant him full marks on a submission in
the course, but the explanation of the geometry would not.

What P1, P4, P8, and P9 mobilized after they engaged with the definition of linear
dependence operated on surface-level features of the mathematics at stake; they either
did not or struggled to relate their follow-up activity (be it τ41 or a geometric representa-
tion) with the definition of linear dependence. P5 and P10, meanwhile, did not mobilize
any other knowledge after this stage. P10 knew vectors are linearly independent if they
cannot be expressed as linear combinations of one another but did not mobilize this in
any way; since she seemed stuck, I reminded her the vectors form a shape that has volume
0 and I asked what that would look like. P10 had “no idea.” P5 had already deduced (in
her initial and spontaneous reaction to Problem 5) that either the “base,” “height,” or
“length” of the parallelepiped must be 0 (she seemed to be mobilizing a formula for the
volume of a parallelepiped) but did not make any further geometric interpretations; and
when she finished activating the definition of linear independence, I asked if she could
think of any other approach and she did not.

The activity of those who continued after they engaged with the definition of lin-
ear independence reflects LA1 norms: they couldn’t check, by inspection, whether three
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vectors were linearly independent, so they brought up τ41 (P1, P4, P8, P9) or a text-
book sketch that related the notion of linearly dependent vectors with the property of
being coplanar (P8). But this subsequent activity and participants’ related comments
and explanations show students struggled to inform this activity by the mathematics at
stake. Their activity was persistently marked by an absence of knowledge that relates
the definition of linear dependence with knowledge normatively related to it in LA1.

5.5.3.4 One student (P7*) mobilized a narrow definition of linear dependence
to examine the linear dependence of the vectors.

P7*’s spontaneous reaction to Problem 5 was to mobilize a geometric interpretation of
three vectors being linearly dependent: the sum of two of the vectors must be parallel to
the third vector. P7* later mobilized this same narrow definition of linear dependence as
he activated an algebraic technique for the task: he checked whether vi + vj would be a
scalar multiple of vk (where i ̸= j ̸= k and i, j, k ∈ {1, 2, 3}). I discuss P7*’s activity in
each case in the following subsections.

P7*’s spontaneous reaction to Problem 5 was a geometric interpretation based
on a narrow definition of linear dependence. Upon reading the problem statement,
he said:

First thing is, you know, I know that these two—let’s say this is v1, v2, and
v3; the summation of v1 and v2 should not be on the same line of v3, these
should not be parallel, which means they should not be on the same line,
otherwise, they will be linearly dependent.

P7* did not build on this definition at this point; as per his fashion with other problems
in the interview, he promptly moved on and suggested a new approach: τ41.

After P7* engaged with τ41 in steps 2, 3, and 4 of his activity, steps 5 and 7 of
his activity were to mobilize the algebraic interpretation of his narrow defini-
tion of linear dependence. He found the components of vi+vj (i ̸= j; i, j ∈ {1, 2, 3})
and checked whether the vector was a scalar multiple of vk (k ̸= i, j; k ∈ {1, 2, 3}). He
started with v1 + v2, which is (−k − 1, 2, k + 1); given that v3 = (1, 0, 1) had 0 for its
second component and v1 + v2 did not, P7* found this troublesome: “if they are on the
same line, then these coefficients should be proportional. I think I maybe made some
mistake here. Let’s do the other way because I am having trouble with this zero.” He
calculated the components of v2 + v3. But this, too, had a component that was 0 (and
v1 had none).

“Forget about it, I think a more promising way to do that is v1 + v3.” The 0-issue
disappeared; he found v1 + v3 = (1 − k, 1, 2), and he knew v2 = (−1, 1, k). “That’s
promising. They have to be proportional to be linearly dependent.” The other values of
k would be those for which the vectors are linearly independent, he explained. He set up
the proportion:

1− k

−1
=

1

1

So 1− k = −1, and so k = 2. He checked: with k = 2, v1 + v3 = (−1, 1, 2). This worked
out well given that v2 = (−1, 1, k). He concluded the vectors are linearly dependent in
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this case and linearly independent when k ̸= 2.

This was step 5 of P7*’s engagement with Problem 5. After he found this, I asked
whether this approach or his approach using Gaussian elimination would yield him more
marks on a test; P7*’s response to this question ended with a return to τ41. This last
attempt at τ41 led P7* to a result that contradicted what he had found in step 5: he
found the vectors to be linearly dependent for any k. This prompted P7* to revisit his
proportionality scenario.

He knew he couldn’t “do the proportional thing” with the combinations of vectors
that involved one vector with a 0-component and another vector with no 0-component. So
he refocused on v1+v3. He exclaimed. He realized he had found that if k = 2, the vectors
are dependent, and had assumed this to imply the vectors are independent when k ̸= 2.
He thought this assumption to be the culprit. (“We cannot get this conclusion. This
conclusion is incorrect, it’s too strong, I only know that k = 2 belongs to the dependent
condition.”) So he checked the proportionality again, this time with the assumption that
k ̸= 2:

1− k

−1
̸= 1,

1− k

−1
̸= 2

k
,
1

1
̸= 2

k
.

At first, he said he expected these conditions to lead to a value of k for which the
vectors are linearly independent, but then seemed unsure of the matter as he considered
concrete examples of pairs of vectors that are linearly dependent because they are pro-
portional ((1, 2, 3) and (2, 4, 6)) and pairs that aren’t proportional ((3, 4, 6) and (1, 2, 3))
and hence are linearly independent.

So, these vectors, they are not linearly independent. They are - wait a minute.
Yes. No. No, I’m kind of getting dizzy [figuratively]. Just a second. Give me
a second. I think I’m, I’m. Yes. So, if they are proportional, that means, it
means these two - these two vectors they are parallel, which means they are
linearly dependent.

Given the amount of time P7* had spent on the problem at this point (nearly 30
minutes), I gave, at this point, a last prompt to bring his attention to an aspect of the
problem he had ignored up to this point: that the parallelepiped formed by the vectors
had volume 0. By considering the geometric implications of a parallelepiped of volume 0,
P7* realized the three vectors “are on the same plane,” and since they are in R3 but on
the same plane, cannot form all of R3; from this “decrease in dimension,” he deduced the
vectors must be linearly dependent. This jostled him to review his previous and narrowed
definition of linear dependence:

But, but, but you know, it looks very promising that if this summation vector
is not parallel to this one, then they are linearly independent. So I have no
idea. [pause] Oh, wait a minute. Wait a minute. I... No. No. [pause] Oh,
wait a minute. I know where I got it wrong. Yes. In this linearity condition
with v1 and v2, the coefficients are both 1. Yes. So this is a parallelogram.
Yes. Yes. But actually, it could be anywhere, right? It could be forming
everywhere, because the coefficients can be [any] number.
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It was only upon considering the geometry of a parallelepiped of volume 0 that P7*
eventually realized he had been mobilizing a narrow definition of linear combinations:
such combinations needn’t have coefficients equal to 1. Notice that P7* had activated τ41
several times before and during his activation of that narrow definition. This suggests
that, as seemed to be the case in participants’ practice when they mobilized augmented
matrices and row operations (in Problems 2 and 5, for instance), P7*’s use of τ41 was an
instance of throwing Gauss-Jordan elimination at a problem to fix it, without knowing
(or, at best, without mobilizing) the mathematics at stake in the technique.

5.5.3.5 Some students (P5, P6, and possibly P4) turned to the base-height-
length rectangular prism volume formula to conceptualize a paral-
lelepiped of volume 0.

In the next section, I address students’ mobilization of the geometry at stake in Problem
5. In the current section, I address knowledge mobilized by P5 and P6 (and possibly P4)
and which sits on the outskirts of the geometry at stake: if a parallelepiped has volume
0, then its base, height, or length must be zero. P5 and P6 and, possibly, P4 recalled the
base-height-length formula for the volume of a rectangular prism. Among these students,
P5 did not mobilize any geometric interpretation of vectors forming a parallelepiped of
volume 0.

The reference to the volume formula was (P4 and) P5’s initial and spontaneous reac-
tion to Problem 5. At first glance, it might come across as an observation of the geometry
at stake, but P5’s subsequent comments show this was not the case for her, and may or
may not have been so for P4. Indeed, P4’s initial reaction was this: “of volume zero
- okay, so they’re all on the same plane. Yeah. Because there’s no width, there’s no
height, that means they’re all in the same plane.” Consider, now, P5’s initial reaction
to Problem 5: “that will make either the length width or height zero... I think. The
volume would be base times width times—length times width times height. And to make
it 0, one of them would have to be zero.” P5 was drawing from a volume formula from
previous mathematics courses: the volume of a rectangular prism is its “length times
[its] width times [its] height.” It’s not clear whether, initially, P4 had this formula in
mind when he said “there’s no width, there’s no height” or if he had a flattened object
in mind when he visualized a parallelepiped of volume 0. In any case, P4’s comments
later in his engagement with Problem 5 show he was visualizing the parallelepiped and
not exclusively relying on a formula: he sketched a cube (“for the sake of simplicity”)
and described what it might look like with (non-)zero volume.

P6 brought up similar formulaic knowledge, but did not seem to put as much stock
in it as P5 had:

You can definitely have a two-dimensional line or object in a three dimensional
space. Right? That’s not something I’m unsure about. Though maybe I
should be... because you know, volume, it’s length times width times height.

P6’s continued monologue includes imagery that goes beyond this formula: “obviously,
the height of some objects is not constant throughout their, their, their... you know,
their objects.” (P6 struggled with the terminology; I surmise he was referring to irregular
shapes.) Given this description, and given P6’s explicit visualization of a 2-dimensional
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object (he had sketched a parallelepiped generated by 3 vectors), I infer P6 was relying
on a geometric interpretation of a parallelepiped having volume 0, rather than any for-
mula he may have known, from previous mathematics courses, about the volume of a
rectangular prism.

P5’s reasoning focused on formulaic knowledge. She was activating the multiplication
property of zero: a product is 0 if and only if one of its factors is 0. For her, “base,”
“height,” “width,” and “length” were traces of formulaic knowledge; she did not mobilize
the geometry at stake. Unlike P4, who mobilized his deduction about the dimensions
of the parallelepiped to infer the vectors are coplanar, P5 rather moved on to mobilize
algebraic knowledge that had no relevance to the given task.

5.5.3.6 Students struggled to complete the task by activating geometric rep-
resentations of a shape of volume 0 and of linear independence in
R3.

Most participants did not activate a geometric representation spontaneously or as an im-
mediate response to Problem 5 (P1, P2, P3, P5, P7*, P8, P9, P10); one participant (P4)
did activate a geometric representation, saying the vectors are on the same plane, but did
not mobilize knowledge that coplanar vectors are linearly dependent, mobilizing instead
his algebraic knowledge about linear independence; and one participant (P6) mobilized
both a geometric representation of a shape of volume 0 and a geometric representation of
linearly independent vectors (knowing they must not be coplanar) but was thrown off by
what he perceived the task to be (P6). Based on participants’ activation of the geometry
at stake, I identify their grasp of the geometry as either null (P3, P5, P10), restricted
(P1, P6, P9), or accurate (P2, P4, P7*, P8). Given the information that the vectors
formed a parallelepiped of volume 0, P2, P4, P7*, and P8 described the vectors as copla-
nar (or as being “on the same plane”); P1, P6, and P9 figured the parallelepiped to be a
parallelogram—for P6 and P9, this was related to two of the vectors being collinear (P6,
P9); P3 and P5 made no geometric interpretation despite having skirted around the ge-
ometry at stake; and P10 had “no idea” what a parallelepiped of volume 0 might look like.

Activating a geometric representation was not the spontaneous nor immediate reaction
of most participants when they read Problem 5. Indeed, only P4 and P6 spontaneously
and immediately considered the geometric representation of a parallelepiped of volume 0.
P8 turned to this, spontaneously, only after she had struggled to mobilize algebraic repre-
sentations from LA1 (she had used a formula to calculate the volume of the parallelepiped
formed by the given vectors, and was stumped when the expression produced—“0”—did
not involve a k she could isolate). P5 brought up the base-height-length formula for the
volume of a rectangular prism and deduced one of the prism’s dimensions would be 0
(since a product is 0 only if one of its factors is 0), but P5 did not make any further
inference from this. Instead, she continued by treating the parallelepiped as a right rect-
angular prism; indeed, when her engagement with Problem 5 had ended, she said her
approach (wherein she had set dot products of pairs of the given vectors equal to 0, so as
to find values of k for which the vectors are orthogonal) was based on the assumption that
the edges of the parallelepiped are orthogonal to one another (“I started off by assuming
the parallelepiped, like, it’s not necessarily 90, but I assumed it was 90”). None of the
other participants spontaneously brought up a geometric representation in their attempt
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to complete the given task; they brought one up only when I prompted them to do so.

Among the only two students (P4, P6) who did activate a geometric representation
spontaneously and immediately in reaction to Problem 5, neither was able to rely on this
representation to complete the problem. Both needed the algebraic representations they
activated in response to their interpretation of the geometry.

P6 had inferred the vectors to form a parallelogram. He thought two of the vectors
must be collinear and this view did not change when I suggested the term “coplanar”:

P6: There’s collinearity. Is that the right word I’m using, by the way? Sort of, not
really.

I: Coplanar.

P6: Coplanar. Yeah, right. Coplanar for planes and collinear for lines. Yeah, that
makes sense. One of them is either superimposed on top of the other or [is] some
scalar multiple [of the other].

His association “coplanar for planes and collinear for lines” was based in the common
root of the words; but P6’s description (“one of them is either superimposed on top of the
other or [is] some scalar multiple [of the other]”) showed he did not know what it means
for vectors to be coplanar. If anything, his imagery was more informed by a (literal)
surface-level take on parallelepipeds (a 2-dimensional equivalent is a parallelogram) and
did not take into account the vectors at stake:

(−k, 1, 1), (−1, 1, k), and (1, 0, 1).

None of these are scalar multiples of the other (except in the case k = 1, of which P6
made no mention). P6’s geometric misrepresentation aside, he correctly inferred, from
the vectors forming a 2-dimensional shape, that they are not linearly independent.

P6 found this to contradict the task: he knew linearly independent vectors in R3 could
not form a 2-dimensional shape. He turned to algebraic representations to address this
contradiction. He activated τ6, the LA1 technique (formula) for the task of calculating
the volume of a parallelepiped: “I guess I can just take the determinant, and then set
it equal to zero to find a parallelepiped of volume zero, [find] what value k might be.”
He found the volume to equal 0. He flipped back and forth one more time between his
geometric and algebraic representations of a parallelepiped with volume 0. He knew he
“didn’t do any of [the] math wrong.” He “just [wasn’t] sure the math [he had done] was
enough to prove” (his emphasis) that “there [are] no values for k [for which the vectors
are] linearly independent.” He wanted me to confirm his conclusion: “you’re making me
really unsure, you have to tell me if I am getting this right, or just totally wrong.” In
return, I asked what it would take to convince him. He explained:

I’m not sure. But I guess I’m starting to think that maybe what I did is
okay. Because in the determinant equation, I got the 1k plus 1k plus 1. So
obviously, for any value of k, this will still go to zero. That means—or like
one of these, you can still subtract this from this or this from this. So one
of these rows will be all zeros, which will mean that determinant is zero. So
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for all values of k, all real values of k (I guess k is a real number), there’s
no solution where they aren’t linearly dependent. So no, I think I did okay,
actually.

What convinced P6 of the conclusion he had reached was the result of his algebraic
manipulations. Indeed, when I pointed out he had his calculation of the determinant and
an explanation of the geometry, he prioritized his algebraic manipulations in his response:

It’s just not a proof, right? I didn’t prove that for every single—I mean,
maybe I did, and I just don’t understand that I did. But I just don’t think I
proved that for every single value of k... No, no, no, I did, right. Because you
get the same equation. So no matter what value you plug in for k, it doesn’t
matter.

P6’s grasp of the geometry at stake was not sufficient to convince him the vectors are
linearly dependent for any k; he needed the algebraic representation he mobilized to gain
confidence in the conclusion he had reached. When he decided he had proved the vectors
are linearly dependent for any k, he twice referred to the algebra and did not mention
the geometry.

P4, who had inferred the vectors must be coplanar from the get-go, did not conjure the
relation coplanar-linearly dependent. He mobilized τ42 instead. This is the LA1 technique
of calculating the determinant of a matrix made up of given vectors to determine if the
vectors are linearly independent. From τ42, he found the determinant of the matrix formed
by the vectors to equal 0. This made him doubt the suitability of τ42 for the given task:

That’s weird. Because the scalar triple product, no matter what k is, is zero.
Which is weird to me, because I would expect it to be... a number. I don’t
know. Scalar triple product. Yeah, so I would probably [find the] determinant
of this such that it is not zero, and then solve for k. But k is not gonna cancel
out. So does that mean k belongs to R? Because any va—no. [pause] So
no matter what value I would put in, I’m gonna have zero is equal to zero.
That makes things a bit complicated. [pause] Okay, let me make sure now
this truly means that I should use a scalar triple product.

To “make sure” he “should use a scalar triple product,” P4 revisited his geometric rep-
resentation of a parallelepiped of volume 0. He sketched a cube (“I’m just gonna take it
as a cube for the sake of simplicity”) and considered the implications, for the vectors of
which it’s made, of the cube having volume zero:

If it has volume zero, they must also all be on the same plane. I’m just
thinking, if I were to minimize this, is it gonna keep on going and still be...
[There will be] some sort of volume until they’re completely aligned on each
other. So the vectors, to form a parallelepiped of volume zero, they must be
on the same plane. So I think it justifies my use for the scalar triple product.

P4 did not activate a geometric representation so as to use it directly to perform the task;
he activated it because it belonged to a basket of facts about linear independence he had
acquired by “studying” in LA1. “Directly, when I think of vectors on the same plane, I
think of two things, the scalar triple product or linear dependence.” He had acquired the
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geometric association from lectures in which the “professor showed pictures of vectors
being on the same plane or not being on the same plane; dependence, independence.”
But P4 did not mobilize this association to complete the task; instead, every time he
brought up the vectors being coplanar, he concluded this “justifie[d]” mobilizing τ42.

Upon return to τ42, P4 concluded the vectors must be linearly dependent for any k:

I have 0 is equal to 0. Which would mean that... I’m trying to figure out if this
means that they are always linearl - uh, on the same plane or they’re never
on the same plane. [Recall P4 had already established, twice, the vectors are
coplanar.] That’s what I’m trying to figure out and I need to probably do
some logic to be able to decide which is which. Okay, so, if the scalar triple
product is equal to zero, then they are on the same plane.

P4 did not explicitly relate his interpretation of the algebra (the vectors are coplanar)
with what he had already deduced from the geometry (the vectors are coplanar). And he
knew linearly dependent vectors are coplanar: “to visualize linear dependence of vectors,
I would visualize them being on the same plane.” Even if he didn’t know coplanar vec-
tors are linearly dependent, comments he made toward the end of his engagement with
Problem 5 suggest he knew, from the scalar triple product being 0, that the vectors are
linearly dependent. But, to be certain, P4 went on and mobilized more algebraic repre-
sentations; the remarks he made at the end of his engagement with Problem 5 (which I
address toward the end of this paragraph) suggest he was not convinced by what he had
initially mobilized. As a fifth step in his engagement with Problem 5, he activated the
definition of linear dependence and checked, by inspection, whether one of the vectors is a
linear combination of the other two (when k = 1, 5). As a sixth and last attempt Problem
5, he started to activate τ41 but got stuck with the row operations. He activated these
approaches because he knew they also had something to do with linear independence:
“from [τ42], I deduced there would be no values of k for [which the vectors are] linearly
independent, but because I know that it could also relate to linear independence, I’m
gonna try to [do the task via τ41].” P4 knew τ42 sufficed but wanted to do the task via τ41
to be convinced of the conclusion he had reached. Indeed, when I asked what he would
need to show to get full marks for this problem if he had to submit it for grades, he said
one of the methods would “be enough,” “but just to fully prove [his] point,” he would
do “both.” To convince himself the vectors are linearly dependent no matter the value of
k, he “would probably try [τ41] again.” Whatever the case, it did not suffice to know the
vectors are coplanar and that coplanar vectors are linearly dependent. Calculations were
necessary.

A comment P2 made at the end of his engagement with Problem 5 made explicit the
normative LA1 fervor: “usually, I do calculations.” His spontaneous and initial response
to Problem 5 was to activate τ42. He found the determinant (of the matrix made up of
the given vectors) is 0 and knew this meant the vectors are either linearly dependent for
all k or linearly independent for all k. He didn’t know which. I pointed out he hadn’t
used the information from the first sentence (about the volume being 0) and asked if it
told him anything. He said: “it means they are. . . coplanar.” And again, he knew this
meant the vectors are either linearly dependent for all k or linearly independent for all k:

Imagine if they are coplanar. They are on the same plane. This means that
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one cannot depend on the other, because... Imagining the 3D world. If they
are in the same plane... [pause] I forgot if they are independent or dependent.

P2 took me up on the offer to see the definition of linear independence (a finite set
of two or more vectors is linearly independent if none of the vectors can be written as
a linear combination of the others). Once he read it, he came to a conclusion, albeit
cautiously:

They are on the same plane. It means they are dependent [pause] because...
They can be expressed as a combination of the others. But... with three
vectors [pause] I’m [wondering] if the determinant way is the correct way or...
if I should try to write [...] one as a combination of the [other] two. [pause]
Honestly, I would do it like this. Yeah. Because I remember that [the vectors
being] independent or dependent has to do with the determinant. And this is
the easiest way to do it. Because I get zero, so I get a straightforward answer
without having to analyse it.

It’s not clear if P2 was referring to the geometry at stake or to the matter of writing
one vector as a linear combination of the others when he said “to analyse it.” When I
asked him if thinking about the volume being 0 is something that would convince him
his conclusion was valid, he said: “if the volume is 0, it means they are like coplanar. If
they are coplanar, it means they are dependent.” But, asked if he’d get full marks if he
wrote this on an exam, he said: “No, I don’t think so.” And asked if it’d convince him if
he were working on his own: “No. Usually, I do calculations.”

P8 had also started her approach to Problem 5 with calculations. She considered a
geometric interpretation only after she hit a wall in her calculations. She had first used
a formula for the volume of a parallelepiped with the hopes of identifying the value(s) of
k for which the volume would equal 0. But her manipulations produced an expression in
which there was no k to isolate. Next, she tried and failed to determine, by inspection,
whether one vector could be expressed as a linear combination of the other vectors. Fi-
nally, she drew a sketch in which 3 arrows had coinciding initial point and were coplanar,
and a fourth arrow that was orthogonal to the rest of the lot. To P8, this explained what
she had found earlier: “it’s all here in the same plane and that’s why it’s zero.” I asked
P8 if this told her anything about the linear independence of the vectors and she recalled
that “there was a graph or something in the book that [showed that] if they lie in the
same plane they are dependent.” P8 then concluded: “I guess there doesn’t exist any k
that will make it independent.”

For P8, the validity of her conclusion came from the authority of the course textbook
and not from knowledge of the underlying mathematics: “I’m pretty sure I remember
the graphs. Seeing that if they lie in the same plane, they are dependent. I’m not sure
of my explanations.” P8 was able, with the help of a prompt in which I asked her to
clarify her explanations, to partially justify why vectors that “lie in the same plane” are
linearly dependent: initially, she said that “if they are in the same plane, then I have
three coordinates here but the third one actually doesn’t exist in this one plane.” I asked
P8 to explain what she meant about the “third one” not existing in the plane. She said:
“for example, here, I can move it here, here, but not upwards, because that is everything
I have: the plane. So they will be expressed - one of them will be a linear combination
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of the [other] two.” In response to a prompt in which I asked P8 how she knew one vec-
tor would be a linear combination of the other two if they’re on the same plane, P8 did
not refer to the geometry at stake; she brought up the calculations involved in τ41 instead.

Apart from P2, P6, and P8, P7* and P9 are the other participants who mobilized the
knowledge that coplanar vectors are linearly dependent. I discuss P7*’s case first.

P7* addressed the parallelepiped having volume 0 only after I prompted him to do
so, 25 minutes into his engagement with Problem 5. P7* said “this means the vectors
are on the same plane. I asked if this tells him anything about the linear dependence of
independence of the vectors, and he paused. Since “they are three-dimensional vectors
on the same plane,” they “are definitely linearly dependent.” “Because they cannot form
R3; they form only R2, a two-dimensional space.” P7* got stuck at this point because
his earlier technique had seemed “promising” but yielded a different conclusion: “it looks
promising that if the sum of two of the vectors is not parallel to the third, then they are
linearly independent.” P7* soon realized he had incorrectly assumed linear combinations
of vectors can only have 1 as coefficients (“the coefficients can be [any] number”) and
concluded the vectors are indeed linearly dependent.

P7*’s explanation was that by taking varied linear combinations of v1 and v2, it
would be possible to get v3. I asked how he knew this. “There are two ways to look at
it. The first way is that, by changing the coefficients [of v1 and v2], their sum could be
any[thing].” The second way is this: “we select two directions: the direction of v3 and
the direction that is normal to v3. I then try to figure out the projection of v1 and v2 on
these two [directions]. I just need to massage this coefficient so that the two projected
vectors on the normal direction cancel out.” P7* juxtaposed accurate and inappropriate
mathematics related to the problem at stake.

P9 also brought up a geometric representation only once I had prompted him to do
so; this was his fourth and last attempt at Problem 5. (His initial approach was to cal-
culate the volume using a formula; he determined the volume is 0 for any k but made no
conclusion about the linear independence of the vectors; when I asked if he could make
a conclusion about this, he tried to check, by inspection, whether one of the vectors was
a linear combination of the others (for particular values of k); after he made a general
claim about the linear dependence of the vectors when k > 1, I asked how he knew this
and he tried to activate τ41 with k = 5 and then k = 0.) Like P6, P9’s inference from the
parallelepiped having volume 0 was that two of the vectors must overlap: “it has volume
zero because two of them are [pause] oh no [pause] Okay... so here, it’s zero because two
of them are overlapping.” He concluded from this that there are “no values of k for which
they are linearly independent.” He repeated several times that two of the vectors must
overlap for the parallelepiped to have volume 0; when I drew three vectors that aren’t
overlapping but still form a parallelepiped of volume zero, P9 said “they are coplanar,”
and explained this means “we can write them [pause] in terms of each other. So they are
not linearly independent.”

When I asked P1 how he would visualize a parallelepiped of volume 0, he said: “it’s
going to be xy plane—no, it’s like a part of... The volume is 0, so it’s gonna be just like
this.” He drew a parallelogram. I asked if this helped him in any way and he said it did
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not. In his engagement with Problem 5, P1 had attempted five other approaches, all of
which had been based in algebraic manipulations (τ41, checking if one vector is a linear
combination of the others by inspection, τ6). He was unable to complete the task via any
of these techniques and said that on an exam he would “just pass the question.”

P3, P5, and P10, finally, had little to no grasp of the geometry at stake. P5 had
brought up a formula for the volume of a rectangular prism to deduce one of the par-
allelepiped’s dimensions must be 0; but this clearly did not translate into any accurate
geometric interpretation, given her assumption that the parallelepiped was a right rect-
angular prism (this assumption had produced P5’s technique for Problem 5: she tried
to find the values of k for which the vectors are orthogonal). When I prompted P3 to
use the fact that the volume of the parallelepiped is 0, she was unable to mobilize any
relevant knowledge. Initially, she said: “do you mean that these are... [That these] can
be considered as a line, not a plane?” And then: “I have no idea.” I asked P3 if she
knew what a parallelepiped is. She didn’t. I showed her a sketch of a parallelepiped
formed by 3 vectors, returned to Problem 5, and said: “you’re told here that these three
vectors, they form a parallelepiped of volume 0.” P3 wondered if this meant they form
“a dot.” She then sketched a Cartesian graph and plotted some points. I interjected to
say that if a parallelepiped with volume 0 must be flat. P3 took this as a hint about
how she should approach the task: “so you mean that I do not really need to calculate?”
But she was unable to activate any of this. She “[tried] to imagine how the plane looked
like” but “there [we]re too many possibilities.” She had “no idea” what it meant for the
parallelepiped to be “flat.” She briefly considered an irrelevant geometric property: “I
think I’d like to.. find the distance between these three points.” But she stopped. (“I
have no idea.”) P10 similarly had “no idea” what to make of the parallelepiped having
volume 0 when I asked if she could use this.

Participants’ ability to mobilize the geometry at stake to complete the task ranged
along three scales: their ability to make an inference about the vectors’ positioning relative
to one another, given that the vectors form a parallelepiped of volume 0; their ability
to make an inference about the linear dependence of vectors, given that the vectors
are coplanar (or “on the same plane”); and how much they prioritized geometry as an
approach to tackle the given task - that is, whether they chose to address the statement
about the volume of the parallelepiped. No participant was at the top of all three scales;
that is, even if a participant was able to immediately infer, from the vectors forming a
parallelepiped of volume 0, that the vectors “belong” to the same plane and are thus
linearly dependent, this participant chose to consult their algebraic knowledge as well to
confirm what they had found geometrically (e.g., P6). And if a participant was confident
in the conclusion they found by activating the geometry at stake, they inferred the vectors
are coplanar (from the parallelepiped having volume 0) only after having first tried (and
struggled) to activate their algebraic knowledge (e.g., P8). The LA1 norm to calculate
at all costs came at the expense of these participants’ ability to mobilize or trust what
they mobilized using geometric representations.
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5.5.3.7 Summary: students’ response to Problem 5 revealed a dearth of
geometric knowledge of objects in 3-space.

In designing Problem 5, I expected students to struggle to mobilize the normative and
algebraic LA1 technique for verifying the linear independence of vectors because it would
differ from the way it typically unfolds in LA1 tasks about linear independence (as these
tasks always involve vectors with known components). I expected the information about
a parallelepiped of volume 0 to be an invitation to explore an alternative approach, which
would turn out to lead to a two-step resolution to the problem. As it turns out, most
students opted to activate algebraic techniques, and most of these students did struggle;
in spite of this, all but one (P8) turned to a geometric interpretation of a parallelepiped
of volume 0 only after I had prompted them to do so; among these students, P2, P7*,
P9 were able to complete the problem by focusing on the parallelepiped having volume
0, while P1, P3, and P10 were not.

The number and type of vectors involved—three vectors in R3—seems to impinge on
students’ capacity to mobilize a geometric interpretation either of linear independence or
of a parallelepiped having volume 0. Several students knew that if two vectors are parallel
or scalar multiples of one another, then they are linearly dependent. But the involvement
of a third vector muddied the waters. P6, for instance, inferred that a parallelepiped of
volume 0 must be a parallelogram as “one of the [vectors]” must be “superimposed on
top of the other or [be] some scalar multiple [of the other],” a notion P6 associated with
linear dependence. (This does not take into account the components of the given vectors,
from which it is clear that no vector is a scalar multiple of another vector.) A similar
effect on P9: he also inferred the parallelepiped “has volume zero because two of [the
vectors] [...] overlap” and deduced the vectors are linearly dependent for any k. P1 also
inferred the parallelepiped must be a parallelogram but was unable to make a conclusion
about the linear dependence of the vectors. Three students were unable to summon a
picture of a parallelepiped of volume 0: P3 asked if I meant “that the [vectors] can be
considered as a line,” rather than “a plane”; P5 made a deduction based on a primary
school formula for the volume of parallelepiped, but proposed no visual interpretation;
and P10 had “no idea” what to make of such a volume. P7* spent 25 minutes under guise
that three vectors are linearly independent if the sum of two of the vectors was parallel
to (or a scalar multiple of) the third; this seems a juxtaposition of the notion of linear
combination and that of linear dependence of two vectors, wherein two vectors are scalar
multiples of one another.

The mathematics at stake in Problem 5 lends itself to algebraic and geometric knowl-
edge related to linear independence of vectors in R3 as well as algebraic and geometric
knowledge about parallelepipeds and their volume. Unlike normative LA1 tasks, which
are paired with a normative technique (or two), the task in Problem 5 rather points to
constructs that belong to several and unrelated LA1 tasks (see the LA1 praxeologies I
identified as relevant to Problem 5 in Section 5.5.2). This seems to be reflected in the
variety of knowledge participants tried to activate. But the framing of the problem, as
one about vectors that form a parallelepiped of volume 0, can ostensibly be expected to
stir up a focus on the geometry at stake. In spite of this, only two students (P4, P6)
spontaneously and immediately activated a geometric interpretation about vectors form-
ing a parallelepiped of volume 0, and neither student had sufficient knowledge or trust in
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this knowledge to complete the problem without recourse to algebraic LA1 techniques. I
gather that the LA1 norm to indulge algebraic technique and place geometric knowledge
firmly in the realm of knowledge to be taught (but not of that to be learned) hindered stu-
dents’ ability to mobilize the type of knowledge most appropriate for the problem at stake.

5.6 LA1 Problem 6

The following was the sixth problem presented to 9 of the 10 LA1 students22 in the TBI:

Solve the following system of equations:

x2 + x + 1 = 0
2x2 + 4x − 6 = 0

5.6.1 Reference model for LA1 Problem 6

Problem 6 is a task of type T , to “solve a system of two quadratic equations in one
variable with real coefficients.” More precisely, though, the task t is to “find common real
root(s) of two real quadratic polynomials.” I did not specify, in the problem statement,
whether the task is to find real or complex solutions, because students in LA1 are not
required to have taken courses in which complex numbers are knowledge to be taught.
Given this context, the task was (albeit implicitly) to find real solutions of the given
system.

A quadratic polynomial ax2 + bx + c has 2 roots in C and either 0, 1, or 2 of these
are in R. The number of real roots is determined by the discriminant of the quadratic,

D = b2−4ac: if D is positive, the quadratic has two distinct real roots
(

−b+
√
D

2a
, −b−

√
D

2a

)
;

if D is 0, the quadric has two equal real roots
(−b
2a

)
; and if D is negative, the quadratic

has no real roots.

The quadratic x2 + x+1 has negative discriminant (-3) so the first equation in Prob-
lem 6 has no real solution; hence, in the context of these TBIs, this knowledge suffices to
deduce the system has no solution. In any case, the discriminant of the quadratic in the
second equation is positive, so both its roots are real, whereas those of the first quadratic
are both complex numbers, so there are no common solutions to the two equations. I de-
note by τ1 the technique in which t is completed by calculating the discriminant(s) of the
quadratic(s) in Problem 6. I denote by θ11 the knowledge that the solutions of a system
of equations consist of all values that satisfy all equations in the system, and by θ12 any
algebraic technology (such as discriminants of quadratics or factoring of quadratics) used
to find the solution(s) of a quadratic equation.

From a graphical perspective, the task to find common real roots of two quadratic
polynomials aix

2 + bix + ci (i = 1, 2) is akin to finding the points of intersection of the

22Due to time constraints unrelated to the TBI, P8 was only able to do Problems 1 - 5.
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parabolas yi = aix
2+ bix+ ci (i = 1, 2) that are also on the x-axis (as yi = 0 for i = 1, 2).

Since the graph of the first quadratic is a parabola that does not intersect the x-axis,
the parabolas do not intersect along the x-axis. The system has no solution. Various
technologies can be used to approximate the graphs of the two quadratics in Problem 6 or
to determine that one of these does not intersect the x-axis: their discriminant, a formula
for the vertex of a parabola (i.e., its x-coordinate is determined by the coefficients of
the parabola), and other knowledge that relates coefficients of a quadratic to information
about the parabola it represents (e.g., the sign of a in ax2 + bx+ c determines the orien-
tation of the parabola). I denote this family of technologies by θ22, without denoting any
technology more specifically as students’ use of this knowledge is not the target of my
investigation; I denote by τ2 the technique of completing t by attending to the graphical
perspective of the system of equations in Problem 6, and I denote by θ21 the knowledge
that a solution to a system of equations corresponds to a point of intersection of the
graphs of the equations.

I denote by Θ the algebraic and logical discourse that frames the concepts of quadratic
polynomials and of systems of equations.

The reference model for activity through which to complete Problem 6 is summarized
by the praxeological models [t; τ1; θ11, θ12; Θ] and [t; τ2; θ21, θ22; Θ].

5.6.2 Knowledge to be learned in LA1 to perform tasks of the
type in Problem 6

There is no LA1 task of the type in Problem 6 (t), but the notion of systems of equations
is at the core of the linear algebra course. The concept of what constitutes a solution
to a system of equations is knowledge to be taught in LA1. In LA1, knowledge to be
taught and learned involves linear equations in more than one unknown. In Problem 6,
the equations are quadratic and involve one unknown. LA1 students are familiar with
quadratic equations in one unknown from prerequisite mathematics courses taken either
in high-school or at university. In those prerequisite mathematics courses, students learn
techniques for solving such equations (including the quadratic formula based in the no-
tion of discriminant, discussed in Section 5.6.1) and learn that such equations have either
0, 1, or 2 solutions. I denote by τHS

1 any technique students are usually expected to
learn in high-school algebra for solving quadratic equations (I use the subscript 1 to note
the alignment between τ1 in my reference model for this problem and τHS

1 ), and I note
that students are not expected, in high-school algebra (nor in LA1), to solve systems of
quadratic equations. Through τHS

1 , it can be determined that the first equation in the
given system has no solutions and that the second equation has two solutions.

Knowledge to be taught in LA1 includes θKtbT
11 (notation I use to reflect θ11 from

my reference model for Problem 6, but also to acknowledge this technology is mainly
knowledge to be taught (“KtbT”) in LA1, as I explain next): the definition of a solution
of a system of equations as an element that solves each equation in the system. θKtbT

11 ,
together with τHS, show that the system in Problem 6 has no solution. I do note that
students are not expected to learn that if one equation in the system given in a task has
no solution, then the system has no solution. Strange as this claim may seem, I make it
on the basis of the types of equations given in LA1 tasks: linear equations which always
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have solutions (as they are never of type 0 = a where a ̸= 0). In that sense, systems in
LA1 fail to have solutions not because one of their equations fails to have a solution, but
because different equations (with solutions) fail to have common solutions. Additionally,
considering the linear-system-solving tasks given in LA1 midterm and final exams (ad-
dressed in Section 5.2.2), and in light of participants’ comments during their engagement
with Problem 2 of the TBI, the conclusion that a system has no solution is intrinsically
connected with the “no-solution” result indicated by the LA1 technique for solving linear
systems: when row-reducing an augmented matrix produces a row corresponding to a
false equation of type 0 = a, where a ̸= 0. When such an augmented matrix is reduced
to a matrix with such a row, students can immediately conclude the original system has
no solution, and are not required to produce discourse of the following type: “since the
system corresponding to this row echelon form includes a false equation, this system has
no solution; and since the original system is equivalent to a system with no solution, the
original system also has no solution.”

Other LA1 knowledge pertinent to t has to do with the graphical representation of
systems of equations and their solutions, and this is often related in LA1 to the question
of how many solutions a linear system may have. Knowledge to be learned includes the
theorem that systems of linear equations have either no solutions, 1 solution, or infinitely
many solutions (for example, in one type of task that recurs in the exams to which I had
access, students are asked to determine conditions under which a given linear system has
one solution, infinitely many solutions, or none). A constructive algebraic proof for a the-
orem about the possible (number of) solutions of linear systems is knowledge to be taught
and is included in the course textbook, and the results of this theorem are supported by
graphical discourse about solutions of linear systems of two equations in two unknowns
in R2 or of three equations in three unknowns in R3: it is to be taught that the solutions
to a system of 2 equations in 2 unknowns in R2 correspond to the points of intersection of
the lines that are graphs of these equations, it is to be taught (or, rather, reviewed, from
high-school algebra) that 2 lines (in 2-space) can either overlap and hence have infinitely
many intersection points, be parallel and distinct and thus have no intersection points, or
have different slopes and so have a unique point of intersection; and a 9-part diagram in
the course textbook shows the different ways in which 3 planes in 3-space might intersect,
demonstrating that either they have a unique point of intersection, intersect along a line
(and so have infinitely many points in common), intersect along a plane (and so have
infinitely many points in common), or not have any point at which all 3 planes intersect
(and so have 0 points in common).

The graphical representations of linear systems (in R2 or R3) and their solutions
are knowledge to be taught in LA1, but it’s harder to argue they are knowledge to be
learned23. It is possible that problems target this knowledge in assignments associated
with the textbook sections that include the graphical representations of linear systems.
But among the 116 midterm and final exam problems to which I had access, only two

23I remind the reader that by “knowledge to be learned” and “knowledge students are expected to
learn” I refer to knowledge students need so as to complete tasks on midterm and/or final exams; I do not
include the knowledge students are expected to wield to do assignments because these are worth only 10%
of a student’s final grade, students can access any resource of their choosing to complete assignments,
and students submit only the final result of a task, meaning that the way students reach their results is
not part of knowledge they are expected to demonstrate.
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problems (parts (a) and (b) of the same problem on one final exam) involved the corre-
spondence between linear systems and their graphical representations: the first task was
to find the equation of a plane that passes through a given point and a line L that is
defined as the intersection of two planes given in point-normal form (ax + by + cz = d),
and the second task was to find the coordinates of the intersection of L and a plane P ,
where P is also given in point-normal form. Core to the completion of these tasks is
θKtbT
21 (to reflect θ21 from my reference model for Problem 6)24: the knowledge that a so-
lution to a system of equations corresponds to a point of intersection of the graphs of the
equations. Technology θHS

21 can be used to complete t together with any high-school tech-
nique for producing graphs of quadratic equations (which I will denote by τHS

2 to reflect
τ2 from my reference model and as a reminder that I refer to usual high-school knowledge).

In LA1, students are to learn Gaussian and Gauss-Jordan elimination—or, more
broadly, row-reduction of augmented matrices—as techniques for solving linear systems.
The theory that produces these techiques is knowledge to be taught: an augmented ma-
trix captures the coefficients and constants of a linear system, and each elementary row
operation corresponds to an algebraic operation for producing equivalent equations (as
discussed in the reference model for Problem 2 in Section 5.2.1). The theory that pro-
duces Gaussian and Gauss-Jordan elimination (e.g., including the notion of equivalent
equations) is not knowledge to be learned; no assessment requires students to have this
knowledge. Students are to learn how to interpret row echelon forms of an augmented
matrix to make a deduction about the solutions to a given linear system.

I denote by τ3 the technique in which the augmented matrix of the system in Problem
6 is reduced via row-operations to solve the system—the technique for solving systems of
equations in LA1. Such a reduction would yield the reduced row echelon form[

1 0 5 0
0 1 −4 0

]
This corresponds to the system

x2 + 5 = 0
x − 4 = 0

As the first equation corresponds to x2 = −5, which has no (real) solution, while the
second equation is solved if x = 4, this system has no solution. I note this argument does
require θKtbT

11 : the knowledge that a solution to a system is a value that satisfies each
equation in the system.

In sum, the knowledge to be learned (and taught) in LA1 through which Problem 6
can be completed is summarized by the praxeologies [t; τHS

1 ; θKtbT
11 ], [t; τHS

2 ; θKtbT
21 ], and

[t; τ3; θ
KtbT
11 ].

24As before, I use the superscript “KtbT,” acronym for “knowledge to be taught,” to underscore this
technology belongs to knowledge to be taught but not to knowledge to be learned in LA1.
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5.6.3 Knowledge LA1 students activated in response to Prob-
lem 6

Table 5.11 (on p.228) summarizes the paths of participants’ activity as they worked on
Problem 625. As before, Step 1 refers to the activity a participant spontaneously en-
gaged in upon reading the problem statement; I group students according to Step 1 and
color-code the groups to help trace students’ paths thereafter. I categorize a student’s ac-
tivity in a new step if they presented it as such; if I prompted for another approach and a
participant described one that is essentially equivalent, I still categorized it as a new step.

Throughout this section, I will refer by EQ1 and EQ2 to equation 1 (x2+x+1 = 0) and
equation 2 (2x2+4x−6 = 0) of the system, respectively. The calculations students made
toward solving these equations were generally accurate. I do not specify results students
found when these were accurate; when they were not, I indicate as much in Table 5.11 by
writing that a technique was enacted “inaccurately” by a given participant. I only specify
inaccurate results a participant found if the inaccuracy was due to a misconception (e.g.,
as in P9’s inappropriate interpretation of his augmented matrices in Step 1), rather than a
miscalculation (e.g., as in P10’s incorrect factorization of the quadratic in EQ2, in Step 4).

Recall that EQ1 has no real solutions and EQ2 has 2 distinct real solutions. In
the context of my interviews, as participants will not have necessarily been exposed to
complex numbers, I expected that students who found EQ1 to have no solutions would
deduce that the system has no solutions, even without examining EQ2, based on θKtbL

11 ,
the principle that any solution of a system must satisfy all equations of which it consists,
even if exam questions did not explicitly require this technology, perhaps because of a
deduction that if students know what constitutes a solution of an equation, then they
also know what constitutes a solution of a system of equations. For the purpose of this
discussion, which aims to elicit participants’ knowledge about systems of equations and
the LA1 techniques they learned for solving (linear) systems, I focus participants’ actions
toward solving Problem 6 in Table 5.12: in this table, I categorize participants’ actions
according to whether they did or did not deduce the system has no solutions after hav-
ing found either that EQ1 has no (real) solutions or that solutions they found (for EQ2
or for an equation formed by adding or subtracting corresponding sides of one equation
from the other) did not satisfy one of the equations. I also indicate instances in which
participants deduced, from such findings, that their approach was incorrect.

25Due to time constraints unrelated to the TBI, P8 was not able to do Problems 6 - 8.
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Table 5.11: Paths of LA1 Students’ Activity in Problem 6

Practical block [t, τ ]

Type of engagement with [t, τ ]
S
te
p
1

S
te
p
2

S
te
p
3

S
te
p
4

S
te
p
5

S
te
p
6

S
te
p
7

S
te
p
8

solve EQ1 (discriminant)

P1 enacts, deduces system has no real solutions

P4 enacts, does not deduce system has no solutions

P5 enacts, does not deduce the system has no solutions

solve EQ2 (factoring) and check
whether its solutions satisfy EQ1

P3 enacts, does not deduce the system has no solutions

P6 enacts, does not initially deduce system has no solutions; suggests it after a prompt from interviewer

solve EQ2 (factoring)

P4 enacts, says the solutions of EQ2 are the solutions of the system

P5 enacts

P10 enacts incorrectly

solve the system by solving
both equations (discriminant,
quadratic formula)

P7* enacts, deduces system has no real solutions

P2 starts to enact (inappropriate technique)

P9 enacts, deduces system has no solutions

P2 partially enacts: solves EQ1 and EQ2 but does not deduce system has no solutions

solve the system by HS system-
solving technique (substitution or
addition/elimination) and verify
if values found solve the system

P3 enacts, does not deduce system has no solutions

P7* partially enacts: finds a value for x and says it’s already known this value does not solve the equations

P10 partially enacts: finds a value for x but does not verify whether it is a solution

P2 partially enacts: finds a value for x but does not verify whether it is a solution

add or subtract ‘equations’ to re-
duce the system to a single equa-
tion and check if its solution(s)
correspond to the solutions of ei-
ther EQ1 or EQ2

P5 partially enacts: finds an equation and abandons

P6 enacts, does not deduce the system has no solutions

P10 partially enacts: finds an equation but struggles to solve it

P4 enacts, deduces technique is incorrect

P5 enacts, does not deduce system has no solutions

P5 enacts, deduces there are no values of x that solve both EQ2 and the new equation

P2 enacts, deduces technique is incorrect

substitute values for the unknown
in EQ1 to check whether it has
solutions

P2
enacts, deduces EQ1 has a solution because small value (0.1) of x makes quadratic have a value
close to 0 (0.99)

interpret the equations and their
solutions graphically

P7* describes accurately and describes what expected graphs would be if the system were not homogeneous

use Gauss-Jordan elimination

P2 starts to enact: writes augmented matrix

P9

enacts incorrectly several times: first, interprets the RREF correctly (x2 = −9, x = 4); second, interprets the
RREF incorrectly (expresses x2, x in terms of a parameter: x2 = −9t, x = 4t, x = t); third, interprets the RREF

incorrectly (

[
1 0 −3
0 1 −2

]
, x = −3 and x = 2); fouth, interprets the RREF incorrectly twice (

[
1 0 −3
0 1 −4

]
; first deduces

x = 3, x = 4, then changes to x2 = 3t, x = 4t, x = t)

P3 enacts, deduces technique is wrong because values for x, x2 are contradictory

P4
enacts incorrectly first, correctly second, and dismisses the approach: interprets RREF in terms of un-
knowns that are not part of the system (x − z = 0, y + 2z = 0), then realizes the system is in terms of
powers of x, and dismisses the approach

P10
enacts, finds two values for x, finds they do not solve the equations, does not deduce the system has no
solutions

P2
enacts, finds a negative value for x2, says this “is impossible,” deduces the system has no solutions
after being prompted to make a conclusion about the system

verify and reflect on results found
in previous steps

P2
discusses: says results found in Steps 1, 3, 4 are “impossible” and those from
Step 7 do not solve EQ1, does not deduce system has no solutions.

EQ1: equation 1 of the given system (x2 + x+ 1 = 0); EQ2: equation 2 of the given system (2x2 + 4x− 6 = 0); HS: high-school.
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5.6.3.1 All students uncovered inconsistencies in the system; most struggled
to conclude the system has no solutions.

All students had sufficient knowledge of how to solve quadratic equations to solve them
accurately, but most did not have sufficient knowledge of systems of equations to conclude
the system had no solution. As a first step in the analysis of participants’ engagement
with Problem 6, I organize a description of their activity in terms of whether and how they
came to deduce the system has no solution. I begin with Table 5.12, which categorizes
the deductions student made after gaining one of the following pieces of knowledge: that
EQ1 has no solution, that the solutions of EQ2 do not solve EQ1, or that the solutions
of equivalent equations (produced by various algebraic techniques) do not satisfy EQ1
and/or EQ2. I categorize participants according to whether, after gaining such knowledge,
they did not deduce the system has no solutions, whether they deduced their approach
must have been incorrect, whether they deduced the system has no solutions but only
after prompts from the interviewer (prompts attending to the matter that solutions of a
system must solve all equations), or whether they deduced, on their own, that the system
has no solutions.

Table 5.12: Students’ deductions about the system from the solutions they found (Prob-
lem 6)

Knowledge K gained about
the solutions of equation 1
(EQ1) and/or equation 2
(EQ2)

Participants who, after gaining K, . . .

did not deduce
the system has
no solutions.

deduced their
approach was
incorrect.

deduced the
system has no
solutions only
after a prompt
from the in-
terviewer (that
solutions of a
system must
solve both equa-
tions).

deduced the sys-
tem has no solu-
tions.

EQ1 has no solutions
P4 (Step 1)
P5 (Step 3)

P1 (Step 1)

The solutions of EQ2 do not
solve EQ1 (plugging values
into EQ1, or solving EQ2
and finding EQ1 has no so-
lutions).

P2 (Step 3)
P3 (Step 1)
P6 (Step 2)

P6 (Step 2)
P7* (Step 1)
P9 (Step 2)

The solutions found by
creating a new equation
(by adding/subtracting
corresponding sides of EQ1
and EQ2) or via HS or
LA1 system-solving tech-
nique (HS substitution,
HS elimination/addition,
Gauss-Jordan elimination)
do not satisfy EQ1 and/or
EQ2.

P3 (Step 2)
P5 (Step 4)
P6 (Step 1)
P10 (Step 3)

Gauss-Jordan
elimination:
P3 (Step 3)
P4 (Step 3)

P2 (Step 4, but
then went on
with four more
approaches; P2’s
comments in
Steps 5-8 con-
firm he was not
convinced the
system had no
solution)
P4 (Step 4)

P5 (Step 5)

Subtracting cor-
responding sides
of EQ1 from
EQ2 to create a
new equation:
P2 (Step 7)
P4 (Step 4)

Of the nine participants who attempted Problem 6, all had the evidence needed, from
their computations, to conclude the system has no solutions. However, only three (P1,
P7*, P9) came to this conclusion on their own and as soon as the evidence appeared; two
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(P4, P6) found two pieces of evidence, did not deduce the system has no solutions, and
finally did after a prompt from the interviewer; one (P5) came to this conclusion after
having found three pieces of evidence; one (P2) seems to have come to this conclusion
after a prompt from the interviewer, but did not seem convinced—he decided to tackle
the problem via more approaches; and two (P3, P10) did not come to any conclusion
about the system. Finally, at some point in their engagement with Problem 6, three
students (P2, P3, P4) found their contradictory results (of the type x = a and x = b,
where a ̸= b) to mean their approach was incorrect.

The participants who completed Problem 6 correctly immediately upon finding evi-
dence that the system has no solutions did so either in Step 1 or 2 of their approach. P1
found the quadratic in EQ1 has a negative discriminant, deduced it has only imaginary
solutions, and concluded the system has “no real solutions.” (P1 also commented this
is “not material for MATH 204” because in that course, “we don’t care about complex
numbers.”) P7* similarly found this quadratic to have negative discriminant; he also
found solutions to EQ2, which he said “of course, do not hold for the first equation”; he
concluded the system does not have real solutions. He did ask if he “need[s] to take a
look at [imaginary] solutions”; after I said it’s up to “whatever [he] think[s],” P7* said he
didn’t think it necessary. P1 and P7* both came to the “no solution” conclusion in Step
1 of their approach; P9’s first step was a series of incorrect attempts at Gauss-Jordan
elimination—incorrect by virtue of interpreting the RREF of his augmented matrix in-
appropriately (e.g., introducing unknowns apart from x and ascribing parameters where
there was nothing to parameterize). After P9 abandoned this approach, he used high-
school techniques for solving EQ1 and EQ2 individually; he found the values of the two
distinct solutions for EQ2 and found that EQ1 has only imaginary solutions. He con-
cluded the system has no solutions.

P6 circled the same conclusion as P1, P7*, P9, but only seemed certain of it after a
prompt I gave him. Initially, P6 subtracted corresponding sides of EQ1 from EQ2 and
produced a new quadratic equation; he found its solutions do not solve EQ1, but made
no conclusion from this about the system. His next approach was to solve EQ2; again, he
found values that did not solve EQ1. He took this to mean the following: “if I draw the
graph of a parabola, a parabola either won’t have a y-intercept or an x-intercept, I guess,
right? Because this is saying where y is equal to zero, or y- will have two y-intercepts,
right? Or it will have one if the y-axis is tangent to the parabola. [The quadratic in EQ2]
definitely has two [roots]... But if I plug them into the first one, then the roots are not
the same. Okay, so they won’t be zero at the same x values.” Nevertheless, P6 said he felt
frustrated: “maybe these are all just tricky questions, but I feel like I keep on like arriving
at the answer that there’s no answer. And it’s slightly frustrating.” Why frustrating?
“Because I feel uncertain about my answers. But I also like solving things. And I’m not
sure I’m doing a very good job.” I asked what it would “take to convince [him] there are
no values [of x that make both equations true]” and, at first, he said “better knowledge
of linear algebra.” Ultimately, though, he was “reasonably certain [of his] answer” but
the wording of Problem 6 (“solve”) “ma[de him] think there is [a solution]”; “whenever
I read a question that says, find this, do that, do this, I assume that it can be found or
it can be solved.” He said “[he] guesses the solution is that there are no solutions,” and
as I prepared to move on to Problem 7, he asked: “was I far off?”
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P4, like P6, only concluded the system has no solutions after I prompted him in
this direction. His spontaneous reaction to the problem was to consider Gauss-Jordan
elimination, but “according to [his] knowledge, the linear algebra only works for first order
polynomials” (he wasn’t “sure,” though). Instead, he opted to solve EQ1 by finding its
discriminant. He found it to be negative and deduced EQ1 has no solutions. P4 then
moved on to solve EQ2; he found its solutions to be -3 and 1 and concluded these are the
“solutions to the system.” He said “these are two completely independent equations” and
decided to “augment” the system and use Gauss-Jordan elimination after all. He wanted
to see if his “suggestion at the beginning was wrong - that only first order polynomials
work [with Gauss-Jordan elimination].” Once P4 found the RREF of the augmented
matrix of the system, he interpreted it to correspond to the following equations:

x − z = 0
y + 2z = 0

and wrote the parametric equations x = t, y = −2t, z = t as a general solution to the
system. P4 noticed the issue shortly thereafter: “ooh my God! These aren’t even y and z.
I was assuming y and z.” But he did not correct his interpretation of the RREF. Instead,
he concluded that “this is wrong”—that is, the method of Gauss-Jordan elimination is
altogether “wrong” for the problem at stake. He said he would “go” with his earlier
conclusion that the solutions to the system are 1 and -3. I asked if these values make
both equations true, and P4 said: “yes.”

P4’s last attempt at Problem 6 followed this question; he subtracted the sides of EQ1
from the corresponding sides of EQ2 and produced the equation x2 + 3x − 5 = 0. He
solved it and found values of x different from the ones he had found earlier. P4 said he
didn’t know why the new values of x differed from the previous ones and plugged them
into EQ1; they did not satisfy it. P4 deduced his approach was “wrong,” but he couldn’t
say why. “It’s not something I can explain,” he said.

P4 struggled with the system itself: “what really disturbs me was that these two
[equations] are grouped together. This one has solution, the second one, and the first one
does not.” He proposed, as a conclusion of sorts, that “the first one [has] no solution and
for the second one, [the] solutions [are] -3 and 1”—so he “would put that [...] -3 and 1
are the solutions of the system of equations.” I pointed out he said “of the system,” and
P4 responded that “the problem is that if you’re saying system, that means the two are
related, and these [-3 and 1] should be values that work for both of them.” I pointed out,
finally, that “the task is to find the values of x that make both equations true,” and only
then did P4 deduce that there aren’t any:

Oh, yeah! So, yeah, thank you. Because I would say that there’s no solution
for the system of equations, mainly due to the first one not having any solu-
tion. Yeah, because I just remembered that the definition of system was that
the solution would be fitting to all of them, not just to one. So since the first
one does not have any solution, then the system of equations doesn’t have
any solution.

For P5, the inconsistency between EQ1 and EQ2 did not suffice to deduce the system
has solutions; it took more evidence to reach this conclusion. In Step 2 of her engagement
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with Problem 6, P5 found the distinct solutions of EQ2, and in Step 3, she noted, by
observation, the quadratic in EQ1 could not be factored and was not satisfied by 1, one
of the solutions of EQ2; she also computed the discriminant of the quadratic in EQ1,
found it to be negative, and concluded EQ1 has no solutions. Nevertheless, P5 made
no conclusion about the system of equations at this point. She went on to a fourth at-
tempt at the problem, this time using an equation she had found in her first approach
(3x2+5x−5 = 0, found by adding corresponding sides of EQ1 and EQ2) and found it was
not satisfied by the solutions of EQ2. P5 then made a last and fifth attempt: she sub-
tracted the sides of EQ1 from the corresponding sides of EQ2 (producing x2+3x−7 = 0),
solved this new equation, found its solutions do not satisfy EQ2, and she finally concluded
the system has no solutions. To be convinced the system has no solutions, if she were
doing this at home, P5 would use a graphing calculator to confirm there is no intersection.

P2’s conclusions were ambiguous and his attempts at Problem 6 numerous. After his
initial ditched attempt to use Gauss-Jordan elimination, he started to solve the system
by solving each equation; but his approach was to isolate the constant and factorize the
left side of an equation (where the expression had the form ax2 + bx, a ̸= 0, b ̸= 0), and
he abandoned this promptly. Next, he found the discriminant of EQ1 was negative and
found EQ2 has 1 as a solution; he said “this is impossible because if x = 1, the first equa-
tion is impossible.” But he did not conclude, from this, that the system has no solutions.
Instead, he gave Gauss-Jordan elimination another go.

P2’s Gauss-Jordan elimination led to the RREF of the augmented matrix:[
1 0 −5
0 1 4

]
,

He knew this corresponded to the equations x = 4 and x2 = −5. Again, he used the term
“impossible” to qualify the latter result. I asked what this tells him about the system
and P2 said it has no solutions. Nevertheless, for P2, for Gauss-Jordan elimination to
imply a system has no solutions, the RREF obtained must follow a certain dress-code:
“you should get 0 0 and then a [non-zero] number. And because I got this [1 0 -5 in
first row, 1 0 4 in second], that means that it is not impossible [that is, it is not without
solutions]. So there is an answer [a solution]... but what [is it]?” Even though P2 had
suggested the system might not have a solution, he does not seem to have been convinced
of this: instead, he was not sure the Gauss-Jordan approach was appropriate (“I’m not
sure I can use a matrix”) and went on to tackle the problem with other techniques.

In Step 5, P2 estimated that EQ1 should have a solution because, after plugging -0.1
as a value for x, found the quadratic was approximately 0.99; this is in spite of P2’s earlier
finding that EQ1 has no solutions (in light of the negative discriminant). He went on,
unprompted, to solve the system using the high-school method of addition (multiplying
both sides of one equation by a constant and adding corresponding sides to the second
equation, so as to produce an equation with less unknowns); he found x = 4 but said
nothing of this, continuing instead onto a seventh approach to Problem 6, setting the
quadratics of EQ1 and EQ2 equal to one another and solving this equation. He found
two values for x, but was “certain this is wrong because if I substitute this into the first
equation, then there’s no way to get 0.” In a last and eighth attempt at Problem 6, P2 re-
flected on the various “impossible” results he found in his attempts but was sure “there’s
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an answer”: “if this was on a test, then I would write it’s impossible; I know there’s an
answer” and, after again referring to an “impossible” result he found (x2 = −5, from
Gauss-Jordan elimination), reiterated that he is “sure there’s an answer.” I infer that by
“answer,” P2 indeed meant a value that solves the system: he expected “the range of
the answer to be between -1 and 0.” P2’s final comments were an acknowledgement that
his assessment may be incorrect: after I asked why he was sure there is an answer, he
paused and eventually said that “it might be impossible because [he] used x = −0.1 and
got 0.99” in EQ1 (Step 5) and re-observed that the solutions found for the equation in
Step 7 do not solve the first equation in the system.

Finally, P3 and P10 did not deduce the system has no solutions at any point in spite
of having found evidence that shows the system has no solutions.

P3’s spontaneous reaction to the problem was to solve EQ2; upon finding its solutions
do not satisfy EQ1, P3 sought another approach (“I’m trying to find if there is any other
way that I can solve this problem”). P3 then isolated x2 in one equation, substituted this
expression for x2 (−x− 1) in the other equation, solved the new equation, found x = 4,
checked if this solved the system. It did not. A third approach: P3 substituted x2 by t
in both equations, wrote the augmented matrix for the system, reduced it to its RREF,
and interpreted it to mean that t = −5 and x = 4. P3 knew this is a contradiction, but
assigned blame to the wrong perpetrator: “if this is the right approach, [the value found
for] t should be [the value of x2] but it is not.” P3 concluded the approach was “wrong”
because, if x = 4, then “t should be 16.” This was P3’s last attempt at Problem 6. She
said that “[the graphs of x2+x+1 = y, 2x2+4x−6 = y] do have an intersection”: “I feel
like they do; they should have an intersection.” She sketched concave-up parabolas with
vertices above the x-axis and, after I asked why she thinks the graphs are like this, made
a new sketch of a concave-up parabola crossing the x-axis at -3 and 1 (thus representing
2x2 + 4x− 6 = y), but did not address what the graph of x2 + x+ 1 = y might look like
and how these sketches relate to the problem—that is, that the interest, in Problem 6, is
in points of intersection of the parabolas along the x-axis.

P10 also found evidence of the system being inconsistent. In some of her approaches,
she either struggled with the algebra (in Step 1, she tried to factorize a quadratic over
the integers, and then abandoned the approach) or solved one equation but did not verify
if it satisfied the other equation (Step 2). In Step 3, P10 used Gauss-Jordan elimination
and found the RREF of the augmented matrix to correspond to the equations x2+5 = 0
and x = 4, which she interpreted to mean x2 =

√
5 and x = 4. P10 paused twice as she

explained what this meant. She was not sure because of the “two separate answers” and
eventually said neither “seem to fit the equation[s].” P10’s last attempt at Problem 6 was
to solve EQ2; she did so incorrectly, finding values of x that do not solve it, but did not
say anything about the solutions she found.

All participants found evidence of inconsistencies in the system they were given, but
most participants struggled to come to a conclusion about the system. Participants’
continued attempts to hack away at the problem suggest they were aware these incon-
sistencies were, in effect, inconsistent. Their reluctance or inability to conclude, from
this, that the system has no solutions highlight gaps in their knowledge about systems of
equations and what it means to “solve” them. I discuss this in Section 5.6.3.2. Parallel to
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participants’ bereft knowledge about what is implied by “solving” a system was a lack of
autonomy in evaluating the validity of system-solving techniques they had used in LA1.
This lack of autonomy presented in students as a lack of confidence in their approach or
an inability to evaluate the validity of their approach (e.g., deducing, from contradictory
values found for x, that their approach must be incorrect). This lack of autonomy points
to an absence of knowledge about the algebraic and logical foundations of system-solving
techniques students are to learn in LA1; in Section 5.6.3.3, I discuss comments students
made that suggest students’ lack of autonomy may be supported by LA1 norms that
allow students to operate exclusively along surface-level features of problems they are to
solve.

5.6.3.2 For many students, that the system might have no solution was an
unpalatable possibility.

Apart from P1, P7*, and P9, who concluded on their own the system has no solutions
as soon as they found evidence to that effect, the rest of the participants struggled with
this evidence.

P5 came to this conclusion on her own, but only in her fifth attempt at the problem
and after having found three pieces of evidence of inconsistencies in the system.

P4 and P6 explicitly acknowledged the results they found (on more than one occa-
sion) were problematic—in the sense of inconsistency between the equations—but only
concluded the system has no solution after I pointed out that a solution to the system
must solve every equation in the system. P4’s comments tipped me off that he needed
this clarification: “what really disturbs me was that these two are grouped together.
This one has solution, the second one, and the first one does not.” He continued: “the
problem is that if you’re saying system, that means the two [equations] are related, and
[the solutions of EQ2] should be values that work for both of them.”

P2 had also found several results that each pointed to an inconsistency between the
equations, and suggested the system had no solution after I asked what one of his results
(x = 4, x2 = −5) told him about the system. But P2 was not convinced the system had
no solution: he expected EQ1 to have a solution because plugging in a value for x ( 0.1)
produced 0.99, which he estimated to be close to 0. (This is in spite of having found,
earlier, that the discriminant of EQ1 is negative.)

P3 and P10, finally, did not make comments that suggested suspicion to the possi-
bility that the system has no solutions. Instead, P3 blamed her inconsistent results on
her approaches, which she presumed faulty. P10 did not offer much reasoning about her
results; in her penultimate step, she noted that two values she found for x did not “fit”
the equations, and finally tried but failed to solve EQ2.

Participants were either reluctant or unable to conclude the system had no solution
despite ample evidence to that effect. In the next section, I discuss the (LA1 and TBI-
related) institutional elements that may explain the unpalatability of this possibility.
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5.6.3.3 Students did not have agency over system-solving techniques and
results thereof; they may have also had a weak sense of agency over
these matters.

In this section, I investigate the hesitation of six students (P2, P3, P4, P5, P6, P10) as
they struggled to make a conclusion about the system after they found inconsistencies in
the system.

Several students suspected their inconsistent results were due to incorrect technique
but offered no justification as to why their technique might be incorrect, other than that
it led to an inconsistent result. P2, P3, P4 made comments to this effect; P2 and P4
fished for more and more approaches every time they came to an inconsistent result—all
essentially based in the same concept of producing equivalent equations, but not always
producing equivalent systems (e.g. as they reduced the given system to a single equation);
P6 was frustrated that, yet again in this interview, he had found inconsistent results and
doubted the accuracy of his approaches; P5 concluded the system had no solutions con-
ditionally (“if I did the math right, the x values for this one don’t make the [quadratic
in the] first equation equal to zero”) and only after seeing three pieces of evidence to this
effect—to be convinced of this conclusion, if she had been doing this at home, she would
use a graphing calculator to see that the graphs have no intersection.

5.6.3.3.1 Students were positioned as participants who had struggled with
previous problems in the TBI; this may have weakened their sense of agency
relative to LA1 knowledge. By “sense of agency,” I refer to the meaning suggested
by Sierpinska et al. (2008): to have a sense of agency is to believe one can make something
happen. The TBI problems were designed to bring out what students did and did not
know in relation to LA1 knowledge, and by the time P6 reached Problem 6, for instance,
he indicated his sense of agency had taken a hit:

Maybe these are all just tricky questions, but I feel like I keep on like arriving
at the answer that there’s no answer. And it’s slightly frustrating. Because I
feel uncertain about my answers. But I also like solving things. And I’m not
sure I’m doing a very good job.

P6’s comments, in addition to those made by others (e.g., P4’s claim that Problem 6 is
“a very peculiar question”) attest to his position as participant in a study that presented
him with problems that brought to light limitations of knowledge that had sufficed to pass
a course he had recently taken. This contrasted with his position as someone who enjoys
to solve problems; on this and other occasions in the interview, P6 said he enjoyed to read
books about material in certain domains of mathematics and had actually brought one
with him to the interview, to ask me a question about content in that book. A concern
with “doing a very good job” was part of what P6 took into consideration as he tackled
the interview problems. This may have undermined his confidence in the knowledge he
had. Even after P6 concluded the system has no solution and as I was about to give him
the next problem, he sought reassurance: “was I far off?” His knowledge of the mathe-
matics at stake was insufficient face and, to appease a resulting lacking sense of agency,
he appealed to my authority as the interviewer.
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P6’s comments—making explicit the frustration and uncertainty he felt in tackling
problems that challenged LA1 norms—suggest that the hesitation with which students
grappled, as they struggled to make a decisive conclusion about a system that ostensibly
had no solution, may have been reinforced by a lost sense of agency.

5.6.3.3.2 Several students’ take on augmented matrices and elementary row
operations neglected the mathematics at stake. The notion of augmented ma-
trices was mobilized incorrectly by two students: P9, who spontaneously concluded the
system has no solution after he found EQ1 to have a negative discriminant and EQ2 to
have two real solutions, and P4, who only concluded the system had no solution after I
said (following his fourth attempt at Problem 6) that “the task is to find the values of
x that make both equations true” (P4 had already found that EQ1 had no (real) solu-
tion). Two other students (P2 and P3) mobilized augmented matrices and elementary
row operations appropriately but failed to conclude the system has no solution (despite
having found a result pointing to this conclusion); for P3, this was due to uncertainty as
to whether the technique was appropriate, and for P2, this was because he prioritized
a LA1 rule about systems with no solutions (a rule accurate for linear systems but not
others) over the inconsistent result he found.

P9’s spontaneous reaction to Problem 6 was an incorrect application of row reduction
to the system. Initially, he interpreted the reduced row echelon form (RREF) of the
coefficient matrix appropriately: x2 = −9, x = 4. But then, he paused. Eventually, he
ammended these equations to x2 = −9t, x = 4t, x = t. He did not explain why.

Next, P9 restarted the row-reduction process from scratch; this time, he found the
RREF to be [

1 0 −3
0 1 −2

]
,

and deduced that x = −3 and x = 2. He then started over—again—this time reducing
to [

1 0 −3
0 1 −4

]
and said the answer is x = 3, x = 4, and “the third one is equal to t,” writing
x2 = 3t, x = 4t, x = t.

P9 was unable to land on an accurate interpretation of the RREF of the augmented
matrix. He used the entries as coefficients, sometimes of the appropriate unknown and
othertimes not, and he introduced a parameter as a result of this confusion: in his last
attempt, he treated the third column entries as coefficients of x, in which case x would
have been a free variable and hence assigned the parameter t. In contradiction with
this (already incorrect) interpretation, P9 also used the second column entries as coeffi-
cients of x. P9 abandoned this approach and opted to calculate the discriminants of the
quadratics instead.

When P4 used row reduction, he interpreted the reduced row echelon form of the
augmented matrix as a system of equations in unknowns x, y, and z, as per the LA1
norm for coefficient matrices with three columns. From his equations, he obtained the
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parametric equations x = t, y = −2t, z = t and said “this doesn’t work in any way to
[his] quadratic way [sic] of approaching a problem.” He added he wouldn’t “trust” this
approach. As he kept talking, he realized that “of course [he] wouldn’t [trust it]” because
what he was solving was the equation x2 + x + 1 = 0, so the unknowns “aren’t even y
and z.” He concluded this approach was “wrong” and made no attempt to correct it (by
interpreting the RREF in terms of the appropriate unknown). Instead, he said he would
stick with the solutions he found by factoring the quadratic in EQ2: values of x which
he insisted, at that point, to be solutions to the system.

P4 seemed primed to doubt the suitability of row reduction as a technique for solving
a system of two quadratic equations. His spontaneous reaction to Problem 6 was this
monologue:

I want to use a quadratic formula, but I’m thinking maybe there’s a better
way to go about this. I would think about augmenting it. According to my
knowledge, linear systems work and linear algebra only work for the first order
polynomials. I think. I’m not sure... So I will actually, first let’s start with
the quadratic equation.”

And he did. After his first three attemps at Problem 6, P4 decided to give the aug-
mented matrix approach a try to “see if [his] suggestion at the beginning was wrong
- that only first order polynomials work.” He did not mobilize algebraic theory that
underpins augmented matrices and elementary operations to assess whether these tools
are appropriate; to check their suitability, he planned to wield the result they would yield.

After P4 realized he had misinterpreted the RREF of the augmented matrix of the
system, he did not correct his interpretation. He rejected the approach altogether. This,
together with the comment that he was “not sure” as to whether an augmented matrix
would “work” in this context, constitute a failure to mobilize mathematical theory at
stake in Gauss-Jordan elimination: what the entries in an augmented matrix represent,
first, and second, what elementary row operations represent relative to the original sys-
tem. P9 did not voice suspicion as to the suitability of Gauss-Jordan elimination as an
approach for the problem at hand, but his inability to identify what the matrix entries
represent (relative to the given system) and his subsequent abandonment of the technique
are similarily a failure to mobilize mathematical theory at stake in this technique.

P3 mobized row reduction accurately and found the RREF of the augmented matrix
to correspond to the equations x2 = −5 and x = 4. She knew this is contradictory, as
x2 is 16 if x is 4. But for P3, this did not mean the system has no solution. Instead, it
meant the technique was inappropriate.

P2 also mobilized row reduction accurately, but his comments about Gauss-Jordan
elimination suggest that a driving force behind his conviction that the system has so-
lutions (despite all evidence he found to the contrary) was surface-level knowledge that
normally sufficed in LA1. When he reflected on the RREF he found in Step 4,[

1 0 −5
0 1 4

]
,

237



he fixated on a rule about what the RREF of an augmented matrix must look like for
a system to have no solutions: “you should get that if it is impossible [if there are no
solutions], you should get 0 0 and then a [non-zero] number. And because I got this
[1 0 -5 in first row, 1 0 4 in second], that means that it is not impossible. So there
is an answer... but what [is it].” P2’s knowledge about systems with no solutions was
a surface-level property of augmented matrices: for a system to have no solutions, the
RREF of the augmented matrix must include a row in which all the entries except for the
right-most entry are zero. This rule works in LA1 as systems are linear in that course;
the issue is that the norm P2 had developed in LA1 - just like the norm developed by
P4 and P9 - did not enable him to use other knowledge about system-solving toward the
task in Problem 6. P2 knew that “if you had 0 0, then a [non-zero] number, it is impos-
sible because 0x2 + 0x cannot be equal to a number other than 0.” This is true! But P2
expected this to be the only scenario in which a quadratic system might have no solution.

P2’s long search for a resolution to Problem 6 (amounting to 8 different attempts)
stemmed, in part, from him prioritizing a surface-level rule about Gauss-Jordan elimina-
tion over algebraic and logical concepts that justify augmented matrices and elementary
row operations. As a consequence, for P2, that the RREF produced the equation x2 = −5
did not mean that the original system corresponded to a system with no solutions. Ulti-
mately, he was “not sure I can use a matrix” for the problem at hand.

The surface-level rule P2 activated is accurate for linear systems and, as such, is not
problematic in LA1. But the institutional norm in LA1 does not present students with
instances in which to engage with the algebra and logic that justify and produce the
notions of augmented matrices and elementary row operations, concepts at the core of
the course. For P2, P3, P4, and P9, not mobilizing the underlying theory was an obstacle
in Problem 6. P2 made king of surface-level rules at the expense of what he had found
(that the RREF of the augmented matrix corresponded to a system with the equation
x2 = −5). He would not conclude the system had no solution because the rule about the
no solution row-type was not satisfied. The algebra and logic underpinning Gauss-Jordan
elimination were not knowledge to be mobilized; this resulted in four participants’ inabil-
ity to adapt the technique for a system of two quadratic equations.

5.6.3.3.3 Participants did not activate algebraic and logical theory that un-
derpin system-solving techniques taught in high-school and LA1. In addition
to P2, P3, P4, and P9’s failure to mobilize algebra and logic at the basis of Gauss-
Jordan elimination, other system-solving attempts were rife with instances in which they
failed to activate the same algebra and logic underlying the concept of equivalent systems.

In Step 2 of her approach to Problem 6, P3 used the high-school technique of sub-
stitution to solve the system: she isolated x2 in one equation, substituted the expression
for x2 (−x− 1) in the other equation, solved that equation, found that x = 4, checked if
this solves the system, found that it does not - and did not say, as a conclusion, that the
system has no solution, even after Step 3 of her approach, in which she used Gauss-Jordan
elimination, found contradictory values for x and x2, and deduced the technique was not
suitable. P3, like other participants who found inconsistent values for x, did not have an
explanation for the results she was finding.
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Six of nine participants struggled to make something of the contradictory values they
found for x via system-solving techniques; this reflects an inability to mobilize the notion
of equivalent systems. The notion of equivalent systems was absent from students’ knowl-
edge in another type of instance: some students ‘reduced’ the system they’d been given
to a single equation. The steps involved in such ‘reductions’ were one of three options:

� Some students equated the quadratics in EQ1 and EQ2, justifying it on the basis
that both quadratics must equal 0.

� Other students added the left sides of the equations to one another and their right
sides as well to produce a new equation.

� Other students subtracted the left side of one equation from the left side of the
other equation, and did similarly with the right sides.

In all three cases, students did not mobilize the notion of equivalent systems. This
was rectified as students knew to verify whether the values they found for x satisfied the
two original equations—and discovered they did not (P2 in Step 7, P3 in Step 2, P4 in
Step 4, P5 in Step 4, P6 in Step 1, and P10 in Step 3).

What students did not seem to know was that in producing a new equation, they
had produced an equation that was equivalent to one of the equations in the original
system. When P2 used the reduce-a-system-to-a-single-equation technique, he found two
possible values for x and was “certain” what he did was “wrong” because the values did
not satisfy EQ1; but he had no other explanation as to why the technique he used might
have been “wrong.” For P4 (in Step 4), that the ‘reduction’ technique produced a value
for x that didn’t satisfy EQ1 and EQ2 also meant the approach was wrong. And it is.
A system of two equations does not correspond to a single equation. But P4 did not
know what the issue was: “I was trying to subtract the first one from the second to form
a new solution, to see if it makes any difference. And it does [as the solutions of the
new equation are different the solutions of EQ2, and they don’t solve EQ1]. But it’s not
something I can explain.” When students use Gauss-Jordan elimination, they unwittingly
produce equivalent systems throughout the resolution process. It is not necessary to know
the concept of equivalent systems to pass LA1.

5.6.3.3.4 Summary: most students lacked the agency and sense of agency
needed to conclude the system had no solutions. I distinguish, as per Sierpinska
et al. (2008), between sense of agency and agency : to have agency is to “actually [make]
things happen.” In the context of solving a problem in mathematics, to have agency is
to have the mathematical knowledge needed to settle the problem. In this context, a
student may have a sense of agency (a sense they can make things happen) without
actually having any agency. I view students’ hesitation vis-à-vis the inconsistencies they
found as the reaction wrought by lacking agency, accompanied in at least some students
by a lacking sense of agency triggered by their struggle to adapt norms that worked in
LA1 to interview tasks.

Apart from the three students who immediately deduced the system had no solution
once they found EQ1 to have no (real) solution and EQ2 to have two real solutions, the
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other six participants struggled, even though they found similar evidence in one or more
of their attempts. P5 needed to find evidence of no solution to the system three times
before accepting this conclusion; P2 was indecisive as to whether the system had no so-
lution; P4 and P6 concluded there was no solution only after I specified, in a prompt,
that a solution would satisfy both equations (P4 thanked me after this prompt and said
he had forgotten this was what was meant by “solutions of a system”); and P3 and P10
made no explicit comment suggesting there might be no solution.

In light of P4 and P6’s comments about the problem - “peculiar” (per P4) and “tricky”
(per P6) - and the feelings these problems might have triggered in them (e.g., P6’s frus-
tration), I infer that a diminished sense of agency played a role in at least some students’
hesitation to conclude the system has no solution. I hypothesize that such diminished
sense of agency was brought on, in part, by the design of the interview problems (to elicit
what students do and do not know relative to LA1 knowledge students are expected to
learn), and by their position as student or study participant (one with less authority over
the knowledge at stake than a teacher or interviewer).

Participants’ potentially diminished sense of agency notwithstanding, it remains that
their knowledge from LA1 was bereft: first, it did not suffice for six of nine students to
voluntarily mobilize knowledge of what constitutes a solution of a system of equations,
and second, several students did not mobilize any of the algebra and logic on which LA1
system-solving techniques are based to evaluate the suitability of their techniques, even
as they suggested their technique might be incorrect (as P2 and P4 did, for example, in
reference to both Gauss-Jordan elimination as well as the reduce-a-system-to-an-equation
technique). I therefore surmise that any potentially diminished sense of agency does not
fully account for the hesitation engendered in students by the system to be solved in
Problem 6. Several participants did not have the agency needed to conclude the system
had no solution (indeed, P4 explicitly acknowledged having forgotten that a solution of
a system must satisfy all its equations); and the norms in LA1 for solving systems did
not provide students with the agency needed to evaluate the suitability of their system-
solving techniques.

5.7 LA1 Problem 7

The following was the seventh problem presented to 9 of the 10 LA1 students26 in the
TBI:

Determine the number of solutions of this system of equations:

(x, y) = (1, 3) + t(1, 5)

(x, y) = (3, 7) + r(−2, 1)

26Due to time constraints unrelated to the TBI, P8 was only able to do Problems 1 - 5.
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5.7.1 Reference model for LA1 Problem 7

The task t in Problem 7 is to find the number of solutions of a system of two vector
equations in R2. This is a task of type T : to find the number of solutions of a system of
two linear equations. Linear systems have either no solutions, one solution, or infinitely
many solutions; indeed, if there are two distinct solutions, then these two can be used to
construct infinitely many distinct solutions. Graphically, the solution to a linear system
in R2 corresponds to the set of intersection points of the lines that are graphs of the linear
equations. Two linear equations in R2 correspond to two lines: two lines may be parallel
and distinct (in which case the system has no solution); they may overlap (in which case
there are infinitely many solutions); or they may be non-parallel and then intersect at
exactly one point (in which case the system has one solution).

The linear equations in Problem 7 are given in vector form. An equation of type

(x, y) = (x0, y0) + t(v1, v2), t ∈ R (5.6)

is defined as the equation of a line. The following paragraphs summarize the geometry
at the basis of the component definitions of vector, scalar multiplication of vectors, and
vector addition, which together justify this definition of vector equation of a line.

A vector v = (v1, v2) ∈ R2 is defined geometrically as the arrow with the origin (0, 0)
as its initial point and the point (v1, v2) as its terminal point; any arrow of the same
length and with the same direction, regardless of the placement of its initial point in
2-space, is said to be equivalent to v. The zero vector is a vector whose terminal point
is also its initial point; in component form, this is (0, 0). The sum of u + v two vectors
u = (u1, u2) and v = (v1, v2) is defined as (u1 + v1, u2 + v2). This definition corresponds
to the geometric definition of vector addition: with the initial point of v placed atop the
terminal point of u, u + v is defined as the arrow whose initial point is that of u and
terminal point is that of v (see Figure 5.1).

Figure 5.1: Vector addition in R2

A negative of a vector v = (v1, v2), geometrically, is a vector such that the sum of the
two forms the zero vector. The negative −v of vector v is unique and −v = (−v1,−v2).
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The scalar multiple kv (k ∈ R) is defined as the vector (kv1, kv2); given concepts from
Euclidean geometry (e.g., proportionality of edges in similar triangles), this corresponds
to the geometric definition of kv, the vector whose length is |k| times the length of v and
whose direction is the same as that of v if k is positive and the opposite of the direction
of v if k is negative. Two vectors are said to be parallel if they are scalar multiples of one
another.

In light of the above definitions, and given the reasoning captured in Figure 5.2,
equation 5.6 is called the vector equation of the line parallel to (v1, v2) and going through
the point (x0, y0).

Figure 5.2: Graph of the line ℓ : (x, y) = (x0, y0) + t(v1, v2), t ∈ R

The exposition so far, along with the algebra, logic, and geometry that frames it,
makes up the theory Θ that frames task t (to find the number of solutions of a system of
two vector equations in R2).

The solutions of the equations in Problem 7 form two lines: one line parallel to (1, 5)
and the other to (−2, 1). Since these vectors are not scalar multiples of one another, they
are not parallel; hence, the lines are not parallel, and must intersect at only one point.
Hence, the system of equations has one solution. I will denote by τ1 the way in which
I used the definitions of vector equation of a line (θ11), of parallel vectors (θ12), and the
postulate that two non-parallel lines in R2 intersect at one point (θ13). τ1 is one technique
through which task t can be performed.

t can also be accomplished by solving the system algebraically. Given the definitions
of scalar multiplication and vector addition (θ21), the system of equations in Problem 7
is as follows:

(x, y) = (1 + t, 3 + 5t)

(x, y) = (3− 2r, 7 + r)

By definition of equality between vectors (θ22), it follows (x, y) is a solution if and
only if its x-coordinate has the form 1+t and 3−2r for some t, r ∈ R and its y-coordinate
has the form 3+ 5t and 7 + r for the same t, r. Now, 1 + t = 3− 2r and 3 + 5t = 7+ r if
and only if t = 10

11
and r = 6

11
. The ordered pair (x, y) produced by these values for t and
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r is therefore the only solution to the system - and so, the system has only one solution.
I denote this second technique by τ2. I denote by Θ2 the algebraic and logical discourse
that frames the techniques for solving linear equations in R2.

Another technique through which to perform t is to find point-normal equations corre-
sponding to the system. I added this technique and its underlying theory to my reference
model after two participants suggested it in response to Problem 7; it is a circuitous
approach to the problem that renders it into one perhaps more familiar to students from
LA1, as they are typically given systems of linear equations in point-normal form (i.e.,
ax+ by = c) rather than in vector form.

A point-normal equation for a line ℓ in R2 is based in the notion of orthogonality.
Two vectors are said to be orthogonal if their dot product is 0. A normal of a line is a
vector orthogonal to the line. Suppose ℓ contains a point (x0, y0). Suppose n = (a, b)
is a normal of the line. If (x, y) ∈ ℓ, then (x − x0, y − y0), the vector with initial
point (x0, y0) and terminal point (x, y), is parallel to the line. As such, it is orthogonal
to n: n · (x − x0, y − y0) = 0. Conversely, any point (x, y) that satisfies the equation
n · (x− x0, y − y0) = 0 must be a point in ℓ. This is the reasoning for which

(a, b) · (x− x0, y − y0) = 0,

that is,
a(x− x0) + b(y − y0) = 0,

is said to be an equation for ℓ; it is called a point-normal equation of the line. I denote
by θ3 the exposition through which I produced this point-normal equation.

I denote by τ3 the technique in which the vector equations in Problem 7 are represented
via point-normal equations and the system is solved using these equations instead. As
the line (x, y) = (1, 3)+t(1, 5) is parallel to (1, 5) (knowledge deduced from θ11), a normal
(a vector orthogonal) of this line is (−5, 1) (since (1, 5) · (−5, 1) = 1(−5) + 5(1) = 0)). I
denote by τ31 know-how for finding a normal of a line given a vector parallel to that line.
The line contains the point (1, 3), so a point normal equation for the line is

−5(x− 1) + (y − 3) = 0,

that is, −5x+ y = −2. I denote by τ32 the know-how in which the point-normal equation
of a line is produced given the formula produced by θ3, a normal for the line, and a
point on the line. Using τ31 and τ32 again, it can be shown a point-normal equation for
(x, y) = r(3, 7) + (−2, 1) is x + 2y = 17. The task is then to determine the number of
solutions of the system

−5x + y = −2
x + 2y = 17

Any of the techniques discussed in the reference model for Problem 2 shows this system
has one solution; I denote this family of techniques by τ33. In sum, τ3 corresponds to the
combination {τ31, τ32, τ33} as outlined above.

The reference model for activity through which to complete Problem 7 is summarized
by these praxeological models:
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� [t; τ1; θ11, θ12, θ13; Θ];

� [t; τ2; θ21, θ22; Θ,Θ2]; and

� [t; τ3; θ3, θ11; Θ,Θ2].

5.7.2 Knowledge to be learned in LA1 to perform tasks of the
type in Problem 7

The type of task in which the number of solutions of a linear system is at stake appears
in 5 of the past exams to which I had access to from 2014 to 2019 and in 2022: 2 of 7
final exams and 3 of 5 midterm exams. In all 5 problems that focused on the number
of solutions of a linear system, the linear system was in 3 equations in the unknowns
x, y, and z, and some of the coefficients and/or constants were either expressions in an
unknown k (for example, k(k − 1), k + 1, k2 − 1, 2k + 3, 2k, k) or the integers 1, 2, or 3.
In all 5 of these problems, the task was to find the values of k for which the system has
no solution, exactly one solution, or infinitely many solutions. The technique for this
task is to use Gauss-Jordan elimination on the augmented matrix of the system. For the
values of k for which the reduced row echelon form (RREF) of the coefficient matrix is
the identity matrix, the system would have one solution; for the values of k such that the
RREF of the coefficient matrix has a row of 0’s, the question of whether the system has
no solution or infinitely many would be answered by the value of the right-most entry in
that row, but in the augmented matrix (if that entry is non-zero, then he system has no
solution; otherwise, the system has infinitely many).

The task in Problem 7 differs from these final and midterm exam problems in two
ways. First, the task here is not to find conditions under which a given system has such-
and-such number of solutions; the task is rather to determine the number of solutions.
Second, the format in which the linear system is given is different. In the LA1 exam prob-
lems, the system is given in the form of point-normal equations (ax+by+cz = d), whereas
in Problem 7, the system is in the form of vector equations ((x, y) = (x0, y0) + t(v1, v2)).
In the next few paragraphs, I discuss the knowledge students are expected to learn in
LA1 that would be pertinent to the task at hand.

In LA1, knowledge to be learned about the number of solutions of systems of linear
equations includes the theorem that such systems have either no solutions, 1 solution, or
infinitely many solutions. The graphical representation of these options (in R2 or R3) are
knowledge to be taught: linear equations of the form ax+by = c correspond to lines, and,
in R2, lines can either overlap (and so have infinitely many points of intersection), be par-
allel and distinct (and so have no points of intersection), or not be parallel (and so have
only one point of intersection); and, in R3, linear equations of the form ax+ by + cz = d
correspond to planes, which can either overlap (and so have infinitely many points of
intersection), intersect along a line (and so have infinitely many points of intersection),
be parallel and distinct or pairwise intersect along 3 distinct lines (and so have no point
of intersection), or be such that they have exactly one point of intersection (if two planes
intersect along a line and the third plane intersects that line at a single point).

The correspondence between graphical and algebraic representations of linear systems
appears as knowledge to be learned in 3 problems on 2 of the 13 exams to which I had
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access (2 of the problems occur as parts (a) and (b) of the same problem on 1 exam). In
one of these problems, the task is to find the point-normal form of a plane given a normal
(a, b, c) for this plane and a point (x0, y0, z0) on this plane. The knowledge needed to
complete this task is the following: that if (a, b, c) is a normal of a plane, then a point-
normal form of that plane is ax+ by+ cz = d, where d is the value found by plugging the
coordinates of (x0, y0, z0) into the expression ax+ by + cz. In Section 5.6.2, I discuss the
other two problems (parts (a) and (b) of one exam problem) in which the correspondence
between graphical and algebraic representations of linear systems shows up as knowledge
to be learned: the first task was to find the equation of a plane that passes through a
given point and a line ℓ that is defined as the intersection of two planes given in point-
normal form (ax + by + cz = d), and the second task was to find the coordinates of the
intersection of ℓ and a plane P , where P is also given in point-normal form. Core to
the completion of these tasks is the knowledge that a solution to a system of equations
corresponds to a point of intersection of the graphs of the equations. Considering the
one feature shared by the few exam problems that involve the correspondence between
graphical and algebraic representations of linear systems, I conclude that the knowledge
to be learned here includes the point-normal forms of planes in R3.

The knowledge students are to learn in LA1 about the number of solutions of linear
systems has less to do with graphical representations and consists, mainly, of a tech-
nique through which to determine this number: to solve the system. In the final exam
problems in which the number of solutions of a system was at stake, students could use
Gauss-Jordan elimination (or Gaussian combined with computations directly involving
equations) to complete the task. In Problem 7, this technique cannot be implemented
directly. To implement this technique, students have two options.

One option through which to activate the usual system-solving technique is to activate
what they are expected to learn, in LA1, about addition, scalar multiplication, and
equality in R2 (and which mimics what they are to learn about matrix algebra): that is,
θ21 and θ22 from my reference model. This is needed to obtain, from the given system,
the following system instead:

x = 1 + t
x = 3 − 2r
y = 3 + 5t
y = 7 + r

This leads to mobilizing τ2 from my reference model. Students who mobilize their
knowledge of vector addition, scalar multiplication, and equality to produce these equa-
tions needn’t recognize that the vector equations they were given are graphically repre-
sented by lines; it suffices to mobilize system-solving techniques (from high-school, such
as substitution and/or addition) to solve the above system and find it has a unique solu-
tion.

A second option through which to activate the usual system-solving technique is to
find point-normal equations for the lines, as in τ3 = {τ31, τ32, τ33} in my reference model.
I note that students are never tasked on midterm and final exams to find point-normal
equations of lines given their vector equation in R2—the task completed by mobilizing
{τ31, τ32}, which is nevertheless a mobilization of knowledge to be taught (θ3 in my refer-
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ence model), and which I will therefore denote by {τ31, τ32}KtbT . The two exam problems
that do require students to know the anatomy of a vector equation for a line are in the
form of the following task: to find parametric equations of a line passing through a given
point P and perpendicular to a plane (given in point-normal form). To do this, students
need to recognize, from the point-normal equation of the plane, a normal of that plane;
students need to know this normal is perpendicular to this plane; students need to know
this normal is parallel to the line they seek; and students need to know they can use this
normal as vector v and the given point P in the vector equation x = P + tv for the line
(as P is a point on the line and v a vector parallel to the line).

To perform τ3 toward Problem 7 (that is, to find point-normal equations for the lines
so as to then solve the system of these equations), students must know the anatomy
of a vector equation (i.e., its definition, denoted by θ11 in my reference model for this
problem), which is knowledge to be learned so as to do only 2 of the 116 exam problems
to which I had access (and which I therefore denote by θKtbT

11 , as it is predominantly
“knowledge to be taught” in LA1); they must also know that a normal of a line is a
vector perpendicular to it (knowledge that is expected of students in a slightly greater
number of exam problems); and, to find a normal for the given lines, they must know
to produce—by observation—a vector perpendicular to a given vector (observation, as
a technique for completing tasks, is not typically expected of students in LA1). Once
point-normal equations for the lines are produced, students can then use τ33: any of the
techniques to be learned in LA1 for solving systems of linear equations (in point-normal
form).

A last technique through which to complete Problem 7, using knowledge to be learned
in LA1, mobilizes knowledge of vector equations. While it is not necessary to recognize
that Problem 7 features vector equations of lines, this is the knowledge through which
the task can be completed most efficiently—as in τ1 from my reference model: the tech-
nique wherein it is noted that the lines are not parallel and therefore intersect at only
one point. My focus in this paragraph is on the geometry captured by vector equations
of lines (or planes) and which is needed so as to mobilize τ1: that such equations indicate
a point on a line (or plane) and a vector parallel to a line (or two non-collinear vectors
parallel to a plane)27. This is knowledge that is ideal to have been learned in LA1 in the
context of 5 problems (on 4 final exams) among the past exams to which I had access. I
specify “ideal to have been learned” because 3 of these problems can also be completed
without knowledge of vector equations. For example, one of the problems is to find the
distance between a point and a plane; the plane here is given in terms of a point it
contains and a line it contains (given in the form of parametric equations). Hence, to
find the distance between the given point and plane, students must first find an equation
for the plane. To this end, students must engage with the given parametric equations
of the line. If a student knows vector equations of lines, they can recognize from the
parametric equations a vector parallel to the line and a point on the line and complete
the task more promptly. That said, if a student does not know vector equations of lines,
they can still complete the task: they can, instead, use the parametric equations to find
coordinates of two points on the line and then use these to find a vector parallel to the

27The reasoning behind the geometric correspondence between lines and these two types of equations,
as delineated in the reference model for this problem (in Section 5.7.1), is knowledge to be taught in
LA1, but not to be learned.
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line. Given that among the 5 problems that could involve vector equations of lines or
planes, 3 can be completed without knowledge of the anatomy of a vector equation (i.e.,
that it involves a point on a line/plane and a vector parallel to the line/plane), I conclude
that only 2 problems (among the 116 past final and midterm exam problems to which I
had access) required students to mobilize knowledge of vector equations of lines or planes.

Given the rarity with which students need to know the definition of vector equations
of lines (denoted by θ11 in my reference model) to complete tasks on exams, I denote it
by θKtbT

11 in the model of knowledge to be learned to underscore that its inclusion in LA1
is mainly as knowledge to be taught. Hence, one praxeological model of the way in which
knowledge to be learned (or taught) in LA1 can be mobilized to complete Problem 7 is
[t; τ1; θ

KtbT
11 , θ12, θ13] (where the latter two technologies refer to the knowledge that vectors

are parallel if and only if they are scalar multiples of another and the knowledge that
non-parallel lines in R2 intersect at exactly one point)28. The other two praxeologies that
model activity through which to complete Problem 7 attend to the technique students
are more accustomed to wielding in LA1 for determining the number of solutions of a
linear system: actually solving the system. This includes [t; τ2; θ21, θ22], which does not
require knowledge of the correspondence between the algebra of a vectors equation and
the geometry of the line it represents, and [t; {τ31, τ32}KtbT , τ33; θ

KtbT
11 ], which does require

knowledge of this correspondence (as captured by θKtbT
11 ).

5.7.3 Knowledge LA1 students activated in response to Prob-
lem 7

Table 5.13 (on p.249) summarizes the paths of participants’ activity as they worked on
Problem 729. As before, Step 1 refers to the activity a participant spontaneously en-
gaged in upon reading the problem statement; I group students according to Step 1 and
color-code the groups to help trace students’ paths thereafter. I categorize a student’s ac-
tivity in a new step if they presented it as such; if I prompted for another approach and a
participant described one that is essentially equivalent, I still categorized it as a new step.

Throughout this section, I will refer by EQ1 and EQ2 to (x, y) = (1, 3) + t(1, 5) and
(x, y) = (3, 7) + r(−2, 1), respectively.

Nearly all students completed Problem 7. P1 and P7* mobilized the direction vectors
of the two lines (that is, vectors parallel to the lines, as indicated in EQ1 and EQ2) and
observed that, since they are not scalar multiples of one another, the lines are not parallel
and must therefore intersect at only one point; this approach corresponds to technique τ1
in my reference model (Section 5.7.1). The rest of the students who completed Problem
7 did so through an approach that corresponds to τ2 in my reference model. This was the
approach P2, P3, P4, P5, P6, and P9 mobilized: they searched for values of r and t that
would produce the same ordered pair (x, y). Their approach essentially consisted of find-
ing the vectors on the right-hand sides of EQ1 and EQ2 ((1+ t, 3+5t) and (3−2r, 7+ r),
respectively), equating the corresponding components (1+ t = 3−2r, 3+5t = 7+ r), and

28I do not address the extent to which θ12 and θ13 are knowledge to be learned in LA1 as their relevance
to t follows only if θKtbT

11 is known, and my interest in Problem 7, a problem about systems of linear
equations in vector form, is more in the acquisition of θ11 than that of the other technologies.

29Due to time constraints unrelated to the TBI, P8 was not able to do Problems 6 - 8.
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solving this last system. P3, P4, P5, P6 found unique values for r and t in this way, then
plugged them back into EQ1 and EQ2 to confirm the same ordered pair (x, y) is produced
by these values of r and t. When P9 found a unique value for t, he deduced r would have
a unique value and so that x and y would as well, and concluded the system would have
one solution. Due to a missing negative sign in P2’s approach, he found values for r and t
that produced the same value for x but not for y; nevertheless, P2 believed this technique
should have produced the same ordered pair in both equations (in part because the same
value for x was produced in this way). P10 was unable to complete the problem and
struggled to understand what was meant by a “solution of the system” (the clarification
that this would be a “pair (x, y) that makes both equations true” did not seem to help).
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Table 5.13: Paths of LA1 Students’ Activity in Problem 7

Practical block [t, τ ]

Type of engagement with [t, τ ]

S
te
p
1

S
te
p
2

S
te
p
3

S
te
p
4

Find
values
of r, t
that
produce
the
same
ordered
pair
(x, y)
by. . .

solving the system by obser-
vation

P1
attemps to enact, dismisses: says that the values t = 0, r = 1 produce one solution, dismisses
once I ask for clarification and P1 finds these values produce different ordered pairs (x, y)

solving the system obtained
by equating the expressions
for x and for y in EQ1 and
EQ2 ([τ2; θ21, θ22])

P2
enacts partially (inattention error in calculation): finds values of r, t that produce the same
value for x in both equations but different value for y, cannot find error (missing negative sign)
but believes technique should have produced the same pair (x, y) in both equations.

P3 enacts and verifies that the values found for r, t produce the same ordered pair (x, y) in EQ1
and in EQ2P5

P6
enacts, finds values of r, t, wonders how to figure out the number of solutions of a system,
figures this system has only one, and verifies that the values found for r, t produce the same
ordered pair (x, y) in EQ1 and in EQ2

P9
enacts: finds value of t, deduces it would fix the value of r, and there would be only one ordered
pair (x, y) that solves the system

P2
prompted to think of another approach, starts to enact, then realizes approach would be
the same as previous

P3
prompted to think of another approach, starts to enact, says the numbers obtained will
be the same as before

P4
enacts and verifies that the values found for r, t produce the same ordered pair (x, y) in
EQ1 and in EQ2, deduces there is only one ordered pair (x, y) that solves the system

solve a new system im-
plied by the system (but not
equivalent to it) to find val-
ues of r, t that produce the
same ordered pair (x, y) in
EQ1 and EQ2

P1

enacts: gets the system x+y = 4+6t, x+y = 10− r, solves it, finds r = 6−6t, sets t = 1
and gets r = 0; plugs these values of r, t into the equations and find they do not produce
the same ordered pair (x, y); verifies calculations (all are correct), does not know why the
technique didn’t work

Find a way to find the number of
solutions without solving the system

P4

Notes that (1, 5) and (−2, 1) (in EQ1 and EQ2, respectively) are not scalar multiples of one
another and then says “of course, because [(1, 3) and (3, 7)] are different”; says he’s “trying to
think of any indicator of what the number [of solutions to the system] could be, without solving
it, but do[es]n’t think there is [such an indicator].”

Find
the
number
of inter-
section
points
of the
lines by
check-
ing if
they are
parallel,
over-
lap, or
neither,
by. . .

finding point-normal equa-
tions of the lines and solv-
ing the system (τ3)

P7* suggests

P1
suggests: recognizes in the vector-equations the “direction vector” and a “point,”
says it would “be easier” (to find the intersection) if the equations are in the form
x+ by = c

checking if the vectors (1 +
t, 3 + 5t), (3 − 2r, 7 + r) are
proportional to determine if
the lines are parallel

P7*

suggests, then doubts: says that for (1 + t, 3 + 5t) to be proportional to (3 − 2r, 7 + r),
1+t
3−2r

must equal 3+5t
7+r

; proposes to determine the values for which the denominators equal
0 and investigate the proportions for other values of r; dismisses approach after I ask how
he knows the lines being parallel implies this proportionality.

checking if values of r, t,
with r = t, produce the
same points (x, y)

P4
inspects: plugs values into r, t (r = t = 2, r = t = 3, r = t = 4) to check if the same
ordered pair (x, y) is produced and so to check if the lines are “the same”

comparing the direction
vectors of the lines

P7*
enacts: attempts to explain how the lines are graphically constructed by the vectors
in the equations and says that since (1, 5) and (−2, 1) are not “proportional” the
lines are not parallel and hence intersect at only one point

P1

enacts: makes a sketch of the lines by plotting two points on each line, then
notes the direction vectors of the lines are not colinear so the lines are not
parallel, so there is only one point of intersection; observes this is all the
question had asked for, that there was no need to actually find the intersection
point.

Add up the vectors on the right-
hand side of each equation (mobilize
θ21)

P10 enacts

Make a graph P10
enact partially and incorrectly in response to a prompt: I ask what EQ1 looks like graph-
ically because P10 is stuck; P10 plots points (1, 3) and (1, 9), says t is “the size of the
vector”

Sets the right-hand sides of the equa-
tions equal to one another

P10
starts to enact and gets stuck: writes (1, 3)+t(1, 5) = (3, 7)+r(−2, 1) and eventually
says: “I don’t think it’ll work”; “wouldn’t know how to solve” the equation 1 + t =
3− 2r

EQ1: (x, y) = (1, 3) + t(1, 5); EQ2: (x, y) = (3, 7) + r(−2, 1).
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5.7.3.1 One student (P10) did not have the knowledge needed to know what
the task was

P10’s attempts and comments indicated she did not have sufficient knowledge to grasp
the task. Her spontaneous reaction was to add up the vectors on the right-hand sides
of both equations. She knew these are (1 + t, 3 + 5t) and (3 − 2r, 7 + r). But she got
stuck here; this is when she said she didn’t know what was meant by “solution of the
system.” After I said that a solution to the system would be a pair (x, y) that makes
both equations true, P10 paused and eventually asked if this was “like translation.” She
explained: “translation is pretty similar to something like this but I’m not sure like how
to do it.” After this, I prompted P10 to consider the graphs of the equations. She drew
a Cartesian plane and plotted the points (1, 3) and (1, 9). She struggled to articulate the
role of t in EQ1 (“tmeans that it could be... the size of it, usually, of the vector”) but knew
of a relation between scalar multiplication of vectors and the length of a vector (she drew
an arrow when she said that if t was “a higher number it [the vector] would be bigger”).
After this, P10 spontaneously said: “I’m not sure if it’ll work, but maybe equating them
together—I’m not sure.” She wrote the equation (1, 3) + t(1, 5) = (3, 7) + r(−2, 1) and
got stuck again. “I don’t think it’ll work,” she said. She “wouldn’t know how to solve”
the equation 1 + t = 3− 2r.

5.7.3.2 Only two students (P1, P7*) mobilized reasoning based in the ge-
ometry of vector equations, and one (P4) did so in retrospect at the
end of his interview

Only one student spontaneously attempted to complete Problem 7 via reasoning that
would not require a procedural resolution of the problem. This was P4. He noted that
in the equations

(x, y) = (1, 3) + t(1, 5)
(x, y) = (3, 7) + r(−2, 1)

the vectors (1, 5) and (−2, 1) are not scalar multiples of one another and said he was
“trying to think of any indicator of what the number [of solutions to the system] could
be, without solving the system,” but he made nothing else of the two vectors not being
scalar multiples of one another and ultimately said he doesn’t “think there is” an indi-
cator of the number of solutions; he then went on to mobilize τ2 and solved the system.
After he had done so, he noted that “if [he] think[s] about it geometrically,” a line would
“only intersect a line once. And that’s it.” After I asked if this was the case “no matter
what,” P4 corrected himself: “maybe I need to determine if these are the same line. But
they aren’t the same line. Right?”

P4 did not mobilize, at this point, the geometric knowledge needed to ascertain
whether the vector equations represented the same line. He did not return to (1, 5)
and (−2, 1) to reason about the lines being distinct; instead, he opted to plug values into
r, t such that r = t (e.g., such as r = t = 2) to check whether these produced the same
ordered pairs (x, y). This procedural approach would not have worked even if the lines
were the same (e.g., the lines (x, y) = r(3, 4) and (x, y) = t(6, 8), where r, t ∈ R, are the
same, but r = 2 and t = 2 produce different points).

Given that P4 did not mobilize (1, 5) and (−2, 1) appropriately, at this point, I might
have deduced his knowledge about vector equations (that is, that they correspond to
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lines) was only superficial. P4 ended up completing Problem 7 via procedural knowledge,
finding the values of r and t that produced the same ordered pair (x, y) in both equations.
But P4’s comments at the end of his interview reveal that what drove P4’s actions, in
Problem 7, was not insufficient knowledge about the geometry of vector equations. No;
what drove P4’s decisions on what to mobilize was what he thought would have been
expected of him in LA1. Indeed, just after P4 had finished Problem 7 and just before
I gave him Problem 8, he said: “I always find simpler solutions in the end.” When P4
finished his engagement with Problem 8, I referred to the comment he had made and
asked if he meant that in general, or just in the interview. P4’s response was revealing:

Um [pause] I don’t - I don’t think I could remember a time when... maybe
today I was just rushing into it. Yeah [pause] yeah, probably. Because, yeah.
Also today, I think the questions are aimed to see what I think about; the first
thing, second thing I think about. So maybe I directly tried to solve it using
my linear algebra knowledge, instead of looking at it from a more... logical
point of view [emphasis added]. Like, for example, now, I never ever saw a
problem like [Problem 8]. But if I were in the linear algebra [LA1]... mindset
[emphasis added], I would probably try to find that intersection using... some,
like the point-normal equation or whatever. So maybe I just, today, I kind of
went in before thinking—for example, determine the number of solutions. I
think I could have hypothesized that ‘oh okay, these aren’t the same line, so
they must meet somewhere, and only 1 - 1, 1 place,’ so I could have said that
without having to solve everything.

P4’s comments show that, at least as he addressed the question I had just posed,
he answered from the position of a participant in a study about LA1: “today, I think
the questions are aimed to see what I think about; the first thing, second thing I think
about.” And he distinguished between “[his] linear algebra knowledge” (from LA1) and
“a more... logical point of view.” This distinction already came up in P4’s engagement
with Problem 8, where he qualified one of his suggested approaches as one that would
have been expected of him in LA1, and the other as a “problem solving” type (I discuss
this in Section 5.8.3). P4 distinguished knowledge that is “logical” or borne in a problem-
solving behavior from knowledge that is expected of students in LA1. I will return to this
broader aspect of P4’s perspective in a later discussion of participants’ positioning in
their interview. For now, I highlight that for P4, the observation that the two lines in
Problem 7 are distinct and so must intersect was not knowledge that would have been
expected of students in LA1 to solve Problem 7.

Apart from P1, P4, and P7*, who all mobilized the graphical representation of vector
equations eventually but not spontaneously, the other participants’ comments suggest
they would not have had the knowledge to do so, whatever they may have thought was
expected of them. In the following paragraphs, I first address comments made by P2,
P3, P5, P6, P9, and P10 and which attest to their lack of knowledge of the theory that
relates vector equations to lines; I finish this section with a discussion of P1 and P7*’s
mobilization of this knowledge.

When I asked P2 if he could imagine what one of the equations would be like on a
graph, he said he couldn’t.
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When I asked P3 if she could think of a way to do the problem without doing calcu-
lations, she said she had “no idea.”

I asked P5 what the first equation looks like graphically; at first, she said it would be
a line, and when I asked what makes her say that, she said “it looks like it’s following
the y = mx + b [pattern]. She started to draw an x-axis and a y-axis, added two points
along the y-axis as she said “you put up 1, 3 [as in the point (1, 3)], and then... 1, 5 [as
in the point (1, 5)]”—and paused. She said “t doesn’t make sense” and that the graph
“wouldn’t be a line.” Instead, she said she thinks “it would just be a point because t has
an actual value.” (For instance, if t = 1, then (x, y) = (1, 3) + (1, 5) = (2, 8) and this is
a point). P5 explained this wasn’t “like y = mx + b, where x can keep changing”; “the
way [she] looked at the equation, the t had an actual value.”

P6 voiced uncertainty as to whether τ2 (finding the values of t and r that generate
the same ordered pair (x, y)) sufficed to find the number of solutions of the system, and
wondered out loud how one could find the number of solutions (even as he engaged with
τ2) but did not allude to the graphs of the vector equations as knowledge that it poten-
tially relevant to this task. P6 knew these equations represented lines - indeed, upon
reading Problem 7, he asked: “this is a parametric equation of a line, right?” There were
two reasons for which he thought these equations represent lines. First: there are “two
variables.” Second: “you know, it’s a formula, I guess, [that] I memorize.” He tried to
justify why it would be a line but all he could mobilize was the knowledge that the equa-
tions were of a two-dimensional object: “if this was like x, y, z, it still might be a line,
but then there’s a chance it’s a plane but because it’s just x, y, it’s a line, it’s definitely
two-dimensional.” P6’s mention of the notion of linear independence in reference to (1, 3)
and (3, 7)—rather than (1, 5) and (−2, 1)—confirms that P6 did not have the geometric
knowledge that justifies why vector equations represent lines.

After P9 completed the problem via τ2, I asked if he could think of any other ap-
proach. “Nope.” P9 had mentioned, while engaging with τ2, that he was looking for
an “intersection,” so I referred back to this and asked what he meant. He explained,
referring to the terms on the right-hand sides of EQ1 and EQ2, that “this is a vector
and another vector so [when] you add them you will get one vector and over here [it’s]
the same, so you will have the intersection of these two vectors.” I take this explanation
of the term “intersection” as evidence of P9’s lack of knowledge of the relation between
vector equations and their graphs.

When P10 said “these are coordinates of the graph,” I asked her to show what she
meant, and she made the sketch in Figure 5.3 as she said one point was (1, 3), the other
(1, 5), and that t “could be the size of the vector,” in that it determines “how big the
vector is.”

P2, P3, P4, P5, P6, P9, and P10’s grasp of the geometry of vector equations did not
suffice to complete Problem 7 by reasoning about the lines captured by these equations.
P4 knew the lines are distinct (though he failed to mention they are not parallel), but did
not mobilize this until later on in the interview, when, to explain what he meant when he
said “always find[s] simpler solutions in the end,” he spoke about what he thought was
expected of him (in LA1) versus what seemed more “logical” to him. Only P1 and P7*
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Figure 5.3: P10’s sketch of the equation (x, y) = (1, 3) + t(1, 5)

had sufficient knowledge to mobilize the geometry of vector equations in full, and, as it
did for P4, this reasoning took back stage to the procedural approaches they suggested
first and voluntarily.

P1’s first two approaches had to do with finding values of r and t that would produce
the same ordered pair (x, y) in EQ1 and EQ2. P1 failed to complete Problem 7 in these
attempts (I discuss these in Section 5.7.3.3). His third approach came after I prompted
him to to think of the problem “from another direction” and to “visualize” what the first
equation represents. P1 said it was a “line” and knew what to look for: there would be
one solution to the system if the lines intersect at one point and infinitely many if the
lines overlap. He even referred, at this point, to one of the equations as he said: “this is a
direction vector and this is one point.” Still, he did not opt to reason with this knowledge,
sticking instead to the procedural route. It would “be easier [to find the intersection of
the two lines] if I find the x+ by = c [form] of each equation.” He sketched the two lines
(he used the vector equations to find two points on each line) but did not activate the
procedure he proposed because he couldn’t “remember how to find [a] normal vector” to
the line.

P1 struggled in his attempts to tackle Problem 7 procedurally. This was the context
in which P1 finally opted to reason that the lines intersect at exactly one point because
their direction vectors are not parallel. P1 appreciated this reasoning: “I just realized
that it was very easy because the question is not asking for the solution, it was asking for
the number of solutions. So I just had to see if the two direction vectors are collinear or
not.” I note that P1 only considered the graphical representation of the equations after
I prompted him to do so.

P7* attended to the graphical representation of the equations spontaneously - that
is, without any prompt on my part - but his initial attempt was incorrect. Step 2 of his
engagement with Problem 7 started with this stream of thought:

Let’s regard (1, 3) as a vector. (1, 5)—no, no, no, no. t is vector. No. I’m
trying to use the vector that is rotating and shifting. No, it’s not going to
work here. Going to be too complicated. But let’s take a look. [pause] The
number of solutions. It’s not asking us to find the solutions. So there should
be a more elegant way to figure out the number. [pause] Yes, there are two
lines, right. So the other possibilities are that the two lines are parallel, they
have no solution, or they are not parallel, which means they’re going to have
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one solution. And all I need to figure out is whether they are parallel or not.

P7* had the right idea graphically, but initially proposed an incorrect take on vector
equations in his attempt to “figure out [...] whether [the lines] are parallel or not.” P7*
thought that for the lines to be parallel, the vectors on the right-hand sides of EQ1 and
EQ2—that is, (1+ t, 3+5t) and (3− 2r, 7+ r)— must be scalar multiples of one another
(he called this “proportional”). His suggestion was then to determine the values of r and
t for which

1 + t

3− 2r
=

3 + 5t

7 + r

is satisfied. After I asked P7* what made him believe that the lines being parallel would
imply this, he discarded his suggestion:

It’s just an instinct, but if you think about it, it may be wrong, and it’s very
likely to be wrong. Yes, I should not. Maybe I should, you know, prove a
lemma. But it’s going to make this more complicated. I’m not sure. I’m
really not sure if they’re proportional. So this method may not work.

As P7* harkened back to his initial procedural suggestion (“This method may not work.
So I think that the promising way is to transform it into the Cartesian equation”), I
tried to prompt his attention back to the geometry at stake: “how do you know these are
lines?” P7* said this was “taught in the lectures,” but continued: “let me think about
it.” This was the context in which P7* started to make the two sketches in Figure 5.4.

Figure 5.4: P7*’s sketch of the equation (x, y) = (1, 3) + t(1, 5)

The right-most sketch and comments P7* made imply he knew the line is parallel
to (1, 5) and is then fixed in 2-space by (1, 3): “t scales (1, 5) and by adding the other
thing [presumably, (1, 3)] [...] that comes to the parallel thing.” Other comments P7*
made indicated he did not spontaneously mobilize this knowledge before I asked how he
knew that the equations corresponded to lines. For instance, P7* said: “what troubled
[him] [...] [was] that (1, 5) and (1, 3) actually share the same coordinate, but [he] do[es]n’t
think that will be a very big problem.” This suggests that, at least initially, P7* was not
mobilizing the knowledge that (1, 3) was a point on the line and (1, 5) a vector parallel
to the line. When I asked P7* to explain how he used these two vectors to get the line
in his sketch, he said:

There are many ways to look at it. I think the clear is the way it is. This is
the tangent direction. And let’s take the normal direction. (1, 3) is the only
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vector to contribute to the projected vector on the normal direction, which
means there’s always going to be a constant distance between this line to this
line, which means this is parallel.

I presume P7* was referring to the second sketch in this explanation: whatever the
vector (1, 3) may be (he “fixed the initial points of the two vectors to be the same”), the
length of the component of (1, 3) orthogonal to (1, 5) (the “normal direction” to which
P7* referred) was the “constant distance” between the two lines (in the second sketch).
P7*’s description seemed to focus on explaining why the line (represented by EQ1) is
parallel to (1, 5). P7*’s sketches and comments attest to his capacity to mobilize the
linear combination (1, 3) + t(1, 5) and the “geometric meaning of the summation of two
vectors” (as he put it) to explain why (x, y) = (1, 3) + t(1, 5) was the equation of a line
parallel to the vector (1, 5).

Among all participants, P1 and P7* were the only ones able to complete Problem 7
by mobilizing graphical knowledge about vector equations. P4 mentioned this approach
but did not mobilize it in full: he said (1, 5) and (−2, 1) were not scalar multiples of one
another, and said also the lines were “distinct,” but did not justify the latter claim by the
former; his other approaches toward Problem 7, which I discuss further below, suggest P4
did not completely grasp the geometry at stake in vector equations. Putting aside P4’s
capacity to mobilize the geometry at stake, though, what is clear, from his comments,
is that he did not view this geometry as the knowledge that would have been expected of
students in LA1. Apart from P4’s perceptions, what is also evident is that P1 and P7*
mobilized their geometric knowledge only after I prompted them in this direction. P1
had struggled to activate procedural knowledge and I had asked if he could visualize one
of the equations. He could, and still he proposed to activate procedural knowledge, albeit
different from the procedure he proposed initially. It was only after he struggled with his
second suggested procedure that P1 finally mobilized the knowledge he had about the
graphs of vector equations. P7*, meanwhile, did spontaneously draw on the knowledge
that vector equations correspond to lines, and did suggest to check whether the lines
are parallel. But his initial attempt at checking this involved an incorrect procedure
(check if (1 + t, 3 + 5t) is “proportional” to (3 − 2r, 7 + r)), a procedure likely inspired
by the knowledge that lines are parallel when their direction vectors are parallel, but it
was only when I asked P7* what made him think the vector equations are lines that he
retrieved accurate knowledge. In light of the interventions that led P1, P4, and P7* to
mobilize graphical knowledge, I infer it was not norms from LA1 that prompted them to
do so. P4’s comments show that, for him, at least, mobilizing graphical knowledge is not
knowledge students are expected to wield in LA1.

5.7.3.3 Summary: LA1 norms related to vector equations contribute to a
practice in which students only mobilize algebraic-procedural knowl-
edge about such equations and linear systems

τ2 is the technique whereby the number of solutions of the system is found by finding
the values of r and t that produce the same ordered pairs (x, y). This was P2, P3, P5,
P6, and P9’s spontaneous reaction to Problem 7 and was also the only approach they
knew and attempted to mobilize. After P2, P3, P5, and P9 completed the problem, I
asked if they could think of another approach. P9 said he couldn’t; P5 said she could
have changed the order in which she had done some calculations, but knew this was still
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the same approach; P2 and P3 started to engage with an apparently-new approach but
quickly noticed either that it was equivalent to their first (P2) or that it would yield the
same values for r and t (P3); when I asked P2 if he could imagine what the equations
represented graphically, he could not, and when I asked what he would do if he were
doing this problem at home, he said he would not do anything differently.

P6 was not certain τ2 sufficed to find the number of solutions to the system but strug-
gled to mobilize other knowledge. As he started τ2, he voiced uncertainty (“A number
of solutions. I guess it’s just finding a solution. Is there more than one solution? Prob-
ably...”), and as he neared the end of the techique, he still voiced uncertainty. Indeed,
when he found a value for t, he said: “so that’s one solution, I can check.... How do you
find the number of solutions of a system of equations?” He paused. “I guess there’s just
one solution.”

Given P6’s wording—“I guess there’s just one solution” [emphasis added]—I asked P6
what made him think there is just one solution. He explained that “we have two equa-
tions and two unknowns so there’s no independent variable.” And “as long as they’re
linearly independent,” P6 said that “it” would be “collinear or linearly independent.” It
wasn’t clear what P6 was referring to by “it” so I asked for clarification. His explanations
were murky but seem related to the potential reduced row echelon form of an augmented
matrix and the use of Gauss-Jordan elimination in determining the linear independence
of vectors: “we can’t reduce a row to zeros or I can’t have some linear combination of
this that sums up to zero.” P6 was not certain as to whether there might be “more than
one value you could plug into t and r” so that the same ordered pair (x, y) is produced.
At this point, he decided to find the value of r corresponding to the value he had found
for t, and then confirmed these two values produced the same ordered pair (x, y) in both
equations.

P6 said that if he were to hand his work in on an exam, he thinks he “would have to
explain some reasoning.” P6 tried to mobilize the notion of linear independence as a line
of “reasoning” to support the conclusion that the system had exactly one solution, but
he struggled. He had “some theorem” in mind but couldn’t articulate anything about
it (“that’s, like, okay, you know, if you have, like, these things and this and there’s
like, like—I feel like the piece that I’m missing is the way to prove that they are linearly
independent, because I’m not sure how to do that with this, because I feel like I could”). I
asked P6 to clarify which vectors he referred to when he spoke about linear independence
and he pointed to (1, 3) and (3, 7) in EQ1 and EQ2, respectively. He may have also
pointed to the other vectors, but even if he had, he was pointing at one too many vectors
for the notion of linear independence to be relevant to the problem. Indeed, in the
equations

(x, y) = (1, 3) + t(1, 5)
(x, y) = (3, 7) + r(−2, 1)

only the linear independence of (1, 5) and (−2, 1) is relevant to the number of solutions
of the system. But P6 was paying closer attention to the other pair of vectors (the ones
that correspond to points on the lines, rather than vectors parallel to the lines):

what I was thinking is that you can set t and r to zero and then row-reduce.
And obviously, they’re not collinear, because three [from (1,3) in EQ1] and
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seven [from (3,7) in EQ2] are prime numbers and they’re in the same column.
So there’s no scalar. I guess you could multiply by seven over three. It’s not...
it’s not linearly dependent. I don’t think. Almost 100 percent certain.

P6 said he was “questioning [his] life” as he engaged with Problem 7. I wasn’t con-
firming whether his reasoning was accurate or not, and while P6 understood these were
the conditions of the interview, statements I was making (such as “what do you think?”)
reminded him of instances in which he would respond similarly to his friends when they
studied together. By the end of his engagement with Problem 7, P6 said he “think[s]
there’s a solution” and that he was “having a good time.” P6’s attempt to mobilize the
concept of linear independence to corroborate a result he found through τ2 is an example
of a student trying to use mathematics to validate their knowledge. At the same time,
the emotional signals from P6 (which I have noted previously, e.g., as in my analysis of
his engagement with Problem 6) are instances in which P6 sought validation from the
interviewer, that is, from someone with authority over the mathematics at stake.

P6 was able to mobilize technical knowledge about linear systems that was norma-
tively used in LA1 - that is, the algebraic operations needed to solve a linear system and
to check that a solution found is indeed a solution. He solved the system and knew how
to verify the solution he found: he plugged the values he found for r and t into EQ1 and
EQ2 and found they produced the same ordered pair (x, y) in both equations:

(
21
11
, 83
11

)
.

But he did not have sufficient agency over the theory that produces this technique (τ2) to
know that it ensured that

(
21
11
, 83
11

)
would be the only ordered pair that would satisfy both

equations. In absence of this knowledge, he tried to activate the concept of linear inde-
pendence of vectors but did not do so appropriately. In the absence of sufficient agency
over the mathematics at stake, P6 tried to appeal to my authority over the mathematics.
Nevertheless, I emphasize P6’s keen wish to validate, as well as his attempt to mobilize
mathematics (and not only someone else’s authority) to validate his work: these contrast
with previous research that found students at this stage of post-secondary mathematics
showed a “lack of interest in verifying the validity of a solution to a mathematical prob-
lem” (Sierpinska et al., 2008).

P6 was not the only student to attempt and fail to activate knowledge apart from
τ2. For P4, τ2 was not the spontaneous reaction to Problem 7 (unlike P6, for whom it
was) but, like P6, it constituted the only knowledge he activated to complete the prob-
lem—at least until he returned to the problem at the end of the interview in response to
a question I asked about a comment he had made (that he “always find[s] simpler solu-
tions in the end”). P4’s spontaneous reaction was to look for a way to find the number
of solutions of the system without actually solving it. He noted that (1, 5) and (−2, 1)
(from (x, y) = (1, 3)+ t(1, 5) and (x, y) = (3, 7)+ r(−2, 1)) are not scalar multiples of one
another, but did not make any inference from this about the problem: he said he was
“trying to think of any indicator of what the number [of solutions to the system] could be,
without solving it, but,” despite the observation he had made about the two vectors, still
didn’t “think there is [such an indicator].” In this first response to the task, P4 did not
draw on the knowledge that relates lines to vector equations, even though he knew these
equations had lines as their graphs. Indeed, P4’s last attempt at Problem 7—after he
had already determined (via τ2) the system has one solution—was to figure out whether
the lines are parallel and overlapping, parallel and distinct, or not parallel. But he still
did not mobilize the geometric knowledge needed to do this. His approach consisted of
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checking whether the same values of r and t (e.g., if r = t = 2) would produce the same
points (x, y). P4 mobilized geometric knowledge of vector equations only after a prompt,
at the end of the interview, to clarify what he meant when he off-handedly said that he
“always find[s] simpler solutions in the end.” P4’s activity corroborates his perception
that, in his practice, the “simpler solutions”—in the case of Problem 7, one based in the
geometry underling vector equations—take back-stage to techniques that are normative
in LA1. P4’s geometric knowledge of vector equations only became available for mobi-
lization when his objective was to show problem-solving capacity; indeed, when he first
considered to find “of any indicator of what the number [of solutions to the system] could
be, without solving it,” he said he did not “think there is [such an indicator].”

Unlike P4, P1 and P7* mobilized their knowledge that EQ1 and EQ2 are equations
of lines that are parallel to the vectors (1, 5) and (−2, 1) earlier on in their engagement
with Problem 7, even if not spontaneously so. They completed the problem soon after
they brought up this knowledge. But mobilizing it was not their spontaneous reaction to
Problem 7. Their earlier reactions were procedural in nature.

In his first two attempts at the problem, P1 tried and failed to find values of r and t
that would produce the same ordered pair (x, y). He tried to do so, initially, by observa-
tion: he suggested, at first, that t = 0, r = 1 would produce one solution, and dismissed
this after my request for clarification prompted him to discover that these values of r
and t produced different ordered pairs (x, y). (It seems that, at first, P1 misunderstood
the task: “Sounds to me like it’s already solved. And like t could be anything.” Since
“(x, y)” was isolated in both equations, each equation was already “solved.”) P1’s second
attempt was to solve a system implied by the original system: he found the parametric
equations of both lines (x = 1 + t, y = 3 + 5t and x = 3− 2r, y = 7 + r) and used these
to produce a new system of equations:

x + y = (1 + t) + (3 + 5t)
x + y = (3− 2r) + (7 + r)

Unbeknownst to P1, the new system was not equivalent to the original system. The
values of r and t he found in this way, therefore, did not produce the same ordered pairs
(x, y) through EQ1 and EQ2. P1 did not know why. He tried to find a mistake in his
calculations, but there were none. He did not attend to the logical implications he (had
not) employed in his technique and which constitute the theoretical underbelly of equiv-
alent systems (this brings to mind similar lapses wherein students created non-equivalent
systems as they engaged with Problem 6).

P1’s third suggestion for how to tackle Problem 7 was the same as P7*’s sponta-
neously suggested approach: to find corresponding equations in the form ax+ by = c and
solve the system in that way (this corresponds to technique τ3 in my reference model).
What prompted this suggestion from P1 was that I asked if he could visualize what EQ1
represents. He knew it was a line (indeed, he knew it was a line passing through the
point (1, 3) and with (1, 5) as “direction vector”) and his spontaneous reaction to this
realization was this: “Oh! So I find the intersection of the lines.” He said they would
either have one point of intersection or infinitely many.

Despite P1’s knowledge about vector equations, his spontaneous reaction to the task
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of finding the number of intersection points of two lines was to mobilize the norm from
LA1: the norm of solving systems of equations of the form ax+ by = c. I assert P1 was
activating this norm because of a comment he made: he said he wanted to think “of a
way [to] put [the system] in an augmented matrix to [have] a familiar thing to solve.”
The format in which the system was given was “not a familiar way to solve this problem
- [students had not done] this in [LA1].” This brings to mind the comment P5 first made
in response to Problem 7: “right off the bat, I don’t recognize a problem like this.” A
wish for “familiarity” may also be what prompted P7*’s spontaneous reaction, which P7*
believed he “would use [...] in an exam because it is what popped up into [his] mind first.”

Neither P1 nor P7* actually mobilized an approach akin to τ3, but P1’s comments,
together with this approach being P7*’s spontaneous suggestion and the fact that both
P1 and P7* actually knew about direction vectors, show an instance in which the norm
from LA1 delayed a reaction that is most aligned with the mathematics at stake. This is
similarly the case for P4, who said his initial reaction to Problem 7 was shaped by what
he thought would be expected of him in LA1: “if I were in the linear algebra [LA1]...
mindset, I would probably try to find that intersection using... some, like the point-
normal equation or whatever.” P1, P4, and P7* did have sufficient grasp of graphical
representations of vector equations to eventually operate beyond LA1 norms for linear
systems, but the rest of the participants did not—indeed, even when prompted to con-
sider the graphical representations of the given equations, they could not.

The comments P5 made upon receiving Problem 7 suggest what may have contributed
to participants’ relatively uniform activity in response to this problem:

Right off the bat, I don’t recognize a problem like this. So. . . I would probably
do... [pause] Just because it’s a system, the (x, y) are equal to each other, so
I would probably make these two equations equal to each other.

P1 also spoke of rendering the problem into a more “familiar” one: he suggested to
rewrite the equations so their form is more familiar (x + by = c). P1 didn’t do this
because he didn’t know how to do it, not because of a lack of will. P7*’s spontaneous
reaction to the problem was also to rewrite the equations in this format. Apart from P1,
P7*, and P10, all other participants were able to render the problem into a more familiar
one by equating the corresponding components in EQ1 and EQ2. This led to a system
of linear equations (in the form ar + bt = c), and participants knew how to tackle this.

Apart from students’ potential intent to render the problem into one more familiar to
them, the comments they made and inability to mobilize other knowledge (as discussed
in this section and the previous, where I examined what students knew of the geometry of
vector equations) show that the norms they developed in LA1 had only equipped them to
(voluntarily) mobilize procedural knowledge about vector equations and linear equations.
I apply this to P1, P4, and P7* as well: even though they were eventually able to mobilize
graphical knowledge of vector equations and linear system, their choice to do so did not
come spontaneously. P1 made this choice after I prompted him to consider the geometry
of one equation and after he struggled with his procedural algebraic approach, and P7*
mobilized what he knew of direction vectors only after I asked how he knew the vector
equations corresponded to lines. P4 mobilized this knowledge only in retrospect, at the
end of the interview, when I prompted him to explain what he meant when he said he
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“always finds simpler solutions in the end.” Geometric knowledge about vector equations
was, indeed, what was “taught in the lectures,” as P7* put it. The knowledge to be taught,
which P7* described also as knowledge actually taught, was not knowledge students are
normally required to learn in LA1. It took further prompts from an interviewer—in the
context of a study—to prompt P7* to “think about” geometric knowledge.

5.8 LA1 Problem 8

The following was the eighth problem presented to 9 of the 10 LA1 students30 in the TBI:

Find the length of the vector v⃗, which has B as terminal point and is orthogonal
to the line that goes through the points A and C.

5.8.1 Reference model for LA1 Problem 8

The task t in Problem 8 is to find the length of a vector v⃗ that is identified in terms of
its terminal point B(5, 2) and its orthogonality to a given line. The line is given by the
property that it passes through the points A(1, 1) and C(3, 9). Implicitly, the task is to
find the distance between a point and a line in R2. A variety of geometric and algebraic
knowledge can be mobilized to complete task t. I will suggest six techniques.

Theory about orthogonal decompositions in inner product spaces is at the basis of
three of the techniques through this problem can be solved. Given a finite-dimensional
subspace W of an inner product space V , W⊥ is the subspace of all vectors orthogonal
to the vectors in W . Suppose y ∈ V . There exist unique vectors u ∈ W and x ∈ W⊥

such that y = u + z (Friedberg et al., 2015). In R2 (with the standard inner product -
that is, the dot product), this implies that, given a vector y, and the subspace W of R2

spanned by a non-zero vector a, there exist unique vectors u ∈ W and x ∈ W⊥ such that
y = u+x. In other words, there exist a unique vector u parallel to a and a unique vector
x orthogonal to a for which

y = u+ x. (5.7)

30Due to time constraints unrelated to the TBI, P8 was only able to do Problems 1 - 5.
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Figure 5.5 represents the notion of orthogonal decomposition.

Figure 5.5: Orthogonal decomposition of a vector y ∈ R2 in terms of its orthogonal
projection u in span{a} and a vector x orthogonal to u

Since u ∈ span{a}, u = ka for some k ∈ R. The value of k is known. From Equation
5.7, I have

y = ka+ x.

Since x is orthogonal to a (that is, their dot product is 0), and from properties relating
norms and dot products, it follows that

y · a = (ka+ x) · a
= ka · a + x · a
= ka · a + 0
= k∥a∥

⇒ k = y·a
∥a∥2

It then follows that
u =

y · a
∥a∥2

a.

u is called the orthogonal projection of y onto a and denoted by projay; x (such that
u + x = y) is called the orthogonal component of y along a. In summary, the following
identities give the orthogonal decomposition of y relative to a:

u = projay =
y · a
∥a∥2

a (5.8)

x = y − u = y − y · a
∥a∥2

a (5.9)

Applying the concept of orthogonal decomposition to Problem 8, it follows
−→
AB has

a unique orthogonal projection u on
−→
AC and there is a unique vector x orthogonal to u

such that
u+ x =

−→
AB.

Given the uniqueness of x, it follows that v⃗ = x. So a first technique (τ1) for completing
Problem 8 consists of using identity (5.9) to find the components of v⃗:

v⃗ = x =
−→
AB −

−→
AB ·

−→
AC

∥
−→
AC∥2

−→
AC,

and the length of v⃗ = (v1, v2) can then be found using the definition of length:

∥v⃗∥ =
√

v21 + v22.
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A second technique (τ2) also uses the notion of orthogonal decomposition. The vec-

tor v⃗ is the orthogonal projection of
−−→
BC (alternatively,

−→
BA) onto a normal of the line

through A and C. Any vector orthogonal to
−→
AC is a normal n for this line; since−→

AC = (3 − 1, 9 − 1) = (2, 8), one such option is n = (4,−1). Applying identity (5.8) to
this situation, I can find v⃗ and then its length.

A third technique (τ3) for completing Problem 8 starts by noting that the length of
v⃗ is the distance between the point B and the line passing through A and C. A formula
for the distance D between a point (x0, y0) and a line ax+ by + c = 0 in R2 is produced
through τ2:

D =
|ax0 + by0 + c|

∥n∥
,

where n = (a, b) is the normal of the line given by the equation ax+ by + c = 0.

To mobilize this technique, a point-normal equation for the line through A and C is

needed. A normal for this line is any vector orthogonal to
−→
AC = (2, 8) (for instance,

(4,−1)), and either A or C can then be used as a point on the line. For example, if I use
the normal (4,−1) and the point A(1, 1), I have the equation

4(x− 1)− 1(y − 1) = 0,

so the line in question is given by the equation 4x−y−3 = 0 and so the distance between
B(5, 2) and this line is

D =
|4(5)− 2− 3|√

42 + (−1)2
.

A fourth technique (τ4) for completing Problem 8 starts by noting that ∥v⃗∥ is the

height (relative to base
−→
AC) of the parallelogram formed by

−→
AC and

−→
AB. The area A of

a parallelogram formed by vectors u = (u1, u2) and v = (v1, v2) is defined as the product
of its height h and base b, but is also given by the formula

A =

∣∣∣∣det [u1 u2

v1 v2

]∣∣∣∣ .
Applying both formulas to the area of the parallelogram formed by

−→
AC = (2, 8) and

−→
AB = (4, 1), I have an equation in which ∥v⃗∥ can be isolated:

∥v⃗∥∥(2, 8)∥ =

∣∣∣∣det [2 8
4 1

]∣∣∣∣ .
The formula for the area of a parallelogram formed by two vectors u = (u1, u2) and

v = (v1, v2) in R2 is produced by an identity for the area A of a parallelogram formed by
two vectors in R3: the area is the length of their cross product. Embedding u = (u1, u2)
and v = (v1, v2) in R3 using, for instance, the map

(x, y) 7→ (x, y, 0),

we see that the area of the parallelogram formed by u and v is the length of the cross
product of (u1, u2, 0) and (v1, v2, 0):

∥(u1, u2, 0)× (v1, v2, 0)∥ =

∥∥∥∥(det [u1 u2

v1 v2

]
, 0, 0

)∥∥∥∥ =

∣∣∣∣det [u1 u2

v1 v2

]∣∣∣∣ .
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The formula for the area of a parallelogram in R3 results from the definition of dot prod-
uct of vectors in terms of their length and the angle θ between them (u ·v = ∥u∥∥v∥ cos θ)
and Lagrange’s identity (∥u× v∥2 = ∥u∥2∥v∥2 − (u · v)2). These identities, together with
the theory that frames them, constitute the technology that produces τ4.

While τi (i = 1, 2, 3, 4) operate on the geometric notions of orthogonality, distance,
and area, and all produce either the components of v⃗ or its length, a last family of
techniques consists of producing systems of equations in which the unknowns are the
coordinates of the initial point D(x0, y0) of v⃗ when it is positioned, as in Problem 8, such
that its terminal point is B(5, 2). Once the initial point of v⃗ is found, the vector itself and
its length can be found as well. I will describe two techniques (τ5, τ6) in which the aim is
to find the coordinates of D, though combinations of tools used in either can form other
techniques in this same family (producing a system of equations whose only solution is D).

By τ5, I refer to the production of equations that capture geometric properties of the
situation other than equations of the lines whose intersection is D. For example, a pair
of equations can be produced by focusing on orthogonal vectors that involve D(x0, y0) as

an endpoint. Since
−→
AC = (2, 8) is orthogonal to

−−→
DB = (5− x0, 2− y0), I have that

2(5− x0) + 8(2− y0) = 0,

from which it follows that
x0 = 13− 4y0.

Similarly, since
−−→
AD = (x0 − 1, y0 − 1) is orthogonal to

−−→
DB = (5− x0, 2− y0), I have that

(x0 − 1)(5− x0) + (y0 − 1)(2− y0) = 0.

Substituting the expression for x0 previously obtained (x0 = 13 − 4y0) into this new
equation produces an equation only in y0. Once this equation is solved, the value for y0
can be used to find the value of x0. Other equations can be produced as a result of the
properties of the geometry at stake; for instance, since ADB is a right-angle triangle, the
Pythagorean theorem can be also be used to produce an equation in the unknowns x and
y (the coordinates of the point D).

A last technique τ6 consists of finding the point of intersection of two lines: the line
ℓ1 passing through A(1, 1) and C(3, 9), and the line ℓ2 passing through D(x0, y0) and
B(5, 2). The point-normal equations for the lines can be found as follows. Since ℓ1 is

parallel to
−→
AC = (2, 8), a normal for ℓ1 is (4,−1). Given this normal for ℓ1 and knowing

the line passes through A(1, 1), it follows that an equation for ℓ1 is

4x− y = 3.

Since ℓ2 is orthogonal to ℓ1, which, in turn, is parallel to (2, 8), it follows that (2, 8) is a
normal for ℓ2. Since this line passes through (5, 2), it follows that an equation for ℓ2 is

2x+ 8y = 26.

The point D(x0, y0) is the solution to the system formed by the equations for ℓ1 and ℓ2.

The six techniques I suggest can be categorized according to the task they each ac-
complish:
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τ1, τ2 the task (t1) is to find an appropriate vector in the orthogonal decomposition of

one vector (either
−→
AB or

−−→
CB) relative to another vector (

−→
AC);

τ3 the task (t3) is to find the distance between a point and a line;

τ4 the task (t4) is to find the height of a parallelogram produced by two of the vectors
at stake;

τ5 the task (t5) is to find the initial point of v⃗, a point that is the solution of a system
of equations produced as a result of the orthogonality of v⃗ and the line through
points A and C;

τ6 the task (t6) is to find the initial point of v⃗, a point that is the intersection of two
lines.

The theory and technology that frame these techniques follow the thread of those
discussed in the reference models for Problems 3 and 7 (see Sections 5.3.1 and 5.7.1,
respectively): the algebraic, geometric, and logical discourse that define R2 as an inner
product space, along with the view that the axioms that underpin linear algebra and
Euclidean geometry are founded in our physical reality. Technique τ6, wherein the task
is turned into a matter of solving a linear system, is additionally framed by the cor-
respondence between the algebra and geometry of linear systems in R2 and the theory
that underpins the resolution of linear systems (as discussed in the reference model for
Problem 2 in Section 5.2.1).

5.8.2 Knowledge to be learned in LA1 to perform tasks of the
type in Problem 8

The task in Problem 8 is open ended in that it does not prescribe a technique and var-
ious techniques are available for completing it. The concepts and formulas mobilized in
τi (from my reference model for Problem 8) appear as knowledge to be learned in LA1:
orthogonal projections, orthogonal decompositions, the formula for distance between a
point and a line in R2 (or that for distance between a point and a plane in R3), areas
of triangles formed by two vectors in R2 or R3, and to find a point that is the solution
of a system of equations. Problem 8 departs significantly from tasks in LA1 that tar-
get this knowledge, however: LA1 tasks implicitly prescribe the technique to be used
because the tasks are not open-ended—that is, they ostensibly leave room for only one
approach. Given the nature of the mathematics at stake, it’s possible more than one
type of approach would do, but given the norms in LA1, students are expected to acti-
vate the technique to which a task hints at or explicitly requires. I illustrate what I mean
by describing the LA1 tasks from past final and midterm exams that targeted the no-
tions of orthogonal decomposition, distance, area, and intersection of lines and/or planes.

I remind the reader that the LA1 tasks to which I refer (to discuss knowledge to be
learned) are from 6 final exams and 4 midterm exams from the years 2014 to 2019.
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5.8.2.1 Knowledge to be learned about orthogonal decompositions

In LA1, tasks in which orthogonal decompositions are at stake occurred on 4 of the (6
final) exams to which I had access. In two of these, the task explicitly required students
to “find the orthogonal projection” of a given vector u on v, with both vectors in R3 and
with single-digit integer components. On one exam, the task was to “find vectors w1 and
w2 so that v = w1 + w2,” where v ∈ R3 is given (with single-digit integer components),
“and such that w1 is parallel to a given vector u ∈ R3 and w2 is orthogonal to u.” This
task does not include the terms “orthogonal projection” or “orthogonal component,” but
the description and notation for w1 and w2 corresponds directly to how these concepts
appear in the knowledge to be taught in LA1. I will refer to the task targeted in these
exams by t7: the task is to find one or two vectors in the orthogonal decomposition of
one vector relative to another vector in R3.

Finally, on one exam, there is a task in which students must mobilize knowledge about
orthogonal projections, but the task is a blip less explicit. The task is to “find w1, w2 so
that v = w1 + w2,” where v ∈ R3 is given (with single-digit integer components), “and
w1 is parallel to a given line ℓ [given by parametric equations] and w2 is perpendicular to
ℓ.” This differs from how the concept of orthogonal decomposition is to be taught in LA1
in that w1 is defined as being parallel to a line, rather than a given vector. Students are
expected to recognize the task is to find an orthogonal decomposition of v relative to a
vector parallel to ℓ. Given the notation (w1, w2) and the description (v = w1+w2, where
w1 is parallel to a given object and w2 is perpendicular to that object), the task is still
closer in appearance to t7 than to any other task to be taught or learned in LA1. For the
way in which this task was phrased in this exam, students must also know how to find a
vector parallel to a line; since the line is given in terms of parametric equations, students
could either mobilize knowledge about vector equations (as discussed in the knowledge
to be learned about vector equations, in Section 5.7.2) or find two points on the line to
find a vector parallel to this line.

To perform the task t7, students are expected to know the formulas for the orthogonal
projection and orthogonal component of a vector in R3 relative to another vector (these
are the same as those given in my reference model). To mobilize these formulas, students
must know how to compute dot products using the component form of a vector, how to
compute the length of a vector, and how to multiply a vector by a scalar.

5.8.2.2 Knowledge to be learned about distance between objects in 2 or
3-space

In LA1, tasks in which students are instructed to find a distance between objects occurred
on 2 of the (6 final) exams to which I had access. In these exams, the task was to find the
distance between a given point (with single-integer components) and a line in R2 given
in the form Ax = By+C (where A,B,C are single-digit integers). The technique is then
to rewrite the line’s equation in the form ax+ by + c = 0 so as to deploy the formula for
the distance between a point (x0, y0) and a line ax+ by + c = 0:

D =
|ax0 + by0 + c|√

a2 + b2
(5.10)

In light of these exam problems, what students are expected to learn about distance is
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how to use a formula for the distance between a point and a line in R2. The tasks in which
students had to find the distance between a point and line already had the point and line
in a format nearly ready to be used in the formula, though students are expected to know
to rewrite Ax = By +C in the format ax+ by + c = 0 to use the formula correctly. The
distance formula itself does not require students to use any algebra past what they are
expected to have learned in high school. Under no circumstances are students expected
to recognize, as they might in Problem 8, that a given task is equivalent to finding the
distance between a point and a line or plane.

5.8.2.3 Knowledge to be learned about areas of parallelograms in Ri (i = 2, 3)

In LA1, tasks in which the area of a parallelogram is at stake occurred in 4 of the (6 final)
exams to which I had access. In all four exams, the task was to find the area of a triangle
given its vertices (points in R3 with components that are all single-digit integers). The
“find the triangle’s area” task also appears in the list of recommended problems from the
LA1 textbook section about cross products; this is the section that includes the theorem
which states that the area of a parallelogram formed by vectors u, v ∈ R3 is the length of
their cross product. This section also includes an example of the “find the triangle’s area
task.” As per the example in the textbook section, to complete the task in LA1, it suffices
to find the area of the parallelogram formed by two (non-collinear) vectors (formed by the
vertices) and halve this area. To find the area of the parallelogram, students must first

know that, if A is the point (xA, yA) and B is (xB, yB), then
−→
AB = (xB − xA, yB − yA),

and they can then mobilize the theorem which states that the area of a parallelogram
formed by u, v ∈ R3 is ∥u× v∥. To use this theorem, students must know how to find the
cross product of two vectors and how to find the length of a vector.

The task to find the area of a triangle in R3 given by its vertices can be performed
using other knowledge (e.g., orthogonal decomposition to find the height relative to a
given base, or distance between a vertex and its opposing edge, again with the goal of
finding a height relative to a given based). I presume any instructor grading such a
submission would grant marks for alternative techniques that use knowledge to be taught
in LA1 (such as orthogonal decompositions and distance formulas). But students are not
expected to view the task in any way other than the normative one in LA1; given that
the “find the triangle’s area” task is in the textbook section in which the cross-product
formula for the area of a parallelogram in R3 is given, I infer the knowledge students are
expected to learn to perform such a task amounts to using the cross-product formula.

5.8.2.4 Knowledge to be learned about intersections of lines and/or planes
Ri (i = 2, 3)

In LA1, tasks in which students are expected to find the intersection of lines and/or
planes occurred in only one of the (6 final) exams to which I had access. The task in this
exam was to find the coordinates of the intersection of a line ℓ and a plane P ; the line
was defined as the intersection of two planes in point-normal form (aix+ biy + ciz = di,
i = 1, 2) and P was also given in point-normal form (a3x+b3y+c3z = d3). One technique
is to solve the system formed by the three equations. The formulation of the equations
(as ax+by+cz = d for some a, b, c, d ∈ N) mimics that of equations given in the LA1 task
of solving a system of linear equations (discussed in the model of knowledge to be learned
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to perform tasks of the type in Problem 2; see Section 5.2.2). Gauss-Jordan elimination
is the normative LA1 technique to this end.

5.8.2.5 In LA1, tasks that involve geometric objects explicitly or nearly-
explicitly dictate the technique students are expected to use.

In light of the tasks students are expected to perform and which involve lengths, dis-
tances, and areas in Ri (i = 2, 3), I conclude students are not expected to know when to
deploy these tools and related formulas; they are only expected to know how to use the
formulas at stake and are only required to use them on command. This captures what
students are expected to learn relative to techniques τi (i = 1, . . . , 4) in my reference
model for Problem 8.

The task of finding the intersection point of lines and/or planes is not typically phrased
as such in LA1; only one exam question among the 116 I examined explicitly required
students to find the intersection of a line and plane. But the task in that question does
mimic the normative LA1 task of solving a system of three linear equations in R3 (I dis-
cuss this normative task in the model of knowledge to be learned to perform tasks such as
Problem 2; see Section 5.2.2). Indeed, the formulation of the problem—wherein the line
is described as “the intersection of two planes,” both of which are given in point-normal
form (ax + by + cz = d), and wherein the third plane is given in point-normal form as
well—is a surface-level feature that makes the problem similar to the task of solving a
system of three equations. Even if this exam problem does not dictate the technique
to be used, the representation chosen for the objects at stake makes the task amenable
to a technique students are usually instructed to use: to solve a system of linear equations.

I conclude the knowledge students are expected to learn in LA1 suffices to perform
Problem 8 if they recognize the task to be any one of ti (i = 1, 3, 4, 5, 6) from my reference
model for this problem. LA1 students are not normally expected to complete open-ended
problems, and they are not normally expected to know which knowledge about geometry
in Ri (i = 2, 3) to mobilize.

5.8.3 Knowledge LA1 students activated in response to Prob-
lem 8

Table 5.14 (on p.269) summarizes the paths of participants’ activity as they worked on
Problem 831. As before, Step 1 refers to the activity a participant spontaneously en-
gaged in upon reading the problem statement; I group students according to Step 1 and
color-code the groups to help trace students’ paths thereafter. I categorize a student’s ac-
tivity in a new step if they presented it as such; if I prompted for another approach and a
participant described one that is essentially equivalent, I still categorized it as a new step.

Throughout this section, I refer by D (D(x, y)) to the initial point of v⃗ when the
vector is placed such that its terminal point is B(5, 2); I also refer by ℓ1 to the line that
passes through A(1, 1) and C(3, 9) and by ℓ2 to the line that passes through B and is
orthogonal to ℓ1.

31Due to time constraints unrelated to the TBI, P8 did not do Problems 6 - 8.
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Five students (P1, P2, P4, P7*, P9) (essentially) completed Problem 7; one (P6)
suggested an appropriate technique but did not give sufficient detail to suggest he could
complete it; and three (P3, P5, P10) did not complete the task nor take any steps ap-
propriate for completing the task.

Among those who essentially completed the task, only P4 and P9 found the length
of v⃗, but the others had found sufficient information and described the remaining steps
sufficiently to indicate they knew how to complete the task. Indeed, P1 and P2 had found
the coordinates of D and said the remaining steps are to find v⃗ using its initial point D
and terminal point B and then to calculate the length of v⃗; and among the various correct
approaches P7* had suggested, all that was missing was the execution of the calculations
he had described.

P6 had suggested an appropriate technique for solving the task—create two equations
so as to find the coordinates of D, and while he did produce one equation in the unknowns
x, y, he struggled to produce a second one.

P3, P5, and P10 did not complete the task. P3 and P5 mobilized formulas from

LA1 in inappropriate ways (e.g., P5 created an equation by setting
−→
AC · v⃗ equal to the

distance between the initial and terminal points of v⃗, and P3 produced the equation
(a, b) · (5, 2) = 0, where (5, 2) are the components of B and (a, b) was defined such that
it was in no way a vector orthogonal to B). Finally, P10 did not know what to do. She
considered searching for the coordinates of D but said she did not know how to do so,

and she knew how to find the components of
−→
AC but said she did not know how this

would be useful to the task.
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Table 5.14: Paths of LA1 Students’ Activity in Problem 8

Practical block [t, τ ]

Type of engagement with [t, τ ]

S
te
p
1

S
te
p
2

S
te
p
3

S
te
p
4

find D by creat-
ing and solving
an equation
or a system
of equations
that correspond
to the given
scenario, find
the length of v⃗
by calculating

∥
−−→
DB∥

use the components of A and
C as coefficients of unknowns
in an equation of the form ax+
by + c = 0 to represent line(s)

P3

enacts partially: produces equations 3x + 9y + c = 0 and x + y + d = 0 with the aim to
find ℓ1, reduces the augmented matrix for the system 3x + 9y = 0, x + y = 0, then, in
response to a prompt about how she got this matrix, reduces the augmented matrix for
her original system, loses sight of her goal (“what was it for?”)

produce the equation
−→
AC ·−−→

BD = 0 (EQ1: 8x + 2y =
0), then say a second equation
is needed to solve for two un-
knowns, and produce a second
equation EQ2 (τ5 and/or τ6)

P1
enacts partially, describes the rest: finds D (calculation error leads to incorrect x coordi-

nate) (as ‘EQ2,’ produces parametric equations for ℓ1) and describes the rest (find ∥
−−→
DB∥)

P2

enacts partially, describes the rest: finds D (applies Pythagorean theorem to triangle
ADC to get EQ2: (x− 1)2 + (y − 1)2 + (x− 5)2 + (y − 2)2 = 17) and describes the rest

(find ∥
−−→
DB∥)

P6
enacts partially, gets stuck: produces EQ1, suggests to apply Pythagorean theorem to
triangle ADC to get EQ2 but does not express it in terms of x, y (only in terms of names
of the triangle’s edges)

find equations for ℓ1 and ℓ2 (τ6) P9
describes: use direction vector

−→
AC = (2, 8) of ℓ1 to find parametric equations for ℓ1

and ℓ2, find intersection D, find ∥
−−→
DB∥

produce an equation using the
dot-product definition of or-
thogonality but with vectors
that are not orthogonal

P3
partially enacts: writes (a, b) · (5, 2) = 0 and 5a + 2b = 0; from P3’s sketch, (a, b)
seems to be the initial point of v⃗ (terminal point B(5, 2)).

no clearly suggested equation P4 suggests to find D, starts to enact (finds
−→
AC = (2, 8)), decides to mobilize his first

suggested approach

find the area of the parallelogram formed by
−→
AC

and
−→
AB so as to find the height of the triangle

ABC, as this is ∥v⃗∥ (τ4)

P4 suggests: find 1
2
∥
−→
AC ×

−→
AB∥, as it and 1

2
bh are both the area of the triangle formed by

−→
AC and

−→
AB is , where b is the base (∥

−→
AC∥, known) and h = ∥v⃗∥ the heightP7*

P4 enacts (uses LA1 determinant formula for area of a parallelogram in R2)

adapt the LA1 “area of a triangle is half the
area of a parallelogram” technique

P5

draws the parallelogram formed by
−→
AB and 2

−−→
BC (describes the latter as the

vector obtained by going 2 units along negative x-direction, 7 units along

positive y-direction (as in
−−→
BC = (2, 7))); finds distance between B and C;

says ∥v⃗∥ is half the length of the diagonal of the new parallelogram, the length

of which she says she can find using the length of 2
−−→
BC; says this strategy is

similar to a LA1 midterm question she did correctly, where the task was to
find the area of a triangle (or parallelogram)

use knowledge
about orthogo-
nal projections

calculate length of an orthogo-
nal projection irrelevant to the
given problem: proj−→

AC
B

P9
enacts: finds parametric equations for the line through A and C, then finds ∥proj−→

AC
B∥

and says this is ∥v⃗∥

find proj−→
AC

−−→
CB, ∥

−−→
CB∥, and

use the Pythagoean theorem to
find ∥v⃗∥ (length of the third
edge of the triangle) (τ1)

P7* describes

use formula |ax0+by0+c|√
a2+b2+c2

for the distance between

a point (x0, y0) and a line ax + by + c = 0 to
find the distance between B and ℓ1, as this is
∥v⃗∥ (τ3)

P7*
enacts partially, describes the rest: finds equation in the form ax + by + c = 0 for
the needed line, explains how to use the distance formula

P4 suggests (does not find any equation for ℓ1)

mobilize trigonometric formulas and formulas
about right triangles to use θ = ∠BAC and

∥
−→
AB∥ to find ∥v⃗∥ (viewing the latter as the edge
opposite to θ in the right triangle BAC)

P7* describes

use the dot product definition of orthogonality
between vectors and a formula for the distance
between points

P5

partially enacts: writes

[
2
8

]
·
[
v1
v2

]
= 0, where (2, 8) =

−→
AC, (v1, v2) = v⃗, calculates distance

between A and B, and after I hint to find the initial point of v⃗, writes 2v1 + 8v2 =√
(5 + x)2 + (2 + y)2 where, per P5, the right-hand side is the distance between the initial

and terminal points of v⃗

try to find a technique by recreating the sketch
so the vectors at stake have their initial points
at the origin

P5
sketches a line segment between points (0, 0) and (2, 8) and a line segment perpen-
dicular to the first and with endpoint (4, 1)

stuck P10

doesn’t remember formula for length of a vector, and once she receives it, is quiet; considers

to find
−→
AC but doesn’t know what she’d use it for; considers to find the initial point D

of v⃗, but is “not sure how to do that”; asks if D is the origin, in which case she’d do “B
minus the origin” and find the length of this vector, but doesn’t think D is the origin; is
not sure what to do; writes CA = (2, 8).

create a system of equations by applying the
Pythagorean theorem to triangles ADB, CDB

P3
writes: α2 = e2 + v2, β2 = f 2 + v2 (α = ∥

−→
AB∥, β = ∥

−−→
CB∥, e = ∥

−−→
AD∥,

f = ∥
−−→
DC∥) and then α2 − e2 = β2 − f 2.

A(1, 1), B(5, 2), C(3, 9); D(x, y): the initial point of v⃗ when it is placed such that its terminal point is B; ℓ1: the
line passing through A and C; ℓ2: the line passing through B and orthogonal to ℓ1.
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5.8.3.1 Two students (P4, P7*) self-proclaimed to act differently from LA1
student norms as they spontaneously and successfully mobilized ge-
ometry from LA1 and high-school mathematics courses

P4 and P7* were the only two students who recognized the suitability of various geometry-
centric technologies to be learned in LA1: between the two of them, the technologies that
came up were formulas for areas of parallelograms and triangles in R2 and R3, the notion
that systems of equations can be used to find an intersection point of lines in R2, formulas
for vectors in an orthogonal decomposition, a formula for the distance between a point
and a line in R2, and trigonometric formulas. While in typical LA1 tasks (such as to find
the area of a parallelogram, to find the orthogonal projection of one vector onto another,
etc.), this knowledge has the function of a technique (use a given formula to perform a
certain task), P4 and P7* were able to use this knowledge in the function of technologies:
knowledge needed to perform a certain technique (they needed, for instance, LA1 formu-
las for areas of parallelograms in 2- or 3-space to find the height of a given triangle). In
this section, I first describe how P4 and P7* mobilized this knowledge in the function of
technologies, and then describe opinions P4 and P7* shared about the techniques they
suggested for Problem 8 and techniques they perceived would be expected or typical of
students in LA1.

5.8.3.1.1 P4 and P7* suggested to mobilize cross products to use the area
of triangle ABC (in R2) to find its height ∥v⃗∥ Both recognized, upon receiving
Problem 8, that the length of v⃗ is the height of triangle ABC (relative to base AC) and
that a pair of formulas for the area of a triangle could be wielded to find the height of this
triangle. One of the formulas P4 and P7* suggested was that the area of a triangle with

base b and height h is bh
2
. The other formula they suggested was 1

2
∥
−→
AC ×

−→
AB∥. They

thought ∥
−→
AC×

−→
AB∥ to be the area of the parallelogram formed by the two vectors. This

would have been accurate if the vectors were in R3. P4 and P7* did not spontaneously
realize their mistake, but both did eventually resolve it. I denote by τ ′4 the technique
whereby P4 and P7* aimed to find the height of triangle ABC. This notation refers to
τ4 from my reference model from Problem 8: the technique whereby the identified task

(t4) is to find the height of the parallelogram formed by
−→
AB and

−→
AC.

5.8.3.1.1.1 To mobilize τ ′4, P7* reasoned geometrically to adapt the cross
product formula for parallelogram areas in R3 to a parallelogram in R2, whereas
P4 mobilized the LA1 formula for the area of parallelograms in R2 (that results
from the reasoning P7* used). P4 did not try to use the cross product formula he’d
initially proposed for the area of a triangle, but rather used a corollary of that formula.
He did not address the discrepancy between his original suggestion and what he used.
P7* did not notice an issue with the cross product formula he’d initially proposed until
I prompted him to do the calculations he suggested; eventually, he used the geometry at
stake to adapt the cross product formula for parallelogram areas in R3 to parallelograms
in R2.

Despite what P4 had said about the area of a parallelogram being the length of a
cross product (a theorem true in R3), in practice, he mobilized a LA1 formula for the
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area of a parallelogram in R2 (he “remember[ed] it, [he] just - [he] kn[e]w it’s a formula”),
though he didn’t address the discrepancy between the formula he’d used and the claim

he’d made (about cross products). He found the components of
−→
AB and

−→
AC, then got

to calculating the area of the parallelogram they form: “is the area of the parallelogram
they form [what I get] when I put them above each other? The determinant, that’s what
I put them on top of each other.” What P4 wrote matches with a corollary of the theorem
(to be taught and learned in LA1) about cross products and parallelogram areas in R3.
The corollary states the area of a parallelogram formed by vectors (u1, u2) and (v1, v2) in
R2 is the absolute value of ∣∣∣∣u1 u2

v1 v2

∣∣∣∣
P7* did not attempt any of the calculations he’d described for τ ′4, but he did bring

up the cross product formula up again later on in his engagement with Problem 8. At
that point, I prodded P7* to recognize the issue: I pointed out that cross products are in
R3. This did not get P7* to notice an issue (he first insisted that the norm of the cross
product would be the area of the paralellogram, and after I asked which two vectors he’d
use in the cross product, he still didn’t notice an issue as he focused on which choice of
vectors would be suitable, rather than the nature of the vectors). So I prompted him to
show what his calculations would look like. This worked. P7* noticed a problem after he
wrote the following: ∣∣∣∣∣∣

4 2 e1
1 8 e2

∣∣∣∣∣∣
“Wait, wait. Why is it not working here? Wait. [pause] I’m not sure where it’s going,
which part is going wrong, but we are not [getting] a square matrix here. So I cannot

calculate the determinant.” P7* didn’t notice the cross product of
−→
AB and

−→
AC is not

defined; he rather noticed he could not use a formula for cross products that involves a
determinant. He knew determinants “can” only be “calculate[d]” for square matrices.

P7* abandoned the suggestion to use the area of the triangle ABC at this point.
He moved on to make his last suggested approach, and when he finished it, he asked:
“do you know which part had gone wrong with this cross product thing?” I gave him
the definition of cross product. This triggered in P7* a resolution: assign 0 as a third

coordinate to the vectors
−→
AC and

−→
AB. P7* also had an explanation for this based on

the mathematics at stake: “because this triangle is on a plane, which means there’s no
third dimension, which means they share, they share the same third coordinate, and I
just assume it’s zero. You may also say that it’s going to be 1 1 [as in, assign 1 as the
third coordinate for both vectors], but I think it will not change the answer. Maybe? I’m
not sure. But I don’t think it [would], according to the characteristics of the geometry.”

P7*’s eventual and mathematics-based reconciliation of the cross product formula for
triangle areas in R3 with the situation at stake (a triangle in R2) contrasts with P4’s “I
know it’s a formula” justification for the formula he used. What P4 used is a corollary of
the cross product formula for areas of parallelograms in R3. P7* had actually provided
the explanation that produces the corollary P4 used. I acknowledge this contrast between
the nature of P4 and P7*’s explanations and note that P7*’s background includes higher-
level and abstract mathematics courses from an undergraduate mathematics degree he
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had started at a university in another country.

5.8.3.1.2 P4 and P7* knew ∥v⃗∥ is the distance between B and the line ℓ1
through A and C. τ3 is the technique I identified in my reference model for Problem
8 wherein the length of v⃗ is viewed as the distance between B and ℓ1. P4 brought τ3 up
spontaneously after he had completed the problem via τ ′4 (τ3 was his third suggested ap-
proach), and P7* enacted τ3 partially as his second suggestion of a technique for Problem
8.

P7*’s description of τ3 sufficed to indicate he could have finished the problem in
this way: he had produced a point-normal equation for ℓ1, that is, an equation of form
ax+ by+ cz = d, and knew the coefficients a, b, c of x, y, z and the coordinates of B were
those needed to use the distance formula.

P4’s description was not as thorough as P7*’s. He suggested to find a point-normal
equation for ℓ1. He knew an equation of this form is needed to deploy the formula for
distance between a point and a line in R2. It’s not clear whether P4 had sufficient knowl-
edge to produce a point-normal equation for ℓ1. When P4 brought up τ3, he first said:
“let me try it. I don’t really remember.” He then said, referring to ℓ1, that it would “be

t(2, 8)” (where (2, 8) are the components of
−→
AC). “I don’t remember if it’s going to be

plus 5 2,” he said as he wrote

(
5
2

)
, as in the coordinates of point B, “is it? I’m - I’m

not sure. Is this a formula for this line?” It was after this that P4 said he “could do
the point-normal equation,” “plug in x, y as 5, 2,” which are the coordinates of B, “and
then use the distance formula: ax0+bx0+c√

a2+b2+c2
.” Given P4 had relied on surface-level features

of vector equations when he first attempted an equation for ℓ1, it’s not clear if he would
have similarly depended on (easy-to-forget or misuse) surface-level features to produce
a point-normal equation or if he had theoretical knowledge through which to produce
point-normal equations.

5.8.3.1.3 P4 knew the initial point of v⃗ is the intersection of two pertinent
lines. He said one approach to Problem 8 would be to find this intersection point, use
it to find the components of v⃗, and then use the latter to find ∥v⃗∥. P4 did not explicitly
describe how to do this, but he did mention the point is an intersection which could be
found “using... some, like, the point-normal equation or whatever.” P4 said this was the
technique he would use “if [he] were in the linear algebra [LA1] mindset.” P4 said he
“think[s]” this is “what [teachers] would expect [students] to do in this [LA1] course.” I
infer, from the comments about “intersection,” “the linear algebra mindset,” and what
would be expected of students in LA1, that P4 had in mind the normative LA1 task
wherein a point of intersection of two lines in Ri (i = 2, 3) is found by solving the system
of equations corresponding to the lines. In my reference model for Problem 8, I refer to
this task by t6 and its related technique τ6.

5.8.3.1.4 P7* suggested to use trigonometric formulas so as to use ∠CAB and
edge AB to find the height ∥v⃗∥ of triangle CAB P7* denoted ∠CAB by θ and the
height of triangle CAB (relative to edge AC) by h. He brought up various formulas and
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described how to use them together to find ∥v⃗∥. One of the formulas he brought up was
the cross product formula for areas of parallelograms (in R3), “the geometric meaning”
of which he had “learned [...] in this course [LA1].” The other formulas P7* mobilized
are formulas he had “learned [...] before, in junior high school and senior high school.”

The first formula he brought up was

sin θ =
h

AB
, (5.11)

where he claimed the norm of AB and sin θ are known. He said sin θ can be found in
“two ways.”

One way to find sin θ, he said, was through dot products:

cos θ =
a · b
|a · b|

This incorrect formulation is produced from the definition of dot product of two vectors
a and b with angle θ between them:

a · b = cos θ∥a∥∥b∥

P7* said he was referring by a and b to
−→
AC and

−→
AB, respectively. P7* then suggested to

“use the relationship between sin θ and cos θ [...] which means [sin θ] is
√
1− cos θ2.”

P7*’s second way for finding sin θ was to use the area “S” of triangle ABC. He

claimed S would equal “1
2

−→
AC

−→
AB sin θ” (a formula I presume he’d drawn from the cross

product formula for the area of a parallelogram formed by vectors a, b ∈ R3, along with
the identity

a× b = (∥a∥∥b∥ sin θ)n,

where n is a unit vector orthogonal to both a and b in the same direction as their cross

product). Since
−→
AC and

−→
AB are both known here, so are their lengths and their cross

product, so sin θ could be found as well.

Once sin θ is found, P7* explained, equation (5.11) could then be used to find h (that
is, ∥v⃗∥).

Some prompts I gave P7* made him realize he could not calculate
−→
AB×

−→
AC. At first,

he proposed to abandon this approach to finding sin θ. “There are two ways to find out
the θ.” The first way he mentioned would again depend on the area of the triangle, but
the second is the “law of cosine,” which indeed would complete the task of finding sin θ
if applied to triangle ABC, as all its side-lengths are known.

After P7* resolved how to find sin θ without using the area of ABC, he asked if I
“kn[e]w which part had gone wrong with [that] cross product thing.” I gave P7* the
definition of cross product and this triggered in him a resolution to the issue (which I
discuss in Section 5.8.3.1.1.1, in the context of P7*’s mobilization of τ ′4 to find ∥v⃗∥).
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5.8.3.1.5 P4 and P7*’s comments shed light on their perception of what is
expected of LA1 students and of what they value, as problem-solvers, in a
solution to a problem. Upon receiving Problem 8, P7* said there are “so many ways
to do” it and he had “no idea where to start”; P4 decided—“the first thing I’m thinking
about”—to “do this with high school geometry.” He paused and, before explaining how
he’d use high school geometry, said: “could I know the area of this?” A pause. “Oh yes! I
could.” P4’s spontaneous reaction to the problem was also the first suggestion P7* gave:
they said the length of v⃗ is the height of triangle ABC and knew they could find the
triangle’s area (using Euclidean geometry and LA1 knowledge) and then use this to find
the height of the triangle.

At this point, the two participants had only described this approach and did not
embark on any calculations. P7* went on to suggest a second idea he had (as he did
throughout the interview, suggesting approaches one after the other and with no explicit
prompt to do so) and P4 wondered: “is there another [way], a better way? Perhaps.”

While P7* said, about his first suggestion, that he “[thinks] most people would do
that” approach (presumably, referring to LA1 students), P4 placed his bet elsewhere.
Indeed, his second proposition was to find the initial point of v⃗:

I could try to find this point [the initial point of v⃗ in the given image]. And
then, then I know this vector and [I can] try to find the norm of the vector,
which I think [is] what they would expect us to do in this course. [emphasis
added]

(Apart from P4 and P7*’s various suggestions for how to complete Problem 8, the
only apt technique suggested by the other participants was to use equations to find the

initial point of v⃗; I discuss this in Section 5.8.3.2.) P4 found the components of
−→
AC

and then decided against this equations-based approach: “nah, I’m gonna try my own
solution” (emphasis added). P4 distinguished between his perception of what is expected
of students in LA1 and solutions he rather perceived as “[his] own.”

For P4, simplicity was one character of solutions he perceived as “[his] own.” Indeed,
in between his engagement with Problems 7 and 8, P4 said he “always find[s] simpler
solutions in the end.” When I referred back to this comment at the end of P4’s interview,
and asked if he meant it in general or “just today” (during the interview), P4 explained:

Today, I think the questions are aimed to see what I think about; the first
thing, second thing I think about. Somaybe I directly tried to solve it using my
linear algebra knowledge, instead of looking at it from a more... logical point
of view. Like, for example, now, I never ever saw a problem like [Problem
8]. But if I were in the linear algebra [LA1]... mindset, I would probably
try to find that intersection using.. some, like, the point-normal equation or
whatever. [emphases added]

P4 perceived the solutions he proposed—solutions based in the geometry at stake
(height of a triangle, in particular, but also distance between a point and a plane)—a
more “logical point of view” for the given problem than creating equations to find an
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intersection point, an approach he perceived to be more aligned with LA1 norms.

Other comments P4 made reinforce the distinctions he perceived between what’s ex-
pected of LA1 students (equation solving) and mathematics over which he felt he had
authority (“my own”) and which he deemed more “logical” for certain problems:

Also! Sometimes it does happen, like in the exam. I don’t know if you
know this type of question, in calculus, in [differential single-variable calcu-
lus], they would give us a system of equations, and then [we have to] find a
and b such that the function is continuous and differentiable for example. So
I always—like in the midterm and when studying, I will always solve it alge-
braically and I always find a solution like that. In the final, at the end of the
day, [I] played it very well. I remember it was—I think −ax+ b maybe—no. I
just remember that trying to solve it algebraically was not working, I would end
up with like arc sine or whatever. And I couldn’t actually reach somewhere.
But I think - I thought about it geometrically, and then I got to [something]. So
this would be my sine x graph. Oh, sorry! Yeah, it was a piecewise function.
And then, the second part was linear. And so no matter what, this wouldn’t
be differentiable, because this is a corner, I have a linear meeting a curve and
the, the continuous it will always be, because no matter what a is, this only
affects the... the wavelength of the function, but it will always meet here and
it will always be continuous. So sometimes, like, under [laughs] maybe under
pressure, I find maybe another way to look at the problem. But... usually I,
yeah, usually I think I fall into the mistake of... robust way of thinking about
it, you know what I mean? [emphases added]

I asked P4 what makes something “robust.” His answer: “proof, rigorous math, alge-
bra.” P4’s perception was that LA1 student norms for solving problems are to “always”
use algebra. On “the midterm” and “when studying,” he would “always solve [...] al-
gebraically” and “we [students?] would always find a solution like that.” It would take
an out-of-the-ordinary situation—being “under pressure”—for him to change tactics: for
instance, when he was unable to solve a problem algebraically on a final exam, or on
the occasion of this interview. After all, P4’s perception was that if he “were in the
[LA1] mindset,” he would have tackled Problem 8 by using equations to find the inter-
section point (of ℓ1 and the line through B and parallel to v⃗). That P4 perceived the
LA1 “mindset” to correspond to this strategy shows what he did not perceive to be ex-
pected of LA1 students: to use various formulas to be learned in LA1 (such as distance
formulas or formulas for areas of triangles) so as to produce techniques that are his “own.”

Additionally, P4 said that to “always solve [...] algebraically,” is to “[fall] into a
mistake.” Another comment P4 made reflects a similar opinion. When I asked P4 which
approach he’d submit for grades, he said both (using the distance formula and using
triangle areas) are “correct,” and when I followed with another question (what if he were
just doing the problem “for himself?”), P4 stated a preference:

I like this one, because this is more logical than, because that one depends
on my knowledge of linear algebra. This one is.. problem solving, you know
what I mean? This is the first time I’ve ever seen the problem this way.
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P4 contrasted between a logical, problem-solving approach, and one based on “[his]
knowledge of linear algebra.” This brings to mind the distinction between techniques that
reflect students’ norms from LA1 and techniques that are more appropriate or efficient
for a given problem. As a LA1 student, P4 did not perceive that students are expected
to problem-solve, that is, to produce solutions that are “[their] own.” As “this is the first
time [P4 has] ever seen the [distance] problem this way,” I infer P4 meant, by solutions
that are “[his] own,” solutions that are not replicas of techniques for problems students
are used to seeing in LA1. Recall the comments P4 made in response to other problems
in the interview: when he saw Problem 2 (to solve a linear system), he said that “the
second [he] see[s] Ax = b, oh ok, REF. [He knows he] need[s] to reach REF and start[s]
solving toward that.” Various other comments P4 made throughout the interview, along
with his activity in the interview, indicated that, when faced with a problem students
typically have to solve in LA1, P4 spontaneously activates LA1 norms. But, given an
open problem such as Problem 8, one of a type he’d never seen (“this is the first time
I’ve ever seen the problem this way”), P4 did not have a ready-made technique to fall
back on and had to produce an approach of “[his] own.”

At the same time, however, P4’s comment opposing “robust way[s] of thinking” (when
referring to “proof, rigorous math, algebra”) with “find[ing] another way to look at [a]
problem” suggests he does not know that “his” ways of solving are “robust.” He did not
have sufficient authority over the technologies he used to know his use of LA1 technologies
was robust (e.g., he was “not entirely sure that [...] [he] could have picked any [pair of

vectors among
−→
AB,

−→
AC,

−−→
BC] to find the area of the parallelogram, but [he thought] that

is true”).

In sum: P4 sensed some techniques are “better” (“is there another, a better way?”).
Given an open problem that does not prescribe a technique neither implicitly nor explic-
itly (as LA1 problems do), P4 assessed potential approaches according to criteria that,
while vaguely defined (e.g., “logical”), ranked what’s expected of LA1 students (solving
equations) lower in a certain sense: he preferred to activate his “own” approach, and he
said that throughout the interview, he had tried to solve the given problems using his
LA1 knowledge, “instead of looking at [them] from a more... logical point of view,” and
he perceived that automatically activating algebraic approaches is a mistake (“usually I
think I fall into the mistake of... robust [algebraic] way[s] of thinking”). Nevertheless,
P4’s grasp of the theory was insufficient to lend him the knowledge that geometry-based
approaches were as “robust” as the “rigorous [...] algebra” that is normative in LA1.

P7* also shared his perceptions of LA1 (student and examiner) norms and how these
relate to his problem-solving practices. As he said as soon as he finished reading Problem
8, he had thought of various ways through which to complete the task (“I’m thinking I
have so many ways to do that. I have no idea where to start.”) He claimed later that
he “use[d] the first one [areas of triangles] because it [would] be” what he “think[s] most
people [would] do.”

P7*’s criteria for what to submit on a LA1 test differed from P4’s (whose solutions,
per what he said earlier in the interview, would be those similar to what he would have
practiced on past exams). If P7* were to submit a solution to Problem 8 on a test, he
“wouldn’t write all of” the approaches he had proposed in the interview. He “would just
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use the one that requires the least wording, because it [would] be much easier, and it
[would] make sure it’s going to be completely correct.” He would “not write [...] com-
plicated things.” Additionally, P7* was aware of markers’ expectations that students
demonstrate LA1 knowledge (as opposed to knowledge from other mathematics courses):
referring to his trigonometry-based resolution of Problem 8, he said that “if [he were to]
use the rule of cosines, maybe the marker [would say], ‘oh, [it] is not allowed to use [this]
here.’ [He’s] not sure. So [he would] not use it.”

P7*’s criteria for what to submit for grades in LA1 differed from his criteria for being
convinced of the validity of a solution. To be convinced a result he finds is accurate, P7*
enjoys replicability: “if I have time, I use different methods and figure out if the answers
are the same.” He recognized this is not expected in LA1:

Actually, in the midterm of 204, there [was] one question of finding the size,
find an area of the parallelogram. I [did], I kind of [did] a discussion, because
there can be two different kinds of scenarios. But there’s only one scenario
that was actually marked, you know, that was marked and the other. Well,
the marker did not say that I was wrong, but he just did not care about it.

The institutional conditions under which LA1 markers grade are as follows: in a typ-
ical fall semester, there can be over 400 students registered in several sections of LA1
(e.g., there might be 75 registered in a section with teacher A, 80 with teacher B, etc.).
Common marking is an institutional strategy in courses such as LA1 (that is, mathe-
matics courses prerequisite for various university programs). The strategy is such that
teachers share in the grading of midterm and final exams by splitting grading by question
(e.g., teacher A grades questions 1-3 for all 400 students, teacher B questions 4-5 for all
students, etc.). Teachers have 5 business days to finish grading midterm and final ex-
ams. Given the conditions and constraints in which teachers grade LA1 (and other math
courses at this level, such as differential and integral single-variable calculus), experiences
such as the one P7* described are likely common: should a student submit more than
one solution to a problem, the marker only grades one. Students are not expected to
demonstrate nor rewarded (with marks) for demonstrating a breadth of knowledge in
response to any given question on an exam.

Apart P7*’s comments about what is not expected of LA1 students, other comments
he made shed light on what he favours in a solution to a problem. For example, after

he proposed to use the projection of
−−→
CB on

−→
AC, he said: “oh, it is no longer elegant,

but I could use the Pythagorean way to do that.” Indeed, if I denote the initial point

of v⃗ by D, then the length of proj−→
AC

−−→
CB is the length of DC. Since the length of CB

can be found (as B and C are known), the Pythagorean theorem can be used to find the
length of DB. As P7* suspected (he repeated a second time that “there should be [...]
a more elegant projection way,” but he was “not sure”), the Pythagorean theorem was

unnecessary here as proj−→
AC

−−→
CB can be used to directly find v⃗, as

proj−→
AC

−−→
CB + v⃗ =

−−→
CB.

Even though P7* suspected orthogonal projections could be used more “elegant[ly]”
in Problem 8, his next suggestion had nothing to do with these: “ah, yes, there is another
way to do that, but I think it’s very close to the first method.” He then described how he
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would use trigonometry. Again, as he described this last suggestion, he spoke of elegance
and simplicity: he said this was “the simplest way” and “more elegant” than his first
suggestion (of using the area of triangle ABC to find its height ∥v⃗∥).

P7* had referred to the notion of “elegance” previously in his interview. I hypothesize
his concern with elegance, an oft-cherished quality in varied fields in mathematics, has
less to do with his experience in LA1 than it does with his experience in higher-level
mathematics courses in a mathematics major he had started in his home country before
emigrating to study abroad.

5.8.3.2 Most students attempted to complete the task by producing equa-
tions whose solutions they expected to lead to the initial point of v⃗
(P1, P2, P3, P5, P6, P9).

Six of the nine participants tried to tackle Problem 8 by producing equations whose so-
lution they expected to be the components of the initial point D of v⃗ (when the vector is
placed such that its terminal point is B(5, 2)): P1, P2, P3, P5, P6, and P9. For P1, P2,
P3, and P6, this was the spontaneous reaction. This technique was P9’s second approach,
so not his spontaneous reaction, but it was the only one through which he managed to
complete the task. For P5, finding D was not a spontaneous reaction; but a comment she
had made prompted me to bring her attention to that point—and this, in turn, prompted
P5 to produce an equation that featured its unknown coordinates (x, y) in an equation.

To produce equations, these students mobilized knowledge from LA1 and/or high-
school geometry. This consisted of one or more of the following: the dot-product definition
of orthogonality, know-how for producing parametric, point-normal, vector equations of
lines, know-how for calculating distance between points or the length of a segment given
its endpoints (be they expressed in terms of constants or unknowns), and the Pythagorean
theorem. P1, P2, and P9 produced a system whose solution was indeed the initial point
of v⃗; P6 proposed a system of two equations whose solution would have been this point,
but his second equation was not expressed in terms of the unknown coordinates of D
(as his first equation was) and he did not complete the task; and P3 and P5 produced
equations that paraded surface-level grasp of relevant knowledge but did not correspond
to the objects at stake in Problem 8.

Among these participants (P1, P2, P3, P5, P6, P9), none completed Problem 8 suc-
cessfully through any other technique—that is, through techniques not based in the LA1
norm of solving (linear) systems so as to find a point (or line or plane). P1 and P2 did
not attempt to do so when I asked if they could suggest any other approach; P9 had pre-
viously attempted another approach, but unsuccessfully; P6 did not attempt any other
approach and was out of time to do so, though he insisted his grasp of “geometry” was
lacking; and P3 and P5’s approaches did not correspond to the mathematical objects at
hand.

5.8.3.2.1 P1, P2, P6, and P9 produced systems of equations that represented
the mathematical objects at stake. P1, P2, and P6’s spontaneous reaction to Prob-
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lem 8 was to mobilize the dot-product definition of orthogonality to produce an equation
that captures the orthogonality of v⃗ to ℓ1

32. P1, P2, and P6 knew v⃗ is orthogonal to−→
AC; they found, given the endpoints of

−→
AC, that

−→
AC = (2, 8), and after having assigned

unknown components (x, y) (using x, y or other symbols for the unknowns) to the initial
point of v⃗, they expressed v⃗ as (5−x, 2−y). P1, P2, and P6 said the dot product of v⃗ and
−→
AC is zero, and thus produced the equation 2(5−x)+8(2− y) = 0. After producing this
equation, all three participants knew they needed another equation: P6 said he “need[s]
to figure out one more equation, so [as to] relate these”; P2 paused and said “[he has]
two unknowns here, [so he] should get two equations ”; and P1 said “[he’s] going to need
more equations, because there are two variables.”

To produce a second equation, and given the orthogonality of segments AD and DB,
P2 and P6 appealed to the Pythagorean theorem. P2’s initial notation for this theorem’s
application was dubious (he wrote AD2 +DB2 = AB2), but he applied it appropriately

to the lengths of the vectors at stake (
−−→
AD, etc.) and produced the following equation:

(x− 1)2 + (y − 1)2 + (5− x)2 + (y − 2)2 = 17

P2 knew how to proceed from here: he said he’d use his first equation to express x in
terms of y, substitute this into the second equation, solve for y, and then use this to solve
for x. P6, meanwhile, wrote

a2 + b2 = 17,

and specified that 17 was the magnitude of
−→
AB and b the magnitude of v⃗. But P6 did

not relate a and b to the vectors with endpoint D—that is,
−−→
AD and

−−→
DB, as P2 had, and

which would have enabled him to produce a second equation in x and y, and he got
stuck. Perhaps P6 would have overcome this hurdle, and perhaps he wouldn’t have; at
this point, P6 proceeded to talk about his struggles with geometry and did not return to
the task at hand.

To establish a second relation between x and y, P1 produced parametric equations
for ℓ1 and substituted the expressions for x and y (in terms of the parameter t) into his
first equation to solve for t. He then identified the ordered pair (x, y) produced by this
value of t. He knew this would be the initial point of v⃗.

P9 used the orthogonality of
−→
AC = (2, 8) and v⃗ differently; he used it to find a di-

rection vector for ℓ2 (the line parallel to v⃗ and passing through B). P9 knew that since

(2, 8) · (−4, 1) = −8 + 8 = 0, (−4, 1) is orthogonal to
−→
AC and thus is a direction vector

for ℓ2. He said (−4, 1) can then be used, along with point B, to form a vector equation

for ℓ2. Similarly, he knew
−→
AC = (2, 8) is a direction vector for ℓ1 and so that it could

be used to produce a vector equation for ℓ1. He knew D (the initial point of v⃗) is the
intersection point of ℓ1 and ℓ2 and so that it could be found by solving the system of two
vector equations. P9 did not solve this system but his activity in Problem 7 involved
successfully solving a system of two vector equations, so I infer he had the knowledge
needed to do so.

32I refer to the line passing through A(1, 1) and C(3, 9) by ℓ1 for clarity; students did not assign a
name to this line.
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5.8.3.2.2 P3 and P5 produced equations that drew from surface-level fea-
tures of normative LA1 knowledge but did not correspond to the geometric
objects at stake. For both P3 and P5, producing equations was the spontaneous
reaction to Problem 8. Both, however, produced equations that failed to capture the
geometric objects at stake, even if they drew on surface-level features of LA1 knowledge
about orthogonality, lines, and distance. I discuss P5’s equation first and P3’s second.

Upon reading Problem 8, P5 said the following: “I know that it’s orthogonal, it’s

going to be a cross product of these two vectors.” As she said this, she pointed to
−→
AC

and v⃗ in the image and I corrected her to say she meant dot product. P5 wrote the
equation [

2
8

]
×
[
v1
v2

]
= 0

and then paused for one minute. I asked what she was thinking and, as she started to
answer—“I was trying to think about what, geometrically, I could do with this”—she
corrected the × symbol to ·, said she “could find the length of this,” wrote 2v1+8v2 = 0,
and said the distance between A and B is

√
42 + 12 =

√
5. She knew this from the

“distance formula between the two points.” She then said she was “trying to think if
there’s anything geometrically [she] can do to find the length of it because [AB is] the
hypotenuse of the right triangle,” and “[she] just [doesn’t] know the length” and paused.
P5 was referring to one of the edges of triangle ADB other than its hypotenuse (I use
D to refer to the initial point of v⃗ in the image), so I gave a hint to see how P5 would
proceed: “to find the length of a vector, you need the initial and terminal points.” I
pointed out the initial and terminal points of v⃗.

The hint I gave prompted P5 to assign (x, y) as coordinates to the initial point of v⃗.
She said she would “use a distance formula” and wrote the following equation:

2v1 + 8v2 =
√
(5 + x)2 + (2 + y)2

On the left of P5’s equation is the dot product
−→
AC · v⃗. On the right is the length

of v⃗ (with an error in the coefficients of x, y, which ought to be -1). P5 did not pursue
this equation any further nor make any further comments about it. The equation seems
a continuation of what P5 said as she wrote the equation 2v1 + 8v2 = 0: that she “could
find the length of this.” This comment matches up with what P5 wrote on the image in
Problem 8 (see Figure 5.6 on p.281). Even considering the difficulties of mathematics
students at this level with the equal symbol (Kieran, 1981; Knuth et al., 2006), P5’s
equation, comment, and the traces she left on the sketch in Problem 8 seem to assign ill

geometric meaning to the expression 2v1 + 8v2 (the dot product of
−→
AC and v⃗): that it

corresponds to the length of v⃗.

The first two of P3’s attempts at Problem 8 reflected the LA1 technique of solving
a linear system to identify a geometric object (such as a point, a vector, a line, or a
plane). As I outline below, however, both attempts floundered as a result of insufficient
knowledge of geometric concepts.

P3’s spontaneous reaction to Problem 8 was an attempt to recall knowledge about
orthogonality: “I don’t remember exactly, but if it’s orthogonal, I think. . . Like... There
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Figure 5.6: P5’s additions to the sketch in Problem 8 (with my highlights)

is some kind of condition about it, so maybe I would try to. . . Find that first.” She
continued:

[I can find a] line or a plane which go through these two points and then I
would like to set arbitrary points which names a and b and it goes through
these two. [pause] Or maybe the a and b go here and it goes to like this [see
Figure 5.7]. So since they are orthogonal I think... I can find this point. So
after then, yeah, it would be easier to get the distance from here to here.

P3 initially added (a, b) as an arbitrary point on the line ℓ2
33 and may have later

decided to place it as the initial point of v⃗:

Figure 5.7: P3’s additions to the sketch in Problem 8

Given P3’s comments about not “remember[ing] exactly” some “condition” related
to orthogonality, I offered her the definition at this point (two vectors are said to be
orthogonal if their dot product is zero). After she read this definition, P3 asked for the
definition of “dot product.” I wrote an example to illustrate it:

(1, 2, 3) · (4, 5, 6) = 1(4) + 2(5) + 3(6) = 4 + 10 + 18 = 32.

After a brief pause, P3 asked if “this [was] about the distance,” but it was not clear if
she was talking about the definitions I had given her or Problem 8, so I asked if she was

33P3 did not assign a name for the line passing through B and parallel to v⃗; I refer to it as such for
clarity.
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talking about the definition of orthogonality. P3 then dismissed her questioning (“Ah no,
no, I mean. Wait, no. No no, it’s ok.”) and proceeded to solve a system she produced
(so as to find a “line or plane”):

3a + 9b + c = 0
a + b + d = 0

Given that the coordinates of A(3, 9) and C(1, 1) are the coefficients of the unknowns
a, b, I speculate P3 intended to find the line through the points A and C, though regard-
less of the intention, these equations do not correspond to any line relevant to the given
task. Above these equations, P3 had written ax + by + c = 0. P3 seems to have known
that such equations capture something at stake - perhaps lines - but from her choice of
coefficients, I infer her knowledge of such equations was superficial at best. (That is, she
knew equations of this format have something to do with “line[s] or plane[s].”)

P3 started by reducing the following matrix:[
3 9 0
1 1 0

]
I asked from where she got this matrix. P3 had “no idea,” she “just tried [something],”

and shortly after corrected the matrix:[
3 9 −c
1 1 −d

]
When P3 had found the reduced row echelon form of her augmented matrix, she

paused. I asked what she was thinking, and she said she “was thinking... what was it
for?” P3 had lost sight of her goal, which she had originally said was to find a “line or a
plane which go through” a given pair of points.

P3’s first attempt at Problem 8 was to produce a system of equations to identify a
point and then a vector: indeed, P3 had said, toward the start of her engagement with
this technique, that “it would be easier to get the distance from here to here” once (a, b)
is found, so her goal seems to have been to find the initial point of v⃗ and then find its
distance from the terminal point of the vector. But the equations P3 produced were
unrelated to the situation at hand and she could not make anything of the reduced row
echelon form of the system.

After P3 wondered what her first attempt was “for,” she abandoned her first approach
as she started on a new equation:

(a, b) · (5, 2) = 0

Based on P3’s sketch, (a, b) was either the initial point of v⃗ (when placed such that its
terminal point is B(5, 2)) or some other point along ℓ2. Neither choice of (a, b) is orthog-
onal to (5, 2). This is why I intervened and asked to what (a, b) referred; P3’s answer
confirmed it was necessary to clarify to P3 what the problem statement said. I pointed

at v⃗ and
−→
AC in the image and said that their being orthogonal meant their dot product

is 0. P3 paused, then said: “I... have no idea.” She laughed as she proceeded to suggest
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a last strategy that mobilized high school knowledge (the Pythagorean theorem).

In P3’s last attempt, she produced an equation that did actually correspond to the
objects at stake, but she was unable to render the equation into a form useful for the task.
She denoted the edges AB and CB of triangle ABC by α and β, respectively, and the
edges AD and DC by e and f , respectively. She then applied the Pythagorean theorem
to the right-angle triangles ADB and CDB and obtained this system of equations:

α2 = e2 + v2

β2 = f 2 + v2

From here, she obtained the equation α2 − e2 = β2 − f 2. In this equation, α and β
are known as they are the lengths of vectors with known endpoints (though P3 did not
indicate she knew this); but e and f are both unknown, so this equation in two unknowns
is insufficient to complete the task.

When it came to the LA1 technique of solving linear systems to identify geometric
objects, P3’s mobilization was a surface-level spin on the mathematical objects involved:
her first approach consisted of equations of the form ax + by + c = 0 with coefficients
calqued from coordinates of A and C, and her second approach consisted of an equation
of the form “dot product of an unknown vector with B equals zero,” where the unknown
vector ought’nt be orthogonal to B. She did not have sufficient knowledge about algebra
and geometry of lines in R2 (e.g., recall P3’s request for the definition of dot product),
orthogonality, and vectors (e.g., recall her misuse of the vectors A(1, 1), C(3, 9), and
B(5, 2)) to inform her use of the technique. P3’s engagement with the technique of pro-
ducing a linear system to identify a geometric object, starting with her suggestion to
find a “line or a plane” (emphasis added), when the objects at stake are in R2, to the
equations she produced (having only a superficial basis in the given situation, in that
they had the form of equations recognizable from LA1 and involved coefficients of points
in the sketch), to the comment that she had “no idea” how she got her first augmented
matrix, to the realization she wasn’t sure what her goal was in her first attempt (“what
was it for?”), and to the determination that she had “no idea” after I pointed out that,

in this situation,
−→
AC and v⃗ have dot product 0, suggests P3’s choice of technique was not

based in the mathematics at stake so much as it reflected the LA1 norm to solve linear
systems to complete tasks that involve lines, planes, or points.

5.8.3.2.3 Students who attempted to complete Problem 8 by producing and
solving equations did not produce other techniques that were appropriate for
the task. While P1, P2, P6, and P9 differed from P3 and P5 in their ability to mobi-
lize algebraic and geometric concepts (such as orthogonality, equations of lines, and the
Pythagorean theorem), they had two traits in common. First, they all aimed to complete
the task by producing equations so as to activate the LA1 norm of solving systems of
equations. Second, they were united in their inability to mobilize other conceptualiza-
tions of v⃗—in particular, concepts from LA1 that allow for a direct computation of its
length: first, the conceptualization that ∥v⃗∥ is the distance between B and ℓ1, and sec-

ond, the conceptualization of v⃗ as the component of
−→
AB orthogonal to

−→
AC. I highlight

these conceptualizations for the convenience of the techniques they afford, though there
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is a variety of techniques through which the task can be completed other than solving
equations that correspond to the given situation.

P9’s spontaneous reaction to Problem 8 was to recall that he “had a formula for the
magnitude of the perpendicular projection” and then to produce the parametric equa-
tions for ℓ1. P9 then said he forgot the formula for orthogonal projection so I gave it
to him. “So I just apply the formula.” P9 recognized that’s all the task required; but
he calculated an orthogonal projection that was irrelevant to the task. He claimed the
length of v⃗ is ∥proj−→

AC
B∥. But B(5, 2) is the vector with the origin as its initial point and

(5, 2) as its terminal point; not only is the projection of B onto
−→
AC not v⃗, it is a vector

wholly irrelevant to the task.

I asked P9 how he knew what he had calculated was the length of v⃗—to see if justify-
ing his technique would make him notice the error—but it did not: instead of addressing
the way in which he applied the formula, he referred to the authority of the textbook as
validation. When I asked, at the end of his engagement with Problem 8 (after he had
proposed to complete the task by solving the system of equations representing ℓ1 and ℓ2 to
find their point of intersection), what it would take to convince him his answer is correct,
P9 said “the [orthogonal projection] formula” would be it, “because while studying it in
the book, it explains that [...] the vector you find is mainly to get this.” But he used this
formula to target a vector irrelevant to the task. To validate the suitability of orthogonal
projections to the task, P9 did not appeal to the geometry at hand; he appealed to the
authority of the textbook.

Apart from P9, P5 was the only participant among those who produced equations who
had broached an alternative that wouldn’t involve solving equations. (P6 had mentioned
“maybe there’s something I could do [with] this other triangle here and do some fun stuff,”
but was not any more specific than this.) After P5 produced an equation irrelevant to the

task, a question I asked about this equation—how did P5 know that
−→
AC is (2, 8)?—seems

to have prompted P5 to try a different path. I include P5’s answer as it seems to have
prefaced her second approach:

I don’t know if that’s like 100% how to find it, but I just did the distance.
So, like, I drew this and I moved this one down and I kind of did that in my
head and, like, moved this one to (0, 0).

P5’s second approach was to “shift the points over so A is at the origin.” She redrew the
sketch such that the point A(1, 1) was translated to the origin (and so, the point B(5, 2)
was translated to (4, 1) and C(3, 9) to (2, 8)). She concluded this “didn’t really help.”

P5 was stuck so I asked what else she knew about the initial point of v⃗. P5 then
offered a third approach: “I guess I could make this a quadrilateral and then this would
be the diagonal.” See Figure 5.8 for the quadrilateral to which P5 refers. For clarity, I
refer by E to the top right vertex of the quadrilateral (that is, the point obtained by

adding
−−→
BC to C) and by F to the top left vertex (that is, the point obtained by adding

2
−−→
BC to A). P5 similarly described how to find the coordinates of E; as C is 2 units to
the left of B and 7 units above it, she could trace the same trajectory, starting from C,

to get to E. P5 explained her objective: “I would find the vector length [of
−−→
BF ] and then
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I’d halve it.” She incorrectly deduced, from
−−→
BC being half of

−−→
BE, that the length of v⃗

would be half that of
−−→
BF . The assumption at the basis of this error is that v⃗ aligns with

the diagonal of P5’s quadrilateral: indeed, at the start of P5’s engagement with this tech-
nique, she said “I could make this a quadrilateral and then this would be the diagonal”;
as she continued, she said “this is doubled. Okay. Oh, got it. Okay. So this is this point,
and this is this point. Now it has more sense. And then... and then that’s the diag-
onal.” Notice, finally, that P5’s sketch has the diagonal of the quadrilateral overlap with v⃗.

Figure 5.8: P5’s quadrilateral in Problem 8 (with my highlights)

A comment P5 made clarifies what seems to have inspired the suggestion that v⃗ is half

the diagonal
−−→
BF . There was a “similar [problem] on [the] midterm that [she] got right.”

P5 had “used a similar strategy” for that problem. The problem to which P5 refers stated
that 3 parallelograms have 3 common vertices (1, 2), (2, 3), and (1, 1)34. The first task
was to find the coordinates of the fourth vertex of each parallelogram; the second task
was to find the length of the longest diagonal amongst the six diagonals of these paral-
lelograms. The technique needed to complete both tasks is precisely that suggested by
P5. P5 had found surface-level features of Problem 8 similar to surface-level features of
this midterm problem: both specified three points A,B, and C in 2-space, and there was
a goal to find the length of a vector similar to (half) a diagonal. For P5, this made the
problems “similar”; but P5’s suggestion did not correspond to the mathematical objects
at stake. P5 did say she “[doesn’t] know if this is a mathematical way to solve it”; in
the absence of mathematical knowledge on which to base her suggestions, P5 relied on
surface-level features of problems she had to complete to pass LA1.

Like P9, P5 did not have recourse to knowledge that could produce a technique that
would not involve solving equations. And nor did P1, P2, P3, and P6: when I asked P1
and P2 if they could suggest any other approaches, they said they could not. P3 suggested
three approaches, all three of which aimed to produce equations whose solutions she ex-
pected to be relevant. P6’s other suggestions were vague: “maybe there’s something I
could do, like this other triangle here, and do some fun stuff. [...] maybe the two triangle
things would be easier for me to think about.” I asked what other triangle “thing” he’d
use; he said there’s an “equilateral triangle” in reference to the triangle ABC, but this
triangle is not equilateral. He continued: “honestly, I don’t know all the manipulations

34I had access to the midterm test in question and were thus able to identify the “similar” problem to
which P5 and other students had referred during their engagement with Problem 8.
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you can do with triangles, but I know that probably starting from here with two side
lengths and the information of the points you can like figure something out.” P6’s vague
descriptions do not specify an alternate technique through which to find ∥v⃗∥.

Solving systems is a norm in LA1. As discussed in the model of knowledge to be
learned in LA1 relative to solving systems of equations (to perform tasks such as that in
Problem 2) (Section 5.2.2), a variety of tasks in LA1, which I denoted by t5 in Section
5.2.2, are of the type “to solve a linear system so as to accomplish a different LA1
type of task” (such as to find intersections of lines and/or planes, to determine linear
independence of vectors, etc.). This explains P4’s perception that in the “LA1 mindset,”
the approach to Problem 8 would be to produce equations to find a point of intersection.
This also explains P6’s perception that using knowledge about triangles is not “really the
linear [LA1] way of solving” Problem 8:

Maybe there’s something I could do [with] this other triangle here and do
some fun stuff. [...] Maybe the two triangle things would be easier for me
to think about. But I know that that’s not like, I don’t feel like, that’s not
really the linear way of solving it. But it might be a way to solve it.

Given the normative quality of t5 in LA1, I underscore the contrast between P1, P2, P3,
P5, P6, and P9’s ability to recognize equations can be used to identify a geometric ob-
ject and their inability to mobilize LA1 knowledge(-to-be-learned) that does not involve
solving equations. In P3 and P5’s case, the inability to mobilize other LA1 knowledge
broached on their ability to produce appropriate equations. In light of the norms relative
to t5, this is not surprising: the tasks in which students are responsible for producing an
appropriate system of equations (listed in Section 5.2.2 as LA1 tasks I identify as being
of type t5) can be completed by calquing integers from a given set of vectors into a matrix
and reducing this matrix (recall some students’ comments about “putting” vectors given
to them as “rows” or “columns” in a matrix they produced to perform certain tasks, as
in Problem 5). This norm implies that students can complete tasks of type t5 without
knowing the mathematical reasoning for which the systems they produce are relevant; in
turn, P3 and P5 were unable to produce appropriate systems when the usual technique
(putting vectors as rows or columns of a matrix) was irrelevant.

5.8.3.3 Three students (P3, P5, P10) could not mobilize LA1 knowledge in
a way that contributed toward completing the task.

The first two of P3’s attempts were to produce equations that were false. P3 knew the
task could be completed by finding the initial point of v⃗, but lacked knowledge to produce
a system of equations whose solution was indeed that point. P3’s third attempt was to
use the Pythagorean theorem twice, again producing an equation—one whose solution
P3 might have hoped to be the length of v⃗—but the number of unknowns (2) was too
large for this single equation to be useful.

P5’s first attempt, like P3’s, involved equations whose solutions P5 might have hoped
to be relevant, but the equations did not correspond in any useful way to the geometry
at stake. P5’s second and third attempts focused on the geometry (e.g., in the second
step of her engagement with Problem 8, she shifted the points in the given sketch so the
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initial point of
−→
AB was now the origin, instead of A). P5’s second step failed to trigger

any technique; it led only to her third step, in which she drew a quadrilateral and made
the false claim that its diagonal was twice the length of v⃗.

P3 and P5’s attempts were both inappropriate for the given task and both reflected
surface-level features of tasks they had experienced in LA1. P10, meanwhile, did not
make any concrete suggestions for how to tackle the task. Her immediate reaction to
Problem 8 was that she did not remember the formula for the length of a vector. I gave
it to her, and she went quiet. Every contribution P10 made, from here on, was only in
response to a prompt in which I asked what she was thinking. First, she said she consid-

ered finding
−→
AC, but did not know what she’d use it for. Then, she said she considered

to find the initial point (D) of v⃗, but was “not sure how to do that.” She asked if D is
the origin (if it were, she said she would do “B minus the origin” and find the length
of this vector). But she didn’t think D is the origin. She wasn’t sure what to do. Her
engagement with Problem 8 finished with this: CA = (2, 8).

Without implicit or explicit instruction for how to tackle an open-ended problem, P3,
P5, and P10 were unable to mobilize LA1 technologies to produce representations that
corresponded to the mathematics at stake. P10 considered finding D but had no idea
how to do so; P3 and P5 knew this point could be found with an appropriate (system of)
equation(s) but could not produce an apt system.

P3, P5, and P10’s engagement with Problem 8 contrasts, first, with P1, P2, P6, and
P9, who were able to mobilize at least one LA1 technology to act out the technique of
solving a system of equations to find points in 2-space: orthogonality in R2 (P1, P2,
P6), equations of lines in R2 (P1, P9), and lengths of vectors (as P2 did so as to use
the Pythagorean theorem). P3, P5, and P10’s responses to this open-ended problem
contrasts most with P4 and P7*’s flexible use of LA1 technologies, as they mobilized
various conceptions of v⃗ (as the height of a triangle, as a vector related to an orthogonal
projection, as the distance between a point and a line, and as a vector whose initial point
is an intersection of two lines) to produce various techniques for the task.

P3 and P5 did not lack the technologies other participants mobilized, however. After
all, it is P3’s knowledge of orthogonality that produced the equation (a, b) ·(5, 2) = 0, but
perhaps an inability to define vectors well (e.g., (a, b)) that presented a problem. And

P5 mobilized not only the orthogonality of
−→
AC and v⃗ = (v1, v2) appropriately, having

produced the equation 2v1 + 8v2 = 0, but also the formula for distance between points
relatively appropriately, having produced the expression

√
(5 + x)(2 + y)2 in reference to

the distance between the initial and terminal points ((x, y) and (5, 2), respectively) of v⃗.
But P5 then created a mutation—the equation 2v1 + 8v2

√
(5 + x)(2 + y)2. P3 and P5

were unable to use LA1 technologies without instruction for how to use them. In LA1,
tasks that involve orthogonality or distances either explicitly or implicitly (by norms)
tell students how to use these, in that all LA1 tasks come with an associated normative
technique. LA1 students are not required to recognize where a technology is appropriate
nor to design a technique of “[their] own” (to borrow from P4’s expression). This (lack
of) requirement shows in P3, P5, and P10’s inability to use technologies to produce a
technique, even as they showed signs of knowing what these technologies are.
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5.8.3.4 Summary: the open-ended nature of the task highlights the limita-
tions of norms established by knowledge to be learned in LA1 and
points to the affordances of tasks that do not prescribe techniques

At the end of Section 5.8.2, I noted that LA1 students are not normally expected to com-
plete open-ended problems, and they are not normally expected to know which knowledge
about geometry in Ri (i = 2, 3) to mobilize. The knowledge students are expected to
learn in LA1 suffices to perform Problem 8 if they recognize the task to be any one of
ti (i = 1, 3, 4, 5, 6) from my reference model for this problem. Of the 9 participants who
attempted Problem 8, 5 mobilized sufficient knowledge to indicate they could complete
the task. Of these 5, 2 students activated a variety of technologies from knowledge to be
learned in LA1 (P4 attending to algebraic and geometric concepts from LA1 as he acti-
vated τ1, τ3, τ4, τ6 and P7* focusing on several notions from LA1 and high-school geometry
as he activated τ1, τ3, τ4 and trigonometric formulas), used these technologies to produce
several techniques, and made comments that showed a preference for certain approaches
over others. The 3 other students who showed capacity to complete the problem sug-
gested one viable technique: to find the coordinates of the initial point D of v⃗ by solving
a system of equations produced by algebraic representations of the objects at stake (τ5
and/or τ6). These 3 students, like P4 and P7*, combined technologies from knowledge
to be learned in LA1 and high-school geometry to produce equations for these two lines:
the dot-product definition of orthogonality (P1, P2, P9), notion of a normal as a vector
orthogonal to a line (P9), parametric equations for lines (P1, P9), length of vectors in R2

(P2), and the Pythagorean theorem (P2). Of the 4 students unable to mobilize sufficient
knowledge to indicate they could complete the task, there was 1 who suggested the begin-
nings of τ5: P6 produced one equation using the dot-product definition of orthogonality,
and knew a second equation was needed so as to find the coordinates of D, but did not
make concrete suggestions as to how it might be produced. The activity of the remaining 3
students also targeted τ5, but failed to produce any appropriate algebraic representations.

Except for P7*, all students attempted τ5 or τ6—to use algebraic representations of
the objects at stake to produce a system of equations whose solution is D—and among
these, only one student (P4) was able to mobilize a technique in which the target was not
to solve a system of equations. This can be explained by the heavy weight ascribed to
system-solving tasks in knowledge to be learned in LA1: 45% of the exam tasks to which
I had access required system-solving as a technique to complete the task, and 26% of the
exam tasks were to solve a linear system so as to accomplish a task whose objective is
not strictly to find the solution of that system (e.g., to determine if a set of vectors is
linearly independent or to find the intersection of planes) (see Table 5.3 in Section 5.2.2);
additionally, system-solving techniques and tasks occurred in each of these midterm and
final exams. No other technique nor technology to be learned in LA1 stands up to this
standard of solving systems to as to accomplish a task: formulas for orthogonal decom-
positions, for example, were the expectation for 3.5% of the exam tasks, needed in 4 of
the 6 final exams I considered, and were only ever needed in a task type that normatively
requires formulas for orthogonal decompositions (unlike system-solving techniques, which
are normatively required for tasks other than those of type “to solve a system”). The
case for orthogonal decompositions is similarly the case for distance formulas (1.7% of
exam tasks, 2 of 6 final exams, only needed for tasks that explicitly call for these formulas
given an objective to find a distance), as well as for formulas for areas of parallelograms
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(3.5% of exam tasks, 4 of 6 final exams, only needed for tasks that explicitly call to find
an area of a parallelogram or triangle).

It’s no surprise, then, that the techniques students produced mainly aimed to solve a
system of equations. This is what’s usually done in LA1. P4 even made a comment to
this effect:

I could try to find [the initial point of v⃗]. And then, then I know this vector
and [I can] try to find the norm of the vector, which I think [is] what they
would expect us to do in this course.

But to produce equations relevant to the given task, students did need to mobilize other
knowledge to be learned in LA1, knowledge that is rarely to be learned but also to be
activated only when students are instructed to do so, and this challenge blocked 4 of the
8 students who had hoped to complete the task via a system of equations.

The success of 5 of the 9 participants to mobilize technologies from LA1 (and, for P2
and P9, perhaps knowledge about vector equations reignited by their engagement with
Problem 7) so as to produce techniques for a problem of a type they’d never encoun-
tered, however, does point to what LA1 students could potentially achieve, given the
opportunity. The open-ended task did not prescribe a technique, neither explicitly nor
by similarity to a normative LA1 task type. Even considering the case of P1, P2, and
P9, who were limited to the relatively more standard τ5/τ6, students who had sufficiently
grasped technologies that are to be learned in LA1 (albeit not as much as system-solving
techniques) were able to produce a technique; this is in stark contrast to the standard
that students may perform tasks in LA1 by reproducing surface-level features of available
solutions of similar tasks.

I distinguish between the knowledge P1, P2, P9 mobilized (to fulfill τ5/τ6) and the
knowledge P4 and P7* mobilized to produce their various techniques (τ1, τ3, τ4, τ6). P1,
P2, and P9 turned to technologies that target objects whose relevance to Problem 8 was
made explicit by the problem statement: orthogonality and lines. In contrast, P4 and
P7* recognized the relevance of objects not explicitly mentioned in the task: a parallel-
ogram and its height, an orthogonal projection35, and a distance between a point and
a line. I noted, in the model of knowledge to be learned that can be used to complete
Problem 8, that these technologies become relevant only if students are able to view the
task in terms different from those explicitly stated (to find a distance; to find the length
of an orthogonal component; to find the height of a parallelogram).

It is not surprising that P7* had reached for technologies not obviously relevant to
the task; this was his behavior throughout the TBI, usually offering a minimum of 4
approaches (be they relevant or not) for each task. But P4’s activity, together with his
comments about what he believed would have been a typical LA1 technique (τ6, system-
solving to find a point) versus what he viewed as a technique better suited for the task
at hand, point at what a task like Problem 8 can achieve: give permission to students
to engage with the mathematics targeted by knowledge to be learned in LA1. This
is different from P4’s engagement with Problem 7, for example, which lent itself more

35P9 had also mentioned the notion of orthogonal projections, but the projection he proposed had no
relevance to the given task.
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obviously to a standard LA1 task, and for which P4 activated a non-standard approach
only after I asked, at the end of the TBI, what he meant when he said that he “always finds
simpler solutions” (Section 5.7.3.2). This prompt had given P4 “permission” to mobilize
an approach that he felt would not have been expected in LA1. But Problem 8 did not
correspond to any LA1 task as Problem 7 had (in that Problem 7 was, essentially, the LA1
task of determining the number of solutions of a linear system, and the representation of
objects in Problem 7 lent itself directly to mobilizing standard system-solving techniques
from LA1). But, beyond t5 (or t6), there was no standard task after which to calque
a technique for Problem 8; and even for τ5 and τ6, students had to make their own
choice as to which technology to wield to produce appropriate algebraic representations.
P3, P5, P6, and P10’s struggle to produce appropriate algebraic representations show the
limitations of the knowledge students are usually required to learn in LA1. The knowledge
students are required to learn in LA1 does not give students permission to engage with
mathematics in the way Problem 8 does: students are expected to demonstrate mastery
of a certain set of techniques, and it suffices in LA1 to operate along surface-level features
of these techniques. P4’s activity shows the potential of tasks that do not prescribe a
technique to prompt students to engage with technologies (to be learned in LA1) in ways
that go beyond their superficial features (i.e., formulas).
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5.9 Analysis of students’ positioning across TBI prob-

lems

The goal in analyzing participants’ positioning is to examine evolutions in students’ po-
sitioning between those of Student (during their tenure as LA1 students) and Learner
(during their tenure as LA1 students or during their participation in the TBI). Remember
the conception of Students and Learners: a Student’s activity is guided by the motivation
to get a certain grade in their course, whereas a Learner’s activity is guided by a cognitive
motivation to develop understanding.

Hardy’s (2009a) and Broley’s (2020) studies of students’ models of knowledge to be
learned in Calculus and Analysis courses show that tasks that are normal—normal in the
institution in which they’re administered—don’t allow for a Learner disposition as they
enable imitative strategies and knowledge acquisition limited to surface-level features
through which the ‘usual’ tasks can be completed. Such tasks do not provide oppor-
tunities for Learner activity even among students who may have an interest in gaining
understanding or are enthusiastic about mathematics.

Looking at participants’ positioning throughout their interview can reveal triggers
that can change students’ activity from that belonging to a Student to one of a Learner.
I look to two potential sources for such triggers: the students and the problems. Are
there specific problems where students are more likely to make this switch? Problems
where students do not make this switch at all? What are the features of the former
and latter problems? And who are the students who switch from Student to Learner
positions—are there features that seem characteristic to them but not to others, or not
necessarily? Ultimately, by looking at positioning, I want to look at the experiences the
TBI problems afforded participants, and use this to get a sense for what students are
afforded by problems that are ‘normal’ in LA1.

In Section 3.2.2, I discussed the four positions elaborated in (Sierpinska et al., 2008;
Hardy, 2009a; Broley, 2020). Student, Learner, Client, and Person; in my analysis of
students’ TBI activity, I did not identify instances alluding to students having positioned
themselves as Clients or Persons in LA1. This is not to say they had not occupied these
positions, but that their activity and comments did not give a chance to examine stu-
dents’ potential experience in either position. This brings up another point: the results
of this analysis, addressing features of Learner and Student positions as experienced by
the TBI participants, are not comprehensive. If a new student engages with these TBI
problems tomorrow in a similar interview environment, they may exhibit altogether new
behavior. Different tasks may trigger different activity or comments as well.

What this analysis does reveal, however, is a collection of (71) behaviors that char-
acterize students’ positioning as Student or Learner; these behaviors describe features of
students’ TBI activity and/or comments in relation to knowledge to be taught (KtbT),
knowledge to be learned (KtbL), or knowledge that may have actually been taught (KT)
(if suggested by a student’s comment) in LA1. The general guideline for qualifying a
behavior as that of a Student or Learner36 was this: if the behavior corresponds only the

36I discuss this guideline in more detail, along with all aspects of the methodology for analyzing
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needs of the KtbL in LA1 (as in, to receive a passing grade), it is that of a Student; if
the behavior extends beyond these needs, it is that of a Learner.

I classified these 71 behaviors into (25) ‘position properties’: 9 properties indicative
of Learner positioning and 16 indicative of Student positioning. These properties justify
the sense in which a given behavior indicates a Student or Learner position in the LA1
institution. Any two behaviors that indicate a certain position for the same reason were
therefore classified by the same position property; in turn, the position properties are not
necessarily mutually exclusive (e.g. there can be overlap between ‘surface-level grasp of
KtbL’ and ‘failure to use KtbT that is not KtbL’) and the choice to classify a behavior
according to one property or another (or both) depended on the instance being analysed.
For the purposes of this analysis, I omit a discussion of all 71 behaviors I identified in
students’ activity and comments, but give an example of one property indicative of the
Student position along with instances of behavior which share in this property, and do
similarly for one property indicative of the Learner position.

7 of the behaviors exhibited by participants shared in the property that they showcased
a ‘compartmentalization of knowledge by KtbL tasks’; this is one of the 16 properties I
identified as indicative of Student positioning. I give examples to illustrate each behavior
(B) sharing in this property:

B applies technique for LA1 task with similar surface-level features but different in
substance

example P5 had found surface-level features of Problem 8 similar to surface-level fea-
tures of a LA1 midterm problem: both involved three points A,B, and C (in
2-space), and there was a goal to find the length of a vector similar to (half) a
diagonal. For P5, this made the problems “similar”; but P5’s suggestion did
not correspond to the mathematical objects at stake.

B categorizes certain technologies as cues to mobilize certain LA1 KtbL techniques

example P2’s justification for using the normative technique τ42 (calculating a determi-
nant of a matrix consisting of 3 vectors to check if these vectors are linearly
independent) in Problem 5, saying this: “I remember that [the vectors being]
independent or dependent has to do with the determinant. And this is the
easiest way to do it. Because I get zero, so I get a straightforward answer
without having to analyse it.”

B claims to have done past final exams/categorized knowledge by LA1 tasks as a
strategy for gaining LA1 knowledge

example This comment from P4: “I recognize from memory that when I tried to set
up the - a system equations like this one, I would recognize that I was trying
to find the intersection of two planes, which is a line. And this - this is based
on ex - exactly just one question that I solved. [inaudible] I remember that
question. I don’t think that yeah, other than the lecture information. A lot,
a lot of my knowledge was gained from the past exam questions. So like one,

students’ positioning, in Section 4.3.3
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one question I - I tackled was - would always be in the back of my head when
approaching another problem. Especially because it’s an intro course and the
questions are similar to each other.”

B engagement with task (mobilized knowledge, technique) is conditioned by superficially-
similar routine task from LA1 KtbL

example P9’s activity while engaged with Problem 1: after finding M3 is not invertible,
he suggested to multiply by C−1 so as to isolate it and then find its inverse C.
P9’s engagement with Problem 1 was conditioned by the normative LA1 task
for solving matrix equations, and the know-how for that task did not suffice
for Problem 1.

B struggles to identify objective of a task that is not a normative LA1 task

example In response to Problem 3, P3 was unable to suggest any approach upon reading
the problem and even after I reworded the question: she had initially tried to
recall knowledge that would relate the cross product with the system, then
thought the system was missing an equation (specifically, 0x + 0y + 0z = 0),
and then rewrote the first equation in the form of a matrix equation (Ax = 0).
After I reworded the problem for P3, she said “she forgot how to handle this”
and tried to recall what the “teacher” had said: “I remember like during the
class. The teacher was like, keep talking about like, after this calculation it
should not be 0 or [pause] oh, it’s about independency.” P3 was stuck so I gave
her the definition of cross product; she said that “[she’s] trying to remember...
The way that [she] solved this kind of question before.” P3’s activity and
comments reveal that she could not identify the objective of the task.

B tries to produce technique on the basis of experience with LA1 task involving similar
surface-level features

example P5, in response to Problem 3, remembered surface-level features of LA1 tasks
involving cross products: “from like, doing problems in the past that had me,
like, jig [sic], which thing would make like the cross product zero, and like, the
numbers were like, you just like flip... like a number. Or, like, put it like plug
in numbers that are like similar. I don’t know how to, like, explain it! Like it
would be... Like I would have... Like, I’m just trying to remember like past
homework. Like, we’d have like, two equations like this. And it’d be like, what
would... I don’t know if it was exactly like a similar question. It’s like, find
two vectors that would like... that are like perpendicular [emphasis added] or
parallel. or whatever. I don’t know. I think I’m like confusing a bunch of
different ideas together.” Asked what made her say the word perpendicular,
P5 said “those are a lot of the problems that [she] did at the end of the term.
And this is kind of around the time [she] remember[ed] like doing... things like
that.”

B suggests to convert task to its usual appearance in LA1 so as to use normative LA1
KtbL

example P1, P2, P3, P5, P6, and P9’s mobilizing in Problem 7 of the normative LA1
row-reduction technique so as to find the number of solutions of a system of
two vector equations in R2.
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Meanwhile, 3 of the behaviors exhibited by participants shared in the property that
they showcased a ‘use of KtbT/KT/KtbL combination’; this is one of the 9 properties I
identified as indicative of Learner positioning. I give examples to illustrate each behavior
(B) sharing in this property:

B mobilizes LA1 KtbT/KT/KtbL directly pertinent to the given task instead of KtbL
pertinent to task that involves a similar feature

example P1, in response to Problem 3, started to do the necessary computations (wrote
the expressions needed to calculate the components of the given cross product)
but stopped short of doing any calculations; writing these expressions out
seems to have prompted him to think of another approach, as he instead
activated τ1 (cross product property of orthogonality) to complete the task.

B seeks to mobilize knowledge that is directly pertinent to the given task rather than
to the similar LA1 task

example P4, in response to Problem 8 and after suggesting a first approach (τ4), P4
wondered: “is there another [way], a better way? Perhaps.” P4 considered the
task in terms of t1 and t2: “I could try to find this point [the initial point of
v⃗ in the given image]. And then, then I know this vector and [I can] try to
find the norm of the vector, which I think [is] what they would expect us to do

in this course. [emphasis added].” P4 found the components of
−→
AC and then

decided against this equations-based approach: “nah, I’m gonna try my own
solution” [emphasis added]. P4 distinguished between his perception of what
is expected of students in LA1 and solutions he rather perceived as “[his] own”
and “perhaps” a “better way” for the given task.

B tries to reason about a situation using LA1 knowledge other than KtbL directly
associated with normative task

example P8, in response to Problem 5, mobilized a combination of algebraic and geo-
metric knowledge from LA1 after being confused about the result of her calcu-
lations; her geometric knowledge helped her interpret the abnormal algebraic
result.

My analysis of students’ positioning will attend mainly to the position properties that
I found to qualify their activity and comments as characteristic of Student or Learner
positioning. I will organize this analysis around a selection of charts that help to answer
the following guiding questions: are there specific problems where students are more or
not at all likely to switch from a Student to Learner position? What are the features
of the former and latter problems? Who are the students who switch from Student to
Learner positions—are there features that seem characteristic to them but not to oth-
ers, or not necessarily? The charts I created for this analysis show the distribution of
positions and their properties across problems and, in turn, help to draw links between
features of problems (when considered in relation to LA1 knowledge) and the behaviors
they can afford to students.

Before I get to the charts, two declarations. First, I decided to omit P7* from the
analysis of students’ positioning because his previous educational experience includes par-
ticipation in several higher-level university mathematics courses, as well as participation
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as a tutor for adult students in prerequisite mathematics courses; this experience signifi-
cantly departs from that of the other participants. Second, I remind the reader that one
participant (P8) was unable to attempt Problems 6-8 due to time constraints unrelated
to the TBI. This shows in some of the charts below. This does not pose issue for the
purposes of the analysis of students’ positioning so I still included the data from P8’s
TBI for this analysis.

5.9.1 Task features and the positions to which they are amenable

I attend to Figures 5.9, 5.10, 5.11, and 5.12 to identify features of tasks that make them
more or less amenable to Student or Learner positions.

Figure 5.9: Distribution of Learner and Student positions across the TBI problems, as
indicated by the count of behaviors indicating each position

From Figure 5.10, I note that, with the exception of one participant in Problem 6
whose activity exclusively displayed Learner position properties, all participants displayed
Student position properties in response to every problem. Student behaviors characterize
the bulk of behaviors identified for each problem, with the smallest share being 63% of
identified behaviors for Problem 7 and the greatest being 100% of identified behaviors
for Problem 2 (see Figure 5.9). None of the problems triggered Learner behavior in all
participants: Problem 2 ranks the ‘lowest’ with 0 participants responding with Learner
behavior and Problems 5 (attempted by all students) and 8 (attempted by all students
except for P8) each having 5 distinct participants show Learner behavior (Problem 5 trig-
gered this behavior in P2, P4, P6, P8, and P9; Problem 8 triggered it in P1, P2, P4, P6,
and P9). I start off by addressing the positions and position properties afforded by each
TBI problem, in order from the problem that failed to encourage any Learner positioning
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Figure 5.10: Count of distinct participants showing Student or Learner behavior in re-
sponse to each TBI problem

Figure 5.11: Behavior count of position properties for TBI problems that do not encourage
learner position
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Figure 5.12: Behavior count of position properties for TBI problems that can encourage
learner position

to the problems that proved most amenable to encouraging Learner positioning.

Problem 2 did not trigger any Learner positioning in participants. This is the problem
that most closely resembled a normative LA1 task: to solve a linear system of less than
a handful of equations in less than a handful of variables with small integer scalars. Its
main distinguishing factor from the normative ask was the assertion that the coefficient
matrix is invertible, and this factor did not detract from the applicability of the technique
most usually used in LA1 for this task. Problem 2, from students’ perspective, was the
routine LA1 task, and this showed in their behavior. From Figure 5.11, I see that the be-
haviors triggered in students, from most counted to least, belong to 12 of the 16 position
properties I had identified for the Student position: surface-level grasp of KtbL, failure
to use KtbT (knowledge to be taught) that is not KtbL, acquisition of KtbL, theoretical
block consists of LA1 KtbL (in that students produce or justify their techniques on the
basis that these belong to KtbL in LA1), lacking sense of agency over the mathemat-
ics at stake, compartmentalization of knowledge by KtbL tasks, result sanctification (a
KtbT substitute, in that results obtained from applying a technique take the justifying
and technique-producing role of mathematics in the KtbT), attempt to prioritize time-
efficient technique (a consideration useful for exams), failure to use KtbL in ways different
from its normative use in KtbL, and attention paid to an authority’s motivation in the
design of a task.

Problem 4 saw only one instance of Learner behavior (a non-normative use of KtbL by
P9, who mobilized his non-normative use of KtbL from Problem 3 to complete Problem
4); this accounts for 3% of the behaviors identified in the activity triggered in students
by this problem. Problem 4, like Problem 2, resembles a normative LA1 task: while the
problem statement is to find one non-trivial solution to a homogeneous linear system of
2 equations in 3 unknowns, and while the scalars include non-integer and irrational num-
bers, students’ activity seemed mostly triggered by the normative LA1 task resembling
this one—to find solutions to a homogeneous linear system of 2 equations in 3 unknowns.
From Figure 5.11, I see that the behaviors triggered in students, from most counted to
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least, belong to 7 (but mostly 5) of the 16 position properties I had identified for the
Student position: acquisition of KtbL (attested to by students’ mobilization of the tech-
nique usually used for the normative task similar to Problem 4), failure to use KtbT that
is not KtbL, surface-level grasp of KtbL, compartmentalization of knowledge by KtbL
tasks, theoretical block consisting of LA1 KtbL, result sanctification (KtbT substitute),
and lacking sense of agency over mathematics at stake.

Problem 1 allowed for 4 instances of Learner behavior: 3 in P6 and 1 in P3. None of
these behaviors indicated P3 and P6 had behaved as Learners in LA1, but rather indicated
the problem had triggered in P3 and P6 behavior that would befit a Learner position:
seeking and reflecting on guidance relative to the mathematics at stake, problem-solving
behavior, interpretation of a task based on the mathematics at stake, and, once the
task was no longer perceived as routine, an enthusiastic response to a non-routine task.
Otherwise, 87% of the behaviors identified for Problem 1 corresponded to a Student po-
sitioning. From Figure 5.11, I see that the behaviors triggered in students, from most
counted to least, belong to 6 of the 16 Student position properties: a failure to use KtbT
that is not KtbL, acquisition of KtbL, compartmentalization of knowledge by KtbL tasks,
dependence on row-reduction catch-all (in that a substantial portion of LA1 tasks can
be solved by row-reducing an appropriate matrix), result sanctification, and attention
paid to an authority’s motivation in the design of a task. Like Problems 2 and 4, the
surface-level appearance of Problem 1 as a highly routinized LA1 task is the feature that
triggered behaviors that show Students’ satisfaction, during LA1, in strictly acquiring
the minimal knowledge needed to complete a routine task.

The scales start to tip with Problem 6, though—like with the other TBI prob-
lems—students’ behaviors still mostly point to their having occupied the position of
a Student during their participation in LA1. There were 4 instances of Learner behavior,
each from a different participant (P1, P5, P6, and P9): 2 of the students used KtbT that
is not KtbL (they used the knowledge that a solution to a system is a value that satisfies
each equation in the system; no KtbL task explicitly requires students to mobilize this
knowledge, and indeed 6 students failed to use it) and one exhibited problem-solving
behavior. The remainder of the behaviors identified (85%) indicate Student positioning
and, from most counted to least, belong to 5 of the 16 properties of the Student position:
failure to use KtbT that is not KtbL, result sanctification (KtbT substitute), acquisition
of KtbL, and a lacking sense of agency over the mathematics at stake. In the case of
Problem 6, what mostly triggered the Learner position was the need to mobilize knowl-
edge that teachers likely take for granted that students know (i.e., that a solution to a
system is a value that satisfies all of its equations) and which they never require students
to use in graded tasks. While students knew Problem 6 was not routine given the unusual
characteristic that the equations were quadratic and not linear, their behaviors showed
that the knowledge they had acquired in LA1 for solving systems of equations was not
supported by any of the corresponding KtbT; it was conditioned by the routine.

For the remainder of the problems, I name the behaviors (and not only the position
properties) that had led me to classify a student in the Learner position; I do this to
help illustrate how these problems were amenable to encouraging Learner positioning.
The list of all identified behaviors, classified by position property (for the Student and
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Learner positions), is in Appendix B37.

Problem 3 saw Learner behavior account for 18% of identified behaviors; these were
attributable to 4 of 9 participants. I identified three Learner position properties in rela-
tion with Problem 3. The property ‘interpretation of task based on mathematics at stake’
showed in of all 4 participants who behaved as Learners here in that they had reevaluated
the objective of the task after identifying a property of a mathematical object at stake
(namely, a geometric property of cross products), after having initially responded to the
task as if it is a superficially-similar routine task from LA1 KtbL. For two students, this
behavior-position property combination preceded the next one: the property of using a
combination of KtbT, KT (knowledge actually taught, according to students’ comments),
and KtbL showed through their mobilization of (LA1) KtbT/KT/KtbL directly perti-
nent to the task instead of KtbL pertinent to a task that involves a similar feature (e.g.,
such as to calculate a cross product whenever it is a feature of a task, or to find all
solutions of a system whenever a system’s solutions are at stake). One student failed
to mobilize knowledge directly pertinent to the task (namely, the orthogonality of cross
products), but did display behavior of the problem-solving property of a Learner: she
sought a mathematical property intrinsic to the task and which may have an advantage
over already-identified pertinent knowledge.

Considering the behavior-positioning property pairings that showed the Learner po-
sition in students’ responses to Problem 3, I note the potential of Problem 3 to trigger
Learner behavior in students (e.g., by prompting them to question whether their norma-
tive knowledge is the most suitable for the task), as well as to elicit students’ positioning
as Learners as participants in LA1 (e.g., as in the case of 2 participants who had the
less-usually-needed knowledge about cross products). Two features were responsible for
triggering Learner behaviors: one, the non-routine task of showing an object, expressed
in what students usually treat as an operation (cross product), is a solution of a system;
and two, the non-integer nature of the scalars, which seem to have made unpalatable the
‘usual’ task to calculate cross products when they appear.

Problem 5 saw Learner behavior account for 31% of identified behaviors; these were
attributable to 5 of 9 participants. I identified 6 Learner position properties in relation
with Problem 3; I will discuss the two that were exhibited by more than one student at
a time.

The property ‘non-normative use of KtbL’ showed, in different ways, in of all 5 partic-
ipants who behaved as Learners in response to Problem 5. The most prevalent behavior
(related to this property) was to mobilize a mathematical property of a task component
that is not needed in LA1 tasks involving that component (a geometric visualization of
a parallelepiped of volume 0; LA1 tasks involving parallelepiped volume only call for a
volume formula); as some students struggled to mobilize the property accurately, I see
this behavior as an example of the task’s potential to trigger Learner behavior (by en-
couraging students to seek knowledge they don’t normally need to use).

37This list is not comprehensive in that a new student may do the same problems I had proposed in
the TBI interview and new behaviors, position properties, or positions may be identified. I also believe
the list of behaviors and position properties can be refined, but its current state suffices to explore the
positions triggered by certain types of task features.
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Also in students’ responses to Problem 5, the property ‘problem-solving behavior’
showed most often in the behavior to mobilize a variety of techniques pertinent for a task
(and compare/reflect on the results obtained). Namely, students alternated between geo-
metric and algebraic representations. I attribute this behavior to two features of the task.
One is the non-routine combination of geometric and algebraic objects in a single task;
students had no guideline as to what knowledge to use and when. The second feature is
in the choice of mathematical objects (vectors involving an unknown entry), which made
it difficult to use the routine technique (for determining linear independence) for various
reasons.

Problem 7 saw Learner behavior account for 37% of identified behaviors; these were
attributable to 3 of 8 participants. I identified 5 Learner position properties in relation
with Problem 3; I will discuss the two that were exhibited by more than one student at
a time.

The property ‘problem-solving behavior’ showed, in different ways, in 2 of the 3 partic-
ipants who behaved as Learners in response to Problem 7. Both had sought to mobilize
knowledge that is directly pertinent to the given task rather than to the similar LA1
task—the similar one, namely, being to find the general solution of a homogeneous linear
system. Among these two students, one had exhibited another problem-solving behavior:
he evaluated techniques based on criteria that are not required in LA1 KtbL (“simpler,”
“more logical”). In light of this, and given that the other student’s problem-solving
behavior came about after a struggle to use a routine technique, given non-routine alge-
braic expressions, I surmise the feature of Problem 7 that made it amenable to triggering
Learner positioning was this: while it was possible to tackle the task (find the number
of solutions of a system of 2 vector equations) by substituting it by a routine one (solve
a corresponding system of equations in real numbers), students are not used to making
this conversion and it is computationally unpalatable.

The two students who engaged in problem-solving behavior in response to Problem 7
also shared in the position property ‘use of KtbT that is not KtbL.’ This showed in two
behaviors. First, after a struggle with normative LA1 knowledge, they mobilized LA1
KtbT that is not LA1 KtbL. This confirms the role of a struggle to adapt normative
LA1 knowledge in prompting students to problem-solve, and, in this case, seek KtbT.
The non-routine nature of the task created a need for this behavior to come about. This
attests to the potential of Problem 7 to trigger Learner behavior. The other behavior
(that I classified as ‘use of KtbT that is not KtbL’) attests the potential of Problem 7
to elicit knowledge students had but did not originally mobilize: KtbT that is not KtbL.
The behavior is this: the students mobilized knowledge that is KtbT in LA1 and only
rarely KtbL. This showed these students had acquired this knowledge in LA1 even if it
was rarely KtbL; I take this as a sign of their having occupied a Learner position in LA138.

Problem 8 saw Learner behavior account for 35% of identified behaviors; these were
attributable to 5 of 8 participants. I identified 4 Learner position properties in relation

38Note this does not mean these students exclusively occupied the Learner position in LA1. Indeed,
there is plenty of evidence they had mostly positioned themselves as Students—but there is evidence
their experience included at least some Learner positioning.
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with Problem 3. I discuss the one that was exhibited by more than one student at a time:
a non-normative use of KtbL. This showed in students through a behavior of identifying
and mobilizing relevant technologies from LA1 and prerequisite math courses through
which to complete an open-ended task. I attribute this behavior to the non-routine and
open-ended nature of the task. It was non-routine in that it did not correspond to any
usual LA1 task. By ‘open-ended,’ I mean that it was amenable to various components
of praxeologies that make up KtbL in LA1. This combination forced students to be in
charge of two aspects in producing a technique: as there was no implicit nor explicit
assignment of technique (or technology), it was up to students to identify an appropriate
one (among the varied technique or technologies that are KtbL); and, whichever tech-
nique or technology students opted for, it was up to them to mobilize more knowledge to
build a complete technique (e.g., if a student opted to find the length of v⃗ by first solving
some system to find its initial point, then the student needed to wield more knowledge to
produce an appropriate system). The features of Problem 8 that made it amenable to trig-
gering Learner positioning also highlight the prevalence of the Student position in LA1:
most students struggled to mobilize sufficient knowledge to produce a complete technique
(e.g., 7 of 8 students failed to use KtbL in ways different from its normative use in KtbL).

The patterns of positions, position properties, and behaviors triggered in participants
by the TBI problems can be a starting point for the design of tasks that, so long as
they are not institutionally routinized, could prompt students to engage in activity that
is more driven by mathematics than other considerations. Based on the few instances
of Learner position triggered by Problems 1, 2, and 4, and given the features that mark
these problems apart from the rest, I make this first conjecture: if a task resembles nearly
identically to a routine task from KtbL, students almost exclusively mobilize what they
had learned for that routine task. Tasks that elicited cases of Learner positioning did so
by prompting students either to mobilize knowledge they had gained as Learners, or to
try to mobilize knowledge other than routines from KtbL. Comparing tasks that elicited
significantly more cases of Learner positioning than others with those that elicited fewer
of these (e.g., Problems 5, 7, and 8 vs Problems 3 and 6), I note the former included more
non-routine components, were less amenable to routine techniques, or did not correspond
to any routine at all. For students who responded as Learners (even if not exclusively),
these features were involved (even if not always sufficient39) when this positioning was
triggered.

5.9.2 Observations about Students who were (not) resistant to
exhibiting Learner behavior in response to non-routine
tasks

All participants40 presented as Students, both in terms of their activity and comments
they made about their experience in LA1. In that sense, I can refer to all my TBI students

39This is in reference to the fact that one student, P4, only mobilized KtbT after I, as the interviewer,
gave him ‘permission’ to do so when I asked what he had meant, at some point during his interview,
when he said he always finds “simpler” solutions in the end.

40With the exception of P7*, whose positioning, as I previously explained, is omitted from the current
analysis.
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(a) P1 (b) P2 (c) P3

(d) P4 (e) P5 (f) P6

(g) P8 (h) P9 (i) P10

Figure 5.13: Each participant’s distribution of Learner and Student positions across the
TBI problems, as indicated by the count of behaviors indicating each position
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as Students. That said, some (P1, P4, P6, P8, and P941) exhibited potential to behave
as Learners and in some cases evidence that they had behaved as Learners in LA1. In
contrast, P2, P3, P5, and P10 seemed staunchly committed to the Student position.
The position properties that qualify their commitment show a high attachment to KtbL
norms in LA1. To discuss Students’ varying levels of resistance (or amenability) to the
Learner position, I start (in Section 5.9.2.1) from the one in whom I detected no Learner
behavior and end with those in whom I detected more (even if limited) mobility toward
the Learner position. I follow (in Section 5.9.2.2) with a discussion of the implications of
KtbL norms in LA1 for the positions its students are encouraged to occupy.

5.9.2.1 Case-by-case discussion of students’ Student-to-Learner mobility

One student’s comments and activity (those of P10) exclusively related to the Student
position. P10’s activity and comments reflected several properties of the Student po-
sition: acquisition of KtbL, compartmentalization of knowledge by KtbL tasks (i.e., in
that she associated certain knowledge with certain KtbL tasks, rather than any broader
mathematical knowledge), a dependence on row-reduction as a ‘catch-all’ technique (in
that this was the only suggestion she had for certain tasks, even though she was unable
to mobilize it to complete them and despite prompts in which I asked if she could think
of any other approaches), a failure to use KtbL in ways different from its normative use in
KtbL, a failure to use KtbT that is not KtbL, a surface-level grasp of KtbL, a theoretical
block consisting of KtbL (in that her justification for the validity of KtbL was that it
was KtbL—that is, knowledge that is usual for LA1 Students), and a use of authority
to validate knowledge (this is related to the last item—when asked how she normally
checks if something is a solution of a system, P10 responded that she was “not sure,”
that maybe “grades do it”).

I identified 1-2 Learner behaviors in the activity of P2, P3, and P5 (each). Their com-
ments and activity otherwise pointed to their having occupied only a Student position in
LA1. Their behaviors all shared in Student properties that characterized P10’s behavior:
acquisition of KtbL, compartmentalization of knowledge by KtbL tasks, a failure to use
KtbL in ways different from its normative use in KtbL, a failure to use KtbT that is
not KtbL, a surface-level grasp of KtbL, and a theoretical block consisting of KtbL. The
three Students’ behavior also shared in the property ‘result sanctification (KtbT substi-
tute)’: they relied on the results they reached to determine whether their technique was
valid. Results were a substitute for KtbT in the sense that KtbT, in LA1, includes the
knowledge that validates the techniques Students used. P2’s behavior indicated a few
other properties of the Student position as well (e.g., his use of normative knowledge was
inconsistent, on one occasion, with the mathematics at stake in a task).

I detected two Learner behaviors in P2’s activity, both cases of a non-normative use
of KtbL. In Problem 5, he mobilized a mathematical property of a component that is
not needed in LA1 tasks involving that component (he knew that if three vectors form a
parallelepiped of volume 0, they are coplanar. In Problem 8, he identified and mobilized
relevant technologies from LA1 and prerequisite math courses through which to complete

41Though I keep in mind P9’s comment about having learned some LA1-type linear algebra in high
school, which implies he had a trajectory at least slightly different from that of the rest of the participants,
when it comes to acquisition of LA1 knowledge.

303



the open-ended task (he produced an appropriate system of equations whose solution
was the initial point of v⃗). I detected one case of Learner behavior in P5’s activity: in
Problem 6, after a struggle with normative LA1 knowledge, she mobilized LA1 KtbT
that is not LA1 KtbL—the knowledge that a solution of a system is a value satisfying all
equations in the system. In these cases of Learner behavior, what P2 and P5 mobilized
may seem like just a scrape beyond what is usually needed to do final exam tasks, but
other participants failed to mobilize what they had in these cases. This suggests that
even if P2 and P5’s position in LA1 was mainly that of a Student, they did occasionally
step into the Learner position, and some of the TBI tasks had features that prompted
them to mobilize knowledge they had gained from that position.

P3’s instances of Learner behavior did not attest to her having occupied a Learner
position during LA1; they were rather instances of her potential to act as a Learner under
certain circumstances. P3 tried to interpret a task based on the mathematics at stake on
two occasions. The first was in response to Problem 1; upon finding that one of the ma-
trices on the left-hand side of the equation had no inverse, P3 reevaluated the objective
of the task. She realized that C may or may not be invertible (but did not know how to
determine this, nor what to conclude in the case that it is not invertible). The second
occasion P3 tried to interpret the task based on the mathematics at stake (and not only
on norms from LA1) was in Problem 3, where P3 took the cross product symbol to mean
that she should be using some theoretical knowledge from LA1 instead of computations.
P3 did not have non-KtbL LA1 knowledge from which to draw what she seemed to be
looking for. That said, P3’s activity showed the tasks’ potential to drive Students to seek
non-normative knowledge.

The Students who displayed a greater number of Learner behaviors (7-12) were P1,
P4, P6, and P9; I predict, based on P8’s activity in Problems 1 - 5 (where I counted 5
instances of Learner behavior), that she would have as well, given the time to attempt
Problems 6 - 8. Altogether, their behaviors corresponded to these properties of the
Learner position:

� concept of mathematical aesthetics (P4)

� enthusiastic response to non-routine task (P6)

� interpretation of task based on mathematics at stake (P1, P4, P8, P9)

� non-normative use of KtbL (P1, P4, P6, P8, P9)

� problem-solving behavior (P1, P4, P6, P8, P9)

� seeking and reflecting on guidance relative to the mathematics at stake (P6)

� use of KtbT that is not KtbL (P1, P4, P6, P9)

� use of KtbT/KT/KtbL combination (P1, P4, P8, P9)

� use of mathematics at stake to validate knowledge (P6)

Among these, three reveal the students had also occupied a Learner position during LA1
(and/or previous mathematics courses):
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� a non-normative use of KtbL:

– P9 in response to Problem 4

– P4, P6, P8, and P9 in response to Problem 5

– P1, P4, and P9 in response to Problem 8

� use of KtbT that is not KtbL:

– P6 in response to Problem 5

– P2 and P9 in response to Problem 6

– P1 and P4 in response to Problem 7

� use of KtbT/KT/KtbL combination:

– P1 and P9 in response to Problem 3

– P8 in response to Problem 5

– P4 in response to Problems 7 and 8

P9 had mentioned having learned some linear algebra in high school. There was no chance
to ask follow-up questions about this during the interview. It’s possible that his greater
mobilization of LA1 knowledge is due to this additional experience as a linear algebra
student.

In contrast, consider the Student position properties exhibited by these students’
behaviors:

� acquisition of KtbL (P1, P4, P6, P8, P9)

� attempt to prioritize time-efficient technique (P1, P4)

� attention paid to an authority’s motivation in the design of at task (P4, P8)

� belief about expectations of students produced by normative LA1 KtbL (P9)

� compartmentalization of knowledge by KtbL tasks (P1, P4, P6, P8, P9)

� compartmentalizing knowledge as (not) belonging to LA1 (P6)

� dependence on row-reduction catch-all (P4, P8, P9)

� expresses an expectation that reflects LA1 norms but not the mathematics at stake
(P4)

� failure to use KtbL in ways different from its normative use in KtbL (P1, P4, P6,
P9)

� failure to use KtbT that is not KtbL (P1, P4, P6, P8, P9)

� lacking sense of agency over mathematics at stake (P4, P6, P8, P9)

� result sanctification (KtbT substitute) (P4, P6)
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� surface-level grasp of KtbL (P1, P4, P6, P9)

� theoretical block consists of LA1 KtbL (P4, P8)

� use of authority to validate knowledge (P6, P8, P9)

� use of normative knowledge inconsistent with mathematics at stake (P1, P6)

Even if the cases of Learner behavior were sparse, especially in comparison to evidence
attesting to students having Studented in LA1, these cases show some students may still
Learn even as their primary tactic is to Student. That said, Learner behaviors were
concentrated in the less LA1-routine TBI problems and some occurred in response to
prompts they received from myself but would not normally receive in the context of LA1.
This, together with the near-to-total absence of Learner instances from TBI problems
that matched more routinized tasks in LA1, suggests students are not given institutional
opportunities or permission to behave as Learners in LA1 and mobilize knowledge they
may acquire through this position: the norm is that KtbL be routinized knowledge.

5.9.2.2 Implications of KtbL norms in LA1 for the positions its students are
encouraged to occupy

It is not surprising, given the institutional rules for LA1, that all students’ activity and
comments attested to their having occupied the Student position in LA1. Given the
requirement to pass LA1 to gain entry into many university programs, the stakes are
high—higher even than for other university courses, where failure to pass has its reper-
cussions but does not block a student from starting their chosen degree. From an insti-
tutional perspective, every student has motivation to Student in any course that rates a
student’s performance in some way or another—even if only in the bare-bones distinction
between a “pass” and a “fail.” In contrast, by the definition of the Learner position as a
cognitively-oriented one, a motivation to Learn is not institutionally-guaranteed.

TBI students’ restricted mobility between the Student and Learner positions show
that, in LA1, there is a wide gap between the behaviors that support these positions. The
Student and Learner positions have distinct objectives; that said, in operationalizing the
positioning framework, I came to distinguish between these objectives and the behaviors
they engender (in a sense similar to the ATD premise that activity consists of a practical
block driven by some theoretical block). Through this distinction, I realized that the
Student and Learner positions needn’t automatically engender contrasting behaviors.
Since the Student position is defined by the objective to obtain a certain grade in a course,
it is course norms that determine what a Student must achieve to obtain this grade. The
course norms, therefore, determine the behavior engendered by a Student position. In the
case of LA1, I found that course norms (namely, routinization of knowledge) engender
behaviors that block students from Learner behavior in two ways: one, students might
fail to acquire mathematical praxeologies altogether, and, two, students might just opt
not to mobilize mathematical praxeologies when they do have them. In theory (as this
has yet to be investigated), there may be a mathematics course—where the Student
position exists due to some institutional rule—with norms such that the behavior needed
to Student is identical to the behavior that allows a student to Learn.
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Chapter 6

Discussion and Conclusions

This final chapter is organized into three parts. I first discuss the results from Chapter
5 in relation to each of the three research questions. Second, I discuss how this research
contributes to the body of research on the teaching and learning of linear algebra: its
originality, how it sheds light on issues from a different perspective of those used in the
literature (it not only contributes to the understanding of issues previously identified,
it brings to light issues—or points to sources of issues—that had not been previously
identified). Third, I give final remarks in the form of main conclusions, limitations of this
work, and potential avenues for future work.

6.1 Results in relation to the research questions

This section is split into three parts. In each of these parts, I discuss my results and
analyses (presented in Chapter 5) as I consider them in relation to each of the research
questions:

What are the praxeologies students are expected to form when considering problems
posed in LA1 final exams?

What is the nature of the knowledge LA1 students mobilize when they solve linear
algebra tasks? What kind of (mathematical or non-mathematical) praxeologies do
they activate?

Research on the learning of calculus has modeled students’ practices and found them
to consist of routinizing techniques and building non-mathematical praxeologies; are
these practices replicated in linear algebra?

6.1.1 Discussion of results and analysis in relation to the first
research question: what are the praxeologies expected
when considering problems posed in LA1 final exams?

The praxeologies expected when considering problems posed in LA1 final exams are
marked by a routinized or normative quality. I use “routinized” and “normative” and
variants on their root words interchangeably. Tasks are routine (normal, normative, etc.)
in that there is a limited set of task types that occur in LA1 final exams and the variety
of tasks that occur in a final exam is stable from one semester to the next. Another prax-
eological element that is routinized is the way in which technologies are to be used: the
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types of tasks that are routinized limit what students need to know about each technology.

A quick reminder on how I define expressions such as “what students need to know,”
“knowledge to be learned,” and “what’s expected of students.” The definition stems from
this study’s theoretical framing on mathematics learning institutions. The LA1 institu-
tion belongs to a system of several institutions. Overarching it: stakeholders at broader
societal levels (mathematicians involved in the design of courses both historically and
more recently, education ministries, various industries, etc.); the University, where LA1
plays the role of a mathematics course prerequisite to many programs in various depart-
ments, and which coordinates administrative and academic rules; the Mathematics and
Statistics Department, which, at this University, is charged with coordinating the LA1
institution. Students, as members of the LA1 institution, are also members of the Uni-
versity institution; their membership is defined by the objectives to get a certain grade in
their courses (including LA1) and to obtain a type of degree. Other objectives students
may have are to get into a certain career path or to develop understanding of a certain
domain of human activity. But the objectives the LA1 institution and related University
institutions regulate - that is, through rules and strategies for upholding rules - are the
grades and degrees students can obtain. Strategies include, for example, a course exam-
iner in charge of creating uniform course assessments for all students registered in LA1
(regardless of the instructor they have), a grading scheme placing most of the weight of
a student’s final course grade on the final exam, and common grading of midterm and
final exams such that exam problems are partitioned among instructors, who each grade
their assigned problems for all (e.g. 400) students registered in the course. Given these
strategies, and the norms developed relative to these strategies, what students “need to
know” to pass their course is determined by the problems on the exams and the minimum
of knowledge needed to produce solutions to these problems.

The norm in the LA1 institution is that midterm and final exams are stable through-
out the years. There is a limited set of task types in each exam and students know what
knowledge they can expect to have to demonstrate. Even if an exam might occasionally
include one or two tasks that do not belong to the regular types, the bulk of an exam
grade is built from the normal task types1.

One routinized element of the praxeologies that make up KtbL is their tasks. This
was suggested by my preliminary analysis of 4 midterm and 6 final exams given between
2014 and 2019 and confirmed by the analysis of KtbL that relates to my TBI tasks (the
latter corresponds to 75% of the tasks in the exams to which I had access). The nature
of these tasks is such that they can be completed using the same technique, so the knowl-
edge students need to acquire is restricted to that sufficient to recognize a task type and
then administer its normative LA1 technique. For the sake of this discussion, I categorize
TBI tasks into two types: those that can be configured as a linear-system-solving task,

1Over the last decade, and perhaps before, midterm and final exams from previous terms are made
available to students for studying purposes. This has contributed to the normalization of tasks: students
are given insight into what to expect, one more explicit than that they may infer from what they
shown or told in class. This puts pressure on the instructor in charge of producing exams to remain
consistent—to remain routine. Today, this normalization is strengthened by the existence of sites that
have inventories of exams, organized by subject and by institution, with solutions geared not necessarily
to the construction of mathematical praxeologies, but rather to what needs to be written to pass the
exam.
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and those that cannot.

Tasks specific to the resolution of a linear system implicitly or explicitly instruct
which technique to use, always to find all solutions of a linear system: Gauss-Jordan
elimination (this is implicit when other techniques are not applicable, say, if a coefficient
matrix is not square), Cramer’s rule, or multiplication by the inverse of the coefficient
matrix. A significant portion of routine tasks targeting other LA1 constructs (e.g., bases,
linear independence, intersection of loci) are normatively associated with row-reduction
technique for solving linear system or using determinants to determine whether a (homo-
geneous) system has one or infinitely-many solutions. These tasks are designed in such
a way that they are always amenable to being completed by reducing an appropriate
augmented matrix or finding an appropriate determinant. The matrices at stake can be
produced by copy-pasting sets of scalars in the task. Some tasks (e.g., about finding the
intersection of loci) already involve a linear system, in which case the augmented matrix
can be lifted straight from there; others (e.g., to determine the linear independence of
vectors) involve vectors in Rn which can then be used as either rows or columns in a de-
terminant or as columns in an augmented matrix. Either way, it is not necessary to have
the mathematical theoretical discourse that connects the original task with the choice
to reduce a matrix or calculate a determinant, nor the discourse connecting the original
task with the result obtained by augmented-matrix reduction or determinant-calculation.

Tasks that can be configured as linear-system-solving have a normative technique,
then: copy-paste scalars from the task in the order in which they appear into a matrix
or determinant, and reduce said matrix or calculate said determinant to determine if it’s
(non-)zero. Scalars in these tasks are always single-digit integers and matrices usually
involve 3-4 rows and columns. Scalars in determinant tasks often involve many 0’s and
are therefore amenable to using a single cofactor expansion and then using mnemonic
devices for determinant calculations. Given the (number and type) of other final exam
tasks (and time available to complete the exams), there is no need to develop optimal
efficiency (in terms of number of steps or amount of time needed) when using these tech-
niques.

The tail-end of these techniques is similarly routinized: the objectives of tasks are
amenable to associating a fixed set of rules with the results of matrix reduction and de-
terminant calculation. An augmented matrix reduction that ends with a reduced row
echelon form involving an identity matrix: there is a single solution to the task. A re-
duction that leads the left-hand side of the augmented matrix to having a row where
all entries are 0: there are either infinitely many solutions (if the right-hand side of the
matrix also has a 0) to the task or none at all (if the right-hand side of the matrix has
a non-zero entry in that row). The end-tail of the determinant-wielding technique is the
same: if the determinant is 0, there is a limited number of conclusions students need to
know (e.g., if the task is to find the number of solutions of a system, a zero determi-
nant implies infinitely many solutions; if the task is to determine if vectors are linearly
independent, a zero determinant implies linear dependence and a non-zero determinant
independence). These fixed rules are amenable to making accurate conclusions for any
LA1 task that can be configured as a linear-system-solving task. I had not caught onto
this in my analysis of KtbL, but students’ activity and comments in response to the TBI
tasks revealed this was a possibility afforded by the tasks normative in KtbL.
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In short, tasks that can be configured as linear-system-solving tasks are amenable to
techniques that are routinized from the start to the end of their implementation. Tasks
that cannot be configured as linear-system-solving tasks are amenable to routinization
of a different part of their praxeologies—the technologies they involve: these are matrix
equation tasks, tasks about the area of a triangle or parallelogram or volume of a paral-
lelepiped, distance and orthogonal decomposition tasks, and point-normal equation tasks.

Each of these tasks requires students to invoke a limited number of properties (usually
of arithmetic or algebraic nature) of one technology in particular. To complete matrix
equation tasks, it suffices to know how to find the inverse of a 2× 2 or 3× 3 matrix and
how to multiply matrices. To complete area and volume tasks, it suffices to know for-
mulas for the area of a parallelepiped in 2 or 3-space (which, in turn, require students to
know formulas for cross products, determinants, and/or norms of vectors); distance and
orthogonal decomposition tasks usually instruct students to find a distance or orthogonal
decomposition, at which point it suffices to know the formulas for each and how to calcu-
late the constructs within (dot products, vector norms, etc.), and point-normal equation
tasks at most require students to recognize the role of the coefficients in a point-normal
equation (so as to know where to place the entries of (a, b, c), a vector declared in the
task statement to be a “normal” of some plane) and that plugging coordinates of a point
into an expression of the form ax+ by+ cz would yield the value of d in the point-normal
equation ax + by + cz = d. Knowledge about dot and cross products does not require
more than their formulaic definitions (i.e., how to calculate them); among the 116 exam
tasks I studied, only 2 required the orthogonality property of cross products and only 1
required the knowledge that two vectors are orthogonal.

Additionally, KtbL delimits the use of technologies to routine situations. A task either
explicitly instructs which technology to use or this is implicitly communicated as the task
is of a type that appears (as an example or recommended practice problem) in a textbook
section about a given technology. This is similarly the case for technologies pertinent for
tasks that can be configured as a linear system task. In solve-a-linear-system tasks, these
technologies include augmented matrices, row operations, (reduced) row echelon forms,
parametric equations, Cramer’s rule, and formulas for calculating determinants. Tech-
nologies are similarly routinized in tasks that can be configured as a linear system task.
For example, the routine task to determine the linear independence of a given set of
vectors requires students to recognize the term “linear (in)dependence” and associate it
with the usual row-reduction or determinant techniques and their possible results. KtbL
about linear (in)dependence delimits the use of the concept of linear (in)dependence to
routine situations.

Students are instructed explicitly (by task instructions) or implicitly (by course norms)
as to when and how to use certain LA1 technologies. Other LA1 technologies don’t nec-
essarily need to be used and rather need to be known nominally, for example because
they are the end-goal of a task. My analysis of TBI students’ activity and comments
revealed how these technologies are routinized. One example illustrates this well: in
KtbL tasks, solutions of linear systems appear mainly through the form they take in a
reduced row echelon form of an augmented matrix. They do not usually appear or need
to be interpreted in other ways—solutions of linear systems are always the end-goal of
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a task, and never a starting point from which to complete some other task. It suffices
to know “solutions of linear systems” as the end-result of a row reduction (or Cramer’s
rule calculation). What this routinization means, for example, is that it is not necessary
(in the grade-getting sense), in LA1, to know the definition of a solution of a system of
equations: something that satisfies each equation in a system.

Considered in toto, KtbL praxeologies in LA1 are routinized. Tasks are routine in
that it is always the same limited number of task types that recur and the associated
techniques (from start to end of their implementation) work no matter what. Technolo-
gies too are routinized: it suffices to know a limited number of properties of any KtbL
technology, and the properties to know are usually in formulaic or algebraic form.

A last comment about the answer to my first research question—what are the praxe-
ologies expected when considering problems posed in LA1 final exams?—is about how I
came to this answer. To determine the praxeologies that characterize KtbL, in line with
the methodologies used by Hardy (2009a) and Broley (2020), I attended to tasks in past
midterm and final exams and the course textbook to determine the knowledge expected
of students for completing these tasks. Placing exam tasks in relation to one another from
one semester to the next, as well as in relation to tasks that appear as solved examples
and practice problems recommended on the course outline, highlighted the routinization
of KtbL praxeologies.

In addition to this approach, I found the characterization of how KtbL can be rou-
tinized to benefit from the analysis of TBI students’ activity and comments. While the
purpose of that analysis was to address my second research objective (to determine the
nature of the knowledge LA1 students mobilize when they solve linear algebra tasks), it
helped to reveal other ways in which the norms of KtbL tasks enable routinization of
knowledge. For example, in analyzing knowledge needed to complete the routine task to
solve a linear system, my focus was in the technique expected to be activated in LA1
to solve a system. I did not pay attention to the knowledge students are expected to
have about solutions of linear systems. One reason for which I did not pay attention
to this is a methodological limitation: I did not have access to graded exams, which
could indicate what instructors expect from their students to know about the solutions
of the linear systems they solve. This limitation, however, has an alternative solution to
analysing graded exams—one which may actually reveal more than instructors’ marking
norms, when it comes to the knowledge students are expected to have about solutions of
linear systems. Indeed, students’ comments and activity in response to several problems
in the TBI indicated that several students struggled to mobilize the definition of solution
of a system. At the same time, students’ comments showed they associated solutions of
a system with entries appearing on the right-hand side of reduced row-echelon forms of
matrices. Considering this is the sort of “solutions” in routine LA1 tasks about linear
system solutions, it’s not surprising that students don’t actually need to know what a
“solution of a system” is. But my focus, in modeling the knowledge to be learned about
linear systems, was on the techniques used to get to solutions of system. This did not
suffice to bring about an observation about what students (do not need to) know about
solutions of the systems they solve. It was the analysis of students’ mobilized praxeologies
that brought about this inference about the knowledge students are expected to learn.

311



6.1.2 Discussion of results and analysis in relation to the sec-
ond research question: what is the nature of the knowl-
edge LA1 students mobilize when they solve linear alge-
bra tasks? What kind of praxeologies (mathematical or
non-mathematical) do they activate?

I call a praxeology mathematical if its practical and theoretical blocks are rooted in the
mathematics at stake in a sense that can be generally agreed-upon among members of
the scholarly linear algebra institution. I call a praxeology non-mathematical if one of
its components is not rooted in this mathematics; this does not mean any component
of the praxeology is absent as, indeed, a praxeology is just a model of a human activity
occurring in an institution, and any such activity, per My theoretical framework, con-
sists of practical and theoretical blocks and their respective components (task, technique;
technology, theory). A praxeology is therefore non-mathematical if any of its components
(task, technique, technology, theory) is rooted in something other than the mathematics
targeted by the activity; for instance, Hardy (2009b) reports on how students’ theoretical
blocks can be a blend of social, cognitive, and didactic norms.

What students mobilized as they engaged with the TBI tasks was largely determined
by and delimited to what normally suffices to complete KtbL tasks. This applies to both
their practical and theoretical blocks: their know-how corresponded to the know-how
necessary and sufficient to complete KtbL tasks, and comments students made showed
that KtbL norms were what produced their mobilized activity. Both practical and the-
oretical blocks came at the expense of the mathematics at stake in the TBI tasks and
students struggled to complete most of them. The praxeologies students activated were
largely non-mathematical: upon recognizing the technologies explicit in a task, students
retrieved the routinized aspects of praxeologies normally associated with these technolo-
gies and then mobilized their LA1 routine. It’s not that the routines had no footing in
(linear algebra) mathematics whatsoever; but there were inconsistencies between these
routines and the mathematical components or objectives of the TBI tasks, and students
were mostly unable to breach these inconsistencies.

Throughout this section, unless otherwise indicated, when I refer to “students” I mean
all participants except for P7*. P7* had taken and started to take various higher-level
university math courses (which he called analysis, ordinary and partial differential equa-
tions, advanced algebra, abstract algebra, and advanced geometry) as part of an applied
mathematics degree at a different institution and was also a tutor for adult students in
prerequisite mathematics courses. P7*’s comments and activity throughout the interview
did indicate his knowledge mainly reflected that acquired through LA1, but his behavior
set him sufficiently apart from other participants that, in light of his experience, warrants
addressing P7*’s participation separately from a discussion of findings I made from the
other participants. Given P7* had nevertheless taken LA1 in the previous semester like
all other participants had, and given that the knowledge he mobilized did reflect and
was constricted by KtbL norms, his comments and activity help to answer my broader
questions about the impact of these norms on students’ praxeologies.

To characterize students’ praxeologies as (non-)mathematical, I organize the discus-
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sion by their practical and theoretical blocks and then reflect on the praxeologies as a
whole in a summary at the end of this section.

6.1.2.1 Students’ practical blocks

The techniques students mobilized reflected what they would normally do in LA1 given
a task that involves a certain technology; students’ activity showed how these norms can
also restrict what students can or do mobilize to complete a task. Depending on the TBI
task, and given the nature of the mathematics involved, the norms students mobilized
were not the most suitable for the given task (usually involving an unnecessarily com-
putational load) but did suffice for some students to complete tasks (Problems 3, 4, 7);
in other cases, the norms failed to suffice as students’ mobilization of these norms were
limited to surface-level features of techniques and technologies (Problem 2, 5, 6, 8); and in
one case, a normative praxeology from KtbL disabled students from completing a certain
task or even identifying its objective according to the mathematics at stake (Problem 1).
The techniques students had routinized in LA1 are mathematical, even if routine and
even if mobilized along surface-level features, when they are mobilized toward a routine
LA1 situation. But the TBI students’ struggles illustrated how the operationalization
of techniques along exclusively routine and surface-level features can result in students
mobilizing non-mathematical practical blocks.

I split this discussion into two parts: first, I discuss students’ approaches to the tasks
that could be configured as a linear-system-solving task, and second, tasks that could not.

6.1.2.1.1 Whenever possible, students activated the LA1 system-solving task
and its routinized techniques of reducing an augmented matrices or calculat-
ing a determinant to check if it is 0 Students found a way to mobilize the normative
LA1 system-solving task and techniques toward every TBI task. Some students attempted
to substitute Problem 1 by such a task and, while they abandoned the attempt, did not
note that the system produced would not have been linear. What students mobilized
toward Problems 3 and 4 was mostly row reduction. Students attempted to substitute
Problem 5 by the normative “determine if these vectors are linearly (in)dependent” LA1
task and its associated row-reduction or determinant-calculation techniques. Students
attempted to complete Problems 6 and 7 using the row-reduction technique. Most stu-
dents’ approaches toward Problem 8 swiveled around producing a system of equations
whose solution would be the desired objective of the task.

Students’ choice to mobilize row reduction or determinant-calculation toward this va-
riety of tasks reflects the LA1 norm to activate these techniques in various situations
(as discussed in Section 5.2.2). At face-value, it would seem that students learn from
this LA1 norm that various linear algebra problems can be resolved via system-solving
techniques. Students’ activity in response to Problem 8, for example, shows this is indeed
the case for some students (as they produced equations reflective of the given task); but
students’ activity and comments in response to other problems show students may not
even perceive these techniques in relation to a specific linear system (e.g., as in Problem 5,
where students’ comments and activity betray their ignorance of the homogeneous linear
system that connects the normative LA1 techniques for determining linear independence
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with the definition of independence). The irrelevant equations and systems produced by
others (e.g., P3 and P5) in response to Problems 5 and 8 also show that substituting by
linear-system-solving tasks can also be a knee-jerk reaction or a way to side-step insuf-
ficient grasp of other knowledge pertinent to a task. In mimicking a heavily routinized
mathematical technique, students can develop a technique that is non-mathematical:
they produce equations—any equations, regardless of their footing the task at stake—so
as to complete a task by solving equations—or they bypass these equations altogether to
manipulate some box of numbers.

It’s possible students produce equations without realizing their irrelevance; but this,
contrasted with their knowledge that various problems can be represented by systems of
equations, highlights the way in which the routinization of linear-system-solving tasks
and techniques in KtbL, along with their heavy weight assigned to this routinization on
final exams, can work against students’ acquisition of other KtbL. In turn, this means
that while LA1 students may develop the knowledge that various linear algebra problems
can be resolved by linear-system-solving techniques, they fail to acquire the knowledge
needed to mobilize these tasks and techniques when an explicit linear system is not pro-
vided.

Students’ mobilization of row reduction techniques in several of the TBI tasks shows
varied ways in which they might use these techniques in ways that split them from the
mathematics at stake. One such way has to do with the efficiency that row reduction is
intended to bring toward solving systems in linear algebra. In Problem 2, students’ mo-
bilization of row-reduction (across the board) went against the purpose of this technique
as one for optimizing efficiency, especially systems that cannot be solved by observation.
Students did not consider the specifics of this linear system before mobilizing row re-
duction. Additionally, students were unable to make efficient choices of row operations,
favoring instead routinized aspects of Gaussian elimination (get a leading 1 in the top
row first; a leading 1 in the next row second; or get 0’s in as many entries as possible,
without paying attention to the effect of one operation on previously-achieved 0’s or lead-
ing 1’s); they were nowhere near a row echelon form of the augmented matrix even after
10-15 minutes of this activity. Throughout the TBI, students converted their task to a
decisively inefficient linear-system-solving task when other LA1 technologies would have
afforded a decisively more efficient approach; this was not always as a result of lacking
other knowledge, as P4’s activity in response to Problem 7 attests. His initial approach
to the task was to convert it to one that could be solved via row reduction; he only
retroactively solved it using other knowledge at the end of his interview when I had given
him permission to do so by asking him to clarify what he meant, earlier in the interview,
when he said he always finds simpler solutions in the end. Per P4, he had mobilized
the row-reduction approach because he believed that’s what was expected of him in a
LA1 context—even as he knew of another approach more efficient for the task. Students’
row-reduction technique is mathematical(ly efficient) in only one sense: as long as they
execute their row operations accurately, they likely do eventually solve the linear system
they are tasked to solve. Students do not mobilize the technique efficiently nor with the
aim to achieve efficiency—on the contrary, their comments show their concern with the
burden of time and risk of calculation errors it brings.

Students’ concern with efficiency when it comes to row-reductions and determinant
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calculations, as well as their inability to mobilize these efficiently, are important. To my
knowledge, studies of students’ practices in Calculus, for example, do not document a
concern with efficiency. I attribute this concern to the nature of linear algebra tasks but
also the heavy weight ascribed in final exams to row-reduction and determinant calcula-
tion techniques; I therefore view this as a missed opportunity to use KtbL to encourage
in students, at minimum, an appreciation for the objectives behind the mathematical
techniques they are expected to mobilize. But it’s also a missed opportunity to develop
in students knowledge for how to use row reduction efficiently: the choices students made
in my TBI as they row-reduced reflects Maciejewski & Star’s (2019) finding that even
within the routinized activity of row reduction, there is sufficient freedom for students to
mobilize varied criteria for what they perceive to be appropriate to reach a solution. My
participants used superficial criteria (e.g., get 0’s and 1’s) in rigid ways that led them to
undo their progress toward a solution. Based on findings from an intervention designed to
help undergraduate Calculus students use procedures flexibly, Maciejewski & Star (2016)
posit that flexible procedural knowledge can be taught.

Students’ struggle to mobilize row-reduction and determinant-calculation techniques
efficiently may relate with numeracy difficulties, but also to their surface-level grasp of
the techniques and related technology. This brings us to discuss further ways in which
students’ mobilization of mathematical techniques can be non-mathematical. I have
found that students can struggle to remember how to interpret results of routinized tech-
niques—recall students’ comments about what reduced row echelon forms (RREF) and
(non-)zero determinants can say about the number of solutions of a linear system; rather
than interpreting RREF in terms of the system of equations they represent, students
have rules for interpreting 3 non-mutually exclusive types of RREF as conclusions of
“one solution,” “no solution,” or “infinitely-many solutions.”

Rules about surface-level features, while accurate for normative LA1 tasks, can lead to
further non-mathematical mobilization of mathematical technique. Students struggled to
interpret results of routinized techniques when applied to non-routine tasks. For instance,
students struggled to conclude what the RREF of the augmented matrix in Problem 5
meant about linear independence, as the non-routine inclusion of the unknown k in the
vector entries required knowledge that is not needed when students solve the LA1 task
for determining linear independence (this task always ascribes known values to all vector
entries). This came up again in Problem 6 as students struggled to find the system of
equations corresponding to the RREF of the augmented matrix of a system of quadratic
equations. Some students, after finding in Problem 6 either that one equation had no
solution or that the solutions of one equation did not satisfy the other, even failed to mo-
bilize the knowledge that a solution of a system is a value satisfying each equation—they
kept looking for an alternative technique; one student acknowledged having forgotten
this and another had expected the “no solution” conclusion to correspond to a certain
type of RREF. While students’ row-reduction technique is mathematical in that they
generally know which row operations to do and how to do them, the technique can be
non-mathematical when they are unaware of what the boxes of numbers actually repre-
sent.

When it comes to techniques for tasks that can be configured as linear-systems-solving
tasks, while the techniques students mobilize have mathematical components (e.g., row
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reduction of an augmented martrix), they include components that rather reflect norms
of LA1 that, due to the routinization of tasks and techniques in LA1, are accurate in
the routinized LA1 context but not necessarily so in linear algebra in general. Students’
conception of equation solving tasks can also be normative and non-mathematical. For
example, students’ notion of what it means to solve an equation or a system is defined by
course norms rather than the task’s broader meaning in algebra as a domain of mathemat-
ics. Indeed, recall students’ expectation in Problem 1 that to solve the matrix equation
for the matrix C is to isolate C. In Problem 5, students’ expectation was that there
would be values of k for which the vectors are linearly independent; this seems to reflect
the norm in LA1 system-solving tasks that when a system involves unknowns, there are
values of this unknown for which the system has solutions. In Problem 6, students readily
accepted that one of the quadratic equations had no solution—this was on the basis of
its discriminant being negative; but students did not expect to come to a “no solution”
conclusion for linear system tasks, short of evidence to this effect in the form of a certain
type of row in a RREF. Students’ perception of the task “to solve an equation” depended
on norms from courses that target the given type of equation.

Whenever possible, students activated the LA1 system-solving task and its routinized
techniques of reducing an augmented matrices or calculating a determinant to check if it
is 0. While students’ mobilized techniques did include mathematical components, these
were restricted to the few routines needed for normal LA1 tasks and this limitation seems
to be the source for the otherwise non-mathematical components of students’ practical
blocks.

6.1.2.1.2 Students struggled to complete tasks using LA1 technologies other
than those normally involved in system-solving tasks In my discussion of the
praxeologies expected of students when considering final exam tasks in LA1, I noted that
KtbL delimits the use of technologies to routine situations: a task either explicitly in-
structs which technology to use or this is implicitly communicated as the task is of a type
that appears (as an example or recommended practice problem) in a textbook section
about a given technology. My students struggled to mobilize technologies belonging to
tasks that in LA1 are not normally to be configured in terms of a linear system.

Students’ knowledge about matrix algebra was restricted to the routine needed to
solve LA1 matrix equations: find inverses and multiply by inverses. Even though most
students did note that the right-hand side of the equation was an identity matrix, and
even though most students spoke about C and its inverse, they did not mobilize knowl-
edge from a different KtbL task (to determine if a matrix is invertible)—that a matrix
may have no inverse—to reconsider that “to solve a matrix equation” may not be synony-
mous with “to isolate a matrix,” as the KtbL norm suggests for the task to solve a matrix
equation. Two students attempted to consider this but only after a prompt I made to
this effect, and they were unable to mobilize knowledge through which to investigate this
possibility.

Students’ knowledge about cross products was conditioned by the norms in LA1 to
calculate cross and dot products when they are needed (e.g., in area-finding tasks or or-
thogonal decomposition formulas) and most students did not mobilize the orthogonality
property of cross products and dot-product definition of orthogonality when it would

316



have provided a most suitable technique to complete Problems 3 and 4.

When it came to mathematical components in Problem 5—a parallelepiped formed by
3 vectors in R3, its volume of 0, and linear independence—most students’ activity fixated
on the algebraic representations normally associated with linear independence in KtbL
(especially those of row reduction or determinant calculation) and a few on algebraic
representations normally associated with parallelepiped volume in KtbL. Students strug-
gled to activate a geometric representation of a parallelepiped of volume 0, confirming
their knowledge of parallelepipeds was conditioned by the formula volume of the object
privileged in LA1 parallelepiped tasks and not by the definition of the object.

Students struggled to conclude in Problem 6, be it due to a lack of agency or a lacking
sense of agency, that the system had no solution despite having found either that one
equation had no solution or that the solutions of one equation did not satisfy the other.
This situation was not typical of LA1 tasks, where linear equations given in tasks always
have solutions (equations of the form a = b where a ̸= b are never part of an original
system), and students seemed to be searching for an algebraic representation similar to
that usually associated with the “no solution” conclusion in LA1: an equation of form
0 = a, where a ̸= 0.

Most students were able to complete Problem 7, but their techniques were conditioned
by the usual LA1 technique for solving linear systems: they used the vector equations
to produce equations that could be solved via high-school system solving techniques or
row-reduction. Students mostly did not mobilize the geometric reasoning to be taught in
LA1 to explain the sense in which vector equations capture lines in Rn (n = 2, 3).

Finally, in response to Problem 8, most students attempted to complete the task by
producing (a system of) equations whose solution they expected to be the initial point
of the vector whose length they sought to find. This would have allowed students to
mobilize the technique they usually use to find lengths of vectors (and this was the stated
task in Problem 8: find the length of a vector). Among the nine students who attempted
Problem 8, three were unable to produce any relevant equation and four others were
able to mobilize 1-2 technologies from LA1 (along with the Pythagorean Theorem) to
produce 1-2 equations representative of the given situation. Two students (one of whom
is P7*, the student whose activity is mostly omitted from this discussion due to his sig-
nificantly different experience in mathematics courses) did recognize the relevance of LA1
technologies not centred on linear systems (e.g., distance between two points, orthogonal
decomposition) and which LA1 students normally use only when explicitly instructed to
do so.

When it came to LA1 technologies other than those normally involved in system-
solving tasks, students struggled to use them in the absence of instruction to use them
or instruction for how to use them. This suggests that the praxeologies students have
in connection to these technologies can be restricted to their surface-level features in
routinized LA1 situations. This shows, for example, in how some students used dot and
cross product calculations accurately to produce equations irrelevant to the tasks they
were given. This is not to say all students are doomed to mobilizing non-mathematical
praxeologies (indeed, most students were able to produce algebraic representations rele-
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vant to the given geometric situation): but the KtbL in LA1 does allow for students to
develop praxeologies limited to formulas denoted by some name (“dot product,” “cross
product,” “volume of parallelepiped”).

My students’ responses to the TBI tasks give evidence that a few students did mo-
bilize mathematical praxeologies related to technologies that are not usually (in LA1)
‘linear system technologies’, this happened when non-routine components of the TBI
tasks triggered in these students a Learner positioning or in response to a prompt from
the interviewer: P1 and P9 in response to the inclusion in Problem 3 of a cross product
in the statement of what is otherwise a routine task; P9’s mobilization toward Problem 4
of the technique he produced from Problem 3 after I prompted to compare the two tasks;
P6 and P8’s spontaneous mobilization of a geometric interpretation of a parallelepiped
having volume 0—though P6’s was inaccurate—and P2 and P4’s accurate geometric in-
terpretation when prompted to give one; P1 and P9’s knowledge in Problem 6 that if
two equations making up a system are not satisfied by the same values, then the system
has no solution; P1 and P4’s mobilization in Problem 7 of the geometry at stake in vec-
tor equations; and P4’s mobilization in Problem 8 of various technologies not restricted
to the norm of solving tasks by finding an appropriate linear system (conceiving of the
length of the vector as the height of a parallelogram whose area could be found with LA1
knowledge, conceiving of the length of this vector as a distance between a point and a line,
conceiving of the unknown initial point of the vector as an intersection point of two lines).

While some of my students were triggered by non-routine elements of tasks to mo-
bilize mathematical praxeologies related to technologies that are not usually (in LA1)
‘linear system technologies’, and while certain students (those having exhibited almost
exclusively Student positioning) mobilized, on several occasions, non-mathematical prax-
eologies related to these technologies, most students simply didn’t mobilize praxeologies
related to these technologies unless they appeared in a routinized form. When a rou-
tinized form appeared, some students activated practical blocks that were exclusively
reflective of the mathematics at stake in the task, and which I would therefore call math-
ematical practical blocks (e.g., as when P6 computed the cross product in Problem 3 and
plugged its components into both equations to confirm it is a solution, or when P1 and
P9 observed it is unnecessary to compute the cross product as the task can be completed
using the orthogonality property of the construct). Other students activated practical
blocks with mathematical and non-mathematical characteristics (e.g., as when P2 and
P4 computed the cross product in Problem 3 and found all solutions of the linear system,
therefore combining two normative techniques, so as to show the cross product is one of
the infinitely-many solutions). Some students activated practical blocks that exclusively
reflected what students would normally do in LA1 and not what they assessed to be nec-
essary to complete the task, in which case I call these non-mathematical practical blocks
(e.g. as when P3 and P10 were triggered by the cross product in Problem 3 to compute
this cross product—which is what is done in KtbL when cross products appear—but
made no suggestion as to how to use what they had computed).

Overall, what students mobilized most in response to each TBI problems was in the
realm of system-solving tasks and their usual technique. I can’t make a single claim
about the nature of all students’ praxeologies in relation to technologies that are not
usually (in LA1) related to linear system tasks and techniques, but I can say this: these
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praxeologies ranged from non-mathematical to mathematical and combinations thereof,
and those who did mobilize exclusively non-mathematical praxeologies (for technologies
not usually connected to linear system tasks or techniques) were also those who exclusively
exhibited Student positioning, while mobilization of mathematical praxeologies (for these
technologies) occurred when non-routine aspects of tasks triggered a Learner positioning
in a student. This range in non-to-mathematical praxeologies occurred when the nature
of the mathematics at stake afforded students the flexibility to use normative knowledge
abnormally; but, given a task where the nature of the mathematics at stake did not
allow for this (Problem 1), the routine from LA1 built around this mathematics (matrix
equations) blocked students altogether from mobilizing a mathematical perception of the
task: students’ perception remained normative, treating the task as one in which a matrix
must be isolated rather than one in which the task is to solve an equation.

6.1.2.2 Students’ theoretical blocks

Students’ comments and activity showed their theoretical blocks were a blend of didactic
and mathematical norms. The technology they used to produce their techniques was the
knowledge routinized in KtbL (normative tasks and normal ways of using linear algebra
technologies in LA1 KtbL) and the theory giving legitimacy to this technology (that is,
the routinized knowledge) was a mixture of surface-level features of the mathematics at
stake and of didactic norms.

Students’ mobilization of KtbL technologies (row reduction, linear (in)dependence,
cross products, matrices and matrix equations, solutions of systems of equations, etc.)
was often stripped of knowledge that isn’t needed to complete the tasks in which these
technologies usually appear. For example, the norm to row-reduce in LA1 (or use system-
solving techniques from high-school algebra) showed in students’ techniques for solving a
system with invertible coefficient matrix (Problem 2), for showing a given object solved
a system (Problem 3), for finding one non-trivial solution of a system (Problem 4), for
investigating the linear independence of 3 vectors forming a parallelepiped of volume 0
(Problem 5), for solving a system of 2 quadratic equations (Problem 6), for determining
the number of solutions of a linear system in R2 where both equations were expressed in
vector form, and for finding the length of a vector with unknown initial point but other
known properties (Problem 8). All students showed a tendency to prioritize techniques
that are usually used in KtbL for tasks that can be configured as a linear-system-solving
task; at the same time, students struggled to produce mathematical techniques. For ex-
ample, in response to Problem 7, one participant used a high-school linear system solving
technique (one corresponding to an elementary row operation students learn in LA1) and
produced a system that was implied by the original system but not equivalent to the
original system. The participant did not know why the solutions he found did not satisfy
the original system; all to which he had recourse was to check for calculation errors. The
notion of equivalent systems was missing from this participant’s praxeology and from
that of many other students.

Students’ struggle to adapt techniques from KtbL to unusual situations (e.g., as when
students struggled to interpret the implication of the RREF for the linear independence
of the given vectors, or when students struggled to interpret the results of their system-
solving in Problem 6) show that their choice to wield these techniques wasn’t led so much
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by knowledge of their mathematical suitability for any given task (e.g., students’ inter-
pretations of the RREF in Problem 5 showed they lacked awareness of the reasoning that
produces row-reduction as a technique for determining independence), as much as by the
fact that this is what they usually did in LA1 in response to certain triggers.

Comments students made confirm they used routinized KtbL as a guide for what
knowledge to mobilize. For example, in response to Problem 3, when I asked P2 if he
could think of a way to show the cross product was a solution of the system without first
finding all the system’s solutions, he said:

I’m not sure if there is another way. To do it. [...] Usually, when uh. I have
to find like an answer. In vector form. I would solve it uh, in this way and I
would find the. A vector in a parameter form and then I choose th—choose
the parameter based on what the question wants. Yeah. So I’m not sure that
there’s another way.

The justification for his choice of a technique was in the “usual.” Other students also
referred to LA1 tasks as a guide for what techniques to use, instead of referring to the
underlying mathematics as justification:

� P5, Problem 3: “From like, doing problems in the past that had me, like, jig [sic],
which thing would make like the cross product zero, and like, the numbers were
like, you just like flip... like, a number. Or, like, put it, like, plug in numbers that
are, like, similar. I don’t know how to, like, explain it! Like, it would be... Like, I
would have... Like, I’m just trying to remember like past homework. Like, I would
have like, two equations like this. And it’d be, like, what would... I don’t know if
it was exactly, like, a similar question.”

� P4, Problem 3: “I recognize from memory that when I tried to set up the—a system
of equations like this one, I would recognize that I was trying to find the intersection
of two planes, which is a line. And this—this is based on exactly just one question
that I solved. [inaudible] I remember that question. I don’t think that—yeah, other
than the lecture information, a lot, a lot of my knowledge was gained from the past
exam questions. So like one, one question I tackled would always be in the back
of my head when approaching another problem. Especially because it’s an intro
course and the questions are similar to each other.”

� P4, Problem 8: “I could try to find [the initial point of v⃗]. And then, then I know
this vector and [I could] try to find the norm of the vector, which I think [is] what
they would expect us to do in this course.”

In writing “[c]omments students made confirm they saw the routinized KtbL as a guide
for what knowledge to mobilize” (above), I include another implication: the routinized
KtbL also acts as a guide, for students, regarding what knowledge not to mobilize. Here
are some examples:

� P9, Problem 3: referring to the non-normative technique he had produced to com-
plete the task (using the orthogonality property of cross products), P9’s comments
suggest he viewed mobilizing this knowledge as an extra—not what’s expected in
LA1, but acceptable as an embellishment appended to what’s expected on an exam:
“the only thing [I would] do is calculate [the cross product] and then replace [as in,

320



plug it in to the equations] here and [I would] get zero eventually. [...] I can also
write the analysis that this is because of [the orthogonality property of the cross
product].”

� P2, Problem 5: “usually, I do calculations.” Referring to different ways (that had
come up in his response to Problem 5) through which to determine the linear in-
dependence of the three vectors, he said: “I’m [wondering] if the determinant way
is the correct way or... if I should try to write [...] one as a combination of the
[other] two. [pause] Honestly, I would do it like this [using the routinized “deter-
minant way”]. Yeah. Because I remember that [the vectors being] independent or
dependent has to do with the determinant. And this is the easiest way to do it.
Because I get zero, so I get a straightforward answer without having to analyse it
[using knowledge about the parallelepiped, formed by these vectors, having volume
0].”

� P4, Problem 5: P4 knew linearly dependent vectors are coplanar, knew the vec-
tors forming a parallelepiped of volume 0 must be coplanar, but prioritized two
routinized techniques (τ41 and τ42)—two variations of the same technique type—to
determine the linear dependence of the given vectors: “from [τ42], I deduced there
would be no values of k for [which the vectors are] linearly independent, but because
I know that it could also relate to linear independence, I’m gonna try to [do the
task via τ41].”)

� P4, Problem 7: his original technique was to express the vector equations in an
algebraic representation amenable to LA1/high-school system-solving techniques.
At the end of the TBI, when I asked him to clarify a comment he had made at
a different point in the interview (about always finding “simpler” solutions in the
end), P4 said: “if I were in the linear algebra [LA1]... mindset I would probably try
to find that intersection [in Problem 8] using... some, like the point-normal equation
or whatever. So maybe I just, today, I kind of went in before thinking—for example,
determine the number of solutions. I think I could have hypothesized that ‘oh okay,
these aren’t the same line, so they must meet somewhere, and only 1 - 1, 1 place,’ so
I could have said that without having to solve everything.” P7 had LA1 knowledge
through which to solve the problem in a “simpler” way, but only mobilized it after
receiving permission to do so; he distinguished this approach from what he would
use in a “linear algebra mindset.”

� P4’s general comment about what he mobilizes: “today, I think the questions are
aimed to see what I think about; the first thing, second thing I think about. So
maybe I directly tried to solve [problems] using my linear algebra knowledge, instead
of looking at it from a more... logical point of view. Like, for example, now, I
never ever saw a problem like [Problem 8]. But if I were in the linear algebra
[LA1]... mindset, I would probably try to find that intersection using... some, like
the point-normal equation or whatever” [emphases added].

Throughout the TBI, students’ choice of what to mobilize was justified by LA1 norms
and their activity suggested they could not have mobilized mathematical discourse that
would explain the relevance of a technique for a given task. Some students’ comments
confirm they looked to what was usual in LA1 as a source for the techniques they used:
in this sense, norms from KtbL made up the technology that produced the techniques

321



they mobilized.

Comments made by two students address the theory that gives legitimacy to didac-
tic norms as technologies. One student recounted doing past final exams because he
knew problems in introductory mathematics courses tend to be similar to one another.
Another student referred to “grades” as what would confirm to her that her work was
correct. The objective of a Student’s membership in a course is to obtain a certain grade
in the course: this objective forms the theory whereby didactic norms indicate what is
legitimate, appropriate, and expected in the course.

Apart from didactic components of students’ theoretical blocks, these blocks did in-
clude mathematical norms for some students. Asked what they expected to happen if
they proceeded with their techniques (e.g., in Problem 2), students referred to the math-
ematics that normally appeared in their experience: the reduced row echelon form of
their augmented matrix would have one of three forms, each of which would then cor-
respond to one of three possibilities for the number of solutions a linear system could
have. Students mobilized explanations for these correspondences that, while incomplete
and occasionally incorrect, showed an attempt to justify using the mathematics at stake:
students brought up, for example, that a row with a certain pattern in its entries would
correspond to an equation of the form 0 = a where a ̸= 0, which is then a false equation.
Students struggled but nevertheless attempted to justify the relevance of the normative
LA1 technique for verifying linear independence, to mobilize the mathematical meaning
of vectors being linearly (in)dependent. This justification was not part of KtbL in the
course, but some students’ attempt to mobilize such justification shows their theoretical
blocks can include mathematical norms from LA1.

One student’s activity and comments underscore how students’ non-mathematical
theoretical blocks (and the didactic norms informing them) can regulate their activity in
opposition to mathematical praxeologies they may have. In reaction to Problem 7, P4
originally substituted the task by a routine system-solving task and used a normative
system-solving technique to complete it. Toward the end of the interview, I asked P4 to
clarify a comment he had made earlier on—something to the effect of always finding a
“simpler solution.” To illustrate his point, P4 said he could have completed Problem 7 by
saying that the two vector equations represent lines that are not parallel (he knew this
based on the direction vectors in the equations), so they must intersect at one point, and
the system must therefore have one solution; he explained he had opted for the approach
he had originally given because that’s what he would usually do in LA1. Even if a student
knows of a non-normative way to use mathematics from a course to complete a task, and
even if they believe this way to be more suitable (e.g., by virtue of it being “simpler,”
say, by consisting of far fewer steps), they might opt for the normative approach. It’s
what they believe is what’s expected of them—and this belief is informed by the norms
of the course.

This last comment shows that students may have mathematical praxeologies but mo-
bilize non-mathematical ones by virtue of their models of what they are expected to learn
in a course. This highlights the relevance of attending to what students mobilize, and
not only the less conspicuous knowledge they may have: apart from the methodologi-
cal difficulty (though not impossibility) of ascertaining what knowledge a person does
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and does not have (e.g., I would easily have missed P4’s geometric knowledge of vec-
tor equations had I not asked the question that prompted him to reveal it), examining
what students mobilize in opposition to what they do not mobilize can help to charac-
terize how course norms regulate students’ (non-)mathematical activity. I view what the
knowledge students mobilize and the knowledge students have to form what Chevallard
(1985) terms “knowledge actually learned” in a course: it is a mixture of the knowledge
students acquired in a course and the knowledge they choose to mobilize from what they
have acquired.

6.1.2.3 Instances in which students mobilized mathematical praxeologies

A few instances in the TBI had students mobilize mathematical praxeologies. This hap-
pened with students whose activity in the TBI suggested they had occupied a Learner
position alongside a predominantly Student position when in LA1. The trigger for these
students to mobilize a mathematical praxeology seems to have been permission or encour-
agement to deviate from mobilizing the routinized praxeologies of KtbL; this permission
came from either non-routine components of tasks or from the interviewer, that is, from
the authority in the TBI situation.

One task feature that prompted students to mobilize mathematical praxeologies was
when mobilizing routinized knowledge was perceived as decidedly inconvenient for com-
pleting a task, and a task included familiar components that are not usually coupled in
routine tasks. For example, Problem 3 had two non-routine components in what other-
wise resembled a routine task to solve a homogeneous system of two equations in three
unknowns: the scalars were unusually irrational and a cross product appeared in the
statement. (By (non-)routine, I mean in comparison with tasks in KtbL.) The apparent
inconvenience of calculating with scalars different from integers seemed motivation enough
for P1 and P9 to mobilize an approach different from the computational routine they had
spontaneously first suggested; P1 said this approach would have made him “cry.” What
P1 and P9 mobilized consisted of a mathematical praxeology: they activated knowledge
about technologies intrinsic to the task to produce a technique for completing the task.
The perceived computational load sufficed for P1 and P9 to reflect on components intrin-
sic to the task (e.g., P1 mentioned noticing that the scalars in the cross products were
the scalars in the linear system) and to then choose to mobilize (non-computational)
properties of the components intrinsic to the task.

Another example of the task feature of “non-routine combinations of familiar math-
ematical components” is in Problem 6. This was a task belonging to a same global task
type as a routine LA1 task: to solve a system of equations. But this was not the local
task type from LA1 as the equations were quadratic and not linear. The task type and
task components were therefore familiar to students and enabled them to mobilize knowl-
edge acquired in more than one mathematics course. P1 and P9 mobilized mathematical
praxeologies: they solved the quadratic equations (using knowledge from high-school al-
gebra directly pertinent to the resolution of quadratic equations) and deduced from their
finding that the system had no solutions.

It’s worth noting that comments P1 and P9 made on these occasions suggested their
previous mathematics experience may have extended beyond that of my other partici-
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pants; P9 mentioned having learned some linear algebra in high-school, and P1 knew
about imaginary numbers. This might help to explain their ability to mobilize knowledge
others did not mobilize, but still, their choice to mobilize it was enabled or encouraged (in
short, permitted) by features of the tasks they were proposed and perhaps the situation
they were in. P9, for example, said that on an exam, the resolution of Problem 3 via the
orthogonality property of cross products would be an extra, and not something he would
submit in isolation; he would primarily do calculations, and possibly add the “analysis”
based on the other mathematical properties as an explanation for the result obtained
computationally.

P9’s comment addresses the third feature that might be needed for students to choose
to mobilize mathematical praxeologies (as opposed to exclusively routinized ones): con-
textual permission to do so. Problem 7, like Problems 3 and 6, involved a non-routine
combination of familiar mathematical components, and triggered in P1 and P4 a math-
ematical praxeology. That said, P4 did not mobilize it in full at first, privileging first
an approach more in line with a routinized technique in LA1: isolate unknowns using
algebraic system-solving computations. P4 mobilized the mathematical praxeology only
after receiving permission from the interviewer to do so. In this case, the permission
came in the form of a question: P4 had said, at a different point in his interview, that he
always finds simpler solutions in the end, and I asked him (at the end of the interview)
to clarify this comment. He referred back to Problem 7 to illustrate his point, and that’s
when he mobilized a mathematical praxeology to complete Problem 7. He perceived this
as a more “logical” approach to the task than the one he had originally proposed, which,
in turn, he perceived to reflect “the linear algebra [LA1]... mindset” (or what I would call
a LA1 norm). I take this perception a reflection of P4’s mathematical theoretical block
in this instance: his technique was produced by a reflection on mathematical properties
he perceived most pertinent (“logical”) to the given task.

I identified two other instances in which participants mobilized mathematical prax-
eologies. One is P1’s mobilization of the geometry of vector equations in Problem 7,
after a struggle mobilizing rather more routinized (computational) knowledge, and this
observation on mathematical properties intrinsic to the task: “I just realized that it was
very easy because the question is not asking for the solution, it was asking for the number
of solutions. So I just had to see if the two direction vectors are collinear or not.”

Another instance is P4’s mobilization in Problem 8 of various technologies that were
not made explicit in the task as they usually are in LA1 tasks that call for their use. Two
task features encouraged this behavior. First, Problem 8 is a non-routine task, so even
when students mobilized a technique reflective of the most heavily routinized LA1 task
(to complete tasks by solving linear systems), there was freedom and need to identify
how to operate within this routine. Second, it is an open-ended LA1 task, in that various
technologies from LA1 can be used to produce a technique through which to complete
it. P4 made a comment alluding to the way in which such features give permission to
mobilize praxeologies driven by the (LA1) mathematics intrinsic to a task and not by
attention to didactic norms in LA1:

I could try to find this point [the initial point of v⃗ in the given image]. And
then, then I know this vector and [I can] try to find the norm of the vector,
which I think [is] what they would expect us to do in this course. [emphasis
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added]

P4 decided against the equations-based approach: “nah, I’m gonna try my own solution”
[emphasis added]. The open-endedness of the task encouraged P4 to engage in (mathe-
matical) problem-solving behavior—a behavior that centres mathematical properties of
components intrinsic to a task as a way to produce technique.

Reflecting on the above, what seems to be key to students’ mobilization of mathe-
matical praxeologies—apart from having sufficient mathematical knowledge to do so—is
permission to do so. One feature with potential to communicate this permission is an
overtly non-routine combination of technologies from KtbL and possibly the inclusion of
features that render routine approaches especially unpalatable to students accustomed to
these routines. Nevertheless, several students’ comments (P4’s, P9’s, and others made by
P2) suggest how even such features may fail to prompt students to mobilize mathematical
praxeologies without explicit permission from an authority: in the context of a didactic
institution, Students are primed to identify what’s normally expected of them in this
institution. In LA1, what’s normative to KtbL is the routinization of certain techniques
and technologies. Students learn the lesson: they are expected to mobilize these routines.
Short of a change to these norms, students may need interference from an authority—not
just to entertain the non-routine (e.g., as P3 and P6 had attempted to do in Problem 1
when my questions prompted them to consider that Problem 1 was not the normative
matrix equation task), but to choose to mobilize it.

6.1.2.4 P7*’s praxeologies

P7*’s behavior throughout the TBI was unusual in two ways. In response to almost
every problem, P7* suggested a variety of activities through which to tackle the prob-
lem, though these activities were rarely complete (in that they consisted of a concept
P7* thought might be pertinent) and frequently irrelevant to the mathematics intrinsic
to the task. Another way in which P7*’s behavior was set apart from that of the other
participants was that he did not engage in any of the calculations he proposed unless I
prompted him to do so. (I had given such a prompt on at least one equation to investigate
whether the calculations would lead P7* to notice an inconsistency in a proposition he
had made.) In light of the extreme difference between P7*’s behavior and that of the
rest of my participants, and given the significant gap between P7*’s prior mathematical
education and that of my other participants, I surmise the behaviors P7* exhibited to
reflect his pre-LA1 experience rather than the impact of LA1 on his mathematical activity.

I rather infer the impact of LA1 on P7*’s mathematical activity from the observa-
tion that the knowledge he mobilized, like that of the other participants, was similarly
restrained by norms from KtbL. For instance, when engaged with Problem 1, P7*’s per-
ception of the task was restricted to the usual matrix equation task in KtbL, with all
his techniques aiming to isolate C; the main distinction between P7*’s activity in this
task and that of others was his awareness that the normative isolation technique did not
apply because two of the matrices were unknown and therefore potentially not invert-
ible. In a similar vein, P7* struggled to recall mathematical theoretical knowledge about
linear system technologies (e.g., row reduction, determinants, augmented matrices and
their reduced row echelon form) as his knowledge here was restricted to their surface-level
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features.

P7* was one of the few students able to step outside the norms when a task ostensibly
deviated from the usual. The variety of praxeologies he suggested to mobilize, even if
often described superficially or even irrelevant, enabled P7* to sidestep the limitations
of normative LA1 knowledge (e.g., as in Problems 3 and 4 when he mobilized cross and
dot product properties students do not normally need to use). This, along with the en-
thusiasm he expressed in response to some of the techniques he contrived in response
to non-routine triggers (exclamations that a technique was “elegant” or “outstanding”),
attest to P7* having occupied a Learner position throughout his tenure as a LA1 student.

P7* having occupied a position of Learner contrasts with the surface-level grasp he
displayed relative to knowledge that is normative in KtbL. But this contrast may point
to the opportunities missed in LA1 as a result of the norm to routinize tasks and tech-
nologies in the course. P7*’s comments attest to the missed opportunities: he believed
the normative computation (turning Problem 7 into a usual linear system LA1 task)
he had spontaneously suggested to be what he would do on an exam because it is what
popped up in his mind first. On a different occasion, P7* commented on how he had once
submitted two solutions toward an exam problem, and the marker had graded only one
of them. This is not surprising, given the constraints on LA1 instructors’ marking: an
instructor has to grade hundreds of submissions made for each of the 2-4 questions they
may be assigned, and grading usually has to be completed within 5 days. The mixture
of rules, strategies, and norms regulating what students’ activity in a course, together
with the heavy routinization that characterizes KtbL in LA1, can restrict the knowledge
mobilized even by Learners to surface-level features of LA1 praxeologies.

6.1.2.5 Summary

Students activate the standard task/technique (system-solving and its 2 related tech-
niques) whenever possible (not whenever necessary) and routinize knowledge about tech-
nologies. Knowledge students mobilize is restricted by KtbL norms. Knowledge students
mobilize is also inconsistent with or inappropriate for the mathematics at stake, and
attempts to complete task using norms revealed a superficial grasp of technologies of-
ten absent of mathematical meaning other than their corresponding formulas. Students
whose activity or comments showed evidence of their having occupied both Learner and
Student positions in LA1 were, occasionally, able to mobilize knowledge to be taught or
mobilize KtbL in non-normative ways, but this came either after a failure of a norma-
tive use of KtbL, in response to an ostensibly non-normative feature in a task, or after
prompts from the interviewer. The usual LA1 experience does not give these opportuni-
ties, and students whose comments and activity suggested their position during LA1 was
exclusively that of a Student were unable to mobilize knowledge similarly, given these
opportunities.

The knowledge LA1 students mobilize when they solve linear algebra tasks is driven
in large part by the didactic, social, and mathematical norms from the LA1 institution
and algebra courses preceding it. Students’ practical blocks reflect norms established in
routinized components of KtbL, and I found students’ mobilization of these norms can go
contrary to the mathematics at stake in a task. Meanwhile, students’ theoretical blocks
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are shaped by the status of LA1 as a didactic institution of which students are members
because of academic and administrative rules that make of it a prerequisite mathemat-
ics course for many university programs. As Students driven by the objective to get a
certain grade in LA1, and given the mechanisms that regulate students’ grades in LA1,
students are encouraged to have practical blocks produced by the norms that characterize
knowledge to be learned. If norms that characterize KtbL are the technologies Students
are expected to use as source for their techniques (e.g., in the sense that mimicking a
normative technique can be a way to produce a technique), it is by virtue of the theory
(in the ATD sense of the word) that KtbL is what students need to mobilize to pass the
course.

Students’ comments confirm they mobilize what they believe to be expected of them
in the course, possibly even to the detriment of what they could otherwise mobilize.
Some students’ comments confirm they look to normative assessment tasks (i.e., KtbL)
to identify what’s expected of them.

Norms that characterize KtbL are such that students activate non-mathematical prax-
eologies when they solve linear algebra tasks. The routinization of techniques and tech-
nologies that characterizes norms in KtbL allow students to operate along surface-level
features of these praxeological components. To complete tasks in KtbL, it suffices to
recognize technologies nominally or by their usual algebraic representation, and then to
mimic a routine. These norms show in students’ non-mathematical praxeologies in that
their activity is conditioned by and delimited to the routines that work for KtbL tasks.
Students’ comments showed they were activating what they “usually” would given a cer-
tain cue from a LA1 task, and exhibited a lacking sense of agency when the usual failed
to apply.

Apart from one task (Problem 1), where students’ perception of its objective was
shackled to a normative task and they were altogether unable to mobilize anything but
norms related to that task, not all students were prohibited by LA1 norms from complet-
ing non-routine tasks. Three students—whose comments and activity suggested they had
exclusively occupied the position of Students during their tenure as LA1 students—were
unable to complete or even mobilize mathematical knowledge toward most of the TBI
tasks. But others were able to mobilize some relevant mathematics (albeit often limited
to its surface-level features), even though their comments had also painted them as having
mostly occupied Student positioning in LA1. This was in part due to the nature of linear
algebra and the TBI tasks: many were amenable to linear-system solving techniques,
which constitute a significant portion of KtbL.

On occasion, some students paid attention to the mathematics intrinsic to a task
instead of exclusively linking it with a routine task, and mobilized KtbL in non-normative
ways or mobilized knowledge that extends into knowledge to be taught in LA1. This
came either after a failure to use KtbL in a usual way, in response to an ostensibly non-
normative feature of a task (e.g. such as inclusion of technologies that do not usually
appear together in LA1 tasks), or in response to prompts from an interviewer. The
usual LA1 experience does not give students these opportunities, however, and these
opportunities fell flat on students whose comments and activity suggested their position
during LA1 was exclusively that of a Student. These instances can serve, however, as a
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starting point for design of tasks that can shift norms in courses like LA1 to encourage
students to mobilize more mathematical praxeologies.

6.1.3 Research on the learning of calculus has modeled stu-
dents’ practices and found them to consist of routinizing
techniques and building non-mathematical praxeologies;
are these practices replicated in linear algebra?

Twenty years’ worth of research on the learning of calculus has modeled students’ prac-
tices and found them to consist of routinizing techniques and building non-mathematical
praxeologies (discussed in Sections 2.1 and 2.2 of the literature review). The question that
sparked the research in this dissertation was based in a reflection on this body of research:
the finding of students’ routinization of techniques and building of non-mathematical
praxeologies at the post-secondary level is based on research in the learning of one do-
main in mathematics—calculus. Given the great many epistemological and cognitive
difficulties known to characterize the learning of calculus, I wondered how the institu-
tional emphasis on routine tasks stacks up in the mixture of cognitive, epistemological,
and institutional features that can explain students’ disengagement from mathematical
components intrinsic to calculus tasks. Given a course in a different domain of mathe-
matics but characterized by similar institutional features, do students’ non-mathematical
praxeologies persist?

The institutional conditions and constraints that typically regulate post-secondary
college calculus courses (Hardy, 2009a) are the same as those that usually regulate a
post-secondary introductory linear algebra course on vectors and matrices (LA1). Based
on my experience in teaching such a course, and based on a preliminary analysis of 10
recent LA1 midterm and final exams given over the span of 5 years, I inferred that knowl-
edge students are expected to learn (in the ATD sense) in LA1 was also characterized by
routinization. This made of LA1 a suitable target for my question.

While there appears to be little to no research done from the institutional perspective
on (introductory or other) linear algebra learning2, anecdotally and in deduction from
the popular use of a selection of introductory linear algebra textbooks, it seems that
the institutional features and nature of knowledge to be learned in LA1 are typical of
introductory linear algebra courses in post-secondary institutions not only in Canada but
in other countries as well. I expect the course to follow similar standard across different
institutions (at least in North America) due to its role as one of three post-secondary
mathematics courses that are prerequisite for many university programs; the standard-
ization is suggested, for example, by the role played by the Ministry of Education and
Higher Education of Quebec, which issues institutional standards (such as number of
instruction hours per semester and course objectives) for courses such as college calculus
and introductory linear algebra (e.g., recall Figure 3.1). With these considerations in
mind, in the remainder of this discussion, I will refer by “introductory linear algebra
courses” (or introductory linear algebra) to courses similar to LA1.

2The only studies I found are those of Arsac & Behaj (1998) and De Vleeschouwer (2010), who also
used the ATD framework; their research objectives do not relate to mine.
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My analysis of knowledge to be learned in introductory linear algebra confirmed that
it is characterized by routinization. Descriptions of the routinization afforded by text-
book and final exam tasks in calculus courses (e.g., Hardy, 2009a; Lithner, 2004) describe
a process wherein tasks can be identified by surface-level features and their techniques
routinized, in that the steps can be mimicked so as to complete a given task. I found
that some of the tasks normative in introductory linear algebra lend themselves to this
type of routinization. Another praxeological component of activity in introductory linear
algebra is routinized: a collection of technologies, each of which appears in tasks that
either implicitly (by course norms) or explicitly instruct students to activate the tech-
nology. Each technology is to be mobilized in only one way throughout the course (e.g.,
mobilization of cross products always amounts to calculating them).

Praxeologies that model activity in the discipline of mathematics have components
that are amenable to routinization in variable ways, and routines are part of mathe-
matics, but this is not all there is to a mathematical praxeology. That said, KtbL in
introductory linear algebra courses, like KtbL in college calculus courses, is characterized
by routinization. Research (referenced in Section 2.2.2) on task classifications in calculus
courses address the message sent to students by the emphasis on routinization in their
learning environment: reliance on surface-level features is enabled and imitative strategies
encouraged. Research (discussed in Section 2.2.3) on the practices students have been
observed to enact in response to (non-)routine calculus tasks confirms students follow on
the message they are given by their learning environment. They learn a restricted set
of procedures, recognize tasks by their surface-level features and not by mathematical
components intrinsic to these tasks (e.g., therefore identifying limit-finding tasks by the
type of function involved rather than by a type of indetermination), and do not learn
the mathematical justifications that produce the procedures they mimic. Students are
limited by these practices, easily forget routines they had memorized for short-term use,
and struggle to adapt to different task types or even to recognize a task is of a different
task type when it visually resembles a routinized task.

My study replicates these findings. The KtbL in introductory linear algebra sends a
similar message to students about the nature of the praxeologies they are expected to
build. The message is well-received; students’ activity in the TBI was conditioned by the
knowledge routinized in KtbL and overwhelmingly delimited to its surface-level features
(boxes of numbers, formulas, etc.). TBI students who managed, in a few rare instances,
to escape the shackles of these conditions and limitations, showed how students’ activity
might be delimited not only by the shortage of mathematical knowledge enabled by norms
of routinization, but also by how these norms shape their perception of what they are
expected to exhibit: they made comments to the effect that they would not submit the
non-routine techniques they had proposed (in the interview) for grades, or at least would
submit them only as additional justification to complement a routinized technique. This
illustrates one way in which course norms can contribute to student beliefs that may be
counterproductive to their learning in later levels, a phenomenon addressed by Raman
(2004), Schoenfeld (1989), and Tall (1992).

My research follows in the steps of (Barbé et al., 2005; Bergé, 2008; Brandes, 2017;
Broley, 2020; Hardy, 2009a) in their use of Chevallard’s (1985, 1999) ATD framework to
study the teaching and learning of calculus by examining knowledge along different stages
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of didactic transposition in the calculus course institution. I propose to view the ‘last’
stage of didactic transposition, that is, that of the ‘knowledge actually learned by stu-
dents,’ not in terms of the knowledge students have, as treated in previous research, but
in terms of the knowledge students mobilize. This does not do away with the knowledge a
student may or may not have. I rather shift the focus to what students actually activate
in response to certain prompts: this is a mixture of knowledge cognitively available to a
student and the knowledge they put to action. In my analysis of the praxeologies students
activated, I was at times able to decipher, from students’ activity and comments, knowl-
edge they did or did not have, and contrast it with knowledge they chose to mobilize. This
helped to characterize the mechanisms that regulated their (non-)mathematical praxeolo-
gies. My paradigmatic example is that of the participant who mobilized a mathematical
and non-routine praxeology only after he received ‘permission,’ from the interviewer, to
use knowledge different from what he believed would be expected of him in introductory
linear algebra.

My research also builds on the positioning framework first proposed by Sierpinska
et al. (2008) and later elaborated upon by Hardy (2009a) and Broley (2020). I sought
to identify, on the basis of students’ comments and activity, the position(s) they had
occupied during their tenure in the linear algebra course. One aim was to examine the
positions encouraged by the norms of the course, the practices enabled by these positions,
and to compare these with previously identified positions: those of Learner, Student,
Client, and Person (Sierpinska et al., 2008). The positioning framework elaborated so
far proposed definitions for each position. The positions are defined by the objective a
student can have as a member in a post-secondary mathematics course. I contribute to
the framework with a proposed operationalization of these definitions: classify instances
of a participant’s activity in terms of behaviors that put the activity in relation with
course norms, and, by reflecting on whether this behavior contributes to the objectives of
a Student, Learner, Client, Person, or possibly as-of-yet unelaborated position, identify
this contribution as a property of that position.

The operationalization I propose conforms with the ATD perspective that human
activity consists of a practical block (here, the behavior) and a theoretical block (that
produces the practical); as in the ATD framework, I emphasize that praxeologies that
model activities of a Student (Learner, Client, etc.) are institutional; the institutional
norms of any given course may lead Students to have activity further or closer to that
of a Client or that of a Learner, for example. My operationalization of the positioning
framework lent itself to my second objective: to identify features of task that may trigger
students to switch positions (relative to the introductory linear algebra institution).

The positions I identified in my students were those of Learners and Students. This
is not to say that these are the only positions available to students in the linear algebra
course—indeed, an additional participant may have revealed another positioning, and
I may have found additional positionings with further iterations of my operationaliza-
tion. I found that in the introductory linear algebra institution, Student positioning
leans on mobilization of non-mathematical praxeologies and Learner positioning encour-
ages mobilization of mathematical praxeologies; a course with didactic and mathematical
norms different from the introductory linear algebra institution may have its Student and
Learner positions qualified differently. All students (with the exception of P7*) displayed
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signs of having predominantly acted as Students in their linear algebra course. A few
displayed signs of having occupied, to a limited extent, a Learner position, and some
did not display such signs, but were triggered by features of the TBI tasks to abandon
practices they had developed from a Student position and instead behave in ways that
reflect a Learner positioning. The analysis of students’ positions helped to show how
the routinization that characterizes the didactic and mathematical norms of introductory
linear algebra, when adhered to as an ideal Student might (ideal in that they act upon the
messages sent by norms of knowledge to be learned), can act as a stopper for mobilizing
mathematical praxeologies.

Just as there is a vast body of research on epistemological, conceptual, and cognitive
sources for students’ difficulties in the learning of calculus, there is a body of research on
such sources for students’ difficulties in the learning of linear algebra (albeit not much
when it comes to linear systems and their solutions, per Stewart et al. (2019), technologies
that made up a large part of the praxeologies I investigated in this research). The research
on students’ learning in both domains seeks to explain students’ difficulties as well as the
absence of certain mathematics from their practices. The replication of the findings
from research on the learning of calculus—that is, that the institutional norms that
emphasize routinization in college calculus and introductory linear algebra courses enable
and encourage students to mobilize non-mathematical praxeologies—highlights the power
of institutional routinization to enable and encourage students to operate along surface-
level features of the mathematics targeted by an intended curriculum. Routinization of
knowledge to be learned fails to give students the opportunity (and the permission, if
students are inclined) to engage mathematics past its surface-level features—let alone
to engage with mathematics that is documented as a source of conceptual or cognitive
difficulties.

6.2 Contributions of this work to research on linear

algebra education

My study contributes to research on linear algebra education in several ways. Its main
contribution is in the affordances it demonstrates of an institutional perspective that is
rarely (if ever) used in linear algebra education research. The findings I made from this
perspective complement some of those made on topics that are popular in research on the
learning of linear algebra. Without going into a comprehensive account of each finding,
I give a few examples of how my results complement research made from cognitive or
conceptual perspectives: research about students’ reasoning about linear combinations of
vectors, students’ coordination of geometry and algebra, students’ geometric reasoning,
and students’ difficulties with the structural, unifying, generalizing processes that qualify
linear algebra. My study also contributes to the research through its focus on students’
reasoning in the topics of linear systems and their solutions; my review of the literature
confirms few papers have investigated this topic.

In 2001, Dorier and Sierpinska noted the common claim in “discussions about the
teaching and learning of linear algebra that linear algebra courses are badly designed and
badly taught, and that no matter how it is taught, linear algebra remains a cognitively
and conceptually difficult subject.” In spite of the common assumption that linear algebra
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courses are “badly designed,” “badly taught,” and which sparked a reform of linear alge-
bra courses globally, Dorier’s seminal (2000) work on the state of research on linear algebra
education shows the institutional perspective was nearly absent (indeed, only one of the
works was noted to have adopted it) as interest was rather in examining the cognitive and
conceptual sources of students’ difficulties. Stewart et al.’s more recent (2019) review of
developments in research on linear algebra education spanning the previous decade shows
the trend from the 1990s persisted, with much of the research still attending to conceptual
and cognitive sources of students’ difficulties as well as controlled teaching experiments.
Stewart et al. (2019) point out the ample room for analysis of linear algebra textbooks
and assignments with a focus on their content and how they are used by instructors and
students. The institutional perspective I propose extends this focus to the institutional
mechanisms that regulate students’ (non-)mathematical activity in linear algebra courses.

A first contribution of my work to research on linear algebra education is in the
affordances brought by the institutional perspective. The framework helped to iden-
tify institutional mechanisms that enable and encourage students to exclusively mobilize
surface-level features, usually of algebraic form, of linear algebra concepts and techniques.
These mechanisms include the objectives of students’ membership in introductory linear
algebra courses—courses that are prerequisite for many university programs and which
are, as a result, an obligation students must fulfil rather than a course they elect to take
(as is the case even of students heading into mathematics programs: given the status of
introductory linear algebra as a prerequisite requirement, students are likely to occupy
the position of Students whose objective is to get a certain grade in the course. Another
mechanism includes assessment rules and norms, which make it such that a student’s
grade is essentially determined by their performance on a final exam, an assessment that
usually includes the same tasks from one semester to the next and which is graded by
all course instructors. These mechanisms in particular, along with others as well (e.g.,
limited number of hours in which to cover a substantial curriculum, students’ other po-
tential obligations), encourage and enable students to limit what they learn to mobilizing
surface-level features of concepts and techniques that suffice to complete the tasks that
usually appear on exams.

My study is small in scale but the non-mathematical praxeologies I found students
to mobilize, and my investigation of institutional mechanisms regulating these, comple-
ment findings made in other studies. For example, the topic of linear combinations of
vectors is one of the most addressed in linear algebra education research (Stewart et al.,
2019) and is usually examined via cognitive and conceptual frameworks (e.g., APOS,
Tall’s three worlds, Sierpinska’s modes of thinking, as referenced in Section 2.3.1). One
such study (Stewart & Thomas, 2010) found students lack visual representations of linear
dependence and prefer algebraic (computational) methods to problems such as that of
determining if a set is linearly independent, and used APOS and Tall’s three worlds to
examine how an emphasis on matrix processes may not help students understand the
concept. Another study (Dogan-Dunlap, 2010) used Sierpinska’s modes of thinking to
analyse student homework solutions and found students privileged algebraic and arith-
metic thinking modes (over a geometric mode) to explain whether sets of vectors are
linearly independent and to develop conjectures about linearly independent sets in R3.
The findings made by Stewart & Thomas (2010) and Dogan-Dunlap (2010) are replicated
in this study. While students generally knew that the linear dependence of two vectors in
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2- or 3-space meant they are parallel, they struggled to mobilize a geometric interpreta-
tion of linear dependence of three vectors; I also found that what students did mobilize in
relation to linear independence was one of two algebraic techniques for determining lin-
ear independence that are routinized in the linear algebra course. Using the institutional
perspective, I traced these observations to the lack of need and opportunity, in tasks stu-
dents are expected to solve (to pass the course), to mobilize geometric knowledge about
linear independence, and its contrast with the normative linear independent task which
is completed by row reduction or determinant calculations (i.e., matrix processes, or the
arithmetic and algebraic thinking modes).

Students’ use of geometry and their coordination of algebra and geometry are topics
often addressed in linear algebra education research. Reflecting on papers that attended
to the role of geometry in students’ understanding of eigenvalues and eigenvectors, linear
independence, linear transformations, and some other linear algebra concepts, Stewart
et al. (2019) note that while “some studies claimed that geometry (in some cases to-
gether with the help of appropriate software) enhanced students’ learning experiences,
some results showed that students performed better in more routine algebraic questions”
and maintain that the implications of geometry in linear algebra courses deserve further
investigation, for instance, with more systematic investigations of how geometric modes
can be coordinated with algebraic ones to enhance students’ learning. Based on my find-
ings, that students perform “better in more routine algebraic questions” merits further
investigation as well. My results show the potential implications of institutional emphasis
on routine algebraic modes. First, students’ better performance in routine algebra tasks
can lack in substance as routinization allows students to operate on superficial knowl-
edge, and this knowledge does not transfer well (if at all) to less routine tasks. Second,
the routinization of algebraic technique in both algebraic and geometric contexts can
enable students to exclusively mobilize algebraic representations of so-called ‘geometric’
concepts.

In this study, I mostly omitted the topic of vector spaces from the tasks I presented
in the interviews, but one of the tasks nevertheless offers an implication of institutional
emphasis on routinization of algebraic modes for students’ structural thinking (Dorier &
Sierpinska, 2001) or difficulties with unifying and generalizing processes (Dorier, 2000a).
I recount the main finding from this task in the next paragraph and follow this with how
this finding offers an implication of the institutional emphasis on routinization for the
structural thinking that students may (fail to) build.

Problem 1 of the TBI was to solve a matrix equation of form ABC = I for some
matrix C. This visually resembled a routine matrix algebra task in the introductory
linear algebra course. The routine task in the course is actually a task to isolate a spec-
ified matrix given an equation, but is usually stated using the expression “to solve an
equation.” The task in Problem 1, however, was not a task to isolate a matrix, and was
indeed the broader mathematical task of solving an equation: determining whether it has
solutions (and if it does, identifying them). But students’ matrix algebra knowledge was
so conditioned by the routine task that they did not recognize the broader task at hand.
This was in spite of the fact that students recognized two things: first, that one of the
matrices to the left of C was not invertible, and second, that the I in the equation as an
identity matrix. Students persisted in trying to concoct ways to isolate C.
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Students’ perception in Problem 1 was entirely conditioned by the routine matrix-
isolation task from their course and what they mobilized was restricted to the normative
technique for this task. This was, ostensibly, a task about the structure of matrix alge-
bra—specifically, about identity matrices having a role akin to that of 1 in the real num-
bers when it comes to multiplicative inverses. Considering the knowledge to be taught
about matrix algebra in introductory linear algebra, as indicated by the textbook section
where the normative “solve a matrix equation (i.e. isolate a matrix)” task appears, there
is an intent to teach about structural elements of matrix spaces (even if the term ‘space’
only appears in the last chapter of knowledge to be taught in the course: vector spaces).
But this does not make it to the knowledge students are expected to learn about matrices.
This brings to mind one of the first objectives in the 1990s boom of research on linear
algebra education: to investigate students’ difficulties with the structural mode in linear
algebra. Dorier et al. (2000) elaborates on the epistemological sources for these difficulties
and proposed, as a potential salve for these difficulties, “meta-level activities.” These in-
clude explicit discourse from the teacher about the unifying and generalizing significance
of axiomatic structure and its methodological affordances. Such discourse may help stu-
dents acknowledge that axiomatic structure is a thing of importance to mathematicians,
and some students may even be convinced of its significance, but this, on its own, is
unlikely to turn the axiomatic structure of linear algebra into “part of the ‘cognitive
furnishing’ of the students’ minds” (Dorier & Sierpinska, 2001). Without mathematical
problems that give substance to this discourse, though, its potential is limited. My find-
ing from Problem 1 gives an example of how a routinized treatment of algebraic objects
in introductory linear algebra can be a missed opportunity to prepare students, via the
tasks that are offered, to start to develop structural modes of thinking.

Finally, one of the main contributions of this study to research on the teaching and
learning of linear algebra is in the elaboration of the knowledge students mobilize about
linear systems and their solutions in a certain (and likely common) type of institutional
context. Few papers investigate students’ reasoning in the topics of linear systems and
their solutions (Stewart et al., 2019). Due to the nature of many topics in introductory
linear algebra, these topics tend to extend onto other topics in the course. This allowed
us to design various types of tasks that helped to qualify students’ reasoning on the topics
of linear systems and their solutions. My results (discussed in Section 6.1.2) elaborate
on the nature of (technical and theoretical) knowledge students can develop about linear
systems and their solutions in institutional contexts that privilege routinization of tech-
nical knowledge.

6.3 Final remarks

In this last section, I close with the main conclusions of this research, remark on its
limitations, and propose avenues for future work.

6.3.1 Main conclusions

The aim of this thesis was to sharpen the focus on the effect of institutional routinization
in students’ learning of mathematics. As prior research on routinization was done near-
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exclusively in the context of calculus courses, I decided to investigate the linear algebra
context. I adapted a framework and methodology from a body of research that investi-
gated routinization using an anthropological and institutional lens.

In analyzing the data to extract the knowledge students mobilized, I stacked it against
the knowledge they had been expected to learn so as to draw out the nature of their
praxeologies. This traced the absence of mathematical praxeologies from what students
mobilized to two aspects of the institutionalized routinization of knowledge. One, the
routines, along with the nature of the routinized knowledge (e.g., boxes of numbers),
allowed students to strip mathematical justifications from routines and mathematical
meaning from routinized technologies. Second, students’ comments, along with one case
in which a student opted for a non-mathematical praxeology instead of a mathematical
praxeology, showed students mobilized what they believed was expected of them, and
that they looked to routinized knowledge to determine what’s expected of them.

I also analysed the data to identify positions students had occupied during their
course; to this end, I proposed an operationalization of the positioning framework de-
scribed by Sierpinska et al. (2008), Hardy (2009a) and Broley (2020). In reflecting on
this operationalization and a posterior analysis of what it revealed about students’ posi-
tions, I realized that the institutional mechanisms that regulate the impact of routiniza-
tion on the praxeologies students mobilize similarly regulate the impact of (institutional)
routinization on students’ positioning: the course norm of routinization determines the
activity that best serves the Student position. This aligns with the ATD view of activity
as consisting of a practical and theoretical block: the tasks Students opt for (e.g., to learn
the routines needed to do the usual exam tasks) and the techniques they use (e.g., to
do past exams, to look for solution templates in solved examples) are produced by the
reasoning that to pass their course, they have to satisfy what’s normally expected in that
course. Just as routines are par for the course in mathematics, the Student position may
also be such in didactic institutions. Courses that emphasize routinization, however, pro-
pel Students to behave in ways drastically different from those that lend themselves to a
Learner behavior, as routinization, together with an aim to get a certain grade in course,
may propel students to focus exclusively on the routines needed to get these grades.

This last remark highlights the importance, in the context of research on the effects
of course norms on the knowledge students mobilize, of coordinating an analysis of the
didactic transposition of knowledge with an analysis of other institutional mechanisms
that regulate students’ activity.

6.3.2 Limitations and avenues for future work

This study has some limitations. Some are due to time constraints and others to the
nature of the task-based interview methodology. Limitations due to the former include
the small scale of the study—an eleventh participant may have exhibited activity I have
not observed in the first ten participants. That said, the inferences I made on the basis
of this study’s participants attest to the existence of certain types of practices in linear
algebra students, and the existence of these practices replicate findings from earlier stud-
ies that used the same framework and similar methodology. Another limitation due to
time constraints is that I was unable to analyse instructors’ grading of students’ exam
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submissions; this would have helped to inform the models of knowledge to be learned,
as I took this knowledge to be that which is needed for students to pass their course.
A limitation due to the nature of the task-based interview methodology is the potential
impact of earlier TBI tasks on students’ engagement with later TBI tasks. I addressed
this in my analysis of students’ engagement with Problem 6, where I noted, on the basis
of one student’s comments, that students’ struggle with earlier TBI tasks might have
contributed to undermining the sense of agency they had relative to their linear algebra
knowledge. I had noted this limitation to acknowledge its potential role in students’
hesitation to state a conclusion for Problem 6.

One potential avenue for future work is a continuation of the current comparison of
findings about students’ practices in calculus with students’ practices in linear algebra.
Broley (2020) found the routinization in earlier calculus courses to be an obstacle in
students’ engagement, in a real analysis course, with tasks that resemble earlier calculus
tasks. This work belongs to a body of research about difficulties students experience in
the transition through tertiary mathematics studies. One of the original objectives of this
doctoral thesis was to examine, as I had for LA1, students’ practices in a second-year
linear algebra course that is part of a university mathematics degree (I called it LA2). I
eventually delimited the research objectives to those addressed in this dissertation, but
an initial analysis of students’ engagement with one TBI task (designed according to a
guideline similar to the one I used for the LA1 TBI) revealed a potential persistence of
institutional routinization and its effects on students’ (non-)mathematical activity. A fu-
ture study could focus on how routinization norms from the earlier linear algebra course
(LA1) and norms from a mathematics-degree linear algebra course regulate what students
mobilize as they progress in their study of linear algebra.

I envision the elaboration of the positioning framework as another direction for future
work, mainly with the purpose to build understanding of how knowledge to be learned in
a course, together with students’ positions, as institutionally-relative mechanisms, regu-
late students’ engagement with mathematics in their courses.

One avenue could be to continue developing the positioning framework in the con-
text of courses where knowledge to be learned is routinized, but expand this to courses
that range across students’ mathematics studies (e.g., including courses at the end of an
undergraduate degree or in mathematics graduate degrees). This could help to examine
the role of routinization in courses where the institutional positions to which students
are disposed may vary—for example, courses students elect to take, or courses at a level
of mathematics studies where students’ previous mathematics learning is not exclusively
characterized by routinization.

More generally, the positioning framework could stand to be elaborated or refined by
conducting studies similar to the current one but in mathematics courses with different
institutional norms. Courses where knowledge to be learned is not exclusively charac-
terized by routinization could help to investigate what behaviors would characterize the
Student, Learner, Client, Person (or other student positions) in such a context. For ex-
ample, I found the institutional norms regulating LA1 to call for Student behavior that is
far from and even at odds with Learner behavior; are there course norms that encourage
Student behavior that is close to Learner behavior? Or perhaps closer to behavior of
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other positions—e.g., Client or Mathematician-in-Training?

My use of the ATD-IAD framework to examine the effect of institutional routiniza-
tion on students’ activity revealed that routinization does not always block students from
acquiring mathematical praxeologies, but it can block them from mobilizing these. Insti-
tutional norms can discourage students from mobilizing mathematics intrinsic to a task
when it is not what students believe they are expected to do in their course—even if
that mathematics belongs to knowledge to be taught or knowledge actually taught in the
course. To determine what might encourage students to mobilize mathematics intrinsic
to a task, I propose further investigation of the interplay of knowledge and positioning
as institutionally-relative mechanisms regulating students’ activity.
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How to begin the TBI with each participant: 
1. Say: “In this interview, I will ask you to solve some problems. I am not here to judge or evaluate 
you. The purpose is not to check whether your work is correct. What I want to see is how you solve 
the problems and why you approach the problems the way you do. For that, I will need you to think 
out loud as you solve the problems. That means I’ll need you to explain what you are doing and why 
you are doing it. Is that ok?”  
2. Give them the consent form and time to read it and ask questions.  
3. If they sign the consent form, ask if they are ready to start the interview; when they are, start 
the audio-recording.  
4. Give the first problem.  

General considerations for interventions  
1. If they do not know a definition or formula, give it to them.  
2. If they are quiet for 1 minute, remind them to think out loud.  
3. If they ask a direct question, keep in mind the goal to see how they do a problem and the 

reason they give for doing it that way.  
a. Turn the question back to them.  
b. If it’s a request for validation of what they are doing (e.g., “should I solve by Gauss-
Jordan or By Cramer?”), say “do what you think is most appropriate” and when they finish, 
ask “why did you choose that method” and “would you have done that on an exam?”  

4. If they’re stuck   
a. on something that requires knowledge not taught in LA1/251 but which we expect them 
to know from previous courses (e.g., finding solutions of a quadratic equation), provide the 
information needed to proceed. Otherwise,  
b. Ask what they would have done if they were stuck on this problem on an assignment or 
exam.  
c. If they are stuck on something that requires knowledge taught in LA1, give a series of 
increasingly directive hints (without saying what to do) without giving the answer away;  



  
 

  
 

d. If they are still stuck, suggest moving on to another problem and returning to this one if 
there is time after they’ve attempted all the other problems.  

5. If they're going in a wrong or overly time-consuming direction,  
a. Do not let them go on for more than 10 minutes.  
b. If what they are trying to do is not clear, ask for clarification.  
c. Ask what it is they’re hoping will happen.  
d. Acknowledge what they are trying to do and ask if they can think of another approach. If 
they cannot, suggest moving on to another problem and returning to this one if there is time 
after they’ve attempted all the other problems.  

6. If you must improvise, keep in mind the goal is to see how the participants solve the problems 
and why they do what they do as they solve.  

7. While they are attempting a problem,   
a. E.g., For LA1 participants, we know Problem 3 has connection to Problem 2 so ask about 
“now you’ve done Problem 3, what do you think about Problem 2?”  
b. Ask about how they solve problems for themselves and for exams. E.g., for LA1 
participants, given a set of vectors that are linearly independent, what do you need, as an 
individual, to be convinced that they are or aren’t linearly independent?  

8. After they attempt a problem, time permitting,  
a. Ask follow-up questions about anything the participant had produced:  

i. If the participant's reasoning or process was unclear at some point and was not 
explained (e.g., it was not worth interrupting them at that moment), ask them to 
clarify it.  

ii. “Is this something you would have done on an exam?”  
iii. “Would you have received full marks for this?”  
iv. “If you were solving this problem just for yourself, would you have been 

convinced by what you did?”  
v. “Did you think of any other approaches to the problem?”  

1. If they did, “why did you use this approach instead of that one in the 
end?”  
2. If they did not, and there is time, ask if they can think of another 
approach.  Otherwise, suggest moving on to another problem and returning 
to this one if there is time after all other problems have been attempted. 

9. Once all problems had been attempted and problem-specific follow-up questions asked,  
a. Ask follow-up questions you were unable to ask about specific problems.  
b. If they exhibited strong emotions at any point, ask them to explain how they felt during 
the interview or about some of the problems.   
c. If a participant had mentioned, while solving the problems, that they would use the 
computer to accomplish some tasks, offer a computer and ask if they can show what they 
would have done.  

10. Once all follow-up questions have been asked or 2 hours have passed (whichever comes first), 
end the interview, say the following, and stop the audio-recording thereafter: 
"Research from past 20 years about calculus courses suggests that the types of problems students 
have to do to pass calculus might encourage students to develop practices that aren't based in 
mathematics; for example, the problems encourage students to learn routines for how to 
compute certain types of limits, and students can get by with these routines without knowing why 
they work. It's not the students' fault, it's just the type of learning that is encouraged by the design 
of the course. We want to find out if students have similar practices in linear algebra, or if the 
nature of the math in linear algebra might foster different types of practices. We're not interested 



  
 

  
 

in students' role in shaping their learning - our focus is rather on the institution. We want to find 
out how these courses' designs might shape students' learning." 

 

LA1: Problem-specific considerations for interventions  
Problem 1 (LA1) 

 

1. If the participant seems stuck from the start, ask “what are you thinking?” and intervene 
according to the appropriate scenario: 

a. If they do not understand the question, say: “this times A times that times that times B 
times C is equal to that,” pointing at the appropriate part of the equation while saying 
this, “you need to find the matrix C that makes this equation true.” 

b. If they are still stuck, ask: “What do you think you’re stuck with? Why do you think you 
don’t understand the question?” 

i. If they do not get the equation (for example, they think C is the identity matrix), 
say: “A, B, and C are all matrices here. To the left of the equal sign, there’s a 
product of all these matrices; to the right of the equal sign, there’s just that 
matrix [point at it]. You have to figure out what C has to be for this equation to 
be true.” 

ii. If they still do not know how to start, give this hint: "Let’s think about an 
equation with real numbers... For example, 1/5 is a solution of 5x = 1 because 
5(1/5) is 1.” 

iii. If they need another hint, ask: "Let's say you had something like this [write all 
matrix algebra on a piece of paper]: [2 1   3 2]A = [5 6   7 8], then to solve for A, 
we can use the fact that [2 –1   -3 2][2 1   3 2] = [1 0   0 1].” 

iv. If they are still stuck, move on to another problem. 
2. If the participant is not stuck, intervene according to the following options: 

a. The participant asks if they must isolate C. 
i. Say: “The goal is to solve for C – so do whatever you think makes sense.” 

b. The participant successively multiplies by inverses of the matrices to the left of C. 
i. The participant says they do not remember how to find the inverse of a matrix. 

1. Give a piece of paper that has the course textbook’s theorem about 
inverses of 2x2 matrices. 

ii. The participant seems stuck or unsure about multiplying by the inverse of A (or 
B). 

1. Say: “What are you thinking?” 
a. If they are aware that A may not be invertible, say: “Ok, I see. 

Do whatever you think is most appropriate.” 
i. If they proceed with the assumption that A is invertible, 

then, when they finish, say: “You used the inverse of A 
over there – but what if A isn’t invertible?” 



  
 

  
 

iii. The participant multiplies by inverses but on a side of the equation that is 
inappropriate. 

1. As soon as this happens, say: “remember that multiplication is not 
commutative.” 

a. If they say they don’t know what I mean, say: “never mind.” 
iv. The participant multiplies by the inverse of [2 3   4 6] but does not notice at any 

point that this inverse does not exist – or they make an error in the determinant 
and so believe the inverse exists. 

1. Do not say anything until they are done. When they finish, say: “I have a 
question. This matrix [point at the matrix [2 3   4 6] in the problem 
statement] doesn't have an inverse, but you multiplied by its inverse - 
can you fix that?” 

a. If they are still stuck after 5 minutes, say: “the matrix to the 
right of the equation is an identity matrix. Does this help?” 

c. The participant expresses A, B, and C as matrices with unknown entries (for example, 
𝐶 = [𝑐  𝑐    𝑐  𝑐 ] and creates a linear system from the given matrix equation. 

i. Stop them after 10 minutes and ask: “what do you hope will happen as you 
keep going?” 

ii. Follow up with: “I see where you’re going. Can you think of another way to 
approach this problem?” 

iii. If they cannot think of another approach, give the hints for the scenario in which 
the participant is stuck from the get-go. 

Problem 2 (LA1) 

 

1. If the participant seems stuck from the start, ask “what are you thinking?” and intervene 
according to the appropriate scenario: 

a. If they do not understand the question, say: “This equation between matrices is like a 
system of linear equations. [Point at the coefficient matrix] This is the coefficient matrix 
of that system. You’re told it has an inverse. You need to find the values of w, x, y, z for 
which this equation is true.” 

b. If they are still stuck, ask: “What do you think you’re stuck with? Why do you think you 
don’t understand the question?” 

i. If they need the definition of “invertible,” give the definition from the course 
textbook (have a piece of paper ready with the definition already on it). 

ii. If they still do not know how to start, give this hint: "If you were to multiply 
these two matrices out [point at the matrices on the left of the equation], you’d 
have this matrix: [write out the product on a piece of paper]. With the equation 
between these matrices, do you see how this is a “system”? A system of linear 
equations. [Point at the entries in equivalent positions on either side of the 
equal sign.] There’s an equation between this and that, this and that, this and 



  
 

  
 

that... So the coefficient matrix of this linear system is that [point at the 
coefficient matrix].” 

iii. If they need another hint, say: "We can rewrite this equation like this: Ax = b 
[write “Ax = b” on a piece of paper], where A is the coefficient matrix [point at 
the coefficient matrix], x is the matrix of unknowns [point at it in the problem 
statement], and b is the matrix of constant terms [point at it in the problem 
statement]. Does this help?” 

iv. If they are still stuck, move on to another problem. 
2. If the participant is not stuck, intervene according to the following options: 

a. The participant uses Gauss-Jordan elimination. 
i. The participant is stuck or is not yet done at the 10-minute mark (whichever 

comes first). 
1. Say: “Let’s pause here. What do you expect will happen as you keep 

going?” 
2. Then say: “Ok. Have you thought of a way to solve this problem without 

doing as many calculations?” 
a. If they have, ask why they picked this approach instead.  
b. If they haven’t, say: “the coefficient matrix is invertible; what 

does this tell us?” 
ii. The participant finishes within less than 10 minutes. 

1. Say: “Have you thought of a way to solve this problem without doing as 
many calculations?” 

a. If they have, ask why they picked this approach instead.  
b. If they haven’t, say: “The coefficient matrix is invertible. What 

does this tell us?” 
b. The participant uses a technique to find the inverse of the coefficient matrix. 

i. The participant is stuck or is not yet done at the 10-minute mark (whichever 
comes first). 

1. Say: “Let’s pause here. What do you expect will happen as you keep 
going?” 

2. Then say: “Ok. Have you thought of a way to solve this problem without 
doing as many calculations?” 

a. If they have, ask why they picked this approach instead.  
b. If they haven’t, say: “the coefficient matrix is invertible; what 

does this tell us, other than the fact it has an inverse?” 
ii. The participant finishes within less than 10 minutes. 

1. Say: “Have you thought of a way to solve this problem without doing as 
many calculations?” 

a. If they have, ask why they picked this approach instead.  
b. If they haven’t, say: “The coefficient matrix is invertible. What 

does this tell us?” 
c. The participant uses Cramer’s rule. 

i. The participant is computing the determinant of the coefficient matrix and is 
stuck or not yet done at the 10-minute mark (whichever comes first). 



  
 

  
 

1. Say: “Let’s pause here. What do you expect will happen as you keep 
going?”   

d. The participant observes (-1, 0, 0, 0) is a solution. 
i. The participant does not address whether this is the only solution. 

1. Say: “are there other solutions?” 

Problem 3 (LA1) 

 

1. If the participant seems stuck from the start, ask “what are you thinking?” and intervene 
according to the appropriate scenario: 

a. If they do not understand the question, say: “This [point at the cross product in the 
problem statement] is a cross product of the two vectors – the first vector has 
components 29, -9, 3.2, and the second vector has components 11, 2.1397, and 41. You 
have to show that their cross product makes both equations true.” 

b. If they are still stuck, ask: “What do you think you’re stuck with? Why do you think you 
don’t understand the question?” 

i. If they need a definition, give it (have a piece of paper ready with a copy of the 
course textbook’s definitions of cross product). 

ii. If they still do not know how to start, give this hint: "The cross product is some 
vector – we can call it (w_1, w_2, w_3) because it has three components. I mean 
that if we compute the cross product, the result is a vector with three 
components. That vector makes both equations true – your job is to show this.” 

iii. If they are still stuck, move on to another problem. 
2. If the participant is not stuck, intervene according to the following options: 

a. The participant decides to compute the cross product. 
i. The participant does not recall the definition of the cross product or has an 

incorrect definition. 
1. Say: “Here's the definition of cross product.” and give it (have a piece of 

paper ready with a copy of the course textbook’s definitions of cross 
product). 

ii. The participant asks if they can use approximations of the numbers. 
1. Say: “Do whatever you think is most appropriate.” 

iii. The participant computes the dot product using the correct definition, plugs the 
result into the two equations, and at least one is false. 

1. If they notice one of them is false, do not intervene unless they do not 
try to fix the issue. 

2. If they do not notice one of them is false, say: “wait, this doesn’t solve 
that equation; look, the equation is false when you plug in what you 
found.” 



  
 

  
 

iv. The participant computes the cross product using the correct definition, plugs 
the result into the two equations, both are true, and the work is correct 
throughout. 

1. Say: “Have you thought of a way to solve this problem without 
computing the cross product? 

a. If “yes,” ask why they picked this approach instead. 
b. If “no,” ask if they can think of a geometric relation between the 

cross product (29, -9, 3.2) x (11, 2.1397, 41) and the vectors (29, 
-9, 3.2) and (11, 2.1397, 41). 

i. If they cannot, move on to Problem 4. Once they have 
finished Problem 4, go back to this problem (Problem 3) 
and say: “these vectors are orthogonal.”1 

b. The participant uses Gauss-Jordan elimination. 
i. The participant asks if they can use approximations of the numbers. 

1. Say: “Do whatever you think is most appropriate.” 
ii. The participant is stuck. 

1. Say: “What do you think will happen when you finish this process?” 
iii. The participant finishes the process. 

1. If the participant does not already address the following, say: “So what 
does this tell you about the cross product? Is it a solution of the 
system?” 

2. After they’ve addressed the previous question: “Could you have solved 
this problem without finding all the solutions of the system?” 

a. If “yes,” ask why they picked this approach instead. 
c. The participant observes that the equations can be expressed as (29,−9,3.2) ⋅

(𝑥, 𝑦, 𝑧) = 0 and (11,2.1397,41) ⋅ (𝑥, 𝑦, 𝑧) = 0 and the cross product is orthogonal to 
both (29,−9,3.2) and (11,2.1397,41), so it is a solution to the system. 

i. Say: “Ok. Can you describe what this all looks like on a graph?” 

Problem 4 (LA1) 

 

1. If the participant seems stuck from the start, ask “what are you thinking?” and intervene 
according to the appropriate scenario: 

a. If they do not understand the question, say: "When x, y, z are all 0, that’s one solution of 
the system, do you see that? [Wait for response.] The triple (0,0,0) is called a “trivial” 
solution of the system – each component is 0. A solution whose components aren’t all 0 
is called a “non-trivial” solution. You have to find a solution that isn’t trivial. A solution 
whose components aren’t all 0. 

                                                           
1 We only say this after they have accomplished Problem 4 because if we tell them this before they do Problem 4, it 
may influence how they see Problem 4. 



  
 

  
 

b. If they are still stuck, ask: “What do you think you’re stuck with? Why do you think you 
don’t understand the question?” 

i. If they are still stuck, move on to another problem. 
2. If the participant is not stuck, intervene according to the following options: 

a. The participant uses Gauss-Jordan elimination. 
i. The participant asks if they can use approximations of the numbers. 

1. Say: “do whatever you think is most appropriate.” 
ii. The participant stops the approach. 

1. If they stop because they are stuck, first say: “what do you think will 
happen once you’ve finished the process?” 

2. Once they’ve answered the previous question, or if they completed the 
Gauss-Jordan elimination, say: “can you think of a way to solve this 
problem without finding all the solutions of the system?”  

a. If “yes,” ask why they picked this approach instead. 
b. If “no,” ask if they can find any similarities between this 

problem and Problem 2. 
3. Once the above questions have been addressed, and if the similarity 

with Problem 2 hasn’t been discussed, ask if they can find any 
similarities between this problem and Problem 2. 

b. The participant uses the cross product of the normals of the planes. 
i. The participant computes the cross product and says the result is a non-trivial 

solution but does not explain why. 
1. Say: “why is this a solution?” 
2. If their answer involves plugging the cross product into the equations, 

say: “why did you compute the cross product? What made you think it 
would work?” 

ii. The participant says the cross product is a non-trivial solution but does not 
explain why. 

1. Say: “why do you think it is a solution?” 

Problem 5 (LA1) 

 

1. If the participant seems stuck from the start, ask “what are you thinking?” and intervene 
according to the appropriate scenario: 

a. If they do not understand the question, say: “You’re given three vectors here [point at 
the vectors] and you have to figure out what value (or values) k must have for the 
vectors to be linearly independent. You’re given the vectors themselves, and you’re also 
told that they form a parallelepiped whose volume is 0. 

b. If they are still stuck, ask: “What do you think you’re stuck with? Why do you think you 
don’t understand the question?” 

i. If they do not know what a parallelepiped is, say: “a parallelepiped is a shape 
that looks like this [give a piece of paper that has a ready-made drawing of a 
parallelepiped on it]. The parallelepiped in the drawing is formed by these 



  
 

  
 

vectors [give another piece of paper with the same parallelepiped on it, this 
time with vectors drawn over three edges that share a vertex, and the initial 
point of each vector is that vertex]. 

ii. If they need a definition, give it (have a piece of paper ready with a copy of the 
course textbook’s definition of linear independence and formula for the volume 
of a parallelepiped). 

v. If they still do not know how to start, give this hint: "what does it take for these 
vectors to be linearly independent? If you think about what linear independence 
means?” 

vi. If they need another hint, ask: "Let’s think about the other piece of information 
first. You know they form a parallelepiped of volume 0. What would that look 
like, a parallelepiped of volume 0?” 

vii. If they are still stuck, move on to another problem. 
2. If the participant is not stuck, intervene according to the following options: 

a. The participant writes the homogeneous equation whose solution indicates whether the 
given vectors are linearly independent. 

i. The participant is stuck or not yet done at the 10-minute mark (whichever 
comes first), say: “Let’s pause here. What do you expect will happen as you 
keep going?” 

ii. After they have answered the previous question, or if they finished solving the 
homogeneous equation, say: “Have you thought of a way to solve the problem 
without solving this equation?” 

1. If “yes,” say: “why did you pick this approach instead?” 
2. If “no,” say: “the parallelepiped has volume 0 – is that something you 

can use?” 
b. The participant uses the formula for the volume of the parallelepiped and the fact that 

the volume is 0. 
i. The participant is stuck or not yet done at the 10-minute mark (whichever 

comes first), say: “Let’s pause here. What do you expect will happen as you 
keep going?” 

ii. After they have answered the previous question, or if they finished solving the 
equation, say: “Have you thought of a way to solve the problem without solving 
this equation?” 

1. If “yes,” say: “why did you pick this approach instead?” 
2. If “no,” say: “what does it mean, geometrically, that the volume of the 

parallelepiped is 0? What does that shape look like?” 
c. The participant says that since the parallelepiped has volume 0, the vectors are parallel 

to the same plane. 
i. The participant is stuck. 

1. Say: “Ok, that’s true. Does this tell you anything about linear 
independence?” 

2. If they cannot answer the previous question, say: “what does it take for 
these vectors to be linearly independent? If you think about what linear 
independence means?” 



  
 

  
 

ii. The participant says that since the vectors are parallel to the same plane, they 
are linearly dependent. 

1. Say: “Ok. Can you explain that a bit more?” 

Problem 6 (LA1) 

 

1. If the participant seems stuck from the start, ask “what are you thinking?” and intervene 
according to the appropriate scenario: 

a. If they do not understand the question, say: “this is a system of equations. You have to 
solve it. What values of x make both equations true?” 

b. If they are still stuck, ask: “What do you think you’re stuck with? Why do you think you 
don’t understand the question?” 

i. If they are still stuck, move on to another problem. 
2. If the participant is not stuck, intervene according to the following options: 

a. The participant notices the equations aren’t linear and asks if they can use Gauss-Jordan 
elimination to solve the system. 

i. Say: “do whatever you think is most appropriate.” 
b. The participant uses Gauss-Jordan elimination (or elementary row operations). 

i. The participant is stuck interpreting the reduced augmented matrix. 
1. Say: “what are the equations that correspond to what you found?” 
2. Then: “Have you thought of a way to solve the system without using 

row operations?” 
a. If “yes,” ask why they picked this approach instead. 
b. If “no,” say: “this equation [point at the first equation] only 

involves one variable; and this equation [point at the second 
equation] also involves only that variable. Does that help you 
think of another approach?” 

c. The participant solves each equation. 
i. The participant is stuck because they do not know how to solve a quadratic 

equation. 
1. Give the quadratic formula on a piece of paper (have it ready-made). 

Problem 7 (LA1) 

 

1. If the participant seems stuck from the start, ask “what are you thinking?” and intervene 
according to the appropriate scenario: 

a. If they do not understand the question, say: “what value (or values) does k need to have 
so the system would have infinitely many solutions? 



  
 

  
 

b. If they are still stuck, ask: “What do you think you’re stuck with? Why do you think you 
don’t understand the question?” 

i. If they still do not know how to start, give this hint: "Let’s say k is 1. Then the 
system would look like this: [take a piece of paper and write out what the 
system would be]. How would you check if the system has infinitely many 
solutions, in this case?” 

ii. If they are still stuck, move on to another problem. 
2. If the participant is not stuck, intervene according to the following options: 

a. The participant reduces the augmented matrix of the system. 
i. If they are stuck/are not yet done at the 10-minute mark (whichever comes 

first), ask: “Let’s pause here. What do you expect will happen as you keep 
going?” 

ii. Then say: “Let’s put aside, for a moment, the value of k for which this system 
has infinitely many solutions. What does it take, graphically, for a system like 
this to have infinitely many solutions?” 

b. The participant determines the condition under which the first two equations are 
equivalent to one another 

i. If they describe this as “the equations are multiples of each other,” say: “can 
you clarify what you mean by that?” 

ii. If they find that k must be –2 for the first two equations to be equivalent and 
are stuck (for 5 minutes) trying to take the same approach with equations 1 and 
3 or 2 and 3: “with the first two equations, what happens if k is –2?” 

1. Then ask: “what if k is not –2?” 

Problem 8 (LA1) 

 

1. If the participant seems stuck from the start, ask “what are you thinking?” and intervene 
according to the appropriate scenario: 

a. If they do not understand the question, say: “This is the vector v [point at the vector]: its 
initial point is there [point at it] and its terminal point is there [point at it]. You have to 
find its length. All you know about v is this: its terminal point has those coordinates 
[point at the coordinates of point B] and v is orthogonal to this line [point at the line 
through the points A and C].” 



  
 

  
 

b. If they are still stuck, ask: “What do you think you’re stuck with? Why do you think you 
don’t understand the question?” 

i. If they need a definition, give it (have a piece of paper ready with a copy of the 
course textbook’s definitions of orthogonal and of length of a vector). 

ii. If they still do not know how to start, give this hint: "To find the length of a 
vector, you need to know its initial and terminal points.” 

iii. If they need another hint, ask: "You’re missing the coordinates of the initial 
point of v, right? But what do you know about that point?” 

iv. If they are still stuck, move on to another problem. 
2. If the participant is not stuck, intervene according to the following options: 

a. The participant assigns unknown coordinates to the initial point of v and produces 
equations whose solutions are the coordinates of that point (or indicates they wish to 
do so). 

i. If the participant does not know how to algebraically represent that vector v is 
orthogonal to the line through A and C, but indicates they want to do so, say: 
“two vectors are orthogonal if their dot product is zero.” 

ii. If the participant gets stuck trying to solve a quadratic equation, give the 
quadratic formula on a piece of paper (have it ready-made). 

iii. After the participant is done, say: "did any other approach come to mind, other 
than using this formula?” 

1. If “yes,” ask: “why did you pick this approach?” 
2. If “no,” and there is time, ask: “can you think of any other approach?” 

b. The participant uses the formula for the distance between a point and a line (or 
indicates they wish to do so). 

i. If the participant does not recall the formula for the distance between a point 
and a line, give it to them (have a piece of paper with the formula from the 
course textbook). 

ii. After the participant is done, say: "did any other approach come to mind, other 
than using this formula?” 

1. If “yes,” ask: “why did you pick this approach?” 
2. If “no,” and there is time, ask: “can you think of any other approach?” 

c. The participant uses the formula for the component of vector AB (or CB) orthogonal to 
vector AC (or indicates they wishes to do so). 

i. If they do not recall the formula for the component of a vector orthogonal to 
another vector, give it to them (have a piece of paper with the formula from the 
course textbook). 

ii. After the participant is done, say: "did any other approach come to mind, other 
than using this formula?” 

1. If “yes,” ask: “why did you pick this approach?” 
2. If “no,” and there is time, ask: “can you think of any other approach?” 

d. The participant embeds the objects in R^3 and uses formulas for the area of 
parallelograms to find the length of vector v (treating it as the height of the 
parallelogram formed by vectors AC and AB). 



  
 

  
 

i. If they do not recall the formula for area of parallelograms in R^3, give it to 
them (have a piece of paper with the formula from the course textbook). 

ii. After the participant is done, say: "did any other approach come to mind, other 
than using this formula?” 

1. If “yes,” ask: “why did you pick this approach?” 
2. If “no,” and there is time, ask: “can you think of any other approach?” 

 

 

 

 

 

 

 

 

 

 

 



Appendix B

Identified behaviors, classified by
position properties of the Student
and Learner positions

PP: position property
B: behavior

Behaviors classified by property of the Student posi-

tion:

PP acquisition of KtbL

B re-runs a normative LA1 technique

B spontaneous reaction is a normative LA1 technique

PP attempt to prioritize time-efficient technique

B compares steps involved in similar techniques to assess which would take less
exam time

B values comparing techniques to determine which would take less time

PP attention paid to an authority’s motivation in the design of at task

B interprets elements of task to have the function of a hint to the problem-solver

PP belief about expectations of students produced by normative LA1 KtbL

B believes students are expected to demonstrate calculations, not use concepts

PP compartmentalization of knowledge by KtbL tasks

B applies technique for LA1 task with similar surface-level features but different
in substance

B categorizes certain technologies as cues to mobilize certain LA1 KtbL tech-
niques

362



B claims to have done past final exams/categorized knowledge by LA1 tasks as
a strategy for gaining LA1 knowledge

B engagement with task (mobilized knowledge, technique) is conditioned by
superficially-similar routine task from LA1 KtbL

B struggles to identify objective of a task that is not a normative LA1 task

B tries to produce technique on the basis of experience with LA1 task involving
similar surface-level features

B suggests to convert task to its usual appearance in LA1 so as to use normative
LA1 KtbL

PP compartmentalizing knowledge as (not) belonging to LA1

B categorises knowledge as LA1 knowledge and not-LA1 knowledge

PP dependence on row-reduction catch-all

B all attempts are to activate the standard LA1 task of solving a system of
equations

B struggles with other LA1 technologies, activates the standard LA1 task of
solving a system of equations

PP expresses an expectation that reflects LA1 norms but not the mathematics at stake

B expresses an expectation that reflects LA1 norms but not the mathematics at
stake

PP failure to use KtbL in ways different from its normative use in KtbL

B all attempts are to activate the standard LA1 task of solving a system of
equations

B fails to use technique from one normative LA1 task to answer a question about
a different normative LA1 task

B unable to mobilize LA1 knowledge toward a task that is not similar to any
normative LA1 task

B unable to mobilize normative LA1 KtbL for a non-normative task

PP lacking sense of agency over mathematics at stake

B asks for validation

B expresses a feeling of not understanding reasoning behind LA1 techniques

B expresses frustration at uncertainty over validity of knowledge

B expresses lack of confidence in knowledge students are not usually required to
use

B expresses lack of confidence in mathematical knowledge and requests validation
from interviewer

B wants to validate results but only knows how to do so for some types of results

PP result sanctification (KtbT substitute)
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B depends on results to assess suitability or validity of technique

B persists with a normative technique even after becoming aware a condition for
the technique is not met

B validates a technique based on knowledge that its end-result is what is sought

PP surface-level grasp of KtbL

B associates a task with KtbL to which it has no connection because surface-level
features are similar

B fails to reflect on mathematical properties intrinsic to a situation

B has theoretical block that normally holds in LA1 but is not founded in math-
ematical properties intrinsic to the situation

B mobilizes/remembers LA1 KtbL incorrectly

B struggles/unable to remember/mobilize more than surface-level features

PP theoretical block consists of LA1 KtbL

B engagement with task (mobilized knowledge, technique) is conditioned by
superficially-similar routine task from LA1 KtbL

B identifies knowledge to learn by doing past final exams

B looks to KtbL to produce technique

B uses a technique or validates it based on its status as a norm in LA1

B uses KtbL technology to produce technique that has no basis in/relevance to
situation

PP use of authority to validate knowledge

B appeals to an authority and not to mathematics at stake for validation

B expresses lack of confidence in mathematical knowledge and requests validation
from interviewer

B validates knowledge on basis that it was KtbL/KT/KtbT in LA1

PP use of normative knowledge inconsistent with mathematics at stake

B applies surface-level rule about normative LA1 technique to a situation in
which the mathematics at stake is different

B expresses an expectation that reflects LA1 norms but not the mathematics at
stake

PP failure to use KtbT that is not KtbL

B depends on results to assess suitability or validity of technique

B does not complete task because of failure/inability to mobilize LA1 KtbT that
is not KtbL

B does not complete task initially because of failure to mobilize LA1 KtbT that
is not KtbL
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B knowledge about a technology is restricted to the formula(s) needed in LA1
tasks that involve that technology

B mobilizes incorrect technique for solving linear systems and unable to deter-
mine why result is inconsistent with expectations

B struggles/unable to complete task using knowledge other than normative LA1
KtbL (e.g., theoretical KtbT, using registers in a way different from their
routine KtbL use, etc.)

B struggles/unable to remember/mobilize more than surface-level features

B technique driven by personal preferences (e.g., habits) or course norms and are
not based in mathematical properties intrinsic to a situation

B unable to determine whether a normative LA1 technique can be used in a
non-normative scenario

B unable to mobilize any LA1 knowledge (coherently, appropriately, or at all)
toward a non-routine task

B unable to mobilize normative LA1 KtbL for a non-normative task

B unable to mobilize normative LA1 technique accurately for a non-normative
task

B validates knowledge on basis that it was KtbL/KT/KtbT in LA1

Behaviors classified by property of the Learner posi-

tion:

PP concept of mathematical aesthetics

B evaluates techniques based on criteria that are not required in LA1 KtbL
(“simpler,” “more logical,” “elegant”)

PP enthusiastic response to non-routine task

B expresses emotional response toward and interest in non-routine (relative to
LA1 KtbL) aspects of TBI task

PP interpretation of task based on mathematics at stake

B reevaluates objective of task by attending to a property of a mathematical
object at stake, after having initially focused on surface-level features of more
routinized KtbL

PP non-normative use of KtbL

B identifies and mobilizes relevant technologies from LA1 and prerequisite math
courses through which to complete an open-ended task

B mobilizes mathematical property of component that is not needed in LA1 tasks
involving that component

B mobilizes normative LA1 technique accurately for a non-normative task
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B uses a technique produced in response to a previous non-routine TBI task

PP problem-solving behavior

B evaluates techniques based on criteria that are not required in LA1 KtbL
(“simpler,” “more logical,” “elegant”)

B investigate a mathematical property so as to use it to complete a task

B mobilizes knowledge from a different mathematics course

B mobilizes variety of techniques pertinent for a task (and compares/reflects on
the results obtained)

B seeks mathematical property intrinsic to a task component that may have an
advantage over already-identified pertinent knowledge

B seeks to mobilize knowledge that is directly pertinent to the given task rather
than to the similar LA1 task

PP seeking and reflecting on guidance relative to the mathematics at stake

B seeks and tries to build on help to overcome an obstacle

PP use of KtbT/KT/KtbL combination

B seeks to mobilize knowledge that is directly pertinent to the given task rather
than to the similar LA1 task

B tries to reason about a situation using LA1 knowledge other than KtbL directly
associated with normative task

B mobilizes LA1 KtbT/KT/KtbL directly pertinent to the given task instead of
KtbL pertinent to task that involves a similar feature

PP use of mathematics at stake to validate knowledge

B attempts to verify a result that is does not need to be verified in LA1 KtbL

PP use of KtbT that is not KtbL

B after struggle with normative LA1 knowledge, mobilizes LA1 KtbT that is not
LA1 KtbL

B mobilizes knowledge that is KtbT in LA1 and only rarely KtbL

B spontaneous reaction includes LA1 KtbT that is not LA1 KtbL

B validates knowledge on basis of mathematics at stake in KtbT that is rarely
or never KtbL
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