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ABSTRACT 

Automated Fault Detection and Diagnosis in Light Commercial Building’s HVAC systems. 

Milad Babadi Soultanzadeh 

Fault detection and diagnosis (FDD) in commercial buildings' HVAC systems can significantly 

reduce energy consumption. Faults in these systems occur due to various issues such as aging and 

inadequate maintenance. Commercial buildings in Canada covered an area of 709,029,612 m² in 

2019, consuming 948,216,746 GJ of energy. HVAC systems are responsible for 25%-50% of this 

energy consumption. In the United States, faults in HVAC systems contribute to an additional 

energy consumption of 103 to 500 terawatt-hours (TWh) in the building sector. Detecting and 

diagnosing faults in HVAC systems can reduce energy consumption by 20% to 30%.  Light 

commercial buildings, defined as commercial buildings with fewer than six stories and less than 

2500 square feet, include bank branches, offices, and small industrial facilities. These buildings 

have similarities in the configuration and size of HVAC components, making it feasible to develop 

an FDD tailored for this class of buildings, that can be easily scaled up. This goal can be achieved 

using data-driven methods, which have gained popularity over the past decades by installing 

various sensors and collecting data integrated with Building Energy Management (BEM) systems. 

In this thesis, three different FDD methods have been developed and validated on light commercial 

buildings. The first method is a semi-supervised method that includes various techniques to handle 

the unlabeled raw data from BEMs, resulting in a final supervised Automatic Fault Detection 

(AFDD) system. The second method is a fully unsupervised novel AFDD method based on PCA 

time series fault detection. The third method is primarily based on the inverse model of the Air 

Handling Unit (AHU) of the HVAC systems.  A typical light commercial building in Montreal, 

Canada, was used for all methods. Additionally, to validate the generalizability of the unsupervised 

method, another light commercial building, a small industrial facility in Ireland, was used as well. 
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The first method successfully resulted in an AFDD that can detect and diagnose faults with almost 

90% accuracy, performing better in condition-based faults than control faults. The unsupervised 

method showed very good results in terms of generalizability. It was able to detect faults and report 

the problematic inputs and locations to the HVAC operators. Although the unsupervised method 

cannot completely diagnose condition-based faults, it provides very good information based on the 

system's behavior, enabling operators to diagnose the faults. Finally, the inverse modeling revealed 

that a physics-based neural network can outperform neural networks and genetic algorithms in 

modeling the system inversely and detecting anomalies mostly related to energy consumption. 
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Chapter 1: Introduction 

1.1. Background 

Due to physical damage, aging, poor quality, and inadequate maintenance of Heating, Ventilation, 

and Air Conditioning (HVAC) parts, they can experience hard or soft faults (partial or complete 

failure). While quantifying the energy losses is tough, addressing these issues in commercial 

buildings could save energy consumption by up to 20-30% [1]. Taking advantage of the 

commonality of HVAC systems, as well as the similar size and dimensions of light commercial 

buildings, leads to the development of a fault detection algorithm that is tailored specifically for 

this type of building. A light commercial building is generally defined as no more than six stories 

with less than 2,500 square meters of floor area, for example, a small office building, a medical 

facility, a bank, or a small manufacturing facility. Historical data collected from BEMS can be 

utilized for automatic fault detection and diagnosis [2]. The occurrence of any fault has the potential 

to introduce anomalies within historical data records. In other words, when a fault happens, it can 

disrupt the patterns and trends observed in historical data, making the data deviate from its expected 

behavior [3]. While fault detection methods might achieve a satisfactory level of precision by 

identifying evident alterations in the system's patterns, fault diagnosis presents a notably 

challenging aspect. This difficulty arises from the fact that various faults have the potential to 

generate identical symptoms. These symptoms can manifest as anomaly shifts in sensor readings, 

or even as intricate combinations of alterations in multiple sensor values. In essence, the complexity 

of diagnosing faults lies in distinguishing between distinct underlying issues that might exhibit 

similar observable effects [4]. Faults in HVAC systems can generally be classified into three 

categories based on their nature [5]: 

• Condition-based faults: These refer to physical conditions that deviate from the norm, 

such as a stuck valve, fouled coil, or broken fan. 
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• Behavior-based faults: These involve undesirable system behaviors, like simultaneous 

heating and cooling, erratic fan speeds, or improper cycling. 

• Outcome-based faults: These are identified through performance metrics, such as a 

reduced coefficient of performance (COP), increased hot water flow, or higher energy 

consumption than expected. 

Each type of fault requires distinct detection and diagnosis approaches to ensure effective system 

maintenance and optimization. 

Another classification of faults in HVAC systems, particularly in Air Handling Units (AHUs), can 

be as four groups of faults based on their origins: 1) Sensor faults, 2) Hardware (Component) faults, 

3) Software (Programming and Controlling) faults, and 4) Communication faults [6,7]. Sensor 

faults typically involve biases and drifting of measuring values, which can lead to inaccurate 

readings and misinterpretations of system performance. Hardware faults relate to the failure or 

malfunction of system components, such as coils fouling, stuck valves, stuck dampers, air duct 

leakage, valve leakage, and fan failure, all of which can severely impact system functionality and 

efficiency. Programming faults, categorized as soft faults, can persist in the system for extended 

periods and diminish system performance, often stemming from errors in programming logic and 

sequence of operations[8]. Communication faults arise due to protocol incompliance and issues 

with data collection and storage, posing challenges in maintaining seamless communication 

between system components and control systems [9]. There are only a few studies specifically 

focused on soft faults related to programming, controlling, and sequence of operation [10].  

1.2. FDD Categorization 

Broadly speaking, Fault Detection and Diagnosis (FDD) techniques can be categorized into three 

main groups: model-based, rules-based, and data-driven methods [11]. In recent decades, numerous 

researchers have delved into various methodologies within these categories, conducting thorough 
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investigations and drawing comparisons among their outcomes. These studies have been conducted 

for both the primary and secondary components of HVAC systems, aiming to enhance the 

understanding and implementation of effective FDD strategies [12]. The evolution of machine 

learning techniques, monitoring systems, and the diminishing reliance on explicit models have led 

to the burgeoning popularity of data-driven methods[13]. A significant advantage of data-driven 

methods is their independence from human expertise or physical models, as they are based solely 

on real-world operational data collected from the system. Data-driven methods offer significant 

advantages in speed and scalability for AFDD systems. Unlike traditional models, they rapidly 

analyze large datasets, reducing customization time. This enables quick deployment across HVAC 

systems without specialized model development, facilitating widespread adoption. these methods 

draw insights directly from the behavior of the system itself. In recent years, data-driven 

approaches have gained significant traction among researchers due to the increasingly sophisticated 

technologies and analytical tools used to collect and analyze data [14]. Data-driven methods can 

be subdivided into two main categories: supervised and unsupervised methods. On the one hand, 

supervised methods are employed when a dataset with labeled information is accessible, enabling 

the algorithm to learn from these labels. A dataset that has been labeled refers to a dataset in which 

all instances are assigned a specific label indicating whether there are faults, fault types, and fault 

severity. Unsupervised methods, on the other hand, are mostly used for datasets lacking labels and 

aim to extract patterns and relationships from data without the need for predefined labels [2,11,15]. 

However, there exist certain semi-supervised methods that attempt to assign labels to unlabeled 

data by utilizing a small subset of labeled data [14]. An important point to highlight is that data-

driven methods frequently adopt a supervised approach [13]. One main problem with data-driven 

methods, especially the supervised ones, is that when they become trained on the data from a 

specific system, it is hard to use them on another similar system without adjustments [16]. With 

the increasing sophistication of data collection technologies and analytical tools, data-driven 

approaches have gained significant traction among researchers [14]. Their appeal lies in their 

ability to adapt to the complexities of HVAC systems without the need for prior assumptions or 

extensive manual intervention, making them particularly valuable in modern buildings' Fault 
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Detection and Diagnosis (FDD) [2]. A labeled dataset in FDD indicates normal conditions as well 

as various types of faults with different severity levels. These datasets are scarce in real buildings 

and are primarily utilized in theoretical fault detection and diagnosis algorithms using experimental 

or simulated data [14]. 

1.3. Problem Statement 

Many studies in the existing literature rely on experimental or simulated data obtained from 

laboratory tests, such as ASHRAE RP-1312 [17], or publicly accessible datasets provided by 

institutions like the Lawrence Berkeley National Laboratory [18]. While these datasets serve the 

critical purpose of offering benchmark data in a field with limited publicly available resources, 

they do not accurately reflect the complexities and variations found in real-world systems [19]. 

Huang et al. discovered that FDD strategies developed using simulated data and applied directly to 

real building data yield suboptimal results. In practical applications, the data granularity is 

inadequate, metadata descriptions are lacking, and there is a scarcity of well-labeled faults with 

varying severity ratings [20]. Therefore, automated fault detection in Building Automation Systems 

(BAS) presents a significant challenge when dealing with extensive amounts of unlabeled data. 

The vast size of the datasets, coupled with the presence of numerous missing values and 

inconsistencies, poses significant obstacles for fault detection algorithms. In such scenarios, the 

need for expertise from both system professionals and data mining specialists becomes paramount.  

Considering all factors, it's evident that a generic Automatic Fault Detection and Diagnosis 

(AFDD)  framework, transferable and applicable across different buildings within the same class, 

is vital, especially for commercial buildings. 

1.4. Goal and Objectives 

The main goal of this research is to develop generalizable AFDD methods tailored for light 

commercial buildings. These methods aim to be broadly applicable across various buildings within 

this class, capable of utilizing different types of historical data from BEMS systems, even if the 
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data is unlabeled, inconsistent, or fragmented. Three different methods have been developed using 

various machine-learning techniques. The main objectives of this thesis are as follows: 

1) Develop a semi-supervised AFDD method for light commercial buildings' HVAC 

systems. 

2) Develop an unsupervised AFDD method for light commercial buildings' HVAC systems. 

3) Develop a physics-based neural network inverse model to detect anomalies in the AHUs 

of light commercial buildings. 

The first objective involves starting with raw, unlabeled data from BEMS systems to identify 

potential faults using a combination of machine learning techniques. This method aims to find 

patterns leading to anomalies and isolate patterns indicating faults with the confirmation of HVAC 

operators. The labeled data based on these patterns is then used to finalize the AFDD model through 

supervised classification. The second objective is designed to work with minimal initial 

information about the system and to find the most generalizable AFDD method applicable to a 

wide range of light commercial building data without extensive acquisition. An unsupervised 

method has been selected, with innovative modifications to enhance its generalizability. The third 

objective focuses specifically on the AHUs (central systems) of light commercial buildings. This 

method combines data with physical models to detect anomalies in the energy consumption of 

AHUs. 

Each objective of this thesis has been introduced and investigated in separate chapters. Chapter 3 

addresses research objective #1, Chapter 4 covers research objective #2, and Chapter 5 delves into 

research objective #3. 

This thesis is composed of seven chapters. The first chapter introduces the study and establishes 

its main goals. The second chapter reviews the relevant literature and identifies gaps in previous 

works. Three different techniques (Objectives) for AFDD are then introduced, validated, and 

discussed in three separate chapters. Finally, a comprehensive conclusion section summarizes the 

findings and implications of all three methods. 
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Chapter 2: Literature Review 

To conduct a comprehensive investigation of important previous works, the SCOPUS API was 

utilized. A query was performed using specific keywords: "AFDD," "HVAC," and "Automatic 

Fault Detection", for the general data-driven methods. The most relevant papers identified from the 

search results were manually selected for review. All the papers chosen for this review were 

published after the year 2000. It is followed by a focus on different datasets used for FDD and, 

different metrics that have been employed in previous studies, and then concludes with the 

literature gaps. 

2.1. Data-Driven techniques in HVAC AFDD 

Since PCA is the main technique used in the Unsupervised method and plays a crucial role in the 

Comprehensive AFDD framework, a separate subsection has been dedicated to reviewing the PCA 

literature and another subsection for other data-driven methods. 

2.1.1. Data-Driven and ML techniques in HAVC FDD 

Clustering is an additional machine-learning tool that holds the potential to achieve high accuracy 

in the realm of fault detection and diagnosis [21]. Miller et al [22] utilized clustering techniques to 

establish a multi-variable fault detection system in a residential building. Li et al [23]. employed 

K-Means clustering following Linear Discriminant Analysis to identify and isolate faults in a 

chiller system. Li et al [24]. employed density-based clustering in conjunction with PCA for 

Automated Fault Detection and Diagnosis (AFDD) related to sensor faults in a chiller system. 

Furthermore, various other researchers have explored different clustering methods for Automated 

Fault Detection and Diagnosis (AFDD), including Fan et al [25]., Dey et al [26,27]., Gunay et al 

[28]., Aguilar et al. [29]., and Xu et al [30]. 

The utilization of classification methods specific decision trees stands out as a valuable method 

that has found favor among numerous researchers [31]. Yan et al [32]. unveiled that decision tree 
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classifiers and regressors hold the capability to identify faults while deriving rules that simplify the 

diagnosis process. Moreover, their findings highlight that the accuracy of actual fault diagnosis 

using data-driven methods is significantly contingent on the quality of the training data. Issues such 

as the absence of distinct data patterns and errors in the training data can lead to unreliable 

classification outcomes. Li et al [33]. employed a virtual sensor-based decision tree to diagnose 

faults in VRF (Variable Refrigerant Flow) systems. They reported that this approach achieved an 

accurate detection and diagnosis rate of 69.18% for online data. Furthermore, their study indicated 

that enhancing the diagnostic methods necessitates the accumulation of more faulty data and 

training the model using an extensive repository of fault instances. Cappozoli et al [34]. employed 

predictive classifier and regressor decision trees to identify patterns in the abnormal energy 

consumption behavior of a smart building. Their study demonstrated that decision trees can 

encompass various aspects of the system to predict energy consumption and effectively detect 

anomalies in the process. Piscitelli et al [35]. showcased that tree regression can generate IF-THEN 

rules, a feature that many other data-driven methods such as artificial neural networks (ANN) lack. 

In recent years, other researchers have substantiated decision trees' utility as classifiers and 

regressors. The notable examples of this can be found in the works of Liu et al. [36,37], and Chiosa 

et al. [38]. 

 

Table 1. Summary of previous related research 

Main Method References Dataset HVAC System Techniques Limitations 

Principal 

Component 

Analysis (PCA) 

Wang S et al. (2005) [39] Simulated data AHU PCA, SPE, T2 
Only sensor faults have 

been studied 

 Du Z et al. (2007) [40] Simulated data AHU 

PCA, SPE, 

Contribution 

plot, Joint plot 

The diagnosis potential in 

HVAC system is limited 

because of the control 

loop propagation 
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 Du Z et al. (2008) [41] Simulated data AHU 

PCA, Fisher 

discriminant 

analysis, SPE 

Limited faults have been 

studied for specific 

system configurations. 

 Hu Y et al. (2012) [42] Operational data Screw chiller PCA, SPE 
Only sensor faults have 

been studied 

 Li S et al. (2014) [43] ASHRAE RP-1312 AHU PCA, Wavelet 

Soft faults have not been 

studied; Limited fault 

conditions have been 

studied 

 Li S et al. (2014) [44] 
ASHRAE RP-1020 

ASHRAE RP- 1312 
AHU PCA, SPE 

Fault detection part has 

been done; the diagnosis 

part has not been studied 

 
Cotrufo N et al. (2016) 

[45] 

University Campus 

data 
Chiller 

PCA, Ellipsoidal 

threshold 

The diagnosis part can 

just isolate the variables 

and could not specify the 

fault type 

 Hu Y et al. (2016) [46] Operational data Screw chiller 
Preprocessing, 

PCA 

Only sensor faults have 

been studied 

 Guo Y et al. (2017) [47] 
Operational data (3 

days) 
VRF 

Preprocessing, 

PCA, SPE, 

Contribution plot 

Only sensor faults have 

been studied, the limited 

period of data 

 Li G et al. (2018) [24] Operational data Screw chiller 
PCA, DBSCAN, 

Contribution plot 

Only sensor faults have 

been studied 

 Shi S et al. (2018) [48] Experimental data VRF PCA, ANN 
Only refrigeration 

amount has been studied 

 Burgas L et al. (2021) [49] 
Operational data from 

a university building 
AHU 

Unfolded-PCA, 

SPE, T2 

Only sensor faults have 

been studied 

 Zhou Z et al. (2021) [50] Operational data VRF 

PCA, SVM, 

CART, BPNN, 

SMOTE 

Limited faults have been 

studied 

Clustering      

 Du Z et al. (2014) [21] Simulated data AHU 

ANN, 

Subtracting 

Clustering 

Limited Faults have been 

studied, high level of 

FAR and MAR in some 

fault classes 

 Fan C et al. (2015) [25] 
Operational data from 

BAS 

Building 

Energy system 

Fuzzy-C-means, 

Hierarchical 

Focused on Energy 

consumption and sensor 
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clustering, k-

means, PAM, 

EWKM, QARM, 

DT 

of power consumption 

faults 

 Dey M et al. (2018) [51] 
Operational data from 

BEM 

Fan-coil Unit 

(FCU) 
k-means, SVM 

Lack of accuracy in the 

diagnosis step, Limited 

faults of FCU have been 

studied 

 Dey M et al. (2020) [26] 
Operational data from 

BEM 

Fan-coil Unit 

(FCU) 

k-means, 

Linkage, 

Gaussian mixture 

Limited faults of FCU 

have been studied 

 Gunay B et al. (2020) [28] 
Operational data from 

a large office 

AHU, VAV 

terminal unit 

k-means, 

Hierarchical 

clustering, 

Gaussian mixture 

Limited to VAV faults, 

limited to detection step. 

 Aguilar J et al. (2020) [29] 
Operational data from 

a theater salon 

Heat pump, 

Chiller, 

Cooling tower 

k-means, DT, 

ANN 

Limited to specific 

buildings, 

 Xu Y et al. (2021) [30] 
Operational data from 

BMS 
Screw chiller 

Hierarchical 

clustering, 

Partitioning 

clustering, ARM, 

FP-Growth 

Limited to energy 

consumption fault. 

Classification      

 Yan R et al. (2016) [32] ASHRAE RP-1312 AHU 

Classification 

and regression 

tree (CART) 

The extracted rules for 

some faults are not valid 

 Li G et al. (2018) [33] Experimental Data VRF 
DT, Virtual 

sensor 
Limited to specific faults 

 
Capozzoli A et al. (2018) 

[34] 

Operational data 

building Energy 

Consumption 

Building 

Energy system 
SAX, CART 

Limited to energy 

consumption faults 

 
Piscitelli M et al. (2021) 

[35] 

Operational data from 

a university building 

Building 

Energy system 

Follow the leader 

clustering, ANN, 

DTR 

Limited to energy 

consumption faults 

 Liu X et al. (2021) [36] 
Operational data from 

an office building 

Building 

Energy system 

DBSCAN, k-

means, CART 

Limited to energy 

consumption faults 
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Recent Works      

 
Alghanmi A et al. (2023) 

[52] 
Simulated data RTU 

PCA, Random 

Forest, ANN, 

SVM 

Limited to the simulated 

faults. 

 Liang A et al. (2023) [53] ASHRAE RP-1043 Chiller 
PCA, KPCA, k-

means 

Limited to the sensor 

faults. 

 Zhao T et al. (2023) [54] 
Experimental + 

Simulated data 

AHU, Chiller, 

Cooling tower 

PCA, LSTM, 

KNN 

Limited to the specific 

sensor faults, low FDD 

efficiency 

 Yang X et al. (2023) [55] ASHRAE RP-1312 AHU PCA, SPE 

Limited to steady-state 

conditions, inaccuracy in 

weak faults. 

 Fan C et al. (2024) [56] 
ASHRAE RP-1312 

ASHRAE RP-1043 
AHU, Chiller ANN 

Limited faults have been 

studied. Simple 

architecture for ANN 

 

Furthermore, Previous research in the field of HVAC systems has extensively utilized inverse 

models for various tasks, including energy modeling and fault detection. Torabi et al. took a 

different approach by using a physics-based inverse model to identify hard faults in AHU systems. 

They utilized supply temperature estimation as a virtual sensor, comparing it with recordings from 

actual sensors to detect faults effectively [57]. Similarly, Darwazeh et al. employed a model-based 

inverse model for virtual sensing of AHU systems to detect anomalies in the mixing box. Their 

method successfully identified return damper leakage, an issue that had gone unnoticed by building 

HVAC operators [58]. Furthermore, Gunay et al. employed an inverse model-based technique to 

detect programming logic faults in VAV AHU systems. Through their work, they successfully 

detected damper position and perimeter heater valve problems, contributing to enhanced system 

performance [59]. These studies collectively showcase the versatility and effectiveness of inverse 

modeling techniques in addressing various challenges within HVAC systems, from energy 

efficiency optimization to fault detection and diagnosis. 
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2.1.2. PCA in HVAC FDD 

PCA is a multivariable statistical tool for analyzing process measurements, which can reveal how 

different variables change concerning each other and individually [60]. It is essentially a linear 

transformation that transforms correlated variables (dimensions) into orthogonal spaces, resulting 

in independent dimensions. These orthogonal dimensions are the eigenvectors of the covariance 

matrix of the original data, forming the columns of the loading matrix. The projection of sample 

points onto these eigenvectors can produce the reconstructed data samples when represented in the 

original dimensions. The number of eigenvectors used for this purpose represents the number of 

principal components (k) in the PCA method. A specific optimized value for k does not exist, and 

various methods can be used to determine the best option for the number of principal components, 

as detailed in the literature [61]. However, this section of the chapter will not delve deeply into the 

specifics of PCA and just focus on the necessary information related to the recent study. 

The difference between the original data and the reconstructed data (projected on principal 

component directions) can be represented by Equation (1), where 𝑒 is the vector of reconstruction 

error,  𝑋⃗  is the original sample vector, and 𝑋̂⃗ is the reconstructed sample vector. Figure 1illustrates 

the process of calculating the projected error. 

𝑒 = 𝑋 ⃗⃗⃗⃗ − 𝑋̂⃗ (1) 

The reconstructed vector can be found using Equation (2), where P  refers to the loading matrix 

with k number of eigenvectors. 

𝑋̂⃗ = 𝑋⃗𝑃𝑃𝑇 (2) 

SPE will be calculated as the squared sum of the elements of the reconstructed errors, as shown in 

Equation (3): 

𝑆𝑃𝐸 =  ‖𝑒‖2 (3) 

This means that a sample vector with n dimensions, and hence an n-dimensional Reconstructed 

Error (RE) vector leads to a scalar SPE. Traditionally, in fault detection, a threshold is used for 
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SPE, as shown by equation (4) [62]. Where 𝐶𝛼 is the normal deviation corresponding to the (1- α) 

percentile of SPEs higher than threshold and λ is the eigenvalue corresponding to the j th 

eigenvector. Also, θ represents the first to third moments of eigenvalues from k+1 th to nth 

components of eigenvectors, and h0, is a term that adjust the SPE distribution. 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆𝑃𝐸 =  𝜃1 [
𝐶𝛼√2𝜃2ℎ0

2

𝜃2
+ 1 +

𝜃2ℎ0(ℎ0 − 1)

𝜃1
2 ]

1
ℎ0

 

(4) 𝜃𝑖 = ∑ 𝜆𝑗
𝑖

𝑛

𝑗=𝑘+1

,   𝑖 = 1,2,3 

ℎ0 =
1 − 2𝜃1𝜃3

3𝜃2
2  

 

The following section will review previous literature on the FDD of HVAC systems. Since the 

foundational method of chapter 4 is PCA, the literature review will delve into a more detailed study 

of this method. 
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Figure 1. Concept of PCA-Based AFDD. 

Among data-driven techniques, Principal Component Analysis (PCA) stands out as a highly 

favored method, particularly in the context of fault detection. PCA is a statistical technique and can 

be classified as a pattern recognition method [14]. Some of the earliest applications of PCA in 

HVAC FDD were reported by Wang S. and Xiao F. et al. [63–68]. These initial studies focused 

primarily on fault detection. They later extended their methods to the diagnosis of sensor faults in 

various HVAC systems, including Air Handling Units (AHU), Variable Air Volume (VAV) 

terminals, and Vapor Compression Systems (VCS). They utilized a variety of data sources for their 

studies, including simulated data, field data, and experimental data published by ASHRAE. Du et 

al [69]. combined various rules with PCA to detect and diagnose sensor faults in a Chiller + AHU 

system, experimenting with different numbers of principal components (PCs). Using a labeled 

dataset, they revealed that a robust FDD process for each sensor fault requires a specific number 

of PCs (cumulative variance). They expanded their research using simulated labeled data and a 

combination of multi-level PCA and Fisher Discriminant Analysis to enhance the detection and 
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diagnosis of sensor faults. They discovered that drifting sensor faults can persist in the system for 

a long time, so they simulated exaggerated drifting for the sensors to make these faults more 

detectable [70]. Xiao F. and Wang S. et al [71]. expanded their research on AFDD by using PCA 

with an expert-based multivariate decoupling method for sensor fault detection and isolation. They 

revealed that although PCA is powerful for detecting sensor faults in various engineering processes, 

it has significant weaknesses in the diagnosis phase. They found that the Q-contribution plot, 

commonly used for detection, is not effective even for sensor faults diagnosis in HVAC systems 

and they used expert-system-based diagnostics after detecting using PCA. Wang et al [72]. utilized 

normal operational data from an HVAC system, including AHUs, chillers, and cooling towers, and 

simulated fault scenarios to develop a system-level sensor fault detection and diagnosis method. 

They employed performance indicators for each level to enhance the detection and diagnosis 

process. The research on PCA-based AFDD of HVAC systems continued with the studies 

summarized in Table 2. 

Table 2. PCA-based HAV system AFDD studies. 

Study Methodology Dataset Used 
Type of Faults 

Detected 
Key Findings 

Hu et al [62]. 

(2012) 
Adaptive PCA Simulated data Sensor faults 

Errors in normal data used for PCA 

training decrease FDD efficiency; PCA is 

less effective for negative faults. 

Li et al [60]. 

(2014) 
PCA-Wavelet model ASHRAE RP-1312 

Outdoor damper 

stuck, heating coil 

leaking 

Data pretreatment is essential; improved 

detection of outdoor damper stuck vs. 

heating coil leaking faults. 

Li et al [73]. 

(2014) 

PCA with similarity 

analysis 
ASHRAE RP-1312 Various faults 

Enhanced PCA-based FDD with better 

performance using ASHRAE RP-1312 

data. 

Padilla et al [74]. 

(2015) 

Passive-active sensor fault 

detection 

Simulated and 

experimental data 
Sensor faults 

SPE outperformed T2 for experimental 

tests; both performed equally well with 

simulated data. 

Yan et al.  [75]. 

(2016) 

PCA with k-distance and 

OPTICS 
Simulated data Sensor faults 

Appropriate thresholds for specific faults 

and systems are crucial for efficient FDD. 

Hu et al [76]. 

(2016) 
PCA with preprocessing Operational data Sensor faults 

Steady-state condition consideration and 

outlier removal (z-score) significantly 

improved FDD efficiency. 
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Guo et al [77,78]. 

(2017) 

PCA with expert-based 

multivariable decoupling 

and SG method 

Simulated data 
System and sensor 

faults 

FDD performance varied (59%-84%) for 

different faults; diagnosis performance 

>90% for all faults. 

Li et al [79]. 

(2018) 
PCA with DBSCAN Operational data Sensor faults 

Clustering operational conditions and 

applying PCA separately enhanced FDD 

performance. 

Montazeri et al 

[80]. (2020) 
PCA, KPCA, and ANN 

Simulated data, 

ASHRAE RP-1312 
Sensor faults 

PCA FDD performance was 60%, KPCA 

was 62%, ANN reached 98.7%. 

Gu et al [81]. 

(2020) 

Gaussian Mixture Model 

with PCA 
Operational data System faults 

PCA for data dimensionality reduction 

significantly increased FDD performance. 

Burgas et al [82]. 

(2021) 
Unfolded-PCA Operational data 

Sensor faults, 

leakages 

SPE was more effective for detecting 

sensor faults; Hotelling's T² was more 

efficient for identifying leakages. 

Yang et al [83]. 

(2022) 

PCA with thermal load 

matching 
ASHRAE RP-1312 Sensor faults 

FDD performance highly depends on fault 

severity; method for identifying best 

normal condition training set. 

Liang et al [84]. 

(2023) 

Hybrid clustering-isolation 

forest-PCA 
ASHRAE RP-1043 Sensor faults 

Well-chosen feature combination 

significantly improved sensor fault 

detection performance. 

Wen et al [85]. 

(2023) 

DBSCAN, SG smoothing, 

and PCA 
Operational data 

Temperature 

sensor faults 

Enhanced sensor FDD for temperature 

sensors; applied to sensors not part of 

feedback regulation systems. 

Yang et al [86]. 

(2023) 

PCA with data window 

analysis 
ASHRAE RP-1312 Sensor faults 

Larger data window sample size enhances 

fault-free condition ratio by capturing 

more system dynamics. 

Ma et al [87]. 

(2024) 
BPNN-PCA 

Simulated and 

operational data 
Sensor faults 

Improved fault diagnosis accuracy when 

using BPNN-PCA compared to BPNN 

alone. 

Li et al [88]. 

(2024) 

PCA and Bayesian 

inference 

Field data, 

ASHRAE RP-1312 
Sensor faults 

Detectable faults in AHU system; 

combined PCA with Bayesian inference 

for HVAC sensor FDD and automatic 

calibration. 

 

Regarding Table 2. PCA has established itself as a valuable tool in HVAC FDD, both as a 

standalone method and in combination with other techniques, or for dimensionality reduction. The 

reviewed literature indicates that PCA-based algorithms predominantly focus on sensor faults, 

particularly those not involved in feedback loops. A limited number of studies address component 

faults, often relying on labeled data for diagnosis or focusing solely on fault detection. PCA-based 



16 
 

algorithms are highly sensitive to the quality of training data, with outliers and inconsistencies 

significantly impacting performance. The SPE has proven to be more effective than Hotelling’s T² 

for detecting and diagnosing sensor faults and malfunctions. For specific fault detection in 

particular systems, appropriate thresholds and cumulative covariance values must be applied. 

Furthermore, PCA is sensitive to dynamic and transient conditions, leading many researchers to 

use steady-state data for training or to implement smoothing techniques. PCA-based FDD 

algorithms are also more effective for faults of a certain severity, meaning that faults with lower 

severity might go undetected. Overall, while PCA-based methods are powerful, their effectiveness 

depends on careful data preparation and the application of tailored thresholds and techniques. 

 

2.2. Operational, Experimental, and Simulated Data in HVAC AFDD 

As shown in Table 1. the types of data utilized in previous studies can generally be categorized 

into three groups - simulated data, experimental data, and operational data. Typically, HVAC 

AFDD methods rely on operational data to develop techniques for vapor compression systems or 

overall energy consumption in buildings. 

Typically, operational data is primarily utilized for fault detection, whereas experimental and 

simulated data with detailed labels are employed for both fault detection and diagnosis. 

Experimental data are predominantly employed for vapor compression systems and Air Handling 

Units (AHUs). Two widely recognized AFDD experimental datasets published by ASHRAE are 

titled "ASHRAE RP-1312"[17]and "ASHRAE RP-1043" [89] concerning AHUs and vapor 

compression systems, respectively. Additionally, other experimental tests for AFDD on vapor 

compression systems are more prevalent in the literature compared to AHUs, which are relatively 

rare occurrences. 

Various fault scenarios have been emulated in the experimental datasets. These emulated scenarios 

can offer insights into different fault types, but they may not accurately reflect real-world 

conditions. For instance, consider the study conducted by Li et al.[43] on heating coil valve 
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leakage. In this study, the leakage fault was simulated by adjusting (overriding) the control valve 

signal to reduce the flow to a specific amount when the leakage was at 10%. However, it is highly 

unlikely for a system to experience such a precise severity of fault. In the event that this scenario 

was to occur, the control valve signal would likely be adjusted to a higher position to compensate 

for the leakage, driven by the control loop's aim to maintain the supply air setpoint, which 

completely deviates from the experiment condition. As a result, in experiments, the decrease in 

supply air temperature leads to a reduction in mixed air temperature. This relationship has been 

assumed as an expert rule in classification techniques [32]. However, relying solely on these 

assumptions can introduce inaccuracies when AFDD encounters real-world conditions. 

Another challenge with experimental data is the information they offer. These experiments are 

often designed for specific purposes, resulting in differences in the number and location of 

measurements compared to real-world scenarios. For instance, consider the mixed air temperature 

sensor. Regarding the size and maintenance aspects, there are AHU systems in real-world settings 

that do not include a mixed air sensor[90], yet experimental setups may include this sensor and it 

is widely used in AFDD methods [91]. Lastly, experimental datasets often represent a specific 

HVAC configuration in terms of size, components, and control logic. For example, replacing water 

heating coils with electric heating coils, or water cooling coils with direct expansion coils, could 

significantly alter the features and inputs required for AFDD. While these datasets can be valuable 

for academic purposes, their limited applicability to generic AFDD purposes is evident due to their 

specificity to particular configurations. 

2.3. FDD Metrics 

Generally speaking, fault detection involves binary classification, distinguishing between two 

classes: Normal and Fault. Alternatively, fault diagnosis involves multiclass classification, 

differentiating between types of faults and their severity. However, different studies used different 

metrics for FDD based on the techniques they applied, which is always regarded as a challenge in 

the implementation of AFDD[6]. In previous studies, various metrics have been used to evaluate 

HVAC AFDD, including True Positive Rate (TPR), True Negative Rate (TNR), False Positive 
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Ratio (FPR), False Negative Rate (FNR), No Detection Rate (NDR), Correct Diagnosis Rate 

(CDR), and Misdiagnosis Rate (MDR) [14]. In addition to the metrics mentioned, other evaluation 

methods widely used for AFDD classification techniques include Confusion Matrix, Accuracy, 

Precision, F-Score, Recall, and ROC Curve. While each of these metrics gives some insight into 

AFDD performance, Shi. Z and O`Brien. W [92] suggests that FPR and FNR, along with Detection 

Time, are the most important. Ideally, an HVAC AFDD method should minimize these three 

metrics as much as possible, aiming for zero. However, achieving a Detection Time of zero is not 

feasible since a fault must occur before it can be detected. These metrics provide further insights 

into the performance and effectiveness of AFDD methods. Therefore, for a generalization purpose, 

in this study, with input from building operators and control system designers, FPR and FNR, also 

known as False Alarm Ratio (FAR) and Missing Alarm Ratio (MAR), respectively, along with 

Detection Time, have been selected for evaluation. 

2.4. Literature Gaps 

However, there appears to be a significant gap between academic research and practical 

applications as a result of differing methods of collecting and labeling data when dealing with AHU 

and VAV systems. This discrepancy can affect the ability to accurately detect and diagnose faults 

in HVAC systems[19]. Laboratory experimental data, such as ASHRAE RP-1312 [17], or 

simulated data provided by institutions such as Lawrence Berkeley National Laboratory [18] are 

the basis for the majority of the above-mentioned studies in the FDD literature. Despite helping to 

address the scarcity of publicly available benchmark datasets, these datasets may not be true 

representatives of real-world conditions [93]. Huang et al [20]. discovered that FDD strategies 

developed with simulated data and then applied directly to real building data did not produce 

satisfactory results. It is often the case that data granularity, metadata descriptions, and well-labeled 

faults with different severity levels are lacking in real-world applications. To better reflect real-

world conditions, existing building datasets should be collected and studied to supplement the 

applicable FDD method [94]. Another crucial aspect to consider is that a significant portion of 

developed FFD algorithms focus on steady-state conditions for their application. This emphasis on 
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steady-state conditions is often due to the inherent challenge of accurately modeling and predicting 

transient conditions. As a result, transient behavior complexities are typically ignored in favor of 

more manageable steady-state scenarios [95]. 

Although many researchers have employed different data-driven techniques to develop tailored 

AFDD solutions for specific HVAC systems, these methods often lack transparency during testing 

and implementation, providing little information on how faults are detected and isolated [32]. 

However, it is a significant challenge for building operators to understand the mechanisms and 

inferences of data-driven methods, especially black-box supervised ones, which rely on complex 

relationships between data, and to trust the results [96]. Consequently, real building operators need 

an AFDD system that can provide at least minimal information about the operational conditions 

leading to faults, enabling them to analyze and trust the results. 

Commercial buildings' HVAC systems are designed and installed based on the specific conditions 

of each building. Factors such as weather, internal loads, occupant behavior, and schedules vary 

from building to building, leading to different historical data behaviors. Consequently, a data-

driven AFDD tailored for one building may not apply to others [14]. So, a generalizable AFDD 

that can be applied to different buildings within the same class with acceptable performance is a 

significant need in the commercial buildings HVAC AFDD market. 

The availability of data for the training stage of AFDD is another significant challenge. Obtaining 

comprehensive faulty data that includes all types and severities of faults is nearly impossible. 

Additionally, the BEMS data from existing buildings often suffers from low quality, short and 

discontinued time ranges, numerous missing values, and inconsistencies [97]. Furthermore, many 

previous studies on AFDD have developed methods using simulated data, experimental data, or 

real operational labeled data containing specific faults with specific severities for particular 

systems, limiting their generalizability [98,99]. Therefore, there is a need for a data-driven AFDD 

system that can utilize raw, unlabeled data from BEMs, representing another crucial aspect for the 

advancement of commercial building AFDD systems. 



20 
 

Another significant gap in previous works is the lack of consideration for the historical behavior 

of systems when using PCA-based FDD. Most researchers have used only cleaned data without 

sequence or continuity, or just a segment of cleaned steady-state data for training PCA. Although 

PCA has been applied for time series analysis in various fields (like quality control) [61], PCA-

based FDDs have yet to leverage time series analysis fully. 

Previous literature has paid limited attention to the detection and diagnosis of programming logic 

faults in HVAC systems. However, inverse models, combined with rules outlined in ASHRAE 

Guideline 36, offer a promising approach to addressing this issue [59]. 
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Chapter 3: Semi-supervised AFDD Method 

 

3.1. Objectives 

The main goal of this method is to establish a framework for fault detection and diagnosis in light 

commercial buildings using unlabeled raw data from BEMS for both steady-state and transient 

conditions. The utilization of a simple case study involving one AHU and four VAV boxes offers 

a valuable opportunity to develop a flexible framework that can be extrapolated to diverse real-

world scenarios. This overarching goal can be further divided into the following sub-objectives: 

• Developing a method to detect anomalies (potential faulty patterns) within the operational 

data, after the removal of sensor faults; 

• Investigating anomalies to distinguish unseen or hidden faulty patterns from outliers and 

extracting the corresponding faulty rules. Subsequently, labeling the dataset based on this 

method; and 

• Applying an AFDD classification to the normal and faulty classes generated through the 

labeling process and evaluating its performance for application in real conditions. 

 

3.2. Proposed Framework 

The first step in the framework involves gathering the essential sensor values using Input/Output 

(I/O) reports or other available information of the BAS. Because of the diversity of data collection 

methods, sensor data may vary in terms of time intervals. The sensor data should be synchronized 

with a specific time step to produce a consistent time series. Several factors may influence the 

suggested time steps, including the data collection protocols, the volume of data, and the time 

sensitivity of the data. However, 5-15 minutes is recommended. Data frames derived from BEMS 

systems are raw and unlabeled, making it imperative to resolve three crucial challenges including 

missing values, incompleteness, and incompliance. There are several reasons why these challenges 
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may arise, including sensor faults or inconsistencies in communication protocols [19,95]. To 

overcome these challenges, an initial strategy involves embarking on data visualizations coupled 

with statistical analysis. Given that the process of identifying outliers and differentiating them from 

faults is a more advanced stage, the current focus centers on addressing incompliant, inconsistent, 

and missing values. 

Dimensional reduction techniques have become indispensable when dealing with unlabeled raw 

data frames without labels. PCA is one of the most widely applied FDD methods among these 

various techniques. By using PCA, a set of high-dimensional variables with possible correlations 

can be reduced to a set of low-dimensional, linearly uncorrelated variables [50]. A primary 

objective of PCA in this study is to reduce dimensionality while extracting essential information 

from the dataset. In summary, Principal Component (PC) analysis is a multi-step process that 

begins with data preparation. First, missing values are removed, ensuring a complete dataset for 

analysis. Subsequently, the data is normalized and centered. This is a crucial step to ensure that 

variables are on a consistent scale and that analysis is not skewed by differences in units or 

magnitudes. Next, a covariance matrix is constructed based on the processed data. This matrix 

captures the relationships and variances among the variables. Eigenvalue decomposition is then 

applied to this covariance matrix, resulting in a set of eigenvalues and corresponding eigenvectors. 

The eigenvalues represent the variance explained by each principal component, offering insights 

into the significance of these components in the data. Meanwhile, the eigenvectors define the 

directions in the original feature space along which the data exhibits the most variation. To build 

the PC matrix, the data is transformed using these eigenvector directions, effectively projecting it 

onto an orthogonal set of axes. Each PC captures a different level of variance in the data. The 

detailed procedure is described in [100]. 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a powerful algorithm 

used in data analysis and pattern recognition, particularly in large spatial databases. Its primary 

purpose is to uncover meaningful clusters or groups of data points within a dataset based on their 

similarity[101]. What sets DBSCAN apart is its ability to identify clusters of arbitrary shapes. 



23 
 

Instead of assuming that clusters are spherical or have specific geometric forms, it looks for areas 

in the dataset where data points are densely packed together. These dense regions are separated by 

areas where data points are more sparsely distributed[24]. DBSCAN's approach is particularly 

useful in scenarios where traditional clustering algorithms might struggle. For example, it can 

effectively identify irregularly shaped clusters or clusters of varying sizes. It's also quite robust 

when dealing with datasets that contain noise or outliers—data points that don't fit neatly into any 

cluster and are located in regions of lower data density. In addition to clustering, DBSCAN has the 

added benefit of outlier detection [102]. By design, it recognizes low-density areas as potential 

outliers. These are data points that exist in regions where there isn't a clear cluster. Identifying 

outliers can be crucial in various applications, as well as fault detection [103]. 

While DBSCAN is effective at grouping similar data points and pinpointing anomalies within a 

large dataset, it falls short when it comes to describing the specific properties or features that define 

each cluster (or the anomaly). To understand the underlying rules or behaviors that make data 

points within a cluster similar to each other, we must turn to additional techniques and methods. In 

other words, DBSCAN provides the "what" by identifying clusters and anomalies, but to uncover 

the "why" or the reasons behind these patterns, we need to employ complementary approaches. It 

is also necessary when we deal with an unlabeled dataset in FDD to recognize the outliers from 

faults and during the isolation process. Nevertheless, in previous studies, researchers have often 

turned to methods such as Association Rule Mining (ARM) and Decision Trees to unearth the 

hidden behaviors and characteristics of clusters[36]. In this study, despite dealing with a numerical 

dataset, the Decision Tree method has been chosen for the specific purpose of uncovering insights 

and patterns within the data.  Following the identification of the underlying rules governing each 

cluster, the study focused on the rules associated with anomaly clusters. To determine whether 

anomalies were caused by faults or simply outliers, a comprehensive analysis of the rules governing 

anomalies was carried out. The Decision Tree (DT) rules were used to generate labels and 

consultations with system experts were conducted to streamline this process. As a result, these 

labels were assigned to the original dataset and outliers were removed. Consequently, the dataset 
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has been structured and classified, enabling a more informative and structured presentation for the 

FDD process. In a broader sense, labeling was instrumental to the study's goal of identifying and 

understanding fault conditions within the dataset, ultimately facilitating subsequent analyses, and 

enhancing interpretability. 

To address the issue of dataset imbalance, the SMOTE oversampling technique was applied in the 

final phase of the proposed framework. This involved increasing the number of fault samples across 

all fault classes to achieve a more balanced dataset. This oversampled dataset was then used to train 

a DT classifier. The trained classifier was then rigorously tested and evaluated using the original 

dataset without any modifications. The objective of this step was to evaluate the classifier's 

performance and ability to detect faults accurately in the field while accounting for the complexities 

of recording HVAC data on light commercial buildings. Figure 2. represents the comprehensive 

methodology adopted by this study. 

 



25 
 

 

 

Figure 2. Flow diagram of the methodology 

 

3.3. Case study and data collection 

To evaluate the proposed comprehensive framework for the effective detection and diagnosis of 

HVAC faults in light commercial buildings, a comprehensive investigation was carried out on a 

real-world example of this building category. This specific building, located in the city of Montréal, 

Canada, was chosen as the focal point of the study. It features an HVAC configuration comprising 
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a single-duct AHU augmented with four reheating VAV boxes. The maximum heating capacity for 

the AHU electrical heating coil is 21.2 kW. The maximum flow rate of the supply fan, rated at 1.5 

HP, is 2500 CFM. The cooling capacity is equivalent to 6 tons of refrigeration. The steady-state 

efficiency of the heating coil ranges between 80.5% to 81.1%, while the steady-state efficiency of 

the direct expansion cooling coil is 80%. The Energy Efficiency Ratio (EER) in cooling conditions 

is 12, and the Seasonal Energy Efficiency Ratio (SEER) is 14. The data nature and long data period 

make the building a valuable reference point for the development and assessment of FDD strategies 

in light commercial buildings. Figure 3. provides a schematic representation of the HAVC system 

configuration in the studied building. The architectural layout of the building is presented in Figure 

4. Zone 2 to Zone 5 refer to the administration room, conference room, R&D room, and customer 

room, respectively. 

 

Figure 3. The studied building`s HVAC system schematic and sensor locations 
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Figure 4. Floor layout of the studied building 

In this study, data from the BEMS were obtained, covering the period from January 18, 2022, to 

March 8, 2023. The data collection method involved recording sensor values only when they 

changed, which ensured efficient storage and reduced redundancy. This type of sensor value is 

recorded in the system with a timestamp. In all other situations, the sensor values remained 

constant, so data was collected at regular intervals of 15 minutes, a common BEMS time step. The 

size of this dataset presented a significant challenge in ensuring efficient access to and processing 

of specific tags and instances. Furthermore, the varying time steps introduced an added complexity 

to the synchronization of information for a thorough analysis due to the existence of varying time 

steps. As a result of the size and irregularity of the dataset, a methodical approach was adopted to 

overcome the challenges presented by the dataset. It was first necessary to use a systematic 

extraction process to identify the various instances (representing specific zones or devices) and 

tags within the dataset (comprising of the sensor type and instance) before conducting the next 

step.  

 

Zone3 

Zone5 

Zone4 

Zone2 
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Table 3. Features and Descriptions from BEMS I/O Report 

Feature 

name 
Description Type 

Collection 

Metho

d 

Feature 

name 
Description Type 

Collection 

Metho

d 

supply_tem

p_AC 

Supply 

(dischar

ge) air 

tempera

ture of 

AHU 

(C) 

Analog 

Value 
Sensor ‘OAT’ 

Outdoor air 

tempera

ture (C) 

Analog 

Value 
Sensor 

return_tem

p 

Return air 

tempera

ture to 

AHU 

(C) 

Analog 

Value 
Sensor 

supply_temp

_z2 

Supply 

tempera

ture 

after 

VAV 

reheatin

g for 

Zone 2 

(Admin

istration 

room) 

(C) 

Analog 

Value 
Sensor 

room_sp_z2 

Room 

tempera

ture 

setpoint 

for 

Zone 2 

(Admin

istration 

room) 

(C) 

Analog 

Value 

Control 

Value 

supply_temp

_z3 

Supply 

tempera

ture 

after 

VAV 

reheatin

g for 

Zone 3 

(Confer

ence 

room) 

(C) 

Analog 

Value 
Sensor 
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room_sp_z3 

Room 

tempera

ture 

setpoint 

for 

Zone 3 

(Confer

ence 

room) 

(C) 

Analog 

Value 

Control 

Value 

supply_temp

_z4 

Supply 

tempera

ture 

after 

VAV 

reheatin

g for 

Zone 4 

(R&D 

room) 

(C) 

Analog 

Value 
Sensor 

room_sp_z4 

Room 

tempera

ture 

setpoint 

for 

Zone 4 

(R&D 

room) 

(C) 
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3.4. Preprocessing and data cleansing 

During this phase, the primary effort was directed toward investigating and rectifying issues related 

to data inconsistencies and gaps caused by missing values. As part of this phase, a deep 

understanding of the system domain is essential to distinguish unexpected values based on insights 

into the system's inherent characteristics and the context of the data being analyzed [104]. The 

majority of temperature data inconsistencies were attributed to examples when the sensors were 

not properly connected, resulting in sensor records reaching their maximum allowable values as 

per the configuration within the BAS. Figure 5(a), and Figure 5(b) show the temperature data 

distributions after removing inconsistent temperature data. 

Besides the temperature data, the distribution of pressure sensor values, following the data 

cleansing process, is visualized in Figure 5(c). Initially, upon a cursory examination, it was noted 

that the minimum pressure when the AHU fan was turned off appeared to be 0.2 H2O instead of 

the expected 0. However, upon conducting a thorough investigation within the BAS, it was 

uncovered that the sensor signal type had been incorrectly configured as 2-10 V for 1 Inch of H2O, 

instead of the correct 0-10 V for 1 inch of H2O. Subsequently, this issue was rectified within the 

system, and the pressure data was successfully transformed from the [0.2, 1] interval to the intended 

[0, 1] interval. 

As outlined in Table 3, the BEMS I/O report defines various binary values in addition to analog 

values. In most cases, a binary value refers to the specific control state of the system. An illustration 
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of the distribution of each binary value is presented in Figure 5(d). As evident from Figure 2(d), 

the system predominantly operates in the heating mode in comparison to cooling. Additionally, the 

probability of the AHU fan being in the "on" state is notably higher than being in the "off" state. 

In addition to the temperature sensors depicted in the preceding figures, an additional sensor, the 

Outdoor Air Temperature (OAT) sensor, was examined. As a result of its location near intake or 

exhaust ducts and susceptibility to diverse ambient interferences like wind speed and solar 

radiation, the OAT sensor presents one of the most challenging aspects of HVAC systems. It is 

necessary to compare these data with those from a nearby weather station[95], in this case, Pierre 

Elliott Trudeau Airport weather data[105], to determine the accuracy of the OAT sensor. Referring 

to Figure 6(a) and consulting with domain experts specializing in the HVAC system of the building 

under study, it was observed that OAT sensor values closely align with the corresponding weather 

data. According to Figure 6(b), the average deviation was calculated as 0.8 Celsius, with a standard 

deviation of 1.83. Upon conducting a thorough investigation and consulting with domain experts, 

it was determined that this phenomenon was attributed to exhaust air leakage. These fluctuations 

could be considered negligible in terms of impacting the accuracy of the OAT readings. Figure 6(c) 

provides a specific instance of this behavior, observed on February 1st, 2022, and Figure 5(d) shows 

the OAT sensor values distribution after cleansing. 

 

  

(a) Room temperatures and return temperature (b) Supply temperature 
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(c) Supply pressure (d) Binary values 

Figure 5. Data distribution after cleansing and vying incompliance data 

 

  

(a) OAT vs. Weather data 
(b) Distribution of deviation between OAT values 

and Weather data 

  

(c) OAT sensor value fluctuation on Feb 1, 2022 (d) Cleaned OAT distribution 

Figure 6. OAT data inconsistency analysis 
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3.5. Result 

The purpose of this section is to present results associated with the implementation of the proposed 

framework in the light commercial building case study. The results sections have been arranged 

according to the framework steps. 

3.5.1. PCA results 

Reporting the results will be started by the first phase of the framework which is PCA. As a guiding 

metric for determining the optimal number of PCs, the cumulative variance percentage has been 

calculated. The cumulative variance percentage indicates how much variance is accounted for by 

the selected PCs of the dataset. According to various studies cited in [45], an acceptable level of 

data variance explanation lies between 75% and 90%. As seen in Figure 7, 89.51 % and 93.59% of 

the variance in the data can be explained by n=4 and n=5 number of PCs, respectively. Therefore, 

n=5 was chosen for the number of PCs in the dimensional reduction step. The distribution of the 

data projected onto reduced dimensions is also shown in Figure 8 and confirms the existence of 

distinct clusters. These clusters likely reflect diverse system behaviors or patterns within the 

dataset. A further observation is that certain data points are located far from densely populated 

areas. These isolated data points may be potential faults or anomalies within the dataset. 

Furthermore, the arbitrary shapes of clusters can be extracted from projected data plotting as an 

additional significant piece of information.  
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Figure 7. Cumulative Variance Explained by Number of PCs 

0.9359 
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Figure 8. DBSCAN clustering presentation in the space of the first 3 PCs 

3.5.2. DBSCAN results 

The DBSCAN algorithm relies on two essential parameters: "eps" and "min_samples". That “eps” 

is the threshold for considering two points as neighbors and “min_samples’ is the number of 

neighbors that a point should have to be considered as a core point. A detailed description and 
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calculation of the silhouette score can be found in [106]. Based on the results, eps = 0.25 and 

min_samples = 200 were selected to guide the next phase of the investigation.Figure 8 also 

illustrates the results of DBSCAN, highlighting clusters as well as outliers, which may be 

anomalies or potential faults. Figure 9(a) shows the distribution of sample numbers in each cluster. 

The Cluster with CID #-1 is considered and named as the anomalies containing 482 samples. In 

Figure 9(b), silhouette scores are displayed for each cluster, specifically for the selected parameters 

of DBSCAN. There is a range of -1 to 1 for the silhouette score. An object with a silhouette score 

close to 1 has an excellent match with their own cluster but a poor match with their neighboring 

clusters, while an object with a score close to -1 has an adverse match with their cluster. Notably, 

it highlights that data within Cluster IDs (CID) #2 exhibit a high degree of similarity compared to 

data in other clusters. A further observation is that some data points within the anomalies class 

(CID #-1) have silhouette scores less than 0, indicating a lack of similarity among these data points. 

This may indicate that different fault patterns or anomalies exist within this class. 

  

(a) Number of samples in each cluster 
(b) DBSCAN silhouette score of each cluster 

(eps=0.25 and min_samples=200) 

Figure 9. Clustering Evaluation and Sample Distribution in DBSCAN Clustering 

3.5.3. Rules extraction, labeling, and faulty pattern results 

To understand the relationships among data points within the anomalies cluster, the DT classifier 

attempted to be overfitted on the entire dataset to unravel every detail and relation between data in 

each cluster, especially in instances of anomalies. The process of overfitting may increase the depth 
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and complexity of the tree, as well as the length of the extracted rules, but to distinguish noise from 

anomalies, overfitting is an essential step. Regarding DT results, at least 8 DT depths needed to be 

overfitted using the whole data set. The DT classification provides a set of rules (antecedent) 

associated with anomaly occurrences, and these rules are documented in Table 4. Rules extracted 

from the DT classifier. This table provides a comprehensive overview of the rules for anomalies 

and encompasses all instances within the anomalies class. Figure 10 shows the top 5 attributes that 

have the greatest contribution to the classification, and consequently, to the identification of faulty 

patterns.  

Table 4. Rules extracted from the DT classifier 

 Antecedents 
Sample 

numbers 
Label 

1 
(heating_fan_demand = 0) and (fan_ac = 1) and (cooling_fan_demand 

= 0) and (heating_ac = 1) and (pressure <= 0.337) 
283 Communication_issue 

2 (heating_fan_demand = 1) and (heating_ac = 0) and (fan_ac = 0) 75 Fan_Stuck 

3 
(heating_fan_demand = 1) and (heating_ac = 0) and (fan_ac = 1) and 

(cooling_ac = 1) 
47 Control_Fault1 

4 
(heating_fan_demand = 1) and (heating_ac = 0) and (fan_ac = 1) and 

(cooling_ac = 0) and (supply_temp_avg > 39.0) and (OAT > -8.444) 
22 Heating_Coil_temp_high 

5 
(heating_fan_demand = 0) and (fan_ac = 1) and (cooling_fan_demand 

= 1) and (cooling_ac = 0) and (heating_ac = 1) 
21 Control_Fault2 

6 
(heating_fan_demand = 0) and (fan_ac = 1) and (cooling_fan_demand 

= 1) and (cooling_ac = 1) and (heating_ac = 1) 
10 Control_Fault2 

7 

(heating_fan_demand = 1) and (heating_ac = 0) and (fan_ac = 1) and 

(cooling_ac = 0) and (supply_temp_avg <= 39.0) and (supply_temp_z4 

<= 11.806) and (supply_temp_z2 <= 10.556) 

7 Outlier 

8 

(heating_fan_demand = 0) and (fan_ac = 1) and (cooling_fan_demand 

= 0) and (heating_ac = 0) and (cooling_ac = 0) and (supply_temp_z2 > 

33.056) and (room_temp_z5 > 19.889) 

7 Outlier 

9 
(heating_fan_demand = 0) and (fan_ac = 0) and (cooling_fan_demand 

= 1) 
6 Outlier 

10 
(heating_fan_demand = 0) and (fan_ac = 0) and (cooling_fan_demand 

= 0) and (supply_temp_z4 > 38.833) 
2 Outlier 
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11 

(heating_fan_demand = 1) and (heating_ac = 0) and (fan_ac = 1) and 

(cooling_ac = 0) and (supply_temp_avg <= 39.0) and (supply_temp_z4 

<= 11.806) and (supply_temp_z2 > 10.556) and (pressure > 0.353) 

1 Outlier 

12 
(heating_fan_demand = 0) and (fan_ac = 0) and (cooling_fan_demand 

= 0) and (supply_temp_z4 <= 38.833) and (supply_temp_z3 <= 8.694) 
1 Outlier 

 Total Number 482 Anomalies 

 

 

 

 

Figure 10. Contribution share of important features in DT classification for anomaly rules 

extraction. 

 In the next step, rules with more than 10 samples were considered as faulty patterns of the system. 

Afterward, these patterns were discussed with the building operators to comprehensively label the 

faults. Several of these patterns have repeating behavior (i.e., repeated in consecutive time steps) 

over a specific period, whereas others represent isolated data points with similar patterns. With 283 

samples, there is a faulty pattern within ~58% of the anomaly clusters data, that point to a 

communication issue fault. A communication problem existed between the BEMS and the sensors. 

A critical symptom of the pattern is that heating_fan_demand and cooling_fan_demand, were 0, 
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while fan_ac and heating_ac were 1, which indicates there was no demand for heating, but heating 

still took place. Another symptom of this faulty pattern can be observed when the supply_temp_AC 

is increasing, yet the temperature in room zone 4 (room_temp_z4) remains constant. It appears that 

this faulty pattern occurred between the 16th and 18th of February 2023. Figure 11. shows the 

room_temp_z4 and supply_temp_AC for three normal days (13th to 15th February) and faulty days. 

Furthermore, the right y-axis represents the binary values heating_ac and heating_fan_demand. 

 

 

Figure 11. Communication faulty patterns between the 16th to 18th of February 2023. 

Regarding Figure 12, the occurrence of Fan_Stuck fault represents a repeating fault pattern. a 

notable event transpired when the system mode shifted from unoccupied to occupied. During this 

transition, an anomaly emerged as the heating_fan_demand was recorded as 1, indicating a request 

for heating, while both fan_ac and heating_ac remained at 0 which means there are no fan working 

and no heating provided. This discrepancy implies that the HVAC system was not functioning 

properly. Consequently, both supply_temp_AC and room_temp_z4 experienced simultaneous and 

consistent decreases, attributable to the system's inactivity. This fault persisted from 6:00 AM and 

extended until 11:35 AM, at which point the fan resumed operation. As a result, supply_temp_AC 

began to rise, gradually warming the various zones within the building. 
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Figure 12. Fan_Stuck fault pattern during the 2022-11-03. 

In Figure 13(a), a visual representation of the occurrence times of two different types of control 

faults is shown, namely Control_Fault1 and Control_Fault2. With the confirmation from the 

building HVAC operator, the issues labeled Control_Fault1 and Control_Fault2 are accountable 

for the sizing problem that happened during the design phase. Most of these faults occurred during 

the summer season on days when the OAT was relatively low. Both single-isolated samples and 

sequences of two to four consecutive samples (from 5 minutes to 20 minutes) are included in them. 

An instance of this type of fault occurred on August 9, 2022, when the system was operating in 

heating mode without corresponding heating demand. Rather, a consistent cooling demand 

persisted. 

 

 

 

(a) 



42 
 

 

(b) 

Figure 13. Control Faults occurrence, (a) whole period, (b) an example on 2022-08-09. 

Lastly, the Heating_Coil_temp_high faulty pattern was identified.  In this case, it refers to the 

protective action involved in the heating coil of the AHU. There is no repeating pattern associated 

with this anomaly; rather, it arises sporadically as isolated incidents. However, it can occur more 

than once within a single day, as illustrated in Figure 14(a). Figure 14(b) illustrates that this fault 

occurs when the return temperature reaches a relative maximum, and the OAT is higher than -8.44 

°C (refer to the extracted rule #4). Heat is extracted less efficiently from the heating coil when the 

return temperature increases. To prevent potential damage or failure of the electrical heating coil, 

the HVAC system initiates protective actions. During this time, the heating operation is temporarily 

suspended to allow the coil to cool down and protect it from damage. In these situations, it may 

appear that the system is performing adequately, however, the highly frequent overheating of the 

heating coil may increase the risk of failure and contribute to a higher maintenance cost over time. 
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(a) 

 

(b) 

Figure 14. Coil_temp_high fault pattern (a) from 2022-11-01 to 2023-03-08, (b) on 2022-12-

07. 

3.5.4. AFDD results 

Since the main purpose of the previous DT was rule extraction and labeling the dataset, in the initial 

step of the AFDD DT phase, the accuracy of DT classification was examined at varying maximum 

depths and consistent accuracy was observed after reaching a maximum depth of 8. As a result of 

the feature contribution analysis, the findings presented in Figure 15 reveal that supply_temp_avg 

exhibits the highest contribution, followed by room_sp_z2, room_sp_z3, and supply_temp_AC in 

AFDD DT classification. Besides, to evaluate the effect of SMOTE oversampling on the accuracy 

of the AFDD DT classification, a sensitivity analysis was conducted on the AFDD DT 

classification whit k_neighbors = 2, 4, 6, and 8, and the results average accuracy equal to 0.98. 
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Figure 15. Feature contribution in DT classification in AFDD phase. 

 

Table 5. AFDD performance. 
 

MAR (%) 
 

FAR (%) Detection 

Time 

Resampling Attempt 1 2 3 4 
 

1 2 3 4  

Heating_Coil_High_Temp 0.00 0.02 0.02 0.00 
 

0.20 0.19 0.19 0.19 5 Min 

Communication_issue 0.79 0.85 0.84 0.86 
 

0.01 0.01 0.01 0.01 5 Min 

Fan_Stuck 1.31 1.27 1.32 1.27 
 

0.73 0.73 0.73 0.72 10 Min 

Control_Fault1 7.78 7.98 7.99 7.92 
 

2.40 2.35 2.34 2.34 5 to 15 

Min 

Control_Fault2 9.03 9.12 9.17 9.15 
 

2.05 1.94 1.93 1.95 5 to 15 

Min 

 

Finally, the critical validation step involved testing the model on the raw unbalanced dataset, 

without any oversampling, encompassing real-world operational data from the BEMS system. This 
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step is essential to assess the model's performance under real operating conditions to establish a 

systematic measurement, four distinct SMOTE oversampling attempt phases were conducted using 

50% oversampled data, followed by testing on the initial dataset to evaluate the effect of 

oversampling on final result. The results, including the Missing Alarm Ratio (MAR) and False 

Alarm Ratio (FAR), have been presented in Table 5. AFDD performance. Based on the results, it 

is observed that Control_Fault1 exhibits the highest False Alarm Rate (FAR), with Control_Fault2 

being the second highest. Furthermore, Control_Fault2 consistently records the higher Missing 

Alarm Ratio (MAR) across all four trials, followed by Control_Fault1. Lowest FAR and MAR 

percentages related to Communication_issue, and Heating_Coil_High_Temp, respectively. 

Consequently, according to AFDD model test results on the unbalanced raw dataset, the model's 

total accuracy decreased from 95% to 89% due to inaccuracy in the detection of Control_Fault1 

and Control_Fault2. 

 

3.5.5. Discussion 

With the completion of the AFDD study, it is worthwhile to mention that during the data cleansing 

process, sensor faults were eliminated, and previously unseen patterns were discovered that 

operators were not able to detect. Even though this method has proven extremely effective at 

detecting faulty patterns and labeling datasets, the question remains: can this labeled dataset be 

effectively employed to detect and diagnose faults in real-world conditions within this light 

commercial building? To further examine the applicability of this approach, DT classification was 

performed on the labeled dataset to develop an automatic method for fault detection and diagnosis. 

Nevertheless, there is a challenge in dealing with the features, which have a significant contribution 

to the labeling process. It may result in an overfitting of the classification if they are reused. 

Consequently, the 5 features with the highest contribution in the rule extraction phase were 

dropped, and the dataset was labeled according to the rules outlined in Table 3, and outliers were 

then removed from the dataset.  
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Another significant challenge encountered when dealing with massive data from a light commercial 

building pertains to the issue of an imbalanced dataset (due to the fact that the number of faulty 

samples are extremely lower than normal samples), which resulted in a low F1 score for faulty 

classes despite achieving a notably high accuracy rate. Within the DBSCAN analysis, the entirety 

of the anomalies cluster encompassed 482 data points, equivalent to only 0.4% of the entire 

cleansed dataset. Labeling the dataset produced classes with even lower sample sizes. To address 

the challenge of the imbalanced dataset in the case of the proposed framework, a SMOTE 

oversampling technique was implemented for the faulty classes. This rebalancing of the dataset 

aimed to enhance the model's ability to effectively detect and classify faults, ultimately improving 

the overall performance of the fault detection and diagnosis method. In this manner, a considerable 

amount of data was produced, which provides ample information for training and testing purposes. 

As part of our efforts to ensure the effectiveness of the AFDD method in handling unseen data in 

the future, a split of 50% was made between the training and testing portions of the dataset. This 

balanced approach ensures the AFDD method's robustness in practical scenarios. 

It should be noted that the six faults that were studied and discussed in this study were not 

recognized prior to the analysis of raw data. These faults have been detected during the labeling 

process and have been confirmed by consulting the HVAC operators of the building, as well as the 

system controller designers, as a result of the labeling process. A couple of these faults have been 

mentioned in previous literature, such as fan_stuck, control faults, and communication issues, but 

Heating_Coil_High_Temp is a unique fault that only applies to this system (as this system uses 

electric heating coils). Other faults, such as those related to valve positions (which were not 

identified in this system), sensor faults, and other types of faults could also be identified and labeled 

if these types of faults were found in the historical data used in this study. For this reason, it may 

be necessary to repeat the framework on a regular basis (such as every 3 or 6 months) in order to 

update the labels and make the framework more applicable to a larger number of faults. 

It is worth emphasizing that, in the context of fault detection and diagnosis, the consequences of 

missing alarms significantly outweigh those of false alarms. Verifying false alarms through manual 
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checks is relatively straightforward, whereas missing alarms can lead to severe damage to the 

HVAC system[107]. The higher rates of missing alarms in Control_Fault1 and Control_Fault2 can 

be attributed to their association with a sizing problem, which is fundamentally a design issue. This 

problem has persisted in the system's behavior since the system's inception, making it considerably 

more challenging to detect anomalies solely based on sensor values, particularly when employing 

historical data-driven methods.   However, The AFDD DT classification performed very well in 

identifying faults in other fault classes. A noteworthy observation from the results is that false 

alarms across all classes correspond to normal conditions rather than other types of faults, which 

is very important to the diagnosis process.  

 

3.5.6. Conclusion 

A comprehensive framework for establishing a semi-supervised Fault Detection and Diagnosis 

(FDD) in light commercial buildings was outlined in this study. This framework, driven by 

unlabeled raw data obtained from the BAS, was devised to create an adaptable methodology 

applicable to real-world scenarios. To achieve this goal, a series of objectives were pursued. The 

framework involves the creation of a sizable and synchronized raw dataset, derived from the 

multitude of sensor tags embedded within the BAS. A pivotal stage was the comprehensive 

investigation of these anomalies, where the objective was to differentiate concealed, unseen faulty 

patterns from outliers. This exploration ultimately led to the elucidation of a set of rules governing 

these anomalies, thereby facilitating the labeling of the dataset in accordance with the derived 

methodology.  

The subsequent phase of this research delved into the implementation of an AFDD classification 

model on the labeled dataset. This analysis provided insights into the model's efficacy in discerning 

between normal and faulty classes. Notably, the model performance was assessed across various 

fault types, unveiling both strengths and areas for enhancement. In summary, this study makes a 

significant contribution to the field of fault detection and diagnosis of light commercial buildings 

HVAC by offering a systematic approach to handling real-world operational data. The results 
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underscore the potential of the proposed framework to bolster the efficiency and accuracy of FFD 

in light commercial buildings, ultimately elevating the performance and occupant comfort of 

HVAC systems. The highlighted outcomes can be summarized as follows.  

• The combination of PCA (for dimensionality reduction) and DBSCAN (for unsupervised 

clustering) demonstrates remarkable proficiency in identifying anomalies within HVAC 

system datasets. This methodology showcases its effectiveness in uncovering 

irregularities, even when dealing with complex and unstructured data. 

• Decision Tree classification emerges as a potent tool for revealing patterns within the 

normal and anomalous operational conditions of light commercial building`s HVAC 

systems. This approach provides a systematic means to unravel the underlying rules 

governing system behavior, contributing to more accurate fault detection and diagnosis. 

• Imbalanced datasets can compromise the performance of AFDD. To mitigate this, 

SMOTE oversampling techniques are shown to be effective in enhancing AFDD's overall 

effectiveness in HVAC systems. By increasing the representation of faulty classes, the 

model becomes better equipped to distinguish between normal and anomalous conditions. 

• Control faults related to sizing problems in HVAC systems pose a unique challenge for 

fault detection. These issues are deeply rooted in the historical behavior of the system and 

tend to recur frequently. Consequently, the detection of sizing problems may lead to an 

elevated false alarm rate, as the data closely resembles normal operating conditions. This 

underscores the importance of fine-tuning AFDD algorithms to account for such nuances 

in system behavior. 

• Certain fault types, such as Fan_Stuck, Communication_issue, and 

Heating_Coil_High_Temp, exhibit robust detection and diagnostic capabilities within the 

studied framework. These faults, although less common and less similar to normal 

conditions, can be reliably identified. This highlights the potential for proactive fault 

management, even in cases where fault occurrences are infrequent. 
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• The accuracy of the proposed AFDD method based on the different faults ranges between 

0.89 and 0.99. It shows better performance in detecting and diagnosis 

Communication_issue, Fan_Stuck, and Heating_Coil_temp_High faults, and lower 

performance to diagnose Control_Faults. 

While this framework has demonstrated commendable performance, it is important to acknowledge 

certain limitations that offer avenues for further research and improvement. The first direction of 

improvement is related to feature availability. The primary limitation lies in the reliance on features 

solely derived from the available descriptions in the I/O report of the light commercial building 

BAS. This constraint led to the exclusion of potentially valuable data, such as airflows, damper 

positions, heating and cooling loads on the coils. Expanding the feature set to encompass these 

additional parameters could enhance the framework's fault detection and diagnosis capabilities. 

Classification optimization is a second area of improvement. The classification methods employed 

on labeled data, i.e. Decision Trees, while effective, may benefit from further optimization. 

Exploring alternative techniques such as Random Forests, Support Vector Machines (SVM), and 

Artificial Neural Networks (ANN) could potentially yield even higher performance levels. These 

methods can be evaluated to identify the most suitable approach for minimizing the FAR and MAR 

and improving overall system accuracy. 

Taking everything into account, The AFDD framework demonstrated promising and repeatable 

results in a real-world light commercial building, highlighting its effectiveness and reliability. 
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Chapter 4: Unsupervised AFDD Method 

 

The main goal of this section is to develop a generalizable unsupervised AFDD method tailored 

for light commercial buildings. This method aims to be generally applicable across various 

buildings within this class, capable of utilizing different types of historical data from the BEMS 

systems, even if it is unlabeled, inconsistent, or fragmented. Additionally, the AFDD method 

should provide minimal yet essential information about faulty conditions to the HVAC operators. 

Thus, the objectives of this chapter can be mainly divided into the following: 

1. Develop a data cleaning process to identify the most suitable subset for training a PCA-

based time series FDD and train a PCA on the selected subset. 

2. Establish a PCA-based time series fault detection method using historical raw unlabeled 

data. 

3. Develop an automated method to identify the primary sources of faults and their locations.  

4. Assess the method’s applicability and effectiveness in various light commercial building’s 

HVAC configurations. 

The reason for selecting PCA among other techniques lies in its ability to satisfy the main goals 

and objectives of the research. While newer methods like encoding also use Reconstruction Error 

(RE) for fault detection, they have high computational costs and are typically limited to the 

detection phase [108]. Besides, PCA-based fault detection, with minor adjustments and tuning, can 

be easily transferred between different datasets and buildings and can also be used for diagnosis as 

well as detection. Most existing BEM systems have limited computational and storage resources, 

and PCA-based AFDD can be easily implemented using simple dependencies and basic Python 

libraries (such as the Pandas and NumPy). 
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4.2. Methodology  

The proposed method for AFDD in this chapter is divided into three steps based on the objectives. 

Each step is presented separately, and the combination of all these steps leads to the comprehensive 

AFDD framework as it illustrated in Figure 16. Proposed AFDD framework. The methodology 

starts with data cleaning for training a PCA to be used for FDD. It then continues with the proposed 

method for fault detection, and finally, the diagnosis part will be presented. 

4.2.1. Data cleaning and PCA training 

Dealing with long-term, raw, unlabeled data from existing light commercial buildings presents 

challenges due to the system's dynamics, varied modes of operation, maintenance breaks, changing 

weather conditions, and firmware updates. Such data inherently contains diverse patterns, outliers, 

missing data, and inconsistencies. Consequently, manually identifying a comprehensive set of 

samples for PCA training that encompasses all periods is nearly impossible. Several preprocessing 

steps are essential for PCA, including removing missing values, scaling, and centering the data. 

A cleaning loop has been devised to identify an appropriate dataset for training. This loop uses 

PCA and SPE to remove days with significant deviations from the dataset. The variability in system 

behavior significantly influences the minimum SPE, where days with greater deviation exhibit 

higher minimum SPE values. The cleaning process begins by determining the necessary number 

of PCs to achieve a Cumulative Variance (CV) representing the percentage of explained variance 

by the selected PCs. The minimum acceptable CV can vary between 75% to 90% for different 

purposes [98]. This study, however, sets the minimum CV, through trial and error, at 92% as it 

presented promising results during the tuning phase. The proposed process continues by applying 

PCA to the initial dataset and generating an SPE time series. This series is then resampled daily 

with the minimum daily SPE values. Outlier days are flagged for removal from the dataset 

employing a statistical outlier detection mechanism using a threshold as defined by (5), outlier days 

are flagged for removal from the dataset.  
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𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆𝑃𝐸
𝐷𝑎𝑖𝑙𝑦

=  𝑆𝑃𝐸𝑚𝑖𝑛
𝐷𝑎𝑖𝑙𝑦

+ 𝑚 ∗ 𝑆𝑃𝐸𝑠𝑡𝑑
𝐷𝑎𝑖𝑙𝑦

 (5) 

 

Since 𝑆𝑃𝐸𝑚𝑖𝑛
𝐷𝑎𝑖𝑙𝑦

 may not normally be distributed in all cases, the value of m, set at 3 for this study, 

can be adjusted based on the dynamic characteristics of the building's HVAC operations and 

skewness of the 𝑆𝑃𝐸𝑚𝑖𝑛
𝐷𝑎𝑖𝑙𝑦

. If any outlier days are identified, all data corresponding to those days 

are excluded from the initial dataset. PCA and minimum daily SPE analysis are subsequently 

applied to the refined dataset iteratively until no outliers remain. These days were removed from 

the initial dataset to find an appropriate training subset for the primary training of PCA for FDD. 

Later, during the test steps, they can be considered as a subset to determine whether there exist any 

faults during those days by using them as the inputs of the fault detection part. Upon completion 

of the first objective, the final trained PCA model after complete cleansing is saved for use in 

subsequent fault detection phases. The cleaning and training processes are illustrated in Figure 16. 
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Figure 16. Proposed AFDD framework. 

 

4.2.2. PCA-Based Fault Detection 

This section's target is to detect faulty patterns in the time series data of BEM, considering the 

historical behavior of HVAC systems in light commercial buildings. To achieve this, a smoothing 

method for the SPE is employed, allowing the analysis of a specific period (window size) of 

previous data to identify any faulty patterns in the current time.  

The detection phase begins by applying PCA #1 (the trained PCA from the previous step) and 

calculating the SPE of the input data. The input data can be the entire initial dataset, a specific 

period of the initial dataset that is of particular interest, or a new period of raw data not included in 

the initial training phase. This process generates an SPE time series corresponding to the original 

timestamps of the data. Then, a simple moving average (SMA) of SPE in the current time step 

(𝑆𝑃𝐸𝑚𝑎
𝑡 ) for a window size “ws” can be calculated using equation (6): 
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𝑆𝑃𝐸𝑚𝑎
𝑡 =

1

𝑤𝑠
∑ 𝑆𝑃𝐸𝑖

𝑡

𝑖=𝑡−𝑤𝑠+1

 (6) 

Besides, the Moving Standard Deviation (MSD) of SPE in the current time step (𝑆𝑃𝐸𝑚𝑠𝑑
𝑡 ) can be 

calculated as shown in equation (7): 

𝑆𝑃𝐸𝑚𝑠𝑑
𝑡 = √

1

𝑤𝑠
∑ (𝑆𝑃𝐸𝑖 − 𝑆𝑃𝐸𝑚𝑎

𝑡 )2

𝑡

𝑖=𝑡−𝑤𝑠+1

 (7) 

The dynamic band of the system adopted from Bollinger Bands [109] can be determined through 

the upper band (UB) and lower band (LB) as shown in equation (8): 

𝑈𝐵 = 𝑆𝑃𝐸𝑚𝑎
𝑡 + 𝑚𝑠𝑡𝑑 ∗ 𝑆𝑃𝐸𝑚𝑠𝑑

𝑡  

(8) 

𝐿𝐵 = 𝑆𝑃𝐸𝑚𝑎
𝑡 − 𝑚𝑠𝑡𝑑 ∗ 𝑆𝑃𝐸𝑚𝑠𝑑

𝑡  

Where 𝑚𝑠𝑡𝑑 is a tunable multiplier that can be selected based on the desired sensitivity to 

deviations. However, in this study, 𝑚𝑠𝑡𝑑 = 3 , which is a standard statistical selection. 

Where 𝑚𝑠𝑡𝑑 is a tunable multiplier that can be selected based on the desired sensitivity to 

deviations. However, in this study, 𝑚𝑠𝑡𝑑 = 3 , which is a standard statistical selection. 

The primary threshold for fault detection is set based on 𝑆𝑃𝐸𝑚𝑎
𝑡 . While traditional statistical 

methods based on confidence levels or higher quantile percentages are common, they may not 

effectively account for the smoothness of 𝑆𝑃𝐸𝑚𝑎
𝑡  in this case, potentially leading to high false alarm 

rates during fault-free conditions. Hence, this study proposes using equation (9) to determine the 

main threshold (𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆𝑃𝐸) for fault detection. It is important to note that the parameter 𝑚𝑡ℎ𝑟𝑠ℎ 

can be adjusted during the tuning phase for each specific building regarding HVAC operators' 

considerations. To avoid missing alarms, 𝑚𝑡ℎ𝑟𝑠ℎ should not be set too high relative to 𝑚𝑠𝑡𝑑. Ideally, 

it should be set between 10% to 20% of m. For this study, an acceptable value considered 𝑚𝑡ℎ𝑟𝑠ℎ =

0.5 which is 16.7% of 𝑚𝑠𝑡𝑑. 
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𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆𝑃𝐸 =  𝑆𝑃𝐸𝑚𝑎
𝑡 + 𝑚𝑡ℎ𝑟𝑠ℎ ∗ 𝑆𝑃𝐸𝑚𝑠𝑑

𝑡  (9) 

Any 𝑆𝑃𝐸𝑚𝑎
𝑡  above the 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆𝑃𝐸 will be flagged as a potential fault. Then faulty and unfaulty 

samples will be labeled and separated. Additionally, any 𝑆𝑃𝐸𝑖 outside the dynamic band of the 

system may be considered outliers; however, the combination of moving SPEs above the threshold 

and SPEs outside the dynamic band can indicate a higher level of fault severity.  

4.2.3. PCA-Based Fault Diagnosis 

After detecting a fault, the fault diagnosis process relies on three key aspects: localization, 

identification, and severity assessment [110]. Identifying and localizing the root cause of an 

occurred fault is generally more difficult than detecting the fault itself. Various faults can produce 

similar symptoms among different systems even in a specific HVAC system. Accurate diagnosis 

of the root cause usually demands an in-depth understanding of the HVAC configuration and 

control strategies, which are unique to each building [14]. However, as a generic AFDD framework 

applicable to different light commercial buildings, the fault diagnosis in the proposed method 

focuses on identifying problematic inputs (sensor data, control values, etc.) and pinpointing the 

location (level of HVAC system) of the fault within the HVAC system (either at the central system 

or in the zones). Additionally, each fault is classified into two levels of severity. This information 

is then provided to HVAC operators, enabling them to make informed decisions and accurately 

identify the fault. 

The diagnosis process starts with applying PCA to the subset of data identified as unfaulty during 

the fault detection phase. By transforming and reconstructing each of the unfaulty and faulty 

subsets using the PCA model trained on the unfaulty samples, the reconstruction error matrix for 

each subset can be calculated. Using the principal concepts of Reconstruction Error (RE) illustrated 

in Figure 1, the RE of unfaulty and faulty samples should exhibit distinct differences. The average 

RE deviation between the unfaulty and faulty subsets can provide insights into the specific inputs 

causing the fault. If the inputs with high RE deviations belong to the central system level (e.g., 
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Roof Top Unit, AHU), these inputs will be reported, and the fault location will be identified as the 

‘central system level, otherwise, it will be considered as ‘zone level’. For inputs associated with 

zone-level faults, a further investigation is required. The diagnosis process will be reapplied solely 

to inputs belonging to the central system. The Deviated RE of inputs corresponding to the source 

will be calculated. If a Deviated RE input related to the central system is detected, the fault location 

will be reported at the central system level. Otherwise, the fault will be noted at the zone level, 

specifying the faulty zone based on the affected inputs. 

In the end, if only the 𝑆𝑃𝐸𝑚𝑎
𝑡  is above the threshold, the severity is considered to be low (level 1). 

If not only the 𝑆𝑃𝐸𝑚𝑎
𝑡  is above the threshold but 𝑆𝑃𝐸𝑖 values are also outside the dynamic range, 

then the fault severity is considered to be high (level 2).  The reported inputs, fault location, and 

severity levels provided to the HVAC operators will enable them to conduct further investigations. 

Using their experience with the system, they can identify its specific faults.  

An important consideration is the amount of data required for the method. To address this, various 

data durations were chosen for training and testing purposes. Based on the findings of this study 

testing on two different case studies, a minimum of 3 months of data is necessary for the training 

phase. For testing (operational purposes), the amount of data required for each execution should be 

at least one step larger than the window size used for the moving SPE. For instance, if a 15-day 

window is employed, at least 16 days of data are needed. During the initial 15 days, the method 

learns the system dynamics but does not detect faults within this period. 

Finally, it is important to mention that based on the computational limits of the existing building 

system, the method is suggested to be executed once per day. The specific time for execution can 

be chosen based on the HVAC operator's preference and operational requirements. 

4.3. Validation Case Studies 

The HVAC system of a typical light commercial building in Montreal, Canada, has been selected 

as the primary building to validate the presented method. This choice was made because detailed 

information about the system and access to HVAC operators were available. The system includes 
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a single-duct electrical heating AHU combined with four VAV boxes with electric coil reheating 

capability. The AHU's electric heating coil has a maximum heating capacity of 21.2 kW. The 

supply fan can deliver air at a maximum rate of  2500 cubic feet per minute (CFM) and is powered 

by a 1.5 horsepower (HP) motor. The system's cooling capacity is comparable to 6 tons of 

refrigeration. The heating coil's steady-state efficiency is between 80.5% and 81.1%, and the direct 

expansion cooling coil's efficiency stands at 80%. In terms of energy efficiency, the system has an 

Energy Efficiency Ratio (EER) of 12 during cooling and a Seasonal Energy Efficiency Ratio 

(SEER) of 14. Given the nature of the data and the extensive period it covers, this building serves 

as an appropriate example for developing and evaluating AFDD methods in light commercial 

structures. The floor plan and the schematic of the HVAC system given from OCN+ BEMS of the 

building are presented in Figure 17. OCN+ is the building energy management system of the 

building of interest. It provides information about sensor locations and descriptions, and it can be 

used to monitor data trends and export data. 

 

Floor plan of the interested light commercial building. 
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(b)Main AHU (c) VAV box of each zone 

Figure 17. The Floor plan (a) and HVAC system (b, c) of the studied light commercial 

building (From OCN+ BEMS system). 

 

Data collection was conducted utilizing the OCN+ BEM system of the building, spanning from 

January 8, 2022, to March 18, 2023. The selection of input data for the AFDD was informed by a 

detailed analysis of sensor descriptions within the OCN+ BEMS framework. This selection process 

was guided by consultations with HVAC system operators and the incorporation of critical 

variables as recommended by the ASHRAE Guideline 36 for high-performance sequence control 

[111]. 

The data frame encompasses sensor data, including analog values, as well as control values, which 

consist of both binary and analog types. Additionally, three calculated features have been integrated 

into the dataset. The first is the total airflow rate of the AHU, determined by the continuity (the 

conservation of mass) equation. The second and third features are the average room temperature 

and average supply temperature across the zones, respectively. With these features included, the 

total number of distinct features in the data frame is 94, which are referred to as inputs of AFDD. 

Table 6. The description of input data for the AFDD method.. Introduced all the inputs separated 

by the level (location) of each and (i) refers to the zone assigned number. 
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Table 6. The description of input data for the AFDD method. 

Input Parameter Feature Type 

Central system Level (AHU) 

Airflow airflow_AC Calculated 

Supply temperature supply_temp_AC Sensor_Analog 

Return temperature return_temp Sensor_Analog 

Outdoor Air Temperature OAT Sensor_Analog 

Room setpoint AC room_sp_AC Control value 

Supply pressure pressure Sensor_Analog 

Damper positions dmp_pos_AC Control value 

Heating loop heating_load_AC Control value 

Cooling loop cooling_load_AC Control value 

Fan mode fan_ac Control_Binary 

Cooling mode cooling_ac Control_Binary 

Heating mode heating_ac Control_Binary 

Cooling fan demand cooling_fan_demand Control_Binary 

Heating fan demand heating_fan_demand Control_Binary 

Active heating room temperature setpoint AC act_htg_RTSP_AC Control value 

Active cooling room temperature setpoint AC act_clg_RTSP_AC Control value 

Sandby mode room temperature setpoint cooling offset STBmode_RTSP_clg_offset Control value 

Standby mode room temperature setpoint heating offset STBmode_RTSP_htg_offset Control value 

Zones Level 

Airflow airflow_z(i) Sensor_Analog 

Room Temperature room_temp_z(i) Sensor_Analog 

Average Room Temperature Room_temp_avg Calculated 

Supply Temperature supply_temp_z(i) Sensor_Analog 

Average Supply Temperature Supply_temp_avg Calculated 

Heating loop heating_load_z(i) Control value 

Damper Position dmp_pos_z(i) Control value 

Room temperature setpoint cooling occupied RTSP_clg_occ_z(i) Control value 

Room temperature setpoint heating occupied RTSP_htg_occ_z(i) Control value 

Room temperature setpoint cooling un-occupied RTSP_clg_unocc_z(i) Control value 

Room temperature setpoint heating un-occupied RTSP_htg_unocc_z(i) Control value 

Motion sensor MotionSens_z(i) Sensor_Binary 

Occupied mode OccMode_z(i) Control value 

Active heating room temperature setpoint act_htg_RTSP_z(i) Control value 

Active cooling room temperature setpoint act_clg_RTSP_z(i) Control value 
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Active flow setpoint act_FlowSP_z(i) Control value 

Minimum Airflow heating MinAF_htg_z(i) Control value 

Minimum Airflow cooling MinAF_clg_z(i) Control value 

 

Since one target of this study is to investigate the generalizability of the proposed method for light 

commercial buildings, a second case example has been chosen from the reference [19,95]] with the 

dataset available in [112] as the secondary dataset for validation. This dataset, collected from a 

small industrial facility in Ireland, serves as an excellent test case for generalizability since the 

building can be considered representative of a light commercial building. Additionally, the dataset, 

obtained from a real BMS system, includes all the typical challenges found in real data used for 

validation of the method, such as broken data (missing data points), poor quality data (noisy sensor 

data), and importantly, the dataset is unlabeled. Table 7. Comparison between validation data and 

generalizability analysis data.. Comparison of Data Used for Validation and Generalizability 

Analysis. The configuration and feature description of the dataset have been detailed in [112]. 

Table 7. Comparison between validation data and generalizability analysis data. 

Characteristics Industrial facility, Ireland Office building, Montreal 

Location Ireland Canada 

Nature of data Unlabeled, Raw data Unlabeled, Raw Data 

Data Quality Many missing, Inconsistency Many missing, Inconsistency 

Time step 15 Minutes 5 Minutes 

System Configuration AHU + 2 VAVs AHU + 4 VAVs 

Heating loop Water heating coils Electric heating/reheating coils 

Cooling loop Water cooling coil DX cooling coil 

Performance characteristic Energy Consumption available Energy Consumption unavailable 
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Number of inputs 20 Inputs 94 Inputs 

 

4.4. Results and Discussion 

This section presents and discusses the results of the proposed method applied to the primary and 

secondary case study buildings. The section starts with the data cleaning and training phase and 

continues with fault detection and isolation. The results begin with the comprehensive framework 

outcomes for the primary building, selected due to extensive information obtained from HVAC 

operators. Following this, AFDD results from the secondary building are presented as an 

illustrative example. 

4.4.1. Data Cleaning and PCA Training 

The number of principal components (PCs) required for subsequent steps was primarily determined 

as shown in Figure 18. Cumulative Variance Explained by Number of PCs. The results indicate 

that a minimum of 17 PCs is necessary to meet the framework's requirements. The cumulative 

variance explained of 0.926 for 17 PCs signifies that these components capture 92.6% of the total 

variance in the dataset. Therefore, the next step involves utilizing these 17 PCs for the cleaning and 

training processes. 

Figure 19. The results in internal steps of the cleaning process using PCA loop.. Shows the initial 

step, two interval steps, and the final step of the data cleaning process for training the PCA. The 

horizontal axis represents the days within the dataset, and the vertical axis shows the minimum 

daily SPE. It is evident that the threshold for the minimum daily SPE decreases with each step of 

the loop. The maximum acceptable of minimum daily SPE for training the PCA is calculated to be 

0.23. The entire cleaning process took 9 iterations, during which 27.5% of the data was removed 

from the initial dataset. 
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Figure 18. Cumulative Variance Explained by Number of PCs. 

 

  

  

Figure 19. The results in internal steps of the cleaning process using PCA loop. 

4.4.2. Fault Detection and Isolation in Primary Building 

This section provides the results of fault detection and isolation using a dataset spanning two 

months. It discusses two examples of faults within the initial dataset and an additional example of 

an unseen fault outside the initial data. In all results figures, the green band indicates the dynamic 

Initial 

Final 
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range of the system, with the black line representing the moving SPE and the yellow line indicating 

the moving SPE threshold. Additionally, the traditional SPE threshold using a 95% confidence 

level is shown by the dashed blue line. 

The first example of a faulty pattern was detected on April 27, 2022, as shown in Figure 20(a). The 

two inputs most contributing to this fault were room_temp_z4 in the level of the zones, as indicated 

by the mean value of reconstructed errors in Figure 20(b). Figure 20 (c) shows that the deviation 

of room_temp_z4 was constant as depicted in Figure 20(d). With this provided information, system 

operators confirmed this condition as a sensor disconnection for room_temp_z4, where the sensor 

data reached its maximum allowable limit in the system. A comparison between the date of sensor 

disconnection and fault detection revealed that the crossing of the moving SPE and threshold 

occurred before this incident, which is attributed to the fluctuating behavior of room_sp_AC during 

a system reconfiguration period. Moreover, the method successfully detected and isolated the fault 

related to room_temp_z4 disconnection, situated at the zone level.  Furthermore, the analysis 

indicated that following the sensor disconnection, this fault significantly impacted the system. This 

finding was corroborated by the presence of outliers outside the dynamic system band concurrent 

with the sensor disconnection fault, thereby elevating the fault severity to level 2, as detailed in the 

methodology section. Compared to traditional PCA, the proposed approach can detect deviations 

in room_sp_AC, indicating sensor disconnection. 
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(a) Detection Fault, April 27, 2022 

  

(b) Averaged RE deviation of inputs (c) RE deviation of samples 
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(d) Behaviors of inputs with the highest averaged RE deviation 

Figure 20. Disconnected sensor fault on 2022-04-27. 

As another example of a different source, the fault triggered on 2023-02-22 is shown in Figure 21 

(a). The initial inputs contributing to the reconstruction error deviation were the room temperature 

setpoints for zone 2 and zone 5, prompting further analysis of the AHU. The AHU analysis also 

indicated a fault, with significant deviations in pressure and airflow as shown in Figure 21 (b) and 

(c). Based on the results, the location of the fault was reported at the level of the AHU, with pressure 

and airflow identified as the two inputs with the highest deviation. This led HVAC operators to 

confirm a dirty filter fault. As shown in Figure 7(d), the deviation of the setpoints is much higher 

than that of the pressure and airflow due to the normalization process before PCA analysis. This 

indicates that the dirty filter significantly impacted the thermal comfort of the occupants by 

decreasing the airflow, leading to a setpoint override to improve comfort. This override had a 

substantial effect on the entire system, making fault detection easier. Additionally, it's important to 

note that all four highly contributing inputs showed decreased values, demonstrating that the 

method is effective in identifying faults in both increasing and decreasing input behaviors. 

Furthermore, since there are not any outliers beyond the dynamic band (when the moving SPE is 

above the threshold), the severity of fault is reported as level 1. Finally, although the method shows 

a delay in detecting the dirty filter fault, it is much more effective than traditional PCA, which 

almost missed this fault entirely. 
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(a) Detection Fault, on 2023-02-22 

 
 

(b) Averaged RE deviation of inputs (c) RE deviation of samples 
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(d) Behaviors of inputs with the highest averaged RE deviation 

Figure 21. Dirty Filter Fault detected on 2023-02-22. 

 

4.4.3. Fault Detection and Isolation in Secondary Building 

The entire method was applied to the secondary dataset, and the results have been obtained. The 

testing of the technique showed promising outcomes. A good example of the model's performance 

is when a fault was triggered on 2021-08-02, as shown in Figure 22 (a). The most contributing 

input was reported as ReHeatVlvPos_2, which is the reheat valve position signal for zone 2, based 

on Figure 22(b). The RE has fluctuations in Figure 22 (c), indicating that it is not stuck. 

Additionally, there is no deviation in the inputs related to the AHU, the fault is determined to be at 

zone 2, with the problematic input being ReHeatVlvPos_2. Although the location and inputs should 

be reported to the HVAC system operators to decide if there was a fault at that time, the method 

shows that it can detect deviations, isolate the problematic input, and determine the level of 

divergence. 

 

 

(a) Detection Fault, on 2021-08-02 
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(b) Averaged RE deviation of inputs (c) RE deviation of samples 

 

(d) Behaviors of inputs with the highest averaged RE deviation 

Figure 22. Generalizability analysis of the method. 

 

Regarding AFDD results from both the primary and secondary buildings, the method demonstrated 

promising effectiveness in detecting and isolating faults using the same tuning parameters, 

including window sizes, m, mstd, and mthresh. It should be noted that the secondary building's data 

was resampled using the forward filling method to match the primary building's data time step of 

5 minutes. Furthermore, the results indicated that different data from various HVAC configurations 

and components of light commercial buildings can be effectively used as inputs for the method, 

showcasing its adaptability to different types and volumes of data. However, the method still 



69 
 

requires HVAC operators to confirm faults based on the information provided by the AFDD 

method. In both buildings, AFDD exhibited a specific limitation when dealing with faults of lower 

severity. Since the method is designed to be executed once a day, the detection time can vary. For 

instance, immediate detection occurred with the first execution of the method for the Disconnected 

Sensor fault in the primary building, while detection took up to six executions for the 

ReHeatVlvPos_2 signal fault in the secondary building. This indicates that the method can detect 

condition-based faults when they begin to significantly impact the behavior of the HVAC system. 

For both buildings, the diagnosis results were highly precise. As soon as the fault was detected, the 

method was able to accurately isolate the source of the detected faults (or potential faults in the 

secondary building) without exception. 

4.5. Conclusion 

In conclusion, this study has developed an unsupervised PCA-based AFDD tailored for application 

in light commercial buildings. The method is designed to detect and diagnose faults using raw, 

unlabeled data from Building Energy Management Systems (BEMS), showcasing its ability to 

work with datasets from existing buildings without any further pre-investigation and labeling. The 

data can be exported from BEMS and directly used in the AFDD method. Validation was conducted 

on a light commercial building in Montreal, Canada, and its transferability and generalizability 

were confirmed by successfully testing it on another building in Ireland. The method's 

transferability and generalizability allow it to be applied to different configurations of HVAC 

systems with varying numbers of inputs, ensuring effective performance across diverse HVAC 

setups. Furthermore, the method demonstrated promising performance in detecting and isolating 

faults both in initial and unseen datasets. Different faults related to sensors and system conditions 

have been detected and isolated using this method, illustrating its capability beyond sensor faults. 

Generally, any fault that affects the system's behavior can be identified and isolated using this 

approach.  

The most important aspect of using this method is choosing the appropriate tuning parameters. A 

good set of tuning parameters can be selected by HVAC consultants or operators through initial 
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trials on the dataset to optimize fault detection. While the method automates fault detection, isolates 

faulty inputs, and identifies fault severity levels, some limitations can be listed as follows: 

• The involvement of an HVAC operator is always necessary for comprehensive diagnosis 

and final confirmation.  

• The method requires at least three months of data to begin functioning and is not applicable 

during the initial running period of the system or after major system changes until sufficient 

data accumulates. However, additional operational data can always be appended to the 

initial dataset, providing a more comprehensive dataset for the training phase. 

• During the fault detection phase, a single day of data is insufficient; at least n+1 (which n 

is the window size in days) consecutive days of data are needed when the method is 

detecting faults. The method cannot detect faults within the first n days, as it relies on a 

window size of n days to capture the dynamics of the system.  

• If there is a continuous fault in the testing dataset that started before the date of the first 

sample and persisted until the test date, the method will not be able to detect it, as the 

system's dynamics will remain unchanged. 

However, this method offers a straightforward AFDD solution with minimal computational 

overhead, suitable for diverse HVAC systems and configurations in light commercial buildings. 

One of the significant advantages of this AFDD method is its ability to utilize an unlabeled raw 

dataset without any prior information about the faults and their severity, making it highly adaptable 

to different scenarios. Unlike previous approaches that require a set of unfaulty samples for PCA 

training, this method operates without pre-known unfaulty samples, enabling execution with 

minimal information about the system condition. This flexibility ensures that the method can be 

readily applied in various situations, even when detailed system information is lacking. 

Furthermore, while earlier methods focused solely on steady-state conditions, which increases false 

alarms during dynamic changes, this method incorporates historical dynamic information of the 

system, utilizing both dynamic and steady-state conditions. This comprehensive approach 
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significantly enhances fault detection accuracy, reducing the likelihood of false alarms and 

ensuring reliable performance in real-world applications. 

In summary, this method presents an efficient AFDD solution that leverages minimal information 

to deliver accurate and reliable AFDD. Its applicability across various HVAC configurations, 

combined with its potential to reduce operational costs and improve system efficiency, makes it a 

valuable tool for HVAC operators in light commercial buildings. All light commercial building 

HVAC operators can benefit from the ability of this method to detect and isolate faults efficiently 

not only enhances system performance but also contributes to energy savings and cost reductions, 

making it an economically beneficial solution. Additionally, this method can facilitate dataset 

labeling for developing supervised AFDD methods and supports semi-automatic commissioning 

of HVAC systems. 
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Chapter 5: Inverse Modeling 

The primary goal of this chapter is to develop a physics-based inverse model for AHU systems to 

establish a baseline for heating load to find the anomalies (potential faults). This overarching goal 

can be divided into several specific objectives: 

• Defining a physical model using variables associated with AHU operation. 

• Establishing baselines for steady-state and transient conditions using curve fitting 

techniques like Genetic Algorithm(GA) optimization, ANN optimization with callbacks, 

and Physics-based Neural Network (PBNN) models. 

• Employing the established baseline to detect potential faults presented as anomalies for 

further investigations. 

5.1. Methodology 

AHUs operation can mostly be analyzed as steady-state processes. However, applying the 

physical meaning of steady-state conditions to sensory data is challenging. Therefore, various 

statistical methods have been developed to detect operational conditions close to steady state. 

This study employed the steady-state detector introduced by Lee W. et al [104]. Equation (10) 

has been used to calculate the slopes of the variables. The slope value equal to zero indicates a 

fully steady-state condition, although values close to zero are also considered acceptable. In this 

study, the steady-state threshold is set at 0.25 times the standard deviation of the sum of slopes, 

ensuring continuous steady-state periods. Increasing it results in more isolated single samples as 

steady-state conditions. Also, the window size is considered 15 minutes. 

𝑆 = (V𝑚𝑎𝑥−V𝑚𝑖𝑛) / V𝑎𝑣𝑔 (10) 

S is the slope of variable V in a specific window size. The AHU represents a typical light 

commercial building in Montreal, Canada, with an electrical heating coil (21.2 kW). Heat transfer 

by the fan was disregarded during modeling. Applying conservation laws yields equation (11) for 
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steady-state conditions, with variables X and f unknown. Due to unavailable humidity sensor data, 

air density and heat capacity were treated as unknown parameters. 

%ℎ𝑡𝑔_𝑙𝑜𝑎𝑑 = 𝑋. 𝐿𝑃S . ( 𝑇𝑠𝑢𝑝 − [𝑓 . 𝑇OA + (1−𝑓 ) . 𝑇𝑟𝑒𝑡 ]) (11) 

 

f presents the fresh air fraction, and X represents the amount of heating load percentage that should 

be added for 1 LPS of supply airflow when there is a 1 degree of Celsius of change between supply 

and mixed air temperature. %htg_load represents the heating load on the AHU. LPS, Tsup, TOA, and 

Tret are AHU airflow in liter per second, supply temperature of AHU and return temperature, 

respectively. The primary challenge involves an optimization problem: determining the values of 

X and f to minimize the difference between the estimated and measured percentage of heating load 

on the AHU coil. To address this, the fitness function has been defined as the mean square error 

(MSE) to facilitate minimization. 

Initially, a GA with different hyperparameters was employed to examine the sensitivity of the 

results to hyperparameters. For the final results, a generation size of 500 and a population size of 

100 were selected to examine the unknown X and f. Secondly, an optimization using ANNs’ 

callbacks was employed to calculate the values of X and f. Lastly, the ANN model that was utilized 

for optimization was also employed to establish the baseline. It is important to note that the first 

and second methods examined the unknown parameters and replaced them in equation (2) to define 

a baseline, while the last method utilized the ANN model directly for baseline definition. Since the 

physical information based on equation (2) has been applied to the ANN, it can be considered a 

Physics-Based Neural Network (PBNN) [6]. The ANN utilizes X and f, which are calculated based 

on optimization, and replaces them into equation (2). Subsequently, the model is trained to 

minimize the MSE. AHU data was collected from the Building Energy Management System during 

the period of January 18, 2022, to March 31, 2023. Before analysis, inconsistencies related to 

sensor faults were removed from the dataset. Additionally, the accuracy of outdoor sensor records 

was validated using data from the nearest weather station. Since the airflow of the AHU was not 
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directly measured, the airflow rate was estimated by summing the airflow rates of connected 

Variable Air Volume (VAV) systems and converted to Liter per minute unit for more consistency.  

5.2. Results and Discussion 

This section presents the results of the methodology and discusses them. By applying equation (10) 

to the data, steady-state conditions were detected. While reaching steady-state conditions depends 

on various parameters such as outdoor conditions, schedules, and sequence of operation, the results 

indicate that it mostly occurred between 10 AM to 3:30 PM when the AHU was operating in heating 

mode. Regarding the results of the inverse modeling presented in Table 8, the PBNN model 

exhibited superior performance in terms of R2 and Mean Averaged Error (MAE). Additionally, it 

was found that considering the steady-state data led to a decrease in the model's performance, 

except for ANN Optimization. The degradation in model performance can be observed in Figure 

23. which presents the expected heating load calculated by PBNN relative to measured heating 

loads. Although the model used different input variables to make the results more sensible it has 

been plotted versus OAT which is common in the commissioning stage of HAVC systems. The 

samples with high values of heating load primarily correspond to unsteady conditions when the 

temperature gradients are high. By removing this valuable information (in steady-state conditions) 

from the data, the models lack sufficient information about these samples and cannot be adequately 

trained for situations with high values of heating load as shown in Figure 23(b). 

 

Table 8. Inverse Modeling Results. 

 X f R2 MAE 

Whole Data 

ANN_Optimization 0.0693 0.2043 0.6663 10.2596 

GA Optimization 0.0578 0.2708 0.6859 10.3337 

PBNN   0.9211 4.2121 

Steady-state 

ANN_Optimization 0.0374 0.56195 0.7324 9.6225 
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GA Optimization 0.0731 0.19119 0.6899 11.6578 

PBNN   0.9124 4.7964 

 

Anomaly detection can be conducted using an established baseline. An anomaly is defined as a 

specific deviation from the expected (baseline) value. The threshold for this deviation can be set in 

various ways. Gunay et al. [59], suggest that building operators can define a threshold based on 

their expertise and knowledge of the system. However, in this study, the threshold is determined 

using the mean plus three times the standard deviation of residuals, which is a standard statistical 

method. Figure 24 illustrates the distribution of residuals for each method and potential statistical 

thresholds. The anomalies detected by the method represent potential faults, most likely related to 

programming logic or issues with the sequence of operation (other soft and hard faults are also 

possible). Figure 25. Shows an example period for anomaly detection using the PBNN baseline. 

These anomalies should be investigated according to the rules provided by ASHRAE Guideline 36 

and confirmed by building operators to establish an effective retrofitting or reprogramming plan. 

As an example, Section 5.14.8.3 ASHRAE Guideline 36 can be utilized to examine programming 

logic for heating supply air temperature setpoint reset. 

 

  

 

(a) (b)  

Figure 23. Heating load vs TOA for (a) whole data and, (b) Steady-state conditions. 
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(a) (b) (d) 

Figure 24. Residual distribution: (a)GA Optimization, (b)ANN Optimization, (c)PBNN; 

whole data. 

 
Figure 25. Anomaly detection using PBNN during two first week of Feb 2023. 

5.3. Conclusion 

This study employed three different techniques to establish a baseline to detect anomalies in the 

AHU heating load of light commercial buildings. Among the methods, the physics-based neural 

network demonstrated superior performance in predicting the load and establishing a more fitted 

baseline. Subsequently, anomalies were detected using the established baseline, representing 

potential faults in the AHU system. Investigating these anomalies in conjunction with ASHRAE 

Guideline 36 and system knowledge can reveal their underlying causes, providing robust 

information on whether these anomalies can be considered faults. In summary, while the physics-

based neural network exhibited higher accuracy in load prediction, equations derived from ANN-

Optimization and GA-Optimization can also be employed for anomaly detection with their 
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respective thresholds. In addition, the simple equations extracted from optimization methods are 

easy to use and implement in HVAC control systems, making them highly practical and valuable 

for real-world applications in systems with lower computational and memory capacity.  
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6. Conclusion 

In this study, three different methods have been developed for Automated Fault Detection and 

Diagnosis (AFDD) of light commercial buildings' HVAC systems and validated using data 

extracted from this class of buildings. The first method starts with data cleansing, followed by 

dimensional reduction using Principal Component Analysis (PCA), applying Density-Based 

Spatial Clustering of Applications with Noise (DBSCAN) for anomaly detection, Decision Tree 

(DT) rule extraction for separating faults from outliers, and finally, classification to produce an 

AFDD model. The second method is a fully unsupervised PCA-based technique for AFDD, which 

can operate effectively without any pre-defined unfaulty conditions. The third method includes 

various inverse modeling techniques for modeling the Air Handling Unit (AHU) and detecting 

anomalies related to energy consumption and potential fault candidates for the sequence of 

operations. 

To conclude all results, the semi-supervised method provides valuable insights into the system's 

operating modes. Using this framework enables us to label the dataset for future studies, ultimately 

producing a supervised AFDD that effectively detects and diagnoses faults that have occurred at 

least once in the data history. However, to identify and label new faults, the entire process must be 

re-executed. This method is highly effective for condition-based fault detection but performs less 

effectively with control faults, which are often related to the sequence of operation and 

programming errors. Additionally, since the data cleansing process automatically removes outliers 

and inconsistent sensor values, this method cannot detect sensor faults. A summarized comparison 

of different methods has been presented in Table 9. 
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Table 9. Comparison of AFDD methods 

 
High 

 
Medium 

 
Low (or not) 

 

Unsupervised Semi-supervised Inverse Modeling 

Condition-based faults FDD performance    

Behavior-based faults FDD performance    

Outcome-based faults FDD performance    

Control faults FDD performance    

Sensor faults FDD performance    

Transparency in fault diagnosis    

Transferability, Scalability, and Generalizability    

Human interference    

A long period of training needs    
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The unsupervised method presents a novel approach to fault detection and diagnosis using PCA. It 

works effectively with various types of data and different HVAC sizes and configurations, making 

it a scalable and transferable AFDD method applicable to any light commercial building. Although 

it provides useful information about fault sources, it cannot fully diagnose faults and requires an 

HVAC operator to observe and diagnose the problematic sources (inputs). It is straightforward to 

use, without the complexities of labeling and establishing a supervised AFDD as required in the 

semi-supervised method. This method is capable of detecting and diagnosing faults in historical 

data as well as new, unseen faults that may occur in future operations. This method can detect and 

diagnose all the faults that change the historical behavior of the system including sensor faults and 

conditions-based faults. 

The third proposed method uses an inverse model and focuses solely on the AHU as well as its 

related inputs. It demonstrates that a simple equation derived from PBNN can effectively model 

the dynamics of AHUs in light commercial buildings and detect anomalies in energy consumption. 

While further investigation showed some of these anomalies are not related to the sequence of 

operations, they can still be considered anomalies warranting further investigation and 

commissioning. 

In summary, although each of the proposed methods has limitations, all can be applied to light 

commercial buildings' HVAC systems either individually or as an integrated package. For instance, 

the dirty filter fault was not detectable using the semi-supervised method but was effectively 

detected and diagnosed using the unsupervised method. The dirty filter samples identified by the 

unsupervised method can then be used in the supervised AFDD method. 

Applying these techniques for AFDD offers multiple significant benefits for HVAC systems in 

light commercial buildings. Firstly, they can reduce energy consumption significantly, which 

directly lowers the operational costs of running HVAC systems. This reduction in energy use also 

leads to a decrease in the air pollution and carbon production generated by the energy conversion 

process, contributing to a more sustainable and environmentally friendly building operation. The 

validation of these methods in different buildings confirmed their generalizability and 
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effectiveness. The AFDD methods detected and isolated faults consistently, even with varying 

HVAC configurations and data inputs. For example, the dirty filter fault was undetectable using 

the semi-supervised but was successfully identified and diagnosed using the unsupervised method. 

The detected samples can then be utilized to enhance the supervised AFDD model. 

The proposed methods in this thesis can be applied together to form a robust, integrated AFDD 

package, capable of handling a wide range of fault types and operational conditions. They not only 

improve energy efficiency and reduce emissions but also enhance occupant comfort by ensuring 

the HVAC systems operate optimally. Furthermore, the ability to work with raw, unlabeled data 

from BEMS without extensive preprocessing makes these methods practical for real-world 

applications, facilitating broader adoption in light commercial building control systems.  

Lastly, ongoing testing with new data and firmware updates confirms the methods' adaptability and 

effectiveness in maintaining reliable AFDD, thereby ensuring continuous improvement in HVAC 

system performance and energy efficiency. 
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