
Automated Data Preparation using Graph Neural
Networks

Niki Monjazeb

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Computer Science (Computer Science) at

Concordia University

Montréal, Québec, Canada

August 2024

© Niki Monjazeb, 2024

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Niki Monjazeb

Entitled: Automated Data Preparation using Graph Neural Networks

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Sandra Cespedes

Examiner
Dr. Sandra Cespedes

Examiner
Dr. Abdelhak Bentaleb

Supervisor
Dr. Essam Mansour

Approved by
Joey Paquet, Chair
Department of Computer Science and Software Engineering

2024
Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

Automated Data Preparation using Graph Neural Networks

Niki Monjazeb

The process of data preparation is a time-consuming portion of data scientists’ work. Being

able to automate this work will improve the quality of the machine learning results and free data

scientists to shift their focus to the machine learning task at hand. My research presents a system

to automate this process by learning from the data preparation steps taken from others working on

similar datasets. To automate data cleaning and transformation, datasets and their corresponding

notebooks were extracted from Kaggle, their information was abstracted before being uploaded

into a knowledge graph. Graph Neural Network (GNN) models were trained on those knowledge

graphs, and the most commonly used cleaning and transformation operations for similar datasets

were inferred. These operations are offered to the user as recommendations that they can apply to

their dataset using the corresponding APIs. These recommendations have outperformed their state-

of-the-arts counterparts in terms of time, memory consumption, and accuracy. To detect similarity

inclusion dependencies (sIND), knowledge graphs from datasets in the Prague Relational Learning

Repository were created. From those knowledge graphs, the columns deemed to have an inclusion

dependency were studied until features leading to this dependency were observed. These features

were used to create a model that could predict the sIND between columns. The resulting model

was able to correctly predict more sIND pairs, in a shorter timespan than its competitor. This

holistic platform can easily be integrated into any Data Science Pipeline (DSP) and facilitate the

data preparation process for data scientists.

iii

Acknowledgments

I would like to express my deepest gratitude to Dr. Essam Mansour, my supervisor for his

guidance and mentorship through this learning journey. I extend my sincere appreciation to the

members of the CODS lab for providing a stimulating and supportive research environment, with a

special thanks to Shubham Vashist, Mossad Helali, and Philippe Carrier for their help and valuable

insights.

I would also like to thank my parents for ingraining in me from a young age that I can accomplish

whatever I set my mind to, as well as my brother for his unwavering support. Their belief in me has

been a constant source of motivation, and I am forever grateful for their love and sacrifices.

Last but not least, I owe a special thanks to my husband. His constant support, unwavering

patience, thoughtfulness, inspirational kindness, and empathy are what guided me through this jour-

ney, and for that, I will always be grateful.

iv

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Overview . 1

1.2 Contributions . 2

1.3 Outline . 5

2 Related Works 6

2.1 Cleaning . 6

2.1.1 Holoclean . 7

2.1.2 Datawig . 7

2.2 Transformation . 7

2.2.1 Autolearn . 8

2.2.2 LFE . 8

2.3 Holistic systems . 9

2.3.1 DataPrep . 9

2.3.2 Data Civilizer 2.0 . 9

2.4 Similarity Inclusion Dependency (sIND) . 9

2.4.1 SAWFISH . 10

v

3 Linked Data Science Powered by Knowledge Graphs (KGLiDS) 11

3.1 Data Profiling . 13

3.2 Knowledge Graph Construction . 14

3.3 Pipeline Abstraction . 16

4 On Demand Data Preparation 17

4.1 Graph Neural Networks (GNN) . 18

4.2 Cleaning . 19

4.2.1 Knowledge graph preparation . 19

4.2.2 Training . 21

4.2.3 Inference . 21

4.2.4 Experiments . 23

4.3 Transformation . 24

4.3.1 Knowledge graph preparation . 25

4.3.2 Training . 27

4.3.3 Inference . 28

4.3.4 Experiments . 29

4.4 APIs . 30

5 Similarity Inclusion Dependency (sIND) Detection 34

5.1 Introduction . 34

5.2 Implementation . 35

5.2.1 Features . 35

5.2.2 Modeling . 37

5.2.3 API . 38

5.3 Experiments . 38

5.3.1 sIND detection . 39

5.3.2 Time scaling . 40

6 Conclusion and Future Work 42

vi

Appendix A Master’s Coursework and Contributions 44

A.1 Master Coursework . 44

A.2 Publications . 44

Bibliography 45

vii

List of Figures

Figure 1.1 Data scientists perform time-consuming, code extensive, and repetitive data

preparation in isolation, however, their insights are rarely shared. 3

Figure 3.1 An example of the data science KG constructed using KGLiDS and aug-

mented by our system with semantics related to data cleaning and transformation in

green. 13

Figure 4.1 An example of the data science KG used for training and inference. 20

Figure 4.2 The embeddings of all columns containing missing values (quake id, geolo-

cation, and shift) are aggregated by data type and concatenated to create the table

embeddings. 22

Figure 4.3 The output of the cleaning recommendation where the column ‘Cleaning Op-

eration’ determines the recommended operation while the column ‘Features’ con-

tains the name of the features said operation should be applied on. 23

Figure 4.4 The performance of KGDataPrep vs Holoclean’s Aimnet on the 13 datasets

from 4.3. These results are obtained using a VM with 189 GB of RAM. Datasets

are sorted by size in increasing order. (a) The X-axis represents the dataset ID, and

the Y-axis is the time consumed by each system. KGDataPrep provides a process-

ing time considerably lower than that of Holoclean. (b) The X-axis represents the

dataset ID, and the Y-axis is the memory usage consumed by each system. KGDat-

aPrep works with a near constant memory usage while Holoclean’s memory usage

changes significantly depending on the dataset. 26

viii

Figure 4.5 The output of the transformation recommendation where the column ‘Rec-

ommended transformation’ determines the recommended operation, the column ‘Rec-

ommendation’ contains the priority of the recommendation with rec1 being the top

recommended operation, and the column ‘Feature’ contains the name of the features

said operation should be applied on. 29

Figure 4.6 The performance of KGDataPrep vs Autolearn on the 17 datasets from 4.5.

These results are obtained using a VM with 189 GB of RAM. Datasets are sorted

by size in increasing order. (a) The X-axis represents the dataset ID, and the Y-

axis is the time consumed by each system. KGDataPrep provides a processing time

considerably lower than that of Autolearn, with Autolearn timing out in several

datasets. (b) The X-axis represents the dataset ID, and the Y-axis is the memory

usage consumed by each system. KGDataPrep works with a near constant mem-

ory usage while Autolearn’s memory usage changes significantly depending on the

dataset and is unable to complete the task for one dataset due to an OOM error. . . 32

Figure 5.1 (a) The number od sIND pairs correctly detected by SAWFISH and KGDat-

aPrep with all combination 0f 5% and 10% induced error and edit distand thresholds

of 1 to 3. SAWFISH’s performance improves with an increase in threshold while

ours remains relatively constant. (b) The time required for sIND detection by SAW-

FISH and KGDataPrep with all combination 0f 5% and 10% induced error and edit

distand thresholds of 1 to 3. SAWFISH’s processing time increases exponentially

with an increase in threshold while KGDataPrep’s remains relatively constant. . . . 40

Figure 5.2 The measure of time in seconds required for Sawfish and KGDataPrep mod-

els to detect sIND. While a larger scaling factor for the TPCDS dataset results in an

increase in the time required for sIND detection, the time requirement increase for

KGDataPrep is insignificant due to the data sampling strategy used in KGLiDS. . . 41

ix

List of Tables

Table 4.1 Specifications of the GNN models used for cleaning, scaling transformation

and unary transformation used in KGDataPrep . 18

Table 4.2 Cleaning operations used and their associated libraries 19

Table 4.3 F1-Scores for Data Cleaning: The performance of our system vs Holoclean’s

Aimnet using multiple ML tasks on 13 datasets. Our system slightly outperforms

Holoclean in small datasets and successfully completes the task for larger datasets

while Holoclean encountered an out-of-memory (OOM) issue. 25

Table 4.4 Transformation operations used and their associated libraries 27

Table 4.5 Accuracy for Data Transformation: The performance of our system as com-

pared to AutoLearn on 17 datasets for machine learning classification tasks. Au-

tolearn results are formatted as Y(X) where Y is the reported accuracy in Kaul, Ma-

heshwary, and Pudi (2017) and X is the outcome of reproducing Autolearn experi-

ments. TO signifies that Autolearn timed out in three hours, while OOM indicates

that Autolearn ran out-of-memory. 31

Table 5.1 Features used to build the sIND pair detection models and their associated

KGLiDS predicates . 37

Table A.1 Course work . 44

x

Chapter 1

Introduction

1.1 Overview

According to Abdallah et al, (Abdallah, Du, & Webb, 2017), the process of data preparation

takes 70-80% of a data scientist’s time. This process consists of gathering the relevant data, and

cleaning and transforming them. These steps are instrumental in ensuring the production of high

quality data which plays a pivotal role in the success of machine learning models. While many

techniques and libraries have been developed to assist in this process, it still remains a time con-

suming and complex endeavor. Our system, KGDataPrep, simplifies this process by providing

recommendations for the best cleaning and transformation operations to use and takes a step to

facilitate data enrichment via primary-key foreign-key detection by detecting similarity inclusion

dependency pairs (sIND).

Despite the inherently time-consuming nature of data preparation, the knowledge gained by the

data scientist remains largely unshared due to a low level of communication between individuals

and teams within the company. Data scientists in a company might communicate their methods and

the resulting findings with a few members within their immediate team, however, the details of their

work will largely remain unshared, as illustrated in 1.1. A data scientist might spend a significant

amount of time developing a Data Science Pipeline (DSP) which could benefit multiple projects

within a company, only for it to be lost within the mountain of documentation created. Furthermore,

junior data scientist will not be able to benefit from the knowledge of their more senior colleagues

1

without having to review documentation.

The redundancy caused by the repetition of similar work by multiple people is detrimental to

productivity. It hinders knowledge sharing and takes time away from other tasks that could be done,

including the machine learning portion of the DSP, which is crucial for addressing important data

science questions. Furthermore, without effective knowledge sharing, it is uncertain whether the

data has been optimally cleaned, once again underlining the importance of establishing a culture

knowledge-sharing through automation (Mansour, Srinivas, & Hose, 2022).

There are currently many public initiatives that endorse knowledge sharing within the data sci-

ence field. Collaborative data science platforms such as Kaggle 1 and OpenML 2 offer a wide range

of datasets as well as their corresponding DSPs. Data scientists of all levels used these platforms

to hone their skills and learn. They mostly do so by participating in competitions and reviewing

other data scientist’s notebooks and tutorials. Data scientists use these platforms to build on each

other’s skills and perfect the steps of the DSP related to a particular dataset. These steps range from

enrichment, to data cleaning, data transformation, and data selection. Given the different formats

in which the datasets can be presented, as well as the different languages in which the DSP can be

written, a unifying factor is needed to facilitate the process of knowledge sharing via automation.

Helali et al. (Helali et al., 2024) has found such a unifying factor in knowledge graphs represent-

ing the datasets as well as their associated DSP. In this work, we explore the concept of information

sharing via knowledge graphs by using them to create models that will facilitate the data preparation

process for data scientist.

1.2 Contributions

This thesis introduces a comprehensive platform leveraging a Linked Data Science Powered

by Knowledge Graphs (KGLiDS) to streamline the data preparation process. Our system revolves

around five distinct models, each serving a specific purpose. Among these models, three are Graph

Neural Network (GNN) models tailored for data cleaning and transformation. One GNN model

specializes in data cleaning, another focuses on unary transformation, and the third handles scaling
1https://www.kaggle.com/
2https://www.openml.org/

2

https://www.kaggle.com/
https://www.openml.org/

The Enterprise Data Lake Machine learning pipelines at Enterprise

1 i mpor t pandas as pd
2 f r om skl ear n. l i near _model i mpor t Ri dge
3 f r om skl ear n. pr epr ocessi ng i mpor t Mi nMaxScal er
5 df = pd. r ead_csv(' sei smi c_act i v i t y. csv')
6 df = df . i nt er pol at e(met hod=' f f i l l ')
7 scal er = Mi nMaxScal er ()
8 df [[' dept h' , ' t ect oni c_shi f t ']] = scal er
9 . f i t _t r ansf or m(df [[' dept h' , ' t ect oni c_shi f t ']])
10 X = df [[' dept h' , ' t ect oni c_shi f t ' , ' i nt enst i t y ']]

 . . .

Data scientist 2

datasets pipelines datasets pipelines datasets pipelines

Data scientist 3 Data scientist 4

datasets pipelines

Data scientist 1

Figure 1.1: Data scientists perform time-consuming, code extensive, and repetitive data preparation
in isolation, however, their insights are rarely shared.

transformation. The last two models are a random forest model and an isolation forest model that

when combined, are used to detect sINDs. To validate the efficacy of our approach, comprehensive

experiments were conducted, benchmarking our models against state-of-the-art (SOTA) systems

operating within a similar functional domain.

The data preparation operations, such as data cleaning and data transformation, are formalized as

multi-class classification where the goal is to predict the most appropriate cleaning or transformation

operations from a predefined set of operations. To create these models, I constructed a data science

knowledge graph from top-rated 1000 Kaggle datasets and 13800 pipeline scripts in the form of

notebooks with the highest number of votes using KGLiDS (Helali et al., 2024). The most common

cleaning and transformation operations used in the extracted notebooks were used as the targets for

the multi-class classification. The GNN models were initialized using the embeddings of the related

dataset created in the profiling phase of the KGLiDS system. For any new datasets, the embeddings

are created before the previously mentioned models are used for inference.

To create the sIND models, the problem of sIND detection is stated as both an outlier detection

problem, and a binary classification problem. The problem type is selected based on the size of the

dataset and the similarity between its columns. Therefore, a combination of both models is used to

3

solve this problem. Datasets from the Prague Relational Repository (Motl & Schulte, 2024) were

used to build a model for sIND as these datasets contained predefined relationships. 19 of the real-

world datasets from the Prague relational repository were used to build the models for sIND. The

features used to build these models were extracted from the knowledge graph built by KGLiDS.

The features used are the normalized Levenshtein distance between the names of the 2 columns, the

similarity score between the 2 columns, the percentage of the values in the dependent column that

were distinct, and the ratio of the size of the dependent column over the referenced column. These

features are used to build both the isolation forest and the random forest models whose combination

leads to our sIND detection system. During inference, KGLiDS is used to create a knowledge graph

for the unseen dataset. The knowledge graph is then queried to create the features used for the

inference for the model.

The contributions of this thesis are:

• GNN models to be used for data cleaning and data transformation.

• A comprehensive evaluation of 13 datasets containing missing values from the AutoML

benchmark and UCI repository using the data cleaning model provided in this thesis as well

as SOTA AIMNET(Wu, Zhang, Ilyas, & Rekatsinas, 2020).

• A comprehensive evaluation of 17 datasets from autolearn’s experimental evaluation (Kaul et

al., 2017), available in the UCI repository (Dua & Graff, 2017) using the data transformation

model provided in this thesis as well as SOTA Autolearn (Kaul et al., 2017).

• A user friendly platform allowing for the cleaning and transformation, as well as the detection

of Inclusion dependencies (IND) and similarity inclusion dependencies (sIND).

• Models to be used for IND and sIND detection

• A methodology for the evaluation sIND detection systems.

• A comprehensive evaluation of 6 datasets from the Prague repository using the sIND detection

model provided in this thesis as well as SOTA SAWFISH (Kaminsky, Pena, & Naumann,

2023).

4

1.3 Outline

This thesis consists of six chapters that delve into the details behind the approach followed to

automate the problem of data preparation. Chapter 2 will be an overview of the related literature in

areas related to data cleaning, data transformation, as well as sIND detection. Chapter 3 provides

the required background into the KGLiDS system, laying the groundwork for understanding the

inner workings of the models used for data cleaning and transformation, as well as the IND and

sIND detection. Chapter 4 presents the steps taken to prepare the data cleaning and transformation

GNN models, from preparing the KGLiDS knowledge graph, to training the GNN and setting up

the inference, as well as the experiments done to establish these models as equal to or exceeding

SOTA systems. Chapter 5 presents the problem of sIND detection, and elaborates on the steps used

to develop a model to detect sIND, as well as the experiments done to ensure the quality of this

model. Chapter 6 is a conclusion of the work done to date, followed by a recommendation for the

work to be done in the future.

5

Chapter 2

Related Works

This chapter surveys previous work done in the data preparation space. Although much work

has been done in developing ways to help data scientists prepare their data for machine learning, a

majority of that work is focused on improving one aspect of data preparation. Our system allows

for both cleaning and transformation of datasets, as well as sIND detection.

Systems such as Holoclean (Wu et al., 2020) and Datawig (Biessmann et al., 2019) have focused

on data cleaning, while others such as Autolearn (Kaul et al., 2017) and the framework Learning

Feature Engineering (LFE) (Nargesian, Samulowitz, Khurana, Khalil, & Turaga, 2017) which focus

on feature transformation. Systems such as DataPrep (Peng, Wu, Lockhart, & et al, 2021) and Data

Civilizer (Rezig et al., 2019) have chosen a more holistic approach and cover multiple steps of the

pipeline. SAWFISH (Kaminsky et al., 2023) introduces and explores the concept of sIND, separate

from any other data preparation techniques.

2.1 Cleaning

Data cleaning is an important step of the data preparation process. While data preparation

can encompass a variety of tasks, such as missing value imputation, error correction and outlier

detection, our focus will be on systems that have been developed to address the challenge of missing

value imputation, as it is the aspect of data cleaning that we have chosen to focus on in this thesis.

6

2.1.1 Holoclean

Holoclean (Wu et al., 2020) uses statistical learning and inference to unify a range of data-

repairing methods. In its most recent version, Aimnet, the user can choose to specify a set of denial

constraints to facilitate the data cleaning process. Aimnet cleans datasets of duplicates, spelling er-

rors, and constraint violations. It does so by converting discrete values to embeddings and applying

z-score normalization to continuous values. It is trained using self-supervised gradient descent-

based end-to-end learning. AimNet applies a multi-task loss approach to datasets containing both

numerical and categorical values. This allows it to address both regression (for continuous data)

and classification (for discrete data). The Categorical Cross Entropy (CCE) loss is then computed

between the predicted probabilities and the actual target value in the dataset. Aimnet has shown

promising results for mixed-type data imputation. However, it can be a resources intensive system

to run for larger datasets.

2.1.2 Datawig

Datawig (Biessmann et al., 2019) is an open-sourced library for missing value imputation.

DataWig uses deep learning feature extractors, combined with automatic hyper-parameter tuning

in order to impute values to clean data. Datawig follows the method of Multivariate Imputation

by Chained Equations (MICE) (van Buuren & Groothuis-Oudshoorn, 2011), a method that imputes

each missing value by considering all other columns in the dataset, for each column in need of

cleaning. Datawig also allows for the user to specify similar columns that will facilitate the impu-

tation process. Due to its usage of the MICE method, the training time for this system will increase

with the dataset size.

2.2 Transformation

Data transformation can be defined as any systematic change to the data that would enhance its

comprehensibility for humans and/or models. Although there exists several systems that transform

a dataset’s features into more meaningful features, each comes with their set of advantages and

disadvantages as explained below.

7

2.2.1 Autolearn

Autolearn (Kaul et al., 2017) is a regression-based feature learning algorithm. An important

advantage of Autolearn is its ability to create and transform features without any domain knowledge.

It ranks the features of a dataset based on their information gain. Features with an information

gain higher than a user-defined value (0 as default) are then selected. The algorithm employs the

distance correlation to identify pairwise correlated features, classifies them into linear and non-

linear correlations, and generates informative new features. Stability calculations are then done

via sub-sampling as well as the use of selection algorithms (regression, SVM,...). The features

are ranked based on stability and information gain, with only the top ones being selected. While

Autolearn can provide robust feature transformations for datasets containing both numerical and

categorical values, its time and memory consumption remains a challenge. The original dataset’s

row and feature count, inter-feature correlations, created features, and the chosen feature quantity,

all impact Autolearn’s memory usage. Hence, the dataset’s absolute size is not the primary factor

influencing memory usage in Autolearn’s transformation. In fact, due to the unpredictable nature of

the feature engineering algorithm, it is difficult to estimate the time requirements of the system for

a given dataset.

2.2.2 LFE

The LFE framework (Nargesian et al., 2017) offers automated feature engineering for classifica-

tion tasks by training a set of neural networks to predict the highest impacting transformation to be

done on a dataset. These Multi-Layer Perceptron (MLP) classifiers each correspond to a transforma-

tion, allowing the classifier to predict whether the transformation will result in a more meaningful

feature than the input feature, given the prediction target. LFE is trained on features represented

by Quantile Data Sketch (QDS) for 10 unary transformations (log, square-root, frequency, square,

round, tanh, sigmoid, isotonic regression, z-score, normalization) and 4 binary transformation (sum,

subtraction, multiplication, division) using both the Random Forrest and Logistics Regression mod-

els. While LFE has obtained great results, it is limited in the transformation options it offers.

8

2.3 Holistic systems

Some systems and tools have taken a more holistic approach, with DataPrep (Peng et al., 2021)

and Data Civilizer 2.0 (Rezig et al., 2019) being the most prominent ones. However, the data

preparation steps provided by these systems are different from those provided by KGDataPrep,

preventing their usage as a fair benchmark during experimentation.

2.3.1 DataPrep

DataPrep (Peng et al., 2021) is an Exploratory Data Analysis (EDA) tool for statistical model-

ing, which aims to facilitate the user’s understanding the via data manipulation and visualization.

DataPrep aims to be an interactive and easy to use tool providing a wide range of EDA tasks with

different levels of granularity. DataPrep allows for data profiling and data cleaning by providing the

option to identify missing values and drop them from the dataset. It also helps with feature selection

by providing a correlation matrix of features selected by the user.

2.3.2 Data Civilizer 2.0

Data Civilizer 2.0’s (Rezig et al., 2019) goal is to provide an end-to-end workflow for data

cleaning and machine learning, as well as a debugger and a workflow visualization system. The

system is divided into the three following components: The user-defined modules, a debugger, and

a visualization tool, with the data cleaning and machine learning happening in the user-defined

modules. This module allows for data profiling and data cleaning, in addition to providing data

enrichment by allowing the user to joins and unions on the data.

2.4 Similarity Inclusion Dependency (sIND)

The concept of similarity inclusion dependency (sIND) is a novel approach to Inclusion De-

pendency (IND) detection proposed by (Kaminsky et al., 2023), which aims to identify Inclusion

Dependencies (INDs) within real-world datasets. Unlike traditional methods for IND detection,

which required clean data where dependencies held without exception, sINDs introduce a more

flexible framework. They allow for the detection of INDs between columns even in the presence of

9

typos or variations in formatting, therefore removing the stringent constraints associated with other

IND detection methods. This novel concept expands the applicability of IND detection techniques

to potentially imperfect datasets, opening new avenues for data analysis.

2.4.1 SAWFISH

SAWFISH employs a meticulous preprocessing approach to prepare the data for analysis. It

initially organizes all unique values within a column based on their length, sorting them from longest

to shortest. Subsequently, pairs of values whose string sizes do not align are eliminated. These pairs

would include any pair where the shortest value in the dependent column is smaller than the shortest

value in the referenced column, minus the user-specified threshold.

SAWFISH then builds an inverted index for the referenced columns. It does so by dividing

each value into strings of size T+1 where T is a user-specified threshold. This index facilitates

efficient searching and retrieval of relevant information during the validation process. To validate the

resulting dependent values, SAWFISH compares all substrings of equal length from the dependent

column with the corresponding segment of the inverted index for the referenced column. This

rigid and time-consuming validation process ensures that all dependencies between columns in the

dataset are correctly identified.

10

Chapter 3

Linked Data Science Powered by

Knowledge Graphs (KGLiDS)

Effective knowledge sharing among data scientists is crucial to both the development of indi-

vidual data scientists and that of their teams. The lack of knowledge sharing amongst data scientists

and its repercussions on their work, has created the need for an automated knowledge sharing sys-

tem. The concept of linked data science has surfaced as a way to unify data science artifacts from

various data science pipelines (DSP) into a cohesive framework by abstracting them. KGLiDS

(Knowledge Graph-based Linked Data Science) (Helali et al., 2024) creates a knowledge graph by

abstracting datasets and their related DSPs. KGLiDS aims to propel the field of data science forward

by dismantling the barriers to knowledge sharing.

As it stands currently, data scientists often work in isolation, or within a small silo consisting

of a few team members. This isolation is far from optimal when it comes to knowledge sharing.

Work done by a data scientist or a data science team can be forever forgotten if it does not have an

immediate business impact. This is not only detrimental to the individual data scientist, but also to

the entire company or community. Having a tool to encourage or even automate knowledge sharing

is a great advancement to the field.

In the quest to advance data science methodologies, the concept of linked data science (Helali

et al., 2024) emerges as a new approach, aiming to forge an integrated framework that seamlessly

11

interconnects a myriad of data science artifacts. Linked data science represents a shift in paradigm,

where datasets, pipeline scripts, and code libraries are no longer viewed as isolated parts, but rather

as interconnected elements within a broader ecosystem. By capturing the semantics of these arti-

facts, linked data science facilitates the formation of novel connections, thereby fostering a richer

and more comprehensive understanding of the subject area under investigation.

An essential benefit of linked data science lies in its abstraction of data science artifacts. Through

the creation of abstractions for data or data science pipelines, experts from various domains can

leverage each other’s expertise based on the similarity of their data. This fosters a more enriched

environment for learning.

Moreover, the abstraction consolidates the artifacts, simplifying their exploration for all users.

Data scientists are no longer required to invest hours in opening multiple Excel files to discern the

connections between various elements of a dataset. Instead, they can easily refer to the dataset

abstraction, and obtain a significant amount of information. Creating an abstraction of data science

artifacts also has the intended effect of making data manipulation scalable.

KGLiDS has been introduced as an innovative platform designed to facilitate the application of

linked data science at scale. KGLiDS employs machine learning methodologies to extract valuable

insights from data science artifacts, and subsequently create a knowledge graph. This knowledge

graph, as seen in Figure 3.1 contains a homogeneous set of nodes and edges describing elements

from a datasets such as its tables and columns, thus, embodying the concept of linked data science.

The three fundamental components in KGLiDS are Data Profiling, Knowledge Graph Construc-

tion, and Pipeline Abstraction. Data profiling provides insights into the charcteristics of the dataset.

The knowledge graph simplifies the process of querying these characteristics and provides signif-

icant connection between columns and datasets. The pipeline abstraction, analyzes the pipeline

provided in the notebooks associated with datasets and enriches the knowledge graph with informa-

tion related to the data science pipeline.

12

Figure 3.1: An example of the data science KG constructed using KGLiDS and augmented by our
system with semantics related to data cleaning and transformation in green.

3.1 Data Profiling

The data profiler learns representations of columns and tables, and uses them to generate fixed-

size embeddings based on a column’s content and semantics. This profiler undertakes three primary

tasks: gathering statistics pertaining to dataset columns, categorizing columns into seven distinct

data types, and creating fixed-size column embeddings specific to each column.

For each column in the dataset, the following statistics are calculated: total count of the values,

the count of distinct values, the count of missing values, the minimum, maximum, mean, and median

13

values of the column, as well as its interquartile range. These statistics provide an abstraction of

the dataset, and allow for connections to be made between dataset without the need to store large

amounts of data. Examples of the used of these statistics to make further connections can be seen

in chapter 5.

KGLiDS also classifies columns into 7 fine-grained types: integers, floats, booleans, dates,

named entities, natural language texts, and generic strings. Of these datatypes, the classification of

the interger, float, boolean, and date types is done using pre-existing libraries such as the Numpy

(Harris et al., 2020) and dateparser libraries. Named entities are detected using a pre-trained named

entity recognition (NER) model (Peters, Ammar, Bhagavatula, & Power, 2017), allowing for the

recognition of 18 different entity types. Natural language texts, which consists of texts such as

product reviews, or comments, are predicted based on assessing the presence of corresponding word

embeddings for their tokens in the fast text model (Bojanowski, Grave, Joulin, & Mikolov, 2016).

All remaining string values are considered generic strings. Detecting the columns’ data type is a

foundational step for both the column embedding of the data profiler, as well as the graph generation

portion of KGLiDS.

During profiling, column embeddings are created and stored as (300,1) fixed-sized arrays. These

embeddings are created using pre-trained embedding models specific to each of the 7 fine-grained

types. These embeddings are are fixed-sized abstractions of the column. This makes them valuable

to be used to generate meaningful relationships between columns during knowledge graph gen-

eration, as well as for any other application requiring the identification of relationships between

columns as seen in Chapter 5. A major advantage of these embeddings is their fixed size as it allows

for a stable runtime regardless of dataset sized.

3.2 Knowledge Graph Construction

KGLiDS leverages the LiDS Ontology to ensure the construction of a standardized knowl-

edge graph. This ontology contains all entities involved in a data science pipeline, including data,

pipelines, and libraries, as well as the relationships amongst them. It contains 13 classes, 19 object

properties, and 10 data properties, and employs the Web Ontology Language (OWL 2) and Uniform

14

Resource Identifiers (URLs) to facilitate the publication and sharing of the LiDS graph on the Web.

Every entity in the ontology is provided with an RDF label and RDF type, which facilitates RDF

reasoning on the LiDS graph.

Artifacts such as datasets, tables, columns, libraries, and pipeline scripts, are depicted as nodes

in the knowledge graph. These nodes are interconnected by edges illustrating various relationships,

including the hierarchical relationships among artifacts (ie: Column isPartOf Table), the similarity

between columns (ie: Column1 columnSimilarity Column2 withCertainty X, where X is a value be-

tween 0 and 1), as well as the code flow between pipeline statements (ie: Statement1 hasNextState-

ment Statement 2).

These connections can be seen in Figure 3.1 where the dataset earthquake which was extracted

from Kaggle contains the two tables ‘seismic log.csv’ and ‘quake stats.csv’, both of which have

their own columns, including columns ‘id’ and ‘quake id’. All of the relationships between columns

and their associated table are illustrated using the isPartOf edge. The relationship between the

columns ‘id’ and ‘quake id’, however, is illustrated via the edge columnSimilarity with the certainty

of that similarity being 1.

Overall, the LiDS graph establishes an effective navigational structure and fosters meaningful

connections among physical data science artifacts, empowering data scientists to explore, exchange,

and learn from them more effectively.

Given the profiles for the columns generated during data profiling, an individual knowledge

graph is constructed for each column of the dataset. This knowledge graph will contain the statistics

of the column, its data type, as well as the dataset and table that it belongs to.

Given a columns data type and its column embeddings, as well as a user-defined similarity

threshold, the column knowledge graph are linked to one another by their label and content similar-

ities. Label similarities is the similarity between two columns based on their column names using

GloVe Word embeddings (Pennington, Socher, & Manning, 2014) and a semantic similarity tech-

nique (Goikoetxea, Agirre, & Soroa, 2016). Content similarity is similarity between the embedding

of column of the same data type. Both similarities have an associated score from 0 to 1 in the

knowledge graph.

A higher similarity threshold set by the user results in less connections to be made. However,

15

the accuracy of the connections made will be higher. These connections can be used to discover im-

portant relationships between columns, as we shall see in the discussion of our similarity inclusion

dependency detection technique in Chapter 5.

3.3 Pipeline Abstraction

Datasets from kaggle have many notebooks associated to them. The pipeline abstraction portion

of KGLiDS can extract these notebooks from Kaggle and extract the operations used in them. The

LiDS graph contains several nodes relating to the abstraction of the statements in the pipelines re-

lated to a dataset. These nodes can be libraries, packages, classes or functions. During the pipeline

abstraction, the notebook containing the data science pipeline is processed by the statement. Each

statement then becomes a node containing various edges such as hasNextStatement which shows

the codeFlow of the pipeline from one statement to the next. The statements are then linked to

the library or function they call via the callsLibrary and callsFunction edges. The isPartOf rela-

tionship between the libraries, packages, classes, and functions are extracted from each library’s

documentation allowing for the pipeline abstraction code to make these connections.

Figure 3.1 shows the application of several data science operations on columns and tables, such

as the application of the ”sqrt” operation from the numpy library on the column ‘shift’ in the pipeline

‘P2’, statement ’S2’.

The above mentioned pipeline abstraction lays the foundation necessary for building the clean-

ing and transformation models mentioned in 4.

16

Chapter 4

On Demand Data Preparation

Data preparation is the process of preparing raw data to be used for machine learning. It is

a critical step in the machine learning process that has created a bottleneck in the data analysis

process by taking 70-80% of data scientists’ time (Abdallah et al., 2017). In other words, time that

could be spend analyzing data and building models is being spent preparing the data for these tasks.

Automating the data preparation process to free data scientists to do tackle the problems of data

analysis and machine learning is the main motivation of this work.

There are various steps that can be used to prepare data for machine learning, chief amongst

them are data cleaning and data transformation. Data cleaning involves any operation or series

of operations identifying and correcting missing values or inconsistencies in datasets to improve

their use in machine learning. The focus of the data cleaning process will be on missing value

detection and imputation. Data transformation is the process of converting values in the dataset

into more palatable formats for machine learning models. Several data cleaning and transformation

operations are integrated in KGDataPrep’s recommendation models.

Chapter 3 provided a basis for understanding the knowledge graph created by KGLiDS. This

chapter, will elaborate in the use of Graph Neural Networks (GNN) for node prediction and how the

information generated by the KGLiDS graph is used to create GNN models that will recommend

data preparation steps in KGDataPrep.

17

Table 4.1: Specifications of the GNN models used for cleaning, scaling transformation and unary
transformation used in KGDataPrep

Specification Cleaning model Scaling model Unary model

Number of layers 1 1 1
Hidden Channels 64 128 64
Dropout 0.5 0.5 0.5
Learning rate 0.005 0.005 0.002
Epochs 30 30 15
Runs 3 3 3
Batch size 10000 10000 10000
Walk length 4 4 4
Number of steps 30 30 10

4.1 Graph Neural Networks (GNN)

Knowledge graphs, which are structured as heterogeneous graphs, represent a sophisticated

way to model complex domains. In these graphs, nodes signify different classes or entities, while

edges illustrate the relationships between them. Heterogeneous Graph Neural Networks (HGNNs)

are great tools to analyze knowledge graphs. HGNNs excel in tackling a variety of challenges

inherent to knowledge graphs, including node classification, entity alignment, and link prediction.

Node classification involves assigning categories to nodes based on their features and the graph’s

structure. Entity alignment focuses on identifying and linking equivalent entities across different

knowledge graphs, facilitating data integration and interoperability. Link prediction aims to infer

missing relationships between entities.

Relational Graph Convolutional Networks (R-GCNs) (Schlichtkrull et al., 2018) are an appli-

cation of HGNNs in both node classification and link prediction problems. By incorporating the

relational structure of the graph into the learning process, R-GCNs improves the model’s ability

to generalize and make accurate predictions across different types of relationships and entities.

This capability underscores the transformative potential of HGNNs in harnessing the full power of

knowledge graphs for diverse analytical applications.

The RGCN pre-trained models presented in the following section are the building blocks of

KGDataPrep. The specification for these models can be found in Table 4.1.

18

Table 4.2: Cleaning operations used and their associated libraries

Cleaning Operation Library Application

Fillna Pandas Fill the missing value with the mean in the case of numer-
ical values and the most common value in the case of non-
numerical values

SimpleImputer Scikit-Learn Impute the missing values using the most frequent value
KNNImputer Scikit-Learn Impute for missing values using the k-Nearest Neighbors
IterativeImputer Scikit-Learn Imputes missing values by modeling each column contain-

ing missing values as a function of other columns in the
dataset in a round-robin fashion.

Interpolation Pandas Fill the missing value using the linear method for numeri-
cal values and the pad method for non-numerical values

4.2 Cleaning

Data cleaning is a fundamental step in the data preparation process. A major task in data clean-

ing is dealing with missing values, which are often present in most real world datasets. Ensuring

that missing values are properly handled will ensure the integrity of the data and improve the results

for any data analysis or machine learning that is required to be done on it. This section will delve

into the anatomy of the KGLiDS graph used to train the cleaning model, expand on the training

and inference of the the data cleaning GNN model, and the experiments performed to ensure its

competitiveness with other SOTA systems.

4.2.1 Knowledge graph preparation

In order to build the GNN model for data cleaning, the KGLiDS graph for the training data

needs to be built. This data consists of 1085 of of the top voted datasets in Kaggle, containing

3226 tables and 10349 pipelines. The KGLiDS graph is constructed to capture the relationships and

features within the data. This graph encompasses various types of nodes and edges, representing

essential elements and connections within the datasets.

The graph includes nodes such as “Table”, “Column,” and “Path”. which are inherent to the

actual dataset. Additionally, it incorporates edges like “hasContentSimilarity”, “hasMissingValue-

Count,” and “isPartOf” to model the relationships within the dataset itself.

19

Figure 4.1: An example of the data science KG used for training and inference.

Furthermore, the graph is enriched with nodes such as “OperationCount”, “hasSimpleImputer-

Count” “hasKNNImputerCount”, and “hasFillnaCount”. These nodes are introduced through the

profiling of notebooks associated with the datasets, and represent different data cleaning operations

and techniques used in the data preprocessing phase.

Notably, different notebooks may employ distinct cleaning operations on the same table. To

express this diversity, two types of triples are used to convey the cleaning operations applied to a

table: “<Table><hasCleaningOperation><CleaningOperation>”, and “<Table><hasXCount>

<OperationCount>” where X is the cleaning operation being counted. An example can be seen

in Figure 4.1 , where the triple “<quake states.csv><HasCleaningOperation><Fillna>” indi-

cates that the “Fillna” operation is the most commonly used cleaning operation for a specific ta-

ble. This conclusion is reached by inspecting the triples involving this table and the object Op-

erationCount. There exists 3 such triples: “<quake states.csv><hasSimpleImputerCount><1>”,

“<quake states.csv><hasFillnaCount><3>”, and “<quake states.csv><hasKNNImputerCount>

<2>”. Given that the predicate ‘hasFillnaCount” has the highest operation count, meaning that 3

out of the 6 notebooks related to the quake state.csv table have used this operation in their cleaning

process, “Fillna” is chosen as the optimal cleaning operation for this table.

20

4.2.2 Training

The task of data cleaning recommendation is formalized as a GNN node classification problem.

Given a dataset D with missing values M = {m1,m2, ...,mn} and a machine learning task L, the

goal is to predict the cleaning operation cr ∈ C to handle M such that the accuracy of L is improved

based on the cleaning techniques applied by other data scientists in other datasets similar to D.

In the training phase, the kglids graph is encoded, with the target relation being ‘HasCleaning-

Operation’ and the label node designated as ‘Table’. A Relational Graph Convolution Network

(RGCN) is employed to build a model that will predict the node associated with the edge ‘HasCle-

aningOperation’ for a given table node.

The RGCN model is initialized using table embeddings, which are derived from kglids’ col-

umn embeddings. These embeddings are calculated by averaging the embeddings of the columns in

the table that contain missing values. Separate averages are computed for each of our fine-grained

types(7) and then concatenated. As kglids’ embeddings are of length 300, and boolean types do

not have CoLR embeddings, the embeddings used to initialize the RGCN model are of length 1800.

Figure 4.2 demonstrates the embedding creation process for the table quake stats.csv where the

embeddings for columns containing missing values with the same data type are averaged, and con-

catenated together, with the data types not represented in the table being given an embedding of 0.

Given that the output of the model can be one of 5 cleaning operations seen in Table 4.2, the RGCN

will have 1800 input channels and 5 output channels. The RGCN model will only have one layer as

there is only one edge between a given table and its cleaning operation.

The resulting model is capable of predicting the node associated with a given table in the context

of cleaning operations.

4.2.3 Inference

During inference, the models previously created are used to make prediction for unseen datasets.

To do so, the dataset to be tested is converted to a graph using KGLiDS, before being encoded. The

encoded graph and the GNN model previously trained are then used for inference. The results of

the inference are then decoded before being output to the user.

21

Figure 4.2: The embeddings of all columns containing missing values (quake id, geolocation, and
shift) are aggregated by data type and concatenated to create the table embeddings.

KGLiDS transforms the test datasets into a knowledge graph comprising of “Table” and “Col-

umn” nodes, connected by the “isPartOf” edge type. This knowledge graph is then encoded with

the same encoding used during training.

The previously created RGCN model is loaded for inference. Given that the test dataset typically

consists of a single table, the embedding for that table is calculated by averaging the embeddings of

all columns with missing values belonging to the same fine-grained type and concatenating them.

These embeddings are used to initialize the RGCN model.

The model’s output is a value within the range of 0 to 4, which can then be decoded to determine

one of the five possible cleaning operations applied to the table. This inference process allows for the

identification of the relevant cleaning operation associated with the table within the given dataset.

As seen in Figure 4.3, the top 3 predictions will be output in order of likelihood, giving the user the

22

Figure 4.3: The output of the cleaning recommendation where the column ‘Cleaning Operation’
determines the recommended operation while the column ‘Features’ contains the name of the fea-
tures said operation should be applied on.

option to use operations other than the top recommendation.

4.2.4 Experiments

This experiment provides a comparison of KGDataPrep’s cleaning capabilities against Holo-

clean, the SOTA general cleaning platform. Holoclean uses statistical learning and inference to

unify a variety of data cleaning methods. In order to create a fair testing environment, I used Aim-

net (Wu et al., 2020), the most recent version of the Holoclean system. In this version, users are

not required to specify a set of denial constraints, which helps put both systems on equal footing.

Furthermore, only the null detector portion of Holoclean was used and the fine-tuning parameter

were set at their default in accordance with Holoclean’s GitHub repository 1.

To ensure a natural and varied pattern of missing values in the dataset, 8 datasets from an

AutoML benchmark (Helali, Mansour, Abdelaziz, Dolby, & Srinivas, 2022) that contained missing

values as well as five datasets from the UCI repository (Dua & Graff, 2017) were used to conduct

this experiment. To evaluate the quality of KGDataPrep’s data cleaning, the datasets were cleaned

using KGDataPrep, as well as Holoclean and a baseline approach in which all rows with missing

values are dropped. The cleaned datasets are then used for the machine learning task of classification

using the Random Forest classifier and a ten fold cross-validation. The metric used to evaluate

KGDataPrep’s cleaning capabilities is the F1 scores of the random forest classifier. Given that the

purpose of data cleaning in the context of data preparation is to improve the quality of the data

used for machine learning, measuring the final machine learning score for the cleaned dataset is an

optimal way of measuring the success of the data cleaning process. Furthermore, as an interactive
1https://github.com/HoloClean/holoclean/tree/latest-aimnet

23

https://github.com/HoloClean/holoclean/tree/latest-aimnet

data cleaning process is valuable, the systems are also evaluated in terms of their execution time and

memory usage.

As shown in table 4.3 KGDataPrep’s F1-scores are consistently better or comparable to those

of Holoclean as well as the baseline method. Furthermore, the dataset size and its percentage of

missing value does not hinder the completion of the cleaning task as can be the case for both the

baseline method and Holoclean.

However, the main advantage of KGDataPrep is in its ability to perform as an interactive sys-

tem as it outperforms Holoclean significantly in 85% of datasets in terms of execution time. This

processing speed allows for data scientists to integrate my system within their data science pipeline

without the need to account for the time required for the cleaning to be completed.

Furthermore, KGDataPrep outperforms Holoclean in 38% of datasets in terms of memory usage,

as illustrated in Figure 4.4. Holoclean failed with out-of-memory errors while attempting to clean

datasets #11, #12, and #13, and was therefore unable to complete the cleaning process for these

datasets with the existing RAM of 189GB. It is important to note that the largest dataset being tested,

albert, has a size of 156 MB, presenting a genuine scalability challenge for Holoclean. This is

due to Holoclean generating multiple tables containing dataset information throughout its cleaning

process. These newly generated tables cause Holoclean’s memory requirements to increase as the

dataset size increases. In contrast, KGDataPrep’s memory usage remains relatively stable regardless

of the dataset size due to its models’ fixed-size embeddings.

KGDataPrep’s cleaning system provides competitive data cleaning, both in terms of the resulting

machine learning score, as well as its seamless integration into an interactive data science pipeline

due to its fast processing and low memory usage.

4.3 Transformation

Data transformation is the process of transforming data from one representation to another.

There can be many motivations behind data transformation, such as changing the distribution of

a feature to generate a more symmetric distribution, improve visualization, or the compatibility

of the data with modeling processes (Abdallah et al., 2017). Unlike data cleaning, several data

24

Table 4.3: F1-Scores for Data Cleaning: The performance of our system vs Holoclean’s Aim-
net using multiple ML tasks on 13 datasets. Our system slightly outperforms Holoclean in small
datasets and successfully completes the task for larger datasets while Holoclean encountered an
out-of-memory (OOM) issue.

ID - Dataset Baseline Holoclean KGDataPrep

1 - hepatitis 69.76 67.78 69.35
2 - horsecolic 00.00 82.28 85.38
3 - housevotes84 96.10 96.64 95.89
4 - breastcancerwisconsin 97.43 95.93 96.85
5 - credit 88.11 86.95 88.17
6 - cleveland heart disease 28.31 27.51 25.50
7 - titanic 70.68 81.89 82.63
8 - creditg 00.00 65.63 66.63
9 - jm1 61.59 60.55 61.55
10 - adult 79.15 78.49 79.46
11 - higgs 71.70 OOM 71.73
12 - APSFailure 91.49 OOM 90.89
13 - albert 00.00 OOM 66.70

transformation operations can be applied on the same data. Choosing the correct data transformation

operation requires an understanding of the data distribution as well as the field the data is related

to. In this section, I will discuss the anatomy of the KGLiDS graph used to train our transformation

model, expand on the training and inference of the KGDataPrep’s data transformation GNN model,

and the experiments performed to ensure its competitiveness with other SOTA systems.

4.3.1 Knowledge graph preparation

The recommendation models for transformation have as their starting point the same 1085

datasets as the data cleaning model. KGLiDS is used to profile and create a knowledge graph.

However, the transformation knowledge graph is enriched by profiling of notebooks associated with

the datasets with nodes containing transformation operations such as “StandardScaler”, “MinMaxS-

caler”, “RobustScaler”, or “sqrt” and “Log” and edges “HasUnaryOperation”, “HasScalingOpera-

tion”, “StandardScaler”, “MinMaxScaler”, “RobustScaler”, “Sqrt”, and “Log”. The existence of

two edges instead of one is due to the nature of data transformation as some data transformation op-

erations are more suitable to be applied only to specific columns, hereafter called unary operations,

25

Figure 4.4: The performance of KGDataPrep vs Holoclean’s Aimnet on the 13 datasets from 4.3.
These results are obtained using a VM with 189 GB of RAM. Datasets are sorted by size in in-
creasing order. (a) The X-axis represents the dataset ID, and the Y-axis is the time consumed by
each system. KGDataPrep provides a processing time considerably lower than that of Holoclean.
(b) The X-axis represents the dataset ID, and the Y-axis is the memory usage consumed by each
system. KGDataPrep works with a near constant memory usage while Holoclean’s memory usage
changes significantly depending on the dataset.

while others tend to be applied to the entirety of the dataset, hereafter called scaling operation.

Notably, different notebooks may employ distinct transformation operations on the same table.

To express this diversity, four types of triples are used to convey the transformation operations ap-

plied to a table. For instance, a triple like “<Table><HasScalingOperation><StandardScaler>”

indicates that the “StandardScaler” operation is the most commonly used transformation operation

for a specific table. In a similar fashion, a triple like “<Column><hasUnaryOperation><Sqrt>”

indicates that the “Sqrt” operation is the most commonly used transformation operation for a specific

column. Another triple, “<Table><hasStandardScalerCount><Value>” signifies the number of

notebooks that applied the “StandardScaler” operation to the table, while “<Column><hasSqrtCount>

<Value>” indicated the number of columns on which Sqrt was applied.

26

Table 4.4: Transformation operations used and their associated libraries
Transformation
Type

Transformation
Operation

Library Application

Scaling Operation StandardScaler Scikit-Learn This function standardizes all features
in the dataset by removing the mean
and scaling them to unit variance.

RobustScaler Scikit-Learn This function removes the median and
scales all features according to their de-
fault quantile range of 25 to 75.

MinMaxScaler Scikit-Learn This function transforms all features in
the dataset by scaling them to the de-
fault range of 0 to 1.

Unary Operation Sqrt Numpy This function applies the Sqrt trans-
former to the absolute value of all fea-
tures in the dataset for which it has
been recommended.

Log Numpy This function applies the Log trans-
former to the absolute value of all fea-
tures in the dataset for which it has
been recommended.

NoUnary N/A This function does not apply any Unary
transformation on the features of the
dataset for which it has been recom-
mended.

4.3.2 Training

The task of data transformation recommendation was formalized as a GNN node classification

problem. Given a dataset D with features F = {f1, f2, ..., fn} and a machine learning task L,

the recommendation task is to predict a set of transformations T = {t1, t2, ..., tm} to improve the

accuracy of L based on the transformation techniques applied by other data scientists in the past on

datasets and features similar to D and F , respectively.

The graph used to create the GNN model contains the tables used for training, their features,

including their columns, as well as the associated applied data transformation operations. These

operations consist of scaling transformations provided in the Scikit-learn library: StandardScaler,

MinMaxScaler, RobustScaler and common unary transformation operations from the NumPy and

Scikit-learn libraries: Log, and Sqrt.

Scaling transformations are performed on the entire dataset, ensuring that all features are appro-

priately scaled. Therefore, to create the scaling recommendation model, the CoLR embeddings for

all columns of the same data type in a table are averaged, and the averaged CoLR embeddings of all

27

data types are concatenated to create a comprehensive representation of the table. Unary transfor-

mations are performed on columns. Thus, the columns of a table are associated with their respective

CoLR embeddings. The scaling and unary models are initialized with the table and column CoLR

embeddings respectively and will in turn recommend a scaling transformation for tables and unary

transformations for columns.

4.3.3 Inference

The inference phase is very similar to that of data cleaning. The dataset to be tested is trans-

formed into a knowledge graph using KGLiDS. This graph is subsequently encoded.

The inference for the scaling and unary operations is done separately, as each have their own

RGCN models. First, the scaling model is loaded. Given that the test dataset typically consists

of a single table, the embedding for that table is calculated by averaging the columns of the same

fine-grained data type and concatenating them. These embeddings are used to initialize the RGCN

model. The model’s output is a value within the range of 0 to 2, which can then be decoded to

determine one of the three possible scaling operations applied to the table. This inference process

allows for the identification of the relevant scaling operation associated with the table within the

given dataset.

Once the inference for scaling is completed, the RGCN for unary operations is loaded. In

this model, recommendation is for transformation operations to be applied on individual columns,

therefore, the initialization is done using column embeddings. For each column, the output is a

value from 0 to 2. The columns are then grouped by output and the numerical output values are

mapped to a Sqrt operation, a Log operation or no unary operation at all.

The 3 scaling as well as the 3 unary predictions will be output in order of likelihood as show

in Figure 4.5. This gives the the user the option to use operations other than the top recommended

operation.

28

Figure 4.5: The output of the transformation recommendation where the column ‘Recom-
mended transformation’ determines the recommended operation, the column ‘Recommendation’
contains the priority of the recommendation with rec1 being the top recommended operation, and
the column ‘Feature’ contains the name of the features said operation should be applied on.

4.3.4 Experiments

I evaluated the transformation recommendation model to assess its effectiveness. To achieve

this, I compared KGDataPrep’s transformation recommendation model to the SOTA system, Au-

tolearn (Kaul et al., 2017). This system was chosen as our comparison system of choice, as it was

the most recent system offering transformation with an available codebase, allowing us to run ex-

periments to compare both systems. Autolearn is a regression-based feature learning algorithm,

as well as a baseline for which no data transformation was applied to the dataset. I evaluated the

accuracy of the final machine learning task applied on the datasets, the processing time of the sys-

tems as well as their memory usage. The results from these comparisons situates our transformation

recommendation model within the data transformation space.

I used 17 of the datasets from Autolearns experimental evaluation, which are available in the

UCI repository (Dua & Graff, 2017), as seen in Table 4.5. Similar to the data cleaning evalua-

tion, I applied the transformation techniques from KGDataPrep and Autolearn to the dataset before

training and testing the data using a Random Forest 5-fold cross-validation classification task.

As the metrics used in the Autolearn paper was the accuracy, I also presented the results in

terms of the accuracy of the final classification task. I did not manage to reproduce the reported

results of Autolearn using the default parameters of its GitHub repository 2. Therefore, both the

published results from the Autolearn paper and the results I obtained by running the system are

shown in Table 4.5. Based on the results in this table, KGDataPrep consistently matches or surpasses
2https://github.com/saket-maheshwary/AutoLearn/tree/master

29

https://github.com/saket-maheshwary/AutoLearn/tree/master

Autolearn’s accuracy.

I also measured the processing time required by each of these methods. To ensure interactiv-

ity, a three-hour time limit was imposed on the systems. KGDataPrep significantly outperformed

Autolearn in execution time, particularly with larger datasets. While Autolearn timed-out while

transforming these datasets, KGDataPrep successfully completed the transformation in a time frame

orders of magnitude smaller.

Finally, the memory usage of both systems was compared. As shown in Figure 4.6, KGDat-

aPrep maintains a stable memory usage as data size grows. This is due to its use of fixed-size

embeddings. However, to create its features, Autolearn employs distance correlation to identify

pairwise correlated features, and classifies them into linear and non-linear correlations. Due to this

elaborate process, the original dataset’s row and feature count, the inter-feature correlations, the

created features, and the number of chosen features all impact Autolearn’s memory usage. Hence,

the dataset’s absolute size is not the primary factor influencing memory usage in Autolearn’s trans-

formation. So while Autolearn has a lower memory usage for some datasets, it is difficult to predict

its memory usage for a given dataset, while KGDataPrep has a near constant memory usage with a

small increase for larger datasets.

I compared KGDataPrep to both the SOTA data trnsformation system Autolearn as well as a

general baseline. The accuracy results of KGDataPrep are comparable or better than those of Au-

tolearn. While the processing time and memory consumption of Autolearn can be smaller than ours,

they are affected by many factors and difficult to predict. Overall, KGDataPrep’s data transforma-

tion is largely advantageous in terms of the accuracy score and is likely to be more beneficial than

its SOTA alternative for larger datasets.

4.4 APIs

KGDataPrep includes several Application Programming Interfaces (APIs). These APIs aid in

the seamless integration of my data preparation models with any data science pipeline and enable

data scientists to directly select and apply the recommended data cleaning operations to their dataset

without requiring explicit code. APIs allowing for recommendation of a data cleaning operation,

30

Table 4.5: Accuracy for Data Transformation: The performance of our system as compared to
AutoLearn on 17 datasets for machine learning classification tasks. Autolearn results are formatted
as Y(X) where Y is the reported accuracy in Kaul et al. (2017) and X is the outcome of reproducing
Autolearn experiments. TO signifies that Autolearn timed out in three hours, while OOM indicates
that Autolearn ran out-of-memory.

ID - Dataset Baseline Autolearn KGDataPrep

14 - fertility Diagnosis 82.00 84.00 (86.12) 85.00
15 - haberman 68.63 65.34 (71.89) 71.92
16 - wine 96.07 97.20 (98.33) 97.17
17 - Ecoli 82.73 86.59 (81.23) 88.10
18 - pima diabetes 75.37 73.05 (75.13) 75.14
19 - Banke Note 99.05 99.56 (99.93) 98.91
20 - ionosphere 93.15 92.30 (93.46) 93.44
21 - sonar 73.55 77.87 (78.83) 78.86
22 - Abalone 22.91 22.21 (24.96) 24.56
23 - libras 71.94 70.22 (79.13) 81.39
24 - waveform 82.10 81.12 (TO) 85.00
25 - letter recognition 93.96 94.14 (TO) 96.46
26 - opticaldigits 96.38 96.57 (TO) 98.10
27 - featurepixel 95.5 94.20 (TO) 97.65
28 - shuttle 99.97 99.81 (TO) 99.96
29 - featurefourier 79.9 79.31 (TO) 82.55
30 - poker 68.1 72.26 (OOM) 75.32

application of a cleaning operation, as well as the recommendation and application of transformation

operations are provided by KGDataPrep.

KGDataPrep aims to reduce or even remove the need for Exploratory Data Analysis (EDA)

by data scientists by recommending options from the most common libraries. For this goal to

be realistic, KGDataPrep needs to be easily integrated into Data SCience Pipelines (DSPs). My

recommendation APIs provide options from the most common libraries in a itemized manner from

the most likely to least likely. My application APIs allow the data scientist to apply not only the

highest recommendation but any of the top three recommendations so the user can compare the

results if need be. This results in an easily integrable system.

When asking for a cleaning operation, the API:

cleaning_ops = recommend_cleaning_operations(df)

can be used. When an unseen dataset is provided as a DataFrame, KGLiDS’s Column Learned

31

Figure 4.6: The performance of KGDataPrep vs Autolearn on the 17 datasets from 4.5. These
results are obtained using a VM with 189 GB of RAM. Datasets are sorted by size in increasing
order. (a) The X-axis represents the dataset ID, and the Y-axis is the time consumed by each system.
KGDataPrep provides a processing time considerably lower than that of Autolearn, with Autolearn
timing out in several datasets. (b) The X-axis represents the dataset ID, and the Y-axis is the memory
usage consumed by each system. KGDataPrep works with a near constant memory usage while
Autolearn’s memory usage changes significantly depending on the dataset and is unable to complete
the task for one dataset due to an OOM error.

Representation (CoLR) embeddings are calculated for each column of the dataframe. They are then

aggregated by data type of missing columns of missing values and the resulting embeddings are

concatenated. The resulting embedding is used to initiate the task-specific pre-trained GNN model

built for data cleaning. A dataframe similar to that shown in Figure 4.3 is output as the value for

the cleaning ops variable. The recommended cleaning operations are sorted in this dataframe from

the most highly recommended operation to the least likely recommendation. The recommended

operation chosen by the user can be input into the application API by specifying its row in the

cleaning ops dataframe.

The API used to apply the recommendations to the original dataframe is:

apply_cleaning_operations(cleaning_ops.loc[0],df)

This API takes the base dataframe and selected cleaning operation as input and returns the cleaned

dataset as output.

Similar APIs exist for data transformation. The recommendation API for transfomration is:

32

transformation_ops = recommend_transformation_operations(df)

Given an unseen dataset, the COLR embedding for each column in the dataset is calculated.

To allow for the Scaling recommendation, the COLR embeddings are aggregated by data type and

the resulting embeddings are concatenated. As scaling operations are applied on the dataset as a

whole, the top three recommendations are sorted. The order of the recommendations can be seen

in the column ‘Recommendation’ of the dataframe with rec1 being the top recommendation for

a transformation category and column combination, rec2 being the second recommendation, ect.

As seen in Figure 4.6, The top scaler recommendation is RobustScaler which should be applied

to all features, while the top unary recommendation for the columns magError and magNst is Log

transformation and the top unary recommendation for all other columns of the dataset is to not have

any unary transformation.

The API used to apply transformation operations to a dataset is:

apply_transformation_operations(transformation_ops.loc[0],df)

The user can choose to apply any or all the top recommendations (in the example in Figure 4.6,

that would be applying RobustScaler to all columns and Log to columns magError and magNst)

or apply a mix and match of the recommended transformations, such as applying the top recom-

mendation for the scaling operations (RobustScaler) but the third recommendation for the Unary

transformations (Sqrt for columns magError and magNst and Log for the remaining columns).

33

Chapter 5

Similarity Inclusion Dependency (sIND)

Detection

5.1 Introduction

The concept of sIND was introduced in the paper “Discovering Similarity Inclusion Dependen-

cies” (Kaminsky et al., 2023) as a means to detect inclusion dependencies IND detection system

is motivated by the assumption that real world data will be dirty due to typos, misspellings, or

other human errors. They introduce their sIND detection algorithm: Similarity AWare Finder of

Inclusion dependencies via a Segmented Hash-index (SAWFISH). While this paper reports great

results, I decided to take a different approach at solving the same problem. KGDataPrep’s sIND

detection system uses features queried from the KGLiDS graph to create models capable of sIND

detection. This chapter provides a deeper exploration of SAWFISH and the motivations and steps

used to develop a new sIND detection model.

SAWFISH, aims to detect all sINDs in a dataset, by looking for values that are similar. Simi-

larity is defined by the user via the edit distance parameter. Any two values having a Levenshtein

distance smaller than the user-defined edit distance are considered similar. Although SAWFISH

initially uses heuristics to prune the list of potential sIND pairs, it eventually resorts to a pairwise

calculation of the Levenshtein for the shortlisted pairs. Depending on the dataset, the resulting short-

list may vary in size, with longer potential sIND pair lists requiring a longer processing time for the

34

pairwise Levenshtein distance comparisons. The variation in the calculation time of the SAWFISH

methodology depending on the size and content of the dataset is the motivation in developing a new

sIND detection model.

KGDataPrep’s sIND detection system forgoes a pairwise similarity comparison in favor of a

more heuristic approach. I used the KGLiDS graph mentioned in Chapter 3 as a foundation for

this work. This graph creates an abstraction of the data which it then stores in a knowledge graph.

KGDataPrep queries this graph to obtain a pool of column pairs deemed to have a similar content.

Using these pairs as a starting point, features that are indicative of a IND relationship are also

queried from the graph and are used to build KGDataPrep’s sIND detection models.

Using heuristics to detect sIND pairs and using the KGLiDS graph to create features related to

the datasets provides an advantage in regards to computational speed. KGLiDS’ use of a fixed sized

column embedding via data sampling and its use of PySpark to enable a distributed computation

results in a fast graph generation. Furthermore, the heuristics used for feature extraction bypass the

need for a pairwise comparison, further improving the speed of sIND detection for KGDataPrep.

5.2 Implementation

Inspired by the paper “A Machine Learning Approach to Foreign Key Discovery” (Rostin, Al-

brecht, Bauckmann, Naumann, & Leser, 2009), several features were reviewed, tested, and modified

to be adapted to help with a sIND detection task. Given the importance placed on the time required

to complete the sIND detection task, the features selected were required to be easily obtained by

querying the previously generated KGLiDS graph. Two different models were then trained on the

generated features to create KGDataPrep’s final sIND detection model.

5.2.1 Features

The main part of sIND detection was developing a model that could take in the content similarity

pairs detected by the KGLiDS’ knowledge graph and prune them to find the sIND pairs. To do so,

I extracted four features from the KGLiDS knowledge graph and used them to develop our model.

These four features are:

35

Distance between column names (N1, N2): This feature examines the relationship between

column names N1 and N2, respectively belonging to columns C1 and C2. A similarity in the

column names can be an indication of a similarity in the values of their columns. To measure the

similarity of the column names, the normalized Levenshtein distance is calculated. The Levenshtein

distance calculates the smallest number of edits needed in order to transform string N1 to string N2.

This value is then normalized by dividing it by the longest of the two strings.

Content Similarity (C1,C2): This feature measures the content similarity between the two

columns C1 and Col2. It can be found by querying the KGLiDS graph where C1 and C2 nodes

are linked via the <data:hasContentSimilarity>edge as seen in Figure 3.1. The value of the content

similarity is calculated using the normalized Euclidean distance between the CoLR embedding rep-

resentations of the two columns. This feature shows the measure of similarity between two columns,

assigning a higher similarity score to columns with a higher similarity. These scores, in turn help

with the learning of the models as columns with a higher similarity are more likely to be sIND pairs.

Cardinality (C1): This feature exhibits the cardinality of the referenced column (C1) using the

<data:hasDistinctValueCount>predicate in the KGLiDS graph. The KGLiDS profiler counts the

number of distinct values present in the referenced column, C1. A higher cardinality indicates

a higher number of unique values in the referenced column, C1. This relationship holds true as

referenced columns often have more unique values than their dependent columns.

Table size ratio (C1,C2): This feature calculates the ratio of the number of rows in the dependent

column (C2) to the number of rows in the referenced column (C1) using the ⟨data:hasTotalValueCount⟩

relationship in the KGLiDS graph. This value is obtained by the profiler by measuring the length

of each column and stored in the KGLiDS graph. Dependent rows are expected to have a higher

number of rows than their referenced columns as they will often repeat a value more than once.

Therefore, the higher the table size ratio feature, the higher the probability of a column pair being a

sIND pair.

A summary of the above features and their implementation can be seen in Table 5.1.

36

Table 5.1: Features used to build the sIND pair detection models and their associated KGLiDS
predicates

Feature Feature implementation in KGLiDS

Column Name Distance None
Content Similarity data:hasContentSimilarity
Cardinality data:hasDistinctValueCount
Table Size Ratio data:hasTotalValueCount

5.2.2 Modeling

Depending on the relative number of sIND paire with respect to the size of the tables the sIND

pairs belong to, the problem of sIND pair detection can be classified as a binary classification

problem or an outlier detection problem.

In the binary classification approach, given a dataset D consisting of n data points {x1, x2, . . . , xn},

each associated with a label yi ∈ {0, 1}, where 1 implies a sIND pair and 0, a non-sIND pair, the

objective is to learn a function f : X → {0, 1} that maps an input x ∈ X to a predicted label

ŷ ∈ {0, 1}.

The binary classification model used to build KGDataPrep’s sIND detector is sklearn’s Random-

ForestClassifier 1. It is a combination of multiple decision trees to create a more accurate model.

The training data is divided into subgroups which are used to train each tree. During the inference

phase, each tree independently predicts a class for their given sample. The final prediction is the

aggregation of all the trees. The metric used for our model is the mean predicted probability of a

sIND pair based on the trees in the forest.

In the outlier detection approach, given a dataset D, with n data points {x1, x2, . . . , xn}, the

goal is to identify a subset of data points O ⊆ D such that the points in O are considered outliers or

anomalies.

The outlier detection model used to build KGDataPrep’s sIND detector is sklearn’s Isolation-

Forest 2. This model returns the anomaly score of each column pair by recursively dividing the

values in a particular feature. The number of times this partitioning is required in order to isolate a
1https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
2https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html

37

sample is indicative of the normality of the sample with a shorter path indicating a higher anomaly

score for that sample. The contamination parameter for this class denotes the estimated proportion

of outliers in the dataset according to the user.

While for datasets with a larger sIND pair to dataset size a binary classification approach was

successful, this approach failed to successfully detect sIND pairs in larger dataset with a lower sIND

ratio. The outlier detection approach was therefore implemented in its place. However, the outlier

detection approach failed to detect the sIND pairs in datasets where they were more frequent, despite

its contamination ratio being increased. This resulted in a combination of both approaches, where

both the probability score of the binary classification model and the anomaly score of the outlier

detection model are calculated and the highest one is selected for KGDataPrep’s sIND detection

model. This approach favors the classification model for datasets with a higher concentration of

sIND pairs and the outlier detection model for datasets with a lower concentration of sIND pairs.

5.2.3 API

To obtain the sIND pairs, the API: get sIND(database) can be used where the input to the func-

tion is the database for which we want the sIND pairs. This function will look for a knowledge

graph by the same name as the database and will construct one if one does not exist. It will then use

the knowledge graph to build the features mentioned above and use our model to detect the sIND

pairs. The output of the function will be the detected sIND pairs.

5.3 Experiments

To validate the effectiveness of KGDataPrep’s sIND detection technique, experiments were con-

ducted comparing it to SAWFISH both in terms of its ability to detect sIND pairs accurately as well

as its scalability when applied to large datasets. In both aspects, KGDataPrep’s sIND detection

technique proved itself to be a viable and effective technique, surpassing its SAWFISH counterpart.

38

5.3.1 sIND detection

The datasets used in this experiment were the largest datasets from the Prague Relational Learn-

ing Repository (Motl & Schulte, 2024). These datasets were all originally clean, with no typos or

errors. SAWFISH with a threshold of 0 (Levenshtein distance of 0 between the values being com-

pared) was ran on these datasets to find the IND pairs in each dataset. These pairs are the baseline

used throughout the following experiments. The datasets are then injected with errors. In two sets of

experiments shown in Figure 5.1 5% and 10% of the value in each table are set to be erroneous. The

extent of the injected errors is determined by the edit distance threshold set, where an edit distance

threshold of 1 signifies that the errors introduced will result in a maximum Levenshtein distance of

1 between the original value and its erroneous counterpart. To explore the effects of different error

levels, dataset with edit distance threshold of 1, 2, or 3 were created. Using the above techniques,

a total of six sets of datasets were created, with two sets of three datasets. The first set contains

datasets with a 5% induced error and edit distance thresholds of 1, 2, and 3, while the second set’s

datasets have a 10% induced error with the same edit distance thresholds.

These datasets are used to test KGDataPrep’s sIND detection by comparing the sIND pairs

detected in the erroneous datasets with the IND pairs detected in the clean data. To test SAWFISH,

its edit distance threshold parameter was adjusted to the edit distance threshold introduced in the

dataset (A edit distance threshold of 1 was set for SAWFISH when testing the dataset with an edit

distance threshold of 1). For KGDataPrep, no adjustments were required to account for the different

edit distances as KGDataPrep’s models are built on clean datasets.

My findings correspond with the findings declared in the SAWFISH paper. Increasing the Lev-

enshtein distance threshold in the SAWFISH algorithm improves its ability to detect sIND pairs.

However, its runtime increases exponentially in the process. Meanwhile, KGDataPrep maintains a

near constant runtime as well as a good and stable ability to detect sIND pairs. It can also be noted

that the percentage of introduced error does not affect either system in terms of runtime or their

ability to detect sIND pairs.

39

Figure 5.1: (a) The number od sIND pairs correctly detected by SAWFISH and KGDataPrep with
all combination 0f 5% and 10% induced error and edit distand thresholds of 1 to 3. SAWFISH’s
performance improves with an increase in threshold while ours remains relatively constant. (b) The
time required for sIND detection by SAWFISH and KGDataPrep with all combination 0f 5% and
10% induced error and edit distand thresholds of 1 to 3. SAWFISH’s processing time increases
exponentially with an increase in threshold while KGDataPrep’s remains relatively constant.

5.3.2 Time scaling

To further investigate the effects of a dataset’s size on the sIND detection time, the TPCDS

dataset, a common scalable benchmark, was used. The dataset was generated at sizes: 0.1GB, 1GB,

and 5GB. The use of a scalable benchmark dataset was necessary to truly be able to investigate the

processing time, as in these datasets, the number of IND pairs will remain the same regardless of

their size.

Both the SAWFISH sIND detection technique and KGDataPrep’s were applied on each dataset

variation. Given that the focus of this experiment was the scaling time, the similarity threshold was

set to zero to facilitate the experiment. As observed in Figure 5.2, while KGDataPrep’s detection

time is nearly constant, a steep increase can be seen in Sawfish’s time. KGLiDS creates an embed-

ding based on a sampling of the data, allowing for a near constant time for sIND detection regardless

of dataset size, while SAWFISH’s last step requires a pairwise comparison of values in suspected

sIND pairs, which causes an increase in processing time as the dataset size increases.

40

Figure 5.2: The measure of time in seconds required for Sawfish and KGDataPrep models to detect
sIND. While a larger scaling factor for the TPCDS dataset results in an increase in the time required
for sIND detection, the time requirement increase for KGDataPrep is insignificant due to the data
sampling strategy used in KGLiDS.

In this chapter, I introduced the concept of sIND detection, reviewed the previous work done on

this problem and presented our own work aiming to solve it. KGDataPrep’s sIND detection system

was evaluated alongside the SOTA algorithm, SAWFISH, and showed good results both in terms of

the number of sIND pairs detected and the processing time of the system.

41

Chapter 6

Conclusion and Future Work

In this thesis I set to present a new data preparation system including a data cleaning, data

transformation and sIND detection system. I introduced a knowledge graph for linked data science,

KGLiDS as the foundation on which these systems are built. I elaborated on how the GNNs used in

our on demand data preparation systems are built on top of the KGLiDS graph, and explored how

these systems are integrated into a DSP and their competitiveness with existing SOTA systems. I

presented the topic of sIND detection and illustrated how such a system can be built by using the

KGLiDS graph as its foundation.

KGLiDS provides a means to map relational datasets and their associated pipelineinto a knowl-

edge graph, expanding what could traditionally be done with such datasets. It creates and abstraction

of the datasets and their pipelines, which makes them more scalable and shareable. This abstraction

is done by converting elements of datasets, libraries, and pipeline scripts into nodes which can be

linked via up to 29 different predicates. The KGLiDS graph provides a strong foundation for my

systems to be built on.

The on demand data preparation systems are GNN models built on the KGLiDS graph. They

aim to facilitate the data cleaning and transformation processes by providing access to the GNN

models via their own APIs. Both the cleaning and transformation models’ performances are compa-

rable or better to that of the SOTA systems used in my experiments. However, they are consistently

faster than their counterparts and provide a more stable memory consumption, making them more

desirable for use in a DSP.

42

While these systems provide a great advancement in the field of data preparation, there remains

several steps in the data preparation pipeline that could also benefit from having such models, such

as data visualization or feature selection.

While sIND detection is a newly posed problem, I have presented models that can detect sIND

pairs as well as the methodology to test these models. my sIND detection system uses features

queried from the KGLiDS graph to build sIND detection models. It also provides an API to use

these models on unseen datasets. My system can find more sIND pairs than its SOTA counterpart,

Sawfish, regardless of the error percentage or the extent of error within a dataset. Furthermore, it

can do so at a stable pace, without being affected by the error threshold. These results were obtained

by introducing errors into clean datasets in a controlled manner and comparing the sIND detection

to that of the original dataset. Future work could explore the possibility of using this sIND system

as a foundation to build a primary-key foreign-key detection system. Primary-key and foreign-key

pairs are used for data enrichment.

Further work in this area could be to use GNN models for the sIND detection. GNN mod-

els could be beneficial as they will take into consideration other features of a column, providing

the model with a more thorough understanding of the columns deemed identical. An exploration

into building a primary key-foreign key detection system around the sIND detection to allow for

automated data enrichment would also be of value.

This work has contributed to the automation of a portion of the DSP by providing an on demand

data preparation system recommending cleaning and transformation. It has also set the stage for

further contributions by developing a sIND detection technique. These contributions have all per-

formed well when compared to their SOTA counterparts and can easily be integrated into any DSP

using their APIs.

43

Appendix A

Master’s Coursework and Contributions

A.1 Master Coursework

Table A.1: Course work
Course Course Code Semester Grade

NATURAL LANGUAGE ANALYSIS COMP6751 Fall 2022 A
DEEP LEARNING COMP691 Winter 2023 A-
BIG DATA ANALYTICS SOEN6111 Winter 2023 A+
FOUNDATIONS/SEMANTIC WEB COMP6531 Winter 2024 A+

A.2 Publications

Helali, M., Monjazeb, N., Vashisth, S., Carrier, P., Helal, A., Cavalcante, A., Ammar, K., Hose,

K., Mansour, E. (2024). Kglids: A platform for semantic abstraction, linking, and automation of

data science.

44

References

Abdallah, Z. S., Du, L., & Webb, G. I. (2017). Data preparation. In C. Sammut & G. I. Webb (Eds.),

Encyclopedia of machine learning and data mining (pp. 318–327). Boston, MA: Springer

US. Retrieved from https://doi.org/10.1007/978-1-4899-7687-1 62 doi:

10.1007/978-1-4899-7687-1 62

Biessmann, F., Rukat, T., Schmidt, P., Naidu, P., Schelter, S., Taptunov, A., . . . Salinas, D. (2019).

Datawig: Missing value imputation for tables. Journal of Machine Learning Research,

20(175), 1–6. Retrieved from http://jmlr.org/papers/v20/18-753.html

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching word vectors with subword

information. arXiv preprint arXiv:1607.04606.

Dua, D., & Graff, C. (2017). UCI machine learning repository. Retrieved from http://archive

.ics.uci.edu/ml

Goikoetxea, J., Agirre, E., & Soroa, A. (2016). Single or multiple? combining word representations

independently learned from text and wordnet. In Proceedings of the thirtieth conference on

artificial intelligence (AAAI) (pp. 2608–2614). Retrieved from http://www.aaai.org/

ocs/index.php/AAAI/AAAI16/paper/view/11777

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., . . .

Oliphant, T. E. (2020, September). Array programming with NumPy. Nature, 585(7825),

357–362. Retrieved from https://doi.org/10.1038/s41586-020-2649-2 doi:

10.1038/s41586-020-2649-2

Helali, M., Mansour, E., Abdelaziz, I., Dolby, J., & Srinivas, K. (2022). A scalable automl approach

based on graph neural networks. Proceedings of the VLDB Endowment, 15(11), 2428-2436.

45

https://doi.org/10.1007/978-1-4899-7687-1_62
http://jmlr.org/papers/v20/18-753.html
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11777
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11777
https://doi.org/10.1038/s41586-020-2649-2

doi: 10.14778/3551793.3551804

Helali, M., Monjazeb, N., Vashisth, S., Carrier, P., Helal, A., Cavalcante, A., . . . Mansour, E. (2024).

Kglids: A platform for semantic abstraction, linking, and automation of data science.

Kaminsky, Y., Pena, E. H. M., & Naumann, F. (2023). Discovering similarity inclusion dependen-

cies. Proceedings of the ACM on Management of Data, 1, 1-24. doi: 10.1145/3588929

Kaul, A., Maheshwary, S., & Pudi, V. (2017). Autolearn - automated feature generation and

selection. In V. Raghavan, S. Aluru, G. Karypis, L. Miele, & X. Wu (Eds.), 2017 IEEE

international conference on data mining, ICDM 2017, new orleans, la, usa, november 18-

21, 2017 (pp. 217–226). IEEE Computer Society. Retrieved from https://doi.org/

10.1109/ICDM.2017.31 doi: 10.1109/ICDM.2017.31

Mansour, E., Srinivas, K., & Hose, K. (2022, jan). Federated data science to break down silos

[vision]. SIGMOD Rec., 50(4), 16–22. Retrieved from https://doi.org/10.1145/

3516431.3516435 doi: 10.1145/3516431.3516435

Motl, J., & Schulte, O. (2024). The ctu prague relational learning repository.

Nargesian, F., Samulowitz, H., Khurana, U., Khalil, E. B., & Turaga, D. S. (2017). Learning feature

engineering for classification. In C. Sierra (Ed.), Proceedings of the twenty-sixth international

joint conference on artificial intelligence (pp. 2529–2535). Retrieved from https://doi

.org/10.24963/ijcai.2017/352

Peng, J., Wu, W., Lockhart, B., & et al. (2021). Dataprep.eda: Task-centric exploratory data analysis

for statistical modeling in python. In Sigmod, 2021 (pp. 2271–2280). ACM.

Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global vectors for word represen-

tation. In Proceedings of the 2014 conference on empirical methods in natural language

processing (EMNLP) (pp. 1532–1543). Retrieved from https://doi.org/10.3115/

v1/D14-1162

Peters, M., Ammar, W., Bhagavatula, C., & Power, R. (2017). Semi-supervised sequence tagging

with bidirectional language models. In Proceedings of the association for computational lin-

guistics (acl) (Vol. 1, pp. 1756–1765). Retrieved from https://doi.org/10.18653/

v1/P17-1161

Rezig, E. K., Cao, L., Stonebraker, M., Simonini, G., Tao, W., Madden, S., . . . Elmagarmid, A. K.

46

https://doi.org/10.1109/ICDM.2017.31
https://doi.org/10.1109/ICDM.2017.31
https://doi.org/10.1145/3516431.3516435
https://doi.org/10.1145/3516431.3516435
https://doi.org/10.24963/ijcai.2017/352
https://doi.org/10.24963/ijcai.2017/352
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/P17-1161
https://doi.org/10.18653/v1/P17-1161

(2019). Data civilizer 2.0: A holistic framework for data preparation and analytics. Proc.

VLDB Endow., 12(12), 1954–1957. Retrieved from http://www.vldb.org/pvldb/

vol12/p1954-rezig.pdf doi: 10.14778/3352063.3352108

Rostin, A., Albrecht, O., Bauckmann, J., Naumann, F., & Leser, U. (2009). A machine learning

approach to foreign key discovery. In International workshop on the web and databases.

Retrieved from https://api.semanticscholar.org/CorpusID:11636431

Schlichtkrull, M., Kipf, T. N., Bloem, P., vanÂ den Berg, R., Titov, I., & Welling, M. (2018).

Modeling relational data with graph convolutional networks. In A. Gangemi et al. (Eds.), The

semantic web (pp. 593–607). Cham: Springer International Publishing.

van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained

equations in r. Journal of Statistical Software, 45(3), 1-67. doi: 10.18637/jss.v045.i03

Wu, R., Zhang, A., Ilyas, I. F., & Rekatsinas, T. (2020). Attention-based learning for missing data

imputation in holoclean. In Conference on machine learning and systems. Retrieved from

https://api.semanticscholar.org/CorpusID:211482719

47

http://www.vldb.org/pvldb/vol12/p1954-rezig.pdf
http://www.vldb.org/pvldb/vol12/p1954-rezig.pdf
https://api.semanticscholar.org/CorpusID:11636431
https://api.semanticscholar.org/CorpusID:211482719

	List of Figures
	List of Tables
	Introduction
	Overview
	Contributions
	Outline

	Related Works
	Cleaning
	Holoclean
	Datawig

	Transformation
	Autolearn
	LFE

	Holistic systems
	DataPrep
	Data Civilizer 2.0

	Similarity Inclusion Dependency (sIND)
	SAWFISH

	Linked Data Science Powered by Knowledge Graphs (KGLiDS)
	Data Profiling
	Knowledge Graph Construction
	Pipeline Abstraction

	On Demand Data Preparation
	Graph Neural Networks (GNN)
	Cleaning
	Knowledge graph preparation
	Training
	Inference
	Experiments

	Transformation
	Knowledge graph preparation
	Training
	Inference
	Experiments

	APIs

	Similarity Inclusion Dependency (sIND) Detection
	Introduction
	Implementation
	Features
	Modeling
	API

	Experiments
	sIND detection
	Time scaling

	Conclusion and Future Work
	Appendix Master’s Coursework and Contributions
	Master Coursework
	Publications

	Bibliography

