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Abstract

Resource efficient deep learning approaches for monaural speech separation

Peiran Shi

Speech separation is a critical task in processing naturalistic audio streams, aiming to extract
individual speech sources from mixed speech signals. Monaural speech separation, which deals
with audio from a single microphone, focuses on isolating overlapping speech signals, a process
essential for applications such as automatic speech recognition and voice assistant devices. Re-
cent advances in deep learning have significantly improved speech separation, typically by training
neural networks to estimate high-quality separated speech from mixed signals using supervised
learning. However, most state-of-the-art neural networks operate in the time domain and are com-
putationally expensive due to their sequential processing methods and complex structures. Despite
the common perception that time-domain models outperform those in the time-frequency domain,
this thesis focuses on developing resource-efficient models in the time-frequency domain, aiming to
enhance their performance within a deep learning framework.

In the first contribution of this thesis, we propose RCFormer, a Conformer-based neural network
with a redundancy approach, designed for monaural two-speaker speech separation. The RCFormer
employs multiple pairs of intra-frame and sub-band Conformer blocks to successively capture both
frame-level and sub-band-level information from the input spectrogram. To address the challenge of
sparse information in the input spectrogram, a redundancy approach is introduced to create a denser
representation by stacking the input spectrogram embeddings. The proposed architecture integrates
Conformer blocks between a dilated dense convolutional encoder and decoder, with the Conformer
block outputs fed into a masking module that generates masks to filter the encoder outputs, which are

then transformed into separated speech signals via the decoder. Extensive experiments demonstrate
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that RCFormer achieves competitive, and often superior, performance compared to existing state-
of-the-art methods across all evaluation metrics, while also featuring significantly fewer trainable
parameters.

While many models achieve competitive performance with fewer trainable parameters, few re-
searchers have addressed the computational workload and processing time associated with these
models. In the second contribution of this thesis, we propose FSBNet for two-speaker speech sepa-
ration, which integrates sub-band and full-band modules. FSBNet consists of an encoder, multiple
full-band and sub-band blocks (FSB blocks), and a decoder. The FSB block features a sub-band
module that extracts temporal information within each sub-band and computes high-level cross-
band dependencies through compact latent summaries, and a full-band module that captures long-
range dependencies across the entire spectrogram using a self-attention mechanism. The contex-
tual information obtained from the FSB blocks is then processed into two complex spectrograms
representing the separated speech signals, which are re-synthesized into audio using the inverse
short-time Fourier transform (ISTFT). Experimental results demonstrate that FSBNet achieves com-
petitive performance compared to both time-domain and time-frequency domain approaches, with
significant improvements in model size reduction and processing time efficiency. Notably, this ar-

chitecture outperforms most efficient time-domain models for the first time since 2019.
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Chapter 1

Introduction

Speech separation is a crucial front-end task in processing naturalistic audio streams. It aims
to extract individual speech sources from a mixed signal. As a special scenario of general source
separation [1], [2], which deals with a variety of interferences such as music or environmental noise,
speech separation specifically focuses on separating overlapping speech signals in a given mixed
speech signal [3], [4]. This process is vital for collecting clean and clear speech data from the
environment, supporting downstream tasks including automatic speech recognition, voice assistant
devices, and other audio systems.

Monaural speech separation [3], [5], also known as single-channel speech separation, is the most
widely studied branch of speech separation. It addresses audio captured from a single microphone,
making the task particularly challenging due to the lack of spatial information that could otherwise
help differentiate between speakers [6]. Initial solutions to this challenge relied heavily on signal
processing and statistical techniques. Conventional signal processing methods such as spectral sub-
traction [7], computational auditory scene analysis [8], and time-frequency masking used heuristic
and knowledge-based information to extract and segment different speaker streams [9]. Statistical
methods like Independent Component Analysis (ICA) [10], matrix factorization [11], and hidden
Markov models (HMM) [12] were also employed to model the mixture speech and improve per-
formance. However, these conventional methods heavily rely on handcrafted features, which have
several limitations: first, they are less effective in diverse datasets and real-world environments, and

they struggle to adapt to new speakers. Second, feature engineering is computationally intensive



and requires domain expertise. Moreover, both feature engineering and statistical methods are often
speaker-dependent [12]. It can only works on very small range of samples.

In recent years, deep learning has become highly popular in various fields, including speech
separation. Its data-driven nature makes it effective for solving prediction and estimation problems,
both with and without supervision. This advancement has significantly improved speech separation
results. Deep learning techniques such as fully-connected neural networks, convolutional neural net-
works, recurrent neural networks, and attention-based Transformer networks have been extensively
applied to speech separation, enhancement, and other speech processing tasks. Inspired by devel-
opments in computer vision and natural language processing, some methods from these fields have
been adapted for speech processing. [13] Given that speech signals are one-dimensional sequences
with rich temporal information, sequence models from NLP and pattern recognition models from
computer vision can be utilized. However, the unique challenges of speech separation necessitate
specialized approaches tailored to this domain.

Deep learning methods for speech separation can be divided into time-domain and time-frequency-
domain models. In time-frequency domain models, the input mixture is transformed into a spec-
trogram using short-time Fourier transform (STFT). The complex spectrogram or its magnitude
component is then used to train the separation model. The enhanced spectrogram is subsequently
used to reconstruct individual speeches via inverse short-time Fourier transform (ISTFT). In con-
trast, time-domain models directly process the time-domain waveform of the mixed speech signal.
This approach involves down-sampling the input waveform with a one-dimensional convolutional
layer, passing it through the separation network, and finally up-sampling it with a one-dimensional
convolution-transpose layer to produce the separated speeches.

This thesis investigates resource efficient neural networks for single-channel, two-speaker speech
separation, emphasizing time-frequency domain methods to minimize computational demands. To
tackle the challenges of long-range dependencies in speech signals and the sparsity of spectrograms,
we develop tailored model structures and neural network modules that extract essential information.
These models achieve competitive performance against both time-frequency and time-domain ap-
proaches. The following sections provide an overview of existing speech separation methods and

key components incorporated into our approach.



1.1 Neural networks for speech separation

1.1.1 Time domain models for speech separation

The time domain models directly estimate the separated speech signals from the mixture speech
waveform. The problem of single-channel speech separation task in time domain can be formulated
in terms of estimating S sources 1 (t), z2(t), ..., zs(t) € RV, given the discrete waveform z(t) €

RYT where

S

y(t) =) @i(t) M

i=1
where 7" indicates the length of speech waveform and .S indicates the number of speakers in the
mixture. We aim to directly estimate z;(¢),7 = 1,2, ..., S, from y(t).

Many existing time domain models applies an encoder-decoder based masking approach, which
contains an encoder, a decoder, and the masking module, as shown in Fig.1.1. The encoder block
estimates a learnable representation h for the one-dimensional long sequence input mixture x. The
masking module estimates optimal masks m,mq to separate the sources present in the mixtures.
The decoder finally reconstructs the estimated sources Z; , 25 by multiplying the masks and the

encoded mixture representation.

A

A l

ma
y — Encoder —— h — Masking Net Decoder
m 1
\m2
-

Figure 1.1: Tllustration of encoder-decoder based masking approach [14]

CNN-based models
The convolutional neural network (CNN) was initially proposed for visual recognition tasks
[15], designed to extract spatial features from input data. It consists of two main components:

convolutional layers and pooling layers. The convolutional layers apply a series of filters that slide



over the input data, performing convolution operations to produce feature maps. The pooling layers
then reduce the dimensionality of these feature maps and enlarge the receptive field by performing
down-sampling.

In time-domain speech separation, although the input mixture is a one-dimensional long se-
quence rather than an image, CNNs can still be effectively used. By employing a learnable encoder,
the CNNs can transform the input into a more image-like representation, allowing it to leverage
its strengths in feature extraction. Many CNN-based structures which are proved to be effective
in computer vision are also be applied in speech separation. For example, the authors of [16]
introduced a novel end-to-end approach for speech separation based on Temporal Convolutional
Networks (TCNs), named FurcaPy. Originally applied in action segmentation [17], TCNs are de-
signed to capture long-range dependencies within input sequences by utilizing stacked dilated 1-D
convolutional layers with an exponentially increasing dilation factor, thereby expanding the recep-
tive field. Based on the TCN framework, FurcaPy incorporates a pyramid-like structure composed
of three distinct gated TCNs, complemented by a “weightor” module. This “weightor” network
dynamically determines the weights of the different gated TCNs for each individual utterance, al-
lowing the model to adaptively emphasize the most relevant temporal features for effective speech

separation.
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Figure 1.2: The structure of the Wave-U-net system [18]

Another widely recognized architecture, known as U-Net, was originally developed for biomed-
ical image segmentation [19]. This structure has demonstrated impressive performance in the do-
main of speech separation as well. As shown in Fig.1.2, the authors of [18] introduce a U-Net-based
architecture that employs iterative resampling of feature maps to capture and integrate features
across different time scales. Additionally, several enhancements have been implemented, including
an output layer designed to enforce source additivity, an advanced up-sampling technique, and a
context-aware prediction framework aimed at minimizing output artifacts.

Unlike the models in [16] and [18], which either incorporate feed-forward networks or rely
on the less robust U-Net architecture, the authors of [20] proposed Conv-TasNet, a totally CNN-
based model for speech separation that represents the state-of-the-art in CNN-based approaches.
As shown in Fig.1.3, this model shares a similar high-level structure with the masking approach,
consisting of an encoder, a separator based on masking, and a decoder. The encoder adopts a
1-D neural network to generate a high-dimensional representation of the input. The separator is
composed of stacked dilated 1-D blocks with an exponentially increasing dilation factor, which

enlarges the receptive field. This ensures a sufficiently large temporal context window, allowing



the model to capture the long-range dependencies of the speech signal. The separator is applied
to estimate the masks and then perform element-wise multiplication between the masks and the
encoded input. Finally, the decoder, which also uses a 1-D neural network, reconstructs the final

separated speeches.

Encoder Separation Decoder
[ [
1D _ 1D | o 1D
Conv Conv d=2""1 canyv @
Input : : : Separated
mixture t t t sources
1-0 1-D | d=2 1o 1
l Conv Conv Y721 Conv 1x1 ]‘
Conv
t 1
1D 1D | 1-D || d-1l 1D || 1-D
Conv Cony | Conv | Conv | v Conv
1 L= Sigmoid I
1x1
Canv
=
o
Mixture

Figure 1.3: The flowchart of the Conv-TasNet system [20]

RNN-based models

Recurrent Neural Networks (RNNs), including variants like Gated Recurrent Units (GRUs) [21]
and Long Short-Term Memory (LSTM) networks [22], are well-suited for processing long se-
quences of data due to their inherent memory mechanism. This mechanism involves connections
that form directed cycles, allowing RNNs to maintain a memory of previous inputs and effectively
capture temporal dependencies within the data. Unlike CNNs, which require multiple deep layers to
capture high-level global information due to their local convolution operations, RNNs can process
speech representations in a single pass, making them more resource efficeint and convenient to train.
Consequently, some researchers have adopted RNNs to directly capture the long-term dependencies
in input speech.

The authors proposed the Dual-Path Recurrent Neural Network (DPRNN) [23], an efficient
method for modeling long sequences in speech separation tasks, which is the state-of-the-art model

based on RNNs. As illustrated in Fig.1.4, DPRNN combines RNNs with a dual-path structure to



handle long sequential inputs in a straightforward manner. The DPRNN framework consists of
three main stages: segmentation, block processing, and overlap-add. First, in segmentation stage,
the long sequence input is divided into overlapping chunks, which are then concatenated to form a
3-D tensor. Then, the block processing stage involves applying several DPRNN blocks iteratively
to extract both local and global features. Each DPRNN block contains two bi-directional RNNs: an
intra-chunk RNN and an inter-chunk RNN. The intra-chunk RNN processes local information by
operating on each chunk independently and in parallel, while the inter-chunk RNN captures global
dependencies by processing information across different chunks. Finally, the overlap-add method is
used to reconstruct the output into a continuous sequence, resulting in the separated speech signals.

A mask approach mentioned Fig.1.1 is also adopted in DPRNN to obtain the final reconstructed

speeches.
~ Sequentiul input 1 H 1
Fmm=-=========- , RS- ' e e erN
EN - ; H . E . : .
L - - s | .

. Overlap-Add

Figure 1.4: The flowchart of the DPRNN system [23]

Inspired by the DPRNN model, some researchers have integrated various extensions of RNNs
into the dual-path structure, achieving notable performance improvements [24], [25]. While this
approach retains a structure similar to DPRNN, the authors employ a more complex Bi-LSTM [26]
network, which enhances performance further.

Attention-based models

The attention mechanism is first proposed to improve the performance of sequence-to-sequence
models for tasks like machine translation [27]. It allows the model to dynamically focus on different
parts of the input sequence when producing each output element. Unlike typical neural network
which processes the entire input uniformly, the attention mechanism enables the model to access

different parts of the input depending on their relevance to the current output. Attention mechanisms



compute a set of weights that determine the degree of focus on each part of the input. These weights
are generally derived from the similarity between the current output and each input state. The
greater the similarity between the input and output states, the higher the attention weight assigned,
enabling the model to prioritize more relevant information effectively.

In speech separation and enhancement tasks, the attention mechanism is usually regarded as an
effective improvement method that can be integrated into various structures. For example, some
researches integrate the attention mechanism with the above mentioned Wave-U-Net [18], named
attention Wave U-Net [28]. As shown in Fig.1.5, it consists of several down-sampling blocks,
followed by one convolutional layer at the bottom , and followed by a series of up-sampling blocks
with skip connections from the down-sampling blocks to the up-sampling blocks. Among the model,
Ci,1 = 1,...,d represents for the output of convolution in the ith down-sampling block and U;_;

represents for the output in the ith up-sampling block, where d indicates the depth of the U-Net.
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Figure 1.5: Attention Wave-U-Net architecture [28]

Different from the conventional U-shaped CNN, authors apply attention gates to identify the



relevant features between down-sampling block C; and up-sampling block Ug—; by multiplying it
with an attention mask. As shown in Fig. 1.6, first, the attention mask is calculated by W2, Ws‘“,
and W}‘“. Then, the term-wise product between the attention mask and the down-sampling block
is computed. Finally, the computation result concatenates with the up-sampling block Ug—;. This
attention mechanism emphasizes important features in the input, rather than simply concatenating

features at the same hierarchical level across the up-sampling blocks.
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Figure 1.6: The Attention Mechanism in Attention Wave-U-Net [28]

However, the attention-based U-shaped CNN still inherits some drawbacks of conventional
CNNs, particularly the need for deep layers to effectively extract long-term dependency of speech
signals. This leads to a model that is complex, potentially unstable, and prone to over-fitting. In
2017, authors proposed a RNN-free model aiming at processing long range sequential data by using
a self-attention mechanism, named Transformer [29]. As shown in Fig.1.7, The Transformer uti-
lizes an encoder-decoder architecture. The encoder converts inputs into feature embeddings, which
the decoder then transforms into outputs. Operating in an auto-regressive manner, the Transformer
processes an input sequence of symbol representations. At each step, it generates a probability dis-
tribution for one symbol, which is used as additional input for the decoder to produce the subsequent

symbol in the sequence.
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Figure 1.7: The architecture of Transformer [29]

The multi-head self-attention mechanism is a fundamental component designed to process the
entire input sequence in parallel, eliminating the need for recurrence. An attention function can be
defined as a mapping from a query and a set of key-value pairs to an output, where the queries,
keys, values, and output are all vectors. As shown in Fig.1.8(left), the attention function is com-
puted by taking the dot products of the query with all keys across a set of queries simultaneously,
which are packed into a matrix (). Similarly, the keys and values are packed into matrices K and
V', respectively. Instead of performing a single attention function, h parallel attention layers em-
ployed to linearly project the queries, keys, and values h times. The outputs from these parallel
layers are then concatenated and projected once more, resulting in the final values, as shown in

Fig.1.8(right). Multi-head attention enables the model to simultaneously focus on information from

different representation sub-spaces at various positions within the sequence.
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Figure 1.8: Scaled Dot-Product Attention (left). Multi-Head Attention consists of several attention

layers running in parallel (right). [29]

Inspired by the remarkable effectiveness of the Transformer architecture in NLP tasks, and
its superior performance compared to RNNs, authors of [14] integrated the Transformer encoder
into a dual-path structure to propose a novel RNN-free, Transformer-based neural network for
speech separation, named SepFormer. The SepFormer leverages a multi-scale approach within
its attention-based Transformer encoder to capture both short-term and long-term dependencies.
Unlike sequence-to-sequence translation tasks, speech separation merely requires direct transfor-
mation of a speech mixture into individual source speeches from different speakers, making the
Transformer encoder sufficient for our task.

Like other time-domain speech separation models, SepFormer consists of an encoder, a mask-
ing network, and a decoder, with both the encoder and decoder implemented as 1-D convolutional
layers. As illustrated in Fig.1.9, the masking network begins with layer normalization and a linear
layer to improve feature trainability. It then chunks the 1-D features into overlapping segments and
arranges them into 2-D features. The SepFormer block uses an intra-transformer to capture short-
term dependencies within each chunk and an inter-transformer to model long-term relationships
across chunks. After passing through several SepFormer blocks, features undergo PRelLU activa-

tion, a linear layer, and an overlapping stage to return to 1-D. These are then processed by two fully
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connected layers and a RelLU activation to generate separation masks for each speaker’s signals.
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Figure 1.9: The architecture of SepFormer [14]

It is evident that SepFormer integrates the Transformer encoder in place of RNNs within a
dual-path model, originally proposed in the above mentioned DPRNN. The impressive separation
performance and training stability of SepFormer demonstrate the potential for widespread use of

Transformer models in speech separation tasks.

1.1.2 Time-frequency domain models for speech separation

Different from time-domain models that directly estimate separated speech from the mixture
waveform, time-frequency(T-F) domain models take the spectrogram features as the input. Spec-
trograms capture the essential harmonics of speech signals, which are crucial for effective speech
separation. Considering a S-speaker mixture in time domain as z4(t),s = 1,...,S. The physical

model in the time domain can be formulated as follows:

S
yln] = Zw("” [n] ©)

where y denotes the mixture, and 2®) denotes source s, and n indexes N time samples. By

using STFT, the physical model in T-F domain is formulated as:

S
Y(t,f) =329 f) 3
s=1
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where Y and X () respectively denote the complex spectra of y and z(*), ¢ indexes T' time
frames, and f indexes F' frequencies. S is assumed known in this study and given Y (¢, f), the
goal of our task is to recover each source X () (¢, f). We further represent the spectrogram of input
mixture with Cartesian coordinate representation ¥ = Yyeai + jYimg, Where the spectrogram Y is
decoupled into real part Y,¢, and imaginary part Y;,,. The magnitude and phase features of the

spectrogram can be written as follows:

Ym!}' Y/ f‘2ea.l + thng )

Y,
Yphase = arctan (%) (%)

real

To extract features and estimate individual speeches, researchers have proposed various method-
ologies in the T-F domain. These include approaches that focus solely on magnitude [5], [30], [31],
those that address both magnitude and phase [32], [33], [34] and those that work with complex
spectrogram [35]. Researchers have extensively investigated various methods to enhance feature
extraction from spectrograms. Based on these approaches, several state-of-the-art models have
been introduced, as follows.

Some researchers have processed only the magnitude spectra while disregarding phase informa-
tion during the training of separation models. The phase information is typically utilized only in the

reconstruction of the time-domain waveforms of the sources, as shown in Fig.1.10.
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Figure 1.10: Magnitude estimation framework in T-F domain methods [36]

In supervised learning for speech separation, a notable challenge is the "’label permutation prob-

lem,” which arises due to the multiple valid ways to align separated outputs with reference signals.
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To address this, the concept of permutation invariant training (PIT) [5] was introduced. As depicted
in Fig.1.11, PIT involves computing the loss between the model’s outputs and the reference sources
for each possible permutation of the outputs. The permutation that results in the smallest loss is

selected, and this minimum loss is used to update the model parameters.
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Figure 1.11: 2-speaker speech separation model with permutation invariant training [5]

The authors employed a simple feed-forward deep neural network (DNN) for feature learning
and minimized the mean squared error (MSE) between the estimated and true magnitudes. By
incorporating permutation invariant training (PIT), the speech separation model can be trained to
be speaker-independent and effectively applied to various datasets, making it more suitable for real-
world applications.

However, the phase component of the spectrogram remains crucial, as it provides informa-
tion about the signal’s temporal structure and fine-grained details. Specifically, it offers contextual
insights into how different frequency components align over time, which is valuable for distin-
guishing overlapping speakers. Estimating phase directly is challenging due to its complexity and

non-linearity. To address this, the authors proposed a model called FullSubNet+ [34], which uses
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magnitude, real and imaginary spectrograms as inputs. By incorporating real and imaginary spec-
trograms, FullSubNet+ effectively makes full use of phase information. Although initially designed
for speech enhancement, our experiments demonstrate that FullSubNet+ is also effective for speech
separation. As shown in Fig.1.12, the inputs to the model are magnitude X™, real component
X" and imaginary component X*. First, a lightweight multi-scale time-sensitive channel attention
(MulCA) module, comprising 1-D convolution layers with varying kernel sizes, average pooling,
and the ReLLU function, weights X™, X", and X i to focus on discriminative frequency bands. Next,
stacked temporal convolutional network (TCN) blocks with exponentially increasing dilation fac-
tors capture long-range dependencies across the full band. Finally, two unidirectional LSTM layers
and a fully connected layer predict masks for the enhanced speech signals. To boost performance,
an un fold function generates overlapped sub-bands of the input magnitude, which are fed into the

network alongside the three outputs from the full-band extractor.”
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(b} System flowchart on one branch of the model

Figure 1.12: The overall diagram and system flowchart on one branch of FullSubNet+ [34]

Integrating real and imaginary spectrograms with magnitude is an effective approach to im-
proving performance in speech separation and enhancement tasks. However, it demands significant
computational resources and training time. Since magnitude can be derived from the complex (real

and imaginary) spectrogram, some researchers have focused on working directly with the 2-channel

15



complex spectrogram. This reduction of magnitude input allows for the use of more complex neu-
ral networks to enhance performance. The authors proposed a time-frequency (T-F) domain path
scanning network (TFPSNet) [37]. Unlike dual-path models that only include intra-chunk and inter-
chunk blocks, TFPSNet scans the complex spectrogram across frequency, time, and T-F paths, uti-

lizing a Transformer architecture for modeling.

(a) TFPSNet structure
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Figure 1.13: The overall architecture of TFPSNet [37]

As shown in Fig.1.13, The overall system includes an encoder, a masking-based separator, and a
decoder, similar to time-domain models. The encoder first applies a Short-Time Fourier Transform
(STFT) to convert the 1-D speech waveform into a 2-channel complex spectrogram. This spectro-
gram is then processed by a 1-D convolutional layer to produce a high-dimensional non-negative
vector. In the masking-based separator, a set of masks is estimated from the encoded mixture us-
ing T-F domain path scanning (TFPS) blocks. Specifically, two types of TFPS blocks, each with
three distinct T-F path scanning layers, are used to extract features. As shown in Fig.1.14, the fre-
quency path scanning processes frequency bins within each frame, time path scanning processes
time frames within each frequency bin independently, and T-F path scanning models transitions be-
tween adjacent frequency bins and frames along the diagonal. Each TFPS block uses a Transformer

for path scanning. In the decoder, a fully connected layer (FC) reconstructs the separated speech
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into 2 channels, followed by an ISTFT to obtain the final waveforms. TFPSNet, which focuses

solely on complex spectrogram input, outperforms FullSubNet+ while maintaining a smaller model

size.
L4 L¢]
Frequency Frequency Frequency
(a) (b) (©)

Figure 1.14: Mlustration of path scanning in TFPS blocks. (a) Frequency path scanning (b) Time
path scanning (c) T-F path scanning [37]

1.1.3 Efficient models for speech separation

While the quality of separated speech is the most crucial factor in evaluating speech separation
models, efficiency is equally important, as it reflects the trade-offs between model performance
and their potential for real-world applications. However, developing efficient models with low
complexity is challenging due to the high-dimensional nature of speech signals, which consist of
tens of thousands of time steps per second and exhibit long-range dependencies across multiple
timescales [38]. The works discussed in Sections 1.1.1 and 1.1.2 each have limitations when it
comes to model efficiency. RNNs, with time-recurrent mechanism, lack computational efficiency
due to their inability to be parallelized during training. The Transformer architecture, which con-
tains multiple feed-forward layers, significantly increasing both model size and processing time
during training. CNN-based models offer advantages in terms of model size but are limited by the
size of their receptive field, making it difficult to achieve global coherence [39].

Model efficiency is assessed primarily by two factors: model size and the computational re-
sources required for training and inference. Researchers aiming to improve model efficiency typi-
cally employ strategies such as optimizing existing neural networks, designing novel and computa-

tionally efficient architectures, and working in the time-frequency (T-F) domain using spectrograms
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as input.

The authors of [25] proposed a gated RNN-based dual-path model as a replacement for the orig-
inal DPRNN [23]. Similarly, the authors of [28] introduced an attention mechanism to the original
Wave-U-Net model [18]. Both approaches enhanced the performance of existing models while re-
ducing model size by optimizing neural networks with novel methods. Building on this concept,
the authors of [40] proposed an improved Transformer-based dual-path network, named DPTNet.
DPTNet shares a similar structure with Sepformer [14], consisting of an encoder, a masking net-
work, and a decoder [40]. The key difference lies in DPTNet’s using of an improved Transformer,
which replaces one linear layer in the feed-forward network with an recurrent neural network [41],
as shown in Fig.1.15. This enhancement enables the improved Transformer to learn the order in-
formation of speech sequences without the need for positional encoding. As a result, the DPTNet

model gains direct context-awareness for processing speech sequences [40].
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Figure 1.15: Architecture of the origin (left) and improved Transformers (right) [40]

The authors of [38], inspired by recent advances in neural state-space models (SSM) [42], in-

troduced an efficient speech separation method called S4M (Speech Separation using State-Space
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Model). S4M follows the mainstream encoder-decoder pipeline, as illustrated in Fig.1.16. Specif-
ically, the encoder in S4M extracts multiple features at varying resolutions from a flat input mix-
ture and feeds them into S4 blocks to capture representations with global long-range dependencies.
Similarly, the S4 layer is employed in the decoder for feature reconstruction. S4M offers significant
advantages over mainstream speech separation methods in terms of model complexity and computa-
tional cost, effectively capturing long-range dependencies for high-rate waveforms. This capability

enhances the reconstruction of separated features, particularly in noisy conditions.
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Figure 1.16: The block diagram of the (A) S4M model, (B) S4 Block, and (C) Decoder. [38]

The authors of [43] and [44] proposed a novel and computationally efficient structure called
Skipping Memory Separator (SkiM). Inspired by the DPRNN [23], which uses inter-chunk blocks
to model long-span features frame by frame, SkiM enhances efficiency by eliminating inter-chunk
blocks and instead shares global-aware hidden and cell states across local networks. For long-span
information modeling, the SkiM model skims the long sequence rather than analyzing it in detail,
significantly reducing computational costs [43].

Similarly, RE-SepFormer applies a related module. As shown in Fig.1.17, RE-SepFormer re-
places the inter-chunk Transformer blocks in the original SepFormer [14] with a summary repre-
sentation based MemoryTransformer [44] blocks computed by averaging the tensor over the time
axis. According to their experiments, this novel structure reduces memory usage by up to 28% for

long sequences while maintaining performance. Additionally, this structure can be implemented in
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a causal model, making it suitable for online applications.
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Figure 1.17: The The Resource-Efficient SepFormer (RE-SepFormer) module [44]

TFPSNet [37] and TE-GridNet [45] are the only two time-frequency (T-F) domain models that
have achieved state-of-the-art performance so far. Both models use complex spectrograms as input.
Unlike the pure dual-path structure of DPRNN [23], TFPSNet employs time scanning, frequency
scanning, and time-frequency scanning to capture information across the entire spectrogram, while
TE-GridNet integrates a dual-path structure with a full-band self-attention module [46], [47]. These
models not only achieve state-of-the-art performance but also require only 10% of the model param-
eters compared to time-domain models. The success of TFPSNet and TF-GridNet demonstrates that
using complex spectrogram input can provide sufficient information while maintaining a compact

model size.

1.2 Evaluation of speech separation models

1.2.1 Datasets for speech separation

To assess the effectiveness of speech separation models, it is crucial to utilize a range of spe-
cialized speech datasets. These datasets are typically divided into three key subsets: training data,
which is used to adjust model parameters; validation data, which helps in selecting optimal param-

eters; and testing data, which is employed to evaluate the final performance of the model. Speech
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separation datasets consist of mixtures of fully overlapped speech from multiple speakers, along
with the corresponding clean individual speech signals (targets). These datasets can be classified
into two main categories: clean and noisy. Clean datasets feature speech mixtures that are free from
any additional noise, providing a controlled environment for model training and evaluation. Noisy
datasets include mixtures with added background noise, which introduces variability and complex-
ity, thereby enabling models to be tested under more realistic conditions. Some commonly used
speech datasets are introduced below.

WSJ0-2mix [48]: This dataset is a widely used benchmark for monaural, talker-independent
speaker separation algorithms in anechoic conditions. The WSJO-2mix dataset includes 20,000,
5,000, and 3,000 two-speaker mixtures for training, validation, and testing, respectively. The clean
utterances are from the Wall Street Journal (WSJO) corpus. In the training set, mixtures are created
by randomly selecting utterances from different speakers and balancing gender representation. Each
mixture features fully overlapping utterances with relative energy levels uniformly sampled from
[-5, 5] dB, and a sampling rate of 8 kHz. The test set follows the same format but uses utterances
from speakers not present in the training set, providing a more rigorous evaluation.

WHAM! and WHAMR! [49]: The WSJO Hipster Ambient Mixtures (WHAM!) and WSJO
Hipster Ambient Mixtures with Reverberation (WHAMR!) are noisy speech separation datasets that
pair each two-speaker mixture from the WSJO-2mix dataset with unique background noise scenes.
The WHAM noise recordings were collected in late 2018 from various urban locations around the
San Francisco Bay Area, including restaurants, cafes, bars, and parks. WHAM! provides noisy
versions of WSJ0-2mix, while WHAMR! adds reverberation effects.

LibriMix [50]: LibriMix is an open-source dataset for source separation in noisy environments,
derived from the clean subset of LibriSpeech signals and WHAM noise. It includes two configura-
tions: Libri2Mix and Libri3Mix, containing two-speaker and three-speaker mixtures, respectively.
The Libri2Mix dataset has 50,800 mixtures for training, and 3,000 each for validation and testing.
Mixtures have signal-to-noise ratios (SNRs) that follow a normal distribution, with a mean of 0
dB and a standard deviation of 4.1 dB in clean conditions, and a mean of -2 dB with a standard

deviation of 3.6 dB in noisy conditions.
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1.2.2 Evaluation metrics

To accurately assess the performance of speech separation models, robust evaluation methods
are required to measure the quality of the estimated speech signals. These methods are generally
classified into two categories: subjective listening tests and objective evaluation metrics. Subjective
listening involves engaging a sufficient number of trained listeners to evaluate the quality of the
separated speech. However, to ensure fairness and accuracy, the evaluation scores must be manually
averaged, which is both time-consuming and prone to inaccuracies. Objective evaluation metrics
offer a more efficient alternative, particularly for researchers. These metrics automatically assess
the quality of the estimated speech by directly comparing it to the clean target speech, thereby
providing a more reliable and consistent evaluation. We introduces some of the most commonly
used objective evaluation metrics as follows:

Scale-Invariant Signal-to-Noise Ratio (SI-SNR) [51]: SI-SNR is utilized to measure speech
quality by calculating a scale-invariant SNR value. Unlike conventional SNR, which requires prior
setting of noise power, SI-SNR normalizes the amplitude of the signals, making it insensitive to
volume differences. This metric is linearly correlated with speech quality—the higher the SI-SNR
value, the better the quality of the speech. It is also widely used as the loss function in many speech
separation models.

Perceptual Evaluation of Speech Quality (PESQ) [52]:The PESQ metric assesses the per-
ceptual quality of processed speech, used for both separated and clean waveforms. It involves
normalizing the estimated and clean speech signals to match voice energy levels, aligning them in
time, and applying an auditory transformation to obtain loudness spectra. The difference between
these spectra is then averaged over time and frequency to predict the subjective mean opinion score,
with higher PESQ values indicating better performance.

Composite Mean Opinion Scores (MOSs) [53]: The MOSs consist of three components:
CSIG, assessing signal distortion; CBAK, evaluating background noise distortion; and COVL, pro-
viding an overall speech quality rating. These components are typically combined into a composite
objective measure that closely correlates with preset subjective ratings, offering insight into the

different types of distortions in the estimated speech.
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1.2.3 Evaluation for model efficiency

The objective of this thesis is to propose resource-efficient models for speech separation. Be-
yond evaluating performance, it is crucial to understand the trade-offs between performance and
resource consumption. Assessing model efficiency involves examining how effectively a model
performs relative to the resources it consumes. This includes a detailed evaluation of various met-
rics that reflect the model’s size, computational and memory demands, as well as its speed during
inference. The following key metrics are used to evaluate model efficiency in this thesis:

Number of parameters (#params): #Params reflects the model’s complexity, specifically in-
dicating the total count of trainable parameters. A lower number of parameters generally suggests a
lighter model that is faster and requires fewer resources for training.

Giga Multiply-accumulate operations per second (GMACs/s) [54]: GMACs/s is a met-
ric used to quantify the computational workload of a model, measuring the number of multiply-
accumulate operations (MACs) a model performs, scaled to billions per second (Giga). Since MAC
operations are fundamental in neural networks, models with lower GMACs/s are more efficient and
preferable in scenarios where computational resources are limited.

Speed and Memory Utilization: Two critical metrics for assessing speed and memory utiliza-
tion are memory cost and inference time. Memory cost refers to the amount of memory required
to store the model and its intermediate computations, while inference time is the duration needed
for the model to make predictions on a given input. To ensure a fair and meaningful comparison,
memory cost and inference time should be evaluated under the same training environment, typically

by conducting experiments on the same GPU.

1.3 Essential components for training

1.3.1 Activation function

Neural networks are considered complex functions that map inputs to outputs through high-level
nonlinear representations. To enable the model to learn complex problems, nonlinear activation

functions are employed, adding the necessary non-linearity to the network. Additionally, activation
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functions must be differentiable to allow for the adjustment of weights and biases during backprop-
agation. The following sections introduce some of the most commonly used activation functions.
Rectified Linear Unit (ReLU) [55]: ReLLU outputs the input directly if it is positive, and outputs
zero for any negative input, as illustrated in Fig.1.18 (left). This selective activation allows neurons
to fire only for positive inputs, introducing sparsity into the network and mitigating the gradient
vanishing problem commonly encountered in deep networks. Although the gradient is technically

undefined at zero, in practice, it is set to zero, which does not affect the backpropagation process.
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Figure 1.18: Illustration of ReLLU function (left) and PReLLU function (right) [56]

Parametric Rectified Linear Unit (PReLU) [56]: PReLLU enhances the RelLU activation func-
tion by addressing the gradient vanishing issue with negative inputs. As illustrated in Fig.1.18
(right), PReLU multiplies negative inputs by a small, non-zero value, ensuring gradients are gen-
erated to update the model’s weights and biases. Like RelLU, PRelLU leaves positive inputs un-
changed. The key difference is that this non-zero value in PReL.U is a trainable parameter, enabling

the network to learn the optimal slope for effective weight and bias adjustments.
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Figure 1.19: Illustration of Sigmoid Activation Function

Sigmoid Activation Function: The sigmoid function constrains outputs to a range between
zero and one, as illustrated in Fig.1.19. It is a smooth function, but for large input values, the
curve flattens significantly, causing the gradient to approach zero, leading to the gradient vanishing
problem where weights and biases fail to update effectively. Moreover, the sigmoid function is

computationally intensive due to its exponential nature.

Tanh activation function

Figure 1.20: Mlustration of Tanh Activation Function

Tangent hyperbolic function (Tanh): The Tanh activation function is a widely used nonlinear
function in neural networks, particularly in tasks that require output values within a specific range,
as shown in Fig.1.20. The tanh activation function maps input values to a range between —1 and 1,
making it particularly useful in scenarios where both positive and negative activations are desirable.
Its primary strength lies in its ability to introduce nonlinearity into the network, thereby enabling the

modeling of complex relationships. This nonlinearity enhances the network’s capacity to capture
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intricate patterns within the data, which is crucial for solving complex tasks such as speech separa-
tion. Furthermore, by centering the data within the —1 to 1 range, the tanh function can reduce the

bias shift effect, potentially leading to faster convergence during training.

1.3.2 Regularization

In deep learning-based approaches, it is crucial for trained models to perform well on unseen
datasets drawn from the same distribution as the training data, a characteristic known as generaliza-
tion ability. A common issue is that models often exhibit superior performance on the training data
compared to the unseen testing data, leading to the problem of over-fitting. To mitigate over-fitting
and enhance the model’s generalization ability, regularization techniques are employed.

Dropout [57]: Dropout is a technique where certain neurons are randomly deactivated dur-
ing training, temporarily removing their contributions during forward propagation and excluding
their weight updates during backpropagation. Notably, dropout is only applied during training; all
neurons remain fully active during testing. This method is widely used to prevent overfitting and
promote faster model convergence.

Residual connection [58]: Residual connection is a type of skip-connection that learn residual
functions relative to the layer inputs, rather than learning functions without reference to the inputs,
as shown in Fig.1.21. During backpropagation, residual connections can effectively prevent the
vanishing gradient problem caused by zero gradients. This technique is straightforward to imple-
ment in any neural network, enabling deeper architectures without adding additional parameters.
Residual connections are now widely employed in CNNs, RNNs, attention-based transformers, and

other models.
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Figure 1.21: Ilustration of Residual connection [58]

1.3.3 Loss function

To train the model effectively, it is essential to design a suitable loss function that measures the
difference between the estimated outputs and the ground truth targets. The loss function guides the
model in minimizing prediction errors during optimization. Since speech separation is a regression
problem, this section will discuss several loss functions commonly used in this context. Note that,
in speech separation, there are usually multiple pairs of estimated outputs and target signals, so the
final loss is computed as the mean of the loss values across these pairs.

Mean squared error (MSE): The Mean Squared Error (MSE) loss, also known as L2 loss, is
defined as the average of the sum of squared differences between the predicted values and the ground
truth. In time-frequency domain models for speech separation, this loss function is frequently em-
ployed by researchers who directly minimize the MSE in the spectrogram format. Specifically, the
loss is calculated between the estimated magnitude and the true magnitude (target) of the spectro-

gram, and can be mathematically expressed as follows [5]:
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where T" and F indicate the number of time frames and frequency bins, respectively. S repre-
sents the number of speakers in the input speech mixture. X denotes the estimated magnitude and

X, denotes the magnitude target.

Scale invariant speech to noise ratio (SI-SNR) [51]: SI-SNR aimed at producing high-quality
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and intelligible speech signals directly working on waveforms, by measuring the ratio of the signal

power to the noise power in decibels, which is formulated as [20]:
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Where z and # denote the clean speech waveform and the estimated speech waveform. The SI-
SNR loss computed using the scaled target source Ziarget and the noise enoise, Which is the difference
between the estimated source signal and the target source signal. This formulation makes SI-SNR

scale-invariant, meaning that its evaluation is independent of the amplitude of the signals.

1.4 Objective and organization of thesis

The objective of this thesis is to propose resource-efficient neural networks for single-channel
speech separation. The first contribution introduces a Conformer-based two-stage model with an
integrated redundancy approach, referred to as the Redundant Conformer Neural Network (RC-
Former). This model comprises an encoder, separator, and masking decoder, following a structure
commonly used in both time-domain and time-frequency (T-F) domain separation models. The en-
coder utilizes a dilated dense convolutional neural network (CNN) that extracts more information
compared to a single-layer convolution. The separator is designed to successively learn intra-frame
and sub-band features. To address the issue of sparse information in the spectrogram, a redundancy
approach is employed, stacking the input spectrogram into a denser representation. The outputs
from the transformer blocks are passed through a masking decoder to generate a mask, which is
then element-wise multiplied with the encoder outputs to obtain the separated speech signals. Our
model achieves impressive performance compared to existing systems, with fewer trainable param-
eters and faster computation speed.

Although the first contribution, RCFormer, achieves impressive performance while maintain-

ing a small model size, it still requires a relatively large computational workload, resulting in a
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high GMACs/s. In the second contribution, we introduce a novel neural network that integrates a
sub-band module and a full-band module to address this issue. In the sub-band module, a compact
latent summaries method is applied to extract information within each sub-band and across dif-
ferent sub-bands. The full-band module incorporates a novel self-attention-based mechanism that
operates on the entire spectrogram. To further reduce computational complexity, we estimate the
complex spectrogram mapping directly rather than estimating the magnitude spectrogram mapping.
We demonstrate that this novel full-band and sub-band architecture achieves effectiveness compa-
rable to most speech separation models while significantly reducing model size and achieving the
lowest GMACs/s.

The rest of this thesis is organized as follows:

Chapter 2: This chapter starts with an introduction to the Conformer architecture, followed by
a detailed description of the proposed two-stage redundant Conformer model for speech separation
in the time-frequency domain. It concludes with the experimental results, covering performance
outcomes, model efficiency, and an ablation study of the proposed models across different configu-
rations.

Chapter 3: This chapter first describes the proposed novel sub-band and full-band modules,
with a particular focus on how the network is designed to minimize computational resource usage.
It then explains the integration of the full-band and sub-band modules. Finally, the chapter presents
experimental results demonstrating that the proposed approach achieves competitive performance in
speech separation compared to larger transformer-based and dual-path models, while significantly
reducing computational complexity.

Chapter 4: This chapter concludes the thesis and suggests some directions for future work.
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Chapter 2

Conformer-based neural network for

speech separation

In this chapter, we propose a two-stage Conformer neural network integrating redundant units,
abbreviated as RCFormer. This chapter is organized as follows. In Section 2.1, we overview the
Conformer, which is the architecture that integrates the multi-head self-attention mechanism and
convolution neural networks. In Section 2.2, we first introduce the two-stage structure for speech
separation, and then describe the proposed RCFormer for single-channel speech separation in the
time-frequency domain. In Section 2.3, we provide the experiment results and the evaluation of our

proposed RCFormer.

2.1 Convolution-augmented transformer

The convolution-augmented transformer (Conformer) [59] was originally designed for auto-
matic speech recognition. It efficiently captures both local and global dependencies in an audio
sequence by integrating Transformer and convolutional neural networks. While the general trans-
former structure includes both encoder and decoder, our network uses only the Conformer encoder
since the input mixtures and output sequences are of the same length in the separation task. Each
Conformer block comprises four modules: a feed-forward module, a multi-head self-attention mod-

ule, a convolution module, and a second feed-forward module, with residual connections at each
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sub-layer to enhance network robustness.
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Figure 2.1: Tllustration of Conformer block

2.1.1 Multi-head Self-attention Module (MHSA)

In the multi-head self-attention module (MHSA) [29], we employ a pre-norm residual unit with
dropout and a multi-head attention module with relative positional encoding. As illustrated in Fig.
2.2, the pre-norm residual unit applies layer normalization before the sub-layer and the residual
connection. The pre-norm method allows the subsequent layer to receive inputs with a consistent
mean and variance and keeps the inputs to each layer in a moderate range. It stabilizes the training

of our network and avoids the gradient vanishing problem.
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Figure 2.2: Tllustration of multi-head self-attention module (MHSA)

The relative positional encoding method enhances the original self-attention mechanism by ef-
ficiently incorporating the relative positions or distances between sequence elements. Specifically,
the MHSA sub-layer utilizes h attention heads. Each attention head operates on an input sequence
z = (z1,%9,...,2,) Where z; € R%  and the output is a new sequence with the same length
z = (z1,22,...,2n) Where z; € R% _ First, each input element z; is computed with different, learn-
able linear transformations to get queries (QQ), keys (K), and values (V'), which are .’Bg’WQ, ::ciWK ,
and z;W" respectively. W@, WK WV ¢ Rd%*d: are parameter matrices. We also consider the

edge between the input elements x; and x;, which are represented by corresponding keys and values

vectors a;';, ag € R _ where we set d; = d,. Then, a single element attention output z; is com-
puted as a weighted sum of linearly transformed input elements and propagates edge information as

shown in Eq. (8) [29].

T
Zj = Z CE._;;j (:BJWV + a:f; (8)
j=1

where «;Jj is the weight coefficient, which is a softmax of a compatibility function that compares

two input elements. After considering the edge information, «;j is shown as Eq. (9) [29].

WO (2, WK + ag)T

Vd,

) )

i = softmax(

2.1.2 Convolution module

The convolution module in Conformer integrates a gating mechanism, which is consisted of a
pointwise convolution and gated linear unit (GLU). It is followed by a 1-D depthwise convolution

layer [59]. Batch normalization [60] and a drop-out [57] is employed next to help the network
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training and prevent overfitting, as shown in Fig.2.3.

= W

Figure 2.3: Illustration of convolution module

2.1.3 Feed forward module

The feed-forward module [61] consists of two linear transformations with a nonlinear activation
in between, similar to the feed-forward layer in the vanilla Transformer. It also employs a pre-norm
residual unit with dropout to enhance training stability, and uses the Swish activation function to

regularize the neural network. Fig.2.4 below illustrates the feed forward module.

ST TR

Figure 2.4: Tlustration of feed forward module

2.1.4 Conformer block

The Conformer block features a sandwich’ structure inspired by Macaron-Net [62]. It includes
two half-step feed-forward layers surrounding the multi-head self-attention (MHSA) and convolu-
tion modules, as illustrated in Fig. 2.1. We replace the single feed-forward layer in the vanilla
Transformer with two half-step feed-forward layers, positioned before and after the attention layer.
We also employ half-step residual weights which is default % in our feed forward module. A layer
normalization is employed after the second half-step feed forward layer to normalize the output.

Mathematically, for an input z; to a Conformer block 7, the output 7; would be [59]:

&= 7 + %FFN(M) (10)
i = @; + MHSA(;) (11)
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"

z" = zi' + Conv(z;") (12)
yi — LN (2" + %FFN(:::{’)) (13)

where F'I'N refers to the feed forward layer, M HS A refers to the multi-head self-attention

layer, C'onv refers to the convolution layer, and the LN refers to the layer normalization.

2.2 Proposed redundant Conformer neural network

In this section, we propose a Conformer-based speech separation model named redundant Con-
former neural network (RCFormer). The RCFormer is a novel method that adopts the proposed
two-stage conformer blocks containing intra-frame spectral module and sub-band temporal module

to extract the frequency and time information of the spectrogram.

2.2.1 Two-stage structure

The two-stage structure, initially proposed to enhance RNN performance [23] in modeling long
sequences for time-domain speech separation, is also used in the Transformer-based Sepformer [14].
This approach divides the long input sequence into smaller chunks, applying an intra-chunk network
to capture dependencies within each chunk and an inter-chunk network to capture dependencies
across chunks. We adapt this two-stage structure to the time-frequency domain by introducing a
two-stage Conformer block. This block includes an intra-frame spectral module and a sub-band
temporal module to capture frequency and time dependencies, respectively.

As shown in Fig.2.5, in two stage Conformer blocks, the input features Y have a shape of
[B,D,T, F],where B is the batch size, D is the channel size, and 7" and F' represent for the number
of time frames and frequency bins of the spectrogram respectively. In the intra-frame spectral
module, we view the input as T' separate sequences and each with length F'. The Conformer block
is applied to model the inter-frequency information within each frame. Then, a sub-band temporal
module is applied to model the temporal information within each sub-band, where the input is
viewed as F' separate sequences and each with length T'. Besides, the residual connection [58] is

utilized into both two modules to avoid overfitting and gradient vanishing.



Rintra—frame = Con former(Reshape(X)[:, t,:]) + Reshape(X) (14)

Reup—band = Conf Orme?(ReShape(Rintra— f rame) [:1 L f ]) + ReShape(Rintra— f rame) (15)

where t = 1,2,3,...,T denotes the index of time step, and f = 1,2,3,..., F denotes the

index of frequency bin. Reshape(-) denotes the operation of dimension permutation.
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Figure 2.5: Illustration of Two stage structure

2.2.2 Proposed RCFormer

In general, the proposed RCFormer has three main components, including the encoder, con-
former blocks, and the mask decoder. As shown in Fig.2.6, the noisy speech waveform is first
processed by a short-time Fourier transformer (STFT) to obtain the input spectrogram. Then, the
input spectrograms are first processed by a dilated densely convolutional encoder, which serves two
primary functions. Firstly, it effectively extracts both low-level and global information from the
spectrogram, and secondly, it significantly increases the receptive field, enhancing the learning of
compressed features. These encoded inputs are then passed through a series of conformer blocks.
The RCFormer employs two-stage conformer blocks to efficiently exploit local features and capture
long-range dependencies. This approach includes both intra-frame conformer blocks and sub-band
conformer blocks. Additionally, a redundant reconstruction method is applied to generate over-

lapping units, which improves performance while maintaining a relatively low parameter count.
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Subsequently, the output from the conformer blocks is fed into the mask decoder, which is tasked
with generating masks that estimate the speech features of different speakers. The mask decoder
utilizes a densely convolutional neural network similar to that of the encoder and includes a mask-
ing module designed to predict masks that match the shape of the input spectrograms. Finally, the
estimated masks are multiplied by the input spectrograms of mixed speech to obtain the separated
spectrograms. These separated spectrograms are then processed by an Inverse Short-Time Fourier

Transform (ISTFT), ultimately producing the separated speech waveforms.

'I\vo—swge stage
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* Estimation 2 —*
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Estimated
-

” Estimation | —* speech |

STFT

Mixture '
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&

, Estimated
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Figure 2.6: Overview of proposed RCFormer

Our RCFormer is proposed for time-frequency domain speech separation where the input is
the spectrogram obtained by a short-time Fourier transformer (STFT). The original speech audio is
obtained by a single-channel microphone and resampled at a certain sampling rate. For example,
we can obtain 32000 samples by resampling a 4-second speech signal at 8k H z. It is still difficult
to process a long time-domain speech sequence although we can select small speech segments with
a relatively small sample rate. As a result, we apply STFT to the original speech sequence. More
specifically, given a S-speaker mixture with no noise y[n|, where n indexes IV time samples. In our
task, the number of speakers is 2. As a result, the row input mixture Y € RY. The physical model

of a speaker separation task in the time domain is:

s
n]=> z¥m (16)
i=1
In the time-frequency domain, the physical model is:
s

Y(t,f) =Y X©f) (17)

i=1

36



where ¢ indexes T time frames and f indexes F' frequency bins. After STFT, the row input is
transformed into the 3-dimensional tensor Y € R>*FxT and processed by the speech separation
model. In the final stage, the Inverse short-time Fourier transformer (ISTFT) is used to inverse the

estimated spectrogram of the two speeches into the two separated speech waveforms.

2.2.3 Encoder

The encoder is designed to extract the compressed features of inputs. As shown in Fig. 2.7, it is
comprised of two convolution blocks and M dilated dense layers. Each convolution block consists
of a convolution layer, an instance normalization, and a PRel.U activation. In the first convolution
block, the number of channels of inputs will first extend to D by the 2-dimensional convolution
block with kernel size of (1,1). Then, M dilated dense layers are employed to extract both inside-
band and cross-band features, which contain four convolution blocks with dense connections. Each
convolution block consists of a constant padding, a 2-dimensional convolution layer, an instance
normalization [63] and a PReLLU [56] activation. Finally, the second convolution block is responsi-
ble for halving the frequency dimension to F'/2 with D kernels of size (1, 3) and a stride of (1, 2),

which reduces the computation complexity. The output tensor of the encoder is X € RP*T*(F/2),
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Figure 2.7: Tllustration of Encoder

The dilated dense layer is inspired by the DenseNet [64], which is the densely connected convo-
lution neural network. DenseNet is first applied in the music source separation task [65]. Different
from conventional deep convolution neural networks, DenseNet connects each layer to every other
layer in a feed-forward fashion. As shown in Fig.2.8 , the outputs of one block are passed to all
subsequent blocks by concatenating the outputs of all previous blocks to final outputs. The con-
ventional convolutions are also replaced by the dilated depth-wise separable convolutions, which
expand the input by inserting gaps between its elements. The dilation rates of our proposed network
are 1,2, 4, 8, which control how much the input is expanded. A constant padding is also added
to maintain the spatial resolution of the feature maps and avoid cropping the input when applying
dilated convolutions as shown in Fig.2.9. Each depth-wise convolution is followed by the Instance

normalization [63] and PReLLU [56] function.
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Figure 2.8: llustration of dilated dense layer
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Figure 2.9: Illustration of dilated dense block

2.2.4 Redundant units

The redundant units are obtained from the encoded outputs of the dilated dense encoder through
the “unfold” operation [66] and serve as the input to the conformer blocks. The “unfold” operation

shares similarities with one-dimensional convolution, both containing parameters kernel size and

39



stride. However, the “unfold” operation does not perform any computation but reshapes the input
tensor. Specifically, assume an input tensor X RP*M>N for example, view X as N sequence
vectors, each with length M. We take one sequence vector and extract the sliding blocks with kernel
size I and stride size J, where the kernel size determines the size of the sliding window, and the

stride size determines the steps the window slides. After zero padding, we can obtain the newly

constructed redundant units U € RU>P)>Nx(¥754+1) yhere (I x D) is the total number of values
within each block and (# + 1)) is the total number of such blocks. The output redundant units
can be seen as collections of flattened blocks, where each block contains (I x D) values from the
input. Note that the stride size J can be larger than one so that the sequence length of the redundant
units and the amount of computation can be reduced. The “unfold” operation can be realized by
torch.nn.Unfold [66]. As last, a one-dimension transpose convolution can be applied to transform

the shape of the redundant units back to the shape of the input tensor.

)

Figure 2.10: Ilustration of constructing redundant units

2.2.5 Two-stage redundant Conformer blocks

Based on the two-stage conformer blocks, we combine the redundant units with the conformer
blocks for our proposed two-stage redundant conformer blocks, which can capture both time and fre-
quency information of speech features as illustrated in Fig.2.11. The proposed two-stage redundant

conformer blocks share the same structure with two-stage conformer blocks as shown in Fig.2.5.
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The intra-frame redundant conformer extract features within each frame while the sub-band redun-
dant conformer extract features within each frequency sub bands. As demonstrated in Fig.2.12,
each redundant conformer block consists of the redundant reconstruction, a layer normalization, a
four-layer conformer and a one-dimensional transpose convolution layer. A residual connection is

implemented to maintain the information of the input and avoid the gradient vanishing problem.

Sub-band D
redundant +
conformer T

4 F

Intra-frame
redundant
conformer

Figure 2.11: Iustration of two-stage redundant conformer blocks

Redundant reconstruct

Layer Normalization

Figure 2.12: Illustration of redundant conformer block

2.2.6 Masking module

The masking module utilizes the feature output and generates masks to estimate separated
speeches. As shown in Fig.2.13, the main part of the masking module is a gated convolution consists
of two parallel convolution branches. More specifically, it is involved a 1-D convolution along with
the sigmoid nonlinearity operation and a 1-dimensional convolution along with the Tanh operation.
One convolution branch works for output generation and the other convolution branch is for the

gate generation. The outputs of these branches are multiplied element wise to produce the gated
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output. The two-branch gated convolution is proved to be effective to handle irregular masks. Then
the outputs of the gated convolution will pass through a ReLU nonlinear function [55] for creating

two masks for each speaker.

Inputs

Gated Convolution

Masks

Figure 2.13: Illustration of masking module

2.2.7 Decoder

The decoder is adopted to reconstruct features from the two-stage conformer blocks to the
speech features of the two target speakers. In our proposed model, we apply two different de-
coders, masking decoder and complex spectral mapping decoder. The masking decoder generates
masks for each speaker and estimate separated speeches by element-wise multiplying the input mix-
ture and the masks, while the complex spectral mapping decoder estimate the real and imaginary
components of each speaker directly.

The masking decoder is comprised of a dilated dense decoder, a 2-dimensional convolution
layer, and the masking module. As shown in Fig. 2.14, the dilated dense decoder shares a similar
structure with the dilated dense encoder, consisting of a dilated dense block for up-sampling and a
2-dimensional convolution output layer. Then, the masking module is followed to generate masks
of the target speakers. The dilated dense block for up-sampling employs M dilated dense layers

and a sub-pixel convolution to double the dimension of the frequency bins size. It can be regarded
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as the inverse procedure of the encoder. The sub-pixel convolution performs like a transposed con-
volution to enlarge the dimension size, which can be implemented more efficiently by rearranging
the elements in the output tensor and avoids the checkerboard artifacts. Then, a 2-dimensional con-
volution is applied to resume the number of channels from D to 2, the same channel size with the
input spectrogram, with a kernel size (1, 2). Finally, the masking module is employed to generate
masks of the target speakers. The generated masks will be multiplied with the input spectrogram in

element-wise manner for giving final masked complex spectrogram.

Outputs from
Conformer blocks

Output masks

Figure 2.14: Illustration of masking decoder

The spectral mapping decoder is only consisted of a dilated dense decoder and a 2-dimensional
convolution layer. As shown in Fig. 2.15, it outputs the complex spectrogram for each target speaker

directly, rather than masks.
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Figure 2.15: lustration of spectral mapping decoder

2.2.8 Loss function

To train our proposed model, we adopt the loss function scale invariant speech to noise ratio
(SI-SNR) [51] aimed at producing high-quality and intelligible speech signals in time domain, by

measuring the ratio of the signal power to the noise power in decibels, which is formulated as [51]:

( (&, 2)z
A |2
9 €Enoise = T — Ltarget » (18)
2
SI-SNR = 101logy, M
\ [|€noise|

Where x and # denote the clean speech waveform and the estimated speech waveform. By
calculating sqrger, We define the target source signal based on the inner product and scaling it by
the magnitude of the clean waveform. The SI-SNR loss is calculated by the scaled target source
Ttarger and the noise enpise between the estimated source signal and the target source signal. It
makes the SI-SNR scale-invariant, which means that it does not depend on the amplitude of the
signals.

In our two-speaker speech separation task, we calculate the SI-SNR value of the two separated
speech signals separately and then computes the mean of the two SI-SNR values as the final loss

function for training.



2.3 Experimental results

2.3.1 Experimental settings

We carry out our experimental studies based on a public speech data from Wall Street Journal
corpus, named WSJO-2mix [48], as introduced in 1.2.1. We adopt SI-SNR as evaluation metric
with PIT method [5]. The mixture SI-SNR is 0 dB. We also adopt two parameters to evaluate the
size and computation complexity of models, including number of parameters of the model #Params
and multiply-accumulate operations per second GMACs/s. #Params stands for the size of a neural
network and GMACs/s is a measure of the computational speed of a neural network.

For training speech separation models, two main types of inputs are used: speech waveforms,
which lead to time-domain models, and speech spectrograms, which are used in time-frequency
domain methods. Our experiments focus on spectrogram inputs, which are smaller and sparser than
time-domain waveforms. We select a 4-second segment from each utterance longer than 4 seconds
to reduce computational time. In each batch, shorter utterances are zero-padded to ensure uniform
length. We use an STFT with a 64 ms window size and a 16 ms hop size, applying a square-root
Hamming window for analysis. A 512-point discrete Fourier transform extracts 257-dimensional
complex spectra for each frame. As shown in 2.1, the feature channel of spectrogram inputs is 2 and
the encoding dimension of the dilated dense net encoder is ). The encoder and decoder settings
have large impacts on performance. However, we do not discuss the performance of dense net here.
To get a balance between the model size and the final performance, we utilize 4 down-sampling
layers in encoder and 4 up-sampling layers in decoder, where each layer includes a dilated dense
block using dilated convolution with dilation factor of 3. In redundant units, the kernel size and
stride size are I and .J respectively. We used 4 two-stage redundant Conformer blocks in proposed
RCFormer. For proposed Conformer setting, the input feature dimension is set as ), the same with
the encoding dimension, and the attention heads H in multi-head attention are set as 4. The kernel
size of the convolution layer in Conformer is set as 31.

We train and optimize our proposed model for 200 epochs by using Adam optimizer [67]. To
alleviate the gradient explosion problem in sequences and get more accurate training performance,

we adopt a learning rate decay method during training. More specifically, In the first 50 epochs, the
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Table 2.1: Summary of model hyper-parameters

Symbols Description
Embedding dimension
Number of dilated dense layers
Number of two-stage Conformer blocks

Kernel size for Unfold and DeconviD

Stride size for Unfold and Deconv1D
Kernel size in convolution layer in Conformer

Number of attention heads in multi-head

attention of Conformer

it~ 22| D

learning rate is initially 8e~%. After that, the learning rate is decayed to half of the former learning

rate for every 30 epochs. It can be defined below:

I k, n < n_initial 19)
T =
k - 0.5l(n—n-initial) /ndecay|+1 =y, > p_initial

where n denotes the epochs, and k = 8e~* are hyper-parameters. n_initial denotes the number
of epochs that using the initial learning rate, which is set as 50. n_decay denotes the number epochs

that every time the learning rate delays half, which is set as 30.

2.3.2 Comparisons with baselines

Table 2.2 The comparison results for the proposed model and various existing time-domain
and time-frequency domain methods, evaluated on the WSJO-2mix dataset, are presented. No data
augmentation methods were used during training. Despite its efficiency, our proposed RCFormer
demonstrates impressive performance compared to existing models. While time-domain models
generally perform better than time-frequency domain models, RCFormer achieves results com-
parable to the state-of-the-art time-domain model, Sepformer, but with significantly lower model
complexity (4.8M parameters). RCFormer also outperforms popular time-domain models such as
DPRNN, Conv-TasNet, and DPT-Net. Although the latest MossFormer and TF-GridNet outperform
RCFormer, MossFormer has a much larger parameter size (42.1 million) compared to RCFormer
(4.6 million), and TF-GridNet requires substantially more GMACs/s (231.1) than RCFormer (52.2)

Second, our proposed RCFormer achieves a state-of-the-art SI-SNR value compared to other
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popular efficient models, such as Sepformer-light, SkiM, RE-Sepformer, and various efficient Trans-
former architectures. RCFormer excels in modeling long-range speech sequences while maintain-
ing a relatively low number of parameters. This demonstrates that our redundant reconstruction and
Conformer approach effectively captures both local and global information in spectrograms while
reducing parameter count. Additionally, when comparing RCFormer to other efficient Transformer-
based two-stage models like Reformer and Longformer, RCFormer delivers significantly better per-
formance. This suggests that the combination of Conformer and redundant reconstruction is cur-
rently the most effective two-stage model, enhancing the ability to extract both intra-frame time

dependencies and sub-band frequency dependencies.

Table 2.2: Comparison with other models on WSJ0-2mix

Models Domain | Year | SI-SNR (dB) | #Params (M) | GMACs/s
Conv-TasNet [20] Time 2019 15.3 5.1 3.2
FurcaNeXt [16] Time 2020 18.2 514 -
DPRNN [23] Time 2020 18.8 2.6 38.8
Gated DPRNN [25] Time 2020 20.1 7.5 49.6
DPTNet [40] Time 2020 20.2 2.6 -
SepFormer [14] Time 2021 214 26.0 70
SepFormer Light [44] | Time 2022 19.8 6.4 17.5
Wavesplit [68] Time 2021 21.1 29 -
TFPSNet [37] T-F 2022 21.1 2.7 29.6
SFSRNet [69] Time 2022 22 59.1 -
QDPN [70] Time 2022 22.1 200 -
SkiM [43] Time 2022 18.2 14.5 3.7
RE-SepFormer [44] Time 2023 18.6 8.0 6.3
Seplt + DM [71] Time 2023 224 4.6 -
Reformer T-F - 18.9 9.2 28.2
Longformer T-F - 14.2 15.1 12.3
MossFormer [72] Time 2024 229 42.1 -
TF-GridNet [45] T-F 2023 234 144 231.1
RCFormer T-F - 21.8 4.8 39

2.3.3 Ablation study

In this section, we conduct comparison experiments to evaluate the effectiveness of different
components of our proposed model. For simplicity, these experiments are performed on the WSJO-

2mix dataset using the same loss function.
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First, we compare our two-stage model with both time-domain and time-frequency-domain in-
puts. We conducted two sets of experiments to explore performance and efficiency. In the first
set, we tune hyperparameters for both time-domain and time-frequency-domain inputs to achieve
optimal results without considering model size. In the second set, we maintain a constant model
size across various time-domain and time-frequency-domain configurations to compare their per-
formance. For the time-domain model, we use a 1-dimensional convolution layer as an encoder to
transform long speech sequences into latent representations.

As shown in Table 2.3, the model using time-domain inputs obtains a 20.2 dB performance,
while the time-frequency-domain model obtains 18.9 dB performance. However, time-domain
model requires much more computational resources than our time-frequency-domain model. More
specifically, the time-domain model requires more than 7 times number of parameters comparing

with the time-frequency-domain model and a GMACs/s increasing of 65%.

Table 2.3: Best results of time-domain and time-frequency-domain two-stage models

SI-SNR (dB) | #Params (M) | GMACs/s
Time 20.2 14 60
T-F 18.6 23 23

From the Table 2.4, we also observe that the time-frequency-domain model outperforms the
time-domain when the number of parameters is held constant range from 1.5M to 8M. However,
if we increase the model size to more than 15M parameters, the time-domain model can achieve
more than 20 dB performance while the performance of time-frequency-domain model only slightly
improves. The possible reason is that the time-domain representation contains denser information
while the information in the spectrogram is sparser. As a result, the time-frequency domain model
requires significantly fewer computational resources than the time domain model.

Secondly, the two-stage Conformer block is designed to capture both temporal and frequency
features through intra-frame and sub-band Conformers. This is followed by a two-stage model
aimed at extracting local and global information from long sequences. The choice of core networks
significantly impacts performance. To evaluate the effectiveness of our proposed Conformer core

network, we conducted experiments comparing it against several popular core networks that have
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Table 2.4: Evaluation results of time-domain and time-frequency-domain two-stage models

SI-SNR (dB) | #Params (M)

Time - 1.5M
16.6 3M
18.4 5M
18.9 8M

21.9 15M

22.1 25M

T-F 18.4 1.5M
18.9 3M

19.8 5M

20.1 8M

20.9 15M

- 25M

proven effective in prior research. For a fair comparison, we integrated each core network with
our proposed two-stage redundant block, maintaining the same dilated dense encoder and decoder
architecture. The inputs are complex spectrograms with no augmentation, with sizes consistent with
those described in our experimental settings.

To further explore the superiority and efficiency of our proposed Conformer core, we designed
two groups of comparative experiments. In the first group, we fixed the SI-SNR at 18.5 dB, a stan-
dard value empirically demonstrated as attainable by our reference models, to focus on comparing
the model complexity of different core networks. In the second group, we held the number of
model parameters constant at 3 million and compared the resulting SI-SNR performance across the
networks.

Table 2.5: Evaluation results of different core networks with two-stage backbone (constant SI-SNR
value)

SI-SNR (dB) | #Params (M) | GMACs/s
RNN 18.4 8 48
LSTM 18.4 6.6 60
Vanilla Transformer 18.4 9.2 76
Reformer 18.4 5 30
Conformer (ours) 18.5 1.3 19

As shown in Table 2.5, our proposed Conformer-core network is distinguished by both its

considerable size and the lowest GMACs/s. Especially, for the Transformer-based core networks
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Table 2.6: Evaluation results of different core networks with two-stage backbone (constant model
size)

SI-SNR (dB) | #Params (M) | GMACs/s
RNN 17.9 49 26
LSTM 18.2 5 33
Vanilla Transformer 17.6 5 55
Reformer 15.4 4.9 30
Conformer (ours) 21.8 5 39

(Vanilla Transformer, Reformer, and Conformer), The vanilla Transformer core requires 7 times
number of parameters and 3.5 times of GMACs/s to achieve the 18.5 dB. The Reformer core is su-
perior to the vanilla Transformer which requires smaller model size and lower computational com-
plexity. However, Conformer-core network achieves the overall best performance with the smallest
model size and relatively low computational complexity. Table 2.6 also emphasize the Conformer
core’s superior performance in both performance and computational efficiency. It achieves a 21.8 dB
SI-SNR value, which is about 3 dB better than reference models. We can find that attention-free core
networks like RNN and LSTM perform better than the self-attention-based Transformer networks.
However, Transformer networks achieve much better results with time-domain inputs. The possible
reason is that vanilla Transformer architecture is more suitable for processing large long-sequences
because its self-attention mechanism indeed excel in capturing global context and handling long-
range dependencies, while it has limitation in capturing temporal dependencies like sparse spectro-
gram inputs. It proves that Conformer, the combination of convolution layer and Transformer, has
great advantage in processing smaller and sparser input like spectrogram. Although the Conformer
core requires more GMACs/s than RNN, LSTM, and Reformer, we demonstrate that it shares similar
training and processing times compared to other reference models. Specifically, we measured the
inference time in seconds using an NVIDIA A100 GPU across different input lengths. As shown
in Fig.2.16, the inference time of the Conformer core is only marginally slower (by 0.2 seconds)
than other reference models when the input length is 32 seconds. Given that our typical input sig-
nal length is between 4 to 6 seconds, this indicates that our proposed Conformer core network can

operate efficiently and quickly in real-world applications.
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Figure 2.16: Inference time in seconds comparison of Conformer, RNN, LSTM, and Reformer cores

Finally, we further analyze the redundant approach which stacks the nearby embedding to re-
shape the encoded inputs. In order to explore the effectiveness and generalizability of our pro-
posed redundant approach, we conduct experiments using the two-stage architecture, simply adding
or removing our proposed redundant units. Apart from testing the performance of our proposed
Conformer-based model, we also integrate other reference core networks including RNN, LSTM
and Vanilla Transformer. To ensure a fair comparison and accurate evaluation of the improvement
from using a redundant approach, we compare different core networks with and without redundant
units. We ensure that the model parameter numbers are kept at the same level for these comparisons.
This allows us to evaluate the performance and efficiency improvement by comparing the SI-SNR
and GMACs/s values. Among all the previously mentioned core networks, we allocated 2M, 4M,
12M, and 5M parameters for RNN, LSTM, Vanilla Transformer, and Conformer core networks re-
spectively. These values were chosen based on our experimental results and previous research, as
they were reported to deliver the best GMACs/s performance.

As demonstrated in Table 2.7, we can see that utilizing a redundant approach can enhance the
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Table 2.7: Evaluation results of our proposed redundant approach, (R) means applying redundant
approach

SI-SNR (dB) | #Params (M) | GMACs/s
RNN 17.1 2 22
RNN (R) 18 2 38
LSTM 17.6 4 33
LSTM (R) 18.7 4 46
Transformer 18.5 12 66
Transformer (R) 21.5 12.2 82
Conformer 20.1 5 20
Conformer (R) 21.8 4.8 39

SI-SNR performance by at least 1 dB while maintaining a similar GMACs/s value. Notably, our pro-
posed Conformer-based model achieves the optimal performance of 21.8 dB, demonstrating that our
RCFormer configuration is the most suitable for our task. Furthermore, we observe that the Vanilla
Transformer-based model shows a 2.8 dB improvement when redundant units are added, reinforcing
the suitability of a Transformer-based two-stage model for processing long-range sequences with

substantial information.

2.4 Summary

In this chapter, we introduce the RCFormer, a Conformer-based neural network specifically
designed for mono-channel two-speaker speech separation with a focus on resource efficiency. The
RCFormer achieves its objective by leveraging a compact model architecture and using a sparse
spectrogram as input. The model is built on a mask network framework comprising an encoder,
two-stage Conformer blocks, a masking module, and a decoder. The two-stage Conformer block,
the core component of the model, captures both frame-level and sub-band-level information from
the input spectrogram. The intra-frame Conformer block models local spectral information within
each frame, while the sub-band Conformer block captures temporal information across sub-bands.
To effectively manage the sparse information in the spectrogram, we incorporate redundancy to
transform the input spectrogram embedding into a denser representation. Finally, the output from
the two-stage model passes through a masking decoder to generate two masks, which are applied to

the input spectrogram to facilitate the reconstruction of the separated speech signals.
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Experimental results demonstrate that the proposed RCFormer achieves outstanding perfor-
mance in speech separation compared to existing methodologies. Moreover, the RCFormer strikes
a balance between performance and efficiency, highlighting the effectiveness of our approach in
integrating redundant units and employing a two-stage Conformer structure. This design minimizes
the number of trainable parameters and reduces memory usage and inference time, making the RC-

Former both powerful and resource-efficient.
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Chapter 3

Frequency band level neural network for

speech separation

In this chapter, we propose a novel and frequency band-level architecture based on our proposed
sub-band module and full-band module, named Full-band and sub-band neural network (FSBNet).
This chapter is organized as follows. We first introduce the sub-band module and full-band module
in Section 3.1 and Section 3.2 respectively. In Section 3.3, we describe the proposed FSBNet and
its application in speech separation. In Section 3.4, we evaluate the performance and efficiency of

our proposed FSBNet.

3.1 Sub-band module

3.1.1 Compact latent summaries

The two-stage (dual-path) architecture has proven effective in tasks such as speech separation
and speech enhancement. However, these models tend to be computationally intensive and require
a large number of learnable parameters. This is likely due to the architecture’s approach of splitting
the input sequence into small chunks, which necessitates separate processing to capture both local
and global dependencies effectively.

Recently, some researchers have proposed ideas called compact latent summaries [44], which

compute a lower-dimensional representation capturing essential information. To illustrate, as shown
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RP*MxN \where D repre-

in Fig.3.1, assume we have a 3-dimensional latent representation z €
sents the channel size and M and N represent the size of chunk and number of chunks, respectively.
Then, an average pooling is applied on the chunk dimension (M dimension) to produce a summary
representation ' € RP*N_ The rationale behind this operation is that averaging over the chunk

dimension of a latent representation can provide enough high-level contextual information and can

save a significant amount of computations.

e

Figure 3.1: Illustration of compact latent summaries

3.1.2 Proposed sub-band module

Figure 3.2 illustrates the structure of our proposed sub-band module, which comprises three
main components: SubbandNetl, CrossbandN et, and SubbandN et2. All of the mentioned N et
can be set as any type of neural network, such as RNN, LSTM [22], or Transformer [29]. It is

essential to ensure that the input and output tensor shapes of the neural network remain the same.

T

SubbandNetl ‘st“'bg_bi‘:;];“g on (,rossbandNeI Broadq.asl & Subband\etZ
F —

s € ey = e+ e3 5

Figure 3.2: Illustration of proposed sub-band module

The sub-band module takes a 3-dimensional tensor as input. In our scenario, we use an encoded

RDXTXF

spectrogram representation s € , Where T represents the number of time frames, and

F represents the number of frequency bins. Initially, we treat the input tensor e as F' separate
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sequences, each with a length of 7', dividing e into F' sub-bands. Next, we apply SubbandNetl
to the time frame axis of all the sub-bands, resulting in e;. The purpose of this step is to model

temporal information within each sub-band.

e = [SubbandNet1(s[:,:, f]), forf = 1,...,F] e RP*T*F (20)

Then, we compute a summary representation following the compact latent summaries method
by average pooling e; over the time axis on every sub-bands. This operation allows us to obtain

high-level contextual information to be used for the following cross-band dependency embedding:

ey = [AveragePooling(e1[:, 1, f]), forf =1,...,F] € RP*F 21

Afterwards, the latent summary ey is processed through the CrossbandN et, which operates
along the frequency axis and models cross sub-bands dependencies. The resulting es will first

broadcast over the time axis and then add element-wise to e;, generating a new tensor e4:

e3 = [CrossbandNet(es]:, 1])] € RP*F (22)

e4 = e1 + Braodcasting(es)] € RP*T>*F (23)

The resulting e, incorporates both sub-bands and cross-bands dependencies to extract sufficient
features from the input spectrogram. The above steps can effectively reduce the number of trainable
parameters and save computational resources. This approach differs from the two-stage model as it
avoids operating on full tensor e; in two stages.

Finally, we also design another sub-band neural networks (SubbandN et2), which further en-
hances the separation quality by integrating the context provided by both sub-band and cross-band
networks. The SubbandN et2 step ensures thorough consideration of both local and global features.

The output s’ maintains the same shape as the input s, which is convenient for further processing:

s’ = SubbandNet2(es) € RP*T*F (24)
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3.2 Full-band module

The full-band module is inspired by the self-attention convolutional neural networks used in
music separation [68] and speech enhancement [28]. Similar to these networks, we employ a whole-
sequence self-attention module to capture long-range global information. However, unlike previous
approaches that operate in the time domain, we integrate this module with the encoded spectrogram
input, which contains both time and frequency information. Figure 3.3 shows the structure of the
full-band self-attention module, which consists of 2-dimensional convolution neural networks, L

heads self-attention module, and another 2-dimensional convolution neural network.

Head L

Head 1

T
Ql Attention Matrix
—I\ D
X
}®_T,
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K
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T
A
T T ra g ey
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Figure 3.3: Illustration of proposed full-band module

Our input is the same with it in 3.1, a 3-dimensional encoded spectrogram s;, € RD*TxF
We view the input spectrogram as a frame-level representation, which is 7" separate sequences and
each with length F. The 2-dimensional convolution neural networks in this module consists of
a 2-dimensional convolution with kernel size equal to 1, a PReLLU function [56], and layer nor-
malization [73]. We first compute frame-level embeddings within each frame and then use the
whole-sequence self-attention on these frame-level embeddings. In detail, in each head [ in the
self-attention module, we first applies 2-dimensional convolution neural network, which transforms

the channel size from D to E' and normalize along the channel and frequency dimensions. Then
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we reshape the normalized tensor and obtain the 2-dimensional query Q; € RT*(F>E) and key
K; € RTX(FxE) leading to F' x E-dimensional query and key vectors at each frame. Simi-
larly, we obtain the F' x D/L-dimensional value vector V; € RT*(FxD/L)  The attention output
A; € RTx(FxD/L) ig computed as:

QK}!

A= softmax(ﬁ)w (25)

Afterwards, we concatenate the attention outputs of all L heads along the T" dimension, reshape
it back to D x T x F'. We also apply another 2-dimensional convolution neural network to learn the
information across all heads. Finally, we use a residual connection to add the attention output to the

input tensor, obtaining the final output.

3.3 Proposed full-band and sub-band neural network (FSBNet)

3.3.1 Discussion on full-band and sub-band modeling

In the realm of speech separation, effective modeling techniques are essential for achieving high-
quality results, particularly when processing spectrograms that encapsulate both time and frequency
information. Sub-band and full-band modeling are two prevalent approaches that offer distinct
advantages.

Sub-band modeling involves decomposing the spectrogram along the frequency axis into sev-
eral narrower sub-bands. Each sub-band is then analyzed and processed independently, allowing
for targeted augmentations or modifications tailored to the specific characteristics of each frequency
range. Many traditional algorithms, such as beamforming [74], dereverberation, and spatial clus-
tering [75], are applied separately within each frequency band. This separation is based on the
physical phenomenon that certain spatial patterns, like phase differences and reverberation, vary
with frequency but remain stable within each time frame. Consequently, it is reasonable to employ
DNNss for sub-band modeling, as the consistent pattern information within each time frame lends

itself well to supervised learning using DNNSs.
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Full-band modeling, on the other hand, considers the complete range of frequencies simultane-
ously, utilizing all available spectral information to capture the overall characteristics of the speech
signal. Full-band models can preserve the integrity of the original spectral features. In the case
of FullsubNet [34], a DNN-based full-band model was developed to capture global spectral con-
text and long-distance cross-band dependencies. The advantage of using a full-band DNN lies in
its ability to extract spectral patterns, such as harmonic structures and gradual changes along the
frequency axis.

Several early studies have employed DNNs to perform both full-band and sub-band modeling

in speech separation and enhancement tasks. These studies can be categorized as follows:

(1) Only perform sub-band modeling, without full-band modeling, which is typically applied in

early frequency domain speech enhancement tasks.

(2) Perform both sub-band and full-band modeling, but without iterative information flow from

sub-band to full-band modules and from full-band to sub-band.

(3) Perform both sub-band and full-band modeling, but the so-called “full-band modeling” only

captures the local spectral information within each time frame.

The strategies for developing our full-band and sub-band neural network are as follows: First,
we integrate both sub-band and full-band modeling to comprehensively capture the necessary in-
formation from the input spectrogram. Second, we stack multiple full-band and sub-band module
blocks to facilitate effective information flow between the two modules. Finally, as detailed in Sec-
tion 3.2, our proposed full-band module enables each time frame to attend to any other frame of

interest, thereby exploiting long-range dependencies within the spectrogram.

3.3.2 Proposed full-band and sub-band neural network (FSBNet) architecture

Figure 3.4 illustrates the entire structure of our proposed full-band and sub-band neural network
(FSBNet), consists of an encoder, multiple full-band and sub-band (FSB) blocks, and a decoder.
Note that, different from the masking module we proposed in 2.2.6, FSBNet is trained to perform
the complex spectral mapping directly, where the real and imaginary (RI) components of the input

mixture are concatenated as input features to predict the RI components of each speaker.
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Figure 3.4: Overview of full-band and sub-band neural network (FSBNet) architecture

Deconv2D

STFT

The encoder consists of a STFT feature extractor and a 2-D convolution neural network to obtain
the representation of the input speech mixture. The 2-D convolution neural network includes a 2-D
convolution with a kernel size of 3, a global layer normalization, and a PRel.U function. Firstly,
the complex spectrogram with real and imaginary (RI) components M € R2*T*F ig extracted by
using STFT, where T' denotes the number of time frames and F' denotes the number of frequency
bins. Subsequently, the 2-dimensional convolution neural network is employed to compute a D-
dimensional embedding, resulting in a new tensor R,, € RP>TxF which is then inputted into the
subsequent FSB blocks.

The FSB blocks comprise a total of N blocks, each containing a sub-band module and a full-
band module. As shown in Figure 3.5, The D-dimensional embedding R, is treated as F' sub-bands
and initially processed by the sub-band module as proposed in 3.1.2. We choose Conformer as the
component of SubbandNetl, CrossbandN et, and SubbandN et2, which has been proved to be
most effective in Table 2.5 and Table 2.6. This operation extracts the local information within each
sub-bands and high-level contextual information across different sub-bands. The output represen-
tation from sub-band module, Z,,, is then treated as T time frames and fed to the full-band module
proposed in 3.2. This whole-sequence self-attention module captures long-range global information
of the entire input representation. Finally, the output R, is fed to the next FSB block. Moreover,
the sum of the output of each FSB block and the residual connection from its input are passed to the

subsequent FSB block, mitigating the gradient vanishing problem during training.
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In the decoder stage, the output from FSB blocks is processed by a 2-dimensional deconvolution
(Deconv2D) with a 3 x 3 kernel and 25 output channels, where S denotes the number of speakers
in our task. The outputs of Deconv2D are the final predicted RI components, and inverse STFT
(iSTFT) is applied for speech re-synthesis. As we mentioned earlier, the re-synthesis speeches of
predicted RI components are our final outputs and these outputs will be used to calculate the loss

function for training purposes.

3.3.3 Loss function

Our proposed models FSBNet also trained with PIT [5], which is the same with RCFormer
in Chapter 2. The loss function follows the SI-SDR loss [51], with some minor improvements
incorporated. First, in SI-SDR, we scale the estimation to equalize its energy level with that of the

target. The formula is shown as follows [51]:
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where ”"SE” means “scaling estimation”, §(°) denotes the reconstructed signal based on the pre-
dicted RI components for speaker ¢, and &(¢) indicates the scaled factor for estimation normalizing,

which is:
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Second, inspired from the MAE loss which is applied in PIT network, we add a mixture con-
straint (MC) loss between the mixture and the summation of the scaled estimated sources, defined

as:
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1

where IV indicates the time samples, y indicates the waveform of input mixture and the sample
variance of y has been normalized to one before hand.It is motivated by a trigonometric perspective
in source separation, which suggested that constraining the separated sources to sum up to the

mixture can lead to better phase estimation.

3.4 Experimental results

3.4.1 Experimental setups

To compare the proposed FSBNet with other existing models, we conduct our experiments on
WSJ0-2mix dataset [48], which is the same with Chapter 2.

All utterances are trimmed to 4 seconds and sampled at 8 kHz. We use a square-root Hanning
window for analysis, with an STFT window size of 32 ms and a hop size of 8 ms. A 256-point
discrete Fourier transform is applied to extract 129-dimensional complex spectra at each frame. For
embedding, we set ) = 64, use N = 8 FSB blocks, and configure the number of channels for the
query and key tensors in the full-band self-attention module E to 4. Additional hyperparameters,
which may vary across experiments, are detailed in Table 3.1. During training, we use Adam as the
optimizer. The FBSNet is trained for 200 epochs, starting with a learning rate of 0.001, which is

halved after epoch 80 if validation performance does not improve for 3 consecutive epochs.

Table 3.1: Summary of model hyper-parameters in FSBNet

Symbols Description
Embedding dimension for FSB block
Number of FSB blocks
Number of layers in Conformer-based
SubbandN et and CrossbandNet
Number of attention heads in Conformer
Number of channels to obtain the query
and key tensors in the full-band module
Number of heads in self-attention
in the full-band module

N R m=2g
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We evaluate our model in both performance and efficiency. We adopt SI-SNR as evaluation
metric. The mixture SI-SNR is 0 dB. We also adopt two parameters to evaluate the size and compu-
tation complexity of models, including number of parameters of the model #Params and multiply-
accumulate operations per second GMACs/s. We also evaluate the model efficiency in real-world

application by comparing the inference time in seconds.

3.4.2 Comparisons with baselines

Table 3.2 summaries the comparison results with some state-of-the-art speech separation models
on the same dataset. First, FSBNet achieves a superior performance compared to most of existing
models, with a 20.6 dB SI-SNR. Especially, despite the conventional belief that time-domain mod-
els have better performance than T-F-domain models in terms of input feature representation, FSB-
Net shows remarkable performance, outperforming popular time-domain models like Conv-Tasnet,
DPTNet, and DPRNN. While some models achieve more than 21 dB SI-SNR performance, most
of them apply complex model structures and do not consider complexity during the training stage.
In contrast, our proposed FSBNet achieve the best overall computational efficiency, with only 2.4M
parameters and 9.8 GMACs/s, which is at least 10 times fewer parameters than the existing time-
domain models with SI-SNR value over 21 dB. FSBNet obtains a inferior SI-SNR performance than
the state-of-the-art T-F domian model, TFPSNet and TFE-GridNet, but it only requires 9.8 GMACs/s,
which is approximately 3 times fewer than TFPSNet and 23 times fewer than TF-GridNet.

Second, we further compare the proposed FSBNet with other models that prioritize resource
efficiency. From Table 3.2, we observe that our full-band and sub-band based architecture model
achieves the best performance regarding to SI-SNR value. Additionally, FSBNet has fewer trainable
parameters compared to most resource efficiency models. While it requires slightly more parameters
than S4M-tiny and DTCN + SW + DM, it delivers significantly better SI-SNR performance. In
terms of GMACs/s, FSBNet also demonstrates impressive performance. It only requires 4 times
fewer GMACs/s comparing to S4M, which obtains almost the same S/-SNR value. Furthermore,
FSBNet outperforms SkiM and RE-SepFormer by 2 dB performance, with only a slight increase in

GMACs/s.
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Table 3.2: Experimental results of the proposed and existing models on WSJ0-2mix

Models Domain | Year | SI-SNR (dB) | #Params (M) | GMACs/s
Conv-TasNet [20] Time 2019 15.3 5.1 3.2
FurcaNeXt [16] Time 2020 18.2 51.4 -
DPRNN [23] Time 2020 18.8 2.6 38.8
DPTNet [40] Time 2020 20.2 2.6 -
SepFormer [14] Time 2021 21.4 26.0 70
Wavesplit [68] Time 2021 21.1 29 -
SFSRNet [69] Time 2022 22 59.1 -
Seplt + DM [71] Time 2023 22.4 4.6 -
MossFormer [72] Time 2024 22.9 42.1 -
Reformer T-F - 18.9 5.2 28.2
Longformer T-F - 16.2 7.1 12.3
TFPSNet [37] T-F 2022 21.1 2.7 29.6
TF-GridNet [45] T-F 2023 23.4 14.4 231.1
DTCN + SW + DM [76] | Time 2022 16.2 1.3 3.7
SkiM [43] Time 2022 18.2 14.5 3.7
SepFormer Light [44] Time 2022 19.8 6.4 17.5
RE-SepFormer [44] Time 2023 18.6 8.0 6.3
S4M-tiny [38] Time 2024 19.3 1.8 8.0
S4M [38] Time 2024 20.5 3.6 38.7
FSBNet T-F - 20.6 24 9.8
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Figure 3.6: Memory in GB (left panel) and Inference time in seconds (right panel) comparison of

FSBNet, SkiM, RE-SepFormer, and S4M

Finally, we compare the memory usage (Figure 3.6 (left panel)) and inference time (Figure
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3.6 (right panel)) of FSBNet and some representative resource efficiency models,including SkiM,
RE-SepFormer, and S4M. This experiment was conducted on an NVIDIA A100 GPU, considering
various input lengths. We observed that the memory cost and inference time of FSBNet are slightly
higher than those of the state-of-the-art RE-Sepformer model when the input signal length exceeds
64 seconds. However, such lengthy inputs represent an extreme situation, even in real-world appli-

cations.

3.4.3 Ablation study

In this section, we explore the performance of our proposed FSBNet with different network
configurations. First, we applies complex spectral mapping for training, rather than the masking
module applied in 2.2.6. We believe that predicting the RT component directly can be more effective
when the input representation is complex spectrogram which contains sparse and small values. We
set up experiments to evaluate the performance of complex spectral mapping when applied in our
proposed FSBNet and some other popular time domain and T-F domain models. Specifically, we
compare the ST — SN R performance of time domain DPRNN, T-F domain two-stage Conformer,
and our proposed T-F domain FSBNet, applying complex spectral mapping and masking module
respectively. The two-stage Conformer can be viewed as a simplified RCFormer without applying
redundant approach. For a fair comparison, all the models are trained with the loss 28 in WSJ0-2mix
dataset. For DPRNN, the parameter setting follows the best configuration. For two-stage Conformer
and FSBNet, the input spectrogram shares the same size, where window size is set to 32 ms with an

8 ms hop size.

Table 3.3: Comparison between complex spectral mapping and masking module

Row | Models Masking or Mapping? #params (M) | SI-SNR (dB)
1 DPRNN Masking module 2.6 18.8
2 DPRNN Complex spectral mapping 24 18.4
3 Two-stage Conformer | Masking module 2.5 19.5
4 Two-stage Conformer | Complex spectral mapping 24 19.8
5 FSBNet Masking module 2.6 20.1
6 FSBNet Complex spectral mapping 24 20.6

As indicated in Table 3.3, each model has nearly the same number of parameters. The slightly
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differences are caused by the parameter increase when applying masking module. We observe
that T-F domain two-stage Conformer and FSBNet model both perform better when using complex
spectral mapping. However, we do not observe any improvement in time domain DPRNN model.
It indicates that complex spectral mapping is effective for our proposed FSBNet as well as another
T-F domain model, but its effect is not satisfactory when applied in the time domain model.

Additionally, our proposed FSBNet contains sub-band module and full-band module. The sub-
band module is applied to extract temporal information within each band and overall spectral infor-
mation with a summary vector. The full-band module is applied to exploit the long-range informa-
tion from the entire frame. We further analyze the relative importance of each module to the overall
performance.

In the sub-band module part, we apply SubbandN et, which consists of SubbandN etl and
SubbandN et2, to process on each decomposed sub-band, and C'rossband N et to process on fame-
level. We conduct experiments to explore the importance of SubbandNet and CrossbandN et
along with their effectiveness for the entire sub-band module. To ensure more accurate experimental
results, we remove the full-band module and solely conduct experiments on sub-band module with
the same training loss as FSBNet.

Table 3.4: Ablation study on the number of Conformer-based SubbandN et/CrossbandN et layers
(#SB/ #CB) and Conformer feed-forward layer dimension (dy;) in sub-band module

Row | #SB | SBds; | #CB | CB ds; | SI-SNR (dB) | #Params (M) | GMACs/s
1 8 512 8 512 19.7 23 8.8
2 4 512 8 512 17.2 1.4 4.1
3 8 256 8 512 18.8 1.7 5.7
4 8 512 4 512 19.1 2.1 8.3
5 8 512 8 256 19.3 2.1 8
6 4 256 4 256 17 0.7 33

As shown in Table 3.4, we identify two crucial hyper-parameters, number of Conformer layers
and the feed-forward layer dimension, that significantly influence the performance of Conformer.
Row 1 represents our final model configuration. We can observe that reducing the hyper-parameters
in SubbandN et leads a significant performance decrease and a drop in GM AC's/s. However, the

impact on C'rossbandN et is not as pronounced. More specifically, when comparing Row 1 and
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Row 2, we observe a 2.5 dB reduction in SI-SNR and a 50% decrease in GM AC's/s when only
halving the number of SubbandN et layers. Moreover, comparing Row 1, 4, and 5, as well as Row
2 and 6, reveals that reducing the number of C'rossband layers and the corresponding feed-forward
layer dimension results in minimal drops in performance and GM AC's/s. Consequently, we posit
that the Subband N et, which operates on individual sub-bands, has a more significant impact on the
performance of the sub-band module.

In the full-band module part, we assess the effectiveness of the self-attention module. We design
experiments by removing the entire full-band self-attention module and modifying the number of
attention heads. Specifically, we carry out the experiments on the entire FSBNet, modifying only
the number of attention heads and whether to use the full-band module. All other hyper-parameters

remain the same as our final model configuration.

Table 3.5: Ablation study on full-band self-attention module

Row | Models | Use full-band module? | L | SI-SNR (dB) | #params (M) | GMACs/s
1 FSBNet NO - 19.7 2.3 8.8
2 FSBNet YES 1 19.9 2.3 9.1
3 FSBNet YES 2 20.2 2.4 9.5
4 FSBNet YES 4 20.6 2.4 9.8
4 FSBNet YES 6 20.6 2.6 10.5

As shown in Table 3.5, we can observe that our proposed full-band self-attention module is
beneficial. Using 4 attention heads works better than using only one. However, increasing the
number of attention heads leads to over-fitting during training. The SI-SNR value in training loss
increase to 21 dB, but the validation loss remains 20.6. We believe that 20.6 dB SI-SNR value
represents the best performance we can achieve. In terms of the model efficiency, we observe that the
proposed full-band self-attention module only slightly increase the GM AC's/s and does not change
to the number of model parameters. The reasons for this are twofold. First, we apply Conv2D layers
to compress the input representation before computing the attention output, which introduces only
a negligible number of parameters. Second, we operate on the entire frame-level rather than on the
decomposed sub bands or time frames. The attention metrics only require O(B x L x T'?) memory

cost, rather than O(B x L x F x T?) and O(B x L x T x F?) in two-stage models. As a result, our
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proposed FSBNet is an overall better model than two-stage models, especially in terms of efficiency.

3.5 Summary

In this chapter, we introduce a novel architecture that integrates sub-band module and full-band
module to address the 2-speaker speech separation task. The new architecture consists of an encoder,
multiple full-band and sub-band blocks (FSB blocks), and a decoder. The encoder extracts STFT
information from the raw data and encodes the speech spectrogram to obtain a high-dimensional
feature representation via a Conv2D networks. The proposed FSB block is proposed to extract local
temporal information, cross band and long-range information of the entire frame-level. Each FSB
block consists of a sub-band module and a full-band module. The sub-band module extracts tem-
poral information within each sub bands, and computes the high-level cross-band dependencies by
applying compact latent summaries. The full-band module extracts the long-range information by
applying self-attention module. The contextual information obtained from FSB blocks will further
processed by a Deconv2D to reshape into 2 complex spectrograms, representing for 2 separated
speech and re-synthesised into separated speeches via ISTFT.

The experimental results show that our proposed model achieves competitive performance among
existing methods including time domain and T-F domain, while demonstrating significantly im-
proved efficiency. Moreover, we show that the architecture can outperform most time domain effi-

cient models for the first time since 2019.
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Chapter 4

Conclusions and Future work

4.1 Summary of the work

In this thesis, novel resource-efficient deep learning approaches have been proposed for single-
channel 2-speaker speech separation, with a focus on time-frequency domain methods. To ad-
dress the challenges of long-range dependency in speech signals and the sparse nature of spectro-
grams, we have designed specific model structures and neural network modules. These include a
redundancy-augmented two-stage Conformer, an attention-based full-band module, and a compact
latent summaries-based sub-band module. These innovations enable the extraction of sufficient in-
formation to achieve competitive performance compared to both time-frequency domain models
and time-domain models.

In Chapter 2, we introduce RCFormer, a Conformer-based neural network designed for mono-
channel two-speaker speech separation with a focus on resource efficiency. RCFormer utilizes a
compact model and processes sparse spectrograms to achieve its goals. The architecture is built on
a mask net framework, which includes an encoder, two-stage Conformer blocks, a masking module,
and a decoder. The core component, the two-stage Conformer block, captures both frame-level and
sub-band-level information from the input spectrogram. The intra-frame Conformer block models
local spectral information within each frame, while the sub-band Conformer block captures tempo-

ral information across each sub-band. To address the issue of sparse information in the spectrogram,
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we use a redundancy approach to stack the input spectrogram embeddings into a denser representa-
tion. The output from the two-stage model is then processed through a masking decoder to generate
two masks, which are applied to filter the input spectrogram and facilitate the reconstruction of
the separated speech signals. Experimental results show that RCFormer delivers exceptional per-
formance in speech separation compared to existing methods. Additionally, RCFormer effectively
balances performance and efficiency.

In Chapter 3, we propose a novel architecture that integrates sub-band and full-band modules to
address the two-speaker speech separation task. The architecture consists of an encoder, multiple
full-band and sub-band blocks (FSB blocks), and a decoder. The encoder extracts STFT infor-
mation from the raw audio and encodes the speech spectrogram into a high-dimensional feature
representation. The proposed FSB block is designed to capture local temporal information, cross-
band interactions, and long-range dependencies at the frame level. Each FSB block comprises a
sub-band module and a full-band module. The sub-band module extracts temporal information
within each sub-band and computes high-level cross-band dependencies through compact latent
summaries. The full-band module, on the other hand, captures long-range dependencies using a self-
attention mechanism. The contextual information obtained from the FSB blocks is then processed
to reshape it into two complex spectrograms, representing the separated speech signals, which are
then re-synthesized into separated audio using ISTFT. Experimental results demonstrate that our
proposed model achieves competitive performance compared to existing methods, including both
time-domain and time-frequency domain approaches, while showing significant improvements in
efficiency. Furthermore, we highlight that this architecture outperforms most efficient time-domain

models for the first time since 2019.

4.2 Future work

This thesis primarily addresses deep learning methods for single-channel speech separation.
However, real-world scenarios frequently involve multi-channel speech separation tasks. Our pro-
posed neural networks are adaptable for multi-channel scenarios with minimal modifications. Ad-

ditionally, our models are non-causal, meaning the separation process begins after analyzing the
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entire utterance. For practical applications like real-time online meetings, where real-time opera-
tion is essential, future work could explore adapting our models for causal or real-time settings to
enhance their applicability.

Furthermore, our proposed FSBNet has proven to be an effective architecture and can be inte-
grated with other advanced deep learning models. For instance, incorporating recent feature learn-
ing models such as Mamba-Net and Mossformer with FSBNet could potentially enhance overall
performance.

In this thesis, we primarily conduct experiments using clean datasets, where the input mixtures
to our models are free from noise. However, achieving a noise-free environment is nearly impossible
in real-world applications. Consequently, we plan to extend our evaluation by training and testing
our proposed models on noisy datasets, where input mixtures are contaminated with environmental

noise. Datasets such as LibriMix and WHAM! will be used for this purpose.
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