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Abstract

ENHANCING HISTOPATHOLOGY IMAGE GENERATION WITH DIFFUSION
GENERATIVE MODELS: A COMPREHENSIVE STUDY

Denisha Thakkar

The field of histopathology faces significant challenges due to the limited availability of data,

which is often not publicly accessible due to privacy issues. The scarcity of high-quality publicly

available datasets hampers the development and training of effective deep learning models. Gener-

ative Adversarial Networks (GANs) have previously attempted to address these issues by creating

synthetic data but suffer mode collapse, which reduces their effectiveness and reliability. This study

explores Diffusion Generative Models (DGMs) as a unique and robust alternative for generating

synthetic pathology images.

The primary objective of this study is to compare various Diffusion Generative Models (DGMs)

and methods in medical imaging. Specifically, we examine the Denoising Diffusion Probabilis-

tic Model (DDPM) and the Latent Diffusion Model (LDM), along with other generative sampling

choices. Both models demonstrated the ability to generate realistic histopathological images. We

also investigated DGMs from a unique perspective by generating various patch sizes, demonstrating

that DGMs effectively learn patch resolution.

We analyzed the impact of DGMs on different magnifications in the KGH dataset, focusing on

image patches of 224x224 and 336x336 pixels. Larger patches (336x336) showed better perfor-

mance, with real data achieving 94.06% accuracy and generated data 92.44%. However, combin-

ing real and generated data slightly reduced accuracy to 90.76%. For 224x224 patches, real data

achieved 89.95%, generated data 88.62%, and combined data improved to 90.75%. These results

indicate that synthetic data enhances model performance, particularly with larger image patches.

In computational pathology, generative models can enhance data sharing and augmentation,

improving the accuracy of deep learning classifiers, and assisting in the cancer diagnosis workflow,
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thereby advancing digital pathology. Our research findings confirm this and set the stage for future

developments in the pathology workflow.
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Chapter 1

Introduction

1.1 General Background and Motivation

Histopathology involves diagnosing diseases by closely inspecting gigapixel tissue slides of mi-

croscopic structures to identify their characteristics (Jahn, Plass, & Moinfar, 2020). Computational

pathology has gained significant momentum, bringing about a transformative change in the field

of cancer diagnostics after the digitization of pathology slides (Baxi, Edwards, Montalto, & Saha,

2022). In addition, the success of deep learning methods (Janowczyk & Madabhushi, 2016) has

led to the development of numerous models that enhance histopathology diagnosis and can also

assist pathologists in their diagnosis workflow (Echle et al., 2021; Van der Laak, Litjens, & Ciompi,

2021). However, these models require large volumes of both annotated and unannotated data for

effective analysis and cancer screening solutions (Cho, Lee, Shin, Choy, & Do, 2015).

Two primary challenges, related to data issues, influence the development and implementation

of computational pathology foundation models in clinical settings. First, privacy concerns severely

limit the availability of data, making many pathological data inaccessible to the public (Price &

Cohen, 2019). Patient confidentiality and strict regulatory requirements often prevent the sharing

of medical data, which is crucial for training and validating deep learning models. This lack of

accessible data limits the ability to create the most-optimized and generalizable models. Therefore,

without access to diverse data for research, it becomes challenging to develop models that are truly

representative and effective across various patient populations and conditions.
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Second, the limited quantity and variable quality of publicly available pathology data signifi-

cantly undermine the performance of foundation models (Daniel et al., 2023). Public datasets often

lack the breadth and depth needed to train comprehensive models. The available data can be in-

consistent in terms of resolution, staining techniques, and annotation quality (Hosseini et al., 2024).

This issue is particularly pronounced for rare cancers, where there is a shortage of various examples

for training. Without sufficient high-quality data, models may struggle to accurately diagnose and

predict outcomes for these less common conditions.

Another major challenge with pathology data is its complexity, which requires experienced

pathologists to analyze and interpret it. The medical field is always looking for new patterns in can-

cer tissues to diagnose and treat diseases early (O’connor et al., 2017). Digital pathology improves

the efficiency of diagnostic procedures by effectively capturing, sharing, and interpreting pathologi-

cal specimens using digital technology (Kiran et al., 2023). It deals with gigapixel images that have

multiple magnification levels and unique features (Kuklyte et al., 2021), which are different from

typical computer vision data. Studying these images and creating synthetic datasets requires a deep

understanding of their unique traits. This knowledge is essential to accurately replicate pathological

data in the synthesis process, helping to advance data processing and research. These challenges

highlight the need for innovative solutions to improve data sharing and improve the quality of pub-

licly available pathology datasets. Addressing these issues is essential for advancing the field of

computational pathology and improving diagnostic workflow capabilities in clinical settings.

With traditional deep learning applications, such as image classification, high-dimensional im-

age data is distilled into single-class labels. In contrast, the generation of images from class labels

is an emerging and promising area (Han, Zheng, & Zhou, 2022; Qin, Zheng, Yao, Zhou, & Zhang,

2023), highlighting the vast potential of generative models to revolutionize pathology. Following the

work of (Dhariwal & Nichol, 2021), diffusion models have been improved with conditioning capa-

bilities, significantly increasing their flexibility (Carlini et al., 2023; Rombach, Blattmann, Lorenz,

Esser, & Ommer, 2022). We were motivated to study these models in pathology due to its numerous

potential usecases in education, clinical quality assurance, improving deep learning classifiers, and

digital image processing. This flexibility allows us to generate more images of a particular class,
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which can help address the common issue of class imbalance where some classes are underrepre-

sented, and can impact the performance of deep learning models. By generating more images for

these underrepresented classes, we can create a more balanced dataset, improving the training and

performance of classifiers (Oh & Jeong, 2023).

Generative models in pathology are still in their early stages compared to classification mod-

els. However, they hold immense potential, especially in the realm of synthetic medical image

generation, which can help address the challenges mentioned above in this field. This approach

is particularly promising for overcoming privacy concerns as mentioned , as synthetic data main-

tain statistical properties similar to real data without compromising patient confidentiality (Savage,

2023). This significantly expands the potential for the use of more data in research and education

(Levine et al., 2020). Moreover, by creating synthetic images, generative models can become help-

ful in discovering new patterns and regularities that provide deeper insights for rare tissue types

(Chen, Lu, Chen, Williamson, & Mahmood, 2021).

In particular of Generative models, Generative Adversarial Networks (GANs) (Goodfellow et

al., 2020) have set a high standard in creating high-fidelity and quality data patterns, greatly bene-

fiting fields that demand high realism, such as medical imaging (Falahkheirkhah et al., 2023; Kapil

et al., 2018; Quiros, Murray-Smith, & Yuan, 2019; Y. Tang, Tang, Zhu, Xiao, & Summers, 2021;

Zhou, Fu, Chen, Shen, & Shao, 2020). Despite GANs’ achievements, their real application has

many challenges, such as mode collapse and training instability, which are critical setbacks in sen-

sitive applications such as medical imaging. Recently, diffusion generative models (DGMs) (Dhari-

wal & Nichol, 2021; Ho, Jain, & Abbeel, 2020; Nichol & Dhariwal, 2021; Y. Song & Ermon, 2019,

2020; Y. Song et al., 2020) have emerged with superior image generation capabilities and great

model stability. To date, diffusion models have been found to be useful in a wide variety of areas,

ranging from generative modeling tasks such as image generation (Dhariwal & Nichol, 2021), im-

age super-resolution (H. Li et al., 2022) to discriminative tasks such as image segmentation (Oh &

Jeong, 2023), classification (Han et al., 2022). Diffusion Generative Models(DGMs) offer a struc-

tured approach based on the strong mathematical foundation, which makes them more reliable to

use and offers great flexibility in terms of image generation.

Although Diffusion Generative Models (DGMs) have been applied in various fields for multiple
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tasks, such as text-conditioned generation (Yellapragada et al., 2024), image generation (Moghadam

et al., 2023), and large-scale image generation (Graikos et al., 2024), their potential for generating

synthetic datasets and their applicability in tissue classification are still less explored. Histopatho-

logical images are unique in their complexity and detail, which varies significantly between different

magnification levels or patch sizes. Effectively generating synthetic images that accurately repre-

sent these different levels of detail is a critical, yet under-researched area. In addition, there is a lack

of comprehensive comparisons and recommendations on how a complete DGM framework and its

associated methods could be effectively used for pathology datasets in conjunction with real data.

This integration is crucial because combining synthetic and real data can enhance model training,

providing more robust and generalizable results.

In our research, we have addressed this gap using multiple subset datasets from the same private

Kingston General Hospital (KGH) data. By doing so, we were able to compare the differences

in the synthesizing various fields of view (FOV) (Basavanhally et al., 2011) from the same whole

slides, specifically focusing on FOVs of 224 and 336. Different regions of a histopathology slide

may require different levels of detail, from high-level overviews to detailed cellular structures. Our

approach aims to highlight both the potential and the challenges of applying DGMs to generate these

diverse synthetic images. We also provide a novel study on the effects of prompting patch size,

which further helps to understand how different patch sizes can influence FOV detail generation.

This study shows that by prompting with different sizes, DGMs can generate images with varying

levels of detail that are unseen during training.

In summary, our objective was to leverage advancements in diffusion generative models (DGM)

to address critical data challenges in computational pathology. We focused on generating high-

quality synthetic pathology images to mitigate issues related to data privacy and the scarcity of

annotated data. Using subsets of the Kingston General Hospital (KGH) dataset, we compared the

synthesis of field of view (FOV) of 224 and 336. This comparison provided insights into the effec-

tiveness of DGMs in replicating different levels of detail in histopathological images and generating

high-quality synthetic datasets. These synthetic datasets can significantly improve the robustness

and accuracy of deep learning classifiers as well.
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1.2 Contributions

This thesis includes a significant body of work that includes a comprehensive literature review,

the main body of a soon to be published paper in the Medical Image Analysis journal, and addi-

tional results and analysis. The study represents a novel exploration of diffusion generative models

(DGMs) in the field of computational pathology. It offers a comprehensive comparison of vari-

ous baseline methods and showcases the ability of diffusion models to create coarse features and

generate images with varying patch size.

• Literature Review: It focuses on the initial review of Diffusion Generative Models in Chap-

ter 2. In this chapter, various methods are identified that are already utilized in the Computer

Vision domain for various tasks, were thoroughly reviewed.

• Comparison of FOVs: In our investigation, we have addressed critical gaps utilizing multiple

subset datasets from the private Kingston General Hospital (KGH) data. By synthesizing

various fields of view (FOV) from the same dataset, specifically focusing on FOVs of 224

and 336, we have been able to compare the differences in FID score by diffusion-generative

models (DGM).

• Comprehensive Analysis: This thesis includes a comprehensive study in Section 4.2.1 that

compares various diffusion generative methods. The study provides a detailed analysis of

the strengths and weaknesses of different techniques, offering valuable information on their

performance and applicability in medical imaging. Research contributes to a better under-

standing of how different generative models perform in the context of pathology.

• Novel Study of Diffusion Models in Pathology: The publication not only uses baseline

methods to synthesize images but also explores the adaptability of diffusion models by gen-

erating images of varying patch sizes. This novel study explores the innovative capabilities of

diffusion models, particularly their unique ability to generate images with varying FOVs by

prompting them with different patch sizes (4.3). It highlights how these models can produce

high-quality synthetic pathology images that accurately reflect different features at different

levels. By generating images with varying focal lengths (FOVs), diffusion models can capture
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the intricate details and structural variations of tissue samples. This capability can become

useful to enhance the versatility and effectiveness of models in research and educational set-

tings.

• Exploration of Synthetic Dataset Applicability: This research also explores the applicabil-

ity of synthetic datasets generated by diffusion models in enhancing deep learning classifiers

in Section 4.4. The study evaluates how well these synthetic images can be used to train

and improve the performance of deep learning models, specifically in the context of medical

image classification. One of the key contributions of this thesis is the demonstration of im-

proved classification performance by incorporating synthetic datasets alongside real images.

Empirical evidence is presented, showing that the addition of high-quality synthetic images

can significantly boost the performance of classifiers, leading to a more robust classifier.

This approach not only helps to train more effective deep learning models, but also ensures

a more equitable representation of all classes within the dataset, which is crucial for reliable

and accurate pathological analysis.

In general, this thesis highlights meaningful contributions to the field of computational pathol-

ogy by providing a novel and comprehensive study of diffusion generative models, demonstrating

their practical applications, and addressing key challenges such as the need for high-quality syn-

thetic datasets.

1.3 Organization of the Thesis

The thesis is organized as follows. Chapter 2 focuses on the initial literature review of diffusion-

generative models. In this chapter, we identify various methods that can be applied to pathology

datasets. These methods have already been employed and are well known in the Computer Vision

domain. After a thorough review, several methods were shortlisted and applied to the computa-

tional pathology dataset. Due to the inherent complexity and time sensitivity of diffusion genera-

tion models, our approach primarily utilized baseline methods, which offered a simpler and more

time-efficient solution. Pathology data itself are complex, involving multiple magnification levels

6



and fields of view, which will be discussed further in the chapter.

Chapter 2 provides a comprehensive understanding of diffusion generation models, including

a review of all the methods examined. Chapters 3 and 4 present the main research contributions,

building on the foundational work laid out in Chapter 2.
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Chapter 2

Review of Diffusion Generative Methods

This chapter provides an in-depth exploration of the generative techniques exploited in this

work starting with their core concepts, advantages, and limitations. The chapter concludes with a

review of the related work in the field, highlighting current challenges and potential solutions in the

generation of images using these models.

2.1 Introduction

Generative models have become a cornerstone in machine learning, enabling the creation of

new data samples that resemble a given dataset. These models have found applications in a vari-

ety of domains, including the generation of images (Ho, Saharia, et al., 2022; T.-C. Wang et al.,

2018) and videos (Ho, Chan, et al., 2022), the super resolution of images (H. Li et al., 2022), and

drug discovery (B. Tang, Ewalt, & Ng, 2021). The importance of generative models lies in their

ability to understand and replicate the underlying distribution of data, facilitating advancements in

both theoretical and practical aspects of machine learning. Generative models generally must meet

several key criteria to be applicable to real-world problems. These criteria include (i) producing

high-quality samples, (ii) ensuring mode coverage and sample diversity, and (iii) achieving fast

execution times with computationally efficient sampling (Xiao, Kreis, & Vahdat, 2021).

Generative models can be broadly categorized into several types, including Generative Adver-

sarial Networks (GANs), Variational Autoencoders (VAEs), and Diffusion Generative Models. Each
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of these models approaches the problem of data generation from different perspectives, offering

unique advantages and facing distinct challenges. We will see each of these in detail and how

diffusion model can fit in this landscape.

2.2 Diffusion Models in the Generative Model Landscape

Variational Autoencoders (VAEs): (Kingma & Welling, 2013) operate within the realm of

likelihood-based models. VAEs leverage variational inference to approximate the target distribu-

tion p(x) by minimizing the Kullback-Leibler divergence between the approximate distribution and

the target distribution. VAEs consist of an encoder network that maps the input data to a latent

space, and a decoder network that reconstructs the data from the latent space. The training pro-

cess involves optimizing the model to minimize the reconstruction error while ensuring that the

latent space follows a specified prior distribution. However, the reliance on simplified prior and

posterior distributions, such as Gaussian distributions, may not adequately capture the diversity and

nuances present in real-world data, potentially limiting the model’s ability to generate high-quality

and diverse samples.

Generative Adversarial Networks (GANs): (Goodfellow et al., 2020) Representing a promi-

nent example of implicit generative models, GANs introduce an adversarial framework involving

two networks: a generator network that aims to create data indistinguishable from real data, and

a discriminator network that strives to differentiate between real and generated data. The training

process involves a min-max optimization game, where the generator and discriminator iteratively

refine their strategies. Despite their impressive results, GANs are not without challenges. Adversar-

ial training can be unstable and may lead to mode collapse, where the generator produces limited

diversity in generated samples (Wiatrak, Albrecht, & Nystrom, 2020).

Both likelihood-based models, such as VAEs, and implicit models, such as GANs, have limita-

tions. VAEs require strong restrictions on model architecture to approximate maximum-likelihood

training for tractability, whereas GANs often require adversarial training, which can lead to mode

collapse. Diffusion generative models offer a new way to find tractable solutions without adversarial

training, falling into the category of likelihood-based generative models.
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Diffusion Generative Models (DGMs) represent a relatively new class of generative models

that have shown state-of-the-art performance in image generation tasks (Ho et al., 2020; J. Song,

Meng, & Ermon, 2020; Y. Song & Ermon, 2020). Unlike GANs and VAEs, DGMs do not require

adversarial training, which simplifies the training process and mitigates issues like mode collapse.

DGMs operate by gradually adding Gaussian noise to input data in a process known as the

forward diffusion process. This process converts the data into a noise distribution over several time

steps. The model then learns to reverse this process, removing the noise step by step to recover the

original data distribution. This reverse process is learned using a neural network that predicts the

denoised image at each step, ultimately generating high-quality images from random noise.

The absence of adversarial training in DGMs means that they avoid the instability and conver-

gence issues commonly associated with GANs. Additionally, the use of a diffusion process allows

DGMs to model complex data distributions more effectively than VAEs, which often rely on simpli-

fied assumptions about the data distribution. This makes DGMs particularly suitable for applications

that require high-quality, diverse data generation, such as image synthesis and enhancement.

2.3 Theoretical Foundations of Diffusion Generative Methods

This section examines the theoretical underpinnings and structural framework of diffusion gen-

erative models (DGMs), specifically denoising diffusion probabilistic models (DDPM) (Ho et al.,

2020). We will explore the foundational processes that govern these models, namely the forward

diffusion process and the reverse denoising process. In addition, we will examine the mathematical

formulations that enable these processes, the training objectives, and the sampling techniques.

2.3.1 Denoising Diffusion Probabilistic Model (DDPM):

Forward Process:

The original image x0 is slowly corrupted iteratively using a Markov chain by adding scaled Gaus-

sian noise in the forward process.

Given a data point x0 (original image) sampled from the real data distribution q(x) x0 ∼ q(x),

one can define a forward diffusion process by adding a small amount of Gaussian noise to the
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sample(x0) in T steps, producing a sequence of noisy samples x1, x2, . . . , xT . Specifically, at each

step of the Markov chain, we add Gaussian noise with variance βt to xt−1, producing a new image

xt with distribution q(xt|xt−1). This diffusion process can be formulated as follows.

q(xt|xt−1) = N (xt;µt = (
√

1− βt)xt−1,Σt = βtI) (1)

At each timestep t, the parameters that define the distribution of the image xt are set as mean
√
1− βt xt−1 and covariance βtI.

Whenever we need a noisy sample at any timestep, we have to perform all the steps until t − 1

in the Markov chain. To address this, the authors (Ho et al., 2020) corrected the above formula.

Two additional terms are defined as:

αt = 1− βt and ᾱt =

t∏
i=1

αi (2)

xt =
√
αtxt−1 +

√
1− αtϵt−1 ;where ϵt−1, ϵt−2, · · · ∼ N (0, I)

=
√
αtαt−1xt−2 +

√
1− αtαt−1ϵ̄t−2 ;where ϵ̄t−2 is a result of two Gaussians (*).

= . . .

=
√
ᾱtx0 +

√
1− ᾱtϵ

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I)

(3)

where ϵ ∼ N (0, I). The final expression after t steps is:

xt =
√
ᾱtx0 +

√
(1− ᾱt)ϵ (4)

Here, the term ϵ is the noise term that is randomly sampled from a standard Gaussian distribution

and is first scaled and then added to xt−1.

Reverse Process:

To reverse the process, we sample the conditional distribution q(xt−1|xt). However, estimating this
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conditional distribution directly is challenging as it requires the entire dataset. Therefore, we learn

a model pθ to approximate these conditional probabilities to run the reverse diffusion process.

The target distribution is:

q(xt−1|xt) = N (xt−1; µ̃(xt), β̃tI) (5)

The reverse conditional probability q(xt−1|xt,x0) is tractable when conditioned on x0:

q(xt−1|xt,x0) = N (xt−1; µ̃(xt,x0), β̃tI) (6)

After some calculations, this is the mean and variance we get :

β̃t =
(1− αt)(1− ᾱt−1)

(1− ᾱt)
(7)

µ̃t =

√
αt(1− ᾱt−1)xt +

√
ᾱt−1(1− αt)x0

1− ᾱt

=

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt
1− ᾱt

1√
ᾱt

(xt −
√
1− ᾱtϵt); Rearranging x0 value from equation 4

=
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵt

)
(8)

The learned model pθ approximates the conditional probabilities for the reverse process:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (9)

The parameters of the learned model are optimized to minimize the difference between the

predicted noise and the actual noise added in the forward process:

L
simple
t = Et∼[1,T ],x0,ϵt

[
∥ϵt − ϵθ(xt, t)∥2

]
(10)

By traversing backward along the learned reverse chain, starting from pure noise, we can gener-

ate new samples resembling the original data. This reverse process allows the model to effectively
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reconstruct clean data from noisy inputs.

2.4 Categorization of Diffusion Generative Methods

In the realm of diffusion generative models, various techniques have been developed to enhance

their performance and efficiency. These methods can be broadly categorized into three groups: Ef-

ficent and accelerated sampling and removal of inconsistencies, and different representation spaces.

2.4.1 Efficent and accelerated sampling

Efficient and accelerated sampling techniques aim to reduce the computational burden and time

required for generating high-quality images in diffusion models. By optimizing the sampling pro-

cess, these methods enhance the speed of image generation while maintaining, or even improving,

the fidelity and detail of the generated images. The following subsections discuss several techniques

designed to achieve these objectives.

Denoising Diffusion Implicit Model (DDIM):

Denoising Diffusion Implicit Models (DDIM) (J. Song et al., 2020), introduced as an exten-

sion to Denoising Diffusion Probabilistic Models (DDPM), address one of the main limitations of

DDPMs: because of their low sampling rate. DDIMs alter the forward procedure of DDPMs to

result in a non-Markovian diffusion process that enables deterministic sampling. In DDPMs, the

forward process is a Markov chain that gradually injects Gaussian noise into the data samples at

each time step. The typical DDIM adjusts this to depend on x0 and xt for xt−1, making the gen-

erative process more flexible. This modification allows DDIMs to take a deterministic sample at

a later step, accelerating the generation process while preserving sample quality. The core idea

of DDIMs is the generalized parameterization of the reverse process. Unlike DDPMs, where the

variance schedule is predetermined, DDIMs can modify the variance schedule at the time of infer-

ence. This results in the possibility of sacrificing detailed sample heterogeneity in favor of increased

speed of further data analysis, and we could notice this in our results as well. It should be noted that
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the sampling procedure in DDIMs can be treated as a generalization of DDPMs. When the vari-

ance schedule is set to zero, DDIMs sample deterministically and generally do not take as long as

DDPMs, which sample stochastically. However, when the variance is set to that of DDPMs, DDIMs

can reproduce the original DDPM sampling.

Like DDPMs, DDIMs share the same training objective; thus, preexisting DDPM models can

be seamlessly integrated to incorporate DDIM sampling. This backward compatibility is a much

appreciated practical benefit, and once those in the field have developed their models, the increase

in sampling speed provides an instant advantage.During sampling, only a subset of S diffusion steps

{τ1, . . . , τS} are sampled during the inference process.

The choice of DDIM variance is given by the parameter η. The diffusion model is a DDIM

when η = 0 as there is no noise and when η = 1 the diffusion model is DDPM. Any value between

0 and 1 for η is an interpolation between a DDIM and a DDPM.

ERA-Solver : Error Robust Adams Solver for Fast Sampling

The conception of the ERA-Solver, or the Error Robust Adams Solver, is a significant contribu-

tion of theoretical thinking to improve the sampling approach in diffusion models (S. Li, Liu, Chai,

Li, & Tan, 2023). This method works to solve difficulties with respect to the control of speed and

quality in the generation process when the agility of the sampling phase is reduced or minimized.

Conventional techniques for selecting sampling points in diffusion models, such as Euler strategies,

compromise accuracy when the number of sampling steps is lowered. Such errors may result in a

decline in the quality of the input samples and the samples generated in their place. The ERA-Solver

addresses this issue by borrowing methods related to numerical analysis, Adams-Bashforth, to dif-

fusion model sampling (S. Li et al., 2023). The general premise of the ERA-Solver is to utilize data

from previous steps to estimate the following situation instead of the current one exclusively. This

structured approach to building such a model affords more precise forecasts, since the number of

steps is reduced or the ratios are higher. (S. Li et al., 2023) state that the ERA-Solver incorporates an

error-correcting model with learning capabilities. It determines the local truncation error of the step

and can produce a different step size compared to the step size that was used previously. This flexi-

bility allows the solver to step out in areas where the error is small and get more detailed in places
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where it is significant. A primary benefit of the ERA-Solver is the feasibility of obtaining accurate

solutions earlier with fewer sampling steps than the standard procedure. This can result in orders

of magnitude improvements in the speed of the generation process while maintaining the quality

of the generated samples. Furthermore, the designed ERA-Solver enables training in existing dif-

fusion models without additional training (S. Li et al., 2023). Thus, it is a versatile solution that

can be implemented quickly and helps to enhance the value of numerous diffusion-based generative

applications.

Boosting Diffusion Models with an Adaptive Momentum Sampler

In the work of (X. Wang, Dinh, Liu, & Xu, 2023), the authors present a new algorithm for

generating the sampling of the diffusion model that relies on optimization tools such as Adam. This

method tries to control the fluctuations of the sampling process and the samples produced, especially

if several steps are taken during the entire sampling process. The authors notice that the equivalent

vanilla reverse process in diffusion models introduces instabilities that show up as high noise in

the images or even complete elimination of high-level features in the coupled generated images.

They also partly blame this on the Markovian process of the schema, which delivers a novel update

direction of a step, but in a blinders’ perspective that does not contain a view of the overall update.

To address these issues, the Adaptive Momentum Sampler incorporates momentum and adaptive

step sizes. The momentum term helps to smooth out oscillations in the sampling trajectory and the

adaptive step size is implemented using a moving average of squared increments, like the RMSprop

Hence, with such mechanisms, the Adaptive Momentum Sampler attempts to build high levels of

semantic structures, namely shapes and outline accents, as well as low-high detail variants, including

refined texture. As stated by (X. Wang et al., 2023), the present technique is more stable, and there

is an improvement in sample quality where fewer sample steps are included. As for characteristics,

the main advantage of the Adaptive Momentum Sampler is that it does not have to be re-trained and

can work with any initial diffusion model that has previously been trained. Thus, it is possible to

conclude that it is a valuable and productive tool that increases the efficiency of the different models.
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2.4.2 Removing inconsistencies during sampling

This category focuses on addressing and mitigating inconsistencies that may arise during the

image generation process. Techniques in this group work to ensure that the generated images are

coherent and realistic, reducing artifacts, and improving overall image quality.

Elucidating the Exposure Bias in Diffusion Models

(Ning, Li, Su, Salah, & Ertugrul, 2023) further outline the exposure bias problem in diffusion

models and present an approach to solving it. Exposure bias arises because, at training, the model

is trained on clean data. At the same time, during the sampling process, it is conditioned on the

possibly noisy outputs from the model itself. (Ning, Li, et al., 2023) first capture the position

of the sampling distribution when applying the diffusion models. They found that increases in

the prediction error for each sampling step lead to exposure bias most severely. The authors also

introduce a different method, called ’Epsilon Scaling’, which does not require training. This method

introduces a scaling factor λt to the reverse process:

µθ(xt, t) =
1
√
αt

(
xt − βt

√
1− ᾱt

ϵθ(xt, t)

λt

)
(11)

The scaling factor λt is developed to address the total prediction error in the context of the sample.

After that, the authors provide a concise framework for designing the scaling schedule from the

L2-norm quotient of the forecasted noise over the time stamps. Another consideration that arises

because of the Epsilon Scaling is that it can be applied at the sampling level, and whatever change is

being made is not influenced during the training phase. As such, it qualifies as a simple and flexible

way of improving the quality of samples from diffusion models with pre-trained data. (Ning, Li,

et al., 2023) reveal that exposure bias can be reduced successfully using Epsilon Scaling, and this

helps enhance the quality of the sample, mainly when a few steps are being used to sample. This

makes it especially useful in samples where the rate is faster.
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Input Perturbation Reduces Exposure Bias in Diffusion Models

The Input Perturbation method introduced by (Ning, Sangineto, Porrello, Calderara, & Cuc-

chiara, 2023) is designed to solve one of the significant problems of diffusion models – exposure

bias. (Ning, Sangineto, et al., 2023) describe exposure bias as when the model is trained with clean

data. Still, during sampling, its prediction passes through a non-deterministic post-processing step,

exposing the model to its own possible mistakes. These differences can result in the deterioration

of the quality of the samples collected, mainly when there are many alternative sampling steps. The

principle of the Input Perturbation method is to replicate all the errors that may occur when using

the sampling method while training the model. This is done by including noise, which is controlled

during the training of the inputs. Specifically, the method modifies the forward process of diffusion

models as follows:

yt =
√
ᾱtx0 +

√
1− ᾱt(ϵ+ γtξ)

Here, ξ is an additional noise and γt is the scaling factor for this additional extra noise at time step

t. Instead of the regular noisy sample, xt, the perturbed input yt is fed into the training process as

shown below. This is because, through the process explained in the Input Perturbation method, the

original inputs are trained to be less sensitive to the types of errors that are likely to occur during

the sampling process (Ning, Sangineto, et al., 2023). However, this increased robustness sometimes

results in a better sample most of the time in conditions that entail fewer steps in creating the sample.

Therefore, the most significant advantage of this method is that one does not need time or any

particular setup for preparation. Thus, it can be readily incorporated into the model architectures

and the training regimes derived from the traditional diffusion models. Besides, the required mod-

ification of the existing classifier is minimalist; there is an additional scalar hyperparameter, which

is the variance of the extra noise.

2.4.3 Different representation spaces

Diffusion models traditionally operate in the pixel space, which is computationally intensive

and may not always yield the most efficient results. To address these challenges, alternative repre-

sentation spaces, such as latent spaces and gradient domains, have been explored. These methods
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aim to improve the efficiency and effectiveness of diffusion models by reducing the dimensionality

of the data they operate on, leading to faster processing times and potentially higher quality outputs.

By leveraging these different representation spaces, models can achieve significant computational

savings and enhance their ability to generate detailed and realistic images.

Latent Diffusion Model(LDM)

In their study, (Rombach et al., 2022) posited that LDMs are an improvement over the diffusion

models and embrace efficiency and scalability. LDMs’ primary advancement is that the diffusion

process is quantified by the learned latent distribution instead of pixel distribution. The LDM archi-

tecture consists of three main components: an encoder, decoder, and U-Net, developed and arranged

as the diffusion model. Such transformations enable the encoder to map the input images to a lower-

dimensional latent space, while the decoder’s task is to map the obtained representations back to the

image space. It should be noted that the diffusion process occurs solely within this learned latent

space. The training process of the LDMs consists of two unique phases. First, an autoencoder is

trained such that this model can generate a small feature vector that can represent the input data

(Rombach et al., 2022). Then, a diffusion model is trained in this latent space, meaning it needs to

reverse the process from the data space to the latent space. The latent diffusion process’s training

objective is similar to pixel-space diffusion models. Still, it operates on the latent representations:

LDM := EE(x),ϵ∼N (0,1),t∥ϵ− ϵθ(zt, t)∥22. (12)

E is the encoder function, and zt is the noisy latent representation for a specific time step,

t. Using LDMs is an advantage since they require much less timesteps than pixel-space diffusion

models due to the optimization process, which means it converges faster in latent space. Given that

LDMs work in a lesser dimension latent space, producing high-quality images becomes significantly

more efficient. This makes it possible to generate diffusion models on extensive data and high

resolutions compared to earlier models. LDMs have proven effective across multiple synthesis-

based operations, including conditional generation and image-to-image translation.
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Gradient Domain Diffusion Models for Image-Synthesis

According to (Gong, 2023), Gradient Domain Diffusion Models develop a new idea of applying

the diffusion process to the gradient domain rather than the pixel space. Using the gradients of

images, this method seeks to potentially enhance the quality and sampling rate of the model through

the sparse and structured format inherent in this element. The primary concept of this approach lies

in the modification of the forward and reverse processes of the diffusion models in terms of image

gradients (Gong, 2023). The main advantage of the gradient domain is that an analyst will see

that the image gradients are comparatively sparse. Therefore, it is much easier for the learning

process in the model to manage them. In addition, the gradient domain is more comprehensive

and includes edge and texture that significantly impact image quality, as highlighted in (Gong,

2023). When generating images using the learned gradient model, sums of these gradients are

required to get pixel values for the image. This is usually accomplished using some Poisson solver

or a learned integration network (Gong, 2023). The real-valued models, specifically the Gradient

Domain Diffusion Models, have been observed to perform better in image synthesis than some

pixel-space models with better image quality and definition. Nevertheless, they also bring more

complexity through the availability of the gradient’s computation and integration parts.

2.5 Discussion and Concluding Remarks

In conclusion, Chapter 2 has laid a comprehensive foundation by examining the landscape of

Diffusion Generative Models and their applications across various domains. This literature review

serves as a crucial basis for the next phase of our research, where we will identify and implement

the most promising baseline methodologies on pathology datasets, our primary area of interest. By

thoroughly exploring and evaluating the available options, we are well-prepared to embark on the

detailed experimental work and innovation presented in the subsequent chapter.

Chapter 3 and 4 will build upon the foundational work laid out in Chapter 2 by introducing the

dataset and pre-processing steps necessary for our research. Chapter 3 will detail the KGH dataset,

annotation processes, extraction of Regions of Interest (ROIs), and the methodologies applied to

prepare the data for analysis. Chapter 4 sets the stage evaluation of Diffusion Generative Models on
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this dataset, leading to the significant advancements in computational pathology.
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Chapter 3

Dataset and Methodology

This chapter provides a detailed overview of the dataset used in this study, specifically the

Kingston General Hospital (KGH) dataset, and outlines the pre-processing steps undertaken to pre-

pare the data for analysis using Diffusion Generative Models (DGMs).

We begin by introducing the KGH dataset, highlighting its relevance and unique features that

make it suitable for this research. The process of annotation and extraction of Regions of Interest

(ROIs) is then discussed, detailing how critical areas within the images were identified and marked.

This is followed by an explanation of the FOV and resolution levels, emphasizing the importance

of capturing relevant image regions at appropriate scales and the resolution adjustments made to

manage the high-dimensional nature of pathology images.

In addition, we explore the specifics of the annotations and cancer tissue classes, providing

information on how different tissue types were categorized and labeled. The chapter concludes

with a description of the methodology applied to preprocess the dataset, setting the stage for the

implementation of DGMs in subsequent chapters.

3.1 KGH Dataset

The Kingston General Hospital (KGH) dataset comprises 1037 whole slide images (WSI) of

healthy colon tissue and colon adenocarcinoma. Colorectal adenocarcinoma, the most common

type of colorectal cancer, accounts for 95% of all cases. It originates in the cells of the intestinal

21



glands that line the colon and rectum, typically beginning as small polyps that can develop into

cancer if not treated. The KGH dataset includes healthy colon tissue and four types of colon polyps:

Tubular adenoma (TA), sessile serrated lesions (SSL), hyperplastic polyps (HP) and tubulovillous

adenoma (TVA).

For these four tissues, the pathological slides in the KGH dataset are annotated at the Region of

Interest (ROI) level. Annotations for the dataset were provided by Dr. Sonal Verma. It is important

to note that not all regions outside the annotated areas are normal; they are simply not annotated.

For our study, we focus exclusively on annotated regions of cancer tissue classes such as HP, SSL,

TA, and TVA.

Figure 3.2 illustrates how ROIs are identified and highlighted in blue within the entire slideshow.

These WSIs are rectangular, with sizes around 60,000 × 100,000 pixels, requiring approximately 1

GB of memory each.

The KGH dataset includes healthy colon tissue and four types of colon polyps:

• HP (Hyperplastic Polyps): Non-cancerous growths with a small risk of malignant transfor-

mation (Jass & Burt, 2000), characterized by cellular overgrowth. These polyps are often

found in the distal colon and are generally less than 5 mm in diameter. Despite their benign

nature, regular monitoring is recommended to ensure that they do not develop cancer.

• SSL (Sessile Serrated Lesions): Pre-cancerous lesions that are flat or slightly elevated (Mu-

rakami et al., 2022), making them difficult to distinguish from HP (Hyperplastic Polyps)

visually. They have a distinctive histological appearance with a serrated architecture and are

considered high-risk due to their potential to progress to colorectal cancer if left untreated.

• TA (Tubular Adenomas): Small, benign polyps with a 10% chance of transforming into

cancer. These adenomas (Salemis et al., 2012) are the most common type of polyp found

during colonoscopies. They usually appear as small, pedunculated (stalked) growths and are

composed of tubular glands. TAs (Salemis et al., 2012) are generally considered low-risk, but

larger adenomas or those with high-grade dysplasia require closer surveillance (Jaravaza &

Rigby, 2020).

• TVA (Tubulovillous Adenomas): Lesions with the highest potential to transform into cancer.
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TVAs have a mixed histological structure, containing both tubular and villous elements. They

are typically larger than other adenomas and have a higher risk of malignancy.

Figure 3.1: Samples from Cancer Tissue and Normal WSI

We can visualize patches from these classes in Figure 3.1. Despite some visual differentiation in

certain regions amond these classes, distinguishing them can be challenging without a pathologist’s

expertise. Understanding these classes is crucial for making accurate analogies with our generated

images. The visual distinctions, although subtle, provide necessary context for training our models.

3.1.1 FOV and Resolution level

The KGH dataset contains images at four resolution levels: 20x, 5x, 1.25x, and 0.3125x. These

levels provide varying perspectives of the same tissue, which is crucial for comprehensive patho-

logical analysis. The high resolution of these images allows for detailed examination of cellular

structures, which is essential for accurate diagnosis and research.

To manage the high-dimensional nature of these pathology images, we extract smaller sections

referred to as patches. To extract these patches, we specify the FOV. We also eliminated noisy

images from the original set.

3.2 PKGH Creation

3.2.1 Input FOV and Patch Size

To extract patches from the WSIs, we specified the FOV and patch size based on the resolution

levels. The primary FOVs used were 224 and 336, resized to 128 × 128 and 192 × 192 pixels

respectively. This selection was made to balance the need for sufficient cellular structure and the

availability of a sufficient number of patches for robust training.
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Figure 3.2: The images demonstrate how Regions of Interest (ROI) are annotated and highlighted
(shown in blue) on the left side, followed by the extraction of different patches captured at FOV
600, FOV 400, and FOV 200 on the right side.

3.2.2 Pipeline used to create PKGH

The creation of the PKGH dataset involved the following steps:

(1) Annotation Extraction: We utilized a code developed by my lab mate, Cassandre Notton,

to extract regions of interest (ROIs) from WSI using the TIAToolbox (Pocock et al., 2022) to

extract ROIs from colon polyps: Hyperplastic Polyps (HP), Sessile Serrated Lesions (SSL),

Tubular Adenomas (TIA), and Tubulovillous Adenomas (TVA). Healthy colons are just sim-

ply used directly for extraction without annotations.

(2) Patch Extraction: Patches were extracted from the annotated WSIs at specified Fields of

View (FOVs). For our experiments, we maintained a consistent patch resolution of 1.75. This

approach allowed us to observe how different FOVs provide various perspectives of the same

tissue at the same magnification. Specifically, we used FOVs of 224 and 336 for creating the
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Figure 3.3: PKGH Creation from original KGH Dataset

PKGH dataset. These FOVs were selected to ensure that the patches offered a comprehensive

view of the cellular and tissue structures necessary for training generative models. The chosen

FOVs are not excessively large to avoid having a limited number of patches available for

training and classification.

From the training data, we obtained approximately 50,000 images (about 10k in each class).

We used 80% of the WSIs for training diffusion models, ensuring a robust dataset for model de-

velopment. The remaining 20% of the WSIs were reserved for testing. From these test WSIs, we

extracted 10,000 images for testing, ensuring they are never-seen images for the diffusion models.

This split helps in validating the performance and generalizability of the deep learning classifier

models.

This pre-processed dataset ensures that we have a comprehensive and well-annotated collection

of images, enabling us to train our diffusion generative models effectively.
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3.3 Methodology

Diffusion models (Ho et al., 2020; Sohl-Dickstein, Weiss, Maheswaranathan, & Ganguli, 2015;

Y. Song & Ermon, 2019) are a powerful class of probabilistic generative models that are used to

learn complex data distributions. The purpose of this framework is also to demonstrate how various

methods can be integrated seamlessly. We explain each category and method in a manner that

allows any standalone model or technique to be easily plugged into the framework. The framework

is explained as follows:

(1) Training:

• Forward Process: Gaussian noise is introduced into the input images, with the mag-

nitude determined randomly by a scheduler, resulting in varying levels of noise. This

allows the model to explore a range of image noises, from subtle distortions to isotropic

Gaussian noise. The noisy image, along with embedding vectors representing the noise

level and class labels, is fed into a U-Net-based neural network.

• Reverse Process: The U-Net predicts the noise added to the images. This prediction is

compared to the actual noise to calculate the loss, guiding the model’s training process.

(2) Sampling:

• Reverse Process: The process starts with pure isotropic noise. The trained network

predicts the corresponding noise level, and the difference between the predicted noise

and the initial noise creates a less noisy image. This image is iteratively refined through

multiple steps to generate the final image.

This whole process is explained well in the figure 3.4.

3.3.1 Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) follow the same training

and sampling methods explained above, with both the forward and reverse processes occurring in
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Table 3.1: Overview of Diffusion Model Methods and Their Integration

Method Can be
used as a
plugged-in
method?

Usage in
Framework

Pixel or Latent
space

Special Features

DDPM 3.3.1 Yes Training and
Sampling

Pixel space Standard diffusion model

LDM 3.3.2 No Training and
Sampling

Latent space Uses autoencoder for latent space,
cross-attention

CFG 3.3.3 Yes Training and
Sampling

Depends on baseline
model

Allow conditional sampling without
separate classifier

DDIM Sampling
3.3.4

Yes Sampling method Depending on
baseline model

Non-Markovian process, subset sampling

Epsilon Scaling
Sampling 3.3.4

Yes Sampling method Depending on
baseline model

Scales epsilon value to reduce exposure bias

the pixel space. In the forward process, Gaussian noise is added to the image x0 at each timestep t

according to:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (13)

where βt is the variance schedule. The reverse process aims to denoise the image step-by-step using

a learned model pθ, represented as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (14)

The objective function to train the model is:

L
simple
t = Et∼[1,T ],x,ϵt

[
∥ϵt − ϵθ(xt, t)∥22

]
(15)

3.3.2 Latent Diffusion Models

Latent Diffusion Models (LDM) (Rombach et al., 2022) operate in a lower-dimensional latent

space, which is learned by an autoencoder. The training and sampling stages follow the same

principles as the general diffusion models described above, but with processes occurring in the

latent space. An extra layer is added to encode images into this latent space before the diffusion

processes begin. The forward process is defined as:

q(zt|zt−1) = N (zt;
√
1− βtzt−1, βtI) (16)
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where zt represents the latent variables. The reverse process denoises the latent variables step-by-

step:

pθ(zt−1|zt) = N (zt−1;µθ(zt, t),Σθ(zt, t)) (17)

LDMs also incorporate cross-attention mechanisms within the architecture, enhancing conditional

image synthesis. After the latent space processing, the autoencoder transforms the latent variables

back into images. The objective function for training remains similar:

L
simple
t = Et∼[1,T ],z,ϵt

[
∥ϵt − ϵθ(zt, t)∥22

]
(18)

3.3.3 Conditioning

Recent advancements in DPMs have introduced class-conditional generation, where additional

class-related information is incorporated to guide the generation process. Our findings revealed that

class-conditional generation significantly enhances the fidelity of the generated images to specific

class characteristics. As the guidance scale increased, the generated images exhibited more precise

and accurate representations of the target classes.

Classifier-Free Guidance

Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) is a technique that enables the gener-

ation of high-quality samples without relying on a classifier, addressing the limitations associated

with classifier guidance. CFG modifies the score function in a way that emulates the effects of clas-

sifier guidance, but without using an explicit classifier. The approach involves training an uncon-

ditional denoising diffusion model alongside the conditional model, using a single neural network

to parameterize both. The sampling process utilizes a combination of the conditional and uncon-

ditional score estimates, allowing for effective guidance without a classifier. This results in the

production of high-quality synthetic images that are both varied and representative of the original

dataset, enhancing the model’s performance in generating realistic images.

ϵt = (1 + w) ∗ ϵθ(xt, c)− w ∗ ϵθ(xt) (19)
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Here, ϵθ(xt, c) is conditional model and ϵθ(xt) is unconditional model. w is used as a guidance

scale.

3.3.4 More Sampling Choices

To explore different sampling methods and their effects on image generation and model perfor-

mance, we incorporated two additional techniques: Denoising Diffusion Implicit Model (DDIM)

and Epsilon Scaling. DDIM accelerates image generation by introducing a non-Markovian process

that redefines the diffusion process, utilizing a subset sampling strategy for faster sampling without

compromising model performance. The reverse diffusion process in DDIM is defined as:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵθ(xt)√

αt

)
+
√
1− αt−1 − σ2

t ϵθ(xt) + σtϵt (20)

where the variance σt is given by:

σt = η

√
1− ᾱt−1

1− ᾱt
· βt = η

√
β̃t (21)

In DDIM, setting η = 0 eliminates noise, making it equivalent to DDPM, while η = 1 maintains the

standard diffusion model, allowing interpolation between DDIM and DDPM. To address exposure

bias, we employed Epsilon Scaling (Ning, Li, et al., 2023), which scales the epsilon value using

a linear function, ensuring consistency between training and sampling, thereby reducing bias and

improving sample quality. The epsilon value is scaled as:

ϵt =
ϵθ(xt, t)

λt
(22)

where λt = λtk + b. The scaled ϵθ is then used in the DDPM equation:

xt−1 =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵt

)
+ σtz (23)
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3.4 DGM Pipeline for Computational Pathology

3.4.1 Training Model and Generative Approach

The training and generative approach for pathology data employs Diffusion Generative Models,

as illustrated in Figure 3.4. This framework includes both the training and sampling phases essen-

tial for generating high-quality synthetic pathology images. We utilized various diffusion models

and sampling methods to compare and study their effects on the generated images’ quality and

efficiency.

During the Training phase (top-right of the figure), the data points progress from x0 to xT

with noise levels ϵ0 to ϵT . Additionally, we employ class information from different tissue types

(Normal, HP, SSL, TA, TVA) to guide the training process. This class information helps the model

learn and understand the distinct characteristics of each tissue type.

At sampling time, we prompt the model with a class label to generate images corresponding to

that specific tissue type. This allows the model to produce synthetic images that accurately reflect

the features of the given class.

3.4.2 The Architecture

We used a UNet model based on (Dhariwal & Nichol, 2021) for our experiments. We converted

128 × 128 images to noise, which were then fed into the UNet network. The network predicted

the amount of noise added to these images and outputted the noise prediction. We employed a loss

function that compares the predicted noise with the actual noise from the stochastic process. In

Diffusion Models, Gaussian noise is iteratively added to the original image according to a variance

schedule with a large total number of steps (T = 1000). The UNet model also incorporates timestep

and class embeddings to learn class-specific features.

We implemented the LDM architecture from Rombach et al. (2022), which consists of the Vari-

ational Autoencoder (VAE), the U-Net denoiser, and added the class embedding. We used an au-

toencoder based on vector quantization, VQ-autoencoder, referred to as VQF4-DM (Van Den Oord,

Vinyals, et al., 2017).
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Figure 3.4: Diffusion Generative Models framework used in the pathology dataset: The Training
phase (top-right) details the data points’ progression from x0 to xT with noise levels ϵ0 to ϵT ,
where the model adds noise to the original data and estimates the reverse process guided by class
information to understand tissue details. The Sampling phase (bottom-right) reverses the diffusion
from a noisy state xT to the original data point x0, by iteratively denoising using noise predictions
ϵ′ and learned parameters, and prompting the class label to generate images of specific tissue types.

3.5 Evaluation Metrics

A classic approach for generative model’s evaluations is to compare the log-likelihoods of mod-

els. This approach, however, has several shortcomings. A model can achieve high likelihood, but

low image quality, and conversely, low likelihood and high image quality. The two most com-

mon GAN (Goodfellow et al., 2020) evaluation measures are Inception Score (IS) (Salimans et al.,

2016) and Fréchet Inception Distance (FID) (Heusel, Ramsauer, Unterthiner, Nessler, & Hochreiter,

2017).

Inception Score (IS) rely on a pre-existing classifier (InceptionNet) (Szegedy et al., 2015) trained

on ImageNet. IS computes the KL divergence between the conditional class distribution and the

marginal class distribution over the generated data. IS does not capture intra-class diversity, is

insensitive to the prior distribution over labels (hence is biased towards ImageNet dataset and In-

ception model. Therfore, we would not be using it for our dataset as it has completely different data

than Imagenet. However, we would be using FID and KID.

FID (Heusel et al., 2017) calculates the Wasserstein-2 (a.k.a Fréchet) distance between multi-

variate Gaussians fitted to the embedding space of the Inception-v3 network of generated and real
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images. The Kernel Inception Distance (KID) (Bińkowski, Sutherland, Arbel, & Gretton, 2018)

aims to improve on FID by relaxing the Gaussian assumption. KID measures the squared Maxi-

mum Mean Discrepancy (MMD) between the Inception representations of the real and generated

samples using a polynomial kernel. This is a non-parametric test so it does not have the strict

Gaussian assumption, only assuming that the kernel is a good similarity measure.

We further use deep learning based classifiers approach to compare original vs generated data to

show how synthetic data is actually applicable in real life. This is separately explained in Section.
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Chapter 4

Diffusion Models in Computational

Pathology : Image Analysis and

Comparative Study

This chapter presents the core research contributions of this thesis, focusing on the application

of diffusion-generative models (DGMs) to computational pathology. The primary objective is to

analyze and compare the performance of different DGM methodologies in pathological data sets in

terms of image synthesis and enhancement.

We begin by describing the experimental setup. Following this, we analyze the results, high-

lighting key findings and observations. The results section compares the effectiveness of various

DGM techniques in generating high-quality pathological images, exploring their strengths and lim-

itations.

The chapter concludes with an evaluation of the pathological images generated, assessing their

quality and accuracy. This evaluation validates the performance of the DGM and ensures that the

generated images meet the required standards for practical application in medical research and di-

agnostics. At the end of this chapter, we discuss these findings and significant advances in the use

of DGMs for computational pathology.
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4.1 Experiment Details

4.1.1 Comparative analysis

In our research, our aim is to comprehensively analyze the effects of various diffusion gener-

ation models (DGM) for the pathology data set. Rather than solely identifying the best method,

our objective is to facilitate meaningful comparisons between different methods, emphasizing their

visual impact and utility, particularly when dealing with large-sized images.

Our comparative study includes two primary training models: Denoising Diffusion Probabilis-

tic Models (DDPM) and Latent Diffusion Models (LDM). These models serve different purposes,

and we are interested in exploring how each performs under pathological data conditions and what

unique contributions they can make in data synthesis. Latent Diffusion Models (LDMs) offer ef-

ficient image generation from the latent space with a single network pass. LDMs operate in the

learned latent space, which exhibits better scaling properties with respect to spatial dimensionality.

Therefore, latent models are more efficient compared to pixel-based designs.

Notably, the difference between LDM and DDPM lies in LDM’s ability to model long-range

dependencies within the data by constructing a low-dimensional latent representation and diffusing

it. In contrast, DDPMs apply the diffusion process directly to the input images. This capability is

particularly useful for medical image augmentation tasks that require capturing complex patterns

and structures.

In our implementation, denoising diffusion probability models (DDPM) and latent diffusion

models (LDM) differ in their architectures and efficiency in generating high-quality images. DDPMs

create detailed and realistic images by iteratively denoising through 500 timesteps in the pixel

spaces. Conversely, LDMs, although large in model size, leverage a trained latent space, allow-

ing them to generate images in significantly fewer timesteps, only 200 steps, thus speeding up the

generation process while maintaining high image quality. This efficiency makes LDMs advanta-

geous for applications that require rapid image synthesis. We will see the effect of this in the results

section 4.2.1

Classifier guidance is a recently developed strategy for balancing mode coverage and sample fi-

delity in post-training conditional diffusion models. It works similarly to low-temperature sampling
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or truncation in other forms of generative models. For example, in recent research, the classifier has

undergone training using images corrupted by noise. Subsequently, during the diffusion sampling

process, the classifier gradients are utilized to guide the sample toward the intended classification

label. Classifier guidance provides a trade-off: It enhances compliance with the conditioning signal

and improves overall sample quality, but it can also incur high computational costs for high-quality

samples.

We train both DDPM and LDM models on the same pathology datasets and use classifier-

guidance strategy. This allows us to observe and evaluate the behavior of these models through

visual assessments of the sampled images. Our meticulous approach ensures that we can identify

subtle changes and improvements, which is crucial for analyzing large pathological images.

4.1.2 Patch Size

In addition, our experiments introduced a novel hyperparameter: Patch Size. By varying the

patch size exclusively during the image generation phase, we observed notable differences in tis-

sue structure. The results demonstrated that adjusting the patch size can significantly enhance the

model’s ability to capture fine details and intricate structures within the generated images according

to the patch size we provide. This process is not just simple up-sampling or down-sampling of the

patch; rather, the model is able to generate details according to the patch size, effectively learning

the patch resolution, further contributing to the robustness and accuracy of our Histology Patch

Generation Model.

To understand patch resolution, we can look at the histopathology data. Patch resolution in

histopathology images refers to the level of detail captured in each patch relative to the actual size

of the tissue being imaged. It is typically measured in microns per pixel (mpp). This means that the

resolution indicates how many microns of actual tissue are represented by each pixel in the image.

For example, a patch resolution of 1.75 mpp means that each pixel in the patch corresponds to 1.75

microns of the actual tissue.

High patch resolution (lower mpp values) captures more detailed information, such as cellular

and subcellular structures, making it suitable for identifying fine morphological features. Con-

versely, lower patch resolution (higher mpp values) provides a broader view of the tissue, capturing
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larger structures and the overall tissue architecture. Understanding and adjusting patch resolution

is crucial to optimizing histopathological image analysis, as it allows for a balance between detail

and context, allowing better identification and classification of various tissue types and pathological

changes.

FOV = Patch Size× Patch Resolution

We validated our findings by first confirming the patch resolution used earlier, where the FOV

was 224 and the patch size was 128, resulting in a patch resolution of 1.75 microns per pixel (mpp)

according to the formula mentioned above. Using this patch resolution (1.75 mpp) and varying the

patch sizes, we calculated the corresponding FOVs:

Patch Size FOV

64 112

96 168

128 224 (original)

160 280

192 336

224 392

Table 4.1: Patch Sizes and Corresponding Fields of View

We extracted these patches from the original dataset used for WSIs diffusion training. These

patches were taken from the same WSIs.

4.1.3 Evaluation of Synthetic Pathology Dataset

The evaluation of generated pathology images is crucial to determine their quality and similarity

to real pathology images. Although evaluation metrics provide valuable information about the qual-

ity of generated images, their applicability to real datasets remains uncertain. This study aims to

analyze the performance of the generated data set on the ResNet-50 architecture (He, Zhang, Ren,

& Sun, 2016) along with the real data set.
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4.2 Results and Comparative Analysis

The FID scores of our DDPM method demonstrate strong performance when compared with

similar studies in the field. These comparisons are crucial for highlighting the effectiveness of our

approach in generating high-quality images. By evaluating FID scores across different studies, we

can understand the relative success of our method in capturing the complexity and diversity of tissue

samples.

The following table compares our FID scores with those of other relevant studies that use the

same DDPM methodology. This allows for a direct comparison of performance metrics and provides

a clear picture of where our method stands in the context of current research.

The Table 4.2 compares the FID scores of our DDPM method with several studies in the litera-

ture, as referenced by (Pozzi et al., 2023). We only consider these among others as these are based

on the same DDPM methodology and architecture:

Study Number of Classes FID

Current Study (PKGH 224) 5 19.08

Current Study (PKGH 336) 5 18.45

(Pozzi et al., 2023) 5 35.11

(Moghadam et al., 2023) 1 20.11

Table 4.2: Comparison of FID scores with existing studies

When compared to other studies, our DDPM method’s FID scores of 19.08 for the PKGH 224

dataset and 18.45 for the PKGH 336 dataset are competitive, demonstrating superior performance

over (Pozzi et al., 2023) and comparable results with (Moghadam et al., 2023). These results high-

light the importance of conditioning in DDPM and the significant impact of the FOV used. The

findings underscore the value of FOV selection to achieve better outcomes in histopathological im-

age generation.
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4.2.1 Comparative Analysis

Figure 4.1: Real vs Generated Images from the FOV 224 (DDPM and LDM): The top row shows
a representative image from the real dataset for each tissue type, while the bottom row displays a
generated image of the same tissue.

Figure 4.2: Real vs Generated Images from the FOV 336 (DDPM and LDM): The top row shows
a representative image from the real dataset for each tissue type, while the bottom row displays a
generated image of the same tissue.

The analysis focuses on comparing the performance of Denoising Diffusion Probabilistic Mod-

els (DDPM) and Latent Diffusion Models (LDM) across two datasets: PKGH 224 and PKGH 336.

The Table 4.3 below summarizes the results of all methods.

For the PKGH 224 dataset, the DDPM model with DDPM sampling yielded an FID score of

19.08 and a KID score of 0.0134. This indicates a reasonable level of image quality and diversity

generated by the model. In comparison, LDM with DDPM sampling yielded an FID score of 24.43

and a KID score of 0.0185. The latent space representation in LDM provides good results, although

the DDPM model performed slightly better in this instance. The DDIM sampling method for DDPM

had an FID score of 22.66 and a KID score of 0.0154, whereas LDM with DDIM sampling achieved
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an FID score of 25.56 and a KID score of 0.0161. Here, DDPM outperformed LDM, highlighting

the variations in performance across different sampling methods.

For the PKGH 336 dataset, DDPM with DDPM sampling produced an FID score of 18.45

and a KID score of 0.0129, showing consistent performance across different dataset sizes. LDM

with DDPM sampling yielded an FID score of 23.10 and a KID score of 0.0160. The latent space

approach in LDM continues to produce high-quality images but did not outperform DDPM in this

dataset. The DDIM sampling method for DDPM had an FID score of 21.34 and a KID score of

0.0159, while LDM with DDIM sampling achieved an FID score of 26.41 and a KID score of

0.0199. Again, DDPM demonstrated better performance compared to LDM.

This shows that for the smaller dataset, PKGH 224, DDPM showed a slight edge in image qual-

ity and diversity over LDM, particularly with DDPM sampling, which yielded better scores. This

suggests that DDPM is more effective in generating detailed and realistic images for this dataset

size. In contrast, for the larger dataset, PKGH 336, DDPM again outperformed LDM, consis-

tently producing higher quality images. Both DDPM and LDM demonstrated high performance,

but DDPM maintained better scores across different sampling methods, indicating its robustness

in handling varying dataset sizes. Overall, the study highlights DDPM’s superior performance in

generating realistic and diverse synthetic pathology images.

Notably, LDM usually excels in complex conditioning scenarios, such as text and images, mak-

ing it highly suitable for multimodal generative tasks. However, LDM performs exceptionally well

with class conditioning, producing high-quality results despite its optimization for complex inputs.

In summary, while DDPM provides a solid foundation, LDM offers faster convergence and com-

parative FID scores, making it a powerful tool in generative modeling. However, DDPM has been

proven to be a useful tool to control pixel space and would also lead us to experiment with different

patch size generation in Section 4.3.

Figure 4.3 shows a visual comparison of the results of the DDPM and Epsilon sampling methods

applied to histopathology images. The upper row illustrates output from DDPM, while the lower

row showcases Epsilon sampling results. Both methods can capture larger tissue structure from

pathology images, but the DDPM images display more consistent structural details across different

samples. In contrast, Epsilon sampling produces slightly varied textures, which could indicate
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PKGH 224

Training Method Sampling Method FID KID

DDPM DDPM 19.08 0.0134

Epsilon Scaling(s=1.014) 39.88 0.0338

DDIM 22.66 0.0154

LDM DDPM 24.43 0.0185

DDIM 25.56 0.0161

PKGH 336

Training Method Sampling Method FID KID

DDPM DDPM 18.45 0.0129

Epsilon Scaling(s=1.014) 45.12 0.0418

DDIM 21.34 0.0159

LDM DDPM 23.10 0.0160

DDIM 26.41 0.0199

Table 4.3: FID and KID Scores for Different Models and Sampling Methods on Two Datasets

greater flexibility in capturing diverse tissue characteristics. These observations suggest that while

both methods are effective, DDPM might be more reliable for producing uniformly detailed images,

whereas Epsilon sampling can capture a broader range of textural variations. This could be a reason

for the higher FID score of the epsilon scaling method.

Figure 4.3: Comparison of generated pathology images using DDPM (top row) and Epsilon sam-
pling (bottom row).

40



4.2.2 Analysis on Conditional Generation on pathology

Dataset w = 0 w = 1 w = 2 w = 3

PKGH 224 35.00 32.75 30.50 24.25

PKGH 336 28.47 25.10 23.89 21.02

Table 4.4: FID Scores for DDPM at Various Conditioning Levels for PKGH 224 and PKGH 336
Datasets (10k images used)

The table illustrates the positive impact of conditioning on FID scores and image realism for the

PKGH 224 and PKGH 336 datasets. As the conditioning level increases from w = 0 to w = 3,

FID scores consistently decrease for both datasets, indicating enhanced image quality. Specifically,

PKGH 224’s FID scores improve from 35.00 to 24.25, while PKGH 336’s scores improve from

28.47 to 21.02. This trend demonstrates that higher conditioning levels enable the models to gener-

ate images with more accurate and detailed features, as seen in the more realistic and class-specific

images produced by the conditional models in the Figure 4.4.

In the top row of Figure 4.4, the PKGH 224 dataset results show that the unconditional model

(left panel) produces a variety of pathology images with broad structural characteristics. However,

these images lack the specific detail necessary for a precise classification. In contrast, the condi-

tional model (right panel), conditioned on the ”Hyperplastic Polyp” class, generates images with

high fidelity to the provided class. These images exhibit more accurate and detailed features char-

acteristic of hyperplastic polyps, demonstrating the ability of the model to focus on and replicate

specific class attributes. Similarly, the bottom row displays results from the PKGH 336 dataset.

By conditioning on a specific class, the model can produce high-quality, class-specific images

that are essential for training robust machine learning models and advancing research in digital

pathology. In summary, the conditional generation approach, using ”Hyperplastic Polyp” as the

class value, effectively demonstrates how generative diffusion models can enhance the quality and

specificity of generated pathology images. This approach is pivotal in the development of accurate

and detailed synthetic datasets.
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(a) PKGH 224: Generated Pathology Images using Larger Fields of View (FOV).

(b) PKGH 336: Generated Pathology Images using Larger Fields of View (FOV).

Figure 4.4: Comparison of generated pathology images from different FOV datasets. The left panel
shows pathology images generated using an unconditional diffusion model, while the right panel
displays images generated using a conditional model(on the ”Hyperplastic Polyp” class).

As shown in Figure 4.5, we applied different class-conditioning scales to DDPM. Each row

in the figure represents an increase in the guidance scale, starting from w = 0 and progressing

to w = 3. The results show a clear trend: As the guidance scale increases, the tissue structures

generated become more distinct and defined. This highlights the critical role of the guidance scale
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in enhancing the quality and clarity of synthetic pathology images.

For our visual analysis, our aim was to observe the effects of starting with the same initial noise

across all varying the guidance scale. This approach allows us to assess how these factors influence

the quality and characteristics of the generated images.

Figure 4.5: DDPM (Denoising Diffusion Probabilistic Models) with various class-conditioning:
each row represents an increase in the guidance scale, starting from w = 0 and progressing to
w = 3. The images reveal a clear trend: as guidance increases, the generated tissue structures
become progressively more distinct and defined.

Furthermore, the diffusion generation process adapts differently according to the class embed-

ding, demonstrating how much class information influences the generation based on the guidance

scale. This analysis provides valuable insights on how the diffusion model is also separately for

each class, allowing a better understanding of the different morphological patterns and the clear

distinctions among tissue types. As we can see in the figure 4.5 even starting from the same initial

noise, it generates different images, but structure and color look more similar to each other.

4.3 Analysis on Patch Size

The results indicate that the original patch size with a FOV of 224 and a patch resolution of 1.75

mpp achieved the lowest FID score of 19.08, reflecting the highest fidelity in generated images,

which is expected as the images were trained on this model. However, examining the FID scores
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Figure 4.6: Patches generated for different patch size resembling different cell structure for five
classes(128x128 is the training patch size used for diffusion model training)

for other patch sizes, especially those not used during training, provides insights into the model’s

ability to generate detailed images from different patch sizes.
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Input FoV patch (µm) Patch reshaped FID

Original Patch 224 128 × 128 19.08

Small Patch 112 64 × 64 161.01

168 96 × 96 33.71

Large Patch 280 160 × 160 25.71

336 192 × 192 38.41

392 224 × 224 41.37

Table 4.5: Comparison of FID scores across different FOV and patch size.

Figure 4.7: Patches generated for Patch size(64x64) which has the highest FID score

Our model is trained with a patch size of 128, and we experimented with generating images

using different patch sizes, both smaller and larger. The table highlights the variation in image

fidelity across different patch sizes and FOVs in generated pathology images. Smaller patch sizes,

such as 64x64 and 96x96, exhibit higher FID scores of 161.01 and 33.71 respectively, indicating

lower image fidelity. As the patch size increases to 160x160 and 192x192, the FID scores improve

to 25.71 and 38.41 respectively, suggesting better image quality but with some variability. The

224x224 patch size, while larger, shows a slight decrease in fidelity with an FID score of 41.37.

The visual representations in Figure 4.6 demonstrate that larger patch sizes generally capture more
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detailed and high-level cellular structures across various classes, enhancing the potential utility of

synthetic data in diagnostic workflows, especially when real data is limited. This indicates that

while larger patches can improve detail and quality, the specific patch size must be carefully chosen

to balance fidelity and practical application in diagnostic tasks. The FID score could vary as the

model is not trained on these pixel levels and lacks the variability to accurately represent them.

Interestingly, even without training on certain pixel levels, the model can still perform well

and generate quality images, demonstrating its robustness and versatility. This suggests that the

generative model has the capacity to generalize beyond its training data to some extent, making it a

valuable tool in scenarios where training data are scarce or diverse. This experiment highlights the

model’s adaptability and versatility, even when trained with data of limited complexity.

4.4 Evaluation Study of Pathology-Generated Images

Evaluation of generated pathology images is crucial to determine their quality and similarity to

real pathology images. Although evaluation metrics provide valuable information about the quality

of generated images, their applicability to real datasets remains uncertain. Therefore, this study

aims to find the applicability of our generated dataset by evaluating its classification performance

on the ResNet-50 architecture.

4.4.1 Methodology

To assess the quality of our generated images, we first trained the ResNet-50 model on the

original dataset used to train the diffusion model. We reserved 20% of the WSIs as a test set to

evaluate the accuracy of the model.

We applied a set of augmentations to enhance the robustness of the model, including random

horizontal and vertical flipping, as well as transformations like jittering. For simplification, we used

the ImageNet pretrained weights.

Our approach was not optimized for maximum performance, but was designed to compare the

original and diffusion-generated models under conditional settings. The network was trained for 25

epochs with a batch size of 32. Given that the network utilized pre-trained ImageNet weights, the
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initial learning rate was set to 0.0001, which was subsequently decreased using a cosine annealing

scheduler.

We used the same settings to train the model on the generated images and tested it on the same

test set. The performance of both models was evaluated using multiclass accuracy (ACC).

4.4.2 Results

The table below summarizes the classification performance on the KGH dataset across different

scenarios, providing a clear comparison of the impact of real and generated data on model accuracy.

Dataset ACC (%)

Real Dataset (PKGH 224) 89.95

Generated Dataset (PKGH 224) 88.62

Real + Generated (PKGH 224) 90.75

Real Dataset (PKGH 336) 94.06

Generated Dataset (PKGH 336) 92.44

Real + Generated (PKGH 336) 90.76

Table 4.6: Classification accuracy summary for PKGH 224 and PKGH 336: Classification ac-
curacy scores of a ResNet-50 on synthetic data. Higher ACC proves the effectiveness of DGM-
generated(DDPM) synthetic samples in capturing significant features.

The results demonstrate distinct differences in model accuracy when trained on real versus gen-

erated datasets, particularly between the PKGH 224 and PKGH 336 datasets. For the PKGH 224

dataset, the ResNet-50 model achieved an accuracy of 89.95% on the real dataset. However, the

accuracy slightly decreased to 88.62% when trained solely on the generated dataset. Notably, when

the real dataset was augmented with the generated data, the model’s accuracy improved to 90.75%.

For the PKGH 336 dataset, the model exhibited even better performance, achieving an accuracy

of 94.06% on the real dataset. The generated dataset alone resulted in an accuracy of 92.44%, and

the combination of real and generated data yielded a slightly lower accuracy of 90.76%.

These findings indicate that while generated data alone can approach the performance of real

data, combining real and generated data often enhances model accuracy, particularly for the PKGH 224

dataset. The consistently higher performance of the PKGH 336 dataset suggests that it provides

more robust training data, possibly due to its larger FOV. This larger FOV likely captures more
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contextual information and intricate details, allowing the model to learn more effectively from the

data.

Overall, these results underscore the potential of using synthetic data to augment real datasets,

especially when real data is limited. The improvements in classification accuracy highlight the effec-

tiveness of Diffusion Generative Model (DGM)-generated synthetic samples in capturing essential

features, thereby enhancing the model’s ability to generalize from the data.

4.4.3 Conclusion

The results demonstrate that while generated data alone may not always surpass the performance

of real data, it becomes highly valuable when combined with original datasets. The effectiveness

of generated data is influenced by the dataset’s complexity, particularly the FOV. In this study,

higher FOV data, such as PKGH 336, even when generated synthetically, can approach or exceed

the classification performance of real datasets. The combined use of both real and synthetic data

significantly improves classification accuracy, making it a viable strategy to enhance model per-

formance, especially in scenarios where real data are limited. This study highlights the potential

of synthetic data as a valuable resource in the diagnostic workflow, particularly when available real

data are scarce. Ongoing research to refine data generation techniques and their integration with real

datasets will be crucial in achieving even better classification outcomes. These findings reinforce

the utility of synthetic data in medical imaging, offering a practical solution for enhancing diagnosis

workflows when data is limited.

4.5 Discussion

In the field of digital pathology, data is inherently complex, presenting challenges in comprehen-

sive analysis and dataset generation that closely resembles original data. Our approach distinguishes

itself by providing deeper insights into the use of Diffusion Generative Models (DGMs) and their

capability to generate multiple patch sizes. Extensive experiments and evaluations were conducted

to understand how these methods perform on intricate datasets.

The classification accuracy results reveal a noticeable difference when comparing models trained
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on real datasets with those trained on generated datasets. While performance may decrease when

only generated data are used with smaller FOV datasets, significant improvements are observed

when real and synthetic datasets are combined. However, in the case of a more complex pathology

dataset, such as PKGH 336, the highest accuracy is achieved using the generated dataset alone.

This underscores the potential benefits of using synthetic data to enhance model performance, par-

ticularly when real data is scarce or difficult to obtain. The consistent improvement in accuracy

with combined datasets (real + synthetic) demonstrates the effectiveness of DGM-generated syn-

thetic samples in capturing significant features. This finding is crucial as it highlights how synthetic

data can be a valuable supplement to real data, enhancing the robustness and accuracy of machine

learning models.

In one study, we randomly select patches from specific fields of view (FOV) to compare the

performance of the generated patches. Our findings indicate that DGMs offer a promising approach

for new pathology data, as they can generate complex distributions that mimic the original data set

while also uncovering hidden intricacies and predicting the structural details of cells and tissues

across unseen image levels. This multilevel training approach highlights how effectively DGMs

learn patch resolution.

Our results show that the FID scores of the generated patches are not exactly comparable to

the original patch sizes used for training. Despite this, they provide a clear trend and a future

direction for generating entire datasets by training on a limited number of image regions. The

ability to generate complex, high-quality datasets from limited training data is particularly valuable

in pathology, where obtaining comprehensive datasets can be challenging.

Comparison of the performance of our DDPM method with other studies demonstrates its strong

performance in generating high-quality images. Our method outperforms some existing approaches

and shows results comparable to others, indicating its competitive edge in the field. The lower FID

scores achieved in our study highlight the importance of conditioning in DDPM and the significant

impact of the dataset used.
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Chapter 5

Conclusion and Future Work

In conclusion, this research successfully addressed key challenges in histopathology such as the

need for high-quality synthetic datasets, demonstrating the practical applications of diffusion gen-

erative models (DGM) in medical imaging. The other unique primary experiment conducted in this

thesis established that DGMs are capable of learning patch resolution effectively. By utilizing dif-

ferent patch sizes from the original dataset, we validated our findings. Although a direct comparison

between Denoising Diffusion Probabilistic Models (DDPM) and Latent Diffusion Models (LDM)

is challenging due to their different architectures, both models perform similarly well, leveraging

the strengths of their respective designs. Among the various methods evaluated, DDPM proved

to be highly flexible for working in pixel space, enabling the generation of detailed and realistic

images. Meanwhile, LDM excelled in generating high-quality images even with larger models by

using fewer time steps. Both models produced realistic images, as validated by their FID scores and

visual analysis.

The research also addressed critical gaps using two datasets extracted from the WSIs of the

Kingston General Hospital (KGH) dataset. By directly extracting data from the WSI, we were able

to compare multiple FOV values. This approach allowed us to carefully select the FOVs that pro-

vided a balance between the number of images available for diffusion training and the classification

test set. Our comparison of different FOVs from the same dataset revealed that larger FOVs not only

yielded better FID scores, but also provided the highest classification accuracy. This selection pro-

cess ensured that we maximized the effectiveness of our diffusion model training while maintaining
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a robust test set for validation. We were able to enhance the overall performance and reliability of

our generative models by utilizing larger FOVs that encompass more contextual information and

tissue structures that can contribute to a richer representation of the underlying biological features.

This comprehensive data representation improves the model’s ability to learn and generalize, lead-

ing to superior performance in both generative and classification tasks.

In general, this thesis highlights the meaningful findings in the field of computational pathology

by providing a novel and comprehensive study of DGM and sets the stage for future enhancements.

The thesis presents practical applications and addresses key challenges, paving the way for future

research and development. The ability of DGMs to generate realistic and high-quality synthetic

pathology images, especially with larger FOVs, highlights their potential to enhance the robustness

and accuracy of deep learning classifiers.

5.1 Future Work

Future research will focus on several key areas to further advance the application of diffusion

models in medical imaging.

Biomarker Identification and Analysis: Future work will explore the potential of diffusion

models to identify and analyze biomarkers for various diseases (Echle et al., 2021). This involves

developing methodologies to enhance the accuracy and reliability of biomarker discovery, lever-

aging the advanced capabilities of diffusion models to generate new subtle and critical features in

medical images that are indicative of specific biomarkers.

Synthetic Cross-Staining Images for Biomarker Studies: To further improve biomarker stud-

ies, synthetic cross-stained images can be created, such as converting Hematoxylin and Eosin (H&E)

stained images (Boschman et al., 2022) to Immunohistochemistry (IHC) stained images (Rojo,

Bueno, & Slodkowska, 2009). These synthetic images can be evaluated for their effectiveness in

providing additional insights and enhancing the understanding of biomarkers which is why IHC are

famous. Cross-staining synthesis is particularly helpful when other staining techniques, like IHC,

are beneficial but expensive. This approach is expected to offer new perspectives and deepen the

analysis of biomarker characteristics, potentially revealing patterns and details that are not apparent

51



with a single staining method.

Impact of Magnification Levels on Diffusion Models: The research can be done to determine

the optimal magnification settings for accurate image analysis and synthesis in histopathology. This

research will assess how different magnification levels affect the performance of diffusion models,

aiming to identify the settings that produce the highest quality image.

Multi-Class Labeling Techniques for Histopathology Images: Future research can imple-

ment multi-class labeling techniques to enhance the classification of histopathology images. This

involves conditioning diffusion models on multi-class labels to achieve more precise image analy-

sis and interpretation. The aim is to improve the accuracy and robustness of classifiers in medical

imaging, leading to better diagnostic and analytical outcomes.

These research directions aim to expand the current understanding and application of diffusion

models in medical imaging and biomarker discovery. They will contribute to developing more

accurate and privacy-sensitive healthcare solutions.
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Appendix A

Unified Psuedo Code for Diffusion

Generative Models

The Unified-Pseudo Code algorithm provides a comprehensive framework for training and sam-

pling in Diffusion Generative Models (DGMs) mention in Chapter 2. Training and sampling pro-

cesses are clearly delineated within the code, highlighting their distinct roles and methodologies.

The training phase, contained in the TRAINING(y) function, focuses on iteratively learning from

data through the DiffusionProcess(y, t) function. This involves generating noisy versions

of the data and refining them to minimize the loss, thereby enabling the model to learn patch res-

olution effectively. The DiffusionProcess function adds noise to the data during training to

perturb the input and enhance the model’s robustness.

Conversely, the sampling phase, detailed in the SAMPLING(ϵθ) function, aims to generate new

data samples from the learned model. This process begins with instantiating random noise and it-

eratively refining it using various sampling techniques like Epsilon Scaling, Adaptive Momentum

Sampling, and ERA-Solver Sampling, depending on the specific sampling method being employed.

Each sampling method modifies the noise reduction steps uniquely: Epsilon Scaling adjusts noise

proportionally, Adaptive Momentum Sampling incorporates momentum to speed up convergence,

and ERA-Solver Sampling uses an error-regularized approach for precise noise correction. The dis-

tinction between methods like DDPM and DDIM is also emphasized, with DDPM leveraging direct
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denoising steps and DDIM using deterministic sampling to improve image quality and sampling

efficiency.

54



Algorithm 1 Unified-Pseudo Code
1: # Training: Training Algorithm(1.1 DDPM, 1.2 Input-Perturbation )
2: # Sampling: Sampling Algorithm (2.1 DDPM, 2.2 DDIM, 2.3 Epsilon Scaling, 2.4 Adaptive

Momentum, 2.5 ERA-Solver Sampling, )
3: # Domain: Image domain (3.1 Pixel, 3.2 Latent, 3.3 Gradient )
4: # E(·): Encoder Network
5: # D(·): Decoder Network
6: # γ: Noise schedule for ξ
7: # ᾱ: Eq. 2
8: function DIFFUSIONPROCESS(y, t):
9: ϵ← torch.randn(y)

10: if Training is Input-Perturbation then ϵ = ϵ+ γξ # 1.2 Input Perturbation Training
11: end if
12: ỹ ←

√
ᾱt y +

√
1− ᾱt ∗ ϵ # 1.1 DDPM Training

13: return ỹ, ϵ
14: end function
15: function TRAINING(y):
16: for t in (1,...,T) do
17: ỹ, ϵt ← DiffusionProcess(y, t)
18: ϵ̄t ← ϵθ(ỹ, t)
19: loss← L(ϵ̄t, ϵt)
20: end for
21: end function
22:

23: function SAMPLING(ϵθ):
24: Instantiate : xT ∼ N (0, I)
25: for t in (T,...,1) do
26: z← torch.randn like(x) if t > 1, else z = 0
27: ϵt ← ϵθ(x, t)
28: if Sampling is Epsilon Scaling then # 2.3 Epsilon Scaling
29: ϵt =

ϵt
λt

Eq. 22
30: end if
31: if Sampling is Adaptive Momentum Sampling then # 2.4 Adaptive Momentum

32: xt ←
(√

1−αt−1−σ2
t

αt−1
−
√

1−αt
αt

)
· ϵ(t)θ (xt) +

σt√
αt−1
· ϵt

33: vt−1 = (1− c) · vt + c · ∥dx̄t∥2
34:

35: mt−1 = a ·mt + b · (µ · ϵ(t)θ (xt) +
σt√
αt−1
· ϵt)

36: xt−1 = x̄t +
mt−1√
vt−1+ζ

37: end if
38: end for
39: return x0
40: end function
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Algorithm 1 Unified-Pseudo Code (continued)

if Sampling is ERA-Solver then # 2.5 ERA-Solver Sampling
Input: k
i = t
if i == T then

Instantiate: ∆ϵ = λ, Ω = Ω ∪ {(ti, ϵθ(xti , ti))},
end if
if (T − i) < k − 1 then

ϵti = ϵθ(xti , ti)
else
{τ̄m}k−1

m=0 ← for eachτ̄m = i
k ·m

{τm}k−1
m=0 ← for eachτm = [

(
τ̄m
i

)∆ε/λ · i]
ϵ̄θ(xti−1, ti−1)← Lϵ(ti−1).
ϵti =

1
24

(
9ϵ̄θ(xti−1, ti−1) + 19ϵθ(xti , ti)− 5ϵθ(xti+1 , ti+1) + ϵθ(xti+2 , ti+2)

)
∆ϵ = ∥ϵθ(xti , ti)− ϵ̄θ(xti , ti)∥2

end if
Ω = Ω ∪ {(ti−1, ϵθ(xti−1 , ti−1))}
ϵt = ϵti

end if
if Sampling is DDPM then

xt−1 ← 1√
αt

(
xt − βt√

1−αt
· ϵt +

√
βt · z

)
# 2.1 DDPM Sampling

else if Sampling is DDIM then
xt−1 =

√
αt−1

(
xt−

√
1−αt·ϵt√
αt

)
+
√
1− αt−1 − σ2

t · ϵt + σt · z # 2.2 DDIM Sampling
end if
# N: No of samples to be generated

# Training
for x in(dataloader) do

if domain is pixel then y = x # 3.1 Pixel Domain
else if domain is latent then y = E(x) # 3.2 Latent Domain
else if domain is gradient then y = ∇x # 3.3 Gradient Domain
end if
ϵθ = Training(x)

end for

# Sampling
for (i in 0...N) do

y0 = Sampling(ϵθ)
if domain is pixel then x0 = y0 # 3.1 Pixel Domain
else if domain is latent then x = D(y0) # 3.2 Latent Domain
else if domain is gradient then x = PoissonEquation(y0) # 3.3 Gradient Domain
end if

end for
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