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Abstract

Defending Object Detection Models against Image Distortions

Mark Ofori-Oduro, Ph.D.

Concordia University, 2024

Object detection has significantly advanced with deep learning but faces challenges under

image distortions like noise, compression, blur, fog, and snow. This issue is critical in

applications such as self-driving cars and healthcare. While defence methods aim to enhance

robustness under distortions, maintaining performance on clean images remains a challenge.

To address this challenge, we propose a novel defence approach that generates copies of the

original training images and adds distortion-like content to these copies at the pixel level.

We balance the number of distorted pixels to prevent bias during learning. Our approach

includes two augmentation methods to generate augmented samples: AISbod, which uses

artificial immune systems (AIS), and GSES, which employs kernel density estimation (KDE).

Our AISbod uses AIS to distort the original sample (antigen) through cycles of “select,

clone, mutate, select” until the augmented data (antibody) reaches a specified similarity to

the antigen. However, AIS is limited in diversifying generated antibodies and is compu-

tationally expensive. Therefore, in GSES, we create samples by selecting pixels from the

original samples, estimating the pixel distribution from multiple distorted versions of the

original samples via KDE, and then replacing the selected pixels with new values sampled

from the estimated distribution. GSES generates more diverse data than AISbod.

We evaluate our methods on 15 image distortions using state-of-the-art object detection

models like DINO and YOLOv7. Our methods improve accuracy under distorted and clean

images and remain consistent across datasets and detection models. For instance, DINO

on the COCO dataset shows a 4.50% improvement under clean samples, 8.40% on average

across all distortions, 2.50% under snow, and 29.30% under impulse noise. The observed

improvement is due to the weight regularization effect of our methods, which is evident in

the smoother convergence of training and validation loss curves, indicating reduced learning

fluctuations and a more stable optimization path. Additionally, the narrower gap between

the curves suggests reduced over-fitting, leading to better generalization to unseen data.

Simulations indicate that our approach outperforms related defence methods against distor-

tions and extends beyond object detection, improving accuracy in image classification and

object tracking models.
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Chapter 1

Introduction

Object detection models are the backbone of many artificial intelligence applications, en-

abling machines to interpret and comprehend the visual world. These models are pivotal in

identifying and locating objects within an image or video frame, classifying them into prede-

fined categories, and determining their precise positions using bounding boxes and confidence

scores, as shown in Figure 1.1. The transition from simple classification of single objects to

complex detection of multiple objects has significantly bolstered their capabilities. Object

detection applications span industries such as autonomous vehicles, surveillance, healthcare,

and retail. The current research landscape focuses on enhancing accuracy, efficiency, and ro-

bustness, employing supervised and unsupervised learning techniques. While convolutional

neural networks (CNNs) have long been the frontrunners, transformer models are now setting

new benchmarks, pushing the boundaries of what machines can comprehend and achieve in

real-world scenarios.

1.1 Problem statement

Despite significant advancements due to deep learning, the fundamental computer vision task

object detection [2–5] remains vulnerable to image distortions [6–9] such as shown in Figure

1.2. For instance, the accuracy (mAP) of state-of-the-art object detection models DINO [2]

(transformer-based) and YOLOv7 [3] (CNN-based) dropped significantly when validated

under snow (medium severity 3) by 24.50% and 15.90%, and under impulse noise by 27.10%

and 24.90%, respectively, for the COCO2017 dataset. Figure 1.3 demonstrates how object

detection struggles with Gaussian and impulse noise, often misclassifying or missing objects

entirely.

Image distortions are prevalent in real-world applications such as self-driving cars and

healthcare monitoring, where the accuracy of object detection models is critical. Defence

1



Figure 1.1: Two images with colour-coded bounding boxes labelled with the object category
and confidence (conf.) score, illustrating the DINO model’s performance. In the left image,
detected objects include Person 1 (conf. 0.64), Person 2 (conf. 0.89), and a Chair (conf.
0.67). In the right image, detected objects include Person (conf. 0.97), Baseball bat (conf.
0.93), and Baseball ball (conf. 0.98).

methods against image distortions address this vulnerability through noise filtering before

feeding images into models [10], modifying the baseline model’s architecture [11], or aug-

menting training data with examples of distorted images [12, 13]. The main challenge in

these defence methods is improving performance under distortions while maintaining (or

improving) performance on clean samples. Additionally, methods must generalize well to

distortions beyond those used to develop the defence strategy. For example, the approach of

simply adding known distortions to training samples leads to poor generalisation [13–16].

This thesis aims to fill this critical gap by proposing innovative methodologies that enable

object detection models to handle and adapt to a wide range of distortions and clean samples.

Robust object detection-based systems can significantly improve efficiency, accuracy, and

reliability in healthcare, security, transportation, and beyond.
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Figure 1.2: Examples of image distortions at varying severity levels. Top row: snow distortion
applied to an image of a bird, with low (severity level 1) on the left and medium (severity
level 3) on the right. Bottom row: zoom blur distortion applied to an image of a dish, with
low (severity level 1) on the left and medium (severity level 3) on the right.

1.2 Objectives

Our main objective is to improve object detection accuracy under distortions while main-

taining (or improving) performance (accuracy and speed) under clean (original) samples. To

achieve this objective, we will follow these directions:

1. Interpretability: It is crucial to investigate the underlying mechanisms to understand

how the proposed methods enhance the accuracy of object detection models under

various distortions. One practical approach is to visualize the training and validation

curves or weights of the trained models with and without the proposed augmentation.

By comparing the curves or weights, we can gain valuable insights into the changes
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Figure 1.3: Effect of 27 dB PSNR Gaussian and 0.25% impulse noise (added to the RGB
input image) on Faster RCNN object detector: For instance, a train is falsely detected as a
car (row 2, column 1), a person is either misclassified (row 2, column 2) or missed (row 3,
column 2), or rock is falsely detected as a car (row 3, column 3). Blue arrows indicate points
of interest.

within the model, contributing to its improved accuracy. For example, a narrower gap

between the curves will indicate regularization of the model.

2. Generalization: It is essential to demonstrate if the proposed approach has a strong

performance across a range of distortions and model architectures. This demonstra-

tion will validate the approach’s ability to generalize and adapt effectively to diverse

distortion types and detection models. This investigation will provide valuable insights

into the robustness and versatility of our approach.

3. Cross-domain generalization: It will be interesting to see if features learnt by a

model using our data augmentation approach are transferable to unseen datasets and

different computer vision applications such as image classification [17, 18] or object
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tracking [19,20].

1.3 Thesis statement

Our investigation focuses on enhancing the accuracy of object detection models when faced

with a comprehensive range of image distortions. These distortions can be broadly catego-

rized into four main types: noise (Gaussian noise, impulse noise, shot noise), artefacts (jpeg

compression, pixelation, elastic transform), blur (motion blur, glass blur, zoom blur, defocus

blur), and weather-related conditions (contrast, snow, fog, frost, brightness). Our research

strives to improve the accuracy of these models under distortion by operating at the funda-

mental pixel level. This approach involves introducing diverse distortion-like content to the

image and balancing the amount of distorted pixels without compromising the accuracy of

clean samples.

We explore two main concepts: Artificial Immune Systems (AIS) and kernel density esti-

mation (KDE). The AIS-based method (AISbod) re-models AIS to enhance model accuracy.

This approach is distortion-agnostic and highly adaptable across various model architectures

and computer vision tasks (including object detection, image classification, and object track-

ing). Our KDE-based technique (GSES) expands upon randomization and diversification by

incorporating known distortion distributions, further increasing accuracy. Like the AIS-

based method, the KDE-based innovation is applicable across multiple model architectures

and tasks.

This research contributes to developing more adaptable models and fostering their in-

tegration into diverse real-world settings. The ultimate goal is to bridge the gap between

theoretical advancements and reliable implementation despite challenging distortions.

1.4 Organization of the Thesis

The rest of the dissertation is organized as follows:

• Review of related works: Chapter 2 provides an extensive survey of the literature,

encompassing a range of works from computer vision models and data augmentation

methods to image defence methods. This Section benchmarks our work against existing

studies and highlights the gaps and opportunities our research aims to address.

• Details of the proposed methods: In Chapter 3, we present our proposed methods:

AISbod, our AIS-based augmentation and GSES, our KDE-based augmentation.
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• Experimental results: Chapter 4 is dedicated to presenting the empirical outcomes

of our methods. We present detailed experimental findings and thoroughly analyze

them to show the effectiveness of our proposed methods.

• Analysis of proposed methods: In Chapter 5, we present an analysis of how the

hyper-parameters (augmentation ratio p and affinity threshold τ) of our data augmen-

tation methods AISbod and GSES are selected. We also demonstrate the effectiveness

of the proposed methods by analyzing the impact of various processes and components.

Additionally, we examine how model complexity influences these methods and their

effect on the stability of the models.

• Conclusion and future work proposals: In Chapter 6, we synthesize our key find-

ings and reflect on their contributions to the computer vision field. We also chart out

potential avenues for future research inspired by the insights and limitations unearthed

through our investigations.

• Appendix: The appendices provide supplementary material to support the main text.

In Appendix A, we provide a detailed breakdown of the performance of AISbod and

GSES for each distortion. Appendix B reviews adversarial attack defences and their

impact on image distortions. In Appendix C, we present visual results, and Appendix

D shows the details of the loss function of the DINO and YOLOv7 models.

1.5 Publications

This thesis has led to the following publications.

• Mark Ofori-Oduro and Maria Amer,Defending Object Detection Models against

Image Distortions at IEEE/CVF Winter Conference on Applications of Computer

Vision (WACV), January 2024, Waikoloa, Hawaii. (WACV is a leading computer

vision conference). This publication covers the GSES method from Section 3.2.

• Mark Ofori-Oduro and Maria Amer, Artificial Immune Systems for data aug-

mentation Image and Vision Computing (IMAVIS), 2024. (IMAVIS is a leading

Computer vision Journal). This manuscript covers the AISbod method from Section

3.1

• Mark Ofori-Oduro and Maria Amer, Data Augmentation Using Artificial Im-

mune Systems For Noise-Robust CNN Models IEEE 27th International Confer-

ence on Image Processing (ICIP), October 2020, Abu Dhabi, UAE. (ICIP is a leading
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signal processing conference). This publication covers an initial work of the AISbod

method from Section 3.1.

The code of our AISbod method is available at https://github.com/moforio/AISbod

and that of GSES at https://github.com/moforio/GSES/.
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Chapter 2

Literature review

The main objective of our research is defence techniques to enhance the accuracy of object

detection models under image distortions. However, we also aim to verify if our defence

techniques are generalized to other computer vision tasks, including image classification and

object tracking. This Chapter reviews the first state of the arts in image classification, object

detection, and object tracking (see Section 2.1). Additionally, it examines defence techniques

in Section 2.2, focusing on methods designed to protect computer vision models from image

distortions, such as adversarial training and robust architectural modifications. Finally, the

review highlights the differences between existing defences and the novel methods proposed

in this thesis in Section 2.3.

2.1 Computer vision baseline models

2.1.1 Image classification

Image classification is the task of categorizing images into one of several predefined classes.

It is one of the core tasks in computer vision and serves as a foundation for more complex

tasks. Image classification models take an image as input and output a class label or a

probability distribution over a set of classes.

2.1.1.1 CNN-based classifiers

LeNet-5 [21], designed by LeCun et al., is recognized as one of the pioneering CNNs specifi-

cally developed for digit recognition. Its architecture and principles set the stage for future

advancements in the field. Following LeNet-5, a breakthrough in CNN architectures was

achieved with the introduction of AlexNet [22], as described by Krizhevsky et al. This

model gained prominence through its remarkable performance in the ImageNet challenge,
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significantly outperforming other models. The deep structure of AlexNet and its innovative

use of ReLU non-linearity were central to its success.

Building upon these developments, Simonyan and Zisserman [23] from the Visual Ge-

ometry Group of Oxford University introduced the VGG models, particularly VGG-16 and

VGG-19. These models demonstrated the critical role of depth in CNNs for enhancing

classification accuracy. However, a more substantial milestone was achieved with residual

learning, as proposed by He et al. [24]. This concept enabled the construction of even deeper

networks like ResNet-50 and ResNet-101 while addressing the vanishing gradient problem

commonly encountered in deep CNN models.

Recently, EfficientNet [25] and SpinalNet [18] have emerged as significant innovations.

EfficientNet, developed by Tan and Le, introduced a systematic method for scaling CNNs,

achieving unparalleled accuracy and efficiency with smaller model sizes. On the other hand,

SpinalNet represents a novel architectural approach in CNN design aimed at augmenting

traditional deep learning models. Inspired by the human spinal cord, its architecture pro-

cesses information through multiple levels before it reaches the brain, offering state-of-the-art

classification results. This innovative design alters the conventional flow of information in

the network, enhancing performance and efficiency.

2.1.1.2 Transformer-based classifiers

Dosovitskiy et al. [26] was the first to adapt transformers for images with the introduction of

the ViT. In ViT, image patches are treated as sequences of tokens, akin to words in NLP, rep-

resenting a paradigm shift in how images are processed for classification. ViT demonstrated

that transformers could adapt to the realm of image classification and achieve state-of-the-

art performance, challenging the supremacy of CNN-based approaches; Touvron et al. [27]

built upon the foundation of ViT by proposing DeiT (Data-efficient Image Transformers).

DeiT focused on making the transformer model more data-efficient; The Swin Transformer,

introduced by Liu et al. [28], marked another significant leap in this domain. It presented a

hierarchical structure incorporating shifted windows, a novel approach that allowed for more

efficient handling of varying image sizes and resolutions. The Swin Transformer showcased

promising performance on various image classification datasets, further cementing the role

of transformer-based models in the field.

2.1.2 Object detection

The object detection task goes beyond image classification by identifying multiple objects

within an image and determining their locations. This task is achieved by providing a
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bounding box around each object of interest.

2.1.2.1 CNN-based detectors

The field of CNN-based image object detection has witnessed significant evolution, tran-

sitioning from the complexity of two-stage detectors [29–31] to the efficiency of one-stage

detectors [3,4,32–37]. This evolution marks a pivotal shift in the object detection landscape,

reflecting advancements in algorithmic efficiency and accuracy.

The Faster R-CNN, introduced by Ren et al. [29], represents a significant leap forward

from its predecessor, Fast RCNN. Its major innovation lies in replacing the selective search

algorithm with a Region Proposal Network (RPN), enhancing speed and recall. The RPN, a

lightweight network, comprises an intermediate layer with 256 or 512 3×3 filters (depending

on the ConvNet’s output channels) and a dual-output layer for classification and regression

using 1×1 filters. Following these footsteps, R-FCN [30] mirrors Faster R-CNN’s architecture

but differs from a fully convolutional RPN, achieving comparable accuracy at higher inference

speeds.

Mask R-CNN [31] builds upon the architecture of Faster R-CNN by introducing an ad-

ditional branch for pixel-level object classification alongside the existing classification and

regression branches. This enhancement enables more precise object detection, especially in

complex visual environments.

Redmon et al.’s introduction of YOLO [32] in 2016 marked a watershed moment in real-

time object detection, paving the way for one-stage detectors. YOLO’s novelty lies in its

holistic approach to detection. It divides the feature map into 7×7 grids, using two bounding

boxes per grid to predict if an object’s centre falls within a specific grid. This simultaneous

prediction across all grids equips YOLO with a global image perspective, hence its acronym:

You Only Look Once. However, its spatial constraints and limited bounding boxes per grid

can hinder performance, particularly with small, clustered objects.

Building on YOLO’s unified detection approach, Liu et al.’s Single Shot Detector (SSD)

[33] stands out for its balance of speed and accuracy. SSD enhances accuracy by employing

six bounding boxes at multiple feature map stages, leading to more precise detections.

RetinaNet, another one-stage model, leverages the ResNet architecture to match the

accuracy of leading two-stage models like Mask and Faster R-CNN while offering superior

speed. Lin et al. [34] identified the class imbalance between foreground and background as

a critical challenge in one-stage detectors. To address this, they introduced the focal loss

function, modifying the standard cross entropy loss to prioritize more challenging examples

during training, thereby improving model performance.

Emerging as a noteworthy competitor in this field is the EfficientDet model [35], which
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has made its mark by integrating a compound scaling method. This unique approach scales

the network width, depth, and resolution in a balanced manner, leading to a model that is

not only more efficient but also highly accurate. EfficientDet’s architecture, based on the

EfficientNet backbone and a novel bi-directional feature pyramid network, allows for efficient

and effective feature integration at various scales.

In recent developments, the YOLO model has undergone a series of transformative it-

erations, each marked by substantial capabilities enhancements. These continual refine-

ments and groundbreaking innovations have firmly established the YOLO series as a front-

runner for real-time object detection technology. Notably, versions such as YOLOv3 [36]

and YOLOv4 [4] have improved upon the original YOLO’s limitations. YOLOv3, for in-

stance, uses three different scales to detect small to large objects more effectively, and

YOLOv4 further optimizes speed and accuracy, making it well-suited for real-time appli-

cations. YOLOv7 [3] represents another significant advancement, with refined architecture

for better detection of small and challenging objects and improved efficiency for deployment

on diverse hardware. The most recent iteration, YOLOv8 [37], builds upon these advance-

ments, further pushing the boundaries of detection accuracy.

2.1.2.2 Transformer-based detectors

Carion et al.’s DETR [38] laid the groundwork for using transformers in object detection. As

a pioneering model, DETR capitalized on the transformer encoder-decoder framework to rev-

olutionize the detection process. This model’s most notable contribution was its streamlined

approach, eliminating the need for traditional components like non-maximum suppression.

By doing so, DETR showcased the innate capability of transformers to directly predict object

locations and classes, setting a new standard in object detection.

Progressing from this foundation, the Deformable DETR [39] represented a significant

advancement, directly addressing some of DETR’s limitations. This model introduced de-

formable attention modules, enhancing the efficiency and accuracy of the detection pro-

cess. The key innovation here was the model’s ability to focus on specific sampling points,

thereby improving convergence speed. This refinement indicated a growing sophistication in

transformer-based object detection as the models became more adept at handling intricate

detection tasks.

The evolution reached a new height with the introduction of DINO [2]. This model

marked a substantial leap in the field, particularly in high-resolution object detection.

DINO’s dual-branch transformer architecture, which integrated both global and local fea-

tures, was a testament to the versatility and adaptability of transformers. This model

excelled in detecting objects of varying sizes, with particular strength in identifying smaller
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objects. Such capabilities underscored the potential of transformers to manage complex

detection scenarios effectively.

2.1.3 Object tracking

The object tracking task refers to locating and following a specific object or multiple objects

within a sequence of frames in a video or a sequence of images. This task has seen significant

advancements in recent years with the introduction of several novel approaches.

2.1.3.1 CNN-based trackers

The shift toward end-to-end trainable computer vision systems presented a challenge in vi-

sual tracking, which requires real-time learning of a target-specific appearance model during

inference. This challenge led to the development of Siamese network trackers [40, 41]. How-

ever, these trackers predict a target feature template while neglecting background appearance

details, which leads to limited target-background distinction.

Bhat et al. [42] introduced an innovative end-to-end tracking architecture that utilizes

target and background appearance information to enhance model prediction accuracy. Their

approach, based on a discriminative learning loss, enables the rapid generation of a robust

model in just a few iterations, and it even learns crucial aspects of the discriminative loss

function.

Anchor-based Siamese trackers are hindered by lagging tracking robustness. The lim-

itation arises from the regression network in these methods, which are trained solely on

positive anchor boxes, making it challenging to refine anchors with minimal overlap with

target objects. In response, Zhang et al. [43] introduce an innovative network that predicts

target object positions and scales directly without relying on reference anchor boxes. By

thoroughly training each pixel within ground truth boxes, their tracker corrects imprecise

predictions during inference. Additionally, they integrate a feature alignment module to

derive object-aware features from predicted bounding boxes, enhancing the classification of

both target objects and background.

2.1.3.2 Transformer-based trackers

Ye et al. introduced OSTrack [44], which made a significant stride by integrating the Masked

Autoencoder (MAE) pre-trained ViT backbone into object tracking. OSTrack strategically

employed early candidate elimination to discard extraneous background information, thereby

amplifying tracking speed and safeguarding the attention module against contamination

from background token interactions. However, Wu et al. highlighted a residual challenge
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in utilizing MAE pre-training, revealing its limitations in ensuring robustness for frame-by-

frame matching tasks between images. In response, they proposed DropTrack [45], a variant

of ViT that dynamically applies spatial-attention dropout during MAE pre-training. This

adaptation aimed to disrupt within-frame spatial cues’ co-adaptation and bolster between-

frame attention, effectively capturing temporal cues.

Chen et al. introduced SeqTrack [46], treating tracking as a sequence learning prob-

lem. SeqTrack innovatively utilized Start and End tokens reminiscent of language models,

seamlessly integrating dynamic template update and window penalty algorithms into its

framework without imposing additional hyperparameters on the model. In a parallel effort,

Wei et al. presented ARTrack [47], which reimagined object tracking as an auto-regressive co-

ordinate sequence interpretation. Using ViT as the pre-trained backbone, ARTrack adopted

a unified encoder-decoder structure to directly forecast the target object’s bounding box.

This unique architecture omitted a prediction head, resulting in a simplified loss function.

2.2 Defense techniques against distortions

As shown in Figure 2.1, we group related defence works into AIS methods [48–50], data

augmentation methods [51–64] and enhancer-based defences [11,65–75]. The main drawbacks

of these related methods are their poor performance on clean samples and generalization to

unknown distortions [13–16].

2.2.1 Artificial immune systems

One of our proposed defence methods uses Artificial Immune Systems (AIS) to generate new

samples. In this Section, we present the background of AIS and its use in image processing

and computer vision.

2.2.1.1 Background

AIS are computational systems inspired by the human immune system to solve engineering

and scientific tasks. The immune system protects the body from pathogens by recognizing

and responding to foreign antigens. The concept of AIS was first introduced in the late 1980s.

Since then, researchers have applied several developed models of AIS to various fields, such

as pattern recognition, optimization, and machine learning. Of all the models developed,

the Clonal Selection Algorithm [1], Artificial Immune Network [76], and Negative Selection

Algorithm [77] are the most researched and applied models. We present a brief overview of

these models below.
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Figure 2.1: Overview of defence methods against distortions.

Clonal Selection Algorithm (CLONALG): The Clonal Selection Algorithm (CLON-

ALG) is a well-known artificial immune system (AIS) algorithm developed by de Castro and

Von Zuben in 2000. CLONALG is inspired by the natural immune system, particularly the

generation and activities of B-cells, which are part of a class of cells called antigen-presenting

cells. These B-cells patrol the human body for pathogens when danger signals are triggered

by white blood cells.

As shown in Figure 2.2, upon encountering a pathogen, B-cells learn the pattern of the

pathogen to ascertain if it is similar to past encounters. If the binding region of a B-cell fits

the pathogen, it binds to the pathogen and presents it through a major histocompatibility

complex to be nullified by the killer T-cells (as indicated by I). If the fit is not good enough,

the B-cells mature to increase their binding affinity.

The B-cell binding process in CLONALG consists of the following steps:

1. Selection (II): A population of candidate solutions (antibodies) is generated ran-

domly. The fittest solutions (those with the highest binding affinity) are selected for

cloning.

2. Clone (III): The selected B-cells are cloned to generate a new population. The

number of clones produced depends on the fitness of the original B-cell; the more fit

the B-cell, the more it is cloned. This ensures that the system can respond robustly
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to the pathogen.

3. Mutation (IV): The cloned B-cells undergo mutation to introduce diversity into the

population. These mutations help create variations in the binding regions, some of

which may have a better fit to the pathogen. This process mimics the natural immune

response, where slight changes can improve the overall effectiveness of the B-cells.

4. Selection (V): The mutated clones are re-evaluated to determine their fitness. The

clones with the best binding affinity are selected to form the new population for the

next iteration. This step ensures that the most effective B-cells are continuously refined

and improved, leading to a stronger immune response.

Researchers have successfully applied CLONALG to prediction, optimization, and pat-

tern recognition problems in various fields. For instance, researchers have applied CLONALG

to solve pattern recognition problems in image processing in engineering [1]. In bioinformat-

ics, they have used it to solve problems in DNA sequence analysis, gene expression analysis,

and protein structure prediction [78]. Additionally, researchers have applied CLONALG in

financial optimization, such as portfolio optimization and option pricing [79, 80]. This ver-

satility makes the algorithm applicable to different tasks by simply modifying and adapting

it to the application of choice.

Artificial Immune Networks (AINs): Similar to CLONALG, are modelled off B-cells

but as a unit, [76]. These modelled cells solve many problems, including image recognition,

classification, clustering, and optimization [81, 82]. Moreover, the cells act like nodes that

interact with each other and the environment to learn and adapt to changes in the problem

domain.

AINs have two main components [76], clonal Selection and immune network components.

The clonal selection component generates a population of candidate solutions (antibodies)

and selects the fittest solutions to create a new population in the next iteration. The immune

network component represents the antibody interactions, modelled as network nodes. The

network topology and connectivity capture the diversity of the antibody population and

promote the exploration of the search space. However, one major drawback is selecting the

suitable network topology to align with the CLONALG component [76].

Negative Selection Algorithm (NSA): This is a computational algorithm that imi-

tates the process of maturing T-cells in the thymus of vertebrates [77]. First, the varying

diversity of the cells undergoes a self-non-self test before the T-cells are dispatched to dif-

ferent locations in the body. Then, T-cells that recognize self-cells are eliminated, and the
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Figure 2.2: A simplified overview of CLONALG.

remaining T-cells are deployed outside the thymus. NSA implementation consists of two pri-

mary stages: detector generation and detection. Variant versions of NSA exist for different

applications. However, they all employ a negative representation of information (i.e., output

the complementary concept of the actual target concept), use some form of detector set as
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a detection mechanism, and implement only one class classification (i.e., self or non-self).

NSA’s popularity in computer security applications is due to its ability to adapt to

changing environments and its robustness against noise and false positives. In addition, it

effectively detects a wide range of anomalies, including network attacks, system intrusions,

and software exploits [83, 84]. However, one of the key challenges in applying the NSA is

the Selection of appropriate parameters, such as the size of the self and non-self sets and the

threshold for anomaly detection [77].

2.2.1.2 AIS in computer vision

There is limited research utilizing AIS in computer vision tasks. Gabriele et al. [48] use

adaptive AIS for the early detection of breast cancer in screening-digital mammography.

Achmad et al. [49] present a way to improve the classification accuracy of Artificial Immune

Recognition System 2 (AIRS2) on the Wisconsin breast cancer dataset; the ’best’ features

are first selected using a fast correlation-based filter, then used to train AIRS2. Finally,

in [50], Bojarczuk et al. present a deep AIS to detect weld defects in petroleum pipes; their

method is a hybrid of both AIS (for classification) and deep neural networks (for feature

extraction).

2.2.2 Data augmentation

Data augmentation involves creating new training data from existing datasets by applying

transformations and modifications such as rotations, translations, flips, scaling, and colour

adjustments. This technique is essential for enhancing the diversity of the training data,

reducing the risk of overfitting, improving the model’s ability to generalize, and regularizing

model weights to improve performance [51]. The generation of new samples can occur either

during training (online) or before training (offline). Comparatively, online methods result

in longer training times and must be adjusted to be compatible with different models when

data augmentation is applied.

Various techniques have been developed to effectively utilize data augmentation, catering

to different tasks and challenges in computer vision. These techniques can be broadly clas-

sified into classical methods, advanced methods and those involving Generative Adversarial

Networks (GANs).

2.2.2.1 Classical data augmentation methods

In the image classification domain, well-known data augmentation methods include CutMix

[51], Random Erasing [52], and ISDA [53]. CutMix, proposed by Yun et al. [51], blends
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parts of training images and their corresponding labels online, causing the model to learn

local features and improve generalization. Random Erasing, introduced by Zhong et al.

[52], randomly occludes parts of the input images online, improving a model’s resilience to

background clutter and partial occlusions. ISDA, proposed by Wang et al. [53], operates in

the feature space of deep networks, adaptively learning data augmentation policies during

training, thereby enhancing feature representations and improving generalization.

For object detection, state-of-the-art data augmentation methods include Mosaic [54]

and GridMask [55]. Mosaic combines four images into a mosaic, providing diverse training

samples to improve the model’s performance. GridMask, introduced by Chen et al. [55],

overlays a grid-like mask on input images online, promoting spatial diversity and encouraging

the model to extract features effectively from various regions.

In the context of object tracking, Deng et al. [56] introduce a block-erasing data augmen-

tation strategy designed to enhance the robustness of object trackers under object occlusion.

In [57], Xu et al. propose continuous copy-paste, which fully exploits the pixel-wise an-

notations provided by multi-object tracking and segmentation datasets to actively increase

both the number of instances and the unique instance IDs in training samples without re-

quiring modifications to tracking model frameworks. Furthering this line of research, Cheng

et al. [58] present DeepMix, which utilizes embeddings from historical samples to generate

augmented embeddings online.

2.2.2.2 Advanced data augmentation methods

The SmoothMix method [59] blends two images to create a new sample online for aug-

mentation; the authors show that it makes image classification models robust to 15 image

distortions. Rusak et al. [60] propose augmenting samples distorted with Gaussian or speckle

noise offline helps make classification models robust. In [61], Von et al. propose a method to

make object detection models used in autonomous vehicles robust to heavy rain conditions;

the Det-AdvProp method [62] makes the object detection model EfficientDet [35] robust

under 15 image distortions by generating augmenting samples online by adding a weighted

signed gradient of the classification and location loss function to the original training sam-

ples. Michaelis et al. [63] provide a benchmark to measure the robustness of object detection

models (such as Mask R-CNN [31] and RetinaNet [34]) to 15 image distortions; they also

show that applying the style transfer using stylize model [85] (superpose a style of an image

on another image) offline as a data augmentation technique can improve the robustness of

the detection models above on the provided benchmark. Beghdadi et al. [64] introduce an-

other benchmark for detection models with ten image distortions, 7 of which overlap with

the set of 15 distortions in Michaeliset al.’s benchmark.
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2.2.2.3 Generative adversarial networks

Generative Adversarial Networks (GANs), introduced by Goodfellow et al. [86], consist of two

neural networks—the generator and the discriminator—trained together. The generator tries

to produce data from noise, while the discriminator aims to differentiate between accurate

and generated data. GANs have significantly advanced in learning complete data generation

models from unlabeled data, which can be used to augment labelled training sets [87].

GANs have been applied in various domains for data augmentation. In medical imaging,

where data is scarce due to privacy concerns and acquisition costs, GANs have been used to

improve model performance. Han et al. [88] demonstrated improved CNN performance for

lesion detection in medical images using GAN-generated data. Kossen et al. [89] used GANs

for cerebrovascular segmentation, showing their effectiveness in this domain.

Class imbalance in datasets poses challenges in training vision models, and GANs have

been instrumental in generating synthetic data for minority classes. Techniques like the

Synthetic Minority Over-sampling Technique (SMOTE), introduced by Chawla et al. [90],

laid the groundwork for GAN-based augmentation methods. Bekkar et al. [91] found that

achieving class balance through synthetic data can optimize classifier performance.

2.2.3 Enhancer-based defence methods

Defence methods in this group can be categorized into network-enhancer-based [11,67–69] or

image-enhancer-based [70–75]. Network-enhancer-based techniques typically require modi-

fying the architecture of the base CNN model or adding complementary blocks to it. Image-

enhancer-based methods improve or denoise corrupted images before being fed into models.

2.2.3.1 Network-enhancer-based

Models [67] and [68] rectify the batch normalization of distorted samples used to train clas-

sification models to improve their robustness on distorted samples without a significant drop

in accuracy on clean samples. The work by Borkar and Karam [11] tested the susceptibility

of image classification models (such as AlexNet) under Gaussian noise and image blur. They

rectify the susceptibility issue by finding, modifying, and retraining the most vulnerable con-

volutional filters in the models. The rest of the pre-trained filters deemed robust to distortion

are left unchanged. In [69], the authors improve the accuracy of clean and noisy samples

of compressed models by utilizing a compression-aware loss function during training that

encourages the network to learn accurate and robust features of the compression process.
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2.2.3.2 Image-enhancer-based

In [70], Dapello et al. propose VoneNets, a hybrid vision model for image classification.

This vision model class comprises VoneBlock, a more distortion-robust model inspired by

the primate primary visual cortex on the front end and a conventional neural network on the

back end. The image-enhancer-based defences RetinexFormer [71], UFormer [72], URIE [73],

OWAN [74], and DD [75] propose front-end models to enhance or denoise corrupted images

before being fed to classification or detection models. Hence, the accuracy of the vision

models on distorted images is improved.

2.3 Differences of proposed approach to related works

Our approach to defending against distortions is a data augmentation approach applied

before training (in offline mode). It does not modify models’ architecture as in network-

enhancer-based methods such as [11]. Unlike the image-enhancer-based defense methods

RetinexFormer [71], UFormer [72], URIE [73], OWAN [74], and DD [75], we do not enhance

or denoise distorted inputs.

Often, data augmentation methods struggle with a bias to augmented samples [92], which

leads to a reduction in generalization (e.g., in Random Erasing [52], Mosaic [54], and Stylize

[63]). Some methods cannot use the original labels, nor do they balance class distributions

(as in SmoothMix [59], CutMix [51], and Mosaic [54]), which leads to a reduction in overall

performance. Our approach mitigates these challenges, as explained next: Our methods

use the original image label and generate a corresponding distorted image, avoiding the

need for new labels. Moreover, our methods generate one new sample from one original

sample, avoiding the creation of new samples vulnerable to a class imbalance that occurs

when merging multiple original samples randomly.

Our methods preserve the quality of the generated sample by distorting a portion of

the original pixels instead of completely changing the style of the original image, as in

Stylize [63] and or distorting all pixels, as in Det-AdvProp [62]. Unlike in Stylize [63], our

distortion techniques seem to reduce over-fitting, which leads to consistent performance on

small and large datasets. Unlike in Stylize [63], we require no training of our methods or a

stylize dataset. We have tested our methods on four distinct object detection architectures:

DINO, which uses 5scale-R50; YOLOv7, which employs E-ELAN; YOLOv4, which utilizes

CSPDarknet; and Faster RCNN, which employs ResNet. This contrasts with Det-AdvProp

[62] that only tests on EfficientDet with EfficientNet.
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2.4 Summary

This Chapter reviewed image classification, object detection, and object tracking models.

We observed that state-of-the-art models primarily employ CNNs, though transformer-based

models show promise as viable alternatives. Additionally, we explored techniques that en-

hance model resilience against image distortions, which are relevant to the scope of this

thesis. To conclude the Chapter, we differentiated between our methods presented in the

thesis and their related techniques
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Chapter 3

Proposed methods

Our goal is to enhance the accuracy of object detection models in the presence of image

distortions. We aim to achieve this by augmenting the training data with distorted samples

while keeping the models’ architecture and inference speed unchanged. We do not simply

add noise (or distortion) to the training sample. As shown in [13, 15, 16, 93], adding noise

has two main drawbacks: poor performance on clean samples and lack of generalization

to unknown distortions. Our approach mitigates these drawbacks by how we distort, the

number of pixels we distort, and the number of distorted samples we use for augmentation.

Based on this approach, we propose two methods.

• In Section 3.1, our first method, AISbod, we generate new samples (antibodies) by

following the AIS cycle.

• In Section 3.2, our second method, GSES, generates new samples by distorting a set

of pixels through selection, estimation, and sampling.

Results show that GSES has higher accuracy improvement than AISbod. This superior

performance of GSES is due to its more diverse samples, which benefits the baseline detection

models.

3.1 AISbod: artificial immune systems for data aug-

mentation

3.1.1 Overview of proposed AISbod

In AIS, antigens are original (clean) samples; antibodies are AIS-distorted versions of the

antigens; affinity measures the similarity between an antibody and an antigen. An AIS

cycle consists of four stages: select, which selects some antigens from all the input antigens;
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clone, which makes copies of the antibodies following some conditions; mutate, which changes

(distorts) the antibodies at random locations; select, which selects antibodies from the so

far generated antibodies. In our approach, antibodies are images mutated at the pixel level;

the augmentation ratio p is the fraction of antigens selected in the first select stage, and the

affinity threshold τ determines the maximum number of pixel matches allowed between a

selected antigen and an antibody. The steps to generate the augmented (distorted) samples

are outlined in Fig. 3.1:

1. Inputs: antigens Ag∗, augmentation ratio p, and affinity threshold τ .

2. Select some antigens using the augmentation ratio p.

3. Initialize a set of antibodies Ab from the selected antigens.

4. Generate antibodies from the initialized antibodies using the AIS cycle (select, clone,

mutate, and select) for each antigen in the selected antigens.

5. Check if the antibody meets each cycle’s affinity threshold τ . If not, continue the cycle.

Our objective is to improve the accuracy of detection and classification under image

distortions by augmenting their training data with new samples (antibodies) having some

similarities to the original samples (antigens) without altering the models’ architecture, in-

ference speed, or performance under clear (original) samples. Our approach in Algorithm

1 can be divided into the following steps: data pre-processing, initialization, AIS-sample

generation, and data post-processing.

3.1.2 Data pre-processing

We pre-process the antigens Ag for augmentation using three steps: padding, selection, and

quantization. Assuming there are K∗ input antigens Ag∗ and L total number of pixels

in the antigen with the highest resolution in all 3 RGB channels. (e.g., in the training

set of PASCAL 2007 and 2012 [94], K∗ = 16, 551 RGB image samples and L = 75000 =

500 × 500 × 3). To form Ag∗, as shown in Fig. 3.2, we first unroll each input antigen and

vertically stack them together. Since each antigen may have a different resolution, we equalize

the resolution of all antigens by padding the lower-resolution antigens with zeros. This

zero-padding facilitates the implementation of parallel antibody generation. We generate

antibodies for only a fraction p of the total (input)K∗ antigens, where 0 < p f 1; augmenting

with too many antibodies (e.g., p = 0.75) tends to significantly reduce the accuracy of the

object detection models under distortion-free samples. We examined two ways to select the

K = p ·K∗ antigens Ag: randomly from Ag∗ or by the balanced representation of all classes

from the original Ag∗. As shown in Section 5.2, the two approaches are similar regarding

accuracy since the class distribution of the datasets we use (for instance, COCO) appears
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Figure 3.1: A simplified overview AISbod.

uniform, as shown in Figure 3.3. We quantize the 256 image intensities to 16 levels in each K

antigens Ag to speed up antibody generation. We show in Section 5.2 that this quantization

has a minor effect on the accuracy of our method, but it reduced the computations by 35%.

3.1.3 Initialization

We first uniformly initialized the pixels of the memory antibodies Abm and response anti-

bodies Abr from the 16 quantization values 0, 16, 32, · · · , 240 and antigens Ag. We then set

antibodies Ab as a vertical stack of Abm and Abr. The Abm is a size Jm × L matrix, with

Jm = q∗ ·K and q∗ integer. There is a q∗ antibody for a corresponding antigen in Ag. The

Abr is a Jr × L matrix, where Jr is application dependent, we set Jr = Jm. The Abm stores
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Algorithm 1: Proposed data augmentation.

Input: Ag∗ antigens (original samples), p augmentation ratio, τ affinity threshold
Output: Abm antibodies and antigens Ag∗

Data pre-processing:

1 L = Resolution of largest Ag∗;
2 Ag∗ ←− Unroll and zero-pad{all K∗ input Ag∗};
3 Ag ←− Select{K = p ·K∗ from Ag∗};
4 Ag ←− Quantize{each antigen Ag(k)};
Initialization:

5 Set:
n = 5, N = 50, α = 1, s = 10000, q∗ = 1;
{Abm, Abr} ←− Initialize{U(0, 240), Ag};
Ab←− Stack{Abm, Abr};

AIS-sample generation:

6 for each antigen Ag(k) do
7 Dkk = 0;

8 while round(Dkk

L
, 2) ̸= round(τ, 2) do

9 Abn ←− Select{n antibodies from Ab(j), j = 1 · · · J , with highest affinity
Djk};

10 AbQ ←− Clone{each antibody in Abn, Q times, as in Eq. (2)};
11 AbQ∗ ←− Mutate{each antibody in AbQ};
12 Abq∗ ←− Select{q∗ antibodies from AbQ∗ with highest affinity Dck,

c = 1 · · ·C, as in Eq. (3)};
13 Update{Abm : Abm(k)←− Abq∗};
14 Update{Abr : Abr ←− U(0, 240)};
15 Dkk = Affinity{Abm(k), Ag(k)} ;

16 end

17 end
Data post-processing:

18 Abm ←− Un-pad zeros and reshape{Abm};
19 Output ←− Shuffle{original antigens Ag∗ and antibodies Abm};

the best (highest affinity) antibody for an antigen in Ag, and the Abr serves the purpose of

initialization to help our method search a more expansive space for a better antibody (i.e.,

an antibody with higher affinity than the one saved in Abm). The Ab can be considered as

a matrix of size J ×L, where each row j is an antibody (AIS image of size L), and the total

number of antibodies, J (i.e., J = Jm + Jr) is greater than the total number of antigens K.

Since Jm = q∗ · K and we set q∗ = 1, then with Jr = 4 · Jm, we get J = 5 · K; thus,

Abm is a K-length array of antibodies. Note that we (uniform randomly) reinitialize Abr

after every iteration (line 14 Algorithm 1), but values in Abm only change when there is an

antibody with a higher affinity.
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Figure 3.2: Antigen matrix: We unroll the RGB channels of each original training image
into one vector and vertically stack the vectors. Red, Green, and Blue indicate the pixels of
RGB channels, respectively; Black are the zero padding.

Figure 3.3: Distribution of the 80 object classes in the COCO 2017 dataset.

3.1.4 AIS-sample generation

In the third step of our method (lines 7 to 15 of Algorithm 1), we generate an antibody

Ab(k) for each antigen Ag(k) if it has a particular affinity to Ag(k). We define such affinity

Dkk using a variant of the Hamming distance, as in

Dkk =
L
∑

l=1

φl;







φl = 1, if Ab(k, l) = Ag(k, l)

φl = 0, otherwise.
(1)
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Our aim is to control the number of pixels that change (mutate) during the antibody gener-

ation. We are not interested in how much these pixel values change. As a result, Eqn. 1 is

sufficient in determining the affinity between an antigen and the corresponding antibody. To

find Dkk, we compare each pixel l in Ab(k) to pixel l in Ag(k) at the exact spatial location

to check if Ab(k) matches well (high affinity) with Ag(k). Dkk is the total pixel matches

between Ab(k) and Ag(k). We aim to produce antibodies Abm(k) from input antigens Ag(k),

k = 1 · · ·K, which have affinity ratio τ (rounded to two decimals) equal to affinity thresh-

old τ ∈ [0, 1] (rounded to two decimals) for data augmentation purposes; τ = 1 means

an antibody Abm(k) is (visually) identical to its corresponding antigen Ag(k), and τ = 0

means Abm(k) is different at each pixel different and visually indistinguishable from Ag(k). τ

should be selected in a way such that the antibodies Abm(k) can capture the essential visual

features of their corresponding antigens Ag(k) while still representing a distorted version of

those antigens Ag(k).

To produce the antibodies Abm(k), we iteratively apply the AIS cycle (select, clone,

mutate, select) on a set of initialized antibodies Ab(j), j = 1 · · · J , until the stopping criteria

round(Dkk/L, 2) = round(τ, 2) is reached. Recall that J = 5 ·K and Ab consists of memory

Abm and response Abr antibodies. Our AIS cycle, as shown in Fig. 3.4, is based on the clonal

selection algorithm (CLONALG) [1]. We explain our cycle in the following and indicate

differences and similarities to [1].

For select, we, similar to [1], choose the top n antibodies Abn from Ab(j), j = 1 · · · J ,

with the highest affinity Dkk for Ag(k); thus, the number of antibodies is reduced from J to

n; we set n = 5.

We then clone, like [1], each of these Abn antibodies by ranking them based on their

affinity Dnk for the antigen Ag(k). Next, we clone the ranked antibodies based on their

affinity rank i: an Abi is cloned Q times, where

Q = round(α ·N/i), (2)

N is the cloning constant, and α is the multiplying factor. For example, with N = 50,

α = 1, Ab1 is cloned 50 times, Ab2 is cloned 25 times, and so forth; the results are AbQ

cloned antibodies from the Abn. That is, the number of antibodies for Ag(k) increase from

n to

C =
n
∑

i=1

round(α ·N/i). (3)

The next stage is mutate; different to [1], we allow all cloned antibodies AbQ to mature

to become AbQ∗ by randomly selecting s pixels in each cloned antibody in AbQ and replacing

the pixel values with values randomly selected uniformly from the 16 quantization values.
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Figure 3.4: AIS cycle: Each unique colour represents a unique antibody, and we use the same
colour to depict clones (copies) of the antibody. If a pixel has been mutated (changed), we
represent it with an ’×’ in the antibody.

Unlike in [1], which uses different s for the cloned antibodies, we apply the same s to all

the cloned antibodies (since they are all visually similar); we set s = 10000. (Note that the

number of antibodies in AbQ∗ for Ag(k) remains equal to C.)

We finally select, similar to [1], q∗ antibody from AbQ∗ with the highest affinity Dck

and save in Abm(k) for the antigen Ag(k); we set q∗ = 1; thus, each antigen Ag(k) receive

one antibody from AbQ∗, that is then saved as an element k in Abm(k), which means that

Abm has one antibody only. Different from [1], we randomly reinitialize Abr from the 16

quantization levels. We define the affinity between Abm(k) and Ag(k) as Dkk of Eq.1 to

check for stopping criteria, that is, if the affinity ratio (Dkk/L) is equal to τ . Our method

converges because of the number of mutation points s, which is set to less than 2% of L, and

we always round off the affinity ratio to two decimal places, as shown in line 8 in Algorithm

1; this ensures the affinity of the antibody does not pass the affinity threshold τ selected

after each cycle. The number of cycles to generate an antibody depends on the selected τ
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and the randomness of our method. It takes an average of 314 cycles to generate antibodies

at τ = 0.75 on the PASCAL and COCO datasets.

3.1.5 Data post-processing

Once the cycle (select, clone, mutate, select) ends for all Ag(k), we copy the K memory

antibodies Abm from Ab, but the additional length due to padding the antigens Ag∗ with

zeros are excluded. We finally add the Abm to the original antigens Ag∗ and shuffle them

(randomly mix) to provide a well-mixed (i.e., antigens and antibodies) training set.

Fig. 3.5 shows samples of antibodies Abm generated by our method, where one (row 1,

column 1) is displayed at different τ in the first two rows.

At multiple stages, our approach ensures that an object detection model (or image classi-

fication) is implicitly trained with diverse features, including distortions, even if not specific,

such as noise, blur, artefacts, and weather conditions. First, the select, clone and mutate

stages (lines 9 to 11 of Algorithm 1) ensure that distortions of pixels are done randomly.

Second, the specified affinity τ ensures maintaining a balance between antigens (”clean pix-

els”) and antibodies (”distorted pixels”); for example, if τ = 0.75, then 75% of the pixels in

an antibody are clean (unchanged) pixels; τ enhances the model’s capacity to learn robust

features. Lastly, regulated by p, we ensure a model is not overloaded with the antibodies.

This precaution helps prevent the model from over-fitting the antibodies.

3.2 GSES: defending object detection models against

image distortions

3.2.1 Background of KDE

Kernel density estimation (KDE) is a prominent method for estimating the probability den-

sity function of data points [95–97]. Illustrated in Fig. 3.6, density estimation involves

the reconstruction of an approximate probability density function ΨS(x) that underlies a

given dataset x1, x2, ..., xS by employing S kernels, denoted as Φ1(·),Φ2(·), ...,ΦS(·). The

probability density function is defined as

ΨS(x) =
1

S.w

S
∑

s=1

Φs(
x− xs

w
), (4)

with the kernels centred at each data point and the width of the kernels controlled with w.
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Figure 3.5: Examples of generated antibodies, Abm at different τ . ”Distorted” pixels result
mainly from random mutations in our approach.

The density estimation accuracy hinges on the number of data points and the selection

kernel shown in Fig. 3.7. Generally, a more significant number of data points leads to a

more precise approximation, while the impact of the specific kernel type is relatively minor.

For the kernels Φ(·), irrespective of the type (e.g., Gaussian, triangular, cosine, or uniform),

Φ(·) must be symmetric,
∫

Φ(x)dx = 1, and limx→±∞ Φ(x) = 0 [95,96].

3.2.2 Overview of proposed GSES

Fig. 3.8 overviews our proposed method to generate new samples resembling the original

training images. We randomly select a pixel location for a given image x and change that
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Figure 3.6: Approximation of the probability density function of x1, x2, ..., xS using KDE.

pixel based on a pixel distribution obtained from multiple pixel distortions using kernel

density estimation. We repeat this not for all input image pixels but for a selected set. Em-

ploying this approach, the generated new sample possesses distorted pixels while maintaining

a certain degree of similarity to the clean image x. This degree of similarity is essential to

maintaining a balance between performance under distorted and clean images.

To ensure that our method maintains a balance between object detection performance un-

der clean and distorted images, we generate new samples for a subset of the original training

images and maintain a certain level of similarity between these new and their corresponding

original images. Overall, our data augmentation approach can be divided into three main

steps as detailed in the following three subsections and Algorithm 2:

• Data pre-processing, where we randomly select a portion of the original images for

generating new samples.

• New sample generation, where we generate the new samples by creating distorted

versions of the selected original images while maintaining the desired level of similarity.

• Data augmentation, where we use these generated new samples to augment the original

images for training.

The effectiveness of our method comes from two main aspects:

1. randomly, at the pixel level, balancing the similarity of the new and the original samples

(i.e., using τ in Algorithm 2).

2. diversity (that is, we use D = 15 distortions for pixel distribution estimation and pixel

sampling in Algorithm 2).
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Figure 3.7: Visualizing KDE Estimation (Ψs) of a Normal Distribution: Row 1 depicts S
samples drawn from a Normal distribution; Row 2 demonstrates Ψs using various sample
sizes (S) employing a Gaussian kernel; Row 3 showcases Ψs across different bandwidths (w);
Row 4 exhibits Ψs computed with 4 kernel functions.

A detection model trained with our data augmentation learns more robust features from

clean and diversely distorted pixels. We show in Section 4 how decreasing similarity (larger

τ) causes accuracy loss under clean samples and does not significantly improve the accuracy

under distortion. We also show that pixel diversity helps the detection model generalize
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Figure 3.8: A simplified overview of GSES.

to unknown distortions and that decreasing diversity decreases detection accuracy under

distortions.

3.2.3 Data pre-processing

Let the training dataset {xi, yi}Mi=1 consist of M training images, where each input image

xi is associated with a corresponding label yi. We collectively denote these images as Ag.

We aim to create distorted versions of these images xi, collectively denoted as Ab, to train

object detection models and enhance their accuracy under various image distortions.

In the data pre-processing step, as outlined in Algorithm 2 lines 1 to 6, we randomly

select N from the input M images {xi, yi}Mi=1 to get {xi, yi}Ni=1 Ab, where N=p · M and

0 < p f 1 is an augmentation ratio p, a hyper-parameter of our method (see Algorithm 2

input). Before this random selection, it is always important to check the class distribution

of the training images Ag. When dealing with a skewed class distribution, one should select

images class-awarely to prevent class imbalance in the final training set. We select d different

distortion types to consider various distortions and divide these Ab into D groups Abd. Each

Abd for a distortion type d contains T = N/D images (see Algorithm 2 line 6). Given d = 1

to D, when d = 1, i is from 1 to T , when d = 2, i is from T + 1 to 2T and so on. And since

the datasets we use (PASCAL [94], and COCO [98]) have uniformly distributed classes, we

can divide randomly.
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Algorithm 2: Proposed new sample generation by distribution estimation and
sampling.

Input: Original images Ag = {xi, yi}Mi=1, D distortions types, augmentation ratio p,
affinity threshold τ

Output: new samples Ab
Data pre-processing:

1 Number of Ab: N = p ·M ;
2 Number of Abd: T = N/D ;
New sample generation:

3 Ab←− Select N images randomly from Ag ;
4 for distortion d = 1 to D do
5 Ab←− Randomly shuffle Ab;
6 Select T images from Ab to get Abd = {x

i, yi}d·Ti=((d−1)·T )+1 ;

7 for each image xi ∈ Abd do
8 {x̃i}

Z ←− Mutate: generate Z distorted versions of xi;
9 K ←− Select a fraction 1− τ of pixels from xi, uniformly at random ;

10 for each pixel k in K do

11 X̃ ←− Copy the distorted pixels at position k from all images in {x̃i}
Z ;

12 EX̃ ←− Estimate the distribution of X̃ using KDE ;
13 x̃new ←− Sample one pixel uniformly at random from pixel distribution

EX̃ ;
14 xi ←− Mutate xi by replacing the value at k with x̃new ;

15 end

16 end

17 end
Data augmentation:

18 Output ←− Shuffle{original images Ag and new samples Ab};

3.2.4 New sample generation

This Section describes how new samples are generated in Algorithm 2, which selects an image,

estimates its distribution, and mutates an image. We aim to mutate (change) selected pixels

of an image xi with the desired distortion. We perform the image mutation using two steps:

1. distortion of the original images using image processing tasks taking distortion D into

account.

2. mutation (changing) of selected pixels by sampling from the distorted pixel distribution.

In the first mutation step, given an image xi and a distortion typeD (e.g., Gaussian noise,

jpeg compression, and snow), we generate S distorted images {x̃i}
S using image processing

tasks filtering, clipping, scaling, and shuffling taking D into account. The image processing

tasks cause all pixels to be mutated in the distorted image x̃i, resulting in not only distortion
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D but also other changes (see [63] for details). Note that for each of the input T images

selected for a distorted type (see Algorithm 2 line 6), we generate S distorted images, where

S = 100 (see Algorithm 2 line 8); higher S unnecessarily increases computations.

In the second mutation step, we focus on how many pixels are changed and not how

much the pixels are changed. In each image xi, we mutate only a fraction τ of its pixels to

keep a level of similarity with its clean version. We uniformly select K pixels (see Algorithm

2 line 9), where K = τ · pixels{xi} of the pixels we want to mutate from xi uniformly.

Our method requires the hyper-parameter τ , while the distortion types D are fixed to 15.

For example, if τ = 0.75, 25% of the pixels of xi are selected for mutation by estimating and

sampling from the distortion type under consideration. In other words, 75% of the pixels

remain unchanged. We consider D = 15 distortion types, i.e., Gaussian noise, impulse noise,

shot noise, jpeg compression, pixelated, elastic transform, motion blur, glass blur, zoom blur,

defocus blur, contrast, snow, fog, frost, and brightness. τ controls how many pixels are left

unchanged (clean) and how many are mutated. It compromises clean and distorted pixels,

improving object detection under distorted images without deterioration on clean photos.

During training, the object detection model learns a mixture of ”distorted” and ”clean”

features.

We need to estimate distortion distributions to mutate pixels in xi effectively. We can

achieve this in two main ways, namely parametric and non-parametric approaches. We opt

for the standard non-parametric approach of kernel density estimation (KDE) because it

makes no assumptions about the distributions of the distortion, allowing us to apply it to

different distortion types. KDE has been adapted for various applications in computer vision,

such as for spatio-temporal background modelling [99].

For KDE, for a selected pixel location k in xi, we form the distorted vector X̃. Recall x̃ is

a distorted version xi and there are S such images for each xi; we form X̃ = [x̃i
1, x̃i

2, ..., x̃i
S]¦

for pixel location k. We use Gaussian kernels in KDE to estimate the distribution X̃. More

specifically, for each pixel location, X̃ is expressed as a linear combination of equal-width

Gaussians centred around each point X̃, where the width (or standard deviation) of the

Gaussians is a hyper-parameter. As KDE is a general non-parametric method, we may utilize

different kernels, including uniform or triangular kernels. We limit ourselves to the Gaussian

kernel because this fits a mixture of Gaussians (a universal density approximator [100]) to

the pixel distribution. Once the estimation of X̃ is obtained and denoted as EX̃ , we sample

one pixel value from EX̃ to get x̃new and use x̃new to mutate xi by replacing pixel value of xi

at index k. For example, in Figure 3.9, we show new samples generated by mutating pixels

with new pixel values sampled from an estimated distribution of Gaussian noise (row 1),

motion blur (row 2), jpeg compression (row 3), and snow (row 4).
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Figure 3.9: Examples of generated new samples by GSES. The method estimates and samples
from the distribution of Gaussian noise (row 1), motion blur (row 2), jpeg compression (row
3), and snow (row 4).

36



3.2.5 Data augmentation

In the data augmentation step, we augment the new samples Ab to the original training

images Ag to train object detection models. Before the training, we shuffle the Ab and Ag

to prevent bias to either of them.

3.3 Summary

This thesis Chapter explored two novel data augmentation methods, AISbod and GSES,

specifically designed to enhance the robustness of object detection models against image

distortions. The methods aimed to fortify these models against distortions without deterio-

rating their accuracy under clean images. Central to the efficacy of both AISbod and GSES

is their operation at the pixel level, which allowed for meticulous manipulation and enhance-

ment of the original samples. AISbod distorted the original training samples by following

the AIS cycle involving sequential selection, cloning, mutation, and selection steps. On the

other hand, GSES distorted pixels within the original samples by replacing their values with

sampled values obtained from an estimated distribution. Crucially, both AISbod and GSES

continued their distortion until a predefined similarity threshold with the original sample

was achieved.

In Chapter 4, we present simulation results, and in Chapter 5, we analyze why our

methods are effective by examining the inner workings of the methods.
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Chapter 4

Experimental Results

In the result tables, the best results are in red, and the second best in blue. The +() indicates

gain, the difference between the baseline model without and with a defence method.

4.1 Datasets and evaluation metrics

• COCO [98]: The COCO dataset is renowned for its emphasis on realistic instances of

objects within their natural settings, advancing object detection research. It encom-

passes 80 object classes annotated across approximately 2.5 million instances within

328k images.

• PASCAL [94]: Initially organized as an object detection competition from 2005 to

2012, VOC provided updated datasets annually. It consists of over 20, 000 images

across 20 object classes, each annotated with object bounding boxes. While the com-

petition concluded in 2012, researchers continue to rely on PASCAL’s comprehensive

annotations, making it a pivotal benchmark for evaluating object detection algorithms.

Most researchers use Mean Average Precision (mAP ) to capture the accuracy of object

detection models in classifying and localizing detected objects. It is defined as

mAP =
1

Nc

Nc
∑

c=1

APc, (5)

where Nc is the total number of object classes, and APc is the average precision per object

class obtained from the area under the Precision−Recall curve of the detection model for

a given intersection over union (IOU). Precision of the model is calculated as

Precision =
True Positives

True Positives + False Positives
. (6)
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Recall is defined as

Recall =
True Positives

True Positives + False Negatives
. (7)

IOU computed as

IOU =
Bground ∩ Bpredicted

Bground ∪ Bpredicted
. (8)

Under mAP , a True Positive is the number of correct detections with IOU g a specified

threshold; False Positive is the number of wrong detections with IOU < a specified threshold,

and False Negative is the number of instances when a ground truth is not detected. Bground

and Bpredicted are the ground truth and predicted bounding boxes respectively. We follow

standard practice in evaluating the PASCAL dataset [98] and use IOU = 0.5 for all reported

mAP s. For COCO, unless otherwise stated, the mAP is the average for 10 IOU thresholds

(IOU = 0.50 : 0.05 : 0.95).

We measure accuracy under corruption using the “mean performance under corruption”

(mPC) defined [63] as

mPC =
1

Na

Na
∑

a=1

1

Nb

Nb
∑

b=1

mAPa,b, (9)

whereNa is the total number of corruptions (a), Nb is the severity (b) level for each corruption

type, and mAPa,b is the mAP for a corruption at a specific severity. We also use ”relative

performance under corruption” (rPC) which is computed [63] as

rPC =
mPC

mAPorg

, (10)

where mAPorg is the mAP under original samples.

4.2 Experimental Setup

The hyper-parameters of our approach are p, the augmentation ratio, and τ , the affinity

threshold. For all object detection models, τ = 0.75 for both GSES and AISbod. Only p

was different for both methods: p = 0.50 for GSES and p = 0.25 for AISbod as detailed in

Section 5.1.

To evaluate our approach, we use 15 image distortions: Gaussian noise, impulse noise,

shot noise, jpeg compression, pixelated, elastic transform, motion blur, glass blur, zoom blur,

defocus blur, contrast, snow, fog, frost, and brightness, each having five levels of severity

(level 5 is highest); the details on the distortions levels are available at https://github.com/

bethgelab/imagecorruptions/blob/master/imagecorruptions/corruptions.py. These
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15 distortions can be categorized into four types: noise, blur, artefacts, and weather condi-

tions.

To validate our proposed methods, we must evaluate them on both small and large

datasets. We use the PASCAL 2007 and 2012 datasets for the small dataset, which com-

prises 16,551 training images, 4,952 validation images, and 20 class categories. We use the

COCO 2017 dataset for the large dataset, with approximately 118,000 training images, 5,000

validation images, and 80 class categories. Our simulations use the same ground truth label

of an antigen (original sample) for the corresponding generated sample.

We select the object detection models DINO (4Scale, one-stage detector), YOLOv7

(E-ELAN, one-stage detector), YOLOv4 (CSPDarknet-53, one-stage detector), and Faster

RCNN (ResNet-101, two-stage detector). These selected object detection models are the

fastest in their respective series. DINO inherently incorporate random crop and scale aug-

mentation, YOLOv7 applies Mosaic [54] for data augmentation, YOLOv4 uses CutMix [51]

augmentation, and Faster RCNN uses left-right flipping augmentation. We use the codes of

these baseline models as provided by their authors and their data augmentation methods at

training. We consider two modes of training: with and without our augmentation. As in

the detection models’ original works, the models are pre-trained on ImageNet. The trained

models (for each instance) are then validated on the original validation samples and their

distorted versions.

4.3 Results

When we started our investigation, we used the then-top models YOLOv4 and Faster RCNN

on the small dataset PASCAL. We present their preliminary results in Section 4.3.1. In

Section 4.3.2, we present results for the more recent top models DINO and YOLOv7 on the

large dataset COCO. The remaining results Sections discuss how our approach generalizes

to unknown distortions, image classification, object tracking, and cross-domains.

4.3.1 Preliminary results with PASCAL dataset

For the comparison of distortion defence methods, we compare our methods, AISbod and

GSES, with the data augmentation methods, Stylize [63] and SmoothMix (SMix) [59]. With

image enhancement methods RetinexFormer [71], UFormer [72], URIE [73], OWAN [74], and

DeepN [75]. (We do not compare to Det-AdvProb [62] and [65] because the code for training

is not publicly available). Table 4.1 for the PASCAL dataset shows that our methods balance

performance under clean and distorted images among all related works. Among the data
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augmentation methods, GSES outperforms (+9.54% and +5.77%) the second-best method,

Stylize (+7.96% and 5.57%) in both YOLOv4 and Faster RCNN under distorted images,

respectively. Under clean images, our methods do not result in any deterioration, which is

significant in data augmentation methods [13]. For the image enhancers, as demonstrated

in Table 4.1, only UFormer and URIE showed improvement under distortions, while OWAN

failed to provide any improvement. The OWAN model did not undergo training on the 15

distortions evaluated, unlike the URIE model. DeepN only improved (4.96%) under noise

(Gaussian, impulse, and shot) but resulted in significant deterioration in other distortion,

hence overall negative (-10.47%) impact on accuracy.

Table 4.1: PASCAL validation set for YOLOv4 and Faster RCNN: Comparison of our meth-
ods with image distortion defence and image enhancer methods.

Model mAPorg mPC rPC

YOLOv4 (as-is) 83.31 52.48 0.6299
+ GSES (Our) 83.32 (+0.01) 62.02 (+9.54) 0.7444
+ AISbod (Our) 83.50 (+0.19) 58.87 (+6.40) 0.7067
+ Stylize 83.90 (+0.59) 60.44 (+7.96) 0.7254
+ SMix 83.65 (+0.34) 53.04 (+0.56) 0.6367
+ RetinexFormer - 37.84 (-14.64) 0.4542
+ UFormer - 54.24 (+1.76) 0.6511
+ URIE - 58.05 (+5.57) 0.6968
+ DeepN - 41.45 (-11.02) 0.4976
+ OWAN - 40.10 (-12.38) 0.4813

Faster RCNN (as-is) 79.25 54.63 0.6893
+ GSES (Our) 79.30 (+0.05) 60.40 (+5.77) 0.7621
+ AISbod (Our) 79.84 (+0.59) 58.26 (+3.63) 0.7351
+ Stylize 78.52 (-0.73) 60.20 (+5.57) 0.7596
+ SMix 79.65 (+0.40) 54.82 (+0.20) 0.6918
+ RetinexFormer - 52.10 (-2.53) 0.6574
+ UFormer - 55.35 (+0.72) 0.6984
+ URIE - 60.08 (+5.45) 0.7581
+ DeepN - 44.72 (-9.91) 0.5643
+ OWAN - 41.72 (-12.91) 0.5264

We evaluate the performance of our method against conventional data augmentation

methods: MixUp [101], CutMix [51], AugMix [102], RandE [52], and Mosaic [54] using

YOLOv4 under the 15 distortions on the PASCAL validation dataset. As shown in Table 4.2,

while all methods improve accuracy (mAPorg) under clean images, our methods significantly

outperform these conventional augmentation methods under the 15 distortions.

4.3.2 Main results with COCO dataset

Under the COCO validation set, as shown in Table 4.3, we use recent top baseline detectors

DINO and YOLOv7. The first observation from the Table is that our defence methods,

GSES and AISbod, are very beneficial to the state-of-the-art DINO: Under clean (original)

samples, when we add our GSES and AISbod to DINO, it mAPorg jumps by a remarkable
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Table 4.2: YOLOv4 and PASCAL validation set: Comparison of our method with conven-
tional data augmentation methods. YOLOv4* is YOLOv4 without its baseline augmentation
CutMix.

Model mAPorg mPC rPC

YOLOv4* 82.77 50.45 0.6095
+ GSES (Our) 83.22 (+0.45) 60.82 (+10.37) 0.7348
+ AISbod (Our) 83.16 (+0.39) 58.07 (+7.62) 0.7016
+ MixUp 82.90 (+0.13) 50.76 (+0.31) 0.6133
+ CutMix 83.31 (+0.54) 52.48 (+2.03) 0.6340
+ AugMix 81.27 (-1.50) 51.55 (+1.10) 0.6228
+ RandE 83.43 (+0.66) 49.91 (-0.54) 0.6030
+ Mosaic 83.61 (+0.84) 51.05 (+0.60) 0.6168

4.50% and 4.00%, respectively. Under distortions (mPC), with GSES and AISbod, DINO

improves by a significant 8.40% and 6.50%, respectively. YOLOv7 also improves when GSES

AISbod is used to defend against distortions by 4.43% and 3.68%, respectively. The second

observation is that compared to related defence methods, our GSES and AISbod overall

better improve the accuracy of the baselines. Specifically, our methods perform better than

Stylize for clean and distorted samples. UFormer and URIE also improve the models under

distorted images but to a lesser extent than our methods.

Table 4.3: COCO validation set: Comparison of our methods with Stylize, UFormer, and
URIE.

Model mAPorg mPC rPC

DINO (as-is) 43.40 22.40 0.5161
+ GSES (our) 47.90 (+4.50) 30.80 (+8.40) 0.7097
+ AISbod (our) 47.40 (+4.00) 28.90 (+6.50) 0.6659
+ Stylize 41.80 (-1.60) 26.30 (+3.90) 0.6060
+ UFormer - 22.60 (+0.20) 0.5207
+ URIE - 23.50 (+1.10) 0.5392

YOLOv7 (as-is) 43.10 22.32 0.5179
+ GSES (Our) 45.20 (+2.10) 26.75 (+4.43) 0.6206
+ AISbod (Our) 44.64 (+1.54) 26.00 (+3.68) 0.6032
+ Stylize 41.45 (-1.65) 25.40 (+3.06) 0.5893
+ UFormer - 22.40 (+0.08) 0.5197
+ URIE - 24.35 (+2.03) 0.5650

For the COCO test set, we evaluate the performance of our method, Stylize and URIE,

using DINO and YOLOv7. Because of the limitations placed on submitting results to the

COCO server, we evaluate under four distortions with severity level 3, one from each type

of distortion, i.e., noise, blur, artefacts, and weather conditions. We thus use impulse noise,

motion blur, jpeg compression, and snow because of their significant impact on DINO and

YOLOv7 for each distortion type, respectively. As shown in Table 4.4, GSES (+8.35%,

+5.50) and AISbod (+6.23%, +4.35%) are superior to URIE (+4.16%, +3.10%) and Stylize

(+3.20%, +2.50%). Combining our methods with URIE further improved DINO (+10.35%,

+7.50%) and YOLOv7 (+8.15%, +6.40%) under distortion.
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Table 4.4: COCO test set: Comparison of our methods with Stylize and URIE. Here, we
used impulse noise, zoom blur, jpeg compression, and snow, each severity level 3.

Model mAPorg mPC rPC

DINO (as-is) 43.50 20.35 0.4678
+ GSES (our) 47.80 (+4.30) 28.70 (+8.35) 0.6598
+ AISbod (our) 47.30 (+3.80) 26.58 (+6.23) 0.611
+ Stylize 38.20 (-5.30) 23.55 (+3.20) 0.5414
+ URIE - 24.51 (+4.16) 0.5634

+ GSES (our) + URIE 47.80 (+4.30) 30.70 (+10.35) 0.7057
+ AISbod (our) + URIE 47.30 (+3.80) 28.88 (+8.53) 0.6639

YOLOv7 (as-is) 43.00 20.10 0.4674
+ GSES (Our) 44.25 (+1.25) 25.60 (+5.50) 0.5953
+ AISbod (our) 44.10 (+1.10) 24.45 (+4.35) 0.5686
+ Stylize 40.50 (-2.50) 22.60 (+2.50) 0.5256
+ URIE - 23.20 (+3.10) 0.5395

+ GSES (our) + URIE 44.25 (+1.25) 27.60 (+7.50) 0.6419
+ AISbod (our) + URIE 44.10 (+1.10) 26.50 (+6.40) 0.6163

Our results in Table 4.3 and 4.4 show that GSES improves the accuracy of both detec-

tion models better than AISbod, but DINO benefits more. For example, under the COCO

test set, GSES is better by +2.12% and +1.15% under distortions for DINO and YOLOv7,

respectively. This outcome indicates that GSES is more effective in handling various distor-

tions, making it a more robust solution than AISbod. This robustness could be attributed to

more diversification in the augmented samples generated by GSES. Recall that in AISbod,

we distorted the augmented samples by randomly replacing pixels from a sampled pool of

values. In contrast, in GSES, we distorted the samples by selecting pixels from the original

samples, estimating the pixel distribution from multiple distorted versions of the original

samples via kernel density estimation and then replacing the selected pixels with new values

sampled from the estimated distribution.

An interesting question arises from our above results: how do classical data augmentation

methods affect recent baseline models DINO and YOLOv7, and how do they compare to

our data augmentation approach? First, recall that we use the lightweight versions of these

models (DINO 4scale, 12 epochs and YOLOv7-L, 300 epochs). DINO’s code applies random

crop and scale augmentation for data augmentation. YOLOv7 uses the well-known data

augmentation method Mosaic [54]. To effectively compare our approach with Mosaic, we

present results for the baseline of YOLOv7 with and without Mosaic alongside our AISbod

augmentation. As shown in Table 4.5, compared to Mosaic, our GSES and AISbod signifi-

cantly improve DINO both under clean sample (by 4.50% and 4.00%) and under distortion

(by 8.40% and 6.50%). For YOLOv7 without its augmentation (Mosaic), our GSES and

AISbod improve it under clean samples (by 4.40% and 4.33%) and distortion (by 5.10% and

4.22%) well outperforming Mosaic. We see that at the baseline, DINO and YOLOv7 (each

with its data augmentation) have comparable accuracy under clean (43.40% versus 43.10%)
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and distortions (22.40% versus 22.32%). Additionally, combining Mosaic with our meth-

ods enhances results. For DINO, Mosaic with GSES increases performance by 5.20% under

clean conditions and 8.80% under distortion, while Mosaic with AISbod shows a 4.90% and

6.55% improvement. For YOLOv7, Mosaic with GSES improves by 5.10% under clean and

5.45% under distortion, and Mosaic with AISbod by 4.54% and 4.70%, respectively. Overall,

the results in Table 4.5 indicate that our data augmentation techniques have significantly

improved object detection models’ accuracy under distorted and clean samples.

Table 4.5: Effect of data augmentation on recent models DINO and YOLOv7 applied on the
COCO validation set.

Model mAPorg mPC fps (GPU)

DINO (as-is) 43.40 22.40

20

+ GSES (our) 47.90 (+4.50) 30.80 (8.40)
+ AISbod (our) 47.40 (+4.00) 28.90 (+6.50)
+ Mosaic 45.60 (+2.20) 23.20 (+0.80)

+ Mosaic + GSES (our) 48.60 (+5.20) 31.20 (+8.80)
+ Mosaic + AISbod (our) 48.30 (+4.90) 28.95 (+6.55)

YOLOv7 (without its Mosaic) 40.10 21.30
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+ GSES (our) 44.50 (4.40) 26.40 (+5.10)
+ AISbod (our) 44.43 (+4.23) 25.52(+4.22)
+ Mosaic (YOLOv7 as-is) 43.10 (+3.00) 22.32 (+1.02)

+ Mosaic + GSES (our) 45.20 (+5.10) 26.75 (+5.45)
+ Mosaic + AISbod (our) 44.64 (+4.54) 26.00 (+4.70)

At the baseline, DINO and YOLOv7 (each with their default data augmentation) exhibit

comparable accuracy under clean (43.40% vs. 43.10%) and distortion conditions (22.40%

vs. 22.32%). In terms of complexity, baseline DINO maintains a speed of 20 fps, while

YOLOv7 operates at 42 fps on an RTX 8000 48GB machine with 260GB RAM and 36 CPU

cores (Intel Xeon @ 2.30 GHz). Notably, the baseline models equipped with our AISbod at

training improve accuracy at inference without compromising the inference speeds.

To study how our augmentation approach affects training and validation, we examine

the training and validation error curves shown in Figure 4.1. The loss function of DINO is

LDINO = Lcls + λgiou · Lgiou + λbox · Lbox, (11)

and that of YOLOv7 is

LY OLOv7 = Lcls + λobj · Lobj + λbox · Lbox. (12)

In these equations, Lcls is the classification loss, Lbox is the bounding box regression loss,

Lgiou is the generalized IoU (GIoU) loss, and Lobj is the objectness loss. The terms λbox,

λgiou, and λobj are hyper-parameters that balance the contributions of their respective losses.

(See Appendix D for details).
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Figure 4.1: Graphical representation of the total training and validation loss of DINO and
YOLOv7 using the COCO dataset as given by Eqn. 11 and 12 respectively, for GSES and
AISbod.

The loss curves in Figure 4.1 confirm that the validation loss of the baseline DINO and

YOLOv7 equipped with our GSES and AISbod (green) is lower than that of the baseline

(blue). Compared to the base model (black and blue), the curves of the base model with our

method (red and green) exhibit steeper convergence trajectories. This smoother convergence

indicates reduced fluctuations in the model’s learning process, reflecting a more stable opti-

mization path. Furthermore, the narrower gap between the training and validation curves

(red versus green) suggests mitigated over-fitting on the training data, as the models with

our methods learn to generalize better to unseen validation data. The Figure also shows

that the training loss (black versus red) with our methods is comparatively higher than the

baseline; this is an expected outcome since our methods increase training samples (i.e., the

original training plus the augmented samples). Recall that the total training loss is the sum

of loss per input training sample.

4.3.3 Generalization to unknown distortions

Our GSES method and URIE have prior knowledge of the 15 image distortions used in our

experiments. This Section checks how both methods perform under unknown distortions,

such as Gaussian blur, speckle noise, spatter, and saturate. Like the 15 known distortions,
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each unknown is added to the clean image with five severity levels. As shown in Table 4.6,

for the PASCAL validation set and YOLOv4, GSES is effective and can be generalized for

unknown distortions. Also, we see GSES significantly outperforms URIE for the unknown

distortions. We provide the results for AISbod and Stylize, which do not know the distortions,

to show how they compare to the distortion-dependent methods, GSES and URIE.

Table 4.6: PASCAL validation set and YOLOv4: comparison of our methods with URIE
under unknown distortions. (Distortion-agnostic methods AISbod and Stylize are added for
comparison.)

Model mAPorg mPC rPC

YOLOv4 83.31 63.13 0.7578
+ GSES (Our) 83.32 (+0.01) 68.75 (+5.62) 0.8252
+ URIE - 53.89 (-9.24) 0.6468

+ AISbod (Our) 83.50 (+0.19) 68.00 (+4.87) 0.8162
+ Stylize 83.90 (+0.59) 67.90 (+4.77) 0.8151

4.3.4 Generalization to image classification

4.3.4.1 Image classification datasets and metrics

• CIFAR-10: This widely-used benchmark dataset focuses on image classification tasks,

comprising 60,000 32x32 colour images distributed among ten classes, with 6,000 images

per class. The dataset covers everyday objects such as aeroplanes, cars, birds, cats,

deer, dogs, frogs, horses, ships, and trucks.

• CIFAR-100: Similar to CIFAR-10, CIFAR-100 contains 100 classes with 600 images

per class, all 32x32 pixels in size. This dataset offers more diverse categories, including

superclasses (20) and subclasses (100), encompassing a wider range of objects and

concepts than CIFAR-10. It is a more challenging dataset, often used for fine-grained

classification tasks and evaluating model robustness.

• Caltech-101: This image dataset comprises 101 object classes, totalling approxi-

mately 9,000 images in varying sizes and resolutions. It covers a broad spectrum of

objects, including faces, animals, vehicles, and household items, with about 50 to 800

images per category.

The main metric for evaluating classification models is accuracy. This metric represents

correctly classified samples’ proportions. For a given model, its Accuracy is computed as

Accuracy =
Number of correctly classified objects

Total number of objects
. (13)

We highlight the versatility of our methods by extending them to image classification
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tasks. For this purpose, we employ SpinalNet [18], a recent classification model, and evalu-

ate its performance on CIFAR-10, CIFAR-100, and Caltech-101. Similar to the evaluation

conducted on the COCO dataset, we utilize distorted versions of the respective classification

datasets, incorporating impulse noise, motion blur, jpeg compression, and snow with sever-

ity level 3. The results presented in Table 4.7 demonstrate the efficacy of our approach in

enhancing the accuracy of SpinalNet across tested distortions.

Table 4.7: CIFAR-10, CIFAR-100, and Caltech-101 test set: Accuracy comparison of our
methods on SpinalNet. Here, we used severity level 3.

CIFAR-10 CIFAR-100 Caltech-101

SpinalNet + GSES (Our) + AISbod (Our) SpinalNet + GSES (Our) + AISbod (Our) SpinalNet + GSES (Our) + AISbod (Our)

clean 97.50 97.71 97.65 86.79 87.24 87.04 97.07 97.35 97.43
impulse noise 33.55 94.47 95.21 11.83 79.44 81.84 94.34 95.88 96.81
motion blur 42.44 42.44 63.08 23.75 67.09 25.88 92.39 95.51 93.53
jpeg compression 54.80 54.80 68.84 26.09 59.67 32.07 95.28 96.58 96.64
snow 79.85 78.85 81.15 48.8 74.49 48.37 89.26 92.74 89.38

Average Accuracy 52.66 67.64 77.07 27.62 70.17 47.04 92.82 95.18 94.09

4.3.5 Generalization to object tracking

4.3.5.1 Object tracking datasets and metrics

• Generic Object Tracking 10K (GOT-10k) [103]: GOT-10k is a large-scale dataset

that contains over 10,000 video sequences collected from various real-world scenes and

situations. The dataset features a diverse range of object classes, motion patterns, and

challenges, making it perfect for evaluating the performance and robustness of object-

tracking algorithms under different conditions. Each video sequence in GOT-10k in-

cludes a single annotated target object throughout the video, allowing for accurate

evaluation and benchmarking of tracking algorithms. Its test videos mainly promote

the generalization of tracking algorithms towards unseen object categories.

• TrackingNet [104]: It is a comprehensive object-tracking dataset that provides a

wide range of object appearances, scales, and motions, with over 30 object classes and

fully annotated videos. This dataset includes occlusions, scale variations, background

clutter, and illumination changes, representing real-world challenges encountered in

object-tracking scenarios. TrackingNet aims to facilitate the development and evalua-

tion of robust tracking algorithms through its diverse set of annotated video sequences.

• Large-Scale Single Object Tracking (LaSOT) [105]: LaSOT is designed explic-

itly for single object tracking tasks and comprises over 1,400 sequences with diverse

object classes, background settings, and challenges. Its long video sequences charac-

terize the dataset significantly longer than many other tracking datasets. This makes
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LaSOT particularly suitable for evaluating the long-term tracking performance of al-

gorithms. It covers various scenarios, including crowded scenes, occlusions, scale vari-

ations, and appearance changes, providing a comprehensive benchmark for assessing

the robustness and accuracy of tracking methods.

Two of the commonly used metrics in tracking are:

• Area Overlap (AO): Area Overlap measures the accuracy of object tracking by

assessing the overlap between predicted bounding boxes and ground truth bounding

boxes. It quantifies the similarity between the predicted and ground truth bounding

boxes. The resulting AO value ranges from 0 to 1, with higher values indicating better

alignment and vice versa.

• Success Rate (SR): The success rate in object tracking is the percentage of frames or

instances in a tracking sequence where the predicted bounding box of the tracked object

meets specific thresholds. Success rate metrics can vary depending on the threshold

used, such as SR0.5 and SR0.75, which measure the success rate at thresholds of 0.5

and 0.75, respectively. Higher success rate values indicate better tracking performance,

representing a higher proportion of frames where the tracked bounding box aligns well

with the ground truth bounding box.

We use the transformer-based tracker OSTrack [44] with the GOT10k [103] dataset for

object tracking. We test our method for 15 distortions using the tracker metrics AO, SR0.5,

and SR0.75 [103]. As shown in Table 4.8, our methods improve OSTrack under distortion for

all recorded metrics.

Table 4.8: GOT10k test set: AO, SR0.5, and SR0.75 comparison when using our method for
object tracking on 15 distortions with severity level 3.

AO SR0.5 SR0.75

OSTrack 63.42 72.56 55.04
+GSES (Our) 64.26 73.41 56.55
+AISbod (Our) 64.16 73.35 56.22

4.3.6 Cross-domain generalization

To show if features learnt by a model using our best method, GSES, are transferable to

unseen object detection datasets, we investigate the effect of training YOLOv4 on COCO

but validating it on PASCAL without fine-tuning. As shown in Table 4.9, our method added

to YOLOv4 still improves the accuracy under the clean samples (on average by 0.60%) and

the 15 distortions (on average by 7.94% under severity level 3). Comparing the cross-dataset

(COCO to PASCAL) and in-dataset (PASCAL to PASCAL) in Table 4.9, we observe two
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things. First, the cross-dataset approach improves YOLOv4 under distortions by +3.69 %

in terms of mPC (56.25 versus 52.56 ). This improvement could be because the model

uses features (learned from COCO) that are fundamental to detecting objects in PASCAL.

These COCO features appear to be more robust to distortions. Second, YOLOv4 performs

lower by -2.61% in terms of mAPorg (80.70) under cross-datasets compared to in-dataset

(83.31). This observation could be attributed to the difference in the resolution and object

distribution of images in both datasets.

Table 4.9: Cross-dataset: Gain introduced by YOLOv4+GSES on training on COCO and
validating on PASCAL. Here, we used severity level 3. (Results for PASCAL to PASCAL
are provided for comparison.) See Appendix A for more discussion.

YOLOv4 + GSES (Our) YOLOV4 + GSES (Our)
COCO to PASCAL COCO to PASCAL PASCAL to PASCAL PASCAL to PASCAL

clean 80.70 81.30 (+0.60) 83.31 83.50 (+0.19)

Gaussian noise 56.07 74.17 (+18.11) 52.83 72.49 (+19.66)
shot noise 58.54 75.99 (+17.45) 56.36 73.98 (+17.62)
impulse noise 50.96 80.41 (+29.45) 48.48 73.56 (+25.08)
motion blur 48.47 54.09 (+5.62) 37.72 42.62 (+4.90)
zoom blur 42.12 45.90 (+3.78) 37.72 38.23 (+0.51)
glass blur 27.24 38.37 (+11.13) 20.12 25.14 (+5.02)
defocus blur 57.69 63.86 (+6.17) 47.84 51.12 (+3.28)
contrast 77.31 78.47 (+1.16) 73.69 74.08 (+0.39)
jpeg compression 59.17 64.85 (+5.68) 55.76 69.38 (+13.62)
pixelate 32.69 37.88 (+5.20) 31.76 43.94 (+12.18)
elastic transform 50.64 56.49 (+3.22) 53.11 53.96 (0.85)
frost 64.72 67.94 (+1.19) 60.64 59.99 (-0.65)
fog 78.08 79.26 (+3.88) 75.76 76.02 (+0.26)
snow 60.40 64.28 (+1.19) 57.37 56.88 (-0.49)
brightness 79.58 80.77 (+7.94) 79.27 79.70 (+0.43)

mPC 56.25 64.18 (+7.94) 52.56 59.41 (+6.84)
rPC 0.6970 0.7953 0.6309 0.7131 (+0.0822)

We also evaluated the performance of our method trained on COCO and validated on the

autonomous driving datasets KITTI [106] and BDD100K [107] without fine-tuning. They

include images with real-world distortions. Hence, we do not add any distortions to them

during validation. In Table 4.10, we report results for the class of objects that overlap

with the COCO dataset. Our method improves mAPorg of YOLOv4 by 1.69% and 1.15%,

respectively.

4.4 Computational cost

The training and validation of DINO, YOLOv7, and YOLOv4 were done on an RTX 8000

48GB machine with 260GB RAM and 36 CPU cores (Intel Xeon @ 2.30 GHz). Faster RCNN

was carried out on a Tesla P100-PCIE 12GB GPU machine with 32GB RAM and 8 CPU

cores (Intel Silver E5-2650 v4 Broadwell @ 2.2GHz). We use the same hyper-parameters
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Table 4.10: Cross-domain: Gain introduced by YOLOv4+GSES on training on COCO and
validating on KITTI and BDD100K.

YOLOv4 + GSES (Our) YOLOv4 + GSES (Our)
COCO to KITTI COCO to KITTI COCO to BDD100K COCO to BDD100K

Person 47.62 47.90 (+0.28) 45.60 46.24 (+0.64)
bicycle 4.12 9.30 (+5.18) 34.27 34.35 (+0.08)
car 74.70 74.80 +(+0.10) 57.79 58.09 (+0.30)
bus 5.00 5.74 (+0.74) 39.62 41.63 (+2.10)
truck 18.79 20.97 (+2.18) 33.36 34.66 (+1.30)
motorbike - - 32.03 32.65 (+0.62)
traffic light - - 21.63 24.70 (+3.07)

mAPorg 30.05 31.74 (+1.69) 37.76 38.90 (+1.15)

specified by the authors of the models in all our simulations. The training times for the

models have been summarised in Table 4.11: as expected, all methods increase the training

time for the base model. However, our methods introduce the least training time. It is about

1.5 times faster than the most computationally intensive method (Stylize).

Table 4.11: Training time (in days) of models on PASCAL and COCO. (Time for COCO is
placed in ().)

Model DINO (as-is) YOLOv7 (as-is) YOLOv4 (as-is) Faster RCNN (as-is)

- - (5) (6) 4 (13) 1
+ GSES (Our) - (7) (7) 5 (16) 1
+ AISbod (Our) - (7) (7) 5 (14) 1
+ Stylize - (9) -(11) 6 (20) 2

The antibodies were generated from AISbod using the same PC used for Faster RCNN.

Table 4.12 shows the average number and time for developing an antibody on the PASCAL

and COCO datasets for a given affinity threshold offline; i.e., the antibody is generated

before the training of the models. As depicted, the average cycles and time increase with

higher τ .

Table 4.12: Cost of generating an antibody offline.

τ Avg. number of cycles Avg. time (s)

0.75 314 10
0.65 290 8
0.50 210 6

The new samples from GSES were generated on the same PC used for YOLOv4. In Ta-

ble 4.13, we present the average time required to create a new sample for the PASCAL and

COCO datasets with an affinity threshold of τ = 0.75, factoring in the estimation and sam-

pling of a distortion type. Notably, 70% of the time allocated for the new sample generation

is consumed in creating S distorted images (see Algorithm 2 line 8) during the estimation

and sampling phases (see Algorithm 2 lines 10 to 15). Regarding time consumption, blur
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distortions (defocus, glass, motion, and zoom) demand the most time, whereas artefacts

(contrast, elastic transform, pixelation, and jpeg compression) require the least.

Table 4.13: Cost of generating a new sample.

Distortion Average time (s) Distortion Average time (s)

Gaussian noise 2.96 snow 5.16
shot noise 5.16 frost 2.90

impulse noise 2.69 fog 2.82
- - brightness 7.54

defocus blur 3.10 contrast 2.56
glass blur 8.57 elastic transform 7.61

motion blur 4.61 pixelate 1.90
zoom blur 28.21 jpeg compression 1.91

4.5 Summary

This Chapter compared proposed GSES and AISbod methods against existing techniques.

These encompassed two image defence methods, three image enhancers, and five conven-

tional data augmentation methods. Across 15 distinct distortions, our methods, on average,

showed superior performance, establishing their efficacy in making models accurate against

diverse distortions. Moreover, the Chapter unveiled the versatility of our methods, demon-

strating their ability to generalize effectively to unknown distortions while exhibiting encour-

aging adaptability across varied tasks such as image classification and object tracking. The

Chapter also showed cross-domain examination, probing the adaptability and efficacy of our

methods across diverse domains. This investigation shed light on the robustness of GSES

and AISbod beyond specific datasets. Furthermore, the Chapter delved into the impact of

our methodologies on object sizes, unravelling insights into how these methods interacted

with different object scales. This scrutiny contributed to understanding the nuanced effects

of GSES and AISbod on objects of varying sizes in image processing. The Chapter ended

with examining the computational costs incurred by our methods, offering insights into their

efficiency in practical implementation. These observations highlighted an intriguing finding:

while both GSES and AISbod provided performance enhancements for all models evaluated,

GSES notably outperformed AISbod in terms of accuracy improvement and computational

efficiency.

In Chapter 5, we give more insight and analysis on why our methods are effective.
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Chapter 5

Analysis

In this Chapter, we present an analysis of the selection process for the hyper-parameters

(augmentation ratio p and affinity threshold τ) of our data augmentation methods, AISbod

and GSES in Section 5.1. Additionally, detailed insights and analyses on the effectiveness of

AISbod and GSES are provided in Sections 5.2 and 5.3, respectively.

5.1 Hyper-parameter analysis

The hyper-parameters common in our data augmentation methods AISbod and GSES are p

(augmentation ratio) and τ (the affinity threshold). They affect the accuracy of the object

detection models. The other parameters of AISbod are n (the selected antibodies Ab before

mutation), N (the total number of Ab to be cloned for a particular antigen), α (the multiply-

ing factor), s (number of points of mutations) and q∗ (the selected Ab after mutation). These

parameters mainly affect the speed (computational time) of the CLONALG cycle adopted

in AISbod and have been extensively covered in [1]. Their values are given in Algorithm 1.

Therefore, the analysis will focus on τ and p while keeping n, N , α, s, and q∗ as suggested

in [1] for AISbod. Although we presented results for different datasets, models, and dis-

tortions, to minimize bias in our findings, we performed hyper-parameter tuning using only

the PASCAL dataset under Gaussian noise only. We exclusively trained and validated on

the PASCAL 2012/2007 train and validation sets, using only YOLOv4 and Faster R-CNN

models.

The chosen approach to hyper-parameter tuning for AISbod and GSES data augmen-

tation methods, focusing on p and τ , offers several advantages over conventional methods

such as grid search [108, 109] and random search [110–112]. By leveraging domain-specific

knowledge, it targets the most impactful parameters, reducing complexity and computational

burden. Empirical observations guide optimal value selection, enhancing practical insights
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and robustness. This approach ensures reproducibility and consistency across different ob-

ject detection models while maintaining computational efficiency by fixing other parameters

based on established research.

To check the effect of p, we fix τ = 0.75 while changing p. We experimented with

three different p (0.30, 0.25, and 0.20 for AISbod, and 0.25, 0.50 and 1.00 for GSES) and

observed that our methods were not sensitive to variation of p under distortions. However,

under AISbod, for p > 0.30, the mAP of the object detection model worsens on distortion-

free samples, and p < 0.20 reduces the robustness of the model significantly. We observed

that selecting a probability of p = 0.25 for AISbod and p = 0.50 for GSES is an optimal

compromise for all the object detection models under evaluation. The GSES model benefits

from a higher p because the augmented samples it generates are more diverse compared to

those from AISbod.

We also study the effect of different values of τ for the chosen value of p (0.25 and 0.50

for AISbod and GSES, respectively). The robustness of the object detection model decreases

with decreasing τ (i.e., τ = 0.85 to 0.50). This means the difference between the generated

(antibodies) and clean samples (antigens) should not be too high. Values outside the given

range resulted in either lowering the mAP on both distortion-free or distorted samples. We,

thus, select τ = 0.75 for both methods for all object detection models under evaluation (i.e.,

DINO, YOLOv7, YOLOv4, Faster RCNN, and SSD).

5.2 Analysis of AISbod

In this Section, we provide the inner workings of the AISbod method. We show how each

component in the technique impacts the robustness of models and why AISbod helps make

models robust to distortions.

5.2.1 Class balance

Recall that ASIbod generates antibodies using only a p = 0.25 fraction of all original training

samples. Using YOLOv4 and PASCAL, we conducted two sets (A and B) of simulations

every five times. In set A, we select K antigens with attention to class balance (using

the annotation files of PASCAL), while in set B, we select K antigens at random without

attention to class balance. Table 5.1 shows that Set A (attention to class balance) performs

slightly better (higher mean and lower STD) than Set B. We then performed a hypothesis

test using the Student’s t-test and the Mann-Whitney U test [113]. The null hypothesis for

the test is that there is no statistical difference in means (for the t-test) or distributions (for
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the U test) between Set A and Set B. Using the Student’s t-test, the p-values (to validate the

hypothesis against observed data) for mAPorg and mPC were 0.0620 and 0.6045 respectively.

The Mann-Whitney U test yielded p-values of 0.0712 and 0.2654 for mAPorg and mPC,

respectively. With the p-values greater than 0.05 in both the Student’s t-test and Mann-

Whitney U test, there is not enough evidence at the 95% confidence level to reject the null

hypothesis that there is no statistical difference between sets A and B. This outcome means

that sets A and B are not statistically different. However, Set A likely performs better on

an original dataset where the class distribution is significantly skewed towards a particular

class.

Table 5.1: Mean and STD of five experiments: YOLOv4+AISbod on PASCAL with and
without attention to class balance in the generated antibodies Abm.

Set A (with attention) Set B (without attention)

mAPorg 83.48 (±0.1254) 83.28(± 0.1626)
mPC 58.76 (± 0.1628) 58.60(± 0.2122)

5.2.2 Quantization

In AISbod, the objective of the quantization (reducing the number of pixel intensities in the

generated antibodies from 256 to 16, line 4 of Algorithm 1) is to decrease computational time;

indeed, it reduces this time per antibody by 35%. We tested quantization to 8 levels, but this

produced antibodies very different from the antigens and have visually significant artefacts

compared to 16 levels, at the same affinity τ . To quantify the effect of the quantization,

we trained YOLOv4 on PASCAL using our method AISbod, but without quantization; the

mAPorg is 83.46 (compared to 83.50 with quantization), and the mPC is 58.38 (compared

to 58.87 with quantization); we conclude that quantization has little effect on the accuracy

of YOLOv4. Interestingly, when we augmented the original training samples of PASCAL

with 16-level quantized samples (without any AIS samples) and then trained YOLOv4 itself

on these augmented samples (again p = 0.25), we found that this reduced accuracy mAPorg

under clean samples by only 0.33% (that is, from 83.31 to 82.98). Accuracy mPC under dis-

tortions decreased by only 0.47% (from 52.48 to 52.01). This observation confirms the earlier

conclusion that the quantization does not significantly impact the accuracy of YOLOv4.

5.2.3 Why does AISbod make object detection more robust?

Different models’ architectures make it difficult to have a generalized approach to regu-

larizing their weights to make them robust to image distortions. Our method helps the

models regularize those weights. We show this by studying the weights of YOLOv4 and
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YOLOv4+AISbod. We extract all the network weights from the Tensorflow versions of both

models. The layers comprise the convolutional layers and some batch normalization layers.

Since YOLOv4 and YOLOv4+AISbod have the same architecture, each layer has the same

number of weights. For each layer, we query the absolute value of the weights of YOLOv4

(Org) and YOLOv4+AISbod (AISbod) and perform the following steps. We calculate the

mean and standard deviation of the absolute values of the weights in the YOLOv4 model and

compare them with those of the YOLOv4+AISbod model. To show that the difference in

mean between the weights from YOLOv4 and YOLOv4+AISbod is statistically significant,

we perform a hypothesis test between the two sets of weights in that layer. We then plot a

histogram of each layer’s absolute weights for the YOLOv4 and YOLOv4+AISbod models to

observe visual differences. (See Fig. 5.1 for one of such plots). We use the Mann-Whitney U

test since it makes no assumptions about the distribution of the absolute weights. The null

hypothesis here is that there is no statistical difference in the absolute value of weights in the

given layer between the YOLOv4 and YOLOv4+AISbod models. Using a 95% confidence

level, we list the layers where we reject the null hypothesis, i.e., where the absolute value of

weights between the YOLOv4 and YOLOv4+AISbod models is statistically different. We

find that there were nine layers where the null hypothesis was rejected. We noticed that

in all nine layers where the absolute weights are statistically different (i.e., null hypothesis

rejected), the YOLOv4+AISbod model has stochastically smaller absolute weights than the

YOLOv4 model. This outcome is achieved from another Mann-Whitney U test, where the

alternative hypothesis is that the absolute weights from the YOLOv4+AISbod are stochas-

tically smaller than from the YOLOv4 model. These smaller absolute weights suggest that

training with the augmented data helps regularise the network by making the weights smaller

(at least in the sense of the L1 since we are comparing the absolute values). The smaller

weights are a result of implicit regularization of the form: minw L(X,w) + α||w||1, which

results in the network weights becoming smaller than the base model where L is the loss

function, X is the training samples, and w is the network weights. Our algorithm seems

to control the degree of regularization α through the affinity threshold τ . The proposed

augmentation essentially provides an extra constraint on the model to force it to adjust its

weight to learn not only the original images but also the augmented distorted versions. This

approach consequently regularizes the network by reducing the magnitude of the weights.

5.3 Analysis of GSES

In this Section, we investigate the underlying reasons behind the effectiveness of GSES. The

KDE estimator plays an essential role in GSES. Therefore, we first provide details on how
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Figure 5.1: Regularization of weights in a layer using our AISbod. The legend shows the
mean and STD of the weight distribution. The lowest mean and STD are in bold.

it works and then show how it is utilized in GSES.

5.3.1 Impact of KDE

We delve into the influence of KDE parameters within the context of GSES, particularly

examining the effect of two key factors: the number of samples S utilized in KDE and the

choice of kernel employed, using the PASCAL dataset with YOLOv4. Our analysis presents

mean and standard deviation data from 5 distinct experiments for each observed outcome

to capture the expected result.

In Table 5.2, the trend indicates that the resilience of YOLOv4 amplifies with an aug-

mented S. However, this augmentation inversely impacts the model’s accuracy when han-

dling clean samples. When S = 100, a compromise emerges between robustness and accuracy

under clean sample conditions.

Table 5.2: Effect of the number of samples S with a Gaussian kernel and w = 1 used in new
sample generation for YOLOv4 and PASCAL.

mAPorg mPC

S = 10 83.58±0.2025 60.11±0.5594
S = 100 83.29±0.1696 62.28±0.4469
S = 200 83.08±0.1117 62.94±0.3357

For the kernel type’s impact, Table 5.3 showcases the superiority of the Gaussian kernel

over other options across both clean and distorted samples. This result reaffirms the Gaussian

kernel’s status as a universal density approximator [100].
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Table 5.3: Effect of the type of kernel with S = 100 and w = 1 used in new sample generation
for YOLOv4 and PASCAL.

Kernel mAPorg mPC

Gaussian 83.29±0.1696 62.28±0.4469
Triangular 81.47±0.2236 61.94±0.3045
Cosine 82.35±0.3365 62.04±0.4475
Uniform 81.650±.3354 62.16±0.4236

5.3.2 Impact of distortion types

The study is about the effect of the distortion diversity, that is, the number of distortions D

in Algorithm 2. We aim to maintain an equilibrium among different distortions within the

total number used to maintain a balanced diversity. For instance, when we tested for four

distortions, we used one distortion from noise, blur, artefacts, and weather condition distor-

tion. Table 5.4 suggests that increasing the number of distortions enhances performance in

the presence of distortions. However, this increase may cause the performance under clean

to reduce, although not worse than the base model.

Table 5.4: Effect of the number of distortions used in new sample generation for YOLOv4
and PASCAL.

No. of distortions mAPorg mPC

4 83.71(+0.40) 59.41(+6.93))
8 83.87(+0.56) 60.32(+7.84)
12 83.32(+0.01) 61.31 (+8.83)
15 83.32(+0.01) 62.02(+9.54)

5.4 Effect of object size on GSES and AISbod

We evaluated the effectiveness of our methods, Stylize and URIE, in detecting objects of

varying sizes: small, medium, and large, as defined by [98]. Under distortions, YOLOv4

particularly faces challenges in detecting small objects compared to large ones, as seen in

Table 5.5. Adding our methods GSES and AISbod to YOLOv4 improves its accuracy by

5.93%, 10.30%, and 10.87% and 3.35%, 8.10%, and 12.25% for small, medium, and large

objects, respectively. Also, our methods consistently outperform Stylize and URIE across

all size categories. The solid performance of our method seems to stem from its pixel-level

operation. While Stylize and URIE exhibit improvements, their most notable enhancements

are in medium and large object sizes.
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Table 5.5: COCO test set: Impact of our method and related works on object size averaged
under the distortions impulse noise, motion blur, jpeg compression, and snow with severity
level 3.

size YOLOv4 GSES (our) + AISbod (our) +Stylize + URIE

small 8.53 14.45 (+5.93) 11.88 (+3.35) 9.33 (+0.80) 9.30 (+0.77)
medium 23.90 34.20 (10.30) 32.00 (+8.10) 26.43 (+2.53) 27.90 (+4.00)
large 32.78 43.65 (10.87) 45.03 (+12.25) 38.13 (+5.35) 40.30 (+7.52)

5.5 Impact of model complexity on GSES and AISbod

An object detection model’s complexity is critical to its accuracy; this could be attributed to

the bias-variance trade-off to the total number of model parameters [114] as shown in Fig 5.2.

Indeed, observing Table 5.6, the best accuracy of Faster RCNN is achieved with ResNet-101

for both GSES and AISbod, which has approximately 44M compared to VGG-16’s 138M

parameters.

Figure 5.2: Bias-variance trade-off and model complexity.

Table 5.6: Effect of the complexity of Faster RCNN and our methods.

Model mAPorg mPC

Faster RCNN - + GSES (our) + AISbod (our) - + GSES (our) + AISbod (our)
w/ ResNet-101 79.25 79.30 79.84 54.63 60.40 58.26
w/ VGG-16 75.51 75.55 74.68 45.89 49.00 50.09

5.6 Stability of GSES and AISbod

For a stability study, we conducted five experiments (i.e., we trained and validated each model

five times). We used our methods (GSES and AISbod) and Stylize (the second-best method)

to calculate their mean and standard deviation. As shown in Table 5.7, YOLOv4 appears
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to be the most stable under clean images. However, under distortion, YOLOv4+AISbod

seems to be the most stable, followed by YOLOv4+GSES. This observation is consistently

confirmed under mPC and rPC. This observation aligns with that GSES employ more

diverse distortion types to generate new samples than AISbod. Overall. It seems our methods

provide the best stability under clean and distorted images.

Table 5.7: Stability analysis using mean and standard deviation.

Model YOLOv4 + GSES (Our) AISbod (Our) + Stylize

mAPorg 83.39(±0.1559) 83.29(±0.1696) 83.45(±0.1838) 83.80(±0.1753)
mPC 52.20(±0.4739) 62.28(±0.4469) 58.57(±0.2637) 61.11(±0.5129)
rPC 0.6259(±0.0058) 0.7476(±0.0054) 0.7024(±0.0030) 0.7328(±0.0065)

5.7 Summary

This thesis Chapter explored our proposed methodologies, AISbod and GSES, through an

extensive analysis encompassing various dimensions of their performance and underlying

mechanisms. The Chapter also showed the proposed methods’ stability analysis and the

effect of model complexity on them.

The main reasons for the accuracy improvement in our methods were regularization and

diversification. Our methods improved robustness by regularizing the models’ weights during

training. We confirmed this in the narrow gap between the train versus validation loss curves

shown in Figure 4.1. This regularization effect was underscored in Section 5.2.3, where we

related the affinity threshold τ of our AISbod to the regularization form minw L(X,w) +

α||w||1. However, we saw that GSES had higher accuracy improvement than AISbod even

though it has the same τ as AISbod. This superior performance of GSES is because it has

more diverse samples, which we show in Table 5.4 to benefit the detection models.
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Chapter 6

Conclusion and future work

6.1 Conclusion

Object detection is crucial in vision systems like self-driving cars and healthcare monitoring.

While substantial progress has been made, image distortions still affect the accuracy of

detection models. In this thesis, we first evaluated the deterioration in the accuracy of

object detection models in the presence of image distortions (e.g., the accuracy of the DINO

baseline drops by 24.50% under snow and 27.10% under impulse noise). We then proposed

two data augmentation methods to generate distorted samples from the original training

samples by changing them at the pixel level. The first method, AISbod, iteratively updates

an antibody through ”select, clone, mutate, select” cycles until a particular affinity to the

original is achieved. The second method, GSES, creates new samples by randomly replacing

pixels with new values sampled from an estimated distribution while maintaining a level of

similarity to the antigens.

Our augmentation approach is novel in creating new training samples that are ”similar”

to the original samples but still ”different enough” to improve object detection performance

under clean and distorted images. It is effective because of 1) diversification, i.e., how we

add different distortions to the images, 2) how we fix the number of pixels to distort, and

3) how we decide the number of distorted samples for augmentation. We do not simply add

noise (or distortion) to the training sample. As shown in [13, 15, 16, 93], adding noise has

two main drawbacks: poor performance on clean samples and lack of generalization to un-

known distortions. Our approach mitigates these drawbacks by how we distort (Algorithms

1 and 2), the number of pixels we distort, and the number of distorted samples we use for

augmentation.

Through extensive experiments, we have demonstrated that the overall accuracy of the

proposed methods (AISbod and GSES) surpasses that of 15 related works (under COCO
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by 6.23% and 8.35% for DINO, respectively). These results are consistent across different

architectures (DINO, YOLOv7, YOLOv4 and Faster RCNN) and datasets (PASCAL and

COCO). Our methods stand out as they improve models under distortion and clean samples,

a significant achievement considering that data augmentation methods that enhance accuracy

under distortions typically suffer under clean samples. Comparing our AISbod and GSES

methods, we see that the GSES method is more effective overall. This is because 1) GSES

produces more varied distortions, which increases the diversification in the training samples

for all evaluated models, 2) GSES reduces over-fitting by regularising the models consistently

more than in AISbod, and 3) GSES is computationally more efficient.

In conclusion, this thesis showed that we can use the complex mathematical concept

AIS and the well-established KDE to alter images at the pixel level for data augmentation.

Our research has thoroughly explored the proposed methods and dissected their components

through extensive analysis and ablation studies, shedding light on their contributions. Our

efforts have extended to optimizing the KDE technique within GSES, and we have explored

diverse density estimators to enhance its performance. Furthermore, our investigation has

ventured beyond the boundaries of object detection, extending the applicability of AISbod

and GSES to image classification and object tracking. By achieving these milestones, we

aim to inspire the development of more resilient computer vision systems for unseen data

and applications.

6.2 Future work

We categorize the possible extensions of our methods as follows.

• Multi-pixel selection: Our proposed approach is pixel-based, which may be more

suited to handling localized, random noise (such as impulse noise) rather than struc-

tured distortions (such as fog). Exploring a more global approach, such as block-based,

to select pixels for augmentation could be beneficial under different types of distortions.

• Test time augmentation adaptation: Our AISbod and GSES augment data to

train the deep learning model during the training phase. This approach can be termed

training time augmentation. However, another augmentation approach is called test

time augmentation (TTA). TTA is a technique used during a machine learning model’s

inference or testing phase, where multiple augmented versions of the input data are fed

into the model to make predictions [115–117]. These predictions are then aggregated in

some way, such as averaging or taking the majority vote, to produce the final output.
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TTA aims to improve the robustness and generalization of the model by presenting it

with variations of the test data, similar to what it experienced during training.

The two main issues with TTA are: 1) implementing TTA during inference requires

computing predictions for each augmented version of the test image, which increases

the computational overhead and might become impractical in real-time models. This

issue is particularly relevant when considering deploying computer vision systems in

resource-constrained environments. 2) Deciding on what augmentation methods to

use and how to aggregate final predictions is not trivial. This decision may vary for

different datasets and models, and finding the optimal strategy can be complex. It

will be interesting to see how best AISbod and GSES could be integrated in a TTA

manner in future works while addressing these main drawbacks of TTA.

• Extension to adversarial attacks: Our research has demonstrated promising re-

sults (see Appendix B) in employing our best defence method, GSES, against adver-

sarial attacks [13]. However, as observed in line with other existing adversarial defence

methods [14–16], the performance of clean samples remains substantially affected. Ad-

dressing this limitation becomes a focal point for future endeavours.

A proposed approach for mitigating the toll on clean samples involves adopting a

hybrid approach combining image and network-domain strategies to fortify models

against adversarial attacks. Adversarial attacks are typically devised with a deep

understanding of a model’s cost function and the distribution of its trained weights.

As a result, a holistic defence strategy is needed. In the image domain, future work

should focus on generating novel samples using the GSES approach. In the network

domain, the focus should be pinpointing vulnerable weights within a model susceptible

to adversarial attacks. Understanding the specific weaknesses in a model allows for a

targeted and efficient defence mechanism. The proposed hybrid defence will retrain

only the vulnerable weights using new samples generated through the GSES approach.

By isolating and reinforcing the weak points in the model, the aim will be to create a

more robust defence against adversarial attacks without compromising the performance

on clean samples.

• Application to catastrophic forgetting in large language models: Catastrophic

forgetting [118], a phenomenon where neural networks, including large language models

(LLMs) [119, 120], lose previously learned information upon learning new data, is not

just a challenge, but a significant hurdle in sequential learning scenarios. This issue is

particularly critical in LLMs, designed to maintain a vast and diverse set of knowledge.

The continual updating of model parameters to optimize for new tasks often leads

62



to degradation in performance on earlier tasks, making the problem of catastrophic

forgetting in LLMs an urgent and crucial concern in machine learning and natural

language processing.

Addressing catastrophic forgetting efficiently, without excessive computational costs,

is essential for effectively deploying LLMs. To this end, several parameter-efficient

strategies called Parameter-Efficient Fine-Tuning (PEFT) [121] have been developed,

and they include approaches like soft prompts [122].

PEFT techniques address the issue of catastrophic forgetting by fine-tuning only a

small subset of model parameters, providing a practical and efficient solution. This

approach reduces computational costs and minimizes the risk of overwriting previously

learned information. By freezing most of the pre-trained model’s parameters and

only fine-tuning additional small parameters or adapter layers, PEFT ensures that the

model’s core knowledge remains intact. This approach allows for significant memory

and computational savings while achieving performance comparable to full fine-tuning.

In soft prompts, continuous vectors are added to the input tokens to guide the LLM’s

behaviour for specific tasks. These prompts are trained during fine-tuning and can

be used without altering the core model parameters. Soft prompts are lightweight,

computationally efficient, and effective in preventing catastrophic forgetting by main-

taining the integrity of the pre-trained model while adapting to new tasks. It will be

interesting to see the impact that using AISbod to increase and diversify these vectors

will have on the performance of LLMs.
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[69] S. Cygert and A. Czyżewski, “Robustness in Compressed Neural Networks for Object

Detection,” in Int. Joint Conf. on Neural Networks, pp. 1–8, 2021.

[70] J. Dapello et al., “Simulating a Primary Visual Cortex at the Front of CNNs Im-

proves Robustness to Image Perturbations,” in Proc. Advances in Neural Information

Processing Systems, pp. 13073–13087, 2020.

[71] Y. Cai et al., “Retinexformer: One-stage Retinex-based Transformer for Low-light

Image Enhancement,” in Proc. IEEE Int. Conf. Computer Vision, 2023.

[72] Z. Wang et al., “Uformer: A general u-shaped transformer for image restoration,” in

Proc. IEEE Conf. Computer Vision Pattern Recognition, pp. 17683–17693, 2022.

69



[73] T. Son et al., “URIE: Universal Image Enhancement for Visual Recognition in the

Wild,” in Proc. European Conf. Computer Vision, pp. 749–765, 2020.

[74] M. Suganuma, X. Liu, and T. Okatani, “Attention-Based Adaptive Selection of Oper-

ations for Image Restoration in the Presence of Unknown Combined Distortions,” in

Proc. IEEE Conf. Computer Vision Pattern Recognition, pp. 9039–9048, 2019.

[75] D. Liu et al., “When Image Denoising Meets High-Level Vision Tasks: A Deep Learning

Approach,” in Proc. Int. Joint Conf. on Artificial Intelligence, 2018.

[76] J. C. Galeano, A. Veloza-Suan, and F. A. González, “A Comparative Analysis of
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Appendix A

Detailed breakdown of each distortion

We provide a detailed breakdown of the performance of our method and related works here
using YOLOv4 for both PASCAL and COCO. We show the accuracy of each of the 15
distortions and their corresponding severity level from 1 to 5, with level 1 being the lowest
and five the highest severity. As shown in Table A.1 and A.2, the results affirm our analysis
in Section 4. Our methods are more effective for noise-like distortions (e.g., impulse noise)
than for weather-related distortions, as exposed mainly under PASCAL. This difference in
performance might be due to the pixel-wise distortion approach used in both methods, which
is better suited to handling localized, random noise rather than more uniform or structured
distortions like those caused by weather conditions. To address this imbalance and make our
methods more general under different datasets and distortions, exploring a global distortion
approach, such as block-wise distortion, could be beneficial. Implementing this change might
help make the improvements offered by the methods more consistent across different types
of distortions.

Table A.1: PASCAL validation set: Detailed comparison of our methods (GSES and AISbod)
with related works on YOLOv4. The best results are in red and second in blue in each row;
the +() indicates gain, that is, the difference between the original and defence method.

YOLOv4 + GSES (our) + AISbod (our) + Stylize + SMIX + URIE

clean 83.31 83.32 (+0.01) 83.50 (+0.19) 83.90 (+0.59) 83.65 (+0.34)

Gaussian noise

severity 1 74.06 79.64 (+5.58) 78.69 (+4.63) 76.41 (+2.35) 73.86 (-0.20) 68.56 (-5.50)

severity 2 66.34 77.64 (+11.30) 76.55 (+10.21) 70.47 (+4.13) 64.43 (-1.91) 64.88 (-1.46)

severity 3 52.83 73.10 (+20.27) 72.49 (+19.66) 60.74 (+7.91) 47.08 (-5.75) 59.13 (+6.30)

severity 4 34.37 68.52 (+34.15) 65.93 (+31.56) 46.90 (+12.53) 27.19 (-7.18) 52.44 (+18.07)

severity 5 14.62 58.47 (+43.85) 55.82 (+41.20) 27.33 (+12.71) 12.00 (-2.62) 41.04 (+26.42)

shot noise

severity 1 74.89 80.16 (+5.27) 79.07 (+4.18) 76.92 (+2.03) 74.70 (-0.19) 69.24 (-5.65)

severity 2 66.98 78.12 (+11.14) 77.01 (+10.03) 69.83 (+2.85) 64.27 (-2.71) 65.60 (-1.38)

severity 3 56.36 74.66 (+18.30) 73.98 (+17.62) 62.12 (+5.76) 50.60 (-5.76) 60.59 (+4.23)

severity 4 35.69 68.31 (+32.62) 65.87 (+30.18) 46.69 (+11.00) 28.09 (-7.60) 52.15 (+16.46)

severity 5 22.34 61.60 (+39.26) 58.79 (+36.45) 33.86 (+11.52) 16.86 (-5.48) 45.89 (+23.55)

impulse noise

severity 1 61.09 80.30 (+19.21) 76.38 (+15.29) 70.35 (+9.26) 63.55 (+2.46) 66.64 (+5.55)

severity 2 54.40 78.73 (+24.33) 75.24 (+20.84) 66.63 (+12.23) 57.27 (+2.87) 62.58 (+8.18)

severity 3 48.48 75.87 (+27.39) 73.56 (+25.08) 61.73 (+13.25) 48.77 (+0.29) 58.99 (+10.51)

severity 4 31.68 70.94 (+39.26) 67.76 (+36.08) 46.50 (+14.82) 25.92 (-5.76) 51.12 (+19.44)

severity 5 15.12 64.58 (+49.46) 59.24 (+44.12) 28.22 (+13.10) 10.93 (-4.19) 41.50 (+26.38)

motion blur

severity 1 70.50 71.45 (+0.95) 72.16 (+1.66) 70.64 (+0.14) 70.42 (-0.08) 65.65 (-4.85)

severity 2 57.25 59.51 (+2.26) 60.62 (+3.37) 60.36 (+3.11) 57.08 (-0.17) 61.39 (+4.14)

severity 3 37.72 42.11 (+4.39) 42.62 (+4.90) 45.91 (+8.19) 39.88 (+2.16) 54.03 (+16.31)

severity 4 22.87 25.94 (+3.07) 26.56 (+3.69) 30.72 (+7.85) 26.69 (+3.82) 45.32 (+22.45)

severity 5 17.13 18.47 (+1.34) 19.32 (+2.19) 23.72 (+6.59) 19.97 (+2.84) 39.87 (+22.74)

zoom blur

severity 1 53.81 54.78 (+0.97) 55.22 (+1.41) 57.32 (+3.51) 53.75 (-0.06) 55.96 (+2.15)

severity 2 43.78 44.06 (+0.28) 44.99 (+1.21) 46.77 (+2.99) 43.71 (-0.07) 50.74 (+6.96)

severity 3 37.72 40.02 (+2.30) 38.23 (+0.51) 43.13 (+5.41) 39.69 (+1.97) 45.21 (+7.49)

severity 4 30.22 31.72 (+1.50) 30.23 (+0.01) 34.34 (+4.12) 32.76 (+2.54) 40.39 (+10.17)
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Table A.1: (continued)

YOLOv4 + GSES (our) + AISbod (our) + Stylize + SMIX + URIE

severity 5 24.92 26.33 (+1.41) 23.91 (-1.01) 28.83 (+3.91) 28.62 (+3.70) 35.02 (+10.10)

glass blur

severity 1 69.08 74.20 (+5.12) 71.01 (+1.93) 71.82 (+2.74) 68.98 (-0.10) 63.89 (-5.19)

severity 2 55.68 67.95 (+12.27) 59.46 (+3.78) 63.44 (+7.76) 55.74 (+0.06) 58.55 (+2.87)

severity 3 20.12 54.20 (+34.08) 25.14 (+5.02) 36.61 (+16.49) 21.26 (+1.14) 45.68 (+25.56)

severity 4 15.32 47.25 (+31.93) 18.74 (+3.42) 29.13 (+13.81) 14.58 (-0.74) 39.85 (+24.53)

severity 5 11.61 32.24 (+20.63) 12.99 (+1.38) 26.16 (+14.55) 11.32 (-0.29) 31.31 (+19.70)

defocus blur

severity 1 70.21 70.42 (+0.21) 70.81 (+0.60) 71.00 (+0.79) 67.18 (-3.03) 62.53 (-7.68)

severity 2 61.94 63.68 (+1.74) 63.83 (+1.89) 64.16 (+2.22) 56.13 (-5.81) 58.54 (-3.40)

severity 3 47.84 49.57 (+1.73) 51.12 (+3.28) 52.74 (+4.90) 41.67 (-6.17) 49.12 (+1.28)

severity 4 36.33 36.59 (+0.26) 39.46 (+3.13) 42.65 (+6.32) 29.88 (-6.45) 40.09 (+3.76)

severity 5 26.53 26.02 (-0.51) 28.67 (+2.14) 33.49 (+6.96) 21.59 (-4.94) 34.18 (+7.65)

contrast

severity 1 78.89 79.52 (+0.63) 79.11 (+0.22) 81.09 (+2.20) 80.59 (+1.70) 73.75 (-5.14)

severity 2 77.67 76.40 (-1.27) 77.29 (-0.38) 79.93 (+2.26) 79.70 (+2.03) 73.56 (-4.11)

severity 3 73.69 71.66 (-2.03) 74.08 (+0.39) 77.55 (+3.86) 78.04 (+4.35) 72.97 (-0.72)

severity 4 63.15 60.11 (-3.04) 63.69 (+0.54) 72.23 (+9.08) 72.60 (+9.45) 71.08 (+7.93)

severity 5 41.18 43.02 (+1.84) 42.32 (+1.14) 63.27 (+22.09) 61.66 (+20.48) 66.40 (+25.22)

jpeg compression

severity 1 72.71 77.86 (+5.15) 76.92 (+4.21) 76.56 (+3.85) 76.11 (+3.40) 68.52 (-4.19)

severity 2 63.79 75.00 (+11.21) 72.86 (+9.07) 72.17 (+8.38) 69.63 (+5.84) 66.88 (+3.09)

severity 3 55.76 73.12 (+17.36) 69.38 (+13.62) 69.54 (+13.78) 64.03 (+8.27) 65.38 (+9.62)

severity 4 35.47 66.32 (+30.85) 54.17 (+18.70) 59.04 (+23.57) 46.41 (+10.94) 60.75 (+25.28)

severity 5 22.08 56.16 (+34.08) 35.12 (+13.04) 44.02 (+21.94) 30.45 (+8.37) 54.92 (+32.84)

pixelate

severity 1 75.02 80.88 (+5.86) 77.95 (+2.93) 79.95 (+4.93) 74.93 (-0.09) 70.47 (-4.55)

severity 2 69.89 80.15 (+10.26) 74.67 (+4.78) 77.34 (+7.45) 70.03 (+0.14) 69.56 (-0.33)

severity 3 31.76 74.31 (+42.55) 43.94 (+12.18) 68.42 (+36.66) 33.51 (+1.75) 65.71 (+33.95)

severity 4 12.02 51.64 (+39.62) 15.95 (+3.93) 50.15 (+38.13) 12.78 (+0.76) 61.09 (+49.07)

severity 5 5.82 28.67 (+22.85) 7.85 (+2.03) 31.90 (+26.08) 5.49 (-0.33) 55.35 (+49.53)

elastic transform

severity 1 73.23 74.67 (+1.44) 73.62 (+0.39) 78.62 (+5.39) 71.91 (-1.32) 64.04 (-9.19)

severity 2 66.21 68.10 (+1.89) 66.59 (+0.38) 73.35 (+7.14) 62.93 (-3.28) 59.65 (-6.56)

severity 3 53.11 56.08 (+2.97) 53.96 (+0.85) 65.29 (+12.18) 47.44 (-5.67) 51.99 (-1.12)

severity 4 42.41 47.48 (+5.07) 43.78 (+1.37) 57.94 (+15.53) 36.39 (-6.02) 47.30 (+4.89)

severity 5 30.18 36.34 (+6.16) 30.88 (+0.70) 45.76 (+15.58) 24.17 (-6.01) 40.20 (+10.02)

frost

severity 1 76.27 75.49 (-0.78) 76.03 (-0.24) 76.77 (+0.50) 77.51 (+1.24) 65.38 (-10.89)

severity 2 66.79 65.24 (-1.55) 66.45 (-0.34) 68.90 (+2.11) 70.09 (+3.30) 59.03 (-7.76)

severity 3 60.64 58.05 (-2.59) 59.99 (-0.65) 63.25 (+2.61) 64.67 (+4.03) 53.60 (-7.04)

severity 4 58.76 56.14 (-2.62) 58.36 (-0.40) 61.78 (+3.02) 62.61 (+3.85) 53.10 (-5.66)

severity 5 53.10 49.75 (-3.35) 52.24 (-0.86) 57.04 (+3.94) 58.69 (+5.59) 49.28 (-3.82)

fog

severity 1 78.53 78.28 (-0.25) 78.51 (-0.02) 81.10 (+2.57) 80.47 (+1.94) 71.58 (-6.95)

severity 2 77.43 76.33 (-1.10) 77.39 (-0.04) 80.58 (+3.15) 79.99 (+2.56) 70.79 (-6.64)

severity 3 75.76 74.83 (-0.93) 76.02 (+0.26) 80.00 (+4.24) 79.22 (+3.46) 69.57 (-6.19)

severity 4 75.00 73.03 (-1.97) 74.57 (-0.43) 78.97 (+3.97) 78.54 (+3.54) 68.34 (-6.66)

severity 5 70.98 67.96 (-3.02) 69.95 (-1.03) 75.79 (+4.81) 76.04 (+5.06) 64.47 (-6.51)

snow

severity 1 72.13 68.22 (-3.91) 70.55 (-1.58) 73.68 (+1.55) 70.11 (-2.02) 63.34 (-8.79)

severity 2 59.74 59.33 (-0.41) 61.25 (+1.51) 62.65 (+2.91) 59.34 (-0.40) 59.23 (-0.51)

severity 3 57.37 54.06 (-3.31) 56.88 (-0.49) 61.69 (+4.32) 57.48 (+0.11) 57.39 (+0.02)

severity 4 47.90 45.59 (-2.31) 46.70 (-1.20) 54.16 (+6.26) 48.65 (+0.75) 50.73 (+2.83)

severity 5 46.64 46.61 (-0.03) 48.78 (+2.14) 51.48 (+4.84) 49.98 (+3.34) 53.79 (+7.15)

brightness

severity 1 81.39 81.80 (+0.41) 80.98 (-0.41) 82.24 (+0.85) 81.98 (+0.59) 72.48 (-8.91)

severity 2 80.01 81.27 (+1.26) 80.42 (+0.41) 81.53 (+1.52) 81.26 (+1.25) 71.61 (-8.40)

severity 3 79.27 80.43 (+1.16) 79.70 (+0.43) 80.93 (+1.66) 80.54 (+1.27) 70.08 (-9.19)

severity 4 78.12 78.31 (+0.19) 78.40 (+0.28) 79.92 (+1.80) 79.16 (+1.04) 67.80 (-10.32)

severity 5 76.11 75.92 (-0.19) 76.83 (+0.72) 78.42 (+2.31) 76.52 (+0.41) 64.99 (-11.12)

Overall summary
mPC 52.48 62.02 (+9.54) 58.87 (+6.40) 60.44 (+7.96) 53.04 (+0.56) 58.05 (+5.57)

rPC 0.6299 0.7444 0.7067 0.7254 0.6367 0.6968
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Table A.2: COCO validation set: Detailed comparison of our methods (GSES and AISbod)
with related works on YOLOv4. The best results are in red and second in blue in each row;
the +() indicates gain, that is, the difference between the original and defence method.

YOLOv4 + GSES (our) + AISbod (our) + Stylize + URIE

clean 40.67 40.81 (+0.14) 40.87 (+0.20) 38.95 (-1.73)

Gaussian noise

severity 1 35.02 47.57 (+12.55) 37.85 (+2.83) 34.55 (-0.47) 30.55 (-4.47)

severity 2 30.20 36.99 (+6.79) 36.85 (+6.65) 31.04 (+0.83) 28.32 (-1.88)

severity 3 22.72 34.66 (+11.94) 35.51 (+12.79) 26.47 (+3.75) 24.96 (+2.24)

severity 4 14.35 38.06 (+23.71) 31.29 (+16.94) 20.09 (+5.74) 20.60 (+6.25)

severity 5 5.56 18.15 (+12.59) 24.51 (+18.95) 11.55 (+5.99) 15.49 (+9.93)

shot noise

severity 1 35.00 46.57 (+11.57) 38.03 (+3.03) 34.49 (-0.51) 30.49 (-4.51)

severity 2 29.68 37.37 (+7.69) 35.90 (+6.22) 30.73 (+1.05) 28.12 (-1.56)

severity 3 23.29 35.43 (+12.14) 32.64 (+9.35) 26.68 (+3.39) 25.38 (+2.09)

severity 4 13.73 35.52 (+21.79) 25.30 (+11.57) 19.21 (+5.48) 20.40 (+6.67)

severity 5 8.00 22.77 (+14.77) 18.74 (+10.74) 14.01 (+6.01) 16.95 (+8.95)

impulse noise

severity 1 26.03 49.70 (+23.67) 39.34 (+13.31) 31.47 (+5.44) 29.41 (+3.39)

severity 2 23.49 47.08 (+23.59) 38.44 (+14.95) 29.03 (+5.54) 27.01 (+3.53)

severity 3 20.98 48.84 (+27.86) 37.68 (+16.70) 26.74 (+5.76) 24.77 (+3.79)

severity 4 13.08 36.33 (+23.25) 35.26 (+22.19) 19.77 (+6.70) 20.12 (+7.04)

severity 5 5.79 32.85 (+27.06) 30.98 (+25.19) 12.50 (+6.71) 15.45 (+9.66)

motion blur

severity 1 33.71 42.29 (+8.58) 33.98 (+0.26) 32.43 (-1.29) 29.12 (-4.59)

severity 2 26.46 28.66 (+2.20) 27.86 (+1.40) 27.48 (+1.02) 26.24 (-0.23)

severity 3 17.70 23.72 (+6.02) 19.95 (+2.25) 21.17 (+3.47) 22.43 (+4.73)

severity 4 10.06 15.44 (+5.38) 12.27 (+2.20) 14.93 (+4.87) 17.73 (+7.67)

severity 5 6.49 15.14 (+8.65) 8.60 (+2.11) 11.51 (+5.02) 14.93 (+8.44)

zoom blur

severity 1 16.13 19.71 (+3.58) 17.45 (+1.32) 18.06 (+1.93) 16.84 (+0.72)

severity 2 10.60 22.03 (+11.43) 11.66 (+1.06) 12.52 (+1.91) 12.83 (+2.23)

severity 3 7.81 12.10 (+4.29) 8.61 (+0.80) 9.90 (+2.09) 10.26 (+2.45)

severity 4 5.37 7.96 (+2.59) 6.11 (+0.74) 7.13 (+1.76) 8.01 (+2.64)

severity 5 4.12 5.47 (+1.35) 4.86 (+0.74) 5.77 (+1.65) 6.70 (+2.58)

glass blur

severity 1 33.19 41.59 (+8.40) 34.82 (+1.63) 33.38 (+0.19) 28.55 (-4.64)

severity 2 26.91 40.96 (+14.05) 30.12 (+3.20) 29.49 (+2.57) 25.76 (-1.16)

severity 3 10.61 35.4 (+24.79) 15.48 (+4.87) 17.29 (+6.68) 19.20 (+8.59)

severity 4 8.04 28.31 (+20.27) 12.29 (+4.26) 14.41 (+6.37) 16.90 (+8.87)

severity 5 5.53 16.22 (+10.69) 8.74 (+3.21) 10.77 (+5.24) 12.59 (+7.06)

defocus blur

severity 1 33.98 42.89 (+8.91) 35.04 (+1.06) 33.53 (-0.45) 27.65 (-6.32)

severity 2 29.79 36.37 (+6.58) 31.34 (+1.55) 30.39 (+0.59) 25.51 (-4.28)

severity 3 22.56 32.01 (+9.45) 24.87 (+2.32) 24.67 (+2.12) 21.11 (-1.44)

severity 4 16.50 25.97 (+9.47) 19.63 (+3.12) 19.75 (+3.25) 17.01 (+0.51)

severity 5 11.27 16.45 (+5.18) 14.78 (+3.51) 15.65 (+4.37) 13.24 (+1.97)

contrast

severity 1 38.71 45.6 (+6.89) 38.87 (+0.16) 37.78 (-0.93) 34.13 (-4.58)

severity 2 37.54 45.31 (+7.77) 37.81 (+0.26) 37.11 (-0.44) 34.09 (-3.46)

severity 3 35.14 39.49 (+4.35) 35.46 (+0.33) 35.75 (+0.61) 33.73 (-1.41)

severity 4 28.65 33.92 (+5.27) 29.11 (+0.46) 32.23 (+3.58) 32.67 (+4.02)

severity 5 17.80 19.21 (+1.41) 19.12 (+1.32) 26.21 (+8.41) 29.71 (+11.91)

jpeg compression

severity 1 34.02 45.53 (+11.51) 35.61 (+1.59) 33.82 (-0.20) 30.34 (-3.69)

severity 2 29.07 43.57 (+14.50) 31.76 (+2.69) 30.67 (+1.60) 29.34 (+0.28)

severity 3 25.47 30.53 (+5.06) 29.07 (+3.60) 28.39 (+2.92) 28.58 (+3.11)

severity 4 15.90 22.93 (+7.03) 20.31 (+4.42) 21.17 (+5.28) 26.14 (+10.24)

severity 5 8.60 13.1 (+4.50) 12.28 (+3.69) 14.66 (+6.07) 22.64 (+14.04)

pixelate

severity 1 37.45 48.39 (+10.94) 38.44 (+0.99) 36.90 (-0.55) 31.83 (-5.62)

severity 2 35.60 48.50 (+12.90) 36.98 (+1.38) 36.12 (+0.52) 31.67 (-3.93)

severity 3 22.01 29.8 (+7.79) 26.08 (+4.07) 31.14 (+9.13) 30.00 (+7.99)

severity 4 8.04 18.67 (+10.63) 11.40 (+3.37) 24.41 (+16.37) 28.04 (+20.01)

severity 5 3.24 6.10 (+2.86) 5.28 (+2.04) 18.25 (+15.01) 25.80 (+22.56)

elastic transform

severity 1 34.25 42.11 (+7.86) 35.02 (+0.76) 35.54 (+1.28) 28.06 (-6.20)

severity 2 29.90 37.60 (+7.70) 31.27 (+1.36) 32.82 (+2.91) 25.29 (-4.62)

severity 3 23.55 48.39 (+24.84) 25.36 (+1.81) 28.02 (+4.48) 21.51 (-2.04)

severity 4 19.48 34.05 (+14.57) 21.57 (+2.09) 24.34 (+4.86) 18.88 (-0.61)

severity 5 14.19 37.76 (+23.57) 16.50 (+2.30) 19.39 (+5.19) 15.76 (+1.57)

frost

severity 1 35.73 29.56 (-6.17) 36.03 (+0.31) 35.18 (-0.55) 29.46 (-6.27)

severity 2 30.38 28.04 (-2.34) 31.32 (+0.94) 30.98 (+0.60) 25.13 (-5.25)

severity 3 26.45 28.67 (+2.22) 27.36 (+0.91) 28.01 (+1.55) 22.11 (-4.35)

severity 4 25.26 26.40 (+1.14) 26.25 (+1.00) 27.12 (+1.86) 21.31 (-3.94)

severity 5 22.98 24.50 (+1.52) 24.30 (+1.32) 25.46 (+2.48) 19.37 (-3.61)

fog

severity 1 38.40 50.95 (+12.55) 38.68 (+0.28) 37.61 (-0.79) 33.16 (-5.24)

severity 2 37.69 51.15 (+13.46) 37.94 (+0.25) 37.14 (-0.55) 32.91 (-4.78)
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Table A.2: (continued)

YOLOv4 + GSES (our) + AISbod (our) + Stylize + URIE

severity 3 6.71 44.59 (+7.88) 37.10 (+0.40) 36.62 (-0.09) 32.20 (-4.50)

severity 4 36.25 42.11 (+5.86) 36.82 (+0.57) 36.48 (+0.23) 31.89 (-4.36)

severity 5 34.55 37.60 (+3.05) 35.07 (+0.52) 35.37 (+0.82) 30.51 (-4.04)

snow

severity 1 30.48 48.39 (+17.91) 32.93 (+2.46) 32.63 (+2.16) 27.28 (-3.20)

severity 2 23.57 44.59 (+21.02) 27.21 (+3.64) 27.99 (+4.43) 23.78 (+0.22)

severity 3 22.35 42.11 (+19.76) 24.37 (+2.02) 27.20 (+4.85) 22.57 (+0.23)

severity 4 17.54 37.60 (+20.06) 19.60 (+2.06) 23.53 (+5.99) 18.32 (+0.78)

severity 5 17.85 37.76 (+19.91) 20.30 (+2.46) 23.22 (+5.37) 19.57 (+1.73)

brightness

severity 1 40.38 50.95 (+10.57) 40.45 (+0.06) 38.63 (-1.75) 33.46 (-6.93)

severity 2 39.64 51.15 (+11.51) 39.71 (+0.07) 38.01 (-1.63) 33.32 (-6.32)

severity 3 38.77 44.59 (+5.82) 38.95 (+0.19) 37.44 (-1.33) 32.72 (-6.05)

severity 4 37.54 42.11 (+4.57) 37.90 (+0.36) 36.61 (-0.94) 31.49 (-6.06)

severity 5 36.14 37.60 (+1.46) 36.83 (+0.69) 35.54 (-0.60) 29.74 (-6.40)

Overall summary
mPC 23.61 32.81 (+9.20) 27.51 (+3.90) 26.59 (+2.97) 24.52 (+0.91)

rPC 0.5806 0.8067 0.6764 0.6537 0.6029
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Appendix B

Adversarial attack defences

Adversarial attacks like FGSM, PGD, and DAG are crafted to fool CNN models. Hence,

the deployment of the models in sensitive applications is limited. As a result, a significant

amount of work has been done to mitigate this issue. First, we review adversarial attack

defence methods and then give results showing their performance under image distortions.

Image-domain: The generalization of methods to several attacks is a significant issue

in addressing adversarial attacks. Lee et al. [123] tackle this by generating adversarial exam-

ples online for classification models whose distribution has been extended in multidimensional

space. When these examples are used in training, they increase the models’ generalization

to several adversarial attacks. Similarly, in [124], Gowal et al. use a StyleGAN to gener-

ate adversarial examples offline, with perturbations similar to real-world attacks to make

classification models more robust. Also, in [125], Zhang et al. provides adversarial samples

online for augmenting classification models in the latent space in an unsupervised way using

feature scattering while in [126] they are produced online via gradient and norm decoupling

of adversarial perturbations. Contrary to the methods above applied to image classification

models, Zhang et al. [16] generate adversarial samples for object detection models online via

a weighted combination of attacks in the classification and localization tasks. While in [127],

Kumar et al. propose Adv-Cut Paste for object detection tasks. It uses a pre-trained seman-

tic segmentation model to generate adversarial perturbations on the regions containing the

target objects. It pastes them onto new backgrounds to create new training samples offline.

Network-domain: There are few existing works in this domain. However, in [128],

Jeddi et al. present an end-to-end framework, Learn2Perturb, to incorporate perturbation

modules into both the training and inference stages of an image classification model to make

the model robust to adversarial attacks. Furthermore, because these modules are trainable,

they can introduce the optimum uncertainty into the model’s feature space. Moreover,

in [129], Gopalakrishnan et al. show that linear models can be used to defend CNN models
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against adversarial attacks. Finally, authors in [130] propose a novel form of attack called

universal adversarial perturbation (UAP) for object detection models and possible direction

for defending against UAP.

Hybrid-domain: Adversarial training is the primary method for improving robustness,

but most work sacrifices accuracy under clean samples for such robustness. Xu et al. [93]

present a novel fine-tuning paradigm that achieves superior performance over existing meth-

ods by investigating the combination of self-knowledge distillation and adversarial training

for object detection. Dong et al. [14] propose a robust detector (RbDet) to disentangle the

gradients for clean and adversarial images during training. This leads to adversarial robust-

ness with less deterioration on clean samples. In [15], authors present a class-aware robust

adversarial training technique that generates a universal adversarial perturbation in a given

image. This method simultaneously attacks all objects occurring in a given training image

by jointly maximizing their respective loss. However, the total loss per class is decomposed

instead of normalizing the total loss by the number of objects. It normalizes the loss for

each class using the number of objects. This equally improves the adversarial robustness of

trained models for all object classes.

We compare our methods to adversarial attack defence methods MTD [16], RbDet [14],

and CWAT [15] to show that these methods do not extend to 15 image distortions. Hence,

we do not claim the effectiveness of our method against adversarial attacks. We use the

same model and dataset (i.e., SSD [33] and PASCAL) as in MTD [16], RbDet [14], and

CWAT [15]. As shown in Table B.1, we see a significant drop in all adversarial methods

except ours.

Table B.1: PASCAL validation set: Comparison of our AISbod with adversarial defence
methods against image distortion.

Model SSD GSES (our) + AISbod (our) + MTD + RbDet + CWAT

mPC 57.59 63.09 (+5.50) 62.31 (+4.72) 23.12 (-34.47) 48.58 (-9.01) 25.27 (-32.32)
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Appendix C

Visual results

Subjectively, Fig. C.1 and C.2 show the accuracy of the Faster RCNN model for a Gaussian

noise level of 27 dB and impulse density of 0.25% on some samples, respectively. The model

is easily tricked by adding noise, as seen in the first row. Objects are wrongly classified,

and detection is missed in others. These vulnerabilities are mitigated with our methods (as

shown in their respective rows in the Figures).
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Figure C.1: Comparison of Faster RCNN, Faster RCNN+GSES, and Faster RCNN+AISbod on 27 dB Gaussian noisy samples. For
instance, the Aeroplane correctly detected in the original image (row 1, column 6) is missed in its noisy version (row 2, column 6).
This error is corrected in our methods (rows 3 and 4, column 6). (Points of interest indicated by blue arrows are better viewed by
zooming in).



Figure C.2: Comparison of Faster RCNN Faster RCNN+GSES, and Faster RCNN+AISbod on 0.25% impulse noisy samples. For
instance, the Train correctly detected in the original image (row 1, column 1) is missed in the noisy version (row 2, column 1). This
error is corrected in GSES and AIS (rows 4 and 5, column 1). (Points of interest indicated by blue arrows are better viewed by
zooming in).



Appendix D

Loss functions of DINO and YOLOv7

D.1 DINO

The overall loss function for DINO is a combination of classification loss, bounding box

regression loss, and auxiliary matching loss. The loss function can be expressed as

LDINO = Lcls + λboxLbox + λgiouLgiou, (14)

where Lcls is the classification loss, Lbox is the bounding box regression loss, Lgiou is the

generalized IoU (GIoU) loss, and λbox and λgiou are hyperparameters that balance the con-

tributions of the different losses.

D.1.1 Detailed Components

• Classification Loss (Lcls): The classification loss measures how well the model pre-

dicts the correct class for each object. In DINO, it is calculated using cross-entropy

loss as

Lcls = −
N
∑

i=1

C
∑

c=1

yic log(pic), (15)

where yic is the ground truth label for class c for the i-th object and pic is the predicted

probability for class c.

• Bounding Box Regression Loss (Lbox): The bounding box regression loss measures

the difference between the predicted and ground truth bounding box coordinates. This
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is calculated using a smooth L1 loss as

Lbox =
N
∑

i=1

1obj
i

(

|xi − x̂i|+ |yi − ŷi|+ |wi − ŵi|+
∣

∣

∣
hi − ĥi

∣

∣

∣

)

, (16)

where (xi, yi, wi, hi) are the predicted bounding box coordinates, (x̂i, ŷi, ŵi, ĥi) are the

ground truth bounding box coordinates, and 1obj
i is an indicator function that denotes

if the i-th prediction corresponds to an object.

• Generalized IoU Loss (Lgiou): The generalized IoU (GIoU) loss is used to improve

the quality of the bounding box predictions by considering the overlap between the

predicted and ground truth boxes. It is expressed as

Lgiou =
N
∑

i=1

1obj
i

(

1−GIoU(Bi, B̂i)
)

, (17)

where Bi is the predicted bounding box and B̂i is the ground truth bounding box. The

GIoU function calculates the generalized intersection over union between these boxes.

D.2 YOLOv7

The overall loss function for YOLOv7 combines classification loss, bounding box regression

loss, and objectness loss. The loss function can be expressed as:

LY OLOv7 = Lcls + λboxLbox + λobjLobj, (18)

where Lcls is the classification loss, Lbox is the bounding box regression loss, Lobj is the

objectness loss, and λbox and λobj are hyperparameters that balance the contributions of the

different losses.

D.2.1 Detailed Components

• Classification Loss (Lcls): The classification loss measures how well the model pre-

dicts the correct class for each object. In YOLOv7, it is calculated using the binary

cross-entropy loss as

Lcls = −
S2
∑

i=1

B
∑

j=1

1obj
ij

C
∑

c=1

[yijc log(pijc) + (1− yijc) log(1− pijc)] , (19)
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where yijc is the ground truth label for class c for the j-th bounding box in cell i, and

pijc is the predicted probability for class c.

• Objectness Loss (Lobj): The objectness loss measures the confidence score for object

presence in each bounding box. YOLOv7 uses binary cross-entropy for this part, which

is given by

Lobj =
S2
∑

i=1

B
∑

j=1

[

1obj
ij

(

Cij − Ĉij

)2

+ 1noobj
ij

(

Cij − Ĉij

)2
]

. (20)

Cij is the predicted objectness score and Ĉij is the ground truth objectness score. The

indicator functions 1obj
ij and 1noobj

ij indicate if the bounding box contains an object or

not, respectively.

• Bounding Box Regression Loss (Lbox): The bounding box regression loss measures

the difference between the predicted and ground truth bounding box coordinates. In

YOLOv7, it is calculated using a combination of mean squared error and IoU loss as

Lbox =
S2
∑

i=1

B
∑

j=1

1obj
ij

[

(xi − x̂i)
2 + (yi − ŷi)

2 + (wi − ŵi)
2 +

(

hi − ĥi

)2
]

, (21)

where (xi, yi, wi, hi) are the predicted bounding box coordinates, (x̂i, ŷi, ŵi, ĥi) are the

ground truth bounding box coordinates, and 1obj
ij is an indicator function that denotes

if the j-th bounding box in cell i is responsible for the prediction.
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