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Abstract

Secure and Autonomic Framework for SCHC Context Management in LoRaWAN-IPv6 Networks

Maryam Hatami

The rapid growth of IoT technologies demands seamless integration of communication protocols, es-
pecially for devices in constrained environments. This thesis focuses on integrating LoRaWAN with IPv6
networks by developing a secure and autonomous framework for managing SCHC (Static Context Header
Compression) contexts. The research aims to create a secure, human-free solution that maintains reasonable
data transmission times between LoRaWAN and IPv6, essential for widespread IoT adoption. For instance,
in smart agriculture, dynamic SCHC updates support equipment mobility; in industrial automation, SCHC
ensures consistent data transmission amid changing topologies; in smart cities, it adapts to evolving infras-
tructure; and in healthcare, it manages reliable health data transmission.

The thesis introduces the concept of SCHC Zero Context, enabling immediate device communication
by embedding pre-configured SCHC rules during manufacturing. This innovation facilitates an efficient
bootstrapping process. Additionally, a comparative analysis of BRSKI (Bootstrapping Remote Secure Key
Infrastructure) and cBRSKI (constrained BRSKI) demonstrates the feasibility of the solution for energy-
constrained IoT devices.

The research underscores the importance of integrating security across IoT architecture layers. By com-
bining LoRaWAN’s data link layer security with IPv6’s global internet, the proposed framework offers
robust protection against common threats, ensuring secure onboarding and communication throughout a de-
vice’s life-cycle.

This work provides a scalable, secure solution for integrating LoRaWAN with IPv6, laying the ground-
work for future research in secure and efficient dynamic SCHC context management.

Maryam Hatami
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Chapter 1

Introduction

The concept of the Internet of Things (IoT) has been around since 1999, when it was first introduced
by Kevin Ashton [3]. Since then, IoT has changed how we collect information and automate tasks. It has
quickly expanded to include various technologies, particularly those that help connect many devices while
using as little energy as possible. One type of technology that has become essential for IoT is Low-Power
Wide Area Networks (LPWAN). These networks are designed to allow devices to communicate over long
distances while using minimal power.

As more and more devices connect to the internet, it becomes increasingly important to have network
systems that are both efficient and secure. IPv6 is a version of the internet protocol that provides enough ad-
dress space for the millions of devices that make up the IoT. It also improves connectivity, allowing devices
to communicate with each other more effectively. However, integrating IPv6 with LPWAN technologies
like LoRaWAN presents some challenges, especially when it comes to ensuring that devices can manage
their network settings securely and without human intervention.

One of the key challenges in IoT networks is managing the Static Context Header Compression (SCHC)
context. SCHC is a protocol designed to compress data, making it more efficient to transmit over the con-
strained network resources typical of IoT environments. Standardized by the IETF (Internet Engineering
Task Force), SCHC is now being expanded beyond just LPWAN technologies. However, as network config-
urations evolve, the SCHC context must be continuously updated to maintain efficient and secure commu-
nication. This thesis focuses on developing a secure and autonomic system for managing SCHC contexts in
LoRaWAN-IPv6 networks to address these challenges.

1.1 Motivation

LPWANs are rapidly expanding, with the global market expected to exceed tens of billions of dollars by
2025, supporting billions of IoT devices. These networks are crucial for enabling large-scale IoT deploy-
ments in areas like smart cities and industrial automation.

The SCHC protocol is essential for bridging LPWANs with the broader IP ecosystem, allowing IP-based
protocols like UDP, CoAP, and HTTP to operate efficiently in resource-constrained environments. SCHC
achieves this by using predefined sets of rules, known as SCHC rules, which both the sender and receiver
use to compress and decompress data packets. These rules specify how to remove redundant information
from packet headers, significantly reducing the data that needs to be transmitted.
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However, as IoT devices move across different network environments or as new communication pro-
tocols evolve, the SCHC context—which includes these compression rules—must be updated to ensure
ongoing efficient and secure communication. For instance, a sensor moving from one LPWAN to another
might need to update its IP address and adjust its SCHC rules to maintain seamless connectivity. Similarly,
as new features or options are introduced in protocols like CoAP, the SCHC rules must be modified to sup-
port these changes.

The challenge is that the current SCHC standard relies on static contexts, which are fixed and cannot
easily adapt to such changes. This limitation is particularly problematic in large-scale deployments, where
IoT devices frequently switch between networks or need to accommodate new protocol features. In such
scenarios, relying on manual updates is not only impractical but also unsustainable, leading to significant
inefficiencies, increased operational costs, and potential security vulnerabilities.

The lack of a secure and autonomic method for managing SCHC context updates in dynamic envi-
ronments is a significant challenge. This thesis addresses this gap by proposing several key innovations:
the introduction of SCHC Zero Context for immediate device communication upon network connection, a
comparative analysis of BRSKI and cBRSKI for autonomous onboarding, and the integration of security
mechanisms across different layers of the IoT architecture. These contributions enable scalable, secure, and
efficient SCHC context management for LoRaWAN-IPv6 networks, providing a comprehensive solution to
the challenges of IoT communication in dynamic environments.

1.2 Thesis Organization

This thesis is organized into the following chapters:

• Chapter 2: Background - Provides basic information and explains the key ideas used in the research,
setting the stage for the following chapters.

• Chapter 3: Onboarding and Security Mechanisms - Discusses how new devices connect to a
network and the security measures involved.

• Chapter 4: State of the Art - Reviews current work in combining LPWAN and IPv6, focusing on
solutions for connecting devices and relevant use cases.

• Chapter 5: Problem Statement - Describes the specific challenges that this research aims to solve.

• Chapter 6: Proposed Solution - Presents the solution designed to tackle the identified challenges.

• Chapter 7: Description of the Solution - Details how the solution works, including the system setup
and main components.

• Chapter 8: Results - Discusses the outcomes of the research, including evaluations and comparisons
with existing solutions.

• Chapter 9: Conclusion and Future Work - Summarizes the key findings of the research, discusses
what they mean, and suggests areas for future research.

2



Chapter 2

Background

The Internet of Things (IoT) has transformed data collection by connecting devices like sensors and
controllers to the Internet, enabling advancements in smart homes, healthcare, and industrial operations.
However, the growing number of IoT devices makes manual deployment and management impractical,
leading to potential human errors and difficulties in accessing some devices. To overcome these challenges,
it’s crucial for IoT devices to be deployed and managed autonomously, without human intervention. As these
devices increasingly connect to the Internet using standards like IPv6, specific configurations are required
to ensure they can communicate efficiently. Our research addresses these needs by enhancing the automatic
deployment and management of IoT devices, focusing on making them more adaptable and easier to connect
within an IPv6 environment. In this chapter, we introduce the relevant terminologies and technologies used
in our proposed system.

2.1 IoT

The term Internet of Things (IoT) has been recognized for the past few years, gaining increased attention
recently due to advancements in wireless technology. IoT empowers significant objects to perform tasks by
facilitating communication via internet.

IoT significantly impacts domestic life, including assisted living, smart homes, and smart cars. In the
business sector, it contributes to advancements in manufacturing and services, enhancing services, produc-
tion, and quality. [4].

Figure 2.1: Google search trends since 2004 for terms Internet of Things, IoE, and ubiquitous computing.
The relative value 0 to 100 represents search interest.

The popularity of various models including IoT devices changes over time. figure 2.1 illustrates the web
search trends over the past 20 years for terms such as Internet of Things (indicated with blue), align with
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similar technologies such as IoE (The Internet of Everything) which is indicated by red, and ubiquitous com-
puting (indicated by yellow), as measured by Google. Since the inception of IoT, there has been a consistent
increase in search volume, contrasting with the declining trend for IoE in the recent years which includes
human interaction and ubiquitous computing which requires more computing power. Google’s search fore-
cast suggests that this upward trend is likely to persist as other enabling technologies converge, ultimately
forming a genuine Internet of Things.

2.2 LPWAN

Low-Power Wide Area Networks (LPWANs) are a class of wireless communication technologies which
enable long-range communication between low power consumption devices. LPWANs has several distin-
guishing characteristics that set it apart from traditional communication networks:

• Low Power Consumption: Both the network and end devices are designed to use minimal energy.

• Cost-Effectiveness: Keeping communication, deployment, and management costs low is crucial, es-
pecially for large-scale deployments.

• Strong Security: A robust security mechanism is essential throughout the entire ecosystem, from
devices to applications.

• Built-in Localization: Having built-in localization capabilities is advantageous, particularly for indoor
deployments.

• Interference Resistance: In dense urban areas, network deployment can cause radio network conges-
tion on the same or adjacent channels, necessitating robust modulation to resist interference.

• Efficient Data Handling: The data generated by nodes must be managed effectively.

2.3 LoRaWAN

Among the various LPWAN technologies, including LoRaWAN, SigFox, NB-IoT, Weightless, and other
sub-GHz communication methods, LoRaWAN has gained significant attention from organizations and re-
searchers, becoming a widely adopted LPWAN technology. LoRaWAN is better because it allows private
network deployments, offers more flexible data policies than Sigfox, and operates independently of existing
cellular networks like NB-IoT. Furthermore, despite the popularity of SigFox in the literature, its future is
uncertain due to recent bankruptcy and acquisition [5]. Hence, it was intentionally excluded from our anal-
ysis. These make LoRaWAN more versatile, cost-effective, and suitable for a wider range of applications.

2.3.1 LoRa and LoRaWAN technologies

LoRa is a type of Radio Frequency (RF) modulation used at the physical layer of the OSI reference
model. On the other hand, LoRaWAN is a standard for the medium access control (MAC) layer, which
manages communication between devices. The LoRaWAN protocol brings following features for any de-
vices using the standard:
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• Channel management

• Energy efficiency

• Adaptive data rate

• Security

In this section, we will explore the technological aspects of both LoRa and LoRaWAN in depth.

2.3.2 LoRaWAN Architecture

A typical LoRaWAN network comprises the following components [6].:

• End Devices: These are sensors or actuators that send wireless messages modulated with LoRa to
gateways. They can also receive messages wirelessly from gateways.

• Gateways: Gateways receive messages from end devices and then transmit them to the Network
Server. Each gateway is registered to a LoRaWAN network server using configuration settings and
receives LoRa messages from EDs, forwarding them seamlessly to the network server through various
backhaul options such as Cellular (3G/4G/5G), WiFi, Ethernet, fiber-optic, or 2.4 GHz radio links.

• Network Server: This is a software component running on a server that manages the entire LoRaWAN
network. The LoRa Network Server (NS) serves as the central manager for the entire LoRa network,
overseeing gateways (GWs), end-devices (EDs), applications, and users. Its responsibilities encom-
pass receiving up-link frames from gateways and relaying them to the corresponding Application
Server (AS). The NS plays a crucial role in managing the Medium Access Control (MAC) layer,
addressing tasks such as scheduling down-link data transmission, preventing packet duplication, co-
ordinating acknowledgments, and adjusting data rates.
Emphasizing security, the NS implements encryption at various layers, including NwKey encryption
at the network layer, AppKey encryption at the application level, and encryption at the ED level using
the device key.
Additional features of a typical LoRaWAN Network Server include establishing secure 128-bit AES
connections for end-to-end security, validating end device authenticity, deduplicating uplink mes-
sages, selecting optimal gateways for routing downlink messages, sending ADR commands to opti-
mize device data rates, performing device address checking, providing acknowledgements for con-
firmed uplink data messages, forwarding uplink payloads to appropriate application servers, routing
uplink payloads to the correct Application Server, forwarding Join-request and Join-accept messages
between devices and join servers, and responding to all MAC layer commands.

• The Join Server is an additional software component running on a server which is responsible for over-
seeing the enrollment of End-devices (EDs) into the network and verifying their authenticity. Utilizing
two distinct keys, JSIntKey for the Message Integrity Code (MIC) of the rejoin request message and
the join accept answer, and JSEncKey for encrypting the join accept message, the Join Server plays a
pivotal role in ensuring a secure device activation process, root key storage, and session key genera-
tion. The initiation of the join procedure involves the end device sending a Join-request message to the
Join Server via the Network Server. The Join Server processes this message, generates session keys,
and transmits NwkSKey and AppSKey to the Network Server and the Application Server, respec-
tively. Introduced with LoRaWAN v1.1 and also available in LoRaWAN v1.0.4, the Join Server is an
integral component in facilitating the secure integration of end devices into the LoRaWAN network,
which will be discussed in detail later in the next chapter.
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• Application Servers: These are software components running on servers responsible for securely pro-
cessing application data. End-devices establish communication with the Application Server (AS)
through a code or program operating on the end device itself. Acting as a remote entity, the AS man-
ages the end devices actions and gathers information about the devices that are connected. This server
processes application-specific data messages received from the end devices, generates application-
layer downlink payloads, and transmits them to the connected end devices through the Network
Server. Notably, a LoRaWAN network may accommodate multiple Application Servers.

Figure 2.2 illustrates the LoRaWAN architecture. This architecture uses a star-of-stars topology, cen-
tered around a Network Gateway that manages all data traffic between the devices and the non-constrained
side of the network. These devices, which are the sensors and actuators, often use resource-limited, battery-
powered microcontroller units (MCUs) and are deployed over large areas.

LoRa End-devices are linked to gateways. Each gateway connects to the network server (NS), which
may link to multiple application servers (ASs). Messages transmitted by end devices propagate through all
gateways within their coverage area. These messages are then collected by the Network Server. In instances
where the Network Server receives multiple copies of the same message, it retains only one copy while
discarding the duplicates. [7].

Figure 2.2: LoRaWAN Topology. (Source [8].)

2.3.3 LoRaWAN Protocol stack

The overall LoRaWAN protocol stack is structured into four layers, including Application layer, MAC
Layer, Physical Layer, and Radio Frequency Layer. LoRa is a technology that operates at the Physical layer
(L1) and is primarily used to transmit Application layer data over the communication medium. The OSI
reference model’s L2 Data Link Layer corresponds to the LoRaWAN protocol, which establishes secure
medium access and manages end-nodes. Typically, end-nodes are designed to perform specific tasks to
minimize energy consumption, thus they handle functionalities at the L1, L2, and L7 OSI layers. Radio
Gateways (RGWs) serve as intermediaries between the end-nodes and the network server. The network
server plays a crucial role in controlling the communication medium. LoRaWAN networks differ from
traditional TCP/IP communication between gateways (GWs) and end-nodes. Network servers in LoRaWAN
function as straightforward application services operating at the Transport Layer.
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LoRa Physical Layer

Long Range (LoRa) represents a physical layer technology pioneered by Semtech [9], with the company
holding intellectual property rights over the modulation. This modulation technique extends conventional
Spread Spectrum principles, aiming to minimize the energy required for transmitting data over the channel.
The achievable Data Rate (DR) in communication can be derived from parameters such as bandwidth (BW),
Spreading Factor (SF), and Coding Rate (CR).

The Spreading Factor (SF) is a crucial parameter for maintaining quality of service in LoRaWAN. Lower
SF values result in higher data rates and shorter air time, while higher SF values extend the communication
range but reduce the quality of service. SF values from 7 to 12 enable orthogonal communication, meaning
multiple networks can transmit simultaneously on the same frequency band without causing interference.

As depicted in the Physical layer in figure 2.3, The LoRa frame format offers two options: implicit and
explicit. In the explicit packet format, a concise header is included, providing crucial details such as the
number of bytes, CRC information, and the coding rate utilized within the frame.

Figure 2.3: LoRa Frame. Source [7].

The relationship between the data transmission rate and the Spreading Factor (SF) is defined as follows.
Equation 1 establishes the relationship between the Symbol Rate (RS), bandwidth (BW), and the spreading
factor. The following equations are adapted from [10].

RS =
BW

2SF
(1)

The duration of frame airtime holds significant importance for real-time applications. Utilizing parame-
ters such as CR, SF, and BW, it’s possible to calculate the transmission time of a LoRa frame. This duration
is the sum of the preamble Tpreamble transmission time and the payload transmission time Tpayload as specified
in Equation (2).

Tframe = Tpreamble + Tpayload (2)

The duration of the preamble, denoted as Tpreamble depends on the symbol time Tsym given by Equation
(3), and the programmable length of modem registers npreamble as in Equation (6). LoRaWAN 1.0 specifies
the default preamble value as 8.

Tsym =
1

RS
(3)

Tpreamble = (npreamble + 4.25)⇥ Tsym (4)

The time it takes to send a frame in LoRaWAN depends on the size of the payload npayload, which is
determined by several factors: Packet Length (PL, Implicit Header (IH), Low Data Rate Optimization (DE),
and Coding Rate (CR). The IH(IH) value is 0 if the header is enabled and 1 if it is not. Using an implicit
header reduces the packet size by using predefined CR and Cyclic Redundancy Check (CRC) configurations;
otherwise, these values are included in the frame header. If the low data rate optimization is enabled, it also
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affects the transmission time and DE value is set to 1.
In other words, the payload size is influenced by several factors:

• Packet Length (PL): The overall length of the data packet.

• Implicit Header (IH): If the header is included, IH is 0. If not, IH is 1. Using an implicit header makes
the packet smaller by using predefined settings for the Coding Rate (CR) and Cyclic Redundancy
Check Code (CRCC). If the header is not implicit, these settings are included in the packet.

• Low Data Rate Optimization (DE): If this feature is turned on, it also affects how long the transmission
takes.

npayload = 8 +max

✓⇠
8PL � 4SF + 28 + 16CRCC � 20IH

(CR+ 4)

⇡
, 0

◆
(5)

Tpayload = npayload ⇥ Tsym

where:

• SF: Spreading Factor with values from 7 to 12

• CRC: Cyclic Redundancy Check mode. enabled is CRC = 1, disabled is CRC = 0 (default for Lo-
RaWAN CRC = 1)

• IH: Implicit Header H = 1 or Explicit Header H = 0 (default for LoRaWAN H = 0)

• DE: Adaptive Data Rate. enabled is DE = 1, disabled is DE = 0 CR: Coding Rate. CR = 1, 2, 3, 4.
(by default for LoRaWAN, CR = 1)

LoRaWAN MAC Layer

LoRa and similar low-power low-rate technologies must be highly efficient because any additional over-
head can result in increased energy consumption or latency regarding frame airtime. To address this chal-
lenge, LoRaWAN employs a relatively straightforward channel management strategy to ensure that end
devices remain cost-effective. LoRaWAN utilizes pure Aloha alongside additional ACK mechanisms to
streamline medium access control. The MAC layer protocol defines one mandatory and two optional classes
to accommodate various potential use cases.

• Class A support is required for all LoRaWAN end-devices, which allows for the transmission of an
uplink message at any time. Following the uplink transmission, a Class A device opens two short
receive windows, RX1 and RX2, with specific delays known as RX1 Delay and RX2 Delay. If the
network server doesn’t respond during these windows, the next downlink message will be scheduled
immediately after the subsequent uplink transmission. In Class A, end devices initiate the Up-Link
(UL) message transmission and open two Down-Link (DL) receive windows, as depicted in figure 2.4,
providing the server flexibility to respond in either window. This class operates in the most power-
efficient mode.
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Figure 2.4: LoRaWAN Class A. Source [11].

• Class B devices build upon Class A capabilities by introducing periodic receive windows, known as
ping slots, for downlink message reception. The network periodically broadcasts time-synchronized
beacons through gateways, received by the end devices, serving as a timing reference to align their
internal clocks with the network. This synchronization enables the network server to schedule down-
link messages for specific devices or groups during the beacon period. Class B EDs, depicted in figure
2.5, are bi-directional and include scheduled receive slots in addition to the two receive windows from
Class A. The gateway initiates time synchronization beacons to prompt the opening of receive win-
dows at specific slots, allowing the server to confirm the ED’s active listening status.

Figure 2.5: LoRaWAN Class B. Source [11].

• Class C devices extend Class A capabilities by keeping the receive windows open unless transmitting
an uplink, as shown in the Figure 2.6. Therefore, Class C devices can receive downlink messages at
almost any time, thus having very low latency for downlinks. These downlink messages can be used
to activate certain functions of a device, such as reducing the brightness of a street light or turning on
the cut-off valve of a water meter.

Class C devices open two receive windows, RX1 and RX2, similar to Class A. However, the RX2
receive window remains open until the next uplink transmission. After the device sends an uplink, a
short RX2 receive window opens, followed by a short RX1 receive window, and then the continuous
RX2 receive window opens. This RX2 receive window remains open until the next uplink is sched-
uled. Uplinks are sent when there is no downlink in progress.

Figure 2.6: LoRaWAN Class C. Source [11].
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EDs in Class C, illustrated in Figure 2.5, maintain almost continuous receive windows, consuming a
higher amount of energy compared to other classes. Despite the increased energy consumption, the
data transmission latency between the Network Server (NS) and the ED is minimal.

2.4 Internet Engineering Task Force and its role

The IETF is the premier organization responsible for the development and promotion of internet stan-
dards, particularly those that define the protocols used across the internet. One of the key areas of focus
for the IETF is ensuring that networks can reduce the need for manual configuration and intervention. To
this end, the IETF has established several working groups, with the ANIMA (Autonomic Networking Inte-
grated Model and Approach) working group being central to the development of standards for Autonomic
Networking.

The IETF’s work in autonomic networking aims to create self-managing networks that can automati-
cally configure, manage, and optimize themselves. This effort is crucial in modern networks, where the
complexity and scale make manual management increasingly impractical. The protocols and frameworks
developed by IETF, such as those within the ANIMA working group, are foundational to enabling these
autonomic capabilities in network infrastructures.

2.5 Autonomic Networking

As mentioned in previous sections, IPv6, with its vastly expanded address space, presented a solution
to the exhaustion of IPv4 addresses and the associated routing table complexities. By providing trillions
of unique addresses, IPv6 offered the necessary foundation for the development of autonomic networking
solutions. In response to the challenges posed by IPv4 exhaustion, network architects and managers began
implementing IPv6 in their organizations. This transition not only addressed the scarcity of IP addresses
but also allowed for the design of networks with optimized routing tables, thanks to the logical model of
autonomic systems based on summary routes.

Autonomic refers to the ability of a system or entity to operate independently, without direct human
intervention or control. In various contexts, autonomy implies self-governance, self-management, and self-
regulation, but allowing high-level guidance by a central entity (intent) [12]. Autonomic systems are capable
of making decisions, taking actions, and adapting to changing circumstances based on predefined rules, al-
gorithms, or objectives.

Autonomic networking refers to the concept of self-managing and self-optimizing networks that can
adapt and respond to changing conditions without human intervention. This approach leverages automation
to streamline network operations, improve efficiency, enhance performance, and ensure reliability. Auto-
nomic networking represents a paradigm shift from traditional network management approaches, empow-
ering networks to become more agile, resilient, and intelligent. Here are some key aspects of autonomic
networking:

• Self-Configuration: Autonomic networking enables networks to automatically configure and provi-
sion resources based on predefined policies and objectives. This includes tasks such as assigning IP
addresses, configuring routing protocols, and setting up security policies. By automating these pro-
cesses, networks can reduce deployment times, minimize human errors, and ensure consistency across
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network configurations.

• Self-Optimization: Autonomic networks continuously monitor their performance metrics and traffic
patterns to identify optimization opportunities. Using AI and ML algorithms, networks can analyze
data in real-time, predict future trends, and make proactive adjustments to optimize resource utiliza-
tion, bandwidth allocation, and quality of service (QoS). This dynamic optimization improves network
efficiency and responsiveness while maximizing user experience.

• Self-Healing: Autonomic networking enables networks to detect and respond to faults and failures
automatically. By leveraging intelligent algorithms and automated remediation actions, networks can
quickly identify and isolate issues, reroute traffic, and implement fail over mechanisms to maintain
service continuity and minimize downtime. This self-healing capability enhances network reliability
and resilience, ensuring high availability and fault tolerance.

2.5.1 Architecture

Autonomic networking architecture encompasses a hierarchical design model aimed at enabling self-
management and self-configuration capabilities within network elements. This architecture comprises three
interconnected layers.

• the Autonomic Network Infrastructure (ANI)

• the Autonomic Control Plane (ACP)

• the Autonomic Service Agent (ASA).

At the core of this architecture is the Autonomic Network Infrastructure (ANI), which acts as the back-
bone for the entire autonomic network. ANI enables a shared infrastructure among a group of autonomic
nodes, allowing them to exchange services and information at the most fundamental level. Carpenter et
al. [1] introduce the concept of autonomic nodes as Plug-and-Play devices within autonomic networks,
highlighting the importance of self-securing as a key characteristic. Each autonomic node operates inde-
pendently, requiring it to establish secure communication and initialize its ACP. This shared infrastructure
not only facilitates communication between nodes but also provides essential data that supports the local
functions of each node, as illustrated in Figure 2.7.
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Figure 2.7: Autonomic Node Architecture

Sitting atop the ANI is the ACP, functioning as the controller entity overseeing the nodes’ operations.
The ACP acts as an intermediary between the shared infrastructure and the higher layers, facilitating access
to ANI services while providing critical information to the upper layers of the architecture.

The highest layer comprises the ASA, encompassing atomic entities and autonomic functions that en-
able autonomic nodes to leverage the services provided by the lower layers effectively. ASA integrates with
the ACP to access shared infrastructure services and utilizes them to execute various autonomic functions,
thereby empowering nodes to automatically manage and configure themselves.

2.5.2 Generic Autonomic Signaling Protocol (GRASP)

GRASP is a communication protocol defined by IETF [13], enabling autonomic nodes and ASAs to
discover peers, synchronize states, and negotiate parameters dynamically. It supports decentralized, self-
managing network operations, allowing nodes to coordinate actions such as resource management and net-
work configuration without manual intervention.

2.5.3 Enrollment over Secure Transport (EST)

EST is a protocol defined by the IETF in the RFC7030 [14] to facilitate secure certificate enrollment for
clients using the Public Key Infrastructure (PKI). EST operates by exchanging Certificate Management over
CMS (CMC) messages over a secure transport layer, specifically leveraging TLS (Transport Layer Security)
and HTTP to provide a secure, authenticated, and authorized channel for certificate management. The
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protocol enables clients to acquire certificates from a Certification Authority (CA) and manage key pairs,
including both client-generated and CA-generated key pairs. EST is designed to be simple yet functional,
ensuring that PKI clients can obtain necessary certificates and associated CA certificates securely, supporting
a range of operations including initial enrollment, certificate re issuance, and distribution of CA certificates.

2.5.4 BRSKI

BRSKI (Bootstrapping Remote Secure Key Infrastructures) is an IETF-defined protocol that plays a
pivotal role in the secure onboarding of new devices (as nodes) into an Autonomic Network. BRSKI can be
used in conjunction with IPv6 protocols to automate the provisioning of IPv6 addresses and other network
parameters in the end nodes.

BRSKI operates by leveraging existing security infrastructures, such as PKI and digital certificates, to
authenticate devices. Once a device is authenticated, BRSKI provisions it with the required configuration
to join the ACP securely. This process is vital for maintaining the integrity and security of the Autonomic
Network.

The ACP, relies on BRSKI protocol for configuration. Multiple autonomic nodes play distinct roles in
the bootstrapping process. BRSKI facilitates mutual authentication through the exchange of X.509 certifi-
cates via an external entity, assisting in this authentication. The X.509 certificates serve as a public key
certificate format in secure transport protocols.

The following includes definitions for components and nodes used in BRSKI.

• Pledge:
Pledge is a critical component in establishing secure connections for Internet of Things (IoT) devices.
It facilitates the enrollment of devices into a network securely, ensuring that only authorized devices
gain access. The pledge is responsible for initiating the bootstrapping process, where it generates a
public-private key pair and communicates with a registrar to obtain necessary credentials for network
access. This process is crucial for IoT deployments, especially in scenarios where manual interven-
tion for device setup is impractical or insecure. BRSKI pledge streamlines the onboarding process,
enhancing the overall security posture of IoT networks.

• Join Proxy:
To address security concerns, the registrar cannot openly disclose its presence, as it might pose a
security risk. Richardson et al. [1] introduce the join proxy, a low-security risk intermediary role
connecting the pledge to the authenticated registrar. The pledge, aware that it must pass through the
join proxy to reach the registrar, seeks a join proxy among its neighbors using DULL GRASP. Upon
finding the join proxy, the pledge dispatches a voucher request message directed to the registrar but
relayed through the join proxy.

• Registrar:
Registrar component is to securely onboarding IoT devices onto a network. It acts as a central au-
thority responsible for verifying the identity of devices seeking access and provisioning them with
the necessary credentials to join the network securely. The registrar facilitates the enrollment pro-
cess by authenticating the identity of devices through mechanisms such as certificates or pre-shared
keys. Once authenticated, the registrar provides the devices with the necessary information, includ-
ing cryptographic material and network configuration parameters, enabling them to establish secure
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connections with other network components. By overseeing the bootstrapping process, the BRSKI
registrar ensures that only authorized devices gain access to the network, thereby enhancing overall
network security and integrity.

• Manufacturer Authorized Signing Authority (MASA):

The MASA operates independently of the domain but holds a critical function in authenticating the
pledge. Serving as a representative of the pledge device’s manufacturer, MASA maintains a registry
of device owners, both current and past, for ownership verification. The manufacturer incorporates
a certificate within the pledge device, allowing MASA to conduct device authentication. Notably,
the pledge does not establish direct communication with MASA; instead, the registrar takes on the
responsibility of requesting MASA to authenticate both the device and its owner. In this process,
MASA also authenticates the registrar to the pledge, facilitating mutual authentication between the
pledge and the registrar. Hence, MASA plays a pivotal role in ensuring the mutual authentication of
the pledge and the registrar.

• Voucher:
In BRSKI, a voucher is a cryptographic message that securely communicates authorization and con-
figuration details from the registrar to the pledge during enrollment. It contains essential network
parameters signed by a trusted authority, enabling the pledge to securely configure itself and establish
trust within the network.

BRSKI answers four main questions:

(1) The registrar verifies the identity of the pledge by asking, “Who is this device? What is its identity?”

(2) The registrar decides whether to authorize the pledge by questioning, “Is it mine? Do I want it? What
are the chances it has been compromised?”

(3) The pledge verifies the identity of the registrar by asking, “What is this registrar’s identity?”

(4) The pledge decides whether to authorize the registrar by considering, “Should I join this network?”

BRSKI outlines protocols and messages to address the aforementioned inquiries. It employs a TLS con-
nection and a PKIX-shaped (X.509v3) certificate, such as an IEEE 802.1AR IDevID, to address points 1
and 2. Additionally, it introduces voucher as a new concept, obtained by the registrar from an external entity
and passed to the pledge, to address points 3 and 4.

2.5.5 Management, Control, and Data Planes

In modern networking, three key planes - control, data, and management - work together seamlessly to
ensure network efficiency. The planes are shown in Figure2.8. Control Plane manages routing protocols,
deciding the best paths for data transmission across the network using protocols like OSPF and BGP. Data
Plane, also called the forwarding plane, it physically forwards data packets based on routing information
provided by the control plane, using protocols like Ethernet and IP. Management Plane handles adminis-
trative tasks like device configuration, performance monitoring, and security management using protocols
such as SNMP and NETCONF, ensuring network stability and efficiency.
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Figure 2.8: Management, Control, and Data Planes

2.6 IP Networking in IoT

Internet Protocol (IP) networking forms the backbone of the Internet of Things (IoT), enabling connec-
tivity and functionality across a diverse array of devices. Within IoT networks, IP addressing and routing
facilitate seamless communication and data exchange among devices, supported by wireless connectivity
technologies like Wi-Fi and Bluetooth. Protocols such as MQTT and CoAP optimize data transmission over
low-power and low-bandwidth networks often used in IoT applications, ensuring efficient communication.

2.6.1 IPv6

IPv6 plays a pivotal role in the Internet of Things (IoT) ecosystem for several reasons. Firstly, its ex-
pansive address space provides trillions of unique addresses, accommodating the escalating number of IoT
devices, a stark contrast to the limited pool of IPv4 addresses. This abundance is crucial for accommodating
the surging number of IoT devices, ensuring each device can have its distinct identifier without relying on
complex network address translation mechanisms.
Additionally, IPv6’s scalability is indispensable for the growing IoT landscape, as it ensures there are ample
unique addresses to support the burgeoning number of connected devices. This scalability facilitates seam-
less integration of new IoT devices into existing networks without facing address exhaustion issues.
Furthermore, IPv6 offers autoconfiguration capabilities, enabling IoT devices to acquire IP addresses auto-
matically, simplifying network deployment and management. Its efficiency in packet processing and rout-
ing, along with built-in support for IPsec, enhances network performance and security, making it ideal for
resource-constrained IoT devices. Lastly, IPv6 adoption future-proofs IoT deployments, ensuring long-term
compatibility and support for emerging technologies, thus averting the need for costly network upgrades.

2.6.2 IPv6 addresses

• Global Unicast Address (GUA):
This is the equivalent of a public IP address in IPv6, globally unique and routable on the IPv6 internet.
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Typically, these addresses start with a prefix of 2000::/3, which indicates that they are part of the
global unicast address space. This address is used for communication across the internet, ensuring
that a device can be reached from any other device on the global IPv6 network.

• Link Local Address:
This address is used for communication between devices on the same local network segment or link.
It is not routable beyond the local link, meaning it cannot be used to communicate across different
networks. These addresses start with the prefix FE80::/10 and are automatically generated by devices
when they connect to an IPv6-enabled network. The primarily usage of this address is for neighbor
discovery, link-layer addressing, and other local network management tasks.

• Unique Local Address (ULA):
This address is similar to private IP addresses in IPv4 (like 192.168.x.x), meant for use within a
specific organization or site. It is unique within a local environment but not globally routable on the
internet. ULAs start with the prefix FC00::/7, with the most common implementation using FD00::/8
for locally assigned addresses. This address is used for internal network communication, such as
within a corporate network or between devices in a home network, without exposing the addresses to
the global internet.

2.6.3 IPv6 Autonomic Behavior

IPv6 autonomic behavior refers to the capability of IPv6 networks to self-manage and self-configure
with minimal human intervention. IPv6 autonomic behavior extends into various mechanisms and protocols
that contribute to the seamless, self-managing nature of modern networks. Key among these are address auto
configuration and Neighbor Discovery (ND), which are explained in the next chapter. These technologies
work together to create networks that are not only more efficient but also capable of adapting to changing
conditions without manual intervention.

One of the autonomic behaviour in IPv6 is the dynamic SCHC updates. This term is essential for main-
taining efficient communication in networks with constrained devices, such as IoT environments. As these
networks evolve—whether due to changes in device roles, application requirements, or network configura-
tions—the predefined SCHC contexts, which dictate how headers are compressed, may no longer be optimal.
Dynamic SCHC context updates allow these compression rules to be adjusted in real-time, ensuring that the
network continues to operate efficiently without manual intervention.

2.6.4 IP supporting LPWAN

Supporting Internet Protocol (IP) communication over Low-Power Wide-Area Networks (LPWANs)
faces challenges due to their small packet sizes, constrained bandwidth, and limited energy. Efforts are
underway to enable seamless IP connectivity in LPWANs by adapting protocols like IPv6 and using header
compression techniques. A key advancement is the integration of 6LoWPAN, which addresses LPWAN
challenges with mechanisms like header compression, address autoconfiguration, fragmentation, and neigh-
bor discovery. Header compression reduces IPv6 and UDP overhead, making data transmission efficient,
while fragmentation enables larger packet transmission. 6LoWPAN Neighbor Discovery optimizes IPv6
Neighbor Discovery for LPWANs, facilitating efficient IP communication critical for IoT deployment.

6LoWPAN aimed to adapt IPv6 to the constraints of low-power wireless networks by defining header
compression techniques, fragmentation mechanisms, and other optimizations to reduce overhead and con-
serve bandwidth. However, over time, it became apparent that 6LoWPAN had limitations and wasn’t fully
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suitable for all LPWAN technologies and use cases.

As a result, the IETF established the Static Context Header Compression (SCHC) working group to de-
velop a more flexible and efficient solution for IP-based communication over LPWANs. SCHC introduces
a standardized framework for compressing IPv6/UDP/CoAP headers, allowing efficient transmission of IP
packets over LPWANs with constrained resources.

2.7 Static Context Header Compression and Fragmentation (SCHC)

This section introduces the SCHC adaptation layer, positioned between IPv6 and an underlying LPWAN
technology, which comprises two crucial sublayers: header compression and fragmentation. The subsequent
subsections delineate the key design principles and features inherent in these sublayers. Developed by IETF,
the SCHC specification facilitates header compression for IPv6, UDP, and CoAP protocols within LPWAN
technologies . This compression and fragmentation capability enables communication over the Internet
directly to the assigned IP address of an end device [10]. The specific LPWAN technology addressed in
this context is LoRaWAN, and the operational guidelines for SCHC over LoRaWAN are defined in RFC
9011 [15].

SCHC (Static Context Header Compression) emerges as a more effective solution for addressing the
stringent constraints of Low Power Wide Area Network (LPWAN) technologies compared to 6LoWPAN.
While 6LoWPAN provides some compression capabilities for IPv6 and UDP headers, SCHC offers a higher
compression ratio, potentially reducing a 48-byte uncompressed header to a single byte. This enhanced com-
pression efficiency is vital for optimizing data transmission over LPWANs with extremely limited bandwidth
and packet sizes. Moreover, SCHC is tailored explicitly for LPWAN technologies, ensuring its compression
and fragmentation functionalities are optimized to effectively address these constraints, leading to improved
resource utilization and network performance. Additionally, SCHC supports CoAP header compression, a
feature lacking in 6LoWPAN, further enhancing its potential for efficiency and performance gains in 6LoW-
PAN environments.

2.7.1 SCHC Compression

The efficient transmission of IP-based protocols over LPWANs is hindered by the significant overhead
introduced by typical packet header sizes, which are notably larger than the extremely limited LPWAN
frame payload sizes. While various header compression mechanisms have been developed for efficient
packet transmission over different technologies, the Robust Header Compression (ROHC) and 6LoWPAN
header compression mechanisms, designed for IP-based packet headers, are not suitable for LPWANs. In
response to these challenges, the Static Context Header Compression (SCHC) has been purposefully de-
signed for LPWANs, specifically applicable to protocols like IPv6, UDP, and CoAP. [16].

SCHC relies on a static context shared between the compressor and the decompressor, leveraging a
priori knowledge of the traffic to be compressed. This approach eliminates the need for context resynchro-
nization mechanisms and receiver feedback, enabling ultra-lightweight header compression. In SCHC, a
context is defined as a set of rules, each associated with a Rule identifier (Rule ID). Each rule describes how
to compress specific packet header fields, and a rule may be used for compressing one or more protocol
headers. When sending a packet, the SCHC compressor selects the rule that best matches the header for-
mat and values of the packet, replacing the original packet header with the corresponding Rule ID. In cases
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where a Rule ID cannot unambiguously represent a complete packet header, a compression header residue
is generated, constituting the compressed header. Upon receiving a compressed packet, the decompressor
reconstructs the original packet header based on the received compressed header and the stored context. The
compact size of the Rule ID allows for efficient encoding of a large number of rules, ensuring flexibility and
scalability in LPWAN environments [17].

2.7.2 SCHC Stack Flow

The requirement in IPv6 for any underlying layer to support packets of at least 1280 bytes, intended to
achieve high performance over a presumed resource-rich Internet, poses challenges in LPWAN networking.
LPWANs, designed for infrequent message exchanges with short-sized payloads, often have extremely short
maximum frame payload sizes, some even as low as 10 bytes. Despite the highly efficient SCHC header
compression, many IPv6 packets may not fit into a single LPWAN frame, and neither LoRaWAN nor Sigfox
supports fragmentation and reassembly. To address this, SCHC introduces fragmentation at its adaptation
layer, positioned below the header compression sublayer [16].

In the context of LoRaWAN, the SCHC compression sublayer processes IPv6 packets, resulting in
SCHC Packets. If the SCHC Packet is within the LPWAN protocol’s Maximum Transmission Unit (MTU),
it is transmitted without fragmentation; otherwise, it is delivered to the fragmentation sublayer. The trans-
mission process through SCHC sublayers is illustrated in Figure 2.9, with the fragmentation sublayer and
its modes explained below as a theoretical basis for understanding efficiency in this sublayer [10].

Figure 2.9: SCHC Stack Flow. Adapted from [2]

2.7.3 SCHC Fragmentation

A SCHC Fragment consists of a SCHC Fragment Header and payload, where the payload carries one
tile. For LoRaWAN, the SCHC Fragment Header includes the window number (W) and FCN for the tile
(Figure 2.10).
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Figure 2.10: SCHC Fragment. Adapted from [2]

Preceding these is the RuleID, indicating the SCHC Fragment Header size. Two types of SCHC Frag-
ments exist: Regular (excluding the last tile of each window) and All-0 SCHC Fragments (carrying the last
tile of each window except the last one). The All-1 SCHC Fragment denotes the end of the SCHC Packet.
The SCHC ACK message includes a SCHC ACK Header and a bitmap. The header contains the RuleID,
window number (W), and integrity check bit (C), with C = 1 indicating a successful transfer. When C = 1,
the bitmap is omitted for optimization, with padding added if needed for alignment with the underlying L2’s
minimum data unit.

The figure 2.11 illustrates the flow of SCHC ACK mode packets transfer. In the event that a receiver
receives an All-0 SCHC fragment, it only sends a SCHC acknowledgment (ACK) as shown in Figure 2.11.
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Figure 2.11: SCHC message flow. Source [15]

To calculate the window and fragment time we used below formula adapted from Muñoz-Lara in [2]:

Wi = mi ⇤ FRF + PRF +AR (3)

Where:

• Wi: number of the windows

• mi: number of full fragments

• FRF: time of the full size fragments

• PRF: time of the Partial size fragment

• AR: Ack request and response time

In [2], the authors introduced Table 2.12 that shows how mi is calculated for each window and fragment:

Figure 2.12: Window time and fragment time calculation. Adapted from [2]
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2.7.4 SCHC Context

The SCHC methodology capitalizes on the predictable nature of traffic in typical LPWAN applications,
allowing both communication endpoints to leverage a pre-shared, static context containing header infor-
mation. This context comprises a set of rules identified by a fixed-size Rule-ID, enhancing flexibility and
performance by dynamically adjusting the compression configuration based on real-time traffic. In scenar-
ios with low traffic variability, where changes in header fields are minimal, predefined header configurations
(Rule-ID) are stored at both the source and destination endpoints. Consequently, the identifier of the rule
closest to the uncompressed header is transmitted, accompanied by a potential residue field for information
not retrievable from the Rule-ID alone [18]. In cases where the residue is empty, the most concise message
length is achievable. Each rule encompasses various fields derived from the original header parameter, in-
cluding Field ID (FID), Field Length (FL), Field Position (FP), Direction Indicator (DI), Target Value (TV),
Matching Operator (MO), and Compression Decompression Action (CDA) [19]. This approach optimizes
header compression and decompression processes, as depicted in the simplified graphical representation in
Figure 2.13.

Figure 2.13: SCHC Context. Source [19].

Let’s discuss each component in detail:

• Field ID (FID): FID identifies a specific field within the header that is targeted for compression or
decompression.Each field in the header is assigned a unique FID to facilitate compression and de-
compression operations.

• Field Length (FL):FL specifies the length of the compressed representation of the field. It indicates
the number of bits allocated for representing the field’s value in the compressed form.

• Field Position (FP):FP determines the position of the compressed field within the compressed header.
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It indicates the offset or position where the compressed representation of the field starts in the com-
pressed header.

• Direction Indicator (DI):DI indicates the direction of the packet flow (uplink or downlink) for which
the compression or decompression rules apply. It ensures that compression and decompression oper-
ations are applied correctly based on the packet’s direction.

• Target Value (TV):TV represents the desired value of the field to be matched during decompression.
It serves as a reference value against which the received compressed field is compared to reconstruct
the original field value during decompression.

• Matching Operator (MO):MO specifies the operation used to compare the received compressed field
with the target value during decompression. Common matching operators include exact match, prefix
match, suffix match, and range match, allowing for flexible field reconstruction.

• Compression Decompression Action (CDA):CDA defines the actions to be performed during com-
pression and decompression operations. Compression actions include truncation, repetition, and omit-
ting the field, while decompression actions involve reconstructing the original field value based on the
compressed representation and target value.

By leveraging these components and mechanisms, SCHC enables efficient compression and decompres-
sion of IPv6/UDP/CoAP headers in LPWAN environments, reducing overhead and optimizing bandwidth
utilization without compromising interoperability or reliability. SCHC provides a standardized and inter-
operable solution for header compression in LPWAN deployments, facilitating seamless integration with
existing IP-based protocols and applications.

The table 2.1 shows the maximum payload sizes allowed in each SF and their corresponding number of
tiles in each fragment.

Table 2.1: Maximum size for a full fragment payload. Adapted from [2]

SF Maximum payload size Tiles for each regular fragment
12 51 5
11 51 5
10 115 5
9 222 11
8 222 22
7 222 22
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Chapter 3

Onboarding

In the previous chapter, we explained the terms related to our research. Now that LoRaWAN, IPv6,
and BRSKI are understood concepts, we will demonstrate how these technologies are applied in onboarding
process. Configuring and setting up new devices is a crucial first step before any data can be transferred.
This chapter will delve into several key areas: the process of onboarding devices in a LoRaWAN network,
the mechanisms of onboarding with autonomic networking perspective, and the configuration of device
addresses within an IPv6 network. Additionally, we will evaluate the security metrics considered in each
scenario to ensure robust and secure IoT deployments.

3.1 LoRaWAN

This section describes the onboarding process of LoRa devices to the LoRaWAN network, called device
activation. Following this, an overview of the security metrics and mechanisms designed to protect against
threats during LoRaWAN device activation will be provided.

3.1.1 Over The Air Activation Process (OTAA)

LoRaWAN supports two primary end-device activation methods: 1. Over-the-Air Activation (OTAA):
This method involves devices being provisioned and authenticated over the air before joining the network.
2. Activation by Personalization (ABP): With this method, devices are pre-configured with security creden-
tials and join the network by personalization.

Given its enhanced security and recommendation for end-device activation, the OTAA method is the
primary focus of this thesis. Unlike alternative methods, OTAA eliminates the need for hardcoding device
addresses and security keys into the device.

Here are the steps involved in Over The Air Activation (OTAA) within the LoRaWAN framework:

• Initialization: In OTAA, end-devices commence a join procedure by engaging in an authentication
message exchange with the Network Server (NS) before establishing data communication.

• Join Procedure: The join procedure encompasses a join-request transmitted from the end-device to
the NS and a subsequent join-accept transmitted from the NS to the end-device.
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Figure 3.1: OTAA message flow in LoRaWAN. Adapted from [20]

• Define Device: Before initiating the join procedure, an end-device is defined by specific information,
including a globally unique end-device identifier (DevEUI), the join server identifier (JoinEUI), and
an advanced encryption standard key (AppKey).

• Recovery Procedure: If an end-device loses its network session information, it triggers a new join
procedure to regain network access.

3.1.2 Security mechanisms

LoRaWAN is designed to offer secure communication for IoT devices over long distances while main-
taining low power consumption. The security framework encompasses both front-end and back-end security
mechanism to ensure data integrity, confidentiality, and authentication. Here is an overview of the key secu-
rity metrics and mechanism which can be shown in the figure 3.2 as well:

Frontend security

The Key Management and Exchange during OTAA uses AES Encryption for Network and Application
Layers. Two keys are provided in the process to be shared; Network Session Key (NwkSKey) between the
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end device and the network server, and Application Session Key (AppSKey) between end device and appli-
cation server

• Network Session Key (NwkSKey): A Network session key employed for encrypting communication
between end-devices and the network server. It provides data integrity and authentication between the
end device and the network server. It uses AES-CTR to ensure message confidentiality.

• Application Session Key (AppSKey): An Application session key (AES-128 key) utilized to protect
application-specific data. Ensures data confidentiality between the end device and the application
server. It uses AES-CMAC for message integrity and authentication.

Note that, the initial Join Request message sent from a node is unencrypted. However, the response
message from the Network Server (Join Accept message) is encrypted with the AppKey. NwkSKey and
AppSKey are calculated as follows:

NwkSKey = aes128 encrypt(AppKey, 0x01|AppNonce|NetID|DevNonce|pad16)

AppSKey = aes128 encrypt(AppKey, 0x02|AppNonce|NetID|DevNonce|pad16)

Figure 3.2: OTAA Key encryption. Source [21].

Backend security

There are a few optional ways to provide the backend security before the OTAA starts, so the infras-
tructre is safe to start the key sharing between devices. TLS is one of the secure mechanisms used to secure
communication between network servers and application servers, ensuring data is encrypted and safe from
eavesdropping during transit. Firewalls and Machine Learning mechanisms are also useful options to protect
the backend infrastructure from unauthorized access and to detect any malicious activities.

Prevention against attacks

The OTAA Key encryption provides security mechanism which are all based on AES-128. They prevent
LoRaWAN communication from the attacks listed below:
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• Unauthorized Access: Unauthorized Access provides mutual end-point authentication to prevent
unauthorized devices or users from accessing the network. The AppKey and NwkKey are never
sent over the air, ensuring they remain confidential and are known only to the device and the network
server, not exposed to unauthorized entities. This ensures that only devices with the correct keys can
decrypt subsequent communication and join the network.

• Spoofing: Spoofing involves an attacker impersonating a legitimate device or entity to gain unautho-
rized access or information. In a network context, this includes sending messages that appear to come
from a trusted source. A replay attack, a type of spoofing, occurs when the attacker intercepts and
retransmits valid data to deceive the receiver.
In protocols like LoRaWAN, replay protection is achieved through the use of unique nonces (e.g.,
DevNonce in the join procedure). Each message includes a nonce that must be unique for every trans-
action. This ensures that previously captured messages cannot be reused. In LoRaWAN, DevNonce is
incremented with every Join-request to prevent replay attacks. A Join-request with a reused DevNonce
will be rejected by the Join Server, preventing attempts to reuse old messages to gain unauthorized
access.

• Modification: Each Join-request and Join-accept message includes a MIC, calculated using a crypto-
graphic function and the NwkKey. This MIC ensures the message has not been altered in transit. The
receiver recalculates the MIC and compares it to the received MIC to verify integrity.

• Eavesdropping: Eavesdropping is the unauthorized interception and listening to private communica-
tion or data transmission between parties to gain information without their knowledge or consent.
OTAA prevents eavesdropping by encrypting the Join-accept message with the NwkKey and ensures
ongoing encryption by deriving unique session keys (AppSKey and NwkSKey) for secure data trans-
mission.

3.2 IPv6

IPv6 addresses can be configured manually, via DHCPv6, or using Stateless Address Auto-configuration
(SLAAC). SLAAC, a required functionality of IPv6, allows devices to self-configure unique addresses au-
tomatically, without the need for a central server. SLAAC ensures unique and globally routable addresses.
In this thesis, we will describe SLAAC, since it allows devices to automatically configure their addresses
without manual intervention, promoting a more self-configuring network.

3.2.1 Neighbor Discovery Protocol

Neighbor Discovery is explained in this section because it is a fundamental protocol that underpins many
of the key processes involved in IPv6 SLAAC. SLAAC relies on ND to facilitate essential functions such as
generating link-local addresses, detecting duplicate addresses, and obtaining global network prefixes from
routers.
The ND protocol is a key component of IPv6 that enables devices on the same local network to discover
each other, determine each other’s link-layer addresses, and manage reachability information. NDP replaces
several IPv4 protocols like ARP and ICMP Router Discovery, providing a more efficient and flexible mech-
anism for network communication. It plays a crucial role in the auto-configuration process, as it allows
devices to discover routers, obtain network prefixes, and ensure that their addresses are unique on the local
network segment. NDP includes important mechanisms such as Router Solicitation, Router Advertisement,
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Neighbor Solicitation, Neighbor Advertisement, and Redirect messages, all of which contribute to the seam-
less operation of an IPv6 network.

3.2.2 SLAAC

In this mechanism, the End Device automatically configures its own IPv6 link-local address to connect
to an IPv6-enabled network. This local address allows the device to communicate at Layer 3 with other IPv6
devices within the same local network segment. The most common method for creating a link-local address
is to derive the EUI-64 interface identifier from the device’s MAC address (or DevEUI address in LoRa),
and combine it with the link-local prefix FE80::/64. These are the steps included in SLAAC:

• First, the node Configures Itself with a Link-local Address: When a device connects to an IPv6 net-
work, it first auto-configures a link-local address using the prefix FE80::/64 and an identifier derived
from its EUI-64 interface identifier. LoRa device uses its 64 bit globaly unique DEvEUI as its EUI-64
interface identifier. This is an example to show how to create an IPv6 Link Local Address:

1. DevEUI Address: 70-07-12-34-56-78

2. Split the DEvEUI Address into Two Halves:
70-07-12 and 34-56-78

3. Insert 0xFFFE in the Middle:
70-07-12-FF-FE-34-56-78

4. Convert the First Byte (70) to Binary: 70 in binary =
0111 0000

5. Invert the U/L (Universal/Local) Bit (7th bit from the left):
0111 0000 (original)
0111 0010 (inverted 7th bit)

6. Convert Back to Hexadecimal: 0111 0010 in binary =
72 in hex

7. Combine All Parts to Form the EUI-64 Interface Identifier:
EUI-64 Identifier: 72-07-12-FF-FE-34-56-78

Finally, the Link-local Address is formed by Adding the FE80::/64 Prefix as provided in the Figure
3.3.
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Figure 3.4: NS message to multicast address

Figure 3.3: Link local address generation

• Duplicate Address Detection (DAD): DAD is a critical part of the Neighbor Discovery protocol in
IPv6. It ensures that any IP address assigned to a device, whether link-local or global, is unique on
the local network segment. The device ensures its link-local address is unique by performing DAD,
where it sends an ICMPv6 Neighbor Solicitation message to a solicited-node multicast address. If no
response is received, the address is unique. Here are the example steps in detail:

1. In thus step, the last 6 hex digits of the IPv6 address is appended to the multicast group prefix
FF02::1:FF00:0/104 to form the solicited-node multicast address, which will be:

FF02::1:FF34:5678.

The node sends a Neighbor Solicitation (NS) message to the solicited-node multicast address as shown
in Figure 3.4:

2. If not subscribed to multicast group FF02::1:FF34:5678, no Neighbor Advertisement (NA) re-
sponse will be received from the multicast group PC or routers as shown in Figure 3.5.

Figure 3.5: NA response from multicast group
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3. Finally, if not receiving any NA messages, the address is considered unique and is assigned to the
node:

LL IPv6 Address: FE80::7207:12FF:FE34:5678

The next steps are for configuring the global unicast address.

• Router Solicitation Message: The device then sends a Router Solicitation message to discover network
routers and obtain the global IPv6 prefix. The routers respond with Router Advertisement messages
containing the necessary prefix information.

• Node Configures Its Global Unicast Address: The device combines the received prefix with its EUI-
64 interface identifier to create a global unicast address. It also sets its default gateway to the router’s
link-local address. This is an example for global unicast address according to the example in the first
step:

Combining Prefix with Interface Identifier:
Prefix: 2001:1234:A:B::/64
EUI-64 Interface ID: 7207:12FF:FE34:5678
Global Unicast Address: 2001:1234:A:B:7207:12FF:FE34:5678/64

• Duplicate Address Detection for Global Address: The device performs DAD again for its global
unicast address by sending a Neighbor Solicitation message. If no reply is received, the address is
confirmed as unique and can be used for communication.

Overall, in IPv6 auto-configuration, devices configure a link-local address using an EUI-64 identifier
derived from the MAC address, and ensure the uniqueness of this address through Duplicate Address De-
tection (DAD). For global communication, devices request network prefixes from routers via Router Solic-
itation messages and configure their global unicast addresses by combining the received prefix with their
EUI-64 identifier, followed by another DAD to verify uniqueness. This self-configuring approach simplifies
network management and promotes seamless connectivity within IPv6 networks.

3.3 BRSKI

The Bootstrapping Remote Secure Key Infrastructure (BRSKI) [22] protocol plays a crucial role in
securely onboarding new devices into a network. It automates the initial security configuration of devices,
ensuring they can communicate securely and be managed effectively. This process involves a series of
structured messages exchanged between the device being onboarded (referred to as the bootstrapped), the
local network infrastructure, and the manufacturer’s trusted services. The following shows an overview of
the messages and their roles in the onboarding process. Finally, an overview of the security mechanism and
mechanisms designed to protect against threats during the BRSKI bootstrapping process is provided.
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Figure 3.6: BRSKI Architecture

3.3.1 Message Flow in BRSKI

This section provides an in-depth examination of the various message flows within BRSKI, describing
the steps and interactions between the end device (pledge), join proxy, registrar, and MASA (Figure 3.6).

Discovery Request and Response

The Pledge, upon being powered on, needs to discover a local Join Proxy that will facilitate its communi-
cation with the network’s Registrar. To achieve this, it sends autonomic multicast messages using Discovery
Unsolicited Link-Local (DULL) [RFC8990] M FLOOD announcements of the GeneRic Autonomic Signal-
ing Protocol (GRASP). Below shows the DULL GRASP step by step process:

(1) Multicast Discovery Request (M DISCOVERY): The Pledge sends a multicast Discovery Request
message (M DISCOVERY) via UDP to the GRASP LISTEN PORT (7017) at the link-local
ALL GRASP NEIGHBORS multicast address on each link-layer interface. The message contains the
Pledge’s IPv6 address, a randomly generated session ID, and the objective to find the Join Registrar
(JOIN REGISTRAR).
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discovery-message = [M DISCOVERY, session-id, initiator, objective]

Below is a discovery-message content example(Figure 3.7):

Figure 3.7: DULL GRASP Discovery Message. Surce [1].

Note that the flag 0 is the indicator of the discovery message and the loop count in DULL GRASP is
1.

(2) Join Proxy Receives Discovery Request: All devices on the network listening on the GRASP LISTEN PORT
receive the Discovery Request. The Join Proxy, upon receiving the request, prepares a response with
its locator information.

(3) Multicast Flood (M FLOOD): The Join Proxy sends a multicast Flood message (M FLOOD) to an-
nounce its presence and provide its locator information (IPv6 address, transport protocol, port num-
ber). This message is also sent to the GRASP LISTEN PORT (7017) on the link-local ALL GRASP NEIGHBORS
multicast address.

flood-message = [M FLOOD, session-id, initiator, ttl, [objective, locator-option]]

Below is a flood-message content example(Figure 3.8):
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Figure 3.8: DULL GRASP Flood Message. Source [1].

(4) Pledge Receives Flood Message: The Pledge receives the Flood message and extracts the Join Proxy’s
locator information, storing it for subsequent secure communications.

(5) Registrar Announcement: The registrar also announces its presence using GRASP M FLOOD mes-
sages, indicating the services it supports and the ports it listens on.

Secure Communication: The pledge uses the ACP to securely communicate with the registrar via the
proxy, ensuring that all interactions are protected by the ACP’s security mechanisms.

TLS Server Authentication

In BRSKI , the TLS handshake is an essential process that establishes a secure communication channel
between the Pledge (new device) and the Registrar (trusted network entity), and between the Registrar and
MASA. The handshake ensures that both parties authenticate each other and agree on encryption methods
to protect their communication (Figure 3.9).

The TLS handshake in BRSKI begins with the Pledge (client) initiating communication by sending a
Client Hello message. This message includes the protocol version, a randomly generated number, session
ID, list of supported cipher suites, and any extensions such as Server Name Indication. The Registrar (server)
responds with a Server Hello, echoing back its chosen protocol version, its own random number, session
ID, selected cipher suite, and extensions. Following this, the server sends its Certificate message, which
includes the server’s certificate chain to authenticate itself to the client. The Server Hello Done message
indicates the server has finished its part of the initial negotiation.

The role of the proxy is to facilitate this communication by forwarding packets without terminating
the TLS handshake, thereby maintaining the security and integrity of the connection. This type of proxy

32



is referred to as a circuit proxy, a form of Application Level Gateway. The circuit proxy ensures that the
communication stream remains intact and secure from the pledge to the registrar.

In response, the client sends a Client Key Exchange message, which includes the pre-master secret en-
crypted with the server’s public key from the certificate. This is crucial for establishing a shared secret
that will be used to generate session keys. Following this, the client sends a Change Cipher Spec message,
indicating that it will start using the agreed-upon encryption for the remaining handshake messages. The
Finished message is then sent, containing a hash of all previous handshake messages encrypted with the
session key, verifying the client’s part of the handshake.

The server replies with its own Change Cipher Spec message, indicating it too will start using encryp-
tion. It then sends a Finished message, encrypted and containing a hash of all previous handshake messages
to verify the server’s part of the handshake. Once both sides have verified each other’s Finished messages,
secure communication is established, and they can exchange Application Data encrypted with the negoti-
ated session keys. This ensures the integrity and confidentiality of the data exchanged during the BRSKI
bootstrapping process.

Figure 3.9: TLS Message Exchange

Voucher Request to MASA

In BRSKI, a voucher request is a mechanism used by a device (pledge) to request a voucher from the
Manufacturer Authorized Signing Authority (MASA). This process ensures the device can securely join a
network. The voucher request process involves two main types of requests: the pledge voucher-request and
the registrar voucher-request.

Pledge Voucher-Request A pledge forms the pledge voucher-request, signs it with its IDevID (Initial
Device Identifier), and submits it to the registrar. The request typically includes:

• assertion: Indicates the type of proximity assertion (e.g., proximity).

33



• nonce: A unique value to prevent replay attacks.

• serial-number: The device’s unique serial number.

• created-on: The timestamp when the voucher request was created.

• proximity-registrar-cert: The registrar’s TLS server certificate, asserting proximity.

The JSON message format is chosen for its simplicity and readability, making it easier to parse, debug,
and transmit over networks. Moreover, Base64 Encoding of the message ensures binary data (like certifi-
cates) can be safely included in JSON structures.

Below (Figure 3.10), is an example of JSON representation of a pledge voucher-request:

Figure 3.10: JSON Representation of Pledge Voucher Request. Source [1].

Registrar Voucher-Request The registrar takes the signed pledge voucher-request, forms its own regis-
trar voucher-request, signs it with its registrar key pair, and submits it to the MASA. The registrar voucher-
request includes:

• assertion: Carries forward the assertion from the pledge request.

• nonce: Carries forward the nonce from the pledge request.

• created-on: The timestamp when the registrar voucher-request was created.

• idevid-issuer: The issuer of the pledge’s IDevID certificate.

• serial-number: The pledge’s serial number, extracted from its client certificate.

• prior-signed-voucher-request: The signed pledge voucher-request, base64 encoded.

Below (Figure 3.11), is an example JSON representation of a registrar voucher-request:
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Figure 3.11: JSON Representation of Registrar Voucher-Request. Source [1].

Voucher Response from MASA

The MASA issues a voucher in response to a voucher-request, which is then used by the pledge to
authenticate the registrar and establish a secure network connection. Upon receiving the voucher-request,
the MASA evaluates it and generates a voucher. If the request is successful, the MASA responds with
an HTTP 200 status code and the voucher in the response body. Otherwise, the MASA responds with
HTTP 403, HTTP 404, or HTTP 415 indicating various errors such as incorrect signing, stale requests, or
unsupported media types. The response contains a plain text, human-readable error message.

The voucher is a JSON object signed using CMS (Cryptographic Message Syntax) (Figure 3.12).

Figure 3.12: Example Voucher. Source [1].

Then, the registrar forwards the MASA’s response to the pledge without any modifications. If the regis-
trar accepts the pledge, the Voucher Response is sent back through the join proxy. Upon receiving a valid
response, the pledge joins the domain, configures its ACP, and becomes a secure participant within the
network, utilizing the certificate issued by the registrar for communication.

Voucher Status Telemetry

In BRSKI, the voucher status telemetry is a mechanism that allows the pledge (device being onboarded)
to provide feedback about the status of its voucher processing to the MASA. This telemetry data is crucial
for informing the MASA whether the voucher was successfully used by the pledge or if any issues arose
during the onboarding process. The primary purpose of this telemetry is to enhance security by enabling the
MASA to monitor the proper use of vouchers, identify any misconfigurations, and detect potential attacks or
anomalies in the onboarding process. After the pledge uses the voucher to authenticate and join the network,
it sends the voucher status telemetry to the Registrar, which then forwards an audit log request to the MASA
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for further evaluation. An example of the voucher status telemetry is indicated in the Figure 3.13

Figure 3.13: Enter Caption

Following the receipt of the audit log request, the MASA generates and send an audit log back to the
Registrar. This audit log serves as a record of the voucher issuance and includes details such as the status of
the voucher, the time of its use, and any detected anomalies during the onboarding process. The Registrar,
and potentially the domain owner, can use this audit log to maintain a secure and verifiable trail of the
onboarding process. The audit log ensures that there is a documented history of the interactions between the
pledge, Registrar, and MASA, thereby supporting the integrity and transparency of the onboarding process
in BRSKI. This step is crucial for confirming that the voucher was used as intended and that the device was
securely onboarded into the network. The example is indicated in the Figure 3.14

Figure 3.14: Audit Log Response
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EST Enrollment

With the voucher in hand, the pledge proceeds to enroll with the network infrastructure using the EEST
protocol.

EST enrollment is integrated into BRSKI to automate the process of obtaining Certificate Authority
(CA) certificates, Certification Signing Request (CSR) attributes, and client certificates. This automation
reduces the need for manual intervention and simplifies device onboarding. The use of HTTP-persistent
connections is recommended to simplify the state machine on the pledge and enhance security. All EST
transactions occur over secure TLS connections to ensure the confidentiality and integrity of the messages.
Certificates and CSRs are digitally signed to authenticate the entities involved and prevent tampering. This
process involves securely exchanging certificates, keys, and other cryptographic material to establish trust
and authenticate the pledge within the network.

The process begins with a CA Certificates Request, where the pledge sends a GET /cacerts request and
receives a list of CA certificates in Distinguished Encoding Rules (DER) format, a binary format for encod-
ing data structures. This is followed by a CSR Attributes Request, with a GET /csrattrs request returning
the necessary CSR attributes. A CSR is a message sent from an applicant to a certificate authority (CA) to
apply for a digital identity certificate. CSR Attributes are additional pieces of information requested by the
CA to be included in the CSR. These attributes ensure that the certificate is generated with the necessary
details and is formatted correctly for its intended use.
An example CSR might look like:

—–BEGIN CERTIFICATE REQUEST—–
MIIC... (Base64 encoded CSR)
—–END CERTIFICATE REQUEST—–

The pledge then makes a Client Certificate Request by sending a POST /simpleenroll request with a
Base64 encoded CSR in the body and receives a signed client certificate in response. Finally, the pledge
sends an Enrollment Status Report via a POST /enrollstatus request with a JSON payload indicating the
status of the enrollment. The server responds with HTTP 200 OK on success.

To provide feedback on the enrollment status to the registrar, the pledge sends an enrollment status
telemetry message. This is crucial for automated bootstrapping and lifecycle management. The enrollment
status is reported via an HTTP POST request to the /.well-known/brski/enrollstatus endpoint with a JSON
payload. An example payload might look like:
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Figure 3.15: Enrollment Status POST Example. Source [1].

Data Exchange

Upon successful enrollment, the pledge is configured with the necessary network parameters and secu-
rity policies specified in the voucher. It can now engage in secure data exchange with other network entities,
enabling it to participate in network operations and communication.

3.3.2 Security mechanisms

BRSKI addresses key security aspects such as confidentiality, integrity, authentication, replay attack
prevention, and denial of service (DoS) attack mitigation.

The voucher requests are formatted in JSON, ensuring a standardized and human-readable format for
data exchange. JSON encoding rules specify that any binary content, such as certificates, must be base64
encoded. This encoding is necessary for including complex data types within JSON strings. Below shows
the security mechanisms covered by BRSKI:

• Confidentiality, Integrity, and Authentication: BRSKI ensures confidentiality and integrity through
TLS encryption, which protects the data exchanged between the pledge and the registrar. Moreover,
the pledge presents its IDevID certificate in the TLS connection to the registrar, which includes its
identity and fulfilling authentication.

• Authorization: After authenticating the pledge’s identity, the registrar requests a voucher from the
MASA (Manufacturer Authorized Signing Authority). The voucher is a signed statement asserting
the device’s authenticity and ownership. Moreover, once the pledge receives the voucher from the
registrar. it validates the voucher to confirm that registrar is authorised by MASA.

• Replay and Denial of Service (DoS) Attacks:

BRSKI implements several security metrics to ensure the integrity and availability of the system. To
protect against replay attacks, BRSKI uses unique nonces and timestamps for each session, ensuring
that messages cannot be reused maliciously. To mitigate DoS attacks, BRSKI implements rate limiting
through mechanisms like the Retry-After header in HTTP 202 responses, instructing the pledge to wait
a specified time before retrying, and by employing exponential back-off for connection retries.

Validation checks are embedded throughout the protocol. During the TLS handshake, the pledge and
registrar authenticate each other using their respective certificates. Voucher requests and responses
include nonces and digital signatures to ensure freshness and integrity, with fields such as nonce,
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serial-number, and proximity-registrar-cert being critical for these validations. Additionally, MASA
audit logs record all voucher transactions, providing an extra layer of validation that the registrar can
verify to detect anomalies.

3.4 SCHC

3.4.1 On-boarding setup

SCHC relies on predefined contexts shared between communicating endpoints to compress and de-
compress packets effectively. These contexts must be synchronized and consistent on both ends to ensure
accurate packet interpretation and data integrity. SCHC Context Initialization involves setting up the ini-
tial parameters and values that will be used for compressing and decompressing the packet headers. This
includes defining the static context, which contains all the rules and parameters necessary for the SCHC
operations. The context is shared between the sender and receiver to ensure consistent compression and
decompression processes. Initialization ensures that both ends have a common understanding of the fields,
their possible values, and how to handle them during communication [19].

Context Derivation: Contexts in SCHC are derived based on the specific network protocols and appli-
cation requirements. The process involves identifying common header fields that can be compressed and
establishing rules for their compression and decompression. These rules are: RuleID to find each compres-
sion rule identifier, CDA to show how to compress and reconstruct the header fields, and Field Descriptor to
show the specifications of the header fields to be compressed, including their positions, lengths, and match-
ing operators. The context is typically predefined and manually configured by network administrators.

To establish the context, protocol specifications must provide details about network protocols and their
header structures to identify fields for compression. Additionally, synchronization protocols are necessary
to ensure both endpoints maintain consistent contexts through mechanisms such as periodic updates or
acknowledgments.

3.4.2 Security Considerations

As SCHC is designed to operate over LPWAN technologies, it inherently relies on the security metrics
implemented by these underlying networks. SCHC by itself does not provide direct security features like
encryption, authentication, or integrity protection. These must be handled by the underlying protocols (e.g.,
IPsec, DTLS) that SCHC helps to compress.

39



Chapter 4

State of the art

In the previous chapters, we discussed the importance and necessity of transmitting IPv6 packets over
LoRaWAN. We also introduced key concepts related to this topic, including autonomic networking and
the onboarding process for each technology. In this chapter, we present a comprehensive review of recent
research that offers solutions for communication between LPWAN and IPv6 networks, focusing on the
onboarding process of LPWAN into the new IPv6 network and evaluating whether these solutions adequately
address security properties, automation, and their limitations.

Finally, we present an overview of previous work on updating the SCHC context, highlighting the re-
search gaps to illustrate the key use cases in this area of study.

4.1 LPWAN technologies and IPv6 integration

Among the standardized solutions used to run IP over LPWANs technologies, it is concluded in the
recent studies that SCHC is a key development to facilitate this transmission [16, 23].

Aguilar et al. [24–26] focused on evaluating the performance of the SCHC framework over Sigfox, a
prominent LPWAN technology, particularly emphasizing the ACK-on-Error fragmentation mode. The study
primarily examined packet transfer times and the efficiency of uplink and downlink messages, offering valu-
able insights for IoT application design, network planning, and resource management, while also addressing
the implications of varying packet sizes and error rates on transfer efficiency.

The authors in [27] focused on evaluating different Receiver Feedback Techniques (RFTs) for reliable
fragmentation over LPWANs, with a particular emphasis on the SCHC framework. It explored the perfor-
mance of RFTs with the List of Lost Fragments (LLF) against benchmarks. The study highlighted that the
choice of RFT significantly affects performance depending on factors like error rates, packet sizes, and error
patterns.

Wistuba La-Torre et al. [28] focused on evaluating the performance of SCHC over Sigfox LPWAN tech-
nology, particularly its ACK-on-Error fragmentation mode, with emphasis on packet transfer times and the
number of uplink and downlink messages required. Security considerations included analyzing the impact
of fragment loss rates on packet transfer time, crucial for reliable communication in IoT solutions. The study
provides valuable insights for IoT solution developers, aiding in application design, network planning, and
resource management, particularly in LPWAN environments where message rates are restricted.

Authors in [29] focused on developing a state machine for SCHC Fragment delivery over the Sigfox

40



network, aiming to predict the number of uplink messages needed for successful transmission considering
packet loss rates.

Muñoz et al. [10] focised on evaluating the efficiency of SCHC over LoRaWAN, particularly in terms
of channel occupancy under different communication parameters such as error probability, spreading factor,
and SCHC window size. The study proposes a model that accurately predicts channel efficiency based on
these factors and validates it through experimental results. The key findings show that while the spreading
factor and error probability significantly affect channel efficiency, the SCHC window size does not have
a notable impact. This work does not discuss security considerations, onboarding methods, or human in-
volvement in the system. Instead, it concentrates on the performance and efficiency aspects of SCHC in
LoRaWAN networks.

Banti et al. [6] provide a comprehensive survey of LoRaWAN communication protocols with a focus on
energy efficiency, particularly in challenging environments where power supply is limited or intermittent.
The study explores how different communication protocols at the Physical, MAC, and network layers im-
pact energy consumption, scalability, and network performance. It discusses the need for a GreenLoRaWAN
communication protocol that maximizes network lifetime, enhances robustness, and addresses scalability is-
sues. While the paper delves deeply into energy efficiency and related challenges, it does not specifically
address security considerations, onboarding, or autonomous networking.

Abdelfadeel et al. [30] introduce and evaluate SCHC and its enhancement, LSCHC (Layered SCHC),
designed to improve the transmission of IPv6, UDP, and CoAP headers over LPWANs like LoRaWAN. The
study compares SCHC/LSCHC with IPHC (IP Header Compression) and NHC (Next Header Compression)
in terms of compression efficiency, showing that SCHC/LSCHC achieves a higher compression factor, re-
ducing transmission time and improving reliability. The work focuses on optimizing header compression
for known data flows in LPWANs, though it acknowledges challenges with unknown flows.

Wistuba et al. [31] The paper discusses the implementation of the SCHC framework’s fragmentation and
reassembly mechanisms for LPWANs, with a focus on the ACK-on-Error mode, where acknowledgments
are sent only when fragments are lost. The project aims to create an open-source, technology-agnostic im-
plementation that initially tests in a local environment and is being extended to support Sigfox LPWAN with
integration into Google Cloud Platform. The work demonstrates the potential of SCHC to enable larger
payloads, improve message reliability, and add IP connectivity to constrained IoT devices.

Authors in [18] propose a methodology for evaluating the latency of IPv6 data transmission when using
the SCHC protocol over LoRaWAN in real-world deployments. The study introduces a formal test pro-
cedure that maps and timestamps information flows to assess architectural delays, enabling comparisons
across different SCHC implementations. The methodology was tested in various global LoRaWAN deploy-
ments, demonstrating that the IPv6 end-to-end latency with SCHC can be less than 1 second for uplink and
4 seconds for downlink in typical scenarios. The work emphasizes the practicality of the proposed approach
for optimizing deployment parameters.

In the aforementioned studies, security considerations involved analyzing the reliability of SCHC Frag-
ment delivery to ensure all fragments reach the receiver in the highly constrained LPWAN network. How-
ever, other security aspects are not analyzed in aspects of authorizing the data transmission between the two
ends and prevention against possible attacks.

Authors in [32] focused on evaluating the performance of the SCHC scheme in enabling constrained
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IoT devices to connect to the global Internet via LPWAN technologies, emphasizing compression and frag-
mentation’s impact on latency, delivery ratio, and resource overhead. The device authentication is ensured
by using the AES encryption standard as the security mechanism. The study emphasized the importance
of balancing fragmentation sizes, channel reliability, data bandwidth, and energy consumption for optimal
network performance.

Authors in [33] focused on conducting a comprehensive literature review of LoRa and LoRaWAN re-
search from 2015 to September 2018, emphasizing technological aspects, improvements, and security con-
siderations. The paper included a SWOT(strengths, weaknesses, opportunities and threats) analysis and
highlighted remaining challenges in LoRaWAN and potential approaches to address them. it mentioned
OTAA has improved some security standards in LoRaWAN. However, some vulnerabilities still exist such
as DoS attack.

Authors in [34] provide a comprehensive survey of LoRaWAN, focusing on its architecture, protocol,
and technologies, with an emphasis on its suitability for IoT applications. The study highlights LoRaWAN’s
strengths, such as low energy consumption, long-range communication, built-in security, and GPS-free po-
sitioning, while also addressing challenges like network scalability and real-time application constraints. It
discusses the protocol’s potential in various scenarios, including smart cities and remote monitoring. The
work does cover security considerations, particularly highlighting LoRaWAN’s built-in security features,
but it does not specifically address onboarding or autonomic networking.

The above studies summarized in 4.1 highlight various approaches to integrating LPWAN technologies
with IPv6, primarily focusing on the SCHC framework. While significant progress has been made in areas
such as performance evaluation, energy consumption modeling, and security considerations, several gaps
remain. Notably, most studies have concentrated on specific aspects like packet transfer efficiency, receiver
feedback techniques, and the impact of SCHC on network performance. However, there is a recurring lack
of comprehensive security solutions, particularly in addressing autonomic solutions, context updates in mo-
bility scenarios, and protection against potential attacks. Additionally, the focus has often been on specific
LPWAN technologies like Sigfox, with limited coverage of LoRaWAN SFs and broader security considera-
tions necessary for reliable and secure IPv6 integration.

Authors in [35] proposes an IPv6-based architecture for LPWANs, specifically focusing on LoRaWAN,
to address interoperability and security challenges in IoT deployments. It highlights the use of the SCHC
(Static Context Header Compression) protocol to reduce IPv6 and UDP header overhead, enabling efficient
end-to-end communication in resource-constrained networks. The work also critiques the current security
mechanisms in LoRaWAN, which rely on static keys, and explores alternative key exchange protocols like
EDHOC for more flexible and secure key management. The paper emphasizes the need for dynamic key
updates and considers EDHOC as a suitable solution for enhancing security in LoRaWAN systems. This
work explicitly addresses security considerations but does not cover onboarding or autonomic solutions.
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Table 4.1: State of the art, LPWAN technologies and IPv6 integration

Reference Objective Result Not Covered Year

Aguilar et al. [24]

Performance evaluation
of SCHC framework
over Sigfox LPWAN,
specifically focusing
on the ACK-on-Error
fragmentation mode

Analysis of packet
transfer times,
efficiency of uplink
and downlink messages

Security considerations
not covering LoRaWAN SFs
no autonomic solution

2021

Aguilar et al. [27]
Comparative analysis
of Receiver Feedback
Techniques (RFTs)

Examination of
the impact of RFT
selection on
network performance
metrics

Security considerations
no autonomic solution 2021

Ertürk et al. [34]

Review and analyze
LoRaWAN’s architecture,
protocol, and applicability
in IoT scenarios.

Identified strengths
like low energy consumption,
long-range communication,
and built-in security,
along with challenges
in scalability and
real-time
application support

Security considerations
no autonomic and
Onboarding solution

2021

Wistuba La-Torre et al. [28]

Development of
a state machine
for SCHC Fragment
delivery over
Sigfox network
to predict
the number of
uplink messages

Security analysis
to ensure reliable
SCHC Fragment
delivery

Security considerations
autonomic solution 2022

Aguilar et al. [29]

Provision of
an energy consumption
model for Sigfox
LPWAN utilizing
SCHC

relationship between
SCHC Packet size
and energy consumption,
highlighting decreased
transfer efficiency
with larger SCHC
Packet sizes

Security considerations
no autonomic solution 2022

Muñoz et al. [10]

Evaluate channel
occupancy efficiency
of SCHC over LoRaWAN
under various
communication parameters.

Predicts efficiency,
showing that spreading factor
and error probability
influence performance,
while window size does not

Security considerations,
onboarding,
autonomic networking

2022

Sanchez-Gomez et al. [32]

Evaluation of
SCHC scheme’s
performance in
LPWAN connected
to IPv6

Analysis of latency,
delivery ratio,
resource overhead,
and security
considerations
regarding AES
Encryption

no solution
against possible
attacks
no autonomic solution
not mentioning about
context update
in mobility

2020

Haxhibeqiri et al. [33]
A literature review
on LoRaWAN
with security considerations

OTAA has
security standard
improvements in
LoRaWAN but still
vulnerable against
DoS attacks

Authentication,
Integrity,
and solution
to prevent from
possible attacks
is not covered
no autonomic solution

2018

Gomez et al. [16]
SCHC as a solution
to connect LPWAN
to IPv6 network

Analyze SCHC on
different LPWANs

no Security considerations
not covering LoRaWAN SFs 2020
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4.2 On-boarding solutions

Recent studies have indicated that as the number of IoT devices grows, manual device onboarding by
humans becomes impractical. Additionally, in some use cases, IoT devices are not accessible for updates
or reconfiguration by humans. For instance, Alvarez et al. [36] discussed the deployment of IoT devices on
ground and satellite. This paper focused on IoT device deployment where the terrestrial infrastructure is not
feasible or accessible. Another example is provided by Gomez et al. [16] who highlighted that LPWANs en-
able industrial IoT applications by covering thousands of IoT devices using the star topology. However, the
capacity constraints of LPWANs challenge IPv6 and even 6LoWPAN solutions, prompting the introduction
of the SCHC mechanism and Fragmentation by IETF to address these issues.

Recent studies have identified autonomic networking as the most effective solution to address the chal-
lenge of human access. The following works discuss these studies in detail.

Arzo et al. [37] provide a survey on network automation in IoT and its advantages. One of the ad-
vantages is self-protection, which is related to security against attacks such as DoS attacks. However, this
paper did not mention about device authentication and secure on-boarding. Zavala, et al. [38] aim to ad-
dress challenges in IoT systems, particularly focusing on achieving full autonomic behavior. By proposing
new architectural and functional blocks, the paper enables self-configuration, a key aspect of managing IoT
systems at scale, utilizing a self-management algorithm based on Utility Theory. Results show that the
proposed framework can effectively manage IoT systems without human intervention, even with low-cost
and limited processing capacity devices, thereby addressing scalability and diversity challenges in the IoT
landscape.

Sari et al. [39] review recent studies on network communication protocols supporting the autonomic In-
ternet of Things (IoT), focusing on properties like self-organization, self-optimization, self-protection, and
self-energy-awareness. The authors identify energy efficiency as a major concern and highlight the incorpo-
ration of energy harvesting awareness into protocol designs, particularly at the MAC layer. The review maps
protocol designs according to supported autonomic properties and emphasizes the potential of bio-inspired
algorithms for addressing complexity in IoT networks. The paper suggests future research opportunities
to enhance IoT infrastructure in terms of resource constraint, heterogeneity, mobility, scalability, and secu-
rity through intelligent and autonomic means. Tahir et al. [40] underscore the impracticality of manually
managing the vast number of devices in the Internet of Things (IoT) ecosystem and advocate for autonomic
computing to minimize human intervention. While acknowledging the current limitations and challenges,
the paper emphasizes the importance of progressing toward achieving true autonomy in IoT through intelli-
gent algorithms and automated procedures, offering insights to guide future research directions in autonomic
computing for IoT.

The following works are among the few studies that have focused on constrained networks within the
context of autonomic networking.

Richardson et al. [22] defined the Constrained Bootstrapping Remote Secure Key Infrastructure (cBRSKI)
protocol, offering a solution for secure zero-touch onboarding of resource-constrained IoT devices into a net-
work. The outcome is the proposed specification of cBRSKI, a variant of the BRSKI protocol, which uses
a compact CBOR-encoded voucher, EST-over-CoAPS, and DTLS-secured CoAP (CoAPS) for secure com-
munication, thus addressing the unique challenges of secure enrollment in constrained networks with limited
throughput and resource constraints. Their proposal assumes the constrained network is already IP-enabled;
therefore, there is no consideration about the need of SCHC. In [41], Afzal et al. investigated CoAP, SCHC,
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and CBOR schemes to enhance communication efficiency, demonstrating significant reductions in packet
sizes compared to HTTP and JSON.

The studies summarized in Table 4.2 provide a comprehensive overview of various onboarding solutions
for IoT devices, particularly focusing on autonomic networking and secure enrollment in constrained net-
works. While significant advancements have been made in enabling self-management and reducing human
intervention, several gaps remain. In those solutions the use of SCHC for connecting LPWANs to IPv6
networks is explored but the security considerations or specific challenges related to LoRaWAN SFs are not
addressed. Although a survey in autonomic networking in IoT was published, identifying challenges and
opportunities, but it lacked solutions for authentication and secure onboarding. Also, in the framework pro-
posed by Zavala et al. [38] for full autonomic behavior in IoT systems, enabling management without human
intervention, yet the security considerations are omitted. Lastly, Richardson et al. [22] introduced cBRSKI
for secure zero-touch onboarding in constrained networks but did not cover how to compress messages
for LPWAN to IPv6 networks or how to share the SCHC context. These studies collectively highlight the
progress and existing challenges in achieving secure and autonomic onboarding of IoT devices, particularly
in resource-constrained environments where SCHC is used to interoperate with IP networks.

Table 4.2: State of the art, Onboarding solutions

Reference Objective Result Not Covered Year

Gomez et al. [16]
SCHC as a solution
to connect LPWAN
to IPv6 network

Analyze SCHC on
different LPWANs

no Security considerations
not covering LoRaWAN SFs 2020

Arzo et al. [37]

a survey on
autonomic networking
in IoT
and protection
against attacks

identify different
challenges and
opportunities
in automation.

no authentication
solution and
secure on-boarding

2021

Zavala et al. [38]
propose full
autonomic behavior
in IoT systems

enable IoT systems to be
managed without
human intervention
even in constrained devices

no security consideration 2019

Richardson et al. [22]

a solution for
secure zero-touch onboarding
of resource-constrained
IoT devices
into a network
using CBOR and COAP

Addressed the
unique challenges of
secure enrollment in
constrained networks
with limited throughput
and resource constraints

does not
mention how
to compress messages
from LPWAN to
IPv6 networks
and how to share context

2024

4.3 SCHC context management - Use cases and solutions

This section outlines the use cases that illustrate the need for a SCHC context management scheme and
the corresponding solutions proposed in previous studies.

Moons et al. [42] highlighted the challenges that arise as IoT devices, now equipped with multiple LP-
WAN radio technologies, require a unified protocol stack that is independent of the underlying technology.
A key challenge is the mobility and roaming of IoT devices, particularly how packet header values, such as
source and destination IP addresses, change when devices transition between different networks like NB-
IoT and LoRaWAN. This work emphasizes the necessity for a solution to manage network heterogeneity
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and maintain seamless communication. The authors propose that, while current SCHC configurations are
static, future implementations should support dynamic contexts to ensure communication efficiency as de-
vices move across different networks.

Another use case in which the SCHC context needs to be updated is to reflect changes in network
architecture and infrastructure. For example, when new routers or gateways are added to an IoT network, it
may necessitate updates to the SCHC context to reflect new routing header fields, ensuring that devices can
adapt to new routing paths [43]. In the research provided by Minaburo et al. [19], the authors discussed the
scenario in which recent application layer protocols, such as CoAP, are updated with new header options.
They emphasize that, if CoAP introduces a new option, the SCHC rules should be updated with new rule
IDs for header compression to ensure efficient communication.

The architecture shown in Fig. 4.1, illustrates an example environment where some of the aforemen-
tioned use cases may take place, e.g., a device changing the LPWAN technology in use, from NB-IoT to
LoRAWAN, or the introduction of new header options that would affect the compression of protocols like
CoAP.

Figure 4.1: Dynamic Context Update Use Cases

The studies summarized in Table 4.3 provide a comprehensive overview of previous approaches to the
problem of dynamic context management in SCHC. The Dynamic Context Header Compression (DCHC)
protocol, proposed by Ayoub et al. [44], defines a dynamic management and real-time SCHC context update
mechanism. However, ensuring synchronization between the Mobility Management Server (MMS) and end
devices might be challenging, especially in highly dynamic environments with frequent handovers and net-
work changes. Inefficient context updates could lead to increased latency or packet losses if not managed
efficiently. Additionally, continuous monitoring and context reconfiguration may impose significant com-
putational and communication burdens on the network infrastructure [32].

Moons et al. [17] provided a system for managing dynamic SCHC contexts. However, they do not sup-
port different spreading factors in a LoRaWAN environment, leading to problems as their fragmentation-free
solutions may exceed the MTU allowed in certain spreading factors. They also fail to consider LoRaWAN’s
device classes and their limitations in sending multiple uplink messages. Another proposed solution is the
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DNS-based approach provided by Bernard et al. [45], which dynamically finds the context rules associated
with an end device and downloads them from an HTTP server. However, this method introduces query
overhead when handling a large number of devices.

Table 4.3: State of the art, SCHC context management solutions

Reference Objective Result Not Covered Year

Moons et al. [42] Address challenges in IoT mobility
with multiple LPWAN technologies

Highlighted the need for
dynamic SCHC
context updates

No dynamic management across
different SFs and LoRa classes 2019

Ayoub et al. [44] Propose the Dynamic Context
Header Compression (DCHC) protocol

Introduced dynamic and real-time
SCHC context management

Synchronization challenges in
dynamic environments;
computational burdens.

2020

Bernard et al. [45] Propose a DNS-based approach
for dynamic SCHC context rule retrieval.

Enabled context rule updates
via HTTP servers.

Query overhead with
many devices;
updates limited to
end devices, not gateways.

2020

Abdelfadeel et al. [43] Address SCHC context updates
due to changes in network architecture.

Emphasized the need for
context updates when
network elements change.

No comprehensive strategies for
managing dynamic routing paths 2018

Moons et al. [17] Develop a system for dynamic
SCHC context updates

Provided a solution for
dynamic context update

Not covering
LoRaWAN fragmentation,
different classes,
and downlink limitations.

2021

Although there has been progress in the state-of-the-art about context management for SCHC-enabled
IoT networks, several gaps remain in the existing solutions. For instance, while dynamic context updates
are proposed, there is a lack of comprehensive mechanisms for managing these updates in real-time, espe-
cially in highly dynamic environments. Existing solutions like the Dynamic Context Header Compression
(DCHC) protocol and DNS-based approaches introduce challenges such as increased latency, computational
burden, and overhead in query handling, particularly when dealing with a large number of devices, which
will affect constrained deployments. Moreover, some of these solutions focus on updating the context at the
end device but neglect the SCHC gateway, leading to potential synchronization issues [43, 45]. Addition-
ally, current approaches do not adequately consider the different spreading factors of LoRaWAN, which can
lead to the need of fragmentation. Furthermore, essential aspects like security, particularly in the context
of device mobility, remain under-explored, with insufficient support for integrity, authentication, and autho-
rization in the exchange of SCHC rules, leaving networks vulnerable to unauthorized access. Addressing
the aforementioned gaps is essential for achieving a secure, scalable, and autonomic SCHC context network
management, as it will be discussed in the next chapters.
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Chapter 5

Problem Statement

In the previous chapters, we emphasized the growing importance of IPv6 networks and the need to
ensure LoRaWAN compatibility for communication with IPv6. Additionally, we discussed the need of
managing SCHC contexts updates in response to possible network configuration changes. Once a change
in the network triggers updates that may affect the effectiveness and efficiency of the SCHC compres-
sion/fragmentation operation, we are faced with two options:

• Option 1: The SCHC entities continue compression only with the rules that remain valid after the
change. However, this will reduce the efficiency of the SCHC compression, with an increased SCHC
packet size that may trigger the need of fragmentation. With fragmentation, the transmission process
will increase in complexity and will need additional downlink transmissions for ACK packets, in
networks that are already highly constrained in the downlink.

• Option 2: The SCHC context is updated. However, the updating process has not been considered
in the SCHC standard [19], where the static property was assumed permanent. We argue that the
context may not change frequently but may not be permanent either, as demonstrated by the use cases
discussed in the previous chapter. Furthemore, after reviewing the existing solutions, it was concluded
that none of the previous works fully provides a secure and autonomic system for onboarding and
SCHC context management over an integrated LoRAWAN/IPv6 network.

To solve the stated problem, we are required to:

• Define an architecture in which a LoRaWAN end device: 1) is securely onboarded to the Internet
with a globally-routable IPv6 address; and 2) has a secure mechanism to manage SCHC context
updates. When doing this, we should ensure that we take advantage of any feature of the LoRaWAN
architecture that simplifies the necessary exchanges, such as the existing security protocols, and data
transmission methods.

• Demonstrate that the defined architecture operates in a way that is feasible given the technology
parameters (e.g., a variable MTU due to changes in the spreading factors of LoRaWAN), and the
delay accepted during setup of typical IoT applications.

In the following, we introduce the hypotheses, detailing the anticipated outcomes of our solution. Then,
we outline the proposed objectives that will help demonstrate the hypotheses. Finally, we identify the chal-
lenges and considerations for the solution design.
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5.1 Hypothesis

The integration of SCHC, with an initial set of rules, and secure onboarding via BRSKI, will enable the
development of an architecture that achieves the following goals:

• Goal 1: Efficiently and securely obtain a globally-routable IPv6 address for the LoRaWAN end de-
vice, utilizing the SCHC adaptation layer for interactions with IP entities.

• Goal 2: Establish a secure management channel for SCHC context updates, allowing dynamic rule
adjustments to support the device’s tasks while ensuring unique device identification.

• Goal 3: Maintain reasonable access times despite the additional overhead introduced by BRSKI and
cBRSKI within the management plane.

5.2 Objectives

To achieve these goals, the research will focus on the following objectives:

(1) Design an onboarding process for the LoRaWAN end device to obtain a globally-routable IPv6 ad-
dress, ensuring efficient and secure communication with the IPv6 network while handling constrained
bandwidth.

(2) Develop a mechanism to establish a secure management channel for SCHC context management,
enabling dynamic rule updates through autonomic solutions like BRSKI and cBRSKI, while ensuring
the device’s unique identification.

(3) Implement and evaluate the proposed system architecture to assess the impact of the additional over-
head on access times, focusing on the performance of BRSKI and cBRSKI in the management plane.

5.3 Challenges and considerations

The solution architecture should be structured into three layers to meet the outlined goals:

• User layer: Emulation of a Secure Link using LoRaWAN plus SCHC. This layer focuses on estab-
lishing a secure communication link by integrating LoRaWAN with SCHC.

• Management layer: Autonomic Management of the Device within a Management Domain. In this
layer, the device is managed automatically. The key elements of this layer include:

� The end device has a verifiable identity within the management domain. LoRaWAN is a closed
system which means, it does not typically interact directly with external systems or networks.
The first step is to assign a globally-routable IPv6 address, valid in an open system, such as the
new IPv6 network.

� There is mutual authentication that ensures that both the End Device and the Registrar authenti-
cate each other.

� There is confidentiality to protects the data being transmitted from unauthorized access.

� There is integrity to ensures that the data remains unchanged and trustworthy throughout trans-
mission.
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� Although the LoRaWAN OTAA configuration provides essential security features, such as mu-
tual authentication, origin authentication, integrity protection, encryption, and replay protection,
these measures are confined to the LoRaWAN environment. They do not address the additional
authorization required for the ED to join and operate securely within the IPv6 network.

� The autonomic management approach will streamline the device’s operation within the network,
making it more efficient and secure.

• Emulation layer: the system provides a suitable North-Bound interface, which involves creating a
secure and controlled interface that allows applications to access the device. The interface must be
designed to ensure that all interactions with the device are secure, providing the necessary controls to
maintain the integrity and confidentiality of the data and operations.
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Chapter 6

Proposed Solution

In the previous chapters, we discussed the key concepts of onboarding LoRaWAN into an IPv6 network
and the role of autonomic networks, which form the foundation of this research. The focus of this study is
to establish a seamless connection between LoRaWAN, a constrained network, and IPv6, a non-constrained
environment, within the framework of an autonomic network infrastructure.

To achieve this, the proposed solution is divided into three main components: LoRaWAN onboarding to
create an IPv6 secure link, BRSKI to create an API, and ACPs to provide APIs for upper-level use. Each of
these components is crucial for the overall system and builds upon the previous one.

6.1 LoRaWAN onboarding to create IPv6 secure link

The first step in the proposed solution is to onboard LoRaWAN devices into the IPv6 network by creating
a secure link. This involves configuring the LoRaWAN device and ensuring that the SCHC context required
for autonomic configuration is pre-stored on both the end device and the SCHC gateway. This setup is
essential to ensure that IPv6 packets can be efficiently transferred over the LoRaWAN network during the
onboarding process, facilitating a smooth and secure integration.

Figure 6.1 illustrates a state diagram of the overall system. The state descriptions are as follows:
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Figure 6.1: LoRA6 Auto-Onboarder

(0) Pre-configure SCHC context on LoRa and the SCHC Gateway

(1) Configure LoRa Device in a LoRaWAN network.

(2) Auto configuration of Link Layer IPv6 address.

(3) BRSKI on-boarding step

(4) This step is the end of management plane and the start of Data Plane to share messages between the
LoRa End Node and the IPv6 Destination Host. To do so, a new SCHC context is required to be
configured.

(5) In this stage, the system is ready to exchange data.

The following, shows the protocol stack of each step in this On-boarding system.

In the first step, LoRa is configured in the LoRaWAN network using Over-The-Air Activation (OTAA).
The end device transmits data from the LoRa physical layer to the LoRaWAN network through the Lo-
RaWAN gateway. As illustrated in Figure 6.2, the User IP layer started here is the network server IP.
Depending on the backend implementation, if a reliable transport layer is needed, the TCP protocol is used
over the IP layer; otherwise, the UDP protocol is employed. Data security is ensured with AES encryption
between the end device and the network server, as well as between the end device and the application server.
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Figure 6.2: System Network Stack Design LoRaWAN Onboarding

The Figure 6.2 illustrates the system network stack design for LoRaWAN onboarding, highlighting the
layered protocol architecture across different network components, including the End Device, Gateway, Net-
work Server, and Application Server. The stack begins at the End Device with LoRa and LoRaWAN at the
physical and MAC layers, progressing through SCHC for both C/D and F/R, and then onto IPv6, UDP/TCP,
and application protocols like COAP, MQTT, or HTTP. The Gateway and Network Server follow a similar
stack, facilitating the transmission of data through the LoRaWAN network and onto the IP network. Once
connected to the LoRaWAN network, the management plane is initiated, establishing a secure connection
with the ANI registrar to obtain an ANI certificate, which enables secure communication with the broader
network. The image effectively demonstrates the seamless integration of LoRaWAN with IP-based proto-
cols, ensuring secure and efficient onboarding and data exchange within the network.

6.2 BRSKI to create API

Building on the secure link established in the previous section, the next step is to use BRSKI to create
an API that facilitates secure onboarding and communication.

The initial step for the device to connect with the registrar involves obtaining a link-local IPv6 address
as showing in the Figure 6.3. The End Device creates its own link-local IPv6 address during SLAAC. Sub-
sequently, the End Device can connect to the Circuit Join Proxy using Discovery and Flooding messages.
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Figure 6.3: IPv6 link local address configuration sequence diagram

The Secure IP management Plane includes the DULL GRASP Mflood messages to locate the registrar;
TLS handshake to authorize the End Device for the Registrar and voucher request and response to authorize
the registrar for the End Device, and finally, the voucher status telemetry to indicate the voucher verification
is received by the ED. The detailed messages are indicated as sequence diagrams in the Figures 6.3, 6.7, and
6.8.

Figure 6.4 illustrates the protocol stack at this stage, omitting components between the end device and
the Application Server for clarity. The figure focuses on upper layers, excluding the physical layer.

Figure 6.4: System Network Stack Design IP management plane onboarding
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The application layer utilizes BRSKI over HTTP/TCP or cBRSKI over CoAP/UDP for constrained net-
works.

According to the RFC8990 [13], DULL GRASP M-Flood and M-Response messages are sent over UDP
protocol for the purpose of initial neighbor discovery during the ACP construction phase. Once the ACP is
established, GRASP flood and response messages typically use TCP for reliable transport within the ACP
or UDP. Note that if using unreliable transport like UDP for those messages, GRASP must ensure no IP
fragmentation occurs. Messages must be limited in size to avoid fragmentation, adhering to the IPv6 packet
size limit of 1280 bytes unless a larger minimum link MTU is known (Figure 6.5).

Figure 6.5: Locating registrar with DULL GRASP

The Figure 6.6 illustrates the process by which the Registrar is located through Discovery messages.
Following this, a TLS handshake is conducted between the End Device, the Registrar, and the MASA, with
the messages being relayed through the Circuit Join Proxy. The Circuit Join Proxy operates as an Applica-
tion Level Gateway (ALG) [46], serving as a stateful proxy that facilitates communication across different
network address realms. It accomplishes this by transparently relaying the TLS handshake messages with-
out terminating or inspecting them, thereby ensuring secure communication between the devices and the
Registrar/MASA without altering the TLS handshake process.
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Figure 6.6: System Network Stack Design Management Plane Establishment

In this stage the stack shows the use of BRSKI with HTTPS over TCP or cBRSKI with COAPS over
UDP for secure message exchange, emphasizing the layered protocol integration, from LoRaWAN and
SCHC at the End Device level to higher-level protocols like IPv6, TCP/UDP, and HTTP/COAP, as the com-
munication flows through the network infrastructure. This setup ensures a secure and efficient onboarding
process for IoT devices within an IPv6-based network.

56



Figure 6.7: TLS/ DTLS Handshake Sequence Diagram

After the TLS handshake as indicated in the Figure 6.7, a secure tunnel is established first between the
pledge and the Registrar, and subsequently between the Registrar and the MASA. This is crucial for the
secure exchange of certificates and onboarding information.

Figure 6.8: Voucher Request and Response Sequence Diagram
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The Figure 6.8 shows the voucher on-boarding process. The sequence begins with the End Device
initiating a voucher request (SCHC voucher request) that is propagated through the SCHC Gateway, Proxy,
and Registrar until it reaches the MASA. The MASA then issues a voucher, which is sent back through the
same path to the End Device. After the voucher is used, the End Device generates voucher status telemetry,
which is also sent back through the same chain. Upon receiving the voucher status, the Registrar forwards it
to the MASA, which then generates an audit log request and sends back an audit log response. This audit log
helps maintain a secure and verifiable audit trail of the entire onboarding process, ensuring that the devices
are correctly authenticated and authorized for network access.

6.3 ACPs to provide API for upper-level use

The final component involves using the Autonomic Control Plane (ACP) to provide an API for upper-
level applications. This API allows for secure communication and management of devices within the net-
work, building on the foundation laid by BRSKI.

The Figure 6.9 presents the system network stack design for establishing the management plane using
the EST protocol, which is a critical step for initiating the data plane within a secure IP management frame-
work. It illustrates the protocol layers across various entities, from the End Device to the CA, showing how
BRSKI/cBRSKI protocols are employed for secure onboarding and management. The stack begins with
LoRaWAN and SCHC at the End Device, transitioning through IPv6, TCP/UDP, and higher-level protocols
like HTTP/COAP as the communication moves across the network infrastructure, including the Network
Server, SCHC Gateway, Circuit Join Proxy, Registrar, and ultimately the CA. The diagram highlights the
integration of different networking technologies, such as LoRaWAN and Ethernet, within the broader IPv6
ecosystem, emphasizing the secure exchange of data once the management plane is established.
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Figure 6.9: System Network Stack Design Management Plane Establishment in EST process

The Figure 6.10 presents a sequence diagram detailing the EST process in a BRSKI context. The dia-
gram illustrates the communication between several entities: the End Device, SCHC Gateway, Proxy, Reg-
istrar, CA, and the IPv6 End Device. The process begins with the End Device initiating the EST enrollment
by sending a combination of enrollment status, CSR attributes, and client certificate requests through the
SCHC Gateway, Proxy, and Registrar, until it reaches the CA. The CA processes the request and returns the
client certificate, which is then relayed back through the same chain to the End Device. Once the enrollment
is complete, secure data exchange can occur, ensuring that the device is authenticated and securely inte-
grated into the network. This diagram effectively visualizes the flow of EST messages and the involvement
of different entities in securely enrolling a device in an IPv6 network using BRSKI.
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Figure 6.10: EST Sequence Diagram

With the ACP providing a secure API for upper-level applications, the system is now fully integrated
and capable of supporting autonomic operations. This API facilitates communication, configuration, and
management tasks, ensuring that the network can operate securely, in an autonomic way.
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Chapter 7

Description of the Solution

Before initiating the autonomic onboarding process for devices, a set of predefined SCHC rules, which
we called SCHC zero context, must be stored on both the end device and the SCHC gateway to enable trans-
mission from the LoRaWAN to the IPv6 network. These rules handle the compression and fragmentation of
large packets that exceed the channel’s MTU size, which leads to an overhead to the transmission time.
In this section, we first present the SCHC packet transmission model. Next, we outline the SCHC Zero
contexts necessary for the onboarding process. Finally, we calculate the Time on Air (ToA) for the packets
in various scenarios by determining the packet sizes, including their header and payload sizes.

7.1 Message exchanges and fragmentation model

This section explains how messages are transmitted in the SCHC ACK-on-Error mode within a Lo-
RaWAN network. Figure 7.1 illustrates the sequence of uplink and downlink messages using SCHC frag-
mentation. In this mode, each uplink fragment is sent after the device opens two designated time slots,
known as receiving windows, which are indicated by the RD2 and RD1 intervals. Once all fragments for
a given window are sent, the receiver sends an acknowledgment (ACK) to confirm successful transmission
before the next set of fragments can be sent.

Figure 7.1: Up link and Down link messages in LoRaWAN using SCHC Fragmentation. Adapted from [2].

In the depicted scenario, it is assumed that there is no packet loss. Once the fragments for the current
window are sent, the SCHC ACK is received. If there are more fragments to be sent for a message, after the
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RD time, an empty packet is sent to the downlink. This action reopens the uplink window for the next set
of fragments. This process continues until the entire SCHC message is successfully transferred. The figure
also shows the sequence of sending regular SCHC fragments, receiving acknowledgments, and the use of
empty packets to manage the flow control and ensure the successful delivery of all fragments.

7.2 SCHC Zero Context

Given that BRSKI facilitates the connection between constrained and non-constrained networks, it be-
comes essential to transmit messages with IPv6 headers in SCHC format. However, before starting BRSKI,
no context can be exchanged between the two ends.

To tackle this challenge, we introduce the SCHC Zero context. This context established within the de-
vice before deployment time, eliminating the need for additional SCHC Context configuration. Once the
bootstrap process ends, the new SCHC context for ongoing communication will be updated on the system
in a secure way.

Table in 7.1 illustrates the messages within the system where header parameters should be stored as
SCHC Zero context. All the fields indicated to be compressed by SCHC are the corresponding message
header fields.

Table 7.1: On-boarding messages that require SCHC Zero context

Message Headers Fields to be compressed by SCHC Zero

SLAAC IPv6 header

IP Version, traffic flow label,
Next Header, Hop limit,
IPv6 app prefix, IPv6 DevIID,
Destination address

ICMPv6 ICMPv6 code , ICMPv6 type

M-Flood IPv6 header

IP Version, traffic flow label,
Next Header, Hop limit,
IPv6 app prefix, IPv6 DevIID,
Destination address

UDP UDP Dev Port, UDP App Port,
UDP Length, UDP Checksum

TLS Handshake IPv6 header

IP Version, traffic flow label,
Next Header, Hop limit,
IPv6 app prefix, IPv6 DevIID,
Destination address

DTLS Handshake/Voucher/EST IPv6 header

IP Version, traffic flow label,
Next Header, Hop limit,
IPv6 app prefix, IPv6 DevIID,
Destination address

UDP UDP Dev Port, UDP App Port,
UDP Length, UDP Checksum

In the SLAAC process, the next header is ICMPv6, indicated by the value 58. Additionally, the DevIID
is derived from the LoRa DevEUI 64 address, which is sent as the CDA field. The destination address and
the IPv6 application prefix are the solicited-node multicast address and the link-local prefix, respectively,
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both of which are default values.

Table 7.2: SLAAC SCHC rules

Field Length (bits) Target Value Matching Operator CDA
IPv6 version 4 6 equal not sent

Traffic flow lable 20 (e.g., 0x00000) match mapping mapping-sent
Next header 8 58 (ICMPv6) equal not sent
Hop limit 8 1 equal not sent

IPv6 App prefix 64 FE80::/64 equal not sent

IPv6 DevIID 64 (derived from DevEUI 64)
calculate in AS ignore DevIID

Destination address 128 FF02::1:FF00:0000/104
(Solicited-node multicast address ) equal not sent

Table 7.3: SLAAC next header SCHC rules

Field Length (bits) Target Value Matching Operator CDA
ICMPv6 type 8 135 (NS) equal not sent
ICMPv6 code 8 0 equal not sent

According Tables 7.2 and 7.3 when applying SCHC to the SLAAC NS IPv6 and ICMPv6 contexts,
several fields in the IPv6 and ICMPv6 headers are significantly reduced in size. For the IPv6 context, fields
such as the IPv6 Version, Next Header, Hop Limit, IPv6 Application Prefix, and Destination Address are
marked as Not Sent,leading to a reduction of 4 bits, 8 bits, 8 bits, 64 bits, and 128 bits, respectively. Al-
though the Traffic Flow Label is compressed using a mapping mechanism, we assume no reduction for now
due to the dependency on the mapping implementation. The IPv6 DevIID is sent without reduction. For the
ICMPv6 context, both the ICMPv6 Type and Code fields, originally 8 bits each, are also not sent, resulting
in an additional reduction of 16 bits. Summing up all these reductions, the total compressed size for the
IPv6 context is reduced by 236 bits, and the ICMPv6 context by 16 bits, making the total reduction 252 bits
or approximately 31.5 bytes.

Initially, the original size of the IPv6 packet was 40 bytes (320 bits). After applying SCHC compression,
the compressed size is reduced to 68 bits.

Table 7.4: M-Flood IPv6 SCHC rules

Field Length (bits) Target Value Matching Operator CDA
IPv6 version 4 6 equal not sent

Traffic flow lable 20 (e.g., 0x00000) match mapping mapping-sent
Next header 8 17 (UDP) equal not sent
Hop limit 8 1 equal not sent

IPv6 App prefix 64 FE80::/64 equal not sent

IPv6 DevIID 64 (derived from DevEUI 64)
calculate in AS ignore DevIID

Destination address 128 FF02::1:FF00:0000/104
(Solicited-node multicast address ) equal not sent
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Table 7.5: MFLOOD next header SCHC rules

Field Length (bits) Target Value Matching Operator CDA
UDP dev port 16 7017 (GRASP listen port) equal value sent
UDP app port 16 - ignore value sent
UDP length 16 - ignore compute-*

UDP checksum 16 - ignore compute-*

Tables 7.4 and 7.5 show the contexts for the M-Flood IPv6 messages and its next header (UDP). The
UDP TV code is 17, the UDP dev GRASP listen port is indicated by 7017 TV. The UDP length and checksum
are computed once the packet is received to the destination using its payload information. Similar to the
aforementioned tables, the total packet header size reduction amounts to 248 bits, compressing the original
48-byte (40 bytes for IPv6 and 8 bytes for UDP) headers to 17 bytes (136 bits).

Table 7.6: TLS IPv6 SCHC rules

Field Length (bits) Target Value Matching Operator CDA
IPv6 version 4 6 equal not sent

Traffic flow lable 20 (e.g., 0x00000) match mapping not sent
Next header 8 6 (TCP) equal not sent
Hop limit 8 1 equal not sent

IPv6 App prefix 64 FE80::/64 equal not sent

IPv6 DevIID 64 (derived from DevEUI 64)
calculate in AS ignore DevIID

Destination address 128 - ignore sent

Table 7.6 presents the contexts stored for TLS handshakes and message exchanges. Since the next header
in TLS is TCP, the TV for this field is indicated by its code, which is 6. Unlike in SLAAC, the destination
address is not a multicast address at this stage, as it has already been determined. The message header in
this table is reduced by 112 bits through SCHC compression (IPv6 Version: 4 bits, Traffic Flow Label: 20
bits, Next Header: 8 bits, Hop Limit: 8 bits, IPv6 App Prefix: 64 bits, and Destination Address: 0 bits as it
is sent).

Table 7.7: DTLS IPv6 SCHC rules

Field Length (bits) Target Value Matching Operator CDA
IPv6 version 4 6 equal not sent

Traffic flow lable 20 (e.g., 0x00000) match mapping not sent
Next header 8 17 (UDP) equal not sent
Hop limit 8 1 equal not sent

IPv6 App prefix 64 FE80::/64 equal not sent

IPv6 DevIID 64 (derived from DevEUI 64)
calculate in AS ignore DevIID

Destination address 128 - ignore sent
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Table 7.8: DTLS next header SCHC rules

Field Length (bits) Target Value Matching Operator CDA
UDP dev port 16 - equal value sent
UDP app port 16 443(DTLS) equal not sent
UDP length 16 - ignore compute-*

UDP checksum 16 - ignore compute-*

Tables 7.7 and 7.8 show the SCHC context zero for the DTLS messages and its next header (UDP)
after MFlood. The 443 TV is set to define DTLS in the UDP app port. The compute-* field indicates
that UDP length and UDP checksum can be calculated from the packet payload on the receiver side and it
is not required to be transmitted. The message header in the table is reduced by 104 bits through SCHC
compression (IPv6 Version: 4 bits, Traffic Flow Label: 20 bits, Next Header: 8 bits, Hop Limit: 8 bits, IPv6
App Prefix: 64 bits, and Destination Address: 0 bits as it is sent).
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7.3 Calculating the on-boarding completion time

In the previous sections, we introduced the SCHC packet transmission model and the concept of SCHC
Zero context, detailing how these mechanisms are used to compress and manage packet headers for efficient
transmission over LoRaWAN. We also outlined the specific SCHC rules and contexts required for the on-
boarding process, providing a comprehensive breakdown of how packet sizes are reduced.

Building on this foundation, this section will utilize the information from these earlier sections to cal-
culate the ToA for various BRSKI and cBRSKI messages. This calculation is crucial for demonstrating
that on-boarding completion time for the proposed system is reasonable across different LoRaWAN SFs in
both BRSKI and cBRSKI scenarios. By systematically applying the SCHC Zero context and evaluating the
resulting transmission times, we aim to prove that our approach ensures transmission time remains reason-
able and efficient under all conditions, thereby validating the robustness of our system in constrained IoT
environments.

Before proceeding to the packet sizes, it is important to understand the key differences between BRSKI
and cBRSKI, which contribute to variations in payload sizes and header overheads. The Table 7.9 provides
a comparison between BRSKI and cBRSKI:

Table 7.9: Comparison between BRSKI and cBRSKI

Feature BRSKI cBRSKI
Payload Encoding JSON format CBOR format (reduces size)
Signature Format CMS signature COSE signature (encoded and

secure, reduced in size)
Transport Protocol HTTPS over TLS over TCP COAPS over DTLS over UDP

(less header overhead)
EST EST EST over COAPS (with shorter

URIs, reduces message size)

Now that we understand the differences between BRSKI and cBRSKI, particularly in terms of payload
size and header overhead, we can proceed to calculate the ToA for the bootstrapping process.

The header size of each packet is predefined by its packet type and the next header field after being
compressed by SCHC Zero. Also, we derived the packet sizes from the BRSKI source [22], and the provided
project on their GitHub [47] to find the packet sizes after being compressed by their signatures. Below is
Table 7.10 to show the packet sizes transferred during the on-boarding process. Note that the header sizes
are the headers after SCHC Zero compression.
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Table 7.10: BRSKI and cBRSKI Packet sizes

Packet type BRSKI
Header size (B)

BRSKI
Packet size (B)

cBRSKI
Header size (B)

cBRSKI
Payload size (B)

NS 8 20 8 20
M-Flood 92 53 50 53

TLS/DTLS client hello 77 186 37 186
TLS/DTLS server hello 77 70 37 70

TLS/DTLS secret sharing 77 3061 37 3061
TLS/DTLS change cipher 77 149 37 149

Voucher request 77 1576 37 978
Voucher Response 77 1180 37 298

Voucher status telemetry request 77 114 37 114
EST enrollment cert request 77 678 37 678

EST enrollment client certificate 77 4246 37 4246

The reduced payload sizes in cBRSKI are attributed to the different signature methods employed, which
decrease the payload size. Additionally, the smaller header size in cBRSKI compared to BRSKI is due to the
use of the COAP header in cBRSKI. This COAP header can be compressed by SCHC, whereas the HTTP
header used in BRSKI is not supported by SCHC for compression. Among the messages above, each of
them that exceeds the MTU size of the LoRa device SF, will be fragmented in the SCHC adaptation layer.

7.3.1 Time on Air calculation

The Time on Air is a crucial parameter for calculating the time it it takes for the transmitter to insert a
packet into the wireless medium using LoRa physical parameters, including the spreading factors. Figure
7.2 gives the pseudo-code of the ToA calculation :
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Figure 7.2: on-boarding completion time pseudo-code

Figure 7.2 corresponds to the pseudo-code for CalculateTransmissionTime function is designed to com-
pute the transmission time of messages sent to and from a LoRaWAN system. It handles both fragmented
and non-fragmented messages, adjusting calculations based on the Spreading Factor (SF), payload size (P),
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and whether the message is uplink (Up-Link) or downlink.

Initialization and Basic Calculation
The function starts by calculating the preamble transmission time (Tpr) using the SF, which sets the foun-
dation for further computations.

Setting Fragmentation Parameters
Constants such as RD1, RX1, RD2, RX2, and SCHC header are defined, along with AR and N based on
SF, to handle fragmentation.

Handling Non-Fragmented Messages If the payload size (Payload size) is small enough, the func-
tion calculates the total transmission time (ToA) as the sum of Tpr and the physical transmission time (Tphy).

Handling Fragmented Messages
For larger payloads, the function calculates the number of tiles and windows needed for fragmentation.
It then computes the transmission times for full regular fragments (ToA frf) and regular partial fragments
(ToA prf), including any downlink delays. The total transmission time (t w) is the sum of these.

Components of Transmission Time
Non-Fragmented Packets: Sum of Tpr and Tphy. Fragmented Packets: Includes times for full and partial
fragments, additional delay in LoRa Class A, and any downlink delays. This ensures accurate calculation
for various payload sizes and conditions in a LoRaWAN system.

To verify the accuracy of our outputs, we compared our ToA results with those generated by The Things
Network’s ToA calculator [48]. Using various packet sizes and device settings for the corresponding band-
widths, we found that our results were consistent with those provided by the website.

Finally, we used this function to calculate the ToA for all of the BRSKI and cBRSKi messsages. The
results and analysis are provided in the next chapter.
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Chapter 8

Results and Discussion

In the previous chapter, we detailed the SCHC packet transmission model and introduced the concept
of SCHC Zero context, outlining how these mechanisms are leveraged to enable the autonomic on-boarding
of LoRaWAN nodes into the IP network. We also calculated the on-boarding completion time for various
BRSKI and cBRSKI messages, demonstrating the efficiency of our approach under different network con-
ditions.

Building upon this foundation, this chapter presents the results derived from our implementation and
analysis. We begin by examining the impact of SCHC Zero on the transmission times of BRSKI and
cBRSKI messages across various spreading factors. Additionally, we explore the security synergy between
LoRaWAN and BRSKI, providing a comprehensive overview of how these technologies work together to
create a secure and autonomic management plane for the management of SCHC context updates. Finally,
we discuss potential directions for future work, suggesting enhancements that could further improve the
system’s performance and security.

8.1 Defining SCHC Zero

A significant challenge arises when considering the connectivity of LoRaWAN end devices to IPv6 net-
works. Before establishing a connection, these devices require SCHC context sharing. Given that BRSKI
facilitates the connection between constrained and non-constrained networks, it becomes essential to trans-
mit messages with IPv6 headers in SCHC format. However, prior to securely bootstrapping the device into
the network, no context can be exchanged between the two ends.

To address this challenge, we proposed a novel solution: SCHC zero context. This context is pre-
configured within the device during the manufacturing process. Upon completion of the bootstrap process,
the SCHC context required for further communication will be securely shared. The intricacies of this system
have been elaborated upon in previous chapters, particularly in the section discussing the implementation
and storage of SCHC zero contexts for various message types in the system.

The reduction in payload sizes is attributed to the different signature methods employed, which decrease
the payload size. Additionally, the smaller header size in cBRSKI compared to BRSKI is due to the use
of the COAP header in cBRSKI, which can be compressed by SCHC, whereas the HTTP header used in
BRSKI is not supported by SCHC for compression.
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8.2 Evaluating the on-boarding completion time

First, we checked the details of the messages passed in the system by checking the related resources
[1,22,49]. We created a sequence diagram from the messages inclding their protocol stack and all the head-
ers.

We implemented the time calculation using MATLAB by utilizing the LoRaWAN settings inputs from
the LoRa Alliance website [49]. To ensure the accuracy of our implementation, we compared the time re-
sults of our code for non-fragmented data with the values provided by The Things Network website. This
comparison helped verify the precision of our ToA calculations.

Additionally, we tested the MATLAB code’s accuracy by creating diagrams that compare data size and
SF with ToA. The relation between the payload size and different LoRa SFs are validated in Figure 8.1.

Figure 8.1: Transmission time for different payload size in each SF

The results demonstrate a clear exponential relationship between transmission time and payload size in
LoRaWAN communications. As the payload size grows, the transmission time increases at an accelerating
rate. This is because larger payloads require more time to be transmitted, and the additional data adds a
proportionally larger amount of time to the overall transmission.

This exponential increase is further exacerbated by higher SFs. The Spreading Factor is a crucial pa-
rameter in LoRaWAN that affects the range, the data rate of the transmission, and the MTU. Higher SFs
result in longer transmission times due to the lower data rate. When the SF increases, each bit of data takes
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longer to transmit, which means that for the same increase in payload size, the increase in transmission time
is more significant at higher SFs compared to lower SFs.

After validating the code’s functionality, we extracted message sizes from the BRSKI RFC and cBRSKI
draft. We then implemented the BRSKI code provided by the authors on GitHub, taking into account the
stored context zero compressed by SCHC.

Finally, we calculated the overall on-boarding completion time and compared the transmission times of
cBRSKI with BRSKI using a LoRa Class A device. The details of these comparisons will be discussed in
the next section.

The comparison of completion times between BRSKI and constrained BRSKI (cBRSKI) across vari-
ous Spreading Factors (SFs) reveals significant insights into the efficiency of these protocols. The results
demonstrate that cBRSKI consistently outperforms BRSKI in terms of transmission time, primarily due to
the use of more efficient header formats (Figure 8.2). However, the gain is not siginifactive and could be
reduced further with additional data compression.

Figure 8.2: Comparison of the on-boarding completion time between BRSKI and cBRSKI with different
LoRa SFs

For SF7 to SF12, the transmission time increases exponentially for both protocols. However, the in-
crease is significantly steeper for BRSKI than for cBRSKI. This substantial reduction in transmission time
for cBRSKI can lead to improved battery life and more efficient use of network resources, as devices spend
less time transmitting data. The numerical results are indicated in the Table 8.1.

72



Table 8.1: Comparison of transmission time between BRSKI and cBRSKI (the numerical results)

SF BRSKI (hours) cBRSKI (hours)
7 0.13 0.11
8 0.16 0.14
9 0.48 0.42
10 1.73 1.53
11 2.94 2.60
12 5.18 4.59

The maximum transmission time for BRSKI is approximately 18,650 seconds, while for cBRSKI, it is
approximately 16,527 seconds, corresponding to around 5.1 hours and 4.5 hours, respectively. Given that
the onboarding process occurs only infrequently, these transmission times are considered both reasonable
and effective for ensuring secure and efficient network integration.

cBRSKI uses COAP instead of HTTP and DTLS instead of TLS, as well as CBOR compression mecha-
nism for the exchanged vouchers which results in reduced packet sizes and more efficient use of bandwidth.
This is reflected in the lower transmission times for cBRSKI.
The reduced transmission times for cBRSKI are particularly beneficial in scenarios with high SFs, where
the impact of longer transmission times is more pronounced.

8.3 Security Synergy Between LoRaWAN and BRSKI

In this section, we explore how the security mechanisms of LoRaWAN and Bootstrapping Remote Se-
cure Key Infrastructure (BRSKI) work in tandem to enhance the overall security framework for IoT net-
works, particularly focusing on the link layer, IPv6 application layer and network layers. The table below
summarizes the security aspects provided by each method.

Table 8.2: Security Metrics

Aspect LoRaWAN BRSKI

Integrity and
Authentication

As LoRaWAN OTAA operates on data
link layer, it provides CMAC to ensure
integrity and CTR for encryption using
shared keys for authentication [21]

BRSKI operates at the application
layer using built-in mechanisms for
ensuring data integrity and reliability
with UDP and TCP checksums

DoS Attack
Prevention

LoRaWAN devices can use different
channels and SFs for communication,
making it harder for DoS [7]

Protects against MitM and bit flipping
attacks by ensuring integrity and au-
thenticity of exchanged keys/messages
using digital signatures

Man in the
Middle Attack

MICs are computed using the
NwkSKey to ensure that messages
have not been tampered

The pledge presents its identity certifi-
cate signed by MASA as a third party

Replay Attack
Prevention

Frame counters that must be incre-
mented with each message. Fresh ses-
sion keys generated during the OTAA
process to prevent reuse of old keys.

Unique nonce values and timestamps to
prevent old messages being reused
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The table 8.2 shows how LoRaWAN ensures the integrity, confidentiality, and authenticity of data trans-
mitted over low-power wide-area networks through a multi-layered security approach in the OSI data link
layer. The key components include the AES cryptographic primitive combined with several modes of opera-
tion: CMAC2 for integrity protection and CTR3 for encryption. The session keys, specifically AppSKey and
NwkSKey. The AppSKey encrypts application payloads end-to-end between the device and the application
server, while the NwkSKey secures MAC commands and network communication.

Mutual authentication is achieved through a secure join procedure verified by a Join Server, ensuring
that only authenticated devices can join the network. Additionally, Message Integrity Codes (MICs) are
used to provide integrity checks and origin authentication, and frame counters are employed to prevent re-
play attacks by ensuring each message is unique.

Also, the comparison table shows that BRSKI provides a robust security framework for bootstrapping
devices in the OSI upper layers including network layer and IPv6 application layers with a focus on au-
thentication, authorization, and secure communication. It employs nonce-based replay protection to ensure
the freshness and authenticity of messages, and encrypts communication to maintain data confidentiality.
Certificates play a crucial role in BRSKI, with the MASA validating device authenticity and authorizing
network access, ensuring that only legitimate devices can join the network.

As a result, LoRaWAN and BRSKI offer complementary security features that together create a robust
security architecture for IoT networks. Enhanced replay protection is achieved through the use of frame
counters in LoRaWAN and nonce-based mechanisms in BRSKI. Comprehensive encryption is provided by
LoRaWAN for end-to-end LoRaWAN application payloads and by BRSKI for initial bootstrapping commu-
nication. Mutual authentication in LoRaWAN, which ensures that only authenticated devices join the net-
work, is enhanced by BRSKI’s certificate-based authentication and authorization, validated by MASA. By
combining LoRaWAN’s security measures at the MAC and LoRa application layers with BRSKI’s security
for bootstrapping, and IPv6 application network layers, a comprehensive, multi-layered security framework
is established, addressing security concerns from device initialization to data transmission.
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Chapter 9

Conclusion

This thesis explored the integration of LoRaWAN with IPv6 networks, focusing on enhancing the effi-
ciency, security, and overall performance of data transmission in constrained environments. By addressing
the challenges of device onboarding and communication between LoRaWAN and IPv6, we proposed and
implemented a series of solutions that contribute to the broader field of IoT networking. The key contribu-
tions of this work are summarized as follows:

9.1 Key Contributions

• Introduction of SCHC Zero Context:

One of the primary challenges in enabling seamless communication between LoRaWAN and IPv6
networks is the lack of shared SCHC context at the initial onboarding stage. To overcome this, we
introduced the concept of SCHC Zero context, a pre-configured set of SCHC rules embedded within
the device during manufacturing. This innovation allows devices to begin communicating immedi-
ately upon connection to the network, facilitating a secure and efficient bootstrapping process. The
SCHC Zero context reduces the need for additional configuration, ensuring that the devices can be
onboarded to the IPv6 network with minimal overhead. Evaluation of Transmission Time (ToA):

We conducted an in-depth analysis of the Time on Air (ToA) for various BRSKI and cBRSKI mes-
sages, demonstrating that our approach ensures that the transmission time remains reasonable and
efficient across different LoRaWAN Spreading Factors (SFs). By implementing a robust ToA calcula-
tion model, we validated that the proposed system performs effectively under all conditions, providing
a practical solution for IoT applications that require reliable and timely data transmission.

• Comparative Analysis of BRSKI and cBRSKI:

Through the implementation and comparison of BRSKI and cBRSKI protocols, we highlighted the
advantages of using cBRSKI in terms of transmission efficiency. The results showed that cBRSKI out-
performs BRSKI due to its use of more efficient header formats, such as COAP over UDP and CBOR
for message compression. Moreover, the transmission time of maximum 5 hours for the on-boarding
process, is effective which is crucial for energy-constrained IoT devices, as it directly impacts battery
life and network resource utilization.

• Security Synergy Between LoRaWAN and BRSKI:

The integration of LoRaWAN and BRSKI security mechanisms provides a comprehensive multi-
layered security framework for IoT networks. By combining the data link layer security provided
by LoRaWAN with the application and network layer security of BRSKI, we achieved enhanced
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protection against common threats such as replay attacks, man-in-the-middle (MitM) attacks, and
denial of service (DoS) attacks. The synergy between these two protocols ensures that IoT devices
are not only securely onboarded but also maintain secure communication throughout their operation.

9.2 Future Work

In addition to the current implementation, Future Work will explore further optimizations and security
enhancements. Potential areas for development include the integration of Object Security for Constrained
RESTful Environments (OSCORE) with SCHC [38], and the application of Diet-ESP [50] for further com-
pression while maintaining security. These enhancements could provide even greater efficiency and security
for IoT devices operating in constrained environments.
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[36] G. Álvarez, J. A. Fraire, K. A. Hassan, S. Céspedes, and D. Pesch, “Uplink transmission policies for
lora-based direct-to-satellite iot,” IEEE Access, vol. 10, pp. 72 687–72 701, 2022.

[37] S. T. Arzo, C. Naiga, F. Granelli, R. Bassoli, M. Devetsikiotis, and F. H. Fitzek, “A theoretical discus-
sion and survey of network automation for iot: Challenges and opportunity,” IEEE Internet of Things
Journal, vol. 8, no. 15, pp. 12 021–12 045, 2021.

[38] L. E. V. Zavala, A. O. Garcı́a, and M. Siller, “Architecture and algorithm for iot autonomic network
management,” in 2019 International Conference on Internet of Things (iThings) and IEEE Green Com-
puting and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData). IEEE, 2019, pp. 861–867.

[39] R. F. Sari, L. Rosyidi, B. Susilo, and M. Asvial, “A comprehensive review on network protocol design
for autonomic internet of things,” Information, vol. 12, no. 8, p. 292, 2021.

[40] M. Tahir, Q. M. Ashraf, and M. Dabbagh, “Towards enabling autonomic computing in iot ecosystem,”
in 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive
Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science
and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). IEEE, 2019, pp. 646–651.

[41] S. Afzal, L. C. De Biase, G. Fedrecheski, W. T. Pereira, and M. K. Zuffo, “Analysis of web-based iot
through heterogeneous networks: Swarm computing over lorawan,” Sensors, vol. 22, no. 2, p. 664,
2022.

[42] B. Moons, A. Karaagac, J. Haxhibeqiri, E. De Poorter, and J. Hoebeke, “Using schc for an optimized
protocol stack in multimodal lpwan solutions,” in 2019 IEEE 5th World Forum on Internet of Things
(WF-IoT). IEEE, 2019, pp. 430–435.

79



[43] K. Q. Abdelfadeel, V. Cionca, and D. Pesch, “Dynamic context for static context header compres-
sion in lpwans,” in 2018 14th International Conference on Distributed Computing in Sensor Systems
(DCOSS). IEEE, 2018, pp. 35–42.

[44] W. Ayoub, A. E. Samhat, F. Nouvel, M. Mroue, H. Jradi, and J.-C. Prévotet, “Media independent
solution for mobility management in heterogeneous lpwan technologies,” Computer Networks, vol.
182, p. 107423, 2020.

[45] A. Bernard, S. Balakrichenan, M. Marot, and B. Ampeau, “Dns-based dynamic context resolution for
schc,” in ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE, 2020, pp.
1–6.

[46] M. Holdrege and P. Srisuresh, “IP Network Address Translator (NAT) Terminology and
Considerations,” RFC 2663, Aug. 1999. [Online]. Available: https://www.rfc-editor.org/info/rfc2663

[47] M. B. Brian Carpenter, Bing Liu, “ANIMAGUS GitHub Repository, a reference implementation of
RFC 8995,” 2024, https://github.com/ANIMAgus-minerva.

[48] T. T. N. Foundation, “The things network toa calculator,” The Things Network Industries, accessed:
2024, https://www.thethingsnetwork.org/airtime-calculator.

[49] D. Kjendal, “LoRa Regional Parameters,” LoRa Alliance, 2022, https://resources.lora-alliance.org/te
chnical-specifications/rp002-1-0-4-regional-parameters.

[50] D. Migault et al., “ESP Header Compression Profile,” Internet Engineering Task Force,
Internet-Draft draft-ietf-ipsecme-diet-esp-01, Jul. 2024, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-ipsecme-diet-esp/01/

80

https://www.rfc-editor.org/info/rfc2663
https://github.com/ANIMAgus-minerva
https://www.thethingsnetwork.org/airtime-calculator
https://resources.lora-alliance.org/technical-specifications/rp002-1-0-4-regional-parameters
https://resources.lora-alliance.org/technical-specifications/rp002-1-0-4-regional-parameters
https://datatracker.ietf.org/doc/draft-ietf-ipsecme-diet-esp/01/

	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis Organization

	Background
	IoT
	LPWAN
	LoRaWAN
	LoRa and LoRaWAN technologies
	LoRaWAN Architecture
	LoRaWAN Protocol stack

	Internet Engineering Task Force and its role
	Autonomic Networking
	Architecture
	Generic Autonomic Signaling Protocol (GRASP)
	Enrollment over Secure Transport (EST)
	BRSKI
	Management, Control, and Data Planes

	IP Networking in IoT
	IPv6
	IPv6 addresses
	IPv6 Autonomic Behavior
	IP supporting LPWAN

	Static Context Header Compression and Fragmentation (SCHC)
	SCHC Compression
	SCHC Stack Flow
	SCHC Fragmentation
	SCHC Context


	Onboarding
	LoRaWAN
	Over The Air Activation Process (OTAA)
	Security mechanisms

	IPv6
	Neighbor Discovery Protocol
	SLAAC

	BRSKI
	Message Flow in BRSKI
	Security mechanisms

	SCHC
	On-boarding setup
	Security Considerations


	State of the art
	LPWAN technologies and IPv6 integration
	On-boarding solutions
	SCHC context management - Use cases and solutions

	Problem Statement
	Hypothesis
	Objectives
	Challenges and considerations

	Proposed Solution
	LoRaWAN onboarding to create IPv6 secure link
	BRSKI to create API
	ACPs to provide API for upper-level use

	Description of the Solution
	Message exchanges and fragmentation model
	SCHC Zero Context
	Calculating the on-boarding completion time
	Time on Air calculation


	Results and Discussion
	Defining SCHC Zero
	Evaluating the on-boarding completion time
	Security Synergy Between LoRaWAN and BRSKI

	Conclusion
	Key Contributions
	Future Work

	Bibliography

