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Abstract

Real-Time Neural Cloth Deformation using a Compact Latent Space and a Latent Vector

Predictor

Chanhaeng Lee

We propose a method for real-time cloth deformation using neural networks, especially for

draping a garment on a human body. The computational overhead of most of the existing learning

methods for cloth deformation often limits their use in interactive applications. Employing a two-

stage training process, our method predicts garment deformations in real-time. In the first stage, a

graph neural network extracts cloth vertex features which are compressed into a latent vector with

a mesh convolution network. We then decode the latent vector to blend shape weights, which are

fed to a trainable blend shape module. In the second stage, we freeze the latent extraction and train

a latent predictor network. The predictor uses a subset of the inputs from the first stage, ensuring

that inputs are restricted to those which are readily available in a typical game engine. Then, during

inference, the latent predictor predicts the compacted latent which is processed by the decoder and

blend shape networks from the first stage. Our experiments demonstrate that our method effectively

balances computational efficiency and realistic cloth deformation, making it suitable for real-time

use in applications such as games.
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Chapter 1

Introduction

Modeling, synthesizing and rendering clothing on virtual characters is a critical task in many

applications such as games, special effects, telepresence, and VR environments. Physical simulation

has been typically used with excellent results [2, 3], but with significant limitations related especially

to performance, stability, and controllability [3].

Modern video games contain many complex components related to graphics and animation

working together with a limited computational budget and with a high number of assets (i.e. char-

acters, garment types, accessories, motion types). Therefore, garment synthesis methods aimed at

games require, in addition to the high quality of the results, high performance as well as a high

degree of generalization to adapt to the large number of assets that typically appear in a game.

Most used methods in games predict displacement on a template garment in the canonical pose

and subsequently drive cloth deformations using a combination of blend shapes and Linear Blend

Skinning (LBS) [4, 5]. However, as noted by Grigorev et al. [6], this pose-driven deformation

has difficulties both in correctly representing loose garments and with the dynamic behaviour of

clothing. This is because pose-driven methods are not supervised by any real physics simulation.

The HOOD method [6] tries to address these issues by learning complex cloth deformations using

direct physics supervision at a vertex level and, as such, is agnostic to the underlying body. One

major concern with HOOD though is that it is far too slow to be used in video games.

In this work, we propose a garment synthesis method specifically designed with game require-

ments in mind. Our method uses the blend shapes and LBS methods while producing good realistic
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cloth deformation in real time. Our method uses two key ideas. First, we distil the per-vertex

feature vector obtained from a powerful but slower method such as HOOD [6] that encodes the

complex information about the garment deformation to a per-garment compact latent space that can

be efficiently decoded. Then we compute the posed garment from the compact latent space. This

addresses only half of the problem: even if the decoding is efficient, the encoding based on the graph

embedding and message passing in HOOD is quite slow. To address this issue, our second key idea

is to create a fast latent predictor that computes the latent code of the next frame of the deformation.

We demonstrate that this approach produces high-quality results at very fast speeds. Moreover, it

generalizes over different body shapes thus allowing only one latent space for a variety of character

shapes and sizes. We further demonstrate its suitability for game-like applications by showing a

real-time demo where the body poses are generated ad-hoc and in real-time using motion match-

ing [7, 8], a common method used in games for character pose synthesis. Our main contributions

can be summarized as:

• a network architecture for effective distillation of per-vertex features to a compact latent

space.

• an efficient latent predictor for real-time purposes relying on a compact set of inputs readily

available in game engines.

• a two-stage training strategy to achieve quality and speed in computing cloth dynamics.
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Chapter 2

Background

This chapter provides the necessary background for the method presented in this thesis. It

includes techniques for animating meshes using linear blend skinning, cloth simulation, Graph

Network-based Simulator, and unsupervised learning method for garment synthesis and simulation.

2.1 Animating meshes

Garments are draped on top of animated human bodies, both of which are represented as meshes

composed of vertices and faces. Vertices are three-dimensional coordinates in the Cartesian coor-

dinate system, while faces are indices referencing these vertices, with each face typically forming a

triangle of three indices. Faces are primarily used for rendering purposes.

To animate a mesh, we need a data representation for the animation sequence. This represen-

tation can vary depending on the algorithm used. In this work, we focus on the representation for

Skeletal-Subspace Deformation, especially linear blend skinning. Additionally, we explain the 6D

rotation representation used for our neural networks, introduced by Zhou et al. [9]. We also discuss

the Skinned Multi-Person Linear (SMPL) model, which is employed to represent different shapes of

human bodies. This model is particularly useful for representing various body shapes with a small

set of parameters. We also cover blend shapes and pose space deformation, which are central to

both SMPL and our method.
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Figure 1: Joint Hierarchy for SMPL. L and R mean left and right, respectively. The parent joints point to

their children with the arrows.

2.1.1 Linear Blend Skinning And Representations for Animation Sequence

In character animation, Skeleton-Subspace Deformation (SSD) method, also known as skinning

or enveloping, is employed to animate a mesh [5]. Derived from SSD, Linear Blending Skinning

(LBS) is defined as LBS(T,J,θ,W) with vertices in the canonical pose T ∈ R
N×3, joint locations

J ∈ R
K×3, joint rotations θ ∈ R

K×3×3 for a frame of an animation sequence, and skinning weight

matrix W ∈ R
N×K with N vertices and K joints. The LBS equation outputs the posed vertices

v ∈ R
N×3. The posed vertices v is further translated with the root joint translation from the

animation sequence. Therefore, an animation sequence for LBS over F frames is represented as

joint rotation matrices JR ∈ R
F×K×3×3 and root joint translations RT ∈ R

F×3. Thus, the final

animated mesh for the frame f is evaluated by LBS(T,J, JRf ,W) + RTf .

LBS requires a skeleton with joints in a hierarchy for a mesh. One example for the joint hi-

erarchy from SMPL, detailed in Sec. 2.1.2, is illustrated in Fig. 1. Each vertex in the mesh is

linearly transformed from the canonical space to the posed space by joint transformation matri-

ces with weights through LBS. These weights, called skinning weights, influence vertices linearly.
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Accordingly, each transformed vertex vi from the LBS is defined as:

vi =
K
∑

k

wi,kLkpi, (1)

where wi,k is the kth joint (skinning) weight for the ith vertex from the skinning weight matrixW ,

Lk ∈ R
4×4 is the kth joint global transformation matrix for the ith vertex, and pi is the homoge-

neous coordinates for the ith vertex of the mesh in the canonical pose from the template vertices Ti.

The joint global transformation matrices are evaluated by forward kinematics, traversing the joint

hierarchy from the root joint to children joints in the hierarchy. The forward kinematics enables the

transformation from the joint space to the world space. Thus, θ and J are joint local rotations and

locations relative to the reference frame of their parent joint. One transformation matrix for each

joint, usually called the inverse bind matrix, is further required to transform vertices of the mesh

from its canonical space to the joint space. The inverse bind matrix is constructed by joint local

rotations in the canonical pose. The final equation for each joint global transformation matrix is

defined as:

Lk(θ,J) =
∏

j∈A(k)







θj Jj

0 1













∏

j∈A(k)







θ∗

j Jj

0 1













−1

, (2)

where θj ∈ R
3×3 is a joint local rotation of a frame in an animation sequence, Jj ∈ R

3 is a joint

local location, θ∗

j ∈ R
3×3 is a joint local rotation in the canonical pose, and A(k) is the ordered list

of joint ancestors of the joint k.

Since rotations can be represented in various ways, in addition to choosing an animation rep-

resentation for LBS, selecting an effective animation representation for training neural networks

has become important. Zhou et al. [9] investigated the continuity of many representations for 3D

rotations. There are several representations for 3D rotations, such as Euler angles, quaternions, and

axis-angle representations. However, these representations are discontinuous according to Zhou et

al. [9]. A possible alternative for the continuous representation of 3D rotation is the 6D represen-

tation. Specifically, the mapping function from 3D rotations to the 6D representation is defined
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(a) LBS (b) SMPL

Figure 2: (a) Failure case of LBS where the correct deformation does not belong to the subspace formed by

joint transformations and skinning weights. (b) The SMPL model [1] addresses this limitation using blend

shapes based on Pose Space Deformation (PSD).
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, (3)

where a1, a2, and a3 are the column vectors for a 3D rotation matrix and the function g is the

continuous representation of 3D rotations by taking the first two columns out of three columns from

the 3D rotation matrix. This function is validated to have continuous representation for 3D rotations,

since the output of the function g can be remapped to the original space for the 3D rotation matrix

by the Gram-Schmidt process and the cross product. The experiments by Zhou et al. [9] showed

that this representation is more effective than any other representations for training neural networks.

2.1.2 Blend Shapes, Pose Space Deformation, and SMPL

In addition to LBS, blend shapes are a popular technique for further animating mesh vertices.

Blend shapes, also known as shape interpolation or morphing, are used in various ways to achieve

6



desired animation results. The blend shapes are defined as

B
∑

b

βbSb (4)

where B is the number of shapes and the scalar βb weights a blend shape Sb ∈ R
N×3. This linear

combination deforms the template vertices T to achieve desired animation results, such as facial

animation, when combined with LBS.

One significant limitation of LBS is invalid deformation in some parts of a mesh, where the cor-

rect deformation does not belong to the subspace constructed by joint transformations and skinning

weights [5], as illustrated in Fig. 2a. Since the desired animated mesh cannot always be achieved

through LBS with blend shapes, the Pose Space Deformation (PSD) method supplements LBS. The

PSD model takes poses as an input and computes vertex displacement relative to the mesh vertices

in the canonical pose using data interpolation methods such as radial basis functions [5]. Then, LBS

is applied to the deformed vertices to achieve desired results, such as better deformations. The PSD

function is modeled with sufficient examples of animated meshes and poses to find desired vertex

displacements.

Capitalizing on these two techniques, the Skinned Multi-Person Linear (SMPL) model extends

one template body to different shapes and addresses the limitation of LBS through its learning

method [1]. The core of SMPL is additive and corrective blend shapes for its template body. Its

shape blend shapes BS(β) represent different body shapes with 10 scalar parameters of β, and its

pose blend shapes BP (θ) correct artifacts from LBS based on the pose θ, as shown in Fig. 2b.

The SMPL model also regresses joint locations for different body shapes with its joint regressor

J (β). A visual representation of different body shapes with joint locations regressed by the joint

regressor is shown in Fig. 3. The pose blend shapes can be considered one of the PSD methods since

they take a pose as input and return vertex displacement for the template vertices. However, the

pose blend shapes differ from conventional PSD methods in that the pose blend shapes are a linear

model without using a data interpolation method. Recent literature in deep learning often refers to

methods as PSD if they take a pose as input and output vertex displacement for template vertices.

In conclusion, the SMPL model with LBS is defined as LBS(T+BS(β) +BP (θ),J (β),θ,W).
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(a) Thin (b) Template (c) Heavy

Figure 3: Different body shapes of the SMPL model with joint locations in red, including the thin body (a),

the template body (b), and the heavy body (c).

2.2 Cloth Simulation

While LBS enables cloth synthesis on human bodies by animating meshes with fast runtime

performance, physically-based cloth simulation offers more realistic deformation of cloth at a slower

runtime performance compared to LBS. Pioneering work by Baraff and Witkin [2] introduces an

implicit time integration method for cloth simulation, also known as the backward Euler method.

This approach is fundamental in achieving stable and realistic physics-based simulation, even with

large time steps. The discretized backward Euler equation is defined as

d

dt







x

v






=







v

M−1f(x,v)






, (5)







xn+1 − xn

vn+1 − vn






=







∆x

∆v






=







h(vn +∆v)

h(M−1f(xn +∆x,vn +∆v))






, (6)

where Eq. (5) represents the equations of motion with positions x, velocities v, a diagonal mass

matrix M, and forces f for a triangular mesh of particles. The backward Euler method in Eq. (6)

defines the changes in positions and velocities in terms of quantities from the next time step with

the time step h. Solving the nonlinear equation from Eq. (6) is required to advance cloth simulation.

Many research works on physics-based simulation have adopted the implicit Euler method for

simulating various objects, including cloth, and have developed ways to evaluate the solution to
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Eq. (6). Baraff and Witkin [2] rather converted the nonlinear equation into a linear equation applying

a Taylor series expansion to the forces f , and solved the linear equation with their modified conjugate

gradient method. They also mentioned using a direct method such as Gaussian elimination to solve

small linear systems. Goldenthal et al. [10] demonstrated that solving the nonlinear equation of

the implicit Euler method is equivalent to an optimization problem. Martin et al. [11] also used

numerical optimization to solve the nonlinear equation for their example based simulation, calling it

the variational Euler implicit function. Using the optimization method, Liu et al. [12] showed cloth

simulation based on mass-spring systems. Gast et al. [13] validated that recasting the solution of the

nonlinear equation as an optimization problem improves the robustness of results using optimization

techniques. Recasting Eq. (6) as an optimization problem has become the crux of physics-based

simulation.

To recast the backward Euler nonlinear equation as an optimization problem, vn+1 is eliminated

using
xn+1−xn

h
= vn+1 = vn +∆vn:

xn+1 − xn − hvn

h
= h(M−1f(xn+1,

xn+1 − xn

h
)). (7)

Rearranging Eq. (7), we obtain:

M
xn+1 − xn − hvn

h2
= f(xn+1,

xn+1 − xn

h
). (8)

Newton’s method typically evaluates the solution xn+1 with:

h(xn+1) = M
xn+1 − xn − hvn

h2
− f(xn+1,

xn+1 − xn

h
), (9)

where h(xn+1) = 0 at the root. From Eq. (9), we rewrite the equation h(xn+1) to represent it as a

minimization problem:

h(xn+1) = M
xn+1 − xn − hvn

h2
+

∂Φ

∂x
, (10)

under the assumption that the (conservative) forces f can be represented as derivatives of potential
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energies Φ [13]. Integrating Eq. (10), we obtain the scalar objective function to minimize:

E(xn+1) =
1

2h2
(xn+1 − xn − hvn)

TM(xn+1 − xn − hvn) + Φ, (11)

where the derivative of E(xn+1) at a minimizer x∗

n+1 is zero when evaluating a local minimum for

E(xn+1) [13]:

∂E(xn+1)

∂x
= h(xn+1) = 0. (12)

Therefore, finding a local minimum for E(xn+1) is equivalent to solving h(xn+1) according to the

first-order optimality condition [13, 14].

This optimization-based approach has not only advanced physics-based simulation, but also

impacted deep learning for cloth simulation and synthesis. Since a deep learning framework focuses

on minimizing losses, the minimization for E(xn+1) can be used similarly to enforce physical

behaviors by neural networks, even without ground-truth training data [15]. Further details on this

application are provided in Sec. 2.4.

2.3 Graph Network-based Simulator

Recent efforts in learning physics simulation through deep learning frameworks have shown

promising results. Sanchez-Gonzalez et al. [16] introduced Graph Network-based Simulators

(GNS), dθ : X → Y , which predict dynamics information Y , such as accelerations, from the state of

a world X using parameters θ. At the core of GNS is the use of graph neural networks with message

passing techniques to model interactions between nodes in a graph. GNS performs semi-implicit

Euler integration to calculate the next state of particles using the predicted accelerations:

ṗn+1 = ṗn + hp̈n (13)

pn+1 = pn + hṗn+1, (14)

where p and ṗ are the positions and velocities of particles, respectively, and p̈ are the accelerations

predicted by GNS. For simplicity, the time step h is set to 1. GNS is trained with an L2 loss between
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the predicted positions pn+1 and the corresponding ground truth positions p̄n+1.

Pfaff et al. [17] extended the above particle-based GNS to their mesh-based GNS. Both particle-

based and mesh-based GNS share an Encode-Process-Decode architecture, where an encoder en-

codes input states into a graph with latent features, a processor processes interactions of nodes with

edges from the graph through message-passing, and a decoder decodes dynamics information from

node features to predict future states. The mesh-based GNS uses a meshM as an input to its GNS

instead of the states of particles X .

Inputs and Outputs: Since GNS utilizes a graph representation in its processor, it requires input

features for both nodes and edges. The input node features can include positions x, velocities ẋ,

and node types (e.g. object/obstacle/boundary nodes), depending on the implementations. The input

edge features include relative positional displacement xi − xj and its norm ||xi − xj ||. Edges are

defined by sender indices i and receiver indices j, with each edge connecting two nodes. In particle-

based GNS, edges are constucted between particles within a connectivity radius since particles do

not have explicit connectivities. In contrast, mesh-based GNS uses the inherent connectivity of the

mesh while additionally constructing edges in world space based on spatial proximity. The primary

outputs from GNS are mostly node accelerations, but GNS can also predict changes in momentum,

density, and pressure, depending on the simulation type.

Encode: The encoder in GNS converts input features into latent features, which correspond to

nodes and edges of an input graph to the processor. The encoder typically consists of one Multi-

Layer Perceptron (MLP) for node features and another MLP for edge features. In mesh-based

GNS, an additional MLP is used for edge features in world space. Specifically, input node features

are transformed into latent node features v using the node MLP, while input edge features from

different edgesets (including mesh space edge features em and world space edge features ew from

the total edgesets E) are separately transformed into mesh space latent edge features em and world

space latent edge features ew by their respective MLPs. Particle-based GNS handles only a single

edgeset. These latent features are then passed to the processor.

Process: The processor in GNS comprises a stack of M graph neural networks with message pass-

ing steps, particularly a stack of M Graph Networks (GNs) proposed by Sanchez-Gonzalez et al.
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[18]. These GNs are an extension of the interaction network by Battaglia et al. [19]. The process-

ing steps involve first updating edge features and then updating node features, as outlined in Algo-

rithm 1. Specifically, each GN in the stack takes an input graph Gn = (v,E) and outputs an updated

graph Gn+1 = (v′,E′). Each edgeset has a specific MLP that updates the edge features within the

edgeset. Since mesh-based GNS includes an additional edgeset (world space edges), it utilizes two

MLPs for updating edge features from both the mesh space and world space. These edge features

from edgesets are updated with latent node features gathered via sender and receiver node indices.

These updated edge features are then used to update node features by aggregating edge features

based on receiver node indices. For mesh-based GNS, the aggregated edge features from different

edgesets are concatenated and passed through an MLP to update node features. The number of GNs

in the stack (M ) influences the accuracy and computational efficiency of the predictions. Pfaff et al.

[17] determined that using 15 GNs strikes a balance between computational effciency and predictive

accuracy accross various simulations, making it a practical choice for achieving optimal results in

most scenarios.

Algorithm 1 Graph Network (GN) for mesh-based Graph Network-based Simulator (GNS)

1: Input: Graph, Gn = (v,E = {em, ew})
2: Output: Graph, Gn+1 = (v′,E′ = {e′m, e′w})
3: for each edgeset features e with a MLP f from E do

4: Gather sender node features vs and receiver node features vr from v with edge indices

5: Update edgeset features e′ = fe(e,vs,vr)
6: end for

7: for Each node feature vi do

8: ê← ∅
9: for each edgeset features e′ from E do

10: Aggregate edge features with receiver node indices rj and concatenate

11: ê = ê ∪
∑

rj
e′rj

12: end for

13: Update node features v′

i = fn(vi, ê)
14: end for

Decode: Using an MLP, the decoder in GNS predicts dynamics information, such as accelerations,

directly from the node features of the final output graph produced by the processor. At this stage,

edge features are not utilized, as the focus is on deriving node-specific outputs. The final posi-

tions of the nodes are then computed using the predicted accelerations through semi-implicit Euler
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integration, as shown in Eq. (13) and Eq. (14).

Particle-based GNS has been successfully applied to a variety of physical domains including

fluid dynamics, rigid body simulations, and deformable materials. The extended mesh-based GNS

further advanced the field by enabling realistic physics simulation for complex scenarios like cloth

behavior, structural mechanics, aerodynamics. The versatility and accuracy of the GNS framework

have significantly influenced subsequent research in learning physics-based simulation, including

garment synthesis method.

2.4 Unsupervised Learning for Garment Synthesis and Simulation

While supervised learning methods for physics simulation, including cloth simulation, have

shown promising results, they depend on high-quality ground-truth simulation data, which can takes

hours or even days to generate. In constrast, Bertiche et al. [20] pioneered the use of unsupervised

learning for garment draping on human bodies, exploring the potential of learning cloth simula-

tion without relying on ground-truth data. Specifically, their method, PBNS, is a PSD-based cloth

synthesis technique that uses LBS and trains networks by applying cloth simulation constraints as

losses. While this work yielded promising results, it was limited to static deformation and did not

account for dynamic deformation. SNUG by Santesteban et al. [15] advanced this line of research

by introducing an inertia term in the loss function, inspired by the reformulation of the implicit

Euler method as an optimization problem. This addition enabled SNUG to better capture dynamic

behavior in cloth synthesis. However, Bertiche et al. [21] critiqued SNUG for being limited to only

three frames of dynamics and proposed an improved method capable of modeling more extensive

dynamic behavior.

These PSD-based methods share similar characteristics in their approach to learning static and

dynamic garment deformations. One key characteristic is the nature of the inputs and outputs of

the neural networks. As these methods are based on PSD, the inputs to the neural networks are

primarily sequences of poses, supplemented by additional features that enhance the results, while

the outputs are vertex displacements on the garment vertices in the rest pose. Thus, a garment model
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for PSD-based unsupervised cloth synthesis is defined with LBS as:

x = LBS(T+ f(σ),J,θ,W), (15)

where T represents garment vertices in the rest pose, f(σ) is the vertex displacement predicted by

a neural network f given network inputs σ, J is joint locations, θ is the pose, andW is the skinning

weights. The neural network in this approach can predict vertex displacement directly using an

MLP [15]. Alternatively, it can predict blend shape weights, which are then fed into a learnable

blend shape module [20, 21]. Li et al. [22] further extended this approach by adding neural network

predictions for skinning weights and blend shapes on top of predicting vertex displacement.

Another common characteristic is the enforcement of cloth behavior using constraints for cloth

simulation as training losses, similar to reformulating the backward Euler method as an optimization

problem. In this context, Eq. (11) is used directly as a total loss for training neural networks in an

unsupervised manner. From this equation, the inertia loss is defined as:

Linertia =
1

2h2
(xn+1 − xn − hvn)

TM(xn+1 − xn − hvn), (16)

where xn+1 represents the predicted positions in the next frame from Eq. (15), xn represents the

positions in the current frame, M is a diagonal mass matrix, vn is the velocity in the current frame,

and h is the timestep. The potential energies Φ for cloth simulation in Eq. (11) typically include

stretching, bending, gravity, and collision constraints. The potential energy for the stretching con-

straint can be implemented using the mass-spring model, the continuum formulation of Baraff and

Witkin [2], or the Saint Venant Kirchhoff (StVK) elastic material model. We refer the reader to

SNUG [15] for the implementation of the other loss functions. This training technique without

ground-truth data, referred to as physics supervision, is very significant not only in unsupervised

cloth synthesis, but also in unsupervised cloth simulation.

In addition to developments in unsupervised cloth synthesis, unsupervised cloth simulation has

been explored. Grigorev et al. [6] proposed HOOD that trains their network without ground-truth

data, enforcing cloth behavior with the physics supervision to drape a garment on a human body. As

HOOD is built on GNS, it predicts accelerations and performs time integration to evaluate the next
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frame positions. According to the results from HOOD, this time integration method produces better

cloth dynamics with wrinkles compared to unsupervised cloth synthesis methods. However, GNS-

based methods, which utilize graph neural networks with message passing, require more intensive

computation compared to MLP-based cloth synthesis, limiting their applicability in real-time sce-

narios.

Given the superior expressiveness of GNS-based methods over PSD-based methods, leveraging

the representation from GNS-based methods is a promising approach. However, the high compu-

tational cost of graph neural networks makes them less suitable for interactive applications. There-

fore, we propose addressing this issue by developing a two-stage learning process to make use of

the expressiveness from GNS-based methods and fast computation from PSD-based methods.
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Chapter 3

Related Works

In the last decade, an enormous amount of work has been levied toward applying deep learning-

based methods to various academic fields including computer graphics and computer animation.

Character garment animation has recently received increasing attention for said research. Garment

synthesis using neural networks can be largely classified into pose-driven methods where the pre-

diction is conditioned on the body poses and the outputs of the neural networks are displacement

for a template garment [23, 15, 24, 25] and/or deformations encoded as blend shapes [26, 20, 22].

These approaches are appealing as the computation of linear blend skinning and blend shapes can

be done extremely efficient on GPU.

An early example of displacement based methods is TailorNet [23], which is a supervised

method for predicting character clothing using pose, body shape, and garment style as input. The

key to the methodology involves explicitly separating low-frequency and high-frequency garment

deformations in-order to avoid the common problem of overly smooth output that neural networks

suffer from. Low and high-frequency displacement are generated as functions of body shape, pose,

and style using a Multi-Layered Perceptron (MLP). The high-frequency displacement is further re-

fined using the mixture weights predicted by the garment style and the body shape. Self-Supervised

Neural Dynamic Garments (SNUG) [15] formulates garment physical-based constraints as loss

terms which are minimized during training, allowing for the model to learn displacement for dy-

namic garment deformations in a self-supervised manner removing the need of simulated data to
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train. Swish [26] is a quasi-static garment deformer, taking as input the character pose and out-

putting PCA weights which are used to reconstruct displacement with PCA vectors, similar to blend

shapes. This is one of the only two methods that are suited for deployment in games and in fact was

used in Electronic Arts Madden NFL 21 to deform football player jerseys. However, this method

is limited to tight garments and it does not take into account the dynamics of the cloth. The largest

limitation of the LBS-based methods is their failure on loose garments. Zhang et al. [24] address

this by learning a generative space of plausible garment geometries. Then, their method learns a

mapping to this space to capture the motion-dependent dynamic deformations, conditioned on the

previous state of the garment as well as its relative position with respect to the underlying body.

SMPLicit [27] is another generative model capable of representing body pose, shape, and clothing

geometry. It can represent multiple garment topologies with the same model. This is achieved via a

learned implicit function.

Another way to address the failure cases for loose garments is to model the deformed garment

using blend shapes [28, 22, 20, 21]. In the training stage, a set of blend shapes is created to span

the deformation space of the garment thus improving over the LBS-only methods. Physically-

Based Neural Solver (PBNS) [20] uses a self-supervised learning approach for learning garment

deformations similar to SNUG [15]. Neural cloth simulation (NCS) [21] utilizes an encoder-decoder

neural network architecture which explicitly disentangles static and dynamic cloth deformations.

HOOD [6] departs from the pose-based generation framework to get the initially posed garment

and uses physics supervision at the vertex level to drive garment deformation. While the results are

impressive, due to its usage of Graph Neural Networks coupled with the necessity of computing per-

vertex features at every time step, this approach is ill suited to real-time in-game cloth deformation.
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Chapter 4

Method

4.1 Overview

Our method, depicted in Figure 4, predicts displacement on a template garment in the canonical

space and uses LBS to perform garment synthesis for computational efficiency and ease of applica-

tion. Designed for real-time applications, such as games, our method utilizes a two-stage training

process to model dynamic cloth behavior. Our key idea is to obtain a compact latent representation

for cloth deformation that can be predicted given sparse inputs and converted into displacement on

a template garment.

While a method like HOOD [6] can simulate high-quality garment deformation with dynamics

using time integration by predicting acceleration, it results in a high-dimensional latent represen-

tation and demands significant computational resources at inference time, making it unsuitable for

game engines and real-time applications. Specifically, its encoder generates high-dimensional latent

features, its processor updates these features with graph neural networks and message passing, and

then its decoder predicts acceleration with the processed features. Utilizing the architecture of the

encoder and the processor, which are effective at capturing garment deformation and dynamics, our

compact latent learning stage aims to train a network that predicts displacement by compressing the

high-dimensional latent features from the encoder and the processor into a compact latent vector

using Mesh Convolution [29]. Leveraging the compact latent vector, we predict the displacement

with our decoder and learnable blend shapes. The decoder predicts blend shape weights from the
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Figure 4: Overview of our method. We develop a compact latent space for cloth deformation in the first stage

(a), and then in the second stage (b) we train a latent predictor to efficiently predict a vector in the compact

latent space. During inference (c), we utilize lightweight MLPs (the latent predictor and the decoder) and

blend shapes for fast inference.

compact latent vector, and then the displacement is computed as a weighted sum of the learnable

blend shapes with the blend shape weights. Finally, we perform LBS on the deformed garment

with the displacement. Training these networks in an end-to-end manner, as illustrated in Fig. 4

(a), enables us to learn a compact latent space that effectively represents garment deformation and

dynamics.

Our latent predictor learning stage trains a lightweight MLP to get rid of the encoder, the pro-

cessor, and the convolutional neural network of the compact latent learning stage, ensuring fast

inference, as shown in Fig. 4 (b). This block is trained to predict the latent vector at the next time

step Zt+1 using the current latent vector Zt, root joint velocities of two frames {vt, vt−1}, joint

rotations of three frames {ϕt+1, ϕt, ϕt−1}, joint positions of three frames {ρt+1, ρt, ρt−1}, the body

shape parameter β, and material parameters {m,µ, λ, k}, which are detailed in Sec. 4.4. These in-

puts are necessary and sufficient to predict the next step latent vector within interactive frame rates.

19



During inference time, using this simple MLP with the decoder and the blend shapes enables our

method to be applied in real-time applications, as presented in Fig. 4 (c).

4.2 Garment Model

Our garment model G(β,θ,X) is defined as:

G(β,θ,X) = LBS(T (β,θ,X), J(β),θ, W̃) (17)

where β and θ are shape and pose parameters used by the SMPL body model [1], X is a feature

vector defined in sections 4.3 and 4.4, and LBS is the linear blend skinning function. This function

transforms the deformed garment T (β,θ,X) from the canonical space to the posed space with joint

locations J(β) of the body in shape β, pose θ, and the diffused skinning weights W̃ .

The core of our garment model is the deformed garment T (β,θ,X). This involves deforming

the template garment T with diffused shape blend-shapes GS(β) based on the body shape β and

further deforming the shaped garment (T + GS(β)) using displacements predicted by network

inputs X. The diffusion method for skinning weights W̃ and shape blend shapes GS(β), introduced

by Grigorev et al. [6], is necessary due to the challenge posed by the diverse SMPL body shapes.

This method allows garments, which are initially designed to fit the template SMPL body, to be

aligned with different shapes of the template body, ensuring appropriate deformation.

4.3 Compact Latent Learning Stage

The goal of this learning stage is to train our network Φ and obtain a low-dimensional latent

representation for garment deformation and dynamics. Our network Φ follows an Encode-Process-

Convolve-Decode architecture, which integrates the Encode-Process architecture [17] of HOOD

with a mesh convolution network and our decoder. The network Φ is trained in an unsupervised

manner to predict displacement on the shaped garment for the next time step. This is different from

HOOD which predicts acceleration for the next time step. With no ground-truth simulation data

requirement, we optimize physics-based losses on the final garment vertices G(β,θ,XH+) using
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the deformed garment T (β,θ,XH+). The deformed garment in this stage is defined as:

T (β,θ,XH+) = T+GS(β) + Φ(XH+), (18)

where Φ(XH+) is the displacement predicted by our network for the given inputs XH+.

Inputs XH+: The network Φ takes inputs XH+, similar to those in Grigorev et al. [6]. The inputs

XH+ consist of per-vertex and per-edge feature vectors from the garment mesh and the body mesh

at time t. The feature vectors for each vertex include velocity, normals, material parameters, vertex

type, and vertex level. Material parameters for each vertex consist of mass m, LamÂe parameters µ

and λ, and the bending coefficient k. The vertex type indicates whether a vertex is pinned to prevent

a garment from falling down from a body, and the vertex level represents the coarse level of a vertex

(HOOD uses coarsened graphs for its multi-level message passing). Additionally, we incorporate

positions and accelerations for garment and body vertices to enhance garment behavior modelling.

The feature vectors for each edge of the garment include the relative position of connected vertices

at the current time t and in the rest pose, with norms of these relative positions, along with material

parameters and delta time. The same per-edge feature vectors are included from coarsened graphs

of the garment. For edges connecting body and garment vertices by their proximity, the edge feature

vectors include relative positions at the current time t and the next time t+ 1, with norms and delta

time.

Encode and Process: The encoder comprises MLPs in the same way as HOOD. It transforms

the input feature vectors XH+ into latent vertex and edge features, which are then processed by a

series of message passing blocks in the processor. This processor updates the features to capture

garment deformation and dynamics, following the same approach and inputs of latent vertex and

edge features as HOOD. Since HOOD passes only the processed vertex features to its decoder

after the processor, indicating that the vertex features contain the necessary information for garment

deformation and dynamics, we also pass only the processed vertex features to the mesh convolution

network without the edge features.

Convolve: We compress the processed vertex features into a compact latent vector Z with the

mesh convolution network by Zhou et al. [29]. This network excels at constructing localized latent
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features, making it ideal for our compression task. We utilize its convolution and residual layers

to reduce the dimensionality of the processed vertex features and flatten the compressed vertex

features into a latent vector. Since the compressed latent vector Z ∈ R
L with the dimension L is

used at inference time, the dimension L of the latent vector has to be small enough to be evaluated

in interactive frame rates, and large enough to encode garment deformation and dynamics. This

latent vector is then passed to the decoder.

Decode: When predicting garment deformations, learnable blend shapes have proven effective in

modeling non-linear garment behavior [30, 20, 21]. Following this approach, we build our decoder

fdec : R
L → R

D with an MLP, which takes the latent vector Z ∈ R
L and predicts D blend

shape weights for our learnable blend shapes. The learnable blend shapes consist of D blend shape

matrices. Thus, the final displacement for each vertex is defined as:

D
∑

j

Dj,ifdec(Z)j , (19)

where D is the array of the learnable blend shape matrices and Dj,i indicates the blend shape basis

for the ith garment vertex of the jth blend shape matrix in the array. A single blend shape matrix

Dj ∈ R
N×3 consists of blend shape bases for N garment vertices. The combination of the MLP

with the blend shapes is fast enough to enable real-time inference.

Loss Functions: We train our network with the same losses as described by Grigorev et al. [6]. We

employ the bending loss Lbending that introduces smoothness by penalizing sharp bends, measured

through the dihedral angles between adjacent triangles [2]. The stretching loss Lstretching, based on

the Saint Venant-Kirchhoff (StVK) model, enforces hyperelastic material behavior. The inertia loss

Linertia is used to generate realistic dynamic motion by resisting drastic changes in velocity. The

gravity loss Lgravity applies a constant downward force on the vertices of the garment mesh, creating

realistic drapes and falls. The friction loss Lfriction prevents the sliding motion of the garment,

enhancing its stability and realism. Since all the above losses can cause interpenetration between

the garment and the body, the collision loss Lcollision is used to move the garment vertices away from

22



the body vertices. Therefore, the total loss L is defined as a weighted sum of these individual losses:

L =wbLbending + wsLstretching+

wiLinertia + wgLgravity+

wfLfriction + wcLcollision,

(20)

where wb, ws, wi, wg, wf , and wc are scalar weights that control the contributions of each loss term.

By adjusting these weights, we fine-tune the balance between different aspects of cloth behavior.

Following unsupervised training methods with physics-based losses [20, 15, 21, 6], optimizing our

network using these losses allows for realistic cloth deformation, similar to solving equations of

motion for cloth simulation through energy optimization.

4.4 Latent Predictor Learning Stage

The goal of this stage is to train a latent predictor fLP, which will replace the computationally

intensive Encode-Process-Convolve components of the network Φ in the compact latent learning

stage.

To ensure that the latent predictor is lightweight and suitable for real-time use, it is constructed

solely with an MLP. The latent predictor takes a set of simpler inputs Xc compared to the in-

puts XH+. The inputs Xc are optimized for instantaneous preparation in each frame while be-

ing robust enough to accurately predict the compact latent vector Z. These inputs are defined as

Xc = {Zt,v,φ,ρ,β,m, µ, λ, k}. The latent vector at the current time step Zt provides temporal

context, aiding in the prediction of the next latent vector. This input latent vector is set to zero in the

first frame. The inputs include joint velocities v, local joint rotations φ, and global joint positions

ρ. Specifically, the joint velocities comprise root joint velocities over two frames {vt, vt−1}, and

the pose consists of local joint rotations over three frames {ϕt+1, ϕt, ϕt−1} in 6D representation [9]

and global joint positions over three frames {ρt+1, ρt, ρt−1}. We include the global joint positions

which are evaluated by forward kinematics with animation sequences, in order to enable the latent

predictor to find a better mapping function from the inputs to a latent vector. To prevent the latent

predictor from overfitting to the global joint positions of animation sequences, we subtract global
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joint positions with the root joint translation and remove the root joint translation from the inputs.

We also exclude joints such as wrists and hands from the inputs, due to their minimal impact on

garment deformation. We additionally incorporate the body shape β and garment material parame-

ters. The material parameters are mass m, LamÂe parameters µ and λ, and the bending coefficient k,

which are also used for the compact latent learning stage. Through these inputs, we can reduce the

number of variables in XH+ from hundreds of thousands of parameters down to thousands in Xc.

For example, we reduce 886,165 floating-point variables in XH+ to 2,591 floating-point variables in

Xc for a t-shirt garment in our training dataset.

Utilizing these inputs, the latent predictor predicts the next latent vector Zt+1 = fLP(Xc). To

optimize the latent predictor, we compute the ground truth latent vector Z
gt
t+1 using the Encode-

Process-Convolve components with the inputs XH+, while keeping the weights of the components

frozen. The optimization is performed by minimizing the mean squared error loss between the

predicted latent vector and the ground truth:

LMSE =
1

L

L
∑

i

(

Z
gt
t+1,i − Zt+1,i

)2
(21)

During inference, our garment model G(β,θ,Xc) gets the final transformed vertices using the

deformed garment T (β,θ,Xc). The deformed garment at inference time is defined as:

T (β,θ,Xc) = T+GS(β) + Ψ(Xc), (22)

where the function Ψ predicts the displacement on the shaped garment using the latent predictor,

the decoder, and the learnable blend shapes with the given inputs Xc. The displacement for each

vertex is computed as
∑D

j Dj,ifdec(fLP(Xc))j .

4.5 Implementations

The network Φ in our compact latent learning stage consists of the encoder, the processor, the

mesh convolution network, and the decoder with the learnable blend shapes.

The encoder and processor are constructed similarly to those in HOOD [6]. The encoder, which
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has six MLPs, encodes input vertex and edge features into latent features. These input features in-

clude garment and body vertex feature vectors, garment edge feature vectors, edge feature vectors

from three coarsened graphs of the garment, and features for edges connecting body and garment

vertices by their proximity. The processor consists of 15 message-passing steps, each of which in-

cludes an MLP for latent vertex features and MLPs for latent edge features. The processor includes

two down sampling blocks and two up sampling blocks for its hierarchical message passing. Each

MLP in the encoder and processor comprises three linear layers and one normalization layer at the

end. The linear layers convert the size of input features into 128, with ReLU activation applied to

the outputs of the first two linear layers.

Our mesh convolution network consists of four blocks. Each block contains a convolution

layer and a residual layer, denoted as a combination of vcDownConv and vdDownRes, according

to Zhou et al. [29]. These blocks require graph sampling information to perform down-samplings

with the convolution and residual methods. We selected remaining vertices for the graph sampling

information of each garment in the training dataset, using a stride of two and a vertex ring size of

two for each down-sampling operation. The number of remaining vertices after the four blocks for

each garment normally ranges from 80 to 300. The first three blocks convert input features of 128

dimension into features of 256, 512, and 1024 dimensions, respectively. The last block converts the

feature dimension of 1024 into a final dimension size where the product of the number of remaining

vertices and the final feature dimension is around 2048. Therefore, the dimension L of a latent

vector Z is around 2048, depending on the number of the remaining vertices. We used 32 weight

bases for each block. Unlike the ELU activation function adopted by Zhou et al. [29], we use the

ReLU activation function in our mesh convolution network.

The decoder has an MLP with 3 linear layers, converting the dimension of an input latent vector

into 1024, 512, and 512, with ReLU activation applied after each layer. The number D of elements

in the array of the learnable blend shapes matrices D is accordingly 512.

Our latent predictor has an MLP with three linear layers, converting the input features into

dimensions of 1024, 1024, and the latent vector size L, respectively. We use ReLU activation for

the outputs of the first two layers.
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Chapter 5

Results and Discussion

In this section, we evaluate the effectiveness and performance of our networks. We first detail

our training setup. Next, we qualitatively compare our networks with a state-of-the-art method,

NCS [21]. Additionally, we measure and compare the computational performance of our method

against NCS. Furthermore, we validate the effectiveness of our two-stage training process by an

ablation study, and we demonstrate the efficiency and applicability of our method by implementing

it in a real-time application demo.

5.1 Training Setup

Training Dataset: For our experiments, we use pose sequences from the AMASS dataset

[31]. We adopt the sequence list from the VTO dataset [32] for training purposes. The VTO

dataset takes sequences from the AMASS dataset, but we replace some unavailable sequences of

the list (104_17, 104_04, 104_53, 104_54, 144_30, 26_11, 104_11) with others in similar

pose categories of the AMASS dataset (105_36, 111_23, 127_04, 127_20, 144_32, 26_10,

105_11). This sequence list contains 56 sequences with a total of 19,145 frames, comprising 13

walking, 12 running, 10 jumping, 10 arm movements, 6 torso movements, 4 dancing, and 1 avoid-

ance movement sequence. For testing, we use other sequences from the AMASS dataset, excluding

those used for training. The garments for our experiments include a dress, a long-sleeve top, pants,

a tank top, and a t-shirt, provided by Grigorev et al. [6] for training their HOOD network. These
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garments are aligned with the template female body of SMPL. Accordingly, we used the SMPL

female body for our experiments.

Training Details: We trained five networks for compact latent learning and five latent predictors

with the five garments in the training set. We implemented our method and trained the networks

on a PC, equipped with an Intel Xeon W-2135 CPU, an NVIDIA RTX A4000 GPU, and 64GB

of RAM. Training for the compact latent learning stage took approximately 40 hours per garment,

with 120,000 iterations each. We used the Adam optimizer for training the networks in the compact

latent learning stage, with a learning rate 5× 10−5, and applied gradient clipping with a max norm

of 1.0. Since the training method from HOOD does not support batch training, we used a batch size

of one. For each training pose, We randomly sampled the shape β from the uniform distribution

U(−3, 3). We also randomly sampled material parameters for the inputs by sampling a value from

the uniform distribution U(0, 1) and scaling it with its minimum and maximum values. The mass

for each vertex of a garment m ranged from 4.34× 10−2 to 7× 10−1, the range of LamÂe’s second

parameter µ from 15909 to 63636, the range of LamÂe’s first parameter λ from 3535.41 to 93333.73,

and the range of the bending coefficient k from 6.37×10−8 to 1.31×10−3. To advance our garment

deformation over time, we apply the autoregressive training from HOOD, predicting one next step

at the beginning and increasing the number of prediction steps every 5000 iterations to 5. We further

set the inertia loss weight wi from 3.0 to 5.0 and the gravity loss weight wg from 2.0 to 3.0 to make

our garment deformation more dynamic, with the other weights wb, ws, wf set to 1.0. The collision

loss wc starts at 5 × 103 at the beginning of training and increases linearly to 8 × 106 from 50,000

iterations to 100,000 iterations. Each latent predictor was trained for 5 million iterations, which took

approximately 12 hours. We trained latent predictors for each garment using an Adam optimizer

with a learning rate of 1× 10−4 and a batch size of 512.

Normalization: When training a network in the compact latent learning stage, we adopted the

inputs and outputs normalization from HOOD. Unlike the normalization method for the outputs

from HOOD, which gathers statistics for acceleration from linearly-skinned garments, we collect

statistics for displacement from our prediction and evaluate the final displacement by denormalizing

the predicted outputs. When training a latent predictor, we also normalize the inputs Xc and the

outputs Z by mean and standard deviations for each input and each output except for the material
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Figure 5: Qualitative comparison with NCS. For each garment, the first column shows the results from

networks Φ in the compact latent learning stage, the second column shows results from networks Ψ using

latent predictors fLP, and the third column shows results from NCS networks.

parameters. The material parameters in the inputs are normalized to fall between 0.0 and 1.0 based

on their value ranges.

5.2 Comparison with State-of-the-art

For this comparison, we trained five NCS networks for each garment in the training set with the

template SMPL female body, as NCS supports only a fixed-shaped body with a garment. We used

the public code released by Bertiche et al. [21] and a batch size of 512. We chose the cloth model of

Baraff et al. [2], since it is more optimal than the StVK model for convergence according to Bertiche

et al. [21]. We further applied the heuristic method of Li et al. [22], which gradually increases the

inertia loss weight from 0.1 to 1.0. This heuristic allows us to get the best cloth dynamics.

Unsupervised methods lack ground-truth data for quantitative analysis. Generating ground-

truth data with a cloth simulator and evaluating the distance to this ground truth would not be a

fair comparison. This is because there are various types of cloth simulators, each with different
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Figure 6: The generalization capacity to different body shapes from networks Ψ using the latent predictor,

the decoder, and the blend shapes. (a) and (d) are the thin bodies, (b) and (e) are the template bodies, and (c)

and (f) are the heavy bodies.

ranges of parameters that can influence the distance between our method’s results and the ground

truth-data. Furthermore, the variety of network architectures, loss function implementations, and

parameter ranges complicates a fair quantitative comparison. Moreover, the sole comparison of loss

values does not work. For instance, a lower inertia loss value does not guarantee superior quality or

more dynamic deformation, as demonstrated by Bertiche et al. [21]. Consequently, our comparison

is solely qualitative.

We do not compare our method directly with HOOD, even if our method incorporates high-

dimensional features from the encoder and processor of HOOD. Based on our observations, HOOD

has a superior capacity for capturing cloth dynamics compared to other pose-based cloth synthesis

methods. We attribute this to HOOD’s ability to utilize a large number of features, which allows it to

construct its broader cloth deformation space than the cloth deformation space from any other pose-

based garment synthesis methods. While these high-dimensional features enable a better deforma-

tion space, they also restrict HOOD’s usage to offline garment simulation due to its computational

intensity from high-dimensional features. In contrast, pose-based neural cloth synthesis methods

can be employed in real-time applications using lower-dimensional features which are less expres-

sive than the features from HOOD. This distinction suggests that comparing methods designed for

real-time applications with those intended for offline use, based on feature dimensions alone, is not

a fair comparison, since the deformation space from the number of features inherently would be a

trade-off between expressive features and fast inference time. Therefore, we limit our qualitative
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comparison to NCS, the state-of-the-art method for pose-based neural cloth synthesis.

We present our qualitative results with NCS in Fig. 5. The first column shows the inference from

the compact latent learning stage network, the second column shows the inference using the latent

predictor with the decoder and blend shapes, and the third column shows the inference from NCS.

As seen in Fig. 5, our method produces wrinkles and dynamics of similar quality to NCS. Unlike

NCS, our method supports generalization to different body shapes with the same trained network.

This generalization is shown in Fig. 6, which includes a thin body, the template body, and a heavy

body. Our latent predictor can handle different body shape parameters β and predicts a compact

latent vector accordingly.

For computational performance comparisons, a wide range of neural models for cloth simu-

lation exist. Graph neural network models such as HOOD [6] and SwinGar [22] do not claim to

achieve engine-ready real-time performance, as their architecture limits their performance to orders

of magnitude slower. Only pose-driven models such as PBNS [20], SNUG [15], and NCS [21]

achieve the desired performance criteria. Out of these models, PBNS is purely a static model, not

being capable of achieving garment dynamics, and SNUG has dynamics limited to three frames,

as thoroughly discussed in Bertiche et al. [21]. As such, we limit our comparison to the closest

competitor, NCS [21].

Performance Evaluation: We evaluated the per-frame inference times on GPU for the ºfull

modelº (including both model inference and blend shape resolution). We also separately evaluated

the runtimes for solely the neural network inference without the blend shape resolution step. Our

method takes 523 microseconds per frame for the full model and 238 microseconds for the neural

network inference. In contrast, NCS takes 1266 microseconds per frame for the full model and 1030

microseconds for the neural network inference. This result shows that our method outperforms NCS

on GPU in the computational performance. We believe this behavior is explained by architecture

differences between our model and NCS: our model utilizes more neurons but a simpler structure

than NCS, as we do not utilize a GRU layer. As such, when computing on GPU, our model benefits

more from GPU parallelism than NCS, while when computing on CPU, the lack of parallelism hurts

our performance. The evaluation was done using models exported to ONNX Runtime on a t-shirt

garment with 4424 vertices. The hardware utilized was an Intel Xeon W-2255 CPU @ 3.7GHz
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(a) Full method (b) Training only the inference block (Fig. 4 (c))

Figure 7: (a) Our method shows accurate garment deformation and realistic dynamics (results from network

Ψ using the latent predictor, the decoder, and the blend shapes). (b) The ablation study, trained with only

the inference block (Fig. 4 (c)), results in poor and invalid deformations, highlighting the necessity of the

compact latent learning stage.

CPU, and an NVIDIA RTX 2070 Super GPU.

5.3 Ablation Study

To validate the effectiveness of our two-stage training process in learning garment deformation

and dynamics, we performed an ablation study. We directly trained only the components used during

inference (Fig. 4 (c)), specifically the latent predictor, the decoder, and the learnable blend shapes.

We used the same training setup with the t-shirt garment as in the compact latent learning stage,

and additionally supported batch training with a batch size of 32. The results, presented in Fig. 7

and the supplementary video, demonstrate that training with only the MLPs and blend shapes does

not achieve proper garment deformation and dynamics. The results from the ablation study exhibit

less realistic dynamics and invalid deformations in parts of the garment. This outcome validates

that our compact latent learning stage is essential for effectively learning garment deformation and

dynamics.

5.4 Application on Real-Time Demo

We implemented our inference model with the trained latent predictor, decoder, and blend

shapes using C++ and OpenGL. In the supplementary video and Fig. 8, we show a SMPL body
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controlled using motion matching [7, 8]. This shows the ease with which our method can be applied

in real time, thanks to our inference model consisting of only two MLPs with blend shapes.

Figure 8: The screenshot of our real-time demo. The template SMPL body is controlled using motion

matching, which outputs joint translations and rotations. The pose from the motion matching with the other

inputs is used to predict garment deformation by our networks.
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Chapter 6

Conclusion

Realistic cloth deformation in game applications is complex due to varying character body

shapes, poses, and movements, and many garments with different geometry, topology and mate-

rials. On top of these requirements, real-time cloth deformation is essential for an enjoyable game

experience. Procedural physics-based techniques are being replaced by neural network approaches.

The latter seems more robust and yields high-quality results. However, the representation models

required to capture realistic cloth deformation behavior are of very high dimension and correspond-

ingly difficult to incorporate in game engines with limited resources and also far too slow for use in

games. The two-stage training strategy presented in this work balances computational resource con-

straints and realistic cloth deformation effectively for application in games. The first stage learns

a compact representation from the high-dimensional feature representation of a complex trained

network, and the second stage learns a latent predictor with inputs in a format best suited for in-

put to game engines. At inference time, the latent predictor predicts the compacted latent which

is processed by the decoder and blend shape networks from the first stage, enabling framewise in-

ference in real-time. This two-stage strategy is general and could be used in other neural network

methods, wherein high-quality results mandate very high dimensional feature representations, and

correspondingly high computational resources, limiting their application in real-time environments.

Our experiments demonstrate the effectiveness and applicability of our method compared to NCS.

Our method has some limitations. Similar to other learning-based methods for garment synthe-

sis, there are instances in test sequences where interpenetration between the garment and the body is
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Figure 9: After our method fails to resolve collisions between the body and the garment, this failure can

cause invalid garment deformations. Enhancing collision handling by an edge-based collision loss can be a

potential solution for this problem.

not fully resolved. Since we utilize the previous compact latent in the latent predictor, these failures

can lead to invalid garment deformation. This issue is especially problematic on loose garments,

as shown in Fig. 9. Future work could focus on enhancing collision handling by implementing

an edge-based collision loss, which may provide more robust results compared to the vertex-based

collision loss currently used [33]. Another direction to address our limitations is to explore better

network components for constructing the garment deformation space. Currently, our deformation

space struggles to accommodate extreme poses, making it crucial to identify components that can

effectively handle such scenarios. While increasing the dimensionality of some components might

seem like a feasible and straightforward solution, it could compromise fast inference. Therefore,

balancing the need for a more robust deformation space with the requirement for fast computation

remains a key challenge in this direction.
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