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Abstract

Inference of Extreme Value Distributions using Bayesian Neural
Networks

Accurate prediction of extreme weather events are crucial from a societal point of

view, where the consequences of said events can have major financial and demographic

impacts upon society. Extreme Value Theory (EVT) provides a statistical framework for

the modelling of such extreme events. On the other hand, Bayesian Neural Networks (BNNs)

extend traditional neural networks by incorporating Bayesian inference, which provides a

probabilistic approach to learning and prediction in any given regression task. In this thesis,

we extend the methodology of a recently introduced BNN and integrate it with EVT to be

able to infer the parameters of Generalised Extreme Value (GEV) distributions. We then

apply our methodology to annual maximal rainfall in Eastern Canada, where we infer and

interpolate GEV parameter estimates across the interpolation region. The obtained results

demonstrate that our approach outperforms Polynomial Regression and Inverse Distance

Weighting methods in predicting extreme rainfall events.
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Chapter 1

Introduction

The increasing trends in extreme rainfall events, driven by climate change, are becoming

more apparent globally and pose significant challenges in all spheres of life, from the

economic infrastructure to the geographical and sociological aspects of society. For example,

the hydrological impacts of precipiation are studied in Tabari (2020) and Barbería et al.

(2014) examine the social impact of extreme rainfall. Understanding and predicting these

events is crucial for mitigating their adverse effects on financial, demographic, sociological

and environmental systems. Traditional models have made substantial progress in weather

forecasting, yet they often struggle with accurately predicting extreme events due to their

complex and localised nature. In this context, the development of advanced spatial models

becomes more and more important.

Extreme Value Theory (EVT) is a branch of statistics that focuses on understanding the

behaviour of the extreme events of a data set, such as the events discussed above. Unlike

traditional statistical methods, which analyse the overall distribution, EVT specifically

examines the tail ends of the distribution where rare and significant events occur. By

providing tools to model and quantify the likelihood of extreme outcomes, EVT helps in

the assessment and mitigation of risks associated with these rare but impactful events.

The origins of EVT stem from the work of Fisher and Tippett (1928), who first lay

the foundation for understanding the distribution of extreme values. Later, Gumbel (1958)

formalises these ideas and establishes EVT as a distinct field of study by developing the

Gumbel distribution, one of the three fundamental types of extreme value distributions.
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Leadbetter et al. (1983) then advances the applicability of EVT by developing broader

depictions of extremal behaviour, and de Haan and Ferreira (2010) provide a modern,

advanced and in-depth study of the subject. Today, EVT sees application across multiple

fields of study.

In finance, EVT is used to model rare events in asset pricing and porfolio management,

such as significant changes in investments, market crashes, major loan defaults and many

more cases. By understanding how extreme losses are modelled, financial analysts can

prepare for and mitigate the impact of these financial events (Poon et al. (2004)).

In the world of insurance, EVT is of use in excess-of-loss reinsurance contracts, where

the ceding company is compensated when losses exceed a certain threshold. Reinsurers

evaluate the likelihood and impact of these extreme losses and can better determine the

offered coverage (McNeil (1997)). EVT is also of great asset in modelling catastrophic losses

that occur from large-scale natural catastrophes (hurricanes, forest fires, floods, etc.) and

as such help insurers estimate possible severity claims of important magnitude and pose

appropriate premiums (Embrechts et al. (1997)).

In environmental sciences, the scope of applications is vast. For example, EVT is used in

flood risk assessment to model extreme precipitation and river levels (Katz et al. (2002)), to

model the occurrences and magnitudes of droughts (Katz and Brown (1992)), to model both

heatwaves and cold waves (Perkins et al. (2012)) and to predict the impacts of wildfires which

have recently seen a dangerous increase in frequency in Canada (Canada (2024)). All of

these environmental applications are of great importance to bodies of Government globally,

which need to financially and logistically prepare in case such extreme environmental events

occur.

Neural networks and Bayesian Neural Networks (BNNs) are important components

of machine learning and more broadly of modern computation. These models have

revolutionised numerous fields by providing powerful tools for pattern recognition,

prediction, and decision-making. BNNs extend traditional neural networks by incorporating

Bayesian inference, which provides a probabilistic approach to learning and predicting.

In BNNs, the model parameters are treated as random variables with specified prior

distributions. Bayesian inference updates these priors with data to obtain posterior
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distributions, which represent the updated beliefs about the model parameters given the

observed data (Neal (1996)). As such, one of the key benefits of BNNs is the ability

to provide uncertainty estimates for predictions. By incorporating prior knowledge and

regularization through Bayesian inference, they can mitigate overfitting, especially when

dealing with small datasets or noisy data (Blundell et al. (2015)).

In practice, BNNs can be applied to virtually any field where computational tasks are

required, whether a regression or classification problem. For example, in the world of

medical diagnosis, in Leibig et al. (2017) the authors use a BNN to obtain uncertainty

estimates on diagnosis classification. This helps medical experts predict the risk of obtaining

a false positive or false negative diagnosis. In Natural Language Processing, having a

method to measure uncertainty in predictions helps build more reliable translation models

(Fortunato et al. (2019)).

The main contribution of this thesis is the integration of BNNs to EVT by taking

advantage of uncertainty quantification possible with BNN to develop a BNN that can

obtain the expected value, variance and skewness of predicted outputs and by which we can

obtain parameter estimates of the GEV distribution. We then explore the application of

our developped framework to predict and interpolate the behavior of rainfall across Eastern

Canada. More specifically, the present application involves the processing of available

meteorological data, the design and training of a neural network that integrates with EVT

to identify and model extreme events at a given individual location, followed by the spatial

interpolation over a given geographical location.

The thesis is structed as follows. In Chapter 2, we explain EVT from the univariate

point of view and look at the main approaches to EVT, namely the block maxima and

threshold exceedance methods. In Chapter 3, we review the foundational BNN framework

we use to build our methodology, namely the Tractable Approximate Gaussian Inference

(TAGI) and TAGI-V neural networks, which stem from the work of Goulet et al. (2021)

and Deka et al. (2024) respectively. The main contribution of the thesis is in Chapter 4,

where we extend TAGI-V to accomodate for the quantification of the skewness of predicted

outputs and how it relates to EVT by obtaining GEV parameter estimates. The framework

we develop is named TAGI-S, shorthand for TAGI-Skewness. In Chapter 5, we turn our

3



attention to numerical applications of TAGI-S, namely the spatial interpolation of GEV

parameters using TAGI-S. We first provide spatial interpolation for simulated data sets and

then apply our interpolation methodology to extreme rainfall modelling in Eastern Canada.

Chapter 6 concludes the thesis and presents possible extensions of TAGI-S and ongoing

work.

The scientific contribution of this thesis can be broken down into two main aspects. The

technical contribution is rooted in the development of a BNN that integrates with EVT to

obtain GEV parameter estimates. On a practical aspect, we contribute to the growing

body of knowledge in the field of weather prediction by demonstrating the potential of

integrating EVT with BNNs to enhance our ability to anticipate and respond to extreme

weather events.

4



Chapter 2

Extreme Value Theory

In this chapter, we review Extreme Value Theory in the univariate setting, the multivariate

point of view being out of scope of the present thesis. In Section 2.1, we look at the classical

construction of EVT. Then, in Section 2.2, we look at two different approaches to model

extremes: the block maxima approach and the threshold exceedance approach. Lastly, in

Section 2.3 we look at two estimation methods of interest that will be used throughout the

remainder of the thesis.

2.1 Classical Extreme Value Theory

We review the classic approach to EVT, which is based on the study of the asymptotic

behaviour of maximums (or minimums) of sequences of random variables.

2.1.1 Framework, Extremal Types Theorem

Let {X1, X2, . . . , Xn} be a finite sequence of independent and identically distributed (i.i.d.)

random variables. Central Limit Theory studies the sums Sn =
∑︁n

i=1 Xi as n → ∞. On

the other hand, the classical approach to EVT is concerned with the statistical behaviour

and properties of the maximum of said sequence1, namely

Mn = max {X1, X2, . . . , Xn} . (2.1)
1or the minimum of the sequence, since min {X1, X2, . . . , Xn} = − max {−X1, −X2, . . . , −Xn}.

5



Assuming an underlying distribution function F (·), one can theoretically obtain the

distribution for Mn from the i.i.d. assumption,

P (Mn ≤ x) = P (X1 ≤ x, X2 ≤ x, . . . , Xn ≤ x) ,

=
n∏︂

i=1
P (Xi ≤ x)

= (F (x))n ≡ F n(x). (2.2)

However, since F (·) is unknown, it is not evident how one can use Equation (2.2). As

mentionned in Coles (2001), a possible solution is to first estimate F (·) itself from standard

techniques and then consider the estimated distribution function into Equation (2.2).

However, small errors in estimating F (·) can lead to large errors in F n(·).

Another approach is to look at the asymptotic behaviour of Equation (2.2) as n → ∞ to

find distributions that can be approximated using extreme data. This asymptotic reasoning

is equivalent to approximating the distribution of sample means by the Gaussian distribution

used in the Central Limit Theorem.

If we let x∗ be the right endpoint to the distribution function F (·), that is x∗ =

sup{x | F (x) < 1}, then the sequence Mn of Equation (2.1) converges in probability to x∗,

Mn
p→ x∗ as n → ∞, since F n(x) → 0 when x < x∗ and F n(x) → 1 otherwise. Thus,

Mn degenerates to the point mass x∗. To obtain a non-degenerate limit distribution, we

employ a linear normalisation of the sequence Mn by sequences of constants {an > 0} and

{bn} such that

M∗
n = max {X1, X2, . . . , Xn} − bn

an
= Mn − bn

an
(2.3)

has a legitimate limiting distribution G(·), that is

F n (an ·x + bn) → G(x)

as n → ∞. In other words, instead of looking for a limiting distribution for Mn, we

consider the limitting distribution of M∗
n. As it turns out, all the possible limit distributions

6



of M∗
n can be broken down into three distributions. The extremal types theorem (Fisher

and Tippett (1928), Gnedenko (1943)) states the three possible distributions.

Theorem 1 (Extremal Types Theorem). Let {X1, X2, . . . , Xn} be a sequence of

i.i.d. random variables with common distribution function F (·), and let Mn =

max {X1, X2, . . . , Xn}. If there are sequences of constants {an > 0} and {bn} such that

P
(︃

Mn − bn

an
≤ x

)︃
= P (M∗

n ≤ x) → G(x) (2.4)

as n → ∞ for a non-degenerate distribution G(·), then G(·) belongs to one of the three

following families:

I : G(x) = exp
{︃

− exp
{︃

−
(︃

x − µ

σ

)︃}︃}︃
, ∞ < x < ∞, (Gumbel Distribution) (2.5)

II : G(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x ≤ µ

exp
{︃

−
(︂

x−µ
σ

)︂−α
}︃

, x > µ

(Fréchet Distribution) (2.6)

III : G(x) =

⎧⎪⎪⎨⎪⎪⎩
exp

{︂
−
[︂
−
(︂

x−µ
σ

)︂α]︂}︂
, x < µ

0, x ≥ µ

(Weibull Distribution) (2.7)

for location parameters µ ∈ R, scale parameter σ > 0 and in the case of Equation (2.6) and

Equation (2.7) shape parameter α > 0.

Proof. See Fisher and Tippett (1928), Gnedenko (1943).

The three families of distributions together are known as the extreme value distributions.

Equation (2.5) is known as the Gumbel distribution, Equation (2.6) as the Fréchet

distribution and Equation (2.7) as the Weibull distribution. Theorem 1 states that as long

as the underlying distribution F (·) respects Equation (2.4), the maximum Mn of a sequence

of i.i.d. random variables can be normalised such that M∗
n has a limitting distribution that

will always be one of the Gumbel, Fréchet or Weibull distribution.

To link Mn and M∗
n together, we note that assuming Equation (2.4), for a sufficiently
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large enough value of n we can write

P (M∗
n ≤ x) = P

(︃
Mn − bn

an
≤ x

)︃
≈ G(x)

and then

P (Mn ≤ an ·x + bn) = F n (an ·x + bn) ≈ G (an ·x + bn) , (2.8)

where we can write G (an ·x + bn) = G∗(x), which is a different member of the extreme

value distribution. As such, Equation (2.8) provides us with a bridge from M∗
n to Mn, the

latter being the object of interest. We will present the remainder of the theoretical notions

in this chapter through the lense of Mn directly, as for example Corollary 1.1 of the next

section.

When working on obtaining an estimate of the parameters of an extreme value

distribution, according to Coles (2001), in early applications one would have to first

determine a robust method to choose which of the Gumbel, Fréchet or Weibull distribution

to use and secondly assume that subsequent inferences have the correct distribution. As

we will see in the next section, a better alternative exists in which we merge the three

extreme value distributions into one main distribution with a shape parameter specifying

tail behaviour.

2.1.2 Generalised Extreme Value Distribution

When working with the family of extreme value distributions, instead of differentiating

between the Gumbel, Fréchet and Weibull distributions, it is often more convenient to

work with what is called the Generalised Extreme Value (GEV) distribution, which is a

reformulation of Theorem 1 that encompasses each of the three extreme value distributions

into one. We present the GEV distribution as a corollary of Theorem 1.

Corollary 1.1 (Generalised Extreme Value Distribution). Take the same assumptions as

Theorem 1. If there are sequences of constants {an > 0} and {bn} such that

F n (an ·x + bn) → G(x) (2.9)
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as n → ∞ for a non-degenerate distribution G(·), then G(·) is a GEV distribution with

parameters Λ = {µ, σ, ξ} defined by

G(x; Λ) ≡ G(x) = exp
{︄

−
[︃
1 + ξ

(︃
x − µ

σ

)︃]︃−1/ξ
}︄

, 1 + ξ
(x − µ)

σ
> 0, (2.10)

where µ ∈ R, σ > 0 and ξ ∈ R2. When a random variable X follows Equation (2.10), we

write X ∼ GEV(Λ).

Moreover, the class of distributions F (·) that satisfy Equation (2.9) are said to belong

to the domain of attraction of G(·).

Proof. See either de Haan and Ferreira (2010), Fisher and Tippett (1928) or Gnedenko

(1943).

The GEV distribution has three parameters Λ = {µ, σ, ξ}, namely the location

parameter µ ∈ R, the scale parameter σ > 0 and the shape parameter ξ ∈ R. The shape

parameter ξ is sometimes referred to as the extreme value index, as seen in de Haan and

Ferreira (2010). Different values of ξ in Equation (2.10) correspond to either the Gumbel,

Fréchet, Gumbel or Weibull distribution. The Fréchet distribution occurs when ξ > 0, the

Weibull distribution when ξ < 0 and the Gumbel distribution arises as ξ → 0.

For example, assuming ξ > 0, we obtain the Fréchet distribution from the GEV

distribution by letting α = 1/ξ in Equation (2.10):

G(x) = exp
{︄

−
[︃
1 + ξ

(︃
x − µ

σ

)︃]︃−1/ξ
}︄

= exp
{︄

−
[︃
1 + 1

σα
(x − µ)

]︃−α
}︄

= exp
{︄

−
[︃

x − µ + ασ

σα

]︃−α
}︄

= exp
{︄

−
(︃

x − µ∗

σ∗

)︃−α
}︄

,

which is Fréchet with µ∗ = µ − σα and σ∗ = σα.

We plot the GEV distribution for a fixed location parameter µ = 30, fixed scale
2We write G(· ; Λ) as G(·) when the context of the parameters Λ is clear.
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parameter σ = 2 and different shape parameter values ξ = 0.5, 0, −0.5, each value

representing either the Fréchet, Gumbel or Weibull distribution respectively. The Fréchet

distribution is represented in green, the Gumbel distribution in blue and the Weibull

distribution in red.

Figure 2.1: GEV Distribution for Fixed Values of µ = 30, σ = 2 and Different Values of
ξ = 0.5 (Fréchet) , ξ = 0 (Gumbel) and ξ = −0.5 (Weibull)

For a random variable X ∼ GEV(Λ), the mean, variance, skewness and kurtosis of the

GEV distribution are given as follows, see Muraleedharan et al. (2009):

E(X) = µ + σ

ξ
(g1 − 1) , for ξ < 1 (2.11)

Var (X) =
(︂
g2 − g2

1

)︂ σ2

ξ2 , (2.12)

Skew(X) = sgn(ξ)· g3 − 3g2g1 + 2g3
1(︁

g2 − g2
1
)︁3/2

, (2.13)

Kurtosis(X) = g4 − 4g1g3 + 6g2g2
1 − 3g4

1
(g2 − g1)2 − 3,

where gk = Γ (1 − k ·ξ). We have that E(X) = ∞ when ξ ≥ 1.

A clear advantage of having one common distribution when performing inference is that

instead of having to choose between the Gumbel, Fréchet or Weibull distributions, we can

apply inference directly on the extreme value index ξ. As such, one can let the data itself

determine which member of the extreme value family is the most appropriate.
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The quantile function for the GEV distribution returns the (1 − p)-th quantile of the

distribution:

G−1 (p; Λ) =

⎧⎪⎪⎨⎪⎪⎩
µ − σ

ξ

[︂
1 − (− log (1 − p))−ξ

]︂
, ξ ̸= 0

µ − σ log (− log (1 − p)) , ξ = 0
(2.14)

for p ∈ (0, 1]. It is writen G−1 (p; Λ) to indicate that the returned quantile is also

a function of the GEV parameters. Following Coles (2001), the quantile of the GEV

distribution is often called the return level or return period associated with level 1/p, meaning

that we expect the (1 − p)-th quantile to be exceeded only once every 1/p years. For

example, letting p = 0.05 means that the 95th quantile is expected to be exceeded once

every 1/0.05 = 20 years.

2.2 Modelling Extremes

In this section, we present the two main approaches to estimating extreme values: the

block maxima approach and the threshold exceedance (or peaks-over-threshold) method.

The first method stems from the previous section, Section 2.1, whereas the latter method

leads to the Generalised Pareto Distribution.

2.2.1 Block Maxima

The block maxima approach consists of breaking down the observed data into equal,

independent and disjoint periods of observations and to then consider the maximum of

each created block as the observed data. A typical application of this approach is to take

blocks to represent a time period of one year and to take the maximum of each year as the

set of observations we seek to fit a GEV distribution to.

Formally, let {X1, X2, . . . , Xn·k} be a n · k sequence of i.i.d. random variables with

underlying distribution function F (·) with n, k ∈ N. For j = 1, 2, . . . , n, we create k blocks

of size n out of the n · k observations

Mj = max
(j−1)n<i≤jn

{︂
X(j−1)n+1, . . . , Xi, . . . , Xjn

}︂
(2.15)
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such that M1 = max {X1, . . . , Xn}, M2 = max {Xn+1, . . . , X2n}, . . . , Mk =

max
{︂

X(k−1)n+1, . . . , Xkn

}︂
.

Assuming F (·) to be in the domain of attraction of some GEV distribution, the sequence

{M1, M2, . . . , Mk} of maximums will converge in distribution to the GEV distribution of

Equation (2.10) as k → ∞.

A visual representation of the block maxima method is presented in Figure 2.2, where

we consider k = 5 blocks of size n = 40 with the maximum of each block being represented

in blue, which form the sequence of observations {M1, . . . , M5} of Equation (2.15).

Figure 2.2: Visualisation of the Block Maxima Method

When working with block maxima, an important aspect that must be considered is that

of block size selection. If block sizes are too small, then the approximation by the limit in

Corollary 1.1 will be poor and create bias in estimations. On the other hand, blocks that

are too large will evidently generate too few observations and lead to high model variance.

2.2.2 Threshold Exceedance

In the threshold exceedance method, we define extreme observations as all observations

that occur above a specified threshold. As such, the threshold exceedance method considers

all relevant high observations, whereas the block maxima approach by its nature may omit

high values and include low values. Figure 2.3 shows a visual representation of the method

for an arbitrary threshold value, where the points in blue are the considered data.

If we take a sequence {X1, X2, . . . , Xn} of i.i.d. random variables, we consider all values

12



Figure 2.3: Visualisation of the Threshold Exceedance Method

that exceed a threshold u to be extreme events. In other words, for any arbitrary random

variable X ∈ {X1, X2, . . . , Xn}, we are interested in the behaviour of X above the threshold

u: we want to know how the conditional excess distribution X
⃓⃓

X > u, denoted Fu(·)

behaves. By considering the excess y = x − u, we can write

Fu(y) = P
(︁
X − u ≤ y

⃓⃓
X > u

)︁
= F (u + y) − F (u)

1 − F (u)

= F (x) − F (u)
1 − F (u) , (2.16)

for 0 < y < x∗ − u, x∗ being the right endpoint.

In a similar way to Equation (2.2) when explaining the context of the GEV distribution,

the distribution F (·) in Equation (2.16) is not known. However, Pickands (1975) and

Balkema and de Haan (1974) find that for a large quantity of distributions F (·), the

conditional excess function can be approximated by a non-degenerate distribution named

the Generalised Pareto Distributon.

Theorem 2 (Generalised Pareto Distribution). Consider a random variable X, with

distribution function F (·) and conditional excess distribution Fu(·) with threshold u defined
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as in Equation (2.16). If there are functions a(u) > 0 and b(u) such that

Fu (a(u)·y + b(u)) → G (y)

as y → ∞, where G(·) is a non-degenerate distribution, then the limitting distribution is

the Generalised Pareto Distribution (GPD) defined by

G(y) =

⎧⎪⎪⎨⎪⎪⎩
1 −

(︂
1 + ξ·y

σ

)︂−1/ξ

, ξ ̸= 0

1 − exp
{︁
− y

σ

}︁
, ξ = 0

(2.17)

where σ > 0 is a scale parameter, ξ ∈ R is a shape parameter, and domains y ≥ 0 when

ξ ≥ 0 and 0 ≤ y ≤ −σ
ξ when ξ < 0.

Proof. See either Pickands (1975) or Balkema and de Haan (1974).

Pickands (1975) also shows that the family of distribution functions F (·) that satisfy

Theorem 2 are the same distributions that lie in the domain of attraction of the GEV

distribution, see Corollary 1.1. We remark that ξ in Equation (2.17) is the same shape

parameter of the corresponding GEV distribution of Equation (2.10).

Selecting a threshold value u implies a tradeoff between bias and variance. If we select

u to be too small, the asymptotic assumption will likely not hold and bring bias to the

estimation of the model, whereas too high a threshold will imply too few observed values

and lead to high variance. Coles (2001) proposes the usage of either a mean residual life

plot to choose u or to estimate the GPD parameters at multiple values of u, where an

appropriate threshold is u∗ such that all other thresholds u > u∗ will yield approximately

constant values of ξ.

2.2.3 Block Maxima vs. Threshold Exceedance

Recall that the threshold method picks up all relevant high observations, whereas the

block maxima approach of Section 2.2.1 considers the maximum of each block of data.

By definition of the block maxima framework, changing block sizes would affect the GEV

parameters obtained, but would not on the other hand affect the estimation of the GPD
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parameters. The block maxima approach may also miss some relevant high observations

and at the same time include some low values. Figure 2.4 showcases this issue, where the

blue values are the block maximum values, the purple values are observations that block

maxima will ignore but that would be considered by the threshold exceedance method and

the red observations are values considered too low, that is under the specified threshold,

that will still be considered by the block maxima.

Figure 2.4: Difference Between Block Maxima and Threshold Exceedance

Based on these comments, the threshold method seems to be a more logical option to

model extreme data. However, the block maxima approach still has its advantages. For one,

in many situations the only information available is in the form of blocks of maximums3.

Secondly, block periods may appear much more naturally and we can thus ignore the issue

of having to select a valid threshold u. Lastly, block maxima can be better suited when

dealing with heterogeneous observations. For example, if we have cyclical effects in a data

set over multiple years, the threshold method might disregard observations that come from

low trending years, whereas the block maxima approach would still consider the values that

come from a low point in the cyclical data. We refer the reader to Coles (2001) for more

details on both methodologies.
3Our application in Section 5.3 is an example of this case.
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2.3 Estimation

In this section, we look at two specific methods of infering the parameters Λ = {µ, σ, ξ}

of Equation (2.10) that are of interest in this thesis, namely the method of moments and

the method of L-moments. Of course, there are many other possible estimation methods

for the inference of the GEV parameters, two other popular methods being the Maximum

Likelihood and Probability Weighted Moments (PWMs) approaches, the latter developed

by Hosking et al. (1985). For an in-depth coverage of parameter estimation methods, the

interested reader can consult Chapter 3 of de Haan and Ferreira (2010).

2.3.1 Method Of Moments

A straightfoward way to estimate Λ is to directly use the moments of the GEV distribution

defined by Equation (2.11) through Equation (2.13). We note that the skewness depends

only on the shape parameter {ξ}, the variance depends on {σ, ξ} and the mean depends on

all three parameters {µ, σ, ξ}. As such, given that we have the mean, variance and skewness

of a data set to which we seek to fit a GEV distribution to, we can iteratively obtain each

parameter.

To obtain estimates Λ̂ =
{︂

µ̂, σ̂, ξ̂
}︂

with the method of moments, we implement to

following simple procedure:

1. Numerically solve for Equation (2.13), which will yield ξ̂;

2. Given the obtained value of ξ̂, numerically solve for Equation (2.12) to get σ̂;

3. With ξ̂ and σ̂, numerically solve Equation (2.11) to obtain µ̂.

The procedure evidently requires numerical methods due to the Gamma functions gk =

Γ (1 − k ·ξ) , k ∈ N, that are present in the moments of the GEV distribution.

2.3.2 L-Moments

The method of L-moments was first presented by Hosking (1990). According to Hosking

and Wallis (1997), L-moment estimators are less prone to bias and approximate parameters
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better than Maximum Likelihood for small sample sizes. This quality is the reason why we

consider L-moments later in Section 5.3.

We first define the L-moments. Let X be a random variable with order statistics X1:1 ≤

X2:n ≤ · · · ≤ Xn:n of a random sample of size n of X. The L-moment of order r, r ∈ N, is

denoted λr and defined as

λr = 1
r

r−1∑︂
i=0

(−1)i
r−1Ci · E(Xr−i:r) , (2.18)

where r−1Ci = (r−1)!
/︂

i!(r−1−i)!. We also define the L-moment ratios as τr = λr

/︂
λ2.

The first three L-moments are given as:

λ1 = E(X) ,

λ2 = 1
2E(X2:2 − X1:2) , (2.19)

λ3 = 1
3E(X3:3 − 2X2:3 + X1:3) .

The justification of being able to use L-moments to describe distributions stems from

the following proposition by Hosking (1990).

Proposition 1. The L-moments of a real-valued distribution X exist if and only if X has

finite mean. A distribution whose mean exists is characterized by its L-moments.

Proof. See Hosking (1990).

We can interpret the L-moments in a very similar way to how moments are interpreted

normally: λ1 describes the first moment of X, λ2 measures the dispersion of the distribution,

τ3 the skewness, etc (Silva Lomba and Fraga Alves (2020)). As an example, for λ2 in

Equation (2.19), if the two values of the order statistics are close, then λ2 will be smaller

and hence measure the dispersion/scale of the distribution accordingly.

For the GEV distribution, the first two L-moments and third L-moment ratio are given
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by

λ1 = ξ + σ

µ
[1 − Γ (1 + µ)] , (2.20)

λ2 = σ

µ

(︁
1 − 2−µ)︁Γ (1 + µ) , (2.21)

τ3 = 2 (1 − 3−µ)
(1 − 2−µ) − 3 (2.22)

However, in practice, the L-moments must be calculated from a sample drawn from an

unknown distribution. Hosking (1990) therefore considers the sample L-moments, which

estimate the true L-moments above. Sample L-moments are based on PWMs, which

were introduced by Greenwood et al. (1979) as an alternative to convential moments to

summarise distributions. To remedy the fact that PWMs are hard to interpret in terms of

distributional characteristics, Hosking (1986) considers linear combinations of PWMs that

can be interpreted as measures of location, scale and shape of distributions.

Assuming a sample x1, x2, . . . , xn, the L-moments are linear combinations of order

statistics of the n-sized sample x1:n ≤ x2:n ≤ · · · ≤ xn:n of X. With the estimates β̂r

of the PWMs

β̂r = 1
n

n∑︂
i=1

n−iCr · xi:n ·
(︁

n−1Cr
)︁−1 (2.23)

for r ∈ {0, 1, . . . , n − 1}, the first three sample L-moment estimates, which we denote

by ℓi for i ∈ {1, 2, 3}, are given by

ℓ1 = β̂0,

ℓ2 = β̂0 − 2β̂1,

ℓ3 = β̂0 − 6β̂1 + 6β̂2.

We additionally define the sample L-moment ratios as tr = ℓr/ℓ2 for r ∈ N, where ℓ2 is

used to standardize the moments.

To obtain parameter estimates of any valid distribution, we equate the first three true

L-moments of Equation (2.18) to their respective sample L-moments. That is, we set

λ1 = ℓ1, λ2 = ℓ2 and τ3 = t3 and solve for the appropriate parameters. For the GEV
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distribution, doing so yields parameter estimates denoted Λ(LM) =
{︂

µ(LM), σ(LM), ξ(LM)
}︂

given by

Λ̂(LM) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ̂
(LM) = 7.8590·c + 2.9554·c2,

σ̂(LM) = β̂0 ·ξ̂(LM)(︃
1 − 2−ξ̂

(LM)
)︃

Γ
(︃

1 + ξ̂
(LM)

)︃ ,

µ̂(LM) = β̂0 − σ̂(LM)

ξ̂
(LM)

[︃
1 − Γ

(︃
1 + ξ̂

(LM)
)︃]︃

,

(2.24)

where

c = 2
3 + t3

− log(2)
log(3) ,

t3 = ℓ3
ℓ2

= β̂0 − 6β̂1 + 6β̂2

β̂0 − 2β̂1
,

and where β̂r are the PWM estimates in Equation (2.23). More details about the method

of L-Moments are available in Hosking (1990).
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Chapter 3

Bayesian Neural Networks

In this chapter, we explain the framework of the Tractable Approximate Gaussian Inference

(TAGI) Bayesian Feed-Forward Neural Network and the Approximate Gaussian Variance

Inference (AGVI) methodology, which stem from the work of Goulet et al. (2021) and Deka

et al. (2024) respectively. These frameworks serve as the basis for the neural network model

we develop in the subsequent chapter.

Section 3.1 presents the bayesian feed-forward mechanism. The Gaussian Multiplicative

Approximation is covered in Section 3.1.1. Section 3.2 deals with the second half of the

TAGI framework, where parameter inference is presented in Section 3.2.1, and how network

hyperparameters are obtained is shown in Section 3.2.2. We conclude the coverage of TAGI

in Section 3.2.3 with a numerical example.

We then cover TAGI-V in Section 3.3, where we present the AGVI framework in

Section 3.3.1, which extends TAGI and allows heteroscedastic observation error to be

accomodated for. A numerical example is provided in Section 3.3.2.

3.1 Approximate Gaussian Feedforward Neural Network

We start our coverage of Bayesian Neural Networks (BNNs) with how forward propagation

occurs in the TAGI BNN. The principal factor at play is the Gaussian Multiplicative

Approximation (GMA) in Section 3.1.1, which permits the analytical calculation of the

mean and variance of multiplied terms in the network.

20



Consider a Feedforward Neural Network (FNN) with L ∈ N layers and associated

vector of covariates X = {X1, X2, . . . , XnX}T of dimension nX and outputs Y =

{Y1, Y2, . . . , YnY}T of size nY such that X ∈ RnX and Y ∈ RnY . The relationship between

covariates and outputs are described by

y = z(0) + v, (3.1)

where z(0) ≡ z(0)(x) is the output of the neural network, which is a function of the inputs

x, and v are observation errors following a Multivariate Gaussian random variable such

that V ∼ MVN(0,ΣV ). For now, we consider the error V to be homoscedastic, that is the

observation variance σ2
V is assumed to be constant and is set seperately from the inference

procedure described below. The case when observation variance can vary with respect to

covariates is covered in Section 3.3 with the AGVI framework.

We model the relationship in Equation (3.1) using a FNN with L layers in which each

ith layer of the FNN consists of A hidden units z
(i)
j ∀j ∈ {1, 2, . . . , A}, where we activate

each hidden unit with an activation function ϕ(·) such that the activated unit is written

a
(i)
j = ϕ

(︂
z

(i)
j

)︂
. Thus, we go from the input layer with covariates X and prior information

Θ(∅) =
{︂
W (∅),B(∅)

}︂
defined by

W∅ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

w
(∅)
1,1 w

(∅)
1,2 · · · w

(∅)
1,A

w
(∅)
2,1 w

(∅)
2,2 · · · w

(∅)
2,A

...
... . . . ...

w
(∅)
A,1 w

(∅)
A,2 · · · w

(∅)
A,A

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and B(∅) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

b
(∅)
1

b
(∅)
2
...

b
(∅)
A

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
to the first layer of the network by calculating

z
(1)
j =

nX∑︂
k=1

w
(∅)
j,k xk + b

(∅)
j , (3.2)

where we multiply the covariates with initialised input weights w
(∅)
j,k and add a bias term

b
(∅)
j . Here, we assume that the prior input covariates, weights and bias Θ(∅) is multivariate
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Gaussian. To go from a given layer i to i + 1, we generalise Equation (3.2) as

z
(i+1)
j =

A∑︂
k=1

w
(i)
j,ka

(i)
k + b

(i)
j (3.3)

and then propagate uncertainties with a
(i+1)
j = ϕ

(︂
z

(i+1)
j

)︂
, such that the vector of

activated units a(i) =
{︂

a
(i)
1 , a

(i)
2 , · · · , a

(i)
A

}︂⊺
follows a multivariate Gaussian distribution

a(i) ∼ MVN
(︂
µ

(i)
a ,Σ

(i)
a

)︂
.

For the output layer, we simply consider

z
(0)
j =

A∑︂
k=1

w
(L)
j,k a

(L)
k + b

(L)
j . (3.4)

We can also use matrix notation to represent the set of weights and bias at each layer

as

Z(i+1) = W(i)·A(i) +B(i) ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

z
(i+1)
1

z
(i+1)
2

...

z
(i+1)
A

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

w
(i)
1,1 w

(i)
1,2 · · · w

(i)
1,A

w
(i)
2,1 w

(i)
2,2 · · · w

(i)
2,A

...
... . . . ...

w
(i)
A,1 w

(i)
A,2 · · · w

(i)
A,A

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
(i)
1

a
(i)
2
...

a
(i)
A

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

b
(i)
1

b
(i)
2
...

b
(i)
A

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.5)

As such, each neuron in any given layer is a weighted combination of the activated

neurons from the previous layer with an added bias term. The weights w
(i)
j,k and bias

term b
(i)
j are assumed Gaussian. As such, the parameters between any two layer Θ(i) =

{W (i), B(i)}, i ∈ {1, 2, . . . L} are Gaussian. The entirity of the network parameters is

denoted by Θ = {W,B} and is composed of all the weights and bias terms in the network,

W =
{︂
W (∅),W (1), . . . ,W (L)

}︂
and B =

{︂
B(∅),B(1), . . . ,B(L)

}︂
.

Figure 3.1 graphically shows the FNN mechanics within the setup of Equation (3.1). A

full graphical representation of the network can be found in Appendix A.

3.1.1 Gaussian Multiplicative Approximation (GMA)

Equation (3.2), Equation (3.3) and Equation (3.4) involve the multiplication of Gaussian

random variables. However, the multiplication of Gaussian random variables is known to
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x Z(1) · · · Z(L) Z(0)

V

yΘ(0) Θ(1) Θ(L−1) Θ(L)

Figure 3.1: Compact Graphical Representation of the FNN

not be Gaussian1. To keep the propagation in the network tractable, Goulet et al. (2021)

propose the GMA methodology to approximate the product of Gaussian random variables.

GMA states that we can approximate the product of two Gaussian random variables by a

Gaussian random variable where the mean and variance are defined in the following.

For a 4-dimensional random vector X = {X1, X2, X3, X4}⊺ ,X ∼ MVN(µ, Σ), we can

use the moment generating function to get the first two moments of any product Xi·Xj for

i, j = 1, 2, 3, 4 and obtain

E(X1X2) = µ1µ2 + Cov(X1, X2) , (3.6)

Cov(X3, X1X2) = Cov(X1, X3) µ2 + Cov(X2, X3) µ1, (3.7)

Cov(X1X2, X3X4) = Cov(X1, X3) Cov(X2, X4) + Cov(X1, X4) Cov(X2, X3)

+ Cov(X1, X3) µ2µ4 + Cov(X1, X4) µ2µ3

+ Cov(X2, X3) µ1µ4 + Cov(X2, X4) µ1µ3, (3.8)

Var(X1, X2) = σ2
1σ2

2 + Cov(X1, X2)2 + 2Cov(X1, X2) µ1µ2 + σ2
1µ2

2 + σ2
2µ2

1, (3.9)

E(X1X2X3) = Cov(X1, X2) µ3 + Cov(X1, X3) µ2

+ Cov(X2, X3)E(X1) + µ1 ·µ2 ·µ3. (3.10)

For instance, Figure 3.2 shows how GMA approximates the true distribution of
∑︁n

i=1 X2
i

for Xi ∼ Gaussian(0, 1) for diffrent values of n, where the true distribution is shown in

black and the approximation with the GMA is shown in red. We see that as n increases,

the approximation quickly improves.
1For instance, the product of two standard Gaussian random variables follows the Chi-Squared

distribution with degree one.
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Although the product of two Gaussian random variables is not Gaussian, Equation (3.3)

considers the sum of many pairwise Gaussian distributions. Given that all activation units

ak are independent, the CLT states that a large sum of independent product terms will

be approximately Gaussian. Wu et al. (2019) showed that independence between activated

units empirically holds, justifying the GMA.

(a) n = 1 (b) n = 5 (c) n = 10

Figure 3.2: GMA Approximation of
∑︁n

i=1 X2
i for Standard Gaussian Random Variables

To better illustrate how the GMA works in the context of the present BNN, Figure 3.2

can be interpreted as Figure 3.3, where for a fixed layer i ∈ {1, 2, . . . , L} we show the

passage from the activated neurons to a fixed hidden unit of the following layer z
(i+1)
j for

some fixed j ∈ {1, 2, . . . , A}. In interpreting Figure 3.2 as Figure 3.3, it is assumed that

w
(i)
j,k ∼ Gaussian(0, 1), a

(i)
k ∼ Gaussian(0, 1) and b

(i)
j = 0 for all k ∈ {1, 2, . . . , A}. Figure 3.2a

represents the case when A = 1 in Equation (3.3), Figure 3.2b is when A = 5 and Figure 3.2c

is when A = 10. This simplified example highlights the fact that although the GMA is a

rough estimation of each multiplication w
(i)
j,k · a

(i)
k , when we add each term together and

increase the number of activation units A, we quickly tend towards a solid estimation.

As such, in the context of a complete neural network, with the GMA we approximate

each term w
(i)
j,k · a

(i)
k in Equation (3.3) by a Gaussian random variable, which then allows us

to analytically propagate uncertainty forward in the network.

To activate the jth given hidden unit at layer i, z
(i)
j , we apply an activation function

ϕ(·) such that the activated united is given by a
(i)
j = ϕ

(︂
z

(i)
j

)︂
. Activation functions are

needed to introduce non-linearity to the input of a neuron. There are many possible choices

24



a
(i)
1

a
(i)
2

...

a
(i)
A

z
(i+1)
j

w
(i)
j,1·a(i)

1

w
(i)
j,2·a(i)

2

. . .

w
(i)
j,A·a(i)

A

Figure 3.3: Passage from an Activated Layer i ∈ {1, 2, . . . , L} to the Hidden Unit z
(i+1)
j for

Some Fixed j ∈ {1, 2, . . . , A}

of activation functions, such as the binary step function, linear function, sigmoid function,

tanh function, leaky ReLu function, softmax function, and more. Each function activates

neurons in a different way and some functions can be more suitable to certain situations

than others. See Sharma et al. (2020) for more details.

However, in our bayesian setting, each neuron is a random variable and it is therefore

impossible to directly apply any of the activation functions mentionned above to the random

variable z
(i)
j . It is proposed instead to used a locally linearised activation function, denoted

ϕ̃(·), which is locally linearised at the average value of each layer E(Z) = µZ and is defined

as

ϕ̃ (z) = ϕ (µZ) + ∂ϕ (µz)
∂z

(z − µZ) . (3.11)

It is important to note that since the linearization is done at different values of µZ,

we maitain the non-linear dependency between inputs and outputs. We thus activate each

neuron as a
(i)
j = ϕ̃

(︂
z

(i)
j

)︂
.

3.2 Tractable Approximate Gaussian Inference for Bayesian

Neural Networks (TAGI)

The previous section presented the general BNN setup alongside the GMA for forward

propagation in the network. We now present the second characteristic that makes up the

TAGI neural network: the inference of the weight (W) and bias (B) parameters Θ =
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{W, B}. Section 3.2.1 deals with the inference of Θ and Section 3.2.2 deals with obtaining

the correct hyperparameters.

3.2.1 Inference in TAGI

With the assumptions that the set of all weights and bias terms in the network, Θ =

{W, B}, are Gaussian, we can use properties of multivariate Gaussian random variables

to obtain the posterior distribution of Θ. Given any n-dimensional random vector X =

{X1, X2, . . . , Xn}⊺, X is said to follow a Multivariate Gaussian random variable with mean

vector and variance matrix

µ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

µ1

µ2
...

µn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Σ =

⎛⎜⎜⎜⎜⎜⎝
σ11 · · · σ1n

... . . . ...

σn1 · · · σnn

⎞⎟⎟⎟⎟⎟⎠ (3.12)

if it admits the following probability density function:

f(x) = 1
(2π)n/2 |Σ|

exp
{︃

−1
2
[︂
(x − µ)⊺ Σ−1 (x − µ)

]︂}︃
,

where |·| is the determinant and σij = Cov(Xi, Xj) for all i, j ∈ {1, 2, . . . , n} (Johnson

and Wichern (2002)). We can consider a partitioning of X = {X1,X2}⊺, where X1 is

of dimension n1 and X2 of dimension n2 such that n1 + n2 = n. Each partition of X

has its respective mean vector and variance matrix µ1,µ2, Σ1 and Σ2 such that X1 ∼

MVN(µX1 , ΣX1) and X2 ∼ MVN(µX2 , ΣX2). Then, the conditional distribution of X1

given X2 = x2 is also multivariate Gaussian with mean and variance

µ
X1
⃓⃓
X2

= µX1 + ΣX1X2Σ
−1
X2

(x2 − µX2) , (3.13)

Σ
X1
⃓⃓
X2

= ΣX1 − ΣX1X2ΣX−1
2
ΣX2X1 . (3.14)

Once forward propagation is performed as described in Section 3.1, we can perform
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inference on Θ. Given the Gaussian assumption on the weights and bias, the joint

probability density function of Θ and Y is Gaussian with mean and variance

µ =

⎛⎜⎝µΘ

µY

⎞⎟⎠ , Σ =

⎛⎜⎝ ΣΘ ΣT
YΘ

ΣYΘ ΣY

⎞⎟⎠ .

Equation (3.13) and Equation (3.14) state that we can theoretically obtain the posterior

for Θ in one sweep as

µ
Θ
⃓⃓
Y

= µΘ + ΣΘYΣ−1
Y (y − µY) , (3.15)

Σ
Θ
⃓⃓
Y

= ΣΘ − ΣΘYΣ−1
Y ΣYΘ. (3.16)

However, in practice calculating these quantities is not feasible since the involved

matrices are far too dense. As a remedy, the authors consider a diagonal covariance structure

for Θ and use the fact given that all parameters of Θ are independent between layers,

each pairwise layer of hidden units are independent, meaning that we can use a layer-wise

recursive inference procedure. More precisely, given the information at a layer i, the layers

i − 1 and i + 1 are independent:

Z(i+1) ⊥⊥ Z(i−1)
⃓⃓⃓
z(i). (3.17)

Thus, to perform inference recursively, we first obtain the posterior for the output layer

to calculate

z(0)|y ∼ MVN
(︃
µ

Z(0)
⃓⃓
Y

,Σ
Z(0)

⃓⃓
Y

)︃

by means of Equation (3.13) and Equation (3.14). Then, the Rauch-Tung-Striebel (RTS)

procedure developped by Rauch et al. (1965) is used to obtain the posterior distribution of

each layer recursively. The RTS method works as follows. Note that for a given layer i ∈

{1, 2, . . . L}, for sake of readability we write
{︂

Θ(i), Z(i)
}︂

≡ {Θ, Z} and
{︂

Θ(i+1), Z(i+1)
}︂

≡
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{︁
Θ+, Z+}︁. First, we calculate

µ
Z
⃓⃓
y

= µZ + JZ

(︃
µ

Z+
⃓⃓
y

− µZ

)︃
,

Σ
Z
⃓⃓
y

= ΣZ + JZ

(︃
Σ

Z+
⃓⃓
y

− ΣZ+

)︃
JZ+ ,

JZ = ΣZZ+Σ−1
Z+ ,

(3.18)

then given Equation (3.18) we infer the layer’s parameters:

µ
Θ
⃓⃓
y

= µZ + JΘ

(︃
µ

Z+
⃓⃓
y

− µZ

)︃
,

Σ
Θ
⃓⃓
y

= ΣΘ + JΘ

(︃
Σ

Z+
⃓⃓
y

− ΣZ+

)︃
JΘ+ ,

JΘ = ΣΘZ+Σ−1
Z+ .

(3.19)

Using the RTS procedure, for any given layer we only need to store the mean vectors

µΘ,µZ and covariances ΣΘ, ΣZ, ΣΘZ+ and ΣZZ+ . Figure 3.4 illustrates the procedure.

The process is repeated for each observation value, where the posterior for Θ becomes the

prior for the next observation value.

x Z(1) · · · Z(L) Z(0) y

X|y

Θ(∅)|y

Z(1)|y

Θ(1)|y

Z(L)|y

Θ(L−1)|y

Z(0)|y

Θ(L)|y

Θ(∅) Θ(1) Θ(L−1) Θ(L)

Figure 3.4: Layer-Wise Inference in TAGI

3.2.2 Hyperparameter Estimation

In a typical neural network setup, there is a great amount of different parameters in Θ,

for which we do not have enough prior information to set proper hyperparameters ϑ∅ ={︂
µ

(∅)
Θ , Σ(∅)

Θ

}︂
. A solution for this problem is to run multiple Epochs, denoted E, where we

let TAGI learn from the data set multiple times. To do so, we take the original data set of

observed values Dobs = {Dfit, Dval} and split it into a training set Dfit and a validation set

Dval. We then recursively obtain hyperparameters through multiple epochs by using the
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posterior parameters of the previous iteration to get the hyperparameters of the following

iteration. That is, we obtain the i-th posterior parameters ϑ(i) =
{︂
µ

(i)
Θ , Σ(i)

Θ

}︂
and use ϑ(i)

as the prior parameters for the (i + 1)-th iteration. Thus, denoting by TAGIϑ(Dobs,ϑ
(i))

the hyperparameter output using ϑ(i) and observed data set Dobs, we recursively calculate

ϑ(i+1) = TAGIϑ(Dobs,ϑ
(i)). (3.20)

To decide how many iterations of Equation (3.20) to consider, the following stopping

algorithm is proposed. Let ℓE be the log-likelihood value of the validation set Dval at a

given epoch E ∈ N. Let ℓ∗ be the current best validation likelihood value and E∗ the current

optimal number of epochs. Define the difference parameter δ > 0, patience parameter η ∈ N

with maximum value η∗ and let Emax be the maximum number of allowed epochs. Each

of δ, η∗ and Emax must be set by the user. Then, Algorithm 1 formally describes how we

obtain the optimal number of epochs.

Algorithm 1 Obtaining Optimal Number of Epochs
1: Calculate ℓ1 and set ℓ∗ = ℓ1, E∗ = 1.
2: Set η = 0.
3: for E = 2 to Emax do
4: Calculate ℓE.
5: if ℓE = ∞ then
6: Update ℓ∗ to ℓE
7: else if ℓE − ℓE−1 > δ then ▷ likelihood gets better by at least δ
8: Update ℓ∗ = ℓE and E∗ = E;
9: Reset η = 0. ▷ Restart patience counter

10: else if ℓE − ℓE−1 ≤ δ then
11: Update counter to η + 1;
12: if η ≥ η∗ then ▷ Too many iterations without enough improvement
13: Set E∗ = E;
14: Stop the procedure.

Algorithm 1 can be summarised as follows. We run the first epoch of the neural network

and keep the first log-likelihood value as the current best, ℓ∗ = ℓ1. At any given epoch E,

we check if the log-likelihood improves by at least δ by calculating

ℓE − ℓE−1. (3.21)
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If Equation (3.21) is larger than δ, that means that we have a significant enough

improvement in the likelihood to update our current best likelihood to ℓ∗ = ℓE. We also

re-set the patience counter to zero. If Equation (3.21) is smaller than δ, then we increase

by one the counter η. If we reach the maximum allowed patience criteria of η = η∗, we stop

the procedure and the current epoch E is the optimal number of epochs for the network2.

If we have not yet reached the patience criteria, we run the next epoch to see if we have

any significant likelihood improvement. The procedure continues until we either reach η∗

or have considered the maximum amount of epochs decided beforehand, Emax.

It is important to note that the choice of δ, η∗ and Emax will impact how TAGI performs

inference. Imposing too high a value of δ will imply that Algorithm 1 will hardly accept

improvements in the likelihood, and imposing too low a value of δ will cause Algorithm 1

to run too many iterations and likely induce overfitting. Likewise, Emax must be set high

enough to ensure enough iterations of TAGI. As such, the user must be careful and adapt

the settings of δ, η∗ and Emax to the task at hand.

With a proper way of learning the network parameters Θ over multiple epochs, the

TAGI framework is complete. To train TAGI on a given data set of observed values Dobs,

it is important to note that we must normalise the data before feeding Dobs to TAGI.

3.2.3 Numerical Example

In this section we consider a regression task to showcase the capabilities and limitations

of TAGI. The example demonstrates how TAGI can obtain accurate predictions with low

amounts of data.

We apply TAGI to the function y(x) = (5x)3/50 + V , where V ∼ Gaussian(0, 3/50) and

x ∈ [−1, 1]. This dataset is a slight modification3 of the regression problem tackled by

Hernández-Lobato and Adams (2015).

We use an observation set, denoted Dobs = {Dfit, Dval}, which consists of 20 training

values Dfit = {Xfit, Yfit} and 20 validation points Dval = {Xval, Yval} to train TAGI, and
2Colloquially speaking, “we have not seen a significant improvement in the likelihood for η∗ iterations

and thus stop the procedure”.
3The modification in question here is simply having already normalised the data. The original regression

problem tackled by Hernández-Lobato and Adams (2015) predicts the function y(x) = x3.
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100 test values Dtest = {Xtest, Ytest} which we use to for prediction. As such, we train TAGI

with Dobs, which we write TAGI (Dobs), and measure our performance with TAGI (Dtest).

The neural network is setup with one layer (L = 1) consisting of 100 activation units

(A = 100) and ReLu activation function. To obtain the optimal number of epochs, we

employ Algorithm 1 with difference parameter δ = 0.01 and patience parameter η = 5.

Doing so leads to the optimal number of epochs to be 31.

(a) True Function
y(x) = (5x)3/50 with the

observed data values Dobs

(b) Predicted ŷ(x) values
after one Epoch (E = 1)

(c) Predicted ŷ(x) values
after ten Epochs (E = 10)

(d) Predicted ŷ(x) values
at the optimal value
of Epochs (E = 31)

Figure 3.5: True Function y(x) and Different Predicted TAGI Outputs Based on Different
Number of Epochs (E = 1, 10, 31)

Figure 3.5a presents the original function y(x) = (5x)3/50 along with the observed values

Dobs in gray, that is the values passed to the network for training. Figure 3.5b shows the

predicted values ŷ(x) outputted from the network where only one epoch is used (E = 1).

The red band is the variance of the predicted output, namely Var(ŷ(x)), which is not to be
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confused with the variance of the observation error of V . Figure 3.5c and Figure 3.5d each

show the same quantities as Figure 3.5b but but for different Epoch values, namely E = 10

and E = 31 respectively.

For each considered number of Epochs we calculate the MSE values of the test set Dtest,

defined by

MSE = E
(︃(︂

Ytest − Ŷtest
)︂2
)︃

. (3.22)

We obtain an MSE value of 0.2189 when considering E = 1, 0.1168 for E = 10 and 0.0675

when taking the optimal number of epochs, E = 31. As such, we see that as the number of

Epochs increase, the MSE values decrease as expected. Overall, Figure 3.5 and the MSE

values show that TAGI performs well given a relatively low amount of available data.

3.3 TAGI-V

In this section, we describe how TAGI is extended to be able to accomodate for observation

error that varies with its inputs, which we refer to as heteroscedastic uncertainty. The

methodology, named the Approximate Gaussian Variance Inference (AGVI) method,

together with the framework of TAGI, lends itself to a modified neural network methodology

referred to as TAGI-V. The AGVI framework stems from the work in Deka (2022) and Deka

et al. (2024).

In Section 3.3.1 we formally present the logic of AGVI and follow with a numerical

example in Section 3.3.2, which draws comparison to the numerical example of Section 3.2.3.

3.3.1 Approximate Gaussian Variance Inference (AGVI)

In Section 3.1 and Section 3.2, the model described by Equation (3.1) assumes that the

error term V was homoscedastic: it is a constant that must be determined outside of the

inference procedure. This is a key limitation to the TAGI methodology: it is impossible to

take into account the possibility of having heteroscedastic uncertainty, that is observation

errors that vary with the inputs. To remedy this, the authors Deka et al. (2024) use the

AGVI method to be able to infer σ2
V and then obtain the variance of outputted values.
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We present the AGVI method in the univariate case for sake of readability, but remark

that the method can be extended to the Multivariate case using the diagonal covariance

matrix ΣV = diag(V).

Assuming the model specification y = z(0) + v, where V ∼ Gaussian
(︁
0, σ2

V

)︁
is

independent from z(0), the variance of Y is given by

Var(Y ) = Var
(︂
Z(0) + V

)︂
= Var

(︂
Z(0)

)︂
+ Var(V )

= σ2
Z(0) + σ2

V .

The objective of the AGVI procedure is to infer σ2
V , since σ2

Z(0) is already obtained

through TAGI. To infer σ2
V , the AGVI method can be summarised in two steps. First, we

obtain the prior for σ2
V through the relationship between V , V 2 and E

(︁
V 2)︁. Then, we use

the posterior density of V to get the posterior information of σ2
V .

We note that

σ2
V = E

(︂
V 2
)︂

− (E(V ))2 = E
(︂
V 2
)︂

= µV 2 ,

since E(V ) = 0. This means that

V ∼ Gaussian(0, µV 2) (3.23)

and that we must model V 2 to be able to infer σ2
V .

As such, we start the AGVI method by modelling the squared error as V 2 ∼

Gaussian
(︁
µV 2 , σ2

V 2
)︁
. Using the moments of the Gaussian distribution, we can re-write V 2

as

V 2 ∼ Gaussian
(︂
µV 2 , 2µ2

V 2

)︂
, (3.24)

meaning that V 2 depends on µV 2 . To maintain analytical tractability, we assume the

parameter µV 2 to itself follow a Gaussian random variable written V 2 ∼ Gaussian
(︂
µ

V 2 , σ2
V 2

)︂
and thus re-write Equation (3.24) as
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V 2
⃓⃓⃓
V 2 ∼ Gaussian

(︃
v2, 2

(︂
v2
)︂2
)︃

. (3.25)

With the above established, we can graphically formulate the relationship between V , V 2

and E
(︁
V 2)︁ ≡ µV 2 in Figure 3.6.

µ
V 2

σ2
V 2

V 2 V 2 V

Figure 3.6: Relationship between V 2, V 2 and V .

We thus obtain the prior density of V through the prior density of V 2. Following Deka

et al. (2024), the prior moments of V 2 are given by µV 2 = µ
V 2 and σ2

V 2 = 3σ2
V 2 +2µ2

V 2 . With

the distributional assumption V ∼ Gaussian
(︁
0, σ2

V

)︁
, we have that E(V ) = 0 and Var(V ) =

E
(︁
V 2)︁ ≡ µ

V 2 . We can thus obtain the prior density of V as V ∼ Gaussian
(︂
0, µ

V 2

)︂
.

Next, to model V 2 (and hence V 2) as determined by the covariates, the authors add a

branch to the output layer of the TAGI framework. That is, a second output node is added

so that the output layer consists of Z(0), as before, and now V 2. Figure 3.7 graphically

represents the logic of the AGVI methodology. In this two-headed output layer, V 2 has its

own parameter Θ(L)
V 2 .

x Z(1) · · · Z(L)

Z(0)

V 2 V2 V

yΘ(0) Θ(1) Θ(L−1)

Θ(L)

Θ(L)

V 2

Figure 3.7: Graphical Representation of Forward Propagation with the AGVI Methodology

Recall that V 2 must be positive, since it models the variance σ2
V . As such, to ensure

that V 2 is positive, an exponential activation function is used. Let the activated form of

34



V 2 be denoted ˜︂
V 2. The moments of ˜︂V 2 are available from Goulet (2020) and are given as:

µ˜︂V 2
= exp

{︂
µ

V 2 + 0.5σ2
V 2

}︂
, (3.26)

σ2˜︂V 2
= exp

{︂
2µ

V 2 + σ2
V 2

}︂
·
(︂
exp

{︂
σ2

V 2

}︂
− 1

)︂
, (3.27)

Cov
(︃

V 2,
˜︂
V 2
)︃

= σ2
V 2 · µ˜︂V 2

(3.28)

Thus, this concludes how forward proagation is done under AGVI. Next, we consider

how to infer σ2
V from the neural network. We first consider the posterior distribution of the

joint output h =
{︂

Z(0), V
}︂⊺

. Under the Gaussian assumptions and Equation (3.13) and

Equation (3.14), we know that the distribution of h given y will be normal with conditional

mean and variance given by

µH|y = µH + ΣHY

σ2
Y

(y − µY ) , (3.29)

ΣH|y = ΣH − ΣHY ·ΣT
Y H

σ2
Y

. (3.30)

From Equation (3.29) and Equation (3.30), we can derive the density for first Z(0)|y and

V |y, then V 2|y and finally V 2|y. The authors obtain posterior moments of V 2 and V 2 as:

µV 2|y = µ2
V |y + σ2

V |y,

σ2
V 2|y = 2

(︂
σ2

V |y

)︂2
+ 4σ2

V |y ·µ2
V |y,

µ
V 2|y = µ

V 2 + k
(︂
µV 2|y − µV 2

)︂
,

σ2
V 2|y = σ2

V 2 + k2
(︂
σ2

V 2|y − σ2
V 2

)︂
,

(3.31)

where k = σ2
V 2/σ2

V 2 . Figure 3.8 below graphically shows the posterior inference procedure

for AGVI described by Equation (3.29) to Equation (3.31). From there, we take the posterior

information Z(0)|y and V 2|y and follow the exact same inference procedure outlined by TAGI

in Section 3.2.1.

Using the TAGI framework from Section 3.2 together with the AGVI procedure outlined

above, it is possible to perform tractable inference of weight and bias parameters of the
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· · ·

Z(0)

V 2 V2 V

y

Z(0)|y

V 2|y V 2|y V |y

Figure 3.8: Graphical Representation of Posterior Inference for AGVI

network all the while capturing heteroscedastic uncertainty. The blending of TAGI and

AGVI together is named TAGI-V.

3.3.2 Numerical Example

We showcase how TAGI-V can extract heteroscedastic variance given a simulated dataset.

We consider the same setup as in Section 3.2.3, that is the function f(x) = (5x)3/30 on the

domain [−1, 1], with an added variance function following v(x) = 3x4 + 0.02. As such, the

observations carry non-constant error. Our objective is to see how well TAGI-V can detect

said error.

3.3.2.1 First Simulation

We feed the neural network with 1,000 observation points Dobs = {Dfit, Dval} broken down

into 800 fitting values and 200 validation values that follow y(x) = f(x) +
√︁

v(x), where

v(x) ∼ Gaussian
(︂
0,
√︁

v(x)
)︂
. We also take 200 test data points (Dtest). We visualise the

data set in Figure 3.9: Figure 3.9a plots Dobs with y(x) in black, Figure 3.9b plots the

values of y(x) ± σv and Figure 3.9c plots v(x).

We train TAGI-V with Dobs using the same setup as the TAGI example in Section 3.2.3.

That is, we use one layer (L = 1) of 100 nodes (A = 100), activated using the ReLu

activation function. To determine the number of epochs used, we use Algorithm 1 with

difference parameter δ = 0.01 and patience parameter η = 5. With this algorithm we

obtain E = 5 and then get the following predicted values ŷ(x) and v̂(x) with TAGI-V (Dtest)
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(a) Observed data
Dobs with y(x)

(b) y(x) = f(x) ± σv (c) v(x)

Figure 3.9: Plots of y(x) and variance function v(x) in blue. The plot of y(x) is added on
top in black in the two leftmost plots.

as shown in Figure 3.10a and Figure 3.10b.

(a) ŷ(x) = f̂(x) ± σv̂ (b) v(x) and v̂(x)

Figure 3.10: Plots of ŷ(x) and variance function v̂(x) in red. The plot of y(x) is added on
top in black in the left plot and v(x) is added in blue in the right plot

From the test set we obtain an MSE value (see Equation (3.22)) of 0.0296. We note

that we obtain a lower MSE value than the ones in Section 3.2.3 since we use much more

data for training. Analysing Figure 3.10, we can see comparing to Figure 3.9 that given the

observed data with noise, TAGI-V is able to extract both the true function f(x) and the

variance function v(x). Secondly, we note the accuracy of the predicted function f̂(x) given

the fact that only five epochs were used. This highlights that TAGI-V can quickly extract

a pattern, similarly to TAGI.

In the context of the TAGI neural network, the observation error σV is set as a
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hyperparameter, meaning that it must be set before running the neural network and cannot

be adapted to the dataset as is the case here with TAGI-V. Thus, this example shows that

capturing heteroscedastic error is out of scope for TAGI alone and that this issue is remedied

with TAGI-V.

3.3.2.2 Second Simulation

We consider the same example as was described in the previous example in Section 3.3.2,

the difference being that instead of having an observation set of 1, 000 points we now only

take an observation data set Dobs of 100 observations, from which we take 70% to train,

20% to validate and 10% to test. The purpose is to show that TAGI-V can support low

amounts of data and still be able to discern noise patterns from a dataset, without having

an enormous penalty on computation.

Thus, we use 70 data points for the fitting data Dfit, 20 data points for the validation

set Dval and the remaining 10 values for the test set Dtest. The network setup is the same

as Section 3.3.2, and training TAGI-V with Dobs we obtain the optimal number of epochs

to be E = 26.

Figure 3.11 presents the results of this modified example. More specifically, Figure 3.11a

shows the observation data used with the true function in black, Figure 3.11b shows

the predicted values and variance values from using the test set on the trained network,

Figure 3.11c shows the predicted variance function along with the true variance function

and Figure 3.11d depicts the validation likelihood values as a function of the number of

epochs. We obtain a MSE value (see Equation (3.22)) of 0.0448, which shows good fit,

however being slightly higher than the MSE value of the previous example. This is to be

expected since we use less data for training.

We also notice that although the approximation of f(x) of Figure 3.11b is not as smooth

as in Figure 3.10a of Section 3.3.2, we are still able to adequately extract the underlying

function and observation variance given the low amount of data fed to the network as

showcased by Figure 3.11c. Comparing with Section 3.3.2, Figure 3.11d shows that TAGI-

V takes more time to learn the pattern (E = 26) compared to the original example (E = 5),

which is logical given the amount of data used in each example. We conclude that the
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(a) Observed Values
Dobs with y(x)

(b) ŷ(x) = f̂(x) ± σv̂ (c) v(x) and v̂(x)

(d) Log-likelihood
Values of Validation Set

Figure 3.11: Modified Example of TAGI-V with 80 Observation Data Points

advantage of TAGI being able to capture knowledge with low amounts of data still aplies

for TAGI-V, with a relatively low increase in computational cost.
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Chapter 4

TAGI-S

In this chapter, we present the main contribution of this thesis: we extend the methodology

of TAGI and TAGI-V presented in Section 3.2 and Section 3.3 to be able to infer the

skewness of outputted values. With the first three moments inferred, we can then use the

method of moments defined in Section 2.3.1 to obtain estimates for the parameters of the

GEV distribution. Since the method deals with the inference of skewness, we name the

method TAGI-Skewness or more succinctly TAGI-S.

Let us recall 3.1, which presents the regression task

y = z(0) + v. (4.1)

The observation error V of Equation (4.1) follows a Multivariate Gaussian distribution

with mean µV = 0 and variance ΣV. The objective of TAGI-V in Section 3.3 (in the

univariate case) was to obtain inference on σ2
Y through σ2

V , which boiled down to estimating

the mean of V 2 since

Var(V ) = σ2
V = E

(︂
V 2
)︂

− (E(V ))2

= E
(︂
V 2
)︂

.

Here, our objective is build upon the AGVI method and to obtain Skew(Y). We can

view the evolution as follows: in the setting of Equation (4.1), TAGI lets us obtain E(Y),
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TAGI-V lets us measure Var(Y) and we now set to obtain Skew(Y). With these three

moments estimated, in Section 4.4 we infer the parameters of the GEV distribution.

The essence of the procedure consists of establishing a relationship between V, V2 and

V3 using the GMA of Section 3.1.1 to be able to get the prior and posterior information of

V3. Ultimately, the method presented here can be viewed as “adding another branch” to

Figure 3.7, where we want to obtain information about V3.

4.1 Setting

For the remainder of the chapter, for sake of simplicity we present the methodology in the

univariate setting. As in Section 3.3.1, we note that using the diagonal covariance matrix

ΣV = diag(V) lets us translate the method to the multivariate case.

Before formally building the methodology, we first consider the context in which we work

by obtaining the expression for Skew(Y ), which helps to explain the relationship between

the forthcoming methodology and both TAGI and TAGI-V.

We calculate the skewness of Y in the context of our regression model, where we employ

the simplifying notation Z(0) ≡ Z:

Skew(Y ) = E
(︄[︃

Y − µY

σY

]︃3
)︄

= E
(︂
(Y − µY )3

)︂/︂
σ3

Y

= E
(︂
Y 3 − 3Y 2µY + 3Y µ2

Y − µ3
Y

)︂/︂
σ3

Y

=
{︂
E
(︂
Y 3
)︂

− 3µY E
(︂
Y 2
)︂

+ 3µ2
Y E(Y ) − µ3

Y

}︂/︂
σ3

Y

=
{︂
E
(︂
Y 3
)︂

− 3µY

[︂
Var(Y ) + E(Y )2

]︂
+ 3µ3

Y − µ3
Y

}︂/︂
σ3

Y

=
{︂
E
(︂
Y 3
)︂

− 3µY

(︂
σ2

Z + σ2
V

)︂
− 3µ3

Y + 3µ3
Y − µ3

Y

}︂/︂
σ3

Y

=
{︂
E
(︂
Y 3
)︂

− 3µY σ2
Z + 3µY µV 2 − µ3

Y

}︂/︂
σ3

Y since σ2
V = µV 2

=
{︂
E
(︂
Y 3
)︂

− 3µZσ2
Z + 3µZµV 2 − µ3

Z

}︂/︂
σ3

Y . since µY = µZ (4.2)

We tackle the term E
(︁
Y 3)︁ in Equation (4.2) by expanding Y = Z + V :
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E
(︂
Y 3
)︂

= E
(︂
(Z + V )3

)︂
= E

(︂
Z3 + 3Z2V + 3ZV 2 + V 3

)︂
= E

(︂
Z3
)︂

+ 3E
(︂
Z2V

)︂
+ 3E

(︂
ZV 2

)︂
+ E

(︂
V 3
)︂

(4.3)

For each of the terms E
(︁
Z3)︁, E

(︁
Z2V

)︁
and E

(︁
ZV 2)︁ of Equation (4.3), we use

Equation (3.10) of the GMA:

E
(︂
Z3
)︂

= E(Z · Z ·Z) = 3 · Cov(Z, Z)·E(Z)

= 3µZσ2
Z (4.4)

E
(︂
Z2V

)︂
= E(Z ·Z ·V )

= Cov(Z, Z)·E(V ) + Cov(Z, V )·E(Z) + Cov(Z, V )·E(Z)

= 0 (4.5)

E
(︂
ZV 2

)︂
= E(Z ·V ·V )

= 2·Cov(Z, V )·E(V ) + Cov(V, V )·E(Z)

= σ2
V µZ

= µZµV 2 . (4.6)

We replace Equation (4.4), Equation (4.5) and Equation (4.6) into Equation (4.3) to

obtain

E
(︂
Y 3
)︂

= 3µZσ2
Z + 3µZµV 2 + µV 3 , (4.7)

where we write E
(︁
V 3)︁ ≡ µV 3 . We can then replace once more Equation (4.7) into

Equation (4.2) and get
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Skew(Y ) =
{︂
E
(︂
Y 3
)︂

− 3µZσ2
Z + 3µZµV 2 − µ3

Z

}︂/︂
σ3

Y since µY = µZ

=
{︂

3µZσ2
Z + 3µZµV 2 + µV 3 − 3µZσ2

Z + 3µZµV 2 − µ3
Z

}︂/︂
σ3

Y

= µV 3 − µ3
Z

σ3
Y

. (4.8)

From Equation (4.8), we see that in order to get the skewness of Y , we need µZ ≡

E
(︂
Z(0)

)︂
provided by TAGI, σ2

Y provided by AGVI and finally E
(︁
V 3)︁. The following section

provides the framework to obtain the prior and posterior information of V 3.

4.2 Approximate Gaussian Skewness Inference (AGSI)

Here, we formally state and develop what we name the Approximate Gaussian Skewness

Inference (AGSI) procedure, which is the key step in merging BNNs to EVT. We remark

that the AGSI framework is closely related to the AGVI procedure described in Section 3.3.1,

since AGVI is still needed to obtain inference on V 3 through the relationship between V 3

and V 2.

We split the AGSI procedure into two main steps, the first step being obtaining the prior

distribution of V 3 and the second step being the posterior inference of V 3 given observed

data Y = y, which is equivalent to the inference of Skew(Y ) by means of Equation (4.8).

4.2.1 Prior Distribution of V 3

From Equation (4.8), we see that the skewness of Y depends on µZ(0) , σ2
Y and µV 3 . The

expected value of Z(0) and the modelling of σ2
Y = σ2

Z(0) + σ2
V are handled respectively by

TAGI and the AGVI procedure described in Section 3.2 and Section 3.3.1.

In a similar way to how AGVI begins its development, the AGSI method begins by

modelling V 3 as a Gaussian distribution,

V 3 ∼ Gaussian
(︂
µV 3 , σ2

V 3

)︂
. (4.9)
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We can write the variance of V 3 as

Var
(︂
V 3
)︂

= E
(︂
V 6
)︂

−
(︂
E
(︂
V 3
)︂)︂2

= 15 · σ6
V

= 15 ·
(︂
σ2

V

)︂3

= 15 · µ3
V 2 ,

where we use the fact that

E
(︂
Xk
)︂

=
k∑︂

i=0
kCi µiσk−iE

(︂
Zk−i

)︂
(4.10)

for X ∼ Gaussian
(︁
µ, σ2)︁, which is proved in Appendix B.1. Here we use Equation (4.10)

with µ = µV = 0 and σ = σV . As such, we can write the distribution of V 3 in terms of µV 3

and µV 2 :

V 3
⃓⃓⃓
µV 2 , µV 3 ∼ Gaussian

(︂
µV 3 , 15µ3

V 2

)︂
. (4.11)

To maintain analytical tractability, we assume that both hyperarameters µV 2 and µV 3

follow a Gaussian random variable with their respective means and variances. That is,

we describe the means µV 2 and µV 3 with random variables that take the form µV 2 ≡

V 2 ∼ Gaussian
(︂
µ

V 2 , σ2
V 2

)︂
and µV 3 ≡ V 3 ∼ Gaussian

(︂
µ

V 3 , σ2
V 3

)︂
. We can thus re-write

Equation (4.11) as

V 3
⃓⃓⃓
v2, v3 ∼ Gaussian

(︃
v3, 15

(︂
v2
)︂3
)︃

. (4.12)

To better understand how the variables V 2, V 3, V 2 and V 3 are related, Figure 4.1

graphically presents the relationships between each random variable.

Figure 4.1 is very similar to Figure 3.6 from Section 3.3.1, where here we add another

branch for V 3. The only other notable difference is the link from V 2 to V 3, which stems

from Equation (4.12). We still obtain the prior distribution of V through V 2, described by

Equation (3.23).
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µ
V 2

σ2
V 2

µ
V 3

σ2
V 3

V 2

V 3

V 2

V 3

V

Figure 4.1: Relationship between V 2, V 2, V 3, V 3 and V .

The authors Deka et al. (2024) use the GMA to obtain prior mean and variance for V 2

µV 2 = µ
V 2 , (4.13)

σ2
V 2 = 3σ2

V 2 + 2µ2
V 2 . (4.14)

Given Equation (4.12), we represent the random variables V 2, V 3 and V 3 as

V 2 = µ
V 2 + σ

V 2 ·ζ, ζ ∼ Gaussian(0, 1)

V 3 = V 3 +
√

15 V 2
3/2 ·ϵ, ϵ ∼ Gaussian(0, 1) (4.15)

V 3 = µ
V 3 + σ

V 3 ·ν, ν ∼ Gaussian(0, 1)

where each ζ, ϵ and ν are standard Gaussian random variables. We can then use the

GMA to obtain the moments of V 3.

E
(︂
V 3
)︂

= E
(︃

V 3 +
√

15 V 2
3/2 ·ϵ

)︃
= E

(︂
V 3
)︂

+
√

15 · E
(︃

V 2
3/2 ·ϵ

)︃
= E

(︂
V 3
)︂

= µ
V 3 , (4.16)
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where we use the independence of V 2
3/2 and ϵ to get E

(︃
V 2

3/2 ·ϵ
)︃

= 0. Next,

Var
(︂
V 3
)︂

= Var
(︃

V 3 +
√

15 V 2
3/2 ·ϵ

)︃
= Var

(︂
V 3
)︂

+ 15Var
(︃

V 2
3/2 · ϵ

)︃
= σ2

V 3 + 15
[︄
E
(︂
V 23 · ϵ2

)︂
−
(︃
E
(︃

V 2
3/2
)︃

· E(ϵ)
)︃2
]︄

= σ2
V 3 + 15·E

(︂
V 23 · ϵ2

)︂
(4.17)

= σ2
V 3 + 15

[︂
E
(︂
V 2
)︂

· E
(︂
ϵ2
)︂

+ Cov
(︂
V 23

, ϵ2
)︂]︂

(4.18)

= σ2
V 3 + 15E

(︂
V 23)︂

, (4.19)

where we first use the GMA to treat V 23 and ϵ2 as Gaussian distributions, and then use

GMA Equation (3.7) to obtain

Cov
(︂
V 23

, ϵ · ϵ
)︂

= Cov
(︂
V 23

, ϵ
)︂

· E(ϵ) + Cov
(︂
V 23

, ϵ
)︂

· E(ϵ)

= 0.

To calculate the second term E
(︂
V 23)︂ in Equation (4.19), we once again use the GMA

assumption where we assume that V 22 is Gaussian and that V 23 = V 22 ·V 2 is also Gaussian

E
(︂
V 23)︂ = E

(︂
V 22 · V 2

)︂
= E

(︂
V 22)︂ · E

(︂
V 2
)︂

+ Cov
(︂
V 22

, V 2
)︂

(4.20)

=
(︂
µ2

V 2 + σ2
V 2

)︂
µ

V 2 + Cov
(︂
V 22

, V 2
)︂

=
(︂
µ2

V 2 + σ2
V 2

)︂
µ

V 2

+
[︂
Cov

(︂
V 2, V 2

)︂
· E
(︂
V 2
)︂

+ Cov
(︂
V 2, V 2

)︂
· E
(︂
V 2
)︂]︂

(4.21)

=
(︂
µ2

V 2 + σ2
V 2

)︂
+ 2σ2

V 2µ
V 2

= µ3
V 2 + 3σ2

V 2µ
V 2 . (4.22)

Combining Equation (4.19) and Equation (4.22) we obtain
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Var
(︂
V 3
)︂

= σ2
V 3 + 15 · E

(︂
V 23)︂

= σ2
V 3 + 15

[︂
µ3

V 2 + 3σ2
V 2µ

V 2

]︂
= σ2

V 3 + 15µ3
V 2 + 45 σ2

V 2 µ
V 2 . (4.23)

As such, the prior moments of V 3 are given by Equation (4.16) and Equation (4.23):

µV 3 = µ
V 3 , (4.24)

σ2
V 3 = σ2

V 3 + 15µ3
V 2 + 45 σ2

V 2 µ
V 2 . (4.25)

To have the moments of V 3 depend on the covariates, we use the bayesian feedforward

neural network setup of Section 3.1 with a three-noded output layer, comprised of Z(0) that

models the expected response, V 2 and V 3. In this setup, each output node has its own

parameter: Z(0) has parameter Θ(L), V 2 has its associated parameter Θ(L)
V 2 and V 3 has its

associated parameter Θ(L)
V 3 . Graphically, the AGSI procedure is presented in Figure 4.2,

where it can be viewed as an extention of Figure 3.7 of the AGVI method where we add a

third branch to accomodate for V 3. Recall that V 2 must be positive and as such is activated

using an exponential activation function given by Equation (3.26) to Equation (3.28). On

the other hand, V 3 is not restricted to being positive and as such any valid activation

function can be used.

x Z(1) · · · Z(L)

Z(0)

V 2

V 3

V2

V3

V

y

Θ(∅) Θ(1) Θ(L−1)

Θ(L)

Θ(L)

V 3

Θ(L)

V 2

Figure 4.2: Graphical Representation of Forward Propagation with the AGSI Methodology
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4.2.2 Posterior Distribution of V 3

Once forward propagation is complete, we obtain the posterior distribution of V 3 and V 3

alongside the posterior of V 2 and V 2. The final output of the forward propagation, as can

be seen in Figure 4.2, is the vector h =
{︂

Z(0), V
}︂⊺

. Given the Gaussian assumption, we

can obtain the posterior h|y with Equation (3.13) and Equation (3.14) and get

µH|y = µH + ΣHY

σ2
Y

(y − µY ) ,

ΣH|y = ΣH − ΣHY · Σ⊺
HY

σ2
Y

.

(4.26)

We can then use Equation (4.26) to first get V |y, and then the posterior for both V 2

and V 3. Deka et al. (2024) obtain posterior parameters for V 2 given by

µV 2|y = µ2
V |y + σ2

V |y,

σ2
V 2|y = 2

(︂
σ2

V |y

)︂2
+ 4σ2

V |y ·µ2
V |y,

(4.27)

and then posterior moments of V 2:

µ
V 2|y = µ

V 2 + kV 2

(︂
µV 2|y − µV 2

)︂
,

σ2
V 2|y = σ2

V 2 + k2
V 2

(︂
σ2

V 2|y − σ2
V 2

)︂
,

(4.28)

where kV 2 = σ2
V 2/σ2

V 2 . We now develop the analogous versions of Equation (4.27) and

Equation (4.28) for V 3 and V 3. We start by considering the joint posterior distribution of

V 3, V 3:

V 3, V 3
⃓⃓⃓
y ∼ MVN

(︂
µ

V 3,V 3 ,Σ
V 3,V 3

)︂
, (4.29)
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with Σ
V 3,V 3 in Equation (4.29) given by

Σ
V 3,V 3 =

⎛⎜⎝ σ2
V 3 Cov

(︂
V 3, V 3

)︂
Cov

(︂
V 3, V 3

)︂
σ2

V 3

⎞⎟⎠ =

⎛⎜⎝σ2
V 3 σ2

V 3

σ2
V 3 σ2

V 3

⎞⎟⎠ ,

where we calculate

Cov
(︂
V 3, V 3

)︂
= Cov

(︃
V 3, V 3 +

√
15 V 2

3/2 ·ϵ
)︃

= σ2
V 3 +

√
15
[︃
Cov

(︃
V 3, V 2

3/2
)︃
E(ϵ) + Cov

(︂
V 3, ϵ

)︂
E
(︃

V 2
3/2

ϵ

)︃]︃
= σ2

V 3 +
√

15
[︃
Cov

(︃
V 3, V 2

3/2
)︃

·0 + 0·E
(︃

V 2
3/2

ϵ

)︃]︃
= σ2

V 3 .

Next, we obtain µV 3|y and σ2
V 3|y using Equation (4.10):

µV 3|y = µ3
V |y + 3µV |y ·σ2

V |y,

σ2
V 3|y = 15

(︂
σ2

V |y

)︂3
+ 36µ2

V |y

(︂
σ2

V |y

)︂2
+ 9µ4

V |yσ2
V |y.

(4.30)

Then, given the properties of conditional Gaussian random variables, that is

Equation (3.13) and Equation (3.14), we get the distribution for V 3
⃓⃓
V 3, Y to be

V 3
⃓⃓⃓
V 3, Y ∼ Gaussian

(︂
µ

V 3|V 3 , σ2
V 3|V 3

)︂
,

with

µ
V 3|V 3 = µ

V 3 +
σ2

V 3

σ2
V 3

(︂
v3 − µV 3

)︂
= µ

V 3 + kV 3

(︂
v3 − µV 3

)︂
,

σ2
V 3|V 3 = σ2

V 3 −
σ2

V 3

σ2
V 3

· σ2
V 3

= σ2
V 3 − k2

V 3 ·σ2
V 3 ,

(4.31)
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where kV 3 = σ2
V 3/σ2

V 3 . To obtain V 3
⃓⃓
Y , we first note that we can write

f
(︂
v3, v3, y

)︂
= f

(︂
v3, y

)︂
· f
(︂
v3|v3, y

)︂
= f

(︂
v3|y

)︂
· f (y) · f

(︂
v3|v3, y

)︂
=⇒ f

(︂
v3, v3|y

)︂
= f

(︂
v3|y

)︂
· f
(︂
v3|v3, y

)︂
,

so that we can marginalise v3 to get

f
(︂
v3|y

)︂
=
∫︂

f
(︂
v3|y

)︂
· f
(︂
v3|v3, y

)︂
dv3.

Thus, using the Gaussian properties with a random mean and constant variance, the

posterior moments for V 3 are given as

µ
V 3|y = E

(︂
µ

V 3 + kV 3

(︂
v3 − µV 3

)︂)︂
= µ

V 3 + kV 3

(︂
µV 3|y − µV 3

)︂
,

(4.32)

σ2
V 3|y = σ2

V 3 − k2
V 3σ2

V 3 + k2
V 3 ·Var

(︂
V 3⃓⃓y)︂

= σ2
V 3 + k2

V 3

(︂
σ2

V 3|y − σ2
V 3

)︂
.

(4.33)

We summarise the inference step in the AGSI method graphically in Figure 4.3. The

first step is to obtain the posterior of Z(0) and V from Equation (4.26), which is represented

by the red lines. We then obtain the posterior distribution of V 2|y and V 3|y with

Equation (4.27) and Equation (4.30), represented in blue. We lastly obtain the posterior

for V 2 and V 3 through means of Equation (4.28), Equation (4.32) and Equation (4.33),

which is shown in green.

Once the AGSI procedure is complete, inference on the rest of the network parameters

Θ is done exactly as outlined in Section 3.2.1. The combination of TAGI and AGSI lets us

perform analytical inference of the network parameters as well as obtaining heteroscedastic

information on the observation error V , by capturing its second and third moments. The
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· · ·

Z(0)

V 2

V 3

V 2

V 3

V

y

Z(0)|y

V 2|y V 2|y

V |y

V 3|y V 3|y

Figure 4.3: Graphical Representation of Posterior Inference for AGSI

blend of TAGI and AGSI together is formally referred to as TAGI-Skewness, or more simply

put TAGI-S.

4.3 Inference of GEV parameters

In this section we create the bridge that connects EVT to the TAGI-S BNN by describing

how we use the output of TAGI-S to obtain parameter estimates Λ̂ of the GEV distribution.

In broad terms, to go from the output of TAGI-S to Λ, we first denormalise the predicted

response and then use the method of moments to calculate Λ̂.

The framework of TAGI-S, like the TAGI and TAGI-V frameworks, expects us to provide

normalised data and will also output normalised values. Thus, assuming an observed data

set Dobs with responses Yobs = {Y1, Y2, · · · , Yn}⊺ with mean µYobs ≡ µY and standard

deviatin σYobs ≡ σY, TAGI-S expects to be trained with the normalised responses Y∗
obs =

{Y ∗
1 , Y ∗

2 , . . . , Y ∗
n }⊺ consisting of elements

Y ∗
i = Yi − µY

σY
(4.34)

for i ∈ {1, 2, . . . , n}. Then, given any provided input, TAGI-S will output the first three

moments of the predicted value Ŷ
∗, namely E

(︂
Ŷ

∗)︂, Var
(︂
Y ∗̂
)︂

and Skew
(︂
Ŷ

∗)︂. To go from
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Ŷ
∗ to Ŷ , from Equation (4.34) we write Y = Y ∗ ·σY + µY. Then we can denormalise as

follows:

E
(︂
Ŷ
)︂

= E
(︂
Ŷ

∗)︂ · σY + µY, (4.35)

Var
(︂
Ŷ
)︂

= Var
(︂
Y ∗̂ · σY + µY

)︂
= σ2

Y ·Var
(︂
Y ∗̂
)︂

, (4.36)

Skew
(︂
Ŷ
)︂

= E
(︄[︃

Y − µY
σY

]︃3
)︄

= E

⎛⎝[︄Y ∗̂ ·σY + µY − µY
σY

]︄3
⎞⎠

= E
(︃(︂

Ŷ
∗)︂3
)︃

= Skew
(︂
Y ∗̂
)︂

. (4.37)

As we can see from Equation (4.37), skewness does not change when denormalising.

Once we have the first three moments, we can use the method of moments described in

Section 2.3.1 to obtain Λ̂(TAGI-S) =
{︃

µ̂(TAGI-S), σ̂(TAGI-S), ξ̂
(TAGI-S)

}︃
. For the remainder of

this section, we drop the “TAGI-S” upperscript for better readability and write Λ̂(TAGI-S)
≡

Λ̂. We first obtain ξ̂ through Equation (2.13) by numerically solving

Skew
(︂
Ŷ
)︂

= sgn(ξ)· g3 − 3g2g1 + 2g3
1(︁

g2 − g2
1
)︁3/2

, (4.38)

then get σ̂ through solving Equation (2.12),

Var
(︂
Ŷ
)︂

=
(︂
g2 − g2

1

)︂ σ2

ξ̂
2 , (4.39)

and finally obtain µ̂ through solving Equation (2.11):

E
(︂
Ŷ
)︂

= µ + σ̂

ξ̂
(g1 − 1) , (4.40)

where we recall that gk = Γ (1 − k ·ξ) for k ∈ N.

We thus now have a link between the output of our BNN and the parameter estimation
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of the GEV distribution.

4.4 Numerical Examples

We now consider some numerical applications of TAGI-S in which we obtain estimates of

various simulated GEV distributions. First, in Section 4.4.1 we showcase how TAGI-S can

estimate the parameters the GEV distribution. Then in Section 4.4.2 we demonstrate how

TAGI-S is able to detect changes in parameter values as a function of input. These examples

are of relevance not only to highlight TAGI-S in action, but also give insight as to how we

apply TAGI-S later in Section 5.3.

In each of the following examples, we assume the same network context. From the

generated data set, we randomly take 70% of the data for training and 20% for validation,

by which we form our observation data set Dobs = {Dfit, Dval}. We take 10% for our test set

Dtest. We train TAGI-S with Dobs using one layer (L = 1) consisting of 100 nodes (A = 100)

and ReLu activation function. To determine the network parameters and the number of

epochs, we use Algorithm 1 with difference parameter δ = 0.005 and patience parameter

η = 10, meaning that we will stop running new epochs when we get ten consecutive epochs

without at least a 0.005 improvement in validation log-likelihood.

4.4.1 First Example

In this first example, we simulate values from a GEV distribution (see Equation (2.10)) with

parameters µ = 50, σ = 1 and ξ = −0.10. We run the same exercise for a simulated data set

of a thousand values in Section 4.4.1.1 and a hundred simulated values in Section 4.4.1.2.

4.4.1.1 First Simulation

We simulate a thousand random values with the specified parameters µ = 50, σ = 1, ξ =

−0.10 in Figure 4.4 within the normalised domain [−1.729, 1.729]. Thus, we use 700 data

points for training, 200 for validation and 100 for testing.
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Figure 4.4: 1,000 Random Realisation of a GEV Distributon with µ = 50, σ = 1 and
ξ = −0.10.

Training TAGI-S on Dobs leads to five epochs used. With the network trained, from the

test set Dtest with a given value x ∈ [−1.729, 1.729] and predicted value ŷ, we denormalise

according to Equation (4.35), Equation (4.36) and Equation (4.37) to then obtain its

associated GEV parameters, which we denote Λ̂(TAGI-S) =
{︃

µ̂(TAGI-S), σ̂(TAGI-S), ξ̂
(TAGI-S)

}︃
,

by means of Equation (4.40), Equation (4.39) and Equation (4.38). Since we simulate from

a GEV distribution with constant parameter values, we expect Λ̂ to be close to Λ for every

test value.

In Figure 4.5 we plot the values of ŷi and Λ̂(TAGI-S)
i for each test value with i = 1, . . . , 100.

In Figure 4.5a, Figure 4.5b and Figure 4.5c, the dashed lines represent the true parameter

values, that is µ = 50, σ = 1 and ξ = −0.10 respectively. Figure 4.5d presents the predicted

values of the test set with the simulated data in gray.
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(a) Test Set µ̂(TAGI-S) Values (b) Test Set σ̂(TAGI-S) Values (c) Test Set ξ̂
(TAGI-S)

Values

(d) Predicted Output
with Dobs in gray

Figure 4.5: 1,000 Simulated GEV values with Λ = {50, 1, −0.10} with Λ̂(TAGI-S) and
Predicted Outputs

We also record the Mean-Squared Error (MSE) of Λ with the test set,

MSE = E
(︄[︃

Λ̂(TAGI-S)
i − Λi

]︃2
)︄

,

in Table 4.1, where we can effectively see that TAGI-S is able to recognise the correct GEV

distribution parameters.

µ σ ξ

0.00287 0.0022 0.0006

Table 4.1: MSE of Test Values for First TAGI-S Example (First Simulation)
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4.4.1.2 Second Simulation

We next consider the exact same simulation as Section 4.4.1.1, this time with n = 100

simulated values instead of a thousand. Using Algorithm 1 leads to the use of 19 epochs,

which is 14 more epochs compared to five epochs needed in the previous example. This

makes sense given the fact that since there is much less data than before, it takes more

epochs to learn the embedded pattern. We show the corresponding verison of Figure 4.5 in

Figure 4.6.

(a) Test Set µ̂(TAGI-S) Values (b) Test Set σ̂(TAGI-S) Values (c) Test Set ξ̂
(TAGI-S)

Values

(d) Simulated Data (e) Test Set Predicted Output

Figure 4.6: 100 Simulated GEV values with Λ = {50, 1, −0.10} with Λ̂(TAGI-S) and Predicted
Outputs

We also provide the MSE values of the test set in Table 4.2.

As expected, we see that given the smaller data set of a hundred simulated data, TAGI-S

performs less well than its counterpart with a thousand simulated data. We however still

see that TAGI-S is still able to adequately capture the true GEV parameters.
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µ σ ξ

0.07137 0.00920 0.0049

Table 4.2: MSE of Test Values for First TAGI-S Example (Second Simulation)

4.4.2 Second Example

In this second example, we simulate GEV values in which the parameters are allowed to

change with respect to the input. That is, we consider Λ(x) = {µ(x), σ(x), ξ(x)}. The

objective is to evaluate how well TAGI-S can infer non-constant parameters. Here, we take

Λ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

µ(x) = 50 + x,

σ(x) = 2 + 0.6x,

ξ(x) = −0.10

for x ∈ [−1.729, 1.729]. We simulate 500 data points Y(x) ∼ GEV (Λ(x)) and plot the

simulated data in Figure 4.7. The observation set Dobs consists of 350 training values Dfit,

100 validation points Dval and 50 test points Dtest.

Figure 4.7: 500 Random Realisation of a GEV Distributon with µ = µ(x), σ = σ(x) and
ξ = −0.10.

We see in Figure 4.7 that early values of Y (x) clearly do not follow the same trend as

later values of Y (x). As such, instead of trying to fit one fixed set of parameters Λ̂ for all

inputs, being able to dynamically adapt to the data and infer non-constant GEV parameters
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Λ̂(x) as a function of the inputs is of great benefit.

Applying TAGI-S to the above data set according to the methodology described in

Section 4.4 leads to the following predicted outputs (from the test set):

Figure 4.8: Predicted Values of the Test Set

In Figure 4.9 we plot the values of µ̂(TAGI-S) and σ̂(TAGI-S), where the dashed lines

represent the functions µ(x) = 50 + x and σ(x) = 2 + 0.6x respectively.

(a) Test Set µ̂(TAGI-S) Values (b) Test Set σ̂(TAGI-S) Values

Figure 4.9: Λ̂(TAGI-S) and Expected Outputs of Simulated GEV Values

The test set MSE values for Λ̂(TAGI-S) are given in Table 4.3. We also add the MSE

values when running the example with only n = 100 simulated data instead of n = 500.

From Table 4.3, we see that TAGI-S is able to infer dynamic values of Λ. We do notice
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n µ σ ξ

500 0.0096 0.0327 0.0233
100 0.2029 0.1430 0.0429

Table 4.3: MSE of Test Values for Second TAGI-S Example

that the quality of the modelling decreases when the number of available data decreases,

which is to be expected when working with neural networks.

For the sake of argument, if we assume that the data set of Figure 4.7 represents annual

maximal rainfall data for a given location across multiple years t, we see from Figure 4.9

that the parameter estimates obtained with TAGI-S are different at different times, that is

Λ̂(TAGI-S)
t1 ̸= Λ̂(TAGI-S)

t2 for t1 ̸= t2, since for example σ̂(t1) will de different from σ̂(t2).

Using a standard appoximation technique (maximum likelihood, method of moments,

etc.) would lead to a fix set of parameters Λ̂ for the whole data set, which would likely lead

to erronous GEV parameters. As such, the above example showcases a distinct advantage

of using TAGI-S: the parameter estimates Λ̂(TAGI-S)
t can adapt to the variable nature of the

GEV parameter for a given year t.

In Appendix B.2, we consider more unorthodox forms of Λ(x) and evaluate how TAGI-S

performs.
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Chapter 5

Application: Spatial Interpolation

In the previous chapter, we showed how TAGI-S can be applied to infer the parameters of

a GEV distribution. The aim of this chapter is to apply TAGI-S to interpolate the GEV

parameters Λ over a given surface S.

In Section 5.1 we show how to perform spatial interpolation of GEV parameters with

TAGI-S. Then, in Section 5.2 we show how TAGI-S performs on various simulated data

sets. In Section 5.3 we consider annual maximal rainfall data in Eastern Canada, spatially

interpolate with TAGI-S alongside two other methods and compare the goodness-of-fit of

all methods across the interpolation region.

5.1 Spatial Interpolation with TAGI-S

In the following, let S be the total surface considered, with a set of nobs observed locations

{s1, s2, . . . , snobs}. To perform interpolation on the surface S, we propose to feed the

entire set of observed values from each of the nobs locations along with the spatial location

(lattitude, longitude) and other possible covariates. The training of TAGI-S then follows as

in previous chapters, where we feed to TAGI-S an observation data set Dobs = {Dfit, Dval}

of size nobs consisting of nfit training values Dfit = {Xfit, Yfit} and nval validation values

Dval = {Xval, Yval} of covariates and responses that span across all known locations of the

surface S. We set no prior assumption on the relationship between the stations and let

TAGI-S infer itself how each station is related.
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To help illustrate how we perform interpolation, assume that we have nfit locations

s1, . . . , snfit with N data entries each, with longitude and lattitude coordinates longsi
latsi

respectively, for i ∈ {1, 2, . . . , nfit}. For each station si, denote by y(i,j) the j-th observed

value.

Then, the training set Dfit for TAGI-S will be the matrices

Xfit =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

long1 lat1

long1 lat1
...

...

long1 lat1

long2 lat2
...

...

longn latn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Yfit =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(1,1)

y(1,2)
...

y(1,N)

y(2,1)
...

y(n,N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and we likewise conisder Dval = {Xval, Yval} for a given number nval of validation

stations. We train TAGI-S with TAGI-S (Dobs). Once the network has been trained, we can

input any valid input X̂ for the covariate and obtain the predicted output Ŷ = TAGI-S
(︂
X̂
)︂
.

Additionally, we note that TAGI-S can be fed with any number of covariates: we are

not restricted to only input longitude and lattitude to the network to perform spatial

interpolation. As such, if another covariate is believed to be of potential use, we can

simply add said covariate to TAGI-S.

5.2 Simulations

For each of the simulation cases presented here, we consider a surface S = [−1, 1] × [−1, 1]

upon which we randomly generate 50 stations with coordinates si = (xsi , ysi) for n ∈

{1, 2, . . . , 50}. We take the x coordinates to be the longitude (long) and the y coordinates

to be lattitude (lat) in Equation (5.14). We then simulate values from different GEV

distributions at each of the stations. We feed the simulated values with their coordinates

to TAGI-S for training.

To measure the performance of predictions, we take two sets of stations; an observation
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set for training and a testing set, which we denote with the indexes Iobs and Itest respectively.

Out of the 50 stations, we take nobs = 40 stations for training and ntest = 10 for testing.

To measure the goodness-of-fit, we will calculate the 95th quantile at each validation

station s ∈ Itest and compare its value to the 95th quantile value that is calculated

with the true GEV parameter values Λs of that location. Since the choice of

training/validation stations can influence the performance metrics, we run 100 combinations

of training/validation sets and aggregate the goodness-of-fit metrics, which we now present.

For testing station s ∈ Itest, we denote qs the true 95th quantile and q̃s its interpolated

value. We set to measure how different qs and q̃s are. To do so, we use the Root Mean

Squared Error (RMSE) and Mean Absolute Error (MAE):

RMSE =
⌜⃓⃓⎷ 1

ntest

∑︂
i∈Itest

(︁
qsi − q̃si

)︁2
, (5.1)

MAE = 1
ntest

∑︂
i∈Itest

⃓⃓
qsi − q̃si

⃓⃓
. (5.2)

Next, To compare the performance of TAGI-S, we use two known interpolation methods,

namely the Inverse Weighted Distance (IDW) and Polynomial Regression methods.

The IDW interpolation technique, which stems from Burrough (1986), is a simple and

frequently used method. The rationale behind the IDW method is that a given point to

be estimated is influenced the most by nearby points. As such, each observed location

available is attributed a weight that is inversely proportional to the distance of the point

to be interpolated.

For a location s ∈ S that is not part of the observed locations {s1, s2, . . . , sn}, we denote

by dsi the euclidean distance (based on longitude and lattitude) between the interpolating

station si and interpolated station s, dsi =
√︂

(xs − xsi)
2 + (ys − ysi)

2.

Then, denoting φ to be any one of GEV parameter values Λ,1 for φ ∈ Λ the interpolated

value φ̃(s) is given by
1That is, φ can be either the location parameter µ, scale parameter σ or the shape parameter ξ.
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φ̃(s) =
n∑︂

i=1
wi · φ(si), (5.3)

with weights defined as

wi =
d−1

si∑︁n
i=1 d−1

si

.

As such, for a given location s we obtain µ̃(s), σ̃(s) and ξ̃(s) by applying Equation (5.3)

three times; once for each parameter.

The second method, Polynomial Regression, assumes that each parameter φ ∈ Λ is

linear with respect to the coordinates of the location. More precisely, we model any one of

the GEV interpolated parameter as

φ̃(s) = β̃0 + β̃1 ·xs + β̃2 ·ys + β̃3 ·xιx
s · yιy

s , (5.4)

where xιx
s ·yιy

s is the interaction term of degrees ιx and ιy. The values of β̃i, i ∈ {0, 1, 2, 3},

are obtained through Ordinary Least Squares estimation (Rencher and Christensen (2012)).

For each interpolated φ̃ ∈ Λ̃, we consider all possible interactions up to degree three (ιx, ιy ∈

{0, 1, 2, 3}) and choose the model with the best AIC criterion (Akaike (1974)) to perform

interpolation.

Thus, we compare TAGI-S to IDW and Polynomial Regression by means of

Equation (5.1) and Equation (5.2). Since the choice of training/validation stations can

impact the goodness-of-fit values, we choose 100 random combinations of fitting/validation

stations and aggregate the RMSE and MAE scores obtained.

5.2.1 First Simulation

For the first simulation, we consider 50 randomly generated stations in the surface S =

[−1, 1] × [−1, 1]. We generate GEV distributions which respect the following parameter
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function: for s = (xs, ys) ∈ S we let s ≡ (xs, ys) ∼ GEV (Λ(s)) with

Λ(s) ≡ Λ(xs, ys) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ(xs, ys) =

⎧⎪⎪⎨⎪⎪⎩
60, xs, ys < 0

45 o.w.

σ(xs, ys) = 1.5

ξ(xs, ys) = 0.20.

That is, all stations that are in the lower left quadrant have location parameter µ = 60

and all other stations have location parameter µ = 45. The 95th quantile qsi for each of

the fifty stations si are graphed in Figure 5.1.

Figure 5.1: 95th Quantiles for the 50 Simulated Stations (First Simulation)

For each of the 50 stations, we generate ngen = 100 random values of its respective GEV

distribution. We randomly select 80% of the stations (nobs = 40 stations) for fitting and 20%

(ntest = 10 stations) for testing. We then feed TAGI-S all of the nobs ·ngen = 40·100 = 4, 000

observation GEV values with the x and y coordinate of each observed station. Within the

the observed 4, 000 points fed to TAGI-S, we take 70% of these points for fitting purposes

and 30% for validation. Thus, we let TAGI-S not only learn Λ(s) for the fitting stations

s ∈ Iobs, but also interpolate for any coordinate (xs, ys) ∈ S.

With the known values of Λ at each fitting station we perform the IDW and Regression

procedures described by Equation (5.3) and Equation (5.4) respectively. We note that these

methods take the values of Λs for granted at each known station s; they do not need to be
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inferred as with TAGI-S.

We repeat this process a hundred times and record the median (md.) and standard

deviation (std.) values of the RMSE and MAE values in Table 5.1.

TAGI-S IDW Regression

RMSE md. 2.45 4.88 4.13
std. (0.98) (1.00) (0.91)

MAE md. 2.02 3.77 3.18
std. (0.72) (0.75) (0.77)

Table 5.1: Error Measures of Testing Stations for the First Simulation

We also uniformly choose 2, 500 points in S and apply interpolation according to each

of the three methods and calculate the 95th quantile at each interpolation point. We then

build the following quantile maps in Figure 5.2. We overlay the points of Figure 5.1 for an

easy graphical reference and plot the true quantile map in Figure 5.2d.

(a) TAGI-S (b) IDW

(c) Regression (d) True Quantile

Figure 5.2: Calculated 95th Quantile Maps for First Simulation

By looking at Table 5.1 with the additional visual representation of Figure 5.2, we see

that out of the three methods, TAGI-S is best able to detect the cluster in the lower-left

quadrant. The IDW method in the lower-left quadrant is influenced too heavily by other
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stations, and the regression method forces a linear trend in the data.

5.2.2 Second Simulation

For the second simulation, we again consider 50 random locations. We let each location

s ∈ S follow GEV distributions that decrease in mean as we get further away from the

origin (0, 0). That is, we let s ∼ GEV (Λ(s)) with

Λ(s) ≡ Λ (xs, ys) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

µ(xs, ys) = 60 − 10|xs| − 10|ys|,

σ(xs, ys) = 2,

ξ(xs, ys) = −0.10,

(5.5)

for xs, ys ∈ [−1, 1].

We plot the simulated stations and their 95th quantiles in Figure 5.3. As we can see, the

higher quantile values are located in the center of the graph with maximal quantile value

63.63. The further we stray away from (0, 0), the lower the 95th quantiles become. The

smallest quantile value is 46.51.

Figure 5.3: 95th Quantiles for the 50 Simulated Stations (Simulation Two)

As per the previous simulation of Section 5.2.1, for each of the 50 locations s we randomly

generate ngen = 100 values from the related GEV distribution with parameters Λ(s) defined

in Equation (5.5). We choose nfit = 40 stations for fitting and ntest = 10 for testing and
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calulcate the RMSE and MAE values. We perform this 100 times and report the aggregated

error measures in Table 5.2.

TAGI-S IDW Regression

RMSE md. 1.52 3.60 2.88
std. (0.28) (0.80) (0.57)

MAE md. 0.82 3.04 2.51
std. (0.51) (0.73) (0.46)

Table 5.2: Error Measures of Testing Stations for the Second Simulation

We also plot the 95th quantile map for each method in Figure 5.4, where we consider

2,500 uniformly distributed points in [−1, 1] × [−1, 1]. We overlay the generated quantile

points of Figure 5.3 as well for visual reference and depict the true quantile map in

Figure 5.4d.

(a) TAGI-S (b) IDW

(c) Regression (d) True Quantile

Figure 5.4: 95th Quantile Maps for Second Simulation

From Table 5.2, we see that TAGI-S performs the best, followed by the Polynomial

Regression model and then the IDW method. Looking at Figure 5.4, we see that the

regression models creates a smooth/linear map, whereas TAGI-S seems to be more flexible

in how it interpolates over the surface.
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Thus, we can conclude that TAGI-S is adequately able to interpolate GEV parameters

across a given surface for the given parameter setups Λ(s) we considered.

5.3 Spatial Interpolation in Eastern Canada

In this chapter, we model the joint distribution of annual maximal rainfall of 197

considered stations across the Canadian provinces of Ontario, Quebec, New Brunswick,

Nova Scotia, Newfoundland and Prince Edward Island through spatial interpolation with

various methods.

In Section 5.3.1 we present the dataset and the processing manipulations applied to

it. Then, in Section 5.3.2, we present how we model extreme precipiation with TAGI-S

and other methods used for comparison. In Section 5.3.3 we apply TAGI-S to each station

individually to obtain GEV parameter estimates at each station. Then, in Section 5.3.4

we interpolate the GEV parameters across Eastern Canada using TAGI-S and two other

methods. We present the results in Section 5.3.5.

5.3.1 Dataset

The raw dataset consists of yearly annual maximal rainfall data, measured in millimeters

(mm), collected at 334 different stations across the eastern part of Canada spanning the

years 1905 to 2017. The data is provided publicly by Canada (2019). The 334 stations

cover longitudes −94.23 to −52.54 and lattitudes 41.57 to 61.30. The available information

at each station s consists of the longitude (longs), lattitude (lats), altitude (alts) and

yearly maximal rainfall which we denote y(s,t), where t represents the year. We also include

the 75% quantile precipiations at each station, which we denote Q75s.

We desire to focus on stations that are of actuarial interest, that is the ones that present

prominent risk exposure. As such, we narrow down the original 334 stations to the 197

stations that are covered by the longitude range [−79.23, −54.57] and the lattitude range

[43.71, 50.24]. These stations are plotted in Figure 5.5, labeled by the abbreviations for the

name of each province: NB for New Brunswick, NL for Newfoundland, NS for Nova Scotia,

ON for Ontario, PE for Prince Edward Island and QC for Quebec.
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Figure 5.5: 197 Considered Stations in Eastern Canada

In Figure 5.6, we showcase for each year (1905 to 2017) the number of stations with

available data. The dashed line represents the reference point of 197 stations, from which

we can see that no station has data points for every year and face the issue of having an

incomplete data set. In Section 5.3.2 we will use data augmentation to remedy this issue

and be able to consider full data series.

Figure 5.6: Number of Stations with Data per Year

With further analysis, we observe that for the years 1905 to 1952, only eight stations

provide observed data, two of which contain no data point for years after 1953. The Quebec
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station has available data from years 1914 to 1943 and the Saint John station contains

years 1924 to 19502. The Ottawa Cda Rcs station has 6 points before 1953 and 50 after,

Halifax has 12 data points before 1953 and 34 after, Moncton has 6 before 1953 and 43 after,

Kingston Pumping Station has 17 points before 1953 and 46 after, La Cave has 1 point

before 1953 and 9 after, and finally Montreal Pierre Elliot Trudeau Intl. airport

station has 10 points before and 51 after 1953.

To minimise the number of pseudo observations we will have to generate in Section 5.3.2,

we remove the Quebec and Saint John stations and truncate the other six stations by

removing data observed prior to 1953; we remove all data from years 1905 to 1952. This

creates an official data set of 195 stations with 65 years spanning from 1953 to 2017.

After this data processing, we are left with the following number of stations per province,

shown in Table 5.3.

Province NB NL NS ON PE QC

Number of Stations 12 8 12 29 3 131

Table 5.3: Number of Stations Per Province

Before explaining the methodology, we lastly note that since the data is presented in

yearly maximal blocks, the block maxima approach is a clear choice for the estimation of

extremes in this situation.

5.3.2 Methodology

In this section, we first cover some notation then tackle the methodologies used to model

the maximal annual rainfall across the considered region. We apply TAGI-S to each station

individually in Section 5.3.3, then proceed to describe all the interpolation methods used

in Section 5.3.4. We present the results of the spatial interpolation in Section 5.3.5.

As discussed in the previous section, the original dataset is not complete; for any given

station there are multiple years that do not have data entries. To have a concordant data

set and to be able to interpret the results we obtain across the region of interest, we employ
2We note that there are secondary stations named “Quebec” and “Saint John” that contain valid data

post-1953 and which presumably replace these stations.
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data-augmentation.

For a given station si ∈ {1, 2, . . . , n} for n = 195 and year t ∈ {1, 2, . . . , T} with T = 65,

we let

ysi =
{︂

y(si,1), y(si,2), . . . , y(si,T )
}︂⊺

be the time series of annual maximal rainfall. The entirety of the data set can be writen as

a n × T matrix

Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

y(s1,1) y(s1,2) · · · y(s1,T )

y(s2,1) y(s2,2) · · · y(s2,T )
...

... . . . ...

y(sn,1) y(sn,2) · · · y(sn,T )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where the entry y(si,t) is the annual maximal rainfall of station i at time t, for

i ∈ {1, 2, . . . , n} and t ∈ {1, 2, . . . , T}. Given the incompleteness of our dataset, multiple

elements of Y are empty.

We propose to fill the missing years of a given station si by using the L-moments

described in Section 2.3.2. Since we have a low amount of observed data for many stations

(see Figure 5.6), the use of L-moments is adequate given its efficiency for parameter

estimation with small sample sizes (Hosking and Wallis (1997)). Thus, for every station

si, we use the available data points in ysi to obtain the L-moments estimator for the GEV

parameters Λ̂(LM)
si

, as given by Equation (2.24).

Given the L-moments estimate of a station Λ̂(LM)
si

, we build pseudo observations for

the missing years using the quantile function Equation (2.14) with Λ̂(LM)
si

and obtain the

data augmented vector y∗
si

(we denote Y∗ the data augmented matrix version of Y). This

provides us with a complete data set that we can now work on.

5.3.3 Estimation of Marginal Stations

With the data-augmented dataset, we can use TAGI-S exactly as described in Section 4.4

and obtain GEV parameter estimates for a given station si, which we denote Λ̂(TAGI-S)
si

.

We refer to the present method as the pointwise TAGI-S method, since we estimate GEV
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parameters for each station individually. We will use pointwise TAGI-S as a lower bound

for the error metrics in Section 5.3.4.

To run pointwise TAGI-S, we can specifiy any legitimate network setting that we want

(number of layers L, nodes per layer A, activation function ϕ(·), etc.) Here, we consider

the same network setup for each station, in which we take two layers (L = 2) of 100 nodes

each (A = 100) with tanh activation function ϕ(·) = tanh(·), patience criteria η = 10 and

difference parameters δ = 0.005 (see Algorithm 1). At each station, we take 80% of the

data to train and the rest to validate.

To measure the performance of TAGI-S, for each station we compare the predicted

quantiles from TAGI-S to the empirical quantiles of the data-augmented station at multiple

levels. For M = 30, we let pm = m − 0.5/M for m ∈ {1, 2, . . . , M} be the associated

probability. Let q
(m)
si be the (1 − pm) empirical quantile of station i and q̂(m)

si
its predicted

value according to the output of the neural network. We collect the Root Mean Squared

Error (RMSE), Mean Absolute Error (MAE) and Bias, defined as follows:

RMSE =

⌜⃓⃓⎷ 1
n·M

n∑︂
i=1

M∑︂
m=1

(︂
q

(m)
si − q̂(m)

si

)︂2
, (5.6)

MAE = 1
n·M

n∑︂
i=1

M∑︂
m=1

⃓⃓⃓
q(m)

si
− q̂(m)

si

⃓⃓⃓
, (5.7)

Bias = 1
n·M

n∑︂
i=1

M∑︂
m=1

q(m)
si

− q̂(m)
si

. (5.8)

We thus obtain the median (md.) and standard deviation (std.) of the aggregated error

measures for the 195 stations in Table 5.4.

RMSE MAE Bias

md. 3.25 2.29 -0.13
std. (0.83) (0.52) (0.14)

Table 5.4: Goodness-of-Fit Measure for Pointwise TAGI-S

Next, we plot the number of epochs and validation likelihood value for each of the 195

stations in Figure 5.7 that we obtain by running pointwise TAGI-S. The average number of

epochs is 7.99, with smallest epoch number being 2, the highest 22, and average validation
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log-likelihood of −1.402.

(a) Number of Considered
Epochs at Each Station

(b) Optimal Likelihood
Value at Each Station

Figure 5.7: Epochs and Likelihood Values for Each Station

Next, in Figure 5.8 we plot the obtained parameter estimates Λ̂(TAGI-S)
si

for each station

si along with the predicted 95th quantile. We record an average location value of µ̂(TAGI-S) =

46.62, average scale value σ̂(TAGI-S) = 14.13 and average shape value ξ̂
(TAGI-S) = −0.076.

We notice that the values of ξ̂
(TAGI-S), although for the majority being negative, do have a

certain discrepancy present. The average predicted 95th quantile is 85.24.

Although pointwise TAGI-S is not an interpolation method, it is still of interest as it

represents the lower bound of the error we can obtain when doing spatial interpolation with

TAGI-S in Section 5.3.4. That is, assuming perfect spatial modelling across the interpolation

surface with TAGI-S, it is impossible to obtain better measures of errors than the ones in

Table 5.4.

5.3.4 Spatial Interpolation

Now, we turn our attention to spatial interpolation with TAGI-S and how it performs

compared to other known methods. Given the 195 stations, our objective is to model the

GEV parameters Λ(s) given a location s. The methods that we will consider are Pointwise

L-moments (Pointwise LM), Polynomial Regression, a modified version of IDW and TAGI-

S. Before describing each method, we first define how we will measure performance.

The notation used here will be very similar to the notation of Section 5.2. Assume any

of the previously named models is being used. Out of the 195 total stations, we use 80%
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(a) µ̂(TAGI-S) Values at Each Station (b) σ̂(TAGI-S) Values at Each Station

(c) ξ̂
(TAGI-S)

Values at Each Station (d) Predicted 95th
Quantile at Each Station

Figure 5.8: Λ̂(TAGI-S)
si

Estimates and Expected Outputs for Each Station

(nobs = 156) stations for training and the remaining 20% (ntest = 39) stations for testing.

The variables Iobs, nobs, Itest and ntest are used to denote in order the set of observation

stations, the number of observation stations, the set of testing stations and finally the

number of stations used for testing.

We perform error measurement on both the training and testing set. Let

q
(1)
si , q

(2)
si , . . . , q

(M)
si be the M = 30 empirical quantiles associated at location si, with

associated probability

pm = m − 0.5
M

.

Let q̃
(M)
si be the interpolated (1 − pm) quantile at location si. Next, we write n∗ = nobs

when analysing training stations or n∗ = ntest when dealing with the testing stations, and

I∗ to be either Iobs or Itest likewise. We then consider the three following goodness-of-fit

measures, which are analogous to Equation (5.6), Equation (5.7) and Equation (5.8) used

earlier.
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RMSE =

⌜⃓⃓⎷ 1
n∗ ·M

∑︂
si∈I∗

M∑︂
m=1

(︂
q

(m)
i − q̃

(m)
i

)︂2
, (5.9)

MAE = 1
n∗ ·M

∑︂
si∈I∗

M∑︂
m=1

⃓⃓⃓
q

(m)
i − q̃

(m)
i

⃓⃓⃓
, (5.10)

Bias = 1
n∗ ·M

∑︂
si∈I∗

M∑︂
m=1

q
(m)
i − q̃

(m)
i . (5.11)

Since the choice of fitting/testing stations can influence the measures above, we will

consider 100 randomly chosen combinations of Iobs and Itest and aggregate the RMSE,

MAE and Bias scores.

To better understand the influence of additional information on the results that we

obtain, we shall consider two sets of covariates that will be used with each of the

proposed methods. The first set of covariates consists of the longitude (long), lattitude

(lat) and altitude (alt) of each station. The second set of covariates will also include

longitude, lattitude and altitude, but with and an additional covariate being the 75%

quantile of precipitation, which we denote Q75. Thus, each method will be applied to

both {long, lat, alt} and {long, lat, alt, Q75}. We will be able to see if the addition of

Q75 brings meaningful improvements to predictions or not.

Pointwise LM. The first method we use is in fact quite simple. In describing the data

augmentation procedure in Section 5.3.2, we use the L-moments estimates Λ̂(LM)
si

for each

station si. We can thus measure how well the L-moments fit the data by comparing the

empirical quantiles of each station with the ones driven by the L-moments, where the

predicted quantiles are obtained directly through Equation (2.14) by using parameters Λ̂(LM)
si

at each station. We refer to this as the pointwise LM model, as the predictions stem from

these said L-moments.

Like the pointwise TAGI-S method, the pointwise LM method is not a spatial

interpolation method. Since the interpolation frameworks that follow (Regression, IDW)

stem from the augmented dataset built with the L-moments, the pointwise LM model

represents the lower bound of the errors we obtain: the Regression and IDW methods will
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never record better goodness-of-fit scores. The pointwise LM framework is thus used as a

benchmark for other models instead of a direct comparison method with TAGI-S.

Polynomial Regression. The second method, and the first with which we will concretely

compare TAGI-S interpolation with, is the Polynomial Regression (or just Regression)

model. Recalling the notation from Section 5.2, we let φ denote either one of µ, σ or

ξ. For a location s, we model the interpolated parmater φ̃(s) as

φ̃(s) = β̃0 +
r∑︂

i=1
β̃i · x(r)

s , (5.12)

where x
(r)
s are the r covariates we described earlier (lat, long, lat and Q75 when

applicable). This modelling follows a classical regression setting without the error term that

is usually included. For any of the two sets of covariates, we take all possible combinations

between the specific covariates with highest degree of interaction of three. We then select

the model with the best AIC value as the model to be used for interpolation.

IDW. The third method used is a modified version of the Inverse Distance Weighted

method presented in Section 5.2, which adds a gradient correction (Nalder and Wein (1998)).

Using this modification permits us to include other covariates that are not longitude and

lattitude. The IDW technique provides good results when there are many points disitributed

uniformly across the interpolating surface. However, if the surface is too large with not

enough observations, the smoothing will be taken to too far of an extreme and remove local

variations. On the flip side, too small a surface will produce closely similar interpolated

values with little to no gain in information (Burrough and McDonnell (1998)).

Denoting by x
(1)
s , . . . , x

(r)
s the r recorded covariates for each station s, the interpolated

parameter φ̃(s) is defined as

φ̃(s) =
n∑︂

i=1
wsi

[︂
φ̂(si) + β1

(︂
x(1)

s − x(1)
si

)︂
+ · · · + βr

(︂
x(r)

s − x(r)
si

)︂]︂
, (5.13)

where φ̂(si) is the L-moments estimate of φ at station si and where

wsi =
d−1

si∑︁n
i=1 d−1

si

,
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with dsi being the euclidean distance between the interpolated station s with the

interpolating station si. We still keep the general philosophy of IDW by which we give

more importance to stations that are nearby, but add additional information (alt, Q75) to

the interpolation procedure. The values of β1, . . . , βr in Equation (5.13) are obtained by

minimizing the quantity
n∑︂

i=1
(φ̂(si) − φ̃(s−i))2 ,

where φ̃(s−i) is the interpolated value of φ at si when it is not considered in Equation (5.13).

In our context, when working with the set of three covariates {long, lat, alt} we will

write Equation (5.13) as

φ̃(s) =
n∑︂

i=1
wsi [φ̂(si) + βalt (alts − altsi)]

and when working with {long, lat, alt, Q75} we will write Equation (5.13) as

φ̃(s) =
n∑︂

i=1
wsi [φ̂(si) + βalt (alts − altsi) + βQ75 (Q75s − Q75si

)] .

TAGI-S. Finally, to interpolate at a station s with TAGI-S, the methodology is the same

as in Section 5.2, where we also include the altitude and 75th quantile when applicable.

As such, we will train TAGI-S by feeding the entirity of the training stations’ covariates.

Assuming the usage of the second set of covariates, we feed to TAGI-S the matrices of

covariates and data-augmented maximal rainfall data

Xobs =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

longs1 lats1 alts1 Q75s1

...
...

...
...

longs1 lats1 alts1 Q75s1

longs2 lats2 alts2 Q75s2

...
...

...
...

longsnobs
latsnobs

altsnobs
Q75snobs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and Yobs =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y∗
(s1,1)

y∗
(s1,2)

...

y∗
(s1,65)

y∗
(s2,1)

...

y∗
(snobs ,65)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.14)
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to obtain the trained network TAGI-S(Dobs), where Dobs = {Xobs, Yobs}3. Then, for a

given location s that we desire to interpolate, we provide {longs, lats, alts, Q75s} to the

trained network to obtain the interpolated set of parameters Λ̃(s) =
{︂

µ̃(s), σ̃(s), ξ̃(s)
}︂

. We

note that unlike the other methods, where we need to repeat the given procedure three

times (once for µ, σ and ξ), TAGI-S will directly give us the interpolated set of parameters.

The pointwise TAGI-S method shown in Section 5.3.3 represent the “best case” scenario

when interpolating across the whole surface with TAGI-S, in which we are able to exactly

recuperate each marginal parameter set Λ̂(TAGI-S)
si

obtained by considering each station

individually instead of all stations together. Thus, both the pointwise LM method and

pointwise TAGI-S methods present lower bounds of errors for each interpolation method

(pointwise LM bounds the regression and IDW methods, pointwse TAGI-S bounds the

TAGI-S method).

5.3.5 Results

We now present the results of applying the described methodologies. In Table 5.5, we show

the median (md.) and standard deviation (std.) of the aggregated goodness-of-fit scores

Equation (5.9), Equation (5.10) and Equation (5.11) for the models that consider the first

set of covarites {long, lat, alt}. In Table 5.6 we present the analogous performance metrics

using the second set of covariates, with Q75 added. The pointwise methods are seperated

since they represent the lower bound of errors we can obtain: pointwise TAGI-S bounds the

TAGI-S models and pointwise LM bounds the Regression and IDW methods.

We provide boxplots for each of the RMSE, MAE and Bias metrics of Table 5.5 and

Table 5.6 in Figure 5.9, Figure 5.10 and Figure 5.11 respectively. Each model is represented

by a distinct color (red for TAGI-S, blue for Regression and purple for IDW). The lighter

tone is used when modelling with three covarites and a darker tone is used when considering

four covariates.

From Table 5.5 and Table 5.6, we immediately notice that adding Q75 increases

performance overall. The best training scores come from the IDW method, which is expected
3Withing the nobs stations fed to TAGI-S for training, we use 70% of data points for training and 30%

for validation.
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Pointwise Training Testing
Metric TAGI-S LM TAGI-S Reg IDW TAGI-S Reg IDW

RMSE md. 3.25 3.37 10.14 9.43 6.23 10.72 10.55 10.20
std. (0.83) (0.20) (1.05) (0.30) (0.25) (1.29) (4.70) (1.44)

MAE md. 2.29 2.24 6.50 5.74 2.69 6.84 6.77 6.49
std. (0.52) (0.04) (0.75) (0.17) (0.05) (0.89) (1.14) (0.79)

Bias md. -0.13 0.18 0.49 0.67 0.12 0.60 0.04 0.49
std. (0.14) (0.03) (0.52) (0.07) (0.08) (1.59) (1.40) (1.30)

Table 5.5: Goodness-of-Fit Measures of Models With Three Covariates long, lat and alt
for 100 Combinations of Fitting/Testing Stations

Pointwise Training Testing
Metric TAGI-S LM TAGI-S Reg IDW TAGI-S Reg IDW

RMSE md. 3.25 3.37 7.94 6.92 6.27 8.76 9.22 9.15
std. (0.83) (0.20) (1.06) (0.31) (0.25) (1.14) (4.10) (1.29)

MAE md. 2.29 2.24 4.98 3.79 2.70 5.64 5.92 5.90
std. (0.52) (0.04) (0.73) (0.10) (0.05) (0.81) (0.99) (0.65)

Bias md. -0.13 0.18 0.41 0.50 0.12 0.55 0.51 0.62
std. (0.14) (0.03) (0.49) (0.08) (0.08) (1.21) (1.26) (1.27)

Table 5.6: Goodness-of-Fit Measures of Models With Four Covariates long, lat, alt and
Q75 for 100 Combinations of Fitting/Testing Stations

since it is an exact interpolation method (that is, it φ̃(si) = φ̂(si)) up to the gradient

correction. We observe fitting errors since we add the gradient correction (comparing

Equation (5.3) and Equation (5.13)). For testing stations, we see that when considering

three covariates, IDW performs the best overall. When looking at models with Q75 added,

TAGI-S performs the best and presents the lowest RMSE variance. Additionally, TAGI-S

is the most stable across fitting and testing scores, as the Regression and IDW models show

quick deterioration with respect to goodness-of-fit scores when going from fitting to testing

data sets.
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(a) Fitting RMSE (b) Testing RMSE

Figure 5.9: RMSE Measures of All Considered Models

(a) Fitting MAE (b) Testing MAE

Figure 5.10: MAE Measures of All Considered Models

(a) Fitting Bias (b) Testing Bias

Figure 5.11: Bias Measures of All Considered Models
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Chapter 6

Conclusion

This thesis shows how BNNs can be effectively integrated with EVT. We built an extension

of the TAGI neural network to be able to obtain the first three moments of a predicted

value, with which we were able to obtain the parameters of the GEV distribution. We then

applied our developped framework to successfully model and interpolate extreme rainfall in

Eastern Canada, obtaining better performance than the comparing methodologies.

An advantage of the methodology developped here is the fact that it is data-driven.

Indeed, TAGI-S is able to discern nonlinear trends (see Section 5.2) purely from the data

itself, without any imposed assumption. Another advantage is the ease with which we can

add/remove covariates to the network: the model is very flexible in terms of considered

covariates.

Furthermore, this thesis highlights the importance of high-quality data and the need

for continuous improvement in data collection. The GEV distribution being derived from

an asymptotic assumption, compounded with the fact that neural networks desire large

amounts of data, presents a downside to the present methodology. Having to use data

augmentation to build complete time series not only affects the marginal estimation of

parameters but also how the joint modelling occurs.

It is evident that advancements in meteorological data collection technologies will

undoubtedly enhance the performance of such models in the future. Had the data set

available been complete and with more available years, no data augmentation would have

been needed, TAGI-S would have more data per station to perform inference and the issues
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raised in the previous paragraph would be greatly diminished.

With regards to possible extensions to the present work, a promising future path is the

addition of other covariates to modelling with TAGI-S. For example, an ongoing possibility

we are currently studying is the inclusion of a time component in TAGI-S. As such, being

able to include time could permit us to extend spatial interpolations of Section 5.1 to

spatiotemporal interpolation.

Another possible area of interest is with the estimation the parameters of the GPD of

Equation (2.17). We can describe the distribution in terms of a location, scale and shape

parameter. From there, we can follow the same setup as was done for estimating the GEV

distribution: obtain the first thee moments with TAGI-S and use the method of moments

to obtain the distribution parameters.

By the same line of reasoning, one is not constrained to keep TAGI-S to the branch

of EVT. Theoretically, any distribution which has its first three moments defined can be

estimated using TAGI-S. This drastically opens the horizons of how and where TAGI-S can

be applied.
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Appendix A

Feedforward Neural Network
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Figure A.1: Expanded Graphical Representation of the Feedforward Neural Network

The above expanded representation can also be written in a compact version,

x A(1) · · · A(L) Z(0) yΘ(∅) Θ(1) Θ(L−1) Θ(L)

Figure A.2: Compact Graphical Representation of the Feedforward Neural Network
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Appendix B

TAGI-S

B.1 Recursive Formula for Moments of the Gaussian

Distribution

Let X ∼ Gaussian
(︁
µ, σ2)︁. Here we show that for k ∈ N,

E
(︂
Xk
)︂

=
k∑︂

i=0
kCi µiσk−iE

(︂
Zk−i

)︂
, (B.1)

where nCk = n!
/︂

(n − k)!k! and Z ∼ Gaussian(0, 1).

First, we show that

E
(︂
Zk
)︂

= 0, k odd (B.2)

E
(︂
Zk
)︂

= (k − 1)!!, k even (B.3)

where

n!! =
⌈n/2⌉−1∏︂

k=0
(n − 2k) = n · (n − 2) · (n − 4) . . .

and 1!! = 1.

We note that we have E(Z) = 0 and E
(︁
Z2)︁ = 1. Then, we use Stein’s Lemma (see Stein

(1981)), which states that for a Gaussian distribution X with mean µ and variance σ2 along
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with a differentiable function g, we have that

E(g(X) (X − µ)) = σ2 · E
(︁
g′(X)

)︁
. (B.4)

Taking a standard normal variable with µ = 0 and σ2 = 1, along with the function

g(x) = xk for k ∈ N, we can re-write Equation (B.4) as

E
(︂
Zk+1

)︂
= k · E

(︂
Zk−1

)︂
. (B.5)

For example, E
(︁
Z3)︁ = 2 · E(Z) 0 and E

(︁
Z4)︁ = 3 · E

(︁
Z2)︁ = 3. It is then apparent from

Equation (B.5) that any odd moment of Z will be zero. For k being even, induction shows

that E
(︂
Zk
)︂

= (k − 1)!!. For the base case (k = 2), E
(︁
Z2)︁ = 1!! = 1. If we assume that

E
(︂
Zk
)︂

= (k − 1)!!, then we use Stein’s lemma Equation (B.4)) to obtain

E
(︂
Zk+2

)︂
= (k + 1) · E

(︂
Zk
)︂

= (k + 1) · (k − 1)!!

= (k + 1) · (k − 1) · (k − 3) · · ·

= (k + 1)!!.

Thus, Equation (B.2) and Equation (B.3) are proved.

Next, we can write X in terms of standard normal variables as X = µ + σ · Z, where

X ∼ Gaussian
(︁
µ, σ2)︁ and Z ∼ Gaussian(0, 1). We can then use the Binomial Theorem to

write for k ∈ N:

E
(︂
Xk
)︂

= E
(︂
(µ + σZ)k

)︂
= E

(︄
k∑︂

i=0
kCi µi (σZ)k−i

)︄

=
k∑︂

i=0
kCi µiσk−iE

(︂
Zk−i

)︂
.

As such, Equation (B.1) with Equation (B.2) and Equation (B.3) let us calculate the

moments of powers of the the Gaussian distribution.
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As an example, if we take V ∼ Gaussian
(︁
0, σ2

V

)︁
, we can calculate E

(︁
V 6)︁ as

E
(︂
V 6
)︂

=
6∑︂

i=0
6Ci µiσ6−iE

(︂
Z6−i

)︂
= 6C0 σ6

V · E
(︂
Z6
)︂

+ 6C2 µ2
V σ4

V · E
(︂
Z4
)︂

+ 6C4 µ4
V σ2

V · E
(︂
Z2
)︂

+ 6C4 µ6
V since odd moments of Z are null

= 6C0 σ6
V · E

(︂
Z6
)︂

since µV = 0

= 1 ·
(︂
σ2

V

)︂3
· 5!! from Equation (B.3)

= 15 ·
(︂
σ2

V

)︂3
.

B.2 More Numerical Examples

We consider more unusual formulations of Λ(x), in the sense that in the context of the

modelling of extreme rainfall, one would not expect Λ(x) to follow the functions we shall

now consider.

B.2.1 Third Example

We first take Λ(x) to be defined as

Λ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

µ(x) = 50,

σ(x) = x + 2,

ξ(x) = −0.10

for x ∈ [−1.729, 1.729]. The n = 500 simulated data is plotted in the left panel

(Figure B.1a) and the predicted output in the right panel (Figure B.1b), where we see

that the increase in scale parameter as the input values increase is not a realistic situation

with respect to rainfall data. We note that we follow the same methodology as explained

in Section 4.4 when running TAGI-S.
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(a) Simulated Values (b) Predicted Values

Figure B.1: Λ̂(TAGI-S) and Expected Outputs of Simulated GEV Values

We register MSE values of µ, σ, ξ in Table B.1.

µ σ ξ

0.0163 0.0257 0.0363

Table B.1: MSE of Test Values (First Additional TAGI-S Example)

B.2.2 Fourth Example

We also run TAGI-S on simulated where Λ(x) is given as:

Λ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

µ(x) = 50 = 0.9x3,

σ(x) = x + 2,

ξ(x) = −0.10

for x ∈ [−1.729, 1.729]. As we can see in Figure B.2, this data set is clearly not realistic

(in terms of what one would expect when modelling extreme rainfall). We evaluate how

well TAGI-S can infer non-linear patterns in this given context.

92



Figure B.2: 500 Random Realisation of a GEV Distributon with µ = µ(x), σ = σ(x) and
ξ = −0.10.

Running TAGI-S with 14 epochs leads to the following test set values of Ŷ , µ̂ and

σ̂ in Figure B.31. The dashed lines in Figure B.3b and Figure B.3c are the functions

µ(x) = 50 = 0.9x3 and σ(x) = 2 + x respectively.

(a) Test Set Ŷ Values (b) Test Set µ̂(TAGI-S) Values (c) Test Set σ̂(TAGI-S) Values

Figure B.3: Predicted Ŷ , µ̂(TAGI-S) and σ̂(TAGI-S) Values for the Test Set

The MSE values are provided in Table B.2.

µ σ ξ

0.0842 0.0627 0.0499

Table B.2: MSE of Test Values (Second Additional TAGI-S Example)
1We omit the plot of ξ̂ since it is constant and we use the MSE to evaluate the quality of the predicted

shape parameter.
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The examples here highlight a key strength of TAGI-S: how it can dynamically adapt

to extreme data trends. Although the data sets of Figure B.1a and Figure B.2 are very

unorthodox situations and are not very realistic scenarios one would expect to see happen

in the context of rainfall precipitation, we see how TAGI-S adapts to such extreme data

sets.
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