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Abstract

Personalized Class Incremental Context-Aware Food Classification for Food Intake

Monitoring

Hassan Kazemi Tehrani

Accurate food intake monitoring is essential for maintaining a healthy diet and preventing

nutrition-related diseases. Traditional food classification models struggle with the diverse range of

foods across cultures and the continuous introduction of new food types due to relying on fixed-sized

datasets. Moreover, studies show that people consume only a small range of foods across the exist-

ing ones. These limitations necessitate the model to adapt itself as new classes appear. Additionally,

the model needs to pay more attention to certain food classes. While existing class-incremental

models have low accuracy for the new classes and lack personalization, this work introduces a

personalized, class-incremental food classification model designed to address these challenges and

enhance food intake monitoring systems. Our approach dynamically adapts to new real-world food

classes, maintaining accuracy for both new and existing classes through personalization. The model

prioritizes foods based on individuals eating habits by considering meal frequencies, times, and lo-

cations. We employ a modified dynamic support network (DSN), the personalized dynamic support

network (PDSN), to handle new food classes and propose a comprehensive framework integrat-

ing this model into a food intake monitoring system. The system analyzes meal images, estimates

food weight with a smart scale, calculates macro-nutrient content, and creates a dietary profile via a

mobile app. Experimental evaluations on the personalized datasets FOOD101-Personal and VIPER-

FoodNet-Personal (VFN-Personal) demonstrate the model’s effectiveness in improving classifica-

tion accuracy, addressing the limitations of conventional and class-incremental food classification

models.
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Chapter 1

Introduction

This chapter provides the necessary background information to understand the concept and

importance of food intake monitoring and personalized food image classification.

1.1 Motivation

In recent years, maintaining a healthy diet to improve the quality of life has become increas-

ingly important. Accurate estimation of daily nutritional intake is crucial for maintaining a healthy

lifestyle and preventing nutrition-related diseases such as diabetes and heart disease. This practice

can help control weight and boost both physical and mental health. New technologies and tools,

such as wearable devices, have enabled food intake monitoring systems to track dietary habits,

analyze nutritional information, and recommend dietary advice [1].

With the advent of smartphones and mobile technologies, individuals frequently take pictures

of their meals and snacks, leading to an increase in the number of food images and a growing

demand for food image classification systems [2]. Food image classification, a subcategory of image

classification, uses computer vision to categorize or label food images based on their contents [3].

Existing works have shown remarkable outcomes on fixed-sized datasets [4, 5, 6, 7, 8], However, in

multicultural urban settings where food diversity is at its peak, these models often struggle to adapt

to new food categories not present in their fixed training datasets.
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Consequently, there is a pressing need for models that can dynamically adapt and incorpo-

rate new food items continuously, a process referred to as class-incremental learning [9]. Class-

incremental learning models, which learn new classes without forgetting previous ones, provide a

viable solution to address the drawbacks of conventional methods. However, while state-of-the-art

methods achieve good overall accuracy, their performance on incremental classes is noticeably low

[10]. This limitation hinders precise dietary monitoring, especially when user-specific food classes

appear incrementally.

To address these challenges, we propose a novel personalized class-incremental food classifica-

tion model, a modified version of dynamic support network (DSN) [11], that enhances the adaptabil-

ity and accuracy of food intake monitoring systems. By integrating contextual factors such as meal

times, locations, and specific eating habits, our model aims to achieve universal accuracy across di-

verse dietary preferences. This personalized approach improves the classification accuracy of both

new and existing food items, enhancing the applicability of the system in real-world scenarios.

1.2 Objectives

The primary objective of this thesis is to develop a personalized class-incremental food classi-

fication model that efficiently learns new food classes while retaining high accuracy for previously

learned classes. The model aims to dynamically adapt to the introduction of new food items, ad-

dressing the limitations of static models that struggle with food diversity in multicultural settings.

By focusing on personalization, the model will cater to individual dietary habits and preferences,

thereby improving the overall accuracy and relevance of food intake monitoring systems.

Another key objective is to design a robust framework that integrates the proposed person-

alized class-incremental model as its core component. This framework will leverage advanced

computer vision and machine learning techniques to accurately track dietary habits, analyze nu-

tritional information, and provide personalized dietary recommendations. The framework aims to

be user-friendly, accessible, and capable of operating in real-world scenarios, ensuring practical

applicability and ease of use for end-users.

Finally, this work aims to conduct a thorough evaluation of the proposed model using new
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benchmark datasets, FOOD101-Personal and VIPER-FoodNet-Personal (VFN-Personal) [12]. The

evaluation will involve comparing the performance of the proposed model with existing baseline

models in terms of classification accuracy, adaptability, and personalization. By demonstrating the

effectiveness of the proposed model, this objective aims to establish its superiority and practical

utility in real-world food classification tasks.

1.3 Contribution

The main contributions of this work can be summarized as follows:

Design and Development of a Novel Personalized Class-Incremental Food Classifica-

tion Model

This thesis proposes a groundbreaking personalized class-incremental food classification model

that effectively addresses the limitations of existing methods. The model is designed to achieve

high accuracy for both existing and new food classes, dynamically adapting to the continuous intro-

duction of new food items while maintaining robust performance on previously learned classes by

leveraging personalization.

Design and Implementation of a Comprehensive Food Intake Monitoring Framework

We design and implement a comprehensive framework for food intake monitoring systems that

integrates the proposed personalized model. This framework leverages advanced machine learn-

ing and computer vision techniques to provide accurate, dynamic, and personalized monitoring of

dietary habits. The key contributions in this framework include the implementation of our person-

alized class incremental food image classifier, a smart scale for precise weight measurement, the

development of a user-friendly mobile application that serves as the interface for capturing meal

images and receiving dietary recommendations, and the integration of the system with a compre-

hensive nutrient database to ensure accurate nutritional analysis. These components work together

to enhance the overall user experience, making the framework a valuable tool for effective health

and nutrition management.
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Extensive Evaluation on New Benchmark Datasets

The proposed model is rigorously evaluated and compared with existing baseline models using

new benchmark datasets, FOOD101-Personal and VFN-Personal. The contribution includes the im-

plementation of baseline models, which are then integrated with our personalized class-incremental

method. We evaluated these integrated models using new benchmark datasets. This evaluation

highlights the superior performance of our method in classification accuracy, adaptability, and per-

sonalization, demonstrating its effectiveness and practical utility in real-world food classification

tasks.

It is worth mentioning that this work has resulted in the publication of the below research paper:

• Tehrani et al. ºPersonalized Class Incremental Context-Aware Food Classification for Food

Intake Monitoring Systemsº (2024)

1.4 Thesis Structure

The content of the thesis is organized as follows:

Chapter 2 presents the literature review, covering various aspects of food image classification,

class incremental classification, and personalized food classification. This chapter lays the founda-

tion by discussing the existing research and methodologies relevant to these topics.

Chapter 3 details the food intake monitoring system. This includes a comprehensive explana-

tion of the personalized food intake monitoring framework, the integration and functionality of the

personalizer plug-in, and the concept and implementation of the personalized dynamic support net-

work. The mathematical models and algorithms introduced in this work are also elaborated in this

chapter.

Chapter 4 addresses the implementation and experimental setup. This section describes the

datasets used, baseline models, and specific implementation details. The challenges encountered

during development are discussed, along with the tools and programming frameworks employed.

Chapter 5 evaluates the performance of the proposed methods through experimental results.

It includes improvements observed with the personalized plug-in, enhancements over the original

4



dynamic support network, and insights from the ablation study. This chapter analyzes the test

results, providing explanations for the observed performance, whether it leads to outperformance or

underperformance.

Chapter 6 concludes the thesis, summarizing the contributions of this work and discussing po-

tential future research directions to further improve the proposed system’s performance.
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Chapter 2

Literature Review

2.1 Food Image Classification

The increase in available food datasets has further advanced the field of food image classifi-

cation. Identifying food types directly from images is highly valuable for a range of food-related

applications [13]. According to [14], several traditional machine learning methods are capable of

classifying food images such as support vector machines (SVM) [15], k-nearest neighbors (KNN)

[16], multiple kernel learning (MKL) [17], and random forests [18]. These traditional methods use

handcrafted features including color, texture and scale-invariant feature transform [19]. Several pa-

pers have explored these techniques in the context of food image classification, each contributing

unique perspectives and advancements.

In [20], researchers introduced the first visual dataset of fast foods, comprising a total of 4,545

still images, 606 stereo pairs, 303 videos captured using a 360° camera for structure-from-motion

applications, and 27 privacy-preserving videos documenting eating events of volunteers. This work

was motivated by the need to enhance fast food recognition for dietary assessment. The data col-

lection involved obtaining three instances of 101 different food items from 11 popular fast-food

chains and capturing images and videos in both restaurant conditions and controlled lab settings.

To evaluate the dataset, the researchers employed two standard approaches: color histograms and

bag of SIFT (Scale-Invariant Feature Transform) features, combined with an SVM classifier. These

benchmarking methods were designed to stimulate further research in the area by providing a robust
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starting point for evaluating recognition systems. The dataset, along with the benchmarks, has been

made freely available to the research community, encouraging collaboration and innovation. This

contribution is expected to drive advancements in the accuracy and efficiency of fast food recogni-

tion technologies, ultimately aiding in dietary assessment.

The proposed system in [21] utilizes the MKL method to integrate various image features such

as color, texture, and SIFT. MKL is particularly advantageous as it allows for the estimation of op-

timal weights to combine these image features adaptively for each food category. This adaptability

is crucial because the most effective features for recognizing different foods can vary significantly.

For example, color might be a critical feature for identifying ºpotage,º while texture could be more

relevant for recognizing ºhamburger.º A prototype system implementing this method was developed

to recognize food images captured by cellular phone cameras. The system achieved a 61.34% clas-

sification rate for 50 kinds of foods in experimental evaluations. Notably, when considering the top

three candidate categories in terms of the output values of the 1-vs-rest classifiers, the classification

rate increased to 80.05%. This result demonstrates the system’s potential for practical application.

The integration of various image features using MKL represents a significant advancement in food

image recognition, building on previous progress in generic object recognition. By applying MKL

to food image recognition, [21] effectively bridged the gap between machine learning techniques

and practical dietary assessment tools.

Another significant advancement is proposed in [22], where the authors introduce a new repre-

sentation of food items that leverages the spatial relationships between different ingredients. This

approach addresses the inherent difficulty in food recognition due to the deformable nature of food

items and their significant variations in appearance. The proposed method calculates pairwise statis-

tics between local features computed over a soft pixel-level segmentation of the image into eight

ingredient types. These statistics are accumulated in a multi-dimensional histogram, which serves as

a feature vector for an SVM classifier. This innovative representation significantly improves the ac-

curacy of food recognition compared to existing methods. The research is driven by the observation

that a food item can largely be characterized by its ingredients and their relative spatial relation-

ships. For example, a sandwich might consist of a layer of meat between slices of bread, while a
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salad comprises various greens with a diverse spatial layout. Despite potential unreliability in de-

tecting individual ingredients, aggregating pairwise statistics about ingredient types and their spatial

arrangement provides sufficient information to reliably identify food items, both at coarse and fine

levels. Implementing this approach involves assigning a soft label (distribution over ingredients)

to each pixel in the image using a semantic texton forest. Subsequently, a multi-dimensional his-

togram feature is constructed, where each bin represents a pair of ingredient labels and discretized

geometric relationships between two pixels. This histogram, aggregated from many pixel pairs in

the image, captures the spatial distribution of ingredients. Finally, the histogram is used as a feature

vector in a multi-class SVM classifier to recognize the food item. The proposed method’s strength

lies in its ability to cope with the significant intra-class variations and occlusions typical of food

images.

Food naturally comes in a wide variety of looks, which contributes to high intra-class diversity:

various foods within the same category might have quite diverse appearances. On the other hand,

there is little inter-class variation. Therefore dietary groups may seem to be comparable to one

another. These qualities put traditional techniques to the test since they frequently fail to identify

the intricate details required for precise food identification [23].

Convolutional neural networks (CNNs) excel at image classification. CNNs automatically learn

features through 2D convolutional layers, eliminating the need for manual feature extraction. This

allows CNNs to perform well in detailed feature detection and makes them particularly accurate for

computer vision tasks [24]. There are some famous CNN architectures like AlexNet [25], VGGNet

[26], GoogLeNet (Inception v1) [27], ResNet [28], DenseNet [29], and EfficientNet [30] ordered

by publication date respectively, which can be used for image classification tasks including food

image classification. Multiple pieces of research have been conducted to utilize CNNs to classify

food images with various network architectures and types of food datasets [31].

In [32], researchers address the limitation of existing image-based diet assessment methods

that typically focus on either food classification or food portion size estimation, but not both si-

multaneously. They propose an end-to-end multi-task framework capable of performing both tasks

concurrently, thereby enhancing the practical applicability of these methods in real-life scenarios
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where multiple tasks need to be processed together. The proposed framework leverages deep learn-

ing techniques and introduces a novel dataset collected from a nutrition study, where registered

dietitians provided the ground truth for food portions. The multi-task learning approach utilizes L2-

norm-based soft parameter sharing to simultaneously train the classification and regression tasks.

This method allows each task to maintain its own feature space while regularizing the lower layers

of the two models. Experimental results demonstrate that this approach improves both food clas-

sification accuracy and the mean absolute error for portion size estimation, indicating significant

potential for advancing the field of image-based dietary assessment. A key innovation in this work

is the use of cross-domain feature adaptation combined with normalization techniques to enhance

the performance of food portion size estimation. By concatenating feature vectors from both the

classification and regression networks, the model can utilize prior knowledge from the classifica-

tion task to better inform portion size estimation based on the known food category. The researchers

also highlight the importance of data availability for the success of deep learning methods. They

note the lack of existing datasets that include both food categories and corresponding portion sizes,

which has hindered progress in developing comprehensive end-to-end dietary assessment systems.

To address this gap, they introduce a new dataset comprising both food categories and portion sizes,

collected during eating occasions and annotated by registered dietitians. This dataset provides a

valuable resource for future research in the field.

In [33], researchers tackle the challenge of accurately measuring food and energy intake, which

is crucial for combating obesity. They propose an innovative assistive calorie measurement system

designed to help patients and healthcare professionals manage diet-related health conditions effec-

tively. This system operates on smartphones, enabling users to capture images of their food and

automatically measure calorie intake. The core of the system’s food recognition capability relies on

deep convolutional neural networks (DCNNs). By training the system with 10,000 high-resolution

food images, the researchers achieve an impressive 99% accuracy in recognizing single food por-

tions. This high level of accuracy is vital for the practical application of the system in real-world

settings. The significance of this work lies in its potential to provide a convenient and intelligent so-

lution for dietary assessment. By leveraging modern deep learning techniques, the system not only

classifies food items but also estimates their caloric content, offering a comprehensive approach to
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diet monitoring. The integration of DCNN with the mobile application allows the system to handle

training and testing requests efficiently, even on low-powered mobile devices, making it accessible

and user-friendly. The researchers also highlight the broader implications of accurate dietary assess-

ment methods. Improved accuracy in dietary information can strengthen the ability of researchers

to identify relationships between diet, diseases, and genetics. Moreover, the widespread adoption of

such assistive technologies can empower individuals to make informed dietary choices, potentially

leading to long-term health improvements.

The study presented in [34] demonstrates a significant improvement in food recognition accu-

racy by integrating DCNN features with conventional hand-crafted image features. Specifically,

the researchers combined DCNN features with fisher vectors using histogram of oriented gradients

(HoG) and color patches to achieve a top-1 accuracy of 72.26% and a top-5 accuracy of 92.00% on

the UEC-FOOD100 [35] dataset. This performance markedly surpasses the previously reported best

classification accuracy of 59.6% for the same dataset. In preliminary experiments, the researchers

found that training DCNNs solely on the UEC-FOOD100 dataset did not yield better performance

than conventional methods, primarily due to the limited amount of training data. To address this

issue, they adopted a strategy of using a pre-trained DCNN on a large-scale dataset as a feature

extractor. This approach involves extracting DCNN features from the output signals of the layer

just before the final one of the pre-trained network. The results of this study highlight the potential

of combining DCNN features with conventional image features to enhance food recognition accu-

racy, even for fine-grained datasets. This integrated approach leverages the strengths of both deep

learning and traditional image processing techniques, offering a robust solution for practical food

recognition applications.

In [36], the authors address the significant challenge of improving dietary assessment accu-

racy, which is crucial for effective weight management. They propose a novel approach that lever-

ages deep learning-based visual food recognition algorithms integrated with an edge computing

paradigm. This combination aims to overcome the inherent limitations of traditional dietary as-

sessment methods, such as reliance on memory and inaccurate calorie tracking. The study focuses

on two primary objectives, enhancing food recognition accuracy through advanced deep learning

techniques and designing a system that utilizes edge computing to optimize performance, minimize
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response time, and reduce energy consumption. The researchers develop and test DCNNs for food

image classification, demonstrating a substantial improvement in accuracy over conventional meth-

ods. The system achieves remarkable results with food recognition accuracy surpassing previous

benchmarks and response times comparable to the best existing solutions. One of the key inno-

vations of this work is the application of edge computing, which distributes computational tasks

between mobile devices and cloud servers. This approach addresses challenges related to system

latency and battery life, making the technology more practical for real-world use. The authors’ im-

plementation on edge devices, such as smartphones, and a GPU cluster for server-side processing,

effectively balances computational load and enhances system efficiency. The significance of this

research lies in its potential to revolutionize dietary assessment through the integration of cutting-

edge technologies. By utilizing deep learning for accurate food recognition and edge computing for

optimized system performance, the proposed system offers a comprehensive and efficient solution

for dietary tracking.

In [37], the authors introduce a new dataset specifically designed for evaluating food recognition

and dietary assessment systems, the Mediterranean Greek Food (MedGRFood) dataset. This dataset

comprises 42,880 images of Mediterranean cuisine, with a focus on Greek dishes, categorized into

132 distinct food classes. The dataset’s comprehensive nature and large volume make it a valuable

resource for advancing the field of food image recognition. The study leverages the EfficientNetB2

architecture, a member of the EfficientNet [30] family of CNNs, to achieve high performance in food

recognition tasks. The proposed deep learning schema incorporates fine-tuning, transfer learning,

and data augmentation techniques, resulting in an impressive top-1 accuracy of 83.4% and top-5

accuracy of 97.8% on the MedGRFood dataset. By providing a dataset tailored to Mediterranean

cuisine, the authors aim to enhance the performance of food recognition systems, thereby supporting

better dietary management and health outcomes.

In [38], the authors address the challenge of improving food recognition and retrieval systems

through the use of DCNNs and propose a significant advancement in the field with the introduction

of the Food-475 database. This dataset contains 247,636 images across 475 food classes, created

by merging four existing food databases. This large-scale and heterogeneous dataset is crucial for

enhancing the robustness and generalization of food recognition models. The study emphasizes
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the importance of domain-representativeness in training effective CNNs. The Food-475 database

is evaluated in terms of its food-domain representativeness, considering factors such as the total

number of images, the number of food classes, and the number of examples per class. By training a

ResNet [28] with 50 layers (ResNet-50) on this extensive dataset, the authors demonstrate that fea-

tures extracted from the Food-475 database achieve superior performance in food classification and

retrieval tasks, compared to features obtained from other databases. The authors note that existing

food recognition methods often rely on single databases, which can limit the generalization of the

recognition algorithms due to potential biases in image acquisition conditions or composition. The

introduction of the Food-475 database addresses this limitation by offering a more heterogeneous

and representative set of food images. The paper also introduces a semi-automatic merging proce-

dure to refine food class definitions, improving upon previous datasets like Food-524 [39], which

did not account for semantically equivalent food classes.

In [40], the authors address the challenge of classifying food ingredients, a relatively underex-

plored area compared to food meal classification, by proposing a novel framework named Deep-

Food. This framework leverages deep learning techniques, particularly CNNs, to enhance feature

extraction and multi-class classification accuracy for food ingredient images. The DeepFood frame-

work integrates several advanced machine learning techniques to achieve superior performance. It

employs transfer learning algorithms with CNNs for deep feature extraction, followed by a multi-

class classification algorithm to analyze these features. Specifically, the framework utilizes ResNet

[28] deep feature sets, information gain (IG) [41] for feature selection, and the SVM with a se-

quential minimal optimization (SMO) [42] algorithm for classification. The experimental results

on a dataset consisting of 41 food ingredient classes with 100 images per class demonstrate the ef-

fectiveness of the DeepFood framework in improving classification accuracy compared to existing

methods.

In [1], the authors focus on food image classification and recognition, essential steps for dietary

assessment, leveraging a GoogLeNet [27] model to achieve high accuracy in food/non-food classi-

fication and food category recognition. The authors highlight the evolution of dietary assessment

techniques, emphasizing the role of multimedia approaches, especially food image analysis. The

paper presents two experimental approaches: food/non-food image classification and food category
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recognition. The authors created two custom datasets by aggregating images from existing datasets,

social media, and mobile devices. They employed a fine-tuned GoogLeNet [27] model within the

Caffe deep learning framework, achieving a remarkable 99.2% accuracy in food/non-food classi-

fication and 83.6% accuracy in food category recognition. The paper underscores the difficulty

in accurately recognizing food items due to their visual similarities and the complexity of mixed

food presentations. The authors propose that while perfect classification may be challenging, rec-

ognizing general food types can still provide valuable information for estimating dietary values and

monitoring nutritional intake.

Recently, with the outstanding achievements of transformers in the field of natural language

processing (NLP) introduced by [43], researchers got attracted to the use of these types of architec-

ture in computer vision tasks. [44] proposed an architecture called Vision Transformer which treats

image patches as tokens and processes them using a transformer model. Moreover, [45] introduced

Swin Transformer, a hierarchical transformer utilizing shifted window mechanisms, designed to

handle image inputs of various sizes and achieve strong performance across multiple vision tasks.

Also, [46] in an architecture called ConvNeXt, updated traditional CNNs with transformer-like

architectures to enhance performance. Ultimately, in the realm of food classification, various re-

searchers have employed these types of architectures to effectively categorize different foods.

In [47], the authors address the challenges of food image classification in computer vision and

machine learning, particularly when dealing with foods that have similar shapes but different nutri-

tional values. The paper introduces a high-accuracy food image classification method that enhances

features using a Vision Transformer-based approach, called AlsmViT. ViT models divide images

into small patches and utilize self-attention mechanisms to capture local features, ultimately gener-

ating a global image representation. This approach has shown promising results in image classifica-

tion tasks, particularly through semi-supervised learning, which enhances the model’s performance

and generalization ability. However, ViT models have limitations, particularly their dependency on

large datasets, which can lead to overfitting when trained on smaller datasets like Food-101 [48]

and Vireo Food-172 [49]. To address these limitations, the authors propose the AlsmViT model,

which enhances Vision Transformer performance through data augmentation and feature enhance-

ment techniques. The AlsmViT model incorporates Augmentplus, LayerScale, and a multi-layer
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perception mechanism to locally enhance features, mitigating issues like overfitting and premature

saturation. The model was trained and validated on the Food-101 and Vireo Food-172 datasets,

achieving validation set accuracies of 95.17% and 94.29%, respectively. This represents a signif-

icant improvement of 5.26% and 5.12% over the ViT-L model, demonstrating the effectiveness of

the proposed enhancements in handling foods with similar shapes but different nutritional values.

In [50], the authors propose a novel approach, the Swin-DR network, which integrates a deep

convolutional module for local feature enhancement with the Swin Transformer for global feature

extraction. This combination allows the model to achieve a more detailed and accurate recognition

of food items with similar macro characteristics but differing in fine details. The Swin-DR network

utilizes a depthwise separable residual convolutional block (DRConvBlock) to further refine local

features and a multi-layer perceptron based on global average pooling and dropout (MLP-GD) for

end-to-end classification. This architecture enhances the model’s ability to discern subtle inter-class

variations and improves classification accuracy. The proposed method demonstrates superior per-

formance on the Foodx-251 [51] and UEC Food-256 [52] datasets, achieving validation accuracies

of 81.07% and 82.77%, respectively.

In [53], the authors recognized that, although the Swin Transformer is effective at capturing

both local and global features, it tends to be biased towards global features. To improve local

feature learning, they introduce several enhancements: the Local Feature Extraction Network (L-

FEN), Convolution Patch-Merging (CP), Multi-Path (MP), and Multi-View (MV) modules. The

L-FEN module enhances the Swin Transformer’s capability to capture detailed local features. The

CP technique adapts the Swin Transformer’s Patch Merging for a more localized and hierarchical

approach. The MP method aggregates features across various stages of the Swin Transformer to

better highlight local details. The MV module replaces traditional Swin blocks with those that

incorporate diverse receptive fields, broadening the scope of local feature capture. The proposed

architecture, named Global±Local Swin Transformer (GL-Swin), is evaluated on fine-grained food

classification tasks across three major datasets: ISIA Food-500 [54], UEC Food-256 [52], and Food-

101 [48]. The GL-Swin achieves accuracies of 66.75%, 85.78%, and 92.93% on these datasets,

respectively.
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2.2 Class Incremental Classification

Continual learning, also known as incremental learning or lifelong learning is an area of machine

learning that aims to learn continuously and adapt to new data and tasks over time without forgetting

previous knowledge, which is a common issue known as catastrophic forgetting [55].

Continual learning can be categorized as instance-incremental learning (IIL), domain-incremental

learning (DIL), task-incremental learning (TIL), class-incremental learning (CIL), task-free contin-

ual learning (TFCL), online continual learning (OCL), and continual pre-training (CPT) [56].

In class incremental learning, new classes appear over time and the model should detect new

classes without losing the capability of classifying the ones. There are works focusing on using

regularization-based approaches to achieve incremental learning [57, 58, 59, 60, 61, 62, 63, 64, 65,

66, 67, 68, 69], while some other works have used replay-based methods and [70, 71, 72, 73, 74,

75, 76, 77, 78, 79] and parameter isolation methods [80, 81, 82, 83, 84, 85].

Moreover, in food classification, several works utilize continual learning to improve their food

classification model further. In [86], the authors address two significant challenges in deploying

deep learning-based food recognition systems in real-world scenarios: continual learning with

the arrival of new food classes and handling class-imbalanced data. They recognize that as new

food types emerge over time, the model must learn these new classes without forgetting previously

learned ones (catastrophic forgetting). Additionally, food image datasets are often long-tailed, with

a few popular food types being more frequent than many rare types, requiring improved general-

ization for rare classes. To tackle these issues, the authors introduce two new benchmark datasets,

VFN-INSULIN and VFN-T2D, which reflect real-world food consumption patterns for insulin users

and individuals with type 2 diabetes, respectively. They propose a novel end-to-end framework

designed for long-tailed continual learning that incorporates feature-based knowledge distillation

and a new data augmentation technique combining class-activation-map (CAM) and CutMix. The

knowledge distillation process is enhanced with an additional prediction head to address represen-

tation misalignment and preserve learned knowledge. The data augmentation method improves

generalization for rare classes by integrating crucial features from CAM with images from more

common classes. The proposed framework is evaluated on several datasets, including Food101-LT,
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VFN-LT, VFN-INSULIN, and VFN-T2D. The results demonstrate substantial improvements over

existing methods, particularly in handling long-tailed distributions and continual learning without

the need for detached training stages. The authors also conduct an ablation study to evaluate each

component’s effectiveness and suggest further improvements for real-world deployment.

In [3], the authors highlight that traditional food classification systems often rely on static

datasets with fixed classes and uniform distributions, which limits their effectiveness in real-world

scenarios where food consumption patterns are dynamic and influenced by a range of factors such

as cultural, economic, and personal preferences. To address this challenge, the paper introduces

Online Class Incremental Learning (OCIL) as a more adaptable approach. OCIL methods are de-

signed to continuously learn from an ongoing stream of data, allowing the system to adapt to new

information while minimizing the risk of losing previously acquired knowledge when new data is

introduced. One of the key techniques within OCIL is Experience Replay (ER), which involves

storing a small portion of past data to improve learning. However, existing OCIL methods often

assume that the data is perfectly balanced, which is not the case in real-world food consumption

scenarios. To bridge this gap, the authors propose an innovative framework that includes the Re-

alistic Data Distribution Module (RDDM) and the Dynamic Model Update (DMU) module. The

RDDM framework is designed to simulate realistic food consumption patterns, providing a more

accurate representation of the dynamic nature of food data. Complementing this, the DMU mod-

ule is developed to enhance existing ER methods by optimizing the selection of the most relevant

training samples. This addresses common issues such as data repetition and imbalanced sample

distributions, which are prevalent in real-world food classification tasks. The paper demonstrates

how their approach, applied to various food consumption scenariosÐshort-term, moderate-term,

and long-termÐusing challenging datasets like Food-101 [48] and VFN [87], leads to significant

improvements in classification performance.

2.3 Personalized Food Classification

The area of personalized food classification is relatively under-explored, presenting a com-

pelling opportunity to advance food classification based on individual eating habits. In its early
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stages, [88] proposed an innovative approach that incorporates temporal information into the clas-

sification process. The proposed method leverages recursive Bayesian estimation to incrementally

learn from an individual’s eating history. By integrating this temporal aspect, the system can build

a more accurate profile of a person’s dietary habits over time. This approach significantly enhances

food classification performance, achieving an 11% improvement in accuracy compared to existing

methods of that time. The paper also outlines the development of a dietary assessment system,

known as the mobile Food Record (mFR). This system aims to automatically estimate food type,

volume, nutrients, and energy from food images captured via mobile devices. The mFR system is

composed of a web-based user interface, a mobile application, and a backend infrastructure that

includes a computational server and a database system.

Also, [89] introduces a novel approach to enhancing food image classification through incre-

mental updates to a Bayesian network model. This paper focuses on improving the accuracy of a

food log system, which leverages image processing to detect and analyze food images, estimating

nutritional balance and allowing users to modify the analysis results when errors are detected. The

authors address the challenge of food image classification, which is often complicated by factors

such as diverse food appearances and variations in serving styles. They present a method to in-

crementally update the Bayesian network classifier using user corrections, enhancing the system’s

performance. The proposed method significantly improves the classifier’s performance by integrat-

ing corrections made by users. This iterative learning process enhances the system’s accuracy from

89% to 92%. The paper compares the performance of the Bayesian network with traditional sup-

port vector machines and highlights the advantage of using user feedback to refine the model. This

incremental learning approach allows the food log system to personalize its analysis for each user,

adapting to individual variations and improving overall classification effectiveness.

Furthermore, several research papers achieved personalized food classification by leveraging

the nearest class mean classifier and the 1-nearest neighbor classifier [90, 91, 92].

In [90], the authors introduce a novel approach, the Sequential Personalized Classifier (SPC)

framework, that is designed to incrementally adapt to individual users’ dietary patterns using a very

limited number of samples. The SPC combines the nearest class mean classifier with a 1-nearest

neighbor classifier based on deep features. This combination allows the classifier to handle the
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dynamic nature of real-world data effectively, bridging the gap between controlled laboratory con-

ditions and practical applications. The proposed method was evaluated using a dataset of daily food

images collected through a food-logging application, which captures the variability and incremental

growth of food classes over time. The results show that the SPC framework significantly outper-

forms existing methods by effectively personalizing the classifier for each user and adapting to new

classes without the need for extensive retraining.

Finally, in more recent approaches, [12] utilizes self-supervised learning to classify two new

benchmark datasets, FOOD101-Personal and VFN-Personal, incorporating personalization. Tradi-

tional methods often use deep neural networks trained on static datasets, which do not reflect the

dynamic nature of real-world food consumption patterns. These patterns involve sequential food

images that capture an individual’s dietary habits over time, which is crucial for accurate nutri-

ent analysis. To address this gap, the paper introduces two benchmark datasets designed to better

capture individualized food consumption patterns: Food101-Personal and VFN-Personal. These

datasets were created from real-world dietary surveys and studies, providing a more realistic foun-

dation for testing personalized food classification methods. The authors propose a new framework

that combines self-supervised learning with temporal image feature extraction. This approach up-

dates the classifier incrementally as new food images are introduced, enabling the model to adapt

to changes in an individual’s diet over time. By leveraging self-supervised learning, the model can

continuously improve its feature extraction process, while the temporal contextual information is

enhanced through a sliding window technique that captures the evolving nature of food consump-

tion. The evaluation of this framework on the newly introduced datasets demonstrates a significant

improvement in classification performance compared to existing methods. This work advances the

field of personalized food image classification by addressing key limitations of previous approaches,

including the lack of dynamic learning and the need for temporal context in dietary patterns. The

datasets and methods introduced in this paper offer valuable resources and techniques for develop-

ing more accurate and personalized dietary assessment tools.

Despite their innovative approaches and promising results, these previous models focused solely

on food images and sequences of food images, neglecting crucial contextual information like meal

18



time, meal location, and meal frequency. As a result, their accuracy fell short for practical applica-

tion in real-world scenarios. These limitations motivate us to introduce a new approach designed to

address these issues.
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Chapter 3

Food Intake Monitoring System

3.1 Personalized Food Intake Monitoring Framework

This section introduces a personalized food intake monitoring framework, as illustrated in Fig.

3.1. The core component of this framework is the personalized dynamic support network (PDSN),

which classifies food images collected via our mobile application by integrating user profile history

data, including meal frequency, meal time, and meal location.

Upon each food detection, user feedback regarding the accuracy of the detection is solicited,

enabling continuous updates to our personalized module. This feedback mechanism allows the

model to determine whether the detected food item is already included in the existing class set. If

the food item is part of the existing classes, the system retrieves nutritional information from the

nutrient database, including macronutrient content such as protein, carbohydrate, fat, and calorie

values.

Subsequently, the mobile application interfaces with a smart scale via Bluetooth to ascertain

the weight of the meal. By combining the meal weight with the nutritional data from the nutri-

ent database, we accurately calculate the user’s macronutrient intake for that particular meal. In

instances where the detected food item is not part of the existing class set, the continual learning ca-

pability of PDSN is employed to train the model to recognize new classes. Additionally, food image

segmentation techniques are applied to identify the ingredients of the new food item, enabling the

calculation of its macronutrient content. This new information is then incorporated into the nutrient
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consuming food type f ∈ F for user u. The sum of MFu
f for f in the range 0 to |F | is calculated as

|F |
∑

f=0

MFu
f = 1, (1)

where MFu
f is uniformly distributed across all food classes at the initialization phase.

We define the matrix MT
u ∈ R

|F |×|T | that represents the conditional probability P (T = t |

F = f) of consuming a meal at a specific time t ∈ T for a given food type, considering the user’s

profile history, where MTu
f,t represents the probability of consuming food type f at time t for user

u. The sum of MTu
f,t for t in the range 0 to |T | is calculated as

|T |
∑

t=0

MTu
f,t = 1, (2)

where MTu
f,t is uniformly distributed across all times for each food class at the initialization phase.

We define the matrix ML
u ∈ R

|F |×|L| that represents the conditional probability P (L = l |

F = f) of consuming a meal at a specific location l ∈ L for a given food type, considering the

user’s profile history, where MLu
f,l represents the probability of consuming food type f at location

l for user u. The sum of MLu
f,l for l in the range 0 to |L| is calculated as

|L|
∑

l=0

MLu
f,l = 1, (3)

where MLu
f,l is uniformly distributed across all locations for each food class at the initialization

phase.

Upon receiving each input image I ∈ R
n×n, it undergoes classification processes using classi-

fiers C to generate a probability distribution P across the classes. Specifically, C(I) = P represents

the transformation of input image I to the probability distribution P . Let P u
f denote the probability

of class f for user u based on the input image.

The personalized probability distribution PP u can be expressed as

PP u
f = P u

f · MFu
f · MTu

f,ti
· MLu

f,li
, (4)
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where u ∈ U , ti ∈ T , and li ∈ L represent the user, time, and location associated with the input

image, respectively.

The detected class is the one with the maximum value in the personalized probability distribu-

tion and expressed as

Detected Class = fi = argmax
f

(PP u
f ). (5)

After detecting the food type from the input image, if the model’s prediction is incorrect, the

correct class will be requested. Based on this correct class, the personalization vectors will then be

updated as follows.

Let αf , αt, and αl be the forgetting factors for meal frequency, meal time, and meal location,

respectively. These values will be used to update the personalization vectors in such a way that

the probability of detecting foods more important and specific to the user will increase, while the

probability of detecting less relevant foods will decrease by the forget factors.

Updating of the food probability vector MF
u
f expressed as

MF
u
f =















MF
u
f + αf · (1−MF

u
f ), if f = fi,

MF
u
f · (1− αf ), otherwise.

(6)

Updating of the time probability matrix MT
u
f,t expressed as

MT
u
f,t =































MT
u
f,t + αt · (1−MT

u
f,t), f = fi , t = ti,

MT
u
f,t · (1− αt), f = fi , t ̸= ti,

MT
u
f,t, otherwise.

(7)

Updating of the location probability matrix ML
u
f,l expressed as

ML
u
f,l =































ML
u
f,l + αl · (1−ML

u
f,l), f = fi , l = li,

ML
u
f,l · (1− αl), f = fi , l ̸= li,

ML
u
f,l, otherwise.

(8)
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Backbone Feature Extraction

The model utilizes a backbone feature extractor, such as ResNet [28], to extract features from

the input images that can be used for classifying the input. The extracted features can be expressed

as

h = backbone(x), (9)

where x is the input image, and backbone represents the model used for feature extraction.

Feature Mapping

The extracted features are mapped to a new feature space using a fully connected layer, convert-

ing the raw features into a form suitable for classification, as follows

z = Wfmh, (10)

where Wfm is the weight matrix of the fully connected layer. These features are then normalized

to ensure consistent scale and improve the performance of the classification model, as follows

z =
z

∥z∥2
. (11)

Base Class Classification

The normalized features are passed through another fully connected layer for the classification

of base classes as follows

output
0
=

W0z

∥W0∥2∥z∥2
, (12)

where W0 is the weight matrix of the base classifier.
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Gamma Generation for Incremental Sessions

The output of the feature extracting layer is also passed to another fully connected neural net-

work to generate gamma values for incremental sessions as follows

γ = relu(Wγh), (13)

where Wγ is the weight matrix of the gamma generator.

Session-specific Classifiers

For each incremental session i ≥ 1, a support mechanism maps the features to the appropriate

space for incremental classes. These mapped features are then merged with the features generated

for the base classes to incorporate their information, regulated by the responsible γ. Finally, the

output is calculated using the merged features as follows

supporteri =
Ws,ih

∥Ws,i∥2∥h∥2
, (14)

zi = γiz+ supporteri, (15)

zi =
zi

∥zi∥2
, (16)

outputi =
Wizi

∥Wi∥2∥zi∥2
, (17)

where Ws,i is the weight matrix of the supporter for session i, and Wi is the weight matrix of the

classifier for session i.

Concatenation of Outputs

The class probabilities is a concatenation of the outputs from all sessions obtained as

output = [output
0
∥ . . . ∥ outputi ∥ . . . ∥ outputsess] (18)

where outputi represents the output at session i, ∥ denotes the concatenation operation, and sess
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denotes the total number of sessions.

Personalizer

At the end, the personalizer plug-in will be used to incorporate contextual information such as

meal frequency, meal time, and meal location further to enhance the model’s performance for that

specific user.

Our approach’s primary improvement over the original DSN is the personalized plug-in and net-

work’s dynamic generation of gamma. In the original DSN, gamma is treated as a hyperparameter

requiring manual tuning. Our approach enables the network to dynamically adjust the impact of the

base class feature mapper and the incremental class feature mappers, thereby improving classifica-

tion performance and adaptability to new data.

By learning gamma values, the network can better decide the relative importance of base and

incremental class features for each specific data point, leading to more accurate and personalized

food classification.

This methodology outlines the design and implementation of our personalized dynamic support

network (PDSN) model highlighting the architectural innovations and the theoretical foundations

supporting its improved performance in incremental learning scenarios.

27



Chapter 4

Implementation and Experimental Setup

4.1 Datasets

Our experiment utilized two primary datasets: the Food-101 dataset and the VFN dataset. Ad-

ditionally, we integrated personalized versions of these datasets, referred to as Food-101-Personal

and VFN-Personal, for evaluating personalized food image classification tasks.

The Food-101 dataset [48] is a widely used benchmark for food image classification, comprising

101,000 food images, with each class having 750 training images. It covers a wide spectrum of food

categories essential for training machine learning models in food image classification tasks.

The Food-101-Personal dataset was derived through an online survey conducted by [12] using

the Food-101 dataset. Participants simulated one week of food consumption patterns by select-

ing foods from the FOOD101 categories. This personalized dataset includes 20 patterns with an

average of 44 food classes and 6000 images in total. It comprises 300 images per individual, rep-

resenting long-term food consumption patterns for enhanced evaluation in personalized food image

classification tasks.

The VFN dataset [87] comprises 14,991 online food images sourced from the What We Eat In

America (WWEIA) database [93]. The dataset is designed specifically for food recognition and in-

cludes images from various food categories. The characteristics of VFN make it highly relevant for

evaluating the generalizability of our models. This dataset covers 82 food categories selected based

on high intake frequency from the WWEIA database, reflecting the most commonly consumed
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foods in the United States.

The VFN-Personal dataset originated from a dietary examination conducted by [12] involving

healthy individuals aged 18 to 65, employing an image-based dietary evaluation approach. Par-

ticipants documented their food intake over a three-day period. Much like the Food-101-Personal

dataset, the VFN-Personal dataset was crafted utilizing techniques to mimic prolonged food con-

sumption behaviors. The dataset comprises 26 patterns, each encompassing an average of 29 distinct

classes and similar to the Food-101-Personal dataset, it includes 300 images per individual.

4.2 Baseline Models

Our study centers on assessing the performance of seven widely recognized architectures known

for their image classification capabilities: AlexNet [25], VGGNet [26], GoogLeNet [27], ResNet

[28], DenseNet [29], Vision Transformer [44], and Swin Transformer [45].

We selected these architectures based on their track record of high performance in image classi-

fication tasks. To ensure a fair comparison, we utilized pretrained versions of these models trained

on the ImageNet [94] dataset. Fine-tuning was performed specifically for food image classification,

involving 20 epochs of training to adapt the models to our dataset.

We conducted a comprehensive comparison between the baseline models and their enhanced

versions. The enhancements include the incorporation of our proposed personalized plugin, de-

signed to improve classification accuracy by tailoring models to individual eating habits.

To assess the effectiveness of our model in learning new classes incrementally, we compared

DSN [11] and PDSN architectures based on the accuracy of different datasets using the same back-

bone to ensure a fair comparison. This setup allowed us to study how our approach facilitates better

learning of new classes over time.
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4.3 Implementation Details

4.3.1 PDSN

We utilized various pretrained architectures implemented in Python with the PyTorch [95] li-

brary as the backbones of DSN and PDSN to extract features. Each architecture was fine-tuned

for food image classification tasks with a batch size of 32 and trained for 20 epochs. Input images

were resized to 224 × 224 pixels to accommodate the requirements of different architectures. For

optimization, we employed the Stochastic Gradient Descent (SGD) optimizer with a learning rate

(lr) of 0.001, momentum of 0.9, weight decay of 0.0005, and nesterov momentum enabled. To

incorporate meal time and location information, each input image had a fixed probability of being

associated with different meal times and locations based on the type of food. This probabilistic

approach introduced variability in meal times and locations, mitigating potential overfitting. Also

forget factors, αf , αt, and αl were set to 0.003, 0.04, and 0.04, respectively. We trained the mod-

els on the FOOD101 and VFN datasets and subsequently evaluated their performance using the

FOOD101-Personal and VFN-Personal datasets, which contain personalized eating patterns across

300 meal sessions. The development codes of PDSN are illustrated in appendix A. The core of

the model is encapsulated in the ºPersonalizedDSNº class in ºmodel.pyº file, which inherits from

ºnn.Moduleº, making it a PyTorch model. Below is a breakdown of how the model operates:

(1) Initialization

• The model dynamically selects a backbone architecture (e.g., ResNet, AlexNet, DenseNet,

etc.) based on the args passed during initialization. Each architecture is initialized with

pretrained weights for better feature extraction.

• Depending on the dataset (FOOD101 or VFN), the model sets a session length for per-

sonalization.

• The final layer of each backbone architecture is customized (replaced or reconfigured)

to produce a fixed-size feature vector (node of size 512).

• The model defines a series of classifiers and supporting layers to handle different ses-

sions of incremental classification as explained in 3.3.
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(2) Forwarding

• The input image is passed through the selected backbone to extract features.

• The features are then passed through a feature-mapper layer and normalized using the

l2norm method.

• A gamma generator layer produces gamma values that modulate the influence of differ-

ent sessions in the incremental classification.

• The output from the base session classifier is generated first. For subsequent sessions,

a new node is computed by combining the current session’s features and a supporting

layer’s output.

• The final output is a concatenation of the base and personalized session outputs.

The model leverages meal frequency, meal time, and location data to influence the classification

process. This is implemented in the script for personalization in ºpdsn.pyº, where the output of the

model is element-wise multiplied by MF, MT, and ML matrices. The MF, MT, and ML matrices are

updated incrementally with each input, where the corresponding entries are updated based on the

true label, enabling personalization. Below is a breakdown of how the pdsn.py operates:

• The script loads the personalized DSN model and initializes it with the specified backbone

and dataset.

• It applies various transformations to the input images and feeds them through the model.

• The script reads meal time and location probabilities from CSV files, which indicate the

likelihood of a user consuming certain foods at specific times of the day or locations.

• the script simulates the eating patterns of different users to test the model’s performance in a

personalized context.

• The adjustments explained in 3.2 are applied by element-wise multiplication of the model’s

output with the MF, MT, and ML matrices.

• After each prediction, the script updates the MF, MT, and ML matrices to reflect the new

information about the user’s eating habits.
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Figure 4.10: Smart Scale Design and Component Assembly

assembly. The smart scale system is built using Micropython, a lightweight Python implementation

for microcontrollers, and leverages a Raspberry Pi Pico as the microcontroller. The setup also

includes a 5kg load cell and an HX711 module to accurately measure weight.

The Raspberry Pi Pico, shown in Fig. 4.11, is a versatile microcontroller based on the RP2040

chip. It provides sufficient processing power and connectivity options to handle the smart scale’s

functions. It is chosen for its affordability and ease of integration with various sensors and modules.

Figure 4.11: Raspberry Pi Pico

The 5kg load cell, depicted in Fig. 4.12, converts the physical weight into an electrical signal.
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This signal is then processed by the microcontroller. The load cell is essential for accurate weight

measurement and ensures that the scale can handle a range of weights typically encountered in food

measurement scenarios.

Figure 4.12: 5Kg Load Cell

The HX711 module, illustrated in Fig. 4.13, is an analog-to-digital converter designed specif-

ically for weighing scales. It amplifies the signal from the load cell and converts it into a digital

format that the Raspberry Pi Pico can process. This module is crucial for obtaining precise and

stable weight readings from the load cell.

The smart scale system is programmed using Micropython, which allows for efficient scripting

on the Raspberry Pi Pico. The Micropython code handles the following tasks:

• Initialization: The code initializes the HX711 module and calibrates the load cell to ensure

accurate measurements.

• Weight Measurement: It continuously reads data from the load cell via the HX711 and con-

verts the analog signal into a digital weight reading.

• Network Communication: The Raspberry Pi Pico connects to the network and listens for

incoming connections from the mobile application. This is achieved using Micropython’s

networking libraries.
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Figure 4.13: HX711 ADC Module

The smart scale is designed to be network-aware. It performs the following steps to communi-

cate with the mobile application:

• Connection: Once powered on, the smart scale connects to the network and waits for incom-

ing connections from the mobile application. It listens on a specified port for connection

requests.

• Communication: After establishing a connection, the smart scale listens for commands from

the mobile application. When a command to measure weight is received, the smart scale

triggers the measurement process.

• Measurement and Response: The smart scale measures the weight and returns the result to

the mobile application. This response is sent back over the network, ensuring that the weight

data is transmitted accurately and promptly.

The smart scale remains in a listening state, continuously monitoring for commands from the

mobile application. This setup ensures that the scale is ready to measure and provide weight data

whenever requested, facilitating real-time interaction and data collection.
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Chapter 5

Experimental Results

5.1 Improvements with Personalized Plug-In

We evaluated the performance of our PDSN model alongside seven baseline architectures for

food classification using the FOOD101-Personal and VFN-Personal datasets. Tables 5.1 and 5.2

present the comparative performance metrics of these models, both with and without our personal-

izer plug-in.

Initially, we trained all baseline modelsÐAlexNet, VGGNet, GoogLeNet, ResNet, DenseNet,

Vision Transformer, and Swin TransformerÐon the standard FOOD101 and VFN datasets. Table

5.3 summarizes the accuracy results of these baseline models after training them for 20 epochs on

FOOD101 and VFN. After evaluating the baseline models, we integrated our personalizer plug-

in into each architecture and re-evaluated their performance on the personalized versions of these

datasets, FOOD101-Personal and VFN-Personal, with and without enabling personalization.

FOOD101, being a well-populated dataset, demonstrated moderate improvements with the per-

sonalizer plug-in due to its ample data availability. Conversely, the VFN dataset, which lacks exten-

sive data and initially had lower baseline model accuracy, benefited substantially from the person-

alizer plug-in. In some instances, we observed performance boosts of up to 10% in classification

accuracy.

Our personalizer plug-in significantly improved the models’ performance by customizing the

classification process according to individual eating patterns. This personalization leverages unique
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Table 5.1: Average Top-1 Classification Accuracy ± std for FOOD101-Personal at different time

steps

Model FOOD101-Personal

t75 t150 t225 t300

AlexNet 92.26 ± 0.03 92.16 ± 0.02 91.37 ± 0.02 91.35 ± 0.02

VGGNet 94.93 ± 0.02 94.80 ± 0.01 94.53 ± 0.01 94.53 ± 0.01

GoogLeNet 94.73 ± 0.02 94.33 ± 0.01 94.06 ± 0.01 93.75 ± 0.01

ResNet 94.60 ± 0.02 94.63 ± 0.01 94.37 ± 0.01 94.26 ± 0.01

DenseNet 95.53 ± 0.01 95.63 ± 0.01 95.35 ± 0.01 95.30 ± 0.01

Vision Transformer 97.46 ± 0.01 96.90 ± 0.01 96.88 ± 0.01 96.91 ± 0.01

Swin Transformer 97.46 ± 0.01 97.36 ± 0.01 96.95 ± 0.01 96.93 ± 0.01

(Our Work)

P-AlexNet 92.86 ± 0.03 93.53 ± 0.02 93.55 ± 0.02 93.65 ± 0.02

P-VGGNet 95.46 ± 0.02 95.63 ± 0.01 95.71 ± 0.01 95.80 ± 0.01

P-GoogLeNet 95.66 ± 0.02 95.33 ± 0.01 95.51 ± 0.01 95.23 ± 0.00

P-ResNet 95.26 ± 0.02 95.63 ± 0.01 95.71 ± 0.01 95.46 ± 0.01

P-DenseNet 95.93 ± 0.01 96.46 ± 0.01 96.44 ± 0.01 96.38 ± 0.01

P-Vision Transformer 97.73 ± 0.01 97.53 ± 0.01 97.37 ± 0.01 97.35 ± 0.00

P-Swin Transformer 97.86 ± 0.01 98.06 ± 0.01 97.73 ± 0.01 97.45 ± 0.01

The ºP-º prefix denotes the integration of our personalizer plug-in to the baseline models.

patterns in a user’s food consumption, allowing the model to focus on the most relevant foods for

each individual. By integrating personalization data into the classification process, our approach

effectively reduces the negative effects of intra-class diversity and inter-class similarity by consid-

ering additional factors specific to each user’s eating habits. This tailored learning process helps the

models differentiate between similar food images in different classes and distinguish diverse food

images within the same class more effectively.

5.2 Improvement Over Original Dynamic Support Network

To demonstrate the efficacy of our PDSN model in incremental learning scenarios, we conducted

experiments, comparing to the original DSN architecture. Both models were initially trained on the

complete set of classes from FOOD101 and VFN datasets separately, serving as the base session.

Subsequently, we introduced two new classes to each dataset and evaluated their performance on
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Table 5.2: Average Top-1 Classification Accuracy ± std for VFN-Personal at different time steps

Model VFN-Personal

t75 t150 t225 t300

AlexNet 58.46 ± 0.08 58.74 ± 0.06 58.87 ± 0.07 58.51 ± 0.07

VGGNet 62.66 ± 0.07 62.71 ± 0.06 63.00 ± 0.06 62.91 ± 0.06

GoogLeNet 62.15 ± 0.07 62.58 ± 0.07 63.14 ± 0.08 63.03 ± 0.08

ResNet 62.46 ± 0.07 63.12 ± 0.07 62.90 ± 0.08 62.55 ± 0.07

DenseNet 67.94 ± 0.08 69.30 ± 0.07 69.55 ± 0.07 69.20 ± 0.07

Vision Transformer 71.94 ± 0.06 73.00 ± 0.07 73.43 ± 0.07 73.14 ± 0.07

Swin Transformer 70.97 ± 0.07 71.79 ± 0.07 71.91 ± 0.07 71.61 ± 0.06

(Our Work)

P-AlexNet 62.71 ± 0.07 66.28 ± 0.08 68.88 ± 0.08 69.78 ± 0.08

P-VGGNet 68.87 ± 0.07 72.48 ± 0.07 74.58 ± 0.07 75.35 ± 0.07

P-GoogLeNet 67.69 ± 0.08 71.46 ± 0.08 73.77 ± 0.07 74.19 ± 0.07

P-ResNet 67.12 ± 0.07 71.69 ± 0.08 73.98 ± 0.07 74.60 ± 0.07

P-DenseNet 73.48 ± 0.08 76.58 ± 0.08 78.56 ± 0.07 78.69 ± 0.07

P-Vision Transformer 76.61 ± 0.06 79.76 ± 0.07 81.50 ± 0.06 81.66 ± 0.07

P-Swin Transformer 76.87 ± 0.07 79.64 ± 0.07 81.45 ± 0.06 81.74 ± 0.06

The ºP-º prefix denotes the integration of our personalizer plug-in to the baseline models.

Table 5.3: Best Top-1 Accuracy of Classification Architectures on FOOD101 and VFN after 20

Epochs

Model FOOD101 VFN

AlexNet 64.49 86.07

VGGNet 76.65 86.46

GoogLeNet 75.74 86.34

ResNet 75.08 86.04

DenseNet 81.80 86.07

Vision Transformer 84.37 86.34

Swin Transformer 87.86 85.75

Table 5.4: Accuracy Breakdown of DSN and PDSN Models on FOOD101 and FOOD101-Personal

Model FOOD101 FOOD101-Personal

Base New Total Base New Total

DSN 74.85 73.33 74.82 94.26 72.42 92.28

PDSN (Our Work) 74.73 76.66 74.77 95.26 77.54 93.65

four datasets: FOOD101, VFN, FOOD101-Personal, and VFN-Personal.
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Table 5.5: Accuracy Breakdown of DSN and PDSN Models on VFN and VFN-Personal

Model VFN VFN-Personal

Base New Total Base New Total

DSN 85.95 70.00 85.57 62.54 69.74 63.20

PDSN (Our Work) 85.98 70.00 85.59 74.05 70.40 73.71

Tables 5.4 and 5.5 summarize the results of our incremental learning experiment. In standard

datasets (FOOD101 and VFN), the improvement with PDSN was marginal, indicating that it learned

new classes slightly better than DSN. This improvement can be attributed to the dynamic gamma

generation in PDSN, which allows the model to effectively balance and integrate information from

the base classifier when learning new classes.

In personalized versions (FOOD101-Personal and VFN-Personal), where our personalizer plug-

in enhances adaptability, the performance improvement was notable. Specifically, PDSN achieved

approximately a 5% improvement in detecting new classes in FOOD101-Personal and an overall

accuracy improvement of about 10% in VFN-Personal compared to DSN.

This experiment underscores the effectiveness of our model’s personalized approach, particu-

larly in scenarios with limited data (VFN dataset) and for tasks requiring robust adaptation to new

information.

5.3 Ablation Study

To investigate the impact of different meal-related factors (meal frequency, meal time, and meal

location) on personalization and performance improvement, we conducted an ablation study using

our PDSN model. Fig. 5.1 illustrates the performance of five scenarios over time, each evaluating

different configurations of these factors.

The experiments were structured as follows. We first evaluated the base model without consid-

ering any meal factors. Subsequently, we separately assessed each factor’s impact (meal frequency,

meal time, meal location). Finally, we evaluated the model’s performance when considering all

factors simultaneously.

As depicted in Fig. 5.1, integrating all meal factors into the personalization process yielded the
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best overall performance improvement. Specifically:

• considering all meal factors collectively resulted in the highest performance gains, indicat-

ing the synergistic effect of comprehensive personalization. Meal frequency had the most

significant individual impact on performance improvement, demonstrating its critical role in

enhancing the model’s adaptability.

• meal time also contributed significantly to performance enhancement, although to a lesser

extent compared to meal frequency.

• meal location, while contributing to improvement, had the least pronounced effect among the

factors studied.

• the base model, which did not consider any meal factors, exhibited the lowest performance

improvement, highlighting the necessity of personalized adaptation in food intake monitoring

scenarios.

This ablation study underscores the importance of integrating contextual meal information into

the model’s learning process, emphasizing the role of meal frequency as a key determinant in en-

hancing classification accuracy and adaptability.

45





Chapter 6

Conclusion and Future Work

This chapter summarizes the contributions of this work and outlines potential future develop-

ments for the proposed food intake monitoring system.

6.1 Conclusion

In this study, we introduced PDSN, a novel method tailored for personalized food intake mon-

itoring systems. Our method mitigated the adverse impacts of both intra-class variation and inter-

class similarities by incorporating user-specific factors related to individual eating behaviors. More-

over, our approach leverages dynamic gamma generation through the network, allowing for adaptive

feature weighting between base and incremental classes. These innovations address the limitations

of traditional DSN by enhancing classification accuracy and adaptability in the context of evolving

dietary habits.

Through comprehensive experimentation, we evaluated PDSN with different baseline architec-

tures on the FOOD101 and VFN datasets, demonstrating consistent performance improvements

across personalized datasets (FOOD101-Personal and VFN-Personal). Our results underscored the

effectiveness of the personalizer plug-in in enhancing classification accuracy, particularly in scenar-

ios with limited data (VFN), where we observed up to a 10% improvement over baseline models.

Furthermore, our study showcased PDSN’s capability in incremental learning, where it outper-

formed traditional DSN by effectively classifying new food classes introduced after initial training
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sessions. This capability was most pronounced in personalized datasets, highlighting the model’s

robustness in adapting to individual dietary preferences over time.

Additionally, our ablation study highlighted the pivotal role of meal-related factors (meal fre-

quency, meal time, and meal location) in further enhancing PDSN’s performance. Integrating these

factors significantly improved classification accuracy, with meal frequency proving to be the most

influential factor in the personalization process.

In conclusion, PDSN represents a significant advancement in personalized food intake moni-

toring systems, offering robust performance improvements through dynamic feature adaptation and

contextual meal information integration. Our findings not only contribute to the field of machine

learning-driven dietary assessment but also pave the way for future research in personalized AI-

driven healthcare applications.

6.2 Future Work

In the pursuit of advancing personalized food classification, several avenues for future work

present themselves:

Incorporating Additional User-Specific Features

Future research should consider integrating a wider array of user-specific features such as age,

gender, and nationality. These factors can significantly influence eating habits and preferences,

potentially enhancing the accuracy and relevance of personalized food classification models.

Implementing Reinforcement Learning for Personalization Updates

Future research could explore the use of reinforcement learning to dynamically update the

weights of personalization in real-time. By continuously learning from user interactions and feed-

back, the system could adapt more effectively to changes in user preferences and behavior over

time. This approach could result in a more responsive and personalized experience, as the model

would refine its predictions and recommendations based on ongoing user engagement.
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Removing Hardware Dependencies

To streamline the framework and make it more accessible, future efforts should focus on elimi-

nating the dependency on a smart scale for weight measurement. Instead, weight could be estimated

through software approaches, leveraging computer vision and machine learning techniques to infer

portion sizes and food weights from images.

Expanding Personalization to Other Domains

The concept of personalized classification can be extended beyond food. Future work could

explore its application in other domains such as personalized healthcare, fitness, and e-learning. By

tailoring recommendations and content to individual users based on their unique characteristics and

behaviors, these systems can provide more effective and engaging experiences.

Exploring Collaborative Personalization Techniques

Integrating collaborative personalization techniques could complement the personalized classi-

fication system. By analyzing similarities between users, the system could suggest food items or

recipes that have been well-received by users with similar profiles, further enhancing personaliza-

tion.

By exploring these directions, future research can significantly enhance the personalization and

utility of food classification systems, making them more adaptable, accessible, and effective in

catering to individual user needs.
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