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Abstract 

Oil Spill Detection and Fingerprinting Using Semantic Segmentation and Data-Driven Modeling 

Saeed Hashemi Halvaei 

 

Oil spills significantly threaten marine environment, damaging ecosystem, wildlife, and 

coastal communities. This thesis addresses these challenges by employing both advanced machine 

learning techniques and satellite imagery analysis technologies to enhance the accuracy and 

efficiency of oil spill detection and or source identification. By utilizing Synthetic Aperture Radar 

(SAR) images and examining semantic segmentation models, the research aims to accurately 

detect oil spills based on satellite images. Additionally, oil fingerprinting techniques, involving 

unsupervised classification are used to identify the sources of marine oil spills, providing a 

comprehensive framework for oil spill monitoring and management. The methodology involves 

the use of three distinct datasets: a multi-class dataset for detecting oil spills using satellite images, 

a binary dataset focusing on oil spill incidents in the Gulf of Suez from 2017 to 2021 as a case 

study for oil spill detection and a dataset for oil fingerprinting based on samples from the MV 

Manolis L shipwreck. For oil spill detection, semantic segmentation models were trained and 

evaluated using these datasets. Performance metrics such as Intersection over Union (IoU) were 

used to assess the modeling accuracy. Secondly for oil fingerprinting, PCA and HCA were applied 

to analyze the chemical composition data of the MV Manolis L. oil samples to identify their 

similarities and differences for oil source classification.  

The results indicate that DeepLabv3+ and UNet++ models achieved the highest mean 

Intersection over Union (mIoU) scores for multi-class and binary segmentation tasks, respectively, 

demonstrating their robustness in detecting oil spills. Specifically, DeepLabv3+ achieved a mIoU 

of 68.3% in the multi-class dataset, excelling in complex categories like oil spills and look-alikes. 

UNet++ achieved a mIoU of 87.5% in the binary dataset, highlighting its effectiveness in 

distinguishing oil from non-oil regions. For oil fingerprinting, the Support Vector Classifier (SVC) 

model exhibited the highest accuracy, particularly in predicting the composition of n-alkanes, 

PAHs, and TPH, with F-scores of 1.0, 0.987, and 0.975, respectively. These findings underscore 

the effectiveness of coupling advanced machine learning models with established chemical 



iv 

 

analysis techniques, offering a reliable approach for oil spill detection and the subsequent effective 

cleanup. 
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Chapter 1 Introduction 

1.1. Background and Motivation 

Oceanic and maritime oil pollution presents a significant and ongoing challenge, as shown 

by numerous studies (International Tanker Owners Pollution Federation (ITOPF), 2018; Liu et al., 

2017; Z. Wang et al., 1999). Both intentional and accidental discharges of petroleum hydrocarbons 

into waterbodies have led to numerous ecological catastrophes, adversely impacting marine 

ecosystems, reducing the productivity and quality of marine habitats. Given that oceans cover 

nearly two-thirds of the Earth's surface and play a vital role in human life and economic well-

being, preserving marine environments is crucial for sustainability in the short and long 

term(Bayindir et al., 2018). In marine environments, oil spills are particularly harmful and 

destructive compared to those occurring on land. They can quickly spread across vast distances 

and form a thin layer of oil that blankets the shorelines. The process of detecting and monitoring 

these spills is both time-consuming and expensive. Nevertheless, establishing immediate response 

mechanisms is essential to mitigate their devastating impacts (Raeisi et al., 2018). Effectively 

reducing the environmental consequences of such pollution hinges on consistent monitoring of the 

marine areas. This allows for precise measurements of the spread of oil, facilitating swift actions 

for mitigation and recovery. Over recent decades, the detection of marine oil spills has garnered 

significant attention due to their threats to human health and the profound environmental and 

economic damages they inflict on marine life, fisheries, wildlife, coastal communities, mangrove 

forests, and other socioeconomic aspects (Dabboor et al., 2018). 

Offshore oil platforms are a major source of marine oil pollution. These platforms, used to 

explore, extract, store, and process oil and natural gas, significantly increase the risk of oil spills 

with catastrophic impacts on the marine environment. The North Sea and the Gulf of Mexico in 

the United States are particularly vulnerable to such spills due to their high concentrations of 

drilling rigs, numbering 184 and 175 respectively (Fazeres-Ferradosa et al., 2019) .The Persian 

Gulf, far East Asia, and Southeast Asia also face similar threats with their substantial numbers of 

oil platforms. Marine pollution often results from various factors including accidents involving 
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ships or oil rigs, breakdowns of old and damaged infrastructures, human errors, and conflicts 

(International Tanker Owners Pollution Federation (ITOPF), 2018) . These incidents lead to 

significant contamination of ocean waters with liquid petroleum hydrocarbons, causing long-term 

damage to marine ecosystems (Hoffman & Jennings, 2011). In extreme cases, massive oil spills 

release millions of gallons of oil, leading to widespread environmental degradation, affecting 

wildlife and resulting in economic losses, particularly in tourism. Historical examples of such 

major oil spills have been summarized in Table 1.1. 

Table 1.1 Major oil spill disasters in the world history ranked by the amount of spill size 

(Jafarzadeh et al., 2021). 

No. Spill/Tanker Location Date 
Amount Spilled 

(million gallons) 

1 Gulf War oil spill Persian Gulf, Kuwait 
19 January 

1991 
380–520 

2 Deepwater Horizon 
Macondo Prospect, Central Gulf of 

Mexico 
22 April 2010 206 

3 Ixtoc-I Oil Spill 
Bay of Campeche off Ciudad del 

Carmen, Mexico 
3 June 1979 140 

4 
Atlantic Empress Oil 

Spill 

Off the coast of Trinidad and 

Tobago 
19 July 1979 90 

5 Kolva River Oil Spill Kolva River, Russia 6 August 1983 84 

6 
Nowruz Oil Field 

Spill 
Persian Gulf, Iran 

10 February 

1980 
80 

7 
Castillo de Bellver Oil 

Spill 
Off Saldanha Bay, South Africa 6 August 1983 79 

8 
Amoco Cadiz Oil 

Spill 
Portsall, France 16 March 1978 69 

9 
ABT Summer Oil 

Spill 

About 700 nautical miles off the 

coast of Angola 
28 May 1991 51–81 

10 
M/T Haven Tanker 

Oil Spill 
Genoa, Italy 11 April 1991 45 

11 Odyssey Oil Spill 
Off the coast of Nova Scotia, 

Canada 

10 November 

1988 
40.7 
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No. Spill/Tanker Location Date 
Amount Spilled 

(million gallons) 

12 The Sea Star Oil Spill Gulf of Oman 
19 December 

1972 
35.3 

13 
The Torrey Canyon 

Oil Spill 
Scilly Isles, U.K. 18 March 1967 25–36 

14 Sanchi Off Shanghai, China 6 January 2018 34 

15 Irenes Serenade Navarino Bay, Greece 
23 February 

1980 
30 

16 Urquiola La Coruna, Spain 12 May 1976 30 

17 Hawaiian Patriot 300 nautical miles off Honolulu 
23 February 

1977 
30 

18 Independenta Bosphorus, Turkey 
15 November 

1979 
28.9 

19 Jakob Maersk Oporto, Portugal 
25 January 

1975 
26.4 

20 Braer Shetland Islands, UK 5 January 1993 25.5 

 

In the event of an oil spill, effective detection and control measures are crucial. Oil spills 

composed of mineral oil on the ocean's surface can be identified using imaging radar technology. 

These spills suppress the minor surface waves that are essential for radar backscatter, causing them 

to appear as dark regions on synthetic aperture radar (SAR) imagery, as the darkness correlates to 

the normalized radar cross section (NRCS), indicating the intensity of the reflected radar signals 

(Hasimoto-Beltran et al., 2023a) . Yet not every dark area on SAR imagery is attributable to mineral 

oil spills. Such appearances might also result from natural surface films created by marine 

organisms like plankton or fish, calm wind conditions found behind geographical barriers like 

islands or mountains, sandbanks exposed during low tide, water disturbances from ship wakes, 

turbulence induced by rainfall on the water's surface, or wastewater released from terrestrial 

industrial or urban sources (Alpers et al., 2017). These alternative sources generate radar signatures 

similar to those of oil spills, known as “look-alikes,” to oil spills. Identifying true oil spills amidst 

these look-alikes in SAR imagery is thus highly challenging as shown in Fig 1.1.  
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Fig. 1.1 A sample of Sentinel 1 SAR images showing oil spill (Krestenitis et al., 2019b). 

Oil spill SAR images, which are captured using various satellite sensors, exhibit distinct 

characteristics, such as spatial resolution and waveband. These differences can make it challenging 

to accurately segment different types of oil spill images. Additionally, having a substantial amount 

of high-quality oil spill SAR image data is advantageous for training deep learning models that 

segment oil spills effectively. However, because oil spill incidents are infrequent, there is a limited 

supply of such image data available for research purposes. This scarcity of data can hinder the full 

training of deep neural networks for segmentation, consequently impairing the effectiveness of oil 

spill image analysis (Hasimoto-Beltran et al., 2023b) . 

In the realm of object detection for oil spill monitoring, the integration of advanced models 

has led to significant developments. Primarily, machine learning-based methods utilize algorithms 

trained on SAR data to identify oil spills by recognizing patterns specific to oil characteristics. 

This approach often involves complex computational models that can distinguish oil spills from 

natural sea surface features, providing high accuracy and efficiency in detection. Secondly, object 

detection methods focus on identifying and delineating the physical boundaries of oil spills within 

the imagery. Techniques such as convolutional neural networks are used to segment spills, 

allowing for precise quantification and monitoring over time. Lastly, semantic and instance 

segmentation involves classifying each pixel in an image to determine whether it is part of a spill 
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or not, with instance segmentation further separating individual instances of oil spills. This method 

is crucial for detailed analysis and is used in comprehensive environmental impact assessments, 

facilitating targeted cleanup and mitigation strategies. 

The exploration of machine learning-based methods for oil spill detection has been 

advanced by several significant studies. A notable study by Tong et al. (2019) demonstrated the 

use of a self-similarity parameter in Radarsat-2 and UAVSAR data to differentiate genuine oil 

slicks from look-alikes, achieving accuracies of 92.99% and 82.25%, respectively. This approach 

was notably effective in low wind conditions, providing a robust tool for environmental 

monitoring. Similarly, Conceição et al. (2021) advanced through the employment of two random 

forest classifiers to differentiate between various types of oil spills using SAR imagery, achieving 

a remarkable detection accuracy of 90% through enhanced feature application. In the realm of 

object detection for oil spill monitoring, the integration of advanced models has led to significant 

developments. Zhu et al. (2022) enhanced the YOLOX-S model with a truncated linear stretch 

module and score loss, improving its ability to detect marine oil spills. Concurrently, Huang et al. 

(2022) utilized the Faster R-CNN to rapidly and accurately detect oil spills with high precision. 

These advancements underscore the potential of deep learning techniques in real-time 

environmental monitoring and operational maritime activities, offering a rapid response to 

ecological threats. Semantic and instance segmentation technologies have also seen notable 

applications in oil spill detection. The use of deep convolutional neural networks (DCNNs), as 

highlighted in studies like those by Krestenitis et al. (2019a) and Ma et al. (2022) has improved 

the accuracy of oil spill segmentation by training on diverse and complex image data. These 

methods, especially the super pixel segmentation technique by Ma et al., allow for adaptable and 

efficient processing of SAR images, providing detailed and reliable detection of oil spills even 

under challenging conditions. This integration of advanced segmentation techniques showcases 

the evolving landscape of oil spill detection technologies, pushing the boundaries of environmental 

preservation efforts. 

This research employing state-of-the-art deep learning techniques. The use of advanced 

models such as U-Net, LinkNet, and DeepLabv3+ allows for effective handling of complex 

textures and small-scale features in satellite images. These models are designed to capture fine-

grained details and can distinguish between oil spills and other similar-looking features with high 
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accuracy. Techniques such as data augmentation and transfer learning are employed to overcome 

the issue of data scarcity (Li et al., 2023). Data augmentation artificially increases the size of the 

multi-class dataset by creating modified versions of existing data, while transfer learning leverages 

pre-trained models on similar tasks to improve performance on the target task. Models like 

DeepLabv3+ and Pyramid Scene Parsing Network (PSPNet) incorporate mechanisms to capture 

multi-scale features, which are crucial for maintaining high accuracy across different 

environmental conditions. Additionally, this research uses two case studies to evaluate the 

effectiveness of the latest semantic models on binary segmentation and multi-class segmentation 

in oil spill detection, ensuring reliable oil spill detection and monitoring (Fustes et al., 2014). 

Despite these advancements, gaps remain in the field of oil spill detection using semantic 

segmentation. One significant challenge is the lack of binary segmentation datasets specifically 

designed for distinguishing between oil and non-oil spills. This gap limits the ability of models to 

effectively learn and differentiate between these two critical categories. Additionally, the accuracy 

of oil spill class predictions in current models is not consistently high enough to ensure reliable 

detection and monitoring in all scenarios. These limitations highlight the need for more 

comprehensive datasets and further refinement of segmentation models to enhance their 

performance. 

While detecting oil spills using satellite imagery is crucial, the next vital step in this 

research is identifying the sources of these spills. Oil fingerprinting is an essential technique in 

environmental forensics used to pinpoint the origin of oil spills and understand their impact on 

marine ecosystems. However, traditional oil fingerprinting methods face several significant 

challenges (Bayona et al., 2015a). These methods often rely on manual analysis and basic 

statistical techniques, which can be both time-consuming and prone to human error, leading to 

limited accuracy and speed. Additionally, the chemical composition of oil is complex, comprising 

various hydrocarbons and other compounds, making it difficult for traditional methods to 

accurately identify and differentiate between different oil sources. This complexity complicates 

tracking the environmental behavior and degradation of oil over time. Furthermore, oil's chemical 

composition can change due to various environmental factors such as weathering, biodegradation, 

and photo-oxidation, which traditional methods may not adequately account for, resulting in 

inaccurate fingerprinting and source identification (Wang et al., 2006a). In this context, integrating 

advanced deep learning models and robust analytical techniques into oil fingerprinting can 
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significantly enhance the accuracy and efficiency of identifying oil spill sources. This approach 

not only aids in precise source identification but also helps in understanding the environmental 

impact and behavior of spilled oil over time, thereby supporting effective response and remediation 

efforts. 

Petroleum is composed of diverse compounds from saturates, aromatics, resins, and 

asphaltenes. Semi-volatile components belonging to saturates and aromatics that can be detected 

by gas chromatography (GC) usually range from C8 to C50 (Fig. 1.2). Specified hydrocarbon 

groups, including aliphatic hydrocarbons like n-alkanes, iso-alkanes, cycloalkanes, cyclic and 

aromatic petroleum biomarkers, as well as polycyclic aromatic hydrocarbons (PAHs) and their 

alkylated derivatives, have been identified by gas chromatography-mass spectrometry (GC/MS) 

effectively. Among these individual hydrocarbon groups, petroleum biomarkers derived from the 

original organic material reflect the depositional environment and geological history. They include 

sesquiterpenes, steranes, and terpenes, which are crucial for oil forensic identification. 

Additionally, polar compounds such as resins, primarily heterocyclic compounds containing 

elements like sulfur, nitrogen, and oxygen, are also present (Bayona et al., 2015b). High molecular 

weight compounds, often exceeding 1000 atomic mass units and known as asphaltenes, are 

dispersed as colloids in the heavier fractions of petroleum. Oil fingerprinting by gas 

chromatography (GC), an essential technique for oil spill analysis, relies on specific and stable 

chemical parameters unaffected by environmental changes like evaporation, dissolution, photo-

oxidation, and biodegradation. The MS profiles reveal the presence of hopane (m/z 217), sterane 

(m/z 231), and specific poly aromatic hydrocarbons (PAHs) (m/z 216), each with characteristic 

retention times and intensities. These biomarkers are stable chemical parameters unaffected by 

environmental changes like evaporation, dissolution, photo-oxidation, and biodegradation, making 

them essential for oil fingerprinting. Oil fingerprinting, an essential technique for oil spill analysis, 

relies on these stable markers. The process is tiered: Tier 1 involves assessing the gas 

chromatography-flame ionization detector (GC/FID) profile to determine the type of oil (Fig 

1.2(A)). Tier 2 utilizes GC/MS to identify specific petroleum biomarkers and hydrocarbons (Fig 

1.2 (B)). Tier 3 involves calculating diagnostic ratios between certain compounds to compare 

potential sources with spilled samples. These methodologies allow for the precise identification 

and comparison of oil samples, aiding in environmental forensic investigations and the 

management of oil spill incidents. 
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Fig. 1.2 (A) GC–FID chromatograms of possible oil spill sources (B) GC–MS trace of selected 

molecular markers or biomarkers  (Bayona et al., 2015b) 
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A research project examined the changes in the composition of a fuel oil spill from 2000 

in mangrove sediment cores in Brazil over four years using GC/FID and GC/MS techniques (Farias 

et al., 2008). The study differentiated between highly affected, less affected, and unaffected areas. 

Diagnostic ratios involving hopanes and steranes confirmed the presence of the oil, while analyses 

of total PAHs and specific PAH ratios like fluoranthene/pyrene and alkylated PAHs indicated the 

level of contamination. In the most affected regions, sediments showed evidence of oil migration 

into deeper layers. The challenging environmental conditions and ongoing contamination 

complicated the relationship between observed PAH levels and the spill, making it difficult to 

distinctly trace the oil's origin in the presence of other residues. The uneven distribution of oil in 

the mangrove sediments highlighted the difficulties of determining the contamination state and 

studying oil's environmental impact.  

Advanced techniques such as comprehensive two-dimensional gas chromatography (GC) 

have proven essential for addressing these challenges, providing detailed insights into oil 

weathering processes and enhancing the understanding of how oil behaves in complex 

environmental contexts. GC has significantly advanced the analysis of spilled oil samples, 

addressing many of the previous limitations. This technique is especially useful for assessing oil 

weathering, as it enables researchers to measure retention indices that predict liquid-vapor 

pressures, solubilities in water, and partition coefficients between octanol-water and air-water, as 

well as vaporization enthalpies. Gaines et al. (1999) compared a spilled diesel sample against a 

database to pinpoint its origin. The two-dimensional chromatograms used flame ionization 

detection to assess the spill and potential sources, focusing on the presence and intensity of peaks 

in key regions including naphthalenes, anthracenes, phenanthrenes, alkanes, and cycloalkanes. 

This comparison, visualized through bar graphs of peak ratios, helped quantify similarities and 

differences, facilitating a better understanding of the spill's characteristics and origin. 

After preprocessing GC chromatograms, it's crucial to apply statistical methods or linear 

algebra to derive meaningful chemical insights from the dataset. Chemometrics enhances the 

extraction of information from multidimensional GC data by applying mathematical models 

through multivariate statistics, enabling the establishment of valid statistical correlations. 

Techniques such as Principal Component Analysis (PCA) for exploratory analysis, Partial Least 
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Squares (PLS) for multivariate regression calibration, and Partial Least Squares Discriminant 

Analysis (PLSDA) for distinguishing between known sample groups are used. Effective 

preprocessing, careful selection of parameters, and rigorous validation of chemometric models are 

essential for determining the performance and robustness of these models and for understanding 

the main sources of variance within the data. 

Despite the advancements in environmental forensics, there remain significant gaps that our 

research aims to address, particularly in the application and integration of cutting-edge 

technologies and methodologies. 

          1.Integration of Machine Learning: Traditional oil fingerprinting techniques, while 

effective, often lack the integration of advanced computational methods that can significantly 

enhance the precision and efficiency of analyses. Our research leverages machine learning to 

process complex, multivariate datasets, enabling a more precise classification of oil types. This 

approach not only increases the accuracy of identifying oil spill sources but also improves the 

speed of these determinations, which is essential for timely environmental response and 

remediation efforts. 

         2.Enhanced Analytical Methods: Further bridging the gaps in traditional environmental 

forensics, our study incorporates sophisticated analytical methods such as PCA and hierarchical 

clustering (HCA). These techniques allow for a more comprehensive analysis of the geochemical 

characteristics of hydrocarbons. By doing so, we can categorize crude oil more effectively based 

on its physicochemical properties, providing deeper insights into its behavior and environmental 

impact. This advancement addresses a crucial need for more detailed and nuanced analysis within 

the field of oil spill forensics. 

        3.Application in Complex Scenarios: The practical utility of our methods is demonstrated 

through their application to complex real-world scenarios, such as the MV Manolis L shipwreck. 

This case study exemplifies how our enhanced methods can be applied successfully where 

traditional techniques may fall short, offering robust tools that stand up to the challenges posed by 

complicated environmental disasters. 

       4.Data-Driven Decision Making: By employing a data-driven approach, our research 

supports more informed decision-making in environmental management and spill response 
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strategies. This aligns with the contemporary needs for rapid, accurate environmental assessments, 

enabling authorities and stakeholders to act more decisively and effectively in mitigating the 

impacts of oil spills. 

Through these enhancements, our research not only fills existing gaps in environmental 

forensics but also sets a new standard for the field, pushing the boundaries of what can be achieved 

in the study and mitigation of environmental pollutants. This progression is crucial for developing 

more resilient ecosystems and for ensuring the health of our planet in the face of industrial 

accidents and natural disasters. 

1.2. Thesis Objective 

The thesis objectives are proposed as follows:  

        1. Developing and Testing Advanced Segmentation Models: The primary goal is to create 

and implement advanced semantic segmentation models—such as UNet, LinkNet, UNet++, FPN, 

DeepLabv3+, and PSPNet—to accurately detect and segment oil spills from SAR imagery and 

evaluating on real case datasets. The study will assess these models' ability to differentiate oil spills 

from other similar-looking features, like algae blooms or ship wakes, under various environmental 

conditions. The objective is to identify the most effective model for real-world applications in both 

multi-class and binary segmentation tasks, ensuring prompt and accurate oil spill detection. 

        2. Optimizing Model Training and Performance: This research aims to enhance the 

training and validation of the selected segmentation models by addressing data scarcity and 

variability issues in SAR imagery. Transfer learning will be employed to improve model accuracy 

and reduce training time, enabling the models to generalize effectively across different scenarios. 

The focus is on optimizing model architectures and applying transfer learning to boost the 

efficiency and reliability of oil spill detection in dynamic marine environments. This used to lower 

training epochs by using pretrained models on massive dataset like Imagnet which will be 

evaluated on models training process. 

        3. Enhancing Oil Spill Fingerprinting Using Analytical Methods: The research seeks to 

improve oil spill classification and source identification by integrating advanced analytical 

techniques like PCA and HCA with machine learning algorithms. The objective is to automate the 
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analysis of complex datasets, overcoming the limitations of traditional fingerprinting methods, and 

ensuring accurate identification of oil sources despite environmental changes. This will support 

timely and effective environmental response efforts. 

        4. Validating Models Through Real-World Case Studies: The practical utility of the 

developed techniques will be demonstrated through real-world case studies, such as the MV 

Manolis L shipwreck and canal Suez oil spill detection case. These case studies will test the 

models' effectiveness and robustness in actual spill scenarios, providing insights into their 

strengths and areas for improvement. The goal is to confirm the models' applicability to real-world 

incidents and contribute to better decision-making in environmental management and spill 

response strategies. 

By achieving these objectives, the research will advance the accuracy, efficiency, and 

reliability of tools for detecting and fingerprinting oil spills, ultimately aiding in the protection of 

marine environments. 

1.3. Thesis Outline  

This thesis delves into the application of machine learning and semantic segmentation 

techniques within the realm of environmental forensics, with a particular focus on identifying the 

sources of marine oil spills and detecting these spills through satellite imagery. The structure of 

this thesis is organized into five comprehensive chapters, each addressing a critical component of 

the research. Below is an overview of the thesis structure, accompanied by a simple explanation 

of each chapter. 

 Chapter 1 discusses the significance of oceanic and maritime oil pollution, highlighting 

the detrimental impacts of oil spills on marine ecosystems and the importance of preserving marine 

environments. It emphasizes the challenges in detecting and monitoring oil spills and the need for 

immediate response mechanisms. The chapter also reviews major sources of marine oil pollution, 

including offshore oil platforms, and outlines the environmental and economic impacts of 

significant oil spill incidents. It also discusses the objectives of the thesis, which include enhancing 

oil spill detection accuracy using advanced semantic segmentation models, optimizing model 

training and performance validation through transfer learning, developing robust oil fingerprinting 
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techniques using advanced analytical methods, and evaluating model performance in real-world 

scenarios through case studies.  

Chapter 2 provides a comprehensive review of methodologies for marine oil spill 

segmentation and oil fingerprinting, focusing on the application of deep learning algorithms in 

environmental monitoring. The chapter first discusses semantic segmentation methods, including 

the use of self-similarity parameters and random forest classifiers, as well as advanced object 

detection techniques like enhanced YOLOX-S and Faster R-CNN models. It highlights the 

effectiveness of deep convolutional neural networks (DCNNs), U-NET, DeepLabV3, and Mask 

R-CNN in accurately detecting oil spills in SAR images. Additionally, the chapter explores oil 

fingerprinting for marine oil spill identification, reviewing traditional methods such as gas 

chromatography-mass spectrometry (GC/MS) and modern data-driven models employing machine 

learning algorithms. By integrating advanced analytical methods with traditional techniques, the 

chapter underscores the improved classification and source identification of oil spills. Case studies, 

including the MV Manolis L shipwreck, are used to demonstrate the practical utility of these 

approaches. 

Chapter 3 provides a detailed description of the methodology used for oil spill detection 

and oil fingerprinting. It outlines the datasets, data preparation processes, and the models and 

techniques applied to achieve accurate detection and classification of oil spills. The comprehensive 

methodology ensures a systematic approach, integrating advanced imaging techniques, thorough 

data processing steps, and sophisticated machine learning models. The chapter begins with an 

explanation of the framework, highlighting the use of SAR images and semantic segmentation 

models like U-Net, LinkNet, UNet++, FPN, DeepLabv3+, and PSPNet, trained on high-quality 

datasets. It also details the preprocessing steps undertaken to ensure high-quality input data for the 

segmentation models. Following detection, oil fingerprinting analyzes the chemical composition 

of detected oil samples using GC/MS and GC/FID data, with unsupervised classification 

techniques like PCA and k-means clustering, and further validated by HCA. The chapter also 

covers the development and optimization of machine learning models such as KNN, SVC, RFC, 

DTC, LRC, and EVC for classifying oil samples, with a focus on hyperparameter optimization and 

avoiding overfitting. Finally, it describes the performance evaluation methods using cross-
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validation and the F-score metric, ensuring a robust and reliable classification process for real-

world applications in oil spill detection and fingerprinting. 

Chapter 4 is divided into two main sections: oil spill detection results and oil fingerprinting 

results. In the first section, the performance of different segmentation models is evaluated using 

quantitative metrics like intersection-over-union (IoU) and mean IoU (mIoU). The qualitative 

analysis includes visual comparisons of model outputs, highlighting their strengths and 

weaknesses in detecting and segmenting oil spills. The second section focuses on the application 

of PCA and HCA for oil fingerprinting. It presents key findings from the chemical composition 

analysis and evaluates the performance of various machine learning models using accuracy and F-

scores. 

Chapter 5 synthesizes the key findings of the research, discussing the overall effectiveness 

and limitations of the methodologies employed. It outlines the advantages of integrating advanced 

remote sensing techniques with machine learning models for environmental monitoring, 

highlighting improvements in detection accuracy and operational efficiency. However, the chapter 

also addresses significant challenges, such as the high computational demands and issues related 

to data acquisition, including the availability and quality of satellite imagery. It explores the 

uncertainties related to model predictions, which can arise from environmental variations, such as 

changing weather conditions and differing geographical features, as well as from incomplete data 

coverage. These uncertainties can lead to variability in model performance and potential 

inaccuracies in detecting and analyzing oil spills.  

Chapter 6 comprises a summary of the thesis, contributions of the selected methods, and 

recommended future studies. It presents a comprehensive framework for oil spill detection and 

fingerprinting, integrating advanced remote sensing techniques with machine learning models. The 

methodology involves detecting oil spills using SAR images processed through semantic 

segmentation models and analyzing the chemical composition of detected oil samples. The 

contributions enhance detection accuracy and reliability, providing valuable insights into chemical 

composition and source identification. Future research recommendations include expanding 

datasets, integrating additional data sources, developing explainable AI, refining models, and 

applying methodologies to other environmental monitoring tasks. 
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This detailed outline provides a roadmap for understanding the comprehensive and 

multifaceted approach taken in this thesis to address the challenges of marine oil spill detection 

and fingerprinting using cutting-edge machine learning techniques. 
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Chapter 2 Literature Review 

2.1. Marine Oil Spill Segmentation with Image Processing 

Methodologies 

Research in oil spill detection techniques can be categorized into two main areas: "machine 

learning-based techniques for oil spill detection" and "deep learning-based techniques for oil spill 

detection." Machine learning-based techniques typically involve algorithms such as Support 

Vector Machines (SVM), Random Forests (RF), and k-Nearest Neighbors (KNN) (Boateng et al., 

2020a, 2020b; Cristianini & Shawe-Taylor, 2000). These techniques rely on manually extracted 

features from images and then use these features to train models for detecting oil spills. Although, 

these methods often require significant preprocessing and feature engineering, and their 

performance can be limited by the quality and quantity of the available data. Deep learning 

algorithms, which consist of sophisticated neural networks designed to extract complex features 

from large image datasets (Al-Ruzouq et al., 2020), analyze data through multiple layers to identify 

unique patterns. These advancements have been successfully applied in various fields, consistently 

outperforming traditional methods (Bhatnagar et al., 2017; He et al., 2016). In environmental 

monitoring, particularly for oil spill detection, deep learning models have demonstrated substantial 

effectiveness. The "Deep learning-based techniques for oil spill detection" category is further 

divided into two principal detection techniques: 

Object detection technique identifies and locates oil spills within larger scenes. Object 

detection models, such as YOLO (You Only Look Once) and Faster R-CNN (Region-based 

Convolutional Neural Network), generate bounding boxes around detected oil spills (Sudha & 

Saro Vijendran, 2024; Y. J. Yang et al., 2021). This approach is advantageous for rapidly 

pinpointing the location and extent of oil spills within vast areas covered by satellite or aerial 

imagery. It provides a high-level overview of the spill's presence and its approximate boundaries, 

making it useful for quick assessments and directing cleanup efforts. Instance and semantic 

segmentation technique goes beyond merely locating oil spills by categorizing each object and 

pixel in an image. Instance segmentation distinguishes and labels individual objects within an 
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image, ensuring that each detected oil spill is treated as a separate entity, even if they overlap. 

Models like Mask R-CNN are commonly used for this purpose (J. Zhang et al., 2023). Semantic 

Segmentation, on the other hand, classifies each pixel of an image as part of an oil spill or the 

surrounding environment, providing a detailed pixel-level map of the spill. Models like U-Net and 

DeepLabV3+ are effective for semantic segmentation. This approach is crucial for understanding 

the precise boundaries and area of the oil spill, facilitating detailed analysis and accurate 

measurement of the spill's impact. 

These advanced techniques enhance the accuracy and reliability of oil spill detection, 

providing critical tools for environmental protection and disaster response (Basit et al., 2022). By 

combining object detection with instance and semantic segmentation, researchers can achieve both 

broad situational awareness and detailed analytical insights, ensuring comprehensive monitoring 

and effective intervention strategies. 

2.1.1. Machine-learning-based methods 

In the article by Tong et al. (2019) introduced a novel approach that utilizes a self-similarity 

parameter sensitive to the randomness of scattering targets, aiding in distinguishing genuine oil 

slicks from look-alikes. The study evaluates the effectiveness of this method using datasets from 

Radarsat-2 and UAVSAR, achieving oil spill detection accuracies of 92.99% and 82.25%, 

respectively. Additionally, the self-similarity parameter proves particularly effective in low wind 

conditions (2–3 m/s) and less so in higher wind conditions (9–12 m/s). This research marks a 

significant advance in the remote sensing of marine oil spills, offering more reliable tools for 

environmental monitoring and protection. The research conducted by Conceição et al. (2021) 

introduced a set of open-source methodologies adept at addressing oil-like spills through the 

deployment of two random forest classifiers. The first classifier leverages ocean Synthetic 

Aperture Radar (SAR) imagery to categorize various inputs such as biofilm and multi-substance 

oil spills. The second classifier, referred to as the Radar Image Oil Spill Seeker (RIOSS), targets 

oil spill detection on marine surfaces using Sentinel-1 SAR images. RIOSS enhances the feature 

application to the random forest algorithm, significantly boosting the accuracy of the detection 

system by 90%. This enhancement aids in achieving more precise and reliable detection outcomes 

in the challenging marine environment. 
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Magri et al. (2021) utilized a SVM classifier to determine the optimal features for the 

detection and classification of oil spills from satellite imagery. This application was specifically 

used to assess an environmental spill caused by a ship collision. The study highlights the SVM's 

robust classification capabilities, especially when only a limited number of training samples are 

available. The ability to precisely identify oil spills is crucial for initiating timely early warnings 

and providing essential data for quick remediation actions and emergency responses. Mdakane & 

Kleynhans (2022) explored the classification of oil spills using images from shipborne radar. The 

methodology encompassed three stages: First, image preprocessing was conducted to remove any 

interference and speckles from the original gray-scale images. Following this, wave patterns were 

classified using a SVM. Subsequent stages involved the selection of areas effective for monitoring 

and the extraction of oil spills utilizing a local adaptive threshold technique. The study revealed 

that the SVM effectively extracts relevant wave information from the radar images, and the local 

adaptive threshold method is versatile in its application for segmenting oil films. 

2.1.2. Object detection 

Zhang et al. (2022) incorporated a truncated linear stretch module and score loss into the 

original YOLOX-S model, enhancing its ability for marine oil spill detection. Their research 

confirms the effectiveness of the modified linear stretching module and score loss in boosting 

detection accuracy. Future studies aim to test the revised model across diverse SAR remote sensing 

images to evaluate its performance in identifying oil spills at sea. In the study by Y. J. Yang et al. 

(2021), two initial experiments were conducted using satellite SAR imagery to detect oil spills, 

utilizing the YOLOv4 object detection system. The model faced challenges in differentiating 

between objects, prompting the recommendation to adjust pixel thresholds to 28 in the first test. 

The average precisions (APs) for the validation and test sets were 67.80% and 65.37%, 

respectively, indicating that the model did not experience overfitting. Results from the second test 

revealed that the use of various data enhancements did not affect the study's outcomes. However, 

the introduction of rotational data augmentation posed a risk of overfitting due to the prevalence 

of small, nearly circular objects typical of oil spills. 

The novel deep learning approach for detecting marine oil spills using satellite SAR 

imagery, developed by Huang et al. (2022), utilizes the Faster R-CNN to address limitations of 

existing methods. The faster R-CNN demonstrated robust performance, achieving precision and 
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recall rates of 89.23% and 89.14%, respectively, with an average precision of 92.56%. The model 

efficiently processes each full SAR image in less than 0.05 seconds using an NVIDIA GeForce 

RTX 3090 GPU, showcasing its capability for rapid and accurate oil spill detection under various 

environmental conditions. This method shows promise for real-time applications in marine 

conservation and operational maritime monitoring, making it a significant advancement in 

environmental remote sensing. In a comprehensive study, Sudha & Saro Vijendran (2024)outline 

an innovative approach to detecting and managing oil spills through advanced computer vision 

techniques, employing a multi-stage strategy to improve the accuracy and efficiency of oil spill 

identification. The researchers utilize Contrast Limited Adaptive Histogram Equalization to 

enhance image quality and reduce data noise, followed by a Fused UNet Segmentation model for 

precise delineation of contaminated areas. Key features are then extracted using a CNN based on 

the AlexNet architecture, which significantly improves the model's discriminative ability. The core 

of their method integrates Faster R-CNN with Enhanced MobileNetV2 architecture, enabling real-

time processing and high-performance object recognition.  

In the innovative study by Huang et al. (2022), a novel framework named SAM-OIL is 

introduced to improve the detection of oil spills in SAR imagery. This framework integrates several 

advanced components: YOLOv8 for initial object detection, an adapted Segment Anything Model 

(SAM) for generating category-agnostic masks, and an Ordered Mask Fusion (OMF) module for 

merging these elements into a coherent output. The SAM-OIL framework marks the first use of 

SAM in the context of oil spill detection, significantly advancing the field by addressing the 

limitations of previous semantic segmentation-based methods that required extensive finely 

annotated data. By leveraging the combined capabilities of these components, SAM-OIL achieves 

a mean Intersection over Union (mIoU) of 69.52%, showcasing its effectiveness and efficiency 

over existing methods. The study highlights the adaptability and accuracy improvements brought 

by the Adapter and OMF modules within the SAM-OIL framework. 

2.1.3. Instance and semantic segmentation  

Krestenitis et al. (2019b) demonstrated that deep convolutional neural networks (DCNNs) 

are effective for detecting oil spills through semantic segmentation. The DCNN models were 

specifically trained and evaluated on a standardized dataset on an individual basis. Among these, 

the DeepLabv3 model achieved the highest accuracy, attributed to its longer inference time. 
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However, the DeepLabv3 model, despite its advantages, has limitations in differentiating oil spill 

classes due to similar pixel classifications, which might be a result of the limited sample size and 

the particularities of the training approach used in the study. The adoption of deep neural networks, 

such as U-NET and DeepLabV3, has improved the accuracy of oil spill segmentation due to their 

ability to train on multiple images. These networks function with distinct architectures, making 

their integration challenging. The study by Ghara et al. (2022)  utilized U-NET and DeepLabV3 

to analyze SAR images, with U-NET achieving a higher detection accuracy of 78.8% compared to 

54% by DeepLabV3. 

Ma et al. (2022) developed a super pixel segmentation method designed to enhance the 

processing of SAR images. One of the key benefits of this approach is its adaptability during 

training, as the algorithm adjusts shapes based on segmentation outcomes and edge definitions to 

meet targeted results. Furthermore, the simplicity of the network structure contributes to 

computational efficiency, while still maintaining high performance and strong generalization 

capabilities. Ronciet al. (2020) introduced a new semantic segmentation method for detecting oil 

spills. Although the enhanced U-Net model surpassed the original, the standard U-Net trained 

through adversarial learning achieved superior performance, reaching a Jaccard Index of 82% and 

an Accuracy Index of 98.3%. 

Yekeen et al. (2020) introduced a novel deep learning model for automated marine oil spill 

detection. The model leverages instance segmentation through a Mask-Region-based 

Convolutional Neural Network (Mask R-CNN), using ResNet 101 on COCO with a Feature 

Pyramid Network for enhanced feature extraction. Tested over 30 epochs with a learning rate of 

0.001, the model significantly outperformed traditional machine learning and semantic 

segmentation models in detecting oil spills and similar-looking substances (look-alikes) in SAR 

images. The model achieved an impressive overall accuracy of 96.6% for oil spill detection and 

91.0% for look-alike segmentation, with ship detection achieving the highest accuracy at 98.3%. 

This suggests that deep learning instance segmentation can provide more reliable and accurate 

results in environmental monitoring applications like oil spill detection in marine settings. The 

research by Basit et al. (2021) employs deep learning methodologies to address the critical 

environmental issue of oil spills in marine and coastal ecosystems. The model was trained using a 

comprehensive dataset of Sentinel-1 SAR images, which have been segmented into distinct 



21 

 

categories including sea surface, oil spills, look-alikes, ships, and land areas. It achieved IoU of 

95.69% for sea surface, 60.85% for oil spills, 54.90% for look-alikes, 70.27% for ships, and 

96.79% for land. Collectively, these results contribute to a mean IoU of 75.70% across all 

categories, marking a nearly 10% improvement over previous state-of-the-art techniques. This 

significant enhancement in detection accuracy demonstrates the potential of using UNet and 

similar deep learning models for rapid and reliable oil spill response, helping to mitigate one of 

the major causes of water pollution. 

Shaban et al. (2021) proposed a two-stage deep-learning model that relies on extracting 

specific handcrafted features from SAR images, such as object standard deviation and background 

standard deviation, to overcome the challenges posed by unbalanced data and enhance detection 

accuracy. The model uses a novel CNN structure for patch generation, emphasizing balanced data 

patches to reduce background bias and improve segmentation outcomes. The results have shown 

high accuracy, sensitivity, specificity, and a weighted Kappa of almost 99%, with the deep-learning 

model outperforming existing state-of-the-art methods in precision and Dice scores. However, the 

framework mainly focuses on oil spill detection and is not suitable for multi-class problems like 

detecting ships or other objects. Zhu et al. (2022) introduce the CBD-Net, a deep learning 

framework designed to improve the detection of oil spills in SAR images. This network tackles 

common challenges such as uneven intensity, high noise, and blurred boundaries in oil spill 

images, which are often exacerbated by natural phenomena like waves and currents. This method 

utilizes a spatial and channel squeeze excitation (scSE) block to increase the internal consistency 

of detected oil spill regions, making the system particularly adept at managing smaller, less 

conspicuous targets that other models might overlook. The results were promising, with CBD-Net 

achieving the highest mIoU of 83.42% and an F1 score of 87.87%, significantly outperforming 

comparative models. These metrics indicate robust and accurate extraction of oil spill regions from 

complex SAR images, which is crucial for effective marine environmental monitoring. 

Li et al. (2023) introduced the Dual-Stream U-Net (DS-UNet), a novel architecture 

designed for oil spill detection in SAR images. The DS-UNet also includes an edge extraction 

branch that specifically targets the reduction of speckle noise, which is a common challenge in 

SAR image analysis. The performance of the DS-UNet was rigorously tested against two real-

world datasets, Palsar and Sentinel, where it demonstrated superior performance over several state-
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of-the-art semantic segmentation methods. Quantitative results showed that the DS-UNet 

outperforms other models in terms of Dice Similarity Coefficient (DSC), F1 score, and Hausdorff 

Distance (HD) across both datasets. These metrics indicate the DS-UNet's ability to more 

accurately segment oil spills from SAR images, achieving finer contour detection and more 

detailed information extraction compared to other models like AttnUNet, R2U-Net, and 

NestedUNet. In the study conducted by Soh et al. (2024), a sophisticated approach to detecting 

marine oil spills using SAR images is presented. This method leverages an optimized encoder-

decoder network model, specifically a refined U-Net architecture, to effectively identify oil spills 

with reduced computational demands. The model employs advanced techniques such as depth wise 

separable convolutions, group normalization, and bilinear interpolation-based up sampling to 

enhance performance while maintaining a smaller model size. The effectiveness of this approach 

is validated using two public SAR datasets, and the inclusion of polarimetric data has further 

improved detection accuracy, achieving an F1-score of 91.65% and an Intersection over Union 

(IoU) of 84.59%.  

Wang et al. (2024) conducted a comprehensive study on marine oil spill detection using an 

improved polarimetric feature derived from polarization SAR images. Emphasizing the utilization 

of SAR which operates under all weather conditions due to its fine spatial resolution. Their 

research introduced an enhanced polarimetric feature based on the Cloude-Pottier target 

decomposition. This feature was tested within three neural network models: U-Net, FCN-8s, and 

DeepLabv3+ResNet-18, with U-Net achieving the highest accuracy and dice scores. This 

development indicates a significant advancement in the detection of oil spills, particularly in 

challenging conditions like low wind, rain cells, and young ice that typically affect the accuracy 

of detection methods. Their findings underline the potential of using sophisticated imaging 

techniques to enhance the precision and speed of oil spill detection, which is critical given the 

ongoing risks associated with marine oil transportation and extraction activities. In their impactful 

study by Shanmukh et al. (2024) ,exploring the use of deep learning techniques to enhance oil spill 

detection in marine environments through SAR imagery. The research is crucial for the rapid 

detection and precise segmentation of oil spills, crucial for initiating swift response measures and 

mitigating environmental damage. The team utilized advanced deep learning algorithms such as 

PSPNet, DeepLabV3, and Fully Convolutional Networks (FCN) integrated with U-Net to perform 

semantic segmentation of SAR images. These models were meticulously trained on a dataset 
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specifically labeled to indicate regions affected by oil spills, ensuring the algorithms accurately 

identify and delineate these areas. Notably, U-Net displayed superior IoU scores and achieved an 

impressive accuracy rate of 95%, highlighting its effectiveness in segmenting detailed and 

complex image data. This study demonstrates the significant capabilities of deep convolutional 

neural networks in analyzing SAR imagery for efficient and reliable oil spill detection, offering 

substantial benefits for environmental protection and disaster response in marine contexts. 

Despite significant advancements, the existing studies on oil spill detection using various 

deep learning models face several limitations and challenges. One primary challenge is the data 

scarcity and variability in SAR imagery. The limited availability of high-quality, annotated datasets 

restricts the training of robust models. To address this issue, this research aims to create a binary 

segmentation dataset specifically for oil spill detection. This newly developed dataset will not only 

aid in improving the current study but also serve as a valuable resource for future research efforts. 

The models used in these studies have achieved good accuracy in detecting oil spills, but their oil 

spill class detection is not sufficient for achieving highly accurate detection. This study aims to 

address this by creating a specific binary segmentation to focus more on detecting oil spills, thereby 

reaching higher accuracy. 

Semantic segmentation is chosen over object detection for several reasons. One primary 

reason is that semantic segmentation allows for the precise calculation of the oil spill area, which 

is crucial for creating accurate masks in the binary-specific dataset. These masks confirm the 

correct location of oil spills, ensuring that the segmentation is both accurate and reliable. Accurate 

area measurement is vital for assessing the extent and potential impact of the spill, enabling more 

effective response strategies. Additionally, semantic segmentation provides pixel-level 

classification, offering a detailed and comprehensive understanding of the oil spill's spread and 

boundaries. This level of granularity is essential for environmental monitoring and remediation 

efforts. Moreover, semantic segmentation models are well-suited for handling the complex and 

often irregular shapes of oil spills, which can be challenging for traditional object detection 

methods that rely on bounding boxes. This approach also facilitates better integration with other 

remote sensing data and geospatial analyses, enhancing the overall robustness and applicability of 

the findings. 
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2.2. Oil Fingerprinting for Marine Oil Spill Identification 

Since petroleum products are the world's primary energy source, their production and 

consumption are increasing at a rate that is having an increasing influence on the environment 

(Sharma & Shrestha, 2023). Despite significant advancements in reducing leakages through 

enhanced technological and regulatory measures and improved industry practices, the risk of major 

oil spills remains. Daily, hundreds to thousands of oil spills occur worldwide, involving everything 

from various types of crude oil to a wide array of refined products. These range from heavy, long-

lasting fuels to lighter, ephemeral, yet highly toxic substances within marine environments. The 

outcomes, behaviors, and effects of oil spills in these settings depend on the chemical composition 

and physical properties of the oil, as well as the weathering processes involved. Marine oil spills 

continue to be a major concern because of their substantial financial implications and the lasting, 

profound harm they cause to marine ecosystems, local economies, and coastal communities. 

There are ten primary techniques for addressing marine oil spills: oil booms, skimmers, 

sorbents, in-situ burning, dispersants, hot water treatments, high-pressure washing, manual labor 

bioremediation, chemical stabilization with elastomers, and natural recovery (Chezhian. et al., 

2024). Each technique offers unique benefits and limitations and is suited for specific situations. 

For instance, oil booms are effective when the oil is localized or in a stable marine setting, where 

skimmers can then be deployed to extract the oil from the water. When oil booms are insufficient 

for containing a spill, dispersants are utilized to expedite the breakdown of oil. These agents 

increase the surface area of oil particles, promoting chemical interactions with water, hindering 

the spread of the oil slick, and facilitating microbial degradation of the oil. In managing oil spill 

incidents, considerations extend beyond merely cleaning up. Identifying the origin of the oil, 

distinguishing between different types of oils, and tracking the degradation and weathering of oils 

in various environments are crucial actions. Additionally, determining legal responsibilities is vital 

for effective oil spill remediation. To fulfill these roles, oil fingerprinting analysis serves as a robust 

tool. This technique, essential in the field, employs geochemical methods to analyze the 

composition of hydrocarbons released into the environment. It takes into account various 
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transformative processes that hydrocarbons undergo, such as biodegradation, gas flushing, water 

washing, and evaporation (Wang et al., 2006a). 

Moreover, factors such as temperature, reservoir compartmentalization, and aquifer 

activity significantly impact the transformations occurring within. Consequently, hydrocarbons 

derived from a single source rock exhibit unique characteristics across different reservoirs 

(Mulabagal et al., 2013).The identification of hydrocarbons from various reservoirs involves 

analyzing changes in their composition or pinpointing distinct hydrocarbon "fingerprints." Oil 

fingerprinting methods are routinely employed to pinpoint the origins of an oil spill by comparing 

the compositional features of the spilled oil with those of potential sources. Determining the 

sources and properties of these oils is essential for assessing the consequences and environmental 

impacts of the spill, crafting appropriate responses, and allocating responsibilities and legal 

liabilities (Song et al., 2016). 

2.2.1. Traditional methods 

Recently, several sophisticated tools for detecting biomarkers have become accessible. 

These include comprehensive two-dimensional GC, GC/MS, isotopic resolution mass 

spectrometry (IRMS), electrospray ionization liquid chromatography-mass spectrometry (ESI-LC-

MS), and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-

ICRMS) (Cho et al., 2012; Mansuy et al., 1997). GC/MS has been successfully used as a 

conventional technique for oil forensic identification, especially isomers and those with similar 

retention times. This technique allows for an effective analysis of the effects of physiochemical 

weathering on biomarkers (Yang et al., 2011) .In their pivotal study, Ismail et al. (2016) highlighted 

the significance of GC/FID and GC/MS in oil spill fingerprinting. The study demonstrated how 

chemometric fingerprinting could significantly enhance the efficiency and reduce the costs and 

time required for identifying oil spill sources, providing crucial independent validation in the 

assessment of oil spill pollution in Malaysia. 

In the study conducted by Wang (2022) chemometric techniques are leveraged to identify 

oil spills. The research underscores the utility of methods like GC/MS alongside advanced 

statistical tools such as hierarchical cluster analysis (HCA), principal component analysis (PCA). 

This application of chemometric methods not only provides a robust framework for identifying oil 
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spill sources but also significantly enhances the efficiency and accuracy of oil spill forensics, 

proving essential for environmental impact assessments and mitigation strategies. Mirnaghi et al. 

(2019) utilized fluorescence spectroscopy coupled with excitation-emission matrix-parallel factor 

analysis-principal component analysis (EEM-PARAFAC-PCA) to analyze environmental samples 

from four notable oil spill sites in Canada. This methodological approach highlights the dynamic 

nature of environmental PAH changes post-spill and underscores the complexity of accurately 

classifying oil spill impacts over time. Diagnostic ratios serve as essential tools in oil 

fingerprinting, facilitating the identification, characterization, and tracking of oil weathering. One 

key benefit of using diagnostic ratios between spilled oil and potential source oil is their ability to 

minimize the effects of concentration variances, thereby autonomously normalizing the data (Song 

et al., 2018). Typically, oil source fingerprinting is performed using GC/MS techniques, where 

specific diagnostic biomarker ratios are calculated. These ratios are derived from a variety of 

published ratios and some newly developed ones, following similar principles. There are eight 

principal biomarker classes, each characterized by distinct diagnostic ratios that aid in 

distinguishing oil sources and conditions (Song et al., 2019). 

2.2.2. Data-driven models 

Machine learning (ML), a key part of artificial intelligence (AI), emerged as its own distinct 

field in the 1990s and has since seen significant growth (Song et al., 2018). While there are various 

definitions of ML, essentially, it is a branch of AI that enables software to enhance its predictive 

accuracy by identifying patterns within the data, even without specific programming for such tasks. 

In the realm of ML, data is categorized into two types: labeled and unlabeled. Labeled data is 

characterized by having both input and the corresponding output parameters in a format that can 

be processed by machines. There are three principal types of machine learning algorithms: 

supervised learning, unsupervised learning, and reinforcement learning, as identified by Oladipupo 

(2010).This discussion will primarily focus on supervised and unsupervised learning and their 

applications in analyzing environmental data. 

Initially, machine learning proves highly efficient in handling labeled classification 

challenges Furthermore, it is tailored for analyzing large datasets and complex relationships among 

variables and samples, independent of confirming initial assumptions such as normality and 

linearity of data. Lastly, the selection of predictive algorithms in machine learning is based solely 
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on their empirical performance, rather than any prior knowledge of the data domain (Mieth et al., 

2016a). The use of ML in addressing complex environmental issues is expanding. This includes 

applications such as predicting concentrations of fecal coliform in wastewater treatment processes 

(Khatri et al., 2020), classifying extensive seafloor habitats using acoustic and visual data (Leon 

et al., 2020), and forecasting water quality parameters in coastal regions (Alizadeh et al., 2018). 

However, few efforts have been reported in employing ML in oil fingerprinting to classify 

dispersed oil. In line with this advancement, a recent study introduced a binary classification 

framework employing machine learning to distinguish between weathered crude oil (WCO) and 

chemically dispersed oil (CDO), utilizing six machine learning algorithms alongside a dimensional 

reduction technique as PCA to solve the dispersed oil classification problem (Y. Chen et al., 2021). 

This framework underscores the potential of machine learning to enhance oil spill source 

identification through comprehensive diagnostic ratios derived from various types of biomarkers. 

This study employed data preprocessing and six ML algorithms, namely random forest classifier 

(RFC), Support Vector Classifier (SVC), K-nearest neighbor (KNN), Linear regression (LR), 

Ensemble vote classifier (EVC), and Decision tree (DT), for a comparative study. Similarly, a 

study by Hashemi-Nasab & Parastar (2020)developed a chemometric strategy using gas 

chromatographic and infrared spectroscopic fingerprints to classify crude oils more accurately, 

emphasizing the importance of sophisticated data analysis methods in petroleum forensics. The 

results of unsupervised classification were then used as a starting point for partial least squares-

discriminant analysis (PLSDA) and counter propagation-artificial neural network (CP-ANN).  

In the field of environmental forensics, especially in pinpointing the origins of oil spills, 

there's a notable gap in using ML to improve oil fingerprinting accuracy. Traditional approaches 

are essential but often don't fully utilize chemical data, especially when it's complex. Our study 

introduces the use of six machine learning algorithms, detailed in Table 2.1, alongside classic oil 

fingerprinting methods to enhance the analysis of oil spills, such as the one from the MV Manolis 

L shipwreck. Table 2.1 provides a comparative overview of each algorithm’s strengths and 

limitations, showing how they contribute to our innovative approach. For instance, while KNN 

and SVC offer robustness to nonlinear data patterns, they require careful consideration of dataset 

noise and computational demands. Similarly, the Random Forest and Ensemble Vote Classifiers 

demonstrate strong resistance to overfitting, making them suitable for complex environmental 

data. This balanced view of modern data analysis tools, combined with traditional techniques, aims 
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to significantly enhance the accuracy of oil spill source identification, and reflects our commitment 

to advancing environmental forensics to meet contemporary environmental challenges. 

One of the primary goals of this study is to assess the accuracy of machine learning models 

in classifying oil samples based on their chemical components. The case of the MV Manolis L 

shipwreck serves as a practical scenario to test the effectiveness of our machine learning approach. 

By integrating advanced data analysis techniques with conventional oil fingerprinting methods, 

we seek to accurately identify the source of the oil recovered from the shipwreck. This approach 

allows us to evaluate the performance of various machine learning algorithms in distinguishing 

between different types of oil based on their unique chemical fingerprints. Ultimately, our research 

contributes to refining response and management strategies for oil spill incidents, emphasizing the 

significant role of machine learning techniques in environmental science for addressing complex 

challenges and enhancing environmental protection efforts. 
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Table 2.1 Overview of different ML algorithms 

Algorithm Pros Cons References 

K-nearest 

neighbor (KNN) 

Easy to understand and 

implement. Can handle 

both linear and nonlinear 

data. 

Sensitive to noise in the data. 

Can be computationally 

expensive for large datasets. 

(Boateng et al., 

2020a; Taunk et 

al., 2019) 

Support vector 

classifier (SVC) 

(SVC) 

Can handle both linear and 

nonlinear data. Robust to 

noise in the data. 

Can be computationally 

expensive for large datasets. 

Requires careful tuning of 

hyperparameters. 

(Nalepa & 

Kawulok, 2018) 

Random 

forest classifier 

(RFC) 

Robust to overfitting. Can 

handle both linear and non-

linear data. 

Can be computationally 

expensive for large datasets. 

Requires careful tuning of 

hyperparameters. 

(Azar et al., 2014) 

Decision tree 

classifier 

(DTC) 

Easy to understand and 

interpret. Can handle both 

linear and non-linear data. 

Prone to overfitting. Sensitive to 

noise in the data. 

(Swain & 

Hauska, 1977) 

Logistic 

regression 

classifier 

(LRC) 

Easy to understand and 

implement. Can be 

computationally 

Not suitable for non-linear data. 

Prone to underfitting. 

(H. Wang & Hao, 

2012) 

Ensemble vote 

classifier 

(EVC) 

Robust to overfitting. Can 

handle both linear and non-

linear data. 

Can be computationally 

expensive for large datasets. 

Requires careful selection of 

classifiers to combine. 

(Mohammed & 

Kora, 2023) 

 

2.3. Summary 

Remote sensing technologies, particularly SAR and satellite imagery, offer extensive 

spatial coverage and the ability to operate in various environmental conditions, making them 

invaluable for initial oil spill detection (Conceição et al., 2021; Girard-Ardhuin et al., 2005; Wang 

et al., 2021; Yang et al., 2021). However, the challenge lies in accurately segmenting and 

classifying these detected spills to distinguish between oil and other similar-looking substances, 
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like algae or water films. Semantic segmentation models, such as U-NET, DeepLabv3, and their 

variations, have shown promise in this domain by segmenting images at the pixel level. These 

models can differentiate between oil and non-oil pixels, but there are still significant gaps in their 

performance, particularly in multi-class and binary segmentation tasks. Multi-class segmentation 

involves categorizing pixels into multiple classes (e.g., oil, water, land), while binary segmentation 

classifies pixels into just two categories (e.g., oil vs. non-oil). Evaluating the efficiency of these 

models in varying conditions and across different types of oil spills remains a crucial challenge. 

Oil fingerprinting, which involves analyzing the chemical composition of spilled oil to 

identify its source, is another vital component of the detection process. Traditional methods, such 

as GC/MS, provide detailed chemical profiles of oil samples, but these techniques are often time-

consuming and require significant expertise (Bayona et al., 2015b; Hashemi-Nasab & Parastar, 

2020; Tian et al., 2021). Recent advancements in machine learning offer new opportunities to 

enhance oil fingerprinting by automating the analysis process and improving accuracy. 

           This study aims to address the identified gaps in the literature by developing and validating 

an integrated approach that combines the strengths of remote sensing, advanced deep learning 

models for semantic segmentation, and robust oil fingerprinting techniques. Specifically, the study 

focuses on integrating oil spill detection and oil fingerprinting, creating a novel binary dataset to 

enhance oil spill detection, and improving multi-class segmentation using the latest model 

structures and advanced encoders. By leveraging deep learning, the research enhances the accuracy 

and efficiency of oil spill detection and classification. It will implement and optimize state-of-the-

art deep learning models for both multi-class and binary segmentation tasks, training these models 

on extensive datasets to improve their generalization capabilities and robustness across various 

environmental conditions. Utilizing SAR and satellite imagery as primary data sources, the study 

provides comprehensive coverage, improving the initial detection accuracy of oil spills. 

Additionally, machine learning algorithms will be applied to automate and refine the oil 

fingerprinting process, using advanced chemometric methods to quickly and accurately analyze 

the chemical composition of oil samples, facilitating the identification of spill sources. Extensive 

testing and validation of the integrated framework using real-world datasets will ensure its 

practical applicability and reliability in various marine environments and spill scenarios. By 

addressing these key areas, this study aims to provide a more reliable and efficient tool for 
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environmental monitoring and protection, enabling rapid and accurate detection, classification, 

and source identification of oil spills, thus significantly enhancing response efforts and mitigating 

the environmental impact of such incidents. 
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Chapter 3 Methodology 

3.1. Framework 

This chapter provides a detailed description of the methodology used for oil spill detection 

and oil fingerprinting. It outlines the datasets, data preparation processes, and the models and 

techniques applied to achieve accurate detection and classification of oil spills. The comprehensive 

methodology presented ensures a systematic approach, integrating multiple advanced techniques 

to address the various challenges encountered in environmental monitoring and protection. The 

methodology ensures a robust framework by integrating advanced imaging techniques, thorough 

data processing steps, and sophisticated machine learning models (Girard-Ardhuin et al., 2005). 

These elements work together to address the complexities and challenges inherent in 

environmental monitoring, particularly for detecting and analyzing oil spills. As shown in Fig 3.1, 

Initially, remote sensing technologies, specifically Synthetic Aperture Radar (SAR) images, are 

employed for their ability to penetrate cloud cover and provide reliable data under various weather 

conditions (Basit et al., 2022). These images are processed using state-of -the-art semantic 

segmentation models, each selected for its unique strengths in handling the intricate details and 

noise present in SAR data. The models, including U-Net, LinkNet, UNet++, FPN, DeepLabv3+, 

and PSPNet, are trained and validated on meticulously prepared datasets to ensure they can 

accurately identify and segment oil spills. 

The datasets themselves are a cornerstone of this research, ensuring that the models are 

trained with high-quality, relevant data. A well-established dataset created by Krestenitis et al. 

(2019a) serves as the primary multi-class dataset, containing annotated SAR images that capture 

oil-polluted sea areas. These images are tagged with geographical coordinates and timestamps to 

ensure each instance of an oil spill is accurately verified and mapped. Complementing this is a 

binary dataset specifically created for this study, derived from oil spill incidents recorded in the 

Gulf of Suez from 2017 to 2021, which provides an additional layer of robustness to the model 

evaluation (El-Magd et al., 2023). The use of these two datasets allows for a comprehensive 

evaluation of the models' performance in both binary and multi-class semantic segmentation tasks. 
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Both datasets undergo extensive preprocessing, including steps such as location verification, image 

cropping and resizing, radiometric calibration, speckle noise reduction, and luminosity adjustment, 

to ensure high-quality input data for the segmentation models. The model that performs better in 

multi-class segmentation will be chosen, and the effect of different encoders on these models will 

be analyzed to understand their impact on model performance. 

 

Fig. 3.1 Methodological Framework for Oil Spill Detection and Fingerprinting 
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Following the detection process, oil fingerprinting is conducted to analyze the chemical 

composition of the detected oil samples. This step is crucial for identifying the source of the oil 

spill, which in turn aids in effective response and remediation strategies. In this research, oil 

fingerprinting is based on a different case involving the sunken MV Manolis (Yang et al., 2020). 

The dataset for third case includes the chemical compositions of 17 analyzed oil samples collected 

from various portions of the MV Manolis over a four-year period (2013–2016), as well as three 

possible source samples and one weathered oil sample to assess the impact of weathering. Oil 

fingerprinting involves the collection and analysis of GC/MS and GC/FID (Gas Chromatography-

Flame Ionization Detector) data. These analytical methods provide detailed insights into the 

chemical makeup of the oil samples, enabling the identification of specific hydrocarbons, 

biomarkers, and polycyclic aromatic hydrocarbons (PAHs). Unsupervised classification 

techniques such as Principal Component Analysis (PCA) and k-means clustering are applied to 

categorize the oil samples based on their chemical signatures (Murugan & Devi, 2019). These 

techniques help identify distinct patterns and group similar oil samples, which is crucial for 

accurate source identification. To further validate and refine these classifications, Hierarchical 

Cluster Analysis (HCA) is also utilized, ensuring a robust and reliable classification process. 

To enhance the accuracy of oil spill source identification, various machine learning models 

are trained using the classified oil samples. Models such as k-Nearest Neighbors (KNN), Support 

Vector Classifier (SVC), Random Forest Classifier (RFC), Decision Tree Classifier (DTC), 

Logistic Regression Classifier (LRC), and Ensemble Vote Classifier (EVC) are employed. These 

models are optimized using GridSearch and cross-validation techniques to identify the best 

hyperparameters and prevent overfitting. The performance of these models is evaluated using 

cross-validation and the F-score metric, providing a comprehensive assessment of their accuracy, 

precision, recall, and overall balance. This rigorous evaluation ensures that the models are reliable 

and can generalize well to new, unseen data, making them suitable for real-world applications in 

oil spill detection and fingerprinting. 

In summary, the overview presents the holistic approach taken in this research, starting 

from the detection of oil spills using advanced remote sensing techniques and semantic 
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segmentation models to the classification and analysis of oil samples through chemical 

fingerprinting and machine learning models. This integrated methodology is thoroughly explained 

in the subsequent sections of this chapter, detailing each step, process, and technique used to 

achieve accurate and efficient oil spill detection and analysis. By following this structured 

methodology, the research aims to provide a comprehensive framework for accurate oil spill 

detection and fingerprinting, contributing significantly to environmental protection and 

conservation efforts 

3.2. Semantic Segmentation Models 

Semantic segmentation is a fundamental task in computer vision, focusing on assigning a 

label to each pixel in an image, thereby enabling the precise localization and recognition of objects 

within a scene. It plays a crucial role in various applications, including environmental forensics, 

where it is used to detect and map oil spills from satellite images (Shelhamer et al., 2014). In the 

context of oil spill detection, semantic segmentation models are essential for accurately identifying 

and delineating oil-polluted areas in marine environments (Orfanidis et al., 2018). These models 

have demonstrated significant advancements in segmentation accuracy and efficiency, making 

them invaluable tools for environmental monitoring. By leveraging sophisticated techniques and 

architectures, these models help in precisely outlining the extents of oil spills, which is vital for 

effective response and remediation efforts. 

The process involves training the models on datasets that include annotated satellite 

images, ensuring high precision in oil spill identification. The datasets undergo extensive 

preprocessing to improve the quality of the input data, involving steps such as location verification, 

image cropping and resizing, radiometric calibration, speckle noise reduction, and luminosity 

adjustment. This preprocessing ensures that the segmentation models receive high-quality data, 

enhancing their performance and accuracy. Through the application of these advanced 

segmentation models, environmental agencies and researchers can monitor and manage oil spills 

more effectively, ensuring that affected areas are promptly identified and addressed. In the 

following sections, we will delve into the specific architectures and methodologies employed by 

these models. Each model used in this study will be explained in detail, focusing on their unique 

structures and the specific aspects of their encoding and decoding processes that contribute to the 
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accurate and efficient detection of oil spills. The models discussed include U-Net, LinkNet, 

UNet++, Feature Pyramid Network (FPN), DeepLabv3+, and Pyramid Scene Parsing Network 

(PSPNet). 

3.2.1. Unet 

Originally designed for the segmentation of biomedical images, the U-Net architecture is 

versatile and extends beyond its initial application(Weng & Zhu, 2015). This architecture, part of 

the fully convolutional network (FCN) family, consists of two main segments: the contracting 

(encoder) path and the expansive (decoder) path. The design, known as U-Net due to its symmetric 

layout, involves the encoder capturing image content while the decoder focuses on precise 

localization through up sampling and reducing filter size, thereby creating a broader yet shallower 

feature representation (Shelhamer et al., 2014). 

Based on the information illustrated in Fig 3.2 , we can observe the structure of the U-Net 

architecture, which delineates the flow from the input image tile through the contracting path to 

the expansive path, culminating in the output segmentation map .The encoder employs alternating 

3×3 convolutions and 2×2 max pooling with a stride of two, effectively down sampling the feature 

map while expanding the number of feature channels. In contrast, the decoder gradually restores 

spatial resolution by up sampling the feature map and applying a 2×2 convolution, reducing the 

number of channels. Each decoder step integrates up sampled maps with high-resolution features 

from the encoder, minimizing information loss. This process includes two subsequent 3×3 

convolutions that reduce the channels further, concluding with a 1×1 convolution to assign a 

feature vector to each pixel, ultimately generating a segmentation mask for each class. 
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Fig. 3.2 U-net architecture (Weng & Zhu, 2015) 

3.2.2. LinkNet 

The primary aim of the LinkNet framework is to effectively restore spatial details that are 

typically reduced during the encoding phase by incorporating information from each 

corresponding encoder block into the decoding process(Chaurasia & Culurciello, 2017). This 

technique allows the decoder to use fewer parameters while reconstructing the image by leveraging 

the knowledge gained during the encoding stage. 

The architecture utilizes ResNet-18(He et al., 2016) as its foundational structure, which 

begins the down sampling process through a 7×7 convolution filter with a stride of 2, immediately 

followed by a 3×3 max-pooling with the same stride. This encoder further contains four residual 

blocks that continue to decrease the size of the feature map. In parallel, the decoder includes four 

blocks each containing a 1×1 convolution, followed by a 3×3 convolution and an additional 1×1 

convolution layer. These layers methodically decrease the number of filters, and the transposed 

convolutions in between enlarge the feature map's spatial dimensions using deconvolution filters 
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that are bilinearly initialized. The concluding segment of the decoder features a 3×3 transposed 

convolution, another 3×3 convolution layer, and a final 3×3 transposed convolution that 

reestablishes the input image's original spatial size (Fig 3.3). 

 

 

Fig. 3.3 LinkNet Structure (Chaurasia & Culurciello, 2017) 

3.2.3. Unet++ 

UNet++ is an advanced segmentation model building upon the encoder-decoder framework 

like its predecessors (Zhou et al., 2018), U-Net and FCN, with the novel integration of nested and 

dense skip connections. These connections are crucial for combining detailed, low-level features 

from the encoder with the coarser, semantic-rich features from the decoder, thereby enhancing the 
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reconstruction of fine details in segmentation masks. This structure is particularly beneficial for 

medical imaging, where precision is paramount, as even slight errors can significantly impact 

clinical outcomes and diagnoses. 

In UNet++, the architectural innovation lies in the re-designed skip pathways that densify 

the connections between the encoding and decoding processes. Instead of simple forwarding of 

features, as seen in U-Net, UNet++ strategically refines the encoder features through dense 

convolutional blocks before they merge with decoder features. This reduces the semantic gap, 

making the learning task more manageable and improving the model's ability to capture intricate 

details of medical images. Deep supervision in UNet++ further refines the training process by 

offering a dual-mode operation: an accurate mode averaging outputs from multiple segmentation 

branches, and a fast mode selecting from a single branch for quicker inference. The model 

demonstrates enhanced segmentation performance across various medical datasets, outperforming 

both U-Net and wide U-Net in intersection over union (IoU) metrics. Notably, while wide U-Net's 

improvements were partly due to an increased parameter count, UNet++'s gains are attributed to 

its architectural innovations. Overall, UNet++ marks a significant step forward in the precise and 

reliable segmentation of medical images, meeting the high accuracy demands of the field and 

potentially integrating into systems like Mask-RCNN to segment even occluded objects. 

3.2.4. FPN 

The Feature Pyramid Network (FPN) leverages a convolutional network's inherent 

hierarchical structure to enhance object detection frameworks, notably using Region Proposal 

Networks (RPN) and Fast R-CNN (Lin et al., 2017). FPN constructs a pyramid by integrating low-

resolution, semantically strong layers with high-resolution, semantically weaker layers. This is 

achieved through a bottom-up pathway where traditional convolutions are performed, creating a 

series of feature maps at decreasing resolutions. These are primarily used for building the pyramid 

due to their detailed semantic information at various scales. 

To enhance the resolution of the extracted features while maintaining their semantic 

strength, FPN introduces a top-down pathway with lateral connections. This pathway begins at the 

highest level of the pyramid and progressively increases the resolution of feature maps by a factor 

of two using nearest neighbor upsampling. These upsampled maps are then enhanced with lower-
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level but higher-resolution maps from the bottom-up pathway through lateral connections. Each 

connection merges features of the same spatial size by element-wise addition after aligning the 

channels with 1×1 convolutions. This method ensures that each level of the output pyramid 

combines detailed spatial information with rich semantic information. The process continues until 

the finest resolution map is generated. This architecture allows the network to effectively detect 

objects at multiple scales and improve localization precision, crucial for tasks like bounding box 

proposal and object detection in various real-world scenarios. 

3.2.5. DeepLabv3+ 

The recent iteration of the DeepLab series, DeepLabv3+(Chen et al., 2018), has advanced 

the original design by incorporating an adept yet straightforward decoder to enhance segmentation 

precision, particularly at object edges(Chen et al., 2017). It utilizes the framework established by 

DeepLabv3 and incorporates a tailored Aligned Xception model as its backbone, which has been 

adjusted for the task of semantic segmentation. In DeepLabv3+, the Xception model is expanded 

with additional layers to create a more profound network structure. Each max pooling step is 

replaced by depthwise separable convolutions that incorporate striding to maintain computational 

efficiency.  

This form of convolution splits the process into two phases: depthwise convolution that 

operates on individual input channels, and pointwise convolution that uses a 1×1 kernel to integrate 

the channels' spatial data. When combined with atrous convolution, it becomes atrous separable 

convolution, which lessens the computational demand and yields feature maps with varying 

resolutions. Additionally, every 3×3 depth wise convolution in the Xception model is succeeded 

by batch normalization and ReLU activation. The encoder's final output then proceeds through an 

enhanced ASPP, which, aside from its four atrous convolutions, includes an extra branch for global 

context by applying average pooling to the feature map of the encoder backbone. 

The decoder module in DeepLabv3+ integrates two sources of data: the encoded main 

branch's result, upscaled by a factor of four, and the low-level features from the encoder backbone, 

which are processed by an extra 1×1 convolution. This convolution harmonizes the contribution 

of the backbone's detailed features with the encoder's abstract semantic information. Following the 
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merging of both inputs, a series of two 3×3 convolutions refine the features, and the result is 

upscaled back to the original dimensions of the input image through bilinear upsampling (Fig 3.4). 

 

Fig. 3.4 DeepLabv3+ Structure (L. C. Chen et al., 2018) 

3.2.6. PSPNet 

The Pyramid Scene Parsing Network (PSPNet) was introduced to effectively capture the 

global context of scenes through a novel pyramid pooling module situated between the encoding 

and decoding stages (Zhao et al., 2016). Initially, an input image is processed by an encoder based 

on a ResNet architecture, which incorporates dilated convolutions to extract detailed feature maps. 

These maps are then directed to a pyramid pooling module consisting of four parallel branches, 

each employing pooling operations with progressively larger bin sizes—specifically, 1×1, 2×2, 

3×3, and 6×6. As shown in Fig each branch outputs are subjected to a 1×1 convolutional layer to 

compress the feature maps to a fraction of their original dimensions, defined by the pyramid level. 

To restore these reduced maps to their original spatial dimensions, bilinear interpolation is utilized 

(Fig 3.5). 

The enhanced feature maps are then merged with the initial feature maps from the encoder, 

creating a comprehensive feature representation. This combined map undergoes further 

interpolation and is processed through an additional convolutional layer to generate the final 

predictive segmentation map. To improve model training depth and effectiveness, an auxiliary loss 
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function is integrated earlier in the network, specifically after the fourth stage in the case of using 

a ResNet-101 architecture. This approach of deep supervision aids in training deeper network 

architectures more effectively. During the training phase, the loss from both the main and auxiliary 

functions is propagated backward through all previous layers, with a weighting system in place to 

ensure dominance of the main branch softmax loss in influencing the training outcomes. 

 

Fig. 3.5 Overview of PSPNet: Initially, (a) an input image is processed through a CNN to obtain 

the feature map from the final convolutional layer (b). This map is then processed by a pyramid 

parsing module that captures diverse regional details (c). This representation is then input into a 

convolutional layer to produce the per-pixel prediction (d) (Zhao et al., 2016) 

 

The summarized Table 3.1 highlights how various architectural techniques are tailored to 

enhance performance in different segmentation applications. Some models excel in 

straightforward tasks with simple yet effective designs, while others incorporate advanced features 

like residual blocks and dense skip connections to improve spatial detail restoration and complex 

feature merging. Multi-scale feature integration and pyramid pooling are employed to adeptly 

detect objects at varying scales. Techniques such as atrous and depthwise separable convolutions 

are integrated to capture multi-scale contextual information and refine object boundaries, making 

them suitable for high-precision tasks. Additionally, models that focus on capturing the global 

scene context excel in complex tasks requiring a broader understanding of the environment. The 

table provides a clear comparison of these capabilities and specialized features, offering a 

comprehensive overview of each model's performance and suitability for various segmentation 

tasks. 
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Table 3.1 Comparative analysis of semantic segmentation models 

Model 
Number of 

Layers 
Key Components Key Features 

U-Net 23 Encoder-Decoder, Skip Connections 

Simple and effective for 

biomedical segmentation (Weng 

& Zhu, 2015) 

LinkNet 29 Encoder-Decoder, Residual Blocks 
Efficient use of residual blocks 

(Chaurasia & Culurciello, 2017) 

UNet++ 
Varies 

(approx. 38) 

Nested U-Net architecture, Dense 

Skip Connections 

Enhanced feature merging, deeper 

architecture (Zhou et al., 2018) 

FPN Varies 
Pyramid pooling, Multi-scale 

Feature Integration 

Multi-scale feature integration 

(Lin et al., 2017) 

DeepLabv3+ 
Varies (50-

101) 

Atrous Convolutions, Encoder-

Decoder, Depthwise Separable 

Convolutions 

Effective multi-scale context 

capture (Chen et al., 2018) 

PSPNet Varies 
Pyramid Pooling Module, Dilated 

Convolutions 

Global scene context with 

pyramid pooling (Zhao et al., 

2016) 

 

3.2.7. Semantic segmentation performance evaluation  

The performance of segmentation models is evaluated using the metric known as 

intersection-over-union (IoU). This metric calculates the overlap between the predicted area and 

the ground truth, providing an accurate measure of a model's ability to correctly identify and 

outline various classes such as sea surfaces and oil spills. It is computed by the formula: 

IoU =
prediction∩ground truth

prediction∪ground truth
=

TP

FP+TP+FN
                 (1)     

                                                                 

The IoU is computed for each class in a dataset, and the average of these values results in 

the mean IoU (mIoU).  MIoU serves as a crucial indicator of a model's overall precision across 

different environmental features.  

Precision represents the proportion of predicted true positive samples and is obtained by 

dividing true positive pixels by the sum of true positive pixels and false positives: 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                                                              (2) 



44 

 

 Recall represents the proportion of all true positive samples that are correctly predicted and 

is calculated as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                                                                 (3) 

The F1 score is a metric that combines precision and recall, providing a single measure of 

a model's accuracy and is calculated as follows: 

𝐹1 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
                                                                                                                                  (4) 

where TP, FP, and FN stand for the number of true positives, false positives, and false negatives, 

respectively. Using these metrics provides a comprehensive view of the oil spill detection method's 

performance, allowing for better improvement and optimization of the model. Precision, recall, 

and F1 score collectively offer insights into the model's capability to correctly identify oil spills 

while minimizing FP and FN. 

3.3. Oil Fingerprinting Methods 

After detecting an oil spill using remote sensing images and semantic segmentation models, 

environmental agencies can collect samples of the spilled oil to determine its source using oil 

fingerprinting techniques. This dual approach enhances the accuracy and reliability of oil spill 

source identification, combining advanced image analysis with detailed chemical characterization. 

Oil fingerprinting is a sophisticated technique used in environmental forensics to identify the 

source of oil spills (Wang & Wang, 2022).  

One key method employed for identifying the source of spilled oil is oil fingerprinting. Oil 

fingerprinting relies on the recognition of specific groups of petroleum hydrocarbons, such as 

alkanes, biomarkers like terpenes and steranes, and PAHs (Wang et al., 2006b).  Chemical 

composition of oils varies among different oil categories; therefore, their presence and distribution 

characteristics can serve as distinct signatures for identifying oil types (Wang et al., 2013). In 

recent years, oil fingerprinting has emerged as a valuable tool in source identification, as it allows 

for the detection of unique chemical signatures (fingerprints) within crude oil, enabling researchers 

to determine the source of an oil spill with a high degree of accuracy. Oil fingerprinting involves 

the use of analytical techniques to separate crude oil into its various chemical fractions, including 

aliphatic, aromatic, polar, and asphaltene compounds (Bayona et al., 2015b), which is a technique 

based on geochemical analysis of hydrocarbon fluids composition to provide valuable and unique 



45 

 

information for well and reservoir management(Pavlov & Vasiliev, 2017). Hydrocarbons in oil and 

gas deposits are affected by different processes, such as biodegradation, gas flushing, water 

washing, and evaporation. The degree of change depends on many factors such as temperature, 

reservoir compartmentalization, tectonics, aquifer activity, etc (Mohammadi et al., 2020). 

Recent advancements in cluster analysis of crude oils have significantly contributed to the 

understanding of oil properties and behaviors based on their physicochemical characteristics. 

Sancho's work on cluster analysis using k-means based on these properties delineated groups of 

crude oils with similar characteristics, facilitating a more nuanced approach to oil categorization 

and refinery optimization (Sancho et al., 2022). Moreover, the use of unsupervised machine 

learning techniques such as principal component analysis and hierarchical clustering has also been 

explored to enhance the classification accuracy of crude oils. This is evident in the study by Jha et 

al., where such techniques were applied to analyze complex datasets from various crude oil 

sources, achieving a refined understanding of oil group dynamics which assists in better resource 

management and spill response strategies (Li et al., 2004). Zhan et al. (2019) and Liu et al. (2017) 

effectively used hierarchical clustering on geochemical biomarkers to distinguish crude oil 

samples by their geographic regions. Similarly, by integrating PCA, HCA, and feature selection 

techniques, Fernández-Varela et al. (2010) streamlined diagnostic ratios from GC/MS analyses, 

successfully reducing the number of essential features from 28 to 4. This effectively grouped and 

characterized the crude oils, highlighting the range of approaches and important outcomes in crude 

oil analysis and emphasizing the dynamic nature of environmental science and petrochemical 

analysis. 

Recently, machine learning has emerged as a significant advancement over traditional 

statistics, providing robust tools for environmental analysis due to its numerous advantages (Saha 

et al., 2016). Machine learning excels in handling labeled classification challenges (Mieth et al., 

2016b) and manages large datasets and complex variable relationships without relying on 

conventional assumptions such as normal distribution and linearity (Jordan & Mitchell, 2015). In 

line with this advancement, a recent study introduced a binary classification framework employing 

machine learning to distinguish between weathered crude oil (WCO) and chemically dispersed oil 

(CDO), utilizing six machine learning algorithms alongside a dimensional reduction technique 

(PCA) to solve the dispersed oil classification problem (Y. Chen et al., 2021). This framework 
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underscores the potential of machine learning to enhance oil spill source identification through 

comprehensive diagnostic ratios derived from various types of biomarkers. This study employed 

data preprocessing and six ML algorithms, namely RFC, SVC, KNN, LR, EVC, and DT, for a 

comparative study. Similarly, a study by Hashemi-Nasab & Parastar (2020)developed a 

chemometric strategy using gas chromatographic and infrared spectroscopic fingerprints to 

classify crude oils more accurately, emphasizing the importance of sophisticated data analysis 

methods in petroleum forensics. The results of unsupervised classification were then used as a 

starting point for partial least squares-discriminant analysis (PLSDA) and counter propagation-

artificial neural network (CP-ANN).  

In the field of environmental forensics, especially in pinpointing the origins of oil spills, 

there's a notable gap in using ML to improve oil fingerprinting accuracy. Traditional approaches 

are essential but often don't fully utilize chemical data, especially when it's complex. Our study 

introduces the use of six machine learning algorithms, detailed in Table 2.1, alongside classic oil 

fingerprinting methods to enhance the analysis of oil spills, such as the one from the MV Manolis 

L shipwreck. Table 2.1 provides a comparative overview of each algorithm’s strengths and 

limitations, showing how they contribute to our innovative approach. For instance, while KNN 

and SVC offer robustness to nonlinear data patterns, they require careful consideration of dataset 

noise and computational demands. Similarly, the Random Forest and Ensemble Vote Classifiers 

demonstrate strong resistance to overfitting, making them suitable for complex environmental 

data. This balanced view of modern data analysis tools, combined with traditional techniques, aims 

to significantly enhance the accuracy of oil spill source identification and reflects our commitment 

to advancing environmental forensics to meet contemporary environmental challenges. 

The primary aim of this study is to assess the accuracy of machine learning models in 

classifying oil samples based on their chemical components. The case of the MV Manolis L 

shipwreck serves as a practical scenario to test the effectiveness of our machine learning approach. 

By integrating advanced data analysis techniques with conventional oil fingerprinting methods, 

we seek to accurately identify the source of the oil recovered from the shipwreck. This approach 

allows us to evaluate the performance of various machine learning algorithms in distinguishing 

between different types of oil based on their unique chemical fingerprints. Ultimately, our research 

contributes to refining response and management strategies for oil spill incidents, emphasizing the 
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significant role of machine learning techniques in environmental science for addressing complex 

challenges and enhancing environmental protection efforts. 

3.3.1. Data entry and preprocessing 

In this section, we detail the data preprocessing steps essential for clustering analysis, 

focusing on the application of PCA and k-means clustering, followed by HCA to enhance our 

chemometric approach. 

Firstly, the initial data set derived from the MV Manolis L shipwreck contained missing 

values across four chemical compositions in the Excel datasheet. To manage this, variables 

exhibiting the highest frequency of missing data were removed to streamline the dataset for 

analysis. Subsequently, we performed data scaling on the remaining variables to normalize the data 

distribution. PCA was applied to simplify the complexity of the chemical data by focusing on the 

five most significant principal components for each chemical composition. These components 

were selected based on their ability to explain cumulatively less than 99% of the variance in the 

dataset. This criterion ensures that while most of the data's variability is captured, overfitting is 

avoided by not exceeding the 99% threshold. The PCA methodology, as outlined by Wetzel (2017), 

utilizes a formula (Eq. (1)) to extract these principal components, effectively reducing the 

dimensionality and retaining the most critical aspects of the data as: 

𝑃𝐶𝑖 =  𝑎1𝑋1
+  𝑎2𝑋2

+  … +  𝑎𝑑𝑋𝑑
                                                                                              (5) 

 where, PCi, principal component i; Xd, original feature d; ad, numerical coefficient of Xd. 

Following PCA, we applied the k-means clustering algorithm, a state-of-the-art, centroid-

based method that partitions the data into k predefined clusters. This method aims to minimize the 

within-cluster sum-of-squares distances, also known as inertia (Lloyd, 1982). The algorithm's 

effectiveness depends on multiple runs to ensure the identification of the global solution, with the 

optimal number of clusters (k=3) determined through trial and error. To validate and refine the 

clustering results obtained from PCA and k-means, HCA was utilized. The dendrogram produced 

by HCA serves as a visual tool to verify the clustering results, providing a hierarchical structure 

that illustrates how closely samples are related to each other (Chanana et al., 2020). This method 

is especially useful in confirming the robustness of the initial clustering and in identifying any 
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nuanced patterns that might not be evident from k-means clustering alone. Upon verifying the 

clusters using HCA and PCA, the samples have been appropriately labeled. These labels now form 

a labeled dataset that is ready for the next phase, which involves supervised classification. In this 

subsequent part, we will employ six different machine learning algorithms to classify the samples 

based on the derived labels. This approach will enable us to further refine our analysis and enhance 

the precision of our oil spill source identification efforts. 

3.3.2. Modelling development 

In this study, the initial limitation of having only 21 original samples was encountered, 

leading to the utilization of a resampling approach for dataset expansion to enhance the robustness 

of the analysis. More specifically, resampling techniques, including Synthetic Minority Over-

sampling Technique (SMOTE) (Sahlaoui et al., 2023) , were employed to significantly augment 

the dataset from its initial count of 21 samples to a robust total of 84 samples. The analytical 

approach was initiated by subjecting preprocessed GC/FID fingerprints to PCA. Hierarchical 

HCA with Ward's method was subsequently utilized as a supplementary validation technique for 

the PCA findings. The number of clusters derived from K-Means clustering was utilized to 

establish an initial y vector, representing class labels. This y vector played a pivotal role in the 

supervised classification process, wherein six machine learning models were employed, including 

KNN, SVC, RFC, DTC, LRC, and EVC. This holistic approach not only expanded the scope of 

the analysis but also effectively mitigated the limitations stemming from the initial shortage of 

samples.  

In this research, a comprehensive comparative analysis utilized a set of six machine 

learning algorithms. To ensure robust evaluation, the dataset underwent preprocessing, followed 

by partitioning into training (80%) and test (20%) subsets. This approach aligns with established 

practices in the field (Chen et al., 2021; Medar et al., 2017). Below, concise descriptions of the 

six machine learning algorithms employed in this investigation are provided. 

DTC basically constructs a decision tree to model the decision-making process, leading to 

a prediction or classification. Terminal nodes or leaves represent the outcome, based on traversing 

the tree through tests and decisions on the dataset's features (Swain & Hauska, 1977). 
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LRC estimates the probability that an example belongs to a particular class using a logistic 

function, making it ideal for binary classification tasks. The relationship between the features and 

the target is quantified using the logistic equation: 

𝑃𝑖 =
𝑒𝑎+𝑏𝑥

1+𝑒𝑎+𝑏𝑥                                                                                                                               (6) 

where, Pi, the probability of a label 1; e, the base of the natural logarithm; a and b are the model 

parameters (Robles-Velasco et al., 2021; H. Wang & Hao, 2012). 

KNN is a non-parametric classifier that assigns a class based on the majority vote of the 

nearest neighbors. Distance between data points is key, commonly calculated using the Euclidean 

distance(Boateng et al., 2020a, 2020b): 

𝑑(𝑥, 𝑥𝑖) = √∑ (𝑥𝑘 − 𝑥𝑖𝑘)2𝑛
𝑘=1                                                                                                    (7) 

• Here, d (x, xi) represents the distance between the query point x and a data point xi in the 

dataset. 

• xk and xik are the k-th feature of the query point and the data point, respectively. 

 

SVC searches for the optimal hyperplane that maximizes the margin between different classes 

in the feature space, enhancing class separability (Nalepa & Kawulok, 2018). 

RFC is an ensemble of decision trees, this classifier uses multiple trees to make a decision, 

taking the majority vote as the final prediction (Azar et al., 2014). The classification decision by 

the forest is an aggregate of decisions from individual trees: 

𝑓(𝑥) = ∑ 𝐶𝑚 ∏(𝑥, 𝑅𝑚)𝑀
𝑚=1                                                                                                        (8) 

• This is the equation for Random Forest, where the classification is an aggregation of 

decisions from multiple trees. 

EVC combines the outputs of several models to make a final prediction, enhancing 

reliability and accuracy through the ensemble method (Mohammed & Kora, 2023). The final 

class is determined by the mode of the predictions: 

𝑦 = mode[𝐶1(𝑥), 𝐶2(𝑥), … , 𝐶𝑚(𝑥)]                                                                                       (9)     
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This equation represents the mode (most common prediction) among different classifiers in EVC 

3.3.3. Hyperparameter optimization and overfitting  

Hyperparameter optimization plays a pivotal role in machine learning, especially in 

specialized fields like oil fingerprinting. Hyperparameters, which include settings such as the 

learning rate or the number of hidden layers in a neural network, are crucial in determining the 

learning process and the complexity of the model. These parameters significantly influence the 

performance of a machine learning model, as highlighted by Chen et al. (2021). Two main 

techniques in hyperparameter optimization are GridSearch and cross-validation (Badem et al., 

2019). This ensures the identification of the optimal hyperparameters for a specific model. Cross-

validation, on the other hand, is a technique for robustly assessing machine learning models by 

evaluating their performance across different data subsets, thus ensuring consistency in 

performance evaluation(Ranjan et al., 2019). To mitigate overfitting and maintain the model's 

predictive accuracy, techniques like cross-validation and regularization are employed. These 

strategies are essential in ensuring that the model generalizes well to new, unseen samples. Details 

the chosen parameters for each machine learning algorithm in GridSearch and cross-validation 

are shown in Table 3.2, based on previous studies of ML algorithms. This careful consideration 

in hyperparameter optimization is fundamental for tailoring machine learning models to specific 

applications like oil fingerprinting, ensuring their robustness and reliability in real-world 

scenarios. 
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Table 3.2 Hyperparameter tuning in different models 

3.3.4. Performance evaluation 

The evaluation of our model's performance is anchored in two key methodologies: cross-

validation and the F-score metric, with an emphasis on shuffle split cross-validation implemented 

from the Scikit-learn library. Cross-validation is a rigorous technique where the data is divided 

into 'k' subsets (folds). The model is trained on 'k-1' folds and validated on the remaining fold, with 

this process repeating 'k' times. The results from each iteration are then averaged to derive a 

comprehensive performance measure, as detailed by Liu et al. (2019). 

The F-score, also known as the F1-score, is a statistical measure used in the evaluation of 

machine learning models, particularly in the context of binary classification. It combines the 

precision and recall of the model into a single metric. Precision is the ratio of correctly predicted 

positive observations to the total predicted positives, while recall (sensitivity) measures the ratio 

of correctly predicted positive observations to all actual positives. The F-score is the harmonic 

mean of precision and recall, giving both metrics equal weight. The formula for the F-score, as 

previously detailed in Equation 4. 

3.4. Summary 

This chapter provides a detailed description of the methodology used for oil spill detection 

and oil fingerprinting, outlining the datasets, data preparation processes, and the models and 

techniques applied to achieve accurate detection and classification of oil spills. The comprehensive 

methodology presented ensures a systematic approach, integrating multiple advanced techniques 

Algorithm Name Parameters Options 

LRC Solver Regularization (C) Liblinear, 1, 10, 20, 30 

RFC n-estimators 50, 100, 150 

DTC Algorithm CART (gini impurity), ID3 (entropy) 

 Splitter Best, Random 

SVC Kernel Linear, RBF 

 Regularization (C) 1, 10, 20 

KNN Gamma Auto 

 n-neighbors (K) 7, 10, 15 
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to address the various challenges encountered in environmental monitoring and protection. By 

integrating advanced imaging techniques, thorough data processing steps, and sophisticated 

machine learning models, the methodology ensures a robust framework capable of addressing the 

complexities and challenges inherent in environmental monitoring, particularly for detecting and 

analyzing oil spills (Girard-Ardhuin et al., 2005). 

Initially, remote sensing technologies, specifically SAR images, are employed for their 

ability to penetrate cloud cover and provide reliable data under various weather conditions. These 

images are processed using state-of-the-art semantic segmentation models, each selected for its 

unique strengths in handling the intricate details and noise present in SAR data. The models, 

including U-Net, LinkNet, UNet++, FPN, DeepLabv3+, and PSPNet, are trained and validated on 

meticulously prepared datasets to ensure they can accurately identify and segment oil spills. 

The datasets are a cornerstone of this research, ensuring that the models are trained on high-

quality, relevant data. A well-established dataset created by Krestenitis et al. (2019a) serves as the 

primary multi-class dataset, containing annotated SAR images that capture oil-polluted sea areas. 

These images are tagged with geographical coordinates and timestamps to ensure each instance of 

an oil spill is accurately verified and mapped. Complementing this is a binary dataset specifically 

created for this study, derived from oil spill incidents recorded in the Gulf of Suez from 2017 to 

2021, which provides an additional layer of robustness to the model evaluation (El-Magd et al., 

2023). The use of these two datasets allows for a comprehensive evaluation of the models' 

performance in both binary and multi-class semantic segmentation tasks. Both datasets undergo 

extensive preprocessing, including steps such as location verification, image cropping and 

resizing, radiometric calibration, speckle noise reduction, and luminosity adjustment, to ensure 

high-quality input data for the segmentation models. The model that performs better in multi-class 

segmentation will be chosen, and the effect of different encoders on these models will be analyzed 

to understand their impact on model performance. 

Following the detection process, oil fingerprinting is conducted to analyze the chemical 

composition of the detected oil samples. This step is crucial for identifying the source of the oil 

spill, which in turn aids in effective response and remediation strategies. In this research, oil 

fingerprinting is based on a different case involving the sunken MV Manolis (Yang et al., 2020). 

The dataset for this case includes the chemical compositions of 17 analyzed oil samples collected 
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from various portions of the MV Manolis over a four-year period (2013–2016), as well as three 

possible source samples and one weathered oil sample to assess the impact of weathering. Oil 

fingerprinting involves the collection and analysis of GC/MS and GC/FID data. These analytical 

methods provide detailed insights into the chemical makeup of the oil samples, enabling the 

identification of specific hydrocarbons, biomarkers, and PAHs. Unsupervised classification 

techniques such as PCA and k-means clustering are applied to categorize the oil samples based on 

their chemical signatures (Murugan & Devi, 2019). These techniques help identify distinct patterns 

and group similar oil samples, which is crucial for accurate source identification. To further 

validate and refine these classifications, HCA is also utilized, ensuring a robust and reliable 

classification process. 

To sum up, the goal of this methodology is to define a comprehensive framework for 

handling oil spill incidents. This framework outlines how to detect oil spills using remote sensing 

and semantic segmentation trained models, followed by identifying the source of the oil through 

chemical fingerprinting. By demonstrating this integration, our research aims to provide a 

systematic approach that can be applied in real-world scenarios. This approach will help detect oil 

spills promptly and accurately, and identify their sources to halt further leakage, thereby preventing 

more damage to the ecosystem. This framework highlights the potential for combining advanced 

detection and identification methodologies to enhance the accuracy and reliability of oil spill 

response and environmental protection efforts. 
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Chapter 4 Case study & Results 

4.1. Datasets  

In this thesis, three set of datasets are utilized for the development and performance 

validation of semantic segmentation models aimed at detecting oil and identifying oil spill source. 

The datasets encompass diverse sources and methodologies, reflecting the comprehensive 

approach necessary to address the complexity of oil spill detection and oil fingerprinting. These 

datasets form the foundation for the subsequent analysis and model training, ensuring that the 

developed models are robust, accurate, and capable of performing in real-world scenarios. 

The following sections will detail the datasets used for different aspects of oil spill research. 

First, the multi-class dataset developed by  Krestenitis et al. (2019a)for detecting oil spills using 

satellite images will be explained. This dataset serves as a benchmark for future research in oil 

spill detection, providing a standardized framework for evaluating model performance. Next 

chapter will discuss the binary dataset created for training models based on binary segmentation 

for detecting oil, focusing on oil spill incidents in the Gulf of Suez. Last section will introduce the 

dataset used for oil fingerprinting for identifying the sources of marine oil spills and understanding 

their environmental impact. Each dataset's development, preparation, and significance will be 

explored in detail to highlight their contribution to advancing oil spill detection and analysis using 

machine learning techniques. 

4.1.1. Dataset for oil Spill detection in multi-class segmentation (case 1) 

For this thesis, a well-established dataset created by Krestenitis et al. (2019a) documented 

in their study on oil spill identification from satellite images using deep neural networks has been 

used. Recognizing the challenge of not having a standardized dataset for oil spill detection, 

Krestenitis et al. (2019a) aimed to provide a comprehensive dataset that could serve as a 

benchmark for future research in this area. 

4.1.1.1. Dataset Description and Preparation 

The dataset was meticulously assembled to include satellite Synthetic Aperture Radar 

(SAR) images capturing oil-polluted sea areas. These images were sourced from the European 
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Space Agency's Copernicus Open Access Hub, spanning from 28 September 2015 to 31 October 

2017. Each image was tagged with geographical coordinates and timestamps provided by the 

European Maritime Safety Agency (EMSA) via the CleanSeaNet service, ensuring each instance 

of oil spill was verified and mapped accurately. 

4.1.1.2. Technical specifications and processing 

The SAR system used operated at C-band with a coverage range of about 250 km and a 

pixel spacing of 10 × 10 m. This setup was chosen for its ability to cover large maritime areas 

while capturing details necessary for accurate oil spill detection. Data processing included: 

1. Location Verification: Matching SAR images with EMSA records to pinpoint oil spill 

locations. 

2. Image Cropping and Resizing: Focusing on regions of interest and adjusting image 

resolution to 1250 × 650 pixels. 

3. Radiometric Calibration: Ensuring consistent image quality and comparability. 

4. Speckle Noise Reduction: Applying a 7 × 7 median filter to clean up the images. 

5. Luminosity Adjustment: Transforming dB values to real luminosity for better visual 

interpretation 

4.1.1.3. Dataset annotation and utilization 

The dataset includes 1112 images classified into five categories: oil spills, look-alikes, 

ships, land, and sea surface, with the sea surface always serving as the background. To aid semantic 

segmentation, each class was assigned a distinct color in the RGB spectrum, and for model 

training, 1D label masks were provided. This dataset was split into training (90%) and testing 

(10%) subsets to facilitate model evaluation. The sample of SAR images and its RGB mask is 

shown in Fig 4.1. As shown if Fig 4.1 (b), Cyan color corresponds to oil spills, red to look-alikes, 

brown to ships, green to land and black is for sea surface. 
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(a) Synthetic aperture radar (SAR) image.                                              (b) Ground truth mask 

Fig. 4.1 Sample of SAR images after preprocessing (a) SAR image and (b) Corresponding 

annotated image.   blue corresponds to 'oil spills,' red to 'look-alikes,' brown to 'ships,' green to 

'land,' and black to the 'sea surface' class in the multi-class dataset 

 

4.1.1.4. Contribution to research 

This dataset not only standardizes the evaluation of oil spill detection models but also 

enriches the research community's resources, allowing for more consistent and comparative 

studies in the detection of marine oil spills using machine learning. The dataset is of very high 

quality and is publicly accessible, making it an excellent benchmark for future studies. 

Researchers can use this dataset to compare their results and improve their models. The inclusion 

of multiple classes, especially oil and look-alikes, presents a significant challenge for models to 

accurately detect oil spills. This complexity requires models to distinguish between oil spills and 

other objects that may have similar appearances in SAR images. By providing a robust dataset 

with these challenging classes, this research fosters the development of more sophisticated and 

accurate oil spill detection algorithms, ultimately advancing the field of environmental protection 

and monitoring. 

4.1.2. Dataset for oil spill detection in binary segmentation (case 2) 

In the development of semantic segmentation models for oil spill detection—utilizing U-

Net and U-Net++ architectures and other models with various encoders—a critical component was 
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the construction of a robust binary dataset. The primary goal of using this binary dataset was to 

evaluate the performance of the models on binary segmentation tasks, specifically to differentiate 

between oil and non-oil regions. By focusing on binary classification, it was aimed to ascertain 

how the accuracy of the models would improve compared to multi-class segmentation tasks. This 

binary approach simplifies the model's task, potentially leading to higher accuracy and more 

reliable detection of oil spills (El-Magd et al., 2023).This dataset was derived using SAR imagery, 

specifically focusing on oil spill incidents recorded in the Gulf of Suez from 2017 to 2021. A case 

study was conducted to identify the precise locations and times of oil spills. This process allowed 

for the gathering of relevant SAR images that accurately captured these events. The detailed 

mapping of oil spill incidents provided a solid foundation for developing the binary dataset, 

ensuring that the models trained on this data could effectively learn and predict the presence of oil 

spills in maritime environments. 

4.1.2.1. Case study 

The Gulf of Suez is recognized as an area with a high potential for repeated oil spill events, 

primarily due to the extensive petroleum exploration and production activities. Furthermore, the 

Gulf is a vital maritime route for shipping and oil transportation. Situated between the African 

continent and the Sinai Peninsula, it connects the Red Sea to the Mediterranean Sea, forming a 

crucial link for international trade (Omar et al., 2021) . Its strategic positioning facilitates the 

movement of oil tankers, enabling efficient oil transport from the Middle East to global markets. 

The Gulf has a northwest-southeast orientation and spans a length of 320 km. Its width varies 

between 30 and 80 km, with water depth ranging from 40 to 60 m. The Gulf is known for its 

consistently warm sea surface temperatures, maintaining a range of 20 to 30°C year-round. 

Additionally, it experiences strong prevailing winds, typically fluctuating between 5 and 12 meters 

per second. 

The study area encompasses the entire Gulf area and part of the Red Sea, extending from 

Suez at latitude 30°N southward to Quseer at 26°N and from longitude 32°20′E eastward to Sharm 

El-Sheikh at 34°30′E. This specific region was chosen as the study's focus due to extensive oil 

exploration, production, and shipping activities in cities like Suez, Ain Sokhna, Ras Ghareb, 

Hurghada, Safaga, and Quseer. Fig 4.2 shows the study area, highlighting major coastal cities and 

the locations of oil spills from 2017 to 2021 (El-Magd et al., 2023). The red areas on the map 
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indicate regions affected by oil spills, providing a visual representation of the extent and 

distribution of oil pollution in the Gulf of Suez and adjacent Red Sea areas. The inset map offers 

additional context by showing the location of the study area within Egypt (Fig 4.2). 

 

Fig. 4.2 Spatial distribution of oil spill incidents in the Gulf of Suez over five years (El-Magd et 

al., 2023). 

4.1.2.2. Data preparation steps 

The creation of the dataset involved several steps, executed using the ESA’s SNAP (Sentinel 

Application Platform) software, to ensure the SAR data was appropriately processed for use in 

machine learning models: 
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1. Downloading SAR imagery: The initial step involved downloading Level 1 Ground 

Range Detected (GRD) products, which contain detailed radar backscatter information 

necessary for detecting oil spills. 

2. Image subsetting: Utilizing GIS mapping data and the specific spill locations outlined by 

Zakzouk et al., subsets of the larger SAR images were created to focus on affected areas, 

enhancing the efficiency of the analysis. 

3. Orbit file application: Accurate satellite positioning was ensured by applying precise 

orbit files to the SAR data, which corrects for any satellite orbital deviations at the time of 

image capture. 

4. Radiometric correction: This step normalized the radar backscatter values across all 

images, ensuring consistency in the data input to the segmentation models. 

5. Speckle filtering: A Lee-Sigma filter with a 7x7 window was applied to reduce speckle 

noise, a common problem in radar imagery, which can obscure or distort the appearance 

of oil spills. 

6. Decibel scaling: Radar image pixel values were converted from linear to decibel scale to 

enhance the dynamic range and contrast of features within the image. 

7. Mask creation: After converting the subsisted images to decibel scaling, the SAR oil spill 

detection tool within the SNAP software was used to generate binary masks indicating 

spill presence. This involved using GIS maps of oil spills based on the source (Fig 4.3 (b)) 

Finally, the SNAP SAR oil spill detection tool was used to generate binary masks 

indicating spill presence, employing a trial-and-error method to adjust the threshold 

between 2 to 5 to match the oil spill record GIS maps available (Fig 4.3 (c)). 

8. Exporting data: The final processed images and their corresponding masks were 

exported—images in JPEG format and masks in PNG format—for integration into the 

machine learning dataset. 
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Fig. 4.3 (a) Case study area of the Suez Canal; (b) Oil spill mapping created by El-Magd et al. 

(2023); (c) Sample of dataset created for binary semantic segmentation. 

This comprehensive dataset comprises a total of 202.14 million non-oil pixels and 5.99 

million oil pixels. For training, 165.09 million non-oil pixels and 5.31 million oil pixels were used, 

while the test set included 37.06 million non-oil pixels and 0.69 million oil pixels. After processing 

the images, a total of 794 images, each 512 by 512 pixels, were created. Of these, 80% were used 

for training and 20% for testing. 

4.1.3. Dataset for oil fingerprinting (case 3) 

In cases of marine oil spills, accurately identifying the source of spilled oil and 

comprehending its behavior in the marine environment is of utmost importance. These factors play 

a crucial role in evaluating the environmental impact of such incidents and formulating an effective 

response strategy. In 1985, the MV Manolis L wrecked on Blow Hard Rock near Change Islands 

in Notre Dame Bay, Newfoundland and Labrador, sinking with significant amounts of heavy and 

diesel fuel oils. Initial oil recovery was hampered by harsh winter conditions, leading to no visible 

pollution reports for 28 years. In 2013, a severe storm exposed cracks in the ship's hull, leaking oil 

into the ocean. The Canadian Coast Guard responded by sealing the cracks and installing a 

cofferdam, which allowed for the oil's eventual recovery by 2018 (Yang et al., 2020).The dataset 

used in this article was the chemical compositions of total 17 samples of analyzed oil collected 

from different portions of the sunken MVManolis over a 4-year period (2013–2016). The chemical 

composition of the analyzed oil included total petroleum hydrocarbons (TPH), n-alkanes fromn-

C9 to n-C40, petroleum-related biomarkers including terpenes, hopene’s, and steranes, as well as 
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non-alkylated polycyclic aromatic hydrocarbons (PAHs) and their alkylated congeners (APAHs) 

which was reported by Yang et al. (2020). Information about the samples is shown in Table 4.1 

which describe of total 21 sample including 17 MVManolis samples and 3 possible sources and 

one possible source sample that is weathered oil to check the effect of weathering on the samples. 

Table 4.1 Sample Information of MVManolis (Yang et al., 2020) 

Samples code in 3D PCA 

plot 

ESTS code 

a 2016-09-28-3510  

b 2016-09-28-3511  

c 2016-09-28-3515  

d 2016-09-28-3518  

e 2016-09-28-3520 

f 2016-09-28-3522  

g 2016-09-28-3524  

h 2016-09-28-3525 

i 2016-09-28-3529  

j 2016-09-28-3530  

k 2016-09-28-3532  

l 2016-09-28-3534  

m 2016-09-28-3535  

n 2013/05/13-2244  

o 2014/08/19-2542.4 

p 2014/08/19-2542.3.1_10.12%  

q 2015/06/12-2932 

r 2015/10/29-3072 

s 2015/04-17-2714 Fresh 

t 2015/04/17-2714 W3 

u 2015/09/23-3048 
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4.2. Oil Spill Detection Results 

This section presents an overview of the results from evaluating the performance of various 

segmentation models used in this study. The evaluation focuses on assessing the accuracy and 

effectiveness of these models in detecting and segmenting oil spills using two key datasets: the 

multi-class dataset and the binary dataset. The performance metrics and qualitative analyses 

provide insights into how well each model performs, highlighting their strengths and weaknesses. 

4.2.1. Accuracy evaluation 

The performance comparison of different semantic segmentation models in the multi-class 

dataset reveals distinct strengths and weaknesses tied to their architectural designs shown in Table 

4.2. DeeplabV3+ demonstrates the highest mIoU of 68.29%, excelling particularly in complex 

categories like oil spills and look-alikes with IoUs of 64.63% and 44.59%, respectively. This 

highlights DeeplabV3+'s ability to handle intricate textures and distinguish between similar 

patterns, which is crucial for environmental monitoring tasks. Additionally, DeeplabV3+ achieves 

an F1 score of 73.78%, a recall of 76.69%, and a precision of 81.34%, reflecting its overall 

robustness. 

Unet++ shines in the sea surface category with an IoU of 96.37%, benefiting from its 

sophisticated architecture that enhances information flow and gradient preservation, making it 

highly effective in consistently textured and expansive areas. Unet++ also posts a mean IoU of 

66.28%, an F1 score of 71.54%, a recall of 75.85%, and a precision of 81.40%, showing balanced 

performance across various metrics. The Feature Pyramid Network (FPN), with its multi-scale 

feature-building capability, stands out in the segmentation of ships and land, registering IoUs of 

40.99% and 88.44%, respectively. FPN’s design enables effective detection of objects across 

different scales, making it ideal for varied environmental topographies. However, its performance 

dips in the segmentation of oil spills and look-alikes, recording lower scores of 61.38% and 

41.16%, respectively, due to its less effective capture of subtle textural nuances required in these 

complex categories. FPN achieves a mean IoU of 65.64%, an F1 score of 72.25%, a recall of 

77.56%, and a precision of 79.25%. 
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On the lower end, LinkNet, despite its design for speed and efficiency with less 

computationally demanding components, posts a mean IoU of 64.99%. Its architecture, while fast, 

does not provide the necessary depth or broad receptive fields needed for the detailed feature 

capture required in high-precision tasks, resulting in reduced efficacy in distinguishing between 

closely similar categories like oil spills and look-alikes. LinkNet’s performance metrics include an 

F1 score of 71.01%, a recall of 77.56%, and a precision of 74.80%. Unet shows strong performance 

in sea surface segmentation with an IoU of 95.66%, but it struggles more with look-alike detection, 

achieving an IoU of 43.68%. The overall mean IoU for Unet is 64.21%, with an F1 score of 

70.36%, a recall of 76.62%, and a precision of 78.59%. PSPNet performs moderately with a mean 

IoU of 60.70%, showing balanced capabilities across various classes but not leading in any specific 

area. It achieves an F1 score of 67.32%, a recall of 71.64%, and a precision of 79.20%. 

Table 4.2 Results of models on test set for multi-class dataset 

Model 

Name 

Sea 

Surface 

IoU 

Oil Spill 

IoU 

Look-

alike IoU 

Ship 

IoU 

Land 

IoU 

Mean 

IoU 

F1 

Score 

Rec

all 

Precis

ion 

Unet 0.9566 0.6253 0.4368 0.307

1 

0.8849 0.6421 0.703

6 

0.76

62 

0.785

9 

LinkNet 0.9633 0.6044 0.4421 0.389

7 

0.8500 0.6499 0.710

1 

0.77

56 

0.748

0 

Unet++ 0.9637 0.6320 0.4375 0.396

1 

0.8848 0.6628 0.715

4 

0.75

85 

0.814

0 

FPN 0.9624 0.6138 0.4116 0.409

9 

0.8844 0.6564 0.722

5 

0.77

56 

0.792

5 

Deeplab

V3+ 

0.9625 0.6463 0.4459 0.432

9 

0.9270 0.6829 0.737

8 

0.76

69 

0.813

4 

PSPNet 0.9532 0.5220 0.3979 0.304

7 

0.8573 0.6070 0.673

2 

0.71

64 

0.792

0 

  

Fig 4.4 depicts the training performance of various models across different classes for the 

multi-class dataset, providing insights into their learning behaviors and effectiveness over time. 

All models show an improvement in their IoU scores as training progresses, indicating effective 
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learning. However, classes such as oil spill and look-alike exhibit more variability and slower 

convergence, highlighting the difficulty in distinguishing these closely related categories. In 

contrast, the sea surface and land classes consistently achieve high IoU values early in the training 

process and maintain these high levels throughout the epochs, suggesting these classes are well-

represented in the dataset. This is consistent with the data showing 797.7 million sea surface pixels 

and 45.7 million land pixels in the dataset. The ship class also shows variability, with models like 

FPN and DeeplabV3+ performing better due to their ability to capture multi-scale features 

effectively. However, even these models do not achieve the high IoU values of sea surface and 

land, indicating fewer instances or more variability within the ship class, which has only 0.3 

million pixels. 
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Fig. 4.4 Comparison of different architectures in terms of IoU measured in Case 1 for each class 
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             Based on the evaluation of different semantic segmentation models on the binary dataset, 

which involves distinguishing between oil spills and the background, distinct strengths and 

weaknesses tied to their architectural designs are evident. The performance comparison is 

summarized in Table 4.3. 

Unet++ demonstrates robust performance with a mean Intersection over Union (mIoU) of 

87.47%, particularly excelling in detecting oil spills with an IoU of 75.98%. This underscores 

Unet++'s sophisticated architecture, enhancing information flow and gradient preservation, 

making it highly effective for this application. Additionally, Unet++ achieves an F1 score of 

89.30%, recall of 92.03%, and precision of 90.36%. LinkNet shows the highest overall 

performance with an mIoU of 89.88%, excelling in both background (IoU of 99.41%) and oil spill 

detection (IoU of 80.36%). Its efficient architecture allows for high-precision tasks, as evidenced 

by an F1 score of 91.10%, recall of 91.54%, and precision of 92.18%. PSPNet and Unet both 

exhibit strong performance with mIoUs of 85.17% and 85.12%, respectively. PSPNet's strength 

lies in its balanced performance, achieving an F1 score of 87.74%, recall of 88.72%, and precision 

of 90.05%. Similarly, Unet achieves an F1 score of 87.41%, recall of 96.12%, and precision of 

84.67%. 

DeeplabV3+ and FPN show slightly lower performance in oil spill detection, with IoUs of 

68.71% and 65.24%, respectively. DeeplabV3+'s performance indicates its proficiency in dealing 

with intricate textures and fine details, crucial for precise oil spill detection, resulting in an mIoU 

of 83.93%, an F1 score of 87.00%, recall of 86.11%, and precision of 91.04%. FPN, while effective 

for varied environmental topographies, struggles with detailed textural nuances required for oil 

spill detection, resulting in a lower mIoU of 81.91%, an F1 score of 84.71%, recall of 91.11%, and 

precision of 85.46%. The models' mIoU scores are significantly better in the binary dataset 

compared to the multi-class dataset. This is due to the binary classification involving only two 

classes: oil spill and background.  
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Table 4.3 Results of models on test set for binary dataset 

Model 

Name 

Background 

IoU 

Oil Spill 

IoU 

Mean 

IoU 

F1 

Score 

Recal

l 

Precisio

n 

Accurac

y 

Unet 0.9845 0.7180 0.8512 0.8741 

0.961

2 0.8467 0.9848 

LinkNet 0.9941 0.8036 0.8988 0.9110 

0.915

4 0.9218 0.9942 

Unet++ 0.9896 0.7598 0.8747 0.8930 

0.920

3 0.9036 0.9897 

FPN 0.9857 0.6524 0.8191 0.8471 

0.911

1 0.8546 0.9859 

DeeplabV3+ 0.9915 0.6871 0.8393 0.8700 

0.861

1 0.9104 0.9917 

PSPNet 0.9919 0.7115 0.8517 0.8774 

0.887

2 0.9005 0.9921 

 

The plots depict the training performance of various models on the binary dataset, which 

involves binary segmentation of oil spills and the background. All models show improvement in 

their Intersection over Union (IoU) scores as training progresses, indicating effective learning. The 

background class consistently achieves high IoU values early in the training process and maintains 

these high levels throughout the epochs (Fig 4.5). This suggests that the background class is well-

represented in the dataset and is easier for the models to learn and segment accurately. In contrast, 

the oil spill class exhibits more variability and slower convergence across all models, highlighting 

the challenge in distinguishing oil spills from the background. 

LinkNet demonstrates the highest IoU for the oil spill class among the models, achieving 

an IoU of 80.4%. This indicates LinkNet's proficiency in capturing detailed features necessary for 

oil spill detection, despite its lighter architecture. Similarly, DeeplabV3+ shows steady and high 

performance across the oil spill class, aligning with its test set results where it performs 

exceptionally well in detecting oil spills. This consistency indicates that DeeplabV3+'s architecture 

effectively learns complex features without overfitting.  

. 
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Fig. 4.5 Comparison of different architectures in terms of IoU measured in Case 2 for each class, 

over a range of training. 
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The mean Intersection over Union (mIoU) plots illustrate the learning behaviors and 

effectiveness of various models across two datasets: a multi-class segmentation problem (case 1) 

and a binary segmentation task (case 2) in Fig 4.6. 

In the multi-class dataset (case 1), all models show a steady increase in mIoU over the 

epochs. DeeplabV3+ and Unet++ achieve higher mIoU values, indicating their superior handling 

of multiple classes. FPN also performs well, while LinkNet and PSPNet struggle more with the 

complex multi-class task. The variability in mIoU is more pronounced in the multi-class dataset, 

highlighting the challenges of differentiating between more complex categories. 

In contrast, the binary dataset (case 2) shows higher mIoU values across all models due to 

the simpler classification task. DeeplabV3+, Unet++, and PSPNet achieve mIoU values close to 

or above 90%, showcasing strong performance and quick convergence. LinkNet, though improved, 

still lags behind the top performers, indicating its relative inefficiency in capturing detailed features 

even in a binary setting. 

To summarize, the performance of different architectures on the multi-class dataset reveals 

their various strengths and weaknesses in multi-class segmentation tasks, with DeeplabV3+ and 

Unet++ standing out as the top performers. The binary dataset, on the other hand, shows higher 

and more consistent mIoU values across models due to the simpler task, with models like 

DeeplabV3+, Unet++, and PSPNet leading in accuracy. These insights underscore the importance 

of model selection based on the specific segmentation task, with more complex models excelling 

in multi-class scenarios and maintaining high performance in binary tasks. 
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Fig. 4.6 Mean IOU during training in multi-class dataset (case 1) and Binary dataset (case 2) 

4.2.2. Qualitative results 

In the provided Figs, visual results from the evaluated segmentation models for multi-class 

dataset (Fig 4.7) and Binary dataset (Fig 4.8) are compared. The Unet model shows reasonable 

segmentation performance but often includes fragmented and noisy predictions, struggling to 

delineate the spill boundaries accurately. LinkNet's predictions are relatively cleaner with fewer 
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false positives, but it still faces challenges in capturing fine details. Unet++ demonstrates improved 

performance with better edge detection and fewer false positives, although it occasionally misses 

smaller spill areas. 

The Feature Pyramid Network (FPN) performs well in capturing multi-scale features, 

resulting in consistent segmentation of larger spill areas but struggling with finer details and 

smaller regions. DeeplabV3+ stands out with robust performance, accurately segmenting both 

large and small spill areas with well-defined boundaries, effectively handling complex textures. 

PSPNet's performance is similar to DeeplabV3+, providing precise segmentation with clear 

boundaries, capturing varying scales and complexities in the imagery. 

Comparing the models' qualitative results, DeeplabV3+ and PSPNet exhibit the best 

performance, providing the most precise and comprehensive segmentation. Unet and LinkNet, 

while effective in some instances, show limitations in handling finer details and reducing false 

positives. The visual results align with the IoU values, indicating that models like DeeplabV3+ 

and PSPNet excel in identifying oil spills with higher accuracy and fewer errors, making them 

suitable for detailed environmental monitoring tasks. 
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Fig. 4.7 Qualitative results of the examined segmentation models on the presented oil spill multi-

class dataset. blue corresponds to 'oil spills,' red to 'look-alikes,' brown to 'ships,' green to 'land,' 

and black to the 'sea surface' class in the multi-class dataset 
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Fig. 4.8 Qualitative results of the examined segmentation models on the presented oil spill 

Binary dataset, where white corresponds to oil spill and black to non-oil class. 
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4.2.3. Comparison of Deeplabv3 models 

DeepLabv3+ was chosen for its advanced capabilities in semantic segmentation, 

particularly its ability to handle complex scenarios with high accuracy. Its use of atrous 

convolution allows for effective control over the field of view, capturing multi-scale contextual 

information without significantly increasing computational load. This makes DeepLabv3+ 

particularly suitable for tasks requiring detailed and precise segmentation, such as distinguishing 

between closely related classes or detecting fine details in high-resolution images. 

The choice of encoder significantly impacts the performance of DeepLabv3+, as different 

encoder architectures have varying strengths in feature extraction. The performance data shows 

that EfficientNet-B5 achieved the highest mIoU of 68.29%, with an F1 score of 0.7378, recall of 

0.7669, and precision of 0.8134, indicating its superior ability to capture detailed features across 

different classes. This encoder also has 29.49 million parameters, providing a balanced 

performance with a reasonable model size. 

ResNet-based encoders also demonstrated strong performance. For instance, ResNet101 

achieved a mean mIoU of 62.82%, with an F1 score of 0.7046, recall of 0.7380, and precision of 

0.8057. It has 45.67 million parameters, showcasing its robustness in feature extraction but with a 

higher computational load compared to EfficientNet-B5. ResNet50, with 26.68 million 

parameters, achieved a mean mIoU of 60.85%, F1 score of 0.6842, recall of 0.7423, and precision 

of 0.7721, balancing performance and model complexity. EfficientNet models generally 

outperformed ResNet models, likely due to their optimized balance between depth, width, and 

resolution, enhancing their capacity to capture diverse features at multiple scales. EfficientNet-B4, 

for instance, achieved a mean mIoU of 65.46%, F1 score of 0.7201, recall of 0.7632, and precision 

of 0.8100 with 18.62 million parameters. Similarly, EfficientNet-B2, with only 8.64 million 

parameters, achieved a mean mIoU of 65.36%, F1 score of 0.7217, recall of 0.7561, and precision 

of 0.8155, demonstrating its efficiency. 

The inclusion of metrics such as F1 score, recall, and precision provides a comprehensive 

evaluation, highlighting EfficientNet-B5's balanced performance across these critical measures, 

making it a top choice for detailed segmentation tasks. This variability in performance underscores 
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the importance of selecting the appropriate encoder to maximize the segmentation accuracy of 

DeepLabv3+ for specific tasks. (Table 4.4). 

Table 4.4 Effect of encoders on accuracy of DeepLabv3+ 

 

 

 

 

4.2.4. Comparison of Unet and Unet++ 

The number of parameters is a crucial metric in evaluating the complexity and 

computational requirements of deep learning models for semantic segmentation. Table 4.5 

demonstrates how these factors impact performance and efficiency for different UNet and UNet++ 

models with various encoders. 

For instance, UNet++ with EfficientNet-B5 achieves the highest mIoU of 65.48% with 

89.45 million parameters, indicating an excellent balance between performance and model 

complexity. In contrast, UNet++ with DenseNet161, while achieving a respectable mIoU of 

58.67%, has 191.09 million parameters, reflecting the increased computational load. This suggests 

that more sophisticated encoders can improve segmentation accuracy but may also significantly 

increase the number of parameters. 

UNet and UNet++ are popular models for semantic segmentation due to their ability to 

capture fine-grained details by utilizing skip connections that merge low-level and high-level 

Encoder Name Mean mIoU F1 Score Recall Precision Parameters (M) 

resnet50 0.6085 0.6842 0.7423 0.7721 26.68 

resnet18 0.6231 0.6944 0.7351 0.7832 12.33 

resnet101 0.6282 0.7046 0.7380 0.8057 45.67 

resnext50_32x4d 0.6179 0.6935 0.7534 0.7731 26.15 

resnet152 0.6077 0.6794 0.7191 0.7784 61.31 

efficientnet-b2 0.6536 0.7217 0.7561 0.8155 8.64 

efficientnet-b3 0.6346 0.7044 0.7512 0.7939 11.68 

efficientnet-b4 0.6546 0.7201 0.7632 0.8100 18.62 

Efficientnet-b5 0.6829 0.7378 0.7669 0.8134 29.49 

efficientnet-b6 0.6467 0.7147 0.7663 0.8063 41.97 

efficientnet-b7 0.6511 0.7196 0.7721 0.8019 65.11 

timm-efficientnet-b5 0.6334 0.7017 0.7664 0.7787 29.49 
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features. The table highlights how different encoders impact these models' performance. For 

instance, EfficientNet-B5 used with UNet++ not only achieves the highest mIoU but also shows 

high accuracy (96.08%) and superior precision (78.76%), recall (78.59%), and F1 score (71.39%). 

This superior performance is due to EfficientNet's optimized balance of network depth, width, and 

resolution, which enhances feature extraction and generalization. In contrast, UNet++ with 

ResNet50 achieves a lower mIoU of 60.17%, indicating its relatively lesser ability to capture fine 

details compared to EfficientNet. 

DenseNet-based encoders also perform well, with UNet and UNet++ showing varying 

degrees of effectiveness. For instance, UNet with DenseNet161 achieves an mIoU of 62.36% and 

a decent accuracy of 94.82% with 72.67 million parameters, highlighting its robust performance. 

However, UNet++ with DenseNet161 has a higher parameter count (191.09 million) while 

achieving a lower mIoU of 58.67%. DPN92 with UNet++ shows an mIoU of 62.36% with 151.62 

million parameters, suggesting its feature extraction capabilities are less effective for this task. 

These observations underscore the importance of selecting the appropriate encoder to optimize 

both accuracy and model efficiency, with EfficientNet-B5 emerging as the best overall choice for 

detailed segmentation tasks. 

Table 4.5 Effect of encoders on accuracy of Unet and Unet++ 

Model Encoder Mean 

IoU 

F1 Score Recall Precision Accuracy Parameters 

(M) 

Unet densenet121 0.6125 0.6754 0.7449 0.7648 0.9423 62.76 

Unet densenet169 0.6126 0.6738 0.7410 0.7671 0.9529 62.87 

Unet densenet201 0.6170 0.6802 0.7423 0.7786 0.9425 69.52 

Unet densenet161 0.6236 0.6845 0.7363 0.7693 0.9482 72.67 

Unet++ resnet50 0.6017 0.6605 0.7222 0.7715 0.9388 107.2 

Unet++ densenet161 0.5867 0.6498 0.7292 0.7226 0.9369 191.09 

Unet++ efficientnet-b5 0.6548 0.7139 0.7859 0.7876 0.9608 89.45 

Unet++ dpn92 0.6236 0.6846 0.7477 0.7645 0.9518 151.62 
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4.3. Oil Fingerprinting Results 

4.3.1. Principal components analysis (PCA) 

A variety of parameters, including total petroleum hydrocarbons (TPH), n-alkanes, 

biomarkers (terpanes and steranes), and PAHs, were analyzed and present. The results showed 

that the oil had not experienced significant weathering. This is because the patterns of 

biodegradation and photo-oxidation, which are two major weathering processes, were not evident 

from the analysis of the characteristics of PAHs and n-alkanes.  

PCA was applied for feature selection and dimensionality reduction. As mentioned in 

section 3.3.1, all datasets from four classes of chemical compositions were standardized before 

conducting PCA, and 99% variance was chosen to ensure the retention of most information from 

the original datasets. Scree plots were drawn for PCs against the percentage of explained variance 

foe each chemical composition is shown in Fig. 4.9. The scree plots offer a comprehensive 

breakdown of the PCs and their associated contributions to the variance in the dataset. Notably, n-

alkanes take precedence with the highest PC score, denoted as while TPH and PAHs closely follow, 

making substantial contributions to dataset variance. In contrast, biomarkers exhibit the least 

significant PC presence, with only 2 PCs capturing less than 99% of the total variance. Notably, 

the first PC across all components represents over 51% of the variance, signifying its substantial 

influence on the dataset. Specifically, the first PC for PAHs and biomarkers impressively accounts 

for approximately 83% of the variance, underscoring their pivotal roles. To enhance the 

interpretability of the data and facilitate subsequent model predictions, a strategic approach was 

employed to streamline and simplify the information. Instead of transforming all features into a 

lower dimension, we selectively chose features with the highest loading values to represent the 

PCs. This careful selection process aims to highlight the most influential and informative aspects 

of the data, making it more amenable for analysis and model predictions. By focusing on the 

selective representation of these principal components, we effectively retain the critical elements 

while reducing the overall dimensionality of the dataset. This approach ensures that the streamlined 

data remains highly informative for further analyses and modeling in oil fingerprinting.  
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Fig. 4.9 Scree plots of principal components under 99% variance for each chemical composition: 

(a): n-alkanes, (b): Biomarkers, (c): TPH, (d): PAH 

  

            Based on the Principal Component Analysis (PCA) results (Fig. 4.9), it is evident that the 

top three PCs effectively encapsulate the primary variances across the analyzed chemical 

categories. PC1 is predominantly characterized by n-C16 from the n-alkanes group, PHC F1 (<n-

C10) representing Total Petroleum Hydrocarbons (TPH), 17α(H), 21β(H)-hopane as a biomarker, 
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and Fluoranthene for PAH (Table 4.6). These components exhibit substantial loadings, signifying 

their critical role in capturing the variance within their respective domains. PC2 includes variables 

such as n-C24, another significant n-alkane, PHC F2 (<n-C10<n16), C23 tricyclic terpane from 

biomarkers, and Biphenyl from PAHs, highlighting their influential correlation with this principal 

component. PC3 comprises n-C38, TAH/PHC (%), which are essential in TPH analysis, 

17α(H),21β(H)-30-norhopane (H29) as a biomarker, and Anthracene from PAHs, indicating their 

substantial contributions to this component. Collectively, these variables underscore the dynamics 

of environmental impact and the complexity of chemical interactions within the PCA framework. 

 

Table 4.6 Key Chemical Indicators Across top three Principal Components for each 

chemical composition 

 

4.3.2. Visualizing data 

The visuals in Fig 4.10 reinforce the robust analytical approach using PCA and 

Hierarchical Cluster Analysis (HCA) to discern the complex chemical composition of various oil 

samples. Fig 4.10 (a) displays a PCA scatter plot for n-alkanes, where samples #3515 and #3522 

emerge as distinct from the others, suggesting their classification as diesel oils with notably higher 

TPH values and a significant unresolved complex mixture (UCM) hump characteristic of such 

oils. These patterns, supported by Yang et al. (2020), indicate that these samples may originate 

from a different source compared to the others in the dataset. 

Principal 

Component 

n-

alkanes TPH Biomarkers PAH 

PC1 n-C16 PHC F1 (<n-C10) 17 (H),21 (H)-hopane fluoranthene 

PC2 n-C24 

PHC F2 (<n-

C10<n16) C23 tricyclic terpane biphenyl 

PC3 n-C38 TAH/PHC (%) 

17 (H),21 (H)-30-norhopane 

(H29) anthracene 
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Expanding upon this, Fig 4.10 (b) provides a PCA scatter plot for TPH, where the same two 

samples are distinctly grouped, further affirming their unique chemical signature, possibly due to 

their higher TPH content. This level of differentiation is crucial in environmental forensics for 

tracing the origins of oil spills and determining appropriate remediation strategies. The clustering 

revealed in the dendrograms for n-alkanes (Fig 4.10 (c)) and TPH (Fig 4.7(d)) is consistent with 

the PCA results, where the hierarchical structure shows clear separation between different oil 

types. The dendrogram illustrates that while samples #3515 and #3522 form a branch indicating 

their similarity, other samples like #3534 and #3535 appear to fall into a different cluster, possibly 

indicative of weathered oils, as seen in their specific dendrogram branches. For visualizing the 

samples, these two metrics were chosen because they effectively highlight the significant 

variations and clustering within the dataset. 

Together, these data visualizations form a coherent narrative, elucidating the intricate 

relationships within the chemical profiles of oil samples. By integrating PCA and HCA, the 

methodology transcends mere pattern recognition, offering a comprehensive framework that 

enhances the precision in identifying oil types and sources, particularly valuable in the context of 

the MV Manolis L shipwreck oil analysis. This combined approach not only aids in the 

environmental assessment of oil spills but also serves as a strategic tool in environmental 

protection and conservation efforts. 
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Fig. 4.10 PCA score plot (a) 3D PCA score plot of n-alkanes, (b) 3D PCA score plot of TPH, (c) 

HCA dendrogram from n-alkanes and (d) HCA dendrogram from TPH. 

4.3.3. Models development 

In this study, we employed a comprehensive approach to model training and comparative 

analysis by utilizing six distinct ML algorithms and exploring three diverse feature spaces. The 

goal was to develop a robust and highly predictive model. To ensure the reliability of our models, 

we employed a cross-validation test size of 20% within the GridSearchCV framework. This 
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approach effectively allocated 20% of the dataset to the test datasets, enabling us to evaluate the 

model's performance on unseen data. For the convenience of prediction and evaluation, we 

transformed the labels into numerical values, specifically 0, 1, and 2. This numerical representation 

of labels streamlines the modeling process and aids in the accurate assessment of our algorithms' 

performance. The outcomes of our hyperparameter optimization efforts are meticulously 

documented and presented in Table 6. This table encapsulates the key parameters that were fine-

tuned to achieve optimal model performance, providing valuable insights into the settings that 

yielded the best results for each algorithm and feature space. This comprehensive analysis serves 

as a foundation for our model development, allowing us to make informed decisions about the 

most effective approach for our specific problem.  

The SVC model achieved the highest accuracy (1.000) for predicting n-alkane composition 

in the X dataset with all PCs. The SVC model also achieved the highest accuracy (0.988) for 

predicting PAH composition in the X dataset with all PCs. For TPH composition, the SVC model 

achieved the highest accuracy (0.929) in the X dataset with all PCs. Finally, for biomarker 

composition, the KNN model achieved the highest accuracy (0.965) in the X dataset with all PCs. 

Overall, the SVC model performed the best for predicting the composition of all four chemical 

groups (n-alkanes, PAHs, TPH, and biomarkers) in the X dataset. This suggests that the SVC model 

is a robust and reliable tool for predicting the chemical composition of oil samples (Table 4.7).  
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Table 4.7 Outputs of different ML models in each Chemical Composition 

Chemical composition Dataset Model Variable Accuracy 

n-alkanes X (all PCs) DTC 34 0.976 
  

KNN 34 0.988 
  

SVC 34 1 
  

RFC 34 0.98 
  

LRC 34 1 
  

EVC 34 0.988 

PAH X (all PCs) DTC 15 0.965 
  

KNN 15 0.893 
  

SVC 15 0.988 
  

RFC 15 0.918 
  

LRC 15 0.964 
  

EVC 15 0.917 

TPH X (all PCs) DTC 10 0.953 
  

KNN 10 0.965 
  

SVC 10 0.929 
  

RFC 10 0.976 
  

LRC 10 0.893 
  

EVC 10 0.941 

 

  

    

Biomakers X (all PCs) DTC 6 0.893 
  

KNN 6 0.965 
  

SVC 6 0.869 
  

RFC 6 0.917 
  

LRC 6 0.869 

 

4.3.4. F-score 

The resulting F-scores are summarized in Table 4.8, representing the outcomes of the top-

performing models under the specific conditions outlined in this study. Among the various 
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chemical compositions investigated in this study, it's worth noting that certain models stood out 

as the most proficient. The Random Forest model exhibited the highest F-score, indicating its 

exceptional predictive power and precision in identifying and classifying the target elements. 

Following closely in performance were the SVM and KNN models, which also demonstrated 

strong predictive capabilities in this context. While these models excelled in their performance, 

it's essential to acknowledge that the Decision Tree and Logistic Regression models, while still 

offering valuable insights, exhibited comparatively lower F-scores. This suggests that their 

performance might be more suitable for specific scenarios or may benefit from further fine-tuning 

to reach their full potential. The selection of the most appropriate model should be contingent on 

the specific requirements and objectives of the given application or study.  

Table 4.8 F-score for the top-performing models 

Chemical composition  
Model  F-score  

n-alkanes  SVC  1.0  

PAH  SVC  0.987  

TPH  RFC  0.975  

Biomarkers  KNN  0.963  

  

4.4. Summary of Results 

The evaluation of various segmentation models focused on assessing their accuracy and 

effectiveness in detecting and segmenting oil spills using the multi-class and binary datasets. 

DeeplabV3+ demonstrated steady and high performance across most classes, particularly excelling 

in mIoU and challenging categories. This model's architecture effectively learns complex features 

without overfitting. FPN showed high IoU scores for ships and land, thanks to its multi-scale 

feature extraction capability, but struggled with oil spills and look-alikes, likely due to the need 

for more detailed textural differentiation. LinkNet, while improving over epochs, showed the 

lowest overall performance, reflecting its design for efficiency rather than capturing intricate 

details. 



85 

 

In the binary segmentation task, models typically exhibited higher mIoU scores due to the 

reduced complexity, less class confusion, and simpler data distribution. Unet++ performed well, 

benefiting from its sophisticated architecture that enhances information flow and gradient 

preservation, making it highly effective in this binary segmentation task. FPN performed well for 

the background class but showed lower IoU scores for the oil spill class, indicating a need for more 

detailed textural differentiation. PSPNet, while improving over epochs, showed variability in its 

performance, reflected in its test set mean IoU scores. DeepLabv3+ was chosen for its advanced 

capabilities in semantic segmentation, particularly its ability to handle complex scenarios with 

high accuracy. Its use of atrous convolution allows for effective control over the field of view, 

capturing multi-scale contextual information without significantly increasing computational load. 

The performance data showed that EfficientNet-B5 achieved the highest mean IoU of 68.29%, 

indicating its superior ability to capture detailed features across different classes. This encoder also 

exhibited high F1 scores, recall, and precision, making it a top choice for detailed segmentation 

tasks. In contrast, UNet and UNet++ are popular models for semantic segmentation due to their 

ability to capture fine-grained details by utilizing skip connections that merge low-level and high-

level features. UNet++ with EfficientNet-B5 not only achieved the highest mIoU but also showed 

high accuracy and superior precision, recall, and F1 score. This superior performance is due to 

EfficientNet's optimized balance of network depth, width, and resolution, which enhances feature 

extraction and generalization. UNet++ with DenseNet161, while achieving a respectable mIoU, 

reflects the increased computational load, underscoring the importance of selecting the appropriate 

encoder to optimize both accuracy and model efficiency. 

The oil fingerprinting results highlight the analysis of various chemical parameters to 

understand the composition of oil samples and the absence of significant weathering. PCA was 

applied for feature selection and dimensionality reduction, identifying that n-alkanes, TPH, and 

PAHs significantly contributed to the dataset variance, while biomarkers contributed the least. The 

first PC captured over 51% of the variance, underscoring its substantial influence, particularly with 

PAHs and biomarkers accounting for approximately 83% of the variance. This strategic approach 

to PCA not only retained critical elements of the data but also streamlined it for further analysis 

and modeling. The key chemical indicators across the top three principal components included n-

C16, PHC F1, 17α(H),21β(H)-hopane, and Fluoranthene, highlighting their critical roles in 

capturing dataset variance and contributing to a robust framework for subsequent analyses. In the 
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model development phase, a comprehensive approach was employed using six distinct ML 

algorithms and exploring three diverse feature spaces. The Support Vector Classifier (SVC) model 

achieved the highest accuracy for predicting n-alkane composition (1.000), PAH composition 

(0.988), and TPH composition (0.929). For biomarker composition, the K-Nearest Neighbors 

(KNN) model achieved the highest accuracy (0.965). This comprehensive analysis highlighted the 

robustness and reliability of the SVC model in predicting the chemical composition of oil samples 

across multiple chemical groups, demonstrating its effectiveness in handling complex datasets and 

ensuring accurate predictions.  
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Chapter 5 Discussion 

 

5.1. Semantic Segmentation 

5.1.1. Network analysis 

Starting with our multi-class segmentation results, DeeplabV3+ consistently shows high 

performance across most classes, leading in mean Intersection over Union (mIoU) and excelling 

particularly well in challenging categories with an mIoU of 68.29%. This consistency indicates 

that our model's architecture effectively learns complex features without overfitting. This aligns 

with the findings of Alpers et al. (2017), who highlighted the robustness of advanced segmentation 

models in handling complex scenarios. In our experiments, FPN shows high IoU scores for ships 

(40.99%) and land (88.44%) during training, thanks to its multi-scale feature extraction capability. 

However, it struggles with oil spills (61.38%) and look-alikes (41.16%), likely due to the need for 

more detailed textural differentiation. Similar observations were made by Basit et al. (2022) in 

their comparison of segmentation models for SAR images. LinkNet, while improving over epochs, 

shows the lowest overall performance with a mean IoU of 64.99%, reflecting its design for 

efficiency rather than capturing intricate details in our dataset. The imbalance in our dataset can 

lead to models being biased towards more frequently represented classes, reducing their ability to 

accurately segment underrepresented classes. PSPNet's architecture, while powerful for certain 

applications, might not be as effective in capturing the fine-grained details necessary for 

differentiating between closely related classes like oil spills (52.20%) and look-alikes (39.79%) 

(Saha et al., 2016). The challenges in segmenting oil spills and look-alikes in our research 

underscore the need for architectures that can capture fine-grained details and handle complex 

textures effectively. Addressing this imbalance through data augmentation or re-sampling 

techniques could help improve the models' performance on the less represented classes, leading to 

more accurate and robust semantic segmentation in our specific context. 

Following our multi-class segmentation, binary segmentation was performed. This simpler 

classification task generally leads to higher mIoU scores due to reduced complexity and less class 
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confusion. In our research, Unet++ performed well, achieving a mean IoU of 87.47%. Its 

sophisticated architecture enhances information flow and gradient preservation, making it highly 

effective in this binary segmentation task. FPN also performed well for the background class with 

an IoU of 98.57% but showed lower IoU scores for the oil spill class at 65.24%, indicating a need 

for more detailed textural differentiation (Basit et al., 2021). PSPNet, while improving over 

epochs, exhibited variability in its performance, reflected in its test set mean IoU scores of 85.17%. 

Notably, the IoU for the non-oil spill class achieved the highest number compared to all the latest 

research on oil spill detection using DCNNs, demonstrating the effectiveness of these models in 

accurately identifying and segmenting non-oil regions (Conceição et al., 2021; Shaban et al., 2021; 

Shanmukh et al., 2024). The training plots for our binary dataset align well with the test set results, 

providing a comprehensive view of how each model learns and performs. The challenges in 

segmenting oil spills in our study underscore the need for architectures that can capture fine-

grained details and handle complex textures effectively. These promising results highlight the 

robustness and accuracy of the models used in our research, significantly advancing the state of 

oil spill detection. 

Given the prominent results of DeeplabV3+ in our multi-class segmentation tasks, we 

focused specifically on this model to achieve even better results by experimenting with different 

encoders. DeeplabV3+ was chosen for its advanced capabilities in semantic segmentation, 

particularly its ability to handle complex scenarios with high accuracy within our study. Its use of 

atrous convolution allowed us to effectively control the field of view, capturing multi-scale 

contextual information without significantly increasing computational load. Our performance data 

revealed that the EfficientNet-B5 encoder achieved the highest mean IoU of 68.29%, indicating 

its superior ability to capture detailed features across different classes in our dataset (Chen et al., 

2017). This encoder also exhibited high F1 scores, recall, and precision, making it a top choice for 

our detailed segmentation tasks. Other EfficientNet variants, such as EfficientNet-B2, B3, and B4, 

also performed well, demonstrating the efficiency of this architecture within the context of our 

research. In comparison, ResNet-based encoders showed respectable performance but did not 

match the results of EfficientNet-B5 in our tests, highlighting the importance of choosing the right 

encoder to optimize model performance specifically for our study. 
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In our research, UNet and UNet++ demonstrated their widely recognized ability to capture 

fine-grained details in semantic segmentation by using skip connections that merge low-level and 

high-level features. Among the encoders we tested, UNet++ with EfficientNet-B5 stood out, 

achieving the highest mean IoU of 0.6548 and exhibiting high accuracy, precision, recall, and F1 

score. This superior performance is attributed to EfficientNet-B5's optimized balance of network 

depth, width, and resolution, which enhances feature extraction and generalization within our 

dataset (Weng & Zhu, 2015). In contrast, UNet++ with DenseNet161, while still respectable with 

a mean IoU of 0.5867, demonstrated the impact of increased computational load, having a high 

parameter count of 191.09 million. These observations underscore the importance of selecting the 

appropriate encoder to optimize both accuracy and model efficiency in our specific context, with 

EfficientNet-B5 emerging as the best overall choice for detailed segmentation tasks. Other 

configurations, such as UNet with various DenseNet encoders, showed consistent but lower 

performance in our experiments, further highlighting EfficientNet-B5's effectiveness for our 

research objectives. 

5.1.2. Overcoming challenges in oil spill detection 

The integration of advanced remote sensing techniques, such as SAR images, with state-

of-the-art semantic segmentation models has significantly enhanced the accuracy and reliability of 

oil spill detection. Models like U-Net, LinkNet, UNet++, FPN, DeepLabv3+, and PSPNet 

effectively manage the complex and noisy nature of SAR data. For instance, DeepLabv3+ achieved 

a mean IoU of 68.29% with EfficientNet-B5, showcasing its superior ability to capture detailed 

features across different classes. These models excel in capturing intricate details and minimizing 

noise, crucial for environmental monitoring (Alizadeh et al., 2018; Jafarzadeh et al., 2021). 

High-quality datasets, such as those created by Krestenitis et al. (2019a) and validated with 

incidents in the Gulf of Suez, provide a robust foundation for model training and evaluation. These 

meticulously annotated datasets ensure accurate verification and mapping of each oil spill instance, 

enabling the models to generalize well to real-world scenarios and enhancing detection reliability. 

However, this integration comes with challenges. The advanced techniques and models require 

significant computational resources, which can be a barrier for smaller institutions. Preprocessing 

steps like radiometric calibration and noise reduction are time-consuming and require expertise. 

Environmental variations, such as weather conditions and similar-looking natural phenomena, can 
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introduce noise and artifacts, necessitating continuous model refinement and validation (El-Magd 

et al., 2023; Dabboor et al., 2018). 

Despite these advancements, the study faced limitations, including the time-consuming 

nature of SAR image preprocessing and the computational resources required for extensive model 

training. Additionally, creating a binary dataset using GIS maps, while achieving approximately 

94% accuracy, posed challenges in further improving accuracy. Uncertainties related to 

environmental factors, such as wind creating look-alike images and the weathering of oil spills, 

also impacted model performance. Continuous refinement and validation are essential to maintain 

model robustness and reliability in diverse real-world scenarios (Huang et al., 2022). 

5.2. Oil Fingerprinting  

5.2.1. Model analysis 

The results of the PCA showed that in all four chemical compositions (n-alkanes, TPH, 

PAHs, and biomarkers), the top principal component (PC) covered at least 51% of the variance in 

the dataset. This high level of variance explained by the top PCs underscores their substantial 

influence on the dataset and their importance in the analysis. For n-alkanes, n-C16 emerged as the 

top PC, reflecting its dominance in the composition of crude oil and its stability in various 

environmental conditions, making it a reliable marker for oil fingerprinting (Wang et al., 1999). In 

the case of polycyclic aromatic hydrocarbons (PAHs), Fluoranthene was the top PC. Fluoranthene 

is a significant PAH due to its prevalence and persistence in the environment. Its stable chemical 

structure and widespread presence in different oil samples make it a critical component for 

distinguishing between various oil sources. Its selection as the top PC highlights its importance in 

capturing the key variance in PAH profiles across the samples (Mirnaghi et al., 2019). For 

biomarkers, 17α(H),21β(H)-hopane was identified as the top PC. Hopanes are a class of 

triterpenoids that are highly resistant to weathering and biodegradation. The specific structure of 

17α(H),21β(H)-hopane makes it a robust indicator of oil origin and history. Its stability and 

resistance to environmental changes allow it to serve as a reliable marker for identifying and 

differentiating oil samples (Wang et al., 2006). 
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To ensure reliability, a cross-validation test size of 20% was used within the GridSearchCV 

framework, which effectively allocated part of the dataset for testing and enabled performance 

evaluation on unseen data. Labels were transformed into numerical values (0, 1, and 2) to 

streamline the modeling process and facilitate accurate assessment. The outcomes of the 

hyperparameter optimization efforts were meticulously documented, providing insights into the 

settings that yielded optimal performance. The Support Vector Classifier (SVC) model achieved 

the highest accuracy for predicting n-alkane (1.000), PAH (0.988), and TPH (0.929) compositions. 

For biomarker composition, the KNearest Neighbors (KNN) model achieved the highest accuracy 

(0.965). Overall, the SVC model emerged as the best performer across most chemical groups. This 

superior performance can be attributed to SVC's ability to handle high-dimensional spaces and its 

robustness in separating classes with clear margins, making it particularly effective for the 

supervised classification of complex chemical datasets. The combination of Principal Component 

Analysis (PCA) and Hierarchical Cluster Analysis (HCA) in clustering, followed by the 

application of SVC for classification, provided a robust and reliable framework for predicting the 

chemical composition of oil samples 

5.2.2. Strengths and limitations of data-driven oil fingerprinting approaches 

The oil fingerprinting method employed in this research offers significant advantages, 

particularly its novel use of data-driven models to classify samples without predefined labels. This 

approach enhances the ability to identify unique oil types from complex datasets, providing a more 

flexible and accurate means of analysis. Employing six different ML algorithms ensured a 

comprehensive evaluation of the data, leading to high prediction accuracy and robust model 

performance. For instance, the SVC model achieved remarkable accuracy across multiple chemical 

groups, showcasing its robustness and reliability in handling complex chemical datasets. This 

method facilitated effective clustering and classification of oil samples, contributing significantly 

to the advancement of oil spill detection and analysis. High-quality datasets and the combination 

of PCA and HCA laid a strong foundation for the models, ensuring they were well-calibrated and 

capable of generalizing to real-world scenarios. However, there are notable challenges. While 

clustering in all chemical compositions was similar, slight differences indicate the need for further 

analysis of unsupervised classification based on oil chemical composition to better understand the 

relationships among these parameters. The limited sample necessitating the increase of sample 
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numbers using synthetic datasets to avoid overfitting and improve generalizability. Despite these 

challenges, the continuous refinement and validation of models with diverse datasets will enhance 

their broad applicability and reliability.  
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Chapter 6 Conclusion 

6.1. Summary  

This research aims to develop a comprehensive framework for oil spill detection and oil 

fingerprinting, leveraging advanced remote sensing techniques, semantic segmentation models, 

and machine learning methods. The methodology integrates various cutting-edge techniques to 

address the challenges in oil spill detection and fingerprinting. The process begins with the use of 

Synthetic Aperture Radar (SAR) imaging for its reliability under various weather conditions. The 

study utilized two datasets: a multi-class dataset by Krestenitis et al. (2019a) and a binary dataset 

from the Gulf of Suez oil spill incidents (2017-2021). These datasets underwent extensive 

preprocessing to ensure high-quality input for training state-of-the-art semantic segmentation 

models, including U-Net, LinkNet, UNet++, FPN, DeepLabv3+, and PSPNet. 

Key results from the evaluation of semantic segmentation models demonstrated that 

DeepLabv3+ achieved the highest mean Intersection over Union (mIoU) of 68.29% in multi-class 

segmentation, while Unet++ and LinkNet performed exceptionally well in binary segmentation 

tasks, with mIoU scores of 87.47% and 89.88%, respectively. For oil fingerprinting, the chemical 

compositions of oil samples from the MV Manolis L shipwreck were analyzed using GC/MS and 

GC/FID techniques. Principal Component Analysis (PCA) and clustering methods were applied to 

categorize oil samples based on their chemical signatures, with the Support Vector Classifier 

(SVC) model achieving the highest accuracy across multiple chemical groups, highlighting its 

robustness and reliability in predicting oil composition. 

In conclusion, this research presents a robust framework for oil spill detection and 

fingerprinting, combining remote sensing, advanced segmentation models, and machine learning 

techniques. The developed methodologies significantly enhance the precision and reliability of oil 

spill detection and source identification, crucial for effective environmental monitoring and 

protection. By integrating diverse data sources and analytical techniques, this study offers a 

comprehensive approach to addressing the challenges of environmental forensics, contributing to 

more accurate and timely responses to oil spill incidents and advancing the field of environmental 

monitoring. 
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6.2. Contributions 

This research significantly advances the field of environmental forensics and oil spill 

detection by introducing an integrated approach that combines advanced imaging techniques, 

comprehensive data processing, and sophisticated machine learning models. The novel integration 

of oil spill detection and oil fingerprinting frameworks sets a new standard for comprehensive 

environmental monitoring. A notable contribution of this research is the creation of a novel binary 

segmentation dataset specifically developed for this study. This dataset enhances the accuracy of 

oil spill detection models and can serve as a benchmark for future research, enabling the evaluation 

of other semantic segmentation models. 

This research has notably enhanced model performance, increasing the mean Intersection 

over Union (mIoU) from Krestenitis' study at 65.06% to 68.29%, a 4.96% improvement. 

Furthermore, the binary segmentation model achieved an IoU of 80.36% for the oil spill class, the 

highest mIoU recorded in previous studies on oil spill detection. These contributions are crucial 

for advancing environmental monitoring and protection, providing a solid foundation for future 

research and development. 

The oil fingerprinting conducted in this research successfully demonstrated the rapid 

identification of oil spill sources based on their chemical composition using machine learning 

algorithms. For instance, the Support Vector Classifier (SVC) model achieved the highest accuracy 

in predicting the composition of n-alkanes (1.000), PAHs (0.988), and TPH (0.929). Additionally, 

the K-Nearest Neighbors (KNN) model achieved an accuracy of 0.965 for biomarkers. These 

results underscore the effectiveness of machine learning models in handling complex chemical 

datasets, ensuring precise and rapid identification of oil spill sources based on their chemical 

profiles. 

6.3. Recommended Future Studies 

Future studies could focus on developing real-time oil spill detection systems by leveraging 

cloud computing for data processing. Integrating cloud technologies would facilitate rapid 

processing and analysis of SAR images and other relevant data, enabling timely responses to oil 

spill incidents. This approach would significantly enhance the ability to monitor vast areas 
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continuously and efficiently, improving overall environmental protection efforts. Real-time 

detection and processing would also allow for immediate mitigation strategies, potentially 

reducing the environmental impact of oil spills significantly. Additionally, further research should 

aim to improve the accuracy of detecting oil spills and distinguishing them from look-alike 

substances, such as algal blooms or seaweed. This can be achieved by exploring more advanced 

and complex machine learning models, including deep learning architectures that can capture finer 

details and handle the nuances of different oil spill scenarios. Incorporating additional data sources 

could significantly enhance detection capabilities, making it possible to differentiate more 

accurately between oil spills and other similar substances. 

Lastly, continuous refinement and optimization of machine learning models should be a 

primary focus, particularly in addressing the challenges of imbalanced datasets and improving the 

generalizability of models across different geographical locations and environmental conditions. 

Techniques such as transfer learning and domain adaptation could be explored to enhance model 

performance in diverse scenarios. By addressing these areas, future research can further advance 

the field of oil spill detection and environmental forensics, contributing to more effective 

monitoring, response, and remediation strategies. 
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