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Abstract

Hybrid Model for Claim Frequency and Claim Severity

Abhirupa Sen

Rate making in insurance refers to the pricing of insurance premiums through cal-
culations, by actuaries, and adjustments in various factors. Fair pricing of insurance
products is of utmost importance for insurance companies to be able to face market
competition and stay in business. Therefore poor rate making, which could be the re-
sult of poor prediction of risks, would be dangerous for insurers.

Insurance data is characterized by an imbalance between the number of policyhold-
ers that claim and those that do not. The majority of premium payers do not incur ac-
cidents and thus do not claim their losses, resulting in a large number of “zero–claims".
However, it is very important for the company to identify the customers who are more
likely in future to file a claim, because every claim incurs a cost to the enterprise. Chap-
ter 1 proposes a sampling technique devised to improve the identification of the possible
future losses by better tracking of the non–zero claims.

Generalized Linear Models have long been used by actuaries to accomplish the rate
making task. The method is parametric and is based on certain assumptions about the
distribution of the data. Insurance data with its probability mass at zero, do not fall
exactly into the framework of GLMs. However, in the recent years, various new machine
learning algorithms have provided improvement by being more effective predictors than
GLMs. What these algorithms lack is interpretability. Chapter 2 uses simple algorithms
like regression trees, in combination with GLMs, to create a pre–processed GLM that is
more effective than a standalone GLM.

The endeavour of improving the classical GLM continues in Chapter 3. Here the
another combination of trees and regularized GLMNet is used to produce results with
more predictive capability that any one of these algorithms as stand-alone. The new
results are interpretable as well as improved.
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Chapter 1

Improving Minority Class Identification
in Imbalanced Datasets

1.1 Abstract

Imbalance between classes is a characteristic feature of insurance classification data.
Accidents are not typical, and nor are the claims. As a result, the number of claims filed
in a year is primarily concentrated at zero. Due to the presence of deductibles in the
policy clauses, many minor accidents go unreported, and companies remain unaware
of insureds with the potential for sizeable future claims. Failing to identify risky policy-
holders is equivalent to losing revenue and incurring future loss. This chapter suggests
and shows how re-balancing an imbalanced data set multiple times, and aggregating
the predictions made by models built on each balanced data set, drastically improves
the prediction probabilities of a potential claim.

1.2 Introduction

Classification for imbalanced classes is challenging, primarily because classification al-
gorithms are built on the assumption that data is balanced between the classes. Severely
skewed datasets lead to poor performance of the models. When a dataset becomes
complex, the already present imbalance compounds the difficulty performing an effi-
cient classification of the data. Insurance claim counts are discrete quantitative values
that can be regressed, but the number of claims submitted by policyholders is seldom
more than 4. In such cases, the problem can be seen as a 5-class classification prob-
lem with a high concentration in one class; for instance 90% of the claim counts be-
ing 0s. Claims’ existence and non-existence can itself be considered a binary classifica-
tion problem. Often known as claim propensity, it is a binary response which is set to 1
when claim count is one or more. Effective modelling of claim propensity can be used
in lapse/renewal studies.

Claim counts or claim propensities do not obey normal distribution. The response
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variables here are neither continuous nor symmetric but rather binary or discrete, and
positively skewed. In insurance applications the variance of these types of responses
are seen to be dependent on the mean value. These typical characteristics of insurance
data are often modeled using a family of distributions known as the exponential dis-
persion (ED) family. Claim counts are modeled by non-negative integer valued random
variables, also known as counting random variables. Whether a given policy is prone
to have future claims is called the claim propensity. The response variable Y is either
1 or 0 depending on whether there will be at least one claim filed in the future or not.
Claim propensity can be modelled using a Bernoulli distribution. The expected number
of claims in a portfolio, in that case, follows a binomial distribution (sum of Bernoulli
random variables). Both these two distributions belong to the ED family.

Modelling imbalanced data using classical methods is bound to perform poorly un-
less some modification is used. Additionally, the standard metrics fail to give a fair pic-
ture of how good a model is. Classifying all samples as 0s in a dataset with 97% 0s fetches
a great accuracy score even when it fails to identify a single 1. However, the unidentified
1s could be potential frauds or accident claims, which can cause significant losses to
companies if allowed to go astray. The probability of non-zero claims is unknown and
is estimated using the proportion of claims in the data. It can be shown that when the
probability of a claim or no claim are equal then the response becomes bell shaped like
a normal distribution.

When applied to imbalanced data, any classical model does an excellent job iden-
tifying the majority class (0 claim count for insurance data). However, classical models
are never good in predicting the minority class (1 or more claim counts). The accuracy
of predicting the minority class is hardly 50% on average, which means that the model
is missing out on potential losses irrespective of whether the class balance is 7:3 or 9:1.
So, the first modification must be to strike a balance in the data. Re-sampling tech-
niques are used to make data balanced. Re-sampling could mean adding more samples
of the minority class (over-sampling), removing samples from the majority class(under-
sampling), or combining both. One such popular over-sampling technique is the Syn-
thetic Minority Oversampling Technique (SMOTE), introduced by Chawla et al. (2002).
Instead of random oversampling from the minority class, SMOTE creates synthetic sam-
ples using interpolation. By considering k-nearest neighbors in the feature space of the
minority class, a sample is created along the line segments joining any or all the k near-
est minority class neighbors. Even if the method is popular SMOTE has the potential of
performing poorly on high dimensional data. Under performance of the k-NN method
is discussed elaborately in Hastie et al. (2009). The data sets used in the insurance indus-
try are frequently high dimensional. Creating artificial sample points from the minority
class using the k nearest neighbour method comes with the danger of creating records
not so similar to the minority class in reality. It is worth mentioning the works of Stock-
sieker on data augmentation on imbalanced regression, for instance Stocksieker et al.
(2023a). Another of his works Stocksieker et al. (2023b) throws light on the importance
of oversampling in dealing with data imbalance.
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Ensemble methods are potent because they combine multiple base learners, for ex-
ample classification trees, to create a single model. A single learner doing an excellent
job on a training data set could fail on new data points because it minimizes the vari-
ance in the training data and fits into its noise. This is overfitting the data. However,
when many weak learners, whose results have higher bias, are combined, it produces a
model of higher efficiency not only on the training but also on new data points.

Ensemble methods are either parallel learners, iterative, or hybrid. One prevalent
parallel ensemble method, bagging (bootstrap aggregation), improves the model’s gen-
eralization ability by creating random subsamples from the original dataset with re-
placement and then combining the predictions generated by base learners trained on
each bootstrap subsample. Boosting is the most common iterative ensemble method.
The first applicable boosting algorithm, Adaboost, developed by Freund et al. (1996),
gives higher weights to samples misclassified, thus forcing the future base learners to
focus more on learning the samples the previous learners failed. In recent years, tree-
based ensemble methods have achieved great success in predictive performance. See
Guelman (2012), Guelman et al. (2012), Olbricht (2012), Guelman et al. (2015), Wüthrich
(2018), Yang et al. (2018), Lopez et al. (2019), Hu et al. (2022), Henckaerts et al. (2021),
and the references therein, for additional examples of actuarial applications.

In this chapter, a combination of resampling and ensemble techniques is explored.
Unlike SMOTE, where new minority class samples are synthesized, all the minority class
samples are used repeatedly in constructing subsamples. The popular argument against
undersampling of the majority class is the loss of information. The subsampling method
ensures that every majority data point is included in at least one of the subsamples. An
ensemble of learners trained on balanced subsamples is created. Each balanced sample
has an equal proportion of minority and majority classes. Since the minority sample
size is small, they are recycled in every subsample where an equal number of majority
class members get added. Hence, every majority data point is used for training learners.
All the learners train on balanced data and have a say on the final prediction of a data
point. A new data is classified by each learner, and the class with a majority vote wins.

The rest of the chapter is divided as follows. Section 1.3 reviews the binomial dis-
tribution as part of exponential dispersion family and establishes how the mean and
variability of this distribution can be made to work in favour of the minority class. Sec-
tion 1.4 reviews the class proportion and its effect using the Bayesian approach. This
section also sees how the remedial step suggested by us, removes the bias. Section 1.5
dicussed bias and variance with respect to the CART algorithm and how bagging as a
method of aggregation, creates an optimal classifier. Finally it shows mathematically
and illustrates with a toy example how the suggested method of subsampling tweaks the
posterior Bayesian probability in favour of the minority class.
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1.3 Bernoulli and Binomial Distributions as Members of
Exponential Dispersion Family

We start this section by writing down the definition of the exponential dispersion family.

Definition 1 Consider a response variable Y defined in the domain S, a subset of the real
line. The distribution of Y is said to belong to the Exponential Dispersion (ED) family if
pY (y), the probability mass function (when Y is discrete) or fY (y), the probability density
function (when Y is continuous) of Y is of the form

pY (y) = exp

{(
yθ−a(θ)

φ
ν

)}
c

(
y,

φ

ν

)
, y ∈ S, (1)

where:
θ = real-valued location parameter, called the canonical parameter,
φ= positive scale parameter, called the dispersion parameter,
ν= known positive constant, called the weight,
a(.) = monotonic convex function of θ,
c(.) = positive normalizing function.

The normal distribution belongs to the ED family. If a random variable Y ∼ N (µ,σ2)
then the p.d.f of Y can be written as

fY (y) =
{

Y s 1
σ
p

2π
exp

(−(y−µ)2

2σ2

)
, −∞< y <∞,

0, otherwise,

where fY (y) can be expanded in the following steps

fY (y) = 1

σ
p

2π
exp

(−y2 +2yµ−µ2

2σ2

)
,

= exp

 yµ− µ2

2

σ2

 exp(− y2

2σ2 )

σ
p

2π
,

where:
θ =µ

a(θ) = µ2

2
φ=σ2,ν= 1

c(y, φ
ν ) = exp(− y2

2σ2 )

σ
p

2π

1.3.1 Bernoulli Trial and Bernoulli Distribution

Many counting variables, especially those that result in only 0 or 1 can be said to be the
outcome of Bernoulli trials. The indicator function I (.) is defined such that for any event
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A,

I (A) =
{

1 if A is true

0 otherwise

The claim propensity is defined using the identity function such that Y = I (N ≥ 1),
where N is the number of claims filed by a policyholder. The variable Y is thus dichoto-
mous or Y ∈ [0,1]. Such a variable is said to be Bernoulli distributed. The probability
mass function of the Bernoulli distribution is given by

pY (y) =
{

q y (1−q)1−y if y ∈ {0,1}

0 otherwise

The mean and variance of Y ∼ Ber (q) are given by

E [Y ] = q

V ar [Y ] = q(1−q)

It can be shown that the Bernoulli distribution belongs to the ED family by rewriting its
pmf:

pY (y) = q y (1−q)1−y

= exp

(
y ln(

q

1−q
)+ ln(1−q)

)
Thus

θ = ln

(
q

1−q

)
=> q = exp{θ}

1+exp{θ}

a(θ) =− ln(1−q) = ln(1+exp{θ})

φ= 1,ν= 1,c(y,φ) = 1

1.3.2 Binomial Distribution

The Binomial Distribution corresponds to the total number of successes in a sequence
of independent Bernoulli trials. So the number of policy holders who are likely to file
claims in a portfolio of m policies can be thought of as a Binomial random variable. De-
noting Y as the number of policyholders in the portfolio who could file claims in future,
we can see that Y ∈ {0,1,2, ...m}. The probability mass function of Y can be written as

pY (y) =
{(m

y

)
q y (1−q)1−y if y ∈ {0,1,2, ...,m}

0 otherwise

It can be shown that the binomial distribution belongs to the ED family by rewriting
its pmf:

pY (y) =
(

m

y

)
q y (1−q)1−y
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= exp

(
y ln(

q

1−q
)+m ln(1−q)

)(
m

y

)
Thus

θ = ln(
q

1−q
) => q = exp{θ}

1+exp{θ}

a(θ) =−m ln(1−q) = m ln(1+exp{θ})

φ= 1,ν= 1,c(y,φ) =
(

m

y

)
The mean and variance of Y ∼ Bi n(m, q) are given by

E [Y ] = mq

V ar [Y ] = mq(1−q)

It is important to note that the variance of a binomially distributed random variable is a
function of its mean and is lower than the mean. Also, when q is closer to 0 the expected
values of Y moves towards 0 with low variance. However, when q is closer to 0.5, the
expected value of the variable is almost half of the portfolio and the variance is high. In
fact, the variance of the binomial distribution is highest when q = 0.5. The third central
moment of, measuring the skewness, is given by mq(1−q)(1−2q). Hence the binomial
distribution is symmetric when q = 1

2 . Figure 1.1 illustrates this property. It can be seen
that the last curve (in red broken lines), when q = 0.5, is symmetric and has the highest
spread due to highest variance. For all values of q < 0.5, the curves are negatively skewed
with lesser spread owing to their lower variance.

1.4 Bayes Classifier and Classification

This section studies what effect class proportions have on the posterior probability of
prediction. Assume that d , the dimension of X , is 1. Suppose X represents the age of the
policyholder. Also assume that the sample proportion of 1 or more claims be 0.2 and let
there be no claims for the rest of the sample points. We want to predict the probability
p(yi = 1|X ). Suppose X can be split into disjoint sub spaces X A and X A′ (X = X A ∪X A′ ),
then the posterior probability of having a claim from a driver belonging to the age group
X A is

p(yi = 1|X ∈ X A) = p(yi = 1)p(X ∈ X A)|yi = 1)

p(X ∈ X A)
= p

(
(X ∈ X A)

⋂
(yi = 1)

)
p(X ∈ X A)

The prior p(yi = 1) is estimated from the data as p̂(yi = 1) = 0.2

p̂(X ∈ X A) = p̂(yi = 1)p(X ∈ X A)|yi = 1)+ p̂(yi = 0)p(X ∈ X A)|yi = 0)

= p
(
(X ∈ X A)

⋂
(yi = 1)

)+p
(
(X ∈ X A)

⋂
(yi = 0)

)
6



Figure 1.1: Probability mass functions of the binomial distribution (m,q) for q =
0.01,0.05,0.25,0.5
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Thus the the posterior probability of having a claim in the subspace X A is

p(yi = 1|X ∈ X A) = p
(
(X ∈ X A)

⋂
(yi = 1)

)
p

(
(X ∈ X A)

⋂
(yi = 1)

)+p
(
(X ∈ X A)

⋂
(yi = 0)

) (2)

Equation (2) is a measure of the probability of getting the minority class in a given pre-
dictor subspace. The class distribution of any given predictor subspace can be one of
the following.

1. The subspace has only data points from one of the two classes.

2. There are points from both the classes in X A

While the first case does not pose much problem but it is the second scenario that cre-
ates difficulty in identifying the class especially when the dataset is imbalanced. In case
of such predictor spaces, there will be few where the non-zero claim points have clear
majority. In most of the subspaces where data from both the class are present, the zero
claim points will have overwhelming majority. The posterior probability as obtained in
Equation (2) will predict the policy holders as non risky and will mask the risk that come
with the attribute in that space. The Bayes posterior probabilities are the ones that any
classification algorithm strives to attain. The closer the predicted probabilities are to the
actual Bayesian posterior probabilities, better is the model’s depiction of the underlying
model probabilities. In this paper the suggested subsampling method ends up altering
this posterior probabilities of the predictor sub-spaces with overlapping classes. This is
done by adding more minority points than there actually is in the predictor sub-spaces.
The alteration is more in favour of the minority class (the claimants) so that the risky
attributes as well as the risks are recognizable.

Here a toy data with 100 sample points and 21% claims is presented to illustrate this
idea. There are two predictor variables age and gender. The age of the drivers are from
18-65 years. There are 21 points with non-zero claims and 79 with no claims. Figure
1.2 shows the class overlaps in the predictor space. Figure 1.2(a) shows the overlap with
driver’s gender using a barplot and (b) shows the same against driver’s age . For a given
age/gender the orange portions represent the number of zero claim points and the teal
parts give the number of non-zero claims among drivers. Both the genders include close
to 20% claimants. Policy holders with claims are present in higher proportion in the age
groups 18-22 than the ones with no claims. For the ages 28 and 29 there are equal pro-
portions of the two class. For the rest of the age groups, the non-zero claims, if present
are much lesser in proportion. While Equation (2) will predict the age group 18-22 as
risky, it will fail to identify most of the risky age groups above 30 years. For 28-29 years
the Bayes posterior is equally like to predict any one of the two class.

A classification tree is applied to this data. The tree is fully grown. Figure 1.3 shows
the tree. The terminal nodes give the homogeneous predictor subspaces produced by
the tree. Figure1.4(a) is the scatter plot of the original data and (b) is the same for the pre-
dicted class as obtained by the tree. In both the plots blue circles are zero claims while
red triangles are non-zero claims. Thus a blue triangle and a red circle in plot (b) are
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Figure 1.2: (a) Barplot showing overlap of two classes with driver’s gender (a) Barplot
showing overlap of the two classes at different age. The zero claim class is in orange and
the non-zero claims in teal.

the misclassified data points. As expected in the previous paragraph most of the claim
points above the age of 30 have been missed. The zero claims, have been misclassified
in the age group 18-22. The age group 28-29 is part of the age group 23-29 and all the
claim points are missed. The age group 61-65 has 27% minority data belonging to both
the genders. Even by splitting the data into 3 subgroups by age and gender the claimants
could not be fully classified.

The tree in Figure 1.3 is impractical because it allows nodes with only one point. In
real life the data sets are many fold larger. Growing trees with one point in the terminal
nodes is not feasible when the data has hundreds of thousands of points and the number
of predictors runs in hundreds. Such a tree has been used here to illustrate how even a
full grown tree fails to identify the minority class.

True (No Claim) True (Claims)
Predicted (No Claim) 74 12

Predicted (Claims) 5 9

Table 1.1: Confusion Matrix for Toy Data

Table 1.1 is the confusion matrix for the classified toy data. The overall accuracy of
the classification is 83%. However only 43% of the risky policy holders could be identi-
fied by the model. The minority class constitutes 80% of the 15% of misclassified points.
The majority class is favoured by the classification algorithms. Even with the underesti-
mation of the minority class the overall accuracy of prediction of the model is 83% and
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Figure 1.3: The fully grown tree built on the toy data

almost 94% of the non risky policy holders have been identified. This phenomenon is
valid and understandable from the perspective of estimation of the population proba-
bility of success, but it leads to poor identification of a risky class. Since the proportion of
risky customers is usually less than 10% of the data, the bias in their identification affects
this small share. It can be overlooked unless the cost of the error is high. For insurance
companies it boils down to loss in revenue. The remedy suggested here is to reduce the
minority bias. This improvement comes with a cost of diminished accuracy in identi-
fying the non risky customers. Since they hold the major share in data percentage, any
small decrease in the accuracy of their identification also affects the overall precision
of the model. However, the decrease is marginal. The mathematical explanation of the
remedial step is explained in the following sections.
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Figure 1.4: (a) The actual scatter plot of the data against the two predictors age and gen-
der of the drivers. Red triangles are points with claims and the blue circles are without
any claims (b) The predictions in 9 terminal nodes. The zero claim predictions are given
in blue circles and non-zero claims in red triangles. A red circle or a blue triangle is a
misclassified point.

1.4.1 Balancing Method for Imbalanced Data

Hopefully it is now clearer how the the posterior probabilities are tilted towards the ma-
jority class in most of the predictor space due to the small proportion of one of the class
data. In reality the sample proportions, for insurance datasets, are far from equal. As
a remedy, the sample is broken into multiple subsamples, each with equal proportion
of the two classes, and a classification model is built on each subsample. The size of
each subsample is twice the size of minority class in the original data. Equal number of
points from both class are drawn with replacement. Tree based classification methods
are used to build the models with each subsample. At every split the binary tree method
considers only one attribute in the d dimensional space; the one that best splits the data
into two homogeneous groups. After looking into all possible split points within all the
d attributes, the attribute that has a split point producing maximum reduction in the
heterogeneity is selected.

The improvement of prediction accuracy in the minority class is illustrated using the
toy data introduced in Section 1.6. The dimension of the predictor X is 2 (d = 2). Let Xd

where (d = 1,2) has a subspace XpB such that p[(X ∈ XpB )∩(y = 1)] < 0.5. This condition
can be broken into two sub conditions.

1. p[(X ∈ XpB )∩(y = 1)] = 0: There is no minority sample points in this predictor sub-
space. For all the subsamples, data from this subspace are always in class 0. A split
by any predictor into {XpB , XpB ′ }, will have all points in subgroup corresponding
to XpB classified as 0s.
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2. 0 < p[(X ∈ XpB )∩ (y = 1)] < 0.5: In the predictor subspace XpB there are few mi-
nority points which are more likely present in all subsamples. Whether a split into
{XpB , XpB ′ } will classify the class corresponding to XpB to 0 or 1 depends on the
proportion of majority class from this subspace included in XpB . Similar is the ar-
gument for XpB ′ }. It will be illustrated that every minority point has higher chance
of being selected in the subsamples than a majority point. This condition will tilt
the posterior probability p[(y = 1)|(X ∈ Xp B)] towards the minority class making
its identification easier. The method contributes to some decrease in the accuracy
of majority class prediction. One way to mitigate the error is by reducing the clas-
sification bias as much as possible. This is equivalent to growing the individual
trees fully. Apart from large trees further tweaking of proportions helps in improv-
ing majority class error. It has been discussed in Section 1.7.2.

Relation Between Homogeneity and Variance in CART

In the Classification and Regression Trees (CART) algorithm, when a node is split into
two, a natural goodness of a the split criterion could be the one that maximizes the re-
duction in the nodes misclassification error. This criterion, unfortunately, has a serious
drawback as discussed in Breiman’s Classification and Regression Trees Breiman (2017).
The construction of a binary tree revolves around 3 elements:

1. The selection of splits.

2. The decision when to declare a node terminal or when to split it further.

3. The assignment of each terminal node to a class.

Some terminology pertaining to the CART is introduced here. Nodes are denoted as
t1, t2, t3, ..., tm , where t1 is the root node which is split into t2 and t3. In the next split t3

gets split into t4 and t5 while t2 gets split into t6 and t7 and so on. Suppose the variable
j denote the number of classes in the data. If there are 6 classes, j = 1,..,6. For binary
classification j = 1,2.

1. Define node proportion p( j |t ), to be the proportion of the cases in t to belong to
the class j. Hence Σ j p( j |t ) = 1.

2. Define a measure i (t ) of the impurity of node t as a non-negative function φ of
p( j |t ) such that φ is maximum when the node has all the classes in equal propor-
tion and minimum when all the cases in the node belong to any one class. For
example when j = 3,
φ( 1

3 , 1
3 , 1

3 ) = maxi mum
φ(1,0,0) =φ(0,1,0) =φ(0,0,1) = 0

For any node t, suppose there is a candidate split s of the node which divides it
into descendants tL and tR , such that the proportion of cases of t to go to tL is pL
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and the proportion to go to tR is pR . Then the goodness of the split is the decrease
in the impurity

∆i (s, t ) = i (t )−pLi (tL)−pR i (tR )

3. Define a candidate set S of binary splits s at each node. Generally, the set S of splits
can be conceived of as a set of questions, where each question is of the form: Is
x ∈ A?A ⊂ X.
Then the associated split s sends all the cases in t that answer "yes" to tL and all
cases with answer "no" to tR . Thus tL = t ∩ A and tR = t ∩ Ac . To grow a full tree, at
the root node t1, a search is made through all the candidate splits over all x ∈ X to
find that split s∗ which gave the largest decrease in impurity; i.e,

∆i (s∗, t1) = maxs∈S∆i (s, t1)

Then t1 is split into t2 and t3 using the split s∗ and the same search procedure is
repeated for the best s ∈ S for t2 and t3 separately. The tree is grown in this way
until the terminal conditions are met.
The class of the cases in a terminal node is determined by the plurality rule. If

p( j0|t ) = max j p( j |t )

then t is designated as a class j0 terminal node.

4. Define resubstitution estimate r (t ) of the probability of misclassification, given
that a case falls into node t, is

r (t ) = 1−max j p( j |t )

If the classification is binary then

r (t ) = mi n j p( j |t )

Denote the resubstitution estimate for the misclassification rate at a node t as

R(t ) = r (t )p(t ) (3)

Let T be the final tree and T̃ be the set of all the terminal nodes of T. Given any
terminal node t, the resubstitution estimate for the overall misclassification rate
for the tree T is given by

R(T ) =Σt∈T̃ R(t ) =Σt∈T̃ r (t )p(t ) =Σt∈T̃Σ j ̸=max j p( j |t )p(t ) =Σt∈T̃Σ j ̸=max j p( j ∩ t )
(4)

In other words, for every t ∈ T̃ the probability of misclassification is the probability
of the case to be in node t and to belong to the class that is not assigned to the
node.
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Definition 2 An impurity function is a function φ defined on the set of all J-tuples of
numbers (p1, p2, ..., p j ) satisfying p j ≥ 0, j = 1,2, ...J ,Σ j p j = 1 with the properties

(i) φ is maximum only at the point ( 1
J , 1

J , ..., 1
J ),

(ii) φ achieves its minimum only at points (1,0,..., 0), (0,1, ...,0), ..., (0,...,0,1),

(iii) φ is a symmetric function of p1, p2, ...p j .

If reduction in the nodes misclassification error rate is considered to determine splits
then the best split of t would maximize

r (t )−pLr (tL)−pR r (tR )

or, equivalently, would maximize

R(t )−R(tL)−R(tR )

The corresponding node impurity function is

φ(p1, p2, ..., p j ) = 1−max j p j

This function has all the desirable properties listed in Definition 2. Even then, selecting
splits that maximize the reduction in R(T ) is not desirable. The following discussion
explains why it is so.

For any split of a node t into tL and tR ,

R(t ) ≥ R(tL)+R(tR )

The equality holds only when the predicted class in all the three nodes t , tL , tR denoted
by j (t ), j (tL), j (tR ) respectively are the same i.e.

j (t ) = j (tL) = j (tR )

In any binary class problem where one class is present in a larger number in node t (the
zero claim class in our case for example), it is possible that every best split generated
produces nodes tL and tR , where both have the same class as majority as in t . Then
R(t )−R(tL)−R(tR ) = 0 for all splits.
There is also a second defect. Consider an example from Breiman (2017) Classifica-
tion and Regression Trees as illustrated in Figure 1.5. Here the root node of the tree
has equal proportion of both classes. The first split leads to a tree with 200 out of 800
cases misclassified. R(T ) = 200

800 = 0.25. The second split also misclassifies 200 cases and
has R(T ) = 0.25. Even though both the splits are given equal ratings by the R(T ) crite-
rion, the second tree is probably preferable in terms of future growth of the tree. For the
first split r (tL) = r (tR ) = 0.25. Both these nodes will need more splitting to get a tree with
lower value of R(T ). In the tree from the second split r (tL) = 0.33 and r (tR ) = 0. Thus

r (tR ) is a terminal node with perfect classification accuracy. It accounts for 1
4

th
of the
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Figure 1.5: Two possible splits starting at the same node

total cases. Though the second tree is more preferable, the R(T ) minimization criterion
cannot differentiate between the two.

In the binary classification problem, where p1 and p2 are the two class probabilities, the
node impurity function corresponding to the node misclassification rate is

φ(p1, p2) = 1−max(p1, p2) = mi n(p1, p2) = mi n(p1,1−p1).

Figure 1.6 shows the graph for the function. Though this function satisfies all the condi-
tions of Definition 2 it does not sufficiently reward purer nodes.
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Figure 1.6: The impurity function corresponding to minimization of R(T) criterion
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Suppose p1 > 0.5; then φ(p1) = 1− p1 decreases linearly in p1. To have a criterion
that would select the second split in Figure 1.5, it is necessary that the impurity function
corresponding to the criterion decreases faster than linearly as p1 decreases. This can
be constructed by imposing the condition that if p ′′

1 > p ′
1 then φ(p ′′

1 ) is less than the
corresponding point on the tangent line at p ′
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Figure 1.7: The concave node impurity function. The graph is from Breiman’s Classifi-
cation and Regression Trees Breiman (2017)

If φ has a continuous second derivative on [0,1] then the strict concavity would trans-
late into φ′′(p1) < 0, 0 < p1 < 1. Let φ(x) = a + bx + cx2. The function must satisfy all
the conditions of Definition 2. Hence φ(0) = φ(1) which gives a = 0 and b + c = 0. So
φ(x) = b(x − x2). The condition φ(p1) = φ(1− p1) implies that b > 1. Without loss of
generality we can assume b = 1, giving φ(x) = x(1− x). Thus for a node t , the impurity
function i (t ) can be

i (t ) =φ(p1) = p1(1−p1)

Replacing p1 by q , where q is the probability of non-zero claims we see that i (t ) =
q(1−q), is also the variance of the node t , which when minimized, minimizes the node
impurity.

1.5 Bias and Variance in Classification

Unlike regression, the response variable of a classification problem is not numerical and
continuous. Bias and variance of a classifier as explained in Breiman (1996b) and Tib-
shirani (1996) is used in this section to argue in favour of the suggested subsampling and
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aggregation methods. The bias and variance are obtained from decomposing the pre-
diction error in classification problems. Let the learning sample used to train a model
be denoted by L = {(yi , xi ), i = 1,2, ...n} where yi are categorical outputs and xi s are
multidimensional input vectors. Some function is applied to these input vectors to con-
struct predictors of future y values. The response variable Y ∈ {1,2, ...J } represents class
labels. In binary classification Y ∈ {0,1}. Given L some method C (x,L ) is constructed
to predict ys, the observed values of Y . The letter L in the function is to show that the
function is built using the xs in the learning set L . Assume that the training set consists
of iid samples from the unknown probability distribution of (Y , X ). The misclassification
error of this sample is

PE(C (,L )) = EX ,Y [C (X ,L ) ̸= Y ] = PX ,Y (C (X ,L ) ̸= Y )

and PE(C ) is the expected value of PE(C (,L ) over L .

PE(C ) = E [PX ,Y (C (X ,L ) ̸= Y )] (5)

Denote:
P ( j |X ) = P (Y = j |X = x)

P (d x) = P (X ∈ d x)

Let C∗ denote the Bayes classifier. Minimum misclassification error is given by the Bayes
classifier.

C∗(x) = ar g max j P ( j |x)

with the misclassification error rate

PE(C∗) = P (C∗(x) ̸= Y ) = 1−
∫

max j (P ( j |x))P (d x)

Now, define the probability that the classifier C predicts a class j conditioned on the
predictor as

Q( j |x) = PL (C (x,L ) = j )

and define an aggregated classifier as:

C A(x) = ar g max j Q( j |x)

This is aggregation by voting. Thus if there are many independent replicas of the train-
ing sample L1,L2, ...LB , and classifiers constructed on them are C (x,L1), C (x,L2), ....
C (x,LB ) then at each x the class output of C A(x) is the most popular class output of the
above B classifiers. The definition of an unbiased classifier follows.

Definition 3 C (x,L ) is unbiased at x if

C A(x) =C∗(x)
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This means that if C (x,L ) is unbiased at x then over replications of L , C (x,L ) will pick
up the right class more often than any other class. It is not necessary that a classifier
that is unbiased is the most accurate classifier. Going back to our toy example where
P (0|x) = 0.9 and P (1|x) = 0.1, if we have C such that Q(0|x) = 0.6 and Q(1|x) = 0.4 then C
is an unbiased classifier at x even though the probability of a correct classification of C
at x is 0.9x0.6 + 0.1x0.6 = 0.58.

If C is unbiased at x then C A(x) is optimal. Let U be the set of all x where C is unbi-
ased. The complement of U is the bias set denoted by U ′.

Definition 4 The bias of a classifier C is

Bi as(C ) = PX ,Y (C∗(X ) = Y , X ∈U ′)−EL [PX ,Y (C (X ,L ) = Y , X ∈U ′)]

and its variance is

V ar (C ) = PX ,Y (C∗(X ) = Y , X ∈U )−EL [PX ,Y (C (X ,L ) = Y , X ∈U )]

Thus

Bi as(C )+V ar (C ) = PX ,Y
(
C∗(X ) = Y , X ∈U ′)+PX ,Y

(
C∗(X ) = Y , X ∈U

)
−EL

[
PX ,Y (C (X ,L ) = Y , X ∈U ′)

]−EL

[
PX ,Y (C (X ,L ) = Y , X ∈U )

]
= PX ,Y

(
C∗(X ) = Y

)−EL

[
PX ,Y (C (X ,L ) = Y )

]
= 1−PX ,Y

(
C∗(X ) ̸= Y

)−EL

[
PX ,Y (C (X ,L ) = Y )

]
= EL

[
1−PX ,Y (C (X ,L ) = Y

)
]−PE

(
C∗)

= EL

[
PX ,Y (C (X ,L ) ̸= Y

]−PE
(
C∗)

Therefore using Equation (5)

PE(C ) = Bi as(C )+V ar (C )+PE(C∗) (6)

Here, it is to be noted that replacing C with C A reduces the variance to zero. However
there is no guarantee that it will reduce the bias. Recollect that the bias within each clas-
sifier has been reduced to its maximum by using large unpruned trees. Certain proper-
ties of the bias and variance become obvious from the above

(a) Bias and variance are always positive. Q( j |X ) is a probability and

V ar (C ) =
∫

U

[
max j P ( j |X )−Σ j Q( j |x)P ( j |x)

]
P (d x)

Similarly

Bi as(C ) =
∫

U ′

[
max j P ( j |X )−Σ j Q( j |x)P ( j |x)

]
P (d x)

(b) The variance of C A is zero. This is obvious from Definition 3. C A =C∗ in U .

(c) If C is deterministic, i.e, if C does not depend on L , then variance in zero.

(d) The bias of C∗ is zero.
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1.5.1 Bagging as the Method of Aggregation

Bagging (Bootstrap Aggregation) is the method of creating multiple versions of predic-
tors over independent and identically distributed samples and creating an aggregated
predictor by averaging the results of the multiple versions created. Instead of creating
one predictor with the learning sample, it is perturbed in such a way that the results
obtained from each perturbation is significantly different from the one predictor. The
learning set L described in the previous section can be used to create multiple boot-
strap sets L1,L2...LB . The number B is large and subjective. Usually each Lb is of the
same size as L . Perturbation is introduced by drawing same number of sample points
with replacement from L to construct each Lb . This makes the sample points iid but
introduces more bias within each Lb . Having created repeated bootstrap samples, a
predictor is trained on each of them as Cb =C (,Lb).

If y is numerical the final aggregate predictor is an average of all the predictors. In
classification the ys are class labels where the final aggregate predictor is the class with
the maximum vote. Bagging works when each classifier is unstable and largely different
from the single classifier. Instability comes when the results change largely with small
change in data. If each of the Cbs are not very different from C then not much improve-
ment can be expected from the procedure. Unstable classification and regression meth-
ods are methods like neural networks, classification and regression trees while methods
like k-nearest neighbours, linear discriminant analysis etc., are stable methods.

In Breiman (1996a) on bagging predictors, the overall probability of correct classifi-
cation is given as

r =
∫

[Q( j |x)P ( j |x)]P (d x)

where Σ j Q( j |x)P ( j |x) is the probability that a classifier predicts the class correctly at x.
It is worth noting here that

Σ j Q( j |x)P ( j |x) ≤ P ( j |x)

The equality holds only if

Q( j |x) =
{

Y s1 if P ( j |x) = maxi P (i |x)

0 otherwise

The Bayes predictor C∗(x) leads to the above expression for Q( j |x) and gives the highest
attainable classification rate as

r ∗ =
∫

max j P ( j |x)P (d x)

The region of predictor space where the classifier C is unbiased is also known as order
correct. Thus for all the xs C is order-correct or unbiased if

ar g max j Q( j |x) = ar g max j P ( j |X )

This means that if class j is the most frequently predicted class at x and C also predicts
the same class at x, then C is order correct. Note that C need not be the most accu-
rate classifier as explained in the example with Definition 3. When we combine multiple
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classifiers C1,C2, ...CB with bagging, the probability of correct classification by the aggre-
gate classifier C A is

Σ j 1(ar g maxi Q(i |x) = j )P ( j |x) (7)

If C is order correct at x then, Equation (7) equals max j P ( j |x). U ′ is the set of all xs
where C is not order correct, the probability of correct classification of C A is given by

r A =
∫

x∈U
max j P ( j |x)P (d x)+

∫
x∈U ′

[Σ j 1(C A(x) = j )P ( j |x)]P (d x)

Even if a classifier Cb is order correct at x, its correct classification rate can be far from
optimal. But the aggregate classifier C A is optimal. If a classifier is good in the sense that
it is order correct/unbiased for most of the xs then aggregation can transform it into a
nearly optimal one.

How Does the Suggested Subsampling Decrease Minority Misclassification

This section clarifies how the method of subsampling suggested in this proposal pri-
marily improves misclassification error of the minority class. It is worth noting at this
point that each subsample Lb is created from L in such a way that the Bayes classifier
gets tweaked so that the posterior probabilities favour the minority class for those xs
where both the class points are present. Let this tampered Bayes classifier be called C∗

s .
Also, the Csb be the classifier built with the subsample Lb . For a sample size n of L the
probability that a sample point is included in a sample Lb is

1−
(
1− 1

n

)n

→ 1−e−1,

when n is large. Thus, asymptotically, at least 63% of the sample points are included in
each bootstrap sample.

Since method suggested in this proposal is not to improve the overall accuracy of
prediction but to improve the minority class prediction accuracy, it comes with a lit-
tle compromise in the prediction accuracy of the majority class as well as the overall
accuracy. Each sample Lb is not of size n but 2nq ′ where q ′ is the proportion of the mi-
nority class in L . The probability that a minority class point is included in the sample is

1−
(
1− 1

nq ′
)nq ′

→ 1− e−1 = 0.63 whenever nq ′ ≥ 100. However, it is not the same for the

majority class. The probability for a majority class point to be included in a sample is

1−
(
1− 1

n(1−q ′)

)nq ′

= 1−
(
1− 1

n(1−q ′)

)n(1−q ′) q′
(1−q′)

(8)

When n is large so that n(1 − q ′) > 100 then
(
1− 1

n(1−q ′)

)n(1−q ′) → e−1. Therefore, the

probability of a majority class to be included in a subsample moves close to 1−(e−1)
q′

(1−q′) .
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n
Probability of
inclusion with
q’=0.05

Probability of
inclusion with
q’=0.1

Probability of
inclusion with
q’=0.2

100 0.051535 0.105717 0.222425
1000 0.051297 0.105216 0.221321

10000 0.051273 0.105166 0.221211
100000 0.051270 0.105161 0.221200

Table 1.2: Table showing the probability of inclusion in a sample for a majority sample
point. The minority proportions q ′ at 5%, 10%, and 20%. Larger the n, the values move

towards the limit 1− (e−1)
q′

(1−q′) .

Table 1.2 gives the probability of inclusion for each majority class sample point in a
sub sample. The probability decreases with the increase in imbalance. This lower in-
clusion of the majority class contributes to lower posterior probabilities for the majority
class, that favours sieving the minorities out.

It is obvious from the above argument that in the suggested subsampling each mi-
nority data point has higher probability of included in a subsample than a point from
the majority class. From the fourth column of Table 1.2 we can see that given a x while
a claim data has 63% chance, a zero-claim point has 22% chance of being included in
any subsample. If X A is a predictor subspace where data points from both classes are
present in equal numbers, then for every subsample the probability of having at least
one point with zero-claims is much lower than the same for a point with claims. This
happens consistently on all the subsamples drawn with replacement from the initial
sample. The posterior probability Ps(y = 1|X A) > Ps(y = 0|X A) and hence C∗

s (X A) pre-
dicts Y = 1 whenever x ∈ X A. The suffix s has been used to differentiate the altered
posterior probabilities from subsampling. At all the predictor space where the a classifi-
cation method is order correct (or unbiased), the aggregate classifier Cs A built using all
the subsamples will be optimal and equal to C∗

s in predictive accuracy. Policy holders
with x attributes, which have both the classes in equal proportions in the main sample,
will be now classified as risky. It goes without saying that the same will hold wherever
the minority class is present in higher proportions.

From Equation (8) the probability that a given point from the majority class is not

included in a subsample is e
− q′

(1−q′) . Let there be m points with no claims and one point
with more than zero claim in the space X A. In a given subsample, the probability that

none of the zero-claim points are included is e
− mq′

(1−q′) . The probability that the single
claimant data point is part of the sample is 1− e−1 Equating this with the probability
that at least one point from the majority class is included in the sample we get

1−e−1 = 1−e
− mq′

(1−q′) ,

when m = 1−q ′
q ′ . Therefore, the posterior probability Ps(y = 0|X A) ≥ Ps(y = 1|xA) when
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m ≥ 1−q ′
q ′ . In other words, until the number of zero-claim points is at least m times the

number of claimants, the posterior probability and the Bayes classifier will predict the
policy holders from that space as risky. This phenomenon can be illustrated using the
toy data of 100 points introduced in Section 1.6. Recollect the data has approximately
21% of the points belonging to the minority class. Thus m = .79

.21 = 3.76. 100 bootstrap
samples, each of size 42 with 21 points drawn with replacement from each class, were
collected from the main sample. These samples were combined into one and a barplot
of the two classes in each age group is shown in Figure 1.8(a). Barplot of the actual
sample proportions by age is shown in Figure 1.8(b).
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Figure 1.8: (a) Barplot showing the proportion of two classes at different age with 100
subsample points combined (b) Barplot showing the proportion of two classes at differ-
ent age in the original sample

Table A.1 in the Appendix A, shows the proportion of the two class in the original
sample for different ages. There are certain age groups where there is no overlap of the
data points like 18, 23-27, 30-36, 40-42, 46, 50, 52-60, and 63-64 years. For all other ages
data from both classes are present. For ages 44 and 45 the number of majority points
is at least 3.76 times the number of minority points. From Figure 1.8(a) we can observe
that age 45 has equal number of points from both class because the number of zero-
claims is 4 times that of non-zero claims. At 44 years the majority class is 7 times more
than the minority class in number. The combined sample has above 60% points from
the majority class and around 39% from the minority class at age 44. The age groups
with no minority class have subsample points only from the majority class. Likewise,
only minority points are sampled for age groups with no majority points which is age
18. Most of the age groups with overlap of both the class (except 44 and 45 years of
age) fail to exceed the m value and have lesser points from the majority class than the
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minority. Hence, the posterior probability for y = 1 is higher for all these age group and
consequently classified as risky by the Bayes classifier C∗

s . The aggregate classifier Cs A

will be equal to C∗
s for all the x where Csbs are unbiased. The fourth column of Table

A.1 gives the class prediction by Cs A. The fifth column is the prediction by the Bayes
Classifier C∗

s . The mismatches in these two columns make the corresponding xs fall in
U ′, the region of bias in the predictor space.
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Figure 1.9: (a) Barplot showing the proportion of two classes for the combined samples
for the two genders (b) Barplot showing the proportion of two classes for the two genders
in the original sample

In Figure 1.9(a) we see the barplot of the 100 combined samples split by the gender
of the drivers. In the original sample 8 of the 48 female drivers have claims making the
non-risky class 5 times the risky class. On the other hand, there are 13 risky drivers out
of 52 male drivers making the ratio of the majority class to minority 3:1 for male drivers.
Likewise the posterior probability would predict male drivers as risky and the females as
not-risky.

Table 1.3. shows confusion matrices obtained by the aggregate classifier Cs A of two
sets of trees. In Table 1.3(a) the minority class identification accuracy has gone up to
81% from 38% as in Table1.1. However, this comes with the cost of increased false posi-
tives resulting in a decrease of the overall accuracy. There is further improvement in the
minority class identification with the second aggregation as can be seen in Table 1.3(b).
This improvement is attributed to bigger trees used in the aggregate. However, the false
positives have increased while the true negatives have suffered more. In the following
section it has been shown that the compromise in the accuracy of the majority class can
be curtailed while preserving the improvement in the minority class identification.
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[a]
True (No
Claim)

True
(Claims)

Predicted
(No
Claim)

57 4

Predicted
(Claims)

22 17

[b]
True (No
Claim)

True
(Claims)

Predicted
(No
Claim)

55 3

Predicted
(Claims)

24 18

Table 1.3: Confusion Matrices for Toy Data predictions obtained from the aggregate clas-
sifier using (a) classification tree that allows split when there are at least 5 points in a
node (b) classification tree that allows split when there are at least 3 points in a node.

1.5.2 How Subsampling with Different Proportions can Curtail the Ma-
jority Class Bias

Recall once more that when the initial sample size is n and we select a sample of same
size with replacement from it, every point in the sample has a probability of 1−e−1 to be
selected if n is large. Suppose the sample has nq points with at least one claim and n(1−
q) points with no claims. Also suppose q << 0.5. Instead of drawing equal proportions
of both the classes in each subsample, each subsample is now of size n with np members
drawn from the claim points and n(1−p) points from the zero-claim points. 0 < p < 1
and it is necessary that p > q . Thus the probability that any given non-zero claim point
will be included in a sample is

1−
(
1− 1

nq

)np

= 1−
(
1− 1

nq

)nq p
q → 1−e− p

q ,

when nq is large. Since p > q , p
q > 1 and thus probability is more than 1−e−1. Consider-

ing the toy data from the previous section again where q ≈ 0.2, if each subsample of size
100 includes 40% data from the minority class then each minority point has 86% chance
of being included in a subsample. This would tilt the posterior probabilities more to-
wards the minority class but also decrease the majority bias. The explanation follows.

Consider the predictor subspace X A again, where there are m zero-claim points and
only 1 point with some claim. Probability that none of these m points are selected in the
sample is (

1− m

n(1−q)

)n(1−p)

=
(
1− m

n(1−q)

)n(1−q) 1−p
1−q → (e−m)

1−p
1−q ,

when n is large enough. Thus the probability of at least one point from the majority class
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to be selected in any subsample is

1−e−m(1−p)
(1−q)

And points from both the class become equally probable in a sub sample if

p

q
= m(1−p)

1−q
or,

m = p(1−q)

q(1−p)
By altering the proportion p the majority bias can be controlled. Going back to the toy
data example, when p = 0.4, m ≈ 2.5. Thus for all predictor spaces where number of
majority class points is at least 2.5 times the number of minority points, the posterior
probability will be the same for both the class. Recall that m was equal to 3.76 when
equal proportions of both the class were included in every subsample. Higher propor-
tion of majority points was necessary for the class to be as likely as the minority class.

The toy data of 100 points is used again to illustrate the results. This time each sub-
sample has 100 points with 40% of them being drawn from the minority class and 60%
from the majority class. The m ≈ 2.5. Thus any age group that has at least 2.5 times more
of zero-claim points than claim points will have a chance of the Bayes classifier favour-
ing the non-risky class. Figure 1.10 compares the combined points of 100 samples from
subsampling with p = 0.4 with that of subsamples where equal proportion of both class
(p = 0.5) were sampled. Note that in 1.10(a) where p = 0.4 the share of the orange part
is increased over all the age group where both the class are present. The ages 37 and 51
has exactly 3 times more majority points than minority and note how the share of the
majority class is more than the minority class in the bar plot (a) while it is less than 50%
for bar plot (b).

(a)

0

200

400

600

800

20 30 40 50 60
Driver's Age

y 
fro

m
 1

00
 s

ub
sa

m
pl

es

factor(y)

0

1

(b)

0

100

200

300

20 30 40 50 60
Driver's Age

y 
fro

m
 1

00
 s

ub
sa

m
pl

es

factor(y)

0

1

Figure 1.10: (a) Barplot showing the class proportions at different ages with 100 subsam-
ple points combined when p = 0.4 (b) Same when p = 0.5

25



Similarly Figure 1.11(a) shows the proportion of the two classes for female and male
drivers in 100 subsamples when p = 0.4. Compare it with the proportions in Figure
1.11(b) where p = 0.5. The increase in the share of majority class is clearly visible is
the plot of (a).
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Figure 1.11: (a) Barplot showing the class proportions for the combined samples for the
two genders when p = 0.4 (b) Same when p = 0.5

Table 1.4 is the confusion matrix obtained from the aggregate classifier Cs A when
p = 0.4. The improvement in the majority class accuracy in table (a) can be observed
by comparing with Table 1.3(a). While maintaining the improved prediction accuracy
for the minority class, the majority class prediction could be improved by 9%. In Ta-
ble1.4(b) which is from larger trees the improvement in the majority class prediction is
accompanied by further improvement in the minority class prediction. The optimal p
value would have to be decided depending on how much the cost is of missing a risky
driver. Multiple p values has to be considered to find the optimal choice for a given data
set.
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[a]
True (No
claim)

True
(Claims)

Predicted
(No claim)

64 4

Predicted
(Claims)

15 17

[b]
True (No
claim)

True
(Claims)

Predicted
(No claim)

62 1

Predicted
(Claims)

17 20

Table 1.4: Confusion Matrices for Toy Data predictions obtained from the aggregate clas-
sifier when p = 0.4. Table(a) is aggregated from classification trees that allow a split when
there are at least 5 points in a node. Table (b) is the confusion matrix from aggregate of
classification trees that splits when there are at least 3 points in a node.
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Chapter 2

Preprocessing Dataset with Regression
Tree to Improve GLM Output

2.1 Abstract

Generalized Linear Models are a traditional way to model claim numbers and claim sizes
for insurance contracts. Insurance datasets are notoriously imbalanced with large pro-
portions of policyholders with zero claims leading to lower prediction accuracy of results
obtained from traditional models. Tree based methods recursively divide the data into
binary groups, that are more homogeneous, within groups. However, the GLM method
is preferred by actuaries over more accurate machine learning methods because of its
higher interpretability. In this chapter a hybrid model is described where variables and
interactions between them are retrieved from the splits of the tree built on the data. A
GLM model built using only these variables selected from trees are not only more accu-
rate than a GLM without such preprocessing but also attains better prediction accuracy
compared to the optimal tree. The results are empirically illustrated on a public dataset.

2.2 Introduction

The major challenge posed by insurance datasets is the striking imbalance owing to the
fact that most of the policyholders do not file any claims over the observed period of
time. Claim occurrences are rare events. In addition, sometimes when claims occur
the customers prefer to not report them if they are small, or smaller than the policy
deductible amount. This reluctance in reporting is to avoid an increase in future premi-
ums that might result from a claim report. Thus it is apparent that the distribution of
the claims has an inordinate mass at zero. Getting reasonably good prediction accuracy
with these highly imbalanced datasets is an uphill task because most of the statistical
methods work best under the tacit assumption of more or less balanced data. While
a traditional Generalized Linear Model or a more contemporary Regression tree model
work as best they can, a collaboration between the two models seems to achieve better
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results.
Generalized Linear Models have been a popular tool in actuarial data analysis, es-

pecially to obtain the expected frequency and severity of claims. The GLM method was
introduced by Nelder and Wedderburn (1972). GLMs extend the traditional assump-
tion of a linear relation between the claim frequencies and the independent variables
to non-linearity, by using probability distributions from the exponential family for the
response variable. While Poisson is a popular choice for claim frequency, the gamma
distribution is favoured when it comes to modelling claim size. McCullagh and Nelder
(1989) illustrate the application of GLMs in predicting claim severity in motor insur-
ance. There exists extensive work illustrating the effectiveness of GLM on insurance
tariffs. Renshaw (1994) show how GLM can be used to analyze the claims frequency
and claims severity based on individual data at the insured level. Brockman and Wright
(1992) use GLM software to statistically model the claims frequency and severity in pre-
mium pricing for motor liability insurance. Haberman and Renshaw (1996) present a
comprehensive overview of the application of GLM for various actuarial problems such
as: survival models, multiple condition models, claims distribution models, insurance
premium pricing and claims reserves in non-life insurance.

There are numerous works and papers also on the application of machine learning
methods on insurance data. Some of the authors have illustrated the superior predic-
tive power of these methods over GLMs. Noll et al. (2020) is a case study where different
machine learning models like regression tree, boosting, and neural network models are
benchmarked against GLM to illustrate their superiority over traditional GLM methods.
However, the interpretability of the results obtained from these models is a challenge
that needs to be overcome to make them acceptable to the regulators and other stake
holders. On the one hand the advanced machine learning methods are capable of over-
coming the shortcomings of traditional GLMs, and on the other hand GLMs are more in-
terpretable and presentable. A combination of machine learning methods and GLMs to
build a hybrid model that has the advantage of both, could help reach a useful compro-
mise. This chapter combines the excellent variable selection capabilities of a regression
tree to selecting the GLM variables and interactions terms. The results are comparable
to many advanced machine learning methods.

Denuit et al. (2019) presents the insurance modelling ideas in a modern context.
Apart from statistical theory, their first book provides an insight into GLM construction.
In their second book (Denuit et al., 2020, Chap 4), the authors explain how to build re-
gression trees using a Poisson deviance as the loss function. Using the same dataset as
used by Noll et al. (2020) in their case study, a regression tree and a GLM model are fitted.
This first GLM and its results are used as a benchmark. This is followed by identifying
the terminal nodes of the tree to which each record belongs and adding this information
in the predictor space. Thereafter, a second GLM with better predictive power is built.
This method and its results are explained in the subsequent sections.
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2.3 Generalized Linear Model for Claim Frequency

The theory covered in this section is from (Denuit et al., 2019, Chap 4). Motor insur-
ance pricing has two components, the number of claims (frequency) and the size of the
claims (severity). For each insurance contract the number of claims submitted by the
policyholder and the respective costs of these claims are recorded. The Poisson distri-
bution is a popular choice for modelling claim frequency. Since GLMs assume that the
response to follow a distribution from the exponential dispersion (ED) family, it has a
score that is a linear combination of the available features, and a function that links the
mean response with this score. A GLM consists of three components:

- The distribution of the response from the ED family,

- the linear score, and

- the link function.

Let, Y1,Y2, . . . ,Yn be responses measured on n individuals. Each of these response has
characteristics that can be summarized into a d+1 dimensional vector xi = {1, xi 1, xi 2, ...xi d }.
The initial 1 forces an intercept term in the score. The features are typically the mea-
surable characteristics of the policyholders like, their age, the age of their vehicle, the
vehicle brand, etc.. The response (also called target) variable Y is then explained by the
vector of x values

µ(x) = E [Y |X = x]

is a regression function. In rate making, an actuary is interested in predicting the loss of
a homogeneous group of individuals rather than the loss incurred by individual policy-
holders, hence reducing dimensionality. What is available are the random observations
(yi ,xi). Instead, it is assumed that the Yi s are independent and follow a distribution
from the ED family, given the information available in the xis. The canonical parameter
of this ED distribution is obtained as a function of the xis.

θ = θ(xi),

while the dispersion parameter φ remains the same for all predictor variables. The quan-
tity of interest is the policyholder’s mean response µi given as

µi =µ(xi) = a′(θi ) = a′ (θ(xi))

2.3.1 Linear Score

The GLM score for response Yi is given by

scor ei = xi
T β=β0 +Σd

j=1βi j xi j , i = 1,2, . . . ,n

where β= (β0,β1, . . . ,βd ) is the vector of dimension (d +1) of unknown regression coef-
ficients to be estimated from the data.
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The quantity β0 is the same for all the scores. This is the intercept and it corresponds
to the score when the xi j s are equal to 0 for all j = 1,2, . . . , p. Then each β j quantifies the
impact on the score for an increase by one unit in the corresponding feature xi j . The
coefficient β0 explains the first entry of 1 in the vector xi.

2.3.2 Design Matrix

Now is the time to introduce the design matrix X obtained by binding all the xi, row-
wise. Precisely the i th row of X is denoted as xT . Thus

X =


x1

T

x2
T

...
xn

T

=


1, x11 · · · x1p

1, x21 · · · x2p
...

...
. . .

...
1, xn1 · · · xnp


The vector of the scores s1, s2, . . . , sn for all the n responses is obtained as

s = (s1, s2, . . . , sn)T = Xβ

At this point it is in the best interest of the chapter to show the design matrix when there
are two explanatory categorical attributes. The reason will become clear with further
reading of the chapter.

Suppose there are two attributes, the gender (male and female) and the coverage
extent (with three levels) of the policies. The three types of coverages are the compulsory
third part liability abbreviated as TPL, limited damage and comprehensive. Both the
features are categorical and the dataset, by counts, is specified in Table 2.1.

TPL only Limited Damage Comprehensive
Males 1683 3403 626

(10,000) (30,000) (5,000)
Females 873 2423 766

(6,000) (24,000) (7,000)

Table 2.1: Observed number of claims together with corresponding exposures-to-risk
(in policy years) appearing between brackets. Motor insurance, hypothetical data

The two features presented in Table 2.1 are categorical. They are now coded with
binary feature variables. Let xi 1 represent the gender variable. From the table we see
that the total exposure for male policyholders is 45,000 against 37,000 for the females.
Thus the male class is taken as the base class and xi 1 is defined as follows

xi 1 =
{

1, if the policyholder i is a woman,

0, otherwise,

The attribute coverage extent has three levels and hence it can be represented using
two dummy binary variables xi 2 and xi 3. Table 2.1 shows that the maximum exposure
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is for the category of limited damage and hence it should be the base class. Hence the
definition of xi 2 and xi 3 is as follows

xi 2 =
{

1, if the policyholder i has TPL,

0, otherwise,

,and

xi 3 =
{

1, if the policyholder i has comprehensive,

0, otherwise,

Therefore the base class is a male policyholder with limited damage coverage. The de-
sign matrix for this dataset in Table 2.1 is as follows

X =



1 0 1 0
1 0 0 0
1 0 0 1
1 1 1 0
1 1 0 0
1 1 0 1


The corresponding vector of observations is

Y =



1,683
3,403

626
873

2,423
766


A similar structure will be used for the design matrix by converting even the continu-

ous variables into categorical ones, depending on the number of splits made in the tree.
This will become clearer with further explanation of the methodology.

2.3.3 Link Function and Log Link

Multiple linear regression equates the expected response to the linear score. Instead of
that, GLM maps the mean response to a one-to-one, continuous and differentiable func-
tion of the linear score. This function is called the link function. Thus for the response
Yi , for i = 1,2, . . . ,n, if the link function is denoted by g , then

g (µi ) = scor ei ,

where g is monotone and invertible,

g (µi ) = scor ei ⇐⇒ µi = g−1(scor ei ).
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This is a conditional model where the Yi ’s follow a distribution from the ED family. When
the distribution of the Yi ’s representing the claim counts is Poisson, it means that Yi ∼
Poi (exp

{
(βTxi)

}
given xi, conditionally. The mean of the distribution is exp

{
(βTxi)

}
. This

is the log-link function

lnµi = scor ei ⇐⇒ µi = exp{scor ei }.

The log-link function has a multiplicative structure.

µi = exp
{(

β0 +Σd
j=1β j xi j

)}
= exp

{
β0

}(
Πd

j=1 exp
{
β j xi j

})
.

When the explanatory variables are categorical each of the policy holders are repre-
sented by d components of xi j which are either 0 or 1. When all of the xi j are 0’s then

exp
{
β0

} = the expected response for the base class

exp
{
β j

} = relative effect of the feature j

Going back to the data in Table 2.1 the expected claim frequency for a male policyholder
with limited damage coverage, is exp

{
(β0)

}
, that is the base class. For female policyhold-

ers with similar coverage the expected claim frequency is

exp
{
β0

}
exp

{
β1

}
If xi j has an increasing effect on the base class then β j > 0 =⇒ exp

{
β j

} > 1, and vice
versa.

2.3.4 Interactions

Interactions arise when a particular value of a risk factor is reliant on the other. As an
example it is often observed in motor insurance claims that on an average young, fe-
male drivers submit lesser number of claims than young, male drivers. This difference
often disappears at older ages. Hence it is natural to assume that the effect of age is
dependent on gender, but GLM models do not account for interactions automatically.
For real data sets with large number of predictor variables it is very difficult to identify
interactions. The one mentioned between age and gender is a common feature that has
been observed over years. It is not possible to identify an interaction in a new dataset
automatically. Tree based methods are better at identifying interactions automatically,
a feature that is used in this chapter. Before discussing trees, we review first how to deal
with interactions in GLMs.

Interactions are included in GLMs by adding to the linear term a product of inde-
pendent variables. Consider Taylor’s expansion of the mean function on the score scale:

g (E [Y |X = x]) ≈β0 +Σd
j=1β j xi j .

Since the β̂ estimates are obtained by maximizing the likelihood function it must be
noted here that

∂2g (E [Y |X = x])

∂x j∂xk
= 0.
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Thus
β0 = g (E [Y |X = 0])

and

β j = ∂g (E [Y |X = x])

∂x j

∣∣∣
x=0

.

The second derivative is always zero when the score is only a linear combination of
features. However, if the score contains terms that are products of features x j and xk , for
j ̸= k, then the second derivatives will no longer be 0. A more accurate approximation
of the regression function with interaction terms is given by

g (E [Y |X = x]) ≈β0 +Σd
j=1β j xi j +Σd

j=1Σk≥ j+1γ j k xi j xi k ,

where

γ j k = ∂2g (E [Y |X = x])

∂x j∂xk

∣∣∣
x=0

.

It is to be noted that this two–way interaction term can exist only if the main terms are
also included in the model. For example, if a dataset has two continuous features then a
score with the main and interaction terms is

scor ei =β0 +β1xi 1+β2xi 2 +β3xi 1xi 2.

Here the third coefficient is for the interaction of the two features xi 1 and xi 2. So every
unit increase of the feature xi 1, increases the score by (β1 +β3xi 2). Similarly, for every
unit increase in the feature xi 2, the score is increased by (β2 +β3xi 1). If we tweak the
example by making one of the variables xi 2 (say) a binary, categorical variable then the
score is given by

scor ei =
{
β0 +β1xi 1, i f xi 2 = 0,

β0 +β2 + (β1 +β3)xi 1, i f xi 2 = 1.

Recall the example introduced with the data in Table 2.1. This example is a simple
illustration of what can be done by converting all the variables in binary categorical vari-
ables. Suppose that a two–way interaction term is introduced between the two existing
features, gender and the coverage extent of the policyholders:

scor ei =β0 +β1xi 1+β2xi 2 +β3xi 3 +β4xi 1xi 2 +β5xi 1xi 3

=



β0, if policyholder is male, coverage for limited damage,

β0 +β2, if policyholder is male, TPL coverage,

β0 +β3, if policyholder is male, comprehensive coverage,

β0 +β1, if policyholder is female, coverage for limited damage,

β0 +β1 +β2 +β4, if policyholder is female, TPL coverage,

β0 +β1 +β3 +β5, if policyholder is female, comprehensive coverage.

The next subsection discusses claim exposure in the context of claim frequency and
the log–link function.
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2.3.5 Canonical Links and Poisson Distribution

Recall in Equation (1) the real-valued location parameter θ, the canonical parameter
bears the relation µi = a′(θ), where a is a continuous and monotone function of θ and
µi = E [Yi |X = xi]. In the previous section we have seen that g (E [Yi |X = x]) = scor ei .
A link function in which the score is same as the canonical parameter, is said to be a
canonical link function. Under the assumption that the Yi ’s conditionally follow a Pois-
son distribution with mean µi ,

fY (yi ) = exp
(−µi

)
µ

yi
i

yi !
= exp

(
yi lnµi −µi

)
exp

(− ln(yi !)
)
, (9)

with

θi = lnµi ,

a(θi ) = µi = exp(θi ).

Thus, a′(θi ) = exp(θi ) =µi , φ= 1, and νi = 1.
Equation (9) shows that the Poisson distribution follows the ED form in Equation (1).

Moreover, for the log–link, the Poisson GLM is defined as

lnE(Yi |X = xi ) = scor ei = θi

Thus the log–link function is a canonical link function.

2.3.6 Likelihood Equation and Fisher’s Information with Canonical Link

Having specified the GLM specified in terms of its link function and the ED family of
distributions, the β’s are estimated by the method of maximum likelihood. This ap-
proach seeks to fit the GLM that has the highest probability to produce the actual data.
Although the dispersion parameter φ could also be estimated by maximum likelihood,
a moment estimator is generally used instead, after the β’s are estimated. Thus, the like-
lihood function will be studied in the context of just the β estimation.

The likelihood function which is essentially the joint probability of the observations
in the dataset is transformed by the logarithm so that the product is replaced with the
sum of the probability densities and that eases the mathematical operations: the β0,β1, . . . ,βd

that maximize this sum are estimated thereafter. For the ED family the log–likelihood of
the Y1,Y2, . . . ,Yn is given by

lnL(β) =Σn
i=1 ln fθi (yi ) =Σn

i=1

 yiθi −a(θi )
φ
νi

+ c(yi ,
φ

νi
),
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where θi , in general, is a function of the linear score si . The maximum likelihood esti-
mate for β is obtained by differentiating lnL with respect to β j and equating it to 0:

∂ lnL(β)

∂β j
= ∂

∂β j

Σn
i=1

yiθi −a(θi )
φ
νi

+ c(yi ,
φ

νi
)


= ∂

∂θi

Σn
i=1

yiθi −a(θi )
φ
νi

+ c(yi ,
φ

νi
)

 ∂θi

∂µi

∂µi

∂β j

= Σn
i=1

(
νi (yi −a′(θi ))

φ

)
∂θi

∂µi

∂µi

∂β j
,

where,
∂µi

∂θi
= ∂a′(θi )

∂θi
= a′′(θi ) = νi V ar (Yi )

φ
,

as µi = a′(θi ), and
∂µi

∂β j
= ∂µi

∂si

∂si

∂β j
= ∂µi

∂si
xi j .

Thus the equation to solve is

Σn
i=1

(
(yi −µi )

V ar (Yi )

)
∂µi

∂si
xi j = 0. (10)

With canonical the link function, the canonical parameter is equal to the score: θi = si .
Thus

∂µi

∂θi
= ∂µi

∂si
= ∂a′(θi )

∂θi
= a′′(θi ) = νi V ar (Yi )

φ
.

This reduces Equation (10) to

Σn
i=1

 (yi −µi )
φ
νi

xi j = 0.

Taking νi = 1, for all i , the solution ensures that the fitted mean

µ̂i =µi (β̂) = g−1(xi
T β̂)

fulfill the condition

Σn
i=1(yi − µ̂i )xi j = 0 ⇐⇒ Σn

i=1 yi xi j =Σn
i=1µ̂i xi j , j = 0,1,2 . . .d .

Without the generalization of setting the weights to 1, if W is a diagonal matrix with the
i th diagonal element = νi , then the above result can be written as

X T W (y−µ(β̂)) = 0,
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where

W =


ν1 0 · · · 0
0 ν2 · · · 0
...

...
. . .

...
0 0 · · · νn


Now is the time to see Fisher’s information for the likelihood estimates of GLMs with
canonical link functions.

lnL(β) = 1

φ
Σn

i=1νi (yi si −a(si ))+constant w.r.t. β

So

∂2 lnL(β)

∂β j∂βk
= −Σn

i=1

νi xi j

φ

∂µi

∂βk

= −Σn
i=1

νi xi j

φ

∂µi

∂si
xi k

= −Σn
i=1

νi xi j xik

φ
a′′(θi ).

That makes the ( j ,k)th entry for the Fisher’s information matrix equal to:

H j k (β) =−Σn
i=1

xi j xik

V ar (Yi )
(a′′(θi ))2,

which is independent of the responses. Hence

∂2 lnL(β)

∂β j∂βk
= E

[
∂2 lnL(β)

∂β j∂βk

]
,

showing that for GLMs with canonical link functions, the expected information matrices
coincide with the observed ones.

2.3.7 Individual and Grouped Data

This section is about grouping data into mutually exclusive sub spaces. The example
is taken from (Denuit et al., 2019, Chap 4). Table 2.2 is from a portfolio that has been
grouped into 4 classes, according to the two binary features encoding the information
available about each policyholder (gender and annual distance traveled being more or
less than 20,000 km per year).

The response Yi is the number of claims reported by policyholder i . Here Y1, . . . ,Yn

are assumed to be independent and Poisson distributed, with means µ1, . . . ,µn , respec-
tively. The expected number of claims for policy i in the portfolio is expressed as

µi = ei exp
(
β0 +β1xi 1 +β2xi 2

)
,
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Annual distance trav-
eled (< 20,000 km)

Annual distance trav-
eled (≥ 20,000 km)

Male 143 (2,000) 1,967(18,000)
Female 278 (6,000) 354 (4,000)

Table 2.2: Number of claims and corresponding risk exposures (in policy-years, within
parentheses) for an hypothetical motor insurance portfolio observed during one calen-
dar year

where ei is the risk exposure for policyholder i , xi 1 records the annual mileage, and xi 2

records gender:

xi 1 =
{

1 if policyholder i drives less than 20,000 km a year,

0 otherwise,

and

xi 2 =
{

1 if policyholder i is female,

0 otherwise.

From the variable definition and the data in Table 2.2 we see that the reference class,
xi 1 = 0 and xi 2 = 0, is the most populous (male drivers who drive more that 20,000 km
annually).

Table 2.2 summarizes the experience of the whole portfolio by grouping all the data
into only four risk classes, each grouping drivers with similar attributes (that is, aggre-
gating all policies that are identical with respect to the two features xi 1 and xi 2). The
corresponding exposures are placed with brackets in each cell. This section shows that
such a grouping is allowed when working with Poisson distributed responses (and more
generally, with any ED distribution), without changing parameter the estimation.

In the frequency model, yi denotes the observed number of claims for policyholder
i with an exposure of ei . The corresponding likelihood function is

Li nd (β0,β1,β2) =Πn
i=1 exp

(−µi
)µyi

i

yi !
.
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The subscript ind indicates that it is the likelihood of individual observations. This prod-
uct can be subdivided into 4 categories matching each cell of Table 2.2 as follows:

Li nd (β0,β1,β2) =Πn
i |xi 1=xi 2=0 exp

(−µi
)µyi

i

yi !
× Πn

i |xi 1=0,xi 2=1 exp
(−µi

)µyi
i

yi !

× Πn
i |xi 1=1,xi 2=0 exp

(−µi
)µyi

i

yi !
×Πn

i |xi 1=xi 2=1 exp
(−µi

)µyi
i

yi !

∝ exp
{−exp

(
β0Σi |xi 1=xi 2=0ei

)}[
exp

(
β0

)]Σi |xi 1=xi 2=0ki

× exp
{−exp

(
β0 +β2

)
Σi |xi 1=0,xi 2=1ei )

}[
exp

(
β0 +β2

)]Σi |xi 1=0xi 2=1ki

× exp
{−exp

(
β0 +β1

)
Σi |xi 1=1,xi 2=0ei )

}[
exp

(
β0 +β1

)]Σi |xi 1=1xi 2=0ki

× exp
{−exp

(
β0 +β1 +β2

)
Σi |xi 1=xi 2=1ei )

}[
exp

(
β0 +β1 +β2

)]Σi |xi 1=xi 2=1ki ,

where ki are the counts for each class. The ∝ indicates that the two expressions are pro-
portional, upto a constant factor that is independent of the β j ’s that is to be estimated.

This shows that the individual likelihood is proportional to the likelihood based on
the data aggregated into 4 risk classes as it involves the total exposure and the total claim
numbers for each risk class as in Table 2.2.

Now, shifting to aggregate counts for the 4 classes we have:

Y00 = Σi |xi 1=xi 2=0Yi ,

Y01 = Σi |xi 1=0,xi 2=1Yi ,

Y10 = Σi |xi 1=1,xi 2=0Yi ,

Y11 = Σi |xi 1=xi 2=1Yi .

These produce a likelihood function that is proportional to the one above, so the max-
imum likelihood procedure yields exactly the same estimates. In fact, the Poisson dis-
tribution properties ensure that the four aggregate variables Y00,Y01,Y10,Y11 are Poisson
distributed also:

Y00 ∼ Poi (λ00), with λ00 = e00 exp
(
β0

)
, where e00 =Σi |xi 1=xi 2=0ei ,

Y01 ∼ Poi (λ01), with λ01 = e01 exp
(
β0 +β2

)
, where e01 =Σi |xi 1=0,xi 2=1ei ,

Y10 ∼ Poi (λ10), with λ10 = e10 exp
(
β0 +β1

)
, where e10 =Σi |xi 1=1,xi 2=0ei ,

Y11 ∼ Poi (λ11), with λ11 = e11 exp
(
β0 +β1 +β2

)
, where e11 =Σi |xi 1=xi 2=1ei .

Thus the likelihood function Lg r oup (β0,β1,β2) associated with this grouped data is the
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product of 4 Poisson probabilities:

Lg r oup (β0,β1,β2) = exp{−e00 exp
(
β0

)
}

[
e00 exp

(
β0

)]y00

y00!

exp{−e01 exp
(
β0 +β2

)
}

[
e01 exp

(
β0 +β2

)]y01

y01!

exp{−e10 exp
(
β0 +β1

)
}

[
e10 exp

(
β0 +β1

)]y10

y10!

exp{−e11 exp
(
β0 +β1 +β2

)
}

[
e11 exp

(
β0 +β1 +β2

)]y11

y11!
.

It is clear that
Li nd (β0,β1,β2) ∝Lg r oup (β0,β1,β2),

so that one can work with aggregated data and still get the same estimation of the param-
eters as from individual observations. Aggregating a whole portfolio into homogeneous
classes does not result in any loss of information. However, this property is only valid
because of the sufficiency properties under the ED assumption for the responses.

Real insurance datasets are far more complicated than the one in this illustrative
example, with the number of attribute variables in the hundreds. Getting the proper
attributes that account for best homogeneous aggregation of the data can be tedious
and slow. This is where the tree method comes to help. In the next section the regression
tree algorithm is discussed with respect to the Poisson distribution.

2.4 Regression Trees for Claim Frequency

Classification and regression trees are at the core of various advanced machine learning
algorithms like bagging, random forests, and XGBoost. While Chapter 1 deals with clas-
sification trees this chapter focuses on regression trees. The main concepts and ideas of
a regression tree can be found in Breiman (2017). While Denuit et al. (2020) presents the
regression tree concepts with respect to insurance data.

As mentioned in (Denuit et al., 2020, Chap 3) a regression tree recursively partitions
the feature space X into smaller, disjoint sub spaces {X t }t∈T , where T is a group of in-
dices. On each subset X t , the predictions ĉt of the response is constant. The resulting
prediction of µ̂(x) is given as

µ̂(x) =Σt∈T ĉt 1[x ∈ X t ].

The tree method is a powerful alternative to the parametric techniques like regres-
sion, primarily because of the following advantages:

(i) The recursive partitioning of the predictor space is not based on any assumption of
the existence of a parametric relationship with the response. It rather does a better
job in identifying the non–linear and the interactive effect of the features on the
response.
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(ii) The tree building method does not require any knowledge on the hierarchical im-
portance of the features in terms of their predicting capabilities on the response.
In fact, the method is built to look for the feature that best splits the response in
terms of minimizing the loss.

(iii) The tree method is highly interpretable. A tree can be easily visualized and inter-
preted by a graphical model.

The CART (Classification and Regression Tree) algorithm (see Breiman, 2017) is formed
of three steps, briefly discussed here:

1. Growing the Tree: First a large tree is grown. The algorithm starts from a first
node t0, also called the root node, that includes the entire data set with the feature
space X . In the first step this feature space is split into two disjoint sub spaces X t1

and X t2 such that X = X t1U X t2 . These X t1 and X t2 correspond to the nodes t1 and
t2, respectively. The binary splits are usually of the form Xi j <= k versus Xi j > k
where k is a constant for continuous or ordinal variables Xi j . If on the other hand,
Xi j is a categorical feature then the split is Xi j ∈ S, where S is a subset of the values
that Xi j may take. The criterion behind is the reduction of the heterogeneity of the
node t0 so that the nodes t1 are t2 are more homogeneous, in terms of the Xi j they
contain, as measured by the loss function that is used to build the trees. In the
ED family setting a natural candidate for the loss is the deviance. It is denoted by
DX t (ĉt ) and the Poisson Deviance is given as

D y (µ̂) = 2Σn
i=1

(
yi ln

yi

µi
− (yi − µ̂i )

)
, where ylny = 0 if y = 0 Here we build a Poisson Regression tree and hence con-
sider the Poisson Deviance as the loss function. The optimal split st is the one that
solves

min
s∈St

{
DX

t (s)
L

(
ĉt (s)

L

)
+DX

t (s)
R

(
ĉt (s)

R

)}
,

where t (s)
L and t (s)

R are the left and right children of the parent node t , resulting
from the split s and ĉt (s)

L
and ĉt (s)

R
are the corresponding predictions. The optimal

split st then leads to the children nodes t (st )
L and t (st )

R , also denoted as tL and tR . It
is to be noted that minimizing the sum of the two deviances of the two children
nodes is equivalent to maximizing the overall decrease of the deviance at node t ,
namely

max
s∈St

{
DX t (ĉt )−

(
DX

t (s)
L

(
ĉt (s)

L

)
+DX

t (s)
R

(
ĉt (s)

R

))}
.

The tree starts from the whole feature space X and is grown by iteratively dividing
the subsets of X into smaller subsets. Every node t is split using the optimal split
st that locally maximizes the decrease in deviance. The strategy is greedy so that
splits could be looked into deeper down the tree. Hence the tree keeps splitting

41



until some pre–specified criteria, like the minimum number of observations in
the terminal nodes and/or the pre–specified depth of the tree is reached. Let the
tree thus generated be named T .

2. Tree Pruning: This step trims the large tree T produced in the previous step to
generate a sequence of nested subtrees. The creation of subtrees relies on a cost–
complexity pruning algorithm. If |T | denotes the number of terminal nodes of a
tree T , and τT the set of indices for the terminal nodes of T , then the cost com-
plexity measure of a the tree T is given by

Rα(T ) = D
(
(ĉt )t∈τ(T )

)+α|T |,

where the parameter α is a positive real number. The number of terminal nodes
|T | is called the complexity of the tree T . Thus the cost–complexity measure Rα(T )
is a combination of the deviance D((ĉt )t∈τ(T ) ) and a penalty for the complexity of
the tree α|T |.
When we increase by one the number of terminal nodes of a tree T , by splitting
one of its terminal nodes t into two children nodes tL and tR , then the deviance of
the resulting tree T

′
is smaller than the deviance of the original tree T , that is

D((ĉt )t∈τ
(T

′
)
) ≤ D((ĉt )t∈τ(T ) ).

Since the deviance always favours the more complex tree T
′

over T , the introduc-
tion of a penalty for the tree complexity may make the original tree T preferable
over the more complex tree T

′
. The cost–complexity measure of T

′
can be written

as

Rα(T
′
) = D((ĉt )t∈τ

(T
′
)
)+α|T ′ |

= D((ĉt )t∈τ
(T

′
)
)+α(|T |+1)

= Rα(T )+D((ĉt )t∈τ
(T

′
)
)−D((ĉt )t∈τ(T ) )+α.

Thus Rα(T
′
) ≥ Rα(T ) if and only if

α≥ D((ĉt )t∈τ(T ) )−D((ĉt )t∈τ
(T

′
)
).

That is, Rα(T
′
) ≥ Rα(T ) if and only if the deviance reduction that is obtained by

producing the tree T
′

is smaller than the increase in the penalty for having one
more terminal node. When the value of α satisfies this condition, the more com-
plex tree T

′
is preferred.

If α = 0, the cost-complexity measure is same as the deviance. The largest tree
would minimize Rα(T ). As α increases the penalty for growing a large tree in-
creases thus resulting in fewer terminal nodes. At α= 0 let Ti ni t be the initial tree.
Suppose we find any pair of terminal nodes with a common parent node t such
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that the branch T (t )
i ni t can be pruned without increasing the cost-complexity mea-

sure. These nodes are pruned and this is continued until such a pair can no longer
be found in order to obtain a subtree of Ti ni t with the same cost-complexity of
Ti ni t . Define α0 = 0 and the resulting subtree of Ti ni t as Tα0 . When α increases,
it becomes optimal to prune the branch T (t )

α0
rooted at node t of Tα0 such that the

smaller tree Tα0 −T (t )
α0

becomes better that Tα0 . When α is high enough to have

Rα(Tα0 ) ≥ Rα(Tα0 −T (t )
α0

)

The deviance of Tα0 can be written as

D
(
(ĉs)s∈τ(Tα0 )

)
=Σs∈τ(Tα0 ) DXs (ĉs)

=Σs∈τ
(Tα0−T (t )

α0
)
DXs (ĉs)+Σs∈τ

(T (t )
α0

)
DXs (ĉs)−D

(
(ĉ)s∈t ]

)
= D

(
(ĉ)s∈τ

(Tα0−T (t )
α0

)

)
+D

(
(ĉ)s∈τ

(T (t )
α0

)

)
+D ((ĉ)s∈t ) .

Furthermore,
|Tα0 | = |Tα0 −T (t )

α0
|+ |T (t )

α0
|−1.

Thus the cost–complexity measure Rα(Tα0 ) can be rewritten as

Rα(Tα0 ) = Rα(Tα0 −T (t )
α0

)+D

(
(ĉ)s∈τ

(T (t )
α0

)

)
+α|T (t )

α0
|−D ((ĉ)s∈t )−α. (11)

Therefore, Rα(Tα0 ) ≥ Rα

(
Tα0 −T (t )

α0

)
if and only if

D

(
(ĉ)s∈τ

(T (t )
α0

)

)
+α|Rα(Tα0 )| ≥ D ((ĉ)s∈t )−α. (12)

Hence, it becomes optimal to cut the branch T (t )
α0

once the cost–complexity mea-

sure Rα(T (t )
α0

) becomes higher than the cost complexity measure Rα(t ) of the node
rooted at t . This requires α to satisfy the condition

α≥
D ((ĉ)s∈t )−D

(
(ĉ)s∈τ

(T (t )
α0

)

)
|T (t )

α0
|−1

. (13)

The right hand side of (13) is henceforth denoted by α(t )
1 . Let the set of non-

terminal nodes of a tree T be denoted by τ̃(T ). For each non-terminal node t of
Tα0 , α(t )

1 is calculated.

α1 = mi nt∈τ̃(Tα0)
α(t )

1 .

Cutting branches of Tα0 is not optimal as long as α < α1. Once the parameter α

reaches the value α1, it becomes preferable to prune Tα0 at its weakest links. The
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resulting tree thus obtained is Tα1 . The same process is now repeated on Tα1 . For
all non terminal nodes of Tα1 it is preferable to cut the branch T (t )

α0
when

α≥
D ((ĉ)s∈t )−D

(
(ĉ)s∈τ

(T (t )
α1

)

)
|T (t )

α1
|−1

. (14)

The right hand side of (14) is denoted by α(t )
2 and define

α2 = mi nt∈τ̃(Tα1)
α(t )

2 .

The non-terminal nodes t of Tα1 for which α(t )
2 =α2 are the weakest links of Tα1 . It

is now preferable to cut these nodes once α reaches the value α2 to get the next tree
Tα2 . Thus the pruning process yields a sequence of subtrees Tα0 ,Tα1 ,Tα2 , . . . ,Tαk .

3. Selecting the best pruned tree: Once the sequence of trees Tα0 ,Tα1 ,Tα2 , . . . ,Tαk =
{t0} has been built the next step is to select the best pruned tree. The selection is
usually achieved by cross–validation. In K-fold cross–validation, the training set D
is partitioned into K subsets D1,D2, . . . ,DK of roughly equal size I j . The j th for j =
1,2, . . . ,K , training set contains all observations in D\D j , j = 1,2, . . . ,K . For each

training set the sequence of smallest minimizing subtrees T ( j )
α0

,T ( j )
α1

,T ( j )
α2

, . . . ,T ( j )
αk

are built starting from a sufficiently large tree T ( j )
i ni t . Since the observations of the

set D j are not used to build the trees, this set plays the role of a validation set for
these trees. If µ̂T ( j )(αk ) denotes the model produced by the tree T ( j )(αk ) then

µ̂T ( j )(αk )(x) =Σt∈τ
(T ( j )(αk ))

ĉt I [x ∈ X t ].

Hence an estimate of the generalization error of µ̂T ( j )(αk ) on D j is given by

ˆEr r
val

(µ̂T ( j )(αk )) =
1

|I j |
Σi∈I j L

(
yi , µ̂T ( j )(αk )(xi )

)
.

where L is the loss function measured in terms of the deviance D y (µ̂T(αk ) (x)) So, the
K-fold cross–validation estimate of the generalization error for the regularization
parameter αk is given by

ˆEr r
CV

(αk ) =ΣK
j=1

|I j |
|I |

ˆEr r
val

(µ̂T ( j )(αk ))

= 1

|I |Σ
K
j=1Σi∈I j L

(
yi , µ̂T ( j )(αk )(xi )

)
.

The right sized tree Tpr une is selected as the tree Tαk∗ of the sequence Tα0 ,Tα1 ,Tα2 , . . . ,Tαk

such that
ˆEr r

CV
(αk∗) = mi nk∈{0,1,...K } ˆEr r

CV
(αk ).
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2.5 Improvement in GLM Accuracy Using a Regression Tree
as Preprocessor

Generalized Linear Models are traditionally a popular method used by actuaries to model
the claim counts (frequency), size of the claims (severity), and the loss cost.

Most of the insurance portfolios are typically imbalanced, with a large proportion
of zero claims and can be best modelled by a Poisson distribution when it comes to
claim counts. However, the traditional GLM method, though a favourite for its high in-
terpretability, usually falls short in handling the skewness exhibited by the data. Also, it
does not have built-in processes for the selection of the important features, their inter-
actions, nor to correct for non-linearities.

The binary tree method as explained briefly in the previous section is a powerful ma-
chine learning algorithm for decision making across many disciplines. The tree method
is better equipped in capturing variables that are more accountable for optimally split-
ting the data into mutually exclusive, but homogeneous groups. It creates a hierarchical
structure that can be visualised and interpreted easily. Under the tree each data record
falls through a unique path to land into a terminal node that aggregates similar records
amongst themselves. However, a tree predicts the outcome of each terminal node by a
constant. Even though a tree identifies the locality of homogeneous groups, these local-
ities, once-identified can be handed over to the GLM method to devise a hybrid model
that combines the benefits of both.

In this section an algorithm is devised that uses a regression tree to improve the pre-
dictive power of a GLM. Since the model uses inputs from a tree to build the GLM, it is
a hybrid model. As the first step of the hybrid model a regression tree is developed by
recursively splitting the predictor space of the insurance data. The response variable for
the analysis is the claim frequency of insureds. A full tree is first grown and then pruned
to the optimal level.

Due to the very large number of zero claims compared to positive claims, the distri-
bution of the number of claims is best fitted using the Poisson distribution. Once the
optimal tree is obtained, a categorical variable is added to the predictor space. This cat-
egorical variable has as many levels as there are terminal nodes. In other words, this
categorical variable identifies the terminal node of the tree to which a record belongs.
The base class for this variable corresponds to the node with the highest exposure. The
addition of this categorical variable with the variables identified by the tree as the best
candidates for its splits are used to create a GLM model. This hybrid model produces
an improvement when bench marked against a traditional GLM that is built with all the
available variables in the predictor space. The method has been tried on a public French
motor insurance data available as a CAS dataset. From the analysis in the following sec-
tion it can be seen that each bin, the newly added categorical variable under which all
the records within a homogeneous terminal node of the tree reside, turns out to be a
significant variable.

Further improvement is gained when interactions between the bin variable and reg-
ular variables are added to the GLM. The overall method is schematized in Algorithm 1,
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followed by the analysis of the empirical data and the improvements obtained.

Algorithm 1 Implementation of the hybrid tree–based GLM

Input:Training dataset train, Test dataset test.
Output: Tree structure, node information, GLM model, fitted dataset.

Grow a large tree on the training dataset using binary splitting.
Prune the tree using cost–complexity.
Obtain the exposure for each terminal node.
Obtain the response for each terminal node.
K ← number of terminal nodes.
bi n ← list of zeros of length equal to the training data.
bi ntest ← list of zeros of length equal to the test data.
Predict training set using the tree and obtain the node information for each record.
Predict the test set using the tree and obtain the node information for each test record.
for k ∈ K do

if exposur e ̸= max(exposur e) then
bi n ← k
bi ntest ← k

else
continue

end if
end for
tr ai n[Bi n] ← bi n
test [Bi n] ← bi ntest

vari mp ← non-zero variables of importance from tree.
formula ← y ∼ Bi n+
for var ∈ vari mp do

if var is last vari mp then
formula = formula + var + var*Bin

else
formula = formula + var + var*Bin +

end if
end for
GLMmodel = GLM(formula, data = train , model = Poisson)

return GLMmodel , tr eemodel ,GLM f i t on train, GLM f i t on test

2.6 Data and Results

The dataset freMTPL2freq used in this analysis is available is the R package CASdatasets.
The dataset has 678,013 records where third party liabilities were collected over a period
of one year. The dataset has twelve columns including one column for the policy ID that
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is a unique identification number for each policy. The other variables are as follows

1. ClaimNb : Number of claims submitted during the exposure period.

2. Exposure : The exposure period.

3. Area : The area where the vehicle is registered.

4. VehPower : The power of the vehicle. This is an ordered categorical type variable.

5. VehAge: The age of the vehicle in years.

6. DrivAge : The age of the driver in years. The minimum being 18 years in France.

7. BonusMalus : Bonus/malus between 50 and 350: < 100 means bonus, >100 means
Malus in France.

8. VehBrand : The vehicle brand. This is a categorical variable.

9. VehGas : The vehicle gas type. This variable is a binary categorical variable with
two types, Regular and Diesel.

10. Density : Density of population in terms of the number of people living in per km2

area of the city where the driver of the vehicle lives.

11. Region : The policy region in France (based on standard French classification).
This variable is categorical.

The dataset has approximately 5% claims putting a large mass on zero claims like
any other insurance data. The dataset has a few records with exposures more than a
year which were corrected to be 1 year. Also, it was noted that 9 policies have more than
4 claims with the largest number of claims being 16. This was corrected by making the
maximum number of claims to be 4.

After the initial rectifications, the dataset is divided into the training set (learn) which
contains 80% of the dataset and the remaining 20% is kept for validation (test) of the
models trained. A basic GLM model is first built on the training data set. The output of
the R function summary() when run on this model and all the subsequent models are in
Appendix B. This GLM is used as a benchmark to gauge the relative performance of the
GLMs preprocessed using tree structure. From the summary of this benchmarking GLM
it is visible that most of the regions are not statistically significant along with several
areas. The variable Density is not significant along with most of the vehicle brands.

Fig 2.1 is the optimally pruned tree of maximum depth 3 that splits the data into six
homogeneous leaves. We call each of these leaves a bin and create a new categorical
variable Bin in the training as well as the validation dataset. The bin with the highest
exposure forms the base bin (Bin 0) here. It is the leaf of the tree corresponding to the
vehicles more than a year in age and with drivers with BonusMalus less than 58. The next
GLM model is created including the additional and categorical variable Bin in the data.
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The summary of the model is included in Appendix B. Here from one bin to the other the
intercepts vary while the slopes of the covariates remain constant. The following shows
the relationship between the expected response and the intercept of the base bin when
all other variables are set to zero:

E(y |X = 0) = exp
{
i nter cept

}
.

This base value changes from the base bin to any other bin (bin 4 say) as follows

E(y |X = 0) = exp
{
i nter cept +βBi n4

}= exp
{
i nter cept

}
exp

{
βBi n4

}
.

Keeping everything else 0, only for Vehicle Brand 12 the expected response in the base
bin is

exp
{
i nter cept

}+βV ehBr and12

and the same for the bin 4 is

exp
{
i nter cept +βBi n4 +βV ehBr and12

} = exp
{
i nter cept

}
exp

{
βBi n4

}×exp
{
βV ehBr and12

}

Figure 2.1: The optimal tree with 6 leaves from the training data

From the summary table in Appendix B it is clear that all Bin variables are statistically
significant. This means that the intercepts for every group/bin are significant. Consid-
ering Akaike’s information criterion (AIC), that includes a penalty term for over–fitting,
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the model with the smallest AIC value should be preferred. Here, based on the AIC we
should prefer slightly the GLM model with the bin variables included.

Figure 2.2 shows that the average predictions of the GLM with the Bin variable are
closer to the actual averages in Deciles 3 to 9. The average predictions of this model
are more underestimated in Decile 1 and 2 and overestimated in Decile 10. The earned
exposures are also plotted as a measure of volume for each decile, a good fit being more
important where the weight is larger.

Figure 2.2: Lift curve comparing the predictability of the GLM with Bin to the benchmark
GLM

Finally, let us go one step further to include interaction terms between the Bin and
other variables. This generates different intercepts for each bin as well as different slopes
for each variable within each bin. It is equivalent to having different GLMs within each
tree leaf/bin. Hence, keeping every other variable at 0, the relation between the expected
frequency and the Bonus Malus in the base bin is

exp
{
i nter cept

}
exp

{
βBonusM al us

}
,

while the same for Bin 4 (say) is given by

exp
{
i nter cept

}
exp

{
βBi n4

}
exp

{
βBonusM al us

}
exp

{
βBonusM al us:Bi n4

}
.
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From the Appendix B summary it appears that not all variables are equally significant
within each bin. For example the region named Centre is significant in Bins 1 and 5, not
significant for Bin 4, while it is not present in Bin 0 (base bin), 3 and 6, which means
there is no data from this region in these bins due to the tree splits.

Figure 2.3 compares the average predictions given by the benchmarking GLM to the
GLM that includes the Bin variable and its interaction with other covariates. In the latter
the average predictions is closer to the actual predictions in Deciles 3 to 9.

Figure 2.3: Lift curve comparing the predictability of the GLM with Bin and its interac-
tion with other covariates to the benchmark GLM

The double lift curve in Figure 2.4 shows that the average predictions of the GLM with
the Bin variable interacting with the other covariates is closest to the actual response for
all deciles.
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Figure 2.4: Double lift curve comparing the predictability of the GLM with Bin variable,
to GLM with Bin and its interaction with other covariates and to the benchmark GLM

The summary in Appendix B shows the statistical significance of the Bin variables
and the presence of quite a few significant interactions between Bin and other variables.
Out of the 3 GLMs the AIC score is lowest for this model.

Lastly Table 2.3 compares the prediction capability of each model over the training as
well as the validation set. It is clear that the GLM model with Bin and variable interaction
with Bin performs best.

Percentage
mean Poisson
deviance from
training set

Percentage
mean Poisson
deviance from
validation set

Bench Marking GLM 31.973 31.932
GLM with Bin 30.938 31.064

GLM with Bin Interactions 30.724 30.935

Table 2.3: Comparison of predictive performance of GLM with tree Bins and GLM with
tree bins interacting with variables with respect to the benchmark GLM
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Chapter 3

Hybrid Combination of Gradual
Minority Oversampling and GLMNet

Abstract

Tree-based methods have gained popularity to model non-linear relationships in data.
Classification and regression trees are non parametric methods and divide the predictor
space into more homogeneous subspaces. Given that insurance claims are rare events
in portfolios of insurance policies, the prediction of claim proneness, and in turn claim
frequency, is like searching for a few needles in a haystack. Here the haystack is the large
number of policies that did not file a claim, which dominate the portfolio dataset. No
single model is perfect at sieving out the policies that might claim, and thus, a combi-
nation of methods is suggested here, to improve performance in claim frequency mod-
elling. This chapter mixes the knowledge obtained about the impact of oversampling
the minority class (group of policyholders that filed a claim), studied in Chapter 1, to di-
vide the predictor space into bins that contain claim propensity in different proportions.
Then, in a second step, these bins are used as predictor inputs into a GLMNet model to
improve the claim frequency predictions in a regression setting.

3.1 Introduction and Motivation

Building good regression models for insurance claims prediction is a challenge. One of
these challenges with insurance datasets is the presence of a high proportion of policies
that have not filed a claim (called policies with zero claims), as compared to policies
with claims. This creates extreme skewness in the data. In the context of regression, the
covariates (predictors or independent variables) throw light on the heterogeneity of the
individual policies.

Insurance claims are often studied in two parts, the first being the claim frequency
model, and the second part being the average severity of claims per policy. The product
of these two components is known as the loss cost and the product of their expected
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values is the pure premium.
In modelling the claim frequency of each policyholder it can be analyzed as a Poisson

process, where the claims within a given time period (a year in most cases) occur at a
given rate. It is the differences in this rate, from on policyholder profile to another, that
needs to be predicted by an actuarial model. However, when we look into the predictor
space as a whole, the percentage of policyholders with claims is usually less than 10% of
the total portfolio. This unbalanced distribution of risky clients makes difficult the task
of identifying their higher premium requirement.

Several methods of the two part framework of insurance models are discussed in
Klugman et al. (2012). Employing regular classification trees on a dataset with less than
10% claims usually requires a large tree, to identify the very few profiles with non-zero
claims (minority class). Note that for a dataset with only 3% claims, if a model predicts
every policy holder as non-risky, then the model accuracy rate would be of 97%, which is
excellent. Thus the usual predictive accuracy criteria to assess models is not sufficient to
measure the actual performance of a classification model when there is such imbalance
in the data.

The problem of binary classification of insurance portfolios, along the zero claim
to non-zero claims divide, is discussed in Chapter 1, where we propose a method that
improves the identification of non-zero claims profiles. There we note the considerable
loss in accuracy to predict zero claims. Nevertheless, it is crucial to identify correctly
potential claimants, as there is a real cost in classifying non-risky clients as risky, leading
to the loss of customers in a competitive market. The result in Chapter 1 shows that
one can control the misclassification of zero claim profiles by adjusting the proportion
of oversampled minority class data points. That same idea is used in this chapter, but
in a regression context, to identify subsets in the predictor space with higher or lower
proportions of claims. To identify the policyholders with a risky profile the predictor
space is binned into corresponding "more risky" and "less risky" bins.

The bins are created using the prediction results of classification trees applied to
the predictor space. Clearly, these bins are dependent on the prediction variables and
may introduce collinearity in the regression model. This is one of the reasons why we
choose to use GLMNet over regular GLMs in the second phase. GLMnet is a package
that fits generalized linear models with a penalized likelihood. The regularization path
is computed for a lasso or elastic net penalty at grid values (on the log scale), the reg-
ularization parameter is called lambda (λ). The model applies a regularization penalty
to the regression coefficients to reduce overfitting. In more practical terms, in the pres-
ence of dependent covariates the model does an automatic features selection with the
least significant covariates having their coefficients reduced to 0. The R library GLMNet
package implements the method and includes a functionality for log–Poisson models
used by actuaries for frequency (claim count) models.

Apart from combining bins to prediction variables we also consider a reduced model
with bin variables only. The motivation is that the bins identify subsets of the overall pre-
dictor space that have been constructed by optimally splitting the sample space using
classification trees. For example, it is possible that some of the bins might include only
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one of the levels of a character variable and there it does not make much sense to in-
clude the variable itself, as the bin already reflects the split generated by the tree at the
previous step.

The rest of this chapter is organized as follows. Section 3.2 provides the methodology
and the technical details of the two-step hybrid method. In Section 3.3 we investigate
various models that can be used for modelling claim frequency. Section 3.4 contains
the results of the hybrid method and their visualization on a CAS dataset. It also gives a
comparison of these results with those obtained from methods discussed in the previous
section. Finally Section 3.5 gives the conclusions.

3.2 Methodology

The hybrid method can be divided broadly into 3 steps:

1. Start with the original proportion of the minority and the majority classes, and
build a classification tree. Depending on the proportion of observations in the
minority class, and the complexity parameter selected there are 2 possibilities :

(i) None of the non-zero claims get identified by the tree. At this stage it is pos-
sible to decrease the complexity parameter which leads to building a bigger
tree and identifying some of the non-zero claims. However, the bigger the
tree, the higher the risk of overfitting. The complexity parameter has to be
tuned to get the best result.

(ii) Some of the non-zero claims do get identified. It is not identifying individ-
ual policy records correctly, but rather one or more nodes of the tree identify
a predictor subspace as being risky. This subspace would also contain zero
claims but in a lesser percentage than the non-zero claims. The subspace
now gets identified as the first bin and all the policies belonging to this sub-
space would have the corresponding bin classification value (risky or non-
risky).

2. Progressively, the number of minority class data points is doubled, then tripled
and so on until their sampled number becomes equal to the number in the ma-
jority class. It is to be noted that the sample points from the majority class is kept
fixed through out. A classification tree is built at every step while adding more mi-
nority sample points and the corresponding prediction of the tree is noted. The
predictions that change from zero in the previous tree to non-zero (claims) in the
current tree are taken into a new bin.

3. Having divided the data into discrete bins a matrix of the bins is produced by hot
encoding and is used as the predictor for GLMNet model. The first bin would
have the highest proportion of claims compared to the following bins. Bin 0 is the
default bin. Records in this bin have never been categorized as non-zero claims.
Within the dataset it is the subspace with lowest proportion of claims, if any.
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3.2.1 How Does this Method Help

Let us consider a predictor subspace S that is d dimensional. Let Y ∈ 0,1 be the re-
sponse variable where Y = 1 implies that there is at least a claim (also referred to above
as risky or non-zero). Let q be the proportion of records with at least a claim in this space
and also let n be the total number of records. Thus empirically,

P (Y = 1|X ∈S ) = nq

n
= q

and

P (Y = 0|X ∈S ) = n(1−q)

n
= (1−q).

At this point when we add nq sample points from the minority data into the predictor
space then,

P (Y = 1|X i nS ) = 2nq

n +nq

and

P (Y = 0|X ∈S ) = n(1−q)

n +nq
.

At this point if P (Y = 1|X ∈S ) > P (Y = 0|S ), only then will an algorithm predict points
belonging to S as risky. And for that it is necessary that

2nq > n(1−q) ⇔ 3nq > n ⇔ q > 1

3
.

Thus a predictor subspace which has more than one-third of its records being risky will
be identified. Denote this as being the second stage in the subsampling process, that is
k = 2.

Then, at any given k th stage of the subsampling process, the minority points are
increased k-folds. If records belonging to the predictor space S are classified as being
risky, then at this stage it means that

P (Y = 1|S ) > P (Y = 0|S ) ⇔ knq > n(1−q) ⇔ (k +1)nq > n ⇔ q > 1

k +1
.

For example, consider a data subspace SA that is predicted risky (ŷ = 1) in the 4th

iteration. This means that the classification tree requires 4 times more minority sample
points than there actually is, to be able to see the presence of minority data points in
this subspace. Note that it was predicted non-risky (ŷ = 0) in the 3r d iteration, when the
subsample contained 3 times more minority sample points than the original number. It
can be seen from the result above that for k = 4, the fraction of minority data points in
SA is at least 1/(4+1), that is 20%. Thus, the larger k, the smaller the actual proportion
of minority data points in SA .

All the data points whose predictions change from 0 to 1 at the k th stage are put in
the same bin. Bin 0 is the one with the lowest proportion of risky records and Bin 1 is
the bin with highest proportion of the same. The the other bins contain a proportion
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of risky data points that is in between those in Bin 0 and Bin 1. Then the bins are used
as categorical variables to form the one-hot encoded matrix used as predictors of the
GLMNet model. Algorithm 2 describes the process.

Algorithm 2 Binning the data and building GLMNet with the bins

Input:Training dataset train, Test dataset test.
Output: GLMNet model.

K ←⌊number o f ma j or i t y poi nt s
number o f mi nor i t y poi nt s ⌋.

nq ← mi nor i t y d at a si ze
np ← ma j or i t y d at asi ze
pr edmat [,1] ← pr edi ct (tr ee, tr ai n)
testmat [,1] ← pr edi ct (tr ee, test )
for k ∈ 2 : K do

mi nsample ← sample(k ∗nq ,mi nor i t y d at a)
ma jsample ← sample(np ,ma j or i t y d at a)
subsample ← mi nsample +ma jsample

tr ee ← r par t (subsample ,method = cl ass)
pr edmat [,k] ← pr edi ct (tr ee, tr ai n)
testmat [,k] ← pr edi ct (tr ee, test )

end for
bi ncnt = 0
bi n = [0, si ze = tr ai n]
bi ntest = [0, si ze = test ]
if (sum(pr edmat [,k] == 1)! = 0) then

bi ncnt = bi ncnt +1
bi n[pr edmat [,k] == 1] = bi ncnt

bi ntest [testmat [,k] == 1] = bi ncnt

end if
for k ∈ 2 : K do

if (sum(pr edmat [,k] == 1 & pr edmat [,k −1] == 0)! = 0) then
bi ncnt = bi ncnt +1
bi n[pr edmat [,k] == 1 & pr edm at [,k −1] == 0] = bi ncnt

bi ntest [testmat [,k] == 1 & testmat [,k −1] == 0] = bi ncnt

end if
end for
tr ai n[Bi n] ← bi n
test [Bi n] ← bi ntest

GLM Netmodel = g l mnet ( f or mul a,d at a = tr ai n[Bi n],model = Poi sson)
return GLM Netmodel
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3.2.2 GLMNet

As mentioned earlier we build a GLMnet with predictor variables and the bins, as well as
a GLMNet with only the bins. Let β0, β1, . . . ,βp be the coefficients corresponding to the p
predictor variables Xi 1, Xi 2, . . . , Xi ,p . The Poisson distribution belongs to the exponential
dispersion family, as the Poisson probability mass function can be written as equation
(1). The Poisson link function is the log. Let us look at the Poisson probability mass
function (p.m.f.) f (yi ), where i = 1,2, . . . , N is the record index:

f (yi ) = e−λλyi

yi !
= e(yi lnλ−λ) 1

yi !
.

The likelihood of this dataset is given by

ΠN
i=1 f (yi ) =ΠN

i=1e(yi lnλ−λ)ΠN
i=1

1

yi !
.

The Log-likelihood of the dataset is thus

ΣN
i=1log ( f (yi )) =ΣN

i=1(yi lnλ−λ)+ log (ΠN
i=1

1

yi !
).

As mentioned earlier, we need the prediction for λ = E(Y |X ,β), modeled using the
link function

log
(
E(yi |X ,β)

)=β0 +Σ
p
j=1β j xi j .

The log likelihood for dataset {xi , yi } is given by

l (β|X ,Y ) =ΣN
i=1

(
yi (β0 +Σ

p
j=1β j xi j )−e

β0+Σp
j=1β j xi j

)
. (15)

The penalized log-likelihood that is optimized is

min
β0,β

{
− 1

N
l (β|X ,Y )+ΣN

i=1λ

[
(1−α)

1

2
Σ

p
j=1β

2
j +αΣ

p
j=1|β j |

]}
. (16)

Unlike the glm function in R, GLMNet itself does not accept data.frame objects as an
input and requires a model matrix. After the creation of the bins, the Xi j value in equa-
tion (15) is replaced by bi ni . The bin variable is a character variable and the bin variable
is zero for the base class for which is Bin 0. Recall, that the bin is zero for records be-
longing to the subspace which has the least percentage of claims. For K bins the matrix
produces K columns with 1 at the column corresponding to the bin and 0 elsewhere.
Thus the intercept, β0 corresponds to the base bin=0. The Poisson predictions are mul-
tiplicative. Thus the prediction corresponding to the k th bin is

exposur e ∗ (
exp

{
β0

}
exp

{
βk

})
,

where exposure is the fraction of the time period the policy was valid for. Thus a pol-
icy valid for 3 months has exposur e = 0.25 while the one that is valid for a year has
exposur e = 1.
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3.3 Dataset, Models and Results

The dataset freMTPL2freq used in this analysis is available is the R package CASdatasets.
It contains 678,013 records, where third party liability claims were collected over a pe-
riod of one year. The dataset has twelve columns, including one column for the policy ID
that is a unique identification number for each policy. The other variables are as follows:

1. ClaimNb : Number of claims submitted during the exposure period.

2. Exposure : The exposure period.

3. Area : The area where the vehicle is registered.

4. VehPower : The power of the vehicle. This is an ordered categorical variable.

5. VehAge: The age of the vehicle in years.

6. DrivAge : The age of the driver in years. The minimum being 18 years in France.

7. BonusMalus : Bonus/malus between 50 and 350: < 100 means bonus, > 100 means
Malus in France.

8. VehBrand : The vehicle brand. This is a categorical variable.

9. VehGas : The vehicle gas type. This variable is a binary categorical variable with
two types, Regular and Diesel.

10. Density : Density of population in terms of the number of people living per km2

in the area of the city where the driver of the vehicle lives.

11. Region : The policy region in France (based on standard French classification).
This variable is categorical.

The dataset has approximately 5% of the records being non–zero claims, meaning
that the number of policies with zero claims is strongly dominant, as is common with
insurance data. The dataset had a few records with exposures larger than a year, which
was corrected to be 1 year. Fig 3.1(a) shows the histogram of the number of claims in
the data. Table 3.1 shows that only 9 policies have more than 4 claims, with the highest
number being 16. The percentage of exposure contribution for policies with more than
4 claims is 0.0009%. As this is marginal, to simplify the model the data was corrected to
set the maximum number of claims to be 4. Fig 3.1(b) is the histogram on the dataset
with claim count capped at 4.
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(a) (b)

Figure 3.1: (a) Histogram of the original number of claims in the data (b) Histogram of
the number of claims with maximum number of claims capped at 4

number of claims 0 1 2 3 4 5 6 8 9 11 16
number of policies 643953 32178 1784 82 7 2 1 1 1 3 1

total exposure 336616 20671 1153 53 3 1 0.3 0.4 0.1 1.1 0.3

Table 3.1: Split of the portfolio with respect to number of claims and exposure

3.3.1 Models like GBM and XGBoost

This section reviews two models also popular to describe insurance claim frequency.
The tuning of the hyper parameters, specific to the dataset to obtain the best possible
result, is discussed here as well as the results obtained.

Gradient Boosting Machine (GBM)

Gradient Boosting machines or GBMs are a family of powerful supervised machine learn-
ing techniques that are customizable to the particular need of the application. These
models are non parametric ensemble methods that rely on combining a number of
weak learners to obtain a strong prediction. The principle idea behind this algorithm
is a learning procedure that results from consecutive error fitting. The choice of the loss
function is up to the researcher, in our case we opted for the Poisson deviance.

The R library gbm is used to implement gradient boosting and for testing. The pri-
mary parameters of interest in this function are:

1. Formula : It specifies the model parameters and the dependent variable

2. Distribution : It specifies the distribution followed by the response variable and
thus determines the loss function that will be used when fitting the model.
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3. Number of trees : Also the number of iterations in the additive ensembling tech-
nique

4. Depth of a tree : This parameter specifies how deep each tree of the ensemble can
be grown. The deeper a tree the stronger is it as a learner.

5. Minimum number of observations in the terminal node of the tree : This is the
minimum number of observations (in integer form) allowed in a terminal node of
the trees.

6. Shrinkage : Also known as the learning rate or step size. The smaller this rate is the
larger the number of trees required.

7. Cross Validation folds : Number of cross-validation folds to perform. If larger than
1, then gbm, in addition to the usual fit, will perform a cross-validation, and cal-
culate an estimate of the generalization error (returned in cv.error).

A hyper parameter grid is created for the gbm function to find out the best choice
for the particular dataset. The first hyper parameter grid was created for the shrinkage
parameter (or the learning rate). An optimal value of 0.3 was obtained. Having fixed the
shrinkage to 0.3, the next grid was created for the number of trees, the depth of each tree
and the minimum number of observations in the terminal node of the trees. The aim
was to find the optimal number of trees that would produce the best Poisson deviance.
This is because GLMNet will optimize the error rate for the Poisson distribution with a
Poisson deviance loss function.

The optimal hyper parameters obtained in the second hyper parameter tuning round
are as follows:

• Number of trees = 50,

• Depth of each tree = 7,

• Minimum number of observations in the terminal node of the tree = 15,

• Shrinkage (learning rate) = 0.3.

Figure 3.2 gives an idea of the training and test for the Poisson deviance against the
number of iteration/trees. The corresponding model performance on the test data set is
disclosed in the result section when all the model performances are compared.

60



Figure 3.2: GBM training and testing Poisson deviance plot vs the number of itera-
tions/trees

3.3.2 Extreme Gradient Boost (XGBoost)

Extreme Gradient Boosting (XGBoost) is another variant of boosting algorithm that uses
regularization to manage overfit. XGBoost is a process that ideally requires less process-
ing time, at the same time as it exhibits a satisfactory accuracy for various classification
and regression cases. The algorithm can efficiently handle missing data and does not
require prior imputations.

The R library xgboost was used to implement the XGBoost on our illustrative data set.
Like GBM, several choices of loss function are available in xgboost and the one pertain-
ing to our claim count application is Poisson. The parameters of interest in this function
are of two types. The general parameters and the boosting parameters. The general
parameters can be listed as follows:

1. booster : This parameter specifies the learner type. It is possible to use a regression
learner in xgboost. However the default is gbtree for gradient boosting trees.

2. silent : The parameter specifies if any running message will be printed. The default
value is 0. Once set to 1, there will be no message printed while xgboost runs.
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3. nthread : This is used for parallel processing, and the number of cores in the sys-
tem should be entered. If no value is entered the algorithm is intelligent enough
to detect the cores and run them all.

The boosting parameters are the ones that need to be tuned for optimal performance of
the algorithm. For our application, the boosting parameters interest are as follows:

1. eta : This the learning rate or shrinkage in GBM. Typically the value is tuned some-
where between 0.01 to 0.2.

2. min_child_weight : This is the minimum sum of weights of the observations re-
quired in a child node of the trees.

3. max_depth : This is the maximum depth to which the trees can be grown.

4. max_leaf_nodes: The maximum number of terminal nodes or leaves in a tree.

5. gamma : Specifies the minimum loss reduction required to make a tree split. This
parameter is tuned depending on the loss function.

6. subsample : Denotes the fraction of observations to be sampled when building
each tree. Mainly useful for large datasets. We set this parameter to 1.

7. colsample_bytree : Denotes the fraction of columns/variables to be sampled when
building each tree. Mainly useful for datasets with a large number of variates. We
set it to 1.

8. nrounds[default=100] : It controls the maximum number of iterations (steps) re-
quired for gradient descent to converge.This parameter is tuned using cross vali-
dation.

9. lambda : L2 regularization term on weights (analogous to ridge regression).

10. alpha : L1 regularization term on weight (analogous to Lasso regression).

We start with the hyper parameter tuning of the XGBoost model by first training it
with the default parameters. The in-built cross validation function xgb.cv calculates the
number of iterations (nrounds). The best iteration is obtained as 89.

Thereafter a grid search is made to find the best eta/learning rate, the maximum
depth of trees, and the min_child_weight. The learning rates considered are 0.05, 0.1,
0.2, 0.5 and 1. The maximum depths of trees considered are 2, 4, 6 and 10. The min_child_weight
that were considered in the grid are 6, 8, 10 and 10.

Having optimized the parameters in the first grid search, the regularization param-
eters are tuned in the second round grid search. The parameters, gamma, lambda and
alpha are then tuned.

The optimal hyper parameters obtained after all the tuning rounds are as follows:

• Number of rounds = 89,
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• eta = 0.05,

• max_depth = 6,

• min_child_weight = 6,

• gamma = 0.2,

• alpha= 0.01,

• lambda = 0.1.

The optimal XGBoost model performance on the test data is disclosed in the result sec-
tion along with the performance of the optimized GBM and the hybrid model.

3.3.3 Hybrid Model Results and Discussion

As argued, the few initial trees only have a single leaf node. Unless the proportion of
non-zero claims data goes up to a substantial percentage of the full dataset, rpart fails
to detect their presence. Figure 3.3 shows the common result obtained by the first three
classification trees.

Figure 3.3: Classification tree for k= 1, 2, 3 when CP = 0.001

For this dataset the tree starts splitting when k = 4; Figure 3.4 shows the splits of the
fourth classification tree built during the process.
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Figure 3.4: Classification tree for k=4 and CP=0.001

Figure 3.5 shows the splits of the tree for k = 19.
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Table 3.2 gives an idea of how the bins identify the subspaces that have higher pro-
portions of claim records. The data tells us how the bin corresponding to k = 4 identifies
that predictor space where there is almost 29% claim records as compared to the overall
5% claim records in the dataset.

K value Percentage of Claim Records
0 3.49
4 28.78
6 21.68
9 17.30

19 8.07

Table 3.2: Percentage of claim records for different k values

We differentiate the records using the bin variables. There are subspaces within the
predictor space where there is 28% claim records when the overall claim percentage is
only 5%. Figure 3.6 shows the β coefficient values for different values of the regulariza-
tion parameter lambda in equation (15). This plot includes the predictor variables X j

along with the bins.

Figure 3.6: GLMNet coefficients vs the regularization parameter lambda
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Figure 3.7 shows how the Poisson deviance changes with the regularization param-
eter lambda. The final GLMNet model is built with the best lambda which the one that
minimizes the Poisson Deviance.

Figure 3.7: Poisson deviance against the log values of the regularization parameter
lambda

Figure 3.8 shows that the most important variables are the intercept and the coeffi-
cients for the bins that have higher percentage of minority/non-zero claims data. The
number of bins formed is not equal to the number of trees built, which is 19 for this data
set. Recall that the trees did not split in the first few iterations. There are 16 bins and
the intercept accounts for the bin with least percentage of claims. Bin 1, which is for the
second most important variable, is the subspace with approximately 29% of non-zero
claims.

The next model considered excludes the predictors and considers only the bin vari-
ables built with the trees.
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Figure 3.8: Horizontal barplots for variable importance

Figure 3.9 shows the variation in the coefficients for the bins by changing the value
of the regularization parameter lambda.
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Figure 3.9: GLMNet coefficients for bins only vs the regularization parameter lambda

Figure 3.10 shows how the Poisson deviance changes with the regularization param-
eter lambda. We select the best lambda to be the one that gives the minimum Poisson
Deviance.
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Figure 3.10: Poisson deviance vs log of the regularization parameter lambda
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Figure 3.11: Horizontal barplots for variable importance in GLMNet with only bin vari-
ables

Analysis

The performance of the suggested hybrid GLMNet model is compared to that of Gradi-
ent Boosting (GBM) and Extreme Gradient Boosting (XGBoost) models in R. Two types
of metrics are used, the Poisson deviance and the mean squared error (MSE), to com-
pare the performances of the three algorithms. However, since the models have been
built for claim counts using the Poisson model it is the Poisson Deviance that is mini-
mized by all the models. We see that the lowest Poisson deviation is obtained from the
hybrid GLMnet model. Table 3.3 shows the metric results obtained on test data for the
three models. The row corresponding to the GLMNet with interaction between the pre-
dictors and bins yields the lowest Poisson deviance so far. In the corresponding model
within each bin/subspace not only the intercept but also the coefficients for each of the
predictor are distinct.
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Model Poisson Deviance Mean Squared Error
GLM 37.2098 0.05669235
Hybrid GLMNet with predictors
and bins

30.5210 0.05714413

Hybrid GLMNet with bins only 30.7533 0.05538684
Hybrid GLMNet with interaction
between predictors and bins

30.4478 0.0550325

GBM 31.3043 0.06350775
XGBoost 31.9227 0.05566972

Table 3.3: Poisson deviance and MSE for GBM, XGBoost and Hybrid GLMNet models

Figure 3.12: The actual data vs the predictions from all the models

The average model predictions vs. actual plots provide a visual representation that
enable us to compare how well various predictive models forecast claim counts com-
pared to actual data. They can be used to analyse how well each model’s predictions
match the actual data. Figure 3.12 shows how the average prediction from the GLM
model (green curve) is farthest from the average actual data (black curve) over all the
deciles of the predicted response. The red curve corresponding to the hybrid GLMnet
model is closest to the actual data over all the deciles. The next closest curve is the GBM
(blue curve). It is slightly worse than the hybrid GLMnet curve with respect to proximity
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to the real data over the first five deciles. However, the red curve is much better than the
GBM curve in the rest of the deciles, making it the best one. The cyan curve corresponds
to XGBoost and is farther from the actual data in all the deciles, compared to the GBM
and the hybrid model curves.

From the average model predictions vs. actual plot as well as the Table 3.3 it is evident
that GBM and the hybrid GLMnet models outperform the XGBoost and the GLM model.
The performance of the GBM model is commendable. It has a considerably low Poisson
deviance and mean squared error value and most of its data points lie closer to the actual
data. This is an indication that its predictions are reliable and align with the actual data.
XGBoost comes in third position based on performance. Although its performance is
not as commendable as the GBM, it is to be noted that the XGBoost outperformed the
traditional GLM model.

It should also be noted that tuning the hyperparapeters of models like GBM and XG-
Boost is an extensive and extremely time consuming process. A systematic and thorough
hyperparameter tuning analysis system could be the subject of another experimentation
that might unveil more interesting results. For the data analyzed here, the parameters
were tested at length and breadth and the best of all the results were taken into consid-
eration.
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Conclusion

The purpose of this research is to develop models to better predict insurance claim
counts as a part of insurance premium pricing.

Chapter 1 develops a sampling mechanism and a classification tree is built on the
obtained sample to better identify the minority class of non–zero claims. This method
can be helpful to identify policyholders that are more susceptible to claim, in insurance
portfolios characterized by high imbalance between the zero and non-zero classes.

Chapter 2 builds a regression tree on the training data to partition the insurance
portfolio into homogeneous groups along the leaf nodes of the tree. Since a tree is a
helpful algorithm in identifying the non–linear relations between the response and the
predictor variables, the groupings produced by this non–parametric algorithm are then
used to separate the data into homogeneous groups called bins, maximizing the hetero-
geneity between the groups. These bins are used as an additional predictor variables in
a regression context to obtain GLM models with better predictability.

Having developed these two methods the third and final chapter centers over the
idea that of mixing the first two chapter proposals. Algorithms like XGBoost and neu-
ral networks are being increasingly successful in insurance applications. Nonetheless,
the interpretability of these methods is an issue that actuaries need to face. Black–box
methods leave less control to the developers.

In terms of interpretation, GLM methods can help to deal with this issue. On the
other hand, GLMs are parametric models that impose certain assumptions on the data.
Insurance data often fulfill these assumptions, but still GLMs show less predictive accu-
racy, as compared to the above mentioned methods.

Under these conditions a third model is proposed, constructed as a mixture of the
predictions from multiple trees. Each tree is built on a different subsample that vary
in terms of the percentage of minority data in them. These tree predictions separate
the data into bins, an information that is then used with a GLMNet model, improving
to a large extent predictions of claim counts. GLMNet is preferred over GLM so that
the model can be penalized and overfitting is controlled. The use of GLMNet performs
a regularization, as expected. All the models are evaluated on unseen/test data. The
results show that the insurance industry, that has to deal with problematic data, could
focus on building hybrid models combining multiple methods rather than relying on a
single algorithm.
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Appendix A

Toy Data Predictions Table

Age of Driver
Proportion
of Class 0

Proportion
of Class 1

Predicted
class by
CART

Prediction
by Bayes
Classifier

18 0 1 1 1
19 0.5 0.5 1 1
20 0.75 0.25 1 1
21 0.33 0.67 1 1
22 0.4 0.6 1 1
23 1 0 0 1
24 1 0 0 1
25 1 0 0 1
27 1 0 0 1
28 0.5 0.5 1 1
29 0.5 0.5 1 1
30 1 0 0 0
31 1 0 0 0
33 1 0 0 0
34 1 0 0 0
35 1 0 0 0
36 1 0 0 0
37 0.75 0.25 0 1
40 1 0 0 0
41 1 0 0 0
42 1 0 0 0
43 0.33 0.67 1 1
44 0.86 0.14 0 0
45 0.8 0.2 0 0 or 1
46 1 0 1 0
47 0.5 0.5 1 1
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Continuation of Table A.1

Age of Driver
Proportion
of Class 0

Proportion
of Class 1

Predicted
class with
minsplit =
5

Prediction
by Bayes
Classifier

50 1 0 0 0
51 0.75 0.25 0 1
52 1 0 0 0
53 1 0 0 0
54 1 0 0 0
55 1 0 0 0
56 1 0 0 0
57 1 0 0 0
58 1 0 0 0
60 1 0 0 0

61 0.5 0.5
Female as
1, Male as
0

1

62 0.67 0.33 0 1
63 1 0 1 0
64 1 0 0 0

65 0.5 0.5
Female
as 1 and
Male as 0

1

Table A.1: Proportion of classes at each age
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Appendix B

Summary of Different GLM Models

Call:
glm(formula = ClaimNb ~ VehPower + VehAge + DrivAge + BonusMalus +

VehBrand + VehGas + Area + Density + Region, family = poisson(),
data = learn, offset = log(Exposure))

Deviance Residuals:
Min 1Q Median 3Q Max

-2.0811 -0.3871 -0.2956 -0.1612 6.8068

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.967e+00 1.069e-01 -37.107 < 2e-16 ***
VehPower 1.425e-02 3.082e-03 4.625 3.75e-06 ***
VehAge -3.923e-02 1.306e-03 -30.041 < 2e-16 ***
DrivAge 6.505e-03 4.401e-04 14.782 < 2e-16 ***
BonusMalus 2.228e-02 3.425e-04 65.064 < 2e-16 ***
VehBrandB10 -2.759e-03 4.108e-02 -0.067 0.9465
VehBrandB11 6.832e-02 4.423e-02 1.544 0.1225
VehBrandB12 1.531e-01 1.949e-02 7.857 3.93e-15 ***
VehBrandB13 4.437e-03 4.625e-02 0.096 0.9236
VehBrandB14 -1.705e-01 8.862e-02 -1.925 0.0543 .
VehBrandB2 -2.315e-02 1.709e-02 -1.355 0.1755
VehBrandB3 -1.347e-02 2.449e-02 -0.550 0.5824
VehBrandB4 -2.723e-02 3.294e-02 -0.827 0.4084
VehBrandB5 6.482e-02 2.765e-02 2.344 0.0191 *
VehBrandB6 -6.580e-02 3.199e-02 -2.057 0.0397 *
VehGasRegular 5.549e-02 1.223e-02 4.537 5.71e-06 ***
AreaB 5.847e-02 2.440e-02 2.397 0.0165 *
AreaC 9.983e-02 2.023e-02 4.934 8.04e-07 ***
AreaD 1.990e-01 2.169e-02 9.172 < 2e-16 ***
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AreaE 2.326e-01 2.876e-02 8.088 6.07e-16 ***
AreaF 1.836e-01 1.006e-01 1.825 0.0680 .
Density 4.790e-07 4.154e-06 0.115 0.9082
RegionAquitaine -7.661e-02 1.005e-01 -0.762 0.4461
RegionAuvergne -2.336e-01 1.246e-01 -1.875 0.0608 .
RegionBasse-Normandie -6.316e-03 1.059e-01 -0.060 0.9524
RegionBourgogne 1.091e-02 1.078e-01 0.101 0.9194
RegionBretagne 9.818e-02 9.841e-02 0.998 0.3184
RegionCentre 7.422e-02 9.696e-02 0.765 0.4440
RegionChampagne-Ardenne 1.675e-01 1.297e-01 1.291 0.1967
RegionCorse 6.613e-02 1.206e-01 0.548 0.5835
RegionFranche-Comte -1.187e-01 1.760e-01 -0.675 0.5000
RegionHaute-Normandie -6.230e-02 1.154e-01 -0.540 0.5892
RegionIle-de-France -3.806e-03 9.826e-02 -0.039 0.9691
RegionLanguedoc-Roussillon -3.862e-02 1.002e-01 -0.385 0.7001
RegionLimousin 1.806e-01 1.192e-01 1.516 0.1296
RegionMidi-Pyrenees -1.124e-01 1.051e-01 -1.070 0.2847
RegionNord-Pas-de-Calais -1.450e-01 9.948e-02 -1.458 0.1449
RegionPays-de-la-Loire 2.324e-03 9.910e-02 0.023 0.9813
RegionPicardie 5.304e-02 1.101e-01 0.482 0.6299
RegionPoitou-Charentes -4.823e-02 1.026e-01 -0.470 0.6384
RegionProvence-Alpes-Cotes-D’Azur -4.154e-03 9.748e-02 -0.043 0.9660
RegionRhone-Alpes 8.530e-02 9.718e-02 0.878 0.3801
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 179154 on 542409 degrees of freedom
Residual deviance: 173424 on 542368 degrees of freedom
AIC: 228957

Number of Fisher Scoring iterations: 6

f or mul a = "C l ai mN b ∼V eh Ag e+BonusM al us+V ehBr and+Dr i v Ag e+V ehGas+
Reg i on +V ehPower +Densi t y + Ar ea +Bi n"

Call:
glm(formula = as.formula(formula), family = poisson(), data = learn,

offset = log(Exposure))

Deviance Residuals:
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Min 1Q Median 3Q Max
-1.5177 -0.3734 -0.2823 -0.1586 6.8368

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.472e+00 1.104e-01 -31.453 < 2e-16 ***
VehAge -2.415e-02 1.358e-03 -17.781 < 2e-16 ***
BonusMalus 7.928e-03 6.339e-04 12.508 < 2e-16 ***
VehBrandB10 -4.642e-02 4.110e-02 -1.129 0.2587
VehBrandB11 5.137e-02 4.420e-02 1.162 0.2451
VehBrandB12 -2.668e-01 2.287e-02 -11.665 < 2e-16 ***
VehBrandB13 -3.509e-03 4.624e-02 -0.076 0.9395
VehBrandB14 -1.714e-01 8.862e-02 -1.934 0.0532 .
VehBrandB2 -2.629e-02 1.709e-02 -1.539 0.1239
VehBrandB3 -9.918e-03 2.449e-02 -0.405 0.6855
VehBrandB4 -7.843e-03 3.296e-02 -0.238 0.8119
VehBrandB5 6.466e-02 2.765e-02 2.338 0.0194 *
VehBrandB6 -4.399e-02 3.200e-02 -1.375 0.1691
DrivAge 7.523e-03 4.505e-04 16.701 < 2e-16 ***
VehGasRegular -5.555e-02 1.299e-02 -4.278 1.89e-05 ***
RegionAquitaine -7.014e-02 1.006e-01 -0.697 0.4855
RegionAuvergne -2.334e-01 1.246e-01 -1.873 0.0610 .
RegionBasse-Normandie 3.629e-02 1.059e-01 0.343 0.7319
RegionBourgogne 4.463e-02 1.078e-01 0.414 0.6789
RegionBretagne 1.314e-01 9.843e-02 1.335 0.1819
RegionCentre 9.795e-02 9.699e-02 1.010 0.3125
RegionChampagne-Ardenne 1.667e-01 1.297e-01 1.285 0.1990
RegionCorse 9.069e-02 1.206e-01 0.752 0.4521
RegionFranche-Comte -7.411e-02 1.760e-01 -0.421 0.6737
RegionHaute-Normandie -3.876e-02 1.154e-01 -0.336 0.7369
RegionIle-de-France -1.305e-02 9.825e-02 -0.133 0.8943
RegionLanguedoc-Roussillon -3.106e-02 1.002e-01 -0.310 0.7567
RegionLimousin 2.047e-01 1.192e-01 1.718 0.0858 .
RegionMidi-Pyrenees -8.377e-02 1.051e-01 -0.797 0.4252
RegionNord-Pas-de-Calais -1.107e-01 9.949e-02 -1.112 0.2660
RegionPays-de-la-Loire 2.380e-02 9.912e-02 0.240 0.8102
RegionPicardie 7.210e-02 1.101e-01 0.655 0.5125
RegionPoitou-Charentes -3.842e-02 1.027e-01 -0.374 0.7082
RegionProvence-Alpes-Cotes-D’Azur 1.384e-03 9.749e-02 0.014 0.9887
RegionRhone-Alpes 1.093e-01 9.720e-02 1.125 0.2607
VehPower 2.001e-02 3.056e-03 6.546 5.92e-11 ***
Density -1.219e-06 4.148e-06 -0.294 0.7688
AreaB 6.207e-02 2.440e-02 2.544 0.0110 *
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AreaC 1.061e-01 2.023e-02 5.244 1.57e-07 ***
AreaD 2.025e-01 2.170e-02 9.333 < 2e-16 ***
AreaE 2.327e-01 2.874e-02 8.097 5.62e-16 ***
AreaF 2.032e-01 1.005e-01 2.021 0.0433 *
Bin1 1.220e+00 3.880e-02 31.434 < 2e-16 ***
Bin3 4.673e-01 2.044e-02 22.868 < 2e-16 ***
Bin4 3.106e-01 4.016e-02 7.734 1.04e-14 ***
Bin5 2.254e+00 2.829e-02 79.686 < 2e-16 ***
Bin6 1.153e+00 4.197e-02 27.469 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 179154 on 542409 degrees of freedom
Residual deviance: 167811 on 542363 degrees of freedom
AIC: 223354

Number of Fisher Scoring iterations: 6

f or mul a = "C l ai mN b ∼V eh Ag e+BonusM al us+V ehBr and+Dr i v Ag e+V ehGas+
Reg i on+V ehPower +Densi t y + Ar ea+Bi n+Bi n∗V eh Ag e +Bi n∗BonusM al us+
Bi n∗V ehBr and+Bi n∗Dr i v Ag e+Bi n∗V ehGas+Bi n∗Reg i on+Bi n∗V ehPower +
Bi n ∗Densi t y +Bi n ∗ Ar ea"

Call:
glm(formula = as.formula(formula), family = poisson(), data = learn,

offset = log(Exposure))

Deviance Residuals:
Min 1Q Median 3Q Max

-1.6037 -0.3696 -0.2807 -0.1582 6.8550

Coefficients: (26 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.712e+00 3.126e-01 -15.073 < 2e-16 ***
VehAge -2.898e-02 1.787e-03 -16.217 < 2e-16 ***
BonusMalus 3.153e-02 5.192e-03 6.073 1.25e-09 ***
VehBrandB10 -6.569e-02 5.328e-02 -1.233 0.217553
VehBrandB11 -3.321e-02 6.194e-02 -0.536 0.591839
VehBrandB12 -1.838e-01 3.000e-02 -6.127 8.98e-10 ***
VehBrandB13 -4.877e-02 6.231e-02 -0.783 0.433827
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VehBrandB14 -2.530e-01 1.191e-01 -2.125 0.033618 *
VehBrandB2 -2.448e-02 2.270e-02 -1.079 0.280762
VehBrandB3 -7.135e-02 3.558e-02 -2.005 0.044914 *
VehBrandB4 8.158e-03 4.617e-02 0.177 0.859757
VehBrandB5 6.472e-02 3.810e-02 1.698 0.089426 .
VehBrandB6 -9.289e-02 4.510e-02 -2.060 0.039419 *
DrivAge 7.114e-03 6.710e-04 10.602 < 2e-16 ***
VehGasRegular -4.837e-02 1.761e-02 -2.747 0.006019 **
RegionAquitaine -2.386e-02 1.528e-01 -0.156 0.875937
RegionAuvergne -9.504e-02 1.901e-01 -0.500 0.617218
RegionBasse-Normandie 1.392e-01 1.579e-01 0.882 0.377874
RegionBourgogne 8.627e-02 1.643e-01 0.525 0.599434
RegionBretagne 2.111e-01 1.488e-01 1.419 0.156036
RegionCentre 1.688e-01 1.473e-01 1.146 0.251764
RegionChampagne-Ardenne 9.269e-02 2.173e-01 0.427 0.669662
RegionCorse 2.997e-01 1.895e-01 1.581 0.113769
RegionFranche-Comte 4.995e-02 2.775e-01 0.180 0.857132
RegionHaute-Normandie 2.695e-02 1.740e-01 0.155 0.876900
RegionIle-de-France 9.769e-03 1.509e-01 0.065 0.948385
RegionLanguedoc-Roussillon 4.078e-02 1.528e-01 0.267 0.789555
RegionLimousin -1.280e-02 1.858e-01 -0.069 0.945079
RegionMidi-Pyrenees -1.177e-01 1.620e-01 -0.727 0.467428
RegionNord-Pas-de-Calais -1.275e-01 1.516e-01 -0.841 0.400228
RegionPays-de-la-Loire 2.322e-03 1.503e-01 0.015 0.987672
RegionPicardie 1.028e-01 1.736e-01 0.592 0.553626
RegionPoitou-Charentes -6.512e-02 1.555e-01 -0.419 0.675416
RegionProvence-Alpes-Cotes-D’Azur 7.104e-02 1.484e-01 0.479 0.632116
RegionRhone-Alpes 1.481e-01 1.479e-01 1.002 0.316437
VehPower 2.362e-02 4.518e-03 5.228 1.71e-07 ***
Density 4.478e-06 7.073e-06 0.633 0.526609
AreaB 3.565e-02 3.264e-02 1.092 0.274735
AreaC 1.290e-01 2.703e-02 4.772 1.82e-06 ***
AreaD 2.176e-01 3.044e-02 7.149 8.75e-13 ***
AreaE 2.883e-01 4.417e-02 6.527 6.73e-11 ***
AreaF 1.956e-01 1.736e-01 1.127 0.259674
Bin1 3.012e+00 5.966e-01 5.050 4.43e-07 ***
Bin3 8.250e-01 4.016e-01 2.054 0.039966 *
Bin4 3.122e-02 1.105e+00 0.028 0.977468
Bin5 5.996e+00 4.184e-01 14.332 < 2e-16 ***
Bin6 2.166e+00 4.571e-01 4.738 2.16e-06 ***
VehAge:Bin1 NA NA NA NA
VehAge:Bin3 7.574e-03 2.988e-03 2.535 0.011255 *
VehAge:Bin4 NA NA NA NA
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VehAge:Bin5 NA NA NA NA
VehAge:Bin6 2.118e-02 4.969e-03 4.262 2.03e-05 ***
BonusMalus:Bin1 -2.822e-02 5.801e-03 -4.864 1.15e-06 ***
BonusMalus:Bin3 -2.268e-02 5.288e-03 -4.289 1.80e-05 ***
BonusMalus:Bin4 -1.267e-02 5.932e-03 -2.136 0.032694 *
BonusMalus:Bin5 -3.460e-02 5.376e-03 -6.436 1.22e-10 ***
BonusMalus:Bin6 -1.817e-02 5.395e-03 -3.369 0.000755 ***
VehBrandB10:Bin1 NA NA NA NA
VehBrandB11:Bin1 NA NA NA NA
VehBrandB12:Bin1 NA NA NA NA
VehBrandB13:Bin1 NA NA NA NA
VehBrandB14:Bin1 NA NA NA NA
VehBrandB2:Bin1 NA NA NA NA
VehBrandB3:Bin1 NA NA NA NA
VehBrandB4:Bin1 NA NA NA NA
VehBrandB5:Bin1 NA NA NA NA
VehBrandB6:Bin1 NA NA NA NA
VehBrandB10:Bin3 -5.413e-02 9.309e-02 -0.581 0.560932
VehBrandB11:Bin3 1.225e-01 9.950e-02 1.231 0.218349
VehBrandB12:Bin3 -1.773e-01 5.048e-02 -3.512 0.000445 ***
VehBrandB13:Bin3 4.027e-02 1.020e-01 0.395 0.692897
VehBrandB14:Bin3 4.597e-02 1.977e-01 0.232 0.816154
VehBrandB2:Bin3 -1.334e-02 3.810e-02 -0.350 0.726334
VehBrandB3:Bin3 1.111e-01 5.390e-02 2.061 0.039302 *
VehBrandB4:Bin3 1.483e-02 7.134e-02 0.208 0.835293
VehBrandB5:Bin3 1.857e-02 6.038e-02 0.308 0.758372
VehBrandB6:Bin3 1.126e-01 6.997e-02 1.609 0.107572
VehBrandB10:Bin4 1.154e-01 2.063e-01 0.560 0.575771
VehBrandB11:Bin4 -9.401e-02 2.409e-01 -0.390 0.696353
VehBrandB12:Bin4 NA NA NA NA
VehBrandB13:Bin4 5.418e-01 2.452e-01 2.209 0.027142 *
VehBrandB14:Bin4 1.019e+00 3.670e-01 2.777 0.005488 **
VehBrandB2:Bin4 7.444e-02 1.047e-01 0.711 0.476978
VehBrandB3:Bin4 3.000e-01 1.289e-01 2.327 0.019943 *
VehBrandB4:Bin4 3.326e-01 1.653e-01 2.012 0.044229 *
VehBrandB5:Bin4 -2.068e-02 1.920e-01 -0.108 0.914214
VehBrandB6:Bin4 3.009e-01 1.824e-01 1.650 0.098933 .
VehBrandB10:Bin5 NA NA NA NA
VehBrandB11:Bin5 NA NA NA NA
VehBrandB12:Bin5 NA NA NA NA
VehBrandB13:Bin5 NA NA NA NA
VehBrandB14:Bin5 NA NA NA NA
VehBrandB2:Bin5 NA NA NA NA
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VehBrandB3:Bin5 NA NA NA NA
VehBrandB4:Bin5 NA NA NA NA
VehBrandB5:Bin5 NA NA NA NA
VehBrandB6:Bin5 NA NA NA NA
VehBrandB10:Bin6 1.621e-02 1.827e-01 0.089 0.929282
VehBrandB11:Bin6 2.170e-01 1.422e-01 1.526 0.127087
VehBrandB12:Bin6 -4.445e-01 9.155e-02 -4.855 1.20e-06 ***
VehBrandB13:Bin6 1.002e-01 1.776e-01 0.564 0.572560
VehBrandB14:Bin6 1.979e-01 3.759e-01 0.526 0.598650
VehBrandB2:Bin6 1.039e-02 6.099e-02 0.170 0.864777
VehBrandB3:Bin6 1.108e-01 8.252e-02 1.342 0.179484
VehBrandB4:Bin6 -3.137e-01 1.292e-01 -2.428 0.015168 *
VehBrandB5:Bin6 -3.547e-02 9.527e-02 -0.372 0.709642
VehBrandB6:Bin6 7.427e-02 1.099e-01 0.676 0.499011
DrivAge:Bin1 -1.883e-03 2.957e-03 -0.637 0.524249
DrivAge:Bin3 1.074e-02 1.039e-03 10.336 < 2e-16 ***
DrivAge:Bin4 -1.163e-03 2.987e-03 -0.389 0.696920
DrivAge:Bin5 -1.908e-02 1.776e-03 -10.746 < 2e-16 ***
DrivAge:Bin6 -1.282e-02 1.875e-03 -6.835 8.18e-12 ***
VehGasRegular:Bin1 NA NA NA NA
VehGasRegular:Bin3 -4.735e-02 2.870e-02 -1.650 0.098992 .
VehGasRegular:Bin4 -1.037e-01 8.291e-02 -1.250 0.211166
VehGasRegular:Bin5 NA NA NA NA
VehGasRegular:Bin6 8.310e-02 4.738e-02 1.754 0.079454 .
RegionAquitaine:Bin1 -4.367e-01 4.569e-01 -0.956 0.339121
RegionAuvergne:Bin1 -1.217e+00 5.616e-01 -2.167 0.030261 *
RegionBasse-Normandie:Bin1 -5.688e-01 5.408e-01 -1.052 0.292882
RegionBourgogne:Bin1 -5.754e-01 4.981e-01 -1.155 0.247998
RegionBretagne:Bin1 -1.060e+00 5.222e-01 -2.030 0.042345 *
RegionCentre:Bin1 -1.349e+00 5.112e-01 -2.639 0.008310 **
RegionChampagne-Ardenne:Bin1 -5.529e-01 5.316e-01 -1.040 0.298332
RegionCorse:Bin1 -1.339e+00 5.515e-01 -2.429 0.015160 *
RegionFranche-Comte:Bin1 5.277e-01 6.227e-01 0.848 0.396692
RegionHaute-Normandie:Bin1 -1.033e+00 6.039e-01 -1.710 0.087282 .
RegionIle-de-France:Bin1 -5.673e-01 4.455e-01 -1.273 0.202852
RegionLanguedoc-Roussillon:Bin1 -2.238e-01 4.477e-01 -0.500 0.617165
RegionLimousin:Bin1 9.184e-02 5.159e-01 0.178 0.858709
RegionMidi-Pyrenees:Bin1 -6.662e-01 4.729e-01 -1.409 0.158899
RegionNord-Pas-de-Calais:Bin1 -4.647e-01 4.540e-01 -1.024 0.305997
RegionPays-de-la-Loire:Bin1 1.484e-01 4.592e-01 0.323 0.746530
RegionPicardie:Bin1 -4.173e-01 4.875e-01 -0.856 0.391967
RegionPoitou-Charentes:Bin1 1.093e-01 4.818e-01 0.227 0.820597
RegionProvence-Alpes-Cotes-D’Azur:Bin1 -5.952e-01 4.434e-01 -1.342 0.179494
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RegionRhone-Alpes:Bin1 -5.943e-01 4.465e-01 -1.331 0.183121
RegionAquitaine:Bin3 2.912e-01 2.815e-01 1.035 0.300832
RegionAuvergne:Bin3 3.078e-01 3.351e-01 0.918 0.358379
RegionBasse-Normandie:Bin3 1.256e-01 2.915e-01 0.431 0.666504
RegionBourgogne:Bin3 3.055e-01 2.964e-01 1.030 0.302812
RegionBretagne:Bin3 2.281e-01 2.769e-01 0.824 0.410042
RegionCentre:Bin3 2.102e-01 2.741e-01 0.767 0.443212
RegionChampagne-Ardenne:Bin3 5.152e-01 3.576e-01 1.441 0.149639
RegionCorse:Bin3 -4.898e-02 3.350e-01 -0.146 0.883770
RegionFranche-Comte:Bin3 3.684e-02 4.618e-01 0.080 0.936425
RegionHaute-Normandie:Bin3 3.242e-01 3.090e-01 1.049 0.294106
RegionIle-de-France:Bin3 3.313e-01 2.776e-01 1.194 0.232664
RegionLanguedoc-Roussillon:Bin3 1.761e-02 2.823e-01 0.062 0.950260
RegionLimousin:Bin3 7.118e-01 3.202e-01 2.223 0.026196 *
RegionMidi-Pyrenees:Bin3 2.850e-01 2.936e-01 0.971 0.331722
RegionNord-Pas-de-Calais:Bin3 4.384e-01 2.793e-01 1.570 0.116476
RegionPays-de-la-Loire:Bin3 3.526e-01 2.782e-01 1.267 0.205043
RegionPicardie:Bin3 3.440e-01 3.019e-01 1.140 0.254396
RegionPoitou-Charentes:Bin3 3.621e-01 2.849e-01 1.271 0.203678
RegionProvence-Alpes-Cotes-D’Azur:Bin3 1.875e-01 2.755e-01 0.680 0.496223
RegionRhone-Alpes:Bin3 2.350e-01 2.746e-01 0.856 0.392094
RegionAquitaine:Bin4 4.727e-01 1.040e+00 0.455 0.649344
RegionAuvergne:Bin4 9.750e-01 1.135e+00 0.859 0.390409
RegionBasse-Normandie:Bin4 1.151e+00 1.038e+00 1.108 0.267658
RegionBourgogne:Bin4 6.431e-01 1.068e+00 0.602 0.547194
RegionBretagne:Bin4 8.690e-01 1.021e+00 0.851 0.394679
RegionCentre:Bin4 1.063e+00 1.015e+00 1.047 0.294982
RegionChampagne-Ardenne:Bin4 2.673e+00 1.066e+00 2.508 0.012136 *
RegionCorse:Bin4 1.377e+00 1.173e+00 1.174 0.240259
RegionFranche-Comte:Bin4 1.152e+00 1.443e+00 0.798 0.424684
RegionHaute-Normandie:Bin4 8.069e-01 1.076e+00 0.750 0.453272
RegionIle-de-France:Bin4 1.115e+00 1.023e+00 1.090 0.275711
RegionLanguedoc-Roussillon:Bin4 5.292e-01 1.031e+00 0.513 0.607766
RegionLimousin:Bin4 9.234e-01 1.241e+00 0.744 0.456858
RegionMidi-Pyrenees:Bin4 3.306e-01 1.074e+00 0.308 0.758126
RegionNord-Pas-de-Calais:Bin4 7.911e-01 1.029e+00 0.769 0.442041
RegionPays-de-la-Loire:Bin4 9.252e-01 1.028e+00 0.900 0.368201
RegionPicardie:Bin4 8.656e-01 1.076e+00 0.804 0.421239
RegionPoitou-Charentes:Bin4 7.251e-01 1.048e+00 0.692 0.489043
RegionProvence-Alpes-Cotes-D’Azur:Bin4 6.523e-01 1.017e+00 0.641 0.521315
RegionRhone-Alpes:Bin4 8.170e-01 1.017e+00 0.803 0.421701
RegionAquitaine:Bin5 -3.232e-01 2.808e-01 -1.151 0.249829
RegionAuvergne:Bin5 -6.794e-01 3.572e-01 -1.902 0.057198 .

86



RegionBasse-Normandie:Bin5 -1.243e+00 4.051e-01 -3.070 0.002144 **
RegionBourgogne:Bin5 -3.457e-01 3.089e-01 -1.119 0.263102
RegionBretagne:Bin5 -5.633e-01 3.061e-01 -1.840 0.065746 .
RegionCentre:Bin5 -1.112e+00 3.341e-01 -3.328 0.000875 ***
RegionChampagne-Ardenne:Bin5 -3.445e-01 3.659e-01 -0.942 0.346430
RegionCorse:Bin5 -4.650e-01 3.202e-01 -1.452 0.146395
RegionFranche-Comte:Bin5 -1.037e+00 6.126e-01 -1.693 0.090495 .
RegionHaute-Normandie:Bin5 -2.359e-01 3.461e-01 -0.682 0.495430
RegionIle-de-France:Bin5 -1.837e-01 2.698e-01 -0.681 0.495953
RegionLanguedoc-Roussillon:Bin5 -4.134e-02 2.751e-01 -0.150 0.880563
RegionLimousin:Bin5 9.574e-02 3.442e-01 0.278 0.780912
RegionMidi-Pyrenees:Bin5 1.680e-01 2.851e-01 0.589 0.555597
RegionNord-Pas-de-Calais:Bin5 -1.120e-01 2.770e-01 -0.405 0.685842
RegionPays-de-la-Loire:Bin5 -1.064e-01 2.856e-01 -0.372 0.709605
RegionPicardie:Bin5 -3.841e-01 3.181e-01 -1.207 0.227308
RegionPoitou-Charentes:Bin5 -3.802e-01 3.234e-01 -1.175 0.239836
RegionProvence-Alpes-Cotes-D’Azur:Bin5 -1.742e-01 2.683e-01 -0.649 0.516087
RegionRhone-Alpes:Bin5 -3.229e-01 2.706e-01 -1.193 0.232889
RegionAquitaine:Bin6 -4.621e-01 3.236e-01 -1.428 0.153218
RegionAuvergne:Bin6 -9.638e-02 4.337e-01 -0.222 0.824126
RegionBasse-Normandie:Bin6 -3.520e-01 3.446e-01 -1.022 0.307014
[ reached getOption("max.print") -- omitted 52 rows ]
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 179154 on 542409 degrees of freedom
Residual deviance: 166649 on 542184 degrees of freedom
AIC: 222550

Number of Fisher Scoring iterations: 6
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