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Abstract

Detection of Counterfeit Coins Using Multimodal GPT-4 and Vision
Transformer

Dina Omidvar Tehrani

The proliferation of counterfeit coins poses a substantial threat to the integrity of monetary

systems and the stability of financial markets. Advanced counterfeiting techniques allow

these fraudulent coins to closely mimic genuine ones, complicating the detection process

and necessitating robust methods capable of discerning minute differences between gen-

uine and fake coins. This thesis addresses the problem of counterfeit coin detection by

introducing a diverse dataset comprising high-resolution images of both Danish and Chi-

nese coins, categorized into genuine and counterfeit sets across multiple years.

To tackle the detection task, we employ two advanced approaches: a Vision Transformer

(ViT) model and a multimodal GPT-4 model. The ViT model leverages its self-attention

mechanisms to capture intricate patterns and details within the coin images, while the GPT-

4 model integrates both visual and textual data, utilizing various prompting techniques to

enhance its performance. Our results show that the ViT model outperforms previous meth-

ods and the state-of-the-art in terms of accuracy and robustness, achieving a remarkable

99.31% accuracy. The GPT-4 model, although primarily designed for natural language

processing, demonstrates promising capabilities in counterfeit detection, particularly with

advanced prompting strategies like Chain-of-Thought and Generated Knowledge.

This research advances the current state-of-the-art in counterfeit coin detection and high-

lights the potential of few-shot learning and transfer learning in achieving high accuracy

with limited training data.
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Chapter 1

Introduction

1.1 Motivation

The detection of counterfeit coins is a critical issue for maintaining the integrity of mon-

etary systems and ensuring the stability of financial markets. The proliferation of coun-

terfeit currency, including coins, can lead to significant economic disruptions. It devalues

genuine currency, contributes to inflation, and can potentially destabilize entire economic

systems. On the other hand, as counterfeiters increasingly leverage advanced technology,

the production of fake coins has become more sophisticated, posing significant challenges

for detection. These challenges demand more advanced and robust methods to distinguish

genuine coins from counterfeits.

Figure 1: Comparison of a genuine Canadian two-dollar coin (left) with a counterfeit version (right) [1],
highlighting the subtle differences that can make detection challenging without advanced methods.
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Historically, counterfeit coins have been a persistent problem. However, recent technolog-

ical advancements have significantly exacerbated the issue. Criminal organizations now

have access to high-tech equipment and materials that enable them to produce counterfeit

coins with an alarming degree of accuracy. A recent operation in Quebec and Ontario

[1], for example, uncovered thousands of fake toonies (Fig. 1), underscoring the ongoing

urgency of this issue. Canadian authorities have reported that advances in counterfeiting

methods are making it increasingly easier for criminals to produce high-quality fakes. This

national threat underscores the necessity for continuous improvement in detection tech-

nologies to keep pace with the evolving methods of counterfeiters. Given these challenges,

developing effective counterfeit coin detection methods is of paramount importance. This

thesis aims to contribute to this field by introducing advanced detection techniques using

Vision Transformer (ViT) models [14, 15] and multimodal approaches with GPT-4 [4]. By

leveraging high-resolution datasets and state-of-the-art machine learning algorithms, this

research seeks to enhance the accuracy and robustness of counterfeit coin detection, thereby

supporting the broader goal of securing financial systems against the threat of counterfeit-

ing.

1.2 Objectives

The primary objective of this research is to develop and validate robust methodologies

for detecting counterfeit coins by using advanced machine learning models that achieve

high accuracy with minimal data. This goal addresses the critical issue of data scarcity

[7], a common challenge in counterfeit detection, where obtaining large, diverse datasets

can be difficult. Traditional approaches often require extensive datasets to train machine

learning models effectively. However, in many real-world scenarios, such comprehensive

datasets are not available, highlighting the need for models that can perform well even

with limited training data. To bridge this gap, this research explores few-shot learning
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techniques [12, 16, 19], enabling models to generalize from a small number of examples.

In parallel, this research also aims to develop and evaluate a representative dataset com-

prising high-resolution images of both genuine and counterfeit coins. Ensuring that this

dataset is balanced between the two categories is crucial for fairness and representativeness

in the training process. High-quality images are essential for allowing the models to ex-

tract intricate details and critical information necessary for distinguishing between genuine

and counterfeit coins. To achieve these objectives, two approaches are investigated: a Vi-

sion Transformer model, known for its ability to capture intricate patterns and contextual

information through self-attention mechanisms, and a multimodal GPT-4 model, which

integrates visual and textual data along with various prompting techniques to enhance per-

formance.

Through rigorous experimentation and comparative analysis, this research aims to assess

the effectiveness of these models in detecting counterfeit coins, highlighting their advan-

tages over traditional methods. We want to contribute to the field by providing innovative

solutions that improve counterfeit coin detection, ensuring the security and reliability of fi-

nancial systems, even in the face of limited data availability. By addressing the challenges

of data scarcity and leveraging state-of-the-art machine learning techniques, this research

aspires to set new benchmarks in counterfeit coin detection, offering practical and scalable

solutions for real-world applications.

1.3 Challenges

As mentioned earlier, counterfeit coin detection is essential for maintaining the integrity of

monetary systems and ensuring the stability of financial markets. However, the detection

process is fraught with several challenges that complicate the identification of counterfeit

coins. These challenges arise from the physical characteristics of coins, the variability in

their design, and the practical difficulties in acquiring a comprehensive dataset for training

3



detection models. Addressing these challenges is crucial for developing robust and reliable

counterfeit detection methods. Below are some of the key challenges encountered in this

research:

1. Durability and Degradation: Despite being made of durable alloys, coins are sus-

ceptible to corrosion and rust over time, particularly ancient ones. This degradation

can significantly alter the physical appearance of coins, impacting features such as

edges and inscriptions. Such alterations make it challenging to analyze their images

accurately. Although this research does not primarily focus on edge-based features,

the presence of damaged coins remains a significant challenge. The advanced pattern

recognition capabilities of the Vision Transformer model help mitigate some of these

issues, but variability due to coin degradation persists as a hurdle.

2. Diversity in Coin Design: A robust detection method must recognize a wide variety

of coin types, which differ in size, design, characters, and the language of inscrip-

tions. This diversity adds complexity to the detection process, as the models must

generalize well across different coin types. The proposed methods employed in this

research are designed to handle such variability, leveraging their advanced architec-

tures to adapt to the diverse features and characteristics present in coins from various

origins.

3. Illumination Variation: Shiny coins can exhibit significant glare and reflection,

distorting the features captured in images. Consistent lighting conditions during

the scanning process are crucial to minimize these effects. In this research, high-

resolution imaging and controlled illumination conditions are used to enhance the

quality and consistency of the dataset, thereby improving the accuracy of the detec-

tion models.
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4. Data Scarcity: Access to counterfeit coins and their images is restricted due to secu-

rity concerns, making it difficult to obtain a sufficiently large and diverse dataset for

training machine learning models. This scarcity is a significant challenge in coun-

terfeit coin detection research. To address this issue, the research employs few-shot

learning techniques, enabling models to generalize from a limited number of exam-

ples. By maximizing detection accuracy with minimal data, this approach addresses

one of the most critical challenges in this field.

1.4 Contributions

This research makes several significant contributions to the field of counterfeit coin detec-

tion, employing advanced machine learning techniques to overcome challenges related to

data scarcity, coin diversity, and imaging inconsistencies. The key contributions of this

thesis are outlined below:

1. Development of a Dataset of Danish and Chinese Coins: A major contribution

of this research is the creation of a high-resolution image dataset comprising both

genuine and counterfeit Danish and Chinese coins. This dataset includes coins from

various years, ensuring a balanced representation of genuine and counterfeit speci-

mens. The images were captured using a Keyence 3D scanner [5], which provides

detailed surface data with a resolution of 0.1 µm. The scanner’s rotational capabil-

ity allows for comprehensive imaging of each coin, capturing intricate details that

are crucial for accurate counterfeit detection. The high quality of the images allows

the models to extract critical features, enhancing the reliability of the detection pro-

cess. This dataset serves as a valuable resource for training and evaluating machine

learning models in the context of counterfeit coin detection.

2. Application of Vision Transformer (ViT) Models: This research implements and
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fine-tunes Vision Transformer models for the task of counterfeit coin detection. ViT

models are known for their ability to capture intricate patterns and contextual infor-

mation through self-attention mechanisms. The fine-tuned ViT model in this research

achieved a remarkable accuracy of 99.31%, significantly outperforming traditional

methods and existing state-of-the-art techniques. This demonstrates the effective-

ness of ViT models in handling the complexities of counterfeit coin detection.

3. Exploration of Multimodal GPT-4 Model: This thesis explores the capabilities of

the multimodal GPT-4 model in the domain of counterfeit coin detection. By inte-

grating visual and textual data and employing various prompting techniques [6], such

as Zero-Shot [36], Few-Shot [16], Chain-of-Thought [34, 35], and Generated Knowl-

edge prompting [33], the research evaluates the performance of GPT-4 in discerning

genuine coins from counterfeit ones. The findings highlight the potential of multi-

modal approaches in enhancing counterfeit detection accuracy, despite the model’s

primary design for natural language processing tasks.

4. Utilization of Few-Shot Learning Techniques: Addressing the challenge of data

scarcity, this research leverages few-shot learning techniques to enable models to

generalize from a small number of training examples. This approach is particularly

important in counterfeit coin detection, where access to extensive datasets is often

limited due to security concerns. By employing few-shot learning, the models in this

research achieve high accuracy even with minimal data, demonstrating the viability

of this approach in practical applications.

5. Comparative Analysis and Validation: This research conducts a rigorous compar-

ative analysis of the proposed methods against existing state-of-the-art techniques.

The analysis investigates the capabilities of the Vision Transformer and GPT-4 mod-

els, showcasing their performance in terms of precision, recall, and F-measure across
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various coin types and years. This comparative validation highlights the significant

contributions of this research to the field of counterfeit coin detection.

1.5 Outline

The remainder of this thesis is organized as follows:

In Chapter 2, a comprehensive literature review is provided, discussing related research and

existing studies on counterfeit coin detection, with a specific focus on few-shot learning,

transfer learning, and state-of-the-art models, including GPT-4 and Vision Transformers

(ViT). The chapter introduces the architecture, capabilities, and functionality of these mod-

els, setting the foundation for the methodologies used in this research. Chapter 3 delves into

the dataset preparation necessary for this research, detailing the creation and preparation of

the dataset utilized for counterfeit coin detection.

The methodologies we utilized and the proposed methods are discussed in detail in Chapter

4 and Chapter 5, followed by results and discussions that showcase the effectiveness of the

models. Chapter 4, focuses on the multimodal coin authentication methodology using GPT-

4, applying various prompting techniques for coin authentication, and discussing the results

achieved. Chapter 5 presents the Vision Transformer-based coin authentication framework.

This chapter details the implementation of the Vision Transformer for coin classification

and its performance in counterfeit coin detection.

Finally, in Chapter 6, the study concludes with a summary of the primary contributions of

this work and outlines potential future research directions.
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Chapter 2

Literature Review

2.1 Introduction

Coins have been an essential medium of exchange for goods and services for centuries,

playing a crucial role in economic transactions. Despite the rise of digital payment meth-

ods and credit cards, coins remain integral to everyday life. They are widely accepted

in various settings, including retail stores, gas stations, and public transportation systems.

The ubiquitous use of coins underscores their continued importance in modern economies.

However, the prevalence of counterfeit coins poses a significant threat to the integrity of

monetary systems. Counterfeit coins can have a detrimental impact on the economy by

undermining public trust in the currency and causing financial losses. The challenge of

detecting counterfeit coins has become increasingly complex with advancements in coun-

terfeiting techniques.

Recent statistics indicate a troubling rise in the circulation of counterfeit coins. According

to the Deutsche Bundesbank [8], around 115,900 counterfeit euro coins were detected in

German payment transactions in 2023, a significant increase from the 73,400 detected in
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2022. This increase highlights ongoing issues with counterfeit currency in Europe, par-

ticularly with 2-euro coins being frequently targeted by counterfeiters. Additionally, more

than 56,600 counterfeit euro banknotes were identified, demonstrating a broader issue with

counterfeit currency across different denominations. Given the critical nature of this issue,

governments and financial institutions worldwide have taken significant measures to pre-

vent the production and distribution of counterfeit coins. These efforts include the adop-

tion of advanced technologies for coin production and the support of research initiatives

aimed at developing more effective detection methods. For instance, the introduction of

sophisticated coin designs and the use of innovative materials and minting techniques are

part of the strategy to combat counterfeiting. The detection of counterfeit coins is also of

paramount importance for museums and collectors, especially concerning ancient coins,

which can have significant historical and monetary value. Museum curators and collectors

are increasingly urged to use advanced technologies to authenticate coins and ensure the

integrity of their collections. The high stakes involved in the trade of ancient coins ne-

cessitate meticulous verification processes to prevent the acquisition of counterfeit items.

In summary, the detection of counterfeit coins remains a pressing issue with substantial

economic implications. The ongoing advancements in counterfeiting techniques demand

equally sophisticated detection methods. This research aims to contribute to the field by ex-

ploring innovative machine learning approaches to enhance the accuracy and reliability of

counterfeit coin detection, thereby supporting the broader goal of maintaining the integrity

of monetary systems.

2.2 Related Works

Counterfeit coins are typically crafted to closely mimic genuine coins, with the intent to

deceive. In recent years, numerous studies have focused on identifying counterfeit coins

through various detection methods.
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Traditionally, research has concentrated on the electromagnetic, frequency, and physical

characteristics of coins—techniques commonly employed by vending machines, game ma-

chines, and parking meters to authenticate coins. These systems typically operate via

electromagnetic mechanisms and authenticate coins using techniques such as X-ray flu-

orescence. For instance, a patented method proposed in [9] uses an oscillation coil to

pass a signal through a coin. The coin’s characteristics, when analyzed in discrimination

mode, determine if they fall within a predefined reference range of minimum and max-

imum values, thereby automating the process of separating genuine coins from counter-

feit ones. As technology has progressed, researchers have increasingly turned to image-

based and machine learning-based methods to enhance counterfeit coin detection. These

modern approaches offer capabilities beyond traditional electromagnetic techniques, en-

abling more sophisticated analyses. Consequently, counterfeit coin detection methods can

now be broadly categorized into two main approaches: image-based methods and machine

learning-based methods.

Image-Based Methods:

Image-based methods focus on analyzing the visual characteristics of coins, such as their

shape, the position of letters and numbers, and other intricate details.

One example of image-based approach is presented in [22], where the researchers propose

a method to detect fake coins based on the characteristics of coin images. This approach

involves computing the dissimilarity between coin images using local key points identified

by the Difference of Gaussians (DOG) detector and described by the Scale-Invariant Fea-

ture Transform (SIFT) descriptor. Each comparison between a test image and a predefined

image is stored as a vector in dissimilarity space, and a Support Vector Machine (SVM)

is then used to classify the coins into genuine or counterfeit categories. Another study,
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detailed in [20], describes a method to detect counterfeit two-euro coins using images dig-

itized by an optical mouse sensor. However, this method faces challenges related to coin

rotation and vulnerability to distortions. Also, research in [21] focuses on detecting coun-

terfeit Danish coins based on their image characteristics, specifically by analyzing edge

features such as width, thickness, and edge counts. However, it relies heavily on a large

dataset, which necessitates data augmentation to achieve optimal results.

Sharifi Rad et al. [24] developed a blob detector image-based method for automatically

detecting counterfeit coins using fuzzy association rules mining. This method involves

preprocessing coin images with a blob detector to extract all relevant features, followed by

extracting effective fuzzy rules via fuzzy association rules mining and classifying the coin

image data. Despite its sensitivity, the system struggles with degraded coins, often classi-

fying them randomly. In [26], the authors utilize a 3D scanner to extract height and depth

information from coin images to differentiate between genuine and counterfeit coins. They

convert circular coin images to linear rectangular images using straightening algorithms

and process the images to address the issue of shiny surfaces. Another study [25] em-

ploys a three-dimensional image-based approach to examine the precipice-borders of coin

surfaces and trains an ensemble classification system to extract critical features from the

images. While 3D scanning offers resistance to low-quality coins, the lengthy processing

time remains a significant drawback.

Machine Learning-Based Methods:

One of the initial applications of deep learning techniques to the problem of counterfeit

coin detection involved adapting a pre-trained neural network through transfer learning to

assess the features on coins. Hmood and Suen [28] applied an ensemble technique that

combined outcomes from three classifiers, providing a more robust and reliable detection

system.
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Furthermore, the innovative counterfeit detection methodology proposed by Bavandsavad-

kouhi et al. [27] employs an autoencoder-based technique that is notable for its training

exclusively on genuine coins, thus avoiding the need for counterfeit samples. This method

leverages anomaly detection, where a trained autoencoder assesses reconstruction errors to

identify counterfeit coins. Moreover, in another research, Sharifi Rad et al. [23] developed

a novel counterfeit coin detection approach using a Pruned Fuzzy Associative (PrFA) clas-

sifier that incorporates fuzzy logic and associative classification. This method optimizes

rule selection for efficiency and accuracy, enhancing the detection process with a focus on

interpretability and robustness against variable coin features.

However, a primary drawback of these methods is their reliance on large datasets and data

augmentation techniques [10, 11]. In real-world scenarios, obtaining such extensive and

diverse datasets can be challenging, as access to counterfeit coins and their images is often

restricted due to security concerns. This limitation underscores the importance of develop-

ing methods that can achieve high accuracy with limited data, which is the primary focus

of this thesis.

2.3 Few-Shot Learning

As discussed before, one of the persistent challenges in counterfeit coin detection is the

scarcity of data. Most techniques discussed in the literature heavily rely on large datasets

to train models effectively [23, 25, 26, 27, 28]. This dependence on extensive datasets is

particularly problematic in this field, as acquiring counterfeit coins and their images is often

difficult due to security concerns and the rarity of counterfeit specimens. Additionally,

many existing methods resort to data augmentation to artificially expand datasets, which

can introduce biases and fail to capture the true variability of real-world data.

Few-shot learning (FSL) [12, 13] is a machine learning approach designed to address the

problem of limited data. Unlike traditional methods that require large amounts of labeled
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data, FSL aims to train models to perform tasks with only a few examples. This approach

is particularly useful in scenarios where data is scarce or expensive to obtain. Few-shot

learning models typically employ techniques such as meta-learning, where the model is

trained on a variety of tasks to learn a generalizable representation that can quickly adapt

to new tasks with minimal data. Another common approach is to use pre-trained models on

large datasets and fine-tune them on the small dataset available for the specific task. This

allows the model to leverage the knowledge acquired from the large dataset while being

tailored to the nuances of the specific application. FSL alleviates the challenges posed by

traditional supervised learning methods in several key ways:

• Reduction in Data Requirements: FSL eliminates the need for large volumes of

labeled data, which are often costly and difficult to obtain, particularly in niche fields

like counterfeit coin detection.

• Computational Efficiency: By extending a pre-trained model to new categories

without the need to re-train from scratch, FSL saves significant computational re-

sources.

• Adaptability to Rare Categories: FSL models can effectively learn about rare or

newly identified categories with exposure to only limited prior information, making

it ideal for detecting rare counterfeit coin types.

• Handling Domain Shifts: Even if the model has been pre-trained on a statistically

different distribution of data, FSL can adapt to new domains as long as the support

and query sets are coherent.

In the context of counterfeit coin detection, few-shot learning can be instrumental. Tra-

ditional image-based and machine learning-based methods have shown promising results

but are hampered by their reliance on large, augmented datasets. By employing few-shot
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learning, it becomes feasible to develop robust models that perform well even with lim-

ited genuine and counterfeit coin images. Our research is pioneering in applying few-shot

learning to the task of counterfeit coin detection using real datasets, without relying on

data augmentation. This approach not only mitigates the data scarcity issue but also en-

hances the model’s ability to generalize from limited examples, making it more practical

and applicable in real-world scenarios. By leveraging advanced techniques such as Vision

Transformers and the multimodal capabilities of GPT-4, our models can effectively learn

and adapt to the subtle differences between genuine and counterfeit coins with minimal

data.

In summary, few-shot learning represents a significant advancement in addressing the chal-

lenges posed by data scarcity in counterfeit coin detection. Our work contributes to the

field by demonstrating the effectiveness of this approach, setting a new benchmark for fu-

ture research and applications in detecting counterfeit coins with limited data.

2.4 Transfer Learning

Transfer learning [37, 38] is a powerful technique in machine learning that leverages knowl-

edge gained from one task to enhance the performance of a model on a related, but differ-

ent, task. This method is particularly advantageous in scenarios where data is scarce, as

it allows models to benefit from pre-existing data and learned features, thereby reducing

the need for extensive new data collection and training. The process of transfer learning

generally involves the following steps:

1. Selection of a Pre-Trained Model: A model that has already been trained on a large

dataset for a specific task is chosen as the starting point. This pre-trained model,

often trained on datasets such as ImageNet, has learned to recognize a wide array of

features relevant to many tasks.
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2. Freezing the Base Layers: The initial layers of the pre-trained model, which capture

general features, are often frozen. This means their weights are not updated during

subsequent training, preserving the learned information.

3. Adding New Layers: New layers are added on top of the pre-trained model. These

layers are trainable and can adapt to the specific features of the new task.

4. Fine-Tuning: The model is fine-tuned using the dataset for the new task. Fine-tuning

adjusts the weights of the newly added layers and, optionally, some of the base layers

to improve the model’s performance on the target task.

Figure 2: Transfer Learning process [2]

Transfer learning offers several advantages:

1. Efficiency: It significantly speeds up the training process because the model starts

with pre-learned features, reducing the amount of time and computational resources

needed.

2. Performance: Models often achieve better performance on the new task because

they can leverage previously acquired knowledge, which helps in learning the new

task more effectively.
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(a) (b)

Figure 3: Comparison of Traditional Learning and Transfer Learning [3]: In traditional learning (a), separate
models are trained independently for each task, requiring large datasets for each new task. In transfer learning
(b), a pre-trained model on Task 1 is reused and fine-tuned with new data for Task 2, leveraging existing
knowledge to improve performance and efficiency with limited data.

3. Data Utilization: It is particularly useful when there is a limited amount of labeled

data for the new task. The pre-trained model’s knowledge helps mitigate overfitting

issues that commonly arise with small datasets.

Transfer learning is widely used in various domains, including computer vision, where

pre-trained models like VGG, ResNet, and Inception are commonly used for tasks such

as image classification, object detection, and segmentation. In natural language processing

(NLP), models such as BERT, GPT, and word2vec, pre-trained on vast corpora [17, 18], are

fine-tuned for specific NLP tasks like sentiment analysis, translation, and text classification.

As mentioned earlier, transfer learning is one of the key techniques in few-shot learning.

As a result, in the context of counterfeit coin detection, transfer learning is particularly

relevant because it helps mitigate the data scarcity problem. Our research applies transfer

learning to develop robust Vision Transformers for counterfeit coin detection. By lever-

aging pre-trained ViTs, we can fine-tune the models to recognize the subtle differences

between genuine and counterfeit coins. This approach not only enhances the detection

accuracy but also reduces the dependency on extensive new datasets.
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2.5 Introduction to GPT-4 Multimodal Model

GPT-4 is the fourth iteration of the Generative Pre-trained Transformer (GPT) series de-

veloped by OpenAI. Unlike its predecessors, GPT-4 is a multimodal model, which means

it can process and integrate both visual and textual data. This capability allows GPT-4 to

perform tasks that require a combination of language understanding and visual perception,

making it particularly powerful for a wide range of applications, including coin authentica-

tion.

2.5.1 Architecture of GPT-4 Multimodal

GPT-4 is built upon the Transformer architecture, which is a neural network design orig-

inally introduced in the paper "Attention is All You Need" by Vaswani et al [39]. The

Transformer architecture is designed to handle sequential data and is highly effective at

capturing dependencies between different elements in a sequence, making it well-suited

for tasks involving natural language. The key innovation in GPT-4 is its multimodal ca-

pability. Traditional language models like GPT-3 are solely text-based, meaning they can

only process and generate text. GPT-4, on the other hand, can take in both images and

text as input and generate outputs that can also include text or other forms of data. This

is achieved by integrating visual encoders into the Transformer architecture, allowing the

model to process images alongside text. The GPT-4 architecture is generally composed of:

Visual Encoder:

The visual component of GPT-4 uses a vision encoder, which is typically a convolutional

neural network (CNN) like ResNet or Vision Transformers. The encoder processes input

images, extracting features that are then converted into a form that can be integrated with

the text data in the Transformer layers. These features might include patterns, textures, and

other visual characteristics that are important for understanding the image content.
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Textual Encoder:

The textual data is processed through the standard Transformer layers, where the model

uses self-attention mechanisms to capture the relationships between different words or to-

kens in the input text. This part of the model functions similarly to GPT-3, where it excels

at tasks involving natural language understanding and generation. However, in GPT-4,

these layers now interact more dynamically with the visual data, enabling richer contextual

comprehension.

Integration Mechanism:

The strength of GPT-4 lies in its ability to seamlessly integrate visual and textual data into

a coherent representation. The model employs attention mechanisms that align features

extracted from images with corresponding textual data, enabling it to perform complex

tasks that require both types of input. In the context of coin authentication, for example,

the model can analyze an image of a coin while simultaneously considering accompanying

descriptive text to determine whether the coin is genuine or counterfeit. This ability to

cross-reference and draw insights from multiple data streams sets GPT-4 apart from previ-

ous models.

2.5.2 Capabilities of GPT-4 Multimodal Model

The GPT-4 multimodal model represents a significant advancement in AI [40, 41], primar-

ily due to its ability to process and integrate both visual and textual data. This integration

opens up a wide range of capabilities, making GPT-4 a versatile tool in various domains.

Below are some of the key capabilities of GPT-4’s multimodal model:

1. Image Captioning and Understanding: GPT-4 can generate descriptive text for

images, effectively summarizing the content of an image or providing detailed de-

scriptions of specific elements within it [42]. For example, it can describe the layout
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of objects in a scene, identify key features, or explain the humor in a visually-based

joke. One practical application of this is in accessibility tools like the collaboration

between GPT-4 and "Be My Eyes", where GPT-4 helps visually impaired users by

describing images, objects, or even offering navigation assistance.

2. Visual Question Answering (VQA): The model can answer questions related to an

image by understanding the visual content and connecting it with the query.

3. Data Interpretation and Visualization: GPT-4 can process complex visual data,

such as graphs and charts, and provide detailed breakdowns and insights. This capa-

bility is particularly useful in academic and professional settings where data visual-

ization plays a crucial role. For example, GPT-4 can analyze a plot, identify trends,

and even make inferences based on the visual data, though it’s important to note that

it still requires human oversight to ensure the accuracy of these interpretations.

4. Image Classification: By integrating visual and textual data, GPT-4 can classify

images into categories, which is crucial for tasks like object detection and recognition

[46, 47].

5. Contextual Analysis: GPT-4 can analyze images within a broader context, consid-

ering both the visual elements and related text, which is particularly useful in fields

like medical imaging, document analysis, and, as in this research, counterfeit coin

detection.

6. Optical Character Recognition (OCR): GPT-4 is capable of performing OCR tasks,

which involves extracting text from images. It can handle both simple and complex

text recognition tasks, making it useful for digitizing documents, reading signs in

images, or even solving math problems that involve reading and interpreting hand-

written equations.
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These features of GPT-4, combined with its ability to integrate visual and textual data

seamlessly, have inspired researchers to explore its potential in various image-based tasks,

including image classification and object recognition. The successful application of GPT-4

in these areas motivated us to evaluate its accuracy and effectiveness in the specific task of

detecting counterfeit coins.

2.5.3 Prompting Techniques in GPT-4

Prompting [6] refers to the process of designing and inputting specific instructions or ques-

tions into an AI model like GPT-4 to elicit a particular type of response and produce desired

outputs. It is a crucial concept in the use of large language models (LLMs) such as GPT-4.

Since GPT-4 is a generative model trained on vast amounts of text data, the way a prompt

is framed can significantly impact how the model interprets the query and generates its

output. The effectiveness of prompting directly influences the quality and relevance of the

model’s responses. To optimize model performance for different tasks, various prompting

techniques have been developed, including Zero-Shot, Few-Shot, Chain-of-Thought, and

Generated Knowledge Prompting. This section provides an in-depth exploration of some

of these techniques.

1. Zero-Shot Prompting: Zero-Shot Prompting [36] is a technique where the model is

asked to perform a task without any examples or prior context provided. The model

relies entirely on its pre-trained knowledge to generate a response. The term "zero-

shot" implies that the model has received zero examples of how to complete the task

within the current interaction.

• Advantages: The main advantage of zero-shot prompting is its simplicity and

efficiency. It does not require any examples or setup, making it quick and easy

to use. It can also be surprisingly effective for tasks that are within the model’s

general knowledge base.
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• Limitations: Because it relies entirely on the model’s existing knowledge, it

can sometimes produce less accurate or relevant results for complex or special-

ized tasks.

2. Few-Shot Prompting: Few-Shot Prompting [16] involves providing the model with

a few examples of the task you want it to perform before asking it to generate a

response. This technique helps the model better understand the task by showing it

how similar tasks have been completed in the past. The term "few-shot" refers to the

fact that only a small number of examples (usually 1-5) are provided.

• Advantages: Few-shot prompting is particularly powerful for tasks that require

more context or where the model’s output can vary significantly depending on

the task. It helps guide the model towards the desired output by providing it

with relevant examples.

• Limitations: The downside is that this method requires carefully chosen ex-

amples, and the quality of the output is heavily dependent on the quality of the

examples provided.

3. Chain-of-Thought Prompting: Chain-of-Thought Prompting [34, 35] encourages

the model to break down its reasoning process into a sequence of intermediate steps

before arriving at a final answer. This technique is designed to improve the model’s

performance on complex reasoning tasks by prompting it to consider each part of the

problem systematically.

• Advantages: This technique is particularly useful for tasks that require logical

reasoning or problem-solving. By breaking down the problem, the model is less

likely to make mistakes that arise from skipping steps or misunderstanding the

problem.
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• Limitations: The main limitation is that chain-of-thought prompting can be

more time-consuming and may require more computational resources due to

the longer and more detailed responses it generates.

Figure 4: Overview of Chain-of-Thought Prompting [34].

4. Generated Knowledge Prompting: Generated Knowledge Prompting [33] involves

providing the model with carefully crafted instructions or information that encour-

ages the generation of content aligned with particular knowledge areas, facts, or un-

derstanding.

Figure 5: Example of Generated Knowledge Prompting [33].

• Advantages: Generated knowledge prompting can significantly improve the
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quality of the model’s output by ensuring it has all the necessary context before

attempting the task. It is especially useful for complex tasks that require a deep

understanding of the subject matter.

• Limitations: This technique can be more resource-intensive and may require

careful orchestration to ensure that the generated knowledge is accurate.

2.6 Introduction to Vision Transformers (ViT)

Vision Transformers represent a transformative approach in the field of computer vision,

diverging significantly from the traditional Convolutional Neural Networks (CNNs) [29]

that have dominated the field for years. Introduced by Dosovitskiy et al. in their ground-

breaking paper "An Image is Worth 16x16 Words: Transformers for Image Recognition at

Scale," [15] ViTs adapt the Transformer architecture, originally developed for natural lan-

guage processing, to handle visual data. This section provides a comprehensive overview

of Vision Transformers, their architecture, and how they function.

2.6.1 Architecture of Vision Transformers

The architecture of Vision Transformers is built upon the same foundational principles

as the Transformer models used in NLP, such as BERT and GPT, but adapted to process

images. Here are the key components that define the architecture of a ViT:

1. Patch Embedding:

• Unlike CNNs, which process images through a series of convolutions and pool-

ing layers [30, 31], Vision Transformers divide an input image into fixed-size

patches. For instance, a typical image of 224x224 pixels might be split into

16x16 patches, resulting in a grid of 14x14 patches.
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• Each of these patches is then flattened into a vector and linearly embedded into

a lower-dimensional space, typically of size 768 or 1024 dimensions, which

serves as the input to the Transformer model. This process is analogous to the

tokenization step in NLP, where sentences are split into words or subwords.

2. Positional Embedding:

• Since Transformers lack an inherent understanding of the spatial structure of

images (unlike CNNs, which have spatial locality through convolution), po-

sitional embeddings are added to the patch embeddings to retain information

about the relative positions of patches within the image. This step is crucial

for preserving the spatial relationships between patches, which is vital for tasks

like object detection and image classification.

3. Transformer Encoder:

• The core of the Vision Transformer consists of several Transformer encoder

layers, each comprising multi-head self-attention mechanisms and feedforward

neural networks. The self-attention mechanism allows the model to weigh the

importance of different patches relative to each other, capturing both local and

global dependencies in the image. These dependencies are aggregated layer by

layer, enabling the model to progressively build a richer, more nuanced repre-

sentation of the image as it passes through each layer of the encoder.

• The attention mechanism works by computing attention scores between each

pair of patches, which determine how much focus the model should place on

each patch when processing the current one. This results in a set of attention

maps that capture the relationships between different regions of the image.
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4. Classification Head:

• At the beginning of the sequence of patch embeddings, a special [CLS] token

is added, which, after passing through the Transformer layers, is used by the

classification head to predict the final output (e.g., the class label in image clas-

sification tasks). The final layer typically consists of a feedforward network that

maps the output of the [CLS] token to the desired number of classes.

5. MLP Head:

• The final output of the Transformer is passed through a Multi-Layer Perceptron

(MLP) head that produces the classification logits. This MLP head usually

consists of one or more fully connected layers and is responsible for making

the final decision based on the learned representations.

Figure 6: Vision Transformer Architecture [15].

Key Advantages:

• Global Context Understanding: ViTs excel at capturing long-range dependencies

and global context due to their self-attention mechanisms, which contrasts with the
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local receptive fields of CNNs.

• Scalability: ViTs are highly scalable, as they can be trained on extremely large

datasets, such as ImageNet, and easily adapted to various tasks.

• Transfer Learning: The architecture of ViTs allows them to be pre-trained on large

datasets and then fine-tuned on smaller, task-specific datasets, making them highly

versatile.

2.6.2 How Vision Transformers Work

Vision Transformers represent a novel approach to image processing by leveraging the

strengths of the Transformer architecture, traditionally used in natural language processing.

The process begins with the transformation of an input image into a sequence of patches,

each of which is flattened and linearly embedded into a high-dimensional space. This

transformation allows the model to treat the image patches similarly to how words are

treated in a sentence within a language model. After the image has been tokenized into

patches, positional embeddings are added to retain the spatial information of the image.

These embeddings ensure that the model understands the relative positions of the patches

within the original image, which is crucial for tasks that require spatial awareness, such as

object detection or image classification.

The core of the Vision Transformer is the Transformer encoder, which consists of multiple

layers of self-attention mechanisms and feedforward networks. The self-attention mecha-

nism enables the model to weigh the importance of each patch relative to others, captur-

ing both local and global dependencies in the image. This allows the Vision Transformer

to consider the entire context of the image rather than focusing solely on local features,

which is a significant departure from how traditional CNNs operate. As the image patches

pass through the Transformer layers, the model progressively integrates information from
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all patches to form a comprehensive understanding of the image. This process of global

context integration allows the Vision Transformer to identify relationships between distant

patches that might be critical for tasks such as identifying subtle patterns or anomalies in

counterfeit coin detection. Once the Transformer layers have processed the patches, the

output corresponding to the [CLS] token is used as the aggregate representation of the

entire image. This representation is then passed through a Multi-Layer Perceptron head,

which maps the features extracted by the Transformer into a final prediction, such as clas-

sifying the image as a genuine or counterfeit coin. The Vision Transformer is typically

pre-trained on large datasets, allowing it to learn general features that can be applied to

various tasks. After pre-training, the model can be fine-tuned on a smaller, task-specific

dataset, making it particularly well-suited for applications like counterfeit coin detection

where the availability of labeled data may be limited.

In summary, Vision Transformers work by transforming an image into a sequence of patches,

embedding these patches into a high-dimensional space, and processing them through a se-

ries of Transformer layers that capture both local and global dependencies. The output is

a comprehensive representation of the image, which is then used for classification or other

tasks. This approach offers several advantages over traditional CNNs, particularly in tasks

that require an understanding of global context and long-range dependencies within im-

ages, making ViTs especially powerful in domains like counterfeit coin detection where

such an understanding is crucial.
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Chapter 3

Dataset Preparation

3.1 Dataset Creation

As highlighted earlier, a crucial aspect of detecting counterfeit coins is having a diverse

dataset that accurately represents both genuine and fake coins. This is essential for training

and evaluating machine learning models tasked with identifying subtle differences between

the two categories.

To create such a dataset, we developed a collection that includes a significant number of

both counterfeit and authentic coins. Specifically, we assembled a dataset comprising 732

Danish and 112 Chinese coins, which were meticulously scanned using a Keyence 3D

scanner. This advanced scanner is capable of capturing full surface data across each coin

with an exceptionally high resolution of 0.1 µm. The scanner’s rotational scanning feature

further enhances its capability by allowing it to capture the entire surface of the coins in

great detail, ensuring that no features are missed. These coins were sourced from reliable

and verified origins, including the Danish law enforcement agency and various coin exhibi-

tions. The authenticity and provenance of the coins were rigorously verified to ensure that

the dataset accurately reflects the characteristics of genuine and counterfeit coins. This step
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is crucial, as the quality of the dataset directly influences the performance of the machine

learning models that rely on it.

The scanning process itself was remarkably efficient. The Keyence 3D scanner required

approximately 10 seconds to scan each coin, although larger coins naturally took slightly

longer due to their size. The resulting scanned images boast a resolution of approximately

3550 pixels in both length and width, providing a highly detailed view of each coin’s sur-

face. This level of detail is vital for the detection of minute differences that may indicate

counterfeiting. To ensure uniformity and maintain high image quality across the entire

dataset, all scans were conducted under consistent lighting conditions, and each coin was

handled with care throughout the scanning process. This meticulous attention to detail dur-

ing the scanning process helps to minimize any variations that could introduce noise or bias

into the dataset, thereby enhancing the reliability of the subsequent analysis.

The dataset created through this process serves as a robust foundation for developing and

testing counterfeit coin detection models. Its diverse nature and high-quality imaging en-

sure that the models trained on it have access to the critical features necessary for accurate

and reliable classification of coins as genuine or counterfeit.

Table 1: Number of Samples for Train and Test Data.

Datasets Train Test

Genuine Fake Genuine Fake

Danish 31 32 367 302
Chinese 22 34 4 52

3.2 Dataset Preparation

After collecting the high-resolution images of both genuine and counterfeit coins using

the Keyence 3D scanner, some preprocessing steps were undertaken to standardize the
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(f) (g) (h) (i) (j)

Figure 7: Comparative Display of Genuine and Counterfeit Danish and Chinese Coins. This collection
features paired images illustrating genuine and counterfeit versions of specific coins: (a) & (f) a 1912 Chinese
coin, (b) & (g) a 1921 Chinese coin, (c) & (h) a 1991 Danish coin, (d) & (i) a 1996 Danish coin, and (e) & (j)
a 2008 Danish coin. Each pair highlights the nuances in detail as captured by high-resolution scanning.

dataset. Standardization is crucial to ensure consistency across all images, which, in turn,

enhances the reliability and accuracy of the subsequent machine learning models. The

first preprocessing step involved rotating all images in one consistent direction. Uniform

orientation across the dataset ensures that the models do not mistakenly learn orientation-

based features that are irrelevant to the task of counterfeit detection. Following this, all

images were converted to grayscale. Grayscale conversion simplifies the image data by

removing color information, which is often unnecessary for this task. This also reduces

the computational load during model training, as the models now need to process only one

channel of intensity values instead of three (RGB channels). Grayscale images focus the

model’s attention on structural and textural features, which are more pertinent to detecting

subtle differences between genuine and counterfeit coins.

These standardized grayscale images were then used for training the Vision Transformer

model. The ViT model requires high-quality, consistent input images to effectively learn

and detect the nuances between genuine and counterfeit coins. It is important to note that

the ViT training utilized only these individual images and not the triplet arrangements used

later for the GPT-4 evaluation.
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For the evaluation by the multimodal GPT-4 model, the dataset was further prepared to

meet the specific requirements of this system. Given the unique nature of GPT-4, which

integrates both visual and contextual data, the dataset needed to be tailored specifically

for this model’s input structure. To this end, triplets of coin images were created. Each

triplet consisted of a test coin (anchor), a visually similar genuine coin (positive example),

and a visually similar counterfeit coin (negative example) (Fig. 8). This arrangement is

inspired by the concept of triplet loss in machine learning, where the goal is to make the

model understand that the anchor is closer to the positive than the negative item. This

method helps the model distinguish between similar and dissimilar items more effectively

and enhances the model’s ability to discriminate between subtle differences by leveraging

the underlying logic of triplet loss.

Figure 8: Example of a Coin Image Triplet Used in Multimodal System Evaluations: From left to right:
Genuine coin, counterfeit coin, and test coin.

The selection of these similar coins was based on feature vectors extracted from each im-

age using a ResNet50 neural network [32]. ResNet50 is a powerful convolutional neural

network widely used in computer vision tasks. It is particularly known for its residual con-

nections, which help to alleviate the vanishing gradient problem, allowing for the training

of very deep networks. ResNet50 has 50 layers and has been pre-trained on large datasets

like ImageNet, making it adept at feature extraction. For each coin image, ResNet50 was

employed to extract a feature vector, which is essentially a numerical representation of

the image that encapsulates its most important features. These feature vectors were then
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compared using cosine similarity to determine the visual closeness between different coin

images. Cosine similarity is a measure of similarity between two non-zero vectors. It is

calculated by taking the dot product of the two vectors and dividing it by the product of

their magnitudes. Mathematically, cosine similarity is expressed as:

Cosine Similarity =
A ·B
∥A∥∥B∥

where A and B are the feature vectors of the two images being compared. The result of this

calculation is a value between -1 and 1, where 1 indicates that the two vectors are identical,

0 indicates that they are orthogonal (i.e., share no similarity), and -1 indicates that they are

diametrically opposed.

Using this metric, the most visually similar genuine and counterfeit coins were identified

for each test coin. These selected coins were then paired to form the triplets used in the

GPT-4 evaluation process. The multimodal GPT-4 model was tasked with assessing the

authenticity of the test coin by comparing it with the genuine and counterfeit coins in the

triplet. The model leveraged both the visual similarities, as determined by cosine similarity,

and contextual cues to make its determination.
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Chapter 4

Multimodal Coin Authentication Using

GPT-4

4.1 GPT-4 API: Functionality and Integration

The GPT-4 API [43], provided by OpenAI, serves as an interface through which developers

and researchers can access the powerful capabilities of the GPT-4 multimodal model. The

API is designed to be flexible and user-friendly, enabling easy integration into a wide range

of applications that require processing both text and image inputs. It supports input in both

text and image formats, allowing users to fully leverage GPT-4’s multimodal capabilities.

Programming Environment and Language

The implementation of the GPT-4 API was developed using Python, which offers robust li-

braries for handling both image and text data, making it a suitable choice for integrating the

API. Python’s libraries like requests, Pandas, and PIL (Pillow) were utilized to manage

HTTP requests, data processing, and image handling.

• requests was used to make HTTP-based API calls.
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• Pandas handled data management, ensuring responses were logged and saved effi-

ciently.

• PIL managed image processing, converting coin images into the required base64

encoding format for the GPT-4 API.

Workflow for Coin Authentication

The implementation involved a few key steps:

1. API Key Access: To use the GPT-4 API, developers must obtain an API key from

OpenAI. This key is essential for authenticating requests and managing usage limits.

In the implementation, the key was stored in the environment variables for security

reasons.

2. Image Preparation: The input images of the coins (both genuine, counterfeit, and

test coins) were stored in a local directory. Each image was encoded into a base64

format using the PIL library, which was necessary for sending the image data via the

API.

3. API Requests: Requests to the GPT-4 API were structured using the requests li-

brary. The request payload included both image data (in base64 format) and a text

prompt that provided context for the coin classification task. The specific prompt

instructed GPT-4 to classify the unlabeled coin (on the right) based on a comparison

of engravings, lettering, and other details between the genuine and counterfeit coins.

4. Handling Responses: Once the API responded, the output was captured in JSON

format. The response included the GPT-4 model’s prediction (genuine or counter-

feit), a confidence score, and a detailed explanation of its decision (Table 2). These

responses were parsed, and the relevant information was saved in a CSV file for

further analysis.
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5. Rate Limiting and API Usage: Given OpenAI’s API rate limits, the implementation

adhered to the restriction of one request per second. Additionally, error handling was

implemented to manage situations where the API request failed, by retrying after a

short delay.

Algorithm 1 GPT-4_Coin_Authentication
Require: Directory of coin images (I = {i1, i2, . . . , in}), where each i represents a coin image.
Require: API Key for accessing GPT-4 services.
Ensure: A classification of each test coin image as genuine or counterfeit, along with a confidence score and

explanation.
1: Initialize Fo ← ∅ (empty results dataframe)
2: if ExistingResults ̸= ∅ then
3: Load results R from CSV file and exclude processed images.
4: end if
5: for each image ij ∈ I do
6: Encode the image ij as base64.
7: Prepare the API request with input parameters:

• Include text prompt for coin authentication.

• Add encoded image data.

8: Send API request using HTTP POST method with API key.
9: Receive API response:

10: if response == success then
11: Parse the classification, confidence score, and explanation.
12: Append results to Fo.
13: else if response == error then
14: Log error and retry after waiting.
15: end if
16: end for
17: Save results to CSV after each image is processed.
18: Return final result set Fo containing the classification, confidence, and explanation for each image.

Figure 9: The pseudo-code of the GPT-4 Coin Authentication Algorithm

4.2 Security Considerations for Using GPT-4 API

When deploying AI systems, particularly for sensitive tasks like counterfeit coin detec-

tion, data security is a critical concern. This section outlines the measures taken to ensure

the secure handling of the dataset used in this research, which includes both genuine and

counterfeit coin images.
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1. Data Encryption: All data transmitted between the local system and the GPT-4 API

is secured using HTTPS, which employs encryption protocols such as TLS (Trans-

port Layer Security). This prevents unauthorized interception of the dataset during

transmission [49].

2. No Data Retention: OpenAI, the provider of GPT-4, does not store or use submitted

data for any purpose beyond the immediate interaction, unless explicitly permitted

by the user. In this research, no such permission was granted, ensuring that images

submitted to the API were processed securely and deleted immediately after use [50].

3. Privacy and Compliance: OpenAI adheres to industry standards such as the Gen-

eral Data Protection Regulation (GDPR) and the California Consumer Privacy Act

(CCPA). These regulations enforce strict protections on data privacy, ensuring that

user data is handled with care and not exposed to unauthorized personnel or third

parties [51].

Given these security measures, it is concluded that utilizing the GPT-4 API to process

the coin dataset does not pose a significant security risk. The encryption protocols and

non-retention policies ensure the confidentiality and integrity of the dataset are maintained

throughout the process.

4.3 Application of Prompting Techniques in Coin Authen-

tication

In our research, we explored and applied several prompting techniques to evaluate GPT-

4 effectiveness in the task of counterfeit coin detection. This section details the specific

prompting techniques used and how they were applied.
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Table 2: Sample Output from GPT-4 API: Classification Results with Confidence Scores and Explanations.

Image Name Label Prediction Confidence
Score

Explanation

coin-262 Genuine Counterfeit 50% In comparing the three coins, sev-
eral factors suggest that the third
coin could be counterfeit . . .

coin-263 Genuine Genuine 80% Upon examining the three coins,
several factors contribute to the as-
sessment of the authenticity of the
coin on the right: 1. Quality and
clarity of . . .

coin-28 Genuine Genuine 75% Upon examining the three Danish
coins, the focus has been . . .

coin-379 Counterfeit Counterfeit 90% Upon careful inspection of the
three coins, focusing on the ele-
ments you have outlined, it is pos-
sible to compare . . .

coin-412 Counterfeit Genuine 55% Upon careful examination of the
three coins, several observations
can be made . . .

coin-452 Counterfeit Counterfeit 80% Upon examining the three coins,
it is noticeable that the right coin
shares some similarities with the
middle coin . . .

Zero-Shot Prompting

In the Zero-Shot Prompting scenario, we tasked GPT-4 with predicting the authenticity of a

coin using only the image of that coin, without providing any prior examples or contextual

information about genuine or counterfeit coins. The model was required to make a predic-

tion based solely on its pre-trained knowledge and understanding of visual features from

the image. This approach simulates a scenario where the model encounters a completely

new task or dataset and must rely on its inherent capabilities.

Few-Shot Prompting

For Few-Shot Prompting, we provided GPT-4 with triplet images as input. Each triplet

consisted of a test coin image, a genuine coin image, and a counterfeit coin image. Along-

side the images, we included a prompt that contained information about the authenticity
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Figure 10: Example of Zero-Shot Prompting: The model is asked to determine whether the coin in the image
is genuine or counterfeit without any prior examples.

of the two comparison coins. This method allowed GPT-4 to use these examples to in-

form its prediction about the test coin. By comparing the test coin to both the genuine and

counterfeit examples, the model could make a more informed decision about the test coin’s

authenticity.

Chain-of-Thought Prompting

In our experiments with the Chain-of-Thought (CoT) Prompting technique, we encouraged

GPT-4 to break down its reasoning process into a sequence of intermediate steps. This

approach was particularly useful for complex reasoning tasks, such as distinguishing be-

tween genuine and counterfeit coins based on subtle visual differences. We combined CoT

Prompting with Few-Shot Prompting to see if this approach would yield better results. In

this setup, the model was prompted to explain its thought process step-by-step, helping it to

systematically analyze the features of the test coin in comparison to the provided examples.
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Figure 11: Example of Few-Shot Prompting: The model is provided with a set of three coins—one genuine,
one counterfeit, and one test coin—and is asked to compare the test coin with the provided examples.

Generated Knowledge Prompting

Lastly, we explored the Generated Knowledge Prompting technique, which involves gener-

ating relevant information or context about the task before making a prediction. In this case,

we provided GPT-4 with background knowledge about the characteristics of genuine and

counterfeit coins. This additional context was then integrated into the prompt to guide the

model’s prediction. As illustrated in Fig. 13, this prompting technique includes a unique

section labeled ’Knowledge’ that is absent in other prompting methods. In this section, we

provided the model with specific information to help it distinguish between a counterfeit

coin and an authentic one. We instructed the model to focus on features such as the quality

and clarity of the edge engravings, the sharpness and detail of the main design element, and

the lettering and spacing of words and numbers, in order to evaluate the test coin.

In this section, we investigated the impact of various prompting techniques on the accu-

racy of GPT-4 in the task of counterfeit coin detection. The specific approaches—Zero-

Shot, Few-Shot, Chain-of-Thought, and Generated Knowledge Prompting—were applied
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Figure 12: Example of Chain-of-Thought Prompting: Similar to Few-Shot Prompting, but with additional
instructions to encourage step-by-step reasoning.

to assess how each technique influences the model’s performance. The outcomes of these

experiments are thoroughly analyzed and discussed in the subsequent results section.

4.4 Results and Discussion

In this section, we analyze the performance of the GPT-4 multimodal model for counterfeit

coin detection using different prompting techniques, with the obtained results summarized

in Table 3. The dataset used in these evaluations consisted of triplet images, designed

specifically for this task. Each triplet included a test coin flanked by its most visually

similar genuine and counterfeit counterparts, selected using cosine similarity.

The performance metrics obtained—precision, recall, F-Score, and accuracy—highlight

the effectiveness and limitations of each prompting method. As illustrated in Table 3, Zero-

Shot Prompting resulted in the highest recall (96.4%) but suffered from lower precision

(55.0%) and overall accuracy (55.3%). This outcome is expected, as Zero-Shot Prompting

does not leverage any prior examples or context, leading the model to make a prediction
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Figure 13: Example of Generated Knowledge Prompting: T

based solely on the single input image. The high recall indicates that the model is good at

identifying counterfeit coins, but the lower precision suggests it also incorrectly identifies

some genuine coins as counterfeit.

The Few-Shot Prompting approach provided a slight improvement in accuracy (55.7%)

over Zero-Shot Prompting, with better precision (69.8%) but a drop in recall (57.8%). This

method allowed the model to use examples from the prompt to inform its predictions, but

the trade-off between precision and recall indicates that while the model became better at

identifying genuine coins, it was less effective at detecting counterfeit ones.

Chain-of-Thought Prompting, which encourages step-by-step reasoning, resulted in mod-

erate improvements, achieving an accuracy of 56.6%. This technique helped the model to

break down the problem into more manageable steps, leading to slightly better performance

in precision and recall compared to Few-Shot Prompting.

Lastly, Generated Knowledge Prompting, which incorporates additional information to im-

prove prediction accuracy, provided a modest improvement, achieving an overall accuracy

of 56.7%. While the improvements were not substantial, this technique demonstrates the
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potential of enhancing model performance by integrating relevant external knowledge into

the prompts.

Table 3: Comparative analysis of Precision, Recall, F-Score, and Accuracy for different prompting methods.

Method Precision Recall F-Score Accuracy

Zero-Shot 55.0 96.4 70.1 55.3
Few-Shot 69.8 57.8 63.3 55.7
Chain-of-Thought 57.5 79.1 66.5 56.6
Generated Knowledge 57.7 78.0 66.3 56.7

Despite these efforts to improve GPT-4’s performance through advanced prompting tech-

niques, the overall accuracy (average of 56.13%) was significantly lower than that of the

ViT model and other specialized methods to be discussed in Chapter 5. This disparity can

be attributed to the fundamental differences between GPT-4, a general-purpose language

model with some visual capabilities, and models like ViT, which are specifically designed

and optimized for image classification tasks. The findings underscore the necessity for fur-

ther enhancements in GPT-4’s ability to process and analyze visual data if it is to compete

with specialized models in tasks such as counterfeit coin detection.
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Chapter 5

Vision Transformer-Based Coin

Authentication

5.1 Implementation of Vision Transformer for Coin Au-

thentication

As mentioned earlier, the Vision Transformer model was another approach investigated

in this research for counterfeit coin detection. This section outlines the steps taken to

implement and fine-tune the ViT model for the task of distinguishing between genuine and

counterfeit coins. The process involved configuring the model, preparing the dataset, and

executing a detailed training and evaluation process. As previously discussed, the dataset

consisted of 732 Danish and 112 Chinese coins, including both genuine and counterfeit

specimens. To prepare our training dataset, we selected up to five coins from each year

and each model, ensuring a representative selection of different coin types. This approach

demonstrated the model’s ability to predict authenticity accurately with a limited number

of samples. The remaining, larger portion of the dataset was then used as the testing set to

evaluate the model’s generalization capabilities. The images were preprocessed by rotating
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them to a uniform orientation and converting them to grayscale, ensuring consistency across

the dataset.

We employed the pre-trained Vision Transformer model, google/vit-huge-patch14-224-

in21k, available in the Hugging Face library. The ViT model is particularly suited for

image classification tasks due to its ability to capture intricate patterns and fine-grained

details through its multiple transformer layers.

Key Features:

• Patch Embedding: The model processes input images by dividing them into non-

overlapping patches of size 14x14 pixels, effectively transforming the image into a

sequence of patches.

• Self-Attention Mechanism: These patches are projected into a high-dimensional

space, where self-attention mechanisms are applied. This allows the model to learn

relationships between different parts of the image, capturing both local and global

context.

• Transfer Learning: Leveraging the pre-trained weights on the ImageNet-21k dataset,

the model is fine-tuned to adapt to the specific task of counterfeit coin detection. This

approach reduces the need for extensive training data while maintaining high accu-

racy.

The model configuration also included the use of a linear classifier layer that takes the

output from the ViT model and maps it to the classification labels (genuine or counterfeit).

The classifier was fine-tuned on our dataset, allowing the model to learn the distinguishing

features of the coins.
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Training Process:

The training of the ViT model was conducted using the Hugging Face Trainer API, which

simplifies the process of fine-tuning transformer models. During the training of the Vision

Transformer model, the system utilized up to 13.5 GB of GPU RAM, reflecting the com-

putational demands of fine-tuning a model of this scale. The training process involved the

following steps:

1. Training Parameters:

• Learning Rate: A learning rate of 1e-4 was selected to ensure steady progress

during training without making overly large updates to the model’s weights,

which can help in avoiding overshooting the optimal point.

• Batch Size: The batch size was set to 4, allowing for efficient use of GPU

memory during training.

• Epochs: Table 4 demonstrates the model’s performance across different num-

bers of epochs. As shown, training for more than 4 epochs did not result in

significant accuracy improvements across the datasets and only consumed ad-

ditional computational resources and training time. Conversely, reducing the

number of epochs below 4 led to lower accuracy, as seen with the 2-epoch re-

sults for certain years, where the model had less exposure to the training data.

Therefore, training the model for 4 epochs provides an optimal balance, ensur-

ing sufficient exposure to the data while achieving high accuracy and avoiding

unnecessary computational costs and time.

• Precision: Mixed precision (FP16) was used to accelerate training while main-

taining model accuracy.
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Table 4: Model accuracy across different epochs for various years in the Danish coin dataset.

Dataset Epoch
2 4 8 10 12

20 Kroner 1990 100 100 100 100 100
20 Kroner 1991 95.26 96.1 96.1 96.1 96.1
20 Kroner 1996 98.19 100 100 100 100
20 Kroner 2008 91.97 99.6 99.6 99.6 99.6

2. Model Training:

• As discussed, the dataset was split into training and testing sets, with a larger

portion reserved for testing. The training set was used to fine-tune the pre-

trained ViT model, allowing it to learn the specific features that distinguish

genuine coins from counterfeit ones.

• During training, the model’s performance was monitored using various metrics,

including accuracy, precision, recall, and F1-score.

3. Loss and Accuracy Monitoring:

• The training process was accompanied by continuous monitoring of the loss

function and accuracy on the training set. The loss function used was cross-

entropy, which is well-suited for classification tasks.

Figure 14: Training loss over steps curve for the Vision Transformer model
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Figure 15: Evaluation loss over steps curve for the Vision Transformer model

• The accuracy on the training set was logged at each step, ensuring that the

model was effectively learning the patterns in the data. The final testing accu-

racy was 99.31 %, indicating that the model had successfully learned to distin-

guish between the two classes.

Figure 16: Receiver Operating Characteristic (ROC) curve.
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Fig. 14 and Fig. 15, "Training Loss Over Steps" and "Evaluation Loss Over Steps,"

provide a comprehensive view of the model’s learning dynamics during the train-

ing process. The "Training Loss Over Steps" diagram shows how the loss decreases

as the training progresses, indicating that the model is effectively learning to mini-

mize errors on the training data. The gradual decline of the loss curve suggests that

the Vision Transformer model is becoming increasingly proficient at distinguishing

between genuine and counterfeit coins as it processes more data.

The "Evaluation Loss Over Steps" diagram, on the other hand, reflects the model’s

performance on unseen data, which is crucial for assessing its generalization capa-

bilities. The evaluation loss follows a similar downward trend as the training loss,

signifying that the model is not only learning well from the training data but also gen-

eralizing effectively to new data points. The stability of the evaluation loss towards

the end of the training process suggests that the model has reached an optimal point

of learning, where further training is unlikely to yield significant improvements.

Figure 17: Training vs Evaluation loss over steps

The third diagram in Fig. 17, which compares the training and evaluation losses,

provides further insights into the model’s performance. Both losses decrease over

time, indicating successful convergence. The close alignment between the training
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and evaluation losses towards the end of the training process suggests that the model

is not overfitting the training data, which is a positive outcome. Overfitting occurs

when a model performs well on the training data but fails to generalize to new, unseen

data. The convergence of the training and evaluation losses implies that the ViT

model is well-generalized and capable of accurately predicting the authenticity of

coins across different datasets.

Algorithm 2 ViT_Coin_Authentication
Require: Directory of coin images (I = {i1, i2, . . . , in}), where each i represents a coin image.
Require: Pretrained ViT model
Ensure: Classification of coin images as genuine or counterfeit, along with performance metrics such as

accuracy, precision, recall, and F1 score.
1: Initialize Fo ← ∅ (empty results dataframe)
2: Download datasets for genuine and fake coins from Google Drive.
3: Unzip the datasets into directories for genuine and counterfeit coins.
4: Data Preprocessing:
5: Create Dataset:
6: For each label [r] ∈ {genuine, fake}:
7: Select up to 5 images from each coin type for the training set.
8: Assign the remaining images from each coin type to the test set.
9: Model Initialization and Preprocessing:

10: Load Pretrained Model and preprocess the images into a format suitable for the model.
11: Training Setup:
12: Define Metrics:
13: Specify metrics such as accuracy, precision, recall, F1 score.
14: Set Training Arguments:
15: Specify batch size, number of epochs, learning rate, etc.
16: Initialize Trainer:
17: Initialize the trainer with the model, datasets, and metric functions.
18: Training and Evaluation:
19: Train Model:
20: Train the model using the training set.
21: Perform evaluation at defined intervals.
22: Save Model and training state once training is completed.
23: Evaluation and Logging:
24: Evaluate on Test Set:
25: Use the trained model to evaluate the test set.
26: Log accuracy, precision, recall, F1 score, and confusion matrix.
27: Return final results Fo, containing evaluation metrics and confusion matrix details.

Figure 18: The pseudo-code of the ViT Coin Authentication Algorithm
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5.2 Results and Discussion

In this section, we analyze and discuss the results obtained from the ViT model, focusing

on its performance in detecting counterfeit coins.

As detailed in Table 5, the ViT model generally outperforms all other methods, particularly

in challenging scenarios involving coins with subtle variations or worn-out features. This

superior performance is primarily due to the Vision Transformer’s self-attention mecha-

nism, which captures long-range dependencies and contextual information across the en-

tire image. Unlike the PrFA method, which relies on predefined rules and patterns and

struggles to generalize to broader contexts, the ViT model’s ability to learn hierarchical

representations directly from raw pixel data enables it to generalize effectively across dif-

ferent coin types and conditions. Additionally, the ViT model’s adaptability in handling

various data types and its capacity to learn from a relatively small dataset make it a highly

suitable choice for counterfeit detection tasks where data scarcity is a concern.

The PrFA method, on the other hand, leveraged augmentation techniques, which can ef-

fectively increase the size and variability of the training set. This is beneficial for methods

like PrFA that rely on rule extraction, as the increased data diversity allows for more robust

fuzzy association rules that can capture a wider range of feature combinations. However,

this reliance on augmented data might have also introduced specific patterns or features that

do not exist in the real world. Consequently, while PrFA’s performance may be enhanced

on the augmented dataset, it might not generalize as well to unaugmented or real-world

data, where such artificial patterns are absent. This could explain instances where PrFA

performs well on specific datasets, such as the 20 Kroner 1991 set, but may not maintain

the same level of accuracy across other datasets.

Further demonstrating its robustness, Table 7 presents the ViT model’s performance metrics

on Chinese coins, including accuracy, precision, recall, and F1-score. The results under-

score the model’s effectiveness in handling diverse datasets, including coins from different
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countries and historical periods.

Table 5: Performance accuracies obtained for methods by Sharifi Rad et al. (PrFA) [23], Bavandsavadkouh
et al. [27], Hmood and Suen [28], Liu et al. [22], and the proposed Vision Transformer method.

Method [22] [28] [27] [23] Proposed

20 Kroner 1990 92.9 90.0 98.0 93.2 100
20 Kroner 1991 96.6 95.6 97.1 97.5 96.1
20 Kroner 1996 98.4 99.5 99.7 99.9 100
20 Kroner 2008 99.6 93.4 99.6 99.8 99.6

Table 6: Detailed assessment of Precision, Recall, and F-Score for the ViT and the PrFA method across
different coin types and years.

PrFA ViT

Datasets Prec. Rec. F-Score. Prec. Rec. F-Score.

20 Kroner 1990 0.843 1.000 0.915 1.000 1.000 1.000
20 Kroner 1991 0.970 0.995 0.978 0.961 0.951 0.953
20 Kroner 1996 1.000 1.000 1.000 1.000 1.000 1.000
20 Kroner 2008 0.995 1.000 0.998 0.996 0.996 0.995

Table 7: Performance Metrics of ViT for Counterfeit Detection on Chinese Coins (Aggregate Data for Years
1912, 1921, 1923, 1927, and 1934)

Dataset Precision Recall F-Score Accuracy

Chinese 98.0 96.0 96.6 96.0

Table 8 illustrates the performance metrics for the Chinese coin dataset across different

years using the ViT model. These performance values were obtained with varying numbers

of training and testing samples, ranging from 2 to 31 for training and 4 to 33 for testing,

depending on the year of the coin. It is important to note that a lower number of training

samples, particularly when fewer than 5 samples were used, consistently resulted in poorer

performance, as evidenced by lower accuracy and F1-scores. This is most evident in the re-

sults for the Yuan 1912 and Yuan 1934 coins, where limited training data led to an F1-score

as low as 0.333. In contrast, higher-performing years such as 1921 and 1927 benefited from

a more substantial number of training samples. These findings underscore the importance

of an adequate number of training samples to achieve reliable performance in counterfeit

coin detection.
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Table 8: Performance metrics for the Chinese dataset across different years.

Dataset Metric
Accuracy Precision Recall F-Score

Yuan 1912 0.50 0.80 0.50 0.457
Yuan 1921 0.909 0.826 0.909 0.865
Yuan 1923 0.857 0.734 0.857 0.791
Yuan 1927 0.833 0.875 0.833 0.828
Yuan 1934 0.50 0.25 0.50 0.333

In summary, the Vision Transformer-based approach for counterfeit coin detection has

demonstrated superior performance compared to existing state-of-the-art methods across

the entire Danish dataset. The results highlight the model’s ability to effectively differen-

tiate between genuine and counterfeit coins, even with a limited dataset. This robustness,

coupled with the model’s ability to capture both local and global features, underscores its

potential as a powerful tool in combating counterfeit currency. These findings suggest that

ViTs could be widely adopted in practical settings where accurate and reliable counterfeit

detection is critical.
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Chapter 6

Conclusion and Future Works

This thesis focused on addressing the increasingly significant challenge of counterfeit coin

detection, a task with serious implications for the integrity of monetary systems and the

stability of financial markets. The core objective was to develop a robust system capable of

accurately discerning genuine coins from counterfeit ones, while addressing the challenges

posed by limited data availability and the need for precise authentication of intricate details.

6.1 Conclusion

We have presented an in-depth exploration of counterfeit coin detection using two advanced

methodologies: the multimodal GPT-4 model and the Vision Transformer (ViT) model.

Multimodal Models (GPT-4):

We investigated the potential of the multimodal GPT-4 model, which integrates both vi-

sual and textual modalities, to discern genuine coins from counterfeit ones. This explo-

ration included the application of various prompting techniques—Zero-Shot, Few-Shot,
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Chain-of-Thought, and Generated Knowledge—each offering unique advantages in dif-

ferent contexts. Despite the innovative approach, our findings revealed that while GPT-4

shows promise in multimodal tasks, it faces inherent challenges in processing and analyz-

ing specialized visual data like that required for counterfeit detection.

The overall accuracy of 56.13% across all prompting methods highlights limitations in

GPT-4’s ability to discern intricate visual details, which are critical for distinguishing be-

tween authentic and counterfeit coins. One of the key reasons for this lower performance is

the fact that GPT-4 is a general-purpose model. It was not explicitly designed or optimized

for high-precision visual tasks like counterfeit coin detection, which demands the ability to

identify fine details such as subtle variations in minting or wear patterns. GPT-4’s visual

capabilities, while valuable in certain multimodal contexts, lack the specialized training

needed to focus on these fine-grained features.

Additionally, GPT-4 is not specifically pre-trained for tasks like coin authentication, where

domain-specific knowledge is crucial for accurate classification. The visual tasks it can

handle are more general, meaning that it struggles when applied to domains requiring

highly detailed analysis. These limitations underscore the necessity for further refinement

of multimodal models in highly specialized visual domains, particularly where precise vi-

sual distinctions are critical.

Vision Transformer Approach:

In contrast, the Vision Transformer model, pre-trained on a large-scale dataset and fine-

tuned for coin authentication, achieved a remarkable accuracy of 99.31%. The success

of the ViT model can be attributed to its sophisticated architecture, which excels in cap-

turing intricate patterns and details through self-attention mechanisms. This architecture

enabled the model to focus on essential features such as minting details and wear pat-

terns, crucial for distinguishing between genuine and counterfeit coins. Additionally, the
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model’s ability to transfer learned representations from the pre-training phase significantly

enhanced its generalization capacity, leading to superior performance in detecting counter-

feit coins. This performance notably surpasses previous methods, including the state-of-

the-art Pruned Fuzzy Associative Classifier (PrFA) by Sharifi Rad et al. [23], in terms of

precision, recall, and F1-score, across multiple coin types and years.

6.2 Future Works

Building on the findings of this research, several avenues for future work can be explored

to further advance the field of counterfeit coin detection. One promising direction is the

refinement and extension of the GPT-4 multimodal model. Given the observed limitations

in its current form, future efforts could focus on enhancing the model’s training with more

comprehensive and up-to-date datasets. Moreover, OpenAI recently introduced the ability

to fine-tune GPT-4, allowing developers to tailor the model more closely to specific tasks

by training it on domain-specific datasets. Fine-tuning GPT-4 on our coin authentication

dataset would enable the model to better recognize the intricate patterns and features critical

for counterfeit coin detection. This process could significantly improve its ability to analyze

visual data with higher precision and accuracy.

In addition, the exploration of additional prompting techniques could yield further improve-

ments in performance. By combining different prompting strategies or integrating feedback

loops, where initial predictions are iteratively refined, the accuracy of the GPT-4 model in

discerning counterfeit coins could be substantially improved.

Another potential area for future research is the development of hybrid models that combine

the strengths of Vision Transformers (ViTs) and Convolutional Neural Networks (CNNs)

[44, 45, 48]. In the standard implementation of ViTs, images are divided into non overlap-

ping patches, which are then processed as input tokens. This method allows ViTs to capture

global context effectively but may miss finer local details due to the non-overlapping nature
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of the patches. On the other hand, CNNs, with their overlapping convolutional filters, are

adept at capturing local spatial details and fine-grained features. By integrating overlapping

patches or using CNNs in conjunction with ViTs, a hybrid model could leverage the best

of both worlds—combining the global context understanding of ViTs with the local feature

extraction capabilities of CNNs. Such a hybrid approach could improve the robustness and

accuracy of counterfeit coin detection by ensuring that both global patterns and subtle lo-

cal details are considered, making it particularly effective for tasks where both aspects are

critical.

Finally, expanding the dataset to include a wider variety of coins from different regions and

time periods could help generalize the models further, making them more applicable to a

global context. Additionally, incorporating real-world challenges such as varying lighting

conditions, different angles of coin placement, wear and tear, and other environmental

factors into the dataset could provide more realistic testing scenarios. This, in turn, would

enhance the practical applicability of the proposed methods, ensuring that they perform

well in diverse and challenging real-world situations.

By pursuing these future research directions, it is hoped that the advancements in coun-

terfeit coin detection presented in this thesis can be built upon, leading to more accurate,

efficient, and globally applicable solutions for safeguarding the integrity of monetary sys-

tems worldwide.
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