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Abstract 

Multizone Modeling of Airborne Quanta Transmission and CO2-based Ventilation 

Designs for Assessing Indoor Exposures 

 

Shujie Yan, Ph.D. 

Concordia University, 2024 

In indoor environments, ventilation is essential for diluting or removing contaminants, 

pathogens, excess heat, and moisture, thereby ensuring a healthy and comfortable space. The 

COVID-19 pandemic underscored the critical role of ventilation in controlling airborne 

respiratory infections indoors. During this period, inadequate ventilation systems and improper 

operations in densely populated public spaces were frequently linked to outbreaks and 

superspreading events, heightening concerns over indoor exposure risks for occupants. As 

COVID-19 restrictions begin to relax globally, the focus is transitioning to long-term 

management strategies for the virus. This transition necessitates a comprehensive 

understanding of the specific ventilation requirements for various indoor spaces. It is 

imperative to swiftly and accurately assess ventilation conditions and consistently ensure an 

adequate supply of clean air. This study focuses on mitigation strategies to reduce indoor 

exposure risks and prepare for the post-pandemic era. The multizone CONTAM modeling of 

aerosol transport under different mechanical mitigation strategies was investigated in five DOE 

prototype buildings. To utilize field evidence for improving indoor air quality, a novel approach 

integrating Bayesian inference and stochastic CO2 grey-box models was applied. This approach 

was used to evaluate the ventilation conditions within two primary school classrooms in 

Montreal. The Equivalent Clean Airflow Rate (ECAi) was calculated following ASHRAE 241, 

revealing an insufficient clean air supply in both classrooms. To achieve a sufficient ECAi, an 

additional 0.38 m3/s of clean air delivery rate (CADR) from air-cleaning devices is 

recommended. Finally, steady-state CO2 thresholds (Climit, Ctarget, and Cideal) were established 

to indicate when ECAi requirements could be achieved under various mitigation strategies. 
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Chapter 1 Introduction  

 

1.1 Introduction 

The COVID-19 pandemic has underscored the critical importance of controlling airborne 

respiratory infections in indoor environments [1-4]. Insufficient ventilation designs and 

improper operations in crowded public buildings often lead to outbreaks and superspreading 

events, raising significant concerns about occupants’ indoor exposure [5-7]. Consequently, 

many countries implemented shutdowns of public shared spaces, compelling individuals to 

“stay at home” [8, 9]. Recently, as many countries have eased restrictions, there has been a shift 

towards the long-term management of COVID-19 [10, 11]. The challenge now lies in reopening 

public spaces while simultaneously reducing transmission risks [12, 13]. 

Engineering mitigation strategies can effectively reduce the airborne transmission of pathogens 

such as SARS-CoV-2, measles, tuberculosis (TB), chickenpox, and influenza in public spaces 

[14-16]. Virus-laden aerosols in the air can be diluted with outdoor air, trapped by filters, or 

disinfected using germicidal ultraviolet light (GUV) [17-19]. It is therefore crucial to determine 

the adequate amount of outdoor ventilation air needed to control airborne disease transmission 

in different building types, identify appropriate air treatment options, and implement measures 

to manage infection risks, especially in the current post-pandemic era [7, 20-22]. 

Multizone building simulations provide deeper insights into aerosol transmission potential 

within real buildings and systematically consider the influence of different mitigation strategies 

across the entire building context [23-25]. Besides accounting for building leakage, multizone 

simulations enable the evaluation of average and transient contaminant concentrations during 

occupant exposure, thus helping to assess infection risks. Estimating ventilation air change 

rates in indoor environments remains a challenging task due to inherent uncertainties in the 

deterministic approach commonly used, which struggles to account for system uncertainties 
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[26]. These uncertainties can stem from model limitations, unknown or uncertain parameters, 

measurement noise, and estimation bias [27, 28]. Efforts have been made to address these 

uncertainties through stochastic modeling principles for indoor air quality (IAQ) predictions 

[29-32]. The stochastic grey-box model [33, 34], which combines physical system principles 

with data from field measurements, has shown promise in managing these uncertainties. 

However, its potential for estimating ventilation rates using CO2 measurements in rooms has 

not been extensively explored. Additionally, critical parameters such as room occupancy and 

CO2 generation rates from occupants are often unavailable, resulting in significant uncertainties. 

It has been suggested that these parameters could be reasonably inferred with Bayesian 

inference based on measurements data [35, 36]. Thus, integrating the stochastic CO2-based 

grey-box model with Bayesian inference has significant potential to improve the precision of 

ventilation rate predictions. 

In summary, this study aims to develop effective strategies in response to the COVID-19 

pandemic and to improve indoor air quality (IAQ) in the post-pandemic era. The first part 

investigates multizone modeling of aerosol transmissions to determine the priorities of different 

mechanical mitigation strategies. This study also introduces a novel methodology that 

integrates Bayesian inference with a CO2-based stochastic grey-box model to enhance the 

prediction accuracy of indoor ventilation conditions.  

1.2 Research objectives 

In light of the ongoing challenges posed by the COVID-19 pandemic, it is essential to develop 

comprehensive strategies for reducing airborne transmission risks in various indoor 

environments. This research aims to address these challenges by focusing on several key 

objectives that will contribute to safer indoor air quality and effective infection control 

measures. The main research objectives of this study are as follows: 

• Develop an approach to evaluate aerosol infection risks of SARS-CoV-2 in multizone 

CONTAM buildings: This objective involves creating a robust methodology to assess 
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how SARS-CoV-2 aerosols spread and pose infection risks within different zones of a 

building modeled in CONTAM. This approach will help in understanding the dynamics 

of airborne transmission in complex indoor environments and identify high-risk areas. 

• Evaluate the effectiveness of different engineering mitigation measures on reducing 

infection risks in offices, hotels, retail spaces, and schools: By testing various 

engineering strategies, such as enhanced ventilation, filtration, and UV disinfection, 

this research aims to determine which measures are most effective in different types of 

buildings. This evaluation will provide practical recommendations for mitigating 

infection risks in diverse public and private spaces. 

• Integrate Bayesian inference with a CO2-based stochastic grey-box model for a better 

estimation of ventilation rate and confirm its validity: This objective focuses on 

improving the accuracy of ventilation rate estimates by combining Bayesian inference 

techniques with a CO2-based stochastic grey-box model. This integration will allow for 

more precise and reliable predictions of indoor air quality, accounting for uncertainties 

and variable conditions. 

By addressing these objectives, this study aims to advance our understanding of aerosol 

transmission in indoor environments and develop effective strategies to mitigate infection risks, 

thereby contributing to safer and healthier building designs in the post-pandemic era. 

1.3 Outline of the thesis  

This chapter introduces the background and the main objectives of this study. To achieve the 

research objectives, this study proposes a novel approach for assessing indoor infectious risks 

using CONTAM-quanta simulations. This method was subsequently applied to five 

commercial DOE prototype buildings to identify the necessary air-cleaning efforts for various 

scenarios. Additionally, a CO2-based ventilation design approach was developed to assist in 

long-term control of indoor aerosol transmission, using measurement evidence. The practices 

were illustrated using the measurements from Canadian primary classrooms. The following 



4 

 

chapters are organized as follows:  

Chapter 2 reviews the literature related to multizonal aerosol modeling and CO2-based 

ventilation designs. It begins by exploring previous efforts in using CONTAM multizone 

modeling for assessing indoor air quality. A comprehensive review is conducted on studies 

related to multizonal aerosol transmission, risk assessments, and various mitigation strategies. 

To further enhance the CONTAM modeling framework, the chapter examines research that 

utilizes CO2 as an indicator of indoor ventilation conditions. Additionally, the review includes 

studies on Bayesian inference and stochastic CO2 grey-box models, which show promising 

potential for predicting ventilation rates through in-situ CO2 monitoring. 

Chapter 3 presents a novel approach for assessing indoor infectious risks using the CONTAM-

quanta simulations. This method evaluates the effectiveness of various mitigation strategies, 

illustrated through a case study of a Large Office building. Key strategies include increased 

ventilation, MERV filters, portable air cleaners, UV lights, and mask usage. The findings 

highlight the most effective measures to reduce infection risks in mechanically ventilated 

buildings.  

Chapter 4 systematically evaluates infection risk mitigation strategies for five prototype 

commercial buildings using the CONTAM-quanta approach. The study analyzes zone-to-zone 

quanta transmissions and air treatment strategies under different occupancy levels and masking 

conditions. Key findings indicate that in-duct air treatment alone is insufficient for small spaces, 

necessitating additional in-room air-cleaning devices. Correlations of infection risk with room 

volume, exposure durations, and equivalent air exchanges are developed to generalize findings 

across different building configurations.  

Chapter 5 presents a CO2-based ventilation design and practices for Canadian classrooms. The 

proposed approach utilizes Bayesian inference within a stochastic CO2-based grey-box model 

to realize long-term indoor air quality management. The study confirms the accuracy and 
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robustness of the model through CO2 tracer gas experiments and quantifies uncertainties in 

real-life contexts. The approach is then applied to evaluate ventilation conditions in two 

primary school classrooms in Montreal, identifying insufficient clean air supply. 

Recommendations include supplementing air-cleaning devices to meet required clean airflow 

rates. Various mitigation strategies are assessed for the classrooms for their equivalent clean 

air supply levels. 

Chapter 6 summarizes the main contributions, limitations and future works of this study.  
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Chapter 2 Literature review 

 

In this section, previous efforts on CONTAM multizone modeling for indoor air quality and 

CO2-based ventilation evaluations were explored. A comprehensive review was conducted on 

multizonal aerosol transmission studies, risk assessments, and mitigation strategies. Studies 

related to Bayesian inference and stochastic CO2 grey-box models were also included, given 

their promising potential to predict ventilation rates using in-situ CO2 monitoring.      

2.1 Multizone CONTAM modeling of aerosol transmissions  

2.1.1 Introduction to the multizone modeling and CONTAM program 

Efforts to model multizone airflow began as early as the 1970s, and it was during this period 

that isothermal wind-driven airflows and network airflow models were first introduced [37-43]. 

In 1989, an element-assembly formulation of multi-zone contaminant dispersal theory was 

proposed, and the processes of assembly element equations as well as the development of the 

CONTAM family program were introduced [44, 45]. Then the model was further modified to 

incorporate ducted air handling system in the 1990s in CONTAM93 and CONTAM96 [46, 47]. 

Based on the knowledge of fundamental mass conservation and mechanical energy-

conservation rules, semi/fully empirical dissipation relations, assumed boundary conditions, 

and zone-field assumptions, equations were assembled to control the air flows in multizone 

buildings [48, 49]. Later, realizing the contaminants dispersal was influenced by building 

thermal and the need for detailed airflows, methods to couple it with building thermal and 

computational fluid dynamics (CFD) models were also proposed [50, 51]. Figure 2-1 

demonstrates the representation of building models in different detailed levels.    
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Figure 2-1 The representation of building models with increasing details [37] 

 

Over the years, substantial efforts have been dedicated to assessing the validity of the well-

mixed assumptions employed in CONTAM and examining the airflows simulated by it [52, 

53]. In 2008, Wang et al. [54] evaluated the well-mixed assumptions made for temperature and 

contaminants concentration as well as the effects of neglecting air momentum. It was suggested 

that when the dimensionless temperature gradient is smaller than 0.03 and the Archimedes 

number for the source zone is larger than 400, the neglection of temperature and contaminants 

concentration gradient would be acceptable with an estimation error of less than 20%. When 

windows have large openings accompanied by strong air momentum effects, neglecting air 

momentum can still be acceptable, provided the distance between the upstream and 

downstream openings exceeds the maximum jet throw length from the upstream opening. 

Consequently, the assumptions made to simplify the CONTAM simulations are deemed 

reasonable and acceptable under most circumstances. 

In past decades, empirical validation efforts were devoted to identifying the applicability of 

CONTAM models [24, 55-58]. Emmerich [24] reviewed the validation efforts on residential-

scale CONTAM and COMIS models for the prediction of airflow rates, results suggested that 

most of the statistical parameters are within or close to the guidelines of ASTM D5157. In 1996, 

Haghighat and Mergi reported the “good” agreement evidence of airflow predictions for a four-
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zone CONTAM model [57]. In their empirical tests, fan pressure tests were conducted with 

blower doors and the flow coefficient C and flow exponent n were estimated with both active 

and passive approaches. Verijkazemi et al. [58] compared the CONTAM particulate matter 

(PM) evaluation results with field measurements in an Iran hospital, and results indicate that 

the CONTAM can evaluate particle entry into the hospital building effectively under different 

weather and building operating scenarios.  

In 2001, Musser et al. conducted a validation and calibration study on CONTAM, affirming 

the model’s accuracy in simulating pressurized spaces when individual room flow rates were 

precisely defined based on experimental evidence [59]. The study underscored the significance 

of accurately refining fan flow rates for spaces like bathrooms and kitchens in buildings, as it 

directly influences the prediction accuracy. Overall, after decades of rigorous work, CONTAM 

has been established as a reliable tool for predicting building air flow rates from a macroscopic 

perspective.  

2.1.2 Multizone CONTAM modeling of aerosol transmissions 

Multizone building simulations provide a comprehensive understanding of aerosol 

transmission potential in real buildings, allowing for the systematic evaluation of various 

mitigation strategies within the entire building context. In addition to accounting for building 

leakage, multizone simulations enable the assessment of both average and transient 

contaminant concentrations during occupant exposure, thereby facilitating the evaluation of 

infection risks. 

The multizone modeling was applied to analyze the transmission of virus-laden aerosols 

between floors through door and window leakages during a SARS outbreak in Hong Kong [60]. 

The importance of the building leakage and actual building operations was highlighted in a  

multizone contaminant transport simulation for a hospital building [61]. Emmerich et al. [62] 

applied the simulation software CONTAM for two infectious agents, a tuberculosis-like 

particle with a diameter of 0.64 µm and a burst emission, and a squamous cell particle with a 
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diameter of 10 µm released at a constant generation rate. The study showed the importance of 

building leakage and the impacts of an actual building system operation. Although their study 

targeted healthcare facilities, it illustrated the importance of addressing the interactions of 

weather conditions, mechanical system operations, pressure differentials, and inter-zonal 

leakages in terms of airborne virus transmission. These interactions cannot be addressed 

systematically without a multizone building environment modeling approach. 

On the other hand, building ventilation renovations are typically conducted at the whole-system 

scale, making it crucial to consider the interactions between different rooms, buildings, and 

indoor and outdoor environments [63]. Investigating multizone buildings for specific building 

types is particularly important as public buildings reopen [64, 65]. Evaluating building-wide 

protection, rather than just room-level protection, under realistic weather conditions, air 

leakages, and occupancies, is essential [66, 67]. This approach helps identify gaps in renovation 

strategies, enhance mitigation effectiveness and efficiency, and develop tailored solutions that 

address the variable needs of the post-pandemic era, considering specific buildings, climates, 

and schedules. A few recent multizone simulation studies show the importance of pressure 

controls and leakages in a hospital building [68, 69] and HVAC filtrations on energy costs in 

an office building [70, 71]. Besides, López-García et al. combined a zonal ventilation model 

with a multicompartment SIS Markovian model for evaluating the infection of patients within 

a hospital ward [72]. However, the inter-zonal airflows have not been studied in depth in a 

detailed airflow network by the previous studies [61, 73], and the airborne zonal infection 

transmission in commercial buildings was rarely investigated.   

Conducting multizone analysis of airborne disease transmission in buildings with a more 

physically realistic setting offers numerous benefits for occupant health, safety, productivity, 

and energy-efficient operation, especially during emergencies such as pandemics. Recently, 

many countries and governments have recognized the importance of building ventilation and 

introduced initiatives to retrofit existing buildings for reopening and future epidemics [63, 74]. 
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However, investing government funds to achieve these health, safety, and energy-efficiency 

goals must consider the complexities and multifactorial interactions within buildings [75]. 

Additionally, public guidelines provided during the pandemic may be insufficient. Therefore, 

a physically realistic analysis tailored to different building types and climates is essential. 

2.2 Risk assessments and mitigation strategies  

Risk assessment is an effective method for evaluating the efficacy of ventilation strategies in 

controlling infection risks. Since the outbreak of the COVID-19 pandemic, extensive efforts 

have been made to quantify the risk of SARS-CoV-2 transmission[76-81]. The airborne quanta 

emission rate was evaluated under various conditions of viral load, respiratory activity, and 

physical activity levels, providing crucial input for classic Wells-Riley risk assessment models 

[82-86]. Dai and Zhao [87] examined the impact of air change rates on infection risks in 

different environments, including buses, classrooms, aircraft cabins, and offices. Shen et al. 

[88] investigated the effectiveness of various mitigation strategies in indoor settings such as 

long-term care facilities, schools, meat plants, buses, and taxis. Additionally, a simulation study 

compared the effectiveness of displacement and mixed-mode ventilation in reducing long-

range airborne exposure to SARS-CoV-2 in a small office [89].These studies, based on the 

assumption of uniform aerosol distribution within a room, considered changes in ventilation 

rate, exposure time, quanta generation rate, and room volume for different indoor environments. 

However, their evaluations were limited to single-zone scenarios and did not account for 

buildings with multiple floors and rooms where zone-to-zone transmission could occur. 

Jimenez et al. [90] developed a publicly available spreadsheet known as the “COVID-19 

Aerosol Transmission Estimator”. The tool provides information on key input parameters based 

on recent COVID-19 studies. It enables the evaluation of infection risks and mitigation 

strategies based on specific information for various scenarios. In response to the COVID-19 

pandemic, the ASHRAE Epidemic Task Force has issued guidelines for commercial buildings 

and schools emphasizing the need for a holistic framework to reduce exposure to SARS-CoV-

2 [91, 92]. These guidelines include general recommendations for specific spaces such as 

lobbies, elevators, and conference rooms. However, the mechanical systems, configurations, 
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and operations of different indoor spaces can vary significantly, necessitating case-by-case 

assessments. 

Mitigation strategies that have been proposed for buildings include ventilation, filtration, GUV, 

and personal protective equipment. While many studies have concentrated on healthcare 

facilities [93, 94] and single-zone building scenarios, there is a scarcity of research on 

multizone commercial buildings [95, 96]. ASHRAE and REHVA have issued their guidelines 

in the COVID-19 pandemic context [97, 98]. General recommendations have been provided 

for HVAC operations, outdoor air settings, and filtration [99]. However, these guidelines often 

lack the performance-based information needed to inform mitigation strategies tailored to 

specific building types. The most effective mitigation strategy can vary significantly depending 

on the building type, configuration, occupancy schedule, HVAC system, and operational 

settings [100, 101]. 

It was demonstrated by Peng et al. [90] that employing multiple layers of protection—such as 

reducing occupancy and exposure time, wearing masks, increasing ventilation rates, and using 

HEPA filtration and GUV disinfection—can significantly lower COVID-19 infection risk. Sun 

and Zhai [102] introduced indices for social distancing and ventilation effectiveness to the 

Wells-Riley model, suggesting that reducing occupancy density by half can reduce the 

probability of infection by 20 - 40% within the first 30 minutes of an event. Zhang [103] 

estimated that integrating various mitigation strategies, including source control, ventilation, 

and air cleaning, can reduce infection risk in schools and offices by a factor ranging from 9 to 

500. 

Most investigations mentioned above have paid attention to evaluate infection exposure risks 

in single-zone scenarios only. Recently, empirical evidence of zonal aerosol transmission has 

been reported in an Eastern Canadian hospital [104]. Additionally, Taewon et al. [105] 

suggested the possibility of SARS-CoV-2 transmission between different floors of an 

apartment building, with five out of nineteen cases reporting no direct contact with other 
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residents. In Spain, it was reported that bathrooms in older buildings with communal ducts may 

have allowed for aerosol exchanges [106]. Therefore, multizone aerosol transmission patterns 

must be considered when developing detailed mitigation strategies for specific building types 

or zones, especially during the reopening stage of commercial buildings [107]. 

2.3 Ventilation rate estimation via indoor CO2 monitoring 

Among the mitigation strategies, outdoor ventilation is crucial for reducing the probability of 

infection, particularly in naturally ventilated buildings. Characterizing ventilation rates in 

buildings has long been an effective way to understand the amount of fresh air delivered to 

occupants. This practice gained significant attention during the COVID-19 pandemic, with the 

widespread installation of CO2 sensors to monitor indoor ventilation conditions. Proper and 

accurate interpretation of CO2 readings is essential for assessing indoor air quality and 

developing effective mitigation strategies. This section reviews previous efforts to measure 

indoor ventilation rates using CO2 monitoring, the application of Bayesian approaches in the 

built environment, and stochastic modeling of indoor air quality. 

2.3.1 Ventilation rate measurement approaches  

It has been indicated that typically the predominant way to measure the ventilation rate of a 

building is using the tracer gas approach [108-112]. Only under specific conditions, such as in 

an exceptionally well-sealed building where all air inflows and outflows occur exclusively 

through ducts, can the ventilation rate be determined directly from duct airflow measurements 

[108, 113]. The tracer-gas technique usually releases a designated amount of tracer gas (a single 

release, constant release, or controlled release) and then observes its decay with time. Due to 

its simplicity and less dosing volume of tracer, various studies used the concentration decay 

method to evaluate ventilation performance and thereby estimate indoor air change rate [114, 

115].  

Selecting tracer gas is important in this method. The desirable properties of tracer gases have 

been indicated to be detectability, nonactivity, and a relatively low concentration in the air [109, 
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116-118]. Over the years, a variety of tracer gases have been used in tracer gas measurements 

such as carbon dioxide (CO2), sulfur hexafluoride (SF6), nitrous oxide (N2O), hydrogen (H2), 

and helium (He), etc [119]. A comparison table is listed in Table 2-1 [120, 121]. In terms of 

the ventilation rate measurement, Edouard et al. [122] compared the CO2- and SF6- based tracer 

gas approaches and found similar results in terms of the ventilation rates prediction. The results 

predicted by CO2 mass balance approach were 10% - 12% lower than those for SF6. Among 

the tracer gases listed above, CO2 is one of the commonly used tracer gases as it appears to be 

safe, and environmentally friendly, and its concentration can be easily measured with 

inexpensive sensors [60, 123-125]. 

Table 2-1 Comparisons between different tracer gases 

 Inflammability Molecular Measurability Global warming 

potential (GWP) 

CO2 Non-flammable 44 CO2 sensor / gas 

chromatography 

1 

SF6 Non-flammable 146 gas chromatography 23500 

N2O Non-flammable but 

support combustion 

44 gas chromatography 298 

H2 Flammable 2 gas chromatography Insignificant 

He Non-flammable 4 gas chromatography 0 

 

There are three most commonly used approaches for evaluating ventilation conditions using 

tracer gas: concentration decay, concentration injection, and constant concentration [109]. 

When applying these techniques to measure the air change rate, certain assumptions are 

typically made [109]. For instance, a common assumption is that of a well-mixed environment, 

where the tracer gas concentration in the observed room is represented by a single value. 

Simultaneously, it was also assumed that the air change rate remains constant, requiring stable 

ventilation conditions in the measured chamber throughout the assessment period. The 
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accuracy of different calculation approaches is usually evaluated in a single-zone chamber, 

which could provide a well-controlled environment to measure the tracer gas concentrations 

under different mechanical ventilation conditions. Cui et al. [60] investigated the use of CO2 

concentration decay approach for determining the ventilation rates in a test chamber. In their 

study, they tested the ventilation conditions in a range of 7.8 ACH to 40.6 ACH. The study 

suggests minor discrepancies between in-situ CO2 sensors at different places. Besides, the 

multi-point decay method tends to be more accurate than the two-point decay method. Overall, 

it has been suggested that CO2 could serve as an ideal tracer gas for determining indoor 

ventilation rates.  

2.3.2 Bayesian inference in built environment  

In built environment studies, Bayesian inference is a powerful tool that can be used to quantify 

the uncertainty in estimated model parameters [126-129]. This approach considers the inferred 

parameters with prior information, then it uses the likelihood function (based on the 

measurement data) to update prior distribution following Bayes theorem [130, 131]. The 

updated results are the posterior distributions, which are the new beliefs of the interested 

variables. In recent years, with the advancement in computational capabilities and the 

development of Markov Chain Monte Carlo (MCMC) algorithms such as Metropolis-Hastings, 

Gibbs sampling, and Hamiltonian Monte Carlo [132-134], an increasing number of studies in 

the built environment field have begun to utilize this approach to infer parameters in established 

models [135-140]. Zhong et al. [141] developed a logistic regression model for predicting 

occupants’ usage of air-conditioning, and Bayesian inference was used to establish the 

relationship between field measurements and model outputs, the unknown model parameters, 

model bias, and measurement errors were inferred. Zhao et al.[142] attempted to improve the 

fault diagnosis of sensors installed in HVAC systems. The distance function for sensor 

calibration was established, and the posterior distributions of an offsetting constant and 

unknown parameters were inferred accordingly. In 2020, Wang et al. [143] inferred the neutral 

temperature based on an assumed linear relationship between the thermal sensation and 
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temperature. The unavoidable regression error 𝜀𝑖 was also inferred assuming that it follows a 

Gaussian distribution with a variance of σ2. A review of Bayesian inference on building energy 

models was conducted by Hou et al. [144] for clarifying current research progress and 

instructing implementation of this approach. Besides, Lim et al. [145, 146] analyzed the 

influence of meta-model accuracy and energy data on the Bayesian calibration results for 

building energy simulation models.  

In the field of indoor air quality, Wang et al. [147, 148] applied Bayesian approaches to a 

source-detector relationship derived from CFD simulations of airflow in indoor spaces and 

underground utility tunnels to estimate source parameters such as leakage rate and location. 

Septier et al. [149] proposed a Bayesian inference procedure on inverse dispersion modeling 

to tackle the challenging source term estimation (STE) problem, using a Gaussian assumption 

for source emission rates due to its practical performance. Hou et al. [150] utilized Bayesian 

inference on indoor CO2 concentration models to assess ventilation conditions in primary 

schools. Their study identified outdoor ventilation rate, CO2 generation rate, and occupancy 

level as the most sensitive variables affecting indoor CO2 levels. Rahman et al. [151] developed 

a Bayesian inference approach to estimate occupancy distribution in a mechanically ventilated 

multi-room office. Using CO2 concentration data simulated by the CONTAM program, their 

study considered scenarios with and without 5% random noise to account for uncertainty. They 

found a significant increase in RMSE for occupancy estimation as sensor measurement 

uncertainty increased. The study suggested that Bayesian inference could be more effective in 

solving inverse problems if it can handle realistic data with noise. 

To summarize, Bayesian inference has been widely accepted as a powerful approach for 

inferring unknown parameters and quantifying uncertainties. In order to obtain a reasonable 

estimation for the interested parameters, firstly the interpreted model, or to be more specific, 

the input-output relationship needs to be clearly defined [152]. Previous studies also suggested 

that the fluctuations of measurement data may also play a significant role in the estimation 
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accuracy [153]. In the meanwhile, prior knowledge of inferred parameters would also influence 

the predicted outcomes. Uniform distributions and Gaussian distributions are the most 

frequently used assumptions with acceptable performance in real practice [154, 155]. For the 

practices in indoor air quality models, previous researchers have applied it to estimate the 

source information, occupancy, and ventilation rate. It was indicated that the Bayesian 

inference would have a better performance when the real-life measurement noise could be 

considered.      

2.3.3 Stochastic grey-box modeling for the indoor air quality (IAQ) 

Over the years, the stochastic nature of indoor air quality (IAQ) modelling has been gradually 

realized [156-158]. Stochastic grey-box models, which are capable of capturing the 

uncertainties occurring within the system [159], have been identified as highly effective for 

modeling IAQ systems. Stochastic models are mathematical representations used to describe 

systems or processes that exhibit random behavior or inherent randomness [160, 161]. 

Compared with deterministic models, stochastic models will allow for some randomness in 

some of the coefficients in the model, therefore putting uncertainties into consideration [162]. 

To be more specific, parameters will be taken as random variables, and the stochastic models 

will generate different outcomes with the same given inputs. The solution will involve 

randomness and will be in the form of an approximated probability density function (PDF). 

This distinguishes the stochastic models from the traditional deterministic models that we are 

familiar with.  

In mathematics, statistics, and computational modeling, a grey-box model [163] integrates 

partial theoretical structures with empirical data to complete the model. Unlike white-box 

(physically based) models, which rely entirely on theoretical knowledge, and black-box (data-

driven) models, which rely solely on data, grey-box models combine both physical knowledge 

and data-driven insights [164-166]. The parameters of a grey-box model are estimated using 

parameter estimation algorithms and measured data from the system [167, 168]. These models 



17 

 

often incorporate stochastic components to account for uncertainties and variability, such as 

measurement errors and system fluctuations. The choice of parameter estimation algorithm is 

crucial in developing a grey-box model. Common algorithms include maximum likelihood 

estimation (MLE), genetic algorithms (GA), nonlinear least squares, and simplex search [160]. 

For modeling indoor air quality (IAQ), a deterministic mass-balance equation for contaminants 

is often expressed as an ordinary differential equation (ODE). By allowing randomness in some 

coefficients, this equation transforms into a stochastic differential equation (SDE), which more 

accurately reflects real-life scenarios. Researchers have significantly advanced the predictive 

and inferential capabilities of SDE models for IAQ. In 1988, Haghihat et al. [169] introduced 

a predictive stochastic model for indoor air quality, incorporating inputs as random variables 

within the SDE framework. This model effectively captured the variability in predictions of 

contaminant concentrations. The moment equations for mean, variance, and skewness were 

derived using stochastic Itô calculus. The inclusion of a ‘white noise’ term not only accounted 

for system randomness but also ensured a unique and satisfactory solution. Importantly, the 

solution to the SDE model is an Itô stochastic process with both the Markov and strong Markov 

properties [170]. This characteristic implies that future predictions depend solely on the current 

state, making the model highly effective for forecasting. 

Marcel et al. [171] proposed a predictive control approach to model CO2 concentrations using 

a grey-box model, where stochastic differential equations were established based on tracer-gas 

mass balance. The study indicated that the model’s parameterization was suitable and 

applicable, and its predictions were more accurate than those from traditional deterministic 

approaches. Following this, an inferential study estimated the ventilation air change rate using 

the stochastic grey-box model [172]. This study employed a maximum likelihood method for 

parameter estimation, demonstrating the robustness of the approach. Niels et al. [168] further 

developed an estimation scheme for the stochastic grey-box model, utilizing an extended 

Kalman filter, which incorporated both maximum likelihood and maximum a posteriori 
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estimation. The performance of grey-box modeling programs CTSM and MoCaVa was 

evaluated and compared. Despite the substantial potential and benefits of using Bayesian 

inference for parameter estimation in stochastic grey-box models, limited studies have 

investigated this approach to date. 

In summary, traditional ventilation evaluation methods rely on deterministic approaches that 

fail to account for real-life uncertainties. The accuracy of these methods depends on how 

closely real situations match idealized assumptions, the precision and comprehensiveness of 

input data, the thoroughness of model development, and the absence of disturbances during 

measurements. Since idealized conditions are rare in reality, it is crucial to quantify 

uncertainties in the interpretation process. Bayesian inference and stochastic grey-box 

modeling has been suggested to be powerful tools to face this issue, and thus help in 

interpreting indoor ventilation conditions via CO2 measurements. 
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Chapter 3 Developing a CONTAM-quanta 

Approach for Evaluating Multizonal Airborne 

Transmission 

 

 

 

Abstract  

The world has faced tremendous challenges during the COVID-19 pandemic since 2020, and 

effective clean air strategies that mitigate infectious risks indoors have become much more 

essential. Not much information is available for reducing this risk in the whole-building 

multizone context. In this study, a novel approach based on the Wells-Riley model applied to a 

multizone building was proposed to simulate exposure to infectious doses in terms of “quanta”. 

This modeling approach quantifies the relative benefits of different risk mitigation strategies 

so that their effectiveness could be compared. A case study for the US Department of Energy 

Large Office prototype building was conducted to illustrate the approach. The infectious risk 

propagation from the infection source throughout the building was evaluated. Different 

mitigation strategies were implemented, including increasing outdoor air ventilation rates and 

adding air-cleaning devices such as MERV filters and portable air cleaners (PACs) with HEPA 

filters in-room/in-duct germicidal ultraviolet (UV) lights, layering with wearing masks. Results 

showed that to keep the risk of the infection propagating low the best strategy without universal 

masking was the operation of a very large industrial-sized air cleaner; whereas with masking 

all strategies were acceptable. This study contributes to a better understanding of the airborne 

transmission risks in multizone, mechanically ventilated buildings and the how to reduce 

infection risk from a public health perspective of different mitigation strategies. 
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3.1 Introduction 

The COVID-19 pandemic has caused more than 276.1 million people to be infected (including 

more than 5.3 million deaths) worldwide as of December 2021 [173]. Recently, its new variants 

are more contagious and caused more severe symptoms among younger people [174-176], 

driving another surge of cases worldwide. While vaccinations have been underway in many 

countries, there are still many regions and areas in the world that have made little progress in 

controlling the pandemic, such as India and Brazil [177, 178]. It is likely that COVID-19 may 

linger longer than expected, turning into an “endemic” pathogen [179]. Therefore, we must be 

prepared for the possibility that COVID-19 is here to stay and also that other pandemics may 

occur in the future. 

An important aspect of the COVID-19 pandemic is that the infection is transmitted by 

inhalation of airborne particles, or an aerosol, containing the SARS-CoV-2 virus. These 

particles are released by an infected person from their respiratory tract as they are breathing, 

talking, singing, etc. Although the size of the SARS-CoV-2 virus varies from 0.06 to 0.14 µm 

[180], the virus-containing aerosol consists of particles made of virus in a respiratory fluid, 

which is a complex mixture of various organic and inorganic constituents (water, salts, lipids, 

proteins, bacteria, other viruses) suspended in air; thus their size greatly exceeds the diameter 

of the naked virus itself. So far, multiple sizes of airborne virus-laden particles for SARS-CoV-

2 have been detected, ranging from ~ 0.25 µm to 5 µm [181-185], which enables them easily 

transported over long distances. 

Close contact with infected individuals, poor ventilation, no air cleaning, and prolonged 

exposure time indoors are the main reasons for elevated risk of transmission and infection in 

buildings [186]. Building ventilation is essential to dilute and remove aerosol, especially in 

highly occupied spaces. Air cleaning can both inactivate and remove aerosol through 

germicidal ultraviolet light and physical filtration [187]. Short-range and long-range 

transmissions occur indoors, with the difference being that at short range, the airborne particle 
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concentration is much higher. Long-range transmission occurs when the aerosol travels long 

distances and accumulates indoors. Both the Federation of European Heating, Ventilation and 

Air Conditioning Association (REHVA) [188] and the American Society of Heating, 

Refrigerating, and Air Conditioning Engineers (ASHRAE) [189, 190] recognized that building 

ventilation plays an important role to limit the risk of transmission . In the guidance of re-

opening buildings, ASHRAE [191] (as of September 2021) suggests at least the minimum 

amounts of outdoor air for ventilation needs to be adopted, combined with recirculation filters 

higher than MERV13. Or alternatively, the combined effect of outdoor air, filtration and air-

cleaning devices can achieve this level (minimum ventilation + MERV13). In addition, flushing 

rooms before and after occupancy, installing in-room germicidal ultraviolet lights (GUV), and 

equipping by-passing heat recovery sections were also recommended [192]. In comparison, 

REHVA as of April 2021 recommends applying the principle As Low as Reasonably 

Achievable pollutant concentration to set the required ventilation rate and setting the demand-

control ventilation setpoint to 550 ppm CO2 (absolute value) as an indicator of good ventilation. 

They also recommended using as much outdoor air as reasonably possible and open windows 

much more than normal if thermal discomfort is not a concern; the recirculation dampers are 

required to be HEPA filters or at least have a particulate matter efficiency of 80% for an optical 

diameter between 0.3 µm and 1.0 µm based on ISO 16890 [193]) (termed ePM1) as compared 

to the equivalent level of 50% of a MERV 13; germicidal UV lights may be used in return air 

ducts or in rooms if they can be correctly sized, installed, and maintained; and by-passing heat 

recovery section and avoiding potential leaks. Many Canadian guidelines follow ASHRAE, for 

example, the Insititut national de santé publique Quebéc (INSPQ) recommends as of Jan 2022 

applying adequate ventilation to occupied buildings, especially if there are infected individuals 

inside the building [194]. 

These are general building guidelines, whereas specific building type and use 

recommendations are often unavailable because buildings and their systems are variable and 

need to be assessed on a case-by-case basis. To evaluate transmission risk and develop 
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building/space specific mitigation strategies, many studies have been conducted. Jimenez et al. 

developed a publicly available spreadsheet known as the “COVID-19 Aerosol Transmission 

Estimator” (COVID-19 Estimator hereafter). The tool provides information on key input 

parameters based on recent COVID-19 studies and makes it possible to evaluate infection risks 

and mitigation strategies and has been detailed in a paper by Peng et al. [195]. Existing tools, 

e.g., Jimenez et al.’s estimator, have been used to evaluate mitigation measures that reduce 

airborne transmission risk in specific cases, e.g., an indoor choir practice, classrooms, subways, 

supermarkets, and sports stadiums. Dai and Zhao [87] calculated the required ventilation rate 

to lower infection risk under 1% for different exposure times using the Wells-Riley model. 

They modeled typical scenarios and concluded that the minimum required ventilation rate can 

be reduced by a quarter by wearing a mask, which can be achieved by the normal ventilation 

mode in most buildings. Lelieveld et al. [196] estimated the infection risk in several indoor 

environments, concluding that wearing a mask and actively ventilating rooms reduces risk by 

5-10 times and is comparable to high-efficiency particulate filtering. 

A recent study by Peng et al. [195] showed that multiple layers of protection, such as occupancy 

and exposure-time reduction, mask wearing, increased ventilation rates, and air cleaning 

through HEPA filtration and UVGI disinfection, are important to reduce the COVID-19 

infectious risk to low levels. This is particularly true during the current situation of new variants 

such as Omicron. Zhang [197] estimated that by integrating different mitigation strategies for 

schools and offices, including source control, ventilation, and air cleaning strategies, infection 

risk could be reduced by a factor of 9 to 500. Sun and Zhai [198] modified the Wells-Riley 

model by introducing two indices for social distancing and ventilation effectiveness and 

showed that half occupancy density could reduce the infection risk by 20-40% in the first 30 

minutes of an event. In a later study, as an application of Jimenez’s approach, an archetype 

library of twenty-nine building types was developed based on standards and references and 

publicly available data and made available through an interactive website. The urban archetype 

buildings allow decision-makers and managers to compare various mitigation strategies and 
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generalize conclusions when urban-scale data are not readily available. As a demonstration, the 

impacts of six mitigation measures on infection risks in various building types were evaluated. 

Additionally, Shen et al. [199] evaluated the effectiveness of multiple control strategies in 

mitigating the infection risk in different scenarios and building types, including elevated 

outdoor airflow rates, high-efficiency filters, advanced air distribution strategies, standalone 

air cleaning technologies, personal ventilation, and face masks. 

Many of these works have focused on evaluating risks in single zones only. Empirical evidence 

has been reported for aerosol zonal transmission in an Eastern Canadian hospital [200]. Taewon 

et al. [201] have also suggested the possibility of SARS-CoV-2 transmission between different 

floors of an apartment building. In their epidemiology investigation, five of nineteen reported 

cases claimed no direct contact with other residents in the building. In Spain, it was reported 

that bathrooms of older buildings with communal ducts may have allowed aerosol exchanges 

[202]. 

One multizone simulation study by Emmerich et al. [203] applied the simulation software, 

CONTAM, for two infectious agents, a tuberculosis-like particle with a diameter of 0.64 μm 

and a burst emission, and a squamous cell particle with a diameter of 10 μm released at a 

constant generation rate. The study showed the importance of building leakage and the impacts 

of an actual building system operation. Although their study targeted healthcare facilities, it 

illustrated the importance of addressing the interactions of weather conditions, mechanical 

system operations, pressure differentials, and inter-zonal leakages in terms of airborne virus 

transmission. These interactions cannot be addressed systematically without a multizone 

building environment modeling approach. Another multizone contaminant transport simulation 

was also performed in a hospital building to evaluate existing air-cleaning strategies; the 

importance of building leakages was highlighted [204]. Prateek et al. simulated the indoor 

dispersion of airborne SARS-CoV-2 aerosols in a medium office CONTAM model and found 

that the unventilated stairwells are vulnerable to airborne viruses [205]. Shen et al. [199] 

pointed out that their study represented the most typical configurations for a building/space 

https://www.sciencedirect.com/topics/engineering/infectious-agent


24 

 

type, whereas a specific building could be more complicated, and the transmission risk depends 

on specific configurations [197]. On the other hand, a building ventilation renovation is often 

performed at the whole-system scale, so different rooms/buildings with rooms and indoor and 

outdoor interactions are essential. Indeed, a study on multizone buildings for specific building 

types is important with the reopening of public buildings. Building-wide protection instead of 

room-level protection will need to be evaluated with realistic weather conditions, air leakages, 

and occupancies. This will help identify loopholes in the renovation strategies, improve 

mitigation effectiveness and efficiencies, and develop building- and climate-specific, schedule-

specified solutions to meet the variable, post-covid era needs. A few recent multizone 

simulation studies based on Modelica [206, 207] show the importance of pressure controls and 

leakages in a hospital building [206] and HVAC filtrations on energy costs in an office building 

[207]. In addition, López-García et al. linked a zonal ventilation model with a 

multicompartment SIS Markovian model for evaluating the infection of patients within a 

hospital ward [208]. However, the inter-zonal airflows model have not been studied in depth 

in a detailed airflow network by the previous studies [204] and the airborne zonal infection 

transmission in commercial buildings were rarely investigated.  

Conducting multizone analysis of airborne disease transmission in buildings with a more 

physically-realistic setting has many benefits from an occupant's health, safety, and 

productivity perspective and for energy-efficient operation during regular or emergent 

operations such as a pandemic. Many countries and governments have recently realized the 

importance of building ventilation and released new initiatives encouraging retrofits of existing 

buildings for reopening and future epidemics and pandemics. However, investing 

governmental funds to achieve healthy, safe, and energy-efficient goals needs to be addressed, 

considering the complexities of buildings and their multi-factorial interactions. Furthermore, 

the general public guidelines provided in the early and current stages of the pandemic may not 

be adequate. Thus a physically-realistic analysis tailored for different building types and 

climates should be conducted. This paper adopts a multizone simulation tool, CONTAM, to 

https://www.sciencedirect.com/topics/engineering/air-leakage
https://www.sciencedirect.com/topics/engineering/airflow-model
https://www.sciencedirect.com/topics/engineering/retrofit
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model SARS-CoV-2 transmissions in a US DOE prototype building, which represents a generic 

yet realistic building of a specific category in the US, and further estimates exposure risks based 

on the Wells-Riley model by considering the dynamic interactions of many influential 

parameters, including weather, occupancy, system operation, and temperature variation. The 

goal is to evaluate the multizone risks of airborne transmission of viruses and compare 

mitigation strategies in the context of a whole building compared to a single space. The final 

simulation input project and output files of the US DOE prototype buildings are also shared 

with this submission for future readers to apply the same approach to other building types.  

 

3.2 Methodology  

3.2.1 Multizone contaminant transport model  

This study develops and demonstrates a new modeling approach for SARS-CoV-2 transmission 

risk in multizone mechanically ventilated spaces based on CONTAM. The US National 

Institute of Standard and Technology’s multizone airflow and indoor air quality model 

CONTAM [209] implements simulations using DOE prototype commercial building models 

based on EnergyPlus [210]. CONTAM can analyze the complex and dynamic interactions of 

ambient conditions, building system operations, and occupancy behaviors in a more physically-

realistic setting. Although EnergyPlus has an internal “airflow network” model, which is based 

on an earlier version of AIRNET [211] and COMIS [212], it has many limitations and is not 

designed for multizone analysis of pollutant transmission but instead for estimation of 

ventilation-related energy loads. It is also not included in the well-known EnergyPlus models 

of prototype buildings to reduce simulation costs.  

Using this approach, we evaluate the potential for SARS‐CoV‐2 airborne aerosol transmission 

and exposure risk in mechanically ventilated multizone spaces and specifically address: 

• the risks of room-room and floor-floor spreading,  
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• building mechanical system operations, including schedules and flow rates,  

• leakages, pressure differentials, and room temperature schedules, and occupancy 

schedules. 

If room-room spreading is significant, we also use the model to identify potentially vulnerable 

neighbor zones other than the source zone. If room-room spreading is relatively low, we 

investigate the impacts of single-zone mitigation strategies performed in the context of actual 

building operation in a multizone environment. Compared to existing SARS-CoV-2 models 

and tools, such as the single-zone model, FaTIMA [213], and multizone models based on 

Modelica [206, 207], the proposed approach models whole-building multizone exposure risks 

[82]. Some recent multizone studies include risk models, such as Pease et al. [204], which, 

however, did not solve the airflow network. In comparison, the proposed approach covers both 

detailed multizone airflow and risk estimations for the DOE prototype buildings. 

3.2.2 Airborne Transmission Under Various Mitigation Approaches  

In the context of the multizone simulation of airborne transmission, the concentration of virus-

containing aerosol is estimated based on a mass conservation equation, Eq. 3-1 [213]. The time-

change rate of the concentration in zone i Ci(t) with volume V is a function of the generation 

G(t) from an infector located in zone i; external sources Cs(t) from the supply of a mechanical 

ventilation system or Cj(t) from the infiltration of a neighboring zone; the losses Qr for the 

return to the mechanical system, Qlx from the local exhaust such as an exhaust fan, Qac from an 

air cleaner, QUVr from an in-room GUV device, Qdep from the particle deposition, Qdec from the 

virus infectivity decay process, and Qexf from the exfiltration to neighboring zones. The loss 

rates are expressed as a volumetric flow rates [m3/s]. Note that QUVr, Qdep, Qdec are not actually 

flow rates, but are expressed as equivalent flow rates, as if it was a loss due to ventilation. A 

ductwork filter, such as a MERV-rated filter (i.e., 𝜂𝑀𝐸𝑅𝑉) and a duct UVGI device (i.e., 𝜂𝑈𝑉𝑑) 

contribute to lowering the supply concentration level Cs(t) of the mechanical ventilation system 

(Eq.3-2).  

https://www.sciencedirect.com/topics/engineering/mitigation-strategy
https://www.sciencedirect.com/topics/engineering/multizone-model
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The impacts of mask-wearing are evaluated in terms of the mask efficiency Mexh for the 

exhalation of the infector in, and Minh for the inhalation of the susceptible in the exposure 

equation Eq. 3-1 For a given exposure time duration from t1 to t2, Eq. 3-1 estimates the 

susceptible’s exposure particle counts (n) at a breathing rate B and a probability or a percentage 

of mask-wearing Fm, given the airborne particle concentration in the space Ci(t) as calculated 

by Eq. 3-1.   

The exposure particle counts are then used as the input for the estimation of infection risk. 

 

𝑉
𝑑𝐶𝑖

𝑑𝑡
= (1 − 𝑀𝑒𝑥ℎ)𝐺(𝑡) + 𝑄𝑠𝐶𝑠(𝑡) + ∑ 𝑄inf,j𝐶𝑗(𝑡)

𝑛

𝑗=1

− (𝑄𝑟 + 𝑄𝑙𝑥 + 𝜂𝑎𝑐𝑄𝑎𝑐 + 𝑄𝑈𝑉𝑟 + ∑ 𝑄dep,k

𝑠

𝑘=1

+ 𝑄𝑑𝑒𝑐 + ∑ 𝑄exf,j

𝑛

𝑗=1

) 𝐶𝑖(𝑡) 

     

 3-1 

𝑄𝑠𝐶𝑠(𝑡) = [(1 − 𝜂𝑀𝐸𝑅𝑉)𝑄𝑟𝑒𝑐𝐶𝑟𝑒𝑐(𝑡) + 𝑄𝑜𝑎𝐶𝑜𝑎(𝑡)](1 − 𝜂𝑈𝑉𝑑)     3-2 

 

The outdoor air concentration, Coa , is usually zero in this context so  

𝑄𝑠𝐶𝑠(𝑡) = (1 − 𝜂𝑀𝐸𝑅𝑉)𝑄𝑟𝑒𝑐𝐶𝑟𝑒𝑐(𝑡)(1 − 𝜂𝑈𝑉𝑑)       3-3 

 µ = 𝐵(1 − 𝑀𝑖𝑛ℎ × 𝐹𝑚) ∫ 𝐶𝑖(𝑡)𝑑𝑡
𝑡2

𝑡1
    

   3-4 

  

C = active virus concentration in the air [#/m3] with the following subscripts: outdoor air 

through HVAC system, infectious zone i where the infectious person is located, neighbor zone 

j, supply, recirculation of HVAC system;  

Mexh = mask exhale efficiency 

Q = volumetric flow rate [m3/s] with subscripts: supply, return, local exhaust, air cleaner, UV 

light in in-room (equivalent), deposition to interior surfaces (equivalent), virus infectivity 

decay (equivalent),  infiltration from neighbor zone including the ambient, exfiltration to 

neighbor zones including the ambient, recirculation of HVAC system; 
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𝜂 = filtration efficiency with subscripts: air cleaner, MERV filter, and GUV light in HVAC 

duct; 

G = virus generation rate [#/s]; 

s = number of interior surfaces; 

n = number of neighboring zones; 

V = zone volume [m3]; and  

t = time [s]. 

To compare the relative significance of each term, Eq. 3-1 and Eq.3-2 are non-dimensionalized 

by 𝐺(𝑡):  

𝑉

𝐺(𝑡)

𝑑𝐶𝑖

𝑑𝑡
= 1 − 𝑀𝑒𝑥ℎ + (1 − 𝜂𝑀𝐸𝑅𝑉)𝑄𝑟𝑒𝑐𝐶𝑟𝑒𝑐(𝑡)(1 − 𝜂𝑈𝑉𝑑) +

1

𝐺(𝑡)
∑ 𝑄inf,j𝐶𝑗(𝑡)𝑛

𝑗=1 −

1

𝐺(𝑡)
[𝜂𝑎𝑐𝑄𝑎𝑐 + 𝑄𝑈𝑉𝑟 + ∑ 𝑄dep,k

𝑠
𝑘=1 + 𝑄𝑑𝑒𝑐 + ∑ 𝑄exf,j

𝑛
𝑗=1 + 𝑄𝑙𝑥 + 𝑄𝑟]𝐶𝑖(𝑡)    

   3-5 

Note when Crec = Ci 

𝑉

𝐺(𝑡)

𝑑𝐶𝑖

𝑑𝑡
= 1 − 𝑀𝑒𝑥ℎ +

1

𝐺(𝑡)
∑ 𝑄inf,j𝐶𝑗(𝑡)𝑛

𝑗=1 −
1

𝐺(𝑡)
[𝜂𝑎𝑐𝑄𝑎𝑐 + 𝑄𝑈𝑉𝑟 + ∑ 𝑄dep,k

𝑠
𝑘=1 +

𝑄𝑑𝑒𝑐 + ∑ 𝑄exf,j
𝑛
𝑗=1 + 𝑄𝑙𝑥 + 𝑄𝑒𝑥ℎ

𝑜𝑎

+ 𝜂𝑀𝐸𝑅𝑉𝑄𝑟𝑒𝑐 + (1 − 𝜂𝑀𝐸𝑅𝑉)𝜂𝑈𝑉𝑑𝑄𝑟𝑒𝑐] 𝐶𝑖(𝑡)      

   3-6 

In reality, it is often that Crec < Ci because of the mixing in the ductwork and the diluting of the 

aerosol transport process among different zones. When virus aerosol reaches the MERV filter, 

the actual concentration could be much lower than that in the source zone. Thus, the efficacy 

of the centralized duct-level mitigations, e.g., the MERV filter or the in-duct GUV, may 

decrease with the size of the mechanical system because of the long dilution process during 

aerosol transport. Thus, localized virus aerosol mitigation strategies are preferred compared to 

the strategies applied in the ductwork, and larger mechanical systems should have more 

localized solutions inside rooms. Because Crec < Ci in reality, Eq.3-6 may overestimate the 

efficacy of MERV filters and GUV in the ducts.  
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The above dimensionless equations reveal how different mitigation strategies affect airborne 

transmission. Of interest is how significant each term is when compared to each other and to 

the mask efficiency. For an exposure time of ∆𝑡, the mask efficiency M is proportional to other 

building component removal processes generally according to:  

𝑀~
𝑄𝐶

𝐺
       3-7 

Table 3-1 details these equivalent removal efficiencies used in a building to reduce the aerosol 

concentration and thus exposure. 

 

Table 3-1 Estimated equivalent removal efficiencies for different mitigation strategies 

Strategy Masks 
Outdoor 

Air 
PAC 

MERV 

Filter 

In-Room 

GUV 
In-Duct GUV 

Removal 

efficiency 

(%) 

𝑀 
𝑄𝑜𝑎𝐶

𝐺
 

𝜂𝑎𝑐𝑄𝑎𝑐𝐶

𝐺
 

𝜂𝑀𝐸𝑅𝑉𝑄𝑟𝑒𝑐𝐶

𝐺
 

𝑄𝑈𝑉𝑟𝐶

𝐺
 

(1 − 𝜂𝑀𝐸𝑅𝑉)𝜂𝑈𝑉𝑑𝑄𝑟𝑒𝑐𝐶

𝐺
 

 

The air mass balance equation is given in Eq. 3-8 [209]: 

𝑄𝑠 + ∑ 𝑄inf,j
𝑛
𝑗=1 = ∑ 𝑄exf,j

𝑛
𝑗=1 + 𝑄𝑙𝑥 + 𝑄𝑟      3-8 

The infiltration, exfiltration, and internal-zonal airflow are modeled by a power law. An 

example of infiltration from Zone j to Zone i is as shown in Eq. 3-9 [213]. 

𝑄inf,j =
𝐶𝐷𝐴𝐿

1000
√

2

𝜌
(∆𝑃𝑟)0.5−𝑛∆𝑃𝑗,𝑖

𝑛    
   3-9 

CD = flow discharge coefficient; AL = leakage area, m2;  𝜌 = air density, kg/m3;  ∆𝑃𝑟= reference 

pressure difference, Pa;  ∆𝑃𝑗,𝑖=pressure difference between zone j and zone i, Pa; and n = flow 

exponent. 

In a CONTAM simulation, the wall leakage is often divided into three portions vertically to 

represent the leakages at the top edge, middle section, and bottom edge of a wall. The pressure 

difference includes three components: thermal buoyancy, wind pressure (if applicable), and 

zone pressure differences due to HVAC operations. The thermal buoyancy component is a 

function of the zone temperature difference as defined by users (or from an energy simulation 
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software, such as EnergyPlus [210]). The wind pressure component depends on the local 

wind pressure coefficient and is a function of local terrain features, building orientation, and 

reference wind velocity from the weather conditions. In this study, the well-mixed assumption 

of air was made without considering turbulent mixing of airflows in zones. However, in the 

real world, occupants’ activities and heat sources may all interrupt airflow patterns in the room, 

exerting an influence on zonal infiltrations. This could be investigated in future studies using 

the CFD capabilities of CONTAM [214, 215]. 

3.2.3 Airborne Infectious Risk Estimation 

This study developed an approach, which is named “CONTAM-quanta”, to enable the 

CONTAM model to estimate airborne virus transmission in terms of quanta and calculate the 

probability of infection for SARS-CoV-2. The concept of quanta for airborne transmission, a 

hypothetical infectious dose unit, was first proposed by Wells in 1955 [216]. A quantum was 

defined as the inhaled dose needed to infect a person. The number of infected occupants bears 

a Poisson relation to the number of quanta they breathe, which means 63% of occupants will 

be infected when each occupant breathes one quantum on average. This relationship is widely 

known as the Wells-Riley equation [82], which is expressed as follows:    

𝑃 =
C

S
= 1 − e−nq 

 3-10 

where P = the probability of infection, also known as the individual exposure risk [186] , C = 

the number of infection cases, S = the number of susceptible. 

The number of quanta inhaled nq (quanta) is expressed by 

𝑛𝑞 = 𝐵(1 − 𝑀𝑖𝑛ℎ × 𝐹𝑚)𝐶𝑞,𝑎𝑣𝑔∆𝑡  3-11 

Where Cq,avg = the time-average quanta concentration quanta/m3).  

Modeling is often challenged by the uncertainties in the input parameters. Although this thesis 

reports the quanta concentrations in different zones of a building, we recommend the risk 

estimation and the comparison of different risk mitigation strategies be conducted on a relative 

basis. The proposed CONTAM-quanta approach was verified by comparing the predicted 

https://www.sciencedirect.com/topics/engineering/pressure-coefficient
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/wind-velocity
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/actuator
https://www.sciencedirect.com/topics/engineering/airflow-pattern
https://www.sciencedirect.com/topics/engineering/computational-fluid-dynamics
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numerical results to those from the literature. The details can be found in Appendix 1.  

A few studies have investigated the quanta emission rate of SARS-CoV-2 [87, 199]. Buonanno 

et al. [186] proposed an approach that provided a range of estimates for different infection 

scenarios. Here are some assumptions used in this evaluation approach: Firstly, the air in the 

room was assumed to be well-mixed. In addition, this study assumed a generation rate for loud 

speaking of 65 quanta per hour and one infector in the source zone. Detailed assumptions for 

the investigated scenario are described in the next section. We also assumed a quanta deposition 

rate of 0.3 h−1 estimated by Thatcher et al. [217] for particles from 0.55 to 1.54 μm in diameter, 

and a quanta deactivation rate for SARS-CoV-2 of 0.63 h−1 [218]. The removal efficiency of 

air cleaning using filtration that mechanically removes particles from an air stream depends on 

the size of the particles being cleaned. This study used efficiencies for particle sizes between 1 

μm and 3 μm [219]. Minimum efficiency values were adopted for conservative estimation. The 

MERV filter efficiency in the CONTAM simulation was then determined using [220]. For 

example, for the MERV8 filter, its quanta removal efficiency was 20%. The HEPA filter 

efficiency in the PAC was 99% [221]. It is also possible to use CONTAM with 

removal/deposition rates as a function of particle size. The maximum building occupancy was 

based on the corresponding EnergyPlus prototype building [222, 223]. The total number of 

occupants was divided into infectors and susceptibles. Infectors were individuals who could 

generate “quanta” in the building, and the number of susceptibles was equal to total occupancy 

allowed in the building minus the number of infectors. 

To determine the acceptable level for individual exposure risk from a public health perspective 

in which outbreaks need to be minimized, the basic reproduction number R0 was used. The 

basic reproduction number is defined as the expected secondary infections (C) caused by a 

typical infector (I) among a completely susceptible population (R0 = C/I) [224]. Wells’ study 

of airborne spread of measles in an elementary school in 1978 also used this approach. When 

R0 > 1, the virus may spread in the population [82], so the target exposure risk level was set to 

R0 < 1. This metric has also been applied in other studies [87, 88, 224], including a study tracing 

https://www.sciencedirect.com/topics/engineering/deposition-rate
https://www.sciencedirect.com/topics/engineering/deposition-rate
https://www.sciencedirect.com/topics/engineering/susceptibles
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airborne SARS-CoV-2 transmission in public buses and subway trains [225]. Note that because 

of the uncertainties of the model, R0 > 1 does not imply there will be a 100% chance of infection. 

From the probability point of view, it should be interpreted on a relative basis; for example, a 

lower R0 means less chance of the community virus transmission or vice versa. 

3.3 Case Study – US DOE Large Office Prototype Building 

3.3.1 Simulation Model and Inputs  

The US DOE prototype commercial building models were created to assess building energy 

efficiency measures and the development of energy standards and codes. Sixteen prototype 

building types were developed to represent 70% of the commercial building stock [222]. The 

corresponding CONTAM models of these DOE prototype building models were later created 

for building ventilation and IAQ analysis [226]. Building parameters such as ventilation, 

occupancy, and building envelope airtightness were defined following the ASHRAE Standard 

90.1-2013 [227] and ASHRAE Standard 62.1-2013 [223]. The airflow paths and possible 

mitigation strategies are illustrated in Figure 3-1. This study chose the Large Office prototype 

building model to demonstrate the CONTAM-quanta approach (Figure 3-2).  

 

https://www.sciencedirect.com/topics/engineering/subways
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Figure 3-1. Schematic of airborne transmission routes 

 

The building has 12 floors, a footprint of 3563 m2, one basement, and a flat roof. Except the 

basement, each floor has a central core zone (2324 m2) with one staircase, elevator, and 

restroom located in the middle of the zone, a data center, and the perimeter zones in four 

directions. The height from floor to ceiling is 2.74 m and the floor-to-floor height is 4.0 m 

because of the additional height of the plenum on each floor. Each floor is connected to the top 

and bottom floors with the staircases and elevators and floor/ceiling leakages, and to the ceiling 

plenum through one return grill of each zone. Internal wall leakages between every two zones 

are defined as the three leakage paths at the top, middle and bottom locations. Large internal 

leakage paths are important and include the leakage path between each perimeter zone and the 

core zone (as shown by the colored circles in Figure 3-2 (a)), which is 50% of the wall area; 

the leakage paths between the restroom (transfer grille), staircase, elevator and the core zone 

(as shown by the arrows in Figure 3-2 (b)); and a leakage path representing the return air grill 

from the core zone to the plenum. 

The HVAC system includes four individual variable-air-volume (VAV) systems serving the 
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basement, the 1st floor, the 2nd–11th floors, and the 12th floor as shown in Figure 3-2 (a) with 

different supply, return and outdoor air (OA) rates.  

 

 

(a)  
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(b)  

 

(c) 

Figure 3-2. (a) Drawing of the DOE large office prototype building with ventilation air 

flow rates and outdoor air percentage; (b) CONTAM model schematic of the 1st-floor; and (c) 

drawing of the 1st -floor plenum with the return grille and HVAC return [228]. 
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The simulations were conducted for one weekday, a Typical Meteorological Year version 3 

(TMY3) weather winter design day (December 21st), in Chicago, with the hourly weather in 

Figure 3-3.  Each floor was assumed to have 134 occupants in each core zone. One infected 

person was assumed to be in the 1st floor core during working hours (8:00–17:00) without 

leaving the space. The assumption that the infected person did not leave the building was 

probably the worst-case scenario with the highest exposure risk. The core zone was selected 

because typically most of the office staff stay here during working hours. The first floor was 

chosen as vertical transmission risks exist in the elevator shaft and stairs (Figure 3-7). Vertical 

transmission evidence for the SARS-CoV-2 has been previously reported [201]. The VAV 

system started at 6:00 and turned off at 22:00. The CONTAM model was created to match the 

operation and occupancy schedules of the EnergyPlus model. The maximum design flow 

rates determined by the EnergyPlus simulation were used as inputs for the HVAC supply rates 

in the CONTAM model [229]. 

 

Figure 3-3. Weather parameters for Chicago (December 21st)[222].  

https://www.sciencedirect.com/topics/engineering/energyplus
https://www.sciencedirect.com/topics/engineering/design-flow-rate
https://www.sciencedirect.com/topics/engineering/design-flow-rate
https://www.sciencedirect.com/topics/engineering/energyplus-simulation
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Table 3-2 Input parameters for the CONTAM-quanta simulation of the DOE Large Office 

prototype building 1st-floor core zone 

Inputs Parameters References 

Zone geometry Volume (m3)/ 

Area (m2) 

 

Core 6376 / 2324 [229] 

 Perimeter West 

(Perimeter East)  

608 / 222 

 Perimeter North 

(Perimeter South) 

803 / 293 

 Restroom 277/101 

 Stairs (Elevator) 75.7/27.6 

 Data Center 98.6/36.0 

Zone occupancy Infector 1 

133 

- 

Susceptibles [229] 

Initial quanta 

concentration 

Concentration (quanta/m3) 0 - 

Quanta generation Quanta generation rate (quanta/h) 65 [186] 

Breathing rate (m3/h) 0.72 [230] 

Generation duration  8:00 -17:00 (9h) - 

Deposition and 

deactivation 

Surface deposition rate 0.3 h-1 [217, 231]  

 Particle deactivation rate 0.63 h-1 [218] 

Germicidal  in-room GUV removal rate 4 h-1 [232] 

ultraviolet 

light 

in-duct GUV removal efficiency 87% [233] 

 MERV8 removal efficiency 20% [220] 

MERV removal  MERV11 removal efficiency 65% [220] 

 MERV13 removal efficiency  85% [220] 

PAC airflow rates PAC1 (CADR) 0.46 m3/s  

From 

manufacturer 

 PAC2 – 18SF (CADR) 1 m3/s  

 PAC3 – 23SF (CADR) 1.45m3/s  

 PAC4 – FN1AAF006000 (CADR) 17 m3/s  

 HEPA removal efficiency  99% [221] 

Mask Mask wearing percentage 0 or 100% - 

 Exhale removal efficiency 50% 

30% 

[234] 

 Inhale removal efficiency  
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Table 3-2 summarizes the key simulation parameters used in this study. The effectiveness of 

different strategies on mitigating virus aerosol exposure risks was investigated, including 

increasing outdoor air ventilation rates, equipping the building with air-cleaning devices such 

as MERV filters, PACs with HEPA filters, and in-room/in-duct GUV, and layering with 

personal mask-wearing. The baseline OA rate from the DOE prototype building model (see the 

table in Figure 3-2 (a)) with a MERV8 filter was defined as the baseline (BL) case “MERV8 + 

BL”; whereas the total supply and return flow rates of the VAV systems were kept the same for 

all strategies.  

3.3.2 Simulation results 

3.3.2.1 Room-to-room quanta transmissions and exposure risks 

The multizone analysis starts with understanding how the airflow patterns on the same floor 

for the baseline case (MERV8+BL), (i.e., inter-zonal airflows between the core zone and the 

neighbor zones) impact room-to-room quanta transmission. The ambient environmental 

conditions and the operation of HVAC systems impact the zonal airflows. Figure 3-4 (a) 

illustrates the transient airflows for the five paths (Figure 3-2) on the 1st floor with the positive 

values for the inflows to the core zone. The airflow of the Perimeter South zone varies the most, 

whereas other flows are more stable throughout the day. The inter-zonal outflows tend to be 

relatively more steady than the inflows, which were more subject to the ambient conditions 

because they were connected to the perimeter zones. Figure 3-4 (b) shows the nine-hour 

average inter-zonal total airflow rates between two zones of the 1st floor: the average of the 

summation of all airflow paths between the two zones with the airflow directions indicated by 

the arrows (Figure 3-4 (b)). Although the HVAC system pressurizes the building during the 

winter (the return is 90% of the supply as shown by Figure 3-2 (a)), three zones (Perimeter 

North, Perimeter West, and Perimeter South) all have the inflows to the Core Zone as a result 

of the dominating wind direction of the day of 180˚ ~ 240˚ (Southwest winds) and 4 ~ 8 m/s. 

The outflows from the Core Zone to the Restroom, Elevator, and Stair were significantly higher 

than other paths due to the combined impacts of the pressurization of the HVAC system and 
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the stack effects in these spaces. The Restroom is even more underpressurized due to an exhaust 

fan operating from 6:00 to 22:00 at 0.15 m3/s. Another potential transmission route is the return 

grilles at the ceiling of the 1st floor to the plenum (Figure 3-2 (c)). Because all return airflows 

go through the plenume return grilles back to the VAV systems, the leakages in the plenum also 

potentially contribute to airborne transmision to the stairs and the elevators as indicated by the 

airflow directions in Figure 3-2 (c). This would result in potential floor-floor transmissions 

through these vertical spaces.  

 

(a) 
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(b) 

Figure 3-4. (a) Transient airflow rates for selected paths (positive values indicate airflows into 

the Core Zone, negative values indicate airflows out of the Core Zone); (b) average internal-

zonal airflow rates. The zone locations can be found in Figure 3-2. 

Figure 3-5 (a) reports the simulated transient quanta concentrations in all zones of the 1st floor 

when the infector was located in the 1st-floor Core Zone (Figure 3-2 (b)). For the baseline case 

(MERV8+BL OA), during the initial two hours (8:00 – 10:00), the quanta concentration 

accumulated in the zones rapidly; it reached steady state after 10:00. The average quanta 

concentration in the Core zone was more than twice the levels of other zones except for the 

Restroom, which has the 2nd highest quanta level. Figure 3-5 (b) shows the accumulated 

individual exposure risk for an occupant in different zones on the 1st floor over the working 

hours. At the end of the nine working hours, the infection risk is less than 2% in the Core Zone, 

1.6% in the Restroom, about 1% in the Elevator, Stair and Datacenter, and less than 0.7% in all 

other ones of the 1st floor. 
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(a) 

 

(b) 
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(c) 

Figure 3-5. (a) Airborne quanta concentrations as a function of time in the zones on the 1st floor; (b) 

transient exposure risks for an occupant in the zones of the 1st floor; and (c) airborne quanta 

distribution on the 1st floor. 

 

Figure 3-5 (c) explains the fate of all the airborne quanta at the end of working hours on the 1st 

floor. More than half of the airborne quanta stays in the source zone (Core). Because all air 

returns to the VAV system through the plenum, this explains the non-zero concentration levels 

in the Perimeter North, West and South despite only inflows from these zones to the Core Zone.  

In other words, these quanta concentrations mostly come from the return air from the Core 

Zone through the VAV system. This shows that a poorly-balanced pressure distribution could 

create potential inter-zonal transmission risks. Thus, it is preferred to avoid spaces with 

intensively negative pressures, preventing the possible transmission risk. In summary, the 

room-room transmission routes in the 1st floor were: Core→Restroom through the restroom 

return grill; Core→Staircase and Core→Elevator through leakage paths; Core→Data Center 

through internal partition path; and Core→Perimeter Zones through the plenum returns.  
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3.3.2.2 Floor-Floor quanta transmissions and exposure risks 

The HVAC pressurization and stack effect in the staircase and elevator shafts could contribute 

to floor-floor transmission, but the 1st floor ventilation does not because it has its own 

individual VAV system. Here, for the baseline case (MERV8+BL OA), we report the relative 

exposure risks  of all zones in the building compared to the risk in the 1st-floor Core Zone 

when the infected person is in the 1st-floor Core Zone (i.e., Pfloor-zone/P1st-Core) in Figure 3-6. At 

the 1st floor, the 1st-floor Core Zone has the highest exposure risk, followed by the Restroom, 

Elevator and Stair. On the higher floors, the elevator and stair are the most infective zones. 

Noteably, at the 7th floor, the Core and Restroom zones’ risks start to increase and the the 12th 

floor risk gets a suprising rebound.  

 

Figure 3-6. Relative risks of all floors and zones compared to the 1st-floor zones (Pfloor/P1st-Core x 

100%).   
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Figure 3-7. Average pressure profiles of the Core Zones, Stairs and Elevators.  

 

The above observations may be explained by the pressure profiles in the stairs and elevators as 

shown by Figure 3-7. Higher risks of the elevators than that of stairs at the lower floors (<the 

4th floor) can be explained by their higher inflows to the elevators (Figure 3-4 (b)) and the 

stronger stack effect than the stairs (Figure 3-7). However, the elevator risks continuously 

decrease with the height because the stronger stack effect tends to drive more non-polluted air 

from the neighbor zones into the elevators, thus helping to dilute the space. This continues until 

the 7th floor, where the airflow from the stairs starts to enter the Core zones carrying the 

airborne quanta because the neutral pressure plane (NPP) of the stairs is established above the 

6th floor. This explains why the restrooms above the 6th floor have non-zero risks. The elevator 

NPP forms on the 11th floor, above which the airborne quanta of both the stairs and elevators 

start to infiltrate to the 12th floor. As a result, the Core Zone and Restroom of the 12th floor have 

higher risks than lower floors. These results show that the Floor-Floor transmission is possible 

as a result of the dynamics of pressure distributions in a whole building, and higher floors could 

become vulnerable due to the combined impacts of the stack effects and pressurization of the 
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HVAC systems. To compare the multizone to the single-zone analysis further, Appendix 2 

discusses the difference between the CONTAM-quanta approach and other single-zone models 

(i.e., COVID19 Estimator, REHVA calculator, FaTIMA), and multizone models (i.e., 

CONTAM without the quanta approach).  

3.3.2.3 Mitigations of exposure risk  

The previous analysis shows that the most vulnerable space is where the infective source is 

located in 1st-floor Core Zone, which is also the most populated. Therefore, the following risk 

mitigation analysis is focused on this zone. The results of predicted exposure risks for the 

occupants’ nine-hour exposures in the 1st-floor Core Zone are demonstrated in Figure 3-8 (a). 

The acceptable risk level (R0 =1) was calculated to be 0.75% for this zone. For the baseline 

case, the exposure risk was estimated to be 1.83% without mask-wearing. By increasing the 

OA rate to 1.3BL, 2BL or 100% fresh air, the exposure risk would drop to 1.79%, 1.66%, and 

1.12%, respectively. The upgrade of the MERV8 filter to a MERV11 or MERV13 reduces the 

risk to 1.30% and 1.22%. Adding germicidal GUV, the in-duct GUV would decrease the 

baseline exposure risk to 1.19%, while the room GUV could lower the risk to 0.89%. In 

addition, adding PACs would also contribute to effective mitigation. The use of PACs (with 

recirculating airflow rates of 0.46m3/s, 1 m3/s, 1.45m3/s) would reduce the exposure risks to 

1.73%, 1.60% and 1.51%, respectively. The largest PAC (17m3/s) would help limit the risk to 

0.51%, achieving the acceptable level (0.75%). In comparison, wearing masks is the most 

effective and can keep R0 < 1 for all evaluated mitigation strategies. 

It should be noted that the risk estimation was conducted mainly for comparing different 

mitigation strategies. For each of the mitigation strategies, the relative risk reduction compared 

to the baseline is shown in Figure 3-8 (b). Upgrading the MERV filters from MERV8 to 

MERV11 and MERV13 tend to be more effective than adding small capacity PACs (0.46 to 

1.45 m3/s). The use of MERV13 and in-duct germicidal UV with the Baseline OA provides 

similar performance to that of 100% OA. When the 100% OA strategy (the yellow dotted line) 
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is adopted, the most relative reduction compared to baseline that can be achieved is 40%; to 

reduce the risk even further, in-zone strategies need to be adopted also such as operating PACs 

or in-room germicidal UV light.    

 

(a) 

 

(b)  

Figure 3-8. a) Individual exposure risks under different combined mitigation strategies; b) relative risk 

reduction compared to the baseline case (the baseline case is denoted by the red dot). Each line is for a 

different OA rate. As mitigation strategies are adopted the relative risk reduction increases.  
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3.4 Discussion  

For the evaluated mitigation strategies, Figure 3-8 shows that doubling outdoor air ventilation 

did not effectively reduce exposure risks unless 100% OA was applied. When the outdoor air 

percentage was adopted as 100%, the exposure risk was reduced to 1.12%, 40% down from the 

baseline case. However, operating the HVAC system with 100% fresh air raises concerns over 

energy cost and thermal comfort indoors. It is relatively difficult to implement high OA 

ventilation rates in many existing systems. In reality, some existing buildings implemented a 

“Pandemic Mode” operation by only increasing OA rates 1.3-2 times the baseline ventilation 

rates. In the current study, the analysis shows that the relative reduction in risk achieved by 

increasing OA flow rates by 1.3 or 2 were minimal when compared to other strategies.  

Other active mitigation strategies should be implemented to reduce the risk level further, for 

example, small retrofits that include upgrading MERV filters, and/or adding PACs or 

germicidal UV lights into the building zones. In this study, three types of MERV filters were 

investigated: MERV8, MERV11, and MERV13. Results suggest that upgrading from MERV8 

to MERV11 reduced substantially individual exposure risks. For the baseline outdoor air 

ventilation scenarios, exposure risks fell by 29% for MERV11 and 36% for MERV13. Thus, 

upgrading MERV filters is effective, though a trade-off between risk mitigation and economic 

cost needs to be considered due to the elevated pressure drops with higher MERV filters. In the 

Large Office building of this study, a MERV11 upgrade combined with other measures, e.g., 

PAC and germicidal UV, was effective at achieving the desired risk reduction.  

Adding PACs or in-room GUV increased the total equivalent air change rate to the Core Zone 

without interfering with the existing HVAC system operation. The portable air cleaners 

evaluated in this study covered a large range of capacity, from 0.5 to 42.5 m3/s, which were 

based on the information provided by the industrial collaborator. As illustrated in Table 3-2, 

these PACs were equipped with filters with a single-pass efficiency of 99%. Among the 

investigated products, it was found that large capacity PACs (>17m3/s ) effectively lowered 
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exposure risks below R0 < 1. Thus, the capacity of the PAC should fit the room size; for large 

volume areas, large capacity PACs or multiple small capacity PACs can be considered. Similar 

observations also apply to the GUV devices: in-room GUV in general performed better than 

the in-duct GUV devices in the current study.  

 

 

Figure 3-9. Comparison of sources and losses of virus aerosol in the Large Office building core zone 

to mask efficiency (M ~ QC/G). 

 

Multizone modeling also enables an in-depth analysis of the sources of viral aerosol in the core 

zone because of inter-zonal airflows and losses in the core due to mitigation measures.  The 

parameter 
𝑄𝐶

𝐺
  (Eq. 3-7) is compared to the efficacy of masking (M in Eq.3-7) to better 

understand whole building mitigation strategies compared to individual strategies and to 

sources. The comparison is reasonable because mask-wearing is commonly recognized as one 

of the most effective strategies and thus can be used as a baseline for evaluating the risk 

mitigation efficacy, it however relies on the individual to wear a mask compared to the building 

strategy that relies on building systems design and operation. This is achieved by summing the 
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airflows, Q, and time-dependent zone concentrations, C, for all components as illustrated by 

Eq.3-6. Figure 3-9 shows that the “Reentry” (Aerosols re-enter the Core Zone from neighboring 

zones) was 1.4%. This means that, 1.4% of all generated quanta re-entered the Core Zone. 

Much of generated airborne quanta stayed in the Core Zone (3.3%), and 2.5% remained in all 

the neighboring zones. The baseline OA rates would flush 18.6% of all generated, and for 

MERV8 filter, it would filtrate 22.8%. The “Core Zone Losses” and “Neighbor Zone Losses”, 

which include the virus’ natural decay, deposition, and exfiltration in the Core Zone and all 

neighbor zones, contribute to a loss of 26.4% and 29.7% of all generated quanta, respectively. 

As a comparison, if mask-wearing was enforced, the most effective reduction would be 50%, 

which is the typical efficiency value for a mask [235]. Therefore, Figure 3-9 shows that mask-

wearing would be more effective than the combined effects of the baseline OA and MERV 8 in 

this case study. In addition, it also suggested that although there may be inter-zonal spreading 

in the building, the losses in the neighbor zones would also be high.  

For all evaluations in this study, the air within the zones was assumed to be well-mixed. 

However, this assumption may simplify the real exposures in buildings. There could be 

additional turbulent mixing that happens within and between internal zones in the building due 

to heat sources, movement of occupants, flows created by doors opening, etc. Differential 

exposure risks for individuals at different locations in the zone could be considered in future 

studies by utilizing the CFD capabilities of CONTAM [50, 215]. 

Office environments are often crowded, poorly ventilated places where staff share the space 

for prolonged working hours. It has been reported that work environments are one of the most 

common venues for SARS-CoV-2 transmission [236]. An epidemiological investigation of a 

superspreading event in an open-plan office in Switzerland found that one index person in the 

office directly infected 67–83% of the team members [237]. In another study conducted in 

England, the attack rate was reported to be 55% in a public-facing office [238]. Though the 

events, office configurations and room ventilation conditions varied, these evaluations suggest 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/actuator
https://www.sciencedirect.com/topics/engineering/computational-fluid-dynamics
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that, in real working situations, the transmission risks could be high. Infected cases reported by 

these studies not only worked at their desks, but also attended meetings in conference rooms 

during working hours. 

Prateek et al. used steady-state simulations showing that stairwells can potentially experience 

higher aerosol concentrations than other conditioned zones of an office building [95]. In our 

study, exposure risks in stairs and elevator shafts of the Large Office building were also found 

to be higher than that for perimeter zones and the data center (Figure 3-5 (a)). This suggests 

that virus-laden aerosol could transmit to stair and elevator shafts, where mitigations such as 

PACs and GUV lights should be considered. Zhang evaluated the effect of integrated IAQ 

strategies (source control, ventilation, and air cleaning) on reducing infection risks in open-

plan offices [197]. In this evaluation, a risk reduction factor (RRF) was estimated for each of 

the strategies such as doubling the ventilation, adding semi-open partitions etc. Compared with 

the RRF, this study provides a more precise quantification of cleaning performance for 

mitigation strategies and enables a reasonable comparison. In another assessment of laboratory 

and office environments of SARS-CoV-2 transmission, the typical office room (two air 

exchanges per hour) was suggested to be at least vacant for 2.5 h [239]. However, the 

assessment of pre-flush strategies was not included in this study, and it can be investigated in 

the future. 

Though the approach proposed by this study could serve as an effective way for designing 

mitigation strategies in buildings, uncertainties cannot be avoided in risk assessments. The 

classic Wells-Riley model has been used to evaluate airborne exposure risks since the 1970s 

[82], helping the public understand airborne infection risks. However, the accurate estimation 

of the “quanta” generation rate remains unclear, although great efforts have been made to 

understand the quanta generation rate for SARS-CoV-2 under different conditions. 

Uncertainties in estimated input parameters can also contribute to the variation in risk 

estimation, such as breathing rates, filter efficiency, GUV inactivation efficiency, mask 

https://www.sciencedirect.com/topics/engineering/elevator-shaft
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/data-center
https://www.sciencedirect.com/topics/engineering/ultraviolet-light
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inhale/exhale efficiency, and other key parameters. Therefore, uncertainties and the stochastic 

nature of the input parameters could be included in future studies, such as was done in the 

Skagit Valley Chorale Outbreak study [240]. 

3.5 Conclusions  

Under the health threats posed by the SARS-CoV-2 virus and, in particular, its highly infectious 

new variants, aerosol transmission indoors must be addressed. Engineering control strategies 

can improve the indoor air quality in a building. To assess what strategy is most effective, a 

modeling approach was derived in this study that could be applied to many different building 

types and an analysis was undertaken to comprehensively compared mitigation strategies for a 

DOE prototype office building. The modeling approach described by this study allows for an 

evaluation of the whole building as a multizone structure, and the effectiveness of ventilation 

and air-cleaning components in the building could be effectively evaluated and compared. The 

Large Office scenario simulated in this study served as a good example for implementing 

mitigation strategies. For the baseline case, the zone-to-zone and floor-to-floor spread were 

possible though the risk was significantly lower in all zones compared to the source zone. The 

use of a duct-treatment strategy could approach the effectiveness of 100% outdoor air, and 

adding room cleaning devices such as portable air cleaners and in-room germicidal UV light 

could further enhance the air cleaning. More building types could be analyzed in future studies.  

This study demonstrates how the multi-zone analysis of a DOE prototype building could be 

conducted and explained the detailed analysis steps of addressing airflows, pressure profiles, 

airborne quanta levels, and associated transmission risks. The combined effects of the HVAC 

system operation (e.g., winter pressurization), stack effect, and the ambient weather conditions 

could play a significant role in the potential whole building transmission, even to a space far 

away from the infected space. The single-zone or box-type models cannot achieve this level of 

understanding because they address the airborne quanta transmission assuming that the whole 

building is a single zone.  
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The purpose of this risk analysis was not to predict the absolute level of risk in infection in a 

building, but rather to compare the relative reduction of risks among different mitigation 

strategies. The current study focuses on one building type. Building-specific studies are 

important and should be conducted considering the complexities of different building uses and 

occupancies. Similar studies can be conducted for other DOE multizone prototype building 

types, such as hotels, schools, retail stores and hospitals, and with different climate zones. For 

achieving this purpose, the current study also shares all the input files with detailed settings of 

the Large Office prototype building with the community to facilitate future studies.
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Chapter 4 Multizone CONTAM-quanta 

Modeling of SARS-CoV-2 Airborne 

Transmission and Infection Mitigation 

Strategies in Office, Hotel, Retail, and School 

Buildings 

 

Abstract 

Airborne transmission of SARS-CoV-2 mostly occurs indoors, and effective mitigation 

strategies for specific building types are needed. Most guidance provided during the pandemic 

focused on general strategies that may not be applicable for all buildings. A systematic 

evaluation of infection risk mitigation strategies for different public and commercial buildings 

would facilitate their reopening process as well as post-pandemic operation. This study aims at 

evaluating engineering mitigation strategies for five selected US Department of Energy 

prototype commercial buildings (i.e., Medium Office, Large Office, Small Hotel, Stand-Alone 

Retail, and Secondary School). The evaluation applied the multizone airflow and contaminant 

simulation software, CONTAM, with a newly developed CONTAM-quanta approach for 

infection risk assessment. The zone-to-zone quanta transmission and quanta fate were analyzed. 

The effectiveness of mechanical ventilation, and in-duct and in-room air treatment mitigation 

strategies were evaluated and compared. The efficacy of mitigation strategies was evaluated 

for full, 75%, 50% and 25% of design occupancy of these buildings under no-mask and mask-

wearing conditions. Results suggested that for small spaces, in-duct air treatment would be 

insufficient for mitigating infection risks and additional in-room treatment devices would be 

needed. To avoid assessing mitigation strategies by simulating every building configuration, 

correlations of individual infection risk as a function of building mitigation parameters were 

developed upon extensive parametric studies. 
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4.1 Introduction 

The COVID-19 pandemic has highlighted the importance of airborne respiratory infection 

control in indoor environments [241]. Insufficient ventilation designs and improper operations 

in crowded public buildings often lead to outbreaks and superspreading events, which raised 

significant concerns about occupants’ indoor exposure. Shutdowns were implemented for 

public shared places in many countries, and individuals around the world were forced to “stay 

at home.” Vaccines are more available, and many countries are under substantial socio-

economic pressures, which leads to a return to pre-pandemic life and reopening more public 

spaces. Recently, many countries have passed the peak of the wave of the new SARS-CoV-2 

variants [242], which promotes the easing of restrictions and the turning of policies to the long-

term management of COVID-19. In the U.S., many states have lifted capacity restrictions on 

indoor activities, including for restaurants, schools, and offices [243]. Meanwhile, large indoor 

gatherings have begun to be permitted. Capacity limits in Canada have also been lifted in all 

indoor public settings [244]. Similar actions and policies were also implemented in England 

and European countries [245]. The reopening of public spaces while at the same time reducing 

risk of transmission poses challenges [246]. Engineering mitigation strategies could serve as 

an efficient way of reducing the airborne transmission of pathogens of viruses such as SARS-

CoV-2, measles, tuberculosis (TB), chickenpox, influenza etc. in public spaces [247]. The 

virus-laden aerosols in the air could be diluted via outdoor air, trapped by filters, or disinfected 

by germicidal ultraviolet light (GUV). Great attention should thus be paid to understand how 

much outdoor ventilation air is sufficient to control airborne disease transmission indifferent 

types of buildings, what air treatment options should be implemented, and how to control 

infection risks with adequate measures, especially in the current post-pandemic era. 

Risk assessment is an effective way of identifying the effectiveness of ventilation strategies on 

controlling the infection risks. Since the outbreak of the COVID-19 pandemic, extensive efforts 

have been made to quantify the risk of SARS-CoV-2 transmission. The airborne quanta 
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emission rate was evaluated for different conditions of viral load, respiratory, and activity levels 

[186], providing valuable input information of the classic Wells-Riley risk assessment models 

[82]. Indicators of infection risk were proposed to control the airborne transmission of disease 

indoors [90]. Dai and Zhao [87] evaluated the influence of air change rate on infection risks of 

a bus, classroom, aircraft cabin, and office. Shen et al. [88] investigated the effectiveness of 

different mitigation strategies in indoor areas such as long-term care facilities, schools, meat 

plants, buses, taxis, etc. Additionally, risks of SARS-CoV-2 infection were evaluated in 

classrooms under different speaking, class duration, and voice modulation scenarios [248]. A 

simulation study was conducted to compare the risk reduction effectiveness of long-range 

airborne exposure of SARS-CoV-2 between displacement and mixed-mode ventilation in a 

small office [89, 249]. Based on the assumption that aerosols are uniformly distributed in the 

room, these studies considered the changes in ventilation rate, exposure time, quanta generation 

rate, and volume for different indoor environments; their evaluations, however, only focus on 

single-zone scenarios without considering buildings with multiple floors and rooms that zone-

to-zone transmission could happen.  

Mitigation strategies that have been proposed for buildings include ventilation, filtration, 

germicidal ultraviolet light GUV, and personal protective equipment (PPE). Many studies have 

focused on health-care facilities [93] and/or single-zone building situations, whereas relevant 

investigations for multizone commercial buildings are limited [204, 205, 250, 251]. ASHRAE 

and REHVA have issued their guidelines in the COVID-19 pandemic context [252, 253]. 

General recommendations have been made for heating, ventilating, and air-conditioning 

(HVAC) operations, outdoor air settings, and filters [99]. However, these recommendations 

may not provide performance-based information to inform mitigation strategies in a specific 

building type. The most effective mitigation strategy may vary significantly for different types 

of buildings, configurations, occupancy schedules, HVAC systems, and operation settings. 

Multizone aerosol transmission patterns should be considered when proposing detailed 

mitigation strategies for a specific type of building and/or specific zones in a building, 
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especially during the reopening stage of commercial buildings.  

Multizone building simulations enable a deeper insight into aerosol transmission potential in 

real buildings, and the influence of different mitigation strategies could be considered 

systematically within a whole building context. In addition to considering the building leakage, 

multizone simulations would also enable the evaluation of average and transient contaminant 

concentrations during occupants’ exposure, and therefore help evaluate dynamic infection risks. 

Multizone evaluations of airflow and contaminant dispersion were proposed as early as the 

1980s [43, 254]. Based on the concept of an airflow network, a building is comprised of an 

assembly of interconnected flow elements in a comprehensive process of mass transport both 

inside and outside of a building and thus driving the dispersal of contaminants throughout the 

building. In 2004, this theory was used to analyze the virus-laden aerosol transmission between 

floors through door and window leakages of a SARS outbreak in Hong Kong [255]. Later in 

2013, a multizone contaminant transport simulation was performed in a hospital building to 

evaluate existing air-cleaning strategies; the importance of the building leakage and actual 

building operations was highlighted [61].  

The objective of this study was to investigate how engineering mitigation strategies, layered 

with wearing masks, impact potential long-range SARS-CoV-2 aerosol transmission risks in 

typical commercial buildings. The multizone airflow and contaminant simulation software, 

CONTAM, developed by the US National Institute of Standards and Technology, was used for 

the modeling and analysis [256]. Aerosol dispersion was simulated, and infection transmission 

risk was assessed for five prototype commercial buildings (Medium Office, Large Office, Stand 

Alone Retail, Small Hotel, and Secondary School). These building models were developed 

with detailed building plans, typical HVAC schedules, and reasonable maximum occupancy 

for each room [226]. This study applied a novel approach – CONTAM-quanta [257] to assess 

the multizone SARS-CoV-2 infection risks based on the Wells-Riley model [82, 258] for 

estimating infection risks. A correlation was developed based on multiple CONTAM whole-
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building simulations of the DOE prototype buildings to better understand the fundamental 

factors governing the relation between the airborne transmission of SARS-CoV-2 risk and 

mitigation measures in multizone buildings.    

 

4.2 Methodologies 

4.2.1 The CONTAM-quanta approach for evaluating infection risks 

In this study, the concentration of SARS-CoV-2 aerosol was modeled in the CONTAM program 

as "quanta", where the “quanta” is defined as a contaminant species. This approach combines 

the CONTAM multizonal modeling program with the classic Wells-Riley model for infection 

risks predictions. This modeling method is detailed in our previous study [259] using a Large 

Office scenario, and named the CONTAM-quanta approach. The concept of “quanta” and 

Wells-Riley model will be introduced later in this section. The “quanta” concentration in 

different zones can be calculated, evaluating the combined effects of quanta generation and 

removal within the zone. The acceptable infection risk was determined using the contagious 

potential defined as C/I, which is the ratio of new infection cases C to the number of infectors 

I. An outbreak within the building could happen when C/I exceeds unity [82]. Thus, to avoid 

the possibility of community spreading in a building when I =1, C/I <1; in our study we assume 

one infector, thus we require C < 1. The corresponding acceptable infection risk level is 

therefore P = C/S <1/S, where S is the number of susceptible people. 

The CONTAM models used in this study adopted the occupancy and outdoor air ventilation 

requirements that are employed in the corresponding EnergyPlus models of five DOE 

commercial prototype buildings [226]. Details of the methodology was illustrated in the last 

chapter. Mitigation strategies in multizone spaces are illustrated in Figure 4-1. Briefly using 

CONTAM, the occupant infection risk is determined by integrating the quanta concentration 

that the occupants are exposed to during their exposure period, which is expressed as:  
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E = ∫ Ci(t)dt
t2

t1
    

   4-1 

The material balance of the quanta concentration is presented in Eq.4-2:   

V
dCi

dt
= (1 − Mexh)G(t) + QsCs(t) + ∑ Qinf,jCj(t)n

j=1 − (Qr + Qlx + ηacQac + QUVr +

∑ Qdep,k
s
k=1 + Qdec + ∑ Qexf,j

n
j=1 )Ci(t)   

   4-2 

The infiltration via the air leakage in CONTAM was calculated based on weather conditions 

and system induced pressures, using a power-law relationship: 

Qinf,j =
CDAL

1000
√

2

ρ
(∆Pr)0.5−n∆Pj,i

n   
   4-3 

E is the occupant exposure to contaminant Ci. In this application of CONTAM, Ci is the quanta  

concentration (quanta/m3), t is the exposure time, Cs  is in the quanta concentration in the 

supply air (quanta/m3), G is the quanta generation rate from the infector (quanta/h), Mexh is 

the outward protection effectiveness for masks, Qs, Qr, Qlx, Qac, QUVr, Qdep, Qdec, Qinf,j and Qexf,j   

are volumetric flow rates (m3/s) for different airflow or contaminant removal processes (supply, 

return, local exhaust, air cleaner, in-room GUV, deposition, decay or deactivation of the virus 

infectivity, infiltration for zone j, and exfiltration for zone j), ηac is the efficiency of the air- 

cleaner filters, CD is the flow discharge coefficient, AL is the effective air leakage area, ∆Pr is 

the reference pressure difference [Pa], ∆Pj,i is the pressure difference between zone j and zone 

i [Pa], and n is the flow exponent. Finally, the CONTAM simulates transient conditions as E/∆t, 

and the ∆t is the output timestep as defined by users. 
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Figure 4-1 Mitigation strategies in multizone spaces for preventing airborne quanta transmission 

 

The concept of a quantum of infection was proposed in 1955 by Wells [260] to determine the 

number of infectious particles required to infect people, and later in 1978, Riley et al. [82] 

estimated infectious dose of airborne pathogens using the number of quanta, which would help 

evaluate the probability of infection (Eq.4-4). This is known as the Wells-Riley equation and 

has been widely used to evaluate airborne infection risks of indoor spaces [87, 261].  

P =
C

S
= 1 − e−n   

   4-4 

P is the probability of infection (or infection risk), C is the number of infection cases, S is the 

number of susceptible people, and n is the number of quanta inhaled by susceptible people. The 

inhaled quanta “n” can be expressed as follows: 

n = CavgB(1 − Minh × Fm)D       4-5 

Cavg  is the average quanta concentration (quanta/m3), B is the breathing rate of occupants 

(m3/s), Minh is the mask efficiency for inhalation, Fm is the fraction of occupants wearing masks, 
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and D is the occupant exposure duration. 

In this study, we assumed that only one infector caused the transmission, and the infector is 

removed from the pool of susceptible. The engineering mitigation strategies recommended in 

this study were all based on this assumption. Only airborne transmissions occur in the evaluated 

scenarios and infectious particles randomly distributed in the room. At the start of the day, the 

initial quanta concentration is zero. The fates of airborne quanta include existing the building 

(via HVAC ventilation and the air leakage), filtration (via filters such as MERV, HEPA etc.), 

deposition, deactivation and airborne.          

4.2.2 Equivalent air change rate  

For each investigated strategy, the corresponding total equivalent air change rate (Qe) was 

calculated, which is a sum of the air change rates (units are 1/h) from outdoor air ventilation, 

recirculated ventilation air that passes through MERV filters, portable air cleaners, and 

inactivation by GUV lights, as well as quanta deposition and deactivation of the airborne virus. 

This can be expressed as:  

Qe = QOA + QMERV + QPAC + QGUV + Qdeposition + Qdeactivation                                  

    

   4-6 

Where:  

QOA = outdoor air ventilation rate in (m3/h) divided by the room volume (m3),  

QMERV = recirculated ventilation airflow rate (m3/h) × MERV efficiency/Volume (m3),  

QPAC = CADR(m3/h)/ Volume (m3),  

QGUVr = airflow rate passing by the in-duct GUV light (m3/h)/ Volume (m3), or clean air delivery 

rate provided by the upper-room germicidal lamp system CADRUV(m3/h)/ Volume (m3), 

Qdeposition = Quanta deposition rate (1/h)  

Qdeactivation =Viral deactivation rate (1/h)  

4.2.3 DOE prototype commercial building models 

The floor layouts of CONTAM models of each DOE prototype building are illustrated in Figure 
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4-2. The Medium Office is a three-story, 1661 m2 footprint building with four perimeter zones 

and one core zone on each floor, except the basement. The Large Office building has 12 floors 

(3563 m2 footprint), also with four perimeter zones and one core zone on each floor. In the 

Medium and Large Office, a single large leakage path was modeled, representing the half-

height office partitions (fifty percent of the total wall area). The Stand-Alone Retail is a single-

floor building with a 2294 m2 footprint and five zones: core retail, backspace, point of sale, 

front retail, and restroom. The Small Hotel is a four-story building (1003m2 footprint) with 19 

zones on the first floor and 16 zones on upper floors. The secondary school is a two-story “E”-

shaped building (19592 m2 footprint), with 25 zones on the first floor and 21 zones on the 

second floor. More detailed descriptions of the buildings can be found in official DOE reports 

[262]. More information for investigated zones is in Table 4-1.  

 

Figure 4-2 DOE prototype models in CONTAM (a) Medium Office (b) Large Office  

(c) Stand-Alone Retail (d) Secondary School (e) Small Hotel. 

 

The occupancy and ventilation settings in the CONTAM models were employed from the 
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EnergyPlus DOE prototype models [263]. Occupants’ exposure duration was determined 

focusing on the most at-risk occupants, namely the employees who spend more time in the 

buildings. Simulations were performed for December 21st with Chicago Typical 

Meteorological Year version3 (TMY3) weather (Figure 4-3). It should be noted that weather 

conditions would not influence system operations such as the outdoor air supply in the current 

models developed by National Institute of Standard and Technology (NIST). In addition, for 

the baseline cases in this study, a one-week simulation was performed as comparison for five 

weekdays in Chicago in December (Dec. 18– Dec. 22).  

 

Figure 4-3 Outdoor atmospheric parameters for CONTAM simulations  

(Chicago, Dec. 21). Ta is the air temperature 

 

Table 4-1. Infectious Zone Characteristics for Simulated Prototype Buildings 

Building 

Type 

Area 

(m2) 

Volume 

(m3) 

HVAC 

system 

type 

Supply 

airflo

w 

rates 

(m3/s) 

OA 

ratio 

(%) 

Baseline 

air 

change 

rate 

(1/h) 

Maximum 

Occupancy 

Duration 

of 

Exposure 

Modeled 

Medium 

Office (Core 

Zone) 

822  

 

2255  

 

variable 

air 

volume 

(VAV) 

2.95 14.4 0.68 53 8:00- 

17:00 

(9h) 

Large Office 

(Core Zone) 

232

4  

6376  

 

variable 

air 

volume 

(VAV) 

8.25 14 0.65 134 8:00- 

17:00 

(9h) 
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Stand-Alone 

Retail 

(Core Retail) 

163

2  

 

9955  

 

constant-

volume 

single-

zone 

system 

5.67 33.3 0.68 258 Infector 

(Staff): 

8:00 – 

22:00 

Susceptib

le 

(Custome

r): 

8:00 – 

16:00 

Susceptib

le  

 

Small Hotel 

(Front 

Lounge) 

163  

 

546  

 

packaged 

terminal 

air 

conditione

r (PTAC) 

0.74 32.1 1.57 53 Infector 

(Staff): 

5:00 – 

20:00 

Susceptib

le 

(Guest): 

12:00 – 

13:00 

(1h) 

Small Hotel 

(Meeting 

Room) 

80  

 

269  

 

packaged 

terminal 

air 

conditione

r (PTAC) 

0.34 37 1.68 43 Infector: 

13:00 – 

15:00 

Susceptib

le: 

13:00 – 

15:00 

(2h) 

Secondary 

School 

(Classroom) 

485  1940  variable 

air 

volume 

(VAV) 

1.27 73 1.72 180 8:00 – 

15:00 

(7h) 

Secondary 

School 

(Corner 

Classroom) 

100  401  variable 

air 

volume 

(VAV) 

0.26 73 1.70 37 8:00 – 

15:00 

(7h) 

Secondary 

School 

(Auditorium

) 

196

7  

 

7866  

 

constant 

air 

volume 

(CAV)  

4.10 70 1.31 1596 15:00 – 

19:00 

(4h) 

Secondary 

School 

(Café) 

609  

 

2439  constant 

air 

volume 

(CAV)  

2.95 70 3.05 67 9:00 – 

14:00 

(5h) 
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Table 4-2. SARS-CoV-2 Quanta-Related Modeling Parameters  

Input Parameters Reference 

Initial concentration 

 

0 quanta/m3 - 

Generation rate 65 quanta/h [186, 264] 

Quanta removal Surface deposition rate 0.3 h-1 [217] 

Quanta deactivation rate 0.63 h-1 [218] 

UVGI (in-room) Qe  4 h-1 [232] 

Default quanta particle size  1 - 3μm [265] 

MERV8 removal efficiency 20% [266] 

MERV11 removal efficiency 65% [266] 

MERV13 removal efficiency  85% [266] 

HEPA removal efficiency  99% [267] 

UVGI (in-duct) removal efficiency 87% [233] 

PAC1 0.46 m3/s   

 

 

From 

manufacturer 

PAC2 1 m3/s  

PAC3 1.45m3/s  

PAC4 17 m3/s  

Mask wearing Mask wearing percentage 0 / 100% - 

Outward protection effectiveness  50% [234] 

Inward protection effectiveness 30% [234] 

Breathing rate  0.72 m3/h [268] 

 

4.2.4 Baseline case of airborne risk mitigation strategies   

The baseline model case consisted of a baseline outdoor air setting and a MERV8 filter in the 

air-handling system. No additional air-cleaning devices were applied. One infector was 

assumed to stay in the investigated zone (list in Table 4-1) during the entire exposure time.  

The mitigation strategies are presented in Figure 4-4. Four different outdoor air (OA) levels 

were simulated: Baseline OA, 1.3×Baseline OA, 2×Baseline OA, and 100% OA. Three levels 

of MERV filters were chosen: MERV8, MERV11, and MERV13. The use of PACs with clean 

air delivery rates at 0.46 m3/s, 1 m3/s, 1.45m3/s, and 17 m3/s and GUV light in-room and in-

duct were investigated. Additional detailed information is listed in Table 4-2.  
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Figure 4-4 Seventy-two combinations of mitigations evaluated in this study 

 

4.3 Simulation Results 

4.3.1 Zone to zone transmission  

 

 

Figure 4-5 Medium Office (a) top-view diagram showing outdoor air flows (blue) and exhaust/return 

flows (gray) and (b) quanta concentration as a function of time during a workday with the infector in 

the core zone on the first floor. Contaminant generation source and deposition/deactivation items were 

added on the top-left of each room (small symbols). 
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Figure 4-6 Large Office (a) top-view diagram showing outdoor air flows (blue) and exhaust/return 

flows (gray) and (b) quanta concentration as a function of time during a workday with the infector in 

the core zone on the first floor. Small icons in each room were contaminant generation source, 

deposition/deactivation items, and the supply/return of HVAC systems (small symbols). 

 

 

Figure 4-7 Stand-Alone Retail (a) top-view diagram showing outdoor air flows (blue) and 

exhaust/return flows (gray) and (b) quanta concentration as a function of time during a workday with 

the infector in the core zone on the first floor. Small icons in each room were contaminant generation 

source, deposition/deactivation items, and the supply/return of HVAC systems (small symbols). 
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Figure 4-8 Small Hotel (a) top-view diagram showing outdoor air flows (blue) and exhaust/return 

flows (gray) and (b) quanta concentration as a function of time during a workday with the infector in 

the core zone on the first floor. Small icons in each room were contaminant generation source, 

deposition/deactivation items, and the supply/return of HVAC systems (small symbols). 
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Figure 4-9 Secondary School (a) top-view diagram showing outdoor air flows (blue) and 

exhaust/return flows (gray) and (b) quanta concentration as a function of time during a workday with 

the infector in the core zone on the first floor. Small icons in each room were contaminant generation 

source, deposition/deactivation items, and the supply/return of HVAC systems. 

 

Figure 4-5 - Figure 4-9 illustrate the quanta concentrations in the different zones in the 

simulated DOE prototype buildings. The zone that contains the index person has the highest 

infection risk, far higher than the risk in other connected zones. It suggests that while quanta 

could transfer from the source zone to other zones, the risk that adjacent zones suffer is 

significantly lower.  
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In the office buildings, the restroom was the zone with the second-highest infection risk. This 

is because a return grille was designed on the restroom wall, connecting the restroom and the 

rest of the whole floor.  All air-conditioned areas were pressurized (Core and Perimeter Zones). 

An exhaust fan was operating in the restroom, leading to the negative pressure inside it. Thus, 

more quanta could be transmitted to the restroom via air leakage sites and the return grille.  

Air leakage may not be the only route for zone-to-zone transmission. In Figure 4-5 and Figure 

4-6, neighboring zones in the office buildings tend to be more vulnerable than for the other 

types of buildings. This is explained by the different designs in the HVAC systems. A central 

ventilation system (variable-air-volume, VAV) was used in the Medium Office, Large Office, 

and Secondary School, while the Retail and Small Hotel meeting room used a constant-volume 

single-zone system and a packaged terminal air conditioner respectively. The central air-

handling system for the Medium Office is illustrated in Figure 4-6. Contaminated air in the 

source zone could re-enter zones through the ducts of the air-handling unit. Though a VAV 

system was also used in the Secondary School, its risk of zone-to-zone transmission was low, 

since high outdoor air rates were applied achieving 73% of the total air supplied.     

In summary zone-to-zone transmission happened via the air leakage and the HVAC ducts 

connecting zones. A dramatic ratio increase of OA would effectively limit the zonal 

transmissions in buildings with central ventilation systems.    

4.3.2 Fate of airborne quanta  

The impact of system-level mitigation strategies on quanta fates was investigated in this study. 

Figure 4-10 shows results for the Medium Office and Figure 4-11 is a summary of the fates in 

different buildings using duct-treatment mitigation strategies. For buildings in which infection 

risks in multiple zones were investigated (Small Hotel and Secondary School), only one zone 

was selected to report respectively (meeting room and classroom). Four airborne quanta fates 

were assessed: exhausted, filtered, deposited, and deactivated; and compared with the quanta 

that remained airborne. Exhausted sums the number of quanta that exited the building via air 



70 

 

leakage sites and HVAC systems. Filtered added up quanta trapped by filtration (e.g., MERV 

filters or PACs). Deposited and deactivated includes quanta removed by deposition on to 

surfaces and deactivation of airborne virus.  

 

Figure 4-10 The fate of airborne quanta in Medium Office versus exposure duration. 

 

The percentage of airborne quanta in the building decreased with exposure duration while the 

percentage that was filtered or exited the building through exhaust air gradually increased as 

the duration extended (Figure 4-10). The longer the exposure, the larger the role that the 

ventilation system plays in eliminating quanta. For example, during the first hour of exposure, 

15% of airborne quanta were captured by the filter of the ventilation system; this number 

increased to over 30% after eight hours. In addition, settling and deactivation were important 

removal mechanisms.  

The Small Hotel - Meeting Room scenario has the highest percentage of airborne quanta among 

the five buildings (Figure 4-11); for the baseline case, 20.7% of the generated quanta remained, 

while for other baseline cases, it was less than 10%. Even with the 100% outdoor air supply 

scenario, there was still 12.4% of the airborne quanta remaining in the room. This is due to the 

exposure time (2h) being shorter than other scenarios. During the meeting, to reduce the 

infection risk, in addition to outdoor air flushing and MERV filtration, room-treatment 
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strategies should be considered, such as PACs and in-room UV light.  

For a designated building scenario, the larger the sum of exfiltrated and filtered components, 

the more prominent role that the duct-treatment strategies play. For example, this sum reached 

48.3% for the baseline scenario for the Medium Office case. When the MERV filter was 

upgraded from MERV8 to MERV13, this sum was 74.3%, like the 100% OA strategy (76.9%). 

The BL+MERV13 combination was better than the 2×BL+MERV11. Similar phenomena were 

also found in other building types. As a result, a proper match of outdoor air percentage and 

MERV filters can effectively improve mitigation effectiveness, and nearly approach the 

performance of 100% outdoor air.    
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Figure 4-11 Quanta fate of released quanta during susceptible exposure duration.  Infector was in the 

core zone of all buildings, except for Small Hotel and Secondary School, where they were in the 

meeting room and classroom respectively. Susceptible duration information is indicated in the column 

labels (also see Table 4-1). 

 

4.3.3 Risk assessment for baseline cases  

The individual infection risk for baseline cases is illustrated in Figure 4-12. The Secondary 

School (Corner Classroom) and Small Hotel (Meeting Room) had the highest mean infection 

risks (17.3% and 8.4%) during the five-day simulation period. Compared with other zones, 

these two areas have smaller volumes (269 m3 and 401 m3) and thus quanta concentrations in 
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these two zones were higher, and therefore their corresponding infection risks were also high 

(see Eq. 4-1, Eq. 4-2, and Eq.4-3). A confined space tends to have a higher quanta concentration, 

which is consistent with findings from previous studies [269, 270]. Despite similar baseline 

supply rates for OA, individual infection risks for the Corner Classroom were about twice as 

high compared to the Meeting Room. The Corner Classroom had longer exposure (7 h), while 

occupants stayed in the Meeting Room for only two hours. For confined spaces with longer 

exposures, infection risks should be addressed with additional mitigation measures, even if the 

outdoor air ventilation rates are high, such as in the Corner Classroom in the Secondary School.   

 

Figure 4-12 Individual infection risk P [%] for baseline cases for evaluated DOE  

commercial prototype buildings. The height of the column is the mean risk value;  

error bars are maximum and minimum values. 
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4.3.4 The effectiveness of risk mitigation strategies 

To mitigate infection risks in these buildings, a variety of air-cleaning strategies were tested. 

Results for the Small Hotel’s Front Lounge and Meeting Room are in Figure 4-13. For the 

Front Lounge, most of the mitigation strategies effectively reduced risks below the contagious 

potential C/I =1 line (Figure 4-13 (a)), except for the baseline case and 1.3BL+MERV8. By 

contrast, more mitigation efforts were required for the Meeting Room. As previously 

mentioned, even the 100% outdoor air was not sufficient. Thus, strategies in the Meeting Room 

should be supplemented with in-room mitigation. For example, using a portable air-cleaner 

reduced risks to an acceptable level (Figure 4-13 (b)).  

Upgrading MERV filters benefit risk mitigations. For the baseline Hotel case, the upgrade from 

MERV8 to MERV11 led to a 0.7% decrease for the Front Lounge and a 2% decrease in risks 

for the Meeting Room. The switch from MERV11 to MERV13 contributed to further risk 

reductions of 0.2% and 0.6% respectively. This indicates there are diminishing returns for 

upgrading MERV filters. An enhanced air filtration strategy has been widely suggested during 

the COVID-19 pandemic; specifically, MERV13 was recommended as the minimum [271]. 

However, there is a trade-off between improved air-cleaning performance with filter upgrades 

and added costs and potential operational difficulties in retrofitting existing HVAC systems.           

For all evaluated mitigation strategies, individual infection risks for 100% mask-wearing 

occupants were also calculated and are shown in Figure 4-13 using dark colors. In the Meeting 

Room, except for the baseline case and 1.3×BL + MERV8, risks for all evaluated cases were 

mitigated to acceptable levels with masks (C/I = 1). This means that the use of masks could 

permit a two-hour meeting in a meeting room with basic ventilation settings.     
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Figure 4-13 Individual Infection risks for Small Hotel: (a) Front Lounge – 1-hour exposure, and (b) 

Meeting Room – 2-hour exposure. C/I is the contagious potential. The spread could happen when C/I 

exceeds unity [82]. 

  

For all evaluated mitigation strategies, the relative reduction to their baseline risk levels was 

calculated (Figure 4-14) to compare the effectiveness across strategies. The relative reduction 

to baseline was calculated as (Pbaseline −  Pstrategy)/Pbaseline. For duct-treatment strategies, the 
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maximum “relative reduction to baseline” was reached with 100% OA. For the Medium Office, 

Large Office, Stand-Alone Retail, and Small Hotel, duct air-cleaning devices, such as upgraded 

MERV filters and in-duct UV lamps, achieved 30% to 40% relative reduction to baseline. For 

the Secondary School it was in the range of 0% to 20%. Upgrading MERV filters and using in-

duct UV should be a high priority in Large Office and Stand-Alone Retail spaces. Note that 

since high baseline OA rates were designed for the Secondary School, the duct-treatment 

equipment would be relatively less effective in this application because they only treat return 

air and OA supply air is quanta free. 

For room-treatment mitigations, the PACs performed well in the Small Hotel and Secondary 

School. The Hotel’s front lounge and meeting room were small spaces, resulting in high quanta 

levels. Moreover, for the zones in the Secondary School, high-design OA supply limited the 

increasing potential of in-duct air cleaning mitigation performance (see Figure 4-11), thus 

PACs worked well for supplying extra clean air to these spaces. Notably, in-room UV was very 

effective at mitigation for all cases; the “relative reduction to baseline” achieved 50% to 70%. 
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Figure 4-14 Estimated mitigation strategy risk reduction relative to the baseline case ((Pbaseline − Pstrategy)/Pbaseline): a) Medium Office – Core zone, b) Large 

Office – Core zone, c) Stand Alone Retail – Core Retail, d) Small Hotel – Front Lounge, e) Small Hotel – Meeting Room, f) Secondary School – Classroom, 

g) Secondary School – Corner Classroom, h) Secondary School – Auditorium, i) Secondary School – café.      
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4.3.5 Association of infective risks with equivalent air change rate Qe 

Exposure duration (h), room volume (V), and mitigation strategies determined individual 

infection risks, where the equivalent air change rate (Qe) represents the summation of 

mitigation strategies layered together. The Qe is the overall quanta removal ability of the 

mitigation measures. The association between h, V, Qe, and infection risk is presented in Figure 

4-15 (a); different mask-wearing situations (50%, 80%, and 100% wearing) were also explored. 

In the 50% and 80% mask-wearing situations, the infector was assumed to not wear a mask. 

The association was derived using the multizone modeling results for all building types in this 

study. Results indicated that 100% mask-wearing would lead to a significant reduction. With 

the help of Fig.15a, the required Qe needed to meet a preferred risk can be determined. For 

example, for a 100-m3 office with five occupants, an acceptable risk level P =1/5 = 20% and 

the D / (Qe×V) with no masking is 0.005 h2/m3. Thus, for an eight-hour exposure in this office, 

the required Qe is 8/(0.005× 100) = 16 h-1. For a 500 m3 classroom with 25 students, an 

acceptable risk level P = 1/25 = 4% and the D/(Qe×V) with no masks is 0.001 h2/m3. Then for 

one-hour stay in the classroom, the required Qe is 2 h-1 and it increases to 10 h-1 for five-hour 

exposures (with 100% masking, the mitigation strategies would need to provide 5/ 

(0.0028×500) = 3.6 h-1). Note that these mitigations are for reducing long-range transmission 

risk, but mask wearing helps with both long- and short-range transmission. As seen in Figure 

4-15 (b), the multizone CONTAM simulation results predict P is lower for a given D/(Qe×V) 

compared to the single-zone Wells-Riley calculations, since some generated quanta exits to 

neighbor zones via air leakagesites and the HVAC systems.  
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Figure 4-15 The relationship between individual infection risks and D/(Qe×V) (Qe – Equivalent air 

change rate (per hour); V – Volume; D – Duration). a) Different mask-wearing scenarios b) The 

comparisons between multizone modeling and single-zone Wells-Riley 

 

For additional scenarios with different quanta generation levels, the relationships were plotted 

in Figure 4-16. This chart provides a quick check for individual infection risks in a room with 

known mitigation strategies. With known quanta generation rate, Qe of the ventilation system 

plus any mitigation measures, room size, and exposure duration, the infection risk can be 

estimated. The room design occupancy can help decide the acceptable risk level (see section 

4.2.1). Then, for a designated room, we can decide whether current mitigation measures are 

sufficient for occupants’ safety and implement more controls if needed.      

 



80 

 

 

Figure 4-16 The relationship between individual infection risk and D/(Qe×V), where  

Qe is Equivalent air change rate (per hour); V is Volume (m3), and D is  

Duration (h) for (a) No masks; (b) 100% mask-wearing 

4.3.6 Mitigation under different occupancies  

Minimum equivalent air change rates for different occupancies (100%, 75%, 50% and 25%) 

for contagious potential C/I = 1 were calculated for no mask-wearing and full mask-wearing 

scenarios, using D/(Qe×V). Results are in Figure 4-17 and Figure 4-18. For example, for the 

baseline mitigation strategy “BL+MERV8” in the core zone of the Medium Office, 25% 

occupancy capacity could be allowed for no mask-wearing scenarios while 75% occupancy 

could be permitted with full mask-wearing. With baseline mitigation, 25% capacity could avoid 

community transmission for most no-mask wearing scenarios except for the large capacity 

public spaces: Stand-Alone Retail, Classrooms, and the Auditorium. For these spaces, full 

mask-wearing is suggested to be combined with 25% occupancy capacity. Moreover, for the 

auditorium, this was not sufficient, and in-room UV or use of the large capacity PAC (17 m3/s) 

must be used to satisfy the mitigation need. To return to the pre-pandemic situation (no mask, 

full occupancy), office working areas should adopt 100% OA and implement in-room air-

cleaning (UV, large capacity PAC). Similar strategies are recommended for Retail and the time 

spent shopping should be limited.  
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Figure 4-17 Minimum Qe for different mitigations without mark-wearing: a) Medium Office – Core zone, b) Large Office – Core zone, c) Stand Alone Retail – Core Retail, d) 

Small Hotel – Front Lounge, e) Small Hotel – Meeting Room, f) Secondary School – Classroom, g) Secondary School – Corner Classroom, h) Secondary School – 

Auditorium, i) Secondary School – Cafe 
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Figure 4-18 Minimum Qe for different mitigations with mark-wearing: a) Medium Office – Core zone, b) Large Office – Core zone, c) Stand Alone Retail – Core Retail, d) 

Small Hotel – Front Lounge, e) Small Hotel – Meeting Room, f) Secondary School – Classroom, g) Secondary School – Corner Classroom, h) Secondary School – 

Auditorium, i) Secondary School
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4.4 Discussion  

The aim of this study was to identify effective combinations of mitigation strategies for 

preventing the spread of SARS-CoV-2 in public buildings. The study of layered mitigation 

strategies modeled long-range transmission of SARS-CoV-2 quanta in five DOE prototype 

commercial buildings. Results showed that duct-treatment air-cleaning strategies (upgrading 

MERV filter levels, use of in-duct UV) are relatively more effective in large rooms that can 

accommodate hundreds of occupants. In contrast, room-treatment strategies (adding PACs, in-

room UV) are more effective in smaller spaces. For different rooms, the priority of mitigation 

strategies would change depending on the room volume, occupants’ exposure time, and HVAC 

system designs. Results from this study can be generalized to other airborne infections such as 

measles or flu. 

For mitigation strategies, the air-cleaning contribution from in-duct air cleaning devices 

(MERV, UV light) decreases as the OA ratio increases. The overall maximum duct-mitigation 

performance is in 100% OA supply. An appropriate match of outdoor air and MERV filters can 

achieve similar risk reduction as 100% OA supply performance. In a study by Stabile et al, 

twenty-five percent outdoor air and HEPA filters were found to have the same performance 

level as 100% outdoor air [272].  

Thus, to achieve the optimal engineering control for mechanically ventilated buildings, duct 

mitigation should be designed to achieve the performance level like that of 100% OA. This can 

be realized by adopting 100% OA or making a proper match of MERV filters and OA supply. 

Then, according to the expected exposure duration, occupancy capacity, and mask-wearing 

situation, efforts required for room-mitigation strategies (in-room UV, PACs) could be assessed 

(see Figure 4-17 and Figure 4-18).    

Detailed strategy-design instructions have been investigated in hospitals [273]; note that in 

commercial public buildings, the current ventilation standard is significantly lower than in 

hospitals. Previous investigations found that increasing outdoor air supply rates and MERV 
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filter levels could reduce infection risks, though a “case-by-case” design was suggested [89]. 

Additional room control measures and personal ventilation were proposed as auxiliary 

mitigation strategies; however, specific scenarios were not clarified. According to the results 

from this study, for the same mitigation strategy, the effectiveness could vary dramatically 

among different types of buildings, for example, for office buildings, the enhancement of duct 

treatment is more effective than schools, as their baseline OA design rates are significantly 

lower. The in-depth analysis of different building types and their mitigation measures can be 

further explored in future studies. 

The relationship between infection risks and D/(Qe×V) (D - duration, V- room volume and Qe 

equivalent air change rate) were established. This enables a quick estimation of Qe in the 

engineering design of ventilation. With the known acceptable risk level, the value of D/(Qe×V) 

could be obtained from a given relationship (Figure 4-15 (a)). The Qe could then be quickly 

estimated from the given D and V of the scenario, as what have been shown in the section 3.5. 

The Qe  could then help make ventilation design decisions (MERV filter level, portable air 

cleaner capacity etc.) in the room. However, each building has its own characteristics, people 

should analyze their building if they want to understand it. It should be noted that the required 

Qe is calculated for the source zone, which is the room contains the infector.  For a multizone 

building in daily life, the design goal could be adjusted to a more general context. When an 

infector enters the building, how to make sure that there are no transmission risks inside the 

building? How to make sure the systematic designs of ventilation strategies could achieve the 

overall mitigation goal? Limitations do exist in this study for taking a great deal of simulation 

cases into consideration, these questions could be answered with more detailed analysis in the 

future.    

For future investigations, more real-life scenarios could be evaluated using the CONTAM-

quanta approach. For example, more infectors could be included to take the local prevalence 

rate of SARS-CoV-2 into consideration. Occupancy schedules could be applied to evaluate 
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various ventilation demands during the day. The vaccination rate can also be considered as the 

immune population is increasing over time. What is more, the stochastic effect could also be 

considered later as what has been done in the Skagit Valley Chorale super-spreading event 

investigation [240]. In addition, flow patterns could be manipulated to maximally reduce 

quanta concentrations in occupants’ breathing zone and promote the effectiveness of mitigation 

strategies. The computational fluid dynamics (CFD) is an effective method for predicting 

detailed indoor airflows, which has been developed for the CONTAM multizone modeling [50, 

274]. Utilizing the CFD capabilities of CONTAM, the pros and cons of different mechanical 

mitigation strategies would be better understood. 

4.5 Conclusion  

Effective layered mitigation strategies can reduce individual infection risks when occupying 

indoor spaces with COVID-19 infectors. The multizone CONTAM modeling used in this study 

enables a case-to-case design of mitigation approaches, and infection risks and mitigation 

strategies in five different types of DOE prototype buildings were investigated. The zone-to-

zone quanta transmission and quanta fates were also reported. Results indicate that the potential 

of zone-to-zone transmissions exists, though the threat is relatively lower than that in the source 

zone. Both air leakage sites and central ventilation systems can induce quanta into neighboring 

zones. For quanta fates, the sum of the amounts exfiltrated and filtered can display the air-

cleaning ability of the ventilation system. A proper match of outdoor air percentage and MERV 

filters can achieve a similar performance like 100% outside air. Evaluation results also suggest 

that additional mitigation efforts are needed for confined spaces with long exposure duration. 

For these spaces, air-cleaning strategies cannot simply depend on duct mitigation; room-

treatment strategies (PACs, in-room UV) are also needed. For example, the portable air-cleaner 

(PAC at 1 m3/s) is recommended for the Meeting Room scenario. In addition, masks can 

dramatically reduce infection risks. The use of masks could permit a two-hour meeting in 

Meeting Room with baseline ventilation settings. Finally, relationships between individual 
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infection risks and a risk-relevant factor “Exposure duration (D, h)/(Equivalent air change rate 

(Qe, h
-1)× Room volume (V, m3))” was obtained for a quick estimation of risks, which could 

benefit future air-cleaning design and practice in response to the reopening of commercial 

buildings during an infectious airborne disease pandemic.  
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Chapter 5 CO2-Based Ventilation Design for 

Long-Term Indoor Air Quality Management 
 

 

 

 

Abstract 

The COVID-19 pandemic brought global attention to indoor air quality (IAQ), which is 

intrinsically linked to clean air change rates. Estimating the air change rate in indoor 

environments, however, remains challenging. It is primarily due to the uncertainties associated 

with the air change rate estimation, such as pollutant generation rates, dynamics including 

weather and occupancies, and the limitations of deterministic approaches to accommodate 

these factors. In this study, Bayesian inference was implemented on a stochastic CO2-based 

grey-box model to infer modeled parameters and quantify uncertainties. The accuracy and 

robustness of the ventilation rate and CO2 emission rate estimated by the model were confirmed 

with CO2 tracer gas experiments conducted in an airtight chamber. Both prior and posterior 

predictive checks (PPC) were performed to demonstrate the advantage of this approach. In 

addition, uncertainties in real-life contexts were quantified with an incremental variance 𝜎 for 

the Wiener process. This approach was later applied to evaluate the ventilation conditions 

within two primary school classrooms in Montreal. The Equivalent Clean Airflow Rate (ECAi) 

was calculated following ASHRAE 241, and an insufficient clean air supply within both 

classrooms was identified. A supplement of 0.38 m3/s clear air delivery rate (CADR) from air-

cleaning devices is recommended for a sufficient ECAi. Finally, steady-state CO2 thresholds 

(Climit, Ctarget, and Cideal) were carried out to indicate when ECAi requirements could be 

achieved under various mitigation strategies, such as portable air cleaners and in-room 

ultraviolet light, with CADR values ranging from 0.09 – 0.47 m3/s.  
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5.1 Introduction  

Since the COVID-19 pandemic started, more than 775.3 million individuals worldwide have 

been infected, and approximately 7.0 million deaths have been attributed to the disease as of 

April 7, 2024 [275]. The pandemic has significantly highlighted public concerns about 

maintaining healthy indoor environments to limit the spread of virus-laden respiratory aerosols 

[187, 276]. As hygiene and self-protective measures have eased, there are fewer people wearing 

masks and maintaining social distancing in public spaces. The respiratory diseases, which 

include not only SARS-CoV-2 but also influenza, respiratory syncytial virus (RSV), etc., would 

continue to pose health threats [277]. In daily life settings, classrooms in schools are 

particularly vulnerable [278], where face-to-face interactions are inevitable and frequent. To 

mitigate health effects from respiratory infections, ensuring sufficient clean air ventilation 

plays an essential role. Effective ventilation can significantly dilute aerosol concentrations and 

reduce the quantity of inhaled infectious pathogens. Consequently, assessments of indoor air 

quality (IAQ) and, more specifically, characterizations of ventilation in schools have become 

more crucial than ever.  

Carbon dioxide (CO2), which serves as an indicator of indoor ventilation conditions, is 

recommended for managing the risk of airborne transmission [279]. This is because the indoor 

CO2 level could reflect the outdoor ventilation rate per person, provided that information on 

occupancy and specific space ventilation requirements is available [280]. During occupants’ 

exposures, indoor CO2 levels will gradually increase until equilibrium is achieved. Poor 

ventilation conditions will elevate the steady-state CO2 levels, causing them to exceed the 

recommended CO2 metrics. Meanwhile, its concentration can be conveniently measured with 

portable low-cost sensors installed in classrooms. St-jean et al. [281] found elevated CO2 levels 

in 21 day-care centers (DCCs) in Montreal. Andamon et al. [282] reported the elevated CO2 

concentration in 10 classrooms of a secondary school in Victoria, Australia. In response to the 

COVID-19 pandemic, the province of Quebec, Canada, equipped all kindergarten, elementary, 
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high school, vocational, and adult education classrooms with CO2 sensors to monitor indoor 

air quality and improve ventilation conditions [283]. The widespread installation of CO2 

sensors has facilitated enhanced monitoring of indoor ventilation conditions in classrooms. 

In addition, there are several CO2-based ways to determine ventilation rates from field 

measurements: steady-state, decay, build-up, and transient mass-balance approach. Andamon 

et al. [282] used average peak CO2 concentrations as steady-state values to estimate ventilation 

rates for investigated classrooms. Kabirikopaei et al. [114] estimated ventilation rates for 220 

classrooms in the Midwestern region of the US using three methods (steady-state, decay, and 

build-up) and found that CO2 readings can contribute the most uncertainty. Batterman [284] 

suggested that the transient mass balance method can provide the most accurate results when 

occupancy is available.  

While these traditional approaches have been widely used for indoor ventilation rate 

evaluations, there are several limitations. Firstly, most of these approaches adopted 

deterministic CO2 mass-balance equations, assuming parameters in the model to be constants. 

In practical settings, however, multiple sources of uncertainties may exist in the room. Secondly, 

in real-time CO2 measurements, occupancy data are often unavailable. Inaccurate estimates of 

occupancy can introduce biases into final evaluation results. Meanwhile, current CO2 metrics 

are established only for ventilation standards such as ASHRAE 62.1 [13], and the metrics for 

managing the long-range transmission of airborne aerosols are yet to be determined.  

To capture the uncertainties in the CO2-based ventilation evaluation process, a grey-box model 

[163] can be used, which usually integrates a partial theoretical structure with data to complete 

the model. Compared with white-box (e.g., physically-based) and black-box (e.g., data-driven) 

models, the grey-box model can be structured with physical knowledge, and the parameters are 

estimated with the measured data from the system. The stochastic grey-box model often 

includes stochastic items to account for uncertainties and variability in the system [171]. The 

randomness of input parameters will allow for the consideration of uncertain components [172] 
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such as measurement errors, fluctuations in the system, unmodelled parameters, etc.  

Haghighat et al. [169] introduced a predictive stochastic model for indoor air quality in 1988, 

allowing the incorporation of inputs as random variables within the stochastic differential 

equation (SDE) model. The model can capture variability in predictions of contaminant 

concentrations. The moment equations for mean, variance, and skewness were given based on 

stochastic Itô calculus [169]. It was indicated that the ‘white noise’ term not only described the 

system randomness but also provided a unique and satisfactory solution. It is worth noting that 

the solution of the SDE model is an Itô stochastic process with the Markov property and the 

strong Markov property, which enables future predictions to rely only on the current state [285]. 

Marcel et al. [172] proposed a predictive control approach to model the CO2 concentrations 

using a grey-box model, in which SDE equations were established based on tracer-gas mass 

balance. The study suggests that the parametrization of the model was suitable and applicable, 

and the prediction tends to be more accurate than traditional deterministic approaches. Until 

now, studies that attempted to interpret indoor ventilation conditions using the grey-box model 

are still rare [171, 172]. 

Parameter estimation plays a key role in developing a stochastic grey-box model. 

Contemporary improvements in computational power have substantially enhanced Bayesian 

inference, making it a robust tool for precise parameter estimations, uncertainty quantification, 

and effective incorporation of prior knowledge. Many previous efforts have been delivered to 

apply Bayesian inference to interpret parameters in IAQ models. Wang et al. [147, 148] applied 

the Bayesian approach to a source-detector relationship established from CFD simulations of 

flow fields in indoor spaces and underground utility tunnels for estimating source parameters 

(leakage rate and location). Septier et al. [149] proposed a Bayesian inference procedure on 

inverse dispersion modeling to solve the challenging source term estimation (STE) problem. 

The Gaussian assumption was made for the source emission rate for its satisfactory 

performance in practice, even though the emission rate cannot take negative values. To assess 
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ventilation conditions with CO2 meters in primary schools, Hou et al. [150] applied a Bayesian 

inference approach to indoor CO2 concentration models. This study identified the outdoor 

ventilation rate, CO2 generation rate, and occupancy level as the most sensitive variables to 

indoor CO2 levels. Rahman et al. [151] developed an approach to estimate the occupancy 

distribution in a mechanically ventilated multi-room office using Bayesian inference. The CO2 

concentration, simulated by the CONTAM program, was taken as input for the investigation 

under the circumstances with and without a 5% random noise considered for uncertainty. The 

study found a significant increase in the RMSE in estimating occupancy as the sensor 

measurement uncertainty increases. By applying the moving-average filtering method, the 

RMSE on estimation was reduced, however it became insensitive to the abrupt occupancy 

change. It was suggested that the Bayesian inference would be more powerful in solving 

inverse problems if it could handle realistic data including noises. However, existing literature 

reveals a noticeable scarcity of interpreting parameters from stochastic models with Bayesian 

inference. 

To summarize, most traditional ventilation evaluation approaches utilize deterministic 

approaches that cannot accommodate real-life uncertainties. The accuracy of these approaches 

would rely on how the real situations approach the idealized assumptions, the accuracy and 

comprehensive collection of inputs, the correct and comprehensive model development, and 

no disturbances during the measurements, etc. Idealized situations seldom happen in reality, so 

quantifying uncertainties is essential.  

In this study, we employed Bayesian inference on a CO2-based grey-box SDE model for 

assessing ventilation conditions for two classrooms in Montreal with CO2 field measurement 

data. The methodology and data used in this study will be introduced in Section 5.2. In Section 

5.3, the modeling results will be presented and discussed. In Section 5.3.1, a prior sensitivity 

analysis was conducted on the model. In Section 5.3.2, model validations from an airtight 

chamber are demonstrated for ventilation rate (Section 5.3.2.1) and CO2 emission rates (Section 
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5. 3.2.2). The posterior predictive checks (PPC) and noise-level estimation results are discussed 

in Sections 5.3.2.3 and 5.3.2.4, respectively. Section 5.3.3 illustrates the case study outcomes, 

evaluating the ventilation conditions and providing ECAi across three seasons: Spring (March 

to May), Autumn (September to November), and Winter (December to February). The CO2 

threshold necessary to meet ECAi requirements from ASHRAE 241 was estimated for the 

classrooms to manage the long-range aerosol exposures. The conclusions of this study are 

presented in Section 5.4. 

5.2 Methodology 

The methodology used in this study implemented Bayesian inference on a stochastic CO2-

based grey-box model to interpret parameters and quantify the modeling uncertainties. In 

Section 5.2.1, the stochastic CO2-based grey-box SDE model will be introduced, followed by 

the principles of Bayesian inference to be explained in Section 5.2.2. The validation and PPC 

process are detailed in Section 5.2.3. The model development process is illustrated in Figure 

5-1. 
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Figure 5-1 The model development process 

 

5.2.1 Stochastic CO2-based grey-box model  

When establishing models for IAQ problems, the deterministic mass-balance equation is often 

established for the contaminants as an ODE. If the randomness of some coefficients is allowed, 

it will become an SDE, and it tends to be more realistic to the real-life problems of interest. 

The establishment of a stochastic CO2 grey-box model is composed of two components [285]: 

a drift component, which represents the deterministic description of the system, and a diffusion 

term, which represents the stochastic or random evolution of the system. The diffusion 

component captures the variability or uncertainty in the system’s behavior attributable to 

random forces or noise.  

The drift components derived from the traditional deterministic CO2 mass-balance model, or 

ODE, are represented by Eq.5-1:  
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𝑉
𝑑𝐶𝑟

𝑑𝑡
= (𝐶𝑜𝑢𝑡 −  𝐶𝑟) ∙ 𝑄 + 𝐸 ∙ 𝐶𝐸   

      

5-1 

 

Where V is the room volume (L); Cr is the CO2 concentration in the room (ppm); Cout is the 

CO2 concentration of outdoor air or the ventilation flows (ppm); Q is the ventilation rate (L/s);  

E is the total volumetric CO2 generation rate in the room (L/s); CE is the conversion factor from 

volumetric concentration to ppm, which equals to 106.  

The diffusion component can be considered as a ‘white noise’ term added to Eq. 5-1 accounting 

for the uncertainty associated with unknown model inputs and other noises in the system. The 

stochastic CO2 grey-box model could, therefore, be expressed as an SDE as shown in Eq.5-2: 

𝑑𝐶𝑟 =
(𝐶𝑜𝑢𝑡 −  𝐶𝑟) ∙ 𝑄 + 𝐸 ∙ 𝐶𝐸

𝑉
∙  𝑑𝑡 + 𝜎 ∙ 𝑑𝑊𝑡 5-2 

Where 𝑊𝑡 is a Wiener process, which is also known as Brownian motion, is a continuous-

time stochastic process that has been widely explored in physics, economics, and applied 

mathematics [286], and 𝜎 is the incremental variance in the Wiener process (ppm/√𝑑𝑡).  

In this study, the Euler-Maruyama method was used for discretization [287], which provides 

an approximate solution to the SDE equation over discrete time steps. The Euler-Maruyama 

approximation is provided through Eq. 5-3:  

∆𝐶𝑟 = ((𝐶𝑜𝑢𝑡 −  𝐶𝑟) ∙ 𝑄 + 𝐸 ∙ 𝐶𝐸)/𝑉 ∙ ∆𝑡 + 𝜎 ∙ √∆𝑡 ∙ 𝑍 5-3 

Where ∆𝐶𝑟 is the change in 𝐶𝑟 over the time step ∆𝑡; Z is a standard normal random variable 

(from a normal distribution with mean 0 and variance 1).  

In this study, the inclusion of the ‘white noise’ component assists in quantifying the uncertainty 

levels in model predictions. Such uncertainties might arise from various sources, including air 

turbulence, systematic measurement errors, inaccuracies in estimating modeled parameters, 

effects of unmodeled parameters, variability in the distribution of occupants within a room, and 

the positioning of sensors. The component also covers factors that are not accounted for in 

traditional deterministic models, which could lead to discrepancies between the models and the 

observations. Assumptions made in this study to use this model are: The room is a well-mixed 

single-zone space; The estimated parameters are assumed to be constant throughout the 

evaluation duration; The differences of density between indoor and outdoor air are ignored.   
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5.2.2 Bayesian inference 

Bayesian inference is a powerful tool for quantifying uncertainty in estimated model 

parameters [132, 141-143]. It considers the inferred parameters as random variables with prior 

information, and then a likelihood function (based on the measurement data) is used to update 

prior distribution following Bayes theorem [288]. The updated results are the posterior 

distributions, which are the new beliefs of the interested variables. In recent years, with the 

advancement in computational capabilities and the development of Markov Chain Monte Carlo 

(MCMC) algorithms such as Metropolis-Hastings, Gibbs sampling, and Hamiltonian Monte 

Carlo, an increasing number of studies in the built environment field started to utilize this 

approach for parameter inferences in established models [132]. 

In the defined stochastic CO2 grey-box model, there could be multiple variables required to be 

estimated. In this study, parameters to be estimated in the model are ventilation rate Q, outdoor 

CO2 concentration Cout, generation rate E, and incremental variance 𝜎 in the Wiener process. 

By placing prior distributions on all estimated parameters and updating these beliefs, a joint 

posterior distribution for the entire set of parameters can be obtained. If one parameter is 

selected as the interested parameter, its marginal posterior distribution will need to be carried 

out, and the remaining parameters will be regarded as nuisance parameters. With the MCMC 

algorithms, samples could be drawn from the joint posterior distribution to estimate the 

conditional posterior distribution of interested parameters. For example, the estimation process 

for the ventilation rate Q is illustrated as follows:  

Step 1: Assume prior distributions for estimated parameters; 

Step 2: Obtain the joint posterior distribution of all estimated parameters; 

Step 3: Yield the conditional posterior distribution on ventilation rate Q 

The prior assumptions are the prior beliefs of the estimated parameters. An example of the prior 

settings is illustrated in Figure 5-2. The impact of informative priors and non-informative priors 

(flat priors) on posterior distributions will be evaluated in this study. For example, for the 

outdoor CO2 concentrations, a uniform distribution is assumed to be in the range of 350 ppm 

to 550 ppm [289]. If there is some information about the outdoor CO2 level available, a normal 

distribution could then be assumed with a specific mean value and variance level. 
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Then, the probability of the estimated parameters could be inferred based on the prior 

distributions estimated for them. The likelihood of the estimated parameters given the 

measured data Cr (CO2 indoor concentration) is demonstrated as follows in Bayes’s theorem 

(Eq.5-4): 

P ( Q , Cout , E , σ | Cr ) =
P ( Cr | Q , Cout ,E ,σ)∙ P ( Q ,Cout ,E ,   σ )

P ( Cr )
 

5-4 

Where P ( Cr | Q , Cout , E , σ) is the likelihood probability that measurement data Cr occurs 

given the prior information, P ( Q , Cout , E , σ ) is the joint prior distribution of parameters 

Q , Cout , E , and 𝜎, and P ( Cr ) is the probability of seeing the measurement results, which is a 

normalized constant.  

After obtaining the joint posterior distribution P ( Q , Cout , E ,𝜎 | Cr ), samples could be 

drawn from this joint posterior distribution for the nuisance parameters for Cout , E , 𝜎  to 

estimate the conditional posterior distribution on ventilation rate Q , which is P ( Q | Cout , E , 

𝜎 , Cr ). The process for estimating other parameters follows the same procedure. 

 

Figure 5-2 The illustration of modeling inputs and outputs 

 

 

In this study, the likelihood function will be estimated using the Euler-Maruyama 
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approximation [287]. The Markov chain Monte Carlo (MCMC) method was applied for 

reconstructing the uncertain parameters. Given the prior distribution and likelihood, the 

posterior distribution could be obtained. Five thousand draws from the No-U-Turn Sampler 

(NUTS) algorithm were performed on two chains to sample the parameter intervals using 

MCMC. The ‘burn-in’ was set at 500 to help the Markov chain start near the center of 

equilibrium distribution. The Bayesian stochastic modeling process was established in the 

Python module PyMC [290].  

5.2.3 Validations and PPC evaluations 

Experimental validations and PPC evaluations were carried out to assess the performance and 

validity of the Bayesian inference results on the stochastic CO2-based grey-box model. 

Experimental validations are designed to help confirm the model estimation accuracy on 

ventilation rates and CO2 emission rates. Meanwhile, the PPC will help evaluate how well the 

developed model fits the observed data. It is conducted to assess the goodness of fit and 

adequacy. If the fitness is good, it indicates that the model can generate data in patterns similar 

to those observed.  

5.2.3.1 Experimental validations 

CO2 tracer gas experiments were conducted in an airtight chamber located at the University 

Institute of Cardiology and Pneumology of Quebec - Université Laval (IUCPQ - ULaval). The 

dimension of the airtight chamber is 2.3 m (width) × 3.5 m (length) × 2.4 m (height). The inlet 

and outlet of the mechanical system are at the top of the chamber with a diameter of 5.1 cm (2 

in). Two sensor trees were set up in the chamber, and each of the trees is equipped with mounts 

at six different heights [291]: 0.6 m, 1.1 m, 1.5 m, 1.7 m, 2 m, and 2.3 m. The sensors were 

established to confirm the uniform distributions of CO2 inside the chamber. Each of the mounts 

carries six sets of sensors measuring CO2 (Vaisala - GMP252), air temperature and relative 

humidity (Vaisala - HMP110), and air velocity (SWEMA 03+), respectively. Details of the 

sensor specifications are listed in Table 5-1. The CO2 was generated through the CO2 tank 

outside the chamber (Figure 5-3 (b)), and a mass flow controller was used to control the 

generation rate. 
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Figure 5-3 Experimental set-ups of the airtight chamber; (a) chamber dimensions and designated 

measurement locations (red point- CO2 sensors, yellow point-CO2 generation location); (b) detailed 

view of the gas injection and sealing mechanisms; (c) experimental set-ups in the chamber 

 

Table 5-1 Sensor specification details  

Reading Type Sensor Name Measurement range Accuracy 
Sampling 

Frequency 

CO2 Vaisala GMP252 
0 – 10000 ppm 

 
± 40 ppm 0.05 Hz 

Relative Humidity 

and Temperature 
Vaisala HMP110 

0–100 % RH 

-40 – 80 °C 

± 1.5 % RH 

± 0.2 °C 
0.05 Hz 

Airspeed Swema 03+ 0.05 – 3 m/s ± 0.03 m/s 100 Hz 

 

The experiments were completed in two sessions: concentration decay and constant injection. 

In decay measurements, three ventilation conditions (Test 1: Ventilation mode 1- 1.9 ± 0.03 

ACH; Test 2: Ventilation mode 2 - 1.51 ± 0.02 ACH; Test 3: Ventilation mode 3 - 0.53 ± 0.01 

ACH) were measured. Due to the limited conditions for directly measuring the supply airflows, 

the referenced ventilation rates for the three different ventilation conditions were calculated 

from the CO2 decay approach. A fan was operated during the initial mixture period. The CO2 

injection stops upon the peak and stabilization of CO2 concentration, and the concentration is 

recorded throughout the subsequent decay period. During the constant CO2 injection tests, two 

distinct CO2 generation rates, 0.8 L/min, and 1.6 L/min were examined with and without fan 

operation (Test 4: 0.8 L/min, fan-off; Test 5: 0.8 L/min, fan-on; Test 6: 1.6 L/min, fan-off; Test 
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7: 1.6 L/min, fan-on). These measurements were conducted under the chamber’s Ventilation 

mode 1. After the CO2 tracer gas experiments, the measured CO2 data are used as observational 

data for the model, as illustrated in Figure 5-2.  

5.2.3.2 PPC evaluation  

PPC is a useful way of assessing the model and determining if it fits the data directly. 

Specifically, to check the model’s fit, the simulated values were drawn from posterior 

predictive distributions, and the samples were compared with the observed data. If the proposed 

model fits, the regenerated simulations from the model should resemble the observations and 

no major discrepancy would be observed. Traditionally, the previous classical approaches 

mainly focus on various goodness-of-fit tests, comparing a tested statistic derived from 

observed data to its distribution under the null hypothesis. Unlike the traditional p-value in 

frequentist statistics, the Bayesian p-value helps to evaluate how well a Bayesian model 

describes the observed data. The Bayesian p-value is defined in Eq.5-5  

 

Bayesian p-value ≜ p (Tsim ≥ Tobs | Cr) 5-5 

 

Where Tsim is the simulated statistic, Tobs is the statistic for observations, and Cr is the 

conditions of the observations. A Bayesian p-value close to 0.5 would suggest a good fit, 

indicating that the observed data appears typical of the data predicted by the model. When 

values close to 0 or 1, however, would indicate a poor fit, suggesting that observations are 

impossible under the model. In this study, the target test statistic is the posterior mean value. 

5.3 Results and discussion 

5.3.1 Prior sensitivity analysis on inferred parameters  

A crucial component in the Bayesian modeling and inference process is the prior distribution, 

which represents our initial assumptions or knowledge about unknown model parameters. In 

Bayesian analysis, this prior distribution is subsequently combined with the likelihood, which 

is the probability that observation occurs, given the parameters, to obtain the posterior 

distribution. The posterior distribution thus reflects an updated belief of the parameters, 
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incorporating both our prior knowledge and the new evidence. Therefore, the prior assumptions 

may have a significant impact on the posterior estimates of mean, bias, quantiles, etc. In this 

section, a prior sensitivity analysis was conducted for the stochastic CO2 grey-box model to 

help assess whether the inferred results are influenced by the prior assumption settings. 

The prior sensitivity analysis was conducted for ventilation rate Q, outdoor CO2 concentration 

level Cout and CO2 emission rate E in the model. In addition, two types of priors are chosen for 

the investigation: vague proper prior and informative prior. There are two main objectives for 

this prior sensitivity analysis. The first is to investigate whether different prior assumptions will 

influence the parameter of interest, for example, ventilation rate Q and CO2 emission rate E. 

The second is to investigate whether the prior assumption of nuisance parameters, which are 

the parameters that are not of direct interest, would play an important role in estimating the 

interested parameters. The nuisance parameter investigated in this study is the outdoor CO2 

concentration level Cout.  

The prior sensitivity analysis for one case of this study will be demonstrated here, using the 

observational data from one constant injection experimental test conducted in the airtight 

chamber (Test 4). The observational data for this investigated scenario is illustrated in Figure 

5-4. The metabolic chamber was set at its Ventilation mode 1 (ACH = 1.9 ± 0.03), and CO2 

tracer gas was constantly injected into the chamber at a rate of 0.8 L /min (0.013 L/s). The 

information on the investigated priors is listed in Table 5-2. 
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Figure 5-4 The investigated test for prior sensitivity analysis 

(Test 4 in the airtight chamber) 

 

Table 5-2 Evaluated priors for inferred parameters 

Parameter Unit Default Prior 
Vague Proper 

Prior 
Informative Prior 

Q ACH U (0,3) U (0,10) N (2, 0.2) 

Cout ppm U (350,550) U (350,550) 
U (396,416) 

N (400,20) 

E L/s U (0,0.05) U (0,0.1) N (0.013,0.005) 

Note. U = Uniform; N = Normal  
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Figure 5-5 Prior sensitivity analysis on estimated parameters; U = Uniform; N = Normal; When 

investigating a specific prior assumption for a given parameter, default priors will be applied to other 

parameters; (a) – (c): The influence of prior assumptions of Q, E, and Cout on Q; (d) – (f): The 

influence of prior assumptions of Q, E, and Cout on E 

 

As depicted in Figure 5-5, the influence of prior assumptions on parameter inference was 

investigated within the stochastic CO2 grey-box model. Specifically, we focus on the 

ventilation rate (Q) and the CO2 emission rate (E), aiming at elucidating the model’s sensitivity 

and robustness to varying prior assumptions. The robustness of the model estimations for 

ventilation rate Q, under varying prior assumptions, is illustrated in  Figure 5-5 (a) - (c). It is 

observed that the adoption of a vague uniform prior (Q ~ U (0,10)) does not introduce 

significant deviations from the results generated by the default uniform prior (Q ~ U (0,3)). 

This indicates that a broader assumption range will not influence final evaluations. As a result, 

both of the two prior assumptions can be considered proper priors in this study. Furthermore, 

the adoption of an informative prior (Q ~ N (2, 0.2)) could enhance the model’s prediction 

performance on Q (Figure 5-5 (a)), as would be expected. Besides, the changes in prior 

assumptions regarding the CO2 emission rate (E) and outdoor CO2 concentration level (Cout) 

demonstrate negligible impacts on the model’s inference performance for Q, as illustrated in 

(a) (b) (c)

(d) (e) (f)
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Figure 5-5 (b) and Figure 5-5 (c). It suggests the model’s insensitivity to these prior 

assumptions, thereby reinforcing the robustness of its estimations on the parameter Q. 

Similar findings were also observed for the estimations of CO2 emission rate E, as shown in 

Figure 5-5 (d). The model achieves good accuracy in estimating E, even under the vague prior 

(E ~ U (0, 0.1)). This capacity is further demonstrated in  Figure 5-5 (e) and Figure 5-5 (f), 

where the estimation accuracy for E was not affected by the varying priors for Q and Cout. 

In conclusion, employing Bayesian inference on the stochastic CO2 grey-box model exhibits 

good robustness to the variations in prior assumptions for both Q and E. The model could 

maintain its predictive accuracy across a range of prior assumptions, from vague proper to 

highly informative prior. This evaluation results prove the rationality of the prior assumptions 

made for the model.  

5.3.2 Model validation  

In this section, the accuracy of the inferred parameters (Q and E) was further validated, 

adopting the verified default prior assumptions listed in Table 5-2. Two types of CO2 tracer gas 

tests were used as observational data inputs in this model validation process, distinguished by 

the CO2 generation situations: with or without CO2 release. Detailed information for the 

validation scenarios is listed in Table 5-3 and Table 5-4. The validation results for the model’s 

estimation performance are presented in the following subsection. 

5.3.2.1 Validation of the inferred ventilation rate Q  

One of the main purposes of this study is to make reasonable inferences of ventilation rate Q 

from the indoor CO2 measurement with the proposed approach. The model estimation 

performance for Q was compared with the ventilation rate obtained from standard tracer-gas 

decay tests. For the concentration decay tests, there were three ventilation modes investigated.  

The comparison results are illustrated in Table 5-3 and Figure 5-6. For the concentration decay 

test, the difference is less than 5% for the three ventilation modes.  
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When the CO2 release was considered in the model (constant injection test), the relative errors 

for the two release conditions 0.8 L/min (0.013 L/s) and 1.6 L/min (0.026 L/s) were 5.7% and 

3.1% under fan-off situations. For the “fan on” scenarios, the differences increase to 12.6% and 

11% for the two release conditions. The reasons for this increase in differences are probably 

due to the fan actively circulating air in the small chamber, leading to a higher actual ventilation 

rate. It should be noted that there was no obvious difference in the CO2 measurements observed 

at the twelve sensors in the two sensor trees, thus the influence of non-uniformity could be 

ignored. To summarize, the proposed approach in this study can make reasonable ventilation 

rate estimations for both decay and constant injection scenarios.  

Table 5-3 Validations for inferred ventilation rate Q 

CO2 Tracer gas 

measurements 

Test 

number 

Experimental 

conditions 

Estimated Q (ACH) Experimental 

Q (ACH) 

Relative 

Error 

(%)  mean sd mean sd 

Concentration 

decay 

Test1 Ventilation 1 1.90 0.03 1.91 0.03 0.5% 

Test2 Ventilation 2 1.52 0.02 1.51 0.04 0.6% 

Test3 Ventilation 3 0.51 0.01 0.53 0.03 3.8% 

Constant 

injection 

Test4 Ventilation1, 

CO2 release =0.013 

L/s (0.8 L/min), fan 

off 

1.80 0.20 1.91 0.03 5.7% 

Test5 Ventilation1, 

CO2 release =0.013 

L/s (0.8 L/min), fan 

on 

2.15 0.26 1.91 0.03 12.6% 

Test6 Ventilation1, 

CO2 release =0.026 

L/s (1.6 L/min), fan 

off 

1.85 0.31 1.91 0.03 3.1% 

Test7 Ventilation1, 

CO2 release =0.026 

L/s (1.6 L/min), fan 

on 

2.12 0.06 1.91 0.03 11.0% 
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Figure 5-6 Posterior distribution on inferred ventilation rate Q; a) Inferred ventilation rate under three 

ventilation conditions from CO2 decay tests; b) Inferred ventilation rate under normal ventilation 

conditions from CO2 constant injection tests; The black dashed line indicates the referenced value 

measured from the airtight chamber 

 

5.3.2.2 Validation of the inferred CO2 emission rate E  

In addition to the ventilation rate Q, the CO2 emission rate E was another parameter of interest, 

which can be inferred from the model simultaneously. The interpretation of the CO2 emission 

rate in the room can help estimate the occupancy based on the CO2 emission rate per person 

under certain ages and physical activity levels. The comparisons between the inferred CO2 

emission rates E and the CO2 emission readings from the mass flow controller are illustrated 

in Table 5-4 and Figure 5-7.  

From Figure 5-7, it could be found that the inferred CO2 emission rate E is in good agreement 

with the measurements obtained from the emission mass flow controller for all tested scenarios. 

As shown in Table 5-4, in the “fan off” scenario, the estimation errors for the release rates of 

0.8 L/min and 1.6 L/min were 2.3 % and 6.4 %, respectively. However, when the fan was turned 

on, the discrepancies widened, increasing to 12.8 % for 0.8 L/min and 8.6 % for 1.6 L/min. 

Though the differences increased in the “fan on” conditions when compared with the “fan off” 

ones, the estimated errors remained in an acceptable range of 5% - 15%.  
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Table 5-4 Validations for inferred CO2 emission rates E 

Constant 

injection 

Experimental 

conditions 

CO2 emission 

rate E (L/s) 

CO2 emission readings 

from mass flow controller 

(L/s) 

Relative 

Error (%) 

mean sd mean sd 

Test 4 Ventilation 1, 

CO2 release =0.013 

L/s (0.8L/min), fan 

off 

0.013 0.001 0.0133 0.0001 2.3 % 

Test 5 Ventilation 1, 

CO2 release =0.013 

L/s (0.8L/min), fan 

on 

0.015  0.001  0.0133 0.0001 12.8 % 

Test 6 Ventilation 1, 

CO2 release =0.026 

L/s (1.6L/min), fan 

off 

0.025  0.003  0.0267 0.0002 6.4 % 

Test 7 Ventilation 1, 

CO2 release =0.026 

L/s (1.6L/min), fan 

on 

0.029  0.001  0.0267 0.0002 8.6 % 

 

 

Figure 5-7 Posterior distribution on CO2 emission rate E; a) Inferred CO2 generation rate under CO2 

release = 0.013 L/s (0.8 L/min); b) Inferred CO2 generation rate under CO2 release = 0.026 L/s (1.6 

L/min); The black dashed line indicates the referenced value measured from the airtight chamber 

 

5.3.2.3 PPC evaluation results  

The PPC evaluation results for decay and constant injection scenarios are shown in Figure 5-8 

and Figure 5-9 as follows. It suggests that the generated data closely align with the observed 
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data, which further validates the accuracy of the inferred parameters. The Bayesian p-value for 

the decay and constant injection scenarios fall in the range of 0.37 - 0.40 and 0.63 - 0.66, 

respectively, all close to 0.50, which suggests a reasonable fit for the model.   

 

Figure 5-8 Posterior predictive simulations for decay scenarios (HDI =Highest Density Interval, 

indicating the probability that true value drops in this interval; (a) – (c): Test 1 – Test 3, details see 

Table 5-3) 

 

Figure 5-9 Posterior predictive simulations for constant injection scenarios (HDI =Highest Density 

Interval, indicating the probability that true value drops in this interval; (a) - (d): Test 4 – Test7, details 

see Table 5-4)  
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5.3.2.4 Noise level estimations in CO2 trend predictions 

In this section, the posterior means from the constant injection scenarios (Table 5-5) are taken 

as inputs for the ODE and SDE CO2 mass-balance models (Eq. 5-1 and Eq.5-2), respectively. 

One hundred simulations were conducted for the SDE model. The CO2 trend predictions and 

noise level estimations are illustrated in Figure 5-10. The SDE model could capture the 

variability in the observational data and make reasonable estimations for the CO2 trend. 

Compared with the traditional ODE model, SDE predictions could consider real-life noise 

estimations and make unbiased predictions. The posterior distributions estimated for 𝜎, which 

is the incremental variance in the Wiener process to scale the magnitude of the random 

fluctuation, were shown in Table 5-5. Correspondingly, the noise level estimations are shown 

in Figure 5-10 (b) (d) (f) (h).  

For the scenarios with a CO2 release rate of 0.013 L/s, the disturbances in the system illustrated 

similar magnitudes with 𝜎  estimations at 72.7 ± 5.8 (fan off) and 75.4 ±7.1(fan on), 

respectively. No significant differences were observed, and the predicted noise levels both fall 

in the range of -100 ppm to 100 ppm. In scenarios where the CO2 release rate was 0.026 L/s, 

the disturbances were significantly reduced when the fan was on. For the fan-off condition, the 

𝜎 was estimated to be 157.3 ± 16.9, whereas this estimation dropped to 48.6 ± 3.6 when the 

fan was turned on. The fan’s operation appeared to reduce the variability in the observed data 

and this effect was not obvious when the CO2 release rate was low. It should be noted that 

throughout the experiments, the fan was controlled remotely, ensuring its operation was the 

only altered condition. All other experimental conditions were kept constant during these tests. 

According to the manufacturers, the sensor measurement errors are ± 40 ppm, which is captured 

by the scenarios listed in Table 5-5. 
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Table 5-5 Posterior distributions estimated for the incremental variance 

Test number 

(for constant 

injection) Experimental conditions 

𝜎 (ppm/√ℎ) Relative ratio to steady-

state CO2 level in ppm 

(mean estimations from 

one hundred SDE 

simulations) 

mean sd 

Test 4 

Ventilation 1, 

CO2 release =0.013 L/s  

(0.8 L/min), fan off 

72.7 5.8 ± 1 % 

Test 5 

Ventilation 1, 

CO2 release =0.013 L/s  

(0.8 L/min), fan on 

75.4 7.1 

 

± 2.2 % 

Test 6 

Ventilation 1, 

CO2 release =0.026 L/s  

(1.6 L/min), fan off 

157.3 16.9 

 

± 1.1 % 

Test 7 

Ventilation 1, 

CO2 release =0.026 L/s (1.6 

L/min), fan on 

48.6 3.6 

 

± 0.9 % 

 

Figure 5-10 ODE- and SDE-based CO2 trend predictions and noise level estimations  
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5.3.3 Case Study 

Indoor whole-year field measurements of CO2 levels from two Montreal primary schools (from 

2020 to 2021) were used to employ the proposed approach in real-life settings. The selected 

classrooms have a floor area of 9.4 m × 6.6 m (Classroom 1) and 8.8 m × 7.1 m (Classroom 2), 

respectively, and both are naturally ventilated. The HOBO Bluetooth Low Energy Carbon 

Dioxide- Temp / RH Data Logger was installed in classrooms at 1.7 meters height on the west 

internal wall right above the thermostat (1.5 m height). The detailed information on the data 

logger is listed in Table 5-6.  

Table 5-6 Detailed information for the HOBO Data Logger 

Reading Type Measurement range Accuracy Resolution 

CO2 
0 – 5000 ppm 

 
± 50 ppm – 

Relative Humidity  1% – 90% RH ± 2 % RH 0.01 % 

Temperature -20 – 70 oC ± 0.21 oC   0.024 °C at 25°C 

 

Table 5-7 Measurements information in the classroom 

Classroom Location Age 
Dimensions 

(m) 

Ventilation 

Type 
Measurement Periods 

Classroom 1  Montreal 5-8 9.4 × 6.6 ×3.47 
Natural 

ventilation 
2020/06/22 - 2021/06/21 

Classroom 2 Montreal 5-8 8.8 × 7.1 × 3.2 
Natural 

ventilation  
2020/08/26 - 2021/08/25 

 

Table 5-7 illustrates the measurement information for the two primary classrooms. One week 

of weekday data (from Monday to Friday, represented as Day 1 to Day 5 in later discussions) 

was selected from Autumn, Winter, and Spring for each of the classrooms (Figure 5-11). Since 

the classrooms remained unoccupied for most of the summer vacation, this period was not 

included in our analysis. For each day, the data was selected from the first class start to the first 

CO2 peak to do the evaluation. It is based on the assumption that the ventilation conditions 

remain the same for the whole day, and the number of students who attend the first class will 

be considered as the maximum attendance on that day. The ventilation rate and CO2 emission 



111 

 

rates were estimated using the developed approach, and occupancy was also calculated under 

the assumption that the average CO2 generation rate per person was 0.0047 L/s [7].  

Based on the estimated ventilation rates and occupancy levels, the equivalent clean airflow 

delivery rates per person were carried out (ECAi) and compared with the minimum values 

recommended by ASHRAE Standard 241 [292]. The ECAi sums the clean air supply rates 

contributed by indoor mitigation measures, including outdoor air ventilation, HVAC filtration, 

and air-cleaning devices such as portable air cleaners (PAC) or germicidal ultraviolet (GUV) 

[105, 257, 293]. This will assess the capability of the classroom to mitigate long-range aerosol 

exposures. In addition, it will help clarify the efforts required to achieve the infection risk 

management target established by ASHRAE 241 and figure out proper mitigation measures. 

The Equivalent Clean Air Calculator will be used for the assessment [292]. A steady-state CO2 

threshold that achieves minimum ECAi requirements was carried out for the evaluation periods 

and summarized with mean and pooled standard deviation for each classroom. Thresholds were 

established for scenarios involving pure ventilation, combined mitigation strategies, and 

various occupancy levels based on the summary of 2,000 runs of SDE model simulations for 

each scenario. 
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Figure 5-11 One-week CO2 measurements selected from Autumn, Winter, and Spring for two 

classrooms 

 

5.3.3.1 Estimated parameters and ECAi 

The proposed approach was subsequently employed to evaluate the ventilation conditions of 

two classrooms from two Montreal primary schools. As illustrated in Table 5-8, it could be 

found that the ventilation rates for Classroom 1 and Classroom 2 were inferred to be in the 

range of 0.11 – 1.38 ACH and 0.11 – 3.66 ACH, respectively. In evaluated days, the largest 

ventilation rate appears in Spring for both classrooms, which turns out to be Day 3, Spring 

(2021-04-14) for Classroom 1 and Day 2, Spring (2021-04-13) for Classroom 2. The occupancy 

turns out to be ranging from 9 - 20 for Classroom 1 and 14 - 20 for Classroom 2, with one 
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exceptional day of only 3 students attending the class. The ECAi provided for each day was 

evaluated, ranging from 0.6 to 24.7 L/s/person. In the evaluated days, the ECAi provided in 

most of the days was significantly lower than the value recommended by ASHRAE 241 (20 

L/s/person for Classroom) [292]. This suggests that, throughout the evaluation period, the clean 

air introduced into the two classrooms had limited capabilities in removing aerosols and failed 

to meet the ECAi requirements. 

Table 5-8 Evaluation results for the two classrooms in Autumn, Winter, and Spring   

Classroom1, Autumn Day1 Day2 Day3 Day4 Day5 

Ventilation rate (ACH) 0.35 0.63 0.24 0.34 0.25 

Total CO2 emission rate (L/s) 0.044 0.079 0.09 0.083 0.088 

Estimated occupancy 9 17 19 18 19 

ECAi provided (L/s/person) 2.3 2.2 0.8 1.1 0.8 

Classroom1, Winter Day1 Day2 Day3 Day4 Day5 

Ventilation rate (ACH) 0.58 1.24 0.96 0.81 0.2 

Total CO2 emission rate (L/s) 0.044 0.069 0.078 0.081 0.091 

Estimated occupancy 9 15 17 17 19 

ECAi provided (L/s/person) 3.9 5.0 3.4 2.9 0.6 

Classroom1, Spring Day1 Day2 Day3 Day4 Day5 

Ventilation rate (ACH) 0.11 0.44 1.38 0.48 0.14 

Total CO2 emission rate (L/s) 0.046 0.087 0.079 0.083 0.092 

Estimated occupancy 10 19 17 18 20 

ECAi provided (L/s/person) 0.7 1.4 4.9 1.6 0.4 

Classroom2, Autumn Day1 Day2 Day3 Day4 Day5 

Ventilation rate (ACH) 0.21 0.26 0.3 0.24 0.11 

Total CO2 emission rate (L/s) 0.084 0.089 0.085 0.083 0.092 

Estimated occupancy 18 19 18 18 20 

ECAi provided (L/s/person) 0.6 3.2 0.9 0.7 0.3 

Classroom2, Winter Day1 Day2 Day3 Day4 Day5 

Ventilation rate (ACH) 1.18 0.6 0.51 0.79 0.2 

Total CO2 emission rate (L/s) 0.071 0.083 0.085 0.071 0.09 

Estimated occupancy 15 18 18 15 19 

ECAi provided (L/s/person) 4.4 4.5 1.6 2.9 0.6 

Classroom2, Spring Day1 Day2 Day3 Day4 Day5 

Ventilation rate (ACH) 1.33 3.66 0.81 0.88 1.74 

Total CO2 emission rate (L/s) 0.015 0.068 0.086 0.081 0.069 

Estimated occupancy 3 14 18 17 15 

ECAi provided (L/s/person) 24.7 17.9 2.5 2.9 6.5 

Note. The average CO2 generation rate per person was assumed to be 0.0047 L/s for Classrooms (5-8 years) [280].  

5.3.3.2 Steady-state CO2 threshold achieving minimum ECAi requirements  

To satisfy the minimum ECAi requirements, the steady-state CO2 threshold was determined 

with the stochastic CO2 grey-box model, employing outdoor ventilation as the only air-cleaning 
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strategy. The minimum ECAi requirement of 20 L/s/person was used to determine the 

ventilation rate ‘Q’ in the model, alongside other parameters estimated from the previous 

evaluation phase. Two thousand CO2 steady-state concentration simulations were conducted 

for each day evaluated in Table 5-8, and the summarized CO2 steady-state concentration was 

shown in Figure 5-12 for each of the classrooms (Classroom 1: 688.2 ± 132.4 ppm, Classroom 

2: 690.3 ± 158.2 ppm). Daily evaluation results are shown in Appendix 3. The cumulative 

distribution of school-hour CO2 measurements in Autumn, Winter, and Spring for Classroom 1 

and Classroom 2 were also demonstrated in Figure 5-12. In Classroom 1, only 25% of 

measurements fall into the established steady-state CO2 threshold that achieves minimum 

ECAi requirements, while this number for Classroom 2 was 35%. This shows that during at 

least two-thirds of school hours, the minimum ECAi requirements are not met throughout the 

academic year. Natural ventilation alone is insufficient to ensure safe and healthy learning 

environments. Therefore, an increased supply of clean air in classrooms is necessary. 

 

Figure 5-12 Whole year CO2 measurements in two classrooms; a) Cumulative distribution of school-

hour CO2 measurements in Autumn, Winter, and Spring for Classroom 1; b) Cumulative distribution 

of school-hour CO2 measurements in Autumn, Winter, and Spring for Classroom 2 

 

5.3.3.3 Retrofits to achieve the minimum ECAi required by ASHRAE 241 

The impact of different exposure mitigation measures, with clean air delivery rates (CADR) 
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ranging from 0.09 – 0.47 m3/s on ECAi was investigated, and the results are presented in Table 

5-9. Various combinations of in-room UV devices and air cleaners (fan filter type) were 

evaluated to achieve varying levels of CADR. The findings suggest that a supplement of air-

cleaning devices with a CADR of 0.38 m3/s or more ensures that ECAi requirements are 

consistently achieved in both classrooms. 

Table 5-9 ECAi under different mitigation measures  

Classroom 1, Autumn Day1 Day2 Day3 Day4 Day5 

In-room UV (0.09 m3/s CADR) 12.8 7.8 5.7 6.4 5.8 

In-room air cleaner (0.19 m3/s CADR) 23.3 13.3 10.7 11.6 10.7 

In-room UV + In-room air cleaner (0.27 m3/s 

CADR) 
33.8 18.9 15.7 16.9 15.7 

2 × In-room air cleaner (0.38 m3/s CADR) 44.3 24.4 20.6 22.1 20.7 

In-room UV + 2 × In-room air cleaner (0.47 

m3/s CADR) 
54.8 30.0 25.6 27.4 25.6 

Classroom 1, Winter Day1 Day2 Day3 Day4 Day5 

In-room UV (0.09 m3/s CADR) 14.4 11.2 8.9 8.4 5.6 

In-room air cleaner (0.19 m3/s CADR) 24.8 17.5 14.5 14.0 10.6 

In-room UV + In-room air cleaner (0.27 m3/s 

CADR) 
35.3 23.8 20.0 19.5 15.5 

2 × In-room air cleaner (0.38 m3/s CADR) 45.8 30.1 25.6 25.1 20.5 

In-room UV + 2 × In-room air cleaner (0.47 

m3/s CADR) 
56.3 36.4 31.2 30.6 25.5 

Classroom 1, Spring Day1 Day2 Day3 Day4 Day5 

In-room UV (0.09 m3/s CADR) 10.1 6.4 10.4 6.8 5.1 

In-room air cleaner (0.19 m3/s CADR) 19.5 11.3 16.0 12.1 9.9 

In-room UV + In-room air cleaner (0.27 m3/s 

CADR) 
29.0 16.3 21.5 17.3 14.6 

2 × In-room air cleaner (0.38 m3/s CADR) 38.4 21.3 27.1 22.6 19.3 

In-room UV + 2 × In-room air cleaner (0.47 

m3/s CADR) 
47.9 26.2 32.6 27.8 24.0 

Classroom 2, Autumn Day1 Day2 Day3 Day4 Day5 

In-room UV (0.09 m3/s CADR) 5.9 8.2 6.2 6.0 5.0 

In-room air cleaner (0.19 m3/s CADR) 11.1 13.2 11.4 11.2 9.7 

In-room UV + In-room air cleaner (0.27 m3/s 

CADR) 
16.4 18.2 16.7 16.5 14.5 

2 × In-room air cleaner (0.38 m3/s CADR) 21.6 23.1 21.9 21.7 19.2 

In-room UV + 2 × In-room air cleaner (0.47 

m3/s CADR) 
26.9 28.1 27.2 27.0 23.9 

Classroom 2, Winter Day1 Day2 Day3 Day4 Day5 

In-room UV (0.09 m3/s CADR) 10.7 9.7 6.8 9.2 5.6 

In-room air cleaner (0.19 m3/s CADR) 17.0 15.0 12.1 15.5 10.5 

In-room UV + In-room air cleaner (0.27 m3/s 

CADR) 
23.3 20.2 17.3 21.8 15.5 

2 × In-room air cleaner (0.38 m3/s CADR) 29.6 25.5 22.6 28.1 20.5 

In-room UV + 2 × In-room air cleaner (0.47 

m3/s CADR) 
35.8 30.7 27.8 34.4 25.4 



116 

 

Classroom 2, Spring Day1 Day2 Day3 Day4 Day5 

In-room UV (0.09 m3/s) 56.2 24.7 7.7 8.4 12.8 

In-room air cleaner (0.19 m3/s CADR) 87.6 31.4 13.0 14.0 19.0 

In-room UV + In-room air cleaner (0.27 m3/s 

CADR) 
119.1 38.2 18.2 19.5 25.3 

2 × In-room air cleaner (0.38 m3/s CADR) 150.6 44.9 23.5 25.1 31.6 

In-room UV + 2 × In-room air cleaner (0.47 

m3/s CADR) 
182.0 51.6 28.7 30.6 37.9 

Note: The conditions that satisfy the EACi requirements in ASHRAE 241 (20 L/s/person) are in bold 

5.3.3.4 Manage long-range indoor aerosol exposures using CO2 as a proxy 

For the purpose of creating a clean and healthy indoor environment, the CO2 thresholds were 

established for potential future indoor ventilation designs and operations in the classrooms. The 

steady-state CO2 levels were carried out using the stochastic CO2-based grey-box model. Three 

aerosol exposure management levels were established from two thousand predictive outcomes 

of the model: Climit (Mean + SD) as the maximum threshold indicating poor ventilation beyond 

this limit, Ctarget (Mean) as the expected CO2 concentration limit, under which conditions are 

deemed acceptable and generally comply with ECAi, and Cideal (Mean – SD) as the optimal 

threshold, recommended when infection risk of respiratory diseases in the classroom is a 

significant concern. These thresholds could help manage long-range indoor aerosol exposures 

by using CO2 as a proxy while taking real-life uncertainties into consideration. 

The design Ctarget levels were evaluated for classrooms under varying occupancy and CADR 

conditions (Figure 5-13). When no additional CADR is supplied, a ventilation rate of 20 L/s 

per person is required, resulting in an average Ctarget level of 683 ppm and 686 ppm for the 

classrooms respectively. Thus, it is suggested to set Ctarget below 690 ppm when managing 

indoor aerosol exposures is a priority. In scenarios where air-cleaning devices with sufficient 

CADR are adopted (0.38 m3/s), the Ctarget stabilizes around 1000 ppm. Conversely, when 

limited CADR is supplemented such as 0.09 m3/s, the Ctarget level initially rises with increased 

occupancy but subsequently falls as additional ventilation is needed to maintain the effective 

clean air level (ECAi). 

Uncertainties in real-life operations can influence the estimated maximum CO2 levels used to 
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indicate whether a room meets ECAi requirements. For instance, actual attendance may vary 

from the designed occupancy levels. As a result, the CO2 thresholds (Climit, Ctarget, and Cideal) 

were carried out for different mitigation measures with CADR ranging from 0.09 – 0.47 m3/s. 

These thresholds are depicted in Figure 5-14 for Classroom 1 and Classroom 2, and generalized 

equations derived from the average of their coefficients are presented in Eq.5-6 to Eq.5-8. 

When the CADR is below 0.28 m3/s, enhancing air-cleaning capacity improves ECAi, thereby 

reducing reliance on outdoor ventilation for achieving ECAi requirements. While the 

contribution from outdoor ventilation can decrease from the initial 20 L/s/person, it must still 

meet the minimum ventilation rate of 7.4 L/s/person recommended in ASHRAE 62.1 for 

classrooms [279]. Once air-cleaning devices provide sufficient ECAi, the steady-state CO2 

thresholds indicating ECAi satisfaction remain stable. 

 

Figure 5-13 Design Ctarget level for different occupancy in two classrooms; a) Classroom 1; b) 

Classroom 2 
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Figure 5-14 Steady-state CO2 thresholds that achieve minimum ECAi requirements with the 

employment of air-cleaning devices under different CADR; a) Classroom 1; b) Classroom 2 

 

Climit  = {
0.8 × CADR + 829.1     (CADR ≤ 600)

 1309.1                                (CADR > 600)
 

5-6 

 

Ctarget  = {
 0.7 × CADR + 684 .6   (CADR ≤ 600) 
1104.6                                (CADR > 600)

 
5-7 

 

Cideal  = {
 0.5 × CADR + 540.1  (CADR ≤ 600) 
 840.1                                (CADR > 600)

 
 5-8    

 

When the CADR level of air-cleaning devices introduced into classrooms is set, the Climit, Ctarget, 

and Cideal can be respectively calculated for classrooms with similar designs as the two Montreal 

primary classrooms investigated in this study. The ‘similar designs’ refer to aspects such as 

dimensions, occupancy, attendance, ventilation mode, etc. For other public indoor facilities 

with distinctive ventilation designs, measuring CO2 concentrations during occupied hours is 

advised to obtain the data for inference. Subsequently, case-specific CO2 thresholds can be 

determined using the methodology established in this study.  

It should also be noted that the CO2 thresholds established here aim at indicating whether the 

IAQ in classrooms complies with ASHRAE standard 241 [292] and ASHRAE standard 62.1 

[279]. ASHRAE standard 241 outlines the clean-air requirements within an Infection Risk 

Management Mode (IRMM) during an outbreak, requiring higher cleaning air delivery levels 
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when compared with ASHRAE standard 62.1. In scenarios where air-cleaning devices are 

absent or limited, a considerable volume of outdoor ventilation is recommended to maintain 

air quality (e.g., when the CADR is 0.28 m3/s, a ventilation rate of 20 L/s/person is advised). 

As the CADR available to the room increases, the requirement for outdoor ventilation 

decreases accordingly. Nonetheless, it needs to be realized that even when air-cleaning devices 

supply sufficient ECAi, the outdoor ventilation rates must still adhere to the minimum 

requirements outlined in ASHRAE standard 62.1 to ensure adequate air quality (for instance, 

when CADR is equal to or greater than 0.28 , a minimum ventilation rate of 7.4 L/s/person is 

still mandated). When the community infection risk of respiratory diseases is low, it is also 

appropriate to utilize the thresholds designed for scenarios with sufficient CADR, such as 

during the plateau periods when the CADR exceeds 0.28 m3/s . These thresholds align with the 

ventilation requirements specified by ASHRAE standard 62.1 only.   

5.4 Conclusions 

In this study, we present an innovative method to quantify uncertainties in indoor ventilation 

conditions, aimed at enhancing future evaluations of Canadian primary schools. The approach 

proposed by this study has the potential to help interpret CO2 recordings in real classroom 

settings and predict steady-state CO2 levels considering uncertainties. Here are the main 

contributions of this study:   

 By employing Bayesian inference on a CO2-based grey-box SDE model, the ventilation 

rate and CO2 emission rate can be accurately predicted. Uncertainties come from 

measurements, the randomness of air movements, and modeled or unmodelled parameters, 

which can be quantified using the incremental variance 𝜎.  

 The robustness and reliability of the model were validated with CO2 tracer gas experiments 

in an airtight chamber. Prior sensitivity analysis was conducted to verify the rationality of 

assumed prior assumptions. Parameters inferred from the model were compared with 

chamber measurements to confirm its estimation accuracy. The PPC evaluations were 
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conducted to see whether the estimated parameters for the model could work well to 

represent the observations. The results suggested that the model is robust to its prior 

assumptions and can estimate the interested parameters with reliable accuracy. 

 Applications were conducted to interpret the real-life CO2 measurements in two 

classrooms in Montreal. Using the estimated ventilation and occupancy, the provided 

ECAi and the steady-state CO2 threshold for achieving minimum ECAi requirements were 

calculated, suggesting natural ventilation is insufficient to achieve ECAi standards 

established by ASHRAE 241 for all three seasons.  

 Adopting a CADR of 0.38 m3/s can help the classrooms to effectively manage aerosol 

exposures. In addition, steady-state CO2 thresholds (Climit, Ctarget, and Cideal) to indicate the 

ECAi satisfactory status were carried out for different mitigations using the stochastic CO2 

grey-box model and inferred parameters.  

 To achieve the minimum ECAi level required by ASHRAE 241, the target CO2 level is 

suggested to be below 690 ppm for similar classrooms without additional clean-air 

treatment. When sufficient clean air is supplemented, the design Ctarget is appropriately set 

at 1000 ppm. Empirical equations were also established for classrooms that share the 

ventilation design featured in this study. In real-life operations and management, it is 

recommended to reference Figure 5-14 to consider uncertainties. 

Limitations do exist in this study because only two classrooms were investigated, and 

occupancy information was not available for further verifications of the model. For people who 

are interested in understanding the ECAi-compliant steady-state CO2 thresholds for a specific 

indoor environment, it is advisable to conduct consistent field CO2 measurements in occupied 

hours for the intended scenario and apply the approach developed in this study. 
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Chapter 6 Conclusions and Future Work  

This study explored approaches to manage long-range indoor aerosol transmissions of 

respiratory diseases such as SARS-CoV-2. Initially, multizonal aerosol transmissions of SARS-

CoV-2 were assessed using the CONTAM-quanta approach. This method was demonstrated 

with a DOE prototype Large Office building and subsequently applied to a Medium Office, 

Stand-Alone Retail, Small Hotel, and Secondary School. The effectiveness of various 

mechanical mitigation measures was analyzed and compared. Additionally, to control aerosol 

exposures in real-life settings using CO2 monitoring records, Bayesian inference was applied 

to a stochastic CO2-based grey-box model to estimate indoor ventilation conditions. The main 

contributions, limitations, and future work of this study are summarized below. 

6.1 Major Contributions   

In order to limit the indoor aerosol transmissions and guarantee safe occupants’ exposures 

inside the building, this study developed methodologies to effectively compare mitigation 

strategies in multizone buildings and infer indoor ventilation conditions via CO2 field 

monitoring. Here are the main findings and contributions in this study:   

• This modeling approach allows for an evaluation of the whole building as a multizone 

structure, enabling an effective comparison of ventilation and air-cleaning components. 

The Large Office scenario simulated in this study served as an excellent example for 

implementing mitigation strategies. In the baseline case, while zone-to-zone and floor-

to-floor spread was possible, the risk was significantly lower in all zones compared to 

the source zone. A duct-treatment strategy could approach the effectiveness of using 

100% outdoor air, and adding room cleaning devices such as portable air cleaners and 

in-room germicidal UV light could further enhance air cleaning. 

• The study also modeled layered mitigation strategies for long-range transmission of 

SARS-CoV-2 quanta in five DOE prototype commercial buildings. The results 
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indicated that duct-treatment air-cleaning strategies (upgrading MERV filter levels and 

using in-duct UV) are more effective in large rooms that can accommodate hundreds of 

occupants. In contrast, room-treatment strategies (adding portable air cleaners and in-

room UV) are more effective in smaller spaces. The priority of mitigation strategies 

varies for different rooms depending on room volume, occupants' exposure time, and 

HVAC system designs. 

• This study employs Bayesian inference on a CO2-based grey-box SDE model to 

accurately predict ventilation and CO2 emission rates, accounting for uncertainties from 

measurements, air movement randomness, and parameters. The model’s robustness and 

reliability were validated through CO2 tracer gas experiments in an airtight chamber, 

with prior sensitivity analysis and comparison with chamber measurements confirming 

its accuracy. Posterior predictive checks further validated the model’s reliability. Real-

life CO2 measurements from two classrooms in Montreal were analyzed, revealing that 

natural ventilation alone is insufficient to meet ASHRAE 241 ECAi standards across 

seasons. The study found that adopting a CADR of 0.38 m3/s effectively manages 

aerosol exposures, and steady-state CO2 thresholds were established to indicate 

satisfactory ECAi status for different mitigation strategies using the stochastic CO2 

grey-box model. 

6.2 Limitations 

In multizonal aerosol transmission evaluations, this study established a relationship between 

infection risks and the ratio of duration (D) to the product of room volume (V) and equivalent 

air change rate (Qe), facilitating quick estimations of Qe for ventilation design. While this 

allows for rapid ventilation decision-making, each building’s unique characteristics require 

individual analysis. The Qe is calculated for the source zone containing the infector, but 

multizone buildings need a broader design goal to ensure no transmission risks throughout the 

building. The study’s limitations include the need for more detailed analyses to address 
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questions about overall mitigation goals and transmission risk management. Besides, though 

the CONTAM-quanta approach realized the comparisons of different mechanical mitigation 

approaches, the level of quanta generation rate would lead to huge uncertainties to the risk 

assessment level. Additionally, the well-mixed assumption was made throughout the study, the 

influence of flow patterns inside the room was not taken into consideration.  

For the CO2-based ventilation designs in primary schools, this study only investigated two 

classrooms, and the steady-state CO2 thresholds were obtained based on the measurements data.    

Occupancy information was also not available for further verifications of the model. Ventilation 

rates and CO2 generation rates were assumed to be constant throughout the evaluation period 

for the model. Meanwhile, the air was assumed to be well-mixed in the room and the influence 

of the sensor location was neglected. As a result, the application of the proposed approach 

would be limited to the assumptions made in current investigated scenarios.  

6.3 Future work   

Despite the meaningful evaluation results obtained in the thesis, there are still several aspects 

that remain to be investigated, which are recommended for the future work.  

For multizonal aerosol transmission mitigations:  

• In case studies for the DOE prototype buildings, 100% outdoor air supply was found 

to be effective in removing airborne aerosols in most evaluated scenarios. However, 

in real-life situations, the adoption of 100% outdoor air supply can lead to huge energy 

consumptions. The selection of proper mechanical engineering mitigations may not 

only depend on the aerosol removal capabilities but also the energy consumption and 

economic budgets. As energy-efficient ventilation design was not the primary focus of 

this study, it can be investigated in future studies to nudge an optimal trade-off between 

energy costs and air-cleaning indoor environments.  

• Multizonal aerosol modelling can be extended from prototype commercial buildings 



124 

 

to real-life building settings. Field measurements can be obtained from the buildings 

to establish multizone building models that are close to real-life. Practical ventilation 

designs can thus be established to guide real-life operations and prevent potential 

aerosol zonal transmissions. This will help retrofit existing buildings and prevent 

future outbreaks of respiratory diseases.  

• Future research should evaluate more real-life scenarios using the CONTAM-quanta 

approach, consider local SARS-CoV-2 prevalence, apply occupancy schedules, 

account for increasing vaccination rates, and incorporate stochastic effects as seen in 

the Skagit Valley Chorale super-spreading event investigation. The influence of 

occupants’ activities can be investigated in the future, for instance, the effects of door-

opening and window-opening, the effects of toilet flushing, and the effects of different 

occupancy schedules. These changes inside the building could lead to different aerosol 

transmission patterns.   

For using occupant-generated CO2 as a tracer gas for indoor ventilation evaluations:  

• CO2 measurements from more classrooms and longer evaluation periods can be 

involved for further evaluations. Occupancy attendance and absenteeism can be 

recorded to further verify the model’s prediction ability in real-life settings. The 

location of the CO2 sensors may also influence the estimation results, which can be 

further discussed and evaluated.  

• The developed evaluation approach could be extended to other public spaces such as 

auditoriums, shopping malls, offices, gyms, etc. The case-specific CO2 metrics can 

thus be established for different contexts to manage the long-range aerosol indoor 

exposures, which is based on the parameters inferred from their field CO2 

measurements.  

• The CO2 generation rates from occupants can also be estimated for different settings 

and help establish the CO2 metrics to indicate indoor ventilation conditions 
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Appendix  

Appendix 1 Verification of CONTAM-quanta Approach  

The CONTAM multizone contaminants transportation simulation has been validated by many 

previous studies in terms of both airflow/ventilation and pollutant predictions [61,62]. 

Therefore, this verification focused on applying the CONTAM-quanta model to the Skagit 

Valley Chorale superspreading event [44], and comparing results with those from the COVID-

19 Aerosol Transmission Estimator [23]. The single-zone CONTAM case – FaTIMA [40] was 

used to model the quanta transmission. The verification details are illustrated in Table A1. It 

should be noted that the FaTIMA tool was not originally designed for modeling aerosols in 

terms of quanta, instead, it models the transmission of infective particles. In this study, we 

implemented the proposed CONTAM-quanta approach in FaTIMA and verified it in this 

section. Note a verification is to confirm the accuracy of a numerical approach when compared 

to the previous analytical approach with the same input parameters. This step is important 

because it ensures the numerical programming of a software tool is able to reproduce the results 

in the literature.  

The transient airborne concentration predictions are compared as follows. Figure A1 shows 

that the predicted airborne concentrations agrees well with the values predicted using the 

formula underlying the COVID19 Aerosol Transmission Estimator [23]. In addition, the final 

airborne aerosol concentration levels were both at 0.56 quanta/m3 and exposure risks at the end 

of the 2.5h event were predicted to be 88.6%. Thus, the proposed CONTAM-quanta approach 

can provide comparable results on estimating exposure as previous studies. 
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Table A 1 Comparison of CONTAM (FaTIMA)-quanta single-zone and COVID19 Aerosol 

Transmission Estimator [23] 

 CONTAM (FaTIMA)-quanta 
COVID19 Aerosol Transmission 

Estimator 

Zone volume 810 m3 810 m3 

Generation 

Number of 

infector 
1 

Number of 

infector 
1 

Particles/Quanta 

generation rate 
970 quanta/h Infective person 970 quanta/h 

 

Removal 

 

 

  

Supply air rate 567 m3/h 
Ventilation with 

outside air 
0.7 h-1 

Return air rate 
567 m3/h (0.7h-

1) 

Exhaust air 
567 m3/h (0.7h-

1) 
Exhaust air 567 m3/h (0.7h-1) 

Air cleaner (Filter) 0 
Additional 

control measures 
0 

Source deposition 0.3 h-1 
Source 

deposition 
0.3 h-1 

Decay of the virus 0.63 h-1 
Decay of the 

virus 
0.63 h-1 

 

 

Figure A 1 Transient airborne contaminants concentration predictions during the 2.5h Choir duration 

(CONTAM-quanta vs COVID19 Aerosol Transmission Estimator) 
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Appendix 2 Comparisons between CONTAM-multizone and 

FaTIMA-singlezone modeling   
 

The comparisons between CONTAM multizone simulations and single zone FaTIMA 

simulations of the baseline case (Baseline OA + MERV8) are illustrated as follows (Figure A2). 

The differences were due to zone-to-zone transmissions through air leakages and the central 

ventilation system (VAV in the Large Office). The single-zone FaTIMA only allows steady-

state weather conditions while the multizone modeling adopts the Chicago TMY3 weather. The 

infiltration was also neglected by FaTIMA. In CONTAM modeling of the Large Office 

building, the VAV systems were modeled by a series of air-handling units across different floors, 

which reflects more realistically the multizone aerosol transmissions, e.g., via return grills. In 

comparison, one simple supply/return system was applied in FaTIMA. The comparison of the 

differences is summarized in Table A2 between the proposed CONTAM-quanta approach from 

this study and other single-zone models (i.e., COVID19 Estimator, REHVA calculator, 

FaTIMA), and multizone model (i.e., CONTAM). 

 

 
Figure A 2 Comparisons between single-zone and multi-zone simulations of the Large Office 
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Table A 2 Comparison between different tools for airborne aerosol modeling 

 

COVID19 

Estimator 

[294] 

REHVA 

calculator 

[295] 

FaTIMA 

[296] 

CONTAM 

[209] 

CONTAM-

quanta 

Building details - - - √ √ 

HVAC details - - √ √ √ 

Occupancy schedule - - - √ √ 

Weather impacts - - - √ √ 

Multi-zone analysis - - - √ √ 

Occupant exposure √ √ √ √ √ 

Infection risk √ √ - - √ 
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Appendix 3 The daily steady-state CO2 threshold for achieving 

minimum ECAi requirements  

 

Figure A 3 The selected daily steady-state CO2 threshold evaluated for Classroom 1 to achieve 

minimum ECAi requirement 

Figure A 4 The selected daily steady-state CO2 threshold evaluated for Classroom 2 to 

achieve minimum ECAi requirement 
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