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Abstract 

Development of a Condition Assessment Rating System and Prediction Model for Railway 

Tracks 

Bharath Rajendir Rajendran 

 

Canada has an extensive rail network spanning 45,000 kilometres. The railway system plays a 

crucial role in serving almost every sector of the Canadian economy. Primarily, it transports freight 

to and from the U.S. and global markets through coastal ports. However, failures in the railway 

infrastructure can have severe safety and financial consequences. In 2023, 43.13% of main-track 

derailments were attributed to track defects, according to the Transportation Safety Board of 

Canada. These defects, including issues with track geometry and component failures, underline 

the need for better track condition monitoring and maintenance to prevent derailments. This 

research aims to address this need by developing a comprehensive rating system for evaluating the 

condition of ties and rail fastening components and machine learning models to predict future track 

conditions. While traditional condition assessment ratings have relied on subjective evaluations 

and considered components separately, this study proposes a Tie and Rail Fastening system that 

evaluates the condition of ties, tie plates, and spikes. Domain expertise was incorporated through 

the Analytic Hierarchy Process (AHP) to prioritize the importance of various defects. The resulting 

weighting system provides a more detailed and integrated approach compared to existing rating 

methods, which primarily focus on crack size. Machine learning models, including Random 

Forest, XGBoost, and Cat Boost, were employed to predict future conditions, such as defect tags, 

amplitude, and length. These models achieved a 95% accuracy for detecting defect tags and a 75% 

accuracy when predicting defect tags based on predicted amplitude.  On the one hand, the proposed 

tie and rail fastening rating system can improve the prioritization of future rail maintenance works. 

On the other hand, the proposed machine learning models can improve the planning of future 

maintenance by offering better tools for monitoring and predicting track conditions. 
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Chapter 1. Introduction 

1.1. Background 

Canada has an extensive rail network spanning 45,000 kilometres of track (Transport Canada 

2023). The railway system plays a crucial role in serving almost every sector of the Canadian 

economy. Primarily, it transports freight to and from the U.S. and global markets through coastal 

ports. Additionally, there are numerous passenger lines operating across Canada. Thus, failures in 

these networks can have serious consequences for human safety, as well as high costs. According 

to the Transportation Safety Board of Canada (TSB 2023), a significant portion of main-track 

derailments in 2023, specifically 43.13% (22 out of 51 derailments), were attributed to track 

defects. These track defects encompassed issues like track geometry, broken rails, and other track 

components, and this emphasizes the importance of addressing and maintaining track 

infrastructure to ensure railway safety and prevent derailments. According to the American 

Railroads Association, the US freight rail network transports one-third of all exports from the 

United States and around 40% of all long-distance freight (Black 2022). Track defects are one of 

the main reasons for train accidents in the US. For example, in 2012, 33.03% of 1747 train 

accidents recorded by the Federal Railroad Administration (FRA) were due to track defects, 

causing $102.9 million in total reportable damage (Peng, Ouyang, and Somani 2013). The FRA 

safety compliance classifies defects into red and yellow tags. Red tag defects should be fixed 

immediately since they violate the FRA standards, and yellow tag defects should be fixed before 

turning red (RAS 2015). Defects can be identified with track geometry vehicles using visual 

inspection and technologies like induction and ultrasonic devices (Cannon et al. 2003).  Railway 

tracks can be impacted by a range of defects, which can significantly affect the safety and 

efficiency of train operations. These defects may encompass cracks, wear and tear, misalignments, 

and other structural issues that could compromise the integrity of the track system. Regular 

inspection and maintenance are crucial in identifying and addressing these issues before they 

escalate into substantial hazards. Additionally, technological advancements have introduced 

various methods for detecting and mitigating track defects, such as automated track inspections 

using lasers, Lidar, and drones. In track maintenance, rails may experience breakage or wear, while 

ties can split, crack, or become severed. Fastenings might be missed, spikes could break, become 
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loose, or go missing, anchors may fail to hold, and ballast can become fouled or provide poor 

drainage. Track geometry issues can lead to poor gauge holding or misalignment. Since railway 

tracks consist of various components, defects may appear differently.  

Most current condition assessment systems focus mainly on track geometry and ballast, but they 

often miss important factors like spikes, tie plates, and the exact location of cracks. While track 

geometry is necessary, leaving out the condition of spikes and tie plates prevents a full 

understanding of the track's overall health. For example, good spikes and tie plates can help 

maintain track integrity, even if the geometry is slightly compromised. Additionally, cracks near 

these components may pose greater risks than those in other areas. This highlights the need for a 

more comprehensive rating system that incorporates all these elements to fully assess the track's 

condition. In condition prediction models, the focus is often on identifying defects quickly without 

paying enough attention to the details of the defects themselves, like their type, size, and length. 

While it is helpful to predict tag defects, this does not provide enough information to decide how 

and when to fix the issues. If prediction models could also tell us more about the defects, such as 

their severity and how fast they are getting worse, it would help make better maintenance 

decisions. This shows a gap in current models, which need to go beyond just finding defects and 

offer more detailed insights into the nature of the problems. 

 

1.2 Objective 

The objective of this work is to formulate methodologies for the assessment and prediction of 

railway track conditions. The specific goals to achieve this aim are as follows: 

• Develop a comprehensive condition rating system to systematically evaluate the condition 

of rail ties and fastenings. 

• Develop machine learning models to predict the condition of railway tracks, including 

defect tags, types, length, and amplitude. 
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1.3 Thesis Structure 

This thesis is organized as follows: Chapter 2 presents a literature review covering the various 

components of railway tracks and their role in supporting train operations. It reviews the factors 

contributing to the deterioration of key components like rails, sleepers or ties, ballast, and fastening 

systems. The literature on the degradation of track geometry is explored, highlighting the impact 

on overall track performance. Additionally, it examines the railway track's geometry parameters, 

and the current methods used for condition assessment. The review also includes condition 

prediction models and evaluates their effectiveness. Finally, it discusses the benefits and 

limitations of previous methodologies found in the literature. Chapter 3 outlines the proposed 

methodology for the track's condition rating system and prediction model, which integrates the 

Analytical Hierarchy Process (AHP) to establish a comprehensive rating system and employs 

machine learning-based approaches for predicting track condition and defect characteristics. This 

section also introduces two different case studies to evaluate the proposed strategy. Chapter 4 

presents result regarding the rating system for evaluating the condition of railroad ties and 

fastening components in the railway track and the prediction of defect tags, types, length, and 

amplitude. In Chapter 5, discussions associated with the results are provided. Finally, conclusions 

are drawn in Chapter 6. 

 

1.4 Contributions 

Two main contributions of the work are:   

• The development of a comprehensive condition rating system using the Analytical 

Hierarchy Process (AHP) to enhance the understanding of how multiple factors like rail 

ties, fastenings, and crack locations impact track performance. This model provides a more 

detailed and structured approach to evaluating track components, supporting future 

research on automated condition assessment. Practically, this model will improve 

maintenance planning and risk mitigation, allowing for targeted interventions based on 

specific asset conditions. 



    

 

12 

 

• The development of machine learning models that predict the condition of railway tracks 

and provide detailed predictions of defect characteristics such as tag, type, length, and 

amplitude. In practice, they will enhance the accuracy of maintenance planning and safety 

management by forecasting specific defect behaviours, enabling proactive and data-driven 

decision-making.  
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Chapter 2. Literature Review 

Assessing and predicting track condition is crucial for effective railway maintenance and 

operational efficiency. While traditional assessment methods can be costly due to manual 

inspections, advancements in automatic track inspection technologies have made the process more 

cost-efficient. These technologies allow real-time monitoring and data collection, enabling timely 

maintenance decisions. To predict track deterioration, various models, including mechanical, 

statistical, and artificial intelligence approaches, are used. Previous studies (Falamarzi, Moridpour, 

and Nazem 2019) demonstrate the effectiveness of these models in forecasting maintenance needs. 

Predictive modelling helps reduce costs, optimize maintenance schedules, and enhance safety by 

addressing potential issues proactively. A comprehensive approach integrating condition 

assessment and predictive modelling is essential for effective railway maintenance.  

 

2.1 Railway Track Components 

The main components of railway tracks are rails, sleepers or railroad ties, ballasts and fastening 

systems, as indicated in Figure 1. Rails are the track components arranged in two parallel lines to 

give trains a stable, continuous, and level surface (Chandra et al. 2013). The flat-bottom rail is the 

most widely used rail profile worldwide, with a flat bottom. The nonstandard rail type differs from 

the flat-bottom rail because it has a thicker web to accommodate expansion devices, switches and 

crossing components. Grooved rail is used in enclosed track systems like roads and yards (Esveld 

2001a). Steel rails are used in North American railroads. Based on their mechanical properties, 

like tensile strength and hardness, there are two types of carbon steel rails and low alloy steel rails 

(AREMA Manual for Railway Engineering 2022a). Rectangular support for the rails on railroad 

tracks is known as a railroad tie or sleeper. Ties, typically set perpendicular to the rails, hold the 

rails upright and maintain the proper gauge while transferring loads to the ballast and subgrade of 

the track. The individual crosstie receives the load from the rail and transfers it to the ballast. In 

North American railroads, concrete, timber, engineered composite, and steel ties are used(AREMA 

Manual for Railway Engineering 2022b).  
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Figure 1: The main components of the railway track. 

Rails are structural component of the railway, as they directly encounter the wheel surfaces of the 

rail vehicles(Zerbst et al. 2009). Rail damage occurs mainly due to the interaction between wheels 

and rails, which is caused by higher axle loads and train speeds. Over time, the rails tend to wear 

out due to increased loading cycles. This complex process involves various modes of material 

degradation and changes in the contact surface. It may result in material removal or displacement, 

plastic deformation, and phase transformation within or between the contact surface (Enblom 

2009). Rail deterioration can be caused by environmental factors such as extreme cold, high 

temperature, high humidity, rain, and snow. According to (Ma et al. 2018) Rail rollers exposed to 

low temperatures tend to wear out faster, become harder, have a higher adhesion coefficient, and 

experience a shift in wear mechanisms from abrasive to adhesive wear with surface cracking. 

However, extremely low temperatures may somewhat reduce the adhesive wear effect. These 

findings are crucial in understanding how rail systems and materials perform in cold weather 

conditions, which can impact maintenance and safety. Therefore, rail is a critical component of 

railway tracks. It is essential to closely monitor its condition and perform appropriate maintenance 

to prevent derailments and ensure the overall safety of the track systems. 

Railway ties, known as sleepers, and support rails, maintain track geometry and ensure safe and 

efficient train operations(Yu and Jeong 2012). Tie failure occurs due to the forces generated by 

the wheels and rails; there can be high stress levels when the rail base meets the tie. In some cases, 

these stresses can be too much for the tie to handle, causing it to deteriorate and eventually leading 

to a rail rollover and derailment(Marquis, Muhlanger, and Jeong 2011). Tie failure can be caused 

by environmental factors such as exposure to wet/dry or freeze-thaw cycles. This can result in 

splits in the ties, which may spread from one end to another. If rain, ice, or ballast enters the split, 
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it can widen the gap until the tie is unable to hold the spikes or support the load(Palese et al. 

1999)Inspecting the condition of ties is essential to prevent failures that could lead to derailment 

and weaken the track's substructure, including the ballast and subgrade. 

A rail fastening system is a technique for attaching rails to railroad ties or sleepers. Rails and base 

plates are fastened to railroad ties in the track with the help of rail spikes as indicated in Figure 2, 

which are substantial nails with an offset head. A rail spike has a flat-edged point and is chisel-

shaped; it is driven with the edge perpendicular to the grain, which increases resistance to 

loosening. The primary purpose is to maintain rail gauge (Hay 1982). Several research studies (M. 

Dersch et al. 2019), (Gao, McHenry, and Kerchof 2018a) Show the impact of spikes as a crucial 

factor on ties. For instance, if the spikes are broken or missing, the stress from the train is directly 

transferred to the tie, and the tie deteriorates. Thus, the spike holds the ties with the rail, gets the 

load from the train and distributes it to the ties (M. S. Dersch, Khachaturian, and Edwards 2021). 

Derailment of train (The Transportation Safety Board of Canada 2012)It happened due to broken 

and missing spikes. 

Rail tie plates, as indicated in Figure 2, are used to support the rails and fix the entire rail fastening 

systems. It always works with anchor bolts or spikes by sustaining the load of a rail track and 

transferring part of the load to the tie sleepers, with a flat, smooth resting surface to guarantee 

vertical alignment and hold the rail in the correct gauge for a rail line system(Gao, McHenry, and 

Kerchof 2018b). The damaging effects caused by tie-plates and the ballast, namely plate cutting 

and ballast abrasion, are accelerated with faster and higher tonnage trains. This causes crossties to 

age prematurely and results in high crosstie replacement rates. Wood crossties exhibit some 

inherent disadvantages. Wood is susceptible to mechanical degradation mainly due to splitting, 

checking, plate cutting, spike killing, and tamp killing. In addition, wood ties are subjected to harsh 

environmental conditions that can cause rot and decay (Sonti et al. 1995). 

The track sub-structure has three layers: Ballast, Sub-ballast, and subgrade, as indicated in Figure 

3. Track ballast, which creates the track bed, is used to support the railroad ties' load, make it easier 

for water to drain, and control vegetation that could obstruct the track's structure. As the trains pass 

over the track, ballast keeps it in place. As track ballast, several substances have been employed, 

including crushed stone, washed gravel, slag, chats, coal cinders, sand, and burnt clay(Solomon 

2001). The sub-ballast is the layer of soil or aggregate material placed between the subgrade and 
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the ballast, which helps improve drainage and stability. The subgrade is the natural or prepared 

surface on which the railway track is built, and it can be made of soil, rock, or other materials.  

 

Figure 2: Spike and Tie plate 

The ballast bed is critical in functioning ballasted tracks at high speeds. It is subjected to cyclic 

train loads and contamination intrusion during prolonged operation, which can lead to ballast 

particle degradation (crushing and abrasion) and bed pollution. These issues can result in track 

deformation, poor drainage, and reduced bearing capacity(Q. Hu et al. 2023). Railway ballast is 

typically made up of uniformly graded angular aggregate. As ballast ages, it can become 

increasingly fouled by various fine materials, which accumulate in the voids of the ballast and 

decrease shear strength, resiliency, and drainage capability(Indraratna, Su, and Rujikiatkamjorn 

2011a). The fouling process can be accelerated when contaminant materials from other sources 

collect in the intergranular voids. When the ballast becomes fouled, it loses its ability to perform 

its functions efficiently. If the level of contamination reaches the bottom side of the tie, the track 

substructure starts to fail (Ionescu 2023). When the ballast is not functioning correctly, the strength 

of the track structure may be inadequate, compromising track stability. Therefore, it is crucial to 

monitor the condition of the ballast to ensure safer operation and prevent degradation of the other 

track components. 
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Figure 3: The track sub-structure. 

2.2 Track Geometry 

Track geometry refers to the precise location of each rail or track center line in space, which 

includes gauge, twist, longitudinal level, alignment, and cross-level (also known as superelevation 

or cant), as illustrated in Figure 4. The gauge of a railway track is the distance between the inner 

sides of the left and right rail heads, measured perpendicular to the track center(Puffert 2000). 

When the top surfaces of two rails are at different elevations, this is known as a twist(Javad Sadeghi 

and Askarinejad 2010). Longitudinal level refers to the difference (in millimeters) between a point 

on the top of the rail in the running plane and the ideal mean line of the longitudinal profile(A. 

Ramos Andrade and Teixeira 2011). Alignment is the deviation in lateral positions of the left and 

right rails from a mean trajectory. It is obtained by filtering out wavelengths longer than a given 

length(Weston et al. 2007). Cross-level is the deviation between the top surfaces of two rails at a 

specific point along the track(Esveld 2001b).   

An ideal railway track should have a correct and uniform gauge. The rails should have perfect 

cross levels, and in curves, the outer rail should have a proper superelevation to consider the 

centrifugal force. The alignment should be straight and free of any kinks. In the case of curves, a 

proper transition should be provided between the straight track and the curve. The gradient should 

be uniform and as gentle as possible. The change of gradient should be followed by a proper 

vertical curve to ensure a smooth ride. The track should be resilient and elastic so that it can absorb 

the shocks and vibrations of running trains. It should also have a good drainage system to maintain 

its stability and should have good lateral strength to withstand variations in temperature and other 

factors(Gofran J. Qasim 2019). 
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Figure 4: Track geometry parameters. 

Railway tracks are designed with curves to navigate around obstacles, create more efficient slopes, 

and connect important locations. Horizontal curves alter the direction of the track, while vertical 

curves are placed where two slopes meet, or the slope meets level ground. To ensure a smooth ride 

on a horizontal curve, the outer rail is raised above the inner rail, a technique called superelevation. 

It is important to have superelevation in the track to distribute the load evenly on both rails and 

reduce wear and tear on curves(Chandra and Agarwal 2013).  

The geometry of a railway track is a crucial part of any railway system. It directly impacts the 

performance of the track itself and the behavior of the vehicles that use it (Powell and Gräbe 2017). 

As the track ages and is used, its geometry can degrade, negatively affecting safety and 

performance. If the track geometry becomes unacceptable, it can result in derailment, which can 

have significant consequences such as high costs of operation, economic loss, damage to the 

railway asset and environment, and even loss of human life. Rectifying poor track geometry is the 

most expensive part of maintenance(Gustavsson 2015). Table 1 displays the factors that contribute 

to the degradation of track geometry. Ensuring railway safety requires careful analysis of track 

geometry defects. Preventive maintenance can be scheduled by identifying when repairs are 

necessary to reduce the risk of track failures. Regular inspection of track geometry is essential, and 

maintenance actions should be planned accordingly to maintain an acceptable level of safety. 
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Table 1 Factors contributing to the railway track geometry degradation 

Reference  Factors/Events contributing to the railway track 

geometry degradation 

Geometry defects 

(Bing and 

Gross 1983) 

Annual tonnage, Axle load, Train speed, and Ballast 

type 

Alignment, gauge 

and cross level 

(Puzavac, 

Popović, and 

Lazarević 

2012) 

Track stiffness Alignment 

(Guler 2014a) Traffic loads, Speed, curvature, Gradient, Cross level, 

Sleeper type (concrete or wooden), Rail type (49.430 

or 49.050 kg/m), Rail length, Falling rock, Landslide, 

Snow and Flood 

Twist, Gauge, 

alignment, cross-

level 

(Zarembski et 

al. 2015) 

Missing Ballast Cross-level, gauge, 

dip, alignment, 

surface and warp 

(C. Hu and 

Liu 2016) 

Train load, Train speed, Track layout, Track class, 

Time intervals of inspection, Defect length and 

Amplitude 

Surface, cross-level 

and dip 

(Cárdenas-

Gallo et al. 

2017) 

Tonnage, Defect amplitude, Track type, Track class, 

Speed 

Cross-level, Dip and 

surface 

(D. Li 2018) Axle loads, Train speed, Traffic density and Track 

subgrade 

Alignment, gauge 

and cross level 
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2.3 Condition Rating System 

A systematic railway maintenance process is crucial for ensuring the safety and reliability of the 

railway system. However, railway maintenance can be quite costly and typically accounts for a 

significant portion of the budget. For example, in 2013, the Canadian National Railway Company 

spent $2.74 billion on primary track maintenance (Scanlan, Hendry, and Martin 2016). According 

to (Transport Canada 2022) Operating rules, regular inspections, and adherence to track standards 

are essential for safe and efficient rail transportation. As autonomous track inspection programs 

advance and railways collect more data, this data can provide valuable insights. According to the 

(Railway Association of Canada 2022), 42,631 kilometers of freight track are operated. As rail 

traffic volumes and the associated annual tonnage continue to rise, maintaining consistent and 

effective track maintenance becomes more challenging. This increase in traffic and axle loading 

places greater demand on the track infrastructure and its components, making regular safety 

inspections even more critical. However, emerging technologies present an opportunity for the rail 

industry to enhance safety, optimize maintenance strategies, and create a more reliable and 

efficient network (Marquis, Muhlanger, and Jeong 2011), Compounded by diminishing track 

access times and constrained maintenance budgets, the conventional practice of scheduling large, 

consolidated zones for maintenance and rehabilitation is now being re-evaluated. According to the 

(Railway Tie Association 2024), 20 to 22 million rail ties are replaced annually in Canada and the 

USA. In its place, there is a growing call for a more precise and meticulously referenced analysis 

of the in-situ condition of rail ties and fastening systems. This shift in approach aims to optimize 

operational efficiency and prioritize safety, recognizing the imperative of mitigating the risk of 

accidents and ensuring the overall safety of rail operations. 

Condition assessment involves thoroughly evaluating the physical state of an asset to determine 

its current condition, identifying any existing issues, and prioritizing maintenance or repair 

needs(Marlow and Burn 2008). In the context of railways, condition assessment involves 

evaluating the current state of railway infrastructure, including tracks with rail, ties, fastening 

systems, and ballast, to determine maintenance needs and prioritize interventions. Traditionally, 

maintenance teams would conduct periodic inspections to identify potential issues before they 

become major problems. However, this method had limitations: inspections were time-consuming, 

sometimes missed critical issues, and could not always keep up with the rapid pace of degradation. 
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Several authors (Xu et al. 2011) (Lasisi and Attoh-Okine 2018) have developed condition rating 

systems for railway tracks, to assess geometry parameters like gauge, cross-level, left and right 

surface, and left and right alignment. The Track Quality Index (TQI) evaluates the overall state of 

a railway track based on factors like geometric defects such as gauge, cross-level, left/right surface, 

and alignment. (J. M. Sadeghi and Askarinejad 2011)developed a track quality index to assess the 

track's condition based on human visual inspections. This index is useful for maintenance planning 

and ensuring safety. However, the condition rating does not consider factors such as the condition 

of wooden ties, the location of cracks in the ties, and fastening systems. Additionally, since the 

rating is based on visual inspections by humans, there is a possibility of human error and 

subjectivity in the assessment of the track's condition.  

(Madejski, Janusz 2015) used manual equipment to collect geometry track measurements and 

developed a condition assessment that included a five-parameter defectiveness. This parameter 

assesses the geometrical condition of the track by aggregating five parameters, each representing 

a specific geometrical defect. Each parameter is a ratio of the length when the acceptable limits 

for the defects exceed the total length of the section. The Indian Railway has developed a method 

known as the Track Geometry Index (TGI) to assess the geometrical condition of tracks. This 

method relies on the standard deviation of geometrical defects (Mundrey, J. S 2009). The Swedish 

National Railway has created a quality index to assess the condition of railway tracks. This index 

uses the standard deviation of left and right profiles and geometry defects to determine the track's 

condition. By comparing the current standard deviation with the allowable standard deviation 

based on track categories, the index provides a standardized method for evaluating track geometry 

conditions. The index ranges from 50 to 150, with acceptable values falling between 70 and 90 

(Andersson, M. 2002). The Federal Railroad Administration (FRA) has developed a series of 

objective Track Quality Indexes (TQIs) to complement the Federal Track Safety Standards 

(FTSS), utilizing track geometry data. These indexes use a space curve length to quantify track 

quality, with each TQI computed over nominal 161-meter track segments. The method involves 

calculating TQIs for profile, alignment, cross-level, and gauge, providing a track condition 

assessment by federal safety standards (J. Sadeghi 2010a).  

(Yan and Corman 2020) reviewed the Canadian track quality index, calculated from the average 

of six different quality indices: gauge, cross-level, left (right) surface, and left (right) alignment. 
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TQI evaluates the general state of a railway track based on several elements, including surface 

defects, alignment, and track geometry. This study highlights the potential of on-board monitoring 

(OBM) techniques to reduce inspection costs and increase data collection without disrupting 

traffic. It reveals that Track Quality Indices (TQIs) are often developed based on national 

regulations, underscoring the need to consider multiple TQIs for effective maintenance decisions. 

Through case studies with hypothetical data, the study finds that high sensitivity and accuracy 

indices are effective in defect detection but may lead to false positives. The study calls for 

continuous research and development of TQIs, particularly for components such as ties and 

subgrades, to adapt to technological advancements and changing railway conditions. However, the 

study's limitations include reliance on hypothetical data due to the unavailability of real data. The 

track quality index assesses only geometric parameters, not structural conditions like rail, ties, and 

fastening systems.  

(Bai et al. 2015) described the Track Quality Index (TQI) within the Chinese railroad system, 

encompassing vertical and horizontal alignment, gauge, cant, and twist parameters. A unique 

feature of this TQI is the calculation of standard deviations for each parameter, which are then 

aggregated to derive the overall TQI value. This approach differs from Sadeghi’s TQI model used 

in Iran, where different parameters may be weighted differently. In the Chinese model, each 

parameter is given equal importance, reflecting a balanced approach to track quality assessment. 

This method aims to provide a fair evaluation of all critical aspects of track geometry, ensuring no 

single parameter disproportionately influences the overall quality index. 

(El-Sibaie and Zhang 2004) Further developed this method by analyzing extensive track geometry 

data collected by modern inspection vehicles to establish objective, quantitative indicators that 

describe track conditions. The TQIs are derived from key track geometry parameters important for 

track performance and safety. Despite these advancements, there are some limitations. The study 

primarily focuses on Classes 3 to 5 tracks due to data availability, resulting in less reliable TQI 

thresholds for Class 2 tracks. Additionally, there is an overlap in TQI values between different 

track classes, which may reduce the precision of class differentiation.  

 (Q. Li et al. 2019) developed a comprehensive model for evaluating the health of railway tracks 

by dividing a continuous track line into adjacent segments, referred to as track grids. The model 
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employs a condition-evaluation index system, which considers multiple perspectives: Track 

Quality Index (TQI), Rate of change of TQI, Average failure rate, Rate of change of failure, 

Concentration rate of failure, and Hazard rate. Deep autoencoder networks (DANs) are used to 

reduce the dimensions of the data on these condition measures. At the same time, the hybrid 

hierarchical k-means clustering (HHKMC) method identifies track grid health features. The tree-

augmented naïve Bayes (TAN) algorithm then calculates the track grid health index (TGHI), which 

provides a comprehensive assessment of track health on a smaller spatial scale. This model was 

validated using measurement data from the Lanxin Railway in China, showing superior 

performance compared to conventional methods. However, despite technological advancements, 

more is still needed, especially in selecting and weighing condition indexes. The current approach 

may introduce subjectivity and requires a structured, systematic method. 

The Track Quality Index (TQI) has become an essential tool for assessing railway tracks' condition 

and maintenance needs. TQI methods, such as the UK SD Index (Setiawan and Sri Atmaja 2016), 

Netherlands Q Index (R.-K. Liu et al. 2015), USA TRI (Lasisi and Attoh-Okine 2018), and various 

others, provide quantitative evaluations based on specific track parameters like gauge, 

superelevation, and alignment. These indices ensure railway operations' safety, reliability, and 

efficient resource allocation. However, existing methodologies primarily focus on isolated aspects 

of track quality, often relying on limited parameters that may not capture the comprehensive nature 

of track degradation. For instance, while these indices offer valuable insights into certain aspects 

like track geometry, they frequently overlook other critical factors, such as the condition of sub-

structural components and traffic influences, leading to potentially incomplete assessments of 

track health. 

In contrast to traditional TQIs, (Hui Li and Xiao 2014) proposed a Generalized Energy Index 

(GEI), addressing the limitations of conventional TQIs in accounting for the influence of different-

wavelength components of track irregularity. The GEI focuses on the effects of varying wheel-to-

rail wavelength vibrations, emphasizing the importance of considering longer vibration-based 

wavelengths, particularly at higher speeds. This approach significantly departs from traditional 

indices by integrating the dynamic interactions between the wheel and rail, which are often 

overlooked in standard TQIs. While traditional TQIs, such as those mentioned by (Bogdan 

Sowinski 2013), usually evaluate individual parameters in isolation, the GEI provides a more 
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holistic assessment by capturing the energy dynamics of track irregularities. Additionally, 

comparisons between TQIs like the Chinese and Swedish models reveal differing methodologies: 

the Chinese Index assigns equal weight to each parameter, while Sweden’s TQI places greater 

emphasis on cant error, highlighting the variability in TQI formulations and the need for 

comprehensive evaluations to determine their effectiveness. 

(Haifeng Li and Xu 2009) has developed a railway track Integral Maintenance Index (IMI) that 

represents a significant advancement in railway maintenance. The IMI provides a comprehensive 

metric for evaluating track geometry and determining maintenance needs, aiming to address the 

increasing complexity of track maintenance due to large-scale speed-ups in China's railway 

network. By integrating multiple track geometry parameters, such as profile, alignment, cross-

level, and historical maintenance data, the IMI allows for a more holistic assessment of track 

conditions. This comprehensive approach can be used to develop more accurate and effective 

maintenance plans. Unlike traditional methods that often focus on individual track quality indices 

(TQIs), the IMI considers the cumulative impact of various factors, making it a more reliable 

indicator of overall track health. The application of IMI on the Shanghai-Nanjing railway line has 

demonstrated its potential in aiding the efficient allocation of resources and ensuring the safety 

and reliability of railway operations. However, the IMI has limitations, including the complexity 

of its calculation and the need for accurate track geometry data. Continuous refinement and 

adaptation are necessary to address these inherent complexities and limitations in railway 

maintenance. 

One major limitation of current TQI approaches is their narrow focus on geometric parameters, 

which limits their ability to provide a comprehensive assessment of track health. TQIs primarily 

evaluate factors such as gauge, alignment, cross-level, and twist. Most methods are constrained by 

their emphasis on specific elements of the track system, such as geometry, without adequately 

integrating data on sub-structural or traffic-related parameters. This fragmented approach can 

hinder the ability to fully understand the interplay between various factors contributing to track 

deterioration, thereby limiting the effectiveness of maintenance strategies. Additionally, TQIs that 

rely on standard deviation calculations for these geometric measurements can misrepresent track 

conditions, especially in curves where natural variations in parameters like gauge and twist occur. 

This focus on geometry alone can lead to skewed assessments, where the true health of the track, 
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particularly regarding the condition of its foundational components, is underrepresented 

(Offenbacher et al. 2020). Moreover, the application of these indices can vary significantly across 

different railway systems, as seen in the case of Indonesian Railways (Setiawan and Sri Atmaja 

2016), where TQI application differs in maintenance regulations and accident investigations. 

(S Kaewunruen, AM Remennikov 2005) have developed an innovative approach to evaluate the 

structural health of railway tracks by combining field measurements with track simulations. Their 

integrated method uses experimental modal analysis and finite element modeling to assess the 

dynamic parameters of in-situ railway track components. The study focused on a coal line in 

Central Queensland, Australia, where rail assemblies were tested using an instrumented hammer 

impact technique. The recorded frequency response functions (FRFs) were analyzed to determine 

the track components' dynamic stiffness and damping constants. The methodology involves 

conducting field dynamic testing by applying excitations to the track using an instrumented 

hammer, with the resulting vibrations captured by accelerometers. The data is processed using Fast 

Fourier Transform (FFT) and Mode Superposition (MS) methods to extract dynamic properties 

such as stiffness and damping coefficients. While the approach offers significant benefits in 

identifying the structural health of railway tracks, it only assesses specific components of the track, 

such as rail pads and ballast, potentially overlooking other critical elements. Additionally, the 

variability in damping coefficients and the specificity of the test site in Central Queensland also 

limit the generalizability of the results to other railway environments. 

The U.S. Army (Uzarski et al. 1993) developed the RAILER system to evaluate the condition of 

low-volume railroad tracks by using several indices that measure key components such as ties, 

rails, joints, ballast, and subgrade. These indices help managers prioritize maintenance and repairs 

to ensure the safe operation of trains. For example, the Tie Condition Index (TCI) assesses the 

condition of the ties supporting the rails by checking for defects such as cracking, rot, missing ties, 

and improper positioning. Proper tie condition is essential to maintaining the stability of the rails 

and evenly distributing the weight of passing trains. The Rail and Joints Condition Index (RJCI) 

evaluates the state of the rails and the joints that connect them. It measures wear, cracks, and joint 

stability, which is critical for preventing track failures and derailments. Rail defects can pose 

significant risks if not detected and repaired promptly. The Ballast and Subgrade Condition Index 

(BSCI) focuses on the integrity of the ballast and the subgrade, which provide structural support 
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for the track. The BSCI evaluates factors such as ballast fouling, drainage problems, and subgrade 

compaction, which affect track alignment and stability. Poor ballast or subgrade conditions can 

lead to uneven settling, impacting train operations' smoothness and safety. These assessments are 

combined in the Track Structure Condition Index (TSCI), which gives an overall rating of the 

track's structural condition. This rating helps decision-makers plan maintenance activities and 

allocate resources efficiently.  

However, the RAILER system has certain limitations. One major limitation is that it was designed 

primarily for low-volume tracks, which handle less traffic than mainlines or high-speed rail 

networks. These high-traffic tracks experience different types of stress, and the RAILER system 

may not fully account for the more demanding conditions they face. Another limitation is the 

system's reliance on manual inspections. Inspectors are required to physically inspect the tracks, 

which can be time-consuming and prone to human error. While manual inspections provide 

detailed observations, they are less efficient compared to automated technologies, such as track 

geometry cars or drones, which can collect data faster and more accurately. 

The Ballast Condition Index (BCI) is a measure used to evaluate the quality and functionality of 

railway ballast, primarily by considering factors such as ballast thickness and the level of fouling, 

which refers to the contamination of ballast with fine particles (McDowell et al. 2004). Traditional 

assessment methods, such as the Ballast Fouling Index and Percentage Void Contamination 

(PVC), are commonly used to evaluate ballast fouling by focusing on fine particle contamination. 

While these methods provide essential insights, they have significant limitations. The FI primarily 

considers the ballast component, overlooking the specific gravity and type of fouling material, 

which can lead to inaccurate assessments. It also neglects the broader impact of fouling on other 

track elements like subgrade and drainage systems. The PVC method, while addressing void 

reduction, is time-consuming and does not account for particle gradation, potentially leading to an 

overestimation of fouling severity. The Relative Ballast Fouling Ratio (Rb-f) has been introduced 

by (Indraratna, Su, and Rujikiatkamjorn 2011b)  to address these issues by incorporating both the 

specific gravity and gradation of fouling materials, but it also faces challenges in measurement 

precision and requires further validation. Therefore, it's crucial to develop more accurate and 

comprehensive assessment methods to fully evaluate track health. Consequently, while FI offers 

valuable insights into the condition of the ballast itself, it may not fully capture the broader impact 
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of fouling on overall track stability and performance. Other factors, such as the type of fouling 

material and its interaction with the subgrade, should also be considered to provide a more 

comprehensive evaluation of track health. 

(Georgetown Rail 2022) has developed a tie rating system that uses autonomous track inspection 

technology to evaluate each tie's condition individually. The system examines more than 20 

variables, such as plate cut, splitting, and internal decay, to assess tie conditions. Afterwards, each 

tie is graded on a scale from 1.0 to 4.0, with 1.0 indicating the best condition and 4.0 indicating 

failure. (J. M. Sadeghi and Askarinejad 2011) developed a quality index based on visual inspection 

to assess the structural condition of the track. The index includes the rail quality index (RQI), 

ballast quality index (BQI), sleeper quality index (SQI), and overall track quality index (TQI) and 

used a weighted deduction density model to determine the degree of deterioration based on distress 

density, type, and severity. The index illustrates three severity levels (low, moderate, and high) 

and their descriptions. Maintenance actions are organized by dividing the track line into 

management sections and segments for visual inspection.   

Table 2: Summary of the condition rating systems 

Condition Rating system Characteristics 

Track Quality Index (TQI) Evaluates the geometry parameters such as gauge, cross-level, 

and surface alignment to assess overall track condition 

Track Geometry Index (TGI) Focuses on the standard deviations of key geometric 

parameters like unevenness, alignment, gauge, and twist, 

providing a statistical approach to track monitoring 

Swedish National Railway 

Quality Index 

Measures the standard deviation of the left and right profile and 

evaluates geometry defects to maintain consistent track quality 

Federal Track Safety 

Standards (FTSS)  

Assesses profile, alignment, cross-level, and gauge, ensuring 

compliance with federal safety standards in track geometry 

Canadian Track Quality Index  Monitors gauge, cross-level, and surface alignment to detect 

irregularities and maintain safe track conditions 
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Netherlands’s Q Index Evaluates longitudinal levels, along with alignment and cross-

level combinations, offering insight into the track 

UK SD index Tracks longitudinal levels, alignment, gauge, and twist to 

maintain smooth track geometry and safe operations 

Generalized Energy Index 

(GEI), 

Analyzes wheel-to-rail vibration wavelengths to assess 

dynamic interactions and identify irregularities in track 

geometry 

Rail and Joint Condition 

Index (RJCI) 

Evaluates the condition of rail joints, identifying issues that 

may affect track stability and performance 

Ballast and Subgrade 

Condition Index (BSCI)  

Assesses ballast fouling, drainage problems, and subgrade 

compaction to ensure the integrity of the track bed and support 

structures 

Tie rating system Measures internal decay, splitting, and plate cuts in railway 

ties, ensuring the structural integrity of the ties that support the 

rails 

The various track condition rating systems as provided in Table 2, such as the Track Quality Index 

(TQI), Track Geometry Index (TGI), and the UK SD Index, provide different perspectives on 

assessing track health, each emphasizing specific parameters and methodologies. The Track 

Quality Index (TQI) focuses primarily on geometry parameters such as gauge, cross-level, and 

surface alignment, offering a straightforward evaluation of overall track condition. In contrast, the 

Track Geometry Index (TGI) provides a more statistical approach by measuring the standard 

deviations of key geometric factors like unevenness, alignment, gauge, and twist, which allows for 

a deeper analysis of track anomalies. The UK SD Index also tracks similar geometric properties 

but places particular emphasis on longitudinal levels and twists, helping to ensure smooth track 

geometry and safe operations. Other indices like the Swedish National Railway Quality Index and 

the Netherlands’ Q Index similarly focus on specific geometry elements. However, they may 

integrate different combinations, such as evaluating alignment and cross-level. 
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Meanwhile, more specialized indices, such as the Rail and Joint Condition Index (RJCI) and the 

Ballast and Subgrade Condition Index (BSCI), delve into track components like rail joints and 

subgrade conditions, which complement the broader geometry-based approaches by ensuring 

structural stability at a more granular level. Together, these indices provide a comprehensive 

toolkit for maintaining track quality, emphasizing different aspects of track geometry and 

structural integrity. However, these systems overlook important factors such as crack location, tie 

plate condition, and the state of fasteners, which are crucial for a more complete assessment of 

track condition and safety. 

Based on the studies mentioned earlier, most existing models focus on evaluating individual 

components or specific types of defects in railway infrastructure. They often overlook a 

comprehensive assessment of all railway components. For example, many models only assess 

track geometry conditions, neglecting other important defects and components. This limited 

approach can result in inefficient and inaccurate maintenance budget allocation due to the models' 

failure to represent the overall condition of railway components accurately. Most of the reviewed 

work relies on visual inspections, which are prone to human error. These models are crucial for 

decision-makers to prioritize the maintenance of multiple railway components across different 

projects based on their performance. However, one notable shortcoming is the oversight of 

inherent uncertainties and unexpected conditions encountered during the inspection process. 

Failing to address these uncertainties can lead to unreliable maintenance decision support systems. 

Subsequently, this gap in comprehensive assessment was highlighted when analyzing the role of 

the crosstie in the rail-to-tie and tie-to-ballast load distribution. Crossties serve as intermediaries 

that distribute loads and resist the forces exerted by other track components. The effects of tie 

plates and the presence of ballast in the tie crack, particularly plate cutting and ballast abrasion, 

were identified as significant factors accelerating the deterioration of wooden ties, especially under 

the stress of faster and higher tonnage trains. The research was conducted to gather insights from 

various studies on the impact of spikes on ties. Studies by M. Dersch et al. (2019), Gao, McHenry, 

and Kerkhof (2018), and others emphasized the crucial role of spikes in maintaining tie integrity. 

Broken or missing spikes lead to direct stress transfer from the train to the tie, accelerating tie 

deterioration. The findings from these studies underscored the importance of including spike 

conditions—such as broken or missing spikes—in the proposed rating system. For Instance, the 
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main track derailment at Fabyan, Alberta (The Transportation Safety Board of Canada 2012), 

highlighted significant issues in rail safety practices, especially in inspecting and maintaining rail 

fastening systems. The subsequent investigation uncovered critical flaws, such as the failure of lag 

screws and the inability of traditional inspection methods to detect curve stress. While these 

findings led to more thorough inspection procedures, such as detailed curve inspections and 

geometry car printouts, there has been minimal research on the condition rating of ties, rails, and 

fastening systems. This gap highlights the need for a comprehensive rating system and a 

degradation prediction model integrated with automated inspection technologies. By using high-

resolution cameras, sensors, and artificial intelligence to monitor rail conditions in real-time, this 

approach aims to proactively identify anomalies and potential risks, thereby reducing the 

likelihood of derailments and improving overall rail network safety. 

 

2.4 Condition Prediction Models 

Predictive models can be largely categorized as mechanistic, statistical or machine learning. 

Mechanistic are the earliest models for predicting degradation in railway tracks. They reflect 

physical phenomena, and track deterioration based on loads and material characteristics 

(Falamarzi, Moridpour, and Nazem 2019). Some of the variables used in these models to represent 

deterioration are Track settlement, Track deformation, Track geometry (e.g., gauge), and Track 

Quality Index (TQI). However, these models are limited by their inability to factor in the inherent 

uncertainty of track degradation behavior and their applicability to only a select number of track 

sections, rather than the entire network(Elkhoury et al. 2018). Developing mechanistic models can 

also pose a significant challenge as they require a considerable amount of physical data and time. 

A statistical model is a type of mathematical model which uses historical data to predict the pattern 

of deterioration. These models are widely used to predict the deterioration of railway tracks based 

on observations and the influencing factors such as traffic, track components and maintenance 

variables. Statistical models are divided into three main groups: deterministic, stochastic, and 

probabilistic. 
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2.4.1 Statistical Models 

Statistical models can be classified into three main groups: deterministic, probabilistic, and 

stochastic. Deterministic models assume a direct and exact relationship between input and output 

variables without accounting for randomness. Stochastic models incorporate random variables and 

account for inherent randomness and variability in the system. Probabilistic models incorporate 

the influence of random events or actions to predict the likelihood of future outcomes. A 

deterministic model is a statistical model in which randomness is not involved in predicting future 

conditions. It is usually applied where relationships between components of the rail structure are 

identified(Md Saeed Hasan 2015). Deterministic models in railway condition assessment use data 

parameters such as train speed, rail geometry, rail operations (Audley and Andrews 2013), and 

accumulated tonnage (MGT) (Guler, Jovanovic, and Evren 2011). Studies have confirmed a 

correlation between track defects and train loads, measured in million gross tons (MGTs). For 

instance, (R. Liu, Xu, and Wang 2010) developed a Short-Range Prediction Model (SRPM) for 

China railway lines to predict track irregularities using a linear regressor model. However, this 

model accurately predicted only nine out of 25 sections and struggled with nonlinear surface 

changes. Similarly, (Guler, Jovanovic, and Evren 2011)created a model for predicting geometric 

degradation in Turkey, focusing on factors like Twist, Gauge, Alignment, Cant, and Level. 

However, this model did not adequately consider the effects of speed and load, which suggested 

that higher speeds and loads decreased deterioration rates. While these deterministic models 

identify general statistical patterns and influencing factors, they may overlook essential 

degradation factors and do not account for uncertainties in input parameters and model geometry 

(Elkhoury et al. 2018) and this can limit their effectiveness in making precise maintenance and 

system improvement decisions. 

Probabilistic modelling is a statistical method that incorporates the influence of random events or 

actions to predict the likelihood of future outcomes. Probabilistic modelling provides forecasts or 

estimates of possible future results by considering the impact of chance occurrences. Previous 

researchers have approximated track degradation through the probabilistic model using different 

types of probabilistic approaches to normal distribution (J. Sadeghi 2010b), Weibull distributions 

(Caetano and Teixeira 2015), and (Shafahi and Hakhamaneshi 2009) Markov model, as indicated 

in Table 3. (J. Sadeghi 2010b) Developed track geometry indices based on normal data distribution 
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for parameters like gauge, twist, longitudinal level, and alignment. These indices, calculated 

separately for different track classes, aimed to evaluate track conditions and guide maintenance. 

However, the model's effectiveness is limited to the specific track classes and assumes that the 

data follows a normal distribution. This assumption may not hold for all railway systems, 

potentially affecting the model's accuracy if the data deviates from a normal distribution. (A.R. 

Andrade and Teixeira 2015) Developed a hierarchical Bayesian model (HBM) to predict the 

degradation of train tracks in Portugal. The model used data from a major train line between Lisbon 

and Oporto to evaluate the Standard Deviation of Longitudinal Level defects (SDLL) and the 

Standard Deviation of Horizontal Alignment defects (SDHA). Bayesian models treat parameters 

as random variables and incorporate uncertainty through prior distributions. This method combines 

the previous distribution with the likelihood of the observed data to compute the posterior 

distribution of the parameters. In practical applications, calculating the joint posterior distribution 

often involves complex numerical integration, typically using Markov Chain Monte Carlo 

(MCMC) methods. When applied to operational and maintenance data, the HBM proved to be a 

poor predictor of SDHA compared to SDLL. This indicates that horizontal alignment defects are 

less predictable, highlighting a limitation in the model's effectiveness for certain types of track 

geometry degradation.(Caetano and Teixeira 2015) Developed a model using the Weibull 

distribution to schedule maintenance and renewal of railway tracks, aiming to minimize life-cycle 

costs. Based on historical data from a rail line in Portugal, the model showed that optimal 

maintenance could be achieved by selecting suitable time intervals for renewals. However, the 

study noted that insufficient rail and sleeper degradation data might limit the model's accuracy in 

representing actual degradation rates. Markov models assess rail track conditions over time by 

considering tonnage, axle load, terrain, traffic conditions, and a combined track record index 

(Shafahi and Hakhamaneshi 2009). These models analyze track deterioration from optimal 

conditions to where maintenance is required, categorizing tracks into six classes based on traffic 

loads and geographical locations. However, this classification may not capture variations within 

each class, potentially leading to inaccuracies in predicting deterioration for specific segments. 

Markov models have limitations in capturing the random behavior of track deterioration and 

optimizing maintenance costs, and they rely heavily on data availability. Probabilistic models face 

challenges due to the often-limited historical data available, making accurate prediction of track 

deterioration difficult. A stochastic model is an approach used to predict statistical characteristics 
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of potential outcomes by considering the random fluctuations in one or more parameters over time. 

By accounting for the unpredictable variations, a stochastic model provides insights into the 

potential properties or patterns that may arise, and the different types of stochastic models and 

their summary is given in Table 3. (Vale and M. Lurdes 2013) Proposed a stochastic model to 

predict track degradation over time, focusing on a Northern railway line in Portugal. The study 

adhered to European Committee for Standardization (CEN) guidelines and conducted statistical 

and probabilistic analysis for various vehicle speed groups using the Dagum distribution. The 

researchers tested 52 probabilistic distributions with Easy Fit software, finding the Dagum model 

the best fit. The study examined 21-time intervals across three-speed groups, discovering similar 

left and right rails degradation rates in 63 cases. The Dagum distribution accurately modelled the 

longitudinal level degradation for these cases. However, the study noted that the 90-day interval 

between dynamic inspections might not capture rapid changes in track degradation. (Quiroga and 

Schnieder 2010) Developed an autoregressive model using the Auto-Regressive Moving Average 

(ARMA) method to predict railway track geometry deterioration. They focused on the standard 

deviation of the longitudinal level as an indicator of degradation, using previous values, section 

length, and length of tamped tracks for predictions. The researchers applied this model to a section 

of a French high-speed railway; the model showed promise for integration into tamping scheduling 

systems. However, while it adapted quickly after tamping, it may struggle with accuracy between 

tamping activities, potentially leading to inaccuracies in long-term predictions. (He et al. 2015a) 

developed a statistical deterioration model to depict the course of degradation of various track 

geometry defects. Based on exploratory data analysis, they employed an exponential link between 

the degradation rate and outside variables (tonnage carried, number of cars, trains, and inspection 

trips since the last red tag was spotted). (Alemazkoor, Ruppert, and Meidani 2018) Evaluated the 

probability of failure to predict the time transition from yellow to red tag using the survival analysis 

model. Comparing the two models revealed that the fine-scale defect-based model performed 

better than the coarse-scale segment-based model for survival. Therefore, fine-scale defect-based 

survival models are applied to predict the likelihood of at least one red tag defect in a segment. 

Stochastic models are commonly used to predict the deterioration of various applications. 

However, to enhance the accuracy of the models, a deeper understanding of the application and a 

more detailed explanation are required. These models are best suited for short—to medium-term 

predictions. They may not accurately capture complex nonlinear relationships.



    

 

34 

 

Table 3 Summary of statistical models  

 

Model Type Method Input Variable Target variable Accuracy Reference 

Deterministic Linear regression Tonnage, Speed, Initial inspection 

date, Inspection date after 

maintenance, gauge, cross-level, 

alignment, Surface, and twist. 

Track surface 

irregularity 

Measurement 

The average error for 

the actual and 

predicted track surface 

is 0.120 mm 

   (R. Liu, Xu, 

and Wang 

2010) 

Deterministic Linear regression Gradient, Curvature, Speed, Age, rail 

type, Rail length, Sleeper type, 

Flood, Falling rock, landslide and 

Snow  

Twist 

Gauge 

Alignment 

Cant 

Level 

0.62 R2 

0.71 R2 

0.69 R2 

0.77 R2 

0.68 R2 

(Guler, 

Jovanovic, 

and Evren 

2011) 

Deterministic Linear regression (Three 

parameter Weibull distribution) 

Maintenance data (Full renewal date, 

Tamping date), Tonnage and speed 

Standard deviation 

of track quality  

0.98 R2      (Audley 

and Andrews 

2013) 

Probabilistic Normal distribution Gauge, Profile, Alignment, and 

Twist. 

Track geometry 

index 

0.80 R2 (J. Sadeghi 

2010b) 
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Probabilistic Weibull distribution Tonnage, Rail age, Sleeper age, Rail 

and Sleeper hazard rate, Time period 

of the failures, and Track segment. 

Accumulated 

maintenance 

operations 

0.97 R2 (Caetano and 

Teixeira 2015) 

Probabilistic Markov  Tonnage, Design axle load, Terrain 

(Plain, Hilly, Mountainous), Traffic 

Condition, Combined track record 

index. 

Track degradation 

Rate 

0.83 R2 (Shafahi and 

Hakhamaneshi 

2009) 

Stochastic Dagum distribution Initial geometrical quality, the 

degradation rate, Speed, Maintenance 

activity 

Standard deviation 

of longitudinal level 

defects 

0.79 R2 (Vale and M. 

Lurdes 2013) 

Stochastic Time series model (The Auto-

Regressive Moving Average) 

Tamping schedule, Standard 

deviation of longitudinal level, 

Tonnage, Time period of the 

maintenance activity 

Degradation rate 66.5% MSE (Quiroga and 

Schnieder 

2010) 

Stochastic Survival analysis Tonnage, Number of cars and trains 

travelling over the inspection period, 

defect tag, Amplitude of the defect. 

Cant 

Dip 

Gage 

0.242 MSE 

0.099 MSE 

0.046 MSE 

(He et al. 

2015b) 



    

 

36 

 

2.4.2 Machine Learning Models 

Over the past few years, machine learning models have been widely adopted for their exceptional 

ability to enhance statistical models in predicting rail track degradation. Machine learning is a 

branch of artificial intelligence that utilizes historical and current data to anticipate the future state 

of a system. These models utilize computer applications to replicate human-like intelligence and 

automate intelligent functions. By leveraging advanced computer techniques and reasoning 

algorithms, Machine Learning models surpass the limitations of current models and deliver 

superior results (Jovanovic, Guler, and Coko 2015). Common types of machine learning models 

applied in previous studies as mentioned in Table 4,  include artificial neural networks (ANNs), 

Adaptive Neuro-Fuzzy Inference Systems (ANFIS), Support vector machines (SVM), and 

Random Forests (RF). 

Numerous studies have implemented machine learning and statistical techniques to develop 

efficient predictive models in construction and infrastructure management (Herrero, Bayraktar, 

and Jiménez 2020) (Bhatia, Han, and Moselhi 2022). Several predictive models were developed 

for preventive track maintenance (Soares 2011) (Rahimikelarijani, Mohassel, and Hamidi 2020) 

(He et al. 2015a). (Liao et al. 2022) examined ANN (Artificial Neural Networks) and SVM 

(Support Vector Machine) models. They discovered that SVM models can still produce accurate 

predictions even with a small sample size (inspection data). A considerable amount of high-quality 

inspection data is required for ANN models as training data. Compared to earlier developed models 

(Falamarzi, Moridpour, and Nazem 2019b), the use of the random forest regression model resulted 

in more accurate predictions on track degradation. Extreme gradient boosting (XGBoost) has 

further excelled in other infrastructure deterioration prediction domains (Amini and Dziedzic 

2022). (Sudhir Kumar Sinha, Sumit Raut, and Harshad Khadilkar 2015) employed a machine-

learning approach. Predictive models of different types of geometry defects, which include 

XLEVEL, SURFACE, and DIP, performed well with logistic regression and decision tree. 

(Cárdenas-Gallo et al. 2017) employed ensemble classifier approaches and discovered that at least 

one ensemble classifier was the best in each defect. As a result, they selected the Stacking with 

Binary Logistic Regression for the XLEVEL defect, the Bootstrap Aggregating for the SURFACE 

defect, and the Stacking with Support Vector Machine for the DIP defect. 
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(Moridpour, Mazloumi, and Hesami 2017) developed an artificial neural network model to predict 

the degradation of tram tracks in curved sections using maintenance data. The study used the 

Melbourne tram network as a case study. The researchers applied a multilayer feed-forward ANN 

model with three layers to predict the target variable. Artificial Neural Networks (ANNs) are 

complex systems of interconnected neurons that communicate through weighted connections. 

These neurons are arranged in layers within the network, and each neuron's output is transmitted 

to the next neuron through a connection (Guler 2013). The model included variables such as rail 

type, rail profile, passing tonnage in MGT, and the installation year to predict the deviation of the 

track gauge parameter. The study found that the type of tracks and the last gauge measurement 

significantly impact the track geometry deviation. The developed model had reasonably good 

prediction accuracy. 

(Javad Sadeghi and Askarinejad 2012) used an artificial neural network (ANN) to evaluate railway 

track quality by establishing links between track geometry defects and structural issues. The ANN 

model architecture used was multilayer feed-forward network with Standard Deviations of track 

geometry data as inputs and the predicted defect density of track structural components as outputs. 

The study found that the proposed ANN model was more accurate for low and medium-quality 

track conditions. The study highlighted the benefits of using automated inspections and neural 

networks to establish correlations between track structural conditions and inspection data. 

However, the study utilized a simplified neural network architecture and may not account for all 

the complexities of track structural conditions. In Turkey, (Guler 2014b) conducted a study that 

used an ANN model to predict rail track degradation. This case study was carried out for Turkish 

state railways and involved a thorough investigation over two years, covering a track length of 

approximately 180 km. Different variables were considered in the data collection process, 

including track structure, traffic characteristics, track layout, and environmental factors. The 

author developed separate ANN models for the leading track geometry parameters and conducted 

a sensitivity analysis to determine the importance of each predictor in determining the neural 

networks. 

 Table 4: Summary of Machine Learning Models 

Method Input variable Target variable Accuracy Reference 
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Artificial 

Neural 

Networks 

(ANN) 

Month since last 

inspection, Gauge last 

inspection, MGT, Trips, 

Route, Rail profile, Rail 

type, Curve radius, Repair 

history, Year installation of 

track 

Gauge value 

change per month 

1.58 mm RMSE (Moridpour, 

Mazloumi, 

and Hesami 

2017) 

Artificial 

Neural 

Networks 

(ANN) 

Standard deviation of 

Gauge, Alignment, Profile, 

Twist 

Defect density of 

rail 

Defect density of 

sleeper 

Defect density of 

ballast 

Defect density of 

Fasteners 

0.75 R2 (Class B 

track) 

0.79 R2 (Class B 

track) 

0.77 R2 (Class B 

track) 

0.74 R2 (Class B 

track) 

(Javad 

Sadeghi and 

Askarinejad 

2012) 

Artificial 

Neural 

Networks 

(ANN) 

Gradient, Curvature, 

Speed, Age, rail type, Rail 

length, Sleeper type, Flood, 

Falling rock, land slide and 

Snow 

Twist 

Gauge 

Alignment 

Cross-level 

Levelling 

0.72 R2 

0.79 R2 

0.76 R2 

0.83 R2 

0.74 R2 

(Guler 

2014b) 

Adaptive 

Neuro fuzzy 

Inference 

System 

(ANFIS) 

Standard deviation of 

longitudinal level, 

Alignment, Cross-level, 

the number of tamping 

works previously carried 

out, and the number of days 

from elapsed from the last 

tamping 

The number of days 

from the last 

tamping to the next 

one. 

Measurement 

error not greater 

than 18% in all 

cases and in 

absolute terms not 

greater than 23 

days over 131 

days. 

(Dell’Orco et 

al. 2008) 
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Adaptive 

Neuro fuzzy 

Inference 

System 

(ANFIS) 

Gauge values for the 

previous two years (s-2 and 

s-1), MGT 

Gauge values for 

the year (s) 

Curves 0.6 R2 

Straights 0.78 R2 

(Karimpour 

et al. 2018) 

Support 

vector 

machines 

(SVM) 

Historical data from hot 

box detectors, Wheel 

impact load detectors 

Alarm prediction True positive rate 

97.5% 

False positive rate 

5.65% 

(Hongfei Li et 

al. 2014) 

Binary 

logistic 

regression 

Standard deviation of 

longitudinal level, Kurtosis 

of longitudinal level, Time 

interval, defects which 

exceeds the planning limit 

UH2 defects Sensitivity and 

specificity 89% 

(Soleimanme

igouni et al. 

2020) 

Random 

Forest 

Previous Track 

deterioration index (TDI), 

Track surface, Rail type. 

Track deterioration 

index 

0.90 R2 (Falamarzi et 

al. 2018) 

Support 

vector 

Machine 

(SVM) 

 

 

 

Previous track longitudinal 

measurements of the left 

and right rail of different 

wavelengths (3-25m is 

called D1) and (25-70m is 

called D2) from September 

2018 to December 2019. 

Track longitudinal 

level (January 

2020) 

 

 

 

D1L 0.951 R2 

D1R 0.941 R2 

D2L 0.636 R2 

D2R 0.601 R2 

 

(Han et al. 

2024) 
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Deep neural 

network 

(DNN) 

 

 

 

 

Previous Standard 

deviation of track 

longitudinal measurements 

of the left and right rail of 

different wavelengths (3-

25m is called SDD1) and 

(25-70m is called SDD2) 

from September 2018 to 

December 2019. 

Previous track longitudinal 

measurements of the left 

and right rail of different 

wavelengths (3-25m is 

called D1) and (25-70m is 

called D2) from September 

2018 to December 2019. 

Previous Standard 

deviation of track 

longitudinal measurements 

of the left and right rail of 

different wavelengths (3-

25m is called SDD1) and 

(25-70m is called SDD2) 

from September 2018 to 

December 2019. 

The standard 

deviation of track 

longitudinal level 

(January 2020) 

 

 

 

Track longitudinal 

level (January 

2020) 

 

 

 

The standard 

deviation of track 

longitudinal level 

(January 2020) 

 

SDD1L 0.962 R2 

SDD1R 0.968 R2 

SDD2L 0.955 R2 

SDD2R 0.978 R2 

 

 

D1L 0.980 R2 

D1R 0.976 R2 

D2L 0.961 R2 

D2R 0.959 R2 

 

SDD1L 0.962 R2 

SDD1R 0.951 R2 

SDD2L 0.968 R2 

SDD2R 0.964 R2 

 

An ANFIS model combines the use of ANN and a Fuzzy Inference Engine (FIS). This integration 

allows for the principles of both fuzzy logic and neural networks to be utilized within a single 

framework, resulting in potential benefits from both(Zimmermann 2010). (Dell’Orco et al. 2008) 
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developed an ANFIS model to optimize rail track maintenance and planning. The model considers 

geometry parameters such as alignment, longitudinal level, and cross-level, as well as the number 

of days since the latest tamping and the number of previous tamping works. Its output is the number 

of days between tamping works. The study found that the model accurately predicted maintenance 

dates that met or exceeded the maintenance threshold.  

In a study conducted by (Karimpour et al. 2018), an ANFIS model was developed to predict rail 

track degradation using the gauge parameter. The findings revealed that a precise model can 

accurately predict the long-term performance of rail tracks. The main parameters in the model 

development were gauge deviation parameters from the previous year and two years ago. The 

results indicate that the model can predict the gauge deviation for the upcoming year with 

satisfactory accuracy. There have been limited studies that compare the effectiveness of statistical 

and machine learning models. According to (Shafahi, Masoudi, and Hakhamaneshi 2008) research, 

a Markov chain model performed better than ANN and ANFIS models. This suggests that the 

higher computational complexity of ANN and ANFIS may not always be necessary. However, as 

autonomous track inspection programs become more prevalent and data collection increases, these 

methods may become more appealing. 

It is possible to use other machine learning models to predict rail track degradation. In a study by 

(Hongfei Li et al. 2014), machine-learning models were used to forecast defects and alarms of 

critical components of rail cars. The study developed learned rules based on historical data to 

predict which rail cars were likely to have problems and to predict intensive existing alarms before 

an actual alarm event to decrease instant train stops. The development of the model involved five 

steps: feature extraction, dimension reduction, model training, prediction and confidence 

estimation, and rule simplification. To evaluate the results, the proposed SVM model and a 

decision tree were compared against the same data. Based on the results, the customized SVM 

model performed better than the decision tree for alarm prediction. 

(Soleimanmeigouni et al. 2020) developed an analytical methodology using data that could predict 

track geometry defects in a railway line section in Sweden. Specifically, it focused on predicting 

UH2 defects, a track geometry defect that can cause safety problems and derailments. These 

defects have a linear degradation pattern, which was modelled using linear regression, along with 
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binary logistic regression to predict the probability of UH2 defects. The study also analyzed the 

impact of factors such as standard deviation and kurtosis of longitudinal level on the occurrence 

of UH2 defects. The results indicated that the developed models effectively predicted the 

occurrence of UH2 defects.(Falamarzi et al. 2018) have developed a Random Forests (RF) model 

to predict the future deterioration index. The Melbourne tram network has been used as the case 

study, and the gauge deviation parameter has been selected as the primary parameter to develop 

the index. The research findings suggest that the proposed model has a considerably high adjusted 

R2 value, and the prediction error is negligible, demonstrating its reasonable performance in 

predicting the deterioration index.From the abovementioned models, random forest and ANN have 

reasonably good predictions. These models can be used with the recent evolution of autonomous 

track inspection programs to maintain the railway track assets and their condition and continuously 

improve the track. The lack of literature and complex model structures are major drawbacks of 

these relatively new degradation prediction models. 

 

2.5 Limitations of Existing Studies 

The literature review on condition assessment in railways focuses narrowly on individual defects 

or specific components, such as track geometry, neglecting a comprehensive evaluation of all 

critical railway elements. This approach can lead to inefficient allocation of maintenance budgets 

and inaccurate representation of railway conditions. Relying solely on visual inspections 

introduces human error and fails to account for uncertainties and unexpected conditions, 

undermining the reliability of maintenance decision support systems.  In a main track derailment 

in British Columbia in 2021, the Transportation Safety Board of Canada (TSB 2021) examination 

revealed that the gauge-side spikes of the high rail of the 8° curve had lifted away from the tie 

plates, causing the high rail to roll outward and increase the gauge, leading to the derailment. 

Despite the track undergoing inspection by a heavy track geometry test car nine days before the 

occurrence, the subsequent track inspection did not reveal track geometry defects, even though 

signs of gauge widening were likely present. This highlights the need for a comprehensive rating 

system and a degradation prediction model integrated with automated inspection technologies by 

utilizing high-resolution cameras, sensors, and artificial intelligence to monitor rail conditions in 
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real time.  This literature review also explores the use of various condition prediction models in 

multiple case studies. There is an opportunity to explore machine learning models that not only 

predict the overall condition of the rail track but also quantify the size and severity of defects using 

machine learning and statistical techniques. For instance, employing algorithms such as random 

forests, XG Boost can enable the identification of complex patterns in historical inspection data. 

These models can be trained to recognize early signs of deterioration, enhancing defect predictions' 

accuracy. Moreover, integrating these predictive models with automated inspection technologies, 

such as high-resolution imaging systems and non-destructive testing methods, can facilitate 

extracting detailed features related to the physical characteristics of railway components. This 

integration would allow for real-time monitoring and assessment of rail conditions, leading to 

proactive maintenance strategies.  
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Chapter 3. Methodology 

The methodology has two main parts, as described in the Figure 5.  The first part, to the left, 

involves developing a condition rating, while the second, to the right, focuses on developing a 

predictive model. This section describes each step of the method in detail.  

 

Figure 5: Overview of Research Methodology 

 

3.1 Condition Rating System 

The study utilized data obtained from Pavemetrics' automated track inspection technology. It 

employed the Analytic Hierarchy Process (AHP) to compare and prioritize multiple criteria 
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systematically, enabling a structured approach to decision-making. The overall methodology 

encompassed (1) Data understanding and preparation, (2) Framework development, (3) 

Questionnaire survey analysis using AHP and (4) Case study validation. 

 

3.1.1 Case Study Description 

The data for this study was obtained from Pavemetrics, a company specializing in automated 

railway track inspections using their L-RAIL technology. This technology uses 3D laser 

triangulation to scan railway tracks in detail, capturing a comprehensive dataset that includes 

various railway components such as rails, ties (sleepers), fasteners, spikes, tie plates, and ballast, 

as shown in the Figure 6. The L-RAIL system can automatically inspect various railway asset 

properties and defects and operates day or night at up to 180 km/h.  

 

Figure 6: Sample image from condition assessment case study data 

The following section provides an overview of data understanding and preparation. The 

accompanying meta-table summarizes the relevant attributes. The dataset used in this study covers 

a section of track from an anonymous location. The inspected distance totals 0.2 kilometers, 

encompassing 329 ties with 1,417 identified tie cracks. In addition to cracks, the dataset includes 

key characteristics of the railway infrastructure, such as the condition of spikes, tie plates, and 

ballast presence. This data forms the foundation for evaluating railway tie conditions and 
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conducting further predictive analysis on track integrity. The following section provides a detailed 

overview of data understanding and preparation. The accompanying meta-table summarizes the 

relevant attributes for this analysis. 

 

3.1.2 Data Understanding and Preparation 

Data understanding and preparation were critical steps in the data analysis process. The data was 

provided in various formats, including XML files, shapefiles, and CSV files. While some data was 

already in CSV format, additional information needed to be extracted from the XML files to 

enhance the dataset's comprehensiveness. The data from the XML files was extracted using Python 

scripts that parsed the XML structure and converted the relevant information into CSV format for 

easier manipulation and analysis. Additional information, such as In line with spike, Side, Number 

of anchors, Number of Fasteners, Number of Tie plates, Number of spikes, Spike ID, Mean Height 

Spike, Condition Spike, and Tie Plate ID, was extracted from the XML and converted into CSV 

format for easier manipulation and analysis and the detailed description of the features are 

mentioned  Table 5. 

Table 5: Meta data table for Pavemetrics data. 

Features Description Type 

Survey ID Each survey is identified by a unique identification number 

(Survey ID) 

Categorical 

Section ID Each survey section is labelled with a sequential number 

(Section ID). 

Categorical 

Tie ID The ID of the tie in the current section. Categorical 

Distance The linear distance from the beginning of the survey to the 

detected tie 

Float 

Tie Length The length of the tie Float 

Tie Width The width of the tie Float 

Askew Angle The skew angle of the tie-in degrees Float 
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Is At Border Indicates if the tie is in the middle of 2 sections Int 

Tie Material The element indicates the material of the tie: wood, concrete 

or undefined 

Categorical 

Covered Area 

Percentage 

Element reports the percentage of the tie's surface covered 

by ballast, debris, and other materials 

Float 

Number of Crack Reports the total number of cracks detected for a given tie Int 

Area The area of the crack Float 

Width The width of the crack Float 

Depth The depth of the crack Float 

Length The length of the crack Float 

Angle degree The angle of the crack Float 

Presence of Ballast Indicates if there is ballast present in the opening of a crack Categorical 

In line with the spike Indicates whether the crack is in line with the spike Float 

Side  Indicates whether the crack is in the field or gauge side Categorical 

Number of anchors The total number of anchors detected for the given tie Int 

Number of Fasteners The total number of fasteners detected for the given tie Int 

Number of Tie plates The total number of tie-plates detected for the given tie Int 

Number of spikes The total number of spikes detected for the given tie Int 

Spike ID Id of the spike in the current section Categorical 

Mean Height Spike the height of the spike Float 

Condition Spike indicates the status of the spike as good or high Categorical 

Tie Plate ID Id of the tie-plate in the current section Categorical 
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3.1.3 Rating System Framework Development 

The existing Pavemetrics rating system, developed by their experts, evaluates tie cracks based on 

length, depth, and height, with minimum thresholds of 5mm depth, 10mm height, and 50mm 

length, as shown in Table 6. Cracks below these thresholds are ignored. While this system 

effectively identifies major cracks, it does not account for other critical factors, such as the 

condition of spikes and tie plates or the location of cracks in these components. In comparison, 

Georgetown Rail (2022) developed a tie rating system that evaluates over 20 variables, including 

internal decay, plate cuts, and splitting, grading ties on a scale from 1.0 (best) to 4.0 (failure). This 

system provides a more detailed assessment than Pavemetrics, covering a broader range of 

conditions. However, it does not consider the exact location of cracks. Crack location is an 

important factor in understanding the impact on track stability and performance, as cracks near 

spikes or tie plates can cause quicker damage and increase risks. By leaving out crack location, the 

Georgetown Rail rating system may miss important information needed for a more complete 

evaluation of tie condition and long-term track performance. Additionally, Sadeghi and 

Askarinejad (2011) introduced a quality index based on visual inspection, which evaluates the 

structural condition of the track through indices like rail quality, ballast quality, and sleeper quality. 

Their holistic approach addresses the overall track condition rather than focusing only on cracks.  

However, a limitation is that it relies heavily on visual inspections, which can be subjective and 

may miss smaller, less visible defects such as internal cracks or early signs of wear. This reliance 

on visual assessments can reduce the accuracy and consistency of the evaluation compared to more 

precise, technology-driven methods. The proposed system aims to provide a more comprehensive 

evaluation by incorporating spike- and tie-plate-related factors, along with crack location and size. 

This approach enhances the assessment of track conditions by addressing components the existing 

system does not consider, leading to a more detailed understanding of tie and rail fastening health. 

Table 6 : Current rating system 

Parameter Value (depth, width, length) Description 

Wooden tie rating “3” very 

severe 

20,50,600(unit mm) This parameter allows the user 

to set a threshold for classifying 

a defect on a wooden tie as very 

severe. It must contain three 
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values for depth, height, and 

defect length, all in mm. 

Wooden tie rating “2” severe 15,30,180(unit mm) This parameter allows the user 

to set a threshold for classifying 

a defect on a wooden tie as 

severe. It must contain three 

values for depth, height, and 

defect length, all in mm. 

Wooden tie rating “1” 

moderate 

5,15,100 (unit mm) This parameter allows the user 

to set a threshold for classifying 

a defect on a wooden tie as 

moderate. It must contain three 

values for depth, height, and 

defect length, all in mm. 

Wooden tie rating “0” light  Not applicable light. The defects do not meet 

conditions “1”, “2” and “3” 

The framework development incorporated the specific conditions observed on rail tracks, where 

high axle loads often led to spikes becoming loose over time, enlarging spike holes, and exposing 

the tie to moisture and decay, highlighting the necessity of considering the distance of cracks from 

spikes, the presence of cracks in spike holes, and the direction and alignment of cracks relative to 

the spikes. Geographic Information System (GIS) software, specifically QGIS, was utilized to 

ensure precise measurement of the crack's proximity to critical components. QGIS enabled the 

accurate mapping and measurement of the distance between cracks and critical elements, such as 

tie plates and spikes, as shown in Figure 7. The proposed rating system was designed to integrate 

all these factors, aiming to assess the potential for tie splitting and other forms of deterioration by 

examining the proximity of cracks to critical components. This comprehensive approach was 

developed with input from Pavemetrics Inc.'s principal consultant to ensure its relevance and 

applicability, as shown in the Figure 8. 

Tie cracks are evaluated using two key components: crack size and crack location. Crack size is 

assessed based on sub-factors such as depth, width, length, and the presence of ballast in the crack. 

Crack location is evaluated based on factors like spike distance from the crack, tie plate distance 

from the crack, crack direction, whether the crack is in line with the spike, and whether the crack 
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is on the field or gauge side. For each sub-factor, a score is assigned based on its condition. The 

total scores for crack size and crack location are then multiplied to reflect the combined impact on 

the overall condition of the tie. This combined score represents the tie crack rating. 

 

Figure 7: crack distance from the components. 

The rating for tie plates is based on the number of missing tie plates. The score reflects the 

condition of the tie plates, with higher scores indicating worse conditions. For spikes, the rating is 

determined by spike height and whether the spike is missing or broken. A score is assigned for 

each factor based on the spike's condition. Once the individual scores for tie cracks, tie plates, and 

spikes are calculated, they are combined to generate the overall rating of the tie and rail fastening 

system. This overall rating provides a comprehensive assessment of the track's condition, with 

higher scores indicating more significant defects and lower scores representing better conditions. 

The weighted scoring system thoroughly evaluates the track's tie and rail fastening condition. 
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Figure 8: Proposed tie and rail fastening system framework. 

 

3.1.4 Questionnaire Analysis Using the Analytical Hierarchy Process (AHP) 

In infrastructure asset management, multi-criteria decision-making techniques are commonly used 

to make robust decisions by combining technical information with expert opinions. These 

techniques analyze data and weights of different options to generate a single index representing 

the asset's condition. This approach enables a comprehensive assessment by combining objective 

data with subjective expert insights, which helps develop effective management and maintenance 

strategies (Kabir, Sadiq, and Tesfamariam 2014). The Analytic Hierarchy Process (AHP) stands 

out among these techniques for its structured approach, which breaks down complex decisions into 

a hierarchy of simpler sub-problems, facilitating more manageable and accurate analysis. AHP 
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effectively integrates quantitative and qualitative criteria through pairwise comparisons, capturing 

nuanced preferences and providing a consistent check to ensure logical coherence. This makes 

AHP flexible and user-friendly, enabling decision-makers to understand and repeat the process 

easily. The Analytic Hierarchy Process (AHP) provides objective mathematics to process an 

individual or group's inescapably subjective and personal preferences in making a decision (Saaty 

and Vargas 2012b). AHP provides objective mathematics to process an individual or group's 

subjective and personal preferences in making a decision, making it particularly suitable for 

infrastructure asset management. 

Compared to other methods, AHP offers distinct advantages. Unlike the Delphi method, which is 

time-consuming and relies on iterative rounds of consensus-building among experts, AHP 

provides a more streamlined and practical tool for decision-making in project management 

contexts. AHP's wide application in project management further validates its reliability and 

effectiveness, contrasting with the Delphi method's limitations (Vidal, Marle, and Bocquet 2011). 

Similarly, AHP is more accessible and conducive to decision-making consensus than Multi 

Attribute Utility Theory (MAUT). While MAUT requires specifying utility functions and scaling 

constants through probabilistic scenarios, often causing frustration due to their complexity(Bard 

1992) . AHP uses straightforward pairwise comparisons and a ratio scale to arrive at cardinal 

rankings of alternatives. This allows for easier integration and synthesis of subjective judgments. 

Furthermore, AHP provides a clear, logical framework that facilitates the tracing and revising of 

individual responses, making it more acceptable for decision-makers without extensive training in 

statistics or utility theory (Bard 1992) 

The Analytic Hierarchy Process (AHP) and the Analytic Network Process (ANP) offer unique 

advantages and applications in decision-making methodologies. AHP is well-known for its 

simplicity and structured hierarchical approach, making it user-friendly for those without advanced 

expertise. It is particularly suitable for problems with well-defined criteria and minimal 

interdependencies and is supported by various user-friendly software tools. The hierarchical 

structure of AHP ensures consistency in judgments and transparency in decision-making, allowing 

for easier explanation and justification of decisions to stakeholders. Furthermore, AHP generally 

requires less data and fewer pairwise comparisons, reducing the time and effort needed for 
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information gathering and processing and making it practical for various applications (Vaidya and 

Kumar 2006). 

In contrast, ANP is better suited for complex decision scenarios, as it models interdependencies 

and feedback loops within a network structure. While ANP can handle intricate problems with 

interrelated factors, it comes with increased complexity and data requirements. The network 

structure and comprehensive analysis capabilities of ANP require more specialized knowledge and 

extensive data collection, making it potentially less transparent and more challenging to implement 

than AHP. Despite these differences, both methodologies play valuable roles in multi-criteria 

decision analysis, with AHP favoured for its clarity and ease and ANP for its detailed handling of 

interdependencies (Sipahi and Timor 2010). 

Other methods, like the Weighted Sum Model (WSM), lack AHP's detailed comparison 

mechanism. While the Delphi Method can be insightful, it does not offer the same mathematical 

rigour or efficiency. Therefore, AHP's ability to incorporate subjective judgments and its 

comprehensive evaluation capabilities make it the most suitable choice for developing reliable 

rating system frameworks, such as those assessing tie and rail fastening conditions.This present 

study utilizes the Analytical Hierarchy Process (AHP), developed by Saaty in the 1980s, to assign 

weights to rating system framework using the following steps (Mu and Pereyra-Rojas 2017). 

In the Analytic Hierarchy Process (AHP), experts make pairwise comparisons between elements 

or criteria within the same group to establish the relative importance of one factor over another 

regarding a significant criterion. These judgments help determine the relative importance weights, 

which are then used to create a pairwise comparison matrix. Pairwise comparisons are made using 

a questionnaire based on Saaty's (1-9) scale, where 1 represents equal importance, and 9 represents 

extreme importance. The reciprocal property in AHP ensures that if element x is "j" times more 

important than element y, then y is 1/j times less important than x. Consistency in these 

comparisons is evaluated by calculating the consistency index (CI) and the consistency ratio (CR), 

with a CR less than 0.1 indicating a consistent matrix. Saaty's average random index values, based 

on matrix size, are used to validate these comparisons, with an example value of 0.89 for a matrix 

size of 4. 
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𝑪𝑹 =  
𝑪𝑰

𝑹𝒂𝒏𝒅𝒐𝒎 𝑰𝒏𝒅𝒆𝒙
                           (1) 

 

𝑪𝑰 =  
𝝀−𝒏

𝒏−𝟏
                                          (2) 

where  

λ is the eigenvalue of the pairwise comparison matrix, and  

n is the matrix size. 

The tie and rail fastening rating system survey compares different types of defects and the factors 

affecting their seriousness. Participants were asked to compare different types of defects, such as 

spike defects, tie plate defects, and tie cracks, as well as considerations like the location and size 

of the cracks. For example, participants were asked to rate the severity of spike defects compared 

to tie cracks, with options ranging from "significantly more severe" to "significantly less severe." 

This setup allows for the collection of detailed comparative data. The complete survey is in the 

appendix. 

Participants were asked to indicate their experience in the field with categories ranging from less 

than five years to more than 20 years, enabling analysis based on expertise in rail infrastructure 

issues. They also selected their work location from Western, Central, Eastern, Northern Canada, 

and International, reflecting diverse environmental and regional factors. Participants identified 

their areas of expertise, such as maintenance, operations, engineering, safety compliance, or 

administration, to provide insight into how different perspectives assess defect severity. 

Additionally, they specified their role in decision-making, whether directly, indirectly, or not 

involved at all, highlighting how authority influences perceptions of defect severity. Finally, 

participants indicated their organizational representation, such as short line, Class I, government, 

academia/research, railway supplier or service provider, and design/consultant. This categorization 

helped evaluate how organizational roles impact the assessment of rail defects, ensuring a 

comprehensive analysis of defect severity.  
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Determining the weights from the survey results using the Analytic Hierarchy Process (AHP) 

involved respondents first performing pairwise comparisons of criteria and sub-criteria, such as 

the severity of defects in ties, tie plates, and spikes. These comparisons, rated on a scale of relative 

importance, formed pairwise comparison matrices. The matrices were normalized, and the 

eigenvectors (priority vectors) were calculated to determine the relative weights of each criterion. 

A consistency check was performed using the Consistency Index (CI) and Consistency Ratio (CR) 

to ensure the comparisons were logically consistent. If multiple respondents provided data, their 

judgments were aggregated using the geometric mean. The final weights, which were normalized 

to ensure they summed to one, represented the importance of each criterion and sub-criterion in 

evaluating tie and rail fastening conditions. This structured approach converted subjective 

assessments into quantifiable weights, aiding in decision-making for maintenance and risk 

assessment. For example, consider the survey question: "How do you rate the severity of spike 

defects compared to tie cracks?" Respondents might have rated spike defects as moderately more 

severe than tie cracks. This comparison was then translated into a numerical value (e.g., 3 on a 

scale where 1 meant equal importance and 9 meant extreme importance). These values were used 

to fill the pairwise comparison matrix, and the eigenvector was calculated to determine the relative 

weights of spike defects and tie cracks. 

 

3.1.5 Case Study Validation and Sensitivity Analysis 

The first step in developing the new tie and rail fastening rating system involved using the Analytic 

Hierarchy Process (AHP) to determine the relative importance, or weights, of critical factors that 

influence the overall condition of the fastening system. These factors include the condition of 

spikes (e.g., spike height), tie plates (e.g., missing tie plates), and ties (e.g., crack size and location). 

The AHP process helped prioritize these factors based on their impact on track safety and 

performance, resulting in weights that reflect expert judgment. These weights ensured the most 

critical factors significantly contribute to the final condition rating. 

Once the weights were set, they were applied to the scores given to each factor, ranging from 0 to 

10, to measure how serious each defect is. For example, a too high spike would get a score of 10, 

while a spike in good condition would get a score of 0. This matches the findings from (Gao, 
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McHenry, and Kerchof 2018a), who highlighted the important role of spikes in keeping ties in 

good shape. Similarly, a missing tie plate would get a score of 10, while having all the required tie 

plates would get a score of 0, which aligns with research by (M. Dersch et al. 2019) and the 

derailment in Alberta (The Transportation Safety Board of Canada 2012), showing the importance 

of tie plates in preventing damage to ties. 

Crack location scores are also given for the crack near the tie plate and spike. When the crack is 

close to a spike, the score is 10, and the same applies when the crack is close to a tie plate because 

the crack is more likely to cause damage. This follows evidence that cracks near spikes or tie plates 

cause more harm to ties, as seen in the British Columbia derailment (TSB 2023), where lifted 

spikes on the field side contributed to the accident. Cracks on the field side are scored ten due to 

higher impact on safety, while cracks on the gauge side are scored 0 due to lower severity. Based 

on their impact on track safety, this scoring system prioritizes cracks near spikes, tie plates, and 

on the field side. 

Three scenarios were evaluated to compare the rating system. In the first scenario, as shown in 

Table 7, the thresholds for crack measurements are based on values provided by Pavemetrics 

experts. For crack depth, a depth of 5 mm receives a score of 0, while a depth of 20 mm receives 

a maximum score of 10. Similarly, a width of 10 mm is scored 0 for crack width, while a width of 

50 mm is scored 10. Crack length follows the same approach: a length of 50 mm receives a score 

of 0, while a length of 600 mm receives a score of 10. 

Table 7: Scenario one: Pavemetrics (Industry thresholds) 

Factor Value/class Score 

Spike height  Cut spike 

≤25 mm 

>25 mm 

Screw spike 

≤32 mm 

>32 mm 

 

0 

10 

 

0 

10 
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Number of Tie plates 0 

1 

2 

10 

5 

0 

Crack depth 5 mm 

≥ 20 mm 

0 

10 

Crack width 10mm 

≥ 50mm 

0 

10 

Crack length 50 mm 

≥600 mm 

0 

10 

The presence of ballast inside 

the crack 

Yes 

No 

10 

0 

Crack is in line with spike Yes 

No 

10 

0 

Crack distance from spike 0 m 

0.5 

10 

0 

Crack distance from tie plate 0 m 

0.6 m 

10 

0 

The direction of the crack X 

Y 

10 

0 

Side of the crack Field 

Gauge 

10 

0 

 

In Scenario Two, referred to as the "without outliers" scenario, the thresholds for crack 

measurements are based on the mean and standard deviation of values observed in a case study 

dataset. This approach excludes outliers, defined as over 3 standards deviations from the mean.  
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In the third scenario, as shown in Table 8, the thresholds for crack measurements are based on the 

maximum values observed in the case study dataset, including outliers. The scoring system 

accounts for the most significant defects in the dataset, reflecting not just typical conditions but 

also the most severe defects. Because only crack depth, width and length have outliers or values 

beyond the ranges established by Pavemetrics, it is only their scores that change in these scenarios. 

In all scenarios, the same scoring system is applied to spike height, the number of tie plates, the 

presence of ballast in cracks, the distance of spikes and tie plates from the cracks, crack direction, 

and crack location on the tie (field or gauge side). The overall condition rating is determined by 

multiplying each factor's score by its respective weight, resulting in a weighted score that reflects 

both the factor's importance and the defect's severity. 

Table 8: Scenario with and without outliers 

Scenario Factor Value/class score 

 

 

1. Scenario two 

without outliers 

Crack depth 5 mm 

≥ 74.84 mm 

0 

10 

Crack width 10mm 

≥ 47.32 mm 

0 

10 

Crack length 50 mm 

≥592.43 mm 

0 

10 

 

 

2. Scenario three 

with outliers 

Crack depth 5 mm 

≥ 200 mm 

0 

10 

Crack width 10mm 

≥ 110 mm 

0 

10 

Crack length 50 mm 

≥1075 mm 

0 

10 
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To validate the framework, all scenarios were compared to assess the potential impact on 

maintenance decisions. The Pavemetrics rating system, based on crack width, depth, and length, 

is called "The Tie Crack Size Condition Rating Scale," while the proposed scale is called the "Tie 

and Rail Fastening Condition Rating Scale." Both scales were compared by converting the 

resulting values to a scale from 1 to 4, where 1 represents "Light" and four represents "Very 

Severe." The classification is as follows: scores of 0, 1, and 2 are categorized as "Light," scores of 

3, 4, and 5 as "Moderate," scores of 6, 7, and 8 as "Severe," and scores of 9 and 10 as "Very Severe"  

A sensitivity analysis was also conducted to evaluate the effect of adjusting the weights assigned 

to various components in the railway track rating system, including tie crack, tie plate, spike, and 

sub-factors related to the size and location of cracks. This analysis aimed to understand how 

changes in these weightings impact the overall condition rating, ensuring that the system is robust 

and reliable. The weight adjustments were made according to Saaty's (Saaty and Vargas 2012a) 

Analytic Hierarchy Process (AHP), which provided a structured approach to systematically vary 

the weights and assess their effects. The analysis began by assigning equal weights to all 

components and subcomponents, establishing a balanced baseline scenario. The main components 

considered were tie cracks, tie plates, and spikes. At the same time, subcomponents were further 

broken down into factors related to crack size (depth, width, length, presence of ballast) and crack 

location (distance from spike, distance from tie plate, alignment with spike, direction, and side). 

From this balanced baseline, the next step involved incrementally increasing the weight of the 

highest-weighted factor within each group and redistributing the weights of the remaining factors 

accordingly. This allowed for the simulation of various scenarios where one factor became more 

significant while others became less, creating a diverse range of weighting scenarios. The overall 

rating of the railway track condition was calculated for all data points, reflecting the new weight 

distributions. The percentage distribution of the condition rating scale—"Light," "Moderate," 

"Severe," and "Very Severe"—was calculated for each scenario, providing insights into how the 

overall ratings fluctuated as the weights were adjusted. The baseline rating, derived from the 

original AHP-assigned weights, was used as a benchmark to further evaluate the system's 

sensitivity. Finally, the sensitivity analysis results were interpreted by comparing the percentage 

changes across all scenarios. This comparison helped identify which components and 

subcomponents had the most impact on the overall rating. 
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3.2 Condition Prediction Model 

A second case study was conducted to develop a condition prediction model. The data for this 

study was obtained from an open dataset of track characteristics and defects provided by the 

"INFORMS 2015 Railway Applications Section Problem Solving Competition."(RAS problem 

2015). The Pavemetrics dataset from the first case study was not used here because it lacks key 

variables. While the Pavemetrics dataset provides detailed information on track conditions, it does 

not include tonnage, speed, or traffic density, nor changes in track conditions over time, which 

would be essential for building a reliable prediction model, as highlighted in the literature review. 

Therefore, the second dataset was more suitable for developing the defect prediction model. A 

summary of the applicable attributes is provided in Table 9. The overall methodology comprises 

(1) data understanding and cleaning, (2) modelling, and (3) evaluation. The steps are described in 

detail in the following sections. 

Table 9: Summary of the attributes 

Attribute Description Type Min Max 

Line segment 

number 

Every track has a unique line 

segment number; using this 

number and the milepost, you 

can identify any location on the 

system. 

Cat 1 4 

Track standard 

number 

Distinguish individual track 

segments—Mainline & branch 

numbers: 0=single track, 1-

9=multiple train lines. 

Cat 0 3 

Milepost The point on the track. Num 2.436350 444.27274 

Total car east The total number of cars 

travelling East over a month. 

Num 0 54048 
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Total car west The total number of cars 

travelling west over a month. 

Num 0 41676 

Total train east The total number of trains 

travelling East over a month. 

Num 0 1136 

Total train 

west 

The total number of trains 

travelling west over a month. 

Num 0 1126 

Total 

deflection 

The sum of total gross tons 

travelling across the section. 

Num 0 11.31 

Test date The date on which testing was 

performed. 

mm/dd/yy - - 

Defect number Every defect detected by a 

Geometry car gets a unique ID. 

ID 2.300000e+

01 

2.070360e+

08 

Geometry car Geometry cars names Cat - - 

Defect Tag The tag is categorized into 

Yellow or red based on FRA 

standards. 

Cat - - 

Defect length Length of defect in feet, as 

reported by the measurement 

car. 

Num 1 798 

Defect 

amplitude 

The maximum size of the defect 

in inches 

Num -3.59 4.63 

Track code Track codes including tangent, 

spiral and curve. 

Cat - - 

Class Track class, representing 

categories of operating speed 

Cat 2 5 
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3.2.1 Data Understanding and Cleaning 

Understanding the data is a critical first step in data preprocessing. Identifying the necessary data-

cleaning processes and selecting appropriate analysis methods is vital. The study's dataset consists 

of two datasets: 1. track geometry and 2. tonnage. The process starts by thoroughly comprehending 

the two data sheets and identifying their common attributes.  

 

Figure 9: Data merging. 

The track geometry dataset includes attributes such as track segment number, milepost start and 

end numbers, defect amplitude, defect type (cross-level, dip, surface), operating speed, and defect 

limits for passenger and freight 

traffic. 

Speed(passeng

er) 

Operating speed for passenger 

trains (in Mph). 

Num 0 90 

Speed(freight) Operating speed for freight 

trains (in Mph). 

Num 11 70 

Defect type Defect type--the geometric 

defect type such as XLEVEL, 

SURFACE, DIP. 

Cat - - 
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tags (yellow and red). On the other hand, the tonnage dataset incorporates data on total deflection 

and tonnage for all track directions (east and west). Additionally, attributes such as milepost, line 

segment number, track standard number and year are common features in both datasets. These 

shared attributes were utilized to merge the data, as depicted in Figure 9. 

After merging the datasets, a thorough check for missing values was conducted, and none were 

found, indicating a complete dataset. Additionally, a validation check was performed to ensure the 

accuracy of the data merge. This involved verifying that the milepost numbers in the merged 

dataset fell within the range defined by the milepost start and end values. This step was essential 

to ensure that the data from both datasets were accurately aligned, confirming that the merged 

records correctly corresponded to their intended track segments. By validating the milepost 

numbers, we ensured that each record was placed in the right location, which is crucial for reliable 

analysis. Next, non-relevant attributes such as month, year, and milepost start, and end were 

removed from the analysis. These attributes were optional for the specific analyses conducted and 

removing them helped streamline the dataset. The cleaned and merged dataset and a summary of 

its attributes are provided in Table 9.  

The categorical variables were encoded into numerical values to make the data compatible with 

statistical models and analysis algorithms, which require numerical inputs. Encoding the variables 

simplifies their interpretation by algorithms, enabling efficient computation and comparison. For 

example, the defects—dip, surface, and level—were encoded as 0, 1, and 2, respectively, to assign 

each defect a distinct numerical value for clear differentiation. Similarly, the yellow and red defect 

tags were encoded as 0 and 1 to represent levels of tags, allowing the model to distinguish between 

conditions that require caution and those needing immediate attention. Label encoding was chosen 

for its simplicity and clarity in the model. However, other encoding techniques, such as one-hot 

encoding, could have been used, where each category would be represented as a separate binary 

column (e.g., "dip," "surface," and "level" would each have their column with a value of 1 or 0). 

One-hot encoding is particularly useful when categories are not ordinal or when there are many 

distinct categories(Alakh 2024). In this case, label encoding was sufficient because the categories 

represent distinct but comparable conditions, and the model can easily differentiate between them 

without needing a more complex encoding scheme. 
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3.2.2 Modelling and Evaluation 

Correlation analysis has been performed on data to realize the relationship between the attributes 

and the targets. Since correlation analysis reveals the relationship between numerical attributes, 

the converted categories were used in the analysis for categorical variables. The correlation 

analysis was performed on the merged and cleaned dataset using Python. The correlation matrix 

is created by dividing each element of the covariance matrix by the product of the standard 

deviations of the corresponding variables. It provides information about the relationships among 

different sets of variables. The Pearson correlation is a commonly used method for creating a 

correlation matrix. The Pearson product-moment correlation can be calculated using equation (3). 

In this correlation, the values in the matrix range from -1 to 1(David Nettleton 2014). Larger 

absolute values indicate a stronger relationship between the two variables, with the sign indicating 

whether the relationship is direct or inverse. Values close to zero indicate little to no correlation 

between the variables. 

𝒓𝒙𝒚 =  
𝒄𝒐𝒗(𝒙,𝒚)

𝝈𝒙  𝝈𝒚
                             (3) 

Where:  

𝑟𝑥𝑦, Pearson correlation coefficient between variable x and y. 

After conducting a thorough correlation analysis to identify significant relationships between the 

variables, several machine learning algorithms were employed for classification and regression 

tasks. Simpler algorithms, such as Logistic Regression for the classification of multiple linear 

Regression and Decision Trees for Regression, were initially applied to establish baseline models. 

These simpler models provide insight into the relationships between the variables but often lack 

the complexity needed for more intricate prediction tasks. As mentioned in the literature earlier, 

linear regression has been widely applied to infrastructure deterioration modelling. For example, 

(R. Liu, Xu, and Wang 2010) used linear Regression to model track deterioration by incorporating 

factors such as tonnage, speed, inspection dates, and track surface irregularities like gauge, cross-

level, alignment, surface, and twist. Similarly, (Guler, Jovanovic, and Evren 2011) employed linear 

Regression to model the deterioration of railway tracks based on attributes such as gradient, 

curvature, speed, age, rail type, and environmental factors like floods and landslides, predicting 

various track irregularities including twist, gauge, alignment, and cant. On the classification side, 
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(Soleimanmeigouni et al. 2020) applied Binary Logistic Regression to predict track geometry 

defects, specifically UH2 defects, using features like the standard deviation and kurtosis of the 

longitudinal level, time intervals and defects exceeding the planning limit. 

Logistic Regression is a widely used supervised learning algorithm for binary and multiclass 

classification problems. It estimates the probability that a given input belongs to a particular class 

by modelling the relationship between the input features and the log odds of the output (Hosmer, 

Lemeshow, and Sturdivant 2013). The model applies the logistic function, also known as the 

sigmoid function, to the weighted sum of the input features, transforming it into a probability 

between 0 and 1. For binary classification, logistic Regression predicts the probability of one of 

two possible outcomes, such as predicting the presence or absence of defects in infrastructure. 

Logistic Regression is valued for its simplicity, interpretability, and ability to model linear 

relationships between features and the log odds of the outcome, making it practical for many real-

world classification problems. However, one disadvantage of Logistic Regression is that it 

assumes a linear relationship between the input features and the log odds of the output, which may 

not always hold for more complex datasets (Kleinbaum and Klein 2010).This limitation makes the 

model less effective when the proper relationship between the features and the target variable is 

highly nonlinear. More advanced algorithms like decision trees or ensemble methods may perform 

better in such cases. 

Multiple Linear Regression (MLR) extends the basic linear regression model by incorporating 

multiple independent variables to predict a continuous dependent variable. It assumes a linear 

relationship between the dependent variable and a set of independent variables, allowing for more 

complex modelling where multiple factors contribute to an outcome (Draper and Smith 1998). 

MLR is particularly useful in situations where a single outcome is influenced by several predictors, 

such as in infrastructure modelling, where factors like track gradient, curvature, age, and 

environmental conditions can collectively impact deterioration rates or condition scores 

(Montgomery, Peck, and Vining 2012). The strength of multiple linear regression lies in its 

simplicity and interpretability. The model allows for easy identification of the relationship between 

individual predictors and the outcome, making it a widely used tool for prediction and decision-

making. However, its effectiveness depends on several key assumptions: linearity (the relationship 

between the dependent variable and each independent variable is linear), homoscedasticity 
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(constant variance of the residuals), and the absence of multicollinearity (independence among the 

predictor variables). Violations of these assumptions can lead to biased or inefficient estimates, 

limiting the accuracy of the model in real-world scenarios with complex interactions between 

variables (Kutner, Nachtsheim, and Neter 2004). 

Decision Trees are a non-parametric supervised learning method for classification and regression 

tasks. The model builds a tree-like structure, where each internal node represents a decision based 

on a feature, branches represent the outcomes of those decisions, and leaf nodes represent the final 

prediction or outcome (Quinlan 1986). Decision Trees use criteria like Gini impurity or 

information gain (for classification) and variance reduction (for regression) to decide how to split 

the dataset at each node. For example, in classification, the Gini impurity measures how "pure" a 

node is to minimize impurity and make the resulting subgroups as homogeneous as possible 

(Breiman et al. 2017). One of the strengths of Decision Trees is their interpretability—it is easy to 

visualize and understand how the model arrives at a prediction. However, without regularization 

methods like pruning or setting a maximum depth, Decision Trees can overfit the training data, 

leading to poor generalization on unseen data (Rokach and Maimon 2005). Despite this, Decision 

Trees are the foundation for more advanced ensemble methods like Random Forests and Gradient 

Boosting. 

To improve performance, advanced ensemble techniques such as Random Forest, XGBoost, and 

CatBoost were employed for classification and regression tasks. As mentioned in the literature, 

these models were chosen because they are highly effective and reliable for predicting 

infrastructure deterioration. (Falamarzi, Moridpour, and Nazem 2019) demonstrated that Random 

Forest performs exceptionally well in predicting track deterioration with high accuracy and low 

error, as shown in the Melbourne tram network case study. Similarly, (Amini and Dziedzic 2022) 

showed that XGBoost, an advanced form of gradient boosting, excels in predicting infrastructure 

deterioration across different fields. Both models are known for handling complex datasets with 

multiple input variables, making them ideal for the given dataset and the prediction tasks at hand. 

Random Forest is a supervised learning approach for classification and regression analysis. It 

consists of multiple decision trees that work together to make more accurate predictions than a 

single tree. Each decision tree has multiple nodes, and features in these nodes determine how the 

dataset should be divided into sub-classes. The method selects internal features to minimize 
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impurity based on specific criteria. For classification, impurity is based on Gini impurity or 

entropy, while regression is based on variance reduction. The most significant impurity decrease 

is used to select attributes as internal nodes assigned the highest weights. The final prediction is 

based on the average of all trees or majority votes for classification and regression. Since the 

method is built from multiple trees with random predictors, it can assign weights to each feature 

and determine important features for prediction (Cooper, Kotys-Schwartz, and Reamon 2012). 

Furthermore, the random forest method is not affected by multicollinearity.  

The Gini impurity measure is used in decision tree algorithms to determine the best split starting 

from a root node and subsequent splits (Steven Loaiza 2020). It measures how effectively a split 

separates the total samples of binary classes in a particular node. This criterion for a target variable 

with C classes can be formulated as equation (4). 

𝑮𝒊𝒏𝒊 = 𝟏 −  ∑(𝒑𝒊)
𝟐                  (4) 

Where:  

C, Number of classes; and   

p(i), probability of picking a datapoint with class i. 

Entropy impurity measures the amount of variance in data. This measurement can be expressed as 

an equation (5). 

𝑬𝒏𝒕𝒓𝒐𝒑𝒚 =  − ∑ 𝒑𝒊  .  𝐥𝐨𝐠 𝟐 𝒑𝒊          (5) 

Extreme Gradient Boosting (XGBoost) is a robust supervised machine learning algorithm used to 

solve regression and classification problems (Long et al. 2023). Like Random Forest, XGBoost 

can effectively identify the most critical features of the target variable. In XGBoost, the main 

objective is to combine predictions from multiple simple models to predict a classification or 

regression target accurately. This is achieved by combining and training several trees in the model. 

The XGBoost training process involves iteratively adding new trees to forecast the errors or 

residuals of previous trees. These new trees are then integrated with the previous ones for the final 

prediction. XGBoost is an iterative process where residuals are calculated during each iteration, 

and subsequent predictors are adjusted to optimize a specific loss function. 
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CatBoost, a gradient-boosting algorithm specifically designed to handle categorical data 

efficiently, was also explored. Unlike traditional gradient boosting methods that require extensive 

preprocessing of categorical variables (such as one-hot encoding), CatBoost is particularly adept 

at managing these variables natively. It uses a novel approach called target-based statistics to 

transform categorical features into numerical values based on the target variable, which helps 

prevent information leakage and ensures better generalization. This approach allows CatBoost to 

efficiently process high-cardinality categorical features without requiring heavy preprocessing, 

which is often computationally expensive and prone to overfitting. One of Cat Boost’s advantages 

is its ability to perform ordered boosting, which avoids bias by ensuring that each data point is 

processed without information from future data points. This prevents the model from overfitting 

to the training data, a common problem in standard boosting techniques. As a result, CatBoost 

tends to be more robust and stable on small or imbalanced datasets compared to other gradient-

boosting algorithms (Prokhorenkova et al. 2017). CatBoost provides built-in support for advanced 

regularization techniques, which improves the model's generalization capability and reduces 

overfitting. It also handles missing values effectively and offers efficient implementations, making 

it suitable for classification and regression tasks across various domains, including infrastructure 

and transportation modelling (Dorogush, Ershov, and Gulin 2018). The algorithm's combination 

of high performance, native handling of categorical features, and computational efficiency makes 

it an attractive option for datasets with numerous categorical variables, such as those frequently 

encountered in infrastructure deterioration prediction. 

Logistic Regression, Random Forest, XGBoost, and CatBoost were applied for classification tasks, 

while Multiple Linear Regression, Decision Trees, Random Forest, XGBoost, and CatBoost were 

employed for regression tasks to predict each target based on different attributes, as shown in Table 

10. The classification models were designed to predict defect tags and types using the attributes 

associated with each defect. These models categorize defects into specific tags and types, allowing 

for a detailed understanding of each defect's nature. The regression models forecast the numerical 

values of defect length and amplitude. The regression models provide a detailed analysis of the 

defects by predicting these continuous values, such as a defect's extent and amplitude. An approach 

described in Table 10 The predicted amplitude was an additional input attribute to predict the 
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defect tag. This strategy leverages the model's predicted values to enhance the accuracy of defect 

tag prediction, leading to more reliable insights and predictions. 

Table 10:  Input Attributes to predict the target. 

Target Input attributes 

Defect tag Total car west, total train east and west, total deflection, defect amplitude, 

class, freight speed, passenger speed. 

Defect type Line segment number, milepost, track standard number, total car east and 

west, total train east and west, total deflection, class, freight speed and 

passenger speed. 

Defect amplitude Line segment number, milepost, track standard number, total car east and 

west, total train east and west, total deflection, class, freight speed, 

passenger speed and defect type. 

Defect length Line segment number, milepost, track standard number, total car east and 

west, total train east and west, total deflection, defect amplitude, class, 

freight speed, passenger speed, and defect type. 

Increase in Defect 

length 

Defect amplitude, previous defect length, time gap and defect type. 

The dataset included two additional columns to predict the growth in defect length over time. The 

first column, "time gap," represents the interval between the first and subsequent test dates. This 

interval is calculated by determining the difference between the test dates, providing insights into 

the time-based progression of defects. The second column, "previous defect length," records the 

length of the defect from the prior test date for the same defect number. This approach, along with 

the unique defect numbers assigned to each defect, facilitates the identification and tracking of 

recurring defects over time, contributing to a detailed analysis of the defect data. The entire dataset 

was split into training and testing sets to build and evaluate the models. Various data splits were 

examined to determine the most effective way to train and test the models. For instance, one 

approach involved a random split, where 80% of the data was used for training and 20% for testing. 
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Another approach trained the models on data collected from 2007 to 2012 and tested them on data 

from 2013.  

 

Figure 10: Distribution of the defect tag and defect type 

During the modelling process, it became evident that the dataset exhibited a significant class 

imbalance in the classification tasks, as illustrated in the Figure 10. The left chart shows the 

distribution of defect tags, where most data points are labelled as non-defective (yellow), while a 

smaller proportion is labelled as defective (red). Similarly, the correct chart displays the 

distribution of different defect types (Dip, Surface, and X-Level), with the X-Level defect type 

being the most frequent and the Dip defect type being the least frequent. This imbalance can bias 

models toward the majority class, reducing their ability to predict the minority class. To address 

the class imbalance issue, the following techniques were applied: 

Class weighting involves assigning higher importance (or weight) to the minority class and lower 

importance to the majority class during training. This technique modifies the loss function so that 

misclassifications of the minority class are penalized more heavily than those of the majority class. 

The idea is to shift the model’s focus toward learning from the underrepresented data points and 

improving the performance of the minority class, which might otherwise be ignored due to its 

smaller representation. This approach is efficient in algorithms like Logistic Regression and 

Random Forest, which support weighted loss functions. By using class weighting, these models 

can adapt their decision boundaries to accommodate imbalanced datasets better, ensuring that the 
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majority and minority classes are well represented in the final predictions. (King and Zeng 2001) 

showed that class weighting can significantly improve prediction accuracy in rare events data by 

mitigating the bias toward majority classes, a common problem in imbalanced classification tasks. 

Oversampling is a popular technique to address class imbalance by increasing the number of 

instances from the minority class. This can be done by duplicating existing examples or generating 

synthetic ones. SMOTE (Synthetic Minority Over-sampling Technique) is one of the most widely 

used oversampling methods. Instead of simply duplicating minority class instances, SMOTE 

creates synthetic data points by interpolating between existing minority class examples. It 

generates new, synthetic examples along the line segments that connect neighboring minority class 

samples in feature space, creating a more diverse representation of the minority class. 

Oversampling techniques like SMOTE help reduce model bias toward the majority class by 

providing a more balanced class distribution during training. By creating new instances, SMOTE 

can also improve the robustness of the model without overfitting specific data points, which can 

occur with simple duplication methods. (Chawla et al. 2002) demonstrated that SMOTE not only 

improves classification accuracy for minority classes but also helps prevent overfitting, resulting 

in better generalization of unseen data. 

Cross-validation is a standard technique to evaluate model performance by splitting the dataset 

into k subsets (or folds), training the model on k-1 folds, and validating it on the remaining fold. 

The model's performance is averaged across all k iterations to ensure consistency and prevent 

overfitting. Stratified k-fold cross-validation is a variation of this approach explicitly designed for 

imbalanced datasets. It ensures that each fold has the same proportion of instances from each class 

as the original dataset. This is important for imbalanced datasets, as it guarantees that the minority 

class is well-represented in the training and validation sets. It prevents situations where the model 

is trained on only majority class data or tested without adequate minority class examples. By 

maintaining consistent class distributions across folds, stratified k-fold cross-validation provides a 

more accurate assessment of model performance, mainly when dealing with imbalanced classes. 

(Wong and Yeh 2020) highlighted the importance of stratification in cross-validation, showing 

that it significantly improves the stability of evaluation metrics in classification tasks involving 

imbalanced data.  
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Classification models were evaluated using the F1 score and Weighted F1 score, while regression 

models were assessed based on R Square (R²) and Root Mean Square Error (RMSE). Classification 

models categorize data into distinct groups and are typically assessed with metrics such as the F1 

score and Weighted F1 score. The Weighted F1 score accounts for class imbalance by giving more 

weight to classes with more instances. It is calculated as: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐹1 𝑠𝑐𝑜𝑟𝑒 =
1

𝑁
 ∑ (

2(Precision × Recall) 

(Precision+ Recall)
)      (6) 

Where, 

N is the total number of instances, and precision and recall are calculated for each class. 

The F1 score offers a more detailed assessment. It is calculated as the harmonic mean of precision 

and recall. Precision is the ratio of correctly predicted positive observations to the total predicted 

positives, while recall (or sensitivity) is the ratio of correctly predicted positive observations to all 

observations in the actual class (Abdusalomov et al. 2021). 

The Precision and Recall are formulated as (7) and (8) 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝑻𝑷

𝑻𝑷+𝑭𝑷 
                   (7) 

Where 

TP indicates the number of values that are positive and are predicted as positive and  

FP indicates the number of negative values and is incorrectly predicted as positive. 

𝑹𝒆𝒄𝒂𝒍𝒍 =  
𝑻𝑷

𝑻𝑷+𝑭𝑵
                               (8) 

Where 

FN indicates the number of positive values and incorrectly predicted as negative. 

Regression models predict continuous outcomes and are typically assessed using the R-Square 

(R²) metric. R-Square, also called the coefficient of determination, quantifies the amount of 

variance in the dependent variable that can be anticipated from the independent variables. It 

provides insight into how well the model aligns with the data. The R-Square value falls between 0 

and 1 (Sharma and Singh 2018). It can be calculated as  
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𝑹𝟐  =   𝟏 −  
∑( 𝒚𝒊 − �̂�𝒊 )

𝟐

∑( 𝒚𝒊 − �̅�𝒊 )𝟐                  (9) 

Where 

yi represents the actual values, �̂�𝑖  represents the predicted values, and  �̅�𝑖 represents the mean of 

the actual values. 

RMSE measures the average magnitude of the error between predicted and actual values, 

providing insight into how well the model’s predictions match the actual outcomes. Unlike R², 

which indicates the proportion of variance explained by the model, RMSE quantifies the actual 

error in the model's predictions. RMSE is particularly useful for interpreting the model's 

performance in the same units as the target variable, making it easier to understand the prediction 

errors in practical terms. The lower the RMSE, the better the model's predictive accuracy (Chai 

and Draxler 2014). 

 

The formula for RMSE is as follows: 

𝑹𝑴𝑺𝑬 =  √
𝟏 

𝒏
∑ (𝒚𝒊 −  �̂�𝒊 )

𝟐𝒏
𝒊=𝟏        (10) 

Where 

 𝑦𝑖 represents the actual values, �̂�𝑖 represents the predicted values, and n is the total number of data 

points. 
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Chapter 4. Results 

The results section is divided into two key parts: the Condition Assessment Model and the 

Condition Prediction Model. 

 4.1 Condition Assessment System 

This section contains the outcomes of the Condition Assessment Model. It involves analyzing the 

survey results using the Analytical Hierarchy Process (AHP) and comparing the new rating system 

with the case study. 

4.1.1 Questionnaire Survey Analysis 

The survey was sent to over 50 individuals through the Railway Research Advisory Board (RRAB) 

in Canada, the Western Canadian Short Line Railway Association (WCSLRA), and some from the 

American Railway Engineering and Maintenance-of-Way Association (AREMA). These 

organizations include people from academia, government, Class I railways, short lines, railway 

suppliers/providers, and consultants. In the end, 21 responses were received. The following section 

provides a detailed analysis of the survey participants. 

 

Figure 11: Years of Experience of Survey Respondents. 
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The survey participants have a wide range of experience in the railway sector, with most having 

considerable expertise. The largest group (38%) has over 20 years of experience, providing a deep 

understanding of industry practices, as shown in Figure 11. A significant portion has 11-20 years 

of experience, contributing solid knowledge of rail infrastructure management. Participants from 

both international and Canadian regions shared their perspectives, offering diverse insights. 

Various backgrounds ensure the feedback covers different conditions and challenges, from varying 

regulations to unique rail infrastructure issues. The high number of participants with more than 20 

years of experience suggests that the insights gathered are based on extensive practical knowledge, 

providing a solid foundation for understanding rail track conditions and management. The range 

of experience, from less than five years to over 20 years, also brings fresh ideas and long-term 

expertise. Regarding decision-making involvement, a large group (43%) is directly involved in 

making strategic decisions about railway track management. 

 

Figure 12: Role in the decision-making of Survey Respondents. 

In contrast, others contribute indirectly or provide technical expertise without having decision-

making power, as shown in the Figure 12. This mix of roles is important for providing a well-

rounded perspective, including those who make decisions, those who influence them, and those 

who ensure decisions are technically sound. The variety of roles shows the collaborative nature of 

railway track assessments and management decisions, with input from different levels of expertise. 
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The balance between those directly involved (43%) and those indirectly involved (38%) suggests 

that while decision-making is focused, advisory input remains important, ensuring decisions are 

informed by a wide range of technical and operational considerations. 

The survey included participants from diverse professional backgrounds, with representation from 

design and consultancy firms, academia, research institutions, railway suppliers, Class I and short-

line railways, and government roles. A detailed breakdown is provided in the Figure 13. The 

respondents reported a wide range of expertise in the railway industry, providing insights into rail 

system management and safety. Maintenance, engineering, operations, safety compliance, and 

infrastructure design were among the highlighted areas of expertise, demonstrating a 

comprehensive approach to managing rail safety and addressing defects. 

 

Figure 13: Organization Affiliation of Survey Respondents. 

 

4.1.2 Analytical Hierarchy Process (AHP) Analysis 

This section presents the analysis of weight determination for the various factors obtained from 

the survey for the Condition Assessment Framework using the Analytic Hierarchy Process (AHP). 
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 Figure 14: Tie and rail fastening framework with weights 

The framework uses the Analytic Hierarchy Process (AHP) to evaluate railway track defects within 

the tie and rail fastening system and determine track conditions. The framework assigns weights 

of 45% to tie cracks, 28% to spikes, and 27% to tie plates, as shown in the Figure 14, indicating 

the importance of these elements for track safety. Tie cracks carry the highest weight, 

demonstrating their significant impact on the track's long-term stability. Additionally, the 

framework specifies that crack location is more critical than crack size within the tie crack 

category. The focus on crack location over size suggests that where a crack form is more dangerous 

than its size. This makes sense because cracks that appear near important components like spikes 
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and tie plates can damage the track's stability more. Even tiny cracks close to these key parts can 

cause problems, while larger cracks farther away may not have as much impact.   

 

4.1.3 Case Study Validation and Sensitivity Analysis 

This section presents the results of a new rating system that utilizes data from Pavemetrics. The 

system's calculations are grounded in weights derived from the Analytic Hierarchy Process (AHP), 

which computes scores for each factor in the framework. The purpose of the analysis is to compare 

the proposed rating system's performance with the existing one while also conducting a sensitivity 

analysis to understand how changes in the system affect the overall ratings. 

The results are provided for three distinct scenarios. In the first scenario, the thresholds for crack 

measurements—such as width, depth, and length—are based on Pavemetrics' threshold. This 

approach serves as a baseline comparison against the other scenarios. The second scenario, the 

"without outliers" scenario, establishes thresholds based on the mean and standard deviation of 

crack measurements observed in a case study dataset. This scenario aims to exclude extreme 

values, ensuring that the thresholds represent more typical conditions. In the third scenario, with 

outliers, the thresholds for crack measurements are set according to the maximum values observed 

in the same case study dataset. Across all scenarios, the remaining factors in the framework—such 

as spike condition and tie plate presence—remain consistent, ensuring that only the crack 

measurement thresholds differ between scenarios. 

Table 11: Scenario one: Statistical summary of the scores for the Pavemetrics threshold. 

Factors Mean Stdev Min  0% Max 

Width 1.78 2.01 0 1.1 10 

Depth 5.91 3.32 0 5.73 10 

Length 2.29 2.05 0 1.73 10 

Presence of Ballast  1.03 3.04 0 0 10 

Tie plate Distance from the crack 7.83 2.41 0 8.72 10 

Spike Distance from the crack  7.4 2.36 0 8.27 10 

The direction of the crack 9.97 0.53 0 10 10 

Side of the crack 4.69 4.99 0 0 10 
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The statistical summary of the Scenario One score, using the Pavemetrics thresholds to evaluate 

the case study dataset, is shown in Table 11. The Size of the Crack category, which includes 

attributes such as width, depth, length, and the presence of ballast, generally reveals low average 

scores, indicating that most cracks in the dataset are relatively small. For instance, the average 

width of cracks is 1.78, with a standard deviation of 2.01, highlighting that while most cracks are 

narrow, some variability exists. The presence of ballast is particularly rare, as the data shows very 

few instances of ballast within cracks (mean 1.03). In the Location of the Crack category, attributes 

like Tie Plate Distance and Spike Distance display a notable range, suggesting variability in how 

close cracks are to these critical components. The average Tie Plate Distance is 7.83, showing that 

cracks often form relatively close to tie plates. The consistently high scores for Direction (mean 

9.97) and Side suggest uniformity in the crack orientation, possibly indicating a standard pattern 

in how cracks develop or are recorded in the field. Regarding Spike Height and Tie Plate Count, 

the low average scores (mean spike height of 0.19) suggest that most spikes are in good condition, 

and missing tie plates are not a frequent issue in this dataset. These low values reflect a well-

maintained track system in terms of fastening components. The analysis indicates that certain 

variables, such as crack depth and proximity to tie plates, display significant variability. In 

contrast, others, like crack direction and spike height, consistently show low or uniform values. 

This offers valuable insights into the condition of the track and emphasizes areas, such as cracks 

near critical components, that may require more attention during maintenance. 

Table 12: Scenario two and three: Statistical summary of the scores with and without outliers. 

Scenario Factors Mean Stdev Min  0% Max 

 

1. Scenario two 

without outliers 

Width 1.896308 2.105634 0.00268 1.178992 10 

Depth 1.586685 1.43874 0.004296 1.229954 10 

Length 2.31636 2,062372 0.000369 1.751378 10 

 
Width 0.742456 0.989704 0.000994 0.437463 10 

Crack In-Line with Spike  2.1 4.08 0 0 10 

Spike height  0.19 1.37 0 0 10 

Tie plate score 0.26 1.17 0 0 10 
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2. Scenario three 

with outliers 

Depth 0.612418 0.872004 0.001538 0.440513 10 

Length 1.279453 1.339403 0 0.927403 10 

The statistical summary of Scenario Two (without outliers) and Scenario Three (with outliers) 

shows how crack measurements behave in each scenario. In Scenario Two, as shown in Table 12 

the average values for width, depth, and length are generally higher than in Scenario Three, 

indicating that cracks are considered more severe when outliers are removed. For example, the 

average width is 1.89 in Scenario Two, compared to only 0.74 in Scenario Three, suggesting that 

the remaining cracks are classified as more severe once extreme values are excluded. In Scenario 

Three, where outliers are included, the average values for all factors are lower, indicating that the 

cracks are significantly smaller compared to the outlier values, but not necessarily smaller. The 

standard deviations are also lower in Scenario Three, meaning there is less variation in crack sizes. 

For example, the depth in Scenario Three has a standard deviation of 0.87, while in Scenario Two, 

it is higher at 1.44, showing more variation in crack sizes when outliers are removed. This suggests 

that the inclusion of outliers skews the data, making the remaining crack sizes appear smaller in 

comparison. 

While scenario three gives a wider view of track conditions, it might hide some more severe issues, 

potentially delaying necessary repairs because the average scores make the defects seem less 

severe. When comparing all three scenarios, the Pavemetrics threshold in Scenario One is quite 

similar to the scores from Scenario Two without outliers, suggesting that this standard method 

(mean width of 1.78 and mean length of 2.29) effectively highlights severe defects without needing 

further changes. In contrast, with lower averages, Scenario Three might hide important issues, 

making it less useful for quick and effective track assessments. 

Table 13: score ranges of factors categorized by light, moderate, and severe Ratings 

 

Factors 

Range of the ratings 

Light Moderate Severe 

Width 0.0025 - 10.0 0.0025 - 10.0 0.72 - 10.0 
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Depth 0.02 - 10.0 0.09 - 10.0 3.15 - 10.0 

Length 0.002 - 10.0 0.00036 - 10.0 3.55 - 10.0 

Presence of ballast 0 - 10 0 - 10 0 - 10 

Size of the crack 0.15 - 8.24 0.19 - 9.91 2.44 - 10.0 

Spike distance 0.0 - 10.0 1.69 - 10.0 8.03 - 10.0 

Tie plate distance 0.0 - 10.0 1.87 - 10.0 8.37 - 10.0 

In line with the spike 0 - 10 0 - 10 0 - 10 

Direction of the crack 0 - 10 0 - 10 10 - 10 

Side of the crack 0 - 10 0 - 10 0 - 10 

Location of the crack 1.50 - 7.17 2.29 - 10.0 5.77 - 9.96 

Spike height 0 - 0 0 - 10 0 - 10 

Tie plate 0 - 0 0 - 5 0 - 10 

The score distribution across the Light, Moderate, and Severe categories provides key insights into 

how different factors affect the severity of track conditions as shown in  

Table 13. The width, Depth, and Length factors have wide score ranges, but Depth and Length are 

particularly important in the severe category, where scores start at 3.15 and 3.55. This shows that 

deeper and longer cracks are more likely to be considered severe. The fact that the Light and 

Moderate categories have similar ranges suggests that crack size only becomes a major issue when 

it reaches higher values. This emphasizes the importance of Depth and length in identifying severe 

track defects. The crack size score in the Severe category starts at 2.44, while smaller cracks tend 

to stay in the Light or Moderate category. This means that larger cracks are more likely to cause 

concern and lead to severe ratings. The difference between the categories shows that size plays a 
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key role in the overall safety assessment, with bigger cracks representing greater risks to track 

stability.  

 

Figure 15:  Score distribution of location, size, tie plate and spike 

The Spike and Tie Plate Distance scores jump significantly in the Severe category, starting at 8.03 

and 8.37, respectively. This suggests that cracks located farther away from these fastenings are 

more likely to be rated as severe. Cracks in unsupported areas can weaken the track, so their 

location relative to the spikes and tie plates is critical for evaluating overall track safety. The 

location of cracks becomes important for severe ratings, with scores starting at 5.77 in the Severe 

category. Cracks near key areas, like spikes and tie plates, are more likely to lead to severe 

problems because these areas take on more stress. Even moderate-sized cracks can be classified as 
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severe when they occur in critical locations, highlighting the importance of considering where the 

crack is located when evaluating track conditions. 

 

Figure 16: Weight distribution of location, size, tie plate, spike and the sum of the tie crack factors 

For Spike Height, the scores in the Severe and Moderate categories range from 0 to 10, while there 

are no scores in the Light category. This suggests that issues with spike height tend to be more 
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serious. Since spikes are crucial for holding the rails in place, any irregularities in their height can 

signal problems with the track’s stability. This makes spike height a key factor in detecting more 

severe track defects. Similarly, Tie Plate scores appear in the Moderate and Severe categories, with 

scores ranging from 0 to 10 for Severe and 0 to 5 for Moderate. The fact that Tie Plate issues are 

only seen in these higher severity categories indicates that problems with tie plates, such as missing 

or damaged ones, are typically linked to more serious track conditions. 

The weighted score using the Pavemetrics threshold for the Tie and Rail Fastening Rating, as 

shown in the Figure 16 , highlight the key factors affecting track condition. In this assessment, raw 

scores are multiplied by their respective weights to ensure that each factor's impact is proportional 

to its importance in evaluating track safety. 

Crack size is critical in the overall rating, with crack depth being the most significant factor in this 

category (with most scores ranging between 1.0 and 2.5). This highlights how variations in crack 

depth can lead to serious safety issues across different sections. Although crack width (scores 

generally range from 0.0 to 1.5) and crack length (within the same range) play minor roles, they 

still contribute to the overall evaluation, as even small cracks can worsen if left untreated. The 

presence of ballast within cracks has the smallest influence (as seen in the lower weight 

distribution), but it becomes important if it reaches higher levels of severity. 

Crack location is the dominant factor in the assessment, with most scores clustering between 4.0 

and 6.5, accounting for 74% of the crack-related score. Spike distance (with most cracks near 

spikes showing scores below 0.5) is particularly concerning, as cracks near spikes can cause rapid 

deterioration in critical areas. Similarly, tie plate distance (scores mostly around 0.0, but with a 

few higher outliers) and crack direction play crucial roles in determining the track's safety. Cracks 

that are in line with spikes or on specific sides of the tie (with minor scores below 1.0) also 

contribute to the overall evaluation, though to a lesser degree. Cracks account for 45% of the total 

weight in the Tie and Rail Fastening Rating, underscoring their importance in track safety. The 

variation in crack-related factors, especially depth and location, suggests that some track sections 

are more at risk than others, meaning targeted maintenance is essential to prevent further 

deterioration. While spike condition (most scores around 0.0 but with minor outliers) and tie plate 

presence (again, mostly 0.0) are also part of the evaluation, their influence is much smaller than 
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crack-related factors. Spikes and tie plates generally remain in good condition unless there is a 

significant defect, so they are less frequently a cause for concern. 

One important insight from the analysis is the variation in the crack depth and location scores, 

showing that defects are not evenly spread across the track. This variation highlights the need for 

focused inspections and repairs, especially in areas with cracks near key parts like spikes and tie 

plates. These defects can quickly worsen without targeted action, leading to bigger safety risks.Tie 

plate presence, though showing lower scores and generally being less of a concern, still needs to 

be monitored to maintain track integrity. The weighted scoring system is a valuable tool for 

identifying the most severe defects. It provides a clear process for prioritizing maintenance, 

ensuring critical issues are addressed quickly. The variation in crack-related factors shows the need 

for regular and detailed inspections to keep the track safe and prevent minor defects from becoming 

major safety risks. 

 

Figure 17: Distribution of the rating for the Pavemetrics threshold 
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The distribution of the final ratings indicates that most track sections fall within the moderate 

range, with most ratings between 2 and 3, as shown in Figure 17 . This suggests that, while the 

tracks are not in critical condition, they still require attention to prevent further degradation. The 

clustering of ratings in this range implies that maintenance is needed to ensure these sections do 

not worsen over time. The relatively few sections rated at 1 imply that some areas are in better 

condition, though they still need to be flawless. These sections may require less immediate 

attention but should still be monitored regularly to maintain their condition. The inclusion of new 

factors, particularly crack location relative to spikes and tie plates, has shifted some ratings 

upward. Cracks near critical components, even if they are not large, now receive more attention, 

as their proximity to these elements increases the risk of damage. This change in the rating system 

highlights potential problem areas that may have been overlooked in previous assessments, 

ensuring that maintenance is directed to sections that are more vulnerable.  

It's interesting to note that very few track sections have higher ratings (5 and above), which 

suggests that severe defects are rare. This indicates that the track infrastructure is generally stable, 

with only a few isolated areas of concern. However, even a few sections with higher ratings could 

indicate the need for targeted interventions in specific areas to address more severe issues before 

they escalate. The absence of sections rated at 0 or 10 is important. No track sections are considered 

perfect, suggesting that even the best sections still have minor defects or wear that require ongoing 

maintenance. On the other hand, the lack of any sections rated at ten shows that the track network 

has no very severe areas, which is a positive indication of its current state. The numerical ratings 

calculated for the overall condition assessment are transformed into condition scales for easier 

comparison with the industry rating system developed by Pavemetrics (Tie crack rating). The 

condition scales are categorized as follows: 

• 0, 1, 2: Light condition 

• 3, 4, 5: Moderate condition 

• 6, 7, 8: Severe condition 

• 9, 10: Very severe condition 
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This transformation allows for a clearer and more intuitive interpretation of the numerical ratings 

by grouping them into specific condition categories. By mapping the calculated numerical ratings 

to these scales, the track condition assessment can be more easily compared with established 

benchmarks such as those provided by Pavemetrics. Using these scales helps identify track 

sections requiring different levels of maintenance. For sections rated as "light" (1), routine 

maintenance such as minor repairs or preventative care would be sufficient. Sections rated as 

"moderate" (2) may require more focused maintenance, including localized repairs to prevent 

further deterioration. For "severe" (3) rated sections, immediate corrective actions such as 

replacing ties or repairing cracks would be necessary to ensure safety. Finally, sections rated as 

"very severe" (4) would require urgent repairs, possibly including tie replacements, fastening 

system or significant track realignment, to prevent potential failures. 

 

Figure 18: Comparison of Tie crack rating vs Tie and Rail Fastening condition rating 

The Tie crack size condition rating scale and the Tie and Rail fastening condition rating scale 

(proposed scale) differ in assessing track conditions, as shown in the Figure 18. The Tie crack size 

rating mainly focuses on the size of the cracks, looking at width, depth, and length, which means 

the assessment is limited because it only considers the severity of the cracks based on these three 
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measurements. As a result, it may miss other important factors that affect the overall condition of 

the track. However, the new scale offers a more detailed and comprehensive assessment by 

considering various factors that influence the condition of the track. It evaluates the size of cracks 

(width, depth, and length) and the condition of the spikes, considering factors such as missing or 

broken spikes and spike height. This comprehensive approach is crucial for ensuring the stability 

and alignment of the track, as missing or damaged spikes can lead to issues such as misalignment 

and increased wear and tear. 

 

Figure 19: Tie crack size condition rating scale 

In Figure 19, the Tie crack size rating scale focuses on the severity of cracks in the ties. Most 

sections are marked in green, indicating light cracking, and only one section is highlighted in red, 

showing severe cracks. This provides a narrow evaluation useful for analyzing and addressing 

cracks in isolation. In contrast, Figure 20 shows the Proposed Scale, which incorporates tie cracks 

and the condition of spikes and tie plates. This results in a more comprehensive assessment of 

track health. In this figure, there are noticeably more sections marked in yellow (moderate rating), 

indicating that when considering the broader context of spikes and tie plates, certain areas require 

more attention than initially suggested by just the crack data. Additionally, some sections 

previously rated green (light) in the Tie crack rating scale now appear red (severe) in the Proposed 

Scale. This shift indicates that while the cracks alone may not be severe, the overall condition of 

the track, including defects in the spikes and tie plates and the crack's location on the tie plate, has 

worsened, so urgent repairs are needed in those areas. 
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Figure 20: The proposed scale (Rail and tie fastening system) 

Thus, the Proposed Scale offers a more holistic view, flagging areas for maintenance that might 

have been overlooked when focusing solely on tie cracks. This broader perspective is beneficial 

for overall maintenance planning, while the Tie crack rating scale remains ideal for targeted 

inspections focused purely on cracks. The following section presents the results of a sensitivity 

analysis. The analysis compares various scenarios of weight changes and provides valuable 

insights, including tie crack, tie plate, and spike. Factors such as the location and size of the crack, 

as mentioned in the methodology, are also considered. This analysis helps us understand how each 

component impacts the overall ratings, which enables more informed decision-making in condition 

assessment and evaluation.  

A comprehensive sensitivity analysis is presented in Table 14, illustrating how changes in the 

weights of the Tie Crack, Spike, and Tie Plate impact the overall track condition ratings: Base 

Weights, Equal Weights, Shifted Weights, and Tie Crack 100%. In the Base Weights scenario, the 

ratings are primarily moderate. Under Equal Weights, where all components are equally important, 

more light defects indicate a better overall track condition—the Shifted Weights scenario, which 

focuses on the Tie Plate, results in even more light defects.  
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Table 14: Sensitivity analysis of the Tie crack, Tie plate and spike 

 

Scenarios 

Weights Rating percentage 

Tie 

crack 

Spike Tie 

plate 

Light Moderate Severe Very 

Severe 

1. Base weights  0.45 0.28 0.27 44.53 53.99 1.48 0 

2. Equal weights 0.33 0.33 0.33 85.18 13.69 1.13 0 

3. Shifted weights 0.27 0.28 0.45 93.15 6.42 0.42 0 

4. Tie crack 

100%, others 0% 

1 0 0 4.23 41.07 51.87 2.82 

In contrast, when the focus is solely on Tie Cracks in the Tie Crack 100% scenario, more defects 

are rated as severe, even though the actual severity of these cracks might not justify this higher 

rating. This occurs because the system evaluates only the cracks without considering the condition 

of other important components, such as spikes and tie plates. The proposed scale provides a more 

comprehensive and accurate assessment by including these additional elements in the rating 

system. This approach ensures that maintenance efforts are prioritized more effectively, addressing 

the overall track condition rather than focusing disproportionately on tie cracks alone. As a result, 

maintenance decisions can be better targeted to the area’s most urgently needed, improving the 

track's long-term performance and safety. The sensitivity analysis results for scenarios with 

different weights assigned to Location and Size in the track condition evaluation are shown in the 

Table 15. The scatter plot represents the Base Weights scenario, where experts have assigned 

greater importance to crack location over crack size. In this scenario, location is prioritized as a 

key factor in assessing track conditions, reflecting the belief that cracks in critical locations are 

more impactful. As a result, the weighting leads to more defects being rated as moderate rather 

than light, with only a small percentage classified as severe. This shows how emphasizing location 

influences the overall condition assessment. 

 

 



    

 

91 

 

Table 15: Sensitivity analysis: Location of the crack and size of the crack 

 

Scenario 

weights Rating percentage 

Location of 

the crack 

Size of the 

crack 

Light Moderate Severe 

1. Base weights  0.74 0.26 44.53 53.99 1.48 

2. Equal weights 0.5 0.5 65.42 33.24 1.34 

3. Shifted weights 0.26 0.74 75.65 23.08 1.27 

 

 

Figure 21: Crack location vs size (base weight scenario) 

In the Equal Weights scenario, assigning equal importance to location and size results in more 

defects being classified as light, suggesting a more balanced assessment with a slight reduction in 
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moderate ratings. However, even with equal weights for location and size, the condition tends to 

be rated lighter, even when cracks are located near critical areas such as the tie plates, as shown in 

Figure 22. This indicates that, despite the cracks being in important positions, the balanced 

weighting results in less severe condition classifications. 

 

Figure 22: location vs size factors (Tie and rail fastening system condition scale for equal weights scenario) 

The Shifted Weights scenario, which emphasizes the size of the crack, leads to the highest number 

of light defects, showing that when crack size is prioritized, the overall assessment tends to be less 

severe. This comparison highlights how shifting the focus between crack location and size can 

influence the severity ratings, with more emphasis on size leading to lighter assessments and more 

focus on location, resulting in more moderate issues. 

Table 16: Sensitivity analysis of the crack size factors 

 

Scenario 

Weights Rating Percentage 

Depth Width Length Presence of 

Ballast 

Light Moderate Severe 

1. Base 

weights  

0.42 0.29 0.19 0.10 44.53 53.99 1.48 

2. Equal 

weights 

0.25 0.25 0.25 0.25 50.04 48.62 1.34 
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3. Shifted 

weights 

0.10 0.19 0.29 0.42 53.85 44.81 1.34 

The sensitivity analysis results for weights assigned to Width, Length, Presence of Ballast, Spike 

Distance, Tie Plate Distance, Crack Location, and Direction are shown in Table 16 and Table 17 . 

In the Base Weights scenario, more focus on depth and spike distance leads to more moderate 

defects, showing the importance of these factors. In the Equal Weights scenario, where all factors 

are treated equally, the assessment is more balanced, with a slight increase in light defects. In the 

Shifted Weights scenario, with more emphasis on ballast presence and crack direction, there is a 

slight increase in moderate defects, but overall, the ratings do not change much. This shows that 

adjusting the weights has little impact on defect classification, with depth and crack direction 

leading to a slightly more cautious assessment. 

Table 17: Sensitivity analysis of the crack location factors 

Scenario Weights Rating percentage 

Spike 

distance 

Tie plate 

distance 

In line 

with the 

spike 

Side of 

the 

crack 

Direction Light Moderate Severe 

1. Base 

weights 

0.31 0.18 0.22 0.16 0.13 44.53 53.99 1.48 

2. Equal 

weights 

0.20 0.20 0.20 0.20 0.20 40.65 57.87 1.48 

3. Shifted 

weights 

0.13 0.16 0.18 0.22 0.31 35.43 63.09 1.48 

In summary, the sensitivity analysis across various factors influencing track conditions—including 

Tie Crack, Tie Plate, Spike, crack dimensions (Width, Length, Depth, Presence of Ballast), and 

location-related aspects (Spike Distance, Tie Plate Distance, Side of the Crack, and Direction)—

reveals important insights into the adaptability and stability of the evaluation framework. The 
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analysis shows that the framework can detect small differences in track conditions, allowing for a 

detailed review when needed. The framework can focus on what is most important, such as crack-

related factors, fastenings, or the exact location of defects. The analysis confirms that factors like 

Tie Crack and crack location are important in determining the overall condition ratings, 

underscoring their importance in maintenance planning and safety assessments. This adaptable 

framework is reliable and effective for evaluating track conditions and prioritizing maintenance 

actions based on the most important factors. 

 

4.2 Condition Prediction Model 

This section contains the outcomes of the Condition Prediction Model. It involves analyzing the 

correlation matrix and evaluating the performance of different machine-learning models. The 

classification models predict defect tags and types, while the regression models focus on 

forecasting defect amplitude and length.The descriptive statistics of the target features shown in 

the Table 18 highlights the distribution of the variables. The defect length shows a high variability, 

with a mean of 12.13 and a standard deviation of 18.03, ranging from 1 to 798, suggesting that 

while most defects are small, there are few significantly longer defects. Similarly, the Defect 

amplitude has a mean of -0.06 and a standard deviation of 1.23, with values ranging from -3.59 to 

4.63. Regarding class imbalance, the defect tag feature shows a significant imbalance, where the 

yellow tag appears in 17,298 instances compared to only 6,450 instances for the red tag. Similarly, 

the defect type is also imbalanced, with the cross-level defect type (possibly the most common 

defect type) having 11,843 instances, compared to 7,575 for surface and only 4,330 for dip.  

 

Table 18: Statistical description of the targets 

Targets mean std min max 

Defect tag 0.271602 0.444795 0 1 

Defect type 1.316363 0.76221 0 2 

Defect length 12.12591 18.03041 1 798 

Defect amplitude -0.05589 1.231548 -3.59 4.63 
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4.2.1 Correlation analysis 

This section provides the findings of the correlation matrix, which are shown in the Figure 23. The 

correlation analysis was conducted to identify the relationships between various attributes of the 

rail track and defect characteristics. It determined which attributes are most strongly linked to 

defects, enabling the prioritization of key factors in predictive models. Focusing on variables with 

the most significant impact on targets enhances the accuracy and reliability of predictions 

regarding rail track conditions. The matrix shows moderate positive correlations between 

geographic features like line segment number, track standard number, and milepost. This suggests 

that these features are related sequentially and qualitatively along the track. For example, the line 

segment number and milepost correlate 0.51, and the track standard number correlates 0.64 with 

the milepost. This means that higher track standards are found in specific geographic locations. 

Additionally, the correlation of 0.52 between track standard number and passenger speed suggests 

that higher track standards are linked to higher speeds.  

Regarding tonnage and speed attributes, total car and train metrics (east and west) exhibit 

extremely high correlations (0.99), indicating redundant measurements that might not provide 

distinct information for models. These metrics, reflecting the load and usage intensity of the tracks, 

however, show minimal direct influence on the nature or severity of track defects. Instead, speed 

metrics like passenger and freight speeds show a nuanced relationship with defects. Passenger 

speed, for instance, correlates negatively with defect type (-0.18) and amplitude (-0.18), suggesting 

that tracks frequented at higher speeds are subject to different maintenance standards or material 

characteristics that reduce certain defects.  

Defect characteristics—tag, type, amplitude, and length—demonstrate varying degrees of 

independence from broader operational and geographic features. Defect tag and type show only 

moderate correlations with defect length (0.30) and amplitude (0.30), implying that while defects' 

severity and physical dimensions influence their categorization, these aspects are not heavily 

dependent on the geographic or operational settings. The independence is particularly notable in 

defect amplitude, which displays low correlations with most attributes, suggesting that the physical 

expression of defects might be driven more by localized track conditions or inherent material 

properties than by external factors. 
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Figure 23: Correlation matrix for the condition prediction model 

The analysis shows a strong relationship between the class of track and the speed of freight trains 

(0.94) and a moderate relationship with the speed of passenger trains (0.54). This suggests that the 

speeds at which trains operate impact how tracks are classified. It may indicate that there are rules 
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or design standards to ensure that tracks can safely handle the speeds of trains. The correlation 

between the speeds of freight and passenger trains (0.54) also highlights that there are common 

operational factors that influence how tracks are used and maintained.  

The analysis shows how different factors relate to rail track defects. Defect tags, which classify 

defects, are influenced by how severe the defect is, the condition of the track, and how fast trains 

travel on that track. This helps improve systems that label defects based on their risk and the train's 

speed. Defect types are linked to how long and severe the defects are and how much train traffic 

there is. This helps maintenance teams better understand and fix specific types of defects. Defect 

severity and length are closely related to how much a track is used and how much stress it 

undergoes. Tracks that see a lot of train traffic and stress are more likely to have severe and 

prolonged defects. This information is crucial for creating models that predict when and where 

defects might happen, helping to fix tracks before problems worsen. These findings help target 

maintenance efforts more effectively, improving the tracks' safety and condition. 

 

4.2.2 Defect tag and defect type detection models 

The Classification model results for detecting defect tag show that both Random Forest and 

XGBoost models perform very well using current defect data, as shown in Table 20. The 

classification model results for detecting defect tags show that both Random Forest and XGBoost 

models perform very well using current defect data, as shown in  

Table 20. They achieved 0.92 and 0.94 weighted F1 scores, respectively, and had high individual 

F1 scores, especially for the 'Yellow' category (0.95 for Random Forest and 0.96 for XGBoost). 

These models demonstrate strong potential for reliable detection. They also performed well when 

splitting the data based on the test date (2007–2012) to train the model and test on the year 2013, 

handling changes over time effectively (0.92 weighted F1 score and 0.95 F1 for Random Forest; 

0.94 weighted F1 score and 0.96 F1 for XGBoost). 

The confusion matrix shows the model's performance in predicting defect tags using Cat boost, as 

shown in Figure 24, where class 0 represents the "Yellow Tag,” and class 1 represents the "Red 

Tag." The matrix indicates that the model correctly predicted 3,499 instances of the Yellow Tag 
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(true positives for class 0) and misclassified only eight instances as Red Tag (false positives for 

class 0). On the other hand, 994 instances of the Red Tag were correctly identified (true positives 

for class 1). In comparison, 249 instances of Red Tag were mistakenly predicted as Yellow Tag 

(false negatives for class 1). This suggests that while the model performs well in identifying 

Yellow Tags, there is some difficulty in accurately identifying all instances of Red Tags, as shown 

by the false negatives for class 1. 

 

Table 19: Confusion matrix for defect tag prediction using cat boost 

 Predicted (yellow tag) Predicted (Red Tag) 

Actual (yellow tag) 3499 8 

Actual (Red Tag) 249 994 

 

 

Figure 24: Confusion matrix for defect tag prediction using cat boost 
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The feature importance analysis highlights that "Defect Amplitude" is identified as the most 

important factor, followed by "Class" and "Freight Speed." This shows that the physical 

characteristics of defects play a significant role in influencing the classification outcomes. While 

"Defect Amplitude" is an important factor in the models' decision-making process, its limitations 

in predicting 'Red' tags indicate that including other factors or improving the current features could 

help the models better distinguish between different defect severity levels. Despite these 

challenges, the models provide a solid foundation for automating defect classification and 

supporting the consistent assessment of track conditions. 

Table 20: Classification Model Results for Defect Tag Detection 

Data preparation Target Method F  – Score 

(weighted 

average) 

F -Score 

(Yellow/Red) 

1. Random split 80% 

training and 20% test 

data 

Defect tag  Logistic regression 0.64 0.75/0.34 

Random Forest 0.92 0.95/0.82 

XGBoost 0.94 0.96/0.88 

Cat Boost 0.95 0.96/0.89 

2. Based on test date 

(2007 – 2012 on 

training and 2013 on 

test data) 

Defect tag Random Forest 0.92 0.95 /0.83 

XGBoost 0.94 0.96/0.88 

Cat boost 0.94 0.96/0.88 

The classification results for predicting defect types using both Random Forest and XGBoost 

models show varying levels of accuracy, and F1 scores across different scenarios are provided in 

Table 22. For Defect Type (Random Split 80/20), XGBoost slightly outperforms Random Forest, 

with a weighted F1 score of 0.62 compared to Random Forest's 0.63. Regarding individual F1 

scores, XGBoost performs better for predicting "X-Level" defects, with a score of 0.74 compared 

to 0.73 for Random Forest. However, Random Forest performs slightly better in predicting "Dip" 
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(0.38 vs. 0.36) and "Surface" defects (0.62 vs. 0.58). This suggests that while XGBoost is better at 

identifying more severe defects like "X-Level," Random Forest may handle less severe defect 

types more effectively. CatBoost performs similarly to Random Forest and XGBoost in the random 

split scenario, with a weighted F1 score of 0.62. It performs well in predicting "X-Level" defects, 

with an F1 score of 0.73, slightly lower than XGBoost but close to Random Forest. However, 

CatBoost falls slightly behind in predicting "Dip" defects (0.33) and "Surface" defects (0.61), 

showing that it, like the other models, finds it more challenging to predict these less severe defect 

types accurately. 

In the second scenario, where data is split based on 2007–2012 for training and 2013 for testing, 

both Random Forest and XGBoost see a slight drop in weighted F1 scores, with Random Forest at 

0.57 and XGBoost at 0.58. CatBoost, on the other hand, achieves a weighted F1 score of 0.57. For 

individual F1 scores, CatBoost performs best for "Surface" defects, with a score of 0.62, higher 

than Random Forest (0.57) and XGBoost (0.52). However, CatBoost lags for "X-Level" defects 

(0.64), trailing Random Forest and XGBoost. CatBoost does show better results for "Dip" defects 

(0.26) compared to Random Forest (0.15) and XGBoost (0.26), indicating it handles this defect 

type slightly better. While XGBoost tends to outperform Random Forest in overall weighted F1 

score and identifying severe defect types like "X-Level," CatBoost shows strengths in predicting 

"Surface" and "Dip" defects in specific scenarios. 

Table 21: Confusion matrix for defect type prediction using random forest 

 Predicted (Dip) Predicted (Surface) Predicted (X-Level) 

Actual (Dip) 276 469 121 

Actual (Surface) 150 1198 167 

Actual (X-level) 174 660 1535 
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Figure 25: Confusion matrix for defect type prediction using random forest 

The confusion matrix for predicting "Defect Type" across three classes—Class 0 (Dip), Class 1 

(Surface), and Class 2 (X-level)—shows mixed model performance, as shown in Figure 25. The 

model struggles with accurately predicting the Dip class (Class 0), with only 276 correct 

predictions and 469 misclassified as Surface (Class 1) and 121 as X-level (Class 2). For the Surface 

class (Class 1), the model performs reasonably well, correctly predicting 1,198 instances but 

misclassifying 150 as Dip and 167 as X-level. The best performance is observed in predicting the 

X-level class (Class 2), with 1,535 correct predictions, though 174 instances were misclassified as 

Dip and 660 as Surface. These results indicate that while the model performs reasonably well for 

the Surface and X-level classes, it faces challenges distinguishing between Dips and other defect 

types, leading to many misclassifications. 

Table 22: Classification Model Results for Defect Type Prediction 

Data 

preparation 

Target Model F  score 

Weighted 

average  

F  score 

Dip 

F  Score 

Surface 

F  Score    

X-level 
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1. Random split 

80% training 

and 20% test 

data 

 

Defect type  

Logistic 

regression 

0.51 0.23 0.53 0.61 

Random 

Forest 

0.63 0.38 0.62 0.73 

XGBoost 0.62 0.36 0.58 0.74 

Cat boost 0.62 0.33 0.61 0.73 

2. Based on test 

date (2007 – 

2012 on training 

and 2013 on test 

data) 

Defect type Random 

Forest 

0.57 
 

0.15 
 

0.57 0.71 

XGBoost 0.58 0.26 0.52 0.72 

Cat boost 0.57 0.26 0.62 0.64 

The feature importance analysis reveals that "Class" is by far the most influential factor in 

predicting defect types, followed by "Line segment number" and "Freight speed." These key 

features contribute significantly to the models' ability to make accurate predictions. Other factors, 

such as "Milepost," "Passenger speed," and "Track standard number," also play a role but with less 

impact. The fact that the models can identify these critical features shows that they can effectively 

learn from the data and prioritize the most relevant factors to defect prediction. The ability of these 

models to achieve relatively high accuracy and F1 scores, especially in predicting severe defect 

types like "X-Level," makes them highly valuable for proactive maintenance. Railway 

maintenance teams can prioritize repairs and reduce the risk of more extensive failures by 

accurately identifying the most critical defects. Furthermore, the models' reliance on key features 

such as "Class" and "Freight speed" provides valuable insights into the underlying factors 

contributing to defect formation, which can guide future preventive measures. 
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4.2.3 Defect amplitude and length prediction models 

The regression results for defect amplitude, as shown in Table 23, demonstrate the performance of 

Random Forest, XGBoost, and other models under two different data splitting scenarios: an 80% 

training and 20% test data split and a split where data from 2007 to 2012 was used for training and 

data from 2013 for testing. In both scenarios, Random Forest consistently outperformed XGBoost. 

For the 80% training and 20% test data split, Random Forest achieved an R-square of 88% in 

training and 82% in testing, with an RMSE of 0.42 (training) and 0.52 (testing). This indicates 

robust performance, though the slight drop in R-square and increase in RMSE on the test set 

suggests minor overfitting. On the other hand, XGBoost, while achieving a slightly lower R-square 

of 83% in training, maintained a relatively close performance in testing with an R-square of 79%, 

with an RMSE of 0.50 (training) and 0.56 (testing). This demonstrates better generalization 

compared to Random Forest, as XGBoost's test performance is more consistent with its training 

performance. 

 

Figure 26: scatter plot for test set to predict the defect amplitude using the random forest 
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The scatter plot of predicted versus observed defect amplitudes shows that while the model 

generally follows the trend of actual values, there are some discrepancies and clustering, 

particularly in specific ranges using the Random Forest, as shown in the Figure. Ideally, the points 

should align closely along the red diagonal line, representing perfect predictions (where predicted 

equals observed). In this case, the data points are somewhat clustered around the line, indicating 

that the model can reasonably predict some portions of the test set. However, visible gaps and 

deviations, especially around specific ranges of observed values, suggest the model struggles with 

specific data segments. Notably, the predicted values form two distinct clusters, which implies that 

the model may have difficulty capturing the full range of the defect amplitude, possibly 

underfitting or misrepresenting patterns in specific regions of the observed values. Despite these 

deviations, the model achieved a strong R² score of 82%, indicating that the model well captures 

82% of the variance in defect amplitude. 

CatBoost performed similarly to XGBoost, with an R-square of 83% on the training set and 78% 

on the test set and corresponding RMSEs of 0.50 (training) and 0.57 (testing). This result indicates 

that CatBoost also generalizes well but slightly underperforms compared to both Random Forest 

and XGBoost in terms of test accuracy. However, its performance remains competitive, especially 

in reducing the training-test gap, as seen in its slightly lower increase in RMSE from training to 

testing. 

In the second scenario, where data from 2007–2012 was used for training and 2013 for testing, 

Random Forest performed well on the training set with an R-square of 78%, but its performance 

dropped to 62% on the test set, with RMSEs of 0.57 (training) and 0.75 (testing). This larger 

increase in RMSE suggests overfitting to the training data. CatBoost, with an R-square of 76% in 

training and 66% in testing, demonstrated better generalization than Random Forest, with lower 

RMSEs of 0.59 (training) and 0.72 (testing), showing that CatBoost outperformed Random Forest 

in this scenario. XGBoost, with 72% R-square on the training set and 65% on the test set, had 

slightly higher RMSEs of 0.64 (training) and 0.72 (testing), indicating stable performance but 

slightly behind CatBoost in terms of test accuracy and error reduction. 
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Table 23: Regression Model Results for Defect Amplitude Prediction 

Data preparation Target Method R square in % 

Train / Test 

RMSE 

Train / Test 

1. Random split 80% 

training and 20% test 

data 

Defect amplitude  Multiple linear  11 / 11 1.16 / 1.15 

Decision trees 90 / 82 0.37 / 0.52 

Random Forest 88 / 82 0.42 / 0.52 

XGBoost 83 / 79 0.50 / 0.56 

Cat Boost 83 / 78 0.50 / 0.57 

2. Based on test date 

(2007 – 2012 on 

training and 2013 on 

test data) 

Defect amplitude  Random Forest 78 / 62 0.57 / 0.75 

XGBoost 72 / 65 0.64 / 0.72 

Cat Boost 76 / 66 0.59 / 0.72 

Decision Trees, while showing strong training performance with an R-square of 90%, dropped to 

82% on the test set, with RMSEs of 0.37 (training) and 0.52 (testing), indicating strong training 

performance but a larger gap between training and testing, suggesting higher sensitivity to 

overfitting compared to Random Forest and CatBoost. On the other hand, Multiple Linear 

Regression performed poorly, with R-squares of 11% on both training and test sets and RMSEs of 

1.16 (training) and 1.15 (testing), showing that simpler models struggle to capture the complexity 

of defect amplitude prediction. The feature importance analysis shows that "Defect type" is the 

most influential factor in predicting defect amplitude, with an importance score exceeding 0.6. 

This indicates that the type of defect plays a crucial role in determining the amplitude. Other key 

features include "Class" and "Freight speed," which also significantly impact predictions, though 

not as dominant as defect type. Factors like "Milepost," "Passenger speed," and "Total deflection" 

contribute to a lesser extent. Meanwhile, features such as "Total train east," "Total car west," and 

"Total train west" show minimal importance in influencing the prediction outcomes. 
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The regression results for defect length prediction across three scenarios are presented in the Table 

24. In the Random Split (80% Training, 20% Testing) scenario, Random Forest achieved an R-

square of 65% on the training data and 56% on the test data, indicating a reasonable balance 

between training and testing performance. However, the RMSE values of 10.86 (train) and 11.02 

(test) suggest there is room for improvement in reducing the prediction error. XGBoost performed 

slightly better on the training data, with an R-square of 72%, but its test R-square remained the 

same at 56%, with corresponding RMSE values of 9.74 (train) and 11.08 (test), showing similar 

levels of overfitting as Random Forest. CatBoost had a training R-square of 65% and test R-square 

of 56%, with RMSEs of 10.80 (train) and 10.97 (test), similar to Random Forest in terms of R 

Square but a slight difference with the RMSEs of 10.80 (train) and 10.97 (test). 

 

Figure 27: scatter plot for test set to predict the defect length using the XGBoost 
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The scatter plot comparing actual versus predicted defect lengths using the XGBoost model shows 

that while the model captures the general trend, there is significant variation in the predictions, as 

shown in the Figure 27. Many predicted values cluster closely around lower actual values, with 

increasing dispersion as the defect lengths grow larger. This pattern suggests that the model is less 

accurate at predicting higher defect lengths, as several points deviate substantially from the red 

line representing perfect predictions. The R² score of 56% indicates that the model explains 56% 

of the defect length variance, suggesting moderate predictive performance but with room for 

improvement, particularly in capturing larger defect lengths. 

In the Repeated Defects Based on Defect Numbers (2007–2012 for Training, 2013 for Testing) 

scenario, all models experienced a more significant drop in test performance. Random Forest had 

an R-square of 68% on the training set, which dropped to 41% on the test set, indicating overfitting, 

with corresponding RMSEs of 10.82 (train) and 18.02 (test), showing a significant increase in 

prediction error on the test data. XGBoost had a lower R-square of 55% on the training data but 

achieved a slightly better test result with an R-square of 44%. However, its RMSE increased from 

12.84 (train) to 17.38 (test), indicating a similar struggle in generalization. Cat Boost performed 

similarly to Random Forest, with a training R-square of 66% and a test R-square of 42%, and 

RMSEs of 11.13 (train) and 17.84 (test), indicating all models struggled to generalize well, with 

similar patterns of error growth in test performance. 

Table 24: Regression Model Results for Defect Length Prediction 

Data preparation Target Method R square in % 

Train / Train 

RMSE 

Train / Test 

1. Random split 80% training 

and 20% test data 

Defect 

length 

Multiple 

linear 

11 / 13 17.32 / 15.47 

Decision 

trees 

50 / 47 12.13 / 13.02 
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Random 

Forest 

65 / 56 10.86 / 11.02 

XGBoost 72 / 56 9.74 / 11.08 

Cat Boost 65 / 56 10.80 / 10.97 

2. Repeated defects based on 

defect number (2007 – 2012 on 

training and 2013 on test data) 

Defect 

length 

Random 

Forest 

68 / 41 10.82 / 18.02 

XGBoost 55 / 44 12.84 / 17.38 

Cat Boost 66 / 42 11.13 / 17.84 

3. Increase in time, which 

includes previous defect length 

and time gap) (80% training and 

20% test data) 

Defect 

length 

Random 

Forest 

70/ 45 15.22 / 21.89 

XGBoost 69 / 44 15.41 / 22.12 

Cat Boost 56 / 43 18.53 / 22.30 

In the (Including Previous Defect Length and Time Gap) scenario, Random Forest showed 

improved training performance with an R-square of 70%. However, its test performance dropped 

to 45%, with corresponding RMSEs of 15.22 (train) and 21.89 (test), continuing the pattern of 

overfitting. XGBoost performed similarly, with a 69% R-square on the training set and 44% on 

the test set, with RMSEs of 15.41 (train) and 22.12 (test). CatBoost achieved a lower training R-

square of 56% and test R-square of 43%, with RMSEs of 18.53 (train) and 22.30 (test), lagging 

the other models in Training but maintaining comparable test performance.   

An evaluation of feature importance showed that defect type and freight speed influenced defect 

length predictions across all models. In Random Forest, defect type was the most significant 

feature, while in XGBoost and CatBoost, freight speed played a more important role, followed by 

defect type. This highlights the importance of operational factors like speed and defect 

characteristics in predicting defect behaviour over time. Defect amplitude was used as a more 
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dependable input than defect length predictions to enhance prediction accuracy. This is because 

amplitude is closely linked to defect type, a crucial factor in many models. Although defect 

amplitude cannot be directly used to predict defect type due to the unknown nature of amplitude 

until defects are identified, we can improve prediction accuracy by incorporating related variables 

such as speed, tonnage, milepost, and line segment number. This approach allows for more 

practical and accurate forecasting by focusing on known variables while maintaining the strong 

relationship between defect type and amplitude for better long-term predictions.  

 

4.2.4 Defect tag prediction model using predicted amplitude 

The Classification results for defect tag prediction using the predicted amplitude are presented in 

the Table 25. When using predicted amplitude to classify defect tags, Random Forest performed 

the best, achieving a 0.75 weighted F1 score with balanced individual F1 scores of 0.75 for both 

yellow and red defects, making it the most consistent model across both categories.  

Table 25: Classification model results of defect tag using the predicted amplitude 

Data preparation Target Method F1-Score (Weighted 

average) 

F1-Score 

(Yellow/Red) 

3. Based on 

predicted 

amplitude 

Defect tag Random Forest 0.75 0.75/0.75 

XGBoost 0.71 0.69/0.72 

Cat boost 0.70 0.68/0.73 

 

XGBoost, with a 0.71 weighted F1 score, showed a slight drop in performance for yellow tag (F1 

score of 0.69) but performed better with red tag (F1 score of 0.72). CatBoost had the lowest 

weighted F1 score at 0.70, but it maintained a relatively balanced performance, with F1 scores of 

0.68 for Yellow and 0.73 for Red, showing that while its overall performance was slightly lower, 

it remained stable across both defect categories. 
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Chapter 4. Discussions 

This section provides detailed discussions of the Condition Assessment Framework and prediction 

model. 

4.1 Condition Rating System 

The Tie and rail fastening condition rating significantly improves previous studies by combining 

physical factors into a comprehensive condition rating system. Earlier models, such as the Track 

Quality Index (TQI) (R.-K. Liu et al. 2015) and Track Geometry Index (TGI) (Mundrey, J. S 2009) 

primarily focus on geometric parameters like gauge, alignment, cross-level, and surface condition 

but often overlook the physical health of the track's components. This model addresses that gap by 

integrating a component-focused assessment that considers the physical health and the location of 

tie crack, spikes, and tie plates. In addition to geometric indices like TQI and TGI, other models 

such as the Swedish National Railway Quality Index and the UK SD Index primarily assess the 

standard deviation of geometric parameters, like unevenness, alignment, and gauge, to monitor 

track quality. While these systems are effective at capturing track irregularities, they do not provide 

the same level of detail about the condition of track components, such as spikes and tie plates, 

which are crucial for ensuring long-term track stability. In this model, AHP provides a structured, 

transparent approach to assigning importance to various track features. This helps in decision-

making regarding which factors require the most attention during maintenance. This framework 

offers a balanced and comprehensive view of track health by weighing crack-related factors 

alongside component conditions (like spikes and tie plates). It allows maintenance teams to focus 

on the areas that matter most, offering practical insights for maintenance planning and risk 

mitigation. 

The Table 26 presents a detailed breakdown of the weights assigned to various factors by different 

respondents (Academia/Research, Design Consultants, Class I Railways, Short-line Operators, and 

Railway Service Providers). The factors evaluated include tie cracks, spikes, tie plates, crack 

location, crack size, spike distance, tie plate distance, and others, with each respondent group 

assigning different levels of importance to these factors. Different groups have varying opinions 

regarding the importance of crack size in assessing track conditions. Design consultants (39.77%) 
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and railway service providers (31.39%) assign much more weight to crack size compared to other 

groups like Class I railways (24.45%) and short-line operators (9.73%). Design consultants give 

higher weight to crack size because they focus on optimizing track design to prevent future 

maintenance issues. Cracks, particularly those related to size, signal underlying structural 

problems that could affect long-term track stability and integrity, making it a priority in design 

considerations. Railway service providers, on the other hand, prioritize crack size because they are 

directly responsible for track maintenance and repairs. Larger cracks require immediate attention, 

as they could lead to safety risks such as derailments or disruptions in service. The practical 

experience of railway service providers likely drives their focus on crack size, as they deal with 

the day-to-day consequences of track deterioration and must prioritize the factors that could lead 

to operational failures. These groups, being hands-on with track issues, view crack size as a critical 

indicator of impending failure, explaining their emphasis on it. 

Academia and Class I railways rate spikes and tie plates similarly. For spikes, Academia assigns 

36.29% and Class I assigns 35.09%. Similarly, Academia assigns 39.54% for tie plates, while 

Class I assigns 32.21%. However, short-line operators emphasize spikes (50.96%) more than tie 

plates (34.01%). Short-line operators likely focus more on spikes because spikes are critical in 

securing the rails to the ties, ensuring track stability, especially on smaller, less robust networks. 

Short lines typically operate with fewer resources and deal with older infrastructure. This makes 

spikes a priority for them, as loose or damaged spikes can lead to track misalignment and greater 

instability. Additionally, given the reduced traffic on short lines, the stresses placed on tracks may 

be less evenly distributed, making well-maintained spikes essential to ensuring that the track 

remains securely fastened. Any failure in the spike system could lead to more significant 

disruptions on short-line tracks, which are already operating with limited maintenance resources. 

All respondent groups agree that crack location is crucial in assessing track conditions. Academia 

(70.89%), Class I railways (75.55%), short-line operators (90.27%), and railway service providers 

(68.61%) consistently prioritize the location of the crack, recognizing that cracks near critical 

components such as spikes and tie plates can compromise track stability and safety. This broad 

consensus highlights the critical role crack location plays in preventing further track degradation 

and ensuring the integrity of the track structure. There is also widespread agreement regarding the 
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importance of spike distance, with most groups assigning it significant weight. Academia 

(36.22%), Class I railways (28.33%), short-line operators (40.90%), and railway service providers 

(26.89%) agree that spike distance is a vital factor. However, design consultants assign relatively 

less weight to spike distance (17.81%), possibly because their primary focus is on the overall 

design of the track, aiming to optimize for long-term resilience rather than addressing the practical, 

day-to-day maintenance concerns like spikes. For them, crack location and size may take 

precedence over spike distance because design flaws in these areas could compromise the 

structural integrity of the track over time. Regarding crack depth, there is general agreement across 

the board that it is one of the most critical factors. Academia (39.31%), Class I railways (51.57%), 

short-line operators (45.09%), and design consultants (40.30%) all highlight crack depth as 

essential to determining track stability. Crack depth poses an immediate threat to the structural 

integrity of the track, as deeper cracks can weaken the ties more severely than shallow ones, which 

is why it garners such consistent focus among all groups. 

Table 26: Summary of the weights assigned by the respondent’s organization 

Factors weights Academia

/Research 

Design/ 

 onsultant 

 lass I Short 

line 

Railway service 

provider 

Tie crack 45 24.17 81.55 32.70 15.03 77.19 

Spike 28 36.29 9.47 35.09 50.96 5.04 

Tie Plate 27 39.54 8.98 32.21 34.01 17.77 

Total 100      

Location of the crack 74 70.89 60.23 75.55 90.27 68.61 

Size of the crack 26 29.11 39.77 24.45 9.73 31.39 

Total 100      

Spike distance 31 36.22 17.81 28.33 40.90 26.89 
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Tie plate distance 18 27.63 22.15 16.89 8.46 15.48 

In line with spike 22 12.36 33.66 24.15 14.41 22.61 

Direction 13 14.34 16.40 17.29 12.14 16.92 

Side 16 9.46 9.98 13.35 24.09 18.10 

Total  100      

Depth 42 39.31 40.30 51.57 45.09 33.50 

Width 29 27.39 25.73 29.71 27.15 33.96 

Length 19 24.04 23.28 9.29 17.10 22.43 

Presence of Ballast 10 9.26 10.70 9.43 10.65 10.11 

Total 100      

The thresholds for scoring factors like spike height, crack depth, and width cannot be based solely 

on data from a single location, such as a case study. Railway tracks experience different levels of 

wear and tear, with traffic density being a key factor. High-traffic tracks face faster degradation 

and require different maintenance thresholds than low-traffic tracks. In Scenario Two (without 

outliers), thresholds for crack measurements are based on the mean and standard deviation of the 

case study data, excluding outliers beyond three standard deviations. This ensures that the 

thresholds reflect typical conditions without being skewed by extreme values. Scenario Three 

includes outliers, setting thresholds based on maximum values observed in the dataset to account 

for significant defects. Only crack depth, width, and length, which have outliers beyond 

Pavemetrics' ranges, experience score changes between these scenarios. If thresholds are based 

solely on data from low-traffic tracks or skewed datasets, the severity of damage on high-traffic 

tracks may be misrepresented. A reliable rating system requires data from diverse locations to 

ensure thresholds apply across different tracks. Outliers can distort analysis, pulling averages away 

from central values. This is clear in Scenario Three, where outliers caused lower mean values for 
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crack measurements than in Scenario Two. Outliers—extreme values—skew the data, making 

track conditions appear less severe overall. For example, outliers may represent large cracks that 

develop quickly on high-traffic tracks, while on low-traffic tracks, outliers may be smaller or 

slower-growing cracks. Removing outliers in Scenario Two gives a more accurate picture of the 

typical condition, ensuring thresholds reflect realistic conditions. Thresholds should also reflect 

how defects impact track performance, not just their frequency. A crack width may be standard, 

but the scoring threshold should consider its effect on structural integrity. On high-traffic tracks, 

even minor defects, like shallow cracks, may require immediate attention due to constant heavy 

loads, while the same defect on low-traffic tracks may not pose a significant risk. For instance, a 

5 mm crack depth on a high-traffic track might need immediate repair, but intervention might be 

delayed until the crack reaches 10 mm on a low-traffic track. Similarly, ballast inside cracks may 

be more critical on high-traffic tracks, where drainage is crucial. Setting thresholds based on 

severity, not just frequency, ensures maintenance teams address areas that pose the greatest risk to 

track stability and safety. 

Fastening components like spikes and tie plates are essential for maintaining track stability. They 

distribute the load from passing trains, reduce stress on cracks, and prevent further deterioration. 

Spikes limit rail movement, while tie plates spread pressure across the tie, delaying crack 

progression. In the proposed Tie and Rail Fastening System, spikes and tie plates are weighted at 

28% and 27%, reflecting their crucial role in track integrity. However, further research is needed 

to assess their impact across different track conditions. Focusing solely on tie crack size and 

location can lead to an underestimated track condition. Cracks do not provide a complete picture 

of a tie's performance. A tie with cracks may still be structurally sound if its fastening components 

are in good condition, as they help prevent further damage. For instance, if tie cracks are given 

100% weight, the results show most of the track in moderate to severe condition. However, this 

overlooks the possibility that the fastening components may still be maintaining track stability. 

For instance, if the Tie crack is given 100% weight, where the rating is based entirely on tie cracks 

(both location and size) and does not account for the condition of fastening components, the results 

show that most of the track is rated as being in moderate to severe condition. Specifically, only 

4.23% of the track is rated with light defects, while 41.07% is rated moderate, 51.87% as severe, 

and 2.82% as very severe. This suggests that the track is in relatively poor condition based on 
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crack data alone. However, this overlooks the possibility that fastening components may still be 

performing well, significantly improving the track's overall stability and functionality. From a 

physical standpoint, while cracks in the ties are a concern, fastening components are key to 

maintaining the integrity of the track system. Without healthy fastening components, cracks could 

propagate more quickly, leading to rapid degradation of the ties and, ultimately, the track. 

However, when spikes and tie plates are in good condition, they mitigate the impact of the cracks, 

distributing the forces more effectively and reducing the rate at which the cracks worsen. For 

example, a tie with substantial cracks but well-functioning spikes and tie plates can continue to 

carry loads safely and maintain rail alignment. On the other hand, a tie with minimal cracks but 

deteriorated fastening components may pose a greater risk to the track's stability because the spikes 

or tie plates may fail to hold the rails in place properly, leading to potential derailment risks. 

One of the limitations of this system is that it is mainly based on expert opinions gathered through 

surveys rather than physical studies or data-driven experimentation. While the Analytical 

Hierarchy Process (AHP) provides a structured way to prioritize factors, it does not account for 

interdependencies between those factors. For example, the interaction between crack size, location, 

and fastening conditions may be more complex than the weights suggest. However, these 

relationships still need to be captured in the AHP framework. Additionally, the weights assigned 

to different factors are derived from a small group of experts, meaning the results may not represent 

broader industry views or be applicable in different operational contexts. Another limitation lies 

in the thresholds used for scoring, which are based on the specific types of ties and spikes in the 

case study. These thresholds would need to be adjusted for different materials or track conditions. 

The validation of this model was conducted on a small case study, which does not account for 

factors like the dynamic growth of defects over time or changes in environmental conditions. 

Another important limitation of this system is the inherent assumption of independence between 

the factors considered in the AHP framework. AHP operates under the assumption that each factor, 

such as crack size, location, and fastening condition, is evaluated independently, without 

accounting for potential interdependencies between them. In reality, these factors can have a 

complex interplay; for instance, the condition of tie fastenings may influence the rate at which 

cracks propagate, and the location of the crack in relation to the fastening might affect the severity 

of the defect. The absence of a mechanism to model these interactions in the AHP framework may 
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lead to an oversimplified understanding of the real-world behavior of track defects, limiting the 

accuracy and predictive capability of the system. Furthermore, the model does not consider 

geometry defects or characteristics like gauge and alignment, which can influence the development 

of cracks and other defects. By incorporating these factors, the system might notice critical aspects 

of track degradation, potentially leading to more accurate predictions of defect evolution. 

 

4.2 Condition Prediction Model 

The classification and regression results reveal that the applied machine learning models—

Random Forest, XGBoost, and CatBoost—perform well in predicting railway defects, each 

excelling in specific areas. Among these, CatBoost emerges as a consistent performer in 

classifying defect tags, which is important for automating the identification process. Defect tags 

were predicted using the amplitude from the regression model, in addition to direct classification. 

This approach achieved a 75% weighted F1 score. It shows the potential of using predicted features 

from regression tasks to improve the accuracy of defect classification, which can contribute to 

more efficient maintenance processes. Predicting defect tags accurately can significantly improve 

maintenance planning by enabling early detection of critical issues affecting track safety and 

performance. Automation in defect detection allows railway operators to proactively address track 

defects, reducing manual inspections and improving operational efficiency. Random Forest also 

demonstrates strength, particularly in predicting defect types, which is essential for categorizing 

the severity of various track conditions. Accurate prediction of defect types, such as dips or surface 

irregularities, provides valuable insight into the underlying causes of track degradation. This can 

help maintenance teams prioritize their actions, focusing on defects that pose higher risks and 

ensuring that the track remains in optimal condition for the safe passage of trains. 

Table 27: Summary of the models 

Target Model Metrics 

Defect Tag Cat Boost 0.95 F1 score 

Defect type Random Forest 0.63 F1 score 
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Defect amplitude Random Forest 82 R2 

Defect length Cat Boost 56 R2 

 

In regression tasks, predicting defect characteristics such as amplitude and length using operational 

data, including tonnage, traffic density, and the total number of trains and cars travelling through 

the track, enhances the ability to plan maintenance more effectively. Railway operators can 

schedule preventative maintenance before defects worsen by understanding how traffic load and 

usage impact defect growth, minimizing costly repairs and avoiding disruptions. For instance, 

predicting defect length can help identify areas where track wear is progressing faster, enabling 

targeted interventions that extend the life of the track infrastructure. Leveraging models to predict 

defect tags, types, amplitudes, and lengths based on traffic and operational data introduces a more 

data-driven maintenance strategy.  

The proposed machine learning models show considerable performance improvements compared 

to prior studies. Notably, CatBoost excels in predicting defect tags with a 95% F1 score, 

significantly outperforming (Alemazkoor, Ruppert, and Meidani 2018), who achieved a 70% 

accuracy, and (Cárdenas-Gallo et al. 2017), with an 81% accuracy. This improvement highlights 

CatBoost's effectiveness in identifying defect tags, which ensures timely maintenance and prevents 

track deterioration. However, in predicting defect types, Random Forest's 63% F1 score falls below 

the 72% accuracy reported by (Sudhir et al. 2015), but they used defect amplitude to predict defect 

type, which could result in data leakage, as these features are inherently correlated. The proposed 

models avoid this issue by independently predicting amplitude, length, and tags, allowing for better 

control and reducing the risk of overfitting. These models' ability to predict various defect 

characteristics—such as amplitude, length, and tags—provides a comprehensive evaluation of 

track conditions. This holistic approach can significantly enhance maintenance planning, 

budgeting, and risk mitigation. By identifying severe defects, the models also improve the 

prioritization of repairs, reducing track downtime and improving the railway system's overall 

performance and safety. 
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Table 28: Models from the literature 

Reference Target Metrics 

(Alemazkoor, Ruppert, and Meidani 2018) Defect Tag 70% accuracy 

(Cárdenas-Gallo et al. 2017) Defect Tag 81% accuracy 

(Sudhir Kumar Sinha, Sumit Raut, and 

Harshad Khadilkar 2015) 

Defect Type 72% accuracy 

Amplitude, class, and speed have emerged as critical features for forecasting defect tags, 

highlighting the importance of physical defect characteristics and operational factors in the models' 

performance. Feature importance analysis consistently emphasizes the significance of variables 

like "Defect Amplitude" and "Freight Speed," reinforcing that these elements play a crucial role 

in the formation and severity of railway defects. These insights suggest that certain physical and 

operational factors are the primary drivers behind defect development and incorporating them into 

predictive models is essential for achieving high accuracy. However, despite the success in 

identifying major defect patterns, the models encounter difficulties in predicting less severe 

defects, such as dips and surface irregularities. This challenge indicates that some currently 

represented features may only partially capture these subtler defect patterns, suggesting the need 

to refine the feature set. By incorporating additional features or improving the representation of 

existing ones, the models may become more sensitive to these less obvious defects, enhancing 

overall predictive performance. 

The prediction models for Defect Amplitude and Defect Length demonstrate good performance 

when evaluated through their mean, standard deviation, and RMSE values. For Defect Amplitude, 

the mean is -0.06, with a standard deviation of 1.23. The model achieves a low RMSE of 0.52, 

indicating that it effectively captures amplitude variations with minimal error. The lower 

variability in amplitude allows the model to generalize well and achieve strong predictive 

performance. For Defect Length, the mean is 12.13 with a significantly larger standard deviation 

of 18.03, reflecting more significant variability. The RMSE for defect length prediction is 10.97, 

which, although higher than for amplitude, remains reasonable given the increased complexity in 
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defect length prediction. The model still provides satisfactory accuracy for practical use in 

maintenance planning.  One key limitation of the models is overfitting, particularly in defect length 

prediction. Despite applying cross-validation and regularization techniques, the models still overfit 

the training data, reducing their generalization ability to new datasets. Overfitting is more 

prominent for defect length due to the higher variability in the data. Although cross-validation and 

regularization were applied to reduce overfitting, they were unsuccessful, particularly for defect 

length prediction. This suggests that further refinement, such as incorporating additional or more 

diverse features, is needed to enhance the model's generalization ability and reduce overfitting. 

While the models perform well for both defect amplitude and length, predicting amplitude is easier 

due to lower variability. Improving generalization for defect length prediction remains 

challenging, particularly in addressing overfitting. Despite the promising results, several 

limitations must be considered when applying these machine learning models for defect prediction 

and classification. Overfitting remains a key challenge, particularly in models like Random Forest 

and Decision Trees, which tend to perform well on training data but show a significant drop in 

accuracy when tested on unseen or temporal data, limiting their ability to generalize effectively 

over time. Another critical issue is the imbalance in the dataset, especially with underrepresented 

defect types like "Dip" and "Surface." To address this, SMOTE (Synthetic et al.) has been applied 

to oversample the Dip defect type to balance the dataset for defect type prediction. Additionally, 

class weights have been adjusted to give more importance to these underrepresented classes. 

SMOTE was also used for defect tag prediction when using predicted amplitude to balance the 

dataset and improve model accuracy. Furthermore, Stratified K-fold cross-validation was 

implemented to ensure the folds maintain the class distribution across the validation process. 

However, even with these adjustments, the models need higher accuracy for the less frequent 

defects. The imbalance, coupled with overfitting, reduces the models' ability to consistently predict 

less common defect types and defect tags with high accuracy. It is also important to note that defect 

amplitude was not used for defect type prediction. Instead, features such as Class, Speed, Tonnage, 

and Traffic Density were the key predictors. While using amplitude could potentially increase 

accuracy, it also introduces the risk of data leakage, as defect amplitude is inherently related to 

defect type. This could cause the model to inadvertently learn relationships that would not be 

available in a real-world prediction scenario, which could artificially inflate its performance. While 
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SMOTE, class weight adjustments, and stratified folding have been applied to mitigate data 

imbalance, the models still face accuracy limitations, especially when predicting underrepresented 

defect types. Further refinement in these approaches, more advanced feature engineering, and 

improved generalization techniques will be essential to enhance model performance and reliability 

in real-world applications. The feature set may also lack key variables, particularly those capturing 

temporal and other physical and environmental properties that influence defect formation. 

Incorporating variables like seasonal changes, track material properties, and other relevant 

physical factors could significantly improve model performance. Finally, the quality of the dataset 

is crucial in shaping the models' predictions. The current dataset may not fully capture the 

complexities of defect progression but adding high-resolution and contextual data could 

substantially improve the models' accuracy and robustness. As machine learning advances and 

more data is gathered through automatic track inspections, the model's accuracy could improve. 

Additional factors such as rail wear, ballast type, Tie type, and weather conditions (e.g., 

temperature) should be considered to enhance the model's reliability in the future. 
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Chapter 5. Conclusion 

This study developed a two-prong approach to managing the condition of rail assets, including 

condition assessment and condition prediction. 

The Tie and Rail Fastening Rating system offers a straightforward method to assess track 

conditions by focusing on critical defect characteristics like crack size, location, spike height, and 

tie plate presence. With a weighted scoring system, the method helps to identify and prioritize the 

most severe issues that affect track safety. Cracks, especially their size and location, play the most 

significant role in determining the track's condition, showing the need to understand how close 

they are to essential track components. The transition from the tie crack size rating scale to the 

proposed Tie and rail fastening system rating has made track condition assessments more accurate 

and detailed. The proposed system highlights key factors like crack depth and spike location to the 

crack, ensuring any problem areas are identified and addressed effectively. Overall, the proposed 

rating system improves track safety by providing a more holistic view of the track's condition by 

including both crack details and the condition of fastening components like spikes and tie plates. 

This comprehensive approach ensures that cracks are evaluated, and their proximity to essential 

track components is also considered, giving a clearer picture of overall track health. By offering 

this detailed perspective, the system helps maintenance teams prioritize maintenance decisions, 

focusing on areas with the highest risk and ensuring more effective use of resources. 

The condition prediction model in this study employed machine learning techniques like Random 

Forest, XGBoost and Cat Boost to predict various rail defect characteristics, including defect tags 

(yellow or red), defect type, length, and amplitude. The accuracy of these models is directly 

influenced by the data available and the features selected. The model performed exceptionally well 

in predicting defect tags, achieving an accuracy of over 94% when using all available data. This 

high accuracy makes it a reliable tool for automatically identifying defect tags. Additionally, it 

achieved a 75% accuracy when using predicted amplitude to forecast defect tags. While slightly 

less accurate, this provides valuable insights for planning maintenance and repair efforts. Key 

features, such as amplitude, class, and speed, proved essential for accurate defect tag predictions. 

Unlike previous models, which often struggled to predict multiple aspects of defects—such as 
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defect type or length—with high accuracy, this model successfully integrates operational data 

(such as class, speed, and tonnage) and physical characteristics (like defect amplitude). This 

combination results in a more comprehensive understanding of defect behaviour over time, 

enhancing decision-making and resource allocation for maintenance teams. By relying on 

predicted future conditions, teams can act proactively rather than simply reacting to existing 

defects. This predictive approach represents a significant improvement in maintenance planning, 

offering a more dynamic view of rail conditions and helping to prevent potential issues from 

becoming critical. In summary, this model enhances defect detection and provides predictive 

capabilities that forecast future track conditions, making it an invaluable tool for maintaining 

railway infrastructure both efficiently and proactively. 
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Appendix A. Questionnaire survey for Tie and rail fastening system 
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Appendix B. Machine Learning codes for the Condition prediction 

model 

Classification codes to predict defect tag using Logistic Regression, Random Forest 

XGBoost, and Cat boost 

#logistic regression to predict defect tag (80% 20%) 

 

import pandas as pd 

from sklearn.model_selection import train_test_split, GridSearchCV 

from sklearn.linear_model import LogisticRegression 

from sklearn.metrics import classification_report, accuracy_score 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import Pipeline 

 

# Load the dataset 

data = pd.read_csv('Connect.csv') 

 

# Define the features and the target variable (Defect tag) 

features = ['Total car west', 'Total train east', 'Total train west', 

'Total deflection', 

            'Defect amplitude', 'Class', 'Freight speed', 'Passenger 

speed'] 

X = data[features] 

y = data['Defect tag']  # Target variable: Defect tag 

 

# Split the data into training and testing sets (80% training, 20% 

testing) 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 

# Create a pipeline to scale the data and then apply logistic regression 

pipe = Pipeline([ 
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    ('scaler', StandardScaler()),  # Scaling the data 

    ('logistic', LogisticRegression(class_weight='balanced'))  # Logistic 

regression 

]) 

 

# Define the hyperparameters grid for tuning 

param_grid = [ 

    {'logistic__penalty': ['l1'], 'logistic__C': [0.01, 0.1, 1.0, 10, 

100], 'logistic__solver': ['saga'], 'logistic__max_iter': [200, 500]}, 

    {'logistic__penalty': ['l2'], 'logistic__C': [0.01, 0.1, 1.0, 10, 

100], 'logistic__solver': ['lbfgs', 'liblinear', 'saga'], 

'logistic__max_iter': [200, 500]}, 

    {'logistic__penalty': ['elasticnet'], 'logistic__C': [0.01, 0.1, 1.0, 

10, 100], 'logistic__solver': ['saga'], 'logistic__l1_ratio': [0.5], 

'logistic__max_iter': [200, 500]} 

] 

 

# Initialize GridSearchCV 

grid_search = GridSearchCV(estimator=pipe, param_grid=param_grid, cv=5, 

verbose=1, n_jobs=-1) 

 

# Fit the grid search to the training data 

grid_search.fit(X_train, y_train) 

 

# Get the best parameters from the grid search 

best_params = grid_search.best_params_ 

print("Best Parameters:", best_params) 

 

# Use the best estimator to predict on the test set 

best_model = grid_search.best_estimator_ 

 

# Predictions on the test set 

y_pred = best_model.predict(X_test) 
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# Calculate training accuracy 

train_accuracy = best_model.score(X_train, y_train) 

 

# Calculate test accuracy 

test_accuracy = accuracy_score(y_test, y_pred) 

 

# Generate and display a classification report 

classification_rep = classification_report(y_test, y_pred) 

 

# Print results 

print(f"Training Accuracy: {train_accuracy:.2f}") 

print(f"Test Accuracy: {test_accuracy:.2f}") 

print("Classification Report:") 

print(classification_rep) 

 

# XGBoost code 80/20 split 

 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split, StratifiedKFold, 

RandomizedSearchCV 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import make_pipeline 

from sklearn.metrics import accuracy_score, classification_report 

from xgboost import XGBClassifier 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

# Step 1: Load your DataFrame 

df = pd.read_csv('Connect.csv') 
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# Step 2: Basic Exploratory Data Analysis (EDA) 

 

# Display basic information about the dataset 

print("Dataset Info:") 

df.info()  # Shows column names, non-null counts, and data types 

 

# Display basic statistics of the dataset to understand distributions 

print("\nDataset Description:") 

print(df.describe())  # Provides mean, std, min, max, and quartile values 

for numerical columns 

 

# Check for any missing values in the dataset 

print("\nMissing values in each column:") 

print(df.isnull().sum())  # Shows count of missing values in each column 

 

# Check the distribution of the target variable to understand class 

imbalance 

target = 'Defect tag' 

print("\nTarget variable distribution:") 

print(df[target].value_counts())  # Provides the count of each class in 

the target column 

 

# Visualize the correlation matrix to understand relationships between 

features 

features = ['Total car west', 'Total train east', 'Total train west', 

'Total deflection', 'Defect amplitude', 'Class', 'Freight speed', 

'Passenger speed'] 

plt.figure(figsize=(10, 8)) 

corr_matrix = df[features].corr() 

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f') 

plt.title("Feature Correlation Matrix") 

plt.show() 
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# Plot the distribution of each feature to visually understand data ranges 

for feature in features: 

    plt.figure(figsize=(8, 4)) 

    plt.hist(df[feature], bins=30, color='lightblue', edgecolor='black') 

    plt.title(f"Distribution of {feature}") 

    plt.xlabel(feature) 

    plt.ylabel('Frequency') 

    plt.show() 

 

# Step 3: Define features and target variable 

X = df[features].values 

y = df[target].values 

 

# Step 4: Split the data into training and testing sets (80% train, 20% 

test) 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 

# Step 5: Parameter grid for RandomizedSearchCV with regularization 

parameters 

param_grid = { 

    'xgbclassifier__max_depth': [3, 4], 

    'xgbclassifier__learning_rate': [0.01, 0.1], 

    'xgbclassifier__n_estimators': [100, 200], 

    'xgbclassifier__subsample': [0.7, 0.8], 

    'xgbclassifier__colsample_bytree': [0.8, 0.9], 

    'xgbclassifier__reg_lambda': [1, 2, 5],  # L2 regularization 

    'xgbclassifier__alpha': [0, 0.5, 1],     # L1 regularization 

} 

 

# Step 6: Create a pipeline with standard scaling and XGBoost classifier 
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pipeline = make_pipeline( 

    StandardScaler(),  # Standardize the data 

    XGBClassifier(use_label_encoder=False, eval_metric='logloss', 

random_state=42)  # XGBoost Classifier 

) 

 

# Step 7: Stratified K-Fold for cross-validation with fewer splits for 

faster computation 

cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) 

 

# Step 8: Use RandomizedSearchCV for faster hyperparameter tuning 

randomized_search = RandomizedSearchCV(pipeline, 

param_distributions=param_grid, n_iter=10, cv=cv, n_jobs=-1, 

scoring='accuracy', random_state=42) 

randomized_search.fit(X_train, y_train) 

 

# Step 9: Output the best parameters and cross-validation score 

print("Best parameters found: ", randomized_search.best_params_) 

print("Best cross-validation score: 

{:.2f}".format(randomized_search.best_score_)) 

 

# Step 10: Predict on the testing data using the best model 

y_pred = randomized_search.best_estimator_.predict(X_test) 

 

# Step 11: Print accuracy and classification report for train and test 

sets 

train_accuracy = accuracy_score(y_train, 

randomized_search.best_estimator_.predict(X_train)) 

test_accuracy = accuracy_score(y_test, y_pred) 

print("Train Accuracy:", train_accuracy) 

print("Test Accuracy:", test_accuracy) 

print("Classification Report:") 

print(classification_report(y_test, y_pred)) 
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# Step 12: Get the best XGBoost model from the pipeline 

best_xgb_model = 

randomized_search.best_estimator_.named_steps['xgbclassifier'] 

 

# Step 13: Get feature importances 

feature_importances = best_xgb_model.feature_importances_ 

 

# Step 14: Plot feature importances to visualize the most important 

factors for predictions 

plt.figure(figsize=(10, 6)) 

plt.barh(features, feature_importances, color='skyblue') 

plt.xlabel('Feature Importance') 

plt.title('Feature Importance') 

plt.show() 

 

# Randomforest code 80/20 split 

 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split, StratifiedKFold 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import make_pipeline 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score, classification_report 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

# Step 1: Load the DataFrame 

df = pd.read_csv('Connect.csv') 

 

# Step 2: Basic Exploratory Data Analysis (EDA) 
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# Display basic information about the dataset 

print("Dataset Info:") 

df.info()  # Shows column names, non-null counts, and data types 

 

# Display basic statistics of the dataset to understand distributions 

print("\nDataset Description:") 

print(df.describe())  # Provides mean, std, min, max, and quartile values 

for numerical columns 

 

# Check for any missing values in the dataset 

print("\nMissing values in each column:") 

print(df.isnull().sum())  # Shows count of missing values in each column 

 

# Check the distribution of the target variable to understand class 

imbalance 

target = 'Defect tag' 

print("\nTarget variable distribution:") 

print(df[target].value_counts())  # Provides the count of each class in 

the target column 

 

# Visualize the correlation matrix to understand relationships between 

features 

features = ['Total car west', 'Total train east', 'Total train west', 

'Total deflection', 'Freight speed', 'Class', 'Passenger speed', 'Defect 

amplitude'] 

plt.figure(figsize=(10, 8)) 

corr_matrix = df[features].corr() 

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f') 

plt.title("Feature Correlation Matrix") 

plt.show() 

 

# Plot the distribution of each feature to visually understand data ranges 
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for feature in features: 

    plt.figure(figsize=(8, 4)) 

    plt.hist(df[feature], bins=30, color='lightblue', edgecolor='black') 

    plt.title(f"Distribution of {feature}") 

    plt.xlabel(feature) 

    plt.ylabel('Frequency') 

    plt.show() 

 

# Step 3: Define features and target variable 

features = ['Total car west', 'Total train east', 'Total train west', 

'Total deflection', 'Freight speed', 'Class', 'Passenger speed', 'Defect 

amplitude'] 

target = 'Defect tag' 

 

# Step 4: Prepare data 

X = df[features].values 

y = df[target].values 

 

# Step 5: Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, 

random_state=42) 

 

# Step 6: Create a pipeline with standard scaling and Random Forest 

classifier 

# Adjusting n_estimators, max_depth, and min_samples_split to manage 

complexity and avoid overfitting 

model = RandomForestClassifier(n_estimators=100, max_depth=10, 

min_samples_split=4, random_state=42) 

pipeline = make_pipeline(StandardScaler(), model) 

 

# Step 7: Stratified K-Fold for cross-validation 

cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) 
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# Step 8: Fit the pipeline on the training data 

pipeline.fit(X_train, y_train) 

 

# Step 9: Predict on the training data to calculate training accuracy 

y_train_pred = pipeline.predict(X_train) 

train_accuracy = accuracy_score(y_train, y_train_pred) 

 

# Step 10: Predict on the testing data 

y_pred = pipeline.predict(X_test) 

test_accuracy = accuracy_score(y_test, y_pred) 

 

# Step 11: Print training and test accuracy 

print("Training Accuracy:", train_accuracy) 

print("Test Accuracy:", test_accuracy) 

 

# Step 12: Print classification report 

print("Classification Report:") 

print(classification_report(y_test, y_pred)) 

 

# Step 13: Get the feature importances from the RandomForest model 

importances = model.feature_importances_ 

 

# Step 14: Sort the importances and features for plotting 

indices = np.argsort(importances) 

sorted_features = np.array(features)[indices] 

sorted_importances = importances[indices] 

 

# Step 15: Plot feature importances 

plt.figure(figsize=(10, 6)) 

plt.barh(sorted_features, sorted_importances, color='skyblue') 

plt.xlabel('Feature Importance') 
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plt.title('Feature Importance from RandomForest') 

plt.show() 

 

# Catboost code to predict the Defect tag(80% 20% split) 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split, StratifiedKFold, 

RandomizedSearchCV 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import make_pipeline 

from sklearn.metrics import accuracy_score, classification_report 

from catboost import CatBoostClassifier 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

# Step 1: Load your DataFrame 

df = pd.read_csv('Connect.csv') 

 

# Step 2: Basic Exploratory Data Analysis (EDA) 

 

# Display basic information about the dataset 

print("Dataset Info:") 

df.info()  # Shows column names, non-null counts, and data types 

 

# Display basic statistics of the dataset to understand distributions 

print("\nDataset Description:") 

print(df.describe())  # Provides mean, std, min, max, and quartile values 

for numerical columns 

 

# Check for any missing values in the dataset 

print("\nMissing values in each column:") 

print(df.isnull().sum())  # Shows count of missing values in each column 
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# Check the distribution of the target variable to understand class 

imbalance 

target = 'Defect tag' 

print("\nTarget variable distribution:") 

print(df[target].value_counts())  # Provides the count of each class in 

the target column 

 

# Visualize the correlation matrix to understand relationships between 

features 

features = ['Total car west', 'Total train east', 'Total train west', 

'Total deflection', 'Defect amplitude', 'Class', 'Freight speed', 

'Passenger speed'] 

plt.figure(figsize=(10, 8)) 

corr_matrix = df[features].corr() 

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f') 

plt.title("Feature Correlation Matrix") 

plt.show() 

 

# Plot the distribution of each feature to visually understand data ranges 

for feature in features: 

    plt.figure(figsize=(8, 4)) 

    plt.hist(df[feature], bins=30, color='lightblue', edgecolor='black') 

    plt.title(f"Distribution of {feature}") 

    plt.xlabel(feature) 

    plt.ylabel('Frequency') 

    plt.show() 

 

# Step 3: Define features and target variable 

X = df[features].values 

y = df[target].values 
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# Step 4: Split the data into training and testing sets (80% train, 20% 

test) 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 

# Step 5: Parameter grid for RandomizedSearchCV with CatBoost parameters 

param_grid = { 

    'catboostclassifier__depth': [4, 6, 8], 

    'catboostclassifier__learning_rate': [0.01, 0.1, 0.2], 

    'catboostclassifier__iterations': [100, 200, 300], 

    'catboostclassifier__l2_leaf_reg': [1, 3, 5],  # L2 regularization 

term 

    'catboostclassifier__border_count': [32, 64, 128],  # Number of splits 

for features 

} 

 

# Step 6: Create a pipeline with standard scaling and CatBoost classifier 

pipeline = make_pipeline( 

    StandardScaler(),  # Standardize the data 

    CatBoostClassifier(verbose=0, random_state=42)  # CatBoost Classifier 

) 

 

# Step 7: Stratified K-Fold for cross-validation 

cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) 

 

# Step 8: Use RandomizedSearchCV for faster hyperparameter tuning 

randomized_search = RandomizedSearchCV(pipeline, 

param_distributions=param_grid, n_iter=10, cv=cv, n_jobs=-1, 

scoring='accuracy', random_state=42) 

randomized_search.fit(X_train, y_train) 

 

# Step 9: Output the best parameters and cross-validation score 

print("Best parameters found: ", randomized_search.best_params_) 
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print("Best cross-validation score: 

{:.2f}".format(randomized_search.best_score_)) 

 

# Step 10: Predict on the testing data using the best model 

y_pred = randomized_search.best_estimator_.predict(X_test) 

 

# Step 11: Print accuracy and classification report for train and test 

sets 

train_accuracy = accuracy_score(y_train, 

randomized_search.best_estimator_.predict(X_train)) 

test_accuracy = accuracy_score(y_test, y_pred) 

print("Train Accuracy:", train_accuracy) 

print("Test Accuracy:", test_accuracy) 

print("Classification Report:") 

print(classification_report(y_test, y_pred)) 

 

# Step 12: Get the best CatBoost model from the pipeline 

best_cat_model = 

randomized_search.best_estimator_.named_steps['catboostclassifier'] 

 

# Step 13: Get feature importances 

feature_importances = best_cat_model.get_feature_importance() 

 

# Step 14: Plot feature importances to visualize the most important 

factors for predictions 

plt.figure(figsize=(10, 6)) 

plt.barh(features, feature_importances, color='skyblue') 

plt.xlabel('Feature Importance') 

plt.title('Feature Importance (CatBoost)') 

plt.show() 

 

# XGBoost code to predict the Defect tag (2007 - 2012 training / 2013 test 

) 
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import pandas as pd 

import numpy as np 

from sklearn.model_selection import StratifiedKFold, RandomizedSearchCV 

from sklearn.preprocessing import StandardScaler 

from sklearn.model_selection import learning_curve 

from sklearn.pipeline import make_pipeline 

from sklearn.metrics import accuracy_score, classification_report 

from xgboost import XGBClassifier 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

# Step 1: Load the DataFrames 

train_df = pd.read_csv('Connecttrain.csv') 

test_df = pd.read_csv('Connecttest.csv') 

 

# Step 2: Basic Exploratory Data Analysis (EDA) 

 

# Display basic information about the training and test datasets 

print("Training Data Info:") 

train_df.info()  # Shows column names, non-null counts, and data types for 

the training set 

 

print("\nTest Data Info:") 

test_df.info()  # Shows column names, non-null counts, and data types for 

the test set 

 

# Display basic statistics of the training and test datasets to understand 

distributions 

print("\nTraining Data Description:") 

print(train_df.describe())  # Provides statistics for numerical columns in 

the training set 
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print("\nTest Data Description:") 

print(test_df.describe())  # Provides statistics for numerical columns in 

the test set 

 

# Check for any missing values in the training and test datasets 

print("\nMissing values in Training Data:") 

print(train_df.isnull().sum())  # Shows count of missing values in each 

column of the training set 

 

print("\nMissing values in Test Data:") 

print(test_df.isnull().sum())  # Shows count of missing values in each 

column of the test set 

 

# Check the distribution of the target variable in both training and test 

sets to understand class imbalance 

target = 'Defect tag' 

print("\nTarget variable distribution in Training Data:") 

print(train_df[target].value_counts())  # Count of each class in the 

training set target 

 

print("\nTarget variable distribution in Test Data:") 

print(test_df[target].value_counts())  # Count of each class in the test 

set target 

 

# Visualize the correlation matrix for features in the training set 

features = ['Total car west', 'Total train east', 'Total train west', 

'Total deflection', 'Defect amplitude', 'Freight speed', 'Passenger 

speed'] 

plt.figure(figsize=(10, 8)) 

corr_matrix = train_df[features].corr() 

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f') 

plt.title("Feature Correlation Matrix (Training Data)") 

plt.show() 
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# Plot the distribution of each feature in the training set to visually 

understand data ranges 

for feature in features: 

    plt.figure(figsize=(8, 4)) 

    plt.hist(train_df[feature], bins=30, color='lightblue', 

edgecolor='black') 

    plt.title(f"Distribution of {feature} (Training Data)") 

    plt.xlabel(feature) 

    plt.ylabel('Frequency') 

    plt.show() 

 

# Step 3: Define features and target variable 

features = ['Total car west', 'Total train east', 'Total train west', 

'Total deflection', 'Defect amplitude', 'Freight speed', 'Passenger 

speed'] 

target = 'Defect tag' 

 

# Step 4: Prepare data for training and testing 

X_train = train_df[features].values 

y_train = train_df[target].values 

X_test = test_df[features].values 

y_test = test_df[target].values 

 

# Step 5: Parameter grid for RandomizedSearchCV with regularization 

parameters 

param_grid = { 

    'xgbclassifier__max_depth': [3, 4], 

    'xgbclassifier__learning_rate': [0.01, 0.1], 

    'xgbclassifier__n_estimators': [100, 200], 

    'xgbclassifier__subsample': [0.7, 0.8], 

    'xgbclassifier__colsample_bytree': [0.8, 0.9], 

    'xgbclassifier__reg_lambda': [1, 2, 5],  # L2 regularization 
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    'xgbclassifier__alpha': [0, 0.5, 1],     # L1 regularization 

} 

 

# Step 6: Create a pipeline with standard scaling and XGBoost classifier 

pipeline = make_pipeline( 

    StandardScaler(), 

    XGBClassifier(use_label_encoder=False, eval_metric='logloss', 

random_state=42) 

) 

 

# Step 7: Stratified K-Fold for cross-validation 

cv = StratifiedKFold(n_splits=3, shuffle=True, random_state=42) 

 

# Step 8: Use RandomizedSearchCV for faster hyperparameter tuning 

randomized_search = RandomizedSearchCV(pipeline, 

param_distributions=param_grid, n_iter=10, cv=cv, n_jobs=-1, 

scoring='accuracy', random_state=42) 

randomized_search.fit(X_train, y_train) 

 

# Step 9: Output the best parameters 

print("Best parameters found: ", randomized_search.best_params_) 

print("Best cross-validation score: 

{:.2f}".format(randomized_search.best_score_)) 

 

# Step 10: Learning curve data using the best estimator 

train_sizes, train_scores, test_scores = learning_curve( 

    randomized_search.best_estimator_, X_train, y_train, cv=cv, n_jobs=-1, 

train_sizes=np.linspace(0.1, 1.0, 5), scoring='accuracy') 

 

# Step 11: Predict on the testing data using the best model 

y_pred = randomized_search.best_estimator_.predict(X_test) 

 

# Step 12: Print accuracy and classification report 
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train_accuracy = accuracy_score(y_train, 

randomized_search.best_estimator_.predict(X_train)) 

test_accuracy = accuracy_score(y_test, y_pred) 

print("Train Accuracy:", train_accuracy) 

print("Test Accuracy:", test_accuracy) 

print("Classification Report:") 

print(classification_report(y_test, y_pred)) 

 

# Step 13: Get the best XGBoost model from the pipeline 

best_xgb_model = 

randomized_search.best_estimator_.named_steps['xgbclassifier'] 

 

# Step 14: Get feature importances from the best XGBoost model 

feature_importances = best_xgb_model.feature_importances_ 

 

# Step 15: Plot feature importances 

plt.figure(figsize=(10, 6)) 

plt.barh(features, feature_importances, color='skyblue') 

plt.xlabel('Feature Importance') 

plt.title('Feature Importance') 

plt.show() 

 

# RandomForest code to predict the Defect tag (2007 - 2012 training / 2013 

test) 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import StratifiedKFold 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import make_pipeline 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score, classification_report 

import matplotlib.pyplot as plt 
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import seaborn as sns 

 

# Step 1: Load the DataFrames 

train_df = pd.read_csv('Connecttrain.csv') 

test_df = pd.read_csv('Connecttest.csv') 

 

# Step 2: Basic Exploratory Data Analysis (EDA) 

 

# Display basic information about the training and test datasets 

print("Training Data Info:") 

train_df.info()  # Shows column names, non-null counts, and data types for 

the training set 

 

print("\nTest Data Info:") 

test_df.info()  # Shows column names, non-null counts, and data types for 

the test set 

 

# Display basic statistics of the training and test datasets to understand 

distributions 

print("\nTraining Data Description:") 

print(train_df.describe())  # Provides statistics for numerical columns in 

the training set 

 

print("\nTest Data Description:") 

print(test_df.describe())  # Provides statistics for numerical columns in 

the test set 

 

# Check for any missing values in the training and test datasets 

print("\nMissing values in Training Data:") 

print(train_df.isnull().sum())  # Shows count of missing values in each 

column of the training set 

 

print("\nMissing values in Test Data:") 
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print(test_df.isnull().sum())  # Shows count of missing values in each 

column of the test set 

 

# Check the distribution of the target variable in both training and test 

sets to understand class imbalance 

target = 'Defect tag' 

print("\nTarget variable distribution in Training Data:") 

print(train_df[target].value_counts())  # Count of each class in the 

training set target 

 

print("\nTarget variable distribution in Test Data:") 

print(test_df[target].value_counts())  # Count of each class in the test 

set target 

 

# Visualize the correlation matrix for features in the training set 

features = ['Total car west', 'Total train east', 'Total train west', 

'Total deflection', 'Defect amplitude', 'Freight speed', 'Passenger 

speed'] 

plt.figure(figsize=(10, 8)) 

corr_matrix = train_df[features].corr() 

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f') 

plt.title("Feature Correlation Matrix (Training Data)") 

plt.show() 

 

# Plot the distribution of each feature in the training set to visually 

understand data ranges 

for feature in features: 

    plt.figure(figsize=(8, 4)) 

    plt.hist(train_df[feature], bins=30, color='lightblue', 

edgecolor='black') 

    plt.title(f"Distribution of {feature} (Training Data)") 

    plt.xlabel(feature) 

    plt.ylabel('Frequency') 
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    plt.show() 

 

# Step 3: Define features and target variable 

features = ['Total car west', 'Total train east', 'Total train west', 

'Total deflection', 'Defect amplitude', 'Freight speed', 'Passenger 

speed'] 

target = 'Defect tag' 

 

# Step 4: Prepare data for training and testing 

X_train = train_df[features].values 

y_train = train_df[target].values 

X_test = test_df[features].values 

y_test = test_df[target].values 

 

# Step 5: Create a pipeline with standard scaling and Random Forest 

classifier 

# Adjusting n_estimators, max_depth, and min_samples_split to manage 

complexity and avoid overfitting 

model = RandomForestClassifier(n_estimators=100, max_depth=10, 

min_samples_split=4, random_state=42) 

pipeline = make_pipeline(StandardScaler(), model) 

 

# Step 6: Stratified K-Fold for cross-validation 

cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) 

 

# Step 7: Fit the pipeline on the training data 

pipeline.fit(X_train, y_train) 

 

# Step 8: Predict on the training data to calculate training accuracy 

y_train_pred = pipeline.predict(X_train) 

train_accuracy = accuracy_score(y_train, y_train_pred) 

 

# Step 9: Predict on the testing data 
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y_pred = pipeline.predict(X_test) 

test_accuracy = accuracy_score(y_test, y_pred) 

 

# Step 10: Print training and test accuracy 

print("Training Accuracy:", train_accuracy) 

print("Test Accuracy:", test_accuracy) 

 

# Step 11: Print classification report 

print("Classification Report:") 

print(classification_report(y_test, y_pred)) 

 

# Step 12: Get the feature importances from the RandomForest model 

importances = model.feature_importances_ 

 

# Step 13: Sort the importances and features for plotting 

indices = np.argsort(importances) 

sorted_features = np.array(features)[indices] 

sorted_importances = importances[indices] 

 

# Step 14: Plot feature importances 

plt.figure(figsize=(10, 6)) 

plt.barh(sorted_features, sorted_importances, color='skyblue') 

plt.xlabel('Feature Importance') 

plt.title('Feature Importance from RandomForest') 

plt.show() 

 

#catboost to predict the defect tag (2007 - 2012 training / 2013 test) 

 

import pandas as pd 

import numpy as np 
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from sklearn.model_selection import StratifiedKFold, learning_curve, 

RandomizedSearchCV 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import make_pipeline 

from sklearn.metrics import accuracy_score, classification_report 

from catboost import CatBoostClassifier 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

# Step 1: Load the DataFrames 

train_df = pd.read_csv('Connecttrain.csv') 

test_df = pd.read_csv('Connecttest.csv') 

 

# Step 2: Basic Exploratory Data Analysis (EDA) 

 

# Display basic information about the training and test datasets 

print("Training Data Info:") 

train_df.info() 

 

print("\nTest Data Info:") 

test_df.info() 

 

# Display basic statistics of the training and test datasets to understand 

distributions 

print("\nTraining Data Description:") 

print(train_df.describe()) 

 

print("\nTest Data Description:") 

print(test_df.describe()) 

 

# Check for any missing values in the training and test datasets 

print("\nMissing values in Training Data:") 
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print(train_df.isnull().sum()) 

 

print("\nMissing values in Test Data:") 

print(test_df.isnull().sum()) 

 

# Check the distribution of the target variable in both training and test 

sets to understand class imbalance 

target = 'Defect tag' 

print("\nTarget variable distribution in Training Data:") 

print(train_df[target].value_counts()) 

 

print("\nTarget variable distribution in Test Data:") 

print(test_df[target].value_counts()) 

 

# Visualize the correlation matrix for features in the training set 

features = ['Total car west', 'Total train east', 'Total train west', 

'Total deflection', 'Defect amplitude', 'Freight speed', 'Passenger 

speed'] 

plt.figure(figsize=(10, 8)) 

corr_matrix = train_df[features].corr() 

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f') 

plt.title("Feature Correlation Matrix (Training Data)") 

plt.show() 

 

# Plot the distribution of each feature in the training set to visually 

understand data ranges 

for feature in features: 

    plt.figure(figsize=(8, 4)) 

    plt.hist(train_df[feature], bins=30, color='lightblue', 

edgecolor='black') 

    plt.title(f"Distribution of {feature} (Training Data)") 

    plt.xlabel(feature) 

    plt.ylabel('Frequency') 
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    plt.show() 

 

# Step 3: Define features and target variable 

features = ['Total car west', 'Total train east', 'Total train west', 

'Total deflection', 'Defect amplitude', 'Freight speed', 'Passenger 

speed'] 

target = 'Defect tag' 

 

# Step 4: Prepare data for training and testing 

X_train = train_df[features].values 

y_train = train_df[target].values 

X_test = test_df[features].values 

y_test = test_df[target].values 

 

# Step 5: Parameter grid for RandomizedSearchCV with regularization 

parameters 

param_grid = { 

    'catboostclassifier__depth': [4, 6, 8], 

    'catboostclassifier__learning_rate': [0.01, 0.1, 0.2], 

    'catboostclassifier__iterations': [100, 200, 300], 

    'catboostclassifier__l2_leaf_reg': [1, 3, 5, 7], 

    'catboostclassifier__border_count': [128, 160, 256], 

    'catboostclassifier__bagging_temperature': [0.5, 1, 2], 

} 

 

# Step 6: Create a pipeline with standard scaling and CatBoost classifier 

pipeline = make_pipeline( 

    StandardScaler(), 

    CatBoostClassifier(verbose=0, random_state=42)  # verbose=0 to 

suppress output during fitting 

) 
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# Step 7: Stratified K-Fold for cross-validation 

cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) 

 

# Step 8: Use RandomizedSearchCV for faster hyperparameter tuning 

randomized_search = RandomizedSearchCV(pipeline, 

param_distributions=param_grid, n_iter=10, cv=cv, n_jobs=-1, 

scoring='accuracy', random_state=42) 

randomized_search.fit(X_train, y_train) 

 

# Step 9: Output the best parameters 

print("Best parameters found: ", randomized_search.best_params_) 

print("Best cross-validation score: 

{:.2f}".format(randomized_search.best_score_)) 

 

# Step 10: Learning curve data using the best estimator 

train_sizes, train_scores, test_scores = learning_curve( 

    randomized_search.best_estimator_, X_train, y_train, cv=cv, n_jobs=-1, 

train_sizes=np.linspace(0.1, 1.0, 5), scoring='accuracy') 

 

# Step 11: Predict on the testing data using the best model 

y_pred = randomized_search.best_estimator_.predict(X_test) 

 

# Step 12: Print accuracy and classification report 

train_accuracy = accuracy_score(y_train, 

randomized_search.best_estimator_.predict(X_train)) 

test_accuracy = accuracy_score(y_test, y_pred) 

print("Train Accuracy:", train_accuracy) 

print("Test Accuracy:", test_accuracy) 

print("Classification Report:") 

print(classification_report(y_test, y_pred)) 

 

# Step 13: Get the best CatBoost model from the pipeline 
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best_cat_model = 

randomized_search.best_estimator_.named_steps['catboostclassifier'] 

 

# Step 14: Get feature importances from the best CatBoost model 

feature_importances = best_cat_model.get_feature_importance() 

 

# Step 15: Plot feature importances 

plt.figure(figsize=(10, 6)) 

plt.barh(features, feature_importances, color='skyblue') 

plt.xlabel('Feature Importance') 

plt.title('Feature Importance (CatBoost)') 

plt.show() 

 

# XGBoost codes to predict the defect Tag using Predicted amplitude 

 

import pandas as pd 

import xgboost as xgb 

from sklearn.model_selection import train_test_split, RandomizedSearchCV, 

cross_val_score 

from sklearn.metrics import roc_auc_score, classification_report 

from imblearn.over_sampling import SMOTE 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

# Load the dataset 

df = pd.read_csv('Pamp.csv') 

 

# Step 2: Define the features (X) and target (Y) 

X = df[['Total car east', 'Total car west', 'Total train east', 'Total 

train west', 

        'Total deflection', 'Class', 'Freight speed', 'Passenger speed', 

'Prediction']] 
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Y = df['Defect tag'] 

 

# Step 3: Use SMOTE to oversample the minority class 

smote = SMOTE(random_state=42) 

X_resampled, Y_resampled = smote.fit_resample(X, Y) 

 

# Step 4: Split the dataset into training and testing sets 

X_train, X_test, Y_train, Y_test = train_test_split(X_resampled, 

Y_resampled, test_size=0.2, random_state=42) 

 

# Step 5: Define the XGBoost classifier with manually tuned 

scale_pos_weight 

xgb_model = xgb.XGBClassifier(scale_pos_weight=1.0)  # Adjust 

`scale_pos_weight` if needed 

 

# Step 6: Define the parameter grid for RandomizedSearchCV 

param_dist = { 

    'n_estimators': [50, 100, 200], 

    'max_depth': [3, 5, 7], 

    'learning_rate': [0.01, 0.05, 0.1], 

    'subsample': [0.6, 0.8, 1.0], 

    'colsample_bytree': [0.6, 0.8, 1.0], 

    'gamma': [0, 0.1, 0.2], 

    'reg_alpha': [0, 0.1, 0.5], 

    'reg_lambda': [1, 1.5, 2] 

} 

 

# Step 7: Use AUC-ROC as the scoring metric for RandomizedSearchCV 

random_search = RandomizedSearchCV(xgb_model, 

param_distributions=param_dist, 

                                   n_iter=20, scoring='roc_auc', cv=5, 

random_state=42, n_jobs=-1, verbose=2) 
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# Step 8: Fit the model 

random_search.fit(X_train, Y_train) 

 

# Step 9: Best parameters found by RandomizedSearchCV 

best_params = random_search.best_params_ 

print(f'Best Parameters: {best_params}') 

 

# Step 10: Use the best model found 

best_model = random_search.best_estimator_ 

 

# Step 11: Make predictions on the training set 

Y_train_pred = best_model.predict(X_train) 

 

# Step 12: Make predictions on the test set 

Y_test_pred = best_model.predict(X_test) 

 

# Step 13: Calculate the AUC-ROC score 

roc_auc_train = roc_auc_score(Y_train, Y_train_pred) 

roc_auc_test = roc_auc_score(Y_test, Y_test_pred) 

print(f'Training AUC-ROC Score: {roc_auc_train}') 

print(f'Test AUC-ROC Score: {roc_auc_test}') 

 

# Step 14: Cross-validation with 5 folds using the best model 

cv_scores = cross_val_score(best_model, X_resampled, Y_resampled, cv=5, 

scoring='roc_auc') 

print(f'Cross-Validation Scores (AUC-ROC): {cv_scores}') 

print(f'Mean Cross-Validation Score (AUC-ROC): {cv_scores.mean()}') 

 

# Step 15: Classification report for the test set 

report = classification_report(Y_test, Y_test_pred) 

print('Classification Report:') 
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print(report) 

 

# Random Forest codes to predict the defect Tag using Predicted amplitude 

 

import pandas as pd 

from sklearn.model_selection import train_test_split, RandomizedSearchCV, 

cross_val_score 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score, classification_report 

from sklearn.pipeline import Pipeline 

from sklearn.preprocessing import StandardScaler 

from imblearn.over_sampling import SMOTE 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

# Load the dataset 

df = pd.read_csv('Pamp.csv') 

 

# Step 1: Basic Exploratory Data Analysis (EDA) 

 

# Display basic information about the dataset 

print("Dataset Info:") 

df.info()  # Shows column names, non-null counts, and data types 

 

# Display basic statistics of the dataset to understand distributions 

print("\nDataset Description:") 

print(df.describe())  # Provides mean, std, min, max, and quartile values 

for numerical columns 

 

# Check for any missing values in the dataset 

print("\nMissing values in each column:") 

print(df.isnull().sum())  # Shows count of missing values in each column 
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# Check the distribution of the target variable to understand class 

imbalance 

target = 'Defect tag' 

print("\nTarget variable distribution:") 

print(df[target].value_counts())  # Provides the count of each class in 

the target column 

 

# Visualize the correlation matrix to understand relationships between 

features 

features = ['Total car east', 'Total car west', 'Total train east', 'Total 

train west', 

            'Total deflection', 'Class', 'Freight speed', 'Passenger 

speed', 'Prediction'] 

plt.figure(figsize=(10, 8)) 

corr_matrix = df[features].corr() 

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f') 

plt.title("Feature Correlation Matrix") 

plt.show() 

 

# Optional: Plot the distribution of each feature to visually understand 

data ranges 

for feature in features: 

    plt.figure(figsize=(8, 4)) 

    plt.hist(df[feature], bins=30, color='lightblue', edgecolor='black') 

    plt.title(f"Distribution of {feature}") 

    plt.xlabel(feature) 

    plt.ylabel('Frequency') 

    plt.show() 

 

# Step 2: Define the features (X) and target (Y) 

X = df[['Total car east', 'Total car west', 'Total train east', 'Total 

train west', 
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        'Total deflection', 'Class', 'Freight speed', 'Passenger 

speed','Defect type','Prediction']] 

Y = df['Defect tag'] 

 

# Step 3: Apply SMOTE to oversample the minority class 

smote = SMOTE(random_state=42) 

X_resampled, Y_resampled = smote.fit_resample(X, Y) 

 

# Step 4: Split the resampled dataset into training and testing sets 

X_train, X_test, Y_train, Y_test = train_test_split(X_resampled, 

Y_resampled, test_size=0.2, random_state=42) 

 

# Step 5: Set up a pipeline with scaling and Random Forest 

pipeline = Pipeline([ 

    ('scaler', StandardScaler()),  # Feature scaling 

    ('rf', RandomForestClassifier(random_state=42))  # Random forest 

classifier 

]) 

 

# Step 6: Define the parameter grid for RandomizedSearchCV 

param_dist = { 

    'rf__n_estimators': [50, 100, 200], 

    'rf__max_depth': [None, 10, 20, 30], 

    'rf__min_samples_split': [2, 5, 10], 

    'rf__min_samples_leaf': [1, 2, 4], 

    'rf__bootstrap': [True, False] 

} 

 

# Step 7: RandomizedSearchCV to find the best hyperparameters 

random_search = RandomizedSearchCV(pipeline, 

param_distributions=param_dist, 

                                   n_iter=20, scoring='accuracy', cv=5, 

random_state=42, n_jobs=-1, verbose=2) 
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# Step 8: Fit the model 

random_search.fit(X_train, Y_train) 

 

# Step 9: Best parameters found by RandomizedSearchCV 

best_params = random_search.best_params_ 

print(f'Best Parameters: {best_params}') 

 

# Step 10: Use the best model found 

best_model = random_search.best_estimator_ 

 

# Step 11: Make predictions on the training set 

Y_train_pred = best_model.predict(X_train) 

 

# Step 12: Make predictions on the test set 

Y_test_pred = best_model.predict(X_test) 

 

# Step 13: Calculate test accuracy 

test_accuracy = accuracy_score(Y_test, Y_test_pred) 

print(f'Test Accuracy: {test_accuracy}') 

 

# Step 14: Cross-validation with 5 folds using the best model 

cv_scores = cross_val_score(best_model, X_resampled, Y_resampled, cv=5, 

scoring='accuracy') 

print(f'Cross-Validation Scores: {cv_scores}') 

print(f'Mean Cross-Validation Score: {cv_scores.mean()}') 

 

# Step 15: Classification report for the test set 

report = classification_report(Y_test, Y_test_pred) 

print('Classification Report:') 

print(report) 
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# CatBoost codes to predict the defect Tag using Predicted amplitude 

 

import pandas as pd 

from catboost import CatBoostClassifier 

from sklearn.model_selection import train_test_split, RandomizedSearchCV, 

StratifiedKFold, cross_val_score 

from sklearn.metrics import roc_auc_score, classification_report, 

accuracy_score 

from imblearn.over_sampling import SMOTE 

 

# Load the dataset 

df = pd.read_csv('Pamp.csv') 

 

# Step 2: Define the features (X) and target (Y) 

X = df[['Total car east', 'Total car west', 'Total train east', 'Total 

train west', 

        'Total deflection', 'Class', 'Freight speed', 'Passenger speed', 

'Prediction']] 

Y = df['Defect tag'] 

 

# Step 3: Use SMOTE to oversample the minority class 

smote = SMOTE(random_state=42) 

X_resampled, Y_resampled = smote.fit_resample(X, Y) 

 

# Step 4: Split the dataset into training and testing sets 

X_train, X_test, Y_train, Y_test = train_test_split(X_resampled, 

Y_resampled, test_size=0.2, random_state=42) 

 

# Step 5: Define the CatBoost model 

catboost_model = CatBoostClassifier(random_state=42, silent=True) 
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# Step 6: Define the parameter grid for hyperparameter tuning, including 

class weights 

catboost_param_grid = { 

    'iterations': [500, 700, 1000], 

    'depth': [6, 8], 

    'learning_rate': [0.01, 0.03], 

    'l2_leaf_reg': [9, 11, 13], 

    'border_count': [128, 254], 

    'bagging_temperature': [0.5, 1.0], 

    'class_weights': [{0: 1, 1: 1.2}, {0: 1, 1: 1.1}]  # Further lowering 

class weight for class 1 

} 

 

# Step 7: Hyperparameter tuning using RandomizedSearchCV with stratified 

k-fold cross-validation 

skf = StratifiedKFold(n_splits=5) 

catboost_random_search = RandomizedSearchCV( 

    estimator=catboost_model, 

    param_distributions=catboost_param_grid, 

    n_iter=50, 

    cv=skf, 

    verbose=2, 

    random_state=42, 

    scoring='roc_auc' 

) 

 

# Step 8: Fit the CatBoost model with hyperparameter tuning 

catboost_random_search.fit(X_train, Y_train) 

print(f"Best CatBoost Parameters: {catboost_random_search.best_params_}") 

 

# Step 9: Use the best model for predictions 

catboost_best_model = catboost_random_search.best_estimator_ 
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# Step 10: Make predictions on the test set 

Y_test_pred = catboost_best_model.predict(X_test) 

Y_train_pred = catboost_best_model.predict(X_train) 

 

# Step 11: Calculate and print the AUC-ROC score and classification report 

roc_auc_test = roc_auc_score(Y_test, Y_test_pred) 

print(f'Test AUC-ROC Score: {roc_auc_test}') 

 

# Classification report 

report = classification_report(Y_test, Y_test_pred) 

print('Classification Report:') 

print(report) 

 

# Step 12: Calculate and print training and test accuracy 

train_accuracy = accuracy_score(Y_train, Y_train_pred) 

test_accuracy = accuracy_score(Y_test, Y_test_pred) 

print(f'Training Accuracy: {train_accuracy}') 

print(f'Test Accuracy: {test_accuracy}') 

 

Classification model codes to predict the defect type using Logistic Regression, 

XGBoost, Random Forest and Cat Boost 

#logistic Regression to predict defect type (80% / 20%) 

import pandas as pd 

from sklearn.model_selection import train_test_split, GridSearchCV 

from sklearn.linear_model import LogisticRegression 

from sklearn.metrics import classification_report, accuracy_score, 

make_scorer, f1_score, precision_score, recall_score 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import Pipeline 

 



    

 

184 

 

# Load the dataset 

file_path = 'Connect.csv'  # Make sure this file path is correct for your 

dataset 

data = pd.read_csv(file_path) 

 

# Define the features and the target variable (Defect type) 

features = ['Line segment number', 'Track standard number', 'Milepost', 

'Total train east', 

            'Total train west', 'Total deflection', 'Class', 'Freight 

speed', 'Passenger speed'] 

X = data[features] 

y = data['Defect type']  # Target variable: Defect type 

 

# Split the data into training and testing sets (80% training, 20% 

testing) 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 

# Create a pipeline to scale the data and then apply logistic regression 

pipe = Pipeline([ 

    ('scaler', StandardScaler()),  # Scaling the data 

    ('logistic', LogisticRegression(class_weight='balanced'))  # Logistic 

regression 

]) 

 

# Extend the hyperparameters grid for wider tuning 

param_grid = [ 

    {'logistic__penalty': ['l1', 'l2'], 

     'logistic__C': [0.001, 0.01, 0.1, 1.0, 10, 100], 

     'logistic__solver': ['liblinear', 'saga'], 

     'logistic__max_iter': [200, 500, 1000]}, 

    {'logistic__penalty': ['elasticnet'], 

     'logistic__C': [0.001, 0.01, 0.1, 1.0, 10, 100], 
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     'logistic__solver': ['saga'], 

     'logistic__l1_ratio': [0.5, 0.7, 0.9], 

     'logistic__max_iter': [200, 500, 1000]} 

] 

 

# Custom scorers to evaluate accuracy, F1-macro, precision, and recall 

scorers = { 

    'accuracy': 'accuracy', 

    'f1_macro': make_scorer(f1_score, average='macro'), 

    'precision_macro': make_scorer(precision_score, average='macro'), 

    'recall_macro': make_scorer(recall_score, average='macro') 

} 

 

# Initialize GridSearchCV 

grid_search = GridSearchCV(estimator=pipe, param_grid=param_grid, cv=5, 

scoring=scorers, refit='f1_macro', verbose=1, n_jobs=-1) 

 

# Fit the grid search to the training data 

grid_search.fit(X_train, y_train) 

 

# Get the best parameters from the grid search 

best_params = grid_search.best_params_ 

print("Best Parameters:", best_params) 

 

# Use the best estimator to predict on the test set 

best_model = grid_search.best_estimator_ 

 

# Predictions on the test set 

y_pred = best_model.predict(X_test) 

 

# Calculate training accuracy 
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train_accuracy = best_model.score(X_train, y_train) 

 

# Calculate test accuracy 

test_accuracy = accuracy_score(y_test, y_pred) 

 

# Generate and display a classification report 

classification_rep = classification_report(y_test, y_pred) 

 

# Print results 

print(f"Training Accuracy: {train_accuracy:.2f}") 

print(f"Test Accuracy: {test_accuracy:.2f}") 

print("Classification Report:") 

print(classification_rep) 

 

# Cross-validation scores 

print("Cross-validation scores:") 

for scorer in scorers: 

    print(f"{scorer}: 

{grid_search.cv_results_[f'mean_test_{scorer}'].max()}") 

 

#XGBoost code to predict defect type (80% 20% split) 

import pandas as pd 

from sklearn.model_selection import train_test_split, RandomizedSearchCV, 

StratifiedKFold 

from sklearn.metrics import accuracy_score, classification_report, 

confusion_matrix 

from xgboost import XGBClassifier 

from sklearn.preprocessing import StandardScaler 

from imblearn.over_sampling import SMOTE 

from imblearn.pipeline import Pipeline 

import matplotlib.pyplot as plt 

import seaborn as sns 
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import numpy as np 

 

# Load the dataset 

df = pd.read_csv('Connect.csv') 

 

# Step 1: Exploratory Data Analysis (EDA) 

# Check the basic statistics of the dataset 

print("Dataset Statistics:\n", df.describe()) 

 

# Check for missing values 

print("Missing Values:\n", df.isnull().sum()) 

 

# Plot distribution of target variable ('Defect type') 

plt.figure(figsize=(8, 6)) 

sns.countplot(x='Defect type', data=df) 

plt.title('Distribution of Defect Type') 

plt.show() 

 

# Step 2: Correlation Matrix 

# Calculate and display the correlation matrix for the features 

features = ['Line segment number', 'Track standard number', 'Milepost', 

'Total train east', 

            'Total train west', 'Total deflection', 'Class', 'Freight 

speed', 'Passenger speed'] 

 

plt.figure(figsize=(10, 8)) 

corr_matrix = df[features].corr() 

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f') 

plt.title("Feature Correlation Matrix") 

plt.show() 

 

# Step 3: Feature Engineering 
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# Create a new feature as an interaction between two features ('Total car 

east' and 'Total car west') 

df['Total cars'] = df['Total car east'] + df['Total car west'] 

 

# Step 4: Define Features and Target Variable 

features = ['Line segment number', 'Track standard number', 'Milepost', 

'Total cars', 'Total train east', 

            'Total train west', 'Total deflection', 'Class', 'Freight 

speed', 'Passenger speed'] 

target = 'Defect type' 

 

# Prepare the feature matrix (X) and target vector (y) 

X = df[features].values 

y = df[target].values 

 

# Step 5: Split Data into Training and Testing Sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, 

random_state=0, stratify=y) 

 

# Step 6: Create a Pipeline with SMOTE, StandardScaler, and XGBClassifier 

pipeline = Pipeline([ 

    ('smote', SMOTE(random_state=42)),  # SMOTE for oversampling the 

minority class 

    ('scaler', StandardScaler()),  # Standardize the features 

    ('classifier', XGBClassifier(random_state=42, use_label_encoder=False, 

eval_metric='mlogloss'))  # XGBoost Classifier 

]) 

 

# Step 7: Define the Parameter Grid for Hyperparameter Tuning 

param_grid = { 

    'classifier__n_estimators': [100, 200], 

    'classifier__max_depth': [3, 5, 7],  # Smaller depth for gradient 

boosting 
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    'classifier__learning_rate': [0.01, 0.1, 0.2], 

    'classifier__subsample': [0.8, 1.0], 

    'classifier__colsample_bytree': [0.8, 1.0] 

} 

 

# Step 8: Use RandomizedSearchCV with StratifiedKFold for Cross-Validation 

stratified_kfold = StratifiedKFold(n_splits=5, shuffle=True, 

random_state=42)  # 5-fold stratified cross-validation 

random_search = RandomizedSearchCV(pipeline, 

param_distributions=param_grid, n_iter=20, cv=stratified_kfold, 

                                   scoring='accuracy', n_jobs=-1, 

verbose=2, random_state=42) 

 

# Step 9: Fit the Randomized Search to the Training Data 

random_search.fit(X_train, y_train) 

 

# Step 10: Get the Best Parameters from the Randomized Search 

best_params = random_search.best_params_ 

print("Best parameters found: ", best_params) 

 

# Step 11: Get the Best Model from RandomizedSearchCV 

best_model = random_search.best_estimator_ 

 

# Step 12: Make Predictions on Both Training and Test Sets 

y_train_pred = best_model.predict(X_train) 

y_test_pred = best_model.predict(X_test) 

 

# Step 13: Calculate and Print Training Accuracy 

training_accuracy = accuracy_score(y_train, y_train_pred) 

print(f"Training Accuracy: {training_accuracy:.4f}") 

 

# Step 14: Calculate and Print Test Accuracy 



    

 

190 

 

test_accuracy = accuracy_score(y_test, y_test_pred) 

print(f"Test Accuracy: {test_accuracy:.4f}") 

 

# Step 15: Print the Classification Report for the Test Set 

print("Classification Report:") 

print(classification_report(y_test, y_test_pred)) 

 

# Step 16: Plot the Confusion Matrix for the Test Set 

conf_matrix = confusion_matrix(y_test, y_test_pred) 

plt.figure(figsize=(6, 6)) 

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', cbar=False, 

            xticklabels=np.unique(y), yticklabels=np.unique(y)) 

plt.title('Confusion Matrix') 

plt.xlabel('Predicted') 

plt.ylabel('True') 

plt.show() 

 

# Step 17: Extract and Plot Feature Importances from the Best Model 

importances = best_model.named_steps['classifier'].feature_importances_ 

indices = np.argsort(importances)[::-1] 

 

# Step 18: Plot the Feature Importances 

plt.figure(figsize=(10, 6)) 

plt.title('Feature Importances') 

sns.barplot(y=np.array(features)[indices], x=importances[indices], 

orient='h') 

plt.xlabel('Relative Importance') 

plt.show() 

 

#Random Forest code to predict defect type (80% 20% split) 
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from imblearn.over_sampling import SMOTE 

from imblearn.ensemble import BalancedRandomForestClassifier 

from sklearn.model_selection import train_test_split, StratifiedKFold, 

cross_val_score 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.feature_selection import RFE 

from sklearn.preprocessing import StandardScaler 

from imblearn.pipeline import Pipeline 

from sklearn.metrics import accuracy_score, classification_report, 

confusion_matrix 

import matplotlib.pyplot as plt 

import seaborn as sns 

import numpy as np 

 

# Step 1: Define features and target variable 

# Assuming df is your DataFrame containing the data 

features = ['Line segment number', 'Track standard number', 'Milepost', 

'Total car east', 'Total car west', 'Total train east', 

            'Total train west', 'Total deflection', 'Class', 'Freight 

speed', 'Passenger speed'] 

target = 'Defect type' 

 

# Step 2: Feature Engineering 

# Creating a new feature 'Total cars' as the sum of 'Total car east' and 

'Total car west' 

df['Total cars'] = df['Total car east'] + df['Total car west'] 

 

# Update features list to include the new feature 'Total cars' 

features = ['Line segment number', 'Track standard number', 'Milepost', 

'Total cars', 'Total train east', 

            'Total train west', 'Total deflection', 'Class', 'Freight 

speed', 'Passenger speed'] 
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# Step 3: Prepare the data 

X = df[features].values  # Feature matrix 

y = df[target].values    # Target variable 

 

# Step 4: Perform feature selection using Recursive Feature Elimination 

(RFE) 

# Selecting the top 8 features using RandomForestClassifier as the 

estimator 

rfe_selector = RFE(estimator=RandomForestClassifier(), 

n_features_to_select=8, step=1) 

X_selected = rfe_selector.fit_transform(X, y)  # Fit and transform the 

feature matrix 

selected_features = [features[i] for i in range(len(features)) if 

rfe_selector.support_[i]]  # Keep only selected features 

 

# Step 5: Split the data into training and testing sets (80% training, 20% 

testing) 

X_train, X_test, y_train, y_test = train_test_split(X_selected, y, 

test_size=0.20, random_state=0, stratify=y) 

 

# Step 6: Apply SMOTE (Synthetic Minority Over-sampling Technique) to 

balance class 0 

# Increase the number of samples in class 0 to twice the mean of all class 

samples 

smote = SMOTE(sampling_strategy={0: int(np.mean(np.bincount(y)) * 2)}, 

random_state=42) 

X_train_smote, y_train_smote = smote.fit_resample(X_train, y_train) 

 

# Step 7: Define the BalancedRandomForestClassifier model 

brf = BalancedRandomForestClassifier( 

    random_state=42, 

    n_estimators=100,         # Number of trees 

    max_depth=15,             # Maximum depth of the tree 
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    min_samples_split=5,      # Minimum samples required to split an 

internal node 

    min_samples_leaf=2,       # Minimum samples required to be at a leaf 

node 

    sampling_strategy='all',  # Sampling strategy for balancing classes 

    replacement=True,         # Adopt future behavior: allow replacement 

in sampling 

    bootstrap=False           # Disable bootstrap sampling 

) 

 

# Step 8: Create a pipeline with StandardScaler (to standardize features) 

and BalancedRandomForestClassifier 

pipeline = Pipeline([ 

    ('scaler', StandardScaler()),  # Step to standardize features 

    ('classifier', brf)            # Balanced Random Forest Classifier 

]) 

 

# Step 9: Implement StratifiedKFold for stratified cross-validation (cv=5) 

stratified_kfold = StratifiedKFold(n_splits=5, shuffle=True, 

random_state=42) 

 

# Step 10: Perform cross-validation with 5 stratified folds 

cross_val_scores = cross_val_score(pipeline, X_train_smote, y_train_smote, 

cv=stratified_kfold, scoring='accuracy') 

 

# Step 11: Output the cross-validation results 

print(f"Cross-Validation Scores (Accuracy): {cross_val_scores}") 

print(f"Mean Cross-Validation Score (Accuracy): 

{cross_val_scores.mean():.4f}") 

 

# Step 12: Fit the pipeline to the SMOTE-enhanced training data 

pipeline.fit(X_train_smote, y_train_smote) 
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# Step 13: Make predictions on both the training and test sets 

y_train_pred = pipeline.predict(X_train)  # Predictions on the training 

set 

y_test_pred = pipeline.predict(X_test)    # Predictions on the test set 

 

# Step 14: Calculate and Print Training Accuracy 

training_accuracy = accuracy_score(y_train, y_train_pred) 

print(f"Training Accuracy: {training_accuracy:.4f}") 

 

# Step 15: Calculate and print the test accuracy 

test_accuracy = accuracy_score(y_test, y_test_pred) 

print("Test Accuracy:", test_accuracy) 

 

# Step 16: Print the classification report for the test set 

print("Classification Report:") 

print(classification_report(y_test, y_test_pred)) 

 

# Step 17: Extract and plot feature importances from the 

BalancedRandomForestClassifier 

importances = pipeline.named_steps['classifier'].feature_importances_  # 

Get feature importances 

indices = np.argsort(importances)[::-1]  # Sort feature importances in 

descending order 

 

# Step 18: Plot the feature importances 

plt.figure(figsize=(10, 6)) 

plt.title('Feature Importances') 

sns.barplot(y=np.array(selected_features)[indices], 

x=importances[indices], orient='h')  # Plot using the selected features 

plt.xlabel('Relative Importance') 

plt.show() 

 

#catBoost code to predict Defect Type (80/ 20%) 
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import pandas as pd 

from sklearn.model_selection import train_test_split, StratifiedKFold 

from sklearn.metrics import accuracy_score, classification_report, 

confusion_matrix 

from catboost import CatBoostClassifier 

from sklearn.preprocessing import StandardScaler 

from imblearn.over_sampling import SMOTE 

from imblearn.pipeline import Pipeline 

import matplotlib.pyplot as plt 

import seaborn as sns 

import numpy as np 

 

# Load the dataset 

df = pd.read_csv('Connect.csv') 

 

# Step 1: Exploratory Data Analysis (EDA) 

# Check the basic statistics of the dataset 

print("Dataset Statistics:\n", df.describe()) 

 

# Check for missing values 

print("Missing Values:\n", df.isnull().sum()) 

 

# Plot distribution of target variable ('Defect type') 

plt.figure(figsize=(8, 6)) 

sns.countplot(x='Defect type', data=df) 

plt.title('Distribution of Defect Type') 

plt.show() 

 

# Step 2: Correlation Matrix 

features = ['Line segment number', 'Track standard number', 'Milepost', 

'Total train east', 
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            'Total train west', 'Total deflection', 'Class', 'Freight 

speed', 'Passenger speed'] 

 

plt.figure(figsize=(10, 8)) 

corr_matrix = df[features].corr() 

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f') 

plt.title("Feature Correlation Matrix") 

plt.show() 

 

# Step 3: Feature Engineering 

# Create a new feature as an interaction between two features ('Total car 

east' and 'Total car west') 

df['Total cars'] = df['Total car east'] + df['Total car west'] 

 

# Step 4: Define Features and Target Variable 

features = ['Line segment number', 'Track standard number', 'Milepost', 

'Total cars', 'Total train east', 

            'Total train west', 'Total deflection', 'Class', 'Freight 

speed', 'Passenger speed'] 

target = 'Defect type' 

 

# Prepare the feature matrix (X) and target vector (y) 

X = df[features].values 

y = df[target].values 

 

# Step 5: Split Data into Training and Testing Sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, 

random_state=0, stratify=y) 

 

# Step 6: Create a Pipeline with StandardScaler, SMOTE, and 

CatBoostClassifier 

# Adding class_weights to handle class imbalance 

class_weights = [1, 1.5, 2] 
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pipeline = Pipeline([ 

    ('smote', SMOTE(random_state=42)),  # SMOTE for oversampling the 

minority class 

    ('scaler', StandardScaler()),  # Standardize the features 

    ('classifier', CatBoostClassifier(verbose=0, random_state=42, 

class_weights=class_weights))  # CatBoost Classifier 

]) 

 

# Step 7: Implement StratifiedKFold with 5 folds 

stratified_kfold = StratifiedKFold(n_splits=5, shuffle=True, 

random_state=42) 

 

# To store the scores for each fold 

fold_accuracies = [] 

 

# Perform stratified k-fold cross-validation 

for train_idx, val_idx in stratified_kfold.split(X_train, y_train): 

    # Get training and validation sets for this fold 

    X_train_fold, X_val_fold = X_train[train_idx], X_train[val_idx] 

    y_train_fold, y_val_fold = y_train[train_idx], y_train[val_idx] 

 

    # Fit the pipeline to the fold training data 

    pipeline.fit(X_train_fold, y_train_fold) 

 

    # Make predictions on the validation set 

    y_val_pred = pipeline.predict(X_val_fold) 

 

    # Calculate accuracy for the current fold 

    fold_accuracy = accuracy_score(y_val_fold, y_val_pred) 

    fold_accuracies.append(fold_accuracy) 
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    print(f"Fold Accuracy: {fold_accuracy:.4f}") 

 

# Step 8: Average accuracy across all 5 folds 

average_accuracy = np.mean(fold_accuracies) 

print(f"Average Stratified K-Fold Accuracy: {average_accuracy:.4f}") 

 

# Step 9: Fit the model to the entire training set after cross-validation 

pipeline.fit(X_train, y_train) 

 

# Step 10: Make Predictions on the Test Set 

y_test_pred = pipeline.predict(X_test) 

 

# Step 11: Calculate and Print Test Accuracy 

test_accuracy = accuracy_score(y_test, y_test_pred) 

print(f"Test Accuracy: {test_accuracy:.4f}") 

 

# Step 12: Print the Classification Report for the Test Set 

print("Classification Report:") 

print(classification_report(y_test, y_test_pred)) 

 

# Step 13: Plot the Confusion Matrix for the Test Set 

conf_matrix = confusion_matrix(y_test, y_test_pred) 

plt.figure(figsize=(6, 6)) 

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', cbar=False, 

            xticklabels=np.unique(y_test), yticklabels=np.unique(y_test)) 

plt.title('Confusion Matrix') 

plt.xlabel('Predicted') 

plt.ylabel('True') 

plt.show() 

 

# Step 14: Extract and Plot Feature Importances from the Best Model 
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importances = pipeline.named_steps['classifier'].get_feature_importance() 

indices = np.argsort(importances)[::-1] 

 

# Step 15: Plot the Feature Importances 

plt.figure(figsize=(10, 6)) 

plt.title('Feature Importances') 

sns.barplot(y=np.array(features)[indices], x=importances[indices], 

orient='h') 

plt.xlabel('Relative Importance') 

plt.show() 

 

 

# XGBoost code to predict Defect Type (2007 to 2012 - Training Data / 2013 

- Test data) 

 

import pandas as pd 

from sklearn.metrics import accuracy_score, classification_report, 

confusion_matrix 

from xgboost import XGBClassifier 

from sklearn.model_selection import RandomizedSearchCV, StratifiedKFold 

from imblearn.over_sampling import SMOTE 

from imblearn.pipeline import Pipeline 

import matplotlib.pyplot as plt 

import seaborn as sns 

import numpy as np 

 

# Step 1: Load the train and test datasets 

train_df = pd.read_csv('Connecttrain.csv') 

test_df = pd.read_csv('Connecttest.csv') 

 

# Step 2: Define features and target variable 
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features = ['Line segment number', 'Track standard number', 'Milepost', 

'Total car east', 'Total car west', 'Total train east', 

            'Total train west', 'Total deflection', 'Class', 'Freight 

speed', 'Passenger speed'] 

target = 'Defect type' 

 

# Step 3: Feature Engineering - Create 'Total cars' feature 

train_df['Total cars'] = train_df['Total car east'] + train_df['Total car 

west'] 

test_df['Total cars'] = test_df['Total car east'] + test_df['Total car 

west'] 

 

# Update the feature list to include the newly created 'Total cars' 

feature 

features = ['Line segment number', 'Track standard number', 'Milepost', 

'Total cars', 'Total train east', 

            'Total train west', 'Total deflection', 'Class', 'Freight 

speed', 'Passenger speed'] 

 

# Step 4: Prepare the data 

X_train = train_df[features].values  # Feature matrix for training 

y_train = train_df[target].values    # Target variable for training 

X_test = test_df[features].values    # Feature matrix for testing 

y_test = test_df[target].values      # Target variable for testing 

 

# Step 5: Create a Pipeline with SMOTE and XGBClassifier 

pipeline = Pipeline([ 

    ('smote', SMOTE(random_state=42)),  # Apply SMOTE to handle class 

imbalance 

    ('classifier', XGBClassifier(use_label_encoder=False, 

eval_metric='mlogloss', random_state=42))  # XGBoost Classifier 

]) 
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# Step 6: Define the Parameter Grid for Hyperparameter Tuning, focusing on 

scale_pos_weight 

param_grid = { 

    'classifier__n_estimators': [100, 200], 

    'classifier__max_depth': [3, 5, 7, 9], 

    'classifier__learning_rate': [0.01, 0.1, 0.2], 

    'classifier__subsample': [0.8, 1.0], 

    'classifier__colsample_bytree': [0.6, 0.8], 

    'classifier__reg_alpha': [0, 0.1, 0.5],  # L1 regularization 

    'classifier__reg_lambda': [1.0, 1.5, 2.0],  # L2 regularization 

    'classifier__scale_pos_weight': [3, 5, 7, 10]  # Further tuning 

scale_pos_weight 

} 

 

# Step 7: Use Stratified K-Fold Cross-Validation with 5 folds 

stratified_kfold = StratifiedKFold(n_splits=5, shuffle=True, 

random_state=42) 

 

# Step 8: Use RandomizedSearchCV for Hyperparameter Tuning with Stratified 

K-Fold 

random_search = RandomizedSearchCV(pipeline, 

param_distributions=param_grid, n_iter=30, cv=stratified_kfold, 

                                   scoring='accuracy', n_jobs=-1, 

verbose=2, random_state=42) 

 

# Step 9: Fit the Randomized Search to the Training Data 

random_search.fit(X_train, y_train) 

 

# Step 10: Get the Best Parameters from the Randomized Search 

best_params = random_search.best_params_ 

print("Best parameters found: ", best_params) 

 

# Step 11: Get the Best Model from RandomizedSearchCV 
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best_model = random_search.best_estimator_ 

 

# Step 12: Make Predictions on Both Training and Test Sets 

y_train_pred = best_model.predict(X_train) 

y_test_pred = best_model.predict(X_test) 

 

# Step 13: Calculate and Print Training Accuracy 

training_accuracy = accuracy_score(y_train, y_train_pred) 

print(f"Training Accuracy: {training_accuracy:.4f}") 

 

# Step 14: Calculate and Print Test Accuracy 

test_accuracy = accuracy_score(y_test, y_test_pred) 

print(f"Test Accuracy: {test_accuracy:.4f}") 

 

# Step 15: Print the Classification Report for the Test Set 

print("Classification Report:") 

print(classification_report(y_test, y_test_pred)) 

 

# Step 16: Plot the Confusion Matrix for the Test Set 

conf_matrix = confusion_matrix(y_test, y_test_pred) 

plt.figure(figsize=(6, 6)) 

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', cbar=False, 

            xticklabels=np.unique(y_test), yticklabels=np.unique(y_test)) 

plt.title('Confusion Matrix') 

plt.xlabel('Predicted') 

plt.ylabel('True') 

plt.show() 

 

# Random forest code to predict Defect Type (2007 to 2012 - Training Data 

/ 2013 - Test data) 

import pandas as pd 
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from imblearn.over_sampling import SMOTE 

from imblearn.ensemble import BalancedRandomForestClassifier 

from sklearn.model_selection import RandomizedSearchCV, StratifiedKFold 

from sklearn.feature_selection import RFE 

from sklearn.preprocessing import StandardScaler 

from imblearn.pipeline import Pipeline 

from sklearn.metrics import accuracy_score, classification_report, 

confusion_matrix 

import matplotlib.pyplot as plt 

import seaborn as sns 

import numpy as np 

 

# Step 1: Load the training and test datasets 

train_df = pd.read_csv('Connecttrain.csv') 

test_df = pd.read_csv('Connecttest.csv') 

 

# Step 2: Define features and target variable 

features = ['Line segment number', 'Track standard number', 'Milepost', 

'Total car east', 'Total car west', 'Total train east', 

            'Total train west', 'Total deflection', 'Class', 'Freight 

speed', 'Passenger speed'] 

target = 'Defect type' 

 

# Step 3: Feature Engineering - Create 'Total cars' feature 

train_df['Total cars'] = train_df['Total car east'] + train_df['Total car 

west'] 

test_df['Total cars'] = test_df['Total car east'] + test_df['Total car 

west'] 

 

# Update features list to include 'Total cars' 

features = ['Line segment number', 'Track standard number', 'Milepost', 

'Total cars', 'Total train east', 
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            'Total train west', 'Total deflection', 'Class', 'Freight 

speed', 'Passenger speed'] 

 

# Step 4: Prepare the data 

X_train = train_df[features].values 

y_train = train_df[target].values 

X_test = test_df[features].values 

y_test = test_df[target].values 

 

# Step 5: Feature Selection using RFE 

rfe_selector = RFE(estimator=BalancedRandomForestClassifier(), 

n_features_to_select=8, step=1) 

X_train_selected = rfe_selector.fit_transform(X_train, y_train) 

X_test_selected = rfe_selector.transform(X_test) 

 

# Step 6: Adjust SMOTE sampling strategy (Oversample class 0 more 

aggressively) 

smote = SMOTE(sampling_strategy={0: int(np.mean(np.bincount(y_train)) * 

3)}, random_state=42) 

X_train_smote, y_train_smote = smote.fit_resample(X_train_selected, 

y_train) 

 

# Step 7: Define the BalancedRandomForestClassifier with reduced 

complexity and fixed warnings 

brf = BalancedRandomForestClassifier( 

    random_state=42, 

    n_estimators=100,         # Number of trees in the forest 

    max_depth=10,             # Reduced depth to prevent overfitting 

    min_samples_split=10,     # Force trees to split on more samples 

    min_samples_leaf=5,       # Minimum number of samples required to be 

at a leaf node 

    sampling_strategy='all',  # Explicitly set the future sampling 

strategy 
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    replacement=True,         # Replacement set to True to avoid future 

warning 

    bootstrap=False           # Set to False to silence the future warning 

) 

 

# Step 8: Define the parameter grid for RandomizedSearchCV (Simplified) 

param_grid = { 

    'n_estimators': [100, 150], 

    'max_depth': [5, 10], 

    'min_samples_split': [10, 15], 

    'min_samples_leaf': [5, 10] 

} 

 

# Step 9: Use StratifiedKFold with 5 folds 

stratified_kfold = StratifiedKFold(n_splits=5, shuffle=True, 

random_state=42) 

 

# Step 10: RandomizedSearchCV for hyperparameter tuning with Stratified K-

Fold 

random_search = RandomizedSearchCV(estimator=brf, 

param_distributions=param_grid, n_iter=10, cv=stratified_kfold, verbose=2, 

random_state=42, n_jobs=-1) 

 

# Step 11: Create a pipeline with StandardScaler and RandomizedSearchCV 

pipeline = Pipeline([ 

    ('scaler', StandardScaler()), 

    ('classifier', random_search) 

]) 

 

# Step 12: Fit the pipeline to the SMOTE-enhanced training data 

pipeline.fit(X_train_smote, y_train_smote) 

 

# Step 13: Make predictions on both the training and test sets 
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y_train_pred = pipeline.predict(X_train_selected) 

y_test_pred = pipeline.predict(X_test_selected) 

 

# Step 14: Calculate and print training accuracy 

training_accuracy = accuracy_score(y_train, y_train_pred) 

print(f"Training Accuracy: {training_accuracy:.4f}") 

 

# Step 15: Calculate and print test accuracy 

test_accuracy = accuracy_score(y_test, y_test_pred) 

print(f"Test Accuracy: {test_accuracy:.4f}") 

 

# Step 16: Print the classification report for the test set 

print("Classification Report:") 

print(classification_report(y_test, y_test_pred)) 

 

# Step 17: Plot the confusion matrix for the test set 

conf_matrix = confusion_matrix(y_test, y_test_pred) 

plt.figure(figsize=(6, 6)) 

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', cbar=False, 

            xticklabels=np.unique(y_test), yticklabels=np.unique(y_test)) 

plt.title('Confusion Matrix') 

plt.xlabel('Predicted') 

plt.ylabel('True') 

plt.show() 

 

#Catboost code to predict Defect Type (2007 to 2012 - Training Data / 2013 

- Test data) 

 

import pandas as pd 

from sklearn.metrics import accuracy_score, classification_report, 

confusion_matrix 

from catboost import CatBoostClassifier 
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from sklearn.model_selection import RandomizedSearchCV 

from imblearn.over_sampling import SMOTE 

from imblearn.pipeline import Pipeline 

import matplotlib.pyplot as plt 

import seaborn as sns 

import numpy as np 

 

# Step 1: Load the train and test datasets 

train_df = pd.read_csv('Connecttrain.csv') 

test_df = pd.read_csv('Connecttest.csv') 

 

# Step 2: Define features and target variable 

features = ['Line segment number', 'Track standard number', 'Milepost', 

'Total car east', 'Total car west', 'Total train east', 

            'Total train west', 'Total deflection', 'Class', 'Freight 

speed', 'Passenger speed'] 

target = 'Defect type' 

 

# Step 3: Feature Engineering - Create 'Total cars' feature 

train_df['Total cars'] = train_df['Total car east'] + train_df['Total car 

west'] 

test_df['Total cars'] = test_df['Total car east'] + test_df['Total car 

west'] 

 

# Update the feature list to include the newly created 'Total cars' 

feature 

features = ['Line segment number', 'Track standard number', 'Milepost', 

'Total cars', 'Total train east', 

            'Total train west', 'Total deflection', 'Class', 'Freight 

speed', 'Passenger speed'] 

 

# Step 4: Prepare the data 

X_train = train_df[features].values  # Feature matrix for training 
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y_train = train_df[target].values    # Target variable for training 

X_test = test_df[features].values    # Feature matrix for testing 

y_test = test_df[target].values      # Target variable for testing 

 

# Step 5: Create a Pipeline with SMOTE and CatBoostClassifier 

# Adjust class weights to balance class prediction across classes 

class_weights = [2, 1.5, 1.2]  # Adjust weights for class 0, 1, and 2 

pipeline = Pipeline([ 

    ('smote', SMOTE(random_state=42)),  # Apply SMOTE to handle class 

imbalance 

    ('classifier', CatBoostClassifier(verbose=0, random_state=42, 

class_weights=class_weights))  # CatBoost Classifier with class weights 

]) 

 

# Step 6: Define the Parameter Grid for Hyperparameter Tuning 

param_grid = { 

    'classifier__iterations': [300, 500, 700], 

    'classifier__depth': [6, 8, 10], 

    'classifier__learning_rate': [0.005, 0.01, 0.05], 

    'classifier__l2_leaf_reg': [5, 7, 10],  # Increasing L2 regularization 

to avoid overfitting 

    'classifier__bagging_temperature': [1, 1.5, 2]  # Overfitting control 

} 

 

# Step 7: Use RandomizedSearchCV for Hyperparameter Tuning 

random_search = RandomizedSearchCV(pipeline, 

param_distributions=param_grid, n_iter=30, cv=3, scoring='accuracy', 

n_jobs=-1, verbose=2, random_state=42) 

 

# Step 8: Fit the Randomized Search to the Training Data 

random_search.fit(X_train, y_train) 

 

# Step 9: Get the Best Parameters from the Randomized Search 
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best_params = random_search.best_params_ 

print("Best parameters found: ", best_params) 

 

# Step 10: Get the Best Model from RandomizedSearchCV 

best_model = random_search.best_estimator_ 

 

# Step 11: Make Predictions on Both Training and Test Sets 

y_train_pred = best_model.predict(X_train) 

y_test_pred = best_model.predict(X_test) 

 

# Step 12: Calculate and Print Training Accuracy 

training_accuracy = accuracy_score(y_train, y_train_pred) 

print(f"Training Accuracy: {training_accuracy:.4f}") 

 

# Step 13: Calculate and Print Test Accuracy 

test_accuracy = accuracy_score(y_test, y_test_pred) 

print(f"Test Accuracy: {test_accuracy:.4f}") 

 

# Step 14: Print the Classification Report for the Test Set 

print("Classification Report:") 

print(classification_report(y_test, y_test_pred)) 

 

# Step 15: Plot the Confusion Matrix for the Test Set 

conf_matrix = confusion_matrix(y_test, y_test_pred) 

plt.figure(figsize=(6, 6)) 

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', cbar=False, 

            xticklabels=np.unique(y_test), yticklabels=np.unique(y_test)) 

plt.title('Confusion Matrix') 

plt.xlabel('Predicted') 

plt.ylabel('True') 

plt.show() 
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Regression model to predict the defect amplitude using Multiple Linear Regression, 

Decision Trees, XGBoost, Random Forest and Cat Boost 

#Multiple linear regression (80/20 split) 

 

from sklearn.linear_model import LinearRegression 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import r2_score, mean_squared_error 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Step 1: Load the data 

df = pd.read_csv('Connect.csv') 

 

# Step 2: Extract features and target 

X = df[['Line segment number', 'Track standard number', 'Milepost', 'Total 

car east', 'Total car west', 

        'Total train east', 'Total train west', 'Total deflection', 

'Class', 'Freight speed', 

        'Passenger speed', 'Defect type']].values 

 

# Step 3:target variable 'Defect amplitude’ 

y = df['Defect amplitude'].values 

 

# Step 4: Split the dataset into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 

# Step 5: Initialize Linear Regression model 

linear_model = LinearRegression() 

 



    

 

211 

 

# Step 6: Train the model on the training data 

linear_model.fit(X_train, y_train) 

 

# Step 7: Predict on the test data 

y_test_pred_linear = linear_model.predict(X_test) 

 

# Step 8: Predict on the training data to calculate training accuracy 

y_train_pred_linear = linear_model.predict(X_train) 

 

# Step 9: Calculate and print the R-squared score for the test and 

training sets 

r2_test_linear = r2_score(y_test, y_test_pred_linear) 

r2_train_linear = r2_score(y_train, y_train_pred_linear) 

 

print(f"R-squared (Test) for Multiple Linear Regression: 

{r2_test_linear}") 

print(f"R-squared (Training) for Multiple Linear Regression: 

{r2_train_linear}") 

 

# Step 10: Print the coefficients and intercept of the model 

print("Coefficients of the model: ", linear_model.coef_) 

print("Intercept of the model: ", linear_model.intercept_) 

 

# Step 11: Calculate RMSE for both training and test sets 

rmse_train_linear = np.sqrt(mean_squared_error(y_train, 

y_train_pred_linear)) 

rmse_test_linear = np.sqrt(mean_squared_error(y_test, y_test_pred_linear)) 

 

print(f"RMSE (Training) for Linear Regression: {rmse_train_linear}") 

print(f"RMSE (Test) for Linear Regression: {rmse_test_linear}") 

 

# Step 12: Plot Actual vs Predicted for Training set 
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plt.figure(figsize=(8, 6)) 

plt.scatter(y_train, y_train_pred_linear, alpha=0.6, color='blue', 

label='Predicted') 

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Training Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

# Step 13: Plot Actual vs Predicted for Test set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_test, y_test_pred_linear, alpha=0.6, color='green', 

label='Predicted') 

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Test Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

#decision tree to predict the defect amplitude (80/20 split) 

 

from sklearn.tree import DecisionTreeRegressor 

from sklearn.model_selection import train_test_split, GridSearchCV 

from sklearn.metrics import r2_score, mean_squared_error 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 
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# Step 1: Load the data 

df = pd.read_csv('Connect.csv') 

 

# Step 2: Extract features and target 

X = df[['Line segment number', 'Track standard number', 'Milepost', 'Total 

car east', 'Total car west', 

        'Total train east', 'Total train west', 'Total deflection', 

'Class', 'Freight speed', 

        'Passenger speed', 'Defect type']].values 

 

# Step 3: target variable 'Defect amplitude' 

y = df['Defect amplitude'].values 

 

# Step 4: Split the dataset into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 

# Refined parameter grid to reduce overfitting 

param_grid = { 

    'max_depth': [10, 15, 20, None],  # Limiting depth to avoid 

overfitting 

    'min_samples_split': [5, 10, 15],  # Requiring more samples to split a 

node 

    'min_samples_leaf': [5, 10, 15],  # Requiring more samples at each 

leaf node 

    'max_features': [None, 'sqrt', 'log2']  # Limiting the number of 

features for each split 

} 

 

# Step 6: Initialize Decision Tree Regressor 

tree = DecisionTreeRegressor(random_state=42) 

 

# Step 7: Perform hyperparameter tuning with GridSearchCV 
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tree_search = GridSearchCV(tree, param_grid, cv=5, scoring='r2', 

verbose=1, n_jobs=-1) 

tree_search.fit(X_train, y_train) 

 

# Step 8: Output the best parameters and the cross-validation R² score 

best_tree_params = tree_search.best_params_ 

best_tree_score = tree_search.best_score_ 

print(f"Best parameters for Decision Tree: {best_tree_params}") 

print(f"Best cross-validation R² score for Decision Tree: 

{best_tree_score}") 

 

# Step 9: Train the model with the best parameters 

best_tree_model = tree_search.best_estimator_ 

 

# Step 10: Predict on the test data 

y_test_pred_tree = best_tree_model.predict(X_test) 

 

# Step 11: Predict on the training data to calculate training accuracy 

y_train_pred_tree = best_tree_model.predict(X_train) 

 

# Step 12: Calculate and print the R-squared score for the test and 

training sets 

r2_test_tree = r2_score(y_test, y_test_pred_tree) 

r2_train_tree = r2_score(y_train, y_train_pred_tree) 

 

print(f"R-squared (Test) for Decision Tree: {r2_test_tree}") 

print(f"R-squared (Training) for Decision Tree: {r2_train_tree}") 

 

# Step 13: Calculate RMSE for both training and test sets 

rmse_train_tree = np.sqrt(mean_squared_error(y_train, y_train_pred_tree)) 

rmse_test_tree = np.sqrt(mean_squared_error(y_test, y_test_pred_tree)) 
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print(f"RMSE (Training) for Decision Tree: {rmse_train_tree}") 

print(f"RMSE (Test) for Decision Tree: {rmse_test_tree}") 

 

# Step 14: Plot Actual vs Predicted for Training set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_train, y_train_pred_tree, alpha=0.6, color='blue', 

label='Predicted') 

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Training Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

# Step 15: Plot Actual vs Predicted for Test set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_test, y_test_pred_tree, alpha=0.6, color='green', 

label='Predicted') 

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Test Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

# XGBoost (80/20 split) 

from xgboost import XGBRegressor 

from sklearn.model_selection import train_test_split, RandomizedSearchCV, 

KFold 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import Pipeline 
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from sklearn.metrics import r2_score, mean_squared_error 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

# Step 1: Load the data 

df = pd.read_csv('Connect.csv') 

 

# Step 2: Exploratory Data Analysis (EDA) 

print("Dataset Statistics:\n", df.describe()) 

print("Missing Values:\n", df.isnull().sum()) 

 

# Plot the distribution of the target variable 'Defect amplitude' 

plt.figure(figsize=(8, 6)) 

sns.histplot(df['Defect amplitude'], kde=True, bins=30) 

plt.title('Distribution of Defect Amplitude') 

plt.xlabel('Defect Amplitude') 

plt.ylabel('Frequency') 

plt.show() 

 

# Step 3: Correlation Matrix 

features = ['Line segment number','Track standard number','Milepost', 

'Total car east', 'Total car west', 

        'Total train east', 'Total train west', 'Total deflection', 

'Class', 'Freight speed', 

        'Passenger speed','Defect type'] 

 

plt.figure(figsize=(10, 8)) 

corr_matrix = df[features].corr() 

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f') 

plt.title("Feature Correlation Matrix") 
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plt.show() 

 

# Step 4: Extract features and target 

X = df[['Milepost', 'Total car east', 'Total car west', 

        'Total train east', 'Total train west', 'Total deflection', 

'Class', 'Freight speed', 

        'Passenger speed','Defect type']].values 

y = df['Defect amplitude'].values 

 

# Step 5: Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 

# Step 6: Define a pipeline that first scales the data then applies 

XGBoost Regressor 

pipeline = Pipeline([ 

    ('scaler', StandardScaler()),                 # Standardize the 

features 

    ('xgb', XGBRegressor(objective='reg:squarederror', 

random_state=42))  # XGBoost model 

]) 

 

# Step 7: Set up a parameter distribution with higher regularization 

param_distributions = { 

    'xgb__n_estimators': [1000, 1500],                   # Increase number 

of boosting rounds for fine-tuning 

    'xgb__max_depth': [5, 7],                     # Limit tree depth to 

avoid overfitting 

    'xgb__learning_rate': [0.01, 0.02],           # Lower learning rates 

for smaller updates 

    'xgb__subsample': [0.7],                      # Fixed subsample ratio 

to reduce variance 

    'xgb__colsample_bytree': [0.7],               # Fixed feature sampling 

to reduce overfitting 
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    'xgb__min_child_weight': [3, 5],              # Increase to avoid 

overfitting small splits 

    'xgb__gamma': [0.1, 0.2],                     # Minimum loss reduction 

to make a split 

    'xgb__reg_alpha': [0.5, 1],                   # Higher L1 

regularization 

    'xgb__reg_lambda': [2, 3]                     # Higher L2 

regularization 

} 

 

# Step 8: Use K-Fold for cross-validation 

kf = KFold(n_splits=5) 

 

# Step 9: Set up RandomizedSearchCV with the updated parameter space 

random_search = RandomizedSearchCV(estimator=pipeline, 

param_distributions=param_distributions, 

                                   n_iter=10, cv=kf, scoring='r2', 

n_jobs=-1, verbose=2, random_state=42) 

 

# Step 10: Fit the random search to the data 

random_search.fit(X_train, y_train) 

 

# Step 11: Best hyperparameters 

best_params = random_search.best_params_ 

print("Best Hyperparameters: ", best_params) 

 

# Step 12: Train the model with the best hyperparameters 

best_model = random_search.best_estimator_ 

 

# Step 13: Predict on the train and test sets 

y_train_pred = best_model.predict(X_train) 

y_test_pred = best_model.predict(X_test) 
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# Step 14: Calculate R^2 and RMSE scores 

r2_train = r2_score(y_train, y_train_pred) 

r2_test = r2_score(y_test, y_test_pred) 

 

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred)) 

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred)) 

 

# Step 15: Output the R^2 and RMSE scores 

print("Training R^2 Score: ", r2_train) 

print("Testing R^2 Score: ", r2_test) 

print("Training RMSE: ", rmse_train) 

print("Testing RMSE: ", rmse_test) 

 

# Step 16: Predict on the entire dataset 

y_pred = best_model.predict(X) 

 

# Step 17: Add the predictions as a new column to the original DataFrame 

df['Prediction'] = y_pred 

 

# Step 18: Save the updated DataFrame to a new CSV file 

df.to_csv('Connect_with_predictions.csv', index=False) 

 

# Step 19: Output location 

print("Results saved to 'Connect_with_predictions.csv'") 

 

# Step 20: Plot the feature importance 

xgb_model = best_model.named_steps['xgb']  # Extract the XGB model from 

the pipeline 

feature_importances = xgb_model.feature_importances_ 

 

# Step 21: Define feature names 
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feature_names = ['Milepost', 'Total car east', 'Total car west', 'Total 

train east', 

                 'Total train west', 'Total deflection', 'Class', 'Freight 

speed', 

                 'Passenger speed', 'Defect type'] 

 

# Step 22: Create a DataFrame for plotting 

importances_df = pd.DataFrame({ 

    'Feature': feature_names, 

    'Importance': feature_importances 

}).sort_values(by='Importance', ascending=False) 

 

# Step 23: Plot the feature importances 

plt.figure(figsize=(10, 6)) 

plt.barh(importances_df['Feature'], importances_df['Importance']) 

plt.xlabel('Importance') 

plt.ylabel('Feature') 

plt.title('Feature Importances from XGBoost Model') 

plt.gca().invert_yaxis()  # Invert y-axis to display the most important 

feature at the top 

plt.show() 

 

# Step 24: Plot Predicted vs Observed (Training set) 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_train, y_train_pred, alpha=0.6, color='b') 

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)], 

color='red', lw=2)  # Line of perfect fit 

plt.title('Predicted vs Observed (Training Set)') 

plt.xlabel('Observed') 

plt.ylabel('Predicted') 

plt.show() 
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# Step 25: Plot Predicted vs Observed (Test set) 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_test, y_test_pred, alpha=0.6, color='b') 

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 

color='red', lw=2)  # Line of perfect fit 

plt.title('Predicted vs Observed (Test Set)') 

plt.xlabel('Observed') 

plt.ylabel('Predicted') 

plt.show() 

 

#Random Forest(80/20 split) 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.model_selection import train_test_split, RandomizedSearchCV, 

KFold 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import Pipeline 

from sklearn.metrics import r2_score, mean_squared_error 

 

# Step 1: Load the data 

df = pd.read_csv('Connect.csv') 

 

# Step 2: Exploratory Data Analysis (EDA) 

# Check basic statistics of the dataset 

print("Dataset Statistics:\n", df.describe()) 

 

# Check for missing values 

print("Missing Values:\n", df.isnull().sum()) 
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# Plot the distribution of the target variable 'Defect amplitude' 

plt.figure(figsize=(8, 6)) 

sns.histplot(df['Defect amplitude'], kde=True, bins=30) 

plt.title('Distribution of Defect Amplitude') 

plt.xlabel('Defect Amplitude') 

plt.ylabel('Frequency') 

plt.show() 

 

# Step 3: Correlation Matrix 

# Calculate correlation between numerical features 

 

features = ['Milepost', 'Total car east', 'Total car west', 

        'Total train east', 'Total train west', 'Total deflection', 

'Class', 'Freight speed', 

        'Passenger speed','Defect type'] 

 

plt.figure(figsize=(10, 8)) 

corr_matrix = df[features].corr() 

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f') 

plt.title("Feature Correlation Matrix") 

plt.show() 

 

# Step 4: Extract features and target 

X = df[['Line segment number', 'Milepost', 'Track standard number', 

        'Total car east', 'Total car west', 

        'Total train east', 'Total train west', 'Total deflection', 

'Class', 'Freight speed', 

        'Passenger speed','Defect type']].values 

y = df['Defect amplitude'].values 

 

# Step 5: Split the data into training and testing sets 
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X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 

# Step 6: Define a pipeline that first scales the data then applies 

RandomForestRegressor 

pipeline = Pipeline([ 

    ('scaler', StandardScaler()),            # Standardize the features 

    ('rf', RandomForestRegressor(random_state=42))  # RandomForest model 

]) 

 

# Step 7: Set up a more aggressive parameter distribution to sample from 

for regularization 

param_distributions = { 

    'rf__n_estimators': [600, 800, 1000],            # Further increase 

the number of trees 

    'rf__max_depth': [15, 20, 25],                  # Experiment with 

different tree depths 

    'rf__min_samples_split': [10, 20, 30],          # Require more samples 

to split 

    'rf__min_samples_leaf': [2, 4, 6],              # Allow smaller leaves 

    'rf__max_features': ['sqrt', 0.2, 0.3]          # Experiment with 

different feature subsets 

} 

 

# Step 8: Use K-Fold for cross-validation 

kf = KFold(n_splits=5) 

 

# Step 9: Set up RandomizedSearchCV with the pipeline and K-Fold 

random_search = RandomizedSearchCV(estimator=pipeline, 

param_distributions=param_distributions, 

                                   n_iter=50, cv=kf, scoring='r2', 

n_jobs=-1, verbose=2, random_state=42) 

 

# Step 10: Fit the random search to the data 
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random_search.fit(X_train, y_train) 

 

# Step 11: Best hyperparameters 

best_params = random_search.best_params_ 

print("Best Hyperparameters: ", best_params) 

 

# Step 12: Train the model with the best hyperparameters 

best_model = random_search.best_estimator_ 

 

# Step 13: Predict on the train and test sets 

y_train_pred = best_model.predict(X_train) 

y_test_pred = best_model.predict(X_test) 

 

# Step 14: Calculate R^2 and RMSE scores 

r2_train = r2_score(y_train, y_train_pred) 

r2_test = r2_score(y_test, y_test_pred) 

 

# RMSE for training and test sets 

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred)) 

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred)) 

 

# Step 15: Output the R^2 and RMSE scores 

print("Training R^2 Score: ", r2_train) 

print("Testing R^2 Score: ", r2_test) 

print("Training RMSE: ", rmse_train) 

print("Testing RMSE: ", rmse_test) 

 

# Step 16: Predict on the entire dataset 

y_pred = best_model.predict(X) 

 

# Step 17: Add the predictions as a new column to the original DataFrame 
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df['Prediction'] = y_pred 

 

# Step 18: Save the updated DataFrame to a new CSV file 

df.to_csv('Connect_with_predictions.csv', index=False) 

 

# Step 19: Output location 

print("Results saved to 'Connect_with_predictions.csv'") 

 

# Step 20: Plot feature importance 

rf_model = best_model.named_steps['rf']  # Extract the Random Forest model 

from the pipeline 

feature_importances = rf_model.feature_importances_ 

 

# Step 21: Define feature names 

feature_names = ['Line segment number', 'Milepost', 'Track standard 

number', 'Total car east', 

                 'Total car west', 'Total train east', 'Total train west', 

'Total deflection', 'Class', 'Freight speed', 'Passenger speed', 'Defect 

type'] 

 

# Step 22: Create a DataFrame for plotting feature importances 

importances_df = pd.DataFrame({ 

    'Feature': feature_names, 

    'Importance': feature_importances 

}).sort_values(by='Importance', ascending=False) 

 

# Step 23: Plot the feature importances 

plt.figure(figsize=(10, 6)) 

plt.barh(importances_df['Feature'], importances_df['Importance']) 

plt.xlabel('Importance') 

plt.ylabel('Feature') 

plt.title('Feature Importances from Random Forest Model') 
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plt.gca().invert_yaxis()  # Invert y-axis to display the most important 

feature at the top 

plt.show() 

 

# Step 24: Plot Predicted vs Observed (Training set) 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_train, y_train_pred, alpha=0.6, color='b') 

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)], 

color='red', lw=2)  # Line of perfect fit 

plt.title('Predicted vs Observed (Training Set)') 

plt.xlabel('Observed') 

plt.ylabel('Predicted') 

plt.show() 

 

# Step 25: Plot Predicted vs Observed (Test set) 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_test, y_test_pred, alpha=0.6, color='b') 

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 

color='red', lw=2)  # Line of perfect fit 

plt.title('Predicted vs Observed (Test Set)') 

plt.xlabel('Observed') 

plt.ylabel('Predicted') 

plt.show() 

 

#catboost (80/20% split) 

 

from sklearn.model_selection import RandomizedSearchCV 

from catboost import CatBoostRegressor 

from sklearn.metrics import r2_score, mean_squared_error 

from sklearn.model_selection import train_test_split 

import pandas as pd 

import numpy as np 
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import matplotlib.pyplot as plt 

 

# Step 1: Load the data 

df = pd.read_csv('Connect.csv') 

 

# Step 2: Extract features and target 

X = df[['Line segment number','Track standard number','Milepost', 'Total 

car east', 'Total car west', 

        'Total train east', 'Total train west', 'Total deflection', 

'Class', 'Freight speed', 

        'Passenger speed', 'Defect type']] 

 

# Convert the target variable 'Defect amplitude' to its absolute value 

y = df['Defect amplitude'].values 

 

# Step 3: Split the dataset into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 

# Step 4: Define a parameter grid for tuning 

param_grid = { 

    'iterations': [250, 300, 350], 

    'depth': [10, 12, 14], 

    'learning_rate': [0.05, 0.08, 0.1], 

    'l2_leaf_reg': [3, 4, 5], 

    'border_count': [160, 180], 

    'bagging_temperature': [1.0, 1.2, 1.5] 

} 

 

# Step 5: Initialize CatBoost Regressor 

catboost_reg = CatBoostRegressor(verbose=0, random_state=42) 
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# Step 6: Initialize RandomizedSearchCV for CatBoost tuning 

random_search_catboost = RandomizedSearchCV( 

    catboost_reg, 

    param_distributions=param_grid, 

    n_iter=20, 

    scoring='r2', 

    cv=5, 

    verbose=1, 

    n_jobs=-1, 

    random_state=42 

) 

 

# Step 7: Fit RandomizedSearchCV 

random_search_catboost.fit(X_train, y_train) 

 

# Step 8: Output the best parameters and cross-validation R² score 

best_params = random_search_catboost.best_params_ 

best_score = random_search_catboost.best_score_ 

 

print(f"Best parameters for tuned CatBoost: {best_params}") 

print(f"Best cross-validation R² score: {best_score}") 

 

# Step 9: Train the model with the best parameters 

best_model_catboost = random_search_catboost.best_estimator_ 

 

# Step 10: Predict on the test data 

y_test_pred = best_model_catboost.predict(X_test) 

 

# Step 11: Predict on the training data 

y_train_pred = best_model_catboost.predict(X_train) 
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# Step 12: Calculate R-squared and RMSE for training and test sets 

r2_train = r2_score(y_train, y_train_pred) 

r2_test = r2_score(y_test, y_test_pred) 

 

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred)) 

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred)) 

 

# Step 13: Output R-squared and RMSE scores 

print(f"R-squared (Training): {r2_train}") 

print(f"R-squared (Test): {r2_test}") 

print(f"RMSE (Training): {rmse_train}") 

print(f"RMSE (Test): {rmse_test}") 

 

# Step 14: Plot Actual vs Predicted for Training set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_train, y_train_pred, alpha=0.6, color='b', 

label='Predicted') 

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Training Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

# Step 15: Plot Actual vs Predicted for Test set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_test, y_test_pred, alpha=0.6, color='b', label='Predicted') 

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Test Set)') 

plt.xlabel('Actual Values') 
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plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

#XGBoost (2007 - 2012 training data, 2013 Test data) 

from xgboost import XGBRegressor 

from sklearn.model_selection import train_test_split, RandomizedSearchCV, 

KFold 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import Pipeline 

from sklearn.metrics import r2_score, mean_squared_error 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

# Step 1: Load the training and test datasets 

train_df = pd.read_csv('Connecttrain.csv') 

test_df = pd.read_csv('Connecttest.csv') 

 

# Step 2: Exploratory Data Analysis (EDA) 

# Check basic statistics of the training dataset 

print("Training Data Statistics:\n", train_df.describe()) 

 

# Check for missing values in training and test datasets 

print("Missing Values in Training Data:\n", train_df.isnull().sum()) 

print("Missing Values in Test Data:\n", test_df.isnull().sum()) 

 

# Plot the distribution of the target variable 'Defect amplitude' in 

training data 

plt.figure(figsize=(8, 6)) 

sns.histplot(train_df['Defect amplitude'], kde=True, bins=30) 
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plt.title('Distribution of Defect Amplitude in Training Data') 

plt.xlabel('Defect Amplitude') 

plt.ylabel('Frequency') 

plt.show() 

 

# Step 3: Define the feature and target columns 

features = ['Milepost', 'Total car east', 'Total car west', 'Total train 

east', 

            'Total train west', 'Total deflection', 'Class', 'Freight 

speed', 

            'Passenger speed', 'Defect type'] 

target = 'Defect amplitude' 

 

# Step 4: Extract features and target 

X_train = train_df[features].values 

y_train = train_df[target].values 

X_test = test_df[features].values 

y_test = test_df[target].values 

 

# Step 5: Define a pipeline that first scales the data then applies 

XGBoost Regressor 

pipeline = Pipeline([ 

    ('scaler', StandardScaler()),                 # Standardize the 

features 

    ('xgb', XGBRegressor(objective='reg:squarederror', 

random_state=42))  # XGBoost model 

]) 

 

# Step 6: Set up a parameter distribution with increased regularization 

and early stopping 

param_distributions = { 

    'xgb__n_estimators': [3000],                  # Increase number of 

boosting rounds for fine-tuning 
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    'xgb__max_depth': [4, 6],                     # Further limit tree 

depth 

    'xgb__learning_rate': [0.005, 0.01],          # Lower learning rates 

for smaller updates 

    'xgb__subsample': [0.7],                      # Fixed subsample ratio 

to reduce variance 

    'xgb__colsample_bytree': [0.7],               # Fixed feature sampling 

to reduce overfitting 

    'xgb__min_child_weight': [6, 8],              # Increase to avoid 

overfitting small splits 

    'xgb__gamma': [0.1, 0.2],                     # Minimum loss reduction 

to make a split 

    'xgb__reg_alpha': [1, 2],                     # Higher L1 

regularization 

    'xgb__reg_lambda': [4, 5]                     # Higher L2 

regularization 

} 

 

# Step 7: Use K-Fold for cross-validation 

kf = KFold(n_splits=5) 

 

# Step 8: Set up RandomizedSearchCV with the updated parameter space 

random_search = RandomizedSearchCV(estimator=pipeline, 

param_distributions=param_distributions, 

                                   n_iter=10, cv=kf, scoring='r2', 

n_jobs=-1, verbose=2, random_state=42) 

 

# Step 9: Fit the random search to the data 

random_search.fit(X_train, y_train) 

 

# Step 10: Best hyperparameters 

best_params = random_search.best_params_ 

print("Best Hyperparameters: ", best_params) 

 



    

 

233 

 

# Step 11: Extract the best model and set up early stopping 

best_xgb_model = random_search.best_estimator_.named_steps['xgb'] 

best_xgb_model.set_params(early_stopping_rounds=100) 

 

# Step 12: Train the model with the best hyperparameters and early 

stopping 

best_xgb_model.fit(X_train, y_train, eval_set=[(X_test, y_test)], 

verbose=False) 

 

# Step 13: Predict on the train and test sets 

y_train_pred = best_xgb_model.predict(X_train) 

y_test_pred = best_xgb_model.predict(X_test) 

 

# Step 14: Calculate R^2 scores and RMSE for training and test sets 

r2_train = r2_score(y_train, y_train_pred) 

r2_test = r2_score(y_test, y_test_pred) 

 

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred)) 

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred)) 

 

# Step 15: Output the R^2 and RMSE scores 

print("Training R^2 Score: ", r2_train) 

print("Testing R^2 Score: ", r2_test) 

print("Training RMSE: ", rmse_train) 

print("Testing RMSE: ", rmse_test) 

 

# Step 16: Plot Actual vs Predicted for Training set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_train, y_train_pred, alpha=0.6, color='b', 

label='Predicted') 

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 
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plt.title('Actual vs Predicted (Training Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

# Step 17: Plot Actual vs Predicted for Test set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_test, y_test_pred, alpha=0.6, color='b', label='Predicted') 

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Test Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

#Random Forest (2007 - 2012 training data, 2013 Test data) 

 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.model_selection import RandomizedSearchCV, KFold 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import Pipeline 

from sklearn.metrics import r2_score, mean_squared_error 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

# Step 1: Define the feature and target columns 

features = ['Line segment number', 'Milepost', 'Track standard number', 
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            'Total car east', 'Total car west', 'Total train east', 

            'Total train west', 'Total deflection', 'Track code', 

            'Class', 'Freight speed', 'Passenger speed', 'Defect type'] 

target = 'Defect amplitude' 

 

# Step 2: Load the train and test data 

train_df = pd.read_csv('Connecttrain.csv') 

test_df = pd.read_csv('Connecttest.csv') 

 

# Step 3: Exploratory Data Analysis (EDA) 

# Check basic statistics of the training dataset 

print("Training Data Statistics:\n", train_df.describe()) 

 

# Check for missing values in training and test datasets 

print("Missing Values in Training Data:\n", train_df.isnull().sum()) 

print("Missing Values in Test Data:\n", test_df.isnull().sum()) 

 

# Plot the distribution of the target variable 'Defect amplitude' in the 

training data 

plt.figure(figsize=(8, 6)) 

sns.histplot(train_df['Defect amplitude'], kde=True, bins=30) 

plt.title('Distribution of Defect Amplitude in Training Data') 

plt.xlabel('Defect Amplitude') 

plt.ylabel('Frequency') 

plt.show() 

 

# Step 5: Extract features and target 

X_train = train_df[features].values 

y_train = train_df[target].values 

X_test = test_df[features].values 

y_test = test_df[target].values 
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# Step 6: Define a pipeline that first scales the data then applies 

RandomForestRegressor 

pipeline = Pipeline([ 

    ('scaler', StandardScaler()),            # Standardize the features 

    ('rf', RandomForestRegressor(random_state=42))  # RandomForest model 

]) 

 

# Step 7: Set up a more aggressive parameter distribution to sample from 

for regularization 

param_distributions = { 

    'rf__n_estimators': [700, 800, 1000],          # Increase the number 

of trees 

    'rf__max_depth': [8, 12, 16],                  # Limit the tree depth 

more aggressively 

    'rf__min_samples_split': [20, 25, 30],         # Require more samples 

to split 

    'rf__min_samples_leaf': [5, 7, 9],             # Require more samples 

at leaf nodes 

    'rf__max_features': [0.1, 0.2, 'sqrt']         # Limit features for 

each split 

} 

 

# Step 8: Use K-Fold for cross-validation 

kf = KFold(n_splits=5) 

 

# Step 9: Set up RandomizedSearchCV with the pipeline and K-Fold 

random_search = RandomizedSearchCV(estimator=pipeline, 

param_distributions=param_distributions, 

                                   n_iter=30, cv=kf, scoring='r2', 

n_jobs=-1, verbose=2, random_state=42) 

 

# Step 10: Fit the random search to the data 

random_search.fit(X_train, y_train) 



    

 

237 

 

 

# Step 11: Best hyperparameters 

best_params = random_search.best_params_ 

print("Best Hyperparameters: ", best_params) 

 

# Step 12: Train the model with the best hyperparameters 

best_model = random_search.best_estimator_ 

 

# Step 13: Predict on the train and test sets 

y_train_pred = best_model.predict(X_train) 

y_test_pred = best_model.predict(X_test) 

 

# Step 14: Calculate R^2 scores and RMSE for both training and test sets 

r2_train = r2_score(y_train, y_train_pred) 

r2_test = r2_score(y_test, y_test_pred) 

 

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred)) 

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred)) 

 

# Step 15: Output the R^2 and RMSE scores 

print("Training R^2 Score: ", r2_train) 

print("Testing R^2 Score: ", r2_test) 

print("Training RMSE: ", rmse_train) 

print("Testing RMSE: ", rmse_test) 

 

# Step 16: Plot Actual vs Predicted for Training set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_train, y_train_pred, alpha=0.6, color='b', 

label='Predicted') 

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Training Set)') 
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plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

# Step 17: Plot Actual vs Predicted for Test set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_test, y_test_pred, alpha=0.6, color='b', label='Predicted') 

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Test Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

#cat boost  (2007 - 2012 training data, 2013 Test data) 

 

from catboost import CatBoostRegressor 

from sklearn.model_selection import train_test_split, RandomizedSearchCV, 

KFold 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import Pipeline 

from sklearn.metrics import r2_score, mean_squared_error 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

# Step 1: Load the training and test datasets 

train_df = pd.read_csv('Connecttrain.csv') 

test_df = pd.read_csv('Connecttest.csv') 
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# Step 2: Exploratory Data Analysis (EDA) 

# Check basic statistics of the training dataset 

print("Training Data Statistics:\n", train_df.describe()) 

 

# Check for missing values in training and test datasets 

print("Missing Values in Training Data:\n", train_df.isnull().sum()) 

print("Missing Values in Test Data:\n", test_df.isnull().sum()) 

 

# Plot the distribution of the target variable 'Defect amplitude' in 

training data 

plt.figure(figsize=(8, 6)) 

sns.histplot(train_df['Defect amplitude'], kde=True, bins=30) 

plt.title('Distribution of Defect Amplitude in Training Data') 

plt.xlabel('Defect Amplitude') 

plt.ylabel('Frequency') 

plt.show() 

 

# Step 3: Define the feature and target columns 

features = ['Milepost', 'Total car east', 'Total car west', 'Total train 

east', 

            'Total train west', 'Total deflection', 'Class', 'Freight 

speed', 

            'Passenger speed', 'Defect type'] 

target = 'Defect amplitude' 

 

# Step 4: Extract features and target 

X_train = train_df[features].values 

y_train = train_df[target].values 

X_test = test_df[features].values 

y_test = test_df[target].values 
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# Step 5: Define a pipeline that first scales the data then applies 

CatBoost Regressor 

pipeline = Pipeline([ 

    ('scaler', StandardScaler()),  # Standardize the features 

    ('catboost', CatBoostRegressor(verbose=0, random_state=42))  # 

CatBoost model 

]) 

 

# Step 6: Set up a refined parameter distribution with lower learning rate 

and more iterations 

param_distributions = { 

    'catboost__iterations': [1500, 2000],          # Higher number of 

boosting rounds 

    'catboost__depth': [6, 7],                     # Keep depth at 

moderate levels 

    'catboost__learning_rate': [0.01, 0.02],       # Lower learning rates 

for gradual updates 

    'catboost__subsample': [0.7],                  # Subsampling to reduce 

variance 

    'catboost__l2_leaf_reg': [5, 7],               # L2 regularization for 

generalization 

    'catboost__bagging_temperature': [2, 3]        # Add randomness 

through bagging 

} 

 

# Step 7: Use K-Fold for cross-validation 

kf = KFold(n_splits=5) 

 

# Step 8: Set up RandomizedSearchCV with the parameter space 

random_search = RandomizedSearchCV(estimator=pipeline, 

param_distributions=param_distributions, 

                                   n_iter=10, cv=kf, scoring='r2', 

n_jobs=-1, verbose=2, random_state=42) 
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# Step 9: Fit the random search to the data 

random_search.fit(X_train, y_train) 

 

# Step 10: Best hyperparameters 

best_params = random_search.best_params_ 

print("Best Hyperparameters: ", best_params) 

 

# Step 11: Extract the best model from the pipeline 

best_catboost_model = 

random_search.best_estimator_.named_steps['catboost'] 

 

# Step 12: Train the model with early stopping using validation data 

best_catboost_model.fit(X_train, y_train, eval_set=(X_test, y_test), 

early_stopping_rounds=100, verbose=False) 

 

# Step 13: Predict on the train and test sets 

y_train_pred = best_catboost_model.predict(X_train) 

y_test_pred = best_catboost_model.predict(X_test) 

 

# Step 14: Calculate R^2 scores and RMSE for both training and test sets 

r2_train = r2_score(y_train, y_train_pred) 

r2_test = r2_score(y_test, y_test_pred) 

 

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred)) 

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred)) 

 

# Step 15: Output the R^2 and RMSE scores 

print("Training R^2 Score: ", r2_train) 

print("Testing R^2 Score: ", r2_test) 

print("Training RMSE: ", rmse_train) 

print("Testing RMSE: ", rmse_test) 
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# Step 16: Plot Actual vs Predicted for Training set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_train, y_train_pred, alpha=0.6, color='b', 

label='Predicted') 

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Training Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

# Step 17: Plot Actual vs Predicted for Test set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_test, y_test_pred, alpha=0.6, color='b', label='Predicted') 

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Test Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

 

Regression Model to predict the defect length using Multiple Linear Regression, 

Decision Trees, XGBoost, Random Forest and Cat Boost 

# Multiple linear regression to predict the defect length (80/20 Split) 

 

import pandas as pd 

import numpy as np 
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import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_squared_error, r2_score 

 

# Step 1: Load the dataset 

df = pd.read_csv('Connect.csv') 

 

# Step 2: Exploratory Data Analysis (EDA) 

# Check basic statistics of the dataset 

print("Dataset Statistics:\n", df.describe()) 

 

# Check for missing values 

print("Missing Values:\n", df.isnull().sum()) 

 

# Step 3: Define features and target 

features = ['Line segment number', 'Track standard number', 'Milepost', 

'Total car east', 'Total car west', 

            'Total train east', 'Total train west', 'Defect amplitude', 

'Total deflection', 'Class', 

            'Freight speed', 'Passenger speed', 'Defect type'] 

target = 'Defect length' 

 

# Step 4: Prepare the data 

X = df[features].values  # Feature matrix 

y = df[target].values    # Target variable 

 

# Step 5: Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 

# Step 6: Initialize the Linear Regression model 
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model = LinearRegression() 

 

# Step 7: Train the model on the training data 

model.fit(X_train, y_train) 

 

# Step 8: Predict on both training and test sets 

y_train_pred = model.predict(X_train) 

y_test_pred = model.predict(X_test) 

 

# Step 9: Evaluate the model 

# Calculate R² score and RMSE for both training and test sets 

train_r2 = r2_score(y_train, y_train_pred) 

test_r2 = r2_score(y_test, y_test_pred) 

 

train_rmse = np.sqrt(mean_squared_error(y_train, y_train_pred)) 

test_rmse = np.sqrt(mean_squared_error(y_test, y_test_pred)) 

 

# Step 10: Output the results 

print(f'R² Score on Training Set: {train_r2}') 

print(f'R² Score on Test Set: {test_r2}') 

print(f'RMSE on Training Set: {train_rmse}') 

print(f'RMSE on Test Set: {test_rmse}') 

 

# Step 11: Plot Actual vs Predicted for Training set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_train, y_train_pred, alpha=0.6, color='blue', 

label='Predicted') 

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Training Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 
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plt.legend() 

plt.show() 

 

# Step 12: Plot Actual vs Predicted for Test set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_test, y_test_pred, alpha=0.6, color='green', 

label='Predicted') 

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Test Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

# Decision trees regression to predict the defect length(80% 20% split) 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.tree import DecisionTreeRegressor 

from sklearn.model_selection import train_test_split, GridSearchCV 

from sklearn.metrics import r2_score, mean_squared_error 

 

# Step 1: Load the dataset 

df = pd.read_csv('Connect.csv') 

 

# Step 2: Exploratory Data Analysis (EDA) 

# Check basic statistics of the dataset 

print("Dataset Statistics:\n", df.describe()) 

 

# Check for missing values 



    

 

246 

 

print("Missing Values:\n", df.isnull().sum()) 

 

# Step 3: Define features and target 

features = ['Line segment number', 'Track standard number', 'Milepost', 

'Total car east', 'Total car west', 

            'Total train east', 'Total train west', 'Defect amplitude', 

'Total deflection', 'Class', 

            'Freight speed', 'Passenger speed', 'Defect type'] 

target = 'Defect length' 

 

# Step 4: Prepare data 

X = df[features].values 

y = df[target].values 

 

# Step 5: Split the dataset into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 

# Step 6: Define the parameter grid for hyperparameter tuning 

param_grid = { 

    'max_depth': [5, 10, 15, 20, None],  # Depth of the tree 

    'min_samples_split': [2, 5, 10],  # Minimum samples required to split 

a node 

    'min_samples_leaf': [1, 2, 5, 10],  # Minimum samples required in a 

leaf node 

    'max_features': [None, 'sqrt', 'log2']  # Number of features to 

consider for best split 

} 

 

# Step 7: Initialize Decision Tree Regressor 

tree = DecisionTreeRegressor(random_state=42) 

 

# Step 8: Perform hyperparameter tuning with GridSearchCV 
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tree_search = GridSearchCV(tree, param_grid, cv=5, scoring='r2', 

verbose=1, n_jobs=-1) 

tree_search.fit(X_train, y_train) 

 

# Step 9: Output the best parameters and the cross-validation R² score 

best_tree_params = tree_search.best_params_ 

best_tree_score = tree_search.best_score_ 

print(f"Best parameters for Decision Tree: {best_tree_params}") 

print(f"Best cross-validation R² score for Decision Tree: 

{best_tree_score}") 

 

# Step 10: Train the model with the best parameters 

best_tree_model = tree_search.best_estimator_ 

 

# Step 11: Predict on the test and training data 

y_test_pred_tree = best_tree_model.predict(X_test) 

y_train_pred_tree = best_tree_model.predict(X_train) 

 

# Step 12: Calculate R² and RMSE scores for the training and test sets 

r2_test_tree = r2_score(y_test, y_test_pred_tree) 

r2_train_tree = r2_score(y_train, y_train_pred_tree) 

rmse_test_tree = np.sqrt(mean_squared_error(y_test, y_test_pred_tree)) 

rmse_train_tree = np.sqrt(mean_squared_error(y_train, y_train_pred_tree)) 

 

print(f"R-squared (Test) for Decision Tree: {r2_test_tree}") 

print(f"R-squared (Training) for Decision Tree: {r2_train_tree}") 

print(f"RMSE (Test) for Decision Tree: {rmse_test_tree}") 

print(f"RMSE (Training) for Decision Tree: {rmse_train_tree}") 

 

# Step 13: Plot Actual vs Predicted for Training set 

plt.figure(figsize=(8, 6)) 
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plt.scatter(y_train, y_train_pred_tree, alpha=0.6, color='blue', 

label='Predicted') 

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Training Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

# Step 14: Plot Actual vs Predicted for Test set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_test, y_test_pred_tree, alpha=0.6, color='green', 

label='Predicted') 

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Test Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

#XGBoost to predict defect length (80/20 Split) 

 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import KFold, train_test_split, 

RandomizedSearchCV 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import Pipeline 

from sklearn.metrics import r2_score, mean_squared_error 

import xgboost as xgb 

from scipy.stats import uniform, randint 



    

 

249 

 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

# Step 1: Load the dataset 

df = pd.read_csv('Connect.csv') 

 

# Step 2: Exploratory Data Analysis (EDA) 

# Check basic statistics of the dataset 

print("Dataset Statistics:\n", df.describe()) 

 

# Check for missing values 

print("Missing Values:\n", df.isnull().sum()) 

 

# Plot the distribution of the target variable 'Defect length' 

plt.figure(figsize=(8, 6)) 

sns.histplot(df['Defect length'], kde=True, bins=30) 

plt.title('Distribution of Defect Length') 

plt.xlabel('Defect Length') 

plt.ylabel('Frequency') 

plt.show() 

 

# Step 3: Correlation Matrix 

# Calculate correlation between numerical features 

features = ['Line segment number', 'Track standard number', 'Milepost', 

'Total car east', 'Total car west', 

            'Total train east', 'Total train west', 'Defect amplitude', 

'Total deflection', 'Class', 

            'Freight speed', 'Passenger speed', 'Defect type'] 

 

plt.figure(figsize=(10, 8)) 

corr_matrix = df[features].corr() 

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f') 
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plt.title("Feature Correlation Matrix") 

plt.show() 

 

# Step 4: Define features and target 

target = 'Defect length' 

 

# Step 5: Prepare data 

X = df[features].values 

y = df[target].values 

 

# Step 6: Split the data into training and test sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 

# Step 7: Initialize the scaler and the model 

scaler = StandardScaler() 

model = xgb.XGBRegressor(objective='reg:squarederror', random_state=42) 

 

# Step 8: Create a pipeline that first scales the data then fits the model 

pipeline = Pipeline([ 

    ('scaler', scaler), 

    ('regressor', model) 

]) 

 

# Step 9: Set up cross-validation 

kfold = KFold(n_splits=10, shuffle=True, random_state=42) 

 

# Step 10: Define the parameter distributions to sample from 

param_dist = { 

    'regressor__n_estimators': randint(100, 300), 

    'regressor__max_depth': randint(3, 10), 
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    'regressor__learning_rate': uniform(0.01, 0.2), 

    'regressor__subsample': uniform(0.6, 0.4), 

    'regressor__colsample_bytree': uniform(0.6, 0.4), 

    'regressor__min_child_weight': randint(1, 10), 

    'regressor__gamma': uniform(0, 0.5), 

    'regressor__reg_alpha': uniform(0, 1),  # L1 regularization term 

    'regressor__reg_lambda': uniform(0, 1)  # L2 regularization term 

} 

 

# Step 11: Set up RandomizedSearchCV 

random_search = RandomizedSearchCV(pipeline, param_dist, n_iter=50, 

cv=kfold, scoring='r2', n_jobs=-1, random_state=42) 

 

# Step 12: Fit the RandomizedSearchCV to find the best model 

random_search.fit(X_train, y_train) 

 

# Step 13: Get the best model from the random search 

best_model = random_search.best_estimator_ 

 

# Step 14: Predict on the training and test sets using the best model 

y_train_pred = best_model.predict(X_train) 

y_test_pred = best_model.predict(X_test) 

 

# Step 15: Calculate R² scores and RMSE for both training and test sets 

r2_train = r2_score(y_train, y_train_pred) 

r2_test = r2_score(y_test, y_test_pred) 

 

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred)) 

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred)) 

 

# Step 16: Output the results 
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print(f'Best Parameters: {random_search.best_params_}') 

print(f'R² Score on Training Set: {r2_train}') 

print(f'R² Score on Test Set: {r2_test}') 

print(f'RMSE on Training Set: {rmse_train}') 

print(f'RMSE on Test Set: {rmse_test}') 

 

# Step 17: Plot feature importance 

xgb_model = best_model.named_steps['regressor']  # Extract the XGBoost 

model from the pipeline 

feature_importances = xgb_model.feature_importances_ 

 

# Step 18: Define feature names 

feature_names = features 

 

# Step 19: Create a DataFrame for plotting 

importances_df = pd.DataFrame({ 

    'Feature': feature_names, 

    'Importance': feature_importances 

}).sort_values(by='Importance', ascending=False) 

 

# Step 20: Plot the feature importances 

plt.figure(figsize=(10, 6)) 

plt.barh(importances_df['Feature'], importances_df['Importance']) 

plt.xlabel('Importance') 

plt.ylabel('Feature') 

plt.title('Feature Importances from XGBoost Model') 

plt.gca().invert_yaxis()  # Invert y-axis to display the most important 

feature at the top 

plt.show() 

 

# Step 21: Plot Actual vs Predicted for Training set 

plt.figure(figsize=(8, 6)) 
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plt.scatter(y_train, y_train_pred, alpha=0.6, color='b', 

label='Predicted') 

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Training Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

# Step 22: Plot Actual vs Predicted for Test set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_test, y_test_pred, alpha=0.6, color='b', label='Predicted') 

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Test Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

#Random Forest to predict defect length (80/20 Split) 

 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import KFold, train_test_split, 

RandomizedSearchCV 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import Pipeline 

from sklearn.metrics import r2_score, mean_squared_error 

from scipy.stats import randint 

from sklearn.ensemble import RandomForestRegressor 
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import matplotlib.pyplot as plt 

import seaborn as sns  # Importing seaborn for correlation matrix 

 

# Step 1: Load the dataset 

df = pd.read_csv('Connect.csv') 

 

# Step 2: Exploratory Data Analysis (EDA) 

# Check basic statistics of the dataset 

print("Dataset Statistics:\n", df.describe()) 

 

# Check for missing values 

print("Missing Values:\n", df.isnull().sum()) 

 

# Plot the distribution of the target variable 'Defect length' 

plt.figure(figsize=(8, 6)) 

sns.histplot(df['Defect length'], kde=True, bins=30) 

plt.title('Distribution of Defect Length') 

plt.xlabel('Defect Length') 

plt.ylabel('Frequency') 

plt.show() 

 

# Step 3: Correlation Matrix 

features = ['Line segment number', 'Track standard number', 'Milepost', 

'Total car east', 'Total car west', 

            'Total train east', 'Total train west', 'Defect 

amplitude','Total deflection', 'Class', 

            'Freight speed', 'Passenger speed', 'Defect type'] 

 

plt.figure(figsize=(10, 8)) 

corr_matrix = df[features].corr() 

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f') 

plt.title("Feature Correlation Matrix") 
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plt.show() 

 

# Step 4: Define features and target 

features = ['Milepost', 'Total car east', 'Total car west', 'Total train 

east', 'Total train west', 

            'Defect amplitude', 'Total deflection', 'Class', 'Freight 

speed', 'Passenger speed', 'Defect type'] 

target = 'Defect length' 

 

# Step 5: Prepare data 

X = df[features].values 

y = df[target].values 

 

# Step 6: Split the data into training and test sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 

# Step 7: Initialize the scaler and the model 

scaler = StandardScaler() 

model = RandomForestRegressor(random_state=42) 

 

# Step 8: Create a pipeline that first scales the data then fits the model 

pipeline = Pipeline([ 

    ('scaler', scaler), 

    ('regressor', model) 

]) 

 

# Step 9: Set up cross-validation 

kfold = KFold(n_splits=10, shuffle=True, random_state=42) 

 

# Step 10: Define the parameter distributions to sample from 

param_dist = { 
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    'regressor__n_estimators': randint(50, 200), 

    'regressor__max_depth': [10, 15, 20], 

    'regressor__min_samples_split': randint(5, 15), 

    'regressor__min_samples_leaf': randint(2, 10), 

    'regressor__max_features': ['sqrt', 'log2', 0.5] 

} 

 

# Step 11: Set up RandomizedSearchCV 

random_search = RandomizedSearchCV(pipeline, param_dist, n_iter=50, 

cv=kfold, scoring='r2', n_jobs=-1, random_state=42) 

 

# Step 12: Fit the RandomizedSearchCV to find the best model 

random_search.fit(X_train, y_train) 

 

# Step 13: Get the best model from the random search 

best_model = random_search.best_estimator_ 

 

# Step 14: Predict on the training and test sets using the best model 

y_train_pred = best_model.predict(X_train) 

y_test_pred = best_model.predict(X_test) 

 

# Step 15: Calculate R² scores and RMSE for both training and test sets 

r2_train = r2_score(y_train, y_train_pred) 

r2_test = r2_score(y_test, y_test_pred) 

 

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred)) 

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred)) 

 

# Step 16: Output the results 

print(f'Best Parameters: {random_search.best_params_}') 

print(f'R² Score on Training Set: {r2_train}') 
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print(f'R² Score on Test Set: {r2_test}') 

print(f'RMSE on Training Set: {rmse_train}') 

print(f'RMSE on Test Set: {rmse_test}') 

 

# Step 17: Extract feature importances 

feature_importances = 

best_model.named_steps['regressor'].feature_importances_ 

 

# Step 18: Plot feature importances 

plt.figure(figsize=(10, 6)) 

plt.barh(features, feature_importances, color='skyblue') 

plt.xlabel('Feature Importance') 

plt.title('Feature Importances in RandomForestRegressor') 

plt.gca().invert_yaxis()  # To have the most important at the top 

plt.show() 

 

# Step 19: Plot Actual vs Predicted for Training set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_train, y_train_pred, alpha=0.6, color='b', 

label='Predicted') 

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Training Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

# Step 20: Plot Actual vs Predicted for Test set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_test, y_test_pred, alpha=0.6, color='b', label='Predicted') 
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plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Test Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

# Cat boost to predict defect length (80/20 Split) 

 

from catboost import CatBoostRegressor 

from sklearn.model_selection import KFold, RandomizedSearchCV 

from sklearn.metrics import r2_score, mean_squared_error 

from sklearn.pipeline import Pipeline 

from sklearn.preprocessing import StandardScaler 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Assuming your DataFrame (df) is already loaded 

# Example: df = pd.read_csv('your_file.csv') 

 

# Step 1: Define features and target 

features = ['Line segment number', 'Track standard number', 'Milepost', 

'Total car east', 'Total car west', 

            'Total train east', 'Total train west', 'Defect amplitude', 

'Total deflection', 'Class', 

            'Freight speed', 'Passenger speed', 'Defect type'] 

target = 'Defect length' 

 

# Step 2: Prepare data 

X = df[features].values 
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y = df[target].values 

 

# Step 3: Split the dataset into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 

# Step 4: Define a pipeline that first scales the data then applies 

CatBoost Regressor 

pipeline = Pipeline([ 

    ('scaler', StandardScaler()),                 # Standardize the 

features 

    ('catboost', CatBoostRegressor(verbose=0, random_state=42))  # 

CatBoost model 

]) 

 

# Step 5: Define the refined parameter grid for RandomizedSearchCV 

param_distributions = { 

    'catboost__iterations': [100, 150, 200],  # Lower iterations to 

prevent overfitting 

    'catboost__depth': [6, 8, 10],  # Shallower trees for reduced 

complexity 

    'catboost__learning_rate': [0.05, 0.1],  # Smaller learning rates for 

more controlled updates 

    'catboost__l2_leaf_reg': [7, 9, 11],  # Stronger regularization to 

prevent overfitting 

    'catboost__bagging_temperature': [1, 2, 3]  # More randomness in 

bagging 

} 

 

# Step 6: Set up KFold cross-validation with 10 folds 

kfold = KFold(n_splits=10, shuffle=True, random_state=42) 

 

# Step 7: Perform hyperparameter tuning with RandomizedSearchCV 

catboost_search = RandomizedSearchCV( 
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    estimator=pipeline, 

    param_distributions=param_distributions, 

    n_iter=20,  # Number of random parameter combinations to try 

    scoring='r2', 

    cv=kfold,  # 10-fold cross-validation 

    verbose=1, 

    n_jobs=-1, 

    random_state=42 

) 

 

# Step 8: Fit RandomizedSearchCV to the training data 

catboost_search.fit(X_train, y_train) 

 

# Step 9: Output the best parameters and the cross-validation R² score 

best_catboost_params = catboost_search.best_params_ 

best_catboost_score = catboost_search.best_score_ 

print(f"Best parameters for CatBoost: {best_catboost_params}") 

print(f"Best cross-validation R² score for CatBoost: 

{best_catboost_score}") 

 

# Step 10: Get the best model from RandomizedSearchCV 

best_catboost_model = catboost_search.best_estimator_ 

 

# Step 11: Predict on the test data 

y_test_pred_catboost = best_catboost_model.predict(X_test) 

 

# Step 12: Predict on the training data 

y_train_pred_catboost = best_catboost_model.predict(X_train) 

 

# Step 13: Calculate and print the R-squared score for the test and 

training sets 

r2_test_catboost = r2_score(y_test, y_test_pred_catboost) 
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r2_train_catboost = r2_score(y_train, y_train_pred_catboost) 

 

print(f"R-squared (Test) for CatBoost: {r2_test_catboost}") 

print(f"R-squared (Training) for CatBoost: {r2_train_catboost}") 

 

# Step 14: Calculate RMSE for both training and test sets 

rmse_train_catboost = np.sqrt(mean_squared_error(y_train, 

y_train_pred_catboost)) 

rmse_test_catboost = np.sqrt(mean_squared_error(y_test, 

y_test_pred_catboost)) 

 

print(f"RMSE (Training) for CatBoost: {rmse_train_catboost}") 

print(f"RMSE (Test) for CatBoost: {rmse_test_catboost}") 

 

# Step 15: Plot Actual vs Predicted for Training set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_train, y_train_pred_catboost, alpha=0.6, color='b', 

label='Predicted') 

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Training Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

# Step 16: Plot Actual vs Predicted for Test set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_test, y_test_pred_catboost, alpha=0.6, color='b', 

label='Predicted') 

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Test Set)') 
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plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

#XGBoost to predict repeated defects 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.model_selection import KFold, RandomizedSearchCV 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import Pipeline 

from sklearn.metrics import r2_score, mean_squared_error 

import xgboost as xgb 

from scipy.stats import uniform, randint 

 

# Step 1: Define features and target 

features = ['Line segment number', 'Track standard number', 'Milepost', 

'Total car east', 'Total car west', 

            'Total train east', 'Total train west', 'Defect amplitude', 

'Total deflection', 'Class', 

            'Freight speed', 'Passenger speed', 'Defect type'] 

target = 'Defect length' 

 

# Step 2: Load the train and test data 

train_df = pd.read_csv('Defecttrain.csv') 

test_df = pd.read_csv('Defecttest.csv') 

 

# Step 3: Exploratory Data Analysis (EDA) 

# Check basic statistics of the training dataset 
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print("Training Data Statistics:\n", train_df.describe()) 

 

# Check for missing values in the training and test datasets 

print("Missing Values in Training Data:\n", train_df.isnull().sum()) 

print("Missing Values in Test Data:\n", test_df.isnull().sum()) 

 

# Plot the distribution of the target variable 'Defect length' in the 

training data 

plt.figure(figsize=(8, 6)) 

sns.histplot(train_df['Defect length'], kde=True, bins=30) 

plt.title('Distribution of Defect Length in Training Data') 

plt.xlabel('Defect Length') 

plt.ylabel('Frequency') 

plt.show() 

 

# Step 5: Extract features and target 

X_train = train_df[features].values 

y_train = train_df[target].values 

X_test = test_df[features].values 

y_test = test_df[target].values 

 

# Step 6: Initialize the scaler and the model 

scaler = StandardScaler() 

model = xgb.XGBRegressor(objective='reg:squarederror', random_state=42) 

 

# Step 7: Create a pipeline that first scales the data then fits the model 

pipeline = Pipeline([ 

    ('scaler', scaler), 

    ('regressor', model) 

]) 

 



    

 

264 

 

# Step 8: Set up cross-validation 

kfold = KFold(n_splits=10, shuffle=True, random_state=42) 

 

# Step 9: Define the parameter distributions to sample from 

param_dist = { 

    'regressor__n_estimators': randint(100, 300), 

    'regressor__max_depth': randint(3, 10), 

    'regressor__learning_rate': uniform(0.01, 0.2), 

    'regressor__subsample': uniform(0.6, 0.4), 

    'regressor__colsample_bytree': uniform(0.6, 0.4), 

    'regressor__min_child_weight': randint(1, 10), 

    'regressor__gamma': uniform(0, 0.5), 

    'regressor__reg_alpha': uniform(0, 1),  # L1 regularization term 

    'regressor__reg_lambda': uniform(0, 1)  # L2 regularization term 

} 

 

# Step 10: Set up RandomizedSearchCV 

random_search = RandomizedSearchCV(pipeline, param_dist, n_iter=50, 

cv=kfold, scoring='r2', n_jobs=-1, random_state=42) 

 

# Step 11: Fit the RandomizedSearchCV to find the best model 

random_search.fit(X_train, y_train) 

 

# Step 12: Get the best model from the random search 

best_model = random_search.best_estimator_ 

 

# Step 13: Predict on the training and test sets using the best model 

y_train_pred = best_model.predict(X_train) 

y_test_pred = best_model.predict(X_test) 

 

# Step 14: Calculate R² scores 
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r2_train = r2_score(y_train, y_train_pred) 

r2_test = r2_score(y_test, y_test_pred) 

 

# Step 15: Calculate RMSE for both training and test sets 

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred)) 

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred)) 

 

# Step 16: Output the results 

print(f'Best Parameters: {random_search.best_params_}') 

print(f'R² Score on Training Set: {r2_train}') 

print(f'R² Score on Test Set: {r2_test}') 

print(f'RMSE on Training Set: {rmse_train}') 

print(f'RMSE on Test Set: {rmse_test}') 

 

# Step 17: Plot Actual vs Predicted for Training set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_train, y_train_pred, alpha=0.6, color='blue', 

label='Predicted') 

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Training Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

# Step 18: Plot Actual vs Predicted for Test set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_test, y_test_pred, alpha=0.6, color='green', 

label='Predicted') 

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 
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plt.title('Actual vs Predicted (Test Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

#Random Forest (Repeated defect number) 

 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.model_selection import KFold, RandomizedSearchCV 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import Pipeline 

from sklearn.metrics import r2_score, mean_squared_error 

from scipy.stats import randint 

import numpy as np 

 

# Step 1: Define features and target 

features = ['Line segment number', 'Track standard number', 'Milepost', 

'Total car east', 'Total car west', 

            'Total train east', 'Total train west', 'Defect 

amplitude','Total deflection', 'Class', 

            'Freight speed', 'Passenger speed', 'Defect type'] 

target = 'Defect length' 

 

# Step 2: Load the train and test data 

train_df = pd.read_csv('Defecttrain.csv') 

test_df = pd.read_csv('Defecttest.csv') 

 

# Step 3: Exploratory Data Analysis (EDA) 



    

 

267 

 

# Check basic statistics of the training dataset 

print("Training Data Statistics:\n", train_df.describe()) 

 

# Check for missing values in the training and test datasets 

print("Missing Values in Training Data:\n", train_df.isnull().sum()) 

print("Missing Values in Test Data:\n", test_df.isnull().sum()) 

 

# Plot the distribution of the target variable 'Defect length' in the 

training data 

plt.figure(figsize=(8, 6)) 

sns.histplot(train_df['Defect length'], kde=True, bins=30) 

plt.title('Distribution of Defect Length in Training Data') 

plt.xlabel('Defect Length') 

plt.ylabel('Frequency') 

plt.show() 

 

# Step 5: Extract features and target 

X_train = train_df[features].values 

y_train = train_df[target].values 

X_test = test_df[features].values 

y_test = test_df[target].values 

 

# Step 6: Initialize the scaler and the model 

scaler = StandardScaler() 

model = RandomForestRegressor(random_state=42) 

 

# Step 7: Create a pipeline that first scales the data then fits the model 

pipeline = Pipeline([ 

    ('scaler', scaler), 

    ('regressor', model) 

]) 



    

 

268 

 

 

# Step 8: Set up cross-validation 

kfold = KFold(n_splits=10, shuffle=True, random_state=42) 

 

# Step 9: Define the parameter distributions to sample from 

param_dist = { 

    'regressor__n_estimators': randint(50, 200), 

    'regressor__max_depth': [10, 15, 20], 

    'regressor__min_samples_split': randint(5, 15), 

    'regressor__min_samples_leaf': randint(2, 10), 

    'regressor__max_features': ['sqrt', 'log2', 0.5] 

} 

 

# Step 10: Set up RandomizedSearchCV 

random_search = RandomizedSearchCV(pipeline, param_dist, n_iter=50, 

cv=kfold, scoring='r2', n_jobs=-1, random_state=42) 

 

# Step 11: Fit the RandomizedSearchCV to find the best model 

random_search.fit(X_train, y_train) 

 

# Step 12: Get the best model from the random search 

best_model = random_search.best_estimator_ 

 

# Step 13: Predict on the training and test sets using the best model 

y_train_pred = best_model.predict(X_train) 

y_test_pred = best_model.predict(X_test) 

 

# Step 14: Calculate R² scores 

r2_train = r2_score(y_train, y_train_pred) 

r2_test = r2_score(y_test, y_test_pred) 
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# Step 15: Calculate RMSE for both training and test sets 

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred)) 

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred)) 

 

# Step 16: Output the results 

print(f'Best Parameters: {random_search.best_params_}') 

print(f'R² Score on Training Set: {r2_train}') 

print(f'R² Score on Test Set: {r2_test}') 

print(f'RMSE on Training Set: {rmse_train}') 

print(f'RMSE on Test Set: {rmse_test}') 

 

# Step 17: Plot Actual vs Predicted for Training set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_train, y_train_pred, alpha=0.6, color='blue', 

label='Predicted') 

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Training Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

# Step 18: Plot Actual vs Predicted for Test set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_test, y_test_pred, alpha=0.6, color='green', 

label='Predicted') 

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Test Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 



    

 

270 

 

plt.legend() 

plt.show() 

 

# Cat Boost to predict the repeated defect length 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.model_selection import KFold, RandomizedSearchCV 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import Pipeline 

from sklearn.metrics import r2_score, mean_squared_error 

from catboost import CatBoostRegressor 

from scipy.stats import uniform, randint 

 

# Step 1: Define features and target 

features = ['Line segment number', 'Track standard number', 'Milepost', 

'Total car east', 'Total car west', 

            'Total train east', 'Total train west', 'Defect amplitude', 

'Total deflection', 'Class', 

            'Freight speed', 'Passenger speed', 'Defect type'] 

target = 'Defect length' 

 

# Step 2: Load the train and test data 

train_df = pd.read_csv('Defecttrain.csv') 

test_df = pd.read_csv('Defecttest.csv') 

 

# Step 3: Exploratory Data Analysis (EDA) 

# Check basic statistics of the training dataset 

print("Training Data Statistics:\n", train_df.describe()) 
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# Check for missing values in the training and test datasets 

print("Missing Values in Training Data:\n", train_df.isnull().sum()) 

print("Missing Values in Test Data:\n", test_df.isnull().sum()) 

 

# Plot the distribution of the target variable 'Defect length' in the 

training data 

plt.figure(figsize=(8, 6)) 

sns.histplot(train_df['Defect length'], kde=True, bins=30) 

plt.title('Distribution of Defect Length in Training Data') 

plt.xlabel('Defect Length') 

plt.ylabel('Frequency') 

plt.show() 

 

# Step 5: Extract features and target 

X_train = train_df[features].values 

y_train = train_df[target].values 

X_test = test_df[features].values 

y_test = test_df[target].values 

 

# Step 6: Initialize the scaler and the model 

scaler = StandardScaler() 

model = CatBoostRegressor(verbose=0, random_state=42) 

 

# Step 7: Create a pipeline that first scales the data then fits the model 

pipeline = Pipeline([ 

    ('scaler', scaler), 

    ('regressor', model) 

]) 

 

# Step 8: Set up cross-validation 

kfold = KFold(n_splits=10, shuffle=True, random_state=42) 
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# Step 9: Define the refined parameter distributions for CatBoost 

param_dist = { 

    'regressor__iterations': randint(500, 1000),     # Increase iterations 

for gradual learning 

    'regressor__depth': randint(6, 7),               # Reduce depth to 

prevent overfitting 

    'regressor__learning_rate': uniform(0.03, 0.05), # Lower learning rate 

for smaller updates 

    'regressor__l2_leaf_reg': uniform(10, 15),       # Increase L2 

regularization 

    'regressor__subsample': uniform(0.6, 0.4),       # Subsample ratio of 

the training instances 

    'regressor__bagging_temperature': uniform(0, 1), # Control randomness 

in bagging 

} 

 

# Step 10: Set up RandomizedSearchCV for CatBoost 

random_search = RandomizedSearchCV( 

    pipeline, param_dist, n_iter=50, cv=kfold, scoring='r2', n_jobs=-1, 

random_state=42, verbose=2 

) 

 

# Step 11: Fit the RandomizedSearchCV to find the best model 

random_search.fit(X_train, y_train) 

 

# Step 12: Get the best model from the random search 

best_model = random_search.best_estimator_ 

 

# Step 13: Predict on the training and test sets using the best model 

y_train_pred = best_model.predict(X_train) 

y_test_pred = best_model.predict(X_test) 
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# Step 14: Calculate R² scores 

r2_train = r2_score(y_train, y_train_pred) 

r2_test = r2_score(y_test, y_test_pred) 

 

# Step 15: Calculate RMSE for both training and test sets 

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred)) 

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred)) 

 

# Step 16: Output the results 

print(f'Best Parameters: {random_search.best_params_}') 

print(f'R² Score on Training Set: {r2_train}') 

print(f'R² Score on Test Set: {r2_test}') 

print(f'RMSE on Training Set: {rmse_train}') 

print(f'RMSE on Test Set: {rmse_test}') 

 

# Step 17: Plot Actual vs Predicted for Training set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_train, y_train_pred, alpha=0.6, color='blue', 

label='Predicted') 

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Training Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

# Step 18: Plot Actual vs Predicted for Test set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_test, y_test_pred, alpha=0.6, color='green', 

label='Predicted') 
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plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Test Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

#XGBoost (Increase in defect length) 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.model_selection import KFold, train_test_split, 

RandomizedSearchCV 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import Pipeline 

from sklearn.metrics import r2_score, mean_squared_error 

import xgboost as xgb 

from scipy.stats import uniform, randint 

 

# Step 1: Load the dataset 

df = pd.read_csv('Defect length increase.csv') 

 

# Step 2: Exploratory Data Analysis (EDA) 

# Check basic statistics of the dataset 

print("Dataset Statistics:\n", df.describe()) 

 

# Check for missing values 

print("Missing Values:\n", df.isnull().sum()) 
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# Plot the distribution of the target variable 'Defect length' 

plt.figure(figsize=(8, 6)) 

sns.histplot(df['Defect length'], kde=True, bins=30) 

plt.title('Distribution of Defect Length') 

plt.xlabel('Defect Length') 

plt.ylabel('Frequency') 

plt.show() 

 

# Step 4: Define features and target 

features = ['Defect amplitude', 'Previous defect length', 'Time gap', 

'Defect type'] 

target = 'Defect length' 

 

# Step 5: Prepare data 

X = df[features].values 

y = df[target].values 

 

# Step 6: Split the data into training and test sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 

# Step 7: Initialize the scaler and the model 

scaler = StandardScaler() 

model = xgb.XGBRegressor(objective='reg:squarederror', random_state=42) 

 

# Step 8: Create a pipeline that first scales the data then fits the model 

pipeline = Pipeline([ 

    ('scaler', scaler), 

    ('regressor', model) 

]) 

 

# Step 9: Set up cross-validation 
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kfold = KFold(n_splits=10, shuffle=True, random_state=42) 

 

# Step 10: Define the parameter distributions to sample from 

param_dist = { 

    'regressor__n_estimators': randint(100, 500), 

    'regressor__max_depth': randint(3, 15), 

    'regressor__learning_rate': uniform(0.01, 0.2), 

    'regressor__subsample': uniform(0.6, 0.4), 

    'regressor__colsample_bytree': uniform(0.6, 0.4), 

    'regressor__min_child_weight': randint(1, 10), 

    'regressor__gamma': uniform(0, 0.5), 

    'regressor__reg_alpha': uniform(0, 1), 

    'regressor__reg_lambda': uniform(0, 1) 

} 

 

# Step 11: Set up RandomizedSearchCV 

random_search = RandomizedSearchCV(pipeline, param_dist, n_iter=100, 

cv=kfold, scoring='r2', n_jobs=-1, random_state=42) 

 

# Step 12: Fit the RandomizedSearchCV to find the best model 

random_search.fit(X_train, y_train) 

 

# Step 13: Get the best model from the random search 

best_model = random_search.best_estimator_ 

 

# Step 14: Predict on the training and test sets using the best model 

y_train_pred = best_model.predict(X_train) 

y_test_pred = best_model.predict(X_test) 

 

# Step 15: Calculate R² scores 

r2_train = r2_score(y_train, y_train_pred) 



    

 

277 

 

r2_test = r2_score(y_test, y_test_pred) 

 

# Step 16: Calculate RMSE for both training and test sets 

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred)) 

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred)) 

 

# Step 17: Output the results 

print(f'Best Parameters for XGBoost: {random_search.best_params_}') 

print(f'R² Score on Training Set: {r2_train}') 

print(f'R² Score on Test Set: {r2_test}') 

print(f'RMSE on Training Set: {rmse_train}') 

print(f'RMSE on Test Set: {rmse_test}') 

 

# Step 18: Plot Actual vs Predicted for Training set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_train, y_train_pred, alpha=0.6, color='blue', 

label='Predicted') 

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Training Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

# Step 19: Plot Actual vs Predicted for Test set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_test, y_test_pred, alpha=0.6, color='green', 

label='Predicted') 

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Test Set)') 
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plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

#Random Forest (Increase in defect length) 

 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.model_selection import KFold, train_test_split, 

RandomizedSearchCV 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import Pipeline 

from sklearn.metrics import r2_score, mean_squared_error 

from scipy.stats import randint 

import numpy as np 

 

# Step 1: Load the new dataset 

df = pd.read_csv('Defect length increase.csv') 

 

# Step 2: Exploratory Data Analysis (EDA) 

# Check basic statistics of the dataset 

print("Dataset Statistics:\n", df.describe()) 

 

# Check for missing values 

print("Missing Values:\n", df.isnull().sum()) 

 

# Plot the distribution of the target variable 'Defect length' 

plt.figure(figsize=(8, 6)) 
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sns.histplot(df['Defect length'], kde=True, bins=30) 

plt.title('Distribution of Defect Length') 

plt.xlabel('Defect Length') 

plt.ylabel('Frequency') 

plt.show() 

 

# Step 4: Define features and target 

features = ['Defect amplitude', 'Previous defect length', 'Time gap', 

'Defect type'] 

target = 'Defect length' 

 

# Step 5: Prepare data 

X = df[features].values 

y = df[target].values 

 

# Step 6: Split the data into training and test sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 

# Step 7: Initialize the scaler and the model 

scaler = StandardScaler() 

model = RandomForestRegressor(random_state=42) 

 

# Step 8: Create a pipeline that first scales the data then fits the model 

pipeline = Pipeline([ 

    ('scaler', scaler), 

    ('regressor', model) 

]) 

 

# Step 9: Set up cross-validation 

kfold = KFold(n_splits=10, shuffle=True, random_state=42) 
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# Step 10: Define the parameter distributions to sample from 

param_dist = { 

    'regressor__n_estimators': randint(50, 200), 

    'regressor__max_depth': [10, 15, 20], 

    'regressor__min_samples_split': randint(5, 15), 

    'regressor__min_samples_leaf': randint(2, 10), 

    'regressor__max_features': ['sqrt', 'log2', 0.5] 

} 

 

# Step 11: Set up RandomizedSearchCV 

random_search = RandomizedSearchCV(pipeline, param_dist, n_iter=50, 

cv=kfold, scoring='r2', n_jobs=-1, random_state=42) 

 

# Step 12: Fit the RandomizedSearchCV to find the best model 

random_search.fit(X_train, y_train) 

 

# Step 13: Get the best model from the random search 

best_model = random_search.best_estimator_ 

 

# Step 14: Predict on the training and test sets using the best model 

y_train_pred = best_model.predict(X_train) 

y_test_pred = best_model.predict(X_test) 

 

# Step 15: Calculate R² scores 

r2_train = r2_score(y_train, y_train_pred) 

r2_test = r2_score(y_test, y_test_pred) 

 

# Step 16: Calculate RMSE for both training and test sets 

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred)) 

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred)) 

 



    

 

281 

 

# Step 17: Output the results 

print(f'Best Parameters: {random_search.best_params_}') 

print(f'R² Score on Training Set: {r2_train}') 

print(f'R² Score on Test Set: {r2_test}') 

print(f'RMSE on Training Set: {rmse_train}') 

print(f'RMSE on Test Set: {rmse_test}') 

 

# Step 18: Plot Actual vs Predicted for Training set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_train, y_train_pred, alpha=0.6, color='blue', 

label='Predicted') 

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Training Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

# Step 19: Plot Actual vs Predicted for Test set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_test, y_test_pred, alpha=0.6, color='green', 

label='Predicted') 

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Test Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

#CatBoost to predict increase in defect length 
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import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.model_selection import KFold, train_test_split, 

RandomizedSearchCV 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import Pipeline 

from sklearn.metrics import r2_score, mean_squared_error 

from catboost import CatBoostRegressor 

from scipy.stats import uniform, randint 

 

# Step 1: Load the dataset 

df = pd.read_csv('Defect length increase.csv') 

 

# Step 2: Exploratory Data Analysis (EDA) 

print("Dataset Statistics:\n", df.describe()) 

print("Missing Values:\n", df.isnull().sum()) 

 

# Plot the distribution of the target variable 'Defect length' 

plt.figure(figsize=(8, 6)) 

sns.histplot(df['Defect length'], kde=True, bins=30) 

plt.title('Distribution of Defect Length') 

plt.xlabel('Defect Length') 

plt.ylabel('Frequency') 

plt.show() 

 

# Step 4: Define features and target 

features = ['Defect amplitude', 'Previous defect length', 'Time gap', 

'Defect type'] 

target = 'Defect length' 
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# Step 5: Prepare data 

X = df[features].values 

y = df[target].values 

 

# Step 6: Split the data into training and test sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 

# Step 7: Initialize the scaler and the model 

scaler = StandardScaler() 

model = CatBoostRegressor(objective='RMSE', random_state=42, verbose=0, 

early_stopping_rounds=100) 

 

# Step 8: Create a pipeline that first scales the data then fits the model 

pipeline = Pipeline([ 

    ('scaler', scaler), 

    ('regressor', model) 

]) 

 

# Step 9: Set up cross-validation 

kfold = KFold(n_splits=10, shuffle=True, random_state=42) 

 

# Step 10: Define the parameter distributions to sample from 

param_dist = { 

    'regressor__depth': randint(3, 6),  # Reduce depth to prevent 

overfitting 

    'regressor__learning_rate': uniform(0.01, 0.03),  # Keep learning rate 

low 

    'regressor__iterations': randint(300, 600),  # Decrease iterations to 

avoid overfitting 

    'regressor__l2_leaf_reg': uniform(10, 20),  # Increase L2 

regularization 
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    'regressor__bagging_temperature': uniform(0.3, 1),  # Regularization 

    'regressor__subsample': uniform(0.5, 0.5),  # Subsample in (0.5, 1] to 

avoid errors 

    'regressor__random_strength': uniform(5, 10)  # Increase randomness 

} 

 

# Step 11: Set up RandomizedSearchCV 

random_search = RandomizedSearchCV(pipeline, param_dist, n_iter=100, 

cv=kfold, scoring='r2', n_jobs=-1, random_state=42, error_score='raise') 

 

# Step 12: Fit the RandomizedSearchCV to find the best model 

random_search.fit(X_train, y_train) 

 

# Step 13: Get the best model from the random search 

best_model = random_search.best_estimator_ 

 

# Step 14: Predict on the training and test sets using the best model 

y_train_pred = best_model.predict(X_train) 

y_test_pred = best_model.predict(X_test) 

 

# Step 15: Calculate R² scores 

r2_train = r2_score(y_train, y_train_pred) 

r2_test = r2_score(y_test, y_test_pred) 

 

# Step 16: Calculate RMSE for both training and test sets 

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred)) 

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred)) 

 

# Step 17: Output the results 

print(f'Best Parameters for CatBoost: {random_search.best_params_}') 

print(f'R² Score on Training Set: {r2_train}') 

print(f'R² Score on Test Set: {r2_test}') 



    

 

285 

 

print(f'RMSE on Training Set: {rmse_train}') 

print(f'RMSE on Test Set: {rmse_test}') 

 

# Step 18: Plot Actual vs Predicted for Training set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_train, y_train_pred, alpha=0.6, color='blue', 

label='Predicted') 

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Training Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 

 

# Step 19: Plot Actual vs Predicted for Test set 

plt.figure(figsize=(8, 6)) 

plt.scatter(y_test, y_test_pred, alpha=0.6, color='green', 

label='Predicted') 

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 

color='red', lw=2, label='Perfect Fit')  # Perfect fit line 

plt.title('Actual vs Predicted (Test Set)') 

plt.xlabel('Actual Values') 

plt.ylabel('Predicted Values') 

plt.legend() 

plt.show() 


