

Development of a Condition Assessment Rating System and Prediction Model

for Railway Tracks

Bharath Rajendir Rajendran

A Thesis

In the Department of

Building, Civil, and Environmental Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Master of Applied Science (Civil Engineering)

at Concordia University

Montréal, Québec, Canada

October 2024

© Bharath Rajendir Rajendran, 2024

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Bharath Rajendir Rajendran

Entitled: Development of a Condition Assessment Rating System and Prediction

Model for Railway Tracks

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Civil Engineering)

complies with the regulations of the University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

 Chair

Dr. Jong Won Ma

 Examiner

Dr. Osama Moselhi

 Examiner

Dr. Jong Won Ma

 Supervisor

Dr. Rebecca Dziedzic

Approved by

Dr. Po Han Chen, Graduate Program Director

October 15, 2024

 Dr. Mourad Debbabi, Dean of Gina Cody School of Engineering and

Computer Science

iii

Abstract

Development of a Condition Assessment Rating System and Prediction Model for Railway

Tracks

Bharath Rajendir Rajendran

Canada has an extensive rail network spanning 45,000 kilometres. The railway system plays a

crucial role in serving almost every sector of the Canadian economy. Primarily, it transports freight

to and from the U.S. and global markets through coastal ports. However, failures in the railway

infrastructure can have severe safety and financial consequences. In 2023, 43.13% of main-track

derailments were attributed to track defects, according to the Transportation Safety Board of

Canada. These defects, including issues with track geometry and component failures, underline

the need for better track condition monitoring and maintenance to prevent derailments. This

research aims to address this need by developing a comprehensive rating system for evaluating the

condition of ties and rail fastening components and machine learning models to predict future track

conditions. While traditional condition assessment ratings have relied on subjective evaluations

and considered components separately, this study proposes a Tie and Rail Fastening system that

evaluates the condition of ties, tie plates, and spikes. Domain expertise was incorporated through

the Analytic Hierarchy Process (AHP) to prioritize the importance of various defects. The resulting

weighting system provides a more detailed and integrated approach compared to existing rating

methods, which primarily focus on crack size. Machine learning models, including Random

Forest, XGBoost, and Cat Boost, were employed to predict future conditions, such as defect tags,

amplitude, and length. These models achieved a 95% accuracy for detecting defect tags and a 75%

accuracy when predicting defect tags based on predicted amplitude. On the one hand, the proposed

tie and rail fastening rating system can improve the prioritization of future rail maintenance works.

On the other hand, the proposed machine learning models can improve the planning of future

maintenance by offering better tools for monitoring and predicting track conditions.

iv

Acknowledgements

I express my deepest gratitude to Professor Rebecca Dziedzic, my kind and dedicated supervisor,

for her unwavering support and guidance throughout my master’s studies. Completing this

research and writing this thesis would not have been possible without her expertise and insight at

every stage of the process. Her extensive knowledge, patience, and invaluable advice have guided

me through this challenging yet adventurous journey. I would also like to acknowledge Concordia

University for funding the project and providing technical support during the research. My sincere

thanks go to Richard Fox-Ivey from Pavemetrics Inc. for providing the dataset for this study and

offering valuable support. I also extend my gratitude to my colleagues Daniel Blais and Matthew

Krech from Transport Canada for their support during my internship and to all the railroad

professionals across North America and other countries who actively participated in the survey

and contributed valuable insights to developing the condition assessment framework. Lastly, I

must thank my parents for their unconditional encouragement and support throughout this journey

and express my gratitude to God for their blessings in overcoming the hardships. This thesis is

dedicated to my Parents and my mentor, Dr. Rebecca Dziedzic.

v

Table of Contents

List of Figures .. vii

List of Tables .. viii

Chapter 1. Introduction ... 9

1.1. Background .. 9

1.2 Objective ... 10

1.3 Thesis Structure .. 11

1.4 Contributions... 11

Chapter 2. Literature Review .. 13

2.1 Railway Track Components .. 13

2.2 Track Geometry .. 17

2.3 Condition Rating System .. 20

2.4 Condition Prediction Models .. 30

2.4.1 Statistical Models ... 31

2.4.2 Machine Learning Models ... 36

2.5 Limitations of Existing Studies ... 42

Chapter 3. Methodology ... 44

3.1 Condition Rating System .. 44

3.1.1 Case Study Description .. 45

3.1.2 Data Understanding and Preparation ... 46

3.1.3 Rating System Framework Development ... 48

3.1.4 Questionnaire Analysis Using the Analytical Hierarchy Process (AHP) 51

3.1.5 Case Study Validation and Sensitivity Analysis ... 55

3.2 Condition Prediction Model .. 60

3.2.1 Data Understanding and Cleaning .. 62

vi

3.2.2 Modelling and Evaluation.. 64

Chapter 4. Results ... 74

4.1 Condition Assessment System .. 74

4.1.1 Questionnaire Survey Analysis .. 74

4.1.2 Analytical Hierarchy Process (AHP) Analysis .. 76

4.1.3 Case Study Validation and Sensitivity Analysis ... 78

4.2 Condition Prediction Model .. 94

4.2.1 Correlation analysis... 95

4.2.2 Defect tag and defect type detection models .. 97

4.2.3 Defect amplitude and length prediction models .. 103

4.2.4 Defect tag prediction model using predicted amplitude .. 109

Chapter 4. Discussions .. 110

4.1 Condition Rating System .. 110

4.2 Condition Prediction Model .. 116

Chapter 5. Conclusion .. 121

References .. 123

vii

List of Figures

Figure 1: The main components of the railway track. .. 14

Figure 2: Spike and Tie plate .. 16

Figure 3: The track sub-structure. ... 17

Figure 4: Track geometry parameters. .. 18

Figure 5: Overview of Research Methodology ... 44

Figure 6: Sample image from condition assessment case study data ... 45

Figure 7: crack distance from the components. .. 50

Figure 8: Proposed tie and rail fastening system framework. ... 51

Figure 9: Data merging. .. 62

Figure 10: Distribution of the defect tag and defect type ... 70

Figure 11: Years of Experience of Survey Respondents. ... 74

Figure 12: Role in the decision-making of Survey Respondents. ... 75

Figure 13: Organization Affiliation of Survey Respondents. ... 76

Figure 14: Tie and rail fastening framework with weights ... 77

Figure 15: Score distribution of location, size, tie plate and spike .. 82

Figure 16: Weight distribution of location, size, tie plate, spike and the sum of the tie crack factors

 .. 83

Figure 17: Distribution of the rating for the Pavemetrics threshold ... 85

Figure 18: Comparison of Tie crack rating vs Tie and Rail Fastening condition rating 87

Figure 19: Tie crack size condition rating scale ... 88

Figure 20: The proposed scale (Rail and tie fastening system) .. 89

Figure 21: Crack location vs size (base weight scenario) ... 91

Figure 22: location vs size factors (Tie and rail fastening system condition scale for equal weights

scenario) ... 92

Figure 23: Correlation matrix for the condition prediction model ... 96

Figure 24: Confusion matrix for defect tag prediction using cat boost .. 98

Figure 25: Confusion matrix for defect type prediction using random forest 101

Figure 26: scatter plot for test set to predict the defect amplitude using the random forest 103

Figure 27: scatter plot for test set to predict the defect length using the XGBoost 106

viii

List of Tables

Table 1 Factors contributing to the railway track geometry degradation 19

Table 2: Summary of the condition rating systems .. 27

Table 3 Summary of statistical models ... 34

Table 4: Summary of Machine Learning Models ... 37

Table 5: Meta data table for Pavemetrics data. ... 46

Table 6 : Current rating system ... 48

Table 7: Scenario one: Pavemetrics (Industry thresholds) ... 56

Table 8: Scenario with and without outliers ... 58

Table 9: Summary of the attributes ... 60

Table 10: Input Attributes to predict the target. ... 69

Table 11: Scenario one: Statistical summary of the scores for the Pavemetrics threshold........... 78

Table 12: Scenario two and three: Statistical summary of the scores with and without outliers. 79

Table 13: score ranges of factors categorized by light, moderate, and severe Ratings 80

Table 14: Sensitivity analysis of the Tie crack, Tie plate and spike ... 90

Table 15: Sensitivity analysis: Location of the crack and size of the crack 91

Table 16: Sensitivity analysis of the crack size factors .. 92

Table 17: Sensitivity analysis of the crack location factors .. 93

Table 18: Statistical description of the targets .. 94

Table 19: Confusion matrix for defect tag prediction using cat boost .. 98

Table 20: Classification Model Results for Defect Tag Detection ... 99

Table 21: Confusion matrix for defect type prediction using random forest 100

Table 22: Classification Model Results for Defect Type Prediction .. 101

Table 23: Regression Model Results for Defect Amplitude Prediction 105

Table 24: Regression Model Results for Defect Length Prediction ... 107

Table 25: Classification model results of defect tag using the predicted amplitude 109

Table 26: Summary of the weights assigned by the respondent’s organization 112

Table 27: Summary of the models .. 116

Table 28: Models from the literature .. 118

9

Chapter 1. Introduction

1.1. Background

Canada has an extensive rail network spanning 45,000 kilometres of track (Transport Canada

2023). The railway system plays a crucial role in serving almost every sector of the Canadian

economy. Primarily, it transports freight to and from the U.S. and global markets through coastal

ports. Additionally, there are numerous passenger lines operating across Canada. Thus, failures in

these networks can have serious consequences for human safety, as well as high costs. According

to the Transportation Safety Board of Canada (TSB 2023), a significant portion of main-track

derailments in 2023, specifically 43.13% (22 out of 51 derailments), were attributed to track

defects. These track defects encompassed issues like track geometry, broken rails, and other track

components, and this emphasizes the importance of addressing and maintaining track

infrastructure to ensure railway safety and prevent derailments. According to the American

Railroads Association, the US freight rail network transports one-third of all exports from the

United States and around 40% of all long-distance freight (Black 2022). Track defects are one of

the main reasons for train accidents in the US. For example, in 2012, 33.03% of 1747 train

accidents recorded by the Federal Railroad Administration (FRA) were due to track defects,

causing $102.9 million in total reportable damage (Peng, Ouyang, and Somani 2013). The FRA

safety compliance classifies defects into red and yellow tags. Red tag defects should be fixed

immediately since they violate the FRA standards, and yellow tag defects should be fixed before

turning red (RAS 2015). Defects can be identified with track geometry vehicles using visual

inspection and technologies like induction and ultrasonic devices (Cannon et al. 2003). Railway

tracks can be impacted by a range of defects, which can significantly affect the safety and

efficiency of train operations. These defects may encompass cracks, wear and tear, misalignments,

and other structural issues that could compromise the integrity of the track system. Regular

inspection and maintenance are crucial in identifying and addressing these issues before they

escalate into substantial hazards. Additionally, technological advancements have introduced

various methods for detecting and mitigating track defects, such as automated track inspections

using lasers, Lidar, and drones. In track maintenance, rails may experience breakage or wear, while

ties can split, crack, or become severed. Fastenings might be missed, spikes could break, become

10

loose, or go missing, anchors may fail to hold, and ballast can become fouled or provide poor

drainage. Track geometry issues can lead to poor gauge holding or misalignment. Since railway

tracks consist of various components, defects may appear differently.

Most current condition assessment systems focus mainly on track geometry and ballast, but they

often miss important factors like spikes, tie plates, and the exact location of cracks. While track

geometry is necessary, leaving out the condition of spikes and tie plates prevents a full

understanding of the track's overall health. For example, good spikes and tie plates can help

maintain track integrity, even if the geometry is slightly compromised. Additionally, cracks near

these components may pose greater risks than those in other areas. This highlights the need for a

more comprehensive rating system that incorporates all these elements to fully assess the track's

condition. In condition prediction models, the focus is often on identifying defects quickly without

paying enough attention to the details of the defects themselves, like their type, size, and length.

While it is helpful to predict tag defects, this does not provide enough information to decide how

and when to fix the issues. If prediction models could also tell us more about the defects, such as

their severity and how fast they are getting worse, it would help make better maintenance

decisions. This shows a gap in current models, which need to go beyond just finding defects and

offer more detailed insights into the nature of the problems.

1.2 Objective

The objective of this work is to formulate methodologies for the assessment and prediction of

railway track conditions. The specific goals to achieve this aim are as follows:

• Develop a comprehensive condition rating system to systematically evaluate the condition

of rail ties and fastenings.

• Develop machine learning models to predict the condition of railway tracks, including

defect tags, types, length, and amplitude.

11

1.3 Thesis Structure

This thesis is organized as follows: Chapter 2 presents a literature review covering the various

components of railway tracks and their role in supporting train operations. It reviews the factors

contributing to the deterioration of key components like rails, sleepers or ties, ballast, and fastening

systems. The literature on the degradation of track geometry is explored, highlighting the impact

on overall track performance. Additionally, it examines the railway track's geometry parameters,

and the current methods used for condition assessment. The review also includes condition

prediction models and evaluates their effectiveness. Finally, it discusses the benefits and

limitations of previous methodologies found in the literature. Chapter 3 outlines the proposed

methodology for the track's condition rating system and prediction model, which integrates the

Analytical Hierarchy Process (AHP) to establish a comprehensive rating system and employs

machine learning-based approaches for predicting track condition and defect characteristics. This

section also introduces two different case studies to evaluate the proposed strategy. Chapter 4

presents result regarding the rating system for evaluating the condition of railroad ties and

fastening components in the railway track and the prediction of defect tags, types, length, and

amplitude. In Chapter 5, discussions associated with the results are provided. Finally, conclusions

are drawn in Chapter 6.

1.4 Contributions

Two main contributions of the work are:

• The development of a comprehensive condition rating system using the Analytical

Hierarchy Process (AHP) to enhance the understanding of how multiple factors like rail

ties, fastenings, and crack locations impact track performance. This model provides a more

detailed and structured approach to evaluating track components, supporting future

research on automated condition assessment. Practically, this model will improve

maintenance planning and risk mitigation, allowing for targeted interventions based on

specific asset conditions.

12

• The development of machine learning models that predict the condition of railway tracks

and provide detailed predictions of defect characteristics such as tag, type, length, and

amplitude. In practice, they will enhance the accuracy of maintenance planning and safety

management by forecasting specific defect behaviours, enabling proactive and data-driven

decision-making.

13

Chapter 2. Literature Review

Assessing and predicting track condition is crucial for effective railway maintenance and

operational efficiency. While traditional assessment methods can be costly due to manual

inspections, advancements in automatic track inspection technologies have made the process more

cost-efficient. These technologies allow real-time monitoring and data collection, enabling timely

maintenance decisions. To predict track deterioration, various models, including mechanical,

statistical, and artificial intelligence approaches, are used. Previous studies (Falamarzi, Moridpour,

and Nazem 2019) demonstrate the effectiveness of these models in forecasting maintenance needs.

Predictive modelling helps reduce costs, optimize maintenance schedules, and enhance safety by

addressing potential issues proactively. A comprehensive approach integrating condition

assessment and predictive modelling is essential for effective railway maintenance.

2.1 Railway Track Components

The main components of railway tracks are rails, sleepers or railroad ties, ballasts and fastening

systems, as indicated in Figure 1. Rails are the track components arranged in two parallel lines to

give trains a stable, continuous, and level surface (Chandra et al. 2013). The flat-bottom rail is the

most widely used rail profile worldwide, with a flat bottom. The nonstandard rail type differs from

the flat-bottom rail because it has a thicker web to accommodate expansion devices, switches and

crossing components. Grooved rail is used in enclosed track systems like roads and yards (Esveld

2001a). Steel rails are used in North American railroads. Based on their mechanical properties,

like tensile strength and hardness, there are two types of carbon steel rails and low alloy steel rails

(AREMA Manual for Railway Engineering 2022a). Rectangular support for the rails on railroad

tracks is known as a railroad tie or sleeper. Ties, typically set perpendicular to the rails, hold the

rails upright and maintain the proper gauge while transferring loads to the ballast and subgrade of

the track. The individual crosstie receives the load from the rail and transfers it to the ballast. In

North American railroads, concrete, timber, engineered composite, and steel ties are used(AREMA

Manual for Railway Engineering 2022b).

14

Figure 1: The main components of the railway track.

Rails are structural component of the railway, as they directly encounter the wheel surfaces of the

rail vehicles(Zerbst et al. 2009). Rail damage occurs mainly due to the interaction between wheels

and rails, which is caused by higher axle loads and train speeds. Over time, the rails tend to wear

out due to increased loading cycles. This complex process involves various modes of material

degradation and changes in the contact surface. It may result in material removal or displacement,

plastic deformation, and phase transformation within or between the contact surface (Enblom

2009). Rail deterioration can be caused by environmental factors such as extreme cold, high

temperature, high humidity, rain, and snow. According to (Ma et al. 2018) Rail rollers exposed to

low temperatures tend to wear out faster, become harder, have a higher adhesion coefficient, and

experience a shift in wear mechanisms from abrasive to adhesive wear with surface cracking.

However, extremely low temperatures may somewhat reduce the adhesive wear effect. These

findings are crucial in understanding how rail systems and materials perform in cold weather

conditions, which can impact maintenance and safety. Therefore, rail is a critical component of

railway tracks. It is essential to closely monitor its condition and perform appropriate maintenance

to prevent derailments and ensure the overall safety of the track systems.

Railway ties, known as sleepers, and support rails, maintain track geometry and ensure safe and

efficient train operations(Yu and Jeong 2012). Tie failure occurs due to the forces generated by

the wheels and rails; there can be high stress levels when the rail base meets the tie. In some cases,

these stresses can be too much for the tie to handle, causing it to deteriorate and eventually leading

to a rail rollover and derailment(Marquis, Muhlanger, and Jeong 2011). Tie failure can be caused

by environmental factors such as exposure to wet/dry or freeze-thaw cycles. This can result in

splits in the ties, which may spread from one end to another. If rain, ice, or ballast enters the split,

15

it can widen the gap until the tie is unable to hold the spikes or support the load(Palese et al.

1999)Inspecting the condition of ties is essential to prevent failures that could lead to derailment

and weaken the track's substructure, including the ballast and subgrade.

A rail fastening system is a technique for attaching rails to railroad ties or sleepers. Rails and base

plates are fastened to railroad ties in the track with the help of rail spikes as indicated in Figure 2,

which are substantial nails with an offset head. A rail spike has a flat-edged point and is chisel-

shaped; it is driven with the edge perpendicular to the grain, which increases resistance to

loosening. The primary purpose is to maintain rail gauge (Hay 1982). Several research studies (M.

Dersch et al. 2019), (Gao, McHenry, and Kerchof 2018a) Show the impact of spikes as a crucial

factor on ties. For instance, if the spikes are broken or missing, the stress from the train is directly

transferred to the tie, and the tie deteriorates. Thus, the spike holds the ties with the rail, gets the

load from the train and distributes it to the ties (M. S. Dersch, Khachaturian, and Edwards 2021).

Derailment of train (The Transportation Safety Board of Canada 2012)It happened due to broken

and missing spikes.

Rail tie plates, as indicated in Figure 2, are used to support the rails and fix the entire rail fastening

systems. It always works with anchor bolts or spikes by sustaining the load of a rail track and

transferring part of the load to the tie sleepers, with a flat, smooth resting surface to guarantee

vertical alignment and hold the rail in the correct gauge for a rail line system(Gao, McHenry, and

Kerchof 2018b). The damaging effects caused by tie-plates and the ballast, namely plate cutting

and ballast abrasion, are accelerated with faster and higher tonnage trains. This causes crossties to

age prematurely and results in high crosstie replacement rates. Wood crossties exhibit some

inherent disadvantages. Wood is susceptible to mechanical degradation mainly due to splitting,

checking, plate cutting, spike killing, and tamp killing. In addition, wood ties are subjected to harsh

environmental conditions that can cause rot and decay (Sonti et al. 1995).

The track sub-structure has three layers: Ballast, Sub-ballast, and subgrade, as indicated in Figure

3. Track ballast, which creates the track bed, is used to support the railroad ties' load, make it easier

for water to drain, and control vegetation that could obstruct the track's structure. As the trains pass

over the track, ballast keeps it in place. As track ballast, several substances have been employed,

including crushed stone, washed gravel, slag, chats, coal cinders, sand, and burnt clay(Solomon

2001). The sub-ballast is the layer of soil or aggregate material placed between the subgrade and

16

the ballast, which helps improve drainage and stability. The subgrade is the natural or prepared

surface on which the railway track is built, and it can be made of soil, rock, or other materials.

Figure 2: Spike and Tie plate

The ballast bed is critical in functioning ballasted tracks at high speeds. It is subjected to cyclic

train loads and contamination intrusion during prolonged operation, which can lead to ballast

particle degradation (crushing and abrasion) and bed pollution. These issues can result in track

deformation, poor drainage, and reduced bearing capacity(Q. Hu et al. 2023). Railway ballast is

typically made up of uniformly graded angular aggregate. As ballast ages, it can become

increasingly fouled by various fine materials, which accumulate in the voids of the ballast and

decrease shear strength, resiliency, and drainage capability(Indraratna, Su, and Rujikiatkamjorn

2011a). The fouling process can be accelerated when contaminant materials from other sources

collect in the intergranular voids. When the ballast becomes fouled, it loses its ability to perform

its functions efficiently. If the level of contamination reaches the bottom side of the tie, the track

substructure starts to fail (Ionescu 2023). When the ballast is not functioning correctly, the strength

of the track structure may be inadequate, compromising track stability. Therefore, it is crucial to

monitor the condition of the ballast to ensure safer operation and prevent degradation of the other

track components.

17

Figure 3: The track sub-structure.

2.2 Track Geometry

Track geometry refers to the precise location of each rail or track center line in space, which

includes gauge, twist, longitudinal level, alignment, and cross-level (also known as superelevation

or cant), as illustrated in Figure 4. The gauge of a railway track is the distance between the inner

sides of the left and right rail heads, measured perpendicular to the track center(Puffert 2000).

When the top surfaces of two rails are at different elevations, this is known as a twist(Javad Sadeghi

and Askarinejad 2010). Longitudinal level refers to the difference (in millimeters) between a point

on the top of the rail in the running plane and the ideal mean line of the longitudinal profile(A.

Ramos Andrade and Teixeira 2011). Alignment is the deviation in lateral positions of the left and

right rails from a mean trajectory. It is obtained by filtering out wavelengths longer than a given

length(Weston et al. 2007). Cross-level is the deviation between the top surfaces of two rails at a

specific point along the track(Esveld 2001b).

An ideal railway track should have a correct and uniform gauge. The rails should have perfect

cross levels, and in curves, the outer rail should have a proper superelevation to consider the

centrifugal force. The alignment should be straight and free of any kinks. In the case of curves, a

proper transition should be provided between the straight track and the curve. The gradient should

be uniform and as gentle as possible. The change of gradient should be followed by a proper

vertical curve to ensure a smooth ride. The track should be resilient and elastic so that it can absorb

the shocks and vibrations of running trains. It should also have a good drainage system to maintain

its stability and should have good lateral strength to withstand variations in temperature and other

factors(Gofran J. Qasim 2019).

18

Figure 4: Track geometry parameters.

Railway tracks are designed with curves to navigate around obstacles, create more efficient slopes,

and connect important locations. Horizontal curves alter the direction of the track, while vertical

curves are placed where two slopes meet, or the slope meets level ground. To ensure a smooth ride

on a horizontal curve, the outer rail is raised above the inner rail, a technique called superelevation.

It is important to have superelevation in the track to distribute the load evenly on both rails and

reduce wear and tear on curves(Chandra and Agarwal 2013).

The geometry of a railway track is a crucial part of any railway system. It directly impacts the

performance of the track itself and the behavior of the vehicles that use it (Powell and Gräbe 2017).

As the track ages and is used, its geometry can degrade, negatively affecting safety and

performance. If the track geometry becomes unacceptable, it can result in derailment, which can

have significant consequences such as high costs of operation, economic loss, damage to the

railway asset and environment, and even loss of human life. Rectifying poor track geometry is the

most expensive part of maintenance(Gustavsson 2015). Table 1 displays the factors that contribute

to the degradation of track geometry. Ensuring railway safety requires careful analysis of track

geometry defects. Preventive maintenance can be scheduled by identifying when repairs are

necessary to reduce the risk of track failures. Regular inspection of track geometry is essential, and

maintenance actions should be planned accordingly to maintain an acceptable level of safety.

19

Table 1 Factors contributing to the railway track geometry degradation

Reference Factors/Events contributing to the railway track

geometry degradation

Geometry defects

(Bing and

Gross 1983)

Annual tonnage, Axle load, Train speed, and Ballast

type

Alignment, gauge

and cross level

(Puzavac,

Popović, and

Lazarević

2012)

Track stiffness Alignment

(Guler 2014a) Traffic loads, Speed, curvature, Gradient, Cross level,

Sleeper type (concrete or wooden), Rail type (49.430

or 49.050 kg/m), Rail length, Falling rock, Landslide,

Snow and Flood

Twist, Gauge,

alignment, cross-

level

(Zarembski et

al. 2015)

Missing Ballast Cross-level, gauge,

dip, alignment,

surface and warp

(C. Hu and

Liu 2016)

Train load, Train speed, Track layout, Track class,

Time intervals of inspection, Defect length and

Amplitude

Surface, cross-level

and dip

(Cárdenas-

Gallo et al.

2017)

Tonnage, Defect amplitude, Track type, Track class,

Speed

Cross-level, Dip and

surface

(D. Li 2018) Axle loads, Train speed, Traffic density and Track

subgrade

Alignment, gauge

and cross level

20

2.3 Condition Rating System

A systematic railway maintenance process is crucial for ensuring the safety and reliability of the

railway system. However, railway maintenance can be quite costly and typically accounts for a

significant portion of the budget. For example, in 2013, the Canadian National Railway Company

spent $2.74 billion on primary track maintenance (Scanlan, Hendry, and Martin 2016). According

to (Transport Canada 2022) Operating rules, regular inspections, and adherence to track standards

are essential for safe and efficient rail transportation. As autonomous track inspection programs

advance and railways collect more data, this data can provide valuable insights. According to the

(Railway Association of Canada 2022), 42,631 kilometers of freight track are operated. As rail

traffic volumes and the associated annual tonnage continue to rise, maintaining consistent and

effective track maintenance becomes more challenging. This increase in traffic and axle loading

places greater demand on the track infrastructure and its components, making regular safety

inspections even more critical. However, emerging technologies present an opportunity for the rail

industry to enhance safety, optimize maintenance strategies, and create a more reliable and

efficient network (Marquis, Muhlanger, and Jeong 2011), Compounded by diminishing track

access times and constrained maintenance budgets, the conventional practice of scheduling large,

consolidated zones for maintenance and rehabilitation is now being re-evaluated. According to the

(Railway Tie Association 2024), 20 to 22 million rail ties are replaced annually in Canada and the

USA. In its place, there is a growing call for a more precise and meticulously referenced analysis

of the in-situ condition of rail ties and fastening systems. This shift in approach aims to optimize

operational efficiency and prioritize safety, recognizing the imperative of mitigating the risk of

accidents and ensuring the overall safety of rail operations.

Condition assessment involves thoroughly evaluating the physical state of an asset to determine

its current condition, identifying any existing issues, and prioritizing maintenance or repair

needs(Marlow and Burn 2008). In the context of railways, condition assessment involves

evaluating the current state of railway infrastructure, including tracks with rail, ties, fastening

systems, and ballast, to determine maintenance needs and prioritize interventions. Traditionally,

maintenance teams would conduct periodic inspections to identify potential issues before they

become major problems. However, this method had limitations: inspections were time-consuming,

sometimes missed critical issues, and could not always keep up with the rapid pace of degradation.

21

Several authors (Xu et al. 2011) (Lasisi and Attoh-Okine 2018) have developed condition rating

systems for railway tracks, to assess geometry parameters like gauge, cross-level, left and right

surface, and left and right alignment. The Track Quality Index (TQI) evaluates the overall state of

a railway track based on factors like geometric defects such as gauge, cross-level, left/right surface,

and alignment. (J. M. Sadeghi and Askarinejad 2011)developed a track quality index to assess the

track's condition based on human visual inspections. This index is useful for maintenance planning

and ensuring safety. However, the condition rating does not consider factors such as the condition

of wooden ties, the location of cracks in the ties, and fastening systems. Additionally, since the

rating is based on visual inspections by humans, there is a possibility of human error and

subjectivity in the assessment of the track's condition.

(Madejski, Janusz 2015) used manual equipment to collect geometry track measurements and

developed a condition assessment that included a five-parameter defectiveness. This parameter

assesses the geometrical condition of the track by aggregating five parameters, each representing

a specific geometrical defect. Each parameter is a ratio of the length when the acceptable limits

for the defects exceed the total length of the section. The Indian Railway has developed a method

known as the Track Geometry Index (TGI) to assess the geometrical condition of tracks. This

method relies on the standard deviation of geometrical defects (Mundrey, J. S 2009). The Swedish

National Railway has created a quality index to assess the condition of railway tracks. This index

uses the standard deviation of left and right profiles and geometry defects to determine the track's

condition. By comparing the current standard deviation with the allowable standard deviation

based on track categories, the index provides a standardized method for evaluating track geometry

conditions. The index ranges from 50 to 150, with acceptable values falling between 70 and 90

(Andersson, M. 2002). The Federal Railroad Administration (FRA) has developed a series of

objective Track Quality Indexes (TQIs) to complement the Federal Track Safety Standards

(FTSS), utilizing track geometry data. These indexes use a space curve length to quantify track

quality, with each TQI computed over nominal 161-meter track segments. The method involves

calculating TQIs for profile, alignment, cross-level, and gauge, providing a track condition

assessment by federal safety standards (J. Sadeghi 2010a).

(Yan and Corman 2020) reviewed the Canadian track quality index, calculated from the average

of six different quality indices: gauge, cross-level, left (right) surface, and left (right) alignment.

22

TQI evaluates the general state of a railway track based on several elements, including surface

defects, alignment, and track geometry. This study highlights the potential of on-board monitoring

(OBM) techniques to reduce inspection costs and increase data collection without disrupting

traffic. It reveals that Track Quality Indices (TQIs) are often developed based on national

regulations, underscoring the need to consider multiple TQIs for effective maintenance decisions.

Through case studies with hypothetical data, the study finds that high sensitivity and accuracy

indices are effective in defect detection but may lead to false positives. The study calls for

continuous research and development of TQIs, particularly for components such as ties and

subgrades, to adapt to technological advancements and changing railway conditions. However, the

study's limitations include reliance on hypothetical data due to the unavailability of real data. The

track quality index assesses only geometric parameters, not structural conditions like rail, ties, and

fastening systems.

(Bai et al. 2015) described the Track Quality Index (TQI) within the Chinese railroad system,

encompassing vertical and horizontal alignment, gauge, cant, and twist parameters. A unique

feature of this TQI is the calculation of standard deviations for each parameter, which are then

aggregated to derive the overall TQI value. This approach differs from Sadeghi’s TQI model used

in Iran, where different parameters may be weighted differently. In the Chinese model, each

parameter is given equal importance, reflecting a balanced approach to track quality assessment.

This method aims to provide a fair evaluation of all critical aspects of track geometry, ensuring no

single parameter disproportionately influences the overall quality index.

(El-Sibaie and Zhang 2004) Further developed this method by analyzing extensive track geometry

data collected by modern inspection vehicles to establish objective, quantitative indicators that

describe track conditions. The TQIs are derived from key track geometry parameters important for

track performance and safety. Despite these advancements, there are some limitations. The study

primarily focuses on Classes 3 to 5 tracks due to data availability, resulting in less reliable TQI

thresholds for Class 2 tracks. Additionally, there is an overlap in TQI values between different

track classes, which may reduce the precision of class differentiation.

 (Q. Li et al. 2019) developed a comprehensive model for evaluating the health of railway tracks

by dividing a continuous track line into adjacent segments, referred to as track grids. The model

23

employs a condition-evaluation index system, which considers multiple perspectives: Track

Quality Index (TQI), Rate of change of TQI, Average failure rate, Rate of change of failure,

Concentration rate of failure, and Hazard rate. Deep autoencoder networks (DANs) are used to

reduce the dimensions of the data on these condition measures. At the same time, the hybrid

hierarchical k-means clustering (HHKMC) method identifies track grid health features. The tree-

augmented naïve Bayes (TAN) algorithm then calculates the track grid health index (TGHI), which

provides a comprehensive assessment of track health on a smaller spatial scale. This model was

validated using measurement data from the Lanxin Railway in China, showing superior

performance compared to conventional methods. However, despite technological advancements,

more is still needed, especially in selecting and weighing condition indexes. The current approach

may introduce subjectivity and requires a structured, systematic method.

The Track Quality Index (TQI) has become an essential tool for assessing railway tracks' condition

and maintenance needs. TQI methods, such as the UK SD Index (Setiawan and Sri Atmaja 2016),

Netherlands Q Index (R.-K. Liu et al. 2015), USA TRI (Lasisi and Attoh-Okine 2018), and various

others, provide quantitative evaluations based on specific track parameters like gauge,

superelevation, and alignment. These indices ensure railway operations' safety, reliability, and

efficient resource allocation. However, existing methodologies primarily focus on isolated aspects

of track quality, often relying on limited parameters that may not capture the comprehensive nature

of track degradation. For instance, while these indices offer valuable insights into certain aspects

like track geometry, they frequently overlook other critical factors, such as the condition of sub-

structural components and traffic influences, leading to potentially incomplete assessments of

track health.

In contrast to traditional TQIs, (Hui Li and Xiao 2014) proposed a Generalized Energy Index

(GEI), addressing the limitations of conventional TQIs in accounting for the influence of different-

wavelength components of track irregularity. The GEI focuses on the effects of varying wheel-to-

rail wavelength vibrations, emphasizing the importance of considering longer vibration-based

wavelengths, particularly at higher speeds. This approach significantly departs from traditional

indices by integrating the dynamic interactions between the wheel and rail, which are often

overlooked in standard TQIs. While traditional TQIs, such as those mentioned by (Bogdan

Sowinski 2013), usually evaluate individual parameters in isolation, the GEI provides a more

24

holistic assessment by capturing the energy dynamics of track irregularities. Additionally,

comparisons between TQIs like the Chinese and Swedish models reveal differing methodologies:

the Chinese Index assigns equal weight to each parameter, while Sweden’s TQI places greater

emphasis on cant error, highlighting the variability in TQI formulations and the need for

comprehensive evaluations to determine their effectiveness.

(Haifeng Li and Xu 2009) has developed a railway track Integral Maintenance Index (IMI) that

represents a significant advancement in railway maintenance. The IMI provides a comprehensive

metric for evaluating track geometry and determining maintenance needs, aiming to address the

increasing complexity of track maintenance due to large-scale speed-ups in China's railway

network. By integrating multiple track geometry parameters, such as profile, alignment, cross-

level, and historical maintenance data, the IMI allows for a more holistic assessment of track

conditions. This comprehensive approach can be used to develop more accurate and effective

maintenance plans. Unlike traditional methods that often focus on individual track quality indices

(TQIs), the IMI considers the cumulative impact of various factors, making it a more reliable

indicator of overall track health. The application of IMI on the Shanghai-Nanjing railway line has

demonstrated its potential in aiding the efficient allocation of resources and ensuring the safety

and reliability of railway operations. However, the IMI has limitations, including the complexity

of its calculation and the need for accurate track geometry data. Continuous refinement and

adaptation are necessary to address these inherent complexities and limitations in railway

maintenance.

One major limitation of current TQI approaches is their narrow focus on geometric parameters,

which limits their ability to provide a comprehensive assessment of track health. TQIs primarily

evaluate factors such as gauge, alignment, cross-level, and twist. Most methods are constrained by

their emphasis on specific elements of the track system, such as geometry, without adequately

integrating data on sub-structural or traffic-related parameters. This fragmented approach can

hinder the ability to fully understand the interplay between various factors contributing to track

deterioration, thereby limiting the effectiveness of maintenance strategies. Additionally, TQIs that

rely on standard deviation calculations for these geometric measurements can misrepresent track

conditions, especially in curves where natural variations in parameters like gauge and twist occur.

This focus on geometry alone can lead to skewed assessments, where the true health of the track,

25

particularly regarding the condition of its foundational components, is underrepresented

(Offenbacher et al. 2020). Moreover, the application of these indices can vary significantly across

different railway systems, as seen in the case of Indonesian Railways (Setiawan and Sri Atmaja

2016), where TQI application differs in maintenance regulations and accident investigations.

(S Kaewunruen, AM Remennikov 2005) have developed an innovative approach to evaluate the

structural health of railway tracks by combining field measurements with track simulations. Their

integrated method uses experimental modal analysis and finite element modeling to assess the

dynamic parameters of in-situ railway track components. The study focused on a coal line in

Central Queensland, Australia, where rail assemblies were tested using an instrumented hammer

impact technique. The recorded frequency response functions (FRFs) were analyzed to determine

the track components' dynamic stiffness and damping constants. The methodology involves

conducting field dynamic testing by applying excitations to the track using an instrumented

hammer, with the resulting vibrations captured by accelerometers. The data is processed using Fast

Fourier Transform (FFT) and Mode Superposition (MS) methods to extract dynamic properties

such as stiffness and damping coefficients. While the approach offers significant benefits in

identifying the structural health of railway tracks, it only assesses specific components of the track,

such as rail pads and ballast, potentially overlooking other critical elements. Additionally, the

variability in damping coefficients and the specificity of the test site in Central Queensland also

limit the generalizability of the results to other railway environments.

The U.S. Army (Uzarski et al. 1993) developed the RAILER system to evaluate the condition of

low-volume railroad tracks by using several indices that measure key components such as ties,

rails, joints, ballast, and subgrade. These indices help managers prioritize maintenance and repairs

to ensure the safe operation of trains. For example, the Tie Condition Index (TCI) assesses the

condition of the ties supporting the rails by checking for defects such as cracking, rot, missing ties,

and improper positioning. Proper tie condition is essential to maintaining the stability of the rails

and evenly distributing the weight of passing trains. The Rail and Joints Condition Index (RJCI)

evaluates the state of the rails and the joints that connect them. It measures wear, cracks, and joint

stability, which is critical for preventing track failures and derailments. Rail defects can pose

significant risks if not detected and repaired promptly. The Ballast and Subgrade Condition Index

(BSCI) focuses on the integrity of the ballast and the subgrade, which provide structural support

26

for the track. The BSCI evaluates factors such as ballast fouling, drainage problems, and subgrade

compaction, which affect track alignment and stability. Poor ballast or subgrade conditions can

lead to uneven settling, impacting train operations' smoothness and safety. These assessments are

combined in the Track Structure Condition Index (TSCI), which gives an overall rating of the

track's structural condition. This rating helps decision-makers plan maintenance activities and

allocate resources efficiently.

However, the RAILER system has certain limitations. One major limitation is that it was designed

primarily for low-volume tracks, which handle less traffic than mainlines or high-speed rail

networks. These high-traffic tracks experience different types of stress, and the RAILER system

may not fully account for the more demanding conditions they face. Another limitation is the

system's reliance on manual inspections. Inspectors are required to physically inspect the tracks,

which can be time-consuming and prone to human error. While manual inspections provide

detailed observations, they are less efficient compared to automated technologies, such as track

geometry cars or drones, which can collect data faster and more accurately.

The Ballast Condition Index (BCI) is a measure used to evaluate the quality and functionality of

railway ballast, primarily by considering factors such as ballast thickness and the level of fouling,

which refers to the contamination of ballast with fine particles (McDowell et al. 2004). Traditional

assessment methods, such as the Ballast Fouling Index and Percentage Void Contamination

(PVC), are commonly used to evaluate ballast fouling by focusing on fine particle contamination.

While these methods provide essential insights, they have significant limitations. The FI primarily

considers the ballast component, overlooking the specific gravity and type of fouling material,

which can lead to inaccurate assessments. It also neglects the broader impact of fouling on other

track elements like subgrade and drainage systems. The PVC method, while addressing void

reduction, is time-consuming and does not account for particle gradation, potentially leading to an

overestimation of fouling severity. The Relative Ballast Fouling Ratio (Rb-f) has been introduced

by (Indraratna, Su, and Rujikiatkamjorn 2011b) to address these issues by incorporating both the

specific gravity and gradation of fouling materials, but it also faces challenges in measurement

precision and requires further validation. Therefore, it's crucial to develop more accurate and

comprehensive assessment methods to fully evaluate track health. Consequently, while FI offers

valuable insights into the condition of the ballast itself, it may not fully capture the broader impact

27

of fouling on overall track stability and performance. Other factors, such as the type of fouling

material and its interaction with the subgrade, should also be considered to provide a more

comprehensive evaluation of track health.

(Georgetown Rail 2022) has developed a tie rating system that uses autonomous track inspection

technology to evaluate each tie's condition individually. The system examines more than 20

variables, such as plate cut, splitting, and internal decay, to assess tie conditions. Afterwards, each

tie is graded on a scale from 1.0 to 4.0, with 1.0 indicating the best condition and 4.0 indicating

failure. (J. M. Sadeghi and Askarinejad 2011) developed a quality index based on visual inspection

to assess the structural condition of the track. The index includes the rail quality index (RQI),

ballast quality index (BQI), sleeper quality index (SQI), and overall track quality index (TQI) and

used a weighted deduction density model to determine the degree of deterioration based on distress

density, type, and severity. The index illustrates three severity levels (low, moderate, and high)

and their descriptions. Maintenance actions are organized by dividing the track line into

management sections and segments for visual inspection.

Table 2: Summary of the condition rating systems

Condition Rating system Characteristics

Track Quality Index (TQI) Evaluates the geometry parameters such as gauge, cross-level,

and surface alignment to assess overall track condition

Track Geometry Index (TGI) Focuses on the standard deviations of key geometric

parameters like unevenness, alignment, gauge, and twist,

providing a statistical approach to track monitoring

Swedish National Railway

Quality Index

Measures the standard deviation of the left and right profile and

evaluates geometry defects to maintain consistent track quality

Federal Track Safety

Standards (FTSS)

Assesses profile, alignment, cross-level, and gauge, ensuring

compliance with federal safety standards in track geometry

Canadian Track Quality Index Monitors gauge, cross-level, and surface alignment to detect

irregularities and maintain safe track conditions

28

Netherlands’s Q Index Evaluates longitudinal levels, along with alignment and cross-

level combinations, offering insight into the track

UK SD index Tracks longitudinal levels, alignment, gauge, and twist to

maintain smooth track geometry and safe operations

Generalized Energy Index

(GEI),

Analyzes wheel-to-rail vibration wavelengths to assess

dynamic interactions and identify irregularities in track

geometry

Rail and Joint Condition

Index (RJCI)

Evaluates the condition of rail joints, identifying issues that

may affect track stability and performance

Ballast and Subgrade

Condition Index (BSCI)

Assesses ballast fouling, drainage problems, and subgrade

compaction to ensure the integrity of the track bed and support

structures

Tie rating system Measures internal decay, splitting, and plate cuts in railway

ties, ensuring the structural integrity of the ties that support the

rails

The various track condition rating systems as provided in Table 2, such as the Track Quality Index

(TQI), Track Geometry Index (TGI), and the UK SD Index, provide different perspectives on

assessing track health, each emphasizing specific parameters and methodologies. The Track

Quality Index (TQI) focuses primarily on geometry parameters such as gauge, cross-level, and

surface alignment, offering a straightforward evaluation of overall track condition. In contrast, the

Track Geometry Index (TGI) provides a more statistical approach by measuring the standard

deviations of key geometric factors like unevenness, alignment, gauge, and twist, which allows for

a deeper analysis of track anomalies. The UK SD Index also tracks similar geometric properties

but places particular emphasis on longitudinal levels and twists, helping to ensure smooth track

geometry and safe operations. Other indices like the Swedish National Railway Quality Index and

the Netherlands’ Q Index similarly focus on specific geometry elements. However, they may

integrate different combinations, such as evaluating alignment and cross-level.

29

Meanwhile, more specialized indices, such as the Rail and Joint Condition Index (RJCI) and the

Ballast and Subgrade Condition Index (BSCI), delve into track components like rail joints and

subgrade conditions, which complement the broader geometry-based approaches by ensuring

structural stability at a more granular level. Together, these indices provide a comprehensive

toolkit for maintaining track quality, emphasizing different aspects of track geometry and

structural integrity. However, these systems overlook important factors such as crack location, tie

plate condition, and the state of fasteners, which are crucial for a more complete assessment of

track condition and safety.

Based on the studies mentioned earlier, most existing models focus on evaluating individual

components or specific types of defects in railway infrastructure. They often overlook a

comprehensive assessment of all railway components. For example, many models only assess

track geometry conditions, neglecting other important defects and components. This limited

approach can result in inefficient and inaccurate maintenance budget allocation due to the models'

failure to represent the overall condition of railway components accurately. Most of the reviewed

work relies on visual inspections, which are prone to human error. These models are crucial for

decision-makers to prioritize the maintenance of multiple railway components across different

projects based on their performance. However, one notable shortcoming is the oversight of

inherent uncertainties and unexpected conditions encountered during the inspection process.

Failing to address these uncertainties can lead to unreliable maintenance decision support systems.

Subsequently, this gap in comprehensive assessment was highlighted when analyzing the role of

the crosstie in the rail-to-tie and tie-to-ballast load distribution. Crossties serve as intermediaries

that distribute loads and resist the forces exerted by other track components. The effects of tie

plates and the presence of ballast in the tie crack, particularly plate cutting and ballast abrasion,

were identified as significant factors accelerating the deterioration of wooden ties, especially under

the stress of faster and higher tonnage trains. The research was conducted to gather insights from

various studies on the impact of spikes on ties. Studies by M. Dersch et al. (2019), Gao, McHenry,

and Kerkhof (2018), and others emphasized the crucial role of spikes in maintaining tie integrity.

Broken or missing spikes lead to direct stress transfer from the train to the tie, accelerating tie

deterioration. The findings from these studies underscored the importance of including spike

conditions—such as broken or missing spikes—in the proposed rating system. For Instance, the

30

main track derailment at Fabyan, Alberta (The Transportation Safety Board of Canada 2012),

highlighted significant issues in rail safety practices, especially in inspecting and maintaining rail

fastening systems. The subsequent investigation uncovered critical flaws, such as the failure of lag

screws and the inability of traditional inspection methods to detect curve stress. While these

findings led to more thorough inspection procedures, such as detailed curve inspections and

geometry car printouts, there has been minimal research on the condition rating of ties, rails, and

fastening systems. This gap highlights the need for a comprehensive rating system and a

degradation prediction model integrated with automated inspection technologies. By using high-

resolution cameras, sensors, and artificial intelligence to monitor rail conditions in real-time, this

approach aims to proactively identify anomalies and potential risks, thereby reducing the

likelihood of derailments and improving overall rail network safety.

2.4 Condition Prediction Models

Predictive models can be largely categorized as mechanistic, statistical or machine learning.

Mechanistic are the earliest models for predicting degradation in railway tracks. They reflect

physical phenomena, and track deterioration based on loads and material characteristics

(Falamarzi, Moridpour, and Nazem 2019). Some of the variables used in these models to represent

deterioration are Track settlement, Track deformation, Track geometry (e.g., gauge), and Track

Quality Index (TQI). However, these models are limited by their inability to factor in the inherent

uncertainty of track degradation behavior and their applicability to only a select number of track

sections, rather than the entire network(Elkhoury et al. 2018). Developing mechanistic models can

also pose a significant challenge as they require a considerable amount of physical data and time.

A statistical model is a type of mathematical model which uses historical data to predict the pattern

of deterioration. These models are widely used to predict the deterioration of railway tracks based

on observations and the influencing factors such as traffic, track components and maintenance

variables. Statistical models are divided into three main groups: deterministic, stochastic, and

probabilistic.

31

2.4.1 Statistical Models

Statistical models can be classified into three main groups: deterministic, probabilistic, and

stochastic. Deterministic models assume a direct and exact relationship between input and output

variables without accounting for randomness. Stochastic models incorporate random variables and

account for inherent randomness and variability in the system. Probabilistic models incorporate

the influence of random events or actions to predict the likelihood of future outcomes. A

deterministic model is a statistical model in which randomness is not involved in predicting future

conditions. It is usually applied where relationships between components of the rail structure are

identified(Md Saeed Hasan 2015). Deterministic models in railway condition assessment use data

parameters such as train speed, rail geometry, rail operations (Audley and Andrews 2013), and

accumulated tonnage (MGT) (Guler, Jovanovic, and Evren 2011). Studies have confirmed a

correlation between track defects and train loads, measured in million gross tons (MGTs). For

instance, (R. Liu, Xu, and Wang 2010) developed a Short-Range Prediction Model (SRPM) for

China railway lines to predict track irregularities using a linear regressor model. However, this

model accurately predicted only nine out of 25 sections and struggled with nonlinear surface

changes. Similarly, (Guler, Jovanovic, and Evren 2011)created a model for predicting geometric

degradation in Turkey, focusing on factors like Twist, Gauge, Alignment, Cant, and Level.

However, this model did not adequately consider the effects of speed and load, which suggested

that higher speeds and loads decreased deterioration rates. While these deterministic models

identify general statistical patterns and influencing factors, they may overlook essential

degradation factors and do not account for uncertainties in input parameters and model geometry

(Elkhoury et al. 2018) and this can limit their effectiveness in making precise maintenance and

system improvement decisions.

Probabilistic modelling is a statistical method that incorporates the influence of random events or

actions to predict the likelihood of future outcomes. Probabilistic modelling provides forecasts or

estimates of possible future results by considering the impact of chance occurrences. Previous

researchers have approximated track degradation through the probabilistic model using different

types of probabilistic approaches to normal distribution (J. Sadeghi 2010b), Weibull distributions

(Caetano and Teixeira 2015), and (Shafahi and Hakhamaneshi 2009) Markov model, as indicated

in Table 3. (J. Sadeghi 2010b) Developed track geometry indices based on normal data distribution

32

for parameters like gauge, twist, longitudinal level, and alignment. These indices, calculated

separately for different track classes, aimed to evaluate track conditions and guide maintenance.

However, the model's effectiveness is limited to the specific track classes and assumes that the

data follows a normal distribution. This assumption may not hold for all railway systems,

potentially affecting the model's accuracy if the data deviates from a normal distribution. (A.R.

Andrade and Teixeira 2015) Developed a hierarchical Bayesian model (HBM) to predict the

degradation of train tracks in Portugal. The model used data from a major train line between Lisbon

and Oporto to evaluate the Standard Deviation of Longitudinal Level defects (SDLL) and the

Standard Deviation of Horizontal Alignment defects (SDHA). Bayesian models treat parameters

as random variables and incorporate uncertainty through prior distributions. This method combines

the previous distribution with the likelihood of the observed data to compute the posterior

distribution of the parameters. In practical applications, calculating the joint posterior distribution

often involves complex numerical integration, typically using Markov Chain Monte Carlo

(MCMC) methods. When applied to operational and maintenance data, the HBM proved to be a

poor predictor of SDHA compared to SDLL. This indicates that horizontal alignment defects are

less predictable, highlighting a limitation in the model's effectiveness for certain types of track

geometry degradation.(Caetano and Teixeira 2015) Developed a model using the Weibull

distribution to schedule maintenance and renewal of railway tracks, aiming to minimize life-cycle

costs. Based on historical data from a rail line in Portugal, the model showed that optimal

maintenance could be achieved by selecting suitable time intervals for renewals. However, the

study noted that insufficient rail and sleeper degradation data might limit the model's accuracy in

representing actual degradation rates. Markov models assess rail track conditions over time by

considering tonnage, axle load, terrain, traffic conditions, and a combined track record index

(Shafahi and Hakhamaneshi 2009). These models analyze track deterioration from optimal

conditions to where maintenance is required, categorizing tracks into six classes based on traffic

loads and geographical locations. However, this classification may not capture variations within

each class, potentially leading to inaccuracies in predicting deterioration for specific segments.

Markov models have limitations in capturing the random behavior of track deterioration and

optimizing maintenance costs, and they rely heavily on data availability. Probabilistic models face

challenges due to the often-limited historical data available, making accurate prediction of track

deterioration difficult. A stochastic model is an approach used to predict statistical characteristics

33

of potential outcomes by considering the random fluctuations in one or more parameters over time.

By accounting for the unpredictable variations, a stochastic model provides insights into the

potential properties or patterns that may arise, and the different types of stochastic models and

their summary is given in Table 3. (Vale and M. Lurdes 2013) Proposed a stochastic model to

predict track degradation over time, focusing on a Northern railway line in Portugal. The study

adhered to European Committee for Standardization (CEN) guidelines and conducted statistical

and probabilistic analysis for various vehicle speed groups using the Dagum distribution. The

researchers tested 52 probabilistic distributions with Easy Fit software, finding the Dagum model

the best fit. The study examined 21-time intervals across three-speed groups, discovering similar

left and right rails degradation rates in 63 cases. The Dagum distribution accurately modelled the

longitudinal level degradation for these cases. However, the study noted that the 90-day interval

between dynamic inspections might not capture rapid changes in track degradation. (Quiroga and

Schnieder 2010) Developed an autoregressive model using the Auto-Regressive Moving Average

(ARMA) method to predict railway track geometry deterioration. They focused on the standard

deviation of the longitudinal level as an indicator of degradation, using previous values, section

length, and length of tamped tracks for predictions. The researchers applied this model to a section

of a French high-speed railway; the model showed promise for integration into tamping scheduling

systems. However, while it adapted quickly after tamping, it may struggle with accuracy between

tamping activities, potentially leading to inaccuracies in long-term predictions. (He et al. 2015a)

developed a statistical deterioration model to depict the course of degradation of various track

geometry defects. Based on exploratory data analysis, they employed an exponential link between

the degradation rate and outside variables (tonnage carried, number of cars, trains, and inspection

trips since the last red tag was spotted). (Alemazkoor, Ruppert, and Meidani 2018) Evaluated the

probability of failure to predict the time transition from yellow to red tag using the survival analysis

model. Comparing the two models revealed that the fine-scale defect-based model performed

better than the coarse-scale segment-based model for survival. Therefore, fine-scale defect-based

survival models are applied to predict the likelihood of at least one red tag defect in a segment.

Stochastic models are commonly used to predict the deterioration of various applications.

However, to enhance the accuracy of the models, a deeper understanding of the application and a

more detailed explanation are required. These models are best suited for short—to medium-term

predictions. They may not accurately capture complex nonlinear relationships.

34

Table 3 Summary of statistical models

Model Type Method Input Variable Target variable Accuracy Reference

Deterministic Linear regression Tonnage, Speed, Initial inspection

date, Inspection date after

maintenance, gauge, cross-level,

alignment, Surface, and twist.

Track surface

irregularity

Measurement

The average error for

the actual and

predicted track surface

is 0.120 mm

 (R. Liu, Xu,

and Wang

2010)

Deterministic Linear regression Gradient, Curvature, Speed, Age, rail

type, Rail length, Sleeper type,

Flood, Falling rock, landslide and

Snow

Twist

Gauge

Alignment

Cant

Level

0.62 R2

0.71 R2

0.69 R2

0.77 R2

0.68 R2

(Guler,

Jovanovic,

and Evren

2011)

Deterministic Linear regression (Three

parameter Weibull distribution)

Maintenance data (Full renewal date,

Tamping date), Tonnage and speed

Standard deviation

of track quality

0.98 R2 (Audley

and Andrews

2013)

Probabilistic Normal distribution Gauge, Profile, Alignment, and

Twist.

Track geometry

index

0.80 R2 (J. Sadeghi

2010b)

35

Probabilistic Weibull distribution Tonnage, Rail age, Sleeper age, Rail

and Sleeper hazard rate, Time period

of the failures, and Track segment.

Accumulated

maintenance

operations

0.97 R2 (Caetano and

Teixeira 2015)

Probabilistic Markov Tonnage, Design axle load, Terrain

(Plain, Hilly, Mountainous), Traffic

Condition, Combined track record

index.

Track degradation

Rate

0.83 R2 (Shafahi and

Hakhamaneshi

2009)

Stochastic Dagum distribution Initial geometrical quality, the

degradation rate, Speed, Maintenance

activity

Standard deviation

of longitudinal level

defects

0.79 R2 (Vale and M.

Lurdes 2013)

Stochastic Time series model (The Auto-

Regressive Moving Average)

Tamping schedule, Standard

deviation of longitudinal level,

Tonnage, Time period of the

maintenance activity

Degradation rate 66.5% MSE (Quiroga and

Schnieder

2010)

Stochastic Survival analysis Tonnage, Number of cars and trains

travelling over the inspection period,

defect tag, Amplitude of the defect.

Cant

Dip

Gage

0.242 MSE

0.099 MSE

0.046 MSE

(He et al.

2015b)

36

2.4.2 Machine Learning Models

Over the past few years, machine learning models have been widely adopted for their exceptional

ability to enhance statistical models in predicting rail track degradation. Machine learning is a

branch of artificial intelligence that utilizes historical and current data to anticipate the future state

of a system. These models utilize computer applications to replicate human-like intelligence and

automate intelligent functions. By leveraging advanced computer techniques and reasoning

algorithms, Machine Learning models surpass the limitations of current models and deliver

superior results (Jovanovic, Guler, and Coko 2015). Common types of machine learning models

applied in previous studies as mentioned in Table 4, include artificial neural networks (ANNs),

Adaptive Neuro-Fuzzy Inference Systems (ANFIS), Support vector machines (SVM), and

Random Forests (RF).

Numerous studies have implemented machine learning and statistical techniques to develop

efficient predictive models in construction and infrastructure management (Herrero, Bayraktar,

and Jiménez 2020) (Bhatia, Han, and Moselhi 2022). Several predictive models were developed

for preventive track maintenance (Soares 2011) (Rahimikelarijani, Mohassel, and Hamidi 2020)

(He et al. 2015a). (Liao et al. 2022) examined ANN (Artificial Neural Networks) and SVM

(Support Vector Machine) models. They discovered that SVM models can still produce accurate

predictions even with a small sample size (inspection data). A considerable amount of high-quality

inspection data is required for ANN models as training data. Compared to earlier developed models

(Falamarzi, Moridpour, and Nazem 2019b), the use of the random forest regression model resulted

in more accurate predictions on track degradation. Extreme gradient boosting (XGBoost) has

further excelled in other infrastructure deterioration prediction domains (Amini and Dziedzic

2022). (Sudhir Kumar Sinha, Sumit Raut, and Harshad Khadilkar 2015) employed a machine-

learning approach. Predictive models of different types of geometry defects, which include

XLEVEL, SURFACE, and DIP, performed well with logistic regression and decision tree.

(Cárdenas-Gallo et al. 2017) employed ensemble classifier approaches and discovered that at least

one ensemble classifier was the best in each defect. As a result, they selected the Stacking with

Binary Logistic Regression for the XLEVEL defect, the Bootstrap Aggregating for the SURFACE

defect, and the Stacking with Support Vector Machine for the DIP defect.

37

(Moridpour, Mazloumi, and Hesami 2017) developed an artificial neural network model to predict

the degradation of tram tracks in curved sections using maintenance data. The study used the

Melbourne tram network as a case study. The researchers applied a multilayer feed-forward ANN

model with three layers to predict the target variable. Artificial Neural Networks (ANNs) are

complex systems of interconnected neurons that communicate through weighted connections.

These neurons are arranged in layers within the network, and each neuron's output is transmitted

to the next neuron through a connection (Guler 2013). The model included variables such as rail

type, rail profile, passing tonnage in MGT, and the installation year to predict the deviation of the

track gauge parameter. The study found that the type of tracks and the last gauge measurement

significantly impact the track geometry deviation. The developed model had reasonably good

prediction accuracy.

(Javad Sadeghi and Askarinejad 2012) used an artificial neural network (ANN) to evaluate railway

track quality by establishing links between track geometry defects and structural issues. The ANN

model architecture used was multilayer feed-forward network with Standard Deviations of track

geometry data as inputs and the predicted defect density of track structural components as outputs.

The study found that the proposed ANN model was more accurate for low and medium-quality

track conditions. The study highlighted the benefits of using automated inspections and neural

networks to establish correlations between track structural conditions and inspection data.

However, the study utilized a simplified neural network architecture and may not account for all

the complexities of track structural conditions. In Turkey, (Guler 2014b) conducted a study that

used an ANN model to predict rail track degradation. This case study was carried out for Turkish

state railways and involved a thorough investigation over two years, covering a track length of

approximately 180 km. Different variables were considered in the data collection process,

including track structure, traffic characteristics, track layout, and environmental factors. The

author developed separate ANN models for the leading track geometry parameters and conducted

a sensitivity analysis to determine the importance of each predictor in determining the neural

networks.

 Table 4: Summary of Machine Learning Models

Method Input variable Target variable Accuracy Reference

38

Artificial

Neural

Networks

(ANN)

Month since last

inspection, Gauge last

inspection, MGT, Trips,

Route, Rail profile, Rail

type, Curve radius, Repair

history, Year installation of

track

Gauge value

change per month

1.58 mm RMSE (Moridpour,

Mazloumi,

and Hesami

2017)

Artificial

Neural

Networks

(ANN)

Standard deviation of

Gauge, Alignment, Profile,

Twist

Defect density of

rail

Defect density of

sleeper

Defect density of

ballast

Defect density of

Fasteners

0.75 R2 (Class B

track)

0.79 R2 (Class B

track)

0.77 R2 (Class B

track)

0.74 R2 (Class B

track)

(Javad

Sadeghi and

Askarinejad

2012)

Artificial

Neural

Networks

(ANN)

Gradient, Curvature,

Speed, Age, rail type, Rail

length, Sleeper type, Flood,

Falling rock, land slide and

Snow

Twist

Gauge

Alignment

Cross-level

Levelling

0.72 R2

0.79 R2

0.76 R2

0.83 R2

0.74 R2

(Guler

2014b)

Adaptive

Neuro fuzzy

Inference

System

(ANFIS)

Standard deviation of

longitudinal level,

Alignment, Cross-level,

the number of tamping

works previously carried

out, and the number of days

from elapsed from the last

tamping

The number of days

from the last

tamping to the next

one.

Measurement

error not greater

than 18% in all

cases and in

absolute terms not

greater than 23

days over 131

days.

(Dell’Orco et

al. 2008)

39

Adaptive

Neuro fuzzy

Inference

System

(ANFIS)

Gauge values for the

previous two years (s-2 and

s-1), MGT

Gauge values for

the year (s)

Curves 0.6 R2

Straights 0.78 R2

(Karimpour

et al. 2018)

Support

vector

machines

(SVM)

Historical data from hot

box detectors, Wheel

impact load detectors

Alarm prediction True positive rate

97.5%

False positive rate

5.65%

(Hongfei Li et

al. 2014)

Binary

logistic

regression

Standard deviation of

longitudinal level, Kurtosis

of longitudinal level, Time

interval, defects which

exceeds the planning limit

UH2 defects Sensitivity and

specificity 89%

(Soleimanme

igouni et al.

2020)

Random

Forest

Previous Track

deterioration index (TDI),

Track surface, Rail type.

Track deterioration

index

0.90 R2 (Falamarzi et

al. 2018)

Support

vector

Machine

(SVM)

Previous track longitudinal

measurements of the left

and right rail of different

wavelengths (3-25m is

called D1) and (25-70m is

called D2) from September

2018 to December 2019.

Track longitudinal

level (January

2020)

D1L 0.951 R2

D1R 0.941 R2

D2L 0.636 R2

D2R 0.601 R2

(Han et al.

2024)

40

Deep neural

network

(DNN)

Previous Standard

deviation of track

longitudinal measurements

of the left and right rail of

different wavelengths (3-

25m is called SDD1) and

(25-70m is called SDD2)

from September 2018 to

December 2019.

Previous track longitudinal

measurements of the left

and right rail of different

wavelengths (3-25m is

called D1) and (25-70m is

called D2) from September

2018 to December 2019.

Previous Standard

deviation of track

longitudinal measurements

of the left and right rail of

different wavelengths (3-

25m is called SDD1) and

(25-70m is called SDD2)

from September 2018 to

December 2019.

The standard

deviation of track

longitudinal level

(January 2020)

Track longitudinal

level (January

2020)

The standard

deviation of track

longitudinal level

(January 2020)

SDD1L 0.962 R2

SDD1R 0.968 R2

SDD2L 0.955 R2

SDD2R 0.978 R2

D1L 0.980 R2

D1R 0.976 R2

D2L 0.961 R2

D2R 0.959 R2

SDD1L 0.962 R2

SDD1R 0.951 R2

SDD2L 0.968 R2

SDD2R 0.964 R2

An ANFIS model combines the use of ANN and a Fuzzy Inference Engine (FIS). This integration

allows for the principles of both fuzzy logic and neural networks to be utilized within a single

framework, resulting in potential benefits from both(Zimmermann 2010). (Dell’Orco et al. 2008)

41

developed an ANFIS model to optimize rail track maintenance and planning. The model considers

geometry parameters such as alignment, longitudinal level, and cross-level, as well as the number

of days since the latest tamping and the number of previous tamping works. Its output is the number

of days between tamping works. The study found that the model accurately predicted maintenance

dates that met or exceeded the maintenance threshold.

In a study conducted by (Karimpour et al. 2018), an ANFIS model was developed to predict rail

track degradation using the gauge parameter. The findings revealed that a precise model can

accurately predict the long-term performance of rail tracks. The main parameters in the model

development were gauge deviation parameters from the previous year and two years ago. The

results indicate that the model can predict the gauge deviation for the upcoming year with

satisfactory accuracy. There have been limited studies that compare the effectiveness of statistical

and machine learning models. According to (Shafahi, Masoudi, and Hakhamaneshi 2008) research,

a Markov chain model performed better than ANN and ANFIS models. This suggests that the

higher computational complexity of ANN and ANFIS may not always be necessary. However, as

autonomous track inspection programs become more prevalent and data collection increases, these

methods may become more appealing.

It is possible to use other machine learning models to predict rail track degradation. In a study by

(Hongfei Li et al. 2014), machine-learning models were used to forecast defects and alarms of

critical components of rail cars. The study developed learned rules based on historical data to

predict which rail cars were likely to have problems and to predict intensive existing alarms before

an actual alarm event to decrease instant train stops. The development of the model involved five

steps: feature extraction, dimension reduction, model training, prediction and confidence

estimation, and rule simplification. To evaluate the results, the proposed SVM model and a

decision tree were compared against the same data. Based on the results, the customized SVM

model performed better than the decision tree for alarm prediction.

(Soleimanmeigouni et al. 2020) developed an analytical methodology using data that could predict

track geometry defects in a railway line section in Sweden. Specifically, it focused on predicting

UH2 defects, a track geometry defect that can cause safety problems and derailments. These

defects have a linear degradation pattern, which was modelled using linear regression, along with

42

binary logistic regression to predict the probability of UH2 defects. The study also analyzed the

impact of factors such as standard deviation and kurtosis of longitudinal level on the occurrence

of UH2 defects. The results indicated that the developed models effectively predicted the

occurrence of UH2 defects.(Falamarzi et al. 2018) have developed a Random Forests (RF) model

to predict the future deterioration index. The Melbourne tram network has been used as the case

study, and the gauge deviation parameter has been selected as the primary parameter to develop

the index. The research findings suggest that the proposed model has a considerably high adjusted

R2 value, and the prediction error is negligible, demonstrating its reasonable performance in

predicting the deterioration index.From the abovementioned models, random forest and ANN have

reasonably good predictions. These models can be used with the recent evolution of autonomous

track inspection programs to maintain the railway track assets and their condition and continuously

improve the track. The lack of literature and complex model structures are major drawbacks of

these relatively new degradation prediction models.

2.5 Limitations of Existing Studies

The literature review on condition assessment in railways focuses narrowly on individual defects

or specific components, such as track geometry, neglecting a comprehensive evaluation of all

critical railway elements. This approach can lead to inefficient allocation of maintenance budgets

and inaccurate representation of railway conditions. Relying solely on visual inspections

introduces human error and fails to account for uncertainties and unexpected conditions,

undermining the reliability of maintenance decision support systems. In a main track derailment

in British Columbia in 2021, the Transportation Safety Board of Canada (TSB 2021) examination

revealed that the gauge-side spikes of the high rail of the 8° curve had lifted away from the tie

plates, causing the high rail to roll outward and increase the gauge, leading to the derailment.

Despite the track undergoing inspection by a heavy track geometry test car nine days before the

occurrence, the subsequent track inspection did not reveal track geometry defects, even though

signs of gauge widening were likely present. This highlights the need for a comprehensive rating

system and a degradation prediction model integrated with automated inspection technologies by

utilizing high-resolution cameras, sensors, and artificial intelligence to monitor rail conditions in

43

real time. This literature review also explores the use of various condition prediction models in

multiple case studies. There is an opportunity to explore machine learning models that not only

predict the overall condition of the rail track but also quantify the size and severity of defects using

machine learning and statistical techniques. For instance, employing algorithms such as random

forests, XG Boost can enable the identification of complex patterns in historical inspection data.

These models can be trained to recognize early signs of deterioration, enhancing defect predictions'

accuracy. Moreover, integrating these predictive models with automated inspection technologies,

such as high-resolution imaging systems and non-destructive testing methods, can facilitate

extracting detailed features related to the physical characteristics of railway components. This

integration would allow for real-time monitoring and assessment of rail conditions, leading to

proactive maintenance strategies.

44

Chapter 3. Methodology

The methodology has two main parts, as described in the Figure 5. The first part, to the left,

involves developing a condition rating, while the second, to the right, focuses on developing a

predictive model. This section describes each step of the method in detail.

Figure 5: Overview of Research Methodology

3.1 Condition Rating System

The study utilized data obtained from Pavemetrics' automated track inspection technology. It

employed the Analytic Hierarchy Process (AHP) to compare and prioritize multiple criteria

45

systematically, enabling a structured approach to decision-making. The overall methodology

encompassed (1) Data understanding and preparation, (2) Framework development, (3)

Questionnaire survey analysis using AHP and (4) Case study validation.

3.1.1 Case Study Description

The data for this study was obtained from Pavemetrics, a company specializing in automated

railway track inspections using their L-RAIL technology. This technology uses 3D laser

triangulation to scan railway tracks in detail, capturing a comprehensive dataset that includes

various railway components such as rails, ties (sleepers), fasteners, spikes, tie plates, and ballast,

as shown in the Figure 6. The L-RAIL system can automatically inspect various railway asset

properties and defects and operates day or night at up to 180 km/h.

Figure 6: Sample image from condition assessment case study data

The following section provides an overview of data understanding and preparation. The

accompanying meta-table summarizes the relevant attributes. The dataset used in this study covers

a section of track from an anonymous location. The inspected distance totals 0.2 kilometers,

encompassing 329 ties with 1,417 identified tie cracks. In addition to cracks, the dataset includes

key characteristics of the railway infrastructure, such as the condition of spikes, tie plates, and

ballast presence. This data forms the foundation for evaluating railway tie conditions and

46

conducting further predictive analysis on track integrity. The following section provides a detailed

overview of data understanding and preparation. The accompanying meta-table summarizes the

relevant attributes for this analysis.

3.1.2 Data Understanding and Preparation

Data understanding and preparation were critical steps in the data analysis process. The data was

provided in various formats, including XML files, shapefiles, and CSV files. While some data was

already in CSV format, additional information needed to be extracted from the XML files to

enhance the dataset's comprehensiveness. The data from the XML files was extracted using Python

scripts that parsed the XML structure and converted the relevant information into CSV format for

easier manipulation and analysis. Additional information, such as In line with spike, Side, Number

of anchors, Number of Fasteners, Number of Tie plates, Number of spikes, Spike ID, Mean Height

Spike, Condition Spike, and Tie Plate ID, was extracted from the XML and converted into CSV

format for easier manipulation and analysis and the detailed description of the features are

mentioned Table 5.

Table 5: Meta data table for Pavemetrics data.

Features Description Type

Survey ID Each survey is identified by a unique identification number

(Survey ID)

Categorical

Section ID Each survey section is labelled with a sequential number

(Section ID).

Categorical

Tie ID The ID of the tie in the current section. Categorical

Distance The linear distance from the beginning of the survey to the

detected tie

Float

Tie Length The length of the tie Float

Tie Width The width of the tie Float

Askew Angle The skew angle of the tie-in degrees Float

47

Is At Border Indicates if the tie is in the middle of 2 sections Int

Tie Material The element indicates the material of the tie: wood, concrete

or undefined

Categorical

Covered Area

Percentage

Element reports the percentage of the tie's surface covered

by ballast, debris, and other materials

Float

Number of Crack Reports the total number of cracks detected for a given tie Int

Area The area of the crack Float

Width The width of the crack Float

Depth The depth of the crack Float

Length The length of the crack Float

Angle degree The angle of the crack Float

Presence of Ballast Indicates if there is ballast present in the opening of a crack Categorical

In line with the spike Indicates whether the crack is in line with the spike Float

Side Indicates whether the crack is in the field or gauge side Categorical

Number of anchors The total number of anchors detected for the given tie Int

Number of Fasteners The total number of fasteners detected for the given tie Int

Number of Tie plates The total number of tie-plates detected for the given tie Int

Number of spikes The total number of spikes detected for the given tie Int

Spike ID Id of the spike in the current section Categorical

Mean Height Spike the height of the spike Float

Condition Spike indicates the status of the spike as good or high Categorical

Tie Plate ID Id of the tie-plate in the current section Categorical

48

3.1.3 Rating System Framework Development

The existing Pavemetrics rating system, developed by their experts, evaluates tie cracks based on

length, depth, and height, with minimum thresholds of 5mm depth, 10mm height, and 50mm

length, as shown in Table 6. Cracks below these thresholds are ignored. While this system

effectively identifies major cracks, it does not account for other critical factors, such as the

condition of spikes and tie plates or the location of cracks in these components. In comparison,

Georgetown Rail (2022) developed a tie rating system that evaluates over 20 variables, including

internal decay, plate cuts, and splitting, grading ties on a scale from 1.0 (best) to 4.0 (failure). This

system provides a more detailed assessment than Pavemetrics, covering a broader range of

conditions. However, it does not consider the exact location of cracks. Crack location is an

important factor in understanding the impact on track stability and performance, as cracks near

spikes or tie plates can cause quicker damage and increase risks. By leaving out crack location, the

Georgetown Rail rating system may miss important information needed for a more complete

evaluation of tie condition and long-term track performance. Additionally, Sadeghi and

Askarinejad (2011) introduced a quality index based on visual inspection, which evaluates the

structural condition of the track through indices like rail quality, ballast quality, and sleeper quality.

Their holistic approach addresses the overall track condition rather than focusing only on cracks.

However, a limitation is that it relies heavily on visual inspections, which can be subjective and

may miss smaller, less visible defects such as internal cracks or early signs of wear. This reliance

on visual assessments can reduce the accuracy and consistency of the evaluation compared to more

precise, technology-driven methods. The proposed system aims to provide a more comprehensive

evaluation by incorporating spike- and tie-plate-related factors, along with crack location and size.

This approach enhances the assessment of track conditions by addressing components the existing

system does not consider, leading to a more detailed understanding of tie and rail fastening health.

Table 6 : Current rating system

Parameter Value (depth, width, length) Description

Wooden tie rating “3” very

severe

20,50,600(unit mm) This parameter allows the user

to set a threshold for classifying

a defect on a wooden tie as very

severe. It must contain three

49

values for depth, height, and

defect length, all in mm.

Wooden tie rating “2” severe 15,30,180(unit mm) This parameter allows the user

to set a threshold for classifying

a defect on a wooden tie as

severe. It must contain three

values for depth, height, and

defect length, all in mm.

Wooden tie rating “1”

moderate

5,15,100 (unit mm) This parameter allows the user

to set a threshold for classifying

a defect on a wooden tie as

moderate. It must contain three

values for depth, height, and

defect length, all in mm.

Wooden tie rating “0” light Not applicable light. The defects do not meet

conditions “1”, “2” and “3”

The framework development incorporated the specific conditions observed on rail tracks, where

high axle loads often led to spikes becoming loose over time, enlarging spike holes, and exposing

the tie to moisture and decay, highlighting the necessity of considering the distance of cracks from

spikes, the presence of cracks in spike holes, and the direction and alignment of cracks relative to

the spikes. Geographic Information System (GIS) software, specifically QGIS, was utilized to

ensure precise measurement of the crack's proximity to critical components. QGIS enabled the

accurate mapping and measurement of the distance between cracks and critical elements, such as

tie plates and spikes, as shown in Figure 7. The proposed rating system was designed to integrate

all these factors, aiming to assess the potential for tie splitting and other forms of deterioration by

examining the proximity of cracks to critical components. This comprehensive approach was

developed with input from Pavemetrics Inc.'s principal consultant to ensure its relevance and

applicability, as shown in the Figure 8.

Tie cracks are evaluated using two key components: crack size and crack location. Crack size is

assessed based on sub-factors such as depth, width, length, and the presence of ballast in the crack.

Crack location is evaluated based on factors like spike distance from the crack, tie plate distance

from the crack, crack direction, whether the crack is in line with the spike, and whether the crack

50

is on the field or gauge side. For each sub-factor, a score is assigned based on its condition. The

total scores for crack size and crack location are then multiplied to reflect the combined impact on

the overall condition of the tie. This combined score represents the tie crack rating.

Figure 7: crack distance from the components.

The rating for tie plates is based on the number of missing tie plates. The score reflects the

condition of the tie plates, with higher scores indicating worse conditions. For spikes, the rating is

determined by spike height and whether the spike is missing or broken. A score is assigned for

each factor based on the spike's condition. Once the individual scores for tie cracks, tie plates, and

spikes are calculated, they are combined to generate the overall rating of the tie and rail fastening

system. This overall rating provides a comprehensive assessment of the track's condition, with

higher scores indicating more significant defects and lower scores representing better conditions.

The weighted scoring system thoroughly evaluates the track's tie and rail fastening condition.

51

Figure 8: Proposed tie and rail fastening system framework.

3.1.4 Questionnaire Analysis Using the Analytical Hierarchy Process (AHP)

In infrastructure asset management, multi-criteria decision-making techniques are commonly used

to make robust decisions by combining technical information with expert opinions. These

techniques analyze data and weights of different options to generate a single index representing

the asset's condition. This approach enables a comprehensive assessment by combining objective

data with subjective expert insights, which helps develop effective management and maintenance

strategies (Kabir, Sadiq, and Tesfamariam 2014). The Analytic Hierarchy Process (AHP) stands

out among these techniques for its structured approach, which breaks down complex decisions into

a hierarchy of simpler sub-problems, facilitating more manageable and accurate analysis. AHP

52

effectively integrates quantitative and qualitative criteria through pairwise comparisons, capturing

nuanced preferences and providing a consistent check to ensure logical coherence. This makes

AHP flexible and user-friendly, enabling decision-makers to understand and repeat the process

easily. The Analytic Hierarchy Process (AHP) provides objective mathematics to process an

individual or group's inescapably subjective and personal preferences in making a decision (Saaty

and Vargas 2012b). AHP provides objective mathematics to process an individual or group's

subjective and personal preferences in making a decision, making it particularly suitable for

infrastructure asset management.

Compared to other methods, AHP offers distinct advantages. Unlike the Delphi method, which is

time-consuming and relies on iterative rounds of consensus-building among experts, AHP

provides a more streamlined and practical tool for decision-making in project management

contexts. AHP's wide application in project management further validates its reliability and

effectiveness, contrasting with the Delphi method's limitations (Vidal, Marle, and Bocquet 2011).

Similarly, AHP is more accessible and conducive to decision-making consensus than Multi

Attribute Utility Theory (MAUT). While MAUT requires specifying utility functions and scaling

constants through probabilistic scenarios, often causing frustration due to their complexity(Bard

1992) . AHP uses straightforward pairwise comparisons and a ratio scale to arrive at cardinal

rankings of alternatives. This allows for easier integration and synthesis of subjective judgments.

Furthermore, AHP provides a clear, logical framework that facilitates the tracing and revising of

individual responses, making it more acceptable for decision-makers without extensive training in

statistics or utility theory (Bard 1992)

The Analytic Hierarchy Process (AHP) and the Analytic Network Process (ANP) offer unique

advantages and applications in decision-making methodologies. AHP is well-known for its

simplicity and structured hierarchical approach, making it user-friendly for those without advanced

expertise. It is particularly suitable for problems with well-defined criteria and minimal

interdependencies and is supported by various user-friendly software tools. The hierarchical

structure of AHP ensures consistency in judgments and transparency in decision-making, allowing

for easier explanation and justification of decisions to stakeholders. Furthermore, AHP generally

requires less data and fewer pairwise comparisons, reducing the time and effort needed for

53

information gathering and processing and making it practical for various applications (Vaidya and

Kumar 2006).

In contrast, ANP is better suited for complex decision scenarios, as it models interdependencies

and feedback loops within a network structure. While ANP can handle intricate problems with

interrelated factors, it comes with increased complexity and data requirements. The network

structure and comprehensive analysis capabilities of ANP require more specialized knowledge and

extensive data collection, making it potentially less transparent and more challenging to implement

than AHP. Despite these differences, both methodologies play valuable roles in multi-criteria

decision analysis, with AHP favoured for its clarity and ease and ANP for its detailed handling of

interdependencies (Sipahi and Timor 2010).

Other methods, like the Weighted Sum Model (WSM), lack AHP's detailed comparison

mechanism. While the Delphi Method can be insightful, it does not offer the same mathematical

rigour or efficiency. Therefore, AHP's ability to incorporate subjective judgments and its

comprehensive evaluation capabilities make it the most suitable choice for developing reliable

rating system frameworks, such as those assessing tie and rail fastening conditions.This present

study utilizes the Analytical Hierarchy Process (AHP), developed by Saaty in the 1980s, to assign

weights to rating system framework using the following steps (Mu and Pereyra-Rojas 2017).

In the Analytic Hierarchy Process (AHP), experts make pairwise comparisons between elements

or criteria within the same group to establish the relative importance of one factor over another

regarding a significant criterion. These judgments help determine the relative importance weights,

which are then used to create a pairwise comparison matrix. Pairwise comparisons are made using

a questionnaire based on Saaty's (1-9) scale, where 1 represents equal importance, and 9 represents

extreme importance. The reciprocal property in AHP ensures that if element x is "j" times more

important than element y, then y is 1/j times less important than x. Consistency in these

comparisons is evaluated by calculating the consistency index (CI) and the consistency ratio (CR),

with a CR less than 0.1 indicating a consistent matrix. Saaty's average random index values, based

on matrix size, are used to validate these comparisons, with an example value of 0.89 for a matrix

size of 4.

54

𝑪𝑹 =
𝑪𝑰

𝑹𝒂𝒏𝒅𝒐𝒎 𝑰𝒏𝒅𝒆𝒙
 (1)

𝑪𝑰 =
𝝀−𝒏

𝒏−𝟏
 (2)

where

λ is the eigenvalue of the pairwise comparison matrix, and

n is the matrix size.

The tie and rail fastening rating system survey compares different types of defects and the factors

affecting their seriousness. Participants were asked to compare different types of defects, such as

spike defects, tie plate defects, and tie cracks, as well as considerations like the location and size

of the cracks. For example, participants were asked to rate the severity of spike defects compared

to tie cracks, with options ranging from "significantly more severe" to "significantly less severe."

This setup allows for the collection of detailed comparative data. The complete survey is in the

appendix.

Participants were asked to indicate their experience in the field with categories ranging from less

than five years to more than 20 years, enabling analysis based on expertise in rail infrastructure

issues. They also selected their work location from Western, Central, Eastern, Northern Canada,

and International, reflecting diverse environmental and regional factors. Participants identified

their areas of expertise, such as maintenance, operations, engineering, safety compliance, or

administration, to provide insight into how different perspectives assess defect severity.

Additionally, they specified their role in decision-making, whether directly, indirectly, or not

involved at all, highlighting how authority influences perceptions of defect severity. Finally,

participants indicated their organizational representation, such as short line, Class I, government,

academia/research, railway supplier or service provider, and design/consultant. This categorization

helped evaluate how organizational roles impact the assessment of rail defects, ensuring a

comprehensive analysis of defect severity.

55

Determining the weights from the survey results using the Analytic Hierarchy Process (AHP)

involved respondents first performing pairwise comparisons of criteria and sub-criteria, such as

the severity of defects in ties, tie plates, and spikes. These comparisons, rated on a scale of relative

importance, formed pairwise comparison matrices. The matrices were normalized, and the

eigenvectors (priority vectors) were calculated to determine the relative weights of each criterion.

A consistency check was performed using the Consistency Index (CI) and Consistency Ratio (CR)

to ensure the comparisons were logically consistent. If multiple respondents provided data, their

judgments were aggregated using the geometric mean. The final weights, which were normalized

to ensure they summed to one, represented the importance of each criterion and sub-criterion in

evaluating tie and rail fastening conditions. This structured approach converted subjective

assessments into quantifiable weights, aiding in decision-making for maintenance and risk

assessment. For example, consider the survey question: "How do you rate the severity of spike

defects compared to tie cracks?" Respondents might have rated spike defects as moderately more

severe than tie cracks. This comparison was then translated into a numerical value (e.g., 3 on a

scale where 1 meant equal importance and 9 meant extreme importance). These values were used

to fill the pairwise comparison matrix, and the eigenvector was calculated to determine the relative

weights of spike defects and tie cracks.

3.1.5 Case Study Validation and Sensitivity Analysis

The first step in developing the new tie and rail fastening rating system involved using the Analytic

Hierarchy Process (AHP) to determine the relative importance, or weights, of critical factors that

influence the overall condition of the fastening system. These factors include the condition of

spikes (e.g., spike height), tie plates (e.g., missing tie plates), and ties (e.g., crack size and location).

The AHP process helped prioritize these factors based on their impact on track safety and

performance, resulting in weights that reflect expert judgment. These weights ensured the most

critical factors significantly contribute to the final condition rating.

Once the weights were set, they were applied to the scores given to each factor, ranging from 0 to

10, to measure how serious each defect is. For example, a too high spike would get a score of 10,

while a spike in good condition would get a score of 0. This matches the findings from (Gao,

56

McHenry, and Kerchof 2018a), who highlighted the important role of spikes in keeping ties in

good shape. Similarly, a missing tie plate would get a score of 10, while having all the required tie

plates would get a score of 0, which aligns with research by (M. Dersch et al. 2019) and the

derailment in Alberta (The Transportation Safety Board of Canada 2012), showing the importance

of tie plates in preventing damage to ties.

Crack location scores are also given for the crack near the tie plate and spike. When the crack is

close to a spike, the score is 10, and the same applies when the crack is close to a tie plate because

the crack is more likely to cause damage. This follows evidence that cracks near spikes or tie plates

cause more harm to ties, as seen in the British Columbia derailment (TSB 2023), where lifted

spikes on the field side contributed to the accident. Cracks on the field side are scored ten due to

higher impact on safety, while cracks on the gauge side are scored 0 due to lower severity. Based

on their impact on track safety, this scoring system prioritizes cracks near spikes, tie plates, and

on the field side.

Three scenarios were evaluated to compare the rating system. In the first scenario, as shown in

Table 7, the thresholds for crack measurements are based on values provided by Pavemetrics

experts. For crack depth, a depth of 5 mm receives a score of 0, while a depth of 20 mm receives

a maximum score of 10. Similarly, a width of 10 mm is scored 0 for crack width, while a width of

50 mm is scored 10. Crack length follows the same approach: a length of 50 mm receives a score

of 0, while a length of 600 mm receives a score of 10.

Table 7: Scenario one: Pavemetrics (Industry thresholds)

Factor Value/class Score

Spike height Cut spike

≤25 mm

>25 mm

Screw spike

≤32 mm

>32 mm

0

10

0

10

57

Number of Tie plates 0

1

2

10

5

0

Crack depth 5 mm

≥ 20 mm

0

10

Crack width 10mm

≥ 50mm

0

10

Crack length 50 mm

≥600 mm

0

10

The presence of ballast inside

the crack

Yes

No

10

0

Crack is in line with spike Yes

No

10

0

Crack distance from spike 0 m

0.5

10

0

Crack distance from tie plate 0 m

0.6 m

10

0

The direction of the crack X

Y

10

0

Side of the crack Field

Gauge

10

0

In Scenario Two, referred to as the "without outliers" scenario, the thresholds for crack

measurements are based on the mean and standard deviation of values observed in a case study

dataset. This approach excludes outliers, defined as over 3 standards deviations from the mean.

58

In the third scenario, as shown in Table 8, the thresholds for crack measurements are based on the

maximum values observed in the case study dataset, including outliers. The scoring system

accounts for the most significant defects in the dataset, reflecting not just typical conditions but

also the most severe defects. Because only crack depth, width and length have outliers or values

beyond the ranges established by Pavemetrics, it is only their scores that change in these scenarios.

In all scenarios, the same scoring system is applied to spike height, the number of tie plates, the

presence of ballast in cracks, the distance of spikes and tie plates from the cracks, crack direction,

and crack location on the tie (field or gauge side). The overall condition rating is determined by

multiplying each factor's score by its respective weight, resulting in a weighted score that reflects

both the factor's importance and the defect's severity.

Table 8: Scenario with and without outliers

Scenario Factor Value/class score

1. Scenario two

without outliers

Crack depth 5 mm

≥ 74.84 mm

0

10

Crack width 10mm

≥ 47.32 mm

0

10

Crack length 50 mm

≥592.43 mm

0

10

2. Scenario three

with outliers

Crack depth 5 mm

≥ 200 mm

0

10

Crack width 10mm

≥ 110 mm

0

10

Crack length 50 mm

≥1075 mm

0

10

59

To validate the framework, all scenarios were compared to assess the potential impact on

maintenance decisions. The Pavemetrics rating system, based on crack width, depth, and length,

is called "The Tie Crack Size Condition Rating Scale," while the proposed scale is called the "Tie

and Rail Fastening Condition Rating Scale." Both scales were compared by converting the

resulting values to a scale from 1 to 4, where 1 represents "Light" and four represents "Very

Severe." The classification is as follows: scores of 0, 1, and 2 are categorized as "Light," scores of

3, 4, and 5 as "Moderate," scores of 6, 7, and 8 as "Severe," and scores of 9 and 10 as "Very Severe"

A sensitivity analysis was also conducted to evaluate the effect of adjusting the weights assigned

to various components in the railway track rating system, including tie crack, tie plate, spike, and

sub-factors related to the size and location of cracks. This analysis aimed to understand how

changes in these weightings impact the overall condition rating, ensuring that the system is robust

and reliable. The weight adjustments were made according to Saaty's (Saaty and Vargas 2012a)

Analytic Hierarchy Process (AHP), which provided a structured approach to systematically vary

the weights and assess their effects. The analysis began by assigning equal weights to all

components and subcomponents, establishing a balanced baseline scenario. The main components

considered were tie cracks, tie plates, and spikes. At the same time, subcomponents were further

broken down into factors related to crack size (depth, width, length, presence of ballast) and crack

location (distance from spike, distance from tie plate, alignment with spike, direction, and side).

From this balanced baseline, the next step involved incrementally increasing the weight of the

highest-weighted factor within each group and redistributing the weights of the remaining factors

accordingly. This allowed for the simulation of various scenarios where one factor became more

significant while others became less, creating a diverse range of weighting scenarios. The overall

rating of the railway track condition was calculated for all data points, reflecting the new weight

distributions. The percentage distribution of the condition rating scale—"Light," "Moderate,"

"Severe," and "Very Severe"—was calculated for each scenario, providing insights into how the

overall ratings fluctuated as the weights were adjusted. The baseline rating, derived from the

original AHP-assigned weights, was used as a benchmark to further evaluate the system's

sensitivity. Finally, the sensitivity analysis results were interpreted by comparing the percentage

changes across all scenarios. This comparison helped identify which components and

subcomponents had the most impact on the overall rating.

60

3.2 Condition Prediction Model

A second case study was conducted to develop a condition prediction model. The data for this

study was obtained from an open dataset of track characteristics and defects provided by the

"INFORMS 2015 Railway Applications Section Problem Solving Competition."(RAS problem

2015). The Pavemetrics dataset from the first case study was not used here because it lacks key

variables. While the Pavemetrics dataset provides detailed information on track conditions, it does

not include tonnage, speed, or traffic density, nor changes in track conditions over time, which

would be essential for building a reliable prediction model, as highlighted in the literature review.

Therefore, the second dataset was more suitable for developing the defect prediction model. A

summary of the applicable attributes is provided in Table 9. The overall methodology comprises

(1) data understanding and cleaning, (2) modelling, and (3) evaluation. The steps are described in

detail in the following sections.

Table 9: Summary of the attributes

Attribute Description Type Min Max

Line segment

number

Every track has a unique line

segment number; using this

number and the milepost, you

can identify any location on the

system.

Cat 1 4

Track standard

number

Distinguish individual track

segments—Mainline & branch

numbers: 0=single track, 1-

9=multiple train lines.

Cat 0 3

Milepost The point on the track. Num 2.436350 444.27274

Total car east The total number of cars

travelling East over a month.

Num 0 54048

61

Total car west The total number of cars

travelling west over a month.

Num 0 41676

Total train east The total number of trains

travelling East over a month.

Num 0 1136

Total train

west

The total number of trains

travelling west over a month.

Num 0 1126

Total

deflection

The sum of total gross tons

travelling across the section.

Num 0 11.31

Test date The date on which testing was

performed.

mm/dd/yy - -

Defect number Every defect detected by a

Geometry car gets a unique ID.

ID 2.300000e+

01

2.070360e+

08

Geometry car Geometry cars names Cat - -

Defect Tag The tag is categorized into

Yellow or red based on FRA

standards.

Cat - -

Defect length Length of defect in feet, as

reported by the measurement

car.

Num 1 798

Defect

amplitude

The maximum size of the defect

in inches

Num -3.59 4.63

Track code Track codes including tangent,

spiral and curve.

Cat - -

Class Track class, representing

categories of operating speed

Cat 2 5

62

3.2.1 Data Understanding and Cleaning

Understanding the data is a critical first step in data preprocessing. Identifying the necessary data-

cleaning processes and selecting appropriate analysis methods is vital. The study's dataset consists

of two datasets: 1. track geometry and 2. tonnage. The process starts by thoroughly comprehending

the two data sheets and identifying their common attributes.

Figure 9: Data merging.

The track geometry dataset includes attributes such as track segment number, milepost start and

end numbers, defect amplitude, defect type (cross-level, dip, surface), operating speed, and defect

limits for passenger and freight

traffic.

Speed(passeng

er)

Operating speed for passenger

trains (in Mph).

Num 0 90

Speed(freight) Operating speed for freight

trains (in Mph).

Num 11 70

Defect type Defect type--the geometric

defect type such as XLEVEL,

SURFACE, DIP.

Cat - -

63

tags (yellow and red). On the other hand, the tonnage dataset incorporates data on total deflection

and tonnage for all track directions (east and west). Additionally, attributes such as milepost, line

segment number, track standard number and year are common features in both datasets. These

shared attributes were utilized to merge the data, as depicted in Figure 9.

After merging the datasets, a thorough check for missing values was conducted, and none were

found, indicating a complete dataset. Additionally, a validation check was performed to ensure the

accuracy of the data merge. This involved verifying that the milepost numbers in the merged

dataset fell within the range defined by the milepost start and end values. This step was essential

to ensure that the data from both datasets were accurately aligned, confirming that the merged

records correctly corresponded to their intended track segments. By validating the milepost

numbers, we ensured that each record was placed in the right location, which is crucial for reliable

analysis. Next, non-relevant attributes such as month, year, and milepost start, and end were

removed from the analysis. These attributes were optional for the specific analyses conducted and

removing them helped streamline the dataset. The cleaned and merged dataset and a summary of

its attributes are provided in Table 9.

The categorical variables were encoded into numerical values to make the data compatible with

statistical models and analysis algorithms, which require numerical inputs. Encoding the variables

simplifies their interpretation by algorithms, enabling efficient computation and comparison. For

example, the defects—dip, surface, and level—were encoded as 0, 1, and 2, respectively, to assign

each defect a distinct numerical value for clear differentiation. Similarly, the yellow and red defect

tags were encoded as 0 and 1 to represent levels of tags, allowing the model to distinguish between

conditions that require caution and those needing immediate attention. Label encoding was chosen

for its simplicity and clarity in the model. However, other encoding techniques, such as one-hot

encoding, could have been used, where each category would be represented as a separate binary

column (e.g., "dip," "surface," and "level" would each have their column with a value of 1 or 0).

One-hot encoding is particularly useful when categories are not ordinal or when there are many

distinct categories(Alakh 2024). In this case, label encoding was sufficient because the categories

represent distinct but comparable conditions, and the model can easily differentiate between them

without needing a more complex encoding scheme.

64

3.2.2 Modelling and Evaluation

Correlation analysis has been performed on data to realize the relationship between the attributes

and the targets. Since correlation analysis reveals the relationship between numerical attributes,

the converted categories were used in the analysis for categorical variables. The correlation

analysis was performed on the merged and cleaned dataset using Python. The correlation matrix

is created by dividing each element of the covariance matrix by the product of the standard

deviations of the corresponding variables. It provides information about the relationships among

different sets of variables. The Pearson correlation is a commonly used method for creating a

correlation matrix. The Pearson product-moment correlation can be calculated using equation (3).

In this correlation, the values in the matrix range from -1 to 1(David Nettleton 2014). Larger

absolute values indicate a stronger relationship between the two variables, with the sign indicating

whether the relationship is direct or inverse. Values close to zero indicate little to no correlation

between the variables.

𝒓𝒙𝒚 =
𝒄𝒐𝒗(𝒙,𝒚)

𝝈𝒙 𝝈𝒚
 (3)

Where:

𝑟𝑥𝑦, Pearson correlation coefficient between variable x and y.

After conducting a thorough correlation analysis to identify significant relationships between the

variables, several machine learning algorithms were employed for classification and regression

tasks. Simpler algorithms, such as Logistic Regression for the classification of multiple linear

Regression and Decision Trees for Regression, were initially applied to establish baseline models.

These simpler models provide insight into the relationships between the variables but often lack

the complexity needed for more intricate prediction tasks. As mentioned in the literature earlier,

linear regression has been widely applied to infrastructure deterioration modelling. For example,

(R. Liu, Xu, and Wang 2010) used linear Regression to model track deterioration by incorporating

factors such as tonnage, speed, inspection dates, and track surface irregularities like gauge, cross-

level, alignment, surface, and twist. Similarly, (Guler, Jovanovic, and Evren 2011) employed linear

Regression to model the deterioration of railway tracks based on attributes such as gradient,

curvature, speed, age, rail type, and environmental factors like floods and landslides, predicting

various track irregularities including twist, gauge, alignment, and cant. On the classification side,

65

(Soleimanmeigouni et al. 2020) applied Binary Logistic Regression to predict track geometry

defects, specifically UH2 defects, using features like the standard deviation and kurtosis of the

longitudinal level, time intervals and defects exceeding the planning limit.

Logistic Regression is a widely used supervised learning algorithm for binary and multiclass

classification problems. It estimates the probability that a given input belongs to a particular class

by modelling the relationship between the input features and the log odds of the output (Hosmer,

Lemeshow, and Sturdivant 2013). The model applies the logistic function, also known as the

sigmoid function, to the weighted sum of the input features, transforming it into a probability

between 0 and 1. For binary classification, logistic Regression predicts the probability of one of

two possible outcomes, such as predicting the presence or absence of defects in infrastructure.

Logistic Regression is valued for its simplicity, interpretability, and ability to model linear

relationships between features and the log odds of the outcome, making it practical for many real-

world classification problems. However, one disadvantage of Logistic Regression is that it

assumes a linear relationship between the input features and the log odds of the output, which may

not always hold for more complex datasets (Kleinbaum and Klein 2010).This limitation makes the

model less effective when the proper relationship between the features and the target variable is

highly nonlinear. More advanced algorithms like decision trees or ensemble methods may perform

better in such cases.

Multiple Linear Regression (MLR) extends the basic linear regression model by incorporating

multiple independent variables to predict a continuous dependent variable. It assumes a linear

relationship between the dependent variable and a set of independent variables, allowing for more

complex modelling where multiple factors contribute to an outcome (Draper and Smith 1998).

MLR is particularly useful in situations where a single outcome is influenced by several predictors,

such as in infrastructure modelling, where factors like track gradient, curvature, age, and

environmental conditions can collectively impact deterioration rates or condition scores

(Montgomery, Peck, and Vining 2012). The strength of multiple linear regression lies in its

simplicity and interpretability. The model allows for easy identification of the relationship between

individual predictors and the outcome, making it a widely used tool for prediction and decision-

making. However, its effectiveness depends on several key assumptions: linearity (the relationship

between the dependent variable and each independent variable is linear), homoscedasticity

66

(constant variance of the residuals), and the absence of multicollinearity (independence among the

predictor variables). Violations of these assumptions can lead to biased or inefficient estimates,

limiting the accuracy of the model in real-world scenarios with complex interactions between

variables (Kutner, Nachtsheim, and Neter 2004).

Decision Trees are a non-parametric supervised learning method for classification and regression

tasks. The model builds a tree-like structure, where each internal node represents a decision based

on a feature, branches represent the outcomes of those decisions, and leaf nodes represent the final

prediction or outcome (Quinlan 1986). Decision Trees use criteria like Gini impurity or

information gain (for classification) and variance reduction (for regression) to decide how to split

the dataset at each node. For example, in classification, the Gini impurity measures how "pure" a

node is to minimize impurity and make the resulting subgroups as homogeneous as possible

(Breiman et al. 2017). One of the strengths of Decision Trees is their interpretability—it is easy to

visualize and understand how the model arrives at a prediction. However, without regularization

methods like pruning or setting a maximum depth, Decision Trees can overfit the training data,

leading to poor generalization on unseen data (Rokach and Maimon 2005). Despite this, Decision

Trees are the foundation for more advanced ensemble methods like Random Forests and Gradient

Boosting.

To improve performance, advanced ensemble techniques such as Random Forest, XGBoost, and

CatBoost were employed for classification and regression tasks. As mentioned in the literature,

these models were chosen because they are highly effective and reliable for predicting

infrastructure deterioration. (Falamarzi, Moridpour, and Nazem 2019) demonstrated that Random

Forest performs exceptionally well in predicting track deterioration with high accuracy and low

error, as shown in the Melbourne tram network case study. Similarly, (Amini and Dziedzic 2022)

showed that XGBoost, an advanced form of gradient boosting, excels in predicting infrastructure

deterioration across different fields. Both models are known for handling complex datasets with

multiple input variables, making them ideal for the given dataset and the prediction tasks at hand.

Random Forest is a supervised learning approach for classification and regression analysis. It

consists of multiple decision trees that work together to make more accurate predictions than a

single tree. Each decision tree has multiple nodes, and features in these nodes determine how the

dataset should be divided into sub-classes. The method selects internal features to minimize

67

impurity based on specific criteria. For classification, impurity is based on Gini impurity or

entropy, while regression is based on variance reduction. The most significant impurity decrease

is used to select attributes as internal nodes assigned the highest weights. The final prediction is

based on the average of all trees or majority votes for classification and regression. Since the

method is built from multiple trees with random predictors, it can assign weights to each feature

and determine important features for prediction (Cooper, Kotys-Schwartz, and Reamon 2012).

Furthermore, the random forest method is not affected by multicollinearity.

The Gini impurity measure is used in decision tree algorithms to determine the best split starting

from a root node and subsequent splits (Steven Loaiza 2020). It measures how effectively a split

separates the total samples of binary classes in a particular node. This criterion for a target variable

with C classes can be formulated as equation (4).

𝑮𝒊𝒏𝒊 = 𝟏 − ∑(𝒑𝒊)
𝟐 (4)

Where:

C, Number of classes; and

p(i), probability of picking a datapoint with class i.

Entropy impurity measures the amount of variance in data. This measurement can be expressed as

an equation (5).

𝑬𝒏𝒕𝒓𝒐𝒑𝒚 = − ∑ 𝒑𝒊 . 𝐥𝐨𝐠 𝟐 𝒑𝒊 (5)

Extreme Gradient Boosting (XGBoost) is a robust supervised machine learning algorithm used to

solve regression and classification problems (Long et al. 2023). Like Random Forest, XGBoost

can effectively identify the most critical features of the target variable. In XGBoost, the main

objective is to combine predictions from multiple simple models to predict a classification or

regression target accurately. This is achieved by combining and training several trees in the model.

The XGBoost training process involves iteratively adding new trees to forecast the errors or

residuals of previous trees. These new trees are then integrated with the previous ones for the final

prediction. XGBoost is an iterative process where residuals are calculated during each iteration,

and subsequent predictors are adjusted to optimize a specific loss function.

68

CatBoost, a gradient-boosting algorithm specifically designed to handle categorical data

efficiently, was also explored. Unlike traditional gradient boosting methods that require extensive

preprocessing of categorical variables (such as one-hot encoding), CatBoost is particularly adept

at managing these variables natively. It uses a novel approach called target-based statistics to

transform categorical features into numerical values based on the target variable, which helps

prevent information leakage and ensures better generalization. This approach allows CatBoost to

efficiently process high-cardinality categorical features without requiring heavy preprocessing,

which is often computationally expensive and prone to overfitting. One of Cat Boost’s advantages

is its ability to perform ordered boosting, which avoids bias by ensuring that each data point is

processed without information from future data points. This prevents the model from overfitting

to the training data, a common problem in standard boosting techniques. As a result, CatBoost

tends to be more robust and stable on small or imbalanced datasets compared to other gradient-

boosting algorithms (Prokhorenkova et al. 2017). CatBoost provides built-in support for advanced

regularization techniques, which improves the model's generalization capability and reduces

overfitting. It also handles missing values effectively and offers efficient implementations, making

it suitable for classification and regression tasks across various domains, including infrastructure

and transportation modelling (Dorogush, Ershov, and Gulin 2018). The algorithm's combination

of high performance, native handling of categorical features, and computational efficiency makes

it an attractive option for datasets with numerous categorical variables, such as those frequently

encountered in infrastructure deterioration prediction.

Logistic Regression, Random Forest, XGBoost, and CatBoost were applied for classification tasks,

while Multiple Linear Regression, Decision Trees, Random Forest, XGBoost, and CatBoost were

employed for regression tasks to predict each target based on different attributes, as shown in Table

10. The classification models were designed to predict defect tags and types using the attributes

associated with each defect. These models categorize defects into specific tags and types, allowing

for a detailed understanding of each defect's nature. The regression models forecast the numerical

values of defect length and amplitude. The regression models provide a detailed analysis of the

defects by predicting these continuous values, such as a defect's extent and amplitude. An approach

described in Table 10 The predicted amplitude was an additional input attribute to predict the

69

defect tag. This strategy leverages the model's predicted values to enhance the accuracy of defect

tag prediction, leading to more reliable insights and predictions.

Table 10: Input Attributes to predict the target.

Target Input attributes

Defect tag Total car west, total train east and west, total deflection, defect amplitude,

class, freight speed, passenger speed.

Defect type Line segment number, milepost, track standard number, total car east and

west, total train east and west, total deflection, class, freight speed and

passenger speed.

Defect amplitude Line segment number, milepost, track standard number, total car east and

west, total train east and west, total deflection, class, freight speed,

passenger speed and defect type.

Defect length Line segment number, milepost, track standard number, total car east and

west, total train east and west, total deflection, defect amplitude, class,

freight speed, passenger speed, and defect type.

Increase in Defect

length

Defect amplitude, previous defect length, time gap and defect type.

The dataset included two additional columns to predict the growth in defect length over time. The

first column, "time gap," represents the interval between the first and subsequent test dates. This

interval is calculated by determining the difference between the test dates, providing insights into

the time-based progression of defects. The second column, "previous defect length," records the

length of the defect from the prior test date for the same defect number. This approach, along with

the unique defect numbers assigned to each defect, facilitates the identification and tracking of

recurring defects over time, contributing to a detailed analysis of the defect data. The entire dataset

was split into training and testing sets to build and evaluate the models. Various data splits were

examined to determine the most effective way to train and test the models. For instance, one

approach involved a random split, where 80% of the data was used for training and 20% for testing.

70

Another approach trained the models on data collected from 2007 to 2012 and tested them on data

from 2013.

Figure 10: Distribution of the defect tag and defect type

During the modelling process, it became evident that the dataset exhibited a significant class

imbalance in the classification tasks, as illustrated in the Figure 10. The left chart shows the

distribution of defect tags, where most data points are labelled as non-defective (yellow), while a

smaller proportion is labelled as defective (red). Similarly, the correct chart displays the

distribution of different defect types (Dip, Surface, and X-Level), with the X-Level defect type

being the most frequent and the Dip defect type being the least frequent. This imbalance can bias

models toward the majority class, reducing their ability to predict the minority class. To address

the class imbalance issue, the following techniques were applied:

Class weighting involves assigning higher importance (or weight) to the minority class and lower

importance to the majority class during training. This technique modifies the loss function so that

misclassifications of the minority class are penalized more heavily than those of the majority class.

The idea is to shift the model’s focus toward learning from the underrepresented data points and

improving the performance of the minority class, which might otherwise be ignored due to its

smaller representation. This approach is efficient in algorithms like Logistic Regression and

Random Forest, which support weighted loss functions. By using class weighting, these models

can adapt their decision boundaries to accommodate imbalanced datasets better, ensuring that the

71

majority and minority classes are well represented in the final predictions. (King and Zeng 2001)

showed that class weighting can significantly improve prediction accuracy in rare events data by

mitigating the bias toward majority classes, a common problem in imbalanced classification tasks.

Oversampling is a popular technique to address class imbalance by increasing the number of

instances from the minority class. This can be done by duplicating existing examples or generating

synthetic ones. SMOTE (Synthetic Minority Over-sampling Technique) is one of the most widely

used oversampling methods. Instead of simply duplicating minority class instances, SMOTE

creates synthetic data points by interpolating between existing minority class examples. It

generates new, synthetic examples along the line segments that connect neighboring minority class

samples in feature space, creating a more diverse representation of the minority class.

Oversampling techniques like SMOTE help reduce model bias toward the majority class by

providing a more balanced class distribution during training. By creating new instances, SMOTE

can also improve the robustness of the model without overfitting specific data points, which can

occur with simple duplication methods. (Chawla et al. 2002) demonstrated that SMOTE not only

improves classification accuracy for minority classes but also helps prevent overfitting, resulting

in better generalization of unseen data.

Cross-validation is a standard technique to evaluate model performance by splitting the dataset

into k subsets (or folds), training the model on k-1 folds, and validating it on the remaining fold.

The model's performance is averaged across all k iterations to ensure consistency and prevent

overfitting. Stratified k-fold cross-validation is a variation of this approach explicitly designed for

imbalanced datasets. It ensures that each fold has the same proportion of instances from each class

as the original dataset. This is important for imbalanced datasets, as it guarantees that the minority

class is well-represented in the training and validation sets. It prevents situations where the model

is trained on only majority class data or tested without adequate minority class examples. By

maintaining consistent class distributions across folds, stratified k-fold cross-validation provides a

more accurate assessment of model performance, mainly when dealing with imbalanced classes.

(Wong and Yeh 2020) highlighted the importance of stratification in cross-validation, showing

that it significantly improves the stability of evaluation metrics in classification tasks involving

imbalanced data.

72

Classification models were evaluated using the F1 score and Weighted F1 score, while regression

models were assessed based on R Square (R²) and Root Mean Square Error (RMSE). Classification

models categorize data into distinct groups and are typically assessed with metrics such as the F1

score and Weighted F1 score. The Weighted F1 score accounts for class imbalance by giving more

weight to classes with more instances. It is calculated as:

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐹1 𝑠𝑐𝑜𝑟𝑒 =
1

𝑁
 ∑ (

2(Precision × Recall)

(Precision+ Recall)
) (6)

Where,

N is the total number of instances, and precision and recall are calculated for each class.

The F1 score offers a more detailed assessment. It is calculated as the harmonic mean of precision

and recall. Precision is the ratio of correctly predicted positive observations to the total predicted

positives, while recall (or sensitivity) is the ratio of correctly predicted positive observations to all

observations in the actual class (Abdusalomov et al. 2021).

The Precision and Recall are formulated as (7) and (8)

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷+𝑭𝑷
 (7)

Where

TP indicates the number of values that are positive and are predicted as positive and

FP indicates the number of negative values and is incorrectly predicted as positive.

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷+𝑭𝑵
 (8)

Where

FN indicates the number of positive values and incorrectly predicted as negative.

Regression models predict continuous outcomes and are typically assessed using the R-Square

(R²) metric. R-Square, also called the coefficient of determination, quantifies the amount of

variance in the dependent variable that can be anticipated from the independent variables. It

provides insight into how well the model aligns with the data. The R-Square value falls between 0

and 1 (Sharma and Singh 2018). It can be calculated as

73

𝑹𝟐 = 𝟏 −
∑(𝒚𝒊 − �̂�𝒊)

𝟐

∑(𝒚𝒊 − �̅�𝒊)𝟐 (9)

Where

yi represents the actual values, �̂�𝑖 represents the predicted values, and �̅�𝑖 represents the mean of

the actual values.

RMSE measures the average magnitude of the error between predicted and actual values,

providing insight into how well the model’s predictions match the actual outcomes. Unlike R²,

which indicates the proportion of variance explained by the model, RMSE quantifies the actual

error in the model's predictions. RMSE is particularly useful for interpreting the model's

performance in the same units as the target variable, making it easier to understand the prediction

errors in practical terms. The lower the RMSE, the better the model's predictive accuracy (Chai

and Draxler 2014).

The formula for RMSE is as follows:

𝑹𝑴𝑺𝑬 = √
𝟏

𝒏
∑ (𝒚𝒊 − �̂�𝒊)

𝟐𝒏
𝒊=𝟏 (10)

Where

 𝑦𝑖 represents the actual values, �̂�𝑖 represents the predicted values, and n is the total number of data

points.

74

Chapter 4. Results

The results section is divided into two key parts: the Condition Assessment Model and the

Condition Prediction Model.

 4.1 Condition Assessment System

This section contains the outcomes of the Condition Assessment Model. It involves analyzing the

survey results using the Analytical Hierarchy Process (AHP) and comparing the new rating system

with the case study.

4.1.1 Questionnaire Survey Analysis

The survey was sent to over 50 individuals through the Railway Research Advisory Board (RRAB)

in Canada, the Western Canadian Short Line Railway Association (WCSLRA), and some from the

American Railway Engineering and Maintenance-of-Way Association (AREMA). These

organizations include people from academia, government, Class I railways, short lines, railway

suppliers/providers, and consultants. In the end, 21 responses were received. The following section

provides a detailed analysis of the survey participants.

Figure 11: Years of Experience of Survey Respondents.

9%

38%

29%

24%
Less than 5 years

5-10 years

11-20 years

More than 20 years

75

The survey participants have a wide range of experience in the railway sector, with most having

considerable expertise. The largest group (38%) has over 20 years of experience, providing a deep

understanding of industry practices, as shown in Figure 11. A significant portion has 11-20 years

of experience, contributing solid knowledge of rail infrastructure management. Participants from

both international and Canadian regions shared their perspectives, offering diverse insights.

Various backgrounds ensure the feedback covers different conditions and challenges, from varying

regulations to unique rail infrastructure issues. The high number of participants with more than 20

years of experience suggests that the insights gathered are based on extensive practical knowledge,

providing a solid foundation for understanding rail track conditions and management. The range

of experience, from less than five years to over 20 years, also brings fresh ideas and long-term

expertise. Regarding decision-making involvement, a large group (43%) is directly involved in

making strategic decisions about railway track management.

Figure 12: Role in the decision-making of Survey Respondents.

In contrast, others contribute indirectly or provide technical expertise without having decision-

making power, as shown in the Figure 12. This mix of roles is important for providing a well-

rounded perspective, including those who make decisions, those who influence them, and those

who ensure decisions are technically sound. The variety of roles shows the collaborative nature of

railway track assessments and management decisions, with input from different levels of expertise.

38%

43%

19%

Indirectly involved Directly involved Not involved

76

The balance between those directly involved (43%) and those indirectly involved (38%) suggests

that while decision-making is focused, advisory input remains important, ensuring decisions are

informed by a wide range of technical and operational considerations.

The survey included participants from diverse professional backgrounds, with representation from

design and consultancy firms, academia, research institutions, railway suppliers, Class I and short-

line railways, and government roles. A detailed breakdown is provided in the Figure 13. The

respondents reported a wide range of expertise in the railway industry, providing insights into rail

system management and safety. Maintenance, engineering, operations, safety compliance, and

infrastructure design were among the highlighted areas of expertise, demonstrating a

comprehensive approach to managing rail safety and addressing defects.

Figure 13: Organization Affiliation of Survey Respondents.

4.1.2 Analytical Hierarchy Process (AHP) Analysis

This section presents the analysis of weight determination for the various factors obtained from

the survey for the Condition Assessment Framework using the Analytic Hierarchy Process (AHP).

Railway supplier or service

 lass I

Design/ onsultant

Academia/ Research

Short line

Government

77

 Figure 14: Tie and rail fastening framework with weights

The framework uses the Analytic Hierarchy Process (AHP) to evaluate railway track defects within

the tie and rail fastening system and determine track conditions. The framework assigns weights

of 45% to tie cracks, 28% to spikes, and 27% to tie plates, as shown in the Figure 14, indicating

the importance of these elements for track safety. Tie cracks carry the highest weight,

demonstrating their significant impact on the track's long-term stability. Additionally, the

framework specifies that crack location is more critical than crack size within the tie crack

category. The focus on crack location over size suggests that where a crack form is more dangerous

than its size. This makes sense because cracks that appear near important components like spikes

78

and tie plates can damage the track's stability more. Even tiny cracks close to these key parts can

cause problems, while larger cracks farther away may not have as much impact.

4.1.3 Case Study Validation and Sensitivity Analysis

This section presents the results of a new rating system that utilizes data from Pavemetrics. The

system's calculations are grounded in weights derived from the Analytic Hierarchy Process (AHP),

which computes scores for each factor in the framework. The purpose of the analysis is to compare

the proposed rating system's performance with the existing one while also conducting a sensitivity

analysis to understand how changes in the system affect the overall ratings.

The results are provided for three distinct scenarios. In the first scenario, the thresholds for crack

measurements—such as width, depth, and length—are based on Pavemetrics' threshold. This

approach serves as a baseline comparison against the other scenarios. The second scenario, the

"without outliers" scenario, establishes thresholds based on the mean and standard deviation of

crack measurements observed in a case study dataset. This scenario aims to exclude extreme

values, ensuring that the thresholds represent more typical conditions. In the third scenario, with

outliers, the thresholds for crack measurements are set according to the maximum values observed

in the same case study dataset. Across all scenarios, the remaining factors in the framework—such

as spike condition and tie plate presence—remain consistent, ensuring that only the crack

measurement thresholds differ between scenarios.

Table 11: Scenario one: Statistical summary of the scores for the Pavemetrics threshold.

Factors Mean Stdev Min 0% Max

Width 1.78 2.01 0 1.1 10

Depth 5.91 3.32 0 5.73 10

Length 2.29 2.05 0 1.73 10

Presence of Ballast 1.03 3.04 0 0 10

Tie plate Distance from the crack 7.83 2.41 0 8.72 10

Spike Distance from the crack 7.4 2.36 0 8.27 10

The direction of the crack 9.97 0.53 0 10 10

Side of the crack 4.69 4.99 0 0 10

79

The statistical summary of the Scenario One score, using the Pavemetrics thresholds to evaluate

the case study dataset, is shown in Table 11. The Size of the Crack category, which includes

attributes such as width, depth, length, and the presence of ballast, generally reveals low average

scores, indicating that most cracks in the dataset are relatively small. For instance, the average

width of cracks is 1.78, with a standard deviation of 2.01, highlighting that while most cracks are

narrow, some variability exists. The presence of ballast is particularly rare, as the data shows very

few instances of ballast within cracks (mean 1.03). In the Location of the Crack category, attributes

like Tie Plate Distance and Spike Distance display a notable range, suggesting variability in how

close cracks are to these critical components. The average Tie Plate Distance is 7.83, showing that

cracks often form relatively close to tie plates. The consistently high scores for Direction (mean

9.97) and Side suggest uniformity in the crack orientation, possibly indicating a standard pattern

in how cracks develop or are recorded in the field. Regarding Spike Height and Tie Plate Count,

the low average scores (mean spike height of 0.19) suggest that most spikes are in good condition,

and missing tie plates are not a frequent issue in this dataset. These low values reflect a well-

maintained track system in terms of fastening components. The analysis indicates that certain

variables, such as crack depth and proximity to tie plates, display significant variability. In

contrast, others, like crack direction and spike height, consistently show low or uniform values.

This offers valuable insights into the condition of the track and emphasizes areas, such as cracks

near critical components, that may require more attention during maintenance.

Table 12: Scenario two and three: Statistical summary of the scores with and without outliers.

Scenario Factors Mean Stdev Min 0% Max

1. Scenario two

without outliers

Width 1.896308 2.105634 0.00268 1.178992 10

Depth 1.586685 1.43874 0.004296 1.229954 10

Length 2.31636 2,062372 0.000369 1.751378 10

Width 0.742456 0.989704 0.000994 0.437463 10

Crack In-Line with Spike 2.1 4.08 0 0 10

Spike height 0.19 1.37 0 0 10

Tie plate score 0.26 1.17 0 0 10

80

2. Scenario three

with outliers

Depth 0.612418 0.872004 0.001538 0.440513 10

Length 1.279453 1.339403 0 0.927403 10

The statistical summary of Scenario Two (without outliers) and Scenario Three (with outliers)

shows how crack measurements behave in each scenario. In Scenario Two, as shown in Table 12

the average values for width, depth, and length are generally higher than in Scenario Three,

indicating that cracks are considered more severe when outliers are removed. For example, the

average width is 1.89 in Scenario Two, compared to only 0.74 in Scenario Three, suggesting that

the remaining cracks are classified as more severe once extreme values are excluded. In Scenario

Three, where outliers are included, the average values for all factors are lower, indicating that the

cracks are significantly smaller compared to the outlier values, but not necessarily smaller. The

standard deviations are also lower in Scenario Three, meaning there is less variation in crack sizes.

For example, the depth in Scenario Three has a standard deviation of 0.87, while in Scenario Two,

it is higher at 1.44, showing more variation in crack sizes when outliers are removed. This suggests

that the inclusion of outliers skews the data, making the remaining crack sizes appear smaller in

comparison.

While scenario three gives a wider view of track conditions, it might hide some more severe issues,

potentially delaying necessary repairs because the average scores make the defects seem less

severe. When comparing all three scenarios, the Pavemetrics threshold in Scenario One is quite

similar to the scores from Scenario Two without outliers, suggesting that this standard method

(mean width of 1.78 and mean length of 2.29) effectively highlights severe defects without needing

further changes. In contrast, with lower averages, Scenario Three might hide important issues,

making it less useful for quick and effective track assessments.

Table 13: score ranges of factors categorized by light, moderate, and severe Ratings

Factors

Range of the ratings

Light Moderate Severe

Width 0.0025 - 10.0 0.0025 - 10.0 0.72 - 10.0

81

Depth 0.02 - 10.0 0.09 - 10.0 3.15 - 10.0

Length 0.002 - 10.0 0.00036 - 10.0 3.55 - 10.0

Presence of ballast 0 - 10 0 - 10 0 - 10

Size of the crack 0.15 - 8.24 0.19 - 9.91 2.44 - 10.0

Spike distance 0.0 - 10.0 1.69 - 10.0 8.03 - 10.0

Tie plate distance 0.0 - 10.0 1.87 - 10.0 8.37 - 10.0

In line with the spike 0 - 10 0 - 10 0 - 10

Direction of the crack 0 - 10 0 - 10 10 - 10

Side of the crack 0 - 10 0 - 10 0 - 10

Location of the crack 1.50 - 7.17 2.29 - 10.0 5.77 - 9.96

Spike height 0 - 0 0 - 10 0 - 10

Tie plate 0 - 0 0 - 5 0 - 10

The score distribution across the Light, Moderate, and Severe categories provides key insights into

how different factors affect the severity of track conditions as shown in

Table 13. The width, Depth, and Length factors have wide score ranges, but Depth and Length are

particularly important in the severe category, where scores start at 3.15 and 3.55. This shows that

deeper and longer cracks are more likely to be considered severe. The fact that the Light and

Moderate categories have similar ranges suggests that crack size only becomes a major issue when

it reaches higher values. This emphasizes the importance of Depth and length in identifying severe

track defects. The crack size score in the Severe category starts at 2.44, while smaller cracks tend

to stay in the Light or Moderate category. This means that larger cracks are more likely to cause

concern and lead to severe ratings. The difference between the categories shows that size plays a

82

key role in the overall safety assessment, with bigger cracks representing greater risks to track

stability.

Figure 15: Score distribution of location, size, tie plate and spike

The Spike and Tie Plate Distance scores jump significantly in the Severe category, starting at 8.03

and 8.37, respectively. This suggests that cracks located farther away from these fastenings are

more likely to be rated as severe. Cracks in unsupported areas can weaken the track, so their

location relative to the spikes and tie plates is critical for evaluating overall track safety. The

location of cracks becomes important for severe ratings, with scores starting at 5.77 in the Severe

category. Cracks near key areas, like spikes and tie plates, are more likely to lead to severe

problems because these areas take on more stress. Even moderate-sized cracks can be classified as

83

severe when they occur in critical locations, highlighting the importance of considering where the

crack is located when evaluating track conditions.

Figure 16: Weight distribution of location, size, tie plate, spike and the sum of the tie crack factors

For Spike Height, the scores in the Severe and Moderate categories range from 0 to 10, while there

are no scores in the Light category. This suggests that issues with spike height tend to be more

84

serious. Since spikes are crucial for holding the rails in place, any irregularities in their height can

signal problems with the track’s stability. This makes spike height a key factor in detecting more

severe track defects. Similarly, Tie Plate scores appear in the Moderate and Severe categories, with

scores ranging from 0 to 10 for Severe and 0 to 5 for Moderate. The fact that Tie Plate issues are

only seen in these higher severity categories indicates that problems with tie plates, such as missing

or damaged ones, are typically linked to more serious track conditions.

The weighted score using the Pavemetrics threshold for the Tie and Rail Fastening Rating, as

shown in the Figure 16 , highlight the key factors affecting track condition. In this assessment, raw

scores are multiplied by their respective weights to ensure that each factor's impact is proportional

to its importance in evaluating track safety.

Crack size is critical in the overall rating, with crack depth being the most significant factor in this

category (with most scores ranging between 1.0 and 2.5). This highlights how variations in crack

depth can lead to serious safety issues across different sections. Although crack width (scores

generally range from 0.0 to 1.5) and crack length (within the same range) play minor roles, they

still contribute to the overall evaluation, as even small cracks can worsen if left untreated. The

presence of ballast within cracks has the smallest influence (as seen in the lower weight

distribution), but it becomes important if it reaches higher levels of severity.

Crack location is the dominant factor in the assessment, with most scores clustering between 4.0

and 6.5, accounting for 74% of the crack-related score. Spike distance (with most cracks near

spikes showing scores below 0.5) is particularly concerning, as cracks near spikes can cause rapid

deterioration in critical areas. Similarly, tie plate distance (scores mostly around 0.0, but with a

few higher outliers) and crack direction play crucial roles in determining the track's safety. Cracks

that are in line with spikes or on specific sides of the tie (with minor scores below 1.0) also

contribute to the overall evaluation, though to a lesser degree. Cracks account for 45% of the total

weight in the Tie and Rail Fastening Rating, underscoring their importance in track safety. The

variation in crack-related factors, especially depth and location, suggests that some track sections

are more at risk than others, meaning targeted maintenance is essential to prevent further

deterioration. While spike condition (most scores around 0.0 but with minor outliers) and tie plate

presence (again, mostly 0.0) are also part of the evaluation, their influence is much smaller than

85

crack-related factors. Spikes and tie plates generally remain in good condition unless there is a

significant defect, so they are less frequently a cause for concern.

One important insight from the analysis is the variation in the crack depth and location scores,

showing that defects are not evenly spread across the track. This variation highlights the need for

focused inspections and repairs, especially in areas with cracks near key parts like spikes and tie

plates. These defects can quickly worsen without targeted action, leading to bigger safety risks.Tie

plate presence, though showing lower scores and generally being less of a concern, still needs to

be monitored to maintain track integrity. The weighted scoring system is a valuable tool for

identifying the most severe defects. It provides a clear process for prioritizing maintenance,

ensuring critical issues are addressed quickly. The variation in crack-related factors shows the need

for regular and detailed inspections to keep the track safe and prevent minor defects from becoming

major safety risks.

Figure 17: Distribution of the rating for the Pavemetrics threshold

0

171

460

613

120

32
13 7 1 0 0

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10

C
o
u

n
t

Rating

count

86

The distribution of the final ratings indicates that most track sections fall within the moderate

range, with most ratings between 2 and 3, as shown in Figure 17 . This suggests that, while the

tracks are not in critical condition, they still require attention to prevent further degradation. The

clustering of ratings in this range implies that maintenance is needed to ensure these sections do

not worsen over time. The relatively few sections rated at 1 imply that some areas are in better

condition, though they still need to be flawless. These sections may require less immediate

attention but should still be monitored regularly to maintain their condition. The inclusion of new

factors, particularly crack location relative to spikes and tie plates, has shifted some ratings

upward. Cracks near critical components, even if they are not large, now receive more attention,

as their proximity to these elements increases the risk of damage. This change in the rating system

highlights potential problem areas that may have been overlooked in previous assessments,

ensuring that maintenance is directed to sections that are more vulnerable.

It's interesting to note that very few track sections have higher ratings (5 and above), which

suggests that severe defects are rare. This indicates that the track infrastructure is generally stable,

with only a few isolated areas of concern. However, even a few sections with higher ratings could

indicate the need for targeted interventions in specific areas to address more severe issues before

they escalate. The absence of sections rated at 0 or 10 is important. No track sections are considered

perfect, suggesting that even the best sections still have minor defects or wear that require ongoing

maintenance. On the other hand, the lack of any sections rated at ten shows that the track network

has no very severe areas, which is a positive indication of its current state. The numerical ratings

calculated for the overall condition assessment are transformed into condition scales for easier

comparison with the industry rating system developed by Pavemetrics (Tie crack rating). The

condition scales are categorized as follows:

• 0, 1, 2: Light condition

• 3, 4, 5: Moderate condition

• 6, 7, 8: Severe condition

• 9, 10: Very severe condition

87

This transformation allows for a clearer and more intuitive interpretation of the numerical ratings

by grouping them into specific condition categories. By mapping the calculated numerical ratings

to these scales, the track condition assessment can be more easily compared with established

benchmarks such as those provided by Pavemetrics. Using these scales helps identify track

sections requiring different levels of maintenance. For sections rated as "light" (1), routine

maintenance such as minor repairs or preventative care would be sufficient. Sections rated as

"moderate" (2) may require more focused maintenance, including localized repairs to prevent

further deterioration. For "severe" (3) rated sections, immediate corrective actions such as

replacing ties or repairing cracks would be necessary to ensure safety. Finally, sections rated as

"very severe" (4) would require urgent repairs, possibly including tie replacements, fastening

system or significant track realignment, to prevent potential failures.

Figure 18: Comparison of Tie crack rating vs Tie and Rail Fastening condition rating

The Tie crack size condition rating scale and the Tie and Rail fastening condition rating scale

(proposed scale) differ in assessing track conditions, as shown in the Figure 18. The Tie crack size

rating mainly focuses on the size of the cracks, looking at width, depth, and length, which means

the assessment is limited because it only considers the severity of the cracks based on these three

88

measurements. As a result, it may miss other important factors that affect the overall condition of

the track. However, the new scale offers a more detailed and comprehensive assessment by

considering various factors that influence the condition of the track. It evaluates the size of cracks

(width, depth, and length) and the condition of the spikes, considering factors such as missing or

broken spikes and spike height. This comprehensive approach is crucial for ensuring the stability

and alignment of the track, as missing or damaged spikes can lead to issues such as misalignment

and increased wear and tear.

Figure 19: Tie crack size condition rating scale

In Figure 19, the Tie crack size rating scale focuses on the severity of cracks in the ties. Most

sections are marked in green, indicating light cracking, and only one section is highlighted in red,

showing severe cracks. This provides a narrow evaluation useful for analyzing and addressing

cracks in isolation. In contrast, Figure 20 shows the Proposed Scale, which incorporates tie cracks

and the condition of spikes and tie plates. This results in a more comprehensive assessment of

track health. In this figure, there are noticeably more sections marked in yellow (moderate rating),

indicating that when considering the broader context of spikes and tie plates, certain areas require

more attention than initially suggested by just the crack data. Additionally, some sections

previously rated green (light) in the Tie crack rating scale now appear red (severe) in the Proposed

Scale. This shift indicates that while the cracks alone may not be severe, the overall condition of

the track, including defects in the spikes and tie plates and the crack's location on the tie plate, has

worsened, so urgent repairs are needed in those areas.

89

Figure 20: The proposed scale (Rail and tie fastening system)

Thus, the Proposed Scale offers a more holistic view, flagging areas for maintenance that might

have been overlooked when focusing solely on tie cracks. This broader perspective is beneficial

for overall maintenance planning, while the Tie crack rating scale remains ideal for targeted

inspections focused purely on cracks. The following section presents the results of a sensitivity

analysis. The analysis compares various scenarios of weight changes and provides valuable

insights, including tie crack, tie plate, and spike. Factors such as the location and size of the crack,

as mentioned in the methodology, are also considered. This analysis helps us understand how each

component impacts the overall ratings, which enables more informed decision-making in condition

assessment and evaluation.

A comprehensive sensitivity analysis is presented in Table 14, illustrating how changes in the

weights of the Tie Crack, Spike, and Tie Plate impact the overall track condition ratings: Base

Weights, Equal Weights, Shifted Weights, and Tie Crack 100%. In the Base Weights scenario, the

ratings are primarily moderate. Under Equal Weights, where all components are equally important,

more light defects indicate a better overall track condition—the Shifted Weights scenario, which

focuses on the Tie Plate, results in even more light defects.

90

Table 14: Sensitivity analysis of the Tie crack, Tie plate and spike

Scenarios

Weights Rating percentage

Tie

crack

Spike Tie

plate

Light Moderate Severe Very

Severe

1. Base weights 0.45 0.28 0.27 44.53 53.99 1.48 0

2. Equal weights 0.33 0.33 0.33 85.18 13.69 1.13 0

3. Shifted weights 0.27 0.28 0.45 93.15 6.42 0.42 0

4. Tie crack

100%, others 0%

1 0 0 4.23 41.07 51.87 2.82

In contrast, when the focus is solely on Tie Cracks in the Tie Crack 100% scenario, more defects

are rated as severe, even though the actual severity of these cracks might not justify this higher

rating. This occurs because the system evaluates only the cracks without considering the condition

of other important components, such as spikes and tie plates. The proposed scale provides a more

comprehensive and accurate assessment by including these additional elements in the rating

system. This approach ensures that maintenance efforts are prioritized more effectively, addressing

the overall track condition rather than focusing disproportionately on tie cracks alone. As a result,

maintenance decisions can be better targeted to the area’s most urgently needed, improving the

track's long-term performance and safety. The sensitivity analysis results for scenarios with

different weights assigned to Location and Size in the track condition evaluation are shown in the

Table 15. The scatter plot represents the Base Weights scenario, where experts have assigned

greater importance to crack location over crack size. In this scenario, location is prioritized as a

key factor in assessing track conditions, reflecting the belief that cracks in critical locations are

more impactful. As a result, the weighting leads to more defects being rated as moderate rather

than light, with only a small percentage classified as severe. This shows how emphasizing location

influences the overall condition assessment.

91

Table 15: Sensitivity analysis: Location of the crack and size of the crack

Scenario

weights Rating percentage

Location of

the crack

Size of the

crack

Light Moderate Severe

1. Base weights 0.74 0.26 44.53 53.99 1.48

2. Equal weights 0.5 0.5 65.42 33.24 1.34

3. Shifted weights 0.26 0.74 75.65 23.08 1.27

Figure 21: Crack location vs size (base weight scenario)

In the Equal Weights scenario, assigning equal importance to location and size results in more

defects being classified as light, suggesting a more balanced assessment with a slight reduction in

92

moderate ratings. However, even with equal weights for location and size, the condition tends to

be rated lighter, even when cracks are located near critical areas such as the tie plates, as shown in

Figure 22. This indicates that, despite the cracks being in important positions, the balanced

weighting results in less severe condition classifications.

Figure 22: location vs size factors (Tie and rail fastening system condition scale for equal weights scenario)

The Shifted Weights scenario, which emphasizes the size of the crack, leads to the highest number

of light defects, showing that when crack size is prioritized, the overall assessment tends to be less

severe. This comparison highlights how shifting the focus between crack location and size can

influence the severity ratings, with more emphasis on size leading to lighter assessments and more

focus on location, resulting in more moderate issues.

Table 16: Sensitivity analysis of the crack size factors

Scenario

Weights Rating Percentage

Depth Width Length Presence of

Ballast

Light Moderate Severe

1. Base

weights

0.42 0.29 0.19 0.10 44.53 53.99 1.48

2. Equal

weights

0.25 0.25 0.25 0.25 50.04 48.62 1.34

93

3. Shifted

weights

0.10 0.19 0.29 0.42 53.85 44.81 1.34

The sensitivity analysis results for weights assigned to Width, Length, Presence of Ballast, Spike

Distance, Tie Plate Distance, Crack Location, and Direction are shown in Table 16 and Table 17 .

In the Base Weights scenario, more focus on depth and spike distance leads to more moderate

defects, showing the importance of these factors. In the Equal Weights scenario, where all factors

are treated equally, the assessment is more balanced, with a slight increase in light defects. In the

Shifted Weights scenario, with more emphasis on ballast presence and crack direction, there is a

slight increase in moderate defects, but overall, the ratings do not change much. This shows that

adjusting the weights has little impact on defect classification, with depth and crack direction

leading to a slightly more cautious assessment.

Table 17: Sensitivity analysis of the crack location factors

Scenario Weights Rating percentage

Spike

distance

Tie plate

distance

In line

with the

spike

Side of

the

crack

Direction Light Moderate Severe

1. Base

weights

0.31 0.18 0.22 0.16 0.13 44.53 53.99 1.48

2. Equal

weights

0.20 0.20 0.20 0.20 0.20 40.65 57.87 1.48

3. Shifted

weights

0.13 0.16 0.18 0.22 0.31 35.43 63.09 1.48

In summary, the sensitivity analysis across various factors influencing track conditions—including

Tie Crack, Tie Plate, Spike, crack dimensions (Width, Length, Depth, Presence of Ballast), and

location-related aspects (Spike Distance, Tie Plate Distance, Side of the Crack, and Direction)—

reveals important insights into the adaptability and stability of the evaluation framework. The

94

analysis shows that the framework can detect small differences in track conditions, allowing for a

detailed review when needed. The framework can focus on what is most important, such as crack-

related factors, fastenings, or the exact location of defects. The analysis confirms that factors like

Tie Crack and crack location are important in determining the overall condition ratings,

underscoring their importance in maintenance planning and safety assessments. This adaptable

framework is reliable and effective for evaluating track conditions and prioritizing maintenance

actions based on the most important factors.

4.2 Condition Prediction Model

This section contains the outcomes of the Condition Prediction Model. It involves analyzing the

correlation matrix and evaluating the performance of different machine-learning models. The

classification models predict defect tags and types, while the regression models focus on

forecasting defect amplitude and length.The descriptive statistics of the target features shown in

the Table 18 highlights the distribution of the variables. The defect length shows a high variability,

with a mean of 12.13 and a standard deviation of 18.03, ranging from 1 to 798, suggesting that

while most defects are small, there are few significantly longer defects. Similarly, the Defect

amplitude has a mean of -0.06 and a standard deviation of 1.23, with values ranging from -3.59 to

4.63. Regarding class imbalance, the defect tag feature shows a significant imbalance, where the

yellow tag appears in 17,298 instances compared to only 6,450 instances for the red tag. Similarly,

the defect type is also imbalanced, with the cross-level defect type (possibly the most common

defect type) having 11,843 instances, compared to 7,575 for surface and only 4,330 for dip.

Table 18: Statistical description of the targets

Targets mean std min max

Defect tag 0.271602 0.444795 0 1

Defect type 1.316363 0.76221 0 2

Defect length 12.12591 18.03041 1 798

Defect amplitude -0.05589 1.231548 -3.59 4.63

95

4.2.1 Correlation analysis

This section provides the findings of the correlation matrix, which are shown in the Figure 23. The

correlation analysis was conducted to identify the relationships between various attributes of the

rail track and defect characteristics. It determined which attributes are most strongly linked to

defects, enabling the prioritization of key factors in predictive models. Focusing on variables with

the most significant impact on targets enhances the accuracy and reliability of predictions

regarding rail track conditions. The matrix shows moderate positive correlations between

geographic features like line segment number, track standard number, and milepost. This suggests

that these features are related sequentially and qualitatively along the track. For example, the line

segment number and milepost correlate 0.51, and the track standard number correlates 0.64 with

the milepost. This means that higher track standards are found in specific geographic locations.

Additionally, the correlation of 0.52 between track standard number and passenger speed suggests

that higher track standards are linked to higher speeds.

Regarding tonnage and speed attributes, total car and train metrics (east and west) exhibit

extremely high correlations (0.99), indicating redundant measurements that might not provide

distinct information for models. These metrics, reflecting the load and usage intensity of the tracks,

however, show minimal direct influence on the nature or severity of track defects. Instead, speed

metrics like passenger and freight speeds show a nuanced relationship with defects. Passenger

speed, for instance, correlates negatively with defect type (-0.18) and amplitude (-0.18), suggesting

that tracks frequented at higher speeds are subject to different maintenance standards or material

characteristics that reduce certain defects.

Defect characteristics—tag, type, amplitude, and length—demonstrate varying degrees of

independence from broader operational and geographic features. Defect tag and type show only

moderate correlations with defect length (0.30) and amplitude (0.30), implying that while defects'

severity and physical dimensions influence their categorization, these aspects are not heavily

dependent on the geographic or operational settings. The independence is particularly notable in

defect amplitude, which displays low correlations with most attributes, suggesting that the physical

expression of defects might be driven more by localized track conditions or inherent material

properties than by external factors.

96

Figure 23: Correlation matrix for the condition prediction model

The analysis shows a strong relationship between the class of track and the speed of freight trains

(0.94) and a moderate relationship with the speed of passenger trains (0.54). This suggests that the

speeds at which trains operate impact how tracks are classified. It may indicate that there are rules

97

or design standards to ensure that tracks can safely handle the speeds of trains. The correlation

between the speeds of freight and passenger trains (0.54) also highlights that there are common

operational factors that influence how tracks are used and maintained.

The analysis shows how different factors relate to rail track defects. Defect tags, which classify

defects, are influenced by how severe the defect is, the condition of the track, and how fast trains

travel on that track. This helps improve systems that label defects based on their risk and the train's

speed. Defect types are linked to how long and severe the defects are and how much train traffic

there is. This helps maintenance teams better understand and fix specific types of defects. Defect

severity and length are closely related to how much a track is used and how much stress it

undergoes. Tracks that see a lot of train traffic and stress are more likely to have severe and

prolonged defects. This information is crucial for creating models that predict when and where

defects might happen, helping to fix tracks before problems worsen. These findings help target

maintenance efforts more effectively, improving the tracks' safety and condition.

4.2.2 Defect tag and defect type detection models

The Classification model results for detecting defect tag show that both Random Forest and

XGBoost models perform very well using current defect data, as shown in Table 20. The

classification model results for detecting defect tags show that both Random Forest and XGBoost

models perform very well using current defect data, as shown in

Table 20. They achieved 0.92 and 0.94 weighted F1 scores, respectively, and had high individual

F1 scores, especially for the 'Yellow' category (0.95 for Random Forest and 0.96 for XGBoost).

These models demonstrate strong potential for reliable detection. They also performed well when

splitting the data based on the test date (2007–2012) to train the model and test on the year 2013,

handling changes over time effectively (0.92 weighted F1 score and 0.95 F1 for Random Forest;

0.94 weighted F1 score and 0.96 F1 for XGBoost).

The confusion matrix shows the model's performance in predicting defect tags using Cat boost, as

shown in Figure 24, where class 0 represents the "Yellow Tag,” and class 1 represents the "Red

Tag." The matrix indicates that the model correctly predicted 3,499 instances of the Yellow Tag

98

(true positives for class 0) and misclassified only eight instances as Red Tag (false positives for

class 0). On the other hand, 994 instances of the Red Tag were correctly identified (true positives

for class 1). In comparison, 249 instances of Red Tag were mistakenly predicted as Yellow Tag

(false negatives for class 1). This suggests that while the model performs well in identifying

Yellow Tags, there is some difficulty in accurately identifying all instances of Red Tags, as shown

by the false negatives for class 1.

Table 19: Confusion matrix for defect tag prediction using cat boost

 Predicted (yellow tag) Predicted (Red Tag)

Actual (yellow tag) 3499 8

Actual (Red Tag) 249 994

Figure 24: Confusion matrix for defect tag prediction using cat boost

99

The feature importance analysis highlights that "Defect Amplitude" is identified as the most

important factor, followed by "Class" and "Freight Speed." This shows that the physical

characteristics of defects play a significant role in influencing the classification outcomes. While

"Defect Amplitude" is an important factor in the models' decision-making process, its limitations

in predicting 'Red' tags indicate that including other factors or improving the current features could

help the models better distinguish between different defect severity levels. Despite these

challenges, the models provide a solid foundation for automating defect classification and

supporting the consistent assessment of track conditions.

Table 20: Classification Model Results for Defect Tag Detection

Data preparation Target Method F – Score

(weighted

average)

F -Score

(Yellow/Red)

1. Random split 80%

training and 20% test

data

Defect tag Logistic regression 0.64 0.75/0.34

Random Forest 0.92 0.95/0.82

XGBoost 0.94 0.96/0.88

Cat Boost 0.95 0.96/0.89

2. Based on test date

(2007 – 2012 on

training and 2013 on

test data)

Defect tag Random Forest 0.92 0.95 /0.83

XGBoost 0.94 0.96/0.88

Cat boost 0.94 0.96/0.88

The classification results for predicting defect types using both Random Forest and XGBoost

models show varying levels of accuracy, and F1 scores across different scenarios are provided in

Table 22. For Defect Type (Random Split 80/20), XGBoost slightly outperforms Random Forest,

with a weighted F1 score of 0.62 compared to Random Forest's 0.63. Regarding individual F1

scores, XGBoost performs better for predicting "X-Level" defects, with a score of 0.74 compared

to 0.73 for Random Forest. However, Random Forest performs slightly better in predicting "Dip"

100

(0.38 vs. 0.36) and "Surface" defects (0.62 vs. 0.58). This suggests that while XGBoost is better at

identifying more severe defects like "X-Level," Random Forest may handle less severe defect

types more effectively. CatBoost performs similarly to Random Forest and XGBoost in the random

split scenario, with a weighted F1 score of 0.62. It performs well in predicting "X-Level" defects,

with an F1 score of 0.73, slightly lower than XGBoost but close to Random Forest. However,

CatBoost falls slightly behind in predicting "Dip" defects (0.33) and "Surface" defects (0.61),

showing that it, like the other models, finds it more challenging to predict these less severe defect

types accurately.

In the second scenario, where data is split based on 2007–2012 for training and 2013 for testing,

both Random Forest and XGBoost see a slight drop in weighted F1 scores, with Random Forest at

0.57 and XGBoost at 0.58. CatBoost, on the other hand, achieves a weighted F1 score of 0.57. For

individual F1 scores, CatBoost performs best for "Surface" defects, with a score of 0.62, higher

than Random Forest (0.57) and XGBoost (0.52). However, CatBoost lags for "X-Level" defects

(0.64), trailing Random Forest and XGBoost. CatBoost does show better results for "Dip" defects

(0.26) compared to Random Forest (0.15) and XGBoost (0.26), indicating it handles this defect

type slightly better. While XGBoost tends to outperform Random Forest in overall weighted F1

score and identifying severe defect types like "X-Level," CatBoost shows strengths in predicting

"Surface" and "Dip" defects in specific scenarios.

Table 21: Confusion matrix for defect type prediction using random forest

 Predicted (Dip) Predicted (Surface) Predicted (X-Level)

Actual (Dip) 276 469 121

Actual (Surface) 150 1198 167

Actual (X-level) 174 660 1535

101

Figure 25: Confusion matrix for defect type prediction using random forest

The confusion matrix for predicting "Defect Type" across three classes—Class 0 (Dip), Class 1

(Surface), and Class 2 (X-level)—shows mixed model performance, as shown in Figure 25. The

model struggles with accurately predicting the Dip class (Class 0), with only 276 correct

predictions and 469 misclassified as Surface (Class 1) and 121 as X-level (Class 2). For the Surface

class (Class 1), the model performs reasonably well, correctly predicting 1,198 instances but

misclassifying 150 as Dip and 167 as X-level. The best performance is observed in predicting the

X-level class (Class 2), with 1,535 correct predictions, though 174 instances were misclassified as

Dip and 660 as Surface. These results indicate that while the model performs reasonably well for

the Surface and X-level classes, it faces challenges distinguishing between Dips and other defect

types, leading to many misclassifications.

Table 22: Classification Model Results for Defect Type Prediction

Data

preparation

Target Model F score

Weighted

average

F score

Dip

F Score

Surface

F Score

X-level

102

1. Random split

80% training

and 20% test

data

Defect type

Logistic

regression

0.51 0.23 0.53 0.61

Random

Forest

0.63 0.38 0.62 0.73

XGBoost 0.62 0.36 0.58 0.74

Cat boost 0.62 0.33 0.61 0.73

2. Based on test

date (2007 –

2012 on training

and 2013 on test

data)

Defect type Random

Forest

0.57

0.15

0.57 0.71

XGBoost 0.58 0.26 0.52 0.72

Cat boost 0.57 0.26 0.62 0.64

The feature importance analysis reveals that "Class" is by far the most influential factor in

predicting defect types, followed by "Line segment number" and "Freight speed." These key

features contribute significantly to the models' ability to make accurate predictions. Other factors,

such as "Milepost," "Passenger speed," and "Track standard number," also play a role but with less

impact. The fact that the models can identify these critical features shows that they can effectively

learn from the data and prioritize the most relevant factors to defect prediction. The ability of these

models to achieve relatively high accuracy and F1 scores, especially in predicting severe defect

types like "X-Level," makes them highly valuable for proactive maintenance. Railway

maintenance teams can prioritize repairs and reduce the risk of more extensive failures by

accurately identifying the most critical defects. Furthermore, the models' reliance on key features

such as "Class" and "Freight speed" provides valuable insights into the underlying factors

contributing to defect formation, which can guide future preventive measures.

103

4.2.3 Defect amplitude and length prediction models

The regression results for defect amplitude, as shown in Table 23, demonstrate the performance of

Random Forest, XGBoost, and other models under two different data splitting scenarios: an 80%

training and 20% test data split and a split where data from 2007 to 2012 was used for training and

data from 2013 for testing. In both scenarios, Random Forest consistently outperformed XGBoost.

For the 80% training and 20% test data split, Random Forest achieved an R-square of 88% in

training and 82% in testing, with an RMSE of 0.42 (training) and 0.52 (testing). This indicates

robust performance, though the slight drop in R-square and increase in RMSE on the test set

suggests minor overfitting. On the other hand, XGBoost, while achieving a slightly lower R-square

of 83% in training, maintained a relatively close performance in testing with an R-square of 79%,

with an RMSE of 0.50 (training) and 0.56 (testing). This demonstrates better generalization

compared to Random Forest, as XGBoost's test performance is more consistent with its training

performance.

Figure 26: scatter plot for test set to predict the defect amplitude using the random forest

104

The scatter plot of predicted versus observed defect amplitudes shows that while the model

generally follows the trend of actual values, there are some discrepancies and clustering,

particularly in specific ranges using the Random Forest, as shown in the Figure. Ideally, the points

should align closely along the red diagonal line, representing perfect predictions (where predicted

equals observed). In this case, the data points are somewhat clustered around the line, indicating

that the model can reasonably predict some portions of the test set. However, visible gaps and

deviations, especially around specific ranges of observed values, suggest the model struggles with

specific data segments. Notably, the predicted values form two distinct clusters, which implies that

the model may have difficulty capturing the full range of the defect amplitude, possibly

underfitting or misrepresenting patterns in specific regions of the observed values. Despite these

deviations, the model achieved a strong R² score of 82%, indicating that the model well captures

82% of the variance in defect amplitude.

CatBoost performed similarly to XGBoost, with an R-square of 83% on the training set and 78%

on the test set and corresponding RMSEs of 0.50 (training) and 0.57 (testing). This result indicates

that CatBoost also generalizes well but slightly underperforms compared to both Random Forest

and XGBoost in terms of test accuracy. However, its performance remains competitive, especially

in reducing the training-test gap, as seen in its slightly lower increase in RMSE from training to

testing.

In the second scenario, where data from 2007–2012 was used for training and 2013 for testing,

Random Forest performed well on the training set with an R-square of 78%, but its performance

dropped to 62% on the test set, with RMSEs of 0.57 (training) and 0.75 (testing). This larger

increase in RMSE suggests overfitting to the training data. CatBoost, with an R-square of 76% in

training and 66% in testing, demonstrated better generalization than Random Forest, with lower

RMSEs of 0.59 (training) and 0.72 (testing), showing that CatBoost outperformed Random Forest

in this scenario. XGBoost, with 72% R-square on the training set and 65% on the test set, had

slightly higher RMSEs of 0.64 (training) and 0.72 (testing), indicating stable performance but

slightly behind CatBoost in terms of test accuracy and error reduction.

105

Table 23: Regression Model Results for Defect Amplitude Prediction

Data preparation Target Method R square in %

Train / Test

RMSE

Train / Test

1. Random split 80%

training and 20% test

data

Defect amplitude Multiple linear 11 / 11 1.16 / 1.15

Decision trees 90 / 82 0.37 / 0.52

Random Forest 88 / 82 0.42 / 0.52

XGBoost 83 / 79 0.50 / 0.56

Cat Boost 83 / 78 0.50 / 0.57

2. Based on test date

(2007 – 2012 on

training and 2013 on

test data)

Defect amplitude Random Forest 78 / 62 0.57 / 0.75

XGBoost 72 / 65 0.64 / 0.72

Cat Boost 76 / 66 0.59 / 0.72

Decision Trees, while showing strong training performance with an R-square of 90%, dropped to

82% on the test set, with RMSEs of 0.37 (training) and 0.52 (testing), indicating strong training

performance but a larger gap between training and testing, suggesting higher sensitivity to

overfitting compared to Random Forest and CatBoost. On the other hand, Multiple Linear

Regression performed poorly, with R-squares of 11% on both training and test sets and RMSEs of

1.16 (training) and 1.15 (testing), showing that simpler models struggle to capture the complexity

of defect amplitude prediction. The feature importance analysis shows that "Defect type" is the

most influential factor in predicting defect amplitude, with an importance score exceeding 0.6.

This indicates that the type of defect plays a crucial role in determining the amplitude. Other key

features include "Class" and "Freight speed," which also significantly impact predictions, though

not as dominant as defect type. Factors like "Milepost," "Passenger speed," and "Total deflection"

contribute to a lesser extent. Meanwhile, features such as "Total train east," "Total car west," and

"Total train west" show minimal importance in influencing the prediction outcomes.

106

The regression results for defect length prediction across three scenarios are presented in the Table

24. In the Random Split (80% Training, 20% Testing) scenario, Random Forest achieved an R-

square of 65% on the training data and 56% on the test data, indicating a reasonable balance

between training and testing performance. However, the RMSE values of 10.86 (train) and 11.02

(test) suggest there is room for improvement in reducing the prediction error. XGBoost performed

slightly better on the training data, with an R-square of 72%, but its test R-square remained the

same at 56%, with corresponding RMSE values of 9.74 (train) and 11.08 (test), showing similar

levels of overfitting as Random Forest. CatBoost had a training R-square of 65% and test R-square

of 56%, with RMSEs of 10.80 (train) and 10.97 (test), similar to Random Forest in terms of R

Square but a slight difference with the RMSEs of 10.80 (train) and 10.97 (test).

Figure 27: scatter plot for test set to predict the defect length using the XGBoost

107

The scatter plot comparing actual versus predicted defect lengths using the XGBoost model shows

that while the model captures the general trend, there is significant variation in the predictions, as

shown in the Figure 27. Many predicted values cluster closely around lower actual values, with

increasing dispersion as the defect lengths grow larger. This pattern suggests that the model is less

accurate at predicting higher defect lengths, as several points deviate substantially from the red

line representing perfect predictions. The R² score of 56% indicates that the model explains 56%

of the defect length variance, suggesting moderate predictive performance but with room for

improvement, particularly in capturing larger defect lengths.

In the Repeated Defects Based on Defect Numbers (2007–2012 for Training, 2013 for Testing)

scenario, all models experienced a more significant drop in test performance. Random Forest had

an R-square of 68% on the training set, which dropped to 41% on the test set, indicating overfitting,

with corresponding RMSEs of 10.82 (train) and 18.02 (test), showing a significant increase in

prediction error on the test data. XGBoost had a lower R-square of 55% on the training data but

achieved a slightly better test result with an R-square of 44%. However, its RMSE increased from

12.84 (train) to 17.38 (test), indicating a similar struggle in generalization. Cat Boost performed

similarly to Random Forest, with a training R-square of 66% and a test R-square of 42%, and

RMSEs of 11.13 (train) and 17.84 (test), indicating all models struggled to generalize well, with

similar patterns of error growth in test performance.

Table 24: Regression Model Results for Defect Length Prediction

Data preparation Target Method R square in %

Train / Train

RMSE

Train / Test

1. Random split 80% training

and 20% test data

Defect

length

Multiple

linear

11 / 13 17.32 / 15.47

Decision

trees

50 / 47 12.13 / 13.02

108

Random

Forest

65 / 56 10.86 / 11.02

XGBoost 72 / 56 9.74 / 11.08

Cat Boost 65 / 56 10.80 / 10.97

2. Repeated defects based on

defect number (2007 – 2012 on

training and 2013 on test data)

Defect

length

Random

Forest

68 / 41 10.82 / 18.02

XGBoost 55 / 44 12.84 / 17.38

Cat Boost 66 / 42 11.13 / 17.84

3. Increase in time, which

includes previous defect length

and time gap) (80% training and

20% test data)

Defect

length

Random

Forest

70/ 45 15.22 / 21.89

XGBoost 69 / 44 15.41 / 22.12

Cat Boost 56 / 43 18.53 / 22.30

In the (Including Previous Defect Length and Time Gap) scenario, Random Forest showed

improved training performance with an R-square of 70%. However, its test performance dropped

to 45%, with corresponding RMSEs of 15.22 (train) and 21.89 (test), continuing the pattern of

overfitting. XGBoost performed similarly, with a 69% R-square on the training set and 44% on

the test set, with RMSEs of 15.41 (train) and 22.12 (test). CatBoost achieved a lower training R-

square of 56% and test R-square of 43%, with RMSEs of 18.53 (train) and 22.30 (test), lagging

the other models in Training but maintaining comparable test performance.

An evaluation of feature importance showed that defect type and freight speed influenced defect

length predictions across all models. In Random Forest, defect type was the most significant

feature, while in XGBoost and CatBoost, freight speed played a more important role, followed by

defect type. This highlights the importance of operational factors like speed and defect

characteristics in predicting defect behaviour over time. Defect amplitude was used as a more

109

dependable input than defect length predictions to enhance prediction accuracy. This is because

amplitude is closely linked to defect type, a crucial factor in many models. Although defect

amplitude cannot be directly used to predict defect type due to the unknown nature of amplitude

until defects are identified, we can improve prediction accuracy by incorporating related variables

such as speed, tonnage, milepost, and line segment number. This approach allows for more

practical and accurate forecasting by focusing on known variables while maintaining the strong

relationship between defect type and amplitude for better long-term predictions.

4.2.4 Defect tag prediction model using predicted amplitude

The Classification results for defect tag prediction using the predicted amplitude are presented in

the Table 25. When using predicted amplitude to classify defect tags, Random Forest performed

the best, achieving a 0.75 weighted F1 score with balanced individual F1 scores of 0.75 for both

yellow and red defects, making it the most consistent model across both categories.

Table 25: Classification model results of defect tag using the predicted amplitude

Data preparation Target Method F1-Score (Weighted

average)

F1-Score

(Yellow/Red)

3. Based on

predicted

amplitude

Defect tag Random Forest 0.75 0.75/0.75

XGBoost 0.71 0.69/0.72

Cat boost 0.70 0.68/0.73

XGBoost, with a 0.71 weighted F1 score, showed a slight drop in performance for yellow tag (F1

score of 0.69) but performed better with red tag (F1 score of 0.72). CatBoost had the lowest

weighted F1 score at 0.70, but it maintained a relatively balanced performance, with F1 scores of

0.68 for Yellow and 0.73 for Red, showing that while its overall performance was slightly lower,

it remained stable across both defect categories.

110

Chapter 4. Discussions

This section provides detailed discussions of the Condition Assessment Framework and prediction

model.

4.1 Condition Rating System

The Tie and rail fastening condition rating significantly improves previous studies by combining

physical factors into a comprehensive condition rating system. Earlier models, such as the Track

Quality Index (TQI) (R.-K. Liu et al. 2015) and Track Geometry Index (TGI) (Mundrey, J. S 2009)

primarily focus on geometric parameters like gauge, alignment, cross-level, and surface condition

but often overlook the physical health of the track's components. This model addresses that gap by

integrating a component-focused assessment that considers the physical health and the location of

tie crack, spikes, and tie plates. In addition to geometric indices like TQI and TGI, other models

such as the Swedish National Railway Quality Index and the UK SD Index primarily assess the

standard deviation of geometric parameters, like unevenness, alignment, and gauge, to monitor

track quality. While these systems are effective at capturing track irregularities, they do not provide

the same level of detail about the condition of track components, such as spikes and tie plates,

which are crucial for ensuring long-term track stability. In this model, AHP provides a structured,

transparent approach to assigning importance to various track features. This helps in decision-

making regarding which factors require the most attention during maintenance. This framework

offers a balanced and comprehensive view of track health by weighing crack-related factors

alongside component conditions (like spikes and tie plates). It allows maintenance teams to focus

on the areas that matter most, offering practical insights for maintenance planning and risk

mitigation.

The Table 26 presents a detailed breakdown of the weights assigned to various factors by different

respondents (Academia/Research, Design Consultants, Class I Railways, Short-line Operators, and

Railway Service Providers). The factors evaluated include tie cracks, spikes, tie plates, crack

location, crack size, spike distance, tie plate distance, and others, with each respondent group

assigning different levels of importance to these factors. Different groups have varying opinions

regarding the importance of crack size in assessing track conditions. Design consultants (39.77%)

111

and railway service providers (31.39%) assign much more weight to crack size compared to other

groups like Class I railways (24.45%) and short-line operators (9.73%). Design consultants give

higher weight to crack size because they focus on optimizing track design to prevent future

maintenance issues. Cracks, particularly those related to size, signal underlying structural

problems that could affect long-term track stability and integrity, making it a priority in design

considerations. Railway service providers, on the other hand, prioritize crack size because they are

directly responsible for track maintenance and repairs. Larger cracks require immediate attention,

as they could lead to safety risks such as derailments or disruptions in service. The practical

experience of railway service providers likely drives their focus on crack size, as they deal with

the day-to-day consequences of track deterioration and must prioritize the factors that could lead

to operational failures. These groups, being hands-on with track issues, view crack size as a critical

indicator of impending failure, explaining their emphasis on it.

Academia and Class I railways rate spikes and tie plates similarly. For spikes, Academia assigns

36.29% and Class I assigns 35.09%. Similarly, Academia assigns 39.54% for tie plates, while

Class I assigns 32.21%. However, short-line operators emphasize spikes (50.96%) more than tie

plates (34.01%). Short-line operators likely focus more on spikes because spikes are critical in

securing the rails to the ties, ensuring track stability, especially on smaller, less robust networks.

Short lines typically operate with fewer resources and deal with older infrastructure. This makes

spikes a priority for them, as loose or damaged spikes can lead to track misalignment and greater

instability. Additionally, given the reduced traffic on short lines, the stresses placed on tracks may

be less evenly distributed, making well-maintained spikes essential to ensuring that the track

remains securely fastened. Any failure in the spike system could lead to more significant

disruptions on short-line tracks, which are already operating with limited maintenance resources.

All respondent groups agree that crack location is crucial in assessing track conditions. Academia

(70.89%), Class I railways (75.55%), short-line operators (90.27%), and railway service providers

(68.61%) consistently prioritize the location of the crack, recognizing that cracks near critical

components such as spikes and tie plates can compromise track stability and safety. This broad

consensus highlights the critical role crack location plays in preventing further track degradation

and ensuring the integrity of the track structure. There is also widespread agreement regarding the

112

importance of spike distance, with most groups assigning it significant weight. Academia

(36.22%), Class I railways (28.33%), short-line operators (40.90%), and railway service providers

(26.89%) agree that spike distance is a vital factor. However, design consultants assign relatively

less weight to spike distance (17.81%), possibly because their primary focus is on the overall

design of the track, aiming to optimize for long-term resilience rather than addressing the practical,

day-to-day maintenance concerns like spikes. For them, crack location and size may take

precedence over spike distance because design flaws in these areas could compromise the

structural integrity of the track over time. Regarding crack depth, there is general agreement across

the board that it is one of the most critical factors. Academia (39.31%), Class I railways (51.57%),

short-line operators (45.09%), and design consultants (40.30%) all highlight crack depth as

essential to determining track stability. Crack depth poses an immediate threat to the structural

integrity of the track, as deeper cracks can weaken the ties more severely than shallow ones, which

is why it garners such consistent focus among all groups.

Table 26: Summary of the weights assigned by the respondent’s organization

Factors weights Academia

/Research

Design/

 onsultant

 lass I Short

line

Railway service

provider

Tie crack 45 24.17 81.55 32.70 15.03 77.19

Spike 28 36.29 9.47 35.09 50.96 5.04

Tie Plate 27 39.54 8.98 32.21 34.01 17.77

Total 100

Location of the crack 74 70.89 60.23 75.55 90.27 68.61

Size of the crack 26 29.11 39.77 24.45 9.73 31.39

Total 100

Spike distance 31 36.22 17.81 28.33 40.90 26.89

113

Tie plate distance 18 27.63 22.15 16.89 8.46 15.48

In line with spike 22 12.36 33.66 24.15 14.41 22.61

Direction 13 14.34 16.40 17.29 12.14 16.92

Side 16 9.46 9.98 13.35 24.09 18.10

Total 100

Depth 42 39.31 40.30 51.57 45.09 33.50

Width 29 27.39 25.73 29.71 27.15 33.96

Length 19 24.04 23.28 9.29 17.10 22.43

Presence of Ballast 10 9.26 10.70 9.43 10.65 10.11

Total 100

The thresholds for scoring factors like spike height, crack depth, and width cannot be based solely

on data from a single location, such as a case study. Railway tracks experience different levels of

wear and tear, with traffic density being a key factor. High-traffic tracks face faster degradation

and require different maintenance thresholds than low-traffic tracks. In Scenario Two (without

outliers), thresholds for crack measurements are based on the mean and standard deviation of the

case study data, excluding outliers beyond three standard deviations. This ensures that the

thresholds reflect typical conditions without being skewed by extreme values. Scenario Three

includes outliers, setting thresholds based on maximum values observed in the dataset to account

for significant defects. Only crack depth, width, and length, which have outliers beyond

Pavemetrics' ranges, experience score changes between these scenarios. If thresholds are based

solely on data from low-traffic tracks or skewed datasets, the severity of damage on high-traffic

tracks may be misrepresented. A reliable rating system requires data from diverse locations to

ensure thresholds apply across different tracks. Outliers can distort analysis, pulling averages away

from central values. This is clear in Scenario Three, where outliers caused lower mean values for

114

crack measurements than in Scenario Two. Outliers—extreme values—skew the data, making

track conditions appear less severe overall. For example, outliers may represent large cracks that

develop quickly on high-traffic tracks, while on low-traffic tracks, outliers may be smaller or

slower-growing cracks. Removing outliers in Scenario Two gives a more accurate picture of the

typical condition, ensuring thresholds reflect realistic conditions. Thresholds should also reflect

how defects impact track performance, not just their frequency. A crack width may be standard,

but the scoring threshold should consider its effect on structural integrity. On high-traffic tracks,

even minor defects, like shallow cracks, may require immediate attention due to constant heavy

loads, while the same defect on low-traffic tracks may not pose a significant risk. For instance, a

5 mm crack depth on a high-traffic track might need immediate repair, but intervention might be

delayed until the crack reaches 10 mm on a low-traffic track. Similarly, ballast inside cracks may

be more critical on high-traffic tracks, where drainage is crucial. Setting thresholds based on

severity, not just frequency, ensures maintenance teams address areas that pose the greatest risk to

track stability and safety.

Fastening components like spikes and tie plates are essential for maintaining track stability. They

distribute the load from passing trains, reduce stress on cracks, and prevent further deterioration.

Spikes limit rail movement, while tie plates spread pressure across the tie, delaying crack

progression. In the proposed Tie and Rail Fastening System, spikes and tie plates are weighted at

28% and 27%, reflecting their crucial role in track integrity. However, further research is needed

to assess their impact across different track conditions. Focusing solely on tie crack size and

location can lead to an underestimated track condition. Cracks do not provide a complete picture

of a tie's performance. A tie with cracks may still be structurally sound if its fastening components

are in good condition, as they help prevent further damage. For instance, if tie cracks are given

100% weight, the results show most of the track in moderate to severe condition. However, this

overlooks the possibility that the fastening components may still be maintaining track stability.

For instance, if the Tie crack is given 100% weight, where the rating is based entirely on tie cracks

(both location and size) and does not account for the condition of fastening components, the results

show that most of the track is rated as being in moderate to severe condition. Specifically, only

4.23% of the track is rated with light defects, while 41.07% is rated moderate, 51.87% as severe,

and 2.82% as very severe. This suggests that the track is in relatively poor condition based on

115

crack data alone. However, this overlooks the possibility that fastening components may still be

performing well, significantly improving the track's overall stability and functionality. From a

physical standpoint, while cracks in the ties are a concern, fastening components are key to

maintaining the integrity of the track system. Without healthy fastening components, cracks could

propagate more quickly, leading to rapid degradation of the ties and, ultimately, the track.

However, when spikes and tie plates are in good condition, they mitigate the impact of the cracks,

distributing the forces more effectively and reducing the rate at which the cracks worsen. For

example, a tie with substantial cracks but well-functioning spikes and tie plates can continue to

carry loads safely and maintain rail alignment. On the other hand, a tie with minimal cracks but

deteriorated fastening components may pose a greater risk to the track's stability because the spikes

or tie plates may fail to hold the rails in place properly, leading to potential derailment risks.

One of the limitations of this system is that it is mainly based on expert opinions gathered through

surveys rather than physical studies or data-driven experimentation. While the Analytical

Hierarchy Process (AHP) provides a structured way to prioritize factors, it does not account for

interdependencies between those factors. For example, the interaction between crack size, location,

and fastening conditions may be more complex than the weights suggest. However, these

relationships still need to be captured in the AHP framework. Additionally, the weights assigned

to different factors are derived from a small group of experts, meaning the results may not represent

broader industry views or be applicable in different operational contexts. Another limitation lies

in the thresholds used for scoring, which are based on the specific types of ties and spikes in the

case study. These thresholds would need to be adjusted for different materials or track conditions.

The validation of this model was conducted on a small case study, which does not account for

factors like the dynamic growth of defects over time or changes in environmental conditions.

Another important limitation of this system is the inherent assumption of independence between

the factors considered in the AHP framework. AHP operates under the assumption that each factor,

such as crack size, location, and fastening condition, is evaluated independently, without

accounting for potential interdependencies between them. In reality, these factors can have a

complex interplay; for instance, the condition of tie fastenings may influence the rate at which

cracks propagate, and the location of the crack in relation to the fastening might affect the severity

of the defect. The absence of a mechanism to model these interactions in the AHP framework may

116

lead to an oversimplified understanding of the real-world behavior of track defects, limiting the

accuracy and predictive capability of the system. Furthermore, the model does not consider

geometry defects or characteristics like gauge and alignment, which can influence the development

of cracks and other defects. By incorporating these factors, the system might notice critical aspects

of track degradation, potentially leading to more accurate predictions of defect evolution.

4.2 Condition Prediction Model

The classification and regression results reveal that the applied machine learning models—

Random Forest, XGBoost, and CatBoost—perform well in predicting railway defects, each

excelling in specific areas. Among these, CatBoost emerges as a consistent performer in

classifying defect tags, which is important for automating the identification process. Defect tags

were predicted using the amplitude from the regression model, in addition to direct classification.

This approach achieved a 75% weighted F1 score. It shows the potential of using predicted features

from regression tasks to improve the accuracy of defect classification, which can contribute to

more efficient maintenance processes. Predicting defect tags accurately can significantly improve

maintenance planning by enabling early detection of critical issues affecting track safety and

performance. Automation in defect detection allows railway operators to proactively address track

defects, reducing manual inspections and improving operational efficiency. Random Forest also

demonstrates strength, particularly in predicting defect types, which is essential for categorizing

the severity of various track conditions. Accurate prediction of defect types, such as dips or surface

irregularities, provides valuable insight into the underlying causes of track degradation. This can

help maintenance teams prioritize their actions, focusing on defects that pose higher risks and

ensuring that the track remains in optimal condition for the safe passage of trains.

Table 27: Summary of the models

Target Model Metrics

Defect Tag Cat Boost 0.95 F1 score

Defect type Random Forest 0.63 F1 score

117

Defect amplitude Random Forest 82 R2

Defect length Cat Boost 56 R2

In regression tasks, predicting defect characteristics such as amplitude and length using operational

data, including tonnage, traffic density, and the total number of trains and cars travelling through

the track, enhances the ability to plan maintenance more effectively. Railway operators can

schedule preventative maintenance before defects worsen by understanding how traffic load and

usage impact defect growth, minimizing costly repairs and avoiding disruptions. For instance,

predicting defect length can help identify areas where track wear is progressing faster, enabling

targeted interventions that extend the life of the track infrastructure. Leveraging models to predict

defect tags, types, amplitudes, and lengths based on traffic and operational data introduces a more

data-driven maintenance strategy.

The proposed machine learning models show considerable performance improvements compared

to prior studies. Notably, CatBoost excels in predicting defect tags with a 95% F1 score,

significantly outperforming (Alemazkoor, Ruppert, and Meidani 2018), who achieved a 70%

accuracy, and (Cárdenas-Gallo et al. 2017), with an 81% accuracy. This improvement highlights

CatBoost's effectiveness in identifying defect tags, which ensures timely maintenance and prevents

track deterioration. However, in predicting defect types, Random Forest's 63% F1 score falls below

the 72% accuracy reported by (Sudhir et al. 2015), but they used defect amplitude to predict defect

type, which could result in data leakage, as these features are inherently correlated. The proposed

models avoid this issue by independently predicting amplitude, length, and tags, allowing for better

control and reducing the risk of overfitting. These models' ability to predict various defect

characteristics—such as amplitude, length, and tags—provides a comprehensive evaluation of

track conditions. This holistic approach can significantly enhance maintenance planning,

budgeting, and risk mitigation. By identifying severe defects, the models also improve the

prioritization of repairs, reducing track downtime and improving the railway system's overall

performance and safety.

118

Table 28: Models from the literature

Reference Target Metrics

(Alemazkoor, Ruppert, and Meidani 2018) Defect Tag 70% accuracy

(Cárdenas-Gallo et al. 2017) Defect Tag 81% accuracy

(Sudhir Kumar Sinha, Sumit Raut, and

Harshad Khadilkar 2015)

Defect Type 72% accuracy

Amplitude, class, and speed have emerged as critical features for forecasting defect tags,

highlighting the importance of physical defect characteristics and operational factors in the models'

performance. Feature importance analysis consistently emphasizes the significance of variables

like "Defect Amplitude" and "Freight Speed," reinforcing that these elements play a crucial role

in the formation and severity of railway defects. These insights suggest that certain physical and

operational factors are the primary drivers behind defect development and incorporating them into

predictive models is essential for achieving high accuracy. However, despite the success in

identifying major defect patterns, the models encounter difficulties in predicting less severe

defects, such as dips and surface irregularities. This challenge indicates that some currently

represented features may only partially capture these subtler defect patterns, suggesting the need

to refine the feature set. By incorporating additional features or improving the representation of

existing ones, the models may become more sensitive to these less obvious defects, enhancing

overall predictive performance.

The prediction models for Defect Amplitude and Defect Length demonstrate good performance

when evaluated through their mean, standard deviation, and RMSE values. For Defect Amplitude,

the mean is -0.06, with a standard deviation of 1.23. The model achieves a low RMSE of 0.52,

indicating that it effectively captures amplitude variations with minimal error. The lower

variability in amplitude allows the model to generalize well and achieve strong predictive

performance. For Defect Length, the mean is 12.13 with a significantly larger standard deviation

of 18.03, reflecting more significant variability. The RMSE for defect length prediction is 10.97,

which, although higher than for amplitude, remains reasonable given the increased complexity in

119

defect length prediction. The model still provides satisfactory accuracy for practical use in

maintenance planning. One key limitation of the models is overfitting, particularly in defect length

prediction. Despite applying cross-validation and regularization techniques, the models still overfit

the training data, reducing their generalization ability to new datasets. Overfitting is more

prominent for defect length due to the higher variability in the data. Although cross-validation and

regularization were applied to reduce overfitting, they were unsuccessful, particularly for defect

length prediction. This suggests that further refinement, such as incorporating additional or more

diverse features, is needed to enhance the model's generalization ability and reduce overfitting.

While the models perform well for both defect amplitude and length, predicting amplitude is easier

due to lower variability. Improving generalization for defect length prediction remains

challenging, particularly in addressing overfitting. Despite the promising results, several

limitations must be considered when applying these machine learning models for defect prediction

and classification. Overfitting remains a key challenge, particularly in models like Random Forest

and Decision Trees, which tend to perform well on training data but show a significant drop in

accuracy when tested on unseen or temporal data, limiting their ability to generalize effectively

over time. Another critical issue is the imbalance in the dataset, especially with underrepresented

defect types like "Dip" and "Surface." To address this, SMOTE (Synthetic et al.) has been applied

to oversample the Dip defect type to balance the dataset for defect type prediction. Additionally,

class weights have been adjusted to give more importance to these underrepresented classes.

SMOTE was also used for defect tag prediction when using predicted amplitude to balance the

dataset and improve model accuracy. Furthermore, Stratified K-fold cross-validation was

implemented to ensure the folds maintain the class distribution across the validation process.

However, even with these adjustments, the models need higher accuracy for the less frequent

defects. The imbalance, coupled with overfitting, reduces the models' ability to consistently predict

less common defect types and defect tags with high accuracy. It is also important to note that defect

amplitude was not used for defect type prediction. Instead, features such as Class, Speed, Tonnage,

and Traffic Density were the key predictors. While using amplitude could potentially increase

accuracy, it also introduces the risk of data leakage, as defect amplitude is inherently related to

defect type. This could cause the model to inadvertently learn relationships that would not be

available in a real-world prediction scenario, which could artificially inflate its performance. While

120

SMOTE, class weight adjustments, and stratified folding have been applied to mitigate data

imbalance, the models still face accuracy limitations, especially when predicting underrepresented

defect types. Further refinement in these approaches, more advanced feature engineering, and

improved generalization techniques will be essential to enhance model performance and reliability

in real-world applications. The feature set may also lack key variables, particularly those capturing

temporal and other physical and environmental properties that influence defect formation.

Incorporating variables like seasonal changes, track material properties, and other relevant

physical factors could significantly improve model performance. Finally, the quality of the dataset

is crucial in shaping the models' predictions. The current dataset may not fully capture the

complexities of defect progression but adding high-resolution and contextual data could

substantially improve the models' accuracy and robustness. As machine learning advances and

more data is gathered through automatic track inspections, the model's accuracy could improve.

Additional factors such as rail wear, ballast type, Tie type, and weather conditions (e.g.,

temperature) should be considered to enhance the model's reliability in the future.

121

Chapter 5. Conclusion

This study developed a two-prong approach to managing the condition of rail assets, including

condition assessment and condition prediction.

The Tie and Rail Fastening Rating system offers a straightforward method to assess track

conditions by focusing on critical defect characteristics like crack size, location, spike height, and

tie plate presence. With a weighted scoring system, the method helps to identify and prioritize the

most severe issues that affect track safety. Cracks, especially their size and location, play the most

significant role in determining the track's condition, showing the need to understand how close

they are to essential track components. The transition from the tie crack size rating scale to the

proposed Tie and rail fastening system rating has made track condition assessments more accurate

and detailed. The proposed system highlights key factors like crack depth and spike location to the

crack, ensuring any problem areas are identified and addressed effectively. Overall, the proposed

rating system improves track safety by providing a more holistic view of the track's condition by

including both crack details and the condition of fastening components like spikes and tie plates.

This comprehensive approach ensures that cracks are evaluated, and their proximity to essential

track components is also considered, giving a clearer picture of overall track health. By offering

this detailed perspective, the system helps maintenance teams prioritize maintenance decisions,

focusing on areas with the highest risk and ensuring more effective use of resources.

The condition prediction model in this study employed machine learning techniques like Random

Forest, XGBoost and Cat Boost to predict various rail defect characteristics, including defect tags

(yellow or red), defect type, length, and amplitude. The accuracy of these models is directly

influenced by the data available and the features selected. The model performed exceptionally well

in predicting defect tags, achieving an accuracy of over 94% when using all available data. This

high accuracy makes it a reliable tool for automatically identifying defect tags. Additionally, it

achieved a 75% accuracy when using predicted amplitude to forecast defect tags. While slightly

less accurate, this provides valuable insights for planning maintenance and repair efforts. Key

features, such as amplitude, class, and speed, proved essential for accurate defect tag predictions.

Unlike previous models, which often struggled to predict multiple aspects of defects—such as

122

defect type or length—with high accuracy, this model successfully integrates operational data

(such as class, speed, and tonnage) and physical characteristics (like defect amplitude). This

combination results in a more comprehensive understanding of defect behaviour over time,

enhancing decision-making and resource allocation for maintenance teams. By relying on

predicted future conditions, teams can act proactively rather than simply reacting to existing

defects. This predictive approach represents a significant improvement in maintenance planning,

offering a more dynamic view of rail conditions and helping to prevent potential issues from

becoming critical. In summary, this model enhances defect detection and provides predictive

capabilities that forecast future track conditions, making it an invaluable tool for maintaining

railway infrastructure both efficiently and proactively.

123

References

Abdusalomov, Akmalbek, Nodirbek Baratov, Alpamis Kutlimuratov, and Taeg Keun Whangbo.

2021. “An Improvement of the Fire Detection and Classification Method Using YOLOv3

for Surveillance Systems.” Sensors 21 (19): 6519. https://doi.org/10.3390/s21196519.

Alakh. 2024. “One Hot Encoding vs. Label Encoding in Machine Learning.” 2024.

https://www.analyticsvidhya.com/blog/2020/03/one-hot-encoding-vs-label-encoding-

using-scikit-learn/.

Alemazkoor, Negin, Conrad J Ruppert, and Hadi Meidani. 2018. “Survival Analysis at Multiple

Scales for the Modeling of Track Geometry Deterioration.” Proceedings of the Institution

of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 232 (3): 842–50.

https://doi.org/10.1177/0954409717695650.

Amini, M., and R. Dziedzic. 2022. “Comparison of Machine Learning Classifiers for Predicting

Water Main Failure.” In Proceedings of the Canadian Society of Civil Engineering Annual

Conference 2021, 250:501–12. Lecture Notes in Civil Engineering. Singapore: Springer

Nature Singapore. https://doi.org/10.1007/978-981-19-1065-4_42.

Andersson, M. 2002. “‘Strategic Planning of Track Maintenance. State of the Art.’ TRITA-INFRA

02-035 (2002).” In .

https://scholar.google.com/scholar_lookup?title=Strategic+planning+of+track+mainten

ance&author=M.+Anderson&publication_year=2002&pages=61-85.

Andrade, A. Ramos, and P. Fonseca Teixeira. 2011. “Uncertainty in Rail-Track Geometry

Degradation: Lisbon-Oporto Line Case Study.” Journal of Transportation Engineering

137 (3): 193–200.

Andrade, A.R., and P.F. Teixeira. 2015. “Statistical Modelling of Railway Track Geometry

Degradation Using Hierarchical Bayesian Models.” Reliability Engineering & System

Safety 142 (October):169–83. https://doi.org/10.1016/j.ress.2015.05.009.

AREMA Manual for Railway Engineering. 2022a. “AREMA Manual for Railway Engineering,

Chapter 4 - Rails, Volume 1.”

———. 2022b. “AREMA Manual for Railway Engineering, Chapter 30 - Ties, Volume 1.”

Audley, M, and Jd Andrews. 2013. “The Effects of Tamping on Railway Track Geometry

Degradation.” Proceedings of the Institution of Mechanical Engineers, Part F: Journal of

Rail and Rapid Transit 227 (4): 376–91. https://doi.org/10.1177/0954409713480439.

Bai, Lei, Rengkui Liu, Quanxin Sun, Futian Wang, and Peng Xu. 2015. “Markov-Based Model for

the Prediction of Railway Track Irregularities.” Proceedings of the Institution of

Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 229 (2): 150–59.

https://doi.org/10.1177/0954409713503460.

Bard, Jonathan F. 1992. “A COMPARISON OF THE ANALYTIC HIERARCHY PROCESS WITH

MULTIATTRIBUTE UTILITY THEORY: A CASE STUDY.” IIE Transactions 24 (5): 111–

21. https://doi.org/10.1080/07408179208964251.

124

Bhatia, Angat Pal Singh, SangHyeok Han, and Osama Moselhi. 2022. “A Simulation-Based

Statistical Method for Planning Modular Construction Manufacturing.” Journal of

Information Technology in Construction 27 (February):130–44.

https://doi.org/10.36680/j.itcon.2022.007.

Bing, Alan J., and Arnold Gross. 1983. “Development of Railroad Track Degradation Models.”

Transportation Research Record, no. 939.

Black, Erin. 2022. “Why Freight Railroads Are so Successful in the U.S.” CNBC. 2022.

https://www.cnbc.com/2022/02/03/why-freight-railroads-are-so-successful-in-the-

us.html.

Bogdan Sowinski. 2013. “Interrelation between Wavelengths of Track Geometry Irregularities

and Rail Vehicle Dynamic Properties.” https://repo.pw.edu.pl/info/article/WUT406392.

Breiman, Leo, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone. 2017. Classification

And Regression Trees. 1st ed. Routledge. https://doi.org/10.1201/9781315139470.

Caetano, Luis Filipe, and Paulo Fonseca Teixeira. 2015. “Optimisation Model to Schedule

Railway Track Renewal Operations: A Life-Cycle Cost Approach.” Structure and

Infrastructure Engineering 11 (11): 1524–36.

https://doi.org/10.1080/15732479.2014.982133.

Cannon, D. F., K.‐O. Edel, S. L. Grassie, and K. Sawley. 2003. “Rail Defects: An Overview.”

Fatigue & Fracture of Engineering Materials & Structures 26 (10): 865–86.

https://doi.org/10.1046/j.1460-2695.2003.00693.x.

Cárdenas-Gallo, Iván, Carlos A. Sarmiento, Gilberto A. Morales, Manuel A. Bolivar, and Raha

Akhavan-Tabatabaei. 2017. “An Ensemble Classifier to Predict Track Geometry

Degradation.” Reliability Engineering & System Safety 161 (May):53–60.

https://doi.org/10.1016/j.ress.2016.12.012.

Chai, T., and R. R. Draxler. 2014. “Root Mean Square Error (RMSE) or Mean Absolute Error

(MAE)? – Arguments against Avoiding RMSE in the Literature.” Geoscientific Model

Development 7 (3): 1247–50. https://doi.org/10.5194/gmd-7-1247-2014.

Chandra, S. Satish, and M. M. Agarwal. 2013. Railway Engineering. Second edition. 1 online

resource vols. Oxford Higher Education. New Delhi: Oxford University Press.

http://app.knovel.com/hotlink/toc/id:kpREE00012/railway-engineering-2nd.

Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. 2002. “SMOTE: Synthetic

Minority Over-Sampling Technique.” Journal of Artificial Intelligence Research 16

(June):321–57. https://doi.org/10.1613/jair.953.

Cooper, Lauren, Daria Kotys-Schwartz, and Derek Reamon. 2012. “Using Random Forests to

Identify Factors of Student Motivation in a Project-Based Learning Course.” In Volume

5: Education and Globalization; General Topics, 39–48. Houston, Texas, USA: American

Society of Mechanical Engineers. https://doi.org/10.1115/IMECE2012-86088.

David Nettleton. 2014. Commercial Data Mining. Elsevier. https://doi.org/10.1016/C2013-0-

00263-0.

125

Dell’Orco, Mauro, Michele Ottomanelli, Leonardo Caggiani, and Domenico Sassanelli. 2008.

“New Decision Support System for Optimization of Rail Track Maintenance Planning

Based on Adaptive Neurofuzzy Inference System.” Transportation Research Record:

Journal of the Transportation Research Board 2043 (1): 49–54.

https://doi.org/10.3141/2043-06.

Dersch, Marcus, Tom Roadcap, J. Riley Edwards, Yu Qian, Jae-Yoon Kim, and Matheus Trizotto.

2019. “Investigation into the Effect of Lateral and Longitudinal Loads on Railroad Spike

Stress Magnitude and Location Using Finite Element Analysis.” Engineering Failure

Analysis 104 (October):388–98. https://doi.org/10.1016/j.engfailanal.2019.06.009.

Dersch, Marcus S., Christian Khachaturian, and J. Riley Edwards. 2021. “Methods to Mitigate

Railway Premium Fastening System Spike Fatigue Failures Using Finite Element

Analysis.” Engineering Failure Analysis 121 (March):105160.

https://doi.org/10.1016/j.engfailanal.2020.105160.

Dorogush, Anna Veronika, Vasily Ershov, and Andrey Gulin. 2018. “CatBoost: Gradient Boosting

with Categorical Features Support.” arXiv. https://doi.org/10.48550/ARXIV.1810.11363.

Draper, Norman R., and Harry Smith. 1998. Applied Regression Analysis. 1st ed. Wiley Series in

Probability and Statistics. Wiley. https://doi.org/10.1002/9781118625590.

Elkhoury, Najwa, Lalith Hitihamillage, Sara Moridpour, and Dilan Robert. 2018. “Degradation

Prediction of Rail Tracks: A Review of the Existing Literature.” The Open Transportation

Journal 12 (1): 88–104. https://doi.org/10.2174/1874447801812010088.

El-Sibaie, Magdy, and Yu-Jiang Zhang. 2004. “Objective Track Quality Indices.” Transportation

Research Record: Journal of the Transportation Research Board 1863 (1): 81–87.

https://doi.org/10.3141/1863-11.

Enblom, Roger. 2009. “Deterioration Mechanisms in the Wheel–Rail Interface with Focus on

Wear Prediction: A Literature Review.” Vehicle System Dynamics 47 (6): 661–700.

https://doi.org/10.1080/00423110802331559.

Esveld, Coenraad. 2001a. Modern Railway Track. 2. ed. Zaltbommel: MRT-Productions.

———. 2001b. Modern Railway Track. Vol. 385. MRT-productions Zaltbommel.

Falamarzi, Amir, Sara Moridpour, and Majidreza Nazem. 2019. “A Review of Rail Track

Degradation Prediction Models.” Australian Journal of Civil Engineering 17 (2): 152–66.

https://doi.org/10.1080/14488353.2019.1667710.

Falamarzi, Amir, Sara Moridpour, Majidreza Nazem, and Samira Cheraghi. 2018. “Development

of Random Forests Regression Model to Predict Track Degradation Index: Melbourne

Case Study.” In Australian Transport Research Forum, 12.

Gao, Yin, Mike McHenry, and Brad Kerchof. 2018a. “Investigation of Broken Cut Spikes on

Elastic Fastener Tie Plates Using an Integrated Simulation Method.” In 2018 Joint Rail

Conference, V001T01A015. Pittsburgh, Pennsylvania, USA: American Society of

Mechanical Engineers. https://doi.org/10.1115/JRC2018-6185.

———. 2018b. “Investigation of Broken Cut Spikes on Elastic Fastener Tie Plates Using an

Integrated Simulation Method.” In 2018 Joint Rail Conference, V001T01A015. Pittsburgh,

126

Pennsylvania, USA: American Society of Mechanical Engineers.

https://doi.org/10.1115/JRC2018-6185.

Georgetown Rail. 2022. “The Georgetown Rail ‘Aurora’ Tie Inspection System.”

https://loram.com/inspection-and-optimization/inspection-services/tie-inspection-

services/aurora/.

Gofran J. Qasim. 2019. “Ideal Track.”

https://uomustansiriyah.edu.iq/media/lectures/5/5_2019_11_12!12_50_18_PM.pdf.

Guler, Hakan. 2013. “Decision Support System for Railway Track Maintenance and Renewal

Management.” Journal of Computing in Civil Engineering 27 (3): 292–306.

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000221.

———. 2014a. “Prediction of Railway Track Geometry Deterioration Using Artificial Neural

Networks: A Case Study for Turkish State Railways.” Structure and Infrastructure

Engineering 10 (5): 614–26.

———. 2014b. “Prediction of Railway Track Geometry Deterioration Using Artificial Neural

Networks: A Case Study for Turkish State Railways.” Structure and Infrastructure

Engineering 10 (5): 614–26. https://doi.org/10.1080/15732479.2012.757791.

Guler, Hakan, Stanislav Jovanovic, and Gungor Evren. 2011. “Modelling Railway Track

Geometry Deterioration.” Proceedings of the Institution of Civil Engineers - Transport

164 (2): 65–75. https://doi.org/10.1680/tran.2011.164.2.65.

Gustavsson, Emil. 2015. “Scheduling Tamping Operations on Railway Tracks Using Mixed

Integer Linear Programming.” EURO Journal on Transportation and Logistics 4 (1): 97–

112.

Han, Lei, Yingying Liao, Haoyu Wang, and Hougui Zhang. 2024. “Analysis and Prediction of

Railway Track Longitudinal Level Using Multiple Machine Learning Methods.”

Measurement Science and Technology 35 (2): 024001. https://doi.org/10.1088/1361-

6501/ad060a.

Hay, William Walter. 1982. Railroad Engineering. 2nd ed. New York: Wiley.

He, Qing, Hongfei Li, Debarun Bhattacharjya, Dhaivat P Parikh, and Arun Hampapur. 2015a.

“Track Geometry Defect Rectification Based on Track Deterioration Modelling and

Derailment Risk Assessment.” Journal of the Operational Research Society 66 (3): 392–

404. https://doi.org/10.1057/jors.2014.7.

———. 2015b. “Track Geometry Defect Rectification Based on Track Deterioration Modelling

and Derailment Risk Assessment.” Journal of the Operational Research Society 66 (3):

392–404. https://doi.org/10.1057/jors.2014.7.

Herrero, Álvaro, Secil Bayraktar, and Alfredo Jiménez. 2020. “Machine Learning to Forecast the

Success of Infrastructure Projects Worldwide.” Cybernetics and Systems 51 (7): 714–31.

https://doi.org/10.1080/01969722.2020.1798645.

Hosmer, David W., Stanley Lemeshow, and Rodney X. Sturdivant. 2013. Applied Logistic

Regression. 1st ed. Wiley Series in Probability and Statistics. Wiley.

https://doi.org/10.1002/9781118548387.

127

Hu, Can, and Xiang Liu. 2016. “Modeling Track Geometry Degradation Using Support Vector

Machine Technique.” In ASME/IEEE Joint Rail Conference, 49675:V001T01A011.

American Society of Mechanical Engineers.

Hu, Qihang, Rui Gao, Jing Chen, and Zhiwen Yuan. 2023. “Ballast Deterioration Inspection and

Quantification with 3D Form Method Based on Particle Inscribed Ellipsoid.” Granular

Matter 25 (3): 54. https://doi.org/10.1007/s10035-023-01348-5.

Indraratna, Buddhima, Li-jun Su, and Cholachat Rujikiatkamjorn. 2011a. “A New Parameter for

Classification and Evaluation of Railway Ballast Fouling.” Canadian Geotechnical

Journal 48 (2): 322–26. https://doi.org/10.1139/T10-066.

———. 2011b. “A New Parameter for Classification and Evaluation of Railway Ballast Fouling.”

Canadian Geotechnical Journal 48 (2): 322–26. https://doi.org/10.1139/T10-066.

Ionescu, Daniela. 2023. “Ballast Degradation and Measurement of Ballast Fouling.”

Jovanovic, Stanislav, Hakan Guler, and Bosko Coko. 2015. “Track Degradation Analysis in the

Scope of Railway Infrastructure Maintenance Management Systems.” Gradevinar 67 (3):

247–57.

Kabir, Golam, Rehan Sadiq, and Solomon Tesfamariam. 2014. “A Review of Multi-Criteria

Decision-Making Methods for Infrastructure Management.” Structure and Infrastructure

Engineering 10 (9): 1176–1210. https://doi.org/10.1080/15732479.2013.795978.

Karimpour, Mostafa, Lalith Hitihamillage, Najwa Elkhoury, Sara Moridpour, and Reyhaneh

Hesami. 2018. “Fuzzy Approach in Rail Track Degradation Prediction.” Journal of

Advanced Transportation 2018:1–7. https://doi.org/10.1155/2018/3096190.

King, Gary, and Langche Zeng. 2001. “Logistic Regression in Rare Events Data.” Political

Analysis 9 (2): 137–63. https://doi.org/10.1093/oxfordjournals.pan.a004868.

Kleinbaum, David G., and Mitchel Klein. 2010. Logistic Regression. Statistics for Biology and

Health. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4419-1742-3.

Kutner, M. H, C. J Nachtsheim, and J Neter. 2004. Applied Linear Regression Models. chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://users.stat.ufl.edu/~winner/sta4211

/ALSM_5Ed_Kutner.pdf.

Lasisi, Ahmed, and Nii Attoh-Okine. 2018. “Principal Components Analysis and Track Quality

Index: A Machine Learning Approach.” Transportation Research Part C: Emerging

Technologies 91:230–48.

Li, Dingqing. 2018. “25 Years of Heavy Axle Load Railway Subgrade Research at the Facility for

Accelerated Service Testing (FAST).” Transportation Geotechnics 17:51–60.

Li, Haifeng, and Yude Xu. 2009. “Railway Track Integral Maintenance Index and Its Application.”

In International Conference on Transportation Engineering 2009, 2514–19. Southwest

Jiaotong University, Chengdu, China: American Society of Civil Engineers.

https://doi.org/10.1061/41039(345)415.

Li, Hongfei, Dhaivat Parikh, Qing He, Buyue Qian, Zhiguo Li, Dongping Fang, and Arun

Hampapur. 2014. “Improving Rail Network Velocity: A Machine Learning Approach to

128

Predictive Maintenance.” Transportation Research Part C: Emerging Technologies 45

(August):17–26. https://doi.org/10.1016/j.trc.2014.04.013.

Li, Hui, and Tianyuan Xiao. 2014. “Improved Generalized Energy Index Method for

Comprehensive Evaluation and Prediction of Track Irregularity.” Journal of Statistical

Computation and Simulation 84 (6): 1213–31.

https://doi.org/10.1080/00949655.2013.797420.

Li, Qing, Qiyuan Peng, Rengkui Liu, Ling Liu, and Lei Bai. 2019. “Track Grid Health Index for

Grid-Based, Data-Driven Railway Track Health Evaluation.” Advances in Mechanical

Engineering 11 (11): 168781401988976. https://doi.org/10.1177/1687814019889768.

Liao, Yingying, Lei Han, Haoyu Wang, and Hougui Zhang. 2022. “Prediction Models for Railway

Track Geometry Degradation Using Machine Learning Methods: A Review.” Sensors 22

(19): 7275. https://doi.org/10.3390/s22197275.

Liu, Reng-Kui, Peng Xu, Zhuang-Zhi Sun, Ce Zou, and Quan-Xin Sun. 2015. “Establishment of

Track Quality Index Standard Recommendations for Beijing Metro.” Discrete Dynamics

in Nature and Society 2015:1–9. https://doi.org/10.1155/2015/473830.

Liu, Rengkui, Peng Xu, and Futian Wang. 2010. “Research on a Short-Range Prediction Model

for Track Irregularity over Small Track Lengths.” Journal of Transportation Engineering

136 (12): 1085–91. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000192.

Long, Tsang, Biao He, Ali Ghorbani, and Seyed Khatami. 2023. “Tree-Based Techniques for

Predicting the Compression Index of Clayey Soils.” Journal of Soft Computing in Civil

Engineering 7 (3). https://doi.org/10.22115/scce.2023.377601.1579.

Ma, L., L.B. Shi, J. Guo, Q.Y. Liu, and W.J. Wang. 2018. “On the Wear and Damage

Characteristics of Rail Material under Low Temperature Environment Condition.” Wear

394–395 (January):149–58. https://doi.org/10.1016/j.wear.2017.10.011.

Madejski, Janusz. 2015. “Continuous Geometry Measurement for Diagnostics of Tracks and

Switches.” chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.researchgate.net/profile/Janu

sz-Madejski-

2/publication/266460151_Continuous_geometry_measurement_for_diagnostics_of_track

s_and_switches/links/55b255c708aec0e5f4317b5a/Continuous-geometry-measurement-

for-diagnostics-of-tracks-and-switches.pdf.

Marlow, David R., and Stewart Burn. 2008. “Effective Use of Condition Assessment within Asset

Management.” Journal AWWA 100 (1): 54–63. https://doi.org/10.1002/j.1551-

8833.2008.tb08129.x.

Marquis, Brian P., Michelle Muhlanger, and David Y. Jeong. 2011. “Effect of Wheel/Rail Loads

on Concrete Tie Stresses and Rail Rollover.” In ASME 2011 Rail Transportation Division

Fall Technical Conference, 143–50. Minneapolis, Minnesota, USA: ASMEDC.

https://doi.org/10.1115/RTDF2011-67025.

McDowell, G. R., W. L. Lim, A. C. Collop, R. Armitage, and N. H. Thom. 2004. “Comparison of

Ballast Index Tests for Railway Trackbeds.” Proceedings of the Institution of Civil

129

Engineers - Geotechnical Engineering 157 (3): 151–61.

https://doi.org/10.1680/geng.2004.157.3.151.

Md Saeed Hasan. 2015. “Deterioration Prediction of Concrete Bridge Components Using

Artificial Intelligence and Stochastic Methods.”

Montgomery, D. C, E. A Peck, and G. G. Vining. 2012. Introduction to Linear Regression Analysis.

chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://statanaly.com/wp-

content/uploads/2023/05/IntroductiontoLinearRegressionAnalysisbyDouglasC.Montgom

eryElizabethA.PeckG_.GeoffreyViningz-lib.org_.pdf.

Moridpour, Sara, Ehsan Mazloumi, and Reyhaneh Hesami. 2017. “Application of Artificial Neural

Networks in Predicting the Degradation of Tram Tracks Using Maintenance Data.” In

Applied Big Data Analytics in Operations Management, 30–54. IGI Global. https://web-s-

ebscohost-com.lib-

ezproxy.concordia.ca/ehost/ebookviewer/ebook/bmxlYmtfXzEzNjU5MzZfX0FO0?sid=af4

36e42-ba1e-4574-9616-e9639e330904@redis&vid=0&format=EB&lpid=lp_30&rid=0.

Mu, Enrique, and Milagros Pereyra-Rojas. 2017. “Understanding the Analytic Hierarchy

Process.” In Practical Decision Making, by Enrique Mu and Milagros Pereyra-Rojas, 7–

22. SpringerBriefs in Operations Research. Cham: Springer International Publishing.

https://doi.org/10.1007/978-3-319-33861-3_2.

Mundrey, J. S. 2009. Railway Track Engineering. Tata McGraw-Hill Education, 2009.

https://scholar.google.com/scholar_lookup?title=Railway+Track+Engineering&author=

Mundrey,+J.&publication_year=2003#d=gs_cit&t=1717363429237&u=%2Fscholar%

3Fq%3Dinfo%3AbQ5V8sDJSQ.

Offenbacher, Stefan, Johannes Neuhold, Peter Veit, and Matthias Landgraf. 2020. “Analyzing

Major Track Quality Indices and Introducing a Universally Applicable TQI.” Applied

Sciences 10 (23): 8490. https://doi.org/10.3390/app10238490.

Palese, Joseph W., PE MCE, Donald R. Holfeld, and P. Eng. 1999. “Tie Planning Tools for the

Track Inspector.” Jan 1:4.

Peng, Fan, Yanfeng Ouyang, and Kamalesh Somani. 2013. “Optimal Routing and Scheduling of

Periodic Inspections in Large-Scale Railroad Networks.” Journal of Rail Transport

Planning & Management 3 (4): 163–71. https://doi.org/10.1016/j.jrtpm.2014.02.003.

Powell, A, and P Gräbe. 2017. “Exploring the Relationship between Vertical and Lateral Forces,

Speed and Superelevation in Railway Curves.” Journal of the South African Institution of

Civil Engineering 59 (3): 25–35. https://doi.org/10.17159/2309-8775/2017/v59n3a4.

Prokhorenkova, Liudmila, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey

Gulin. 2017. “CatBoost: Unbiased Boosting with Categorical Features.” arXiv.

https://doi.org/10.48550/ARXIV.1706.09516.

Puffert, Douglas J. 2000. “The Standardization of Track Gauge on North American Railways,

1830–1890.” The Journal of Economic History 60 (4): 933–60.

Puzavac, Leposava, Zdenka Popović, and Luka Lazarević. 2012. “Influence of Track Stiffness on

Track Behaviour under Vertical Load.” Promet-Traffic&Transportation 24 (5): 405–12.

130

Quinlan, J. R. 1986. “Induction of Decision Trees.” Machine Learning 1 (1): 81–106.

https://doi.org/10.1007/BF00116251.

Quiroga, L., and E. Schnieder. 2010. “Modelling High Speed Railroad Geometry Ageing as a

Discrete-Continuous Process.” In Proceedings of the Stochastic Modeling Techniques and

Data Analysis International Conference, SMTDA, Chania Crete Greece, 655–66.

https://www.researchgate.net/profile/Teresa-Rivas-Moya-

2/publication/317596376_Generalizability_Analysis_An_Example_Using_Unbalanced_

Data/links/594276edaca272c2cac2a6b5/Generalizability-Analysis-An-Example-Using-

Unbalanced-Data.pdf.

Rahimikelarijani, Behnam, Ahmad Mohassel, and Maryam Hamidi. 2020. “Railroad Track

Geometric Degradation Analysis: A BNSF Case Study.” Journal of Transportation

Engineering, Part A: Systems 146 (2): 04019068.

https://doi.org/10.1061/JTEPBS.0000303.

Railway Association of Canada. 2022. “RAC-Rail Trends-2022.” chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.railcan.ca/wp-

content/uploads/2022/12/RAC-Rail-Trends-2022-EN.pdf.

Railway Tie Association. 2024. “Railway Tie Association.”

https://www.rta.org/faq#:~:text=This%20translates%20to%20an%20average,each%20y

ear%20in%20these%20countries.

“RAS 2015.” n.d.

RAS 2015 problem. 2015. https://higherlogicdownload.s3.amazonaws.com/INFORMS/e52cec4c-

eedb-4c3b-a379-8408d89f8fc9/UploadedImages/Data.20150707.zip).

Rokach, Lior, and Oded Maimon. 2005. “Decision Trees.” In Data Mining and Knowledge

Discovery Handbook, edited by Oded Maimon and Lior Rokach, 165–92. New York:

Springer-Verlag. https://doi.org/10.1007/0-387-25465-X_9.

S Kaewunruen, AM Remennikov. 2005. “Integrated Field Measurements and Track Simulations

for Condition Assessment of Railway Track.”

https://www.academia.edu/download/41216873/Integrated_field_measurements_and_tra

ck_20160113-22193-186910c.pdf20160115-19908-1einmu0.pdf.

Saaty, Thomas L., and Luis G. Vargas. 2012a. “How to Make a Decision.” In Models, Methods,

Concepts & Applications of the Analytic Hierarchy Process, by Thomas L. Saaty and Luis

G. Vargas, 175:1–21. International Series in Operations Research & Management

Science. Boston, MA: Springer US. https://doi.org/10.1007/978-1-4614-3597-6_1.

———. 2012b. “The Seven Pillars of the Analytic Hierarchy Process.” In Models, Methods,

Concepts & Applications of the Analytic Hierarchy Process, by Thomas L. Saaty and Luis

G. Vargas, 175:23–40. International Series in Operations Research & Management

Science. Boston, MA: Springer US. https://doi.org/10.1007/978-1-4614-3597-6_2.

Sadeghi, J. 2010a. “Development of Railway Track Geometry Indexes Based on Statistical

Distribution of Geometry Data.” Journal of Transportation Engineering 136 (8): 693–700.

https://doi.org/10.1061/(ASCE)0733-947X(2010)136:8(693).

131

———. 2010b. “Development of Railway Track Geometry Indexes Based on Statistical

Distribution of Geometry Data.” Journal of Transportation Engineering 136 (8): 693–700.

https://doi.org/10.1061/(ASCE)0733-947X(2010)136:8(693).

Sadeghi, J. M., and H. Askarinejad. 2011. “Development of Track Condition Assessment Model

Based on Visual Inspection.” Structure and Infrastructure Engineering 7 (12): 895–905.

https://doi.org/10.1080/15732470903194676.

Sadeghi, Javad, and Hossein Askarinejad. 2010. “Development of Improved Railway Track

Degradation Models.” Structure and Infrastructure Engineering 6 (6): 675–88.

———. 2012. “Application of Neural Networks in Evaluation of Railway Track Quality

Condition.” Journal of Mechanical Science and Technology 26 (1): 113–22.

https://doi.org/10.1007/s12206-011-1016-5.

Scanlan, Kirk M., Michael T. Hendry, and C. Derek Martin. 2016. “Evaluating the Equivalency

Between Track Quality Indices and the Minimum Track Geometry Threshold Exceedances

Along a Canadian Freight Railway.” In 2016 Joint Rail Conference, V001T01A012.

Columbia, South Carolina, USA: American Society of Mechanical Engineers.

https://doi.org/10.1115/JRC2016-5748.

Setiawan, Dian M, and P. Rosyidi Sri Atmaja. 2016. “TRACK QUALITY INDEX AS TRACK

QUALITY ASSESSMENT INDICATOR.” chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://d1wqtxts1xzle7.cloudfront.net/573

91669/Revisi_TrackQualityIndex_DSM_Fullpaper_SymposiumFSTPT19-

libre.pdf?1537135875=&response-content-

disposition=inline%3B+filename%3DTRACK_QUALITY_INDEX_AS_TRACK_QUALIT

Y_ASS.pdf&Expires=1727226797&Signature=FnDu3~USsBHfvRnasYm7FfCxv-

772Hlvl42B9iTHpDw0~MdPNeLNgLJ0-JQ1Y0-P9ELyQBZDi-JTX8zwjF-

FtNhvQYntrB8-

3pMLj~TtLLo046KkxnWitf1V48nmyQR1NAwrTMkk6VwCyndcHD~~ocZzW4P~3z-

iqTwGAJS0A2z1hCbyfNxIau1ZGqyyWuf4pNyV3s7YBCRjUoMbWEyKyBf4zodSATSmju9

z9tOK-boJF84XNBDMoMkVBrHNJYVy1tv2Z~sh7a7g0eE-

8bnAMaOe450tg~bKufUhP5hc1MLw0DdBVxFyDagTOXdzwZr~NhSal0Llw4cLXcSk-

roF5A__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA.

Shafahi, Y., and R. Hakhamaneshi. 2009. “Application of a Maintenance Management Model for

Iranian Railways Based on the Markov Chain and Probabilistic Dynamic Programming.”

Scientia Iranica 16 (1).

https://scientiairanica.sharif.edu/article_3182_130767cafcf651c287704fa787c6c3e0.pdf.

Shafahi, Y, P Masoudi, and R Hakhamaneshi. 2008. “Track Degradation Prediction Models,

Using Markov Chain, Artificial Neural and Neuro-Fuzzy Network.” Tehran, Iran: Sharif

University of Technology.

Sharma, L. K., and T. N. Singh. 2018. “Regression-Based Models for the Prediction of Unconfined

Compressive Strength of Artificially Structured Soil.” Engineering with Computers 34 (1):

175–86. https://doi.org/10.1007/s00366-017-0528-8.

132

Sipahi, Seyhan, and Mehpare Timor. 2010. “The Analytic Hierarchy Process and Analytic

Network Process: An Overview of Applications.” Management Decision 48 (5): 775–808.

https://doi.org/10.1108/00251741011043920.

Soares, C, ed. 2011. Advances in Safety, Reliability and Risk Management: ESREL 2011. CRC

Press. https://doi.org/10.1201/b11433.

Soleimanmeigouni, I., A. Ahmadi, A. Nissen, and Xun Xiao. 2020. “Prediction of Railway Track

Geometry Defects: A Case Study.” Structure and Infrastructure Engineering 16:1001–

1987. https://doi.org/10.1080/15732479.2019.1679193.

Solomon, Brian. 2001. Railway Maintenance Equipment. Osceola, Wis: MBI Pub. Co.

Sonti, Somnath S., Julio G. Davalos, Michael G. Zipfel, and Hota VS GangaRao. 1995. “A Review

of Wood Crosstie Performance.” Forest Products Journal 45 (9): 55.

Steven Loaiza. 2020. “Gini Impurity Measure – a Simple Explanation Using Python.” 2020.

https://towardsdatascience.com/gini-impurity-measure-

dbd3878ead33#:~:text=Def%3A%20Gini%20Impurity%20tells%20us,lower%20the%20l

ikelihood%20of%20misclassification.

Sudhir Kumar Sinha, Sumit Raut, and Harshad Khadilkar. 2015. “Track Geomerty Analytics.”

Https://Higherlogicdownload.S3.Amazonaws.Com/INFORMS/E52cec4c-Eedb-4c3b-

A379-8408d89f8fc9/UploadedImages/Report_TCS_Explorers.Pdf. September 18, 2015.

https://higherlogicdownload.s3.amazonaws.com/INFORMS/e52cec4c-eedb-4c3b-a379-

8408d89f8fc9/UploadedImages/Report_TCS_Explorers.pdf.

The Transportation Safety Board of Canada. 2012. “RAILWAY INVESTIGATION REPORT

R12E0008.” https://www.bst-tsb.gc.ca/eng/rapports-

reports/rail/2012/r12e0008/r12e0008.pdf.

Transport Canada. 2022. “RULES RESPECTING TRACK SAFETY.”

https://tc.canada.ca/en/rail-transportation/rules/2021-2022/rules-respecting-track-safety.

———. 2023. “Transport Canada Annual Report.” https://tc.canada.ca/en/corporate-

services/transparency/corporate-management-reporting/transportation-canada-annual-

reports/2021/rail-network.

TSB. 2021. “Rail Transportation Safety Investigation R21V0118.”

https://www.tsb.gc.ca/eng/enquetes-investigations/rail/2021/R21V0118/R21V0118.html.

———. 2023. “Rail Transportation Occurrences in 2023.”

https://www.tsb.gc.ca/eng/stats/rail/2023/sser-ssro-2023.html.

Uzarski, D. R., Donald George Brown, Richard W. Harris, and Donald E. Plotkin. 1993.

“Maintenance Management of US Army Railroad Networks–the RAILER System: Detailed

Track Inspection Manual.” https://apps.dtic.mil/sti/citations/tr/ADA274459.

Vaidya, Omkarprasad S., and Sushil Kumar. 2006. “Analytic Hierarchy Process: An Overview of

Applications.” European Journal of Operational Research 169 (1): 1–29.

https://doi.org/10.1016/j.ejor.2004.04.028.

133

Vale, Cecília, and Simões M. Lurdes. 2013. “Stochastic Model for the Geometrical Rail Track

Degradation Process in the Portuguese Railway Northern Line.” Reliability Engineering

& System Safety 116 (August):91–98. https://doi.org/10.1016/j.ress.2013.02.010.

Vidal, Ludovic-Alexandre, Franck Marle, and Jean-Claude Bocquet. 2011. “Using a Delphi

Process and the Analytic Hierarchy Process (AHP) to Evaluate the Complexity of

Projects.” Expert Systems with Applications 38 (5): 5388–5405.

https://doi.org/10.1016/j.eswa.2010.10.016.

Weston, P. F., C. S. Ling, C. J. Goodman, Clive Roberts, P. Li, and R. M. Goodall. 2007.

“Monitoring Lateral Track Irregularity from In-Service Railway Vehicles.” Proceedings

of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 221

(1): 89–100.

Wong, Tzu-Tsung, and Po-Yang Yeh. 2020. “Reliable Accuracy Estimates from k -Fold Cross

Validation.” IEEE Transactions on Knowledge and Data Engineering 32 (8): 1586–94.

https://doi.org/10.1109/TKDE.2019.2912815.

Xu, P, Q Sun, R Liu, and F Wang. 2011. “A Short-Range Prediction Model for Track Quality

Index.” Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail

and Rapid Transit 225 (3): 277–85. https://doi.org/10.1177/2041301710392477.

Yan, Tzu-Hao, and Francesco Corman. 2020. “Assessing and Extending Track Quality Index for

Novel Measurement Techniques in Railway Systems.” Transportation Research Record:

Journal of the Transportation Research Board 2674 (8): 24–36.

https://doi.org/10.1177/0361198120923661.

Yu, Hailing, and David Jeong. 2012. “Railroad Tie Responses to Directly Applied Rail Seat

Loading in Ballasted Tracks: A Computational Study.” In 2012 Joint Rail Conference,

123–32. Philadelphia, Pennsylvania, USA: American Society of Mechanical Engineers.

https://doi.org/10.1115/JRC2012-74149.

Zarembski, Allan M., Gregory T. Grissom, Todd L. Euston, and John J. Cronin. 2015.

“Relationship between Missing Ballast and Development of Track Geometry Defects.”

Transportation Infrastructure Geotechnology 2:167–76.

Zerbst, U., R. Lundén, K.-O. Edel, and R.A. Smith. 2009. “Introduction to the Damage Tolerance

Behaviour of Railway Rails – a Review.” Engineering Fracture Mechanics 76 (17): 2563–

2601. https://doi.org/10.1016/j.engfracmech.2009.09.003.

Zimmermann, H‐J. 2010. “Fuzzy Set Theory.” Wiley Interdisciplinary Reviews: Computational

Statistics 2 (3): 317–32.

134

Appendix A. Questionnaire survey for Tie and rail fastening system

135

136

137

138

139

140

141

142

143

144

145

146

147

Appendix B. Machine Learning codes for the Condition prediction

model

Classification codes to predict defect tag using Logistic Regression, Random Forest

XGBoost, and Cat boost

#logistic regression to predict defect tag (80% 20%)

import pandas as pd

from sklearn.model_selection import train_test_split, GridSearchCV

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import classification_report, accuracy_score

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

Load the dataset

data = pd.read_csv('Connect.csv')

Define the features and the target variable (Defect tag)

features = ['Total car west', 'Total train east', 'Total train west',

'Total deflection',

 'Defect amplitude', 'Class', 'Freight speed', 'Passenger

speed']

X = data[features]

y = data['Defect tag'] # Target variable: Defect tag

Split the data into training and testing sets (80% training, 20%

testing)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

Create a pipeline to scale the data and then apply logistic regression

pipe = Pipeline([

148

 ('scaler', StandardScaler()), # Scaling the data

 ('logistic', LogisticRegression(class_weight='balanced')) # Logistic

regression

])

Define the hyperparameters grid for tuning

param_grid = [

 {'logistic__penalty': ['l1'], 'logistic__C': [0.01, 0.1, 1.0, 10,

100], 'logistic__solver': ['saga'], 'logistic__max_iter': [200, 500]},

 {'logistic__penalty': ['l2'], 'logistic__C': [0.01, 0.1, 1.0, 10,

100], 'logistic__solver': ['lbfgs', 'liblinear', 'saga'],

'logistic__max_iter': [200, 500]},

 {'logistic__penalty': ['elasticnet'], 'logistic__C': [0.01, 0.1, 1.0,

10, 100], 'logistic__solver': ['saga'], 'logistic__l1_ratio': [0.5],

'logistic__max_iter': [200, 500]}

]

Initialize GridSearchCV

grid_search = GridSearchCV(estimator=pipe, param_grid=param_grid, cv=5,

verbose=1, n_jobs=-1)

Fit the grid search to the training data

grid_search.fit(X_train, y_train)

Get the best parameters from the grid search

best_params = grid_search.best_params_

print("Best Parameters:", best_params)

Use the best estimator to predict on the test set

best_model = grid_search.best_estimator_

Predictions on the test set

y_pred = best_model.predict(X_test)

149

Calculate training accuracy

train_accuracy = best_model.score(X_train, y_train)

Calculate test accuracy

test_accuracy = accuracy_score(y_test, y_pred)

Generate and display a classification report

classification_rep = classification_report(y_test, y_pred)

Print results

print(f"Training Accuracy: {train_accuracy:.2f}")

print(f"Test Accuracy: {test_accuracy:.2f}")

print("Classification Report:")

print(classification_rep)

XGBoost code 80/20 split

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split, StratifiedKFold,

RandomizedSearchCV

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import make_pipeline

from sklearn.metrics import accuracy_score, classification_report

from xgboost import XGBClassifier

import matplotlib.pyplot as plt

import seaborn as sns

Step 1: Load your DataFrame

df = pd.read_csv('Connect.csv')

150

Step 2: Basic Exploratory Data Analysis (EDA)

Display basic information about the dataset

print("Dataset Info:")

df.info() # Shows column names, non-null counts, and data types

Display basic statistics of the dataset to understand distributions

print("\nDataset Description:")

print(df.describe()) # Provides mean, std, min, max, and quartile values

for numerical columns

Check for any missing values in the dataset

print("\nMissing values in each column:")

print(df.isnull().sum()) # Shows count of missing values in each column

Check the distribution of the target variable to understand class

imbalance

target = 'Defect tag'

print("\nTarget variable distribution:")

print(df[target].value_counts()) # Provides the count of each class in

the target column

Visualize the correlation matrix to understand relationships between

features

features = ['Total car west', 'Total train east', 'Total train west',

'Total deflection', 'Defect amplitude', 'Class', 'Freight speed',

'Passenger speed']

plt.figure(figsize=(10, 8))

corr_matrix = df[features].corr()

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')

plt.title("Feature Correlation Matrix")

plt.show()

151

Plot the distribution of each feature to visually understand data ranges

for feature in features:

 plt.figure(figsize=(8, 4))

 plt.hist(df[feature], bins=30, color='lightblue', edgecolor='black')

 plt.title(f"Distribution of {feature}")

 plt.xlabel(feature)

 plt.ylabel('Frequency')

 plt.show()

Step 3: Define features and target variable

X = df[features].values

y = df[target].values

Step 4: Split the data into training and testing sets (80% train, 20%

test)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

Step 5: Parameter grid for RandomizedSearchCV with regularization

parameters

param_grid = {

 'xgbclassifier__max_depth': [3, 4],

 'xgbclassifier__learning_rate': [0.01, 0.1],

 'xgbclassifier__n_estimators': [100, 200],

 'xgbclassifier__subsample': [0.7, 0.8],

 'xgbclassifier__colsample_bytree': [0.8, 0.9],

 'xgbclassifier__reg_lambda': [1, 2, 5], # L2 regularization

 'xgbclassifier__alpha': [0, 0.5, 1], # L1 regularization

}

Step 6: Create a pipeline with standard scaling and XGBoost classifier

152

pipeline = make_pipeline(

 StandardScaler(), # Standardize the data

 XGBClassifier(use_label_encoder=False, eval_metric='logloss',

random_state=42) # XGBoost Classifier

)

Step 7: Stratified K-Fold for cross-validation with fewer splits for

faster computation

cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)

Step 8: Use RandomizedSearchCV for faster hyperparameter tuning

randomized_search = RandomizedSearchCV(pipeline,

param_distributions=param_grid, n_iter=10, cv=cv, n_jobs=-1,

scoring='accuracy', random_state=42)

randomized_search.fit(X_train, y_train)

Step 9: Output the best parameters and cross-validation score

print("Best parameters found: ", randomized_search.best_params_)

print("Best cross-validation score:

{:.2f}".format(randomized_search.best_score_))

Step 10: Predict on the testing data using the best model

y_pred = randomized_search.best_estimator_.predict(X_test)

Step 11: Print accuracy and classification report for train and test

sets

train_accuracy = accuracy_score(y_train,

randomized_search.best_estimator_.predict(X_train))

test_accuracy = accuracy_score(y_test, y_pred)

print("Train Accuracy:", train_accuracy)

print("Test Accuracy:", test_accuracy)

print("Classification Report:")

print(classification_report(y_test, y_pred))

153

Step 12: Get the best XGBoost model from the pipeline

best_xgb_model =

randomized_search.best_estimator_.named_steps['xgbclassifier']

Step 13: Get feature importances

feature_importances = best_xgb_model.feature_importances_

Step 14: Plot feature importances to visualize the most important

factors for predictions

plt.figure(figsize=(10, 6))

plt.barh(features, feature_importances, color='skyblue')

plt.xlabel('Feature Importance')

plt.title('Feature Importance')

plt.show()

Randomforest code 80/20 split

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split, StratifiedKFold

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import make_pipeline

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score, classification_report

import matplotlib.pyplot as plt

import seaborn as sns

Step 1: Load the DataFrame

df = pd.read_csv('Connect.csv')

Step 2: Basic Exploratory Data Analysis (EDA)

154

Display basic information about the dataset

print("Dataset Info:")

df.info() # Shows column names, non-null counts, and data types

Display basic statistics of the dataset to understand distributions

print("\nDataset Description:")

print(df.describe()) # Provides mean, std, min, max, and quartile values

for numerical columns

Check for any missing values in the dataset

print("\nMissing values in each column:")

print(df.isnull().sum()) # Shows count of missing values in each column

Check the distribution of the target variable to understand class

imbalance

target = 'Defect tag'

print("\nTarget variable distribution:")

print(df[target].value_counts()) # Provides the count of each class in

the target column

Visualize the correlation matrix to understand relationships between

features

features = ['Total car west', 'Total train east', 'Total train west',

'Total deflection', 'Freight speed', 'Class', 'Passenger speed', 'Defect

amplitude']

plt.figure(figsize=(10, 8))

corr_matrix = df[features].corr()

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')

plt.title("Feature Correlation Matrix")

plt.show()

Plot the distribution of each feature to visually understand data ranges

155

for feature in features:

 plt.figure(figsize=(8, 4))

 plt.hist(df[feature], bins=30, color='lightblue', edgecolor='black')

 plt.title(f"Distribution of {feature}")

 plt.xlabel(feature)

 plt.ylabel('Frequency')

 plt.show()

Step 3: Define features and target variable

features = ['Total car west', 'Total train east', 'Total train west',

'Total deflection', 'Freight speed', 'Class', 'Passenger speed', 'Defect

amplitude']

target = 'Defect tag'

Step 4: Prepare data

X = df[features].values

y = df[target].values

Step 5: Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20,

random_state=42)

Step 6: Create a pipeline with standard scaling and Random Forest

classifier

Adjusting n_estimators, max_depth, and min_samples_split to manage

complexity and avoid overfitting

model = RandomForestClassifier(n_estimators=100, max_depth=10,

min_samples_split=4, random_state=42)

pipeline = make_pipeline(StandardScaler(), model)

Step 7: Stratified K-Fold for cross-validation

cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)

156

Step 8: Fit the pipeline on the training data

pipeline.fit(X_train, y_train)

Step 9: Predict on the training data to calculate training accuracy

y_train_pred = pipeline.predict(X_train)

train_accuracy = accuracy_score(y_train, y_train_pred)

Step 10: Predict on the testing data

y_pred = pipeline.predict(X_test)

test_accuracy = accuracy_score(y_test, y_pred)

Step 11: Print training and test accuracy

print("Training Accuracy:", train_accuracy)

print("Test Accuracy:", test_accuracy)

Step 12: Print classification report

print("Classification Report:")

print(classification_report(y_test, y_pred))

Step 13: Get the feature importances from the RandomForest model

importances = model.feature_importances_

Step 14: Sort the importances and features for plotting

indices = np.argsort(importances)

sorted_features = np.array(features)[indices]

sorted_importances = importances[indices]

Step 15: Plot feature importances

plt.figure(figsize=(10, 6))

plt.barh(sorted_features, sorted_importances, color='skyblue')

plt.xlabel('Feature Importance')

157

plt.title('Feature Importance from RandomForest')

plt.show()

Catboost code to predict the Defect tag(80% 20% split)

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split, StratifiedKFold,

RandomizedSearchCV

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import make_pipeline

from sklearn.metrics import accuracy_score, classification_report

from catboost import CatBoostClassifier

import matplotlib.pyplot as plt

import seaborn as sns

Step 1: Load your DataFrame

df = pd.read_csv('Connect.csv')

Step 2: Basic Exploratory Data Analysis (EDA)

Display basic information about the dataset

print("Dataset Info:")

df.info() # Shows column names, non-null counts, and data types

Display basic statistics of the dataset to understand distributions

print("\nDataset Description:")

print(df.describe()) # Provides mean, std, min, max, and quartile values

for numerical columns

Check for any missing values in the dataset

print("\nMissing values in each column:")

print(df.isnull().sum()) # Shows count of missing values in each column

158

Check the distribution of the target variable to understand class

imbalance

target = 'Defect tag'

print("\nTarget variable distribution:")

print(df[target].value_counts()) # Provides the count of each class in

the target column

Visualize the correlation matrix to understand relationships between

features

features = ['Total car west', 'Total train east', 'Total train west',

'Total deflection', 'Defect amplitude', 'Class', 'Freight speed',

'Passenger speed']

plt.figure(figsize=(10, 8))

corr_matrix = df[features].corr()

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')

plt.title("Feature Correlation Matrix")

plt.show()

Plot the distribution of each feature to visually understand data ranges

for feature in features:

 plt.figure(figsize=(8, 4))

 plt.hist(df[feature], bins=30, color='lightblue', edgecolor='black')

 plt.title(f"Distribution of {feature}")

 plt.xlabel(feature)

 plt.ylabel('Frequency')

 plt.show()

Step 3: Define features and target variable

X = df[features].values

y = df[target].values

159

Step 4: Split the data into training and testing sets (80% train, 20%

test)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

Step 5: Parameter grid for RandomizedSearchCV with CatBoost parameters

param_grid = {

 'catboostclassifier__depth': [4, 6, 8],

 'catboostclassifier__learning_rate': [0.01, 0.1, 0.2],

 'catboostclassifier__iterations': [100, 200, 300],

 'catboostclassifier__l2_leaf_reg': [1, 3, 5], # L2 regularization

term

 'catboostclassifier__border_count': [32, 64, 128], # Number of splits

for features

}

Step 6: Create a pipeline with standard scaling and CatBoost classifier

pipeline = make_pipeline(

 StandardScaler(), # Standardize the data

 CatBoostClassifier(verbose=0, random_state=42) # CatBoost Classifier

)

Step 7: Stratified K-Fold for cross-validation

cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)

Step 8: Use RandomizedSearchCV for faster hyperparameter tuning

randomized_search = RandomizedSearchCV(pipeline,

param_distributions=param_grid, n_iter=10, cv=cv, n_jobs=-1,

scoring='accuracy', random_state=42)

randomized_search.fit(X_train, y_train)

Step 9: Output the best parameters and cross-validation score

print("Best parameters found: ", randomized_search.best_params_)

160

print("Best cross-validation score:

{:.2f}".format(randomized_search.best_score_))

Step 10: Predict on the testing data using the best model

y_pred = randomized_search.best_estimator_.predict(X_test)

Step 11: Print accuracy and classification report for train and test

sets

train_accuracy = accuracy_score(y_train,

randomized_search.best_estimator_.predict(X_train))

test_accuracy = accuracy_score(y_test, y_pred)

print("Train Accuracy:", train_accuracy)

print("Test Accuracy:", test_accuracy)

print("Classification Report:")

print(classification_report(y_test, y_pred))

Step 12: Get the best CatBoost model from the pipeline

best_cat_model =

randomized_search.best_estimator_.named_steps['catboostclassifier']

Step 13: Get feature importances

feature_importances = best_cat_model.get_feature_importance()

Step 14: Plot feature importances to visualize the most important

factors for predictions

plt.figure(figsize=(10, 6))

plt.barh(features, feature_importances, color='skyblue')

plt.xlabel('Feature Importance')

plt.title('Feature Importance (CatBoost)')

plt.show()

XGBoost code to predict the Defect tag (2007 - 2012 training / 2013 test

)

161

import pandas as pd

import numpy as np

from sklearn.model_selection import StratifiedKFold, RandomizedSearchCV

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import learning_curve

from sklearn.pipeline import make_pipeline

from sklearn.metrics import accuracy_score, classification_report

from xgboost import XGBClassifier

import matplotlib.pyplot as plt

import seaborn as sns

Step 1: Load the DataFrames

train_df = pd.read_csv('Connecttrain.csv')

test_df = pd.read_csv('Connecttest.csv')

Step 2: Basic Exploratory Data Analysis (EDA)

Display basic information about the training and test datasets

print("Training Data Info:")

train_df.info() # Shows column names, non-null counts, and data types for

the training set

print("\nTest Data Info:")

test_df.info() # Shows column names, non-null counts, and data types for

the test set

Display basic statistics of the training and test datasets to understand

distributions

print("\nTraining Data Description:")

print(train_df.describe()) # Provides statistics for numerical columns in

the training set

162

print("\nTest Data Description:")

print(test_df.describe()) # Provides statistics for numerical columns in

the test set

Check for any missing values in the training and test datasets

print("\nMissing values in Training Data:")

print(train_df.isnull().sum()) # Shows count of missing values in each

column of the training set

print("\nMissing values in Test Data:")

print(test_df.isnull().sum()) # Shows count of missing values in each

column of the test set

Check the distribution of the target variable in both training and test

sets to understand class imbalance

target = 'Defect tag'

print("\nTarget variable distribution in Training Data:")

print(train_df[target].value_counts()) # Count of each class in the

training set target

print("\nTarget variable distribution in Test Data:")

print(test_df[target].value_counts()) # Count of each class in the test

set target

Visualize the correlation matrix for features in the training set

features = ['Total car west', 'Total train east', 'Total train west',

'Total deflection', 'Defect amplitude', 'Freight speed', 'Passenger

speed']

plt.figure(figsize=(10, 8))

corr_matrix = train_df[features].corr()

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')

plt.title("Feature Correlation Matrix (Training Data)")

plt.show()

163

Plot the distribution of each feature in the training set to visually

understand data ranges

for feature in features:

 plt.figure(figsize=(8, 4))

 plt.hist(train_df[feature], bins=30, color='lightblue',

edgecolor='black')

 plt.title(f"Distribution of {feature} (Training Data)")

 plt.xlabel(feature)

 plt.ylabel('Frequency')

 plt.show()

Step 3: Define features and target variable

features = ['Total car west', 'Total train east', 'Total train west',

'Total deflection', 'Defect amplitude', 'Freight speed', 'Passenger

speed']

target = 'Defect tag'

Step 4: Prepare data for training and testing

X_train = train_df[features].values

y_train = train_df[target].values

X_test = test_df[features].values

y_test = test_df[target].values

Step 5: Parameter grid for RandomizedSearchCV with regularization

parameters

param_grid = {

 'xgbclassifier__max_depth': [3, 4],

 'xgbclassifier__learning_rate': [0.01, 0.1],

 'xgbclassifier__n_estimators': [100, 200],

 'xgbclassifier__subsample': [0.7, 0.8],

 'xgbclassifier__colsample_bytree': [0.8, 0.9],

 'xgbclassifier__reg_lambda': [1, 2, 5], # L2 regularization

164

 'xgbclassifier__alpha': [0, 0.5, 1], # L1 regularization

}

Step 6: Create a pipeline with standard scaling and XGBoost classifier

pipeline = make_pipeline(

 StandardScaler(),

 XGBClassifier(use_label_encoder=False, eval_metric='logloss',

random_state=42)

)

Step 7: Stratified K-Fold for cross-validation

cv = StratifiedKFold(n_splits=3, shuffle=True, random_state=42)

Step 8: Use RandomizedSearchCV for faster hyperparameter tuning

randomized_search = RandomizedSearchCV(pipeline,

param_distributions=param_grid, n_iter=10, cv=cv, n_jobs=-1,

scoring='accuracy', random_state=42)

randomized_search.fit(X_train, y_train)

Step 9: Output the best parameters

print("Best parameters found: ", randomized_search.best_params_)

print("Best cross-validation score:

{:.2f}".format(randomized_search.best_score_))

Step 10: Learning curve data using the best estimator

train_sizes, train_scores, test_scores = learning_curve(

 randomized_search.best_estimator_, X_train, y_train, cv=cv, n_jobs=-1,

train_sizes=np.linspace(0.1, 1.0, 5), scoring='accuracy')

Step 11: Predict on the testing data using the best model

y_pred = randomized_search.best_estimator_.predict(X_test)

Step 12: Print accuracy and classification report

165

train_accuracy = accuracy_score(y_train,

randomized_search.best_estimator_.predict(X_train))

test_accuracy = accuracy_score(y_test, y_pred)

print("Train Accuracy:", train_accuracy)

print("Test Accuracy:", test_accuracy)

print("Classification Report:")

print(classification_report(y_test, y_pred))

Step 13: Get the best XGBoost model from the pipeline

best_xgb_model =

randomized_search.best_estimator_.named_steps['xgbclassifier']

Step 14: Get feature importances from the best XGBoost model

feature_importances = best_xgb_model.feature_importances_

Step 15: Plot feature importances

plt.figure(figsize=(10, 6))

plt.barh(features, feature_importances, color='skyblue')

plt.xlabel('Feature Importance')

plt.title('Feature Importance')

plt.show()

RandomForest code to predict the Defect tag (2007 - 2012 training / 2013

test)

import pandas as pd

import numpy as np

from sklearn.model_selection import StratifiedKFold

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import make_pipeline

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score, classification_report

import matplotlib.pyplot as plt

166

import seaborn as sns

Step 1: Load the DataFrames

train_df = pd.read_csv('Connecttrain.csv')

test_df = pd.read_csv('Connecttest.csv')

Step 2: Basic Exploratory Data Analysis (EDA)

Display basic information about the training and test datasets

print("Training Data Info:")

train_df.info() # Shows column names, non-null counts, and data types for

the training set

print("\nTest Data Info:")

test_df.info() # Shows column names, non-null counts, and data types for

the test set

Display basic statistics of the training and test datasets to understand

distributions

print("\nTraining Data Description:")

print(train_df.describe()) # Provides statistics for numerical columns in

the training set

print("\nTest Data Description:")

print(test_df.describe()) # Provides statistics for numerical columns in

the test set

Check for any missing values in the training and test datasets

print("\nMissing values in Training Data:")

print(train_df.isnull().sum()) # Shows count of missing values in each

column of the training set

print("\nMissing values in Test Data:")

167

print(test_df.isnull().sum()) # Shows count of missing values in each

column of the test set

Check the distribution of the target variable in both training and test

sets to understand class imbalance

target = 'Defect tag'

print("\nTarget variable distribution in Training Data:")

print(train_df[target].value_counts()) # Count of each class in the

training set target

print("\nTarget variable distribution in Test Data:")

print(test_df[target].value_counts()) # Count of each class in the test

set target

Visualize the correlation matrix for features in the training set

features = ['Total car west', 'Total train east', 'Total train west',

'Total deflection', 'Defect amplitude', 'Freight speed', 'Passenger

speed']

plt.figure(figsize=(10, 8))

corr_matrix = train_df[features].corr()

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')

plt.title("Feature Correlation Matrix (Training Data)")

plt.show()

Plot the distribution of each feature in the training set to visually

understand data ranges

for feature in features:

 plt.figure(figsize=(8, 4))

 plt.hist(train_df[feature], bins=30, color='lightblue',

edgecolor='black')

 plt.title(f"Distribution of {feature} (Training Data)")

 plt.xlabel(feature)

 plt.ylabel('Frequency')

168

 plt.show()

Step 3: Define features and target variable

features = ['Total car west', 'Total train east', 'Total train west',

'Total deflection', 'Defect amplitude', 'Freight speed', 'Passenger

speed']

target = 'Defect tag'

Step 4: Prepare data for training and testing

X_train = train_df[features].values

y_train = train_df[target].values

X_test = test_df[features].values

y_test = test_df[target].values

Step 5: Create a pipeline with standard scaling and Random Forest

classifier

Adjusting n_estimators, max_depth, and min_samples_split to manage

complexity and avoid overfitting

model = RandomForestClassifier(n_estimators=100, max_depth=10,

min_samples_split=4, random_state=42)

pipeline = make_pipeline(StandardScaler(), model)

Step 6: Stratified K-Fold for cross-validation

cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)

Step 7: Fit the pipeline on the training data

pipeline.fit(X_train, y_train)

Step 8: Predict on the training data to calculate training accuracy

y_train_pred = pipeline.predict(X_train)

train_accuracy = accuracy_score(y_train, y_train_pred)

Step 9: Predict on the testing data

169

y_pred = pipeline.predict(X_test)

test_accuracy = accuracy_score(y_test, y_pred)

Step 10: Print training and test accuracy

print("Training Accuracy:", train_accuracy)

print("Test Accuracy:", test_accuracy)

Step 11: Print classification report

print("Classification Report:")

print(classification_report(y_test, y_pred))

Step 12: Get the feature importances from the RandomForest model

importances = model.feature_importances_

Step 13: Sort the importances and features for plotting

indices = np.argsort(importances)

sorted_features = np.array(features)[indices]

sorted_importances = importances[indices]

Step 14: Plot feature importances

plt.figure(figsize=(10, 6))

plt.barh(sorted_features, sorted_importances, color='skyblue')

plt.xlabel('Feature Importance')

plt.title('Feature Importance from RandomForest')

plt.show()

#catboost to predict the defect tag (2007 - 2012 training / 2013 test)

import pandas as pd

import numpy as np

170

from sklearn.model_selection import StratifiedKFold, learning_curve,

RandomizedSearchCV

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import make_pipeline

from sklearn.metrics import accuracy_score, classification_report

from catboost import CatBoostClassifier

import matplotlib.pyplot as plt

import seaborn as sns

Step 1: Load the DataFrames

train_df = pd.read_csv('Connecttrain.csv')

test_df = pd.read_csv('Connecttest.csv')

Step 2: Basic Exploratory Data Analysis (EDA)

Display basic information about the training and test datasets

print("Training Data Info:")

train_df.info()

print("\nTest Data Info:")

test_df.info()

Display basic statistics of the training and test datasets to understand

distributions

print("\nTraining Data Description:")

print(train_df.describe())

print("\nTest Data Description:")

print(test_df.describe())

Check for any missing values in the training and test datasets

print("\nMissing values in Training Data:")

171

print(train_df.isnull().sum())

print("\nMissing values in Test Data:")

print(test_df.isnull().sum())

Check the distribution of the target variable in both training and test

sets to understand class imbalance

target = 'Defect tag'

print("\nTarget variable distribution in Training Data:")

print(train_df[target].value_counts())

print("\nTarget variable distribution in Test Data:")

print(test_df[target].value_counts())

Visualize the correlation matrix for features in the training set

features = ['Total car west', 'Total train east', 'Total train west',

'Total deflection', 'Defect amplitude', 'Freight speed', 'Passenger

speed']

plt.figure(figsize=(10, 8))

corr_matrix = train_df[features].corr()

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')

plt.title("Feature Correlation Matrix (Training Data)")

plt.show()

Plot the distribution of each feature in the training set to visually

understand data ranges

for feature in features:

 plt.figure(figsize=(8, 4))

 plt.hist(train_df[feature], bins=30, color='lightblue',

edgecolor='black')

 plt.title(f"Distribution of {feature} (Training Data)")

 plt.xlabel(feature)

 plt.ylabel('Frequency')

172

 plt.show()

Step 3: Define features and target variable

features = ['Total car west', 'Total train east', 'Total train west',

'Total deflection', 'Defect amplitude', 'Freight speed', 'Passenger

speed']

target = 'Defect tag'

Step 4: Prepare data for training and testing

X_train = train_df[features].values

y_train = train_df[target].values

X_test = test_df[features].values

y_test = test_df[target].values

Step 5: Parameter grid for RandomizedSearchCV with regularization

parameters

param_grid = {

 'catboostclassifier__depth': [4, 6, 8],

 'catboostclassifier__learning_rate': [0.01, 0.1, 0.2],

 'catboostclassifier__iterations': [100, 200, 300],

 'catboostclassifier__l2_leaf_reg': [1, 3, 5, 7],

 'catboostclassifier__border_count': [128, 160, 256],

 'catboostclassifier__bagging_temperature': [0.5, 1, 2],

}

Step 6: Create a pipeline with standard scaling and CatBoost classifier

pipeline = make_pipeline(

 StandardScaler(),

 CatBoostClassifier(verbose=0, random_state=42) # verbose=0 to

suppress output during fitting

)

173

Step 7: Stratified K-Fold for cross-validation

cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)

Step 8: Use RandomizedSearchCV for faster hyperparameter tuning

randomized_search = RandomizedSearchCV(pipeline,

param_distributions=param_grid, n_iter=10, cv=cv, n_jobs=-1,

scoring='accuracy', random_state=42)

randomized_search.fit(X_train, y_train)

Step 9: Output the best parameters

print("Best parameters found: ", randomized_search.best_params_)

print("Best cross-validation score:

{:.2f}".format(randomized_search.best_score_))

Step 10: Learning curve data using the best estimator

train_sizes, train_scores, test_scores = learning_curve(

 randomized_search.best_estimator_, X_train, y_train, cv=cv, n_jobs=-1,

train_sizes=np.linspace(0.1, 1.0, 5), scoring='accuracy')

Step 11: Predict on the testing data using the best model

y_pred = randomized_search.best_estimator_.predict(X_test)

Step 12: Print accuracy and classification report

train_accuracy = accuracy_score(y_train,

randomized_search.best_estimator_.predict(X_train))

test_accuracy = accuracy_score(y_test, y_pred)

print("Train Accuracy:", train_accuracy)

print("Test Accuracy:", test_accuracy)

print("Classification Report:")

print(classification_report(y_test, y_pred))

Step 13: Get the best CatBoost model from the pipeline

174

best_cat_model =

randomized_search.best_estimator_.named_steps['catboostclassifier']

Step 14: Get feature importances from the best CatBoost model

feature_importances = best_cat_model.get_feature_importance()

Step 15: Plot feature importances

plt.figure(figsize=(10, 6))

plt.barh(features, feature_importances, color='skyblue')

plt.xlabel('Feature Importance')

plt.title('Feature Importance (CatBoost)')

plt.show()

XGBoost codes to predict the defect Tag using Predicted amplitude

import pandas as pd

import xgboost as xgb

from sklearn.model_selection import train_test_split, RandomizedSearchCV,

cross_val_score

from sklearn.metrics import roc_auc_score, classification_report

from imblearn.over_sampling import SMOTE

import matplotlib.pyplot as plt

import seaborn as sns

Load the dataset

df = pd.read_csv('Pamp.csv')

Step 2: Define the features (X) and target (Y)

X = df[['Total car east', 'Total car west', 'Total train east', 'Total

train west',

 'Total deflection', 'Class', 'Freight speed', 'Passenger speed',

'Prediction']]

175

Y = df['Defect tag']

Step 3: Use SMOTE to oversample the minority class

smote = SMOTE(random_state=42)

X_resampled, Y_resampled = smote.fit_resample(X, Y)

Step 4: Split the dataset into training and testing sets

X_train, X_test, Y_train, Y_test = train_test_split(X_resampled,

Y_resampled, test_size=0.2, random_state=42)

Step 5: Define the XGBoost classifier with manually tuned

scale_pos_weight

xgb_model = xgb.XGBClassifier(scale_pos_weight=1.0) # Adjust

`scale_pos_weight` if needed

Step 6: Define the parameter grid for RandomizedSearchCV

param_dist = {

 'n_estimators': [50, 100, 200],

 'max_depth': [3, 5, 7],

 'learning_rate': [0.01, 0.05, 0.1],

 'subsample': [0.6, 0.8, 1.0],

 'colsample_bytree': [0.6, 0.8, 1.0],

 'gamma': [0, 0.1, 0.2],

 'reg_alpha': [0, 0.1, 0.5],

 'reg_lambda': [1, 1.5, 2]

}

Step 7: Use AUC-ROC as the scoring metric for RandomizedSearchCV

random_search = RandomizedSearchCV(xgb_model,

param_distributions=param_dist,

 n_iter=20, scoring='roc_auc', cv=5,

random_state=42, n_jobs=-1, verbose=2)

176

Step 8: Fit the model

random_search.fit(X_train, Y_train)

Step 9: Best parameters found by RandomizedSearchCV

best_params = random_search.best_params_

print(f'Best Parameters: {best_params}')

Step 10: Use the best model found

best_model = random_search.best_estimator_

Step 11: Make predictions on the training set

Y_train_pred = best_model.predict(X_train)

Step 12: Make predictions on the test set

Y_test_pred = best_model.predict(X_test)

Step 13: Calculate the AUC-ROC score

roc_auc_train = roc_auc_score(Y_train, Y_train_pred)

roc_auc_test = roc_auc_score(Y_test, Y_test_pred)

print(f'Training AUC-ROC Score: {roc_auc_train}')

print(f'Test AUC-ROC Score: {roc_auc_test}')

Step 14: Cross-validation with 5 folds using the best model

cv_scores = cross_val_score(best_model, X_resampled, Y_resampled, cv=5,

scoring='roc_auc')

print(f'Cross-Validation Scores (AUC-ROC): {cv_scores}')

print(f'Mean Cross-Validation Score (AUC-ROC): {cv_scores.mean()}')

Step 15: Classification report for the test set

report = classification_report(Y_test, Y_test_pred)

print('Classification Report:')

177

print(report)

Random Forest codes to predict the defect Tag using Predicted amplitude

import pandas as pd

from sklearn.model_selection import train_test_split, RandomizedSearchCV,

cross_val_score

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score, classification_report

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler

from imblearn.over_sampling import SMOTE

import matplotlib.pyplot as plt

import seaborn as sns

Load the dataset

df = pd.read_csv('Pamp.csv')

Step 1: Basic Exploratory Data Analysis (EDA)

Display basic information about the dataset

print("Dataset Info:")

df.info() # Shows column names, non-null counts, and data types

Display basic statistics of the dataset to understand distributions

print("\nDataset Description:")

print(df.describe()) # Provides mean, std, min, max, and quartile values

for numerical columns

Check for any missing values in the dataset

print("\nMissing values in each column:")

print(df.isnull().sum()) # Shows count of missing values in each column

178

Check the distribution of the target variable to understand class

imbalance

target = 'Defect tag'

print("\nTarget variable distribution:")

print(df[target].value_counts()) # Provides the count of each class in

the target column

Visualize the correlation matrix to understand relationships between

features

features = ['Total car east', 'Total car west', 'Total train east', 'Total

train west',

 'Total deflection', 'Class', 'Freight speed', 'Passenger

speed', 'Prediction']

plt.figure(figsize=(10, 8))

corr_matrix = df[features].corr()

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')

plt.title("Feature Correlation Matrix")

plt.show()

Optional: Plot the distribution of each feature to visually understand

data ranges

for feature in features:

 plt.figure(figsize=(8, 4))

 plt.hist(df[feature], bins=30, color='lightblue', edgecolor='black')

 plt.title(f"Distribution of {feature}")

 plt.xlabel(feature)

 plt.ylabel('Frequency')

 plt.show()

Step 2: Define the features (X) and target (Y)

X = df[['Total car east', 'Total car west', 'Total train east', 'Total

train west',

179

 'Total deflection', 'Class', 'Freight speed', 'Passenger

speed','Defect type','Prediction']]

Y = df['Defect tag']

Step 3: Apply SMOTE to oversample the minority class

smote = SMOTE(random_state=42)

X_resampled, Y_resampled = smote.fit_resample(X, Y)

Step 4: Split the resampled dataset into training and testing sets

X_train, X_test, Y_train, Y_test = train_test_split(X_resampled,

Y_resampled, test_size=0.2, random_state=42)

Step 5: Set up a pipeline with scaling and Random Forest

pipeline = Pipeline([

 ('scaler', StandardScaler()), # Feature scaling

 ('rf', RandomForestClassifier(random_state=42)) # Random forest

classifier

])

Step 6: Define the parameter grid for RandomizedSearchCV

param_dist = {

 'rf__n_estimators': [50, 100, 200],

 'rf__max_depth': [None, 10, 20, 30],

 'rf__min_samples_split': [2, 5, 10],

 'rf__min_samples_leaf': [1, 2, 4],

 'rf__bootstrap': [True, False]

}

Step 7: RandomizedSearchCV to find the best hyperparameters

random_search = RandomizedSearchCV(pipeline,

param_distributions=param_dist,

 n_iter=20, scoring='accuracy', cv=5,

random_state=42, n_jobs=-1, verbose=2)

180

Step 8: Fit the model

random_search.fit(X_train, Y_train)

Step 9: Best parameters found by RandomizedSearchCV

best_params = random_search.best_params_

print(f'Best Parameters: {best_params}')

Step 10: Use the best model found

best_model = random_search.best_estimator_

Step 11: Make predictions on the training set

Y_train_pred = best_model.predict(X_train)

Step 12: Make predictions on the test set

Y_test_pred = best_model.predict(X_test)

Step 13: Calculate test accuracy

test_accuracy = accuracy_score(Y_test, Y_test_pred)

print(f'Test Accuracy: {test_accuracy}')

Step 14: Cross-validation with 5 folds using the best model

cv_scores = cross_val_score(best_model, X_resampled, Y_resampled, cv=5,

scoring='accuracy')

print(f'Cross-Validation Scores: {cv_scores}')

print(f'Mean Cross-Validation Score: {cv_scores.mean()}')

Step 15: Classification report for the test set

report = classification_report(Y_test, Y_test_pred)

print('Classification Report:')

print(report)

181

CatBoost codes to predict the defect Tag using Predicted amplitude

import pandas as pd

from catboost import CatBoostClassifier

from sklearn.model_selection import train_test_split, RandomizedSearchCV,

StratifiedKFold, cross_val_score

from sklearn.metrics import roc_auc_score, classification_report,

accuracy_score

from imblearn.over_sampling import SMOTE

Load the dataset

df = pd.read_csv('Pamp.csv')

Step 2: Define the features (X) and target (Y)

X = df[['Total car east', 'Total car west', 'Total train east', 'Total

train west',

 'Total deflection', 'Class', 'Freight speed', 'Passenger speed',

'Prediction']]

Y = df['Defect tag']

Step 3: Use SMOTE to oversample the minority class

smote = SMOTE(random_state=42)

X_resampled, Y_resampled = smote.fit_resample(X, Y)

Step 4: Split the dataset into training and testing sets

X_train, X_test, Y_train, Y_test = train_test_split(X_resampled,

Y_resampled, test_size=0.2, random_state=42)

Step 5: Define the CatBoost model

catboost_model = CatBoostClassifier(random_state=42, silent=True)

182

Step 6: Define the parameter grid for hyperparameter tuning, including

class weights

catboost_param_grid = {

 'iterations': [500, 700, 1000],

 'depth': [6, 8],

 'learning_rate': [0.01, 0.03],

 'l2_leaf_reg': [9, 11, 13],

 'border_count': [128, 254],

 'bagging_temperature': [0.5, 1.0],

 'class_weights': [{0: 1, 1: 1.2}, {0: 1, 1: 1.1}] # Further lowering

class weight for class 1

}

Step 7: Hyperparameter tuning using RandomizedSearchCV with stratified

k-fold cross-validation

skf = StratifiedKFold(n_splits=5)

catboost_random_search = RandomizedSearchCV(

 estimator=catboost_model,

 param_distributions=catboost_param_grid,

 n_iter=50,

 cv=skf,

 verbose=2,

 random_state=42,

 scoring='roc_auc'

)

Step 8: Fit the CatBoost model with hyperparameter tuning

catboost_random_search.fit(X_train, Y_train)

print(f"Best CatBoost Parameters: {catboost_random_search.best_params_}")

Step 9: Use the best model for predictions

catboost_best_model = catboost_random_search.best_estimator_

183

Step 10: Make predictions on the test set

Y_test_pred = catboost_best_model.predict(X_test)

Y_train_pred = catboost_best_model.predict(X_train)

Step 11: Calculate and print the AUC-ROC score and classification report

roc_auc_test = roc_auc_score(Y_test, Y_test_pred)

print(f'Test AUC-ROC Score: {roc_auc_test}')

Classification report

report = classification_report(Y_test, Y_test_pred)

print('Classification Report:')

print(report)

Step 12: Calculate and print training and test accuracy

train_accuracy = accuracy_score(Y_train, Y_train_pred)

test_accuracy = accuracy_score(Y_test, Y_test_pred)

print(f'Training Accuracy: {train_accuracy}')

print(f'Test Accuracy: {test_accuracy}')

Classification model codes to predict the defect type using Logistic Regression,

XGBoost, Random Forest and Cat Boost

#logistic Regression to predict defect type (80% / 20%)

import pandas as pd

from sklearn.model_selection import train_test_split, GridSearchCV

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import classification_report, accuracy_score,

make_scorer, f1_score, precision_score, recall_score

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

184

Load the dataset

file_path = 'Connect.csv' # Make sure this file path is correct for your

dataset

data = pd.read_csv(file_path)

Define the features and the target variable (Defect type)

features = ['Line segment number', 'Track standard number', 'Milepost',

'Total train east',

 'Total train west', 'Total deflection', 'Class', 'Freight

speed', 'Passenger speed']

X = data[features]

y = data['Defect type'] # Target variable: Defect type

Split the data into training and testing sets (80% training, 20%

testing)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

Create a pipeline to scale the data and then apply logistic regression

pipe = Pipeline([

 ('scaler', StandardScaler()), # Scaling the data

 ('logistic', LogisticRegression(class_weight='balanced')) # Logistic

regression

])

Extend the hyperparameters grid for wider tuning

param_grid = [

 {'logistic__penalty': ['l1', 'l2'],

 'logistic__C': [0.001, 0.01, 0.1, 1.0, 10, 100],

 'logistic__solver': ['liblinear', 'saga'],

 'logistic__max_iter': [200, 500, 1000]},

 {'logistic__penalty': ['elasticnet'],

 'logistic__C': [0.001, 0.01, 0.1, 1.0, 10, 100],

185

 'logistic__solver': ['saga'],

 'logistic__l1_ratio': [0.5, 0.7, 0.9],

 'logistic__max_iter': [200, 500, 1000]}

]

Custom scorers to evaluate accuracy, F1-macro, precision, and recall

scorers = {

 'accuracy': 'accuracy',

 'f1_macro': make_scorer(f1_score, average='macro'),

 'precision_macro': make_scorer(precision_score, average='macro'),

 'recall_macro': make_scorer(recall_score, average='macro')

}

Initialize GridSearchCV

grid_search = GridSearchCV(estimator=pipe, param_grid=param_grid, cv=5,

scoring=scorers, refit='f1_macro', verbose=1, n_jobs=-1)

Fit the grid search to the training data

grid_search.fit(X_train, y_train)

Get the best parameters from the grid search

best_params = grid_search.best_params_

print("Best Parameters:", best_params)

Use the best estimator to predict on the test set

best_model = grid_search.best_estimator_

Predictions on the test set

y_pred = best_model.predict(X_test)

Calculate training accuracy

186

train_accuracy = best_model.score(X_train, y_train)

Calculate test accuracy

test_accuracy = accuracy_score(y_test, y_pred)

Generate and display a classification report

classification_rep = classification_report(y_test, y_pred)

Print results

print(f"Training Accuracy: {train_accuracy:.2f}")

print(f"Test Accuracy: {test_accuracy:.2f}")

print("Classification Report:")

print(classification_rep)

Cross-validation scores

print("Cross-validation scores:")

for scorer in scorers:

 print(f"{scorer}:

{grid_search.cv_results_[f'mean_test_{scorer}'].max()}")

#XGBoost code to predict defect type (80% 20% split)

import pandas as pd

from sklearn.model_selection import train_test_split, RandomizedSearchCV,

StratifiedKFold

from sklearn.metrics import accuracy_score, classification_report,

confusion_matrix

from xgboost import XGBClassifier

from sklearn.preprocessing import StandardScaler

from imblearn.over_sampling import SMOTE

from imblearn.pipeline import Pipeline

import matplotlib.pyplot as plt

import seaborn as sns

187

import numpy as np

Load the dataset

df = pd.read_csv('Connect.csv')

Step 1: Exploratory Data Analysis (EDA)

Check the basic statistics of the dataset

print("Dataset Statistics:\n", df.describe())

Check for missing values

print("Missing Values:\n", df.isnull().sum())

Plot distribution of target variable ('Defect type')

plt.figure(figsize=(8, 6))

sns.countplot(x='Defect type', data=df)

plt.title('Distribution of Defect Type')

plt.show()

Step 2: Correlation Matrix

Calculate and display the correlation matrix for the features

features = ['Line segment number', 'Track standard number', 'Milepost',

'Total train east',

 'Total train west', 'Total deflection', 'Class', 'Freight

speed', 'Passenger speed']

plt.figure(figsize=(10, 8))

corr_matrix = df[features].corr()

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')

plt.title("Feature Correlation Matrix")

plt.show()

Step 3: Feature Engineering

188

Create a new feature as an interaction between two features ('Total car

east' and 'Total car west')

df['Total cars'] = df['Total car east'] + df['Total car west']

Step 4: Define Features and Target Variable

features = ['Line segment number', 'Track standard number', 'Milepost',

'Total cars', 'Total train east',

 'Total train west', 'Total deflection', 'Class', 'Freight

speed', 'Passenger speed']

target = 'Defect type'

Prepare the feature matrix (X) and target vector (y)

X = df[features].values

y = df[target].values

Step 5: Split Data into Training and Testing Sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20,

random_state=0, stratify=y)

Step 6: Create a Pipeline with SMOTE, StandardScaler, and XGBClassifier

pipeline = Pipeline([

 ('smote', SMOTE(random_state=42)), # SMOTE for oversampling the

minority class

 ('scaler', StandardScaler()), # Standardize the features

 ('classifier', XGBClassifier(random_state=42, use_label_encoder=False,

eval_metric='mlogloss')) # XGBoost Classifier

])

Step 7: Define the Parameter Grid for Hyperparameter Tuning

param_grid = {

 'classifier__n_estimators': [100, 200],

 'classifier__max_depth': [3, 5, 7], # Smaller depth for gradient

boosting

189

 'classifier__learning_rate': [0.01, 0.1, 0.2],

 'classifier__subsample': [0.8, 1.0],

 'classifier__colsample_bytree': [0.8, 1.0]

}

Step 8: Use RandomizedSearchCV with StratifiedKFold for Cross-Validation

stratified_kfold = StratifiedKFold(n_splits=5, shuffle=True,

random_state=42) # 5-fold stratified cross-validation

random_search = RandomizedSearchCV(pipeline,

param_distributions=param_grid, n_iter=20, cv=stratified_kfold,

 scoring='accuracy', n_jobs=-1,

verbose=2, random_state=42)

Step 9: Fit the Randomized Search to the Training Data

random_search.fit(X_train, y_train)

Step 10: Get the Best Parameters from the Randomized Search

best_params = random_search.best_params_

print("Best parameters found: ", best_params)

Step 11: Get the Best Model from RandomizedSearchCV

best_model = random_search.best_estimator_

Step 12: Make Predictions on Both Training and Test Sets

y_train_pred = best_model.predict(X_train)

y_test_pred = best_model.predict(X_test)

Step 13: Calculate and Print Training Accuracy

training_accuracy = accuracy_score(y_train, y_train_pred)

print(f"Training Accuracy: {training_accuracy:.4f}")

Step 14: Calculate and Print Test Accuracy

190

test_accuracy = accuracy_score(y_test, y_test_pred)

print(f"Test Accuracy: {test_accuracy:.4f}")

Step 15: Print the Classification Report for the Test Set

print("Classification Report:")

print(classification_report(y_test, y_test_pred))

Step 16: Plot the Confusion Matrix for the Test Set

conf_matrix = confusion_matrix(y_test, y_test_pred)

plt.figure(figsize=(6, 6))

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', cbar=False,

 xticklabels=np.unique(y), yticklabels=np.unique(y))

plt.title('Confusion Matrix')

plt.xlabel('Predicted')

plt.ylabel('True')

plt.show()

Step 17: Extract and Plot Feature Importances from the Best Model

importances = best_model.named_steps['classifier'].feature_importances_

indices = np.argsort(importances)[::-1]

Step 18: Plot the Feature Importances

plt.figure(figsize=(10, 6))

plt.title('Feature Importances')

sns.barplot(y=np.array(features)[indices], x=importances[indices],

orient='h')

plt.xlabel('Relative Importance')

plt.show()

#Random Forest code to predict defect type (80% 20% split)

191

from imblearn.over_sampling import SMOTE

from imblearn.ensemble import BalancedRandomForestClassifier

from sklearn.model_selection import train_test_split, StratifiedKFold,

cross_val_score

from sklearn.ensemble import RandomForestClassifier

from sklearn.feature_selection import RFE

from sklearn.preprocessing import StandardScaler

from imblearn.pipeline import Pipeline

from sklearn.metrics import accuracy_score, classification_report,

confusion_matrix

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

Step 1: Define features and target variable

Assuming df is your DataFrame containing the data

features = ['Line segment number', 'Track standard number', 'Milepost',

'Total car east', 'Total car west', 'Total train east',

 'Total train west', 'Total deflection', 'Class', 'Freight

speed', 'Passenger speed']

target = 'Defect type'

Step 2: Feature Engineering

Creating a new feature 'Total cars' as the sum of 'Total car east' and

'Total car west'

df['Total cars'] = df['Total car east'] + df['Total car west']

Update features list to include the new feature 'Total cars'

features = ['Line segment number', 'Track standard number', 'Milepost',

'Total cars', 'Total train east',

 'Total train west', 'Total deflection', 'Class', 'Freight

speed', 'Passenger speed']

192

Step 3: Prepare the data

X = df[features].values # Feature matrix

y = df[target].values # Target variable

Step 4: Perform feature selection using Recursive Feature Elimination

(RFE)

Selecting the top 8 features using RandomForestClassifier as the

estimator

rfe_selector = RFE(estimator=RandomForestClassifier(),

n_features_to_select=8, step=1)

X_selected = rfe_selector.fit_transform(X, y) # Fit and transform the

feature matrix

selected_features = [features[i] for i in range(len(features)) if

rfe_selector.support_[i]] # Keep only selected features

Step 5: Split the data into training and testing sets (80% training, 20%

testing)

X_train, X_test, y_train, y_test = train_test_split(X_selected, y,

test_size=0.20, random_state=0, stratify=y)

Step 6: Apply SMOTE (Synthetic Minority Over-sampling Technique) to

balance class 0

Increase the number of samples in class 0 to twice the mean of all class

samples

smote = SMOTE(sampling_strategy={0: int(np.mean(np.bincount(y)) * 2)},

random_state=42)

X_train_smote, y_train_smote = smote.fit_resample(X_train, y_train)

Step 7: Define the BalancedRandomForestClassifier model

brf = BalancedRandomForestClassifier(

 random_state=42,

 n_estimators=100, # Number of trees

 max_depth=15, # Maximum depth of the tree

193

 min_samples_split=5, # Minimum samples required to split an

internal node

 min_samples_leaf=2, # Minimum samples required to be at a leaf

node

 sampling_strategy='all', # Sampling strategy for balancing classes

 replacement=True, # Adopt future behavior: allow replacement

in sampling

 bootstrap=False # Disable bootstrap sampling

)

Step 8: Create a pipeline with StandardScaler (to standardize features)

and BalancedRandomForestClassifier

pipeline = Pipeline([

 ('scaler', StandardScaler()), # Step to standardize features

 ('classifier', brf) # Balanced Random Forest Classifier

])

Step 9: Implement StratifiedKFold for stratified cross-validation (cv=5)

stratified_kfold = StratifiedKFold(n_splits=5, shuffle=True,

random_state=42)

Step 10: Perform cross-validation with 5 stratified folds

cross_val_scores = cross_val_score(pipeline, X_train_smote, y_train_smote,

cv=stratified_kfold, scoring='accuracy')

Step 11: Output the cross-validation results

print(f"Cross-Validation Scores (Accuracy): {cross_val_scores}")

print(f"Mean Cross-Validation Score (Accuracy):

{cross_val_scores.mean():.4f}")

Step 12: Fit the pipeline to the SMOTE-enhanced training data

pipeline.fit(X_train_smote, y_train_smote)

194

Step 13: Make predictions on both the training and test sets

y_train_pred = pipeline.predict(X_train) # Predictions on the training

set

y_test_pred = pipeline.predict(X_test) # Predictions on the test set

Step 14: Calculate and Print Training Accuracy

training_accuracy = accuracy_score(y_train, y_train_pred)

print(f"Training Accuracy: {training_accuracy:.4f}")

Step 15: Calculate and print the test accuracy

test_accuracy = accuracy_score(y_test, y_test_pred)

print("Test Accuracy:", test_accuracy)

Step 16: Print the classification report for the test set

print("Classification Report:")

print(classification_report(y_test, y_test_pred))

Step 17: Extract and plot feature importances from the

BalancedRandomForestClassifier

importances = pipeline.named_steps['classifier'].feature_importances_ #

Get feature importances

indices = np.argsort(importances)[::-1] # Sort feature importances in

descending order

Step 18: Plot the feature importances

plt.figure(figsize=(10, 6))

plt.title('Feature Importances')

sns.barplot(y=np.array(selected_features)[indices],

x=importances[indices], orient='h') # Plot using the selected features

plt.xlabel('Relative Importance')

plt.show()

#catBoost code to predict Defect Type (80/ 20%)

195

import pandas as pd

from sklearn.model_selection import train_test_split, StratifiedKFold

from sklearn.metrics import accuracy_score, classification_report,

confusion_matrix

from catboost import CatBoostClassifier

from sklearn.preprocessing import StandardScaler

from imblearn.over_sampling import SMOTE

from imblearn.pipeline import Pipeline

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

Load the dataset

df = pd.read_csv('Connect.csv')

Step 1: Exploratory Data Analysis (EDA)

Check the basic statistics of the dataset

print("Dataset Statistics:\n", df.describe())

Check for missing values

print("Missing Values:\n", df.isnull().sum())

Plot distribution of target variable ('Defect type')

plt.figure(figsize=(8, 6))

sns.countplot(x='Defect type', data=df)

plt.title('Distribution of Defect Type')

plt.show()

Step 2: Correlation Matrix

features = ['Line segment number', 'Track standard number', 'Milepost',

'Total train east',

196

 'Total train west', 'Total deflection', 'Class', 'Freight

speed', 'Passenger speed']

plt.figure(figsize=(10, 8))

corr_matrix = df[features].corr()

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')

plt.title("Feature Correlation Matrix")

plt.show()

Step 3: Feature Engineering

Create a new feature as an interaction between two features ('Total car

east' and 'Total car west')

df['Total cars'] = df['Total car east'] + df['Total car west']

Step 4: Define Features and Target Variable

features = ['Line segment number', 'Track standard number', 'Milepost',

'Total cars', 'Total train east',

 'Total train west', 'Total deflection', 'Class', 'Freight

speed', 'Passenger speed']

target = 'Defect type'

Prepare the feature matrix (X) and target vector (y)

X = df[features].values

y = df[target].values

Step 5: Split Data into Training and Testing Sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20,

random_state=0, stratify=y)

Step 6: Create a Pipeline with StandardScaler, SMOTE, and

CatBoostClassifier

Adding class_weights to handle class imbalance

class_weights = [1, 1.5, 2]

197

pipeline = Pipeline([

 ('smote', SMOTE(random_state=42)), # SMOTE for oversampling the

minority class

 ('scaler', StandardScaler()), # Standardize the features

 ('classifier', CatBoostClassifier(verbose=0, random_state=42,

class_weights=class_weights)) # CatBoost Classifier

])

Step 7: Implement StratifiedKFold with 5 folds

stratified_kfold = StratifiedKFold(n_splits=5, shuffle=True,

random_state=42)

To store the scores for each fold

fold_accuracies = []

Perform stratified k-fold cross-validation

for train_idx, val_idx in stratified_kfold.split(X_train, y_train):

 # Get training and validation sets for this fold

 X_train_fold, X_val_fold = X_train[train_idx], X_train[val_idx]

 y_train_fold, y_val_fold = y_train[train_idx], y_train[val_idx]

 # Fit the pipeline to the fold training data

 pipeline.fit(X_train_fold, y_train_fold)

 # Make predictions on the validation set

 y_val_pred = pipeline.predict(X_val_fold)

 # Calculate accuracy for the current fold

 fold_accuracy = accuracy_score(y_val_fold, y_val_pred)

 fold_accuracies.append(fold_accuracy)

198

 print(f"Fold Accuracy: {fold_accuracy:.4f}")

Step 8: Average accuracy across all 5 folds

average_accuracy = np.mean(fold_accuracies)

print(f"Average Stratified K-Fold Accuracy: {average_accuracy:.4f}")

Step 9: Fit the model to the entire training set after cross-validation

pipeline.fit(X_train, y_train)

Step 10: Make Predictions on the Test Set

y_test_pred = pipeline.predict(X_test)

Step 11: Calculate and Print Test Accuracy

test_accuracy = accuracy_score(y_test, y_test_pred)

print(f"Test Accuracy: {test_accuracy:.4f}")

Step 12: Print the Classification Report for the Test Set

print("Classification Report:")

print(classification_report(y_test, y_test_pred))

Step 13: Plot the Confusion Matrix for the Test Set

conf_matrix = confusion_matrix(y_test, y_test_pred)

plt.figure(figsize=(6, 6))

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', cbar=False,

 xticklabels=np.unique(y_test), yticklabels=np.unique(y_test))

plt.title('Confusion Matrix')

plt.xlabel('Predicted')

plt.ylabel('True')

plt.show()

Step 14: Extract and Plot Feature Importances from the Best Model

199

importances = pipeline.named_steps['classifier'].get_feature_importance()

indices = np.argsort(importances)[::-1]

Step 15: Plot the Feature Importances

plt.figure(figsize=(10, 6))

plt.title('Feature Importances')

sns.barplot(y=np.array(features)[indices], x=importances[indices],

orient='h')

plt.xlabel('Relative Importance')

plt.show()

XGBoost code to predict Defect Type (2007 to 2012 - Training Data / 2013

- Test data)

import pandas as pd

from sklearn.metrics import accuracy_score, classification_report,

confusion_matrix

from xgboost import XGBClassifier

from sklearn.model_selection import RandomizedSearchCV, StratifiedKFold

from imblearn.over_sampling import SMOTE

from imblearn.pipeline import Pipeline

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

Step 1: Load the train and test datasets

train_df = pd.read_csv('Connecttrain.csv')

test_df = pd.read_csv('Connecttest.csv')

Step 2: Define features and target variable

200

features = ['Line segment number', 'Track standard number', 'Milepost',

'Total car east', 'Total car west', 'Total train east',

 'Total train west', 'Total deflection', 'Class', 'Freight

speed', 'Passenger speed']

target = 'Defect type'

Step 3: Feature Engineering - Create 'Total cars' feature

train_df['Total cars'] = train_df['Total car east'] + train_df['Total car

west']

test_df['Total cars'] = test_df['Total car east'] + test_df['Total car

west']

Update the feature list to include the newly created 'Total cars'

feature

features = ['Line segment number', 'Track standard number', 'Milepost',

'Total cars', 'Total train east',

 'Total train west', 'Total deflection', 'Class', 'Freight

speed', 'Passenger speed']

Step 4: Prepare the data

X_train = train_df[features].values # Feature matrix for training

y_train = train_df[target].values # Target variable for training

X_test = test_df[features].values # Feature matrix for testing

y_test = test_df[target].values # Target variable for testing

Step 5: Create a Pipeline with SMOTE and XGBClassifier

pipeline = Pipeline([

 ('smote', SMOTE(random_state=42)), # Apply SMOTE to handle class

imbalance

 ('classifier', XGBClassifier(use_label_encoder=False,

eval_metric='mlogloss', random_state=42)) # XGBoost Classifier

])

201

Step 6: Define the Parameter Grid for Hyperparameter Tuning, focusing on

scale_pos_weight

param_grid = {

 'classifier__n_estimators': [100, 200],

 'classifier__max_depth': [3, 5, 7, 9],

 'classifier__learning_rate': [0.01, 0.1, 0.2],

 'classifier__subsample': [0.8, 1.0],

 'classifier__colsample_bytree': [0.6, 0.8],

 'classifier__reg_alpha': [0, 0.1, 0.5], # L1 regularization

 'classifier__reg_lambda': [1.0, 1.5, 2.0], # L2 regularization

 'classifier__scale_pos_weight': [3, 5, 7, 10] # Further tuning

scale_pos_weight

}

Step 7: Use Stratified K-Fold Cross-Validation with 5 folds

stratified_kfold = StratifiedKFold(n_splits=5, shuffle=True,

random_state=42)

Step 8: Use RandomizedSearchCV for Hyperparameter Tuning with Stratified

K-Fold

random_search = RandomizedSearchCV(pipeline,

param_distributions=param_grid, n_iter=30, cv=stratified_kfold,

 scoring='accuracy', n_jobs=-1,

verbose=2, random_state=42)

Step 9: Fit the Randomized Search to the Training Data

random_search.fit(X_train, y_train)

Step 10: Get the Best Parameters from the Randomized Search

best_params = random_search.best_params_

print("Best parameters found: ", best_params)

Step 11: Get the Best Model from RandomizedSearchCV

202

best_model = random_search.best_estimator_

Step 12: Make Predictions on Both Training and Test Sets

y_train_pred = best_model.predict(X_train)

y_test_pred = best_model.predict(X_test)

Step 13: Calculate and Print Training Accuracy

training_accuracy = accuracy_score(y_train, y_train_pred)

print(f"Training Accuracy: {training_accuracy:.4f}")

Step 14: Calculate and Print Test Accuracy

test_accuracy = accuracy_score(y_test, y_test_pred)

print(f"Test Accuracy: {test_accuracy:.4f}")

Step 15: Print the Classification Report for the Test Set

print("Classification Report:")

print(classification_report(y_test, y_test_pred))

Step 16: Plot the Confusion Matrix for the Test Set

conf_matrix = confusion_matrix(y_test, y_test_pred)

plt.figure(figsize=(6, 6))

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', cbar=False,

 xticklabels=np.unique(y_test), yticklabels=np.unique(y_test))

plt.title('Confusion Matrix')

plt.xlabel('Predicted')

plt.ylabel('True')

plt.show()

Random forest code to predict Defect Type (2007 to 2012 - Training Data

/ 2013 - Test data)

import pandas as pd

203

from imblearn.over_sampling import SMOTE

from imblearn.ensemble import BalancedRandomForestClassifier

from sklearn.model_selection import RandomizedSearchCV, StratifiedKFold

from sklearn.feature_selection import RFE

from sklearn.preprocessing import StandardScaler

from imblearn.pipeline import Pipeline

from sklearn.metrics import accuracy_score, classification_report,

confusion_matrix

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

Step 1: Load the training and test datasets

train_df = pd.read_csv('Connecttrain.csv')

test_df = pd.read_csv('Connecttest.csv')

Step 2: Define features and target variable

features = ['Line segment number', 'Track standard number', 'Milepost',

'Total car east', 'Total car west', 'Total train east',

 'Total train west', 'Total deflection', 'Class', 'Freight

speed', 'Passenger speed']

target = 'Defect type'

Step 3: Feature Engineering - Create 'Total cars' feature

train_df['Total cars'] = train_df['Total car east'] + train_df['Total car

west']

test_df['Total cars'] = test_df['Total car east'] + test_df['Total car

west']

Update features list to include 'Total cars'

features = ['Line segment number', 'Track standard number', 'Milepost',

'Total cars', 'Total train east',

204

 'Total train west', 'Total deflection', 'Class', 'Freight

speed', 'Passenger speed']

Step 4: Prepare the data

X_train = train_df[features].values

y_train = train_df[target].values

X_test = test_df[features].values

y_test = test_df[target].values

Step 5: Feature Selection using RFE

rfe_selector = RFE(estimator=BalancedRandomForestClassifier(),

n_features_to_select=8, step=1)

X_train_selected = rfe_selector.fit_transform(X_train, y_train)

X_test_selected = rfe_selector.transform(X_test)

Step 6: Adjust SMOTE sampling strategy (Oversample class 0 more

aggressively)

smote = SMOTE(sampling_strategy={0: int(np.mean(np.bincount(y_train)) *

3)}, random_state=42)

X_train_smote, y_train_smote = smote.fit_resample(X_train_selected,

y_train)

Step 7: Define the BalancedRandomForestClassifier with reduced

complexity and fixed warnings

brf = BalancedRandomForestClassifier(

 random_state=42,

 n_estimators=100, # Number of trees in the forest

 max_depth=10, # Reduced depth to prevent overfitting

 min_samples_split=10, # Force trees to split on more samples

 min_samples_leaf=5, # Minimum number of samples required to be

at a leaf node

 sampling_strategy='all', # Explicitly set the future sampling

strategy

205

 replacement=True, # Replacement set to True to avoid future

warning

 bootstrap=False # Set to False to silence the future warning

)

Step 8: Define the parameter grid for RandomizedSearchCV (Simplified)

param_grid = {

 'n_estimators': [100, 150],

 'max_depth': [5, 10],

 'min_samples_split': [10, 15],

 'min_samples_leaf': [5, 10]

}

Step 9: Use StratifiedKFold with 5 folds

stratified_kfold = StratifiedKFold(n_splits=5, shuffle=True,

random_state=42)

Step 10: RandomizedSearchCV for hyperparameter tuning with Stratified K-

Fold

random_search = RandomizedSearchCV(estimator=brf,

param_distributions=param_grid, n_iter=10, cv=stratified_kfold, verbose=2,

random_state=42, n_jobs=-1)

Step 11: Create a pipeline with StandardScaler and RandomizedSearchCV

pipeline = Pipeline([

 ('scaler', StandardScaler()),

 ('classifier', random_search)

])

Step 12: Fit the pipeline to the SMOTE-enhanced training data

pipeline.fit(X_train_smote, y_train_smote)

Step 13: Make predictions on both the training and test sets

206

y_train_pred = pipeline.predict(X_train_selected)

y_test_pred = pipeline.predict(X_test_selected)

Step 14: Calculate and print training accuracy

training_accuracy = accuracy_score(y_train, y_train_pred)

print(f"Training Accuracy: {training_accuracy:.4f}")

Step 15: Calculate and print test accuracy

test_accuracy = accuracy_score(y_test, y_test_pred)

print(f"Test Accuracy: {test_accuracy:.4f}")

Step 16: Print the classification report for the test set

print("Classification Report:")

print(classification_report(y_test, y_test_pred))

Step 17: Plot the confusion matrix for the test set

conf_matrix = confusion_matrix(y_test, y_test_pred)

plt.figure(figsize=(6, 6))

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', cbar=False,

 xticklabels=np.unique(y_test), yticklabels=np.unique(y_test))

plt.title('Confusion Matrix')

plt.xlabel('Predicted')

plt.ylabel('True')

plt.show()

#Catboost code to predict Defect Type (2007 to 2012 - Training Data / 2013

- Test data)

import pandas as pd

from sklearn.metrics import accuracy_score, classification_report,

confusion_matrix

from catboost import CatBoostClassifier

207

from sklearn.model_selection import RandomizedSearchCV

from imblearn.over_sampling import SMOTE

from imblearn.pipeline import Pipeline

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

Step 1: Load the train and test datasets

train_df = pd.read_csv('Connecttrain.csv')

test_df = pd.read_csv('Connecttest.csv')

Step 2: Define features and target variable

features = ['Line segment number', 'Track standard number', 'Milepost',

'Total car east', 'Total car west', 'Total train east',

 'Total train west', 'Total deflection', 'Class', 'Freight

speed', 'Passenger speed']

target = 'Defect type'

Step 3: Feature Engineering - Create 'Total cars' feature

train_df['Total cars'] = train_df['Total car east'] + train_df['Total car

west']

test_df['Total cars'] = test_df['Total car east'] + test_df['Total car

west']

Update the feature list to include the newly created 'Total cars'

feature

features = ['Line segment number', 'Track standard number', 'Milepost',

'Total cars', 'Total train east',

 'Total train west', 'Total deflection', 'Class', 'Freight

speed', 'Passenger speed']

Step 4: Prepare the data

X_train = train_df[features].values # Feature matrix for training

208

y_train = train_df[target].values # Target variable for training

X_test = test_df[features].values # Feature matrix for testing

y_test = test_df[target].values # Target variable for testing

Step 5: Create a Pipeline with SMOTE and CatBoostClassifier

Adjust class weights to balance class prediction across classes

class_weights = [2, 1.5, 1.2] # Adjust weights for class 0, 1, and 2

pipeline = Pipeline([

 ('smote', SMOTE(random_state=42)), # Apply SMOTE to handle class

imbalance

 ('classifier', CatBoostClassifier(verbose=0, random_state=42,

class_weights=class_weights)) # CatBoost Classifier with class weights

])

Step 6: Define the Parameter Grid for Hyperparameter Tuning

param_grid = {

 'classifier__iterations': [300, 500, 700],

 'classifier__depth': [6, 8, 10],

 'classifier__learning_rate': [0.005, 0.01, 0.05],

 'classifier__l2_leaf_reg': [5, 7, 10], # Increasing L2 regularization

to avoid overfitting

 'classifier__bagging_temperature': [1, 1.5, 2] # Overfitting control

}

Step 7: Use RandomizedSearchCV for Hyperparameter Tuning

random_search = RandomizedSearchCV(pipeline,

param_distributions=param_grid, n_iter=30, cv=3, scoring='accuracy',

n_jobs=-1, verbose=2, random_state=42)

Step 8: Fit the Randomized Search to the Training Data

random_search.fit(X_train, y_train)

Step 9: Get the Best Parameters from the Randomized Search

209

best_params = random_search.best_params_

print("Best parameters found: ", best_params)

Step 10: Get the Best Model from RandomizedSearchCV

best_model = random_search.best_estimator_

Step 11: Make Predictions on Both Training and Test Sets

y_train_pred = best_model.predict(X_train)

y_test_pred = best_model.predict(X_test)

Step 12: Calculate and Print Training Accuracy

training_accuracy = accuracy_score(y_train, y_train_pred)

print(f"Training Accuracy: {training_accuracy:.4f}")

Step 13: Calculate and Print Test Accuracy

test_accuracy = accuracy_score(y_test, y_test_pred)

print(f"Test Accuracy: {test_accuracy:.4f}")

Step 14: Print the Classification Report for the Test Set

print("Classification Report:")

print(classification_report(y_test, y_test_pred))

Step 15: Plot the Confusion Matrix for the Test Set

conf_matrix = confusion_matrix(y_test, y_test_pred)

plt.figure(figsize=(6, 6))

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', cbar=False,

 xticklabels=np.unique(y_test), yticklabels=np.unique(y_test))

plt.title('Confusion Matrix')

plt.xlabel('Predicted')

plt.ylabel('True')

plt.show()

210

Regression model to predict the defect amplitude using Multiple Linear Regression,

Decision Trees, XGBoost, Random Forest and Cat Boost

#Multiple linear regression (80/20 split)

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import train_test_split

from sklearn.metrics import r2_score, mean_squared_error

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

Step 1: Load the data

df = pd.read_csv('Connect.csv')

Step 2: Extract features and target

X = df[['Line segment number', 'Track standard number', 'Milepost', 'Total

car east', 'Total car west',

 'Total train east', 'Total train west', 'Total deflection',

'Class', 'Freight speed',

 'Passenger speed', 'Defect type']].values

Step 3:target variable 'Defect amplitude’

y = df['Defect amplitude'].values

Step 4: Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

Step 5: Initialize Linear Regression model

linear_model = LinearRegression()

211

Step 6: Train the model on the training data

linear_model.fit(X_train, y_train)

Step 7: Predict on the test data

y_test_pred_linear = linear_model.predict(X_test)

Step 8: Predict on the training data to calculate training accuracy

y_train_pred_linear = linear_model.predict(X_train)

Step 9: Calculate and print the R-squared score for the test and

training sets

r2_test_linear = r2_score(y_test, y_test_pred_linear)

r2_train_linear = r2_score(y_train, y_train_pred_linear)

print(f"R-squared (Test) for Multiple Linear Regression:

{r2_test_linear}")

print(f"R-squared (Training) for Multiple Linear Regression:

{r2_train_linear}")

Step 10: Print the coefficients and intercept of the model

print("Coefficients of the model: ", linear_model.coef_)

print("Intercept of the model: ", linear_model.intercept_)

Step 11: Calculate RMSE for both training and test sets

rmse_train_linear = np.sqrt(mean_squared_error(y_train,

y_train_pred_linear))

rmse_test_linear = np.sqrt(mean_squared_error(y_test, y_test_pred_linear))

print(f"RMSE (Training) for Linear Regression: {rmse_train_linear}")

print(f"RMSE (Test) for Linear Regression: {rmse_test_linear}")

Step 12: Plot Actual vs Predicted for Training set

212

plt.figure(figsize=(8, 6))

plt.scatter(y_train, y_train_pred_linear, alpha=0.6, color='blue',

label='Predicted')

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Training Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

Step 13: Plot Actual vs Predicted for Test set

plt.figure(figsize=(8, 6))

plt.scatter(y_test, y_test_pred_linear, alpha=0.6, color='green',

label='Predicted')

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Test Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

#decision tree to predict the defect amplitude (80/20 split)

from sklearn.tree import DecisionTreeRegressor

from sklearn.model_selection import train_test_split, GridSearchCV

from sklearn.metrics import r2_score, mean_squared_error

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

213

Step 1: Load the data

df = pd.read_csv('Connect.csv')

Step 2: Extract features and target

X = df[['Line segment number', 'Track standard number', 'Milepost', 'Total

car east', 'Total car west',

 'Total train east', 'Total train west', 'Total deflection',

'Class', 'Freight speed',

 'Passenger speed', 'Defect type']].values

Step 3: target variable 'Defect amplitude'

y = df['Defect amplitude'].values

Step 4: Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

Refined parameter grid to reduce overfitting

param_grid = {

 'max_depth': [10, 15, 20, None], # Limiting depth to avoid

overfitting

 'min_samples_split': [5, 10, 15], # Requiring more samples to split a

node

 'min_samples_leaf': [5, 10, 15], # Requiring more samples at each

leaf node

 'max_features': [None, 'sqrt', 'log2'] # Limiting the number of

features for each split

}

Step 6: Initialize Decision Tree Regressor

tree = DecisionTreeRegressor(random_state=42)

Step 7: Perform hyperparameter tuning with GridSearchCV

214

tree_search = GridSearchCV(tree, param_grid, cv=5, scoring='r2',

verbose=1, n_jobs=-1)

tree_search.fit(X_train, y_train)

Step 8: Output the best parameters and the cross-validation R² score

best_tree_params = tree_search.best_params_

best_tree_score = tree_search.best_score_

print(f"Best parameters for Decision Tree: {best_tree_params}")

print(f"Best cross-validation R² score for Decision Tree:

{best_tree_score}")

Step 9: Train the model with the best parameters

best_tree_model = tree_search.best_estimator_

Step 10: Predict on the test data

y_test_pred_tree = best_tree_model.predict(X_test)

Step 11: Predict on the training data to calculate training accuracy

y_train_pred_tree = best_tree_model.predict(X_train)

Step 12: Calculate and print the R-squared score for the test and

training sets

r2_test_tree = r2_score(y_test, y_test_pred_tree)

r2_train_tree = r2_score(y_train, y_train_pred_tree)

print(f"R-squared (Test) for Decision Tree: {r2_test_tree}")

print(f"R-squared (Training) for Decision Tree: {r2_train_tree}")

Step 13: Calculate RMSE for both training and test sets

rmse_train_tree = np.sqrt(mean_squared_error(y_train, y_train_pred_tree))

rmse_test_tree = np.sqrt(mean_squared_error(y_test, y_test_pred_tree))

215

print(f"RMSE (Training) for Decision Tree: {rmse_train_tree}")

print(f"RMSE (Test) for Decision Tree: {rmse_test_tree}")

Step 14: Plot Actual vs Predicted for Training set

plt.figure(figsize=(8, 6))

plt.scatter(y_train, y_train_pred_tree, alpha=0.6, color='blue',

label='Predicted')

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Training Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

Step 15: Plot Actual vs Predicted for Test set

plt.figure(figsize=(8, 6))

plt.scatter(y_test, y_test_pred_tree, alpha=0.6, color='green',

label='Predicted')

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Test Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

XGBoost (80/20 split)

from xgboost import XGBRegressor

from sklearn.model_selection import train_test_split, RandomizedSearchCV,

KFold

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

216

from sklearn.metrics import r2_score, mean_squared_error

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

Step 1: Load the data

df = pd.read_csv('Connect.csv')

Step 2: Exploratory Data Analysis (EDA)

print("Dataset Statistics:\n", df.describe())

print("Missing Values:\n", df.isnull().sum())

Plot the distribution of the target variable 'Defect amplitude'

plt.figure(figsize=(8, 6))

sns.histplot(df['Defect amplitude'], kde=True, bins=30)

plt.title('Distribution of Defect Amplitude')

plt.xlabel('Defect Amplitude')

plt.ylabel('Frequency')

plt.show()

Step 3: Correlation Matrix

features = ['Line segment number','Track standard number','Milepost',

'Total car east', 'Total car west',

 'Total train east', 'Total train west', 'Total deflection',

'Class', 'Freight speed',

 'Passenger speed','Defect type']

plt.figure(figsize=(10, 8))

corr_matrix = df[features].corr()

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')

plt.title("Feature Correlation Matrix")

217

plt.show()

Step 4: Extract features and target

X = df[['Milepost', 'Total car east', 'Total car west',

 'Total train east', 'Total train west', 'Total deflection',

'Class', 'Freight speed',

 'Passenger speed','Defect type']].values

y = df['Defect amplitude'].values

Step 5: Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

Step 6: Define a pipeline that first scales the data then applies

XGBoost Regressor

pipeline = Pipeline([

 ('scaler', StandardScaler()), # Standardize the

features

 ('xgb', XGBRegressor(objective='reg:squarederror',

random_state=42)) # XGBoost model

])

Step 7: Set up a parameter distribution with higher regularization

param_distributions = {

 'xgb__n_estimators': [1000, 1500], # Increase number

of boosting rounds for fine-tuning

 'xgb__max_depth': [5, 7], # Limit tree depth to

avoid overfitting

 'xgb__learning_rate': [0.01, 0.02], # Lower learning rates

for smaller updates

 'xgb__subsample': [0.7], # Fixed subsample ratio

to reduce variance

 'xgb__colsample_bytree': [0.7], # Fixed feature sampling

to reduce overfitting

218

 'xgb__min_child_weight': [3, 5], # Increase to avoid

overfitting small splits

 'xgb__gamma': [0.1, 0.2], # Minimum loss reduction

to make a split

 'xgb__reg_alpha': [0.5, 1], # Higher L1

regularization

 'xgb__reg_lambda': [2, 3] # Higher L2

regularization

}

Step 8: Use K-Fold for cross-validation

kf = KFold(n_splits=5)

Step 9: Set up RandomizedSearchCV with the updated parameter space

random_search = RandomizedSearchCV(estimator=pipeline,

param_distributions=param_distributions,

 n_iter=10, cv=kf, scoring='r2',

n_jobs=-1, verbose=2, random_state=42)

Step 10: Fit the random search to the data

random_search.fit(X_train, y_train)

Step 11: Best hyperparameters

best_params = random_search.best_params_

print("Best Hyperparameters: ", best_params)

Step 12: Train the model with the best hyperparameters

best_model = random_search.best_estimator_

Step 13: Predict on the train and test sets

y_train_pred = best_model.predict(X_train)

y_test_pred = best_model.predict(X_test)

219

Step 14: Calculate R^2 and RMSE scores

r2_train = r2_score(y_train, y_train_pred)

r2_test = r2_score(y_test, y_test_pred)

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred))

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred))

Step 15: Output the R^2 and RMSE scores

print("Training R^2 Score: ", r2_train)

print("Testing R^2 Score: ", r2_test)

print("Training RMSE: ", rmse_train)

print("Testing RMSE: ", rmse_test)

Step 16: Predict on the entire dataset

y_pred = best_model.predict(X)

Step 17: Add the predictions as a new column to the original DataFrame

df['Prediction'] = y_pred

Step 18: Save the updated DataFrame to a new CSV file

df.to_csv('Connect_with_predictions.csv', index=False)

Step 19: Output location

print("Results saved to 'Connect_with_predictions.csv'")

Step 20: Plot the feature importance

xgb_model = best_model.named_steps['xgb'] # Extract the XGB model from

the pipeline

feature_importances = xgb_model.feature_importances_

Step 21: Define feature names

220

feature_names = ['Milepost', 'Total car east', 'Total car west', 'Total

train east',

 'Total train west', 'Total deflection', 'Class', 'Freight

speed',

 'Passenger speed', 'Defect type']

Step 22: Create a DataFrame for plotting

importances_df = pd.DataFrame({

 'Feature': feature_names,

 'Importance': feature_importances

}).sort_values(by='Importance', ascending=False)

Step 23: Plot the feature importances

plt.figure(figsize=(10, 6))

plt.barh(importances_df['Feature'], importances_df['Importance'])

plt.xlabel('Importance')

plt.ylabel('Feature')

plt.title('Feature Importances from XGBoost Model')

plt.gca().invert_yaxis() # Invert y-axis to display the most important

feature at the top

plt.show()

Step 24: Plot Predicted vs Observed (Training set)

plt.figure(figsize=(8, 6))

plt.scatter(y_train, y_train_pred, alpha=0.6, color='b')

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)],

color='red', lw=2) # Line of perfect fit

plt.title('Predicted vs Observed (Training Set)')

plt.xlabel('Observed')

plt.ylabel('Predicted')

plt.show()

221

Step 25: Plot Predicted vs Observed (Test set)

plt.figure(figsize=(8, 6))

plt.scatter(y_test, y_test_pred, alpha=0.6, color='b')

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)],

color='red', lw=2) # Line of perfect fit

plt.title('Predicted vs Observed (Test Set)')

plt.xlabel('Observed')

plt.ylabel('Predicted')

plt.show()

#Random Forest(80/20 split)

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import train_test_split, RandomizedSearchCV,

KFold

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

from sklearn.metrics import r2_score, mean_squared_error

Step 1: Load the data

df = pd.read_csv('Connect.csv')

Step 2: Exploratory Data Analysis (EDA)

Check basic statistics of the dataset

print("Dataset Statistics:\n", df.describe())

Check for missing values

print("Missing Values:\n", df.isnull().sum())

222

Plot the distribution of the target variable 'Defect amplitude'

plt.figure(figsize=(8, 6))

sns.histplot(df['Defect amplitude'], kde=True, bins=30)

plt.title('Distribution of Defect Amplitude')

plt.xlabel('Defect Amplitude')

plt.ylabel('Frequency')

plt.show()

Step 3: Correlation Matrix

Calculate correlation between numerical features

features = ['Milepost', 'Total car east', 'Total car west',

 'Total train east', 'Total train west', 'Total deflection',

'Class', 'Freight speed',

 'Passenger speed','Defect type']

plt.figure(figsize=(10, 8))

corr_matrix = df[features].corr()

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')

plt.title("Feature Correlation Matrix")

plt.show()

Step 4: Extract features and target

X = df[['Line segment number', 'Milepost', 'Track standard number',

 'Total car east', 'Total car west',

 'Total train east', 'Total train west', 'Total deflection',

'Class', 'Freight speed',

 'Passenger speed','Defect type']].values

y = df['Defect amplitude'].values

Step 5: Split the data into training and testing sets

223

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

Step 6: Define a pipeline that first scales the data then applies

RandomForestRegressor

pipeline = Pipeline([

 ('scaler', StandardScaler()), # Standardize the features

 ('rf', RandomForestRegressor(random_state=42)) # RandomForest model

])

Step 7: Set up a more aggressive parameter distribution to sample from

for regularization

param_distributions = {

 'rf__n_estimators': [600, 800, 1000], # Further increase

the number of trees

 'rf__max_depth': [15, 20, 25], # Experiment with

different tree depths

 'rf__min_samples_split': [10, 20, 30], # Require more samples

to split

 'rf__min_samples_leaf': [2, 4, 6], # Allow smaller leaves

 'rf__max_features': ['sqrt', 0.2, 0.3] # Experiment with

different feature subsets

}

Step 8: Use K-Fold for cross-validation

kf = KFold(n_splits=5)

Step 9: Set up RandomizedSearchCV with the pipeline and K-Fold

random_search = RandomizedSearchCV(estimator=pipeline,

param_distributions=param_distributions,

 n_iter=50, cv=kf, scoring='r2',

n_jobs=-1, verbose=2, random_state=42)

Step 10: Fit the random search to the data

224

random_search.fit(X_train, y_train)

Step 11: Best hyperparameters

best_params = random_search.best_params_

print("Best Hyperparameters: ", best_params)

Step 12: Train the model with the best hyperparameters

best_model = random_search.best_estimator_

Step 13: Predict on the train and test sets

y_train_pred = best_model.predict(X_train)

y_test_pred = best_model.predict(X_test)

Step 14: Calculate R^2 and RMSE scores

r2_train = r2_score(y_train, y_train_pred)

r2_test = r2_score(y_test, y_test_pred)

RMSE for training and test sets

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred))

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred))

Step 15: Output the R^2 and RMSE scores

print("Training R^2 Score: ", r2_train)

print("Testing R^2 Score: ", r2_test)

print("Training RMSE: ", rmse_train)

print("Testing RMSE: ", rmse_test)

Step 16: Predict on the entire dataset

y_pred = best_model.predict(X)

Step 17: Add the predictions as a new column to the original DataFrame

225

df['Prediction'] = y_pred

Step 18: Save the updated DataFrame to a new CSV file

df.to_csv('Connect_with_predictions.csv', index=False)

Step 19: Output location

print("Results saved to 'Connect_with_predictions.csv'")

Step 20: Plot feature importance

rf_model = best_model.named_steps['rf'] # Extract the Random Forest model

from the pipeline

feature_importances = rf_model.feature_importances_

Step 21: Define feature names

feature_names = ['Line segment number', 'Milepost', 'Track standard

number', 'Total car east',

 'Total car west', 'Total train east', 'Total train west',

'Total deflection', 'Class', 'Freight speed', 'Passenger speed', 'Defect

type']

Step 22: Create a DataFrame for plotting feature importances

importances_df = pd.DataFrame({

 'Feature': feature_names,

 'Importance': feature_importances

}).sort_values(by='Importance', ascending=False)

Step 23: Plot the feature importances

plt.figure(figsize=(10, 6))

plt.barh(importances_df['Feature'], importances_df['Importance'])

plt.xlabel('Importance')

plt.ylabel('Feature')

plt.title('Feature Importances from Random Forest Model')

226

plt.gca().invert_yaxis() # Invert y-axis to display the most important

feature at the top

plt.show()

Step 24: Plot Predicted vs Observed (Training set)

plt.figure(figsize=(8, 6))

plt.scatter(y_train, y_train_pred, alpha=0.6, color='b')

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)],

color='red', lw=2) # Line of perfect fit

plt.title('Predicted vs Observed (Training Set)')

plt.xlabel('Observed')

plt.ylabel('Predicted')

plt.show()

Step 25: Plot Predicted vs Observed (Test set)

plt.figure(figsize=(8, 6))

plt.scatter(y_test, y_test_pred, alpha=0.6, color='b')

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)],

color='red', lw=2) # Line of perfect fit

plt.title('Predicted vs Observed (Test Set)')

plt.xlabel('Observed')

plt.ylabel('Predicted')

plt.show()

#catboost (80/20% split)

from sklearn.model_selection import RandomizedSearchCV

from catboost import CatBoostRegressor

from sklearn.metrics import r2_score, mean_squared_error

from sklearn.model_selection import train_test_split

import pandas as pd

import numpy as np

227

import matplotlib.pyplot as plt

Step 1: Load the data

df = pd.read_csv('Connect.csv')

Step 2: Extract features and target

X = df[['Line segment number','Track standard number','Milepost', 'Total

car east', 'Total car west',

 'Total train east', 'Total train west', 'Total deflection',

'Class', 'Freight speed',

 'Passenger speed', 'Defect type']]

Convert the target variable 'Defect amplitude' to its absolute value

y = df['Defect amplitude'].values

Step 3: Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

Step 4: Define a parameter grid for tuning

param_grid = {

 'iterations': [250, 300, 350],

 'depth': [10, 12, 14],

 'learning_rate': [0.05, 0.08, 0.1],

 'l2_leaf_reg': [3, 4, 5],

 'border_count': [160, 180],

 'bagging_temperature': [1.0, 1.2, 1.5]

}

Step 5: Initialize CatBoost Regressor

catboost_reg = CatBoostRegressor(verbose=0, random_state=42)

228

Step 6: Initialize RandomizedSearchCV for CatBoost tuning

random_search_catboost = RandomizedSearchCV(

 catboost_reg,

 param_distributions=param_grid,

 n_iter=20,

 scoring='r2',

 cv=5,

 verbose=1,

 n_jobs=-1,

 random_state=42

)

Step 7: Fit RandomizedSearchCV

random_search_catboost.fit(X_train, y_train)

Step 8: Output the best parameters and cross-validation R² score

best_params = random_search_catboost.best_params_

best_score = random_search_catboost.best_score_

print(f"Best parameters for tuned CatBoost: {best_params}")

print(f"Best cross-validation R² score: {best_score}")

Step 9: Train the model with the best parameters

best_model_catboost = random_search_catboost.best_estimator_

Step 10: Predict on the test data

y_test_pred = best_model_catboost.predict(X_test)

Step 11: Predict on the training data

y_train_pred = best_model_catboost.predict(X_train)

229

Step 12: Calculate R-squared and RMSE for training and test sets

r2_train = r2_score(y_train, y_train_pred)

r2_test = r2_score(y_test, y_test_pred)

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred))

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred))

Step 13: Output R-squared and RMSE scores

print(f"R-squared (Training): {r2_train}")

print(f"R-squared (Test): {r2_test}")

print(f"RMSE (Training): {rmse_train}")

print(f"RMSE (Test): {rmse_test}")

Step 14: Plot Actual vs Predicted for Training set

plt.figure(figsize=(8, 6))

plt.scatter(y_train, y_train_pred, alpha=0.6, color='b',

label='Predicted')

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Training Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

Step 15: Plot Actual vs Predicted for Test set

plt.figure(figsize=(8, 6))

plt.scatter(y_test, y_test_pred, alpha=0.6, color='b', label='Predicted')

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Test Set)')

plt.xlabel('Actual Values')

230

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

#XGBoost (2007 - 2012 training data, 2013 Test data)

from xgboost import XGBRegressor

from sklearn.model_selection import train_test_split, RandomizedSearchCV,

KFold

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

from sklearn.metrics import r2_score, mean_squared_error

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

Step 1: Load the training and test datasets

train_df = pd.read_csv('Connecttrain.csv')

test_df = pd.read_csv('Connecttest.csv')

Step 2: Exploratory Data Analysis (EDA)

Check basic statistics of the training dataset

print("Training Data Statistics:\n", train_df.describe())

Check for missing values in training and test datasets

print("Missing Values in Training Data:\n", train_df.isnull().sum())

print("Missing Values in Test Data:\n", test_df.isnull().sum())

Plot the distribution of the target variable 'Defect amplitude' in

training data

plt.figure(figsize=(8, 6))

sns.histplot(train_df['Defect amplitude'], kde=True, bins=30)

231

plt.title('Distribution of Defect Amplitude in Training Data')

plt.xlabel('Defect Amplitude')

plt.ylabel('Frequency')

plt.show()

Step 3: Define the feature and target columns

features = ['Milepost', 'Total car east', 'Total car west', 'Total train

east',

 'Total train west', 'Total deflection', 'Class', 'Freight

speed',

 'Passenger speed', 'Defect type']

target = 'Defect amplitude'

Step 4: Extract features and target

X_train = train_df[features].values

y_train = train_df[target].values

X_test = test_df[features].values

y_test = test_df[target].values

Step 5: Define a pipeline that first scales the data then applies

XGBoost Regressor

pipeline = Pipeline([

 ('scaler', StandardScaler()), # Standardize the

features

 ('xgb', XGBRegressor(objective='reg:squarederror',

random_state=42)) # XGBoost model

])

Step 6: Set up a parameter distribution with increased regularization

and early stopping

param_distributions = {

 'xgb__n_estimators': [3000], # Increase number of

boosting rounds for fine-tuning

232

 'xgb__max_depth': [4, 6], # Further limit tree

depth

 'xgb__learning_rate': [0.005, 0.01], # Lower learning rates

for smaller updates

 'xgb__subsample': [0.7], # Fixed subsample ratio

to reduce variance

 'xgb__colsample_bytree': [0.7], # Fixed feature sampling

to reduce overfitting

 'xgb__min_child_weight': [6, 8], # Increase to avoid

overfitting small splits

 'xgb__gamma': [0.1, 0.2], # Minimum loss reduction

to make a split

 'xgb__reg_alpha': [1, 2], # Higher L1

regularization

 'xgb__reg_lambda': [4, 5] # Higher L2

regularization

}

Step 7: Use K-Fold for cross-validation

kf = KFold(n_splits=5)

Step 8: Set up RandomizedSearchCV with the updated parameter space

random_search = RandomizedSearchCV(estimator=pipeline,

param_distributions=param_distributions,

 n_iter=10, cv=kf, scoring='r2',

n_jobs=-1, verbose=2, random_state=42)

Step 9: Fit the random search to the data

random_search.fit(X_train, y_train)

Step 10: Best hyperparameters

best_params = random_search.best_params_

print("Best Hyperparameters: ", best_params)

233

Step 11: Extract the best model and set up early stopping

best_xgb_model = random_search.best_estimator_.named_steps['xgb']

best_xgb_model.set_params(early_stopping_rounds=100)

Step 12: Train the model with the best hyperparameters and early

stopping

best_xgb_model.fit(X_train, y_train, eval_set=[(X_test, y_test)],

verbose=False)

Step 13: Predict on the train and test sets

y_train_pred = best_xgb_model.predict(X_train)

y_test_pred = best_xgb_model.predict(X_test)

Step 14: Calculate R^2 scores and RMSE for training and test sets

r2_train = r2_score(y_train, y_train_pred)

r2_test = r2_score(y_test, y_test_pred)

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred))

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred))

Step 15: Output the R^2 and RMSE scores

print("Training R^2 Score: ", r2_train)

print("Testing R^2 Score: ", r2_test)

print("Training RMSE: ", rmse_train)

print("Testing RMSE: ", rmse_test)

Step 16: Plot Actual vs Predicted for Training set

plt.figure(figsize=(8, 6))

plt.scatter(y_train, y_train_pred, alpha=0.6, color='b',

label='Predicted')

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

234

plt.title('Actual vs Predicted (Training Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

Step 17: Plot Actual vs Predicted for Test set

plt.figure(figsize=(8, 6))

plt.scatter(y_test, y_test_pred, alpha=0.6, color='b', label='Predicted')

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Test Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

#Random Forest (2007 - 2012 training data, 2013 Test data)

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import RandomizedSearchCV, KFold

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

from sklearn.metrics import r2_score, mean_squared_error

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

Step 1: Define the feature and target columns

features = ['Line segment number', 'Milepost', 'Track standard number',

235

 'Total car east', 'Total car west', 'Total train east',

 'Total train west', 'Total deflection', 'Track code',

 'Class', 'Freight speed', 'Passenger speed', 'Defect type']

target = 'Defect amplitude'

Step 2: Load the train and test data

train_df = pd.read_csv('Connecttrain.csv')

test_df = pd.read_csv('Connecttest.csv')

Step 3: Exploratory Data Analysis (EDA)

Check basic statistics of the training dataset

print("Training Data Statistics:\n", train_df.describe())

Check for missing values in training and test datasets

print("Missing Values in Training Data:\n", train_df.isnull().sum())

print("Missing Values in Test Data:\n", test_df.isnull().sum())

Plot the distribution of the target variable 'Defect amplitude' in the

training data

plt.figure(figsize=(8, 6))

sns.histplot(train_df['Defect amplitude'], kde=True, bins=30)

plt.title('Distribution of Defect Amplitude in Training Data')

plt.xlabel('Defect Amplitude')

plt.ylabel('Frequency')

plt.show()

Step 5: Extract features and target

X_train = train_df[features].values

y_train = train_df[target].values

X_test = test_df[features].values

y_test = test_df[target].values

236

Step 6: Define a pipeline that first scales the data then applies

RandomForestRegressor

pipeline = Pipeline([

 ('scaler', StandardScaler()), # Standardize the features

 ('rf', RandomForestRegressor(random_state=42)) # RandomForest model

])

Step 7: Set up a more aggressive parameter distribution to sample from

for regularization

param_distributions = {

 'rf__n_estimators': [700, 800, 1000], # Increase the number

of trees

 'rf__max_depth': [8, 12, 16], # Limit the tree depth

more aggressively

 'rf__min_samples_split': [20, 25, 30], # Require more samples

to split

 'rf__min_samples_leaf': [5, 7, 9], # Require more samples

at leaf nodes

 'rf__max_features': [0.1, 0.2, 'sqrt'] # Limit features for

each split

}

Step 8: Use K-Fold for cross-validation

kf = KFold(n_splits=5)

Step 9: Set up RandomizedSearchCV with the pipeline and K-Fold

random_search = RandomizedSearchCV(estimator=pipeline,

param_distributions=param_distributions,

 n_iter=30, cv=kf, scoring='r2',

n_jobs=-1, verbose=2, random_state=42)

Step 10: Fit the random search to the data

random_search.fit(X_train, y_train)

237

Step 11: Best hyperparameters

best_params = random_search.best_params_

print("Best Hyperparameters: ", best_params)

Step 12: Train the model with the best hyperparameters

best_model = random_search.best_estimator_

Step 13: Predict on the train and test sets

y_train_pred = best_model.predict(X_train)

y_test_pred = best_model.predict(X_test)

Step 14: Calculate R^2 scores and RMSE for both training and test sets

r2_train = r2_score(y_train, y_train_pred)

r2_test = r2_score(y_test, y_test_pred)

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred))

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred))

Step 15: Output the R^2 and RMSE scores

print("Training R^2 Score: ", r2_train)

print("Testing R^2 Score: ", r2_test)

print("Training RMSE: ", rmse_train)

print("Testing RMSE: ", rmse_test)

Step 16: Plot Actual vs Predicted for Training set

plt.figure(figsize=(8, 6))

plt.scatter(y_train, y_train_pred, alpha=0.6, color='b',

label='Predicted')

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Training Set)')

238

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

Step 17: Plot Actual vs Predicted for Test set

plt.figure(figsize=(8, 6))

plt.scatter(y_test, y_test_pred, alpha=0.6, color='b', label='Predicted')

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Test Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

#cat boost (2007 - 2012 training data, 2013 Test data)

from catboost import CatBoostRegressor

from sklearn.model_selection import train_test_split, RandomizedSearchCV,

KFold

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

from sklearn.metrics import r2_score, mean_squared_error

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

Step 1: Load the training and test datasets

train_df = pd.read_csv('Connecttrain.csv')

test_df = pd.read_csv('Connecttest.csv')

239

Step 2: Exploratory Data Analysis (EDA)

Check basic statistics of the training dataset

print("Training Data Statistics:\n", train_df.describe())

Check for missing values in training and test datasets

print("Missing Values in Training Data:\n", train_df.isnull().sum())

print("Missing Values in Test Data:\n", test_df.isnull().sum())

Plot the distribution of the target variable 'Defect amplitude' in

training data

plt.figure(figsize=(8, 6))

sns.histplot(train_df['Defect amplitude'], kde=True, bins=30)

plt.title('Distribution of Defect Amplitude in Training Data')

plt.xlabel('Defect Amplitude')

plt.ylabel('Frequency')

plt.show()

Step 3: Define the feature and target columns

features = ['Milepost', 'Total car east', 'Total car west', 'Total train

east',

 'Total train west', 'Total deflection', 'Class', 'Freight

speed',

 'Passenger speed', 'Defect type']

target = 'Defect amplitude'

Step 4: Extract features and target

X_train = train_df[features].values

y_train = train_df[target].values

X_test = test_df[features].values

y_test = test_df[target].values

240

Step 5: Define a pipeline that first scales the data then applies

CatBoost Regressor

pipeline = Pipeline([

 ('scaler', StandardScaler()), # Standardize the features

 ('catboost', CatBoostRegressor(verbose=0, random_state=42)) #

CatBoost model

])

Step 6: Set up a refined parameter distribution with lower learning rate

and more iterations

param_distributions = {

 'catboost__iterations': [1500, 2000], # Higher number of

boosting rounds

 'catboost__depth': [6, 7], # Keep depth at

moderate levels

 'catboost__learning_rate': [0.01, 0.02], # Lower learning rates

for gradual updates

 'catboost__subsample': [0.7], # Subsampling to reduce

variance

 'catboost__l2_leaf_reg': [5, 7], # L2 regularization for

generalization

 'catboost__bagging_temperature': [2, 3] # Add randomness

through bagging

}

Step 7: Use K-Fold for cross-validation

kf = KFold(n_splits=5)

Step 8: Set up RandomizedSearchCV with the parameter space

random_search = RandomizedSearchCV(estimator=pipeline,

param_distributions=param_distributions,

 n_iter=10, cv=kf, scoring='r2',

n_jobs=-1, verbose=2, random_state=42)

241

Step 9: Fit the random search to the data

random_search.fit(X_train, y_train)

Step 10: Best hyperparameters

best_params = random_search.best_params_

print("Best Hyperparameters: ", best_params)

Step 11: Extract the best model from the pipeline

best_catboost_model =

random_search.best_estimator_.named_steps['catboost']

Step 12: Train the model with early stopping using validation data

best_catboost_model.fit(X_train, y_train, eval_set=(X_test, y_test),

early_stopping_rounds=100, verbose=False)

Step 13: Predict on the train and test sets

y_train_pred = best_catboost_model.predict(X_train)

y_test_pred = best_catboost_model.predict(X_test)

Step 14: Calculate R^2 scores and RMSE for both training and test sets

r2_train = r2_score(y_train, y_train_pred)

r2_test = r2_score(y_test, y_test_pred)

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred))

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred))

Step 15: Output the R^2 and RMSE scores

print("Training R^2 Score: ", r2_train)

print("Testing R^2 Score: ", r2_test)

print("Training RMSE: ", rmse_train)

print("Testing RMSE: ", rmse_test)

242

Step 16: Plot Actual vs Predicted for Training set

plt.figure(figsize=(8, 6))

plt.scatter(y_train, y_train_pred, alpha=0.6, color='b',

label='Predicted')

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Training Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

Step 17: Plot Actual vs Predicted for Test set

plt.figure(figsize=(8, 6))

plt.scatter(y_test, y_test_pred, alpha=0.6, color='b', label='Predicted')

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Test Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

Regression Model to predict the defect length using Multiple Linear Regression,

Decision Trees, XGBoost, Random Forest and Cat Boost

Multiple linear regression to predict the defect length (80/20 Split)

import pandas as pd

import numpy as np

243

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error, r2_score

Step 1: Load the dataset

df = pd.read_csv('Connect.csv')

Step 2: Exploratory Data Analysis (EDA)

Check basic statistics of the dataset

print("Dataset Statistics:\n", df.describe())

Check for missing values

print("Missing Values:\n", df.isnull().sum())

Step 3: Define features and target

features = ['Line segment number', 'Track standard number', 'Milepost',

'Total car east', 'Total car west',

 'Total train east', 'Total train west', 'Defect amplitude',

'Total deflection', 'Class',

 'Freight speed', 'Passenger speed', 'Defect type']

target = 'Defect length'

Step 4: Prepare the data

X = df[features].values # Feature matrix

y = df[target].values # Target variable

Step 5: Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

Step 6: Initialize the Linear Regression model

244

model = LinearRegression()

Step 7: Train the model on the training data

model.fit(X_train, y_train)

Step 8: Predict on both training and test sets

y_train_pred = model.predict(X_train)

y_test_pred = model.predict(X_test)

Step 9: Evaluate the model

Calculate R² score and RMSE for both training and test sets

train_r2 = r2_score(y_train, y_train_pred)

test_r2 = r2_score(y_test, y_test_pred)

train_rmse = np.sqrt(mean_squared_error(y_train, y_train_pred))

test_rmse = np.sqrt(mean_squared_error(y_test, y_test_pred))

Step 10: Output the results

print(f'R² Score on Training Set: {train_r2}')

print(f'R² Score on Test Set: {test_r2}')

print(f'RMSE on Training Set: {train_rmse}')

print(f'RMSE on Test Set: {test_rmse}')

Step 11: Plot Actual vs Predicted for Training set

plt.figure(figsize=(8, 6))

plt.scatter(y_train, y_train_pred, alpha=0.6, color='blue',

label='Predicted')

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Training Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

245

plt.legend()

plt.show()

Step 12: Plot Actual vs Predicted for Test set

plt.figure(figsize=(8, 6))

plt.scatter(y_test, y_test_pred, alpha=0.6, color='green',

label='Predicted')

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Test Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

Decision trees regression to predict the defect length(80% 20% split)

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.tree import DecisionTreeRegressor

from sklearn.model_selection import train_test_split, GridSearchCV

from sklearn.metrics import r2_score, mean_squared_error

Step 1: Load the dataset

df = pd.read_csv('Connect.csv')

Step 2: Exploratory Data Analysis (EDA)

Check basic statistics of the dataset

print("Dataset Statistics:\n", df.describe())

Check for missing values

246

print("Missing Values:\n", df.isnull().sum())

Step 3: Define features and target

features = ['Line segment number', 'Track standard number', 'Milepost',

'Total car east', 'Total car west',

 'Total train east', 'Total train west', 'Defect amplitude',

'Total deflection', 'Class',

 'Freight speed', 'Passenger speed', 'Defect type']

target = 'Defect length'

Step 4: Prepare data

X = df[features].values

y = df[target].values

Step 5: Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

Step 6: Define the parameter grid for hyperparameter tuning

param_grid = {

 'max_depth': [5, 10, 15, 20, None], # Depth of the tree

 'min_samples_split': [2, 5, 10], # Minimum samples required to split

a node

 'min_samples_leaf': [1, 2, 5, 10], # Minimum samples required in a

leaf node

 'max_features': [None, 'sqrt', 'log2'] # Number of features to

consider for best split

}

Step 7: Initialize Decision Tree Regressor

tree = DecisionTreeRegressor(random_state=42)

Step 8: Perform hyperparameter tuning with GridSearchCV

247

tree_search = GridSearchCV(tree, param_grid, cv=5, scoring='r2',

verbose=1, n_jobs=-1)

tree_search.fit(X_train, y_train)

Step 9: Output the best parameters and the cross-validation R² score

best_tree_params = tree_search.best_params_

best_tree_score = tree_search.best_score_

print(f"Best parameters for Decision Tree: {best_tree_params}")

print(f"Best cross-validation R² score for Decision Tree:

{best_tree_score}")

Step 10: Train the model with the best parameters

best_tree_model = tree_search.best_estimator_

Step 11: Predict on the test and training data

y_test_pred_tree = best_tree_model.predict(X_test)

y_train_pred_tree = best_tree_model.predict(X_train)

Step 12: Calculate R² and RMSE scores for the training and test sets

r2_test_tree = r2_score(y_test, y_test_pred_tree)

r2_train_tree = r2_score(y_train, y_train_pred_tree)

rmse_test_tree = np.sqrt(mean_squared_error(y_test, y_test_pred_tree))

rmse_train_tree = np.sqrt(mean_squared_error(y_train, y_train_pred_tree))

print(f"R-squared (Test) for Decision Tree: {r2_test_tree}")

print(f"R-squared (Training) for Decision Tree: {r2_train_tree}")

print(f"RMSE (Test) for Decision Tree: {rmse_test_tree}")

print(f"RMSE (Training) for Decision Tree: {rmse_train_tree}")

Step 13: Plot Actual vs Predicted for Training set

plt.figure(figsize=(8, 6))

248

plt.scatter(y_train, y_train_pred_tree, alpha=0.6, color='blue',

label='Predicted')

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Training Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

Step 14: Plot Actual vs Predicted for Test set

plt.figure(figsize=(8, 6))

plt.scatter(y_test, y_test_pred_tree, alpha=0.6, color='green',

label='Predicted')

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Test Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

#XGBoost to predict defect length (80/20 Split)

import pandas as pd

import numpy as np

from sklearn.model_selection import KFold, train_test_split,

RandomizedSearchCV

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

from sklearn.metrics import r2_score, mean_squared_error

import xgboost as xgb

from scipy.stats import uniform, randint

249

import matplotlib.pyplot as plt

import seaborn as sns

Step 1: Load the dataset

df = pd.read_csv('Connect.csv')

Step 2: Exploratory Data Analysis (EDA)

Check basic statistics of the dataset

print("Dataset Statistics:\n", df.describe())

Check for missing values

print("Missing Values:\n", df.isnull().sum())

Plot the distribution of the target variable 'Defect length'

plt.figure(figsize=(8, 6))

sns.histplot(df['Defect length'], kde=True, bins=30)

plt.title('Distribution of Defect Length')

plt.xlabel('Defect Length')

plt.ylabel('Frequency')

plt.show()

Step 3: Correlation Matrix

Calculate correlation between numerical features

features = ['Line segment number', 'Track standard number', 'Milepost',

'Total car east', 'Total car west',

 'Total train east', 'Total train west', 'Defect amplitude',

'Total deflection', 'Class',

 'Freight speed', 'Passenger speed', 'Defect type']

plt.figure(figsize=(10, 8))

corr_matrix = df[features].corr()

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')

250

plt.title("Feature Correlation Matrix")

plt.show()

Step 4: Define features and target

target = 'Defect length'

Step 5: Prepare data

X = df[features].values

y = df[target].values

Step 6: Split the data into training and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

Step 7: Initialize the scaler and the model

scaler = StandardScaler()

model = xgb.XGBRegressor(objective='reg:squarederror', random_state=42)

Step 8: Create a pipeline that first scales the data then fits the model

pipeline = Pipeline([

 ('scaler', scaler),

 ('regressor', model)

])

Step 9: Set up cross-validation

kfold = KFold(n_splits=10, shuffle=True, random_state=42)

Step 10: Define the parameter distributions to sample from

param_dist = {

 'regressor__n_estimators': randint(100, 300),

 'regressor__max_depth': randint(3, 10),

251

 'regressor__learning_rate': uniform(0.01, 0.2),

 'regressor__subsample': uniform(0.6, 0.4),

 'regressor__colsample_bytree': uniform(0.6, 0.4),

 'regressor__min_child_weight': randint(1, 10),

 'regressor__gamma': uniform(0, 0.5),

 'regressor__reg_alpha': uniform(0, 1), # L1 regularization term

 'regressor__reg_lambda': uniform(0, 1) # L2 regularization term

}

Step 11: Set up RandomizedSearchCV

random_search = RandomizedSearchCV(pipeline, param_dist, n_iter=50,

cv=kfold, scoring='r2', n_jobs=-1, random_state=42)

Step 12: Fit the RandomizedSearchCV to find the best model

random_search.fit(X_train, y_train)

Step 13: Get the best model from the random search

best_model = random_search.best_estimator_

Step 14: Predict on the training and test sets using the best model

y_train_pred = best_model.predict(X_train)

y_test_pred = best_model.predict(X_test)

Step 15: Calculate R² scores and RMSE for both training and test sets

r2_train = r2_score(y_train, y_train_pred)

r2_test = r2_score(y_test, y_test_pred)

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred))

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred))

Step 16: Output the results

252

print(f'Best Parameters: {random_search.best_params_}')

print(f'R² Score on Training Set: {r2_train}')

print(f'R² Score on Test Set: {r2_test}')

print(f'RMSE on Training Set: {rmse_train}')

print(f'RMSE on Test Set: {rmse_test}')

Step 17: Plot feature importance

xgb_model = best_model.named_steps['regressor'] # Extract the XGBoost

model from the pipeline

feature_importances = xgb_model.feature_importances_

Step 18: Define feature names

feature_names = features

Step 19: Create a DataFrame for plotting

importances_df = pd.DataFrame({

 'Feature': feature_names,

 'Importance': feature_importances

}).sort_values(by='Importance', ascending=False)

Step 20: Plot the feature importances

plt.figure(figsize=(10, 6))

plt.barh(importances_df['Feature'], importances_df['Importance'])

plt.xlabel('Importance')

plt.ylabel('Feature')

plt.title('Feature Importances from XGBoost Model')

plt.gca().invert_yaxis() # Invert y-axis to display the most important

feature at the top

plt.show()

Step 21: Plot Actual vs Predicted for Training set

plt.figure(figsize=(8, 6))

253

plt.scatter(y_train, y_train_pred, alpha=0.6, color='b',

label='Predicted')

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Training Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

Step 22: Plot Actual vs Predicted for Test set

plt.figure(figsize=(8, 6))

plt.scatter(y_test, y_test_pred, alpha=0.6, color='b', label='Predicted')

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Test Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

#Random Forest to predict defect length (80/20 Split)

import pandas as pd

import numpy as np

from sklearn.model_selection import KFold, train_test_split,

RandomizedSearchCV

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

from sklearn.metrics import r2_score, mean_squared_error

from scipy.stats import randint

from sklearn.ensemble import RandomForestRegressor

254

import matplotlib.pyplot as plt

import seaborn as sns # Importing seaborn for correlation matrix

Step 1: Load the dataset

df = pd.read_csv('Connect.csv')

Step 2: Exploratory Data Analysis (EDA)

Check basic statistics of the dataset

print("Dataset Statistics:\n", df.describe())

Check for missing values

print("Missing Values:\n", df.isnull().sum())

Plot the distribution of the target variable 'Defect length'

plt.figure(figsize=(8, 6))

sns.histplot(df['Defect length'], kde=True, bins=30)

plt.title('Distribution of Defect Length')

plt.xlabel('Defect Length')

plt.ylabel('Frequency')

plt.show()

Step 3: Correlation Matrix

features = ['Line segment number', 'Track standard number', 'Milepost',

'Total car east', 'Total car west',

 'Total train east', 'Total train west', 'Defect

amplitude','Total deflection', 'Class',

 'Freight speed', 'Passenger speed', 'Defect type']

plt.figure(figsize=(10, 8))

corr_matrix = df[features].corr()

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')

plt.title("Feature Correlation Matrix")

255

plt.show()

Step 4: Define features and target

features = ['Milepost', 'Total car east', 'Total car west', 'Total train

east', 'Total train west',

 'Defect amplitude', 'Total deflection', 'Class', 'Freight

speed', 'Passenger speed', 'Defect type']

target = 'Defect length'

Step 5: Prepare data

X = df[features].values

y = df[target].values

Step 6: Split the data into training and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

Step 7: Initialize the scaler and the model

scaler = StandardScaler()

model = RandomForestRegressor(random_state=42)

Step 8: Create a pipeline that first scales the data then fits the model

pipeline = Pipeline([

 ('scaler', scaler),

 ('regressor', model)

])

Step 9: Set up cross-validation

kfold = KFold(n_splits=10, shuffle=True, random_state=42)

Step 10: Define the parameter distributions to sample from

param_dist = {

256

 'regressor__n_estimators': randint(50, 200),

 'regressor__max_depth': [10, 15, 20],

 'regressor__min_samples_split': randint(5, 15),

 'regressor__min_samples_leaf': randint(2, 10),

 'regressor__max_features': ['sqrt', 'log2', 0.5]

}

Step 11: Set up RandomizedSearchCV

random_search = RandomizedSearchCV(pipeline, param_dist, n_iter=50,

cv=kfold, scoring='r2', n_jobs=-1, random_state=42)

Step 12: Fit the RandomizedSearchCV to find the best model

random_search.fit(X_train, y_train)

Step 13: Get the best model from the random search

best_model = random_search.best_estimator_

Step 14: Predict on the training and test sets using the best model

y_train_pred = best_model.predict(X_train)

y_test_pred = best_model.predict(X_test)

Step 15: Calculate R² scores and RMSE for both training and test sets

r2_train = r2_score(y_train, y_train_pred)

r2_test = r2_score(y_test, y_test_pred)

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred))

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred))

Step 16: Output the results

print(f'Best Parameters: {random_search.best_params_}')

print(f'R² Score on Training Set: {r2_train}')

257

print(f'R² Score on Test Set: {r2_test}')

print(f'RMSE on Training Set: {rmse_train}')

print(f'RMSE on Test Set: {rmse_test}')

Step 17: Extract feature importances

feature_importances =

best_model.named_steps['regressor'].feature_importances_

Step 18: Plot feature importances

plt.figure(figsize=(10, 6))

plt.barh(features, feature_importances, color='skyblue')

plt.xlabel('Feature Importance')

plt.title('Feature Importances in RandomForestRegressor')

plt.gca().invert_yaxis() # To have the most important at the top

plt.show()

Step 19: Plot Actual vs Predicted for Training set

plt.figure(figsize=(8, 6))

plt.scatter(y_train, y_train_pred, alpha=0.6, color='b',

label='Predicted')

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Training Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

Step 20: Plot Actual vs Predicted for Test set

plt.figure(figsize=(8, 6))

plt.scatter(y_test, y_test_pred, alpha=0.6, color='b', label='Predicted')

258

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Test Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

Cat boost to predict defect length (80/20 Split)

from catboost import CatBoostRegressor

from sklearn.model_selection import KFold, RandomizedSearchCV

from sklearn.metrics import r2_score, mean_squared_error

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

Assuming your DataFrame (df) is already loaded

Example: df = pd.read_csv('your_file.csv')

Step 1: Define features and target

features = ['Line segment number', 'Track standard number', 'Milepost',

'Total car east', 'Total car west',

 'Total train east', 'Total train west', 'Defect amplitude',

'Total deflection', 'Class',

 'Freight speed', 'Passenger speed', 'Defect type']

target = 'Defect length'

Step 2: Prepare data

X = df[features].values

259

y = df[target].values

Step 3: Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

Step 4: Define a pipeline that first scales the data then applies

CatBoost Regressor

pipeline = Pipeline([

 ('scaler', StandardScaler()), # Standardize the

features

 ('catboost', CatBoostRegressor(verbose=0, random_state=42)) #

CatBoost model

])

Step 5: Define the refined parameter grid for RandomizedSearchCV

param_distributions = {

 'catboost__iterations': [100, 150, 200], # Lower iterations to

prevent overfitting

 'catboost__depth': [6, 8, 10], # Shallower trees for reduced

complexity

 'catboost__learning_rate': [0.05, 0.1], # Smaller learning rates for

more controlled updates

 'catboost__l2_leaf_reg': [7, 9, 11], # Stronger regularization to

prevent overfitting

 'catboost__bagging_temperature': [1, 2, 3] # More randomness in

bagging

}

Step 6: Set up KFold cross-validation with 10 folds

kfold = KFold(n_splits=10, shuffle=True, random_state=42)

Step 7: Perform hyperparameter tuning with RandomizedSearchCV

catboost_search = RandomizedSearchCV(

260

 estimator=pipeline,

 param_distributions=param_distributions,

 n_iter=20, # Number of random parameter combinations to try

 scoring='r2',

 cv=kfold, # 10-fold cross-validation

 verbose=1,

 n_jobs=-1,

 random_state=42

)

Step 8: Fit RandomizedSearchCV to the training data

catboost_search.fit(X_train, y_train)

Step 9: Output the best parameters and the cross-validation R² score

best_catboost_params = catboost_search.best_params_

best_catboost_score = catboost_search.best_score_

print(f"Best parameters for CatBoost: {best_catboost_params}")

print(f"Best cross-validation R² score for CatBoost:

{best_catboost_score}")

Step 10: Get the best model from RandomizedSearchCV

best_catboost_model = catboost_search.best_estimator_

Step 11: Predict on the test data

y_test_pred_catboost = best_catboost_model.predict(X_test)

Step 12: Predict on the training data

y_train_pred_catboost = best_catboost_model.predict(X_train)

Step 13: Calculate and print the R-squared score for the test and

training sets

r2_test_catboost = r2_score(y_test, y_test_pred_catboost)

261

r2_train_catboost = r2_score(y_train, y_train_pred_catboost)

print(f"R-squared (Test) for CatBoost: {r2_test_catboost}")

print(f"R-squared (Training) for CatBoost: {r2_train_catboost}")

Step 14: Calculate RMSE for both training and test sets

rmse_train_catboost = np.sqrt(mean_squared_error(y_train,

y_train_pred_catboost))

rmse_test_catboost = np.sqrt(mean_squared_error(y_test,

y_test_pred_catboost))

print(f"RMSE (Training) for CatBoost: {rmse_train_catboost}")

print(f"RMSE (Test) for CatBoost: {rmse_test_catboost}")

Step 15: Plot Actual vs Predicted for Training set

plt.figure(figsize=(8, 6))

plt.scatter(y_train, y_train_pred_catboost, alpha=0.6, color='b',

label='Predicted')

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Training Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

Step 16: Plot Actual vs Predicted for Test set

plt.figure(figsize=(8, 6))

plt.scatter(y_test, y_test_pred_catboost, alpha=0.6, color='b',

label='Predicted')

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Test Set)')

262

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

#XGBoost to predict repeated defects

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import KFold, RandomizedSearchCV

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

from sklearn.metrics import r2_score, mean_squared_error

import xgboost as xgb

from scipy.stats import uniform, randint

Step 1: Define features and target

features = ['Line segment number', 'Track standard number', 'Milepost',

'Total car east', 'Total car west',

 'Total train east', 'Total train west', 'Defect amplitude',

'Total deflection', 'Class',

 'Freight speed', 'Passenger speed', 'Defect type']

target = 'Defect length'

Step 2: Load the train and test data

train_df = pd.read_csv('Defecttrain.csv')

test_df = pd.read_csv('Defecttest.csv')

Step 3: Exploratory Data Analysis (EDA)

Check basic statistics of the training dataset

263

print("Training Data Statistics:\n", train_df.describe())

Check for missing values in the training and test datasets

print("Missing Values in Training Data:\n", train_df.isnull().sum())

print("Missing Values in Test Data:\n", test_df.isnull().sum())

Plot the distribution of the target variable 'Defect length' in the

training data

plt.figure(figsize=(8, 6))

sns.histplot(train_df['Defect length'], kde=True, bins=30)

plt.title('Distribution of Defect Length in Training Data')

plt.xlabel('Defect Length')

plt.ylabel('Frequency')

plt.show()

Step 5: Extract features and target

X_train = train_df[features].values

y_train = train_df[target].values

X_test = test_df[features].values

y_test = test_df[target].values

Step 6: Initialize the scaler and the model

scaler = StandardScaler()

model = xgb.XGBRegressor(objective='reg:squarederror', random_state=42)

Step 7: Create a pipeline that first scales the data then fits the model

pipeline = Pipeline([

 ('scaler', scaler),

 ('regressor', model)

])

264

Step 8: Set up cross-validation

kfold = KFold(n_splits=10, shuffle=True, random_state=42)

Step 9: Define the parameter distributions to sample from

param_dist = {

 'regressor__n_estimators': randint(100, 300),

 'regressor__max_depth': randint(3, 10),

 'regressor__learning_rate': uniform(0.01, 0.2),

 'regressor__subsample': uniform(0.6, 0.4),

 'regressor__colsample_bytree': uniform(0.6, 0.4),

 'regressor__min_child_weight': randint(1, 10),

 'regressor__gamma': uniform(0, 0.5),

 'regressor__reg_alpha': uniform(0, 1), # L1 regularization term

 'regressor__reg_lambda': uniform(0, 1) # L2 regularization term

}

Step 10: Set up RandomizedSearchCV

random_search = RandomizedSearchCV(pipeline, param_dist, n_iter=50,

cv=kfold, scoring='r2', n_jobs=-1, random_state=42)

Step 11: Fit the RandomizedSearchCV to find the best model

random_search.fit(X_train, y_train)

Step 12: Get the best model from the random search

best_model = random_search.best_estimator_

Step 13: Predict on the training and test sets using the best model

y_train_pred = best_model.predict(X_train)

y_test_pred = best_model.predict(X_test)

Step 14: Calculate R² scores

265

r2_train = r2_score(y_train, y_train_pred)

r2_test = r2_score(y_test, y_test_pred)

Step 15: Calculate RMSE for both training and test sets

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred))

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred))

Step 16: Output the results

print(f'Best Parameters: {random_search.best_params_}')

print(f'R² Score on Training Set: {r2_train}')

print(f'R² Score on Test Set: {r2_test}')

print(f'RMSE on Training Set: {rmse_train}')

print(f'RMSE on Test Set: {rmse_test}')

Step 17: Plot Actual vs Predicted for Training set

plt.figure(figsize=(8, 6))

plt.scatter(y_train, y_train_pred, alpha=0.6, color='blue',

label='Predicted')

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Training Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

Step 18: Plot Actual vs Predicted for Test set

plt.figure(figsize=(8, 6))

plt.scatter(y_test, y_test_pred, alpha=0.6, color='green',

label='Predicted')

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

266

plt.title('Actual vs Predicted (Test Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

#Random Forest (Repeated defect number)

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import KFold, RandomizedSearchCV

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

from sklearn.metrics import r2_score, mean_squared_error

from scipy.stats import randint

import numpy as np

Step 1: Define features and target

features = ['Line segment number', 'Track standard number', 'Milepost',

'Total car east', 'Total car west',

 'Total train east', 'Total train west', 'Defect

amplitude','Total deflection', 'Class',

 'Freight speed', 'Passenger speed', 'Defect type']

target = 'Defect length'

Step 2: Load the train and test data

train_df = pd.read_csv('Defecttrain.csv')

test_df = pd.read_csv('Defecttest.csv')

Step 3: Exploratory Data Analysis (EDA)

267

Check basic statistics of the training dataset

print("Training Data Statistics:\n", train_df.describe())

Check for missing values in the training and test datasets

print("Missing Values in Training Data:\n", train_df.isnull().sum())

print("Missing Values in Test Data:\n", test_df.isnull().sum())

Plot the distribution of the target variable 'Defect length' in the

training data

plt.figure(figsize=(8, 6))

sns.histplot(train_df['Defect length'], kde=True, bins=30)

plt.title('Distribution of Defect Length in Training Data')

plt.xlabel('Defect Length')

plt.ylabel('Frequency')

plt.show()

Step 5: Extract features and target

X_train = train_df[features].values

y_train = train_df[target].values

X_test = test_df[features].values

y_test = test_df[target].values

Step 6: Initialize the scaler and the model

scaler = StandardScaler()

model = RandomForestRegressor(random_state=42)

Step 7: Create a pipeline that first scales the data then fits the model

pipeline = Pipeline([

 ('scaler', scaler),

 ('regressor', model)

])

268

Step 8: Set up cross-validation

kfold = KFold(n_splits=10, shuffle=True, random_state=42)

Step 9: Define the parameter distributions to sample from

param_dist = {

 'regressor__n_estimators': randint(50, 200),

 'regressor__max_depth': [10, 15, 20],

 'regressor__min_samples_split': randint(5, 15),

 'regressor__min_samples_leaf': randint(2, 10),

 'regressor__max_features': ['sqrt', 'log2', 0.5]

}

Step 10: Set up RandomizedSearchCV

random_search = RandomizedSearchCV(pipeline, param_dist, n_iter=50,

cv=kfold, scoring='r2', n_jobs=-1, random_state=42)

Step 11: Fit the RandomizedSearchCV to find the best model

random_search.fit(X_train, y_train)

Step 12: Get the best model from the random search

best_model = random_search.best_estimator_

Step 13: Predict on the training and test sets using the best model

y_train_pred = best_model.predict(X_train)

y_test_pred = best_model.predict(X_test)

Step 14: Calculate R² scores

r2_train = r2_score(y_train, y_train_pred)

r2_test = r2_score(y_test, y_test_pred)

269

Step 15: Calculate RMSE for both training and test sets

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred))

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred))

Step 16: Output the results

print(f'Best Parameters: {random_search.best_params_}')

print(f'R² Score on Training Set: {r2_train}')

print(f'R² Score on Test Set: {r2_test}')

print(f'RMSE on Training Set: {rmse_train}')

print(f'RMSE on Test Set: {rmse_test}')

Step 17: Plot Actual vs Predicted for Training set

plt.figure(figsize=(8, 6))

plt.scatter(y_train, y_train_pred, alpha=0.6, color='blue',

label='Predicted')

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Training Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

Step 18: Plot Actual vs Predicted for Test set

plt.figure(figsize=(8, 6))

plt.scatter(y_test, y_test_pred, alpha=0.6, color='green',

label='Predicted')

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Test Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

270

plt.legend()

plt.show()

Cat Boost to predict the repeated defect length

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import KFold, RandomizedSearchCV

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

from sklearn.metrics import r2_score, mean_squared_error

from catboost import CatBoostRegressor

from scipy.stats import uniform, randint

Step 1: Define features and target

features = ['Line segment number', 'Track standard number', 'Milepost',

'Total car east', 'Total car west',

 'Total train east', 'Total train west', 'Defect amplitude',

'Total deflection', 'Class',

 'Freight speed', 'Passenger speed', 'Defect type']

target = 'Defect length'

Step 2: Load the train and test data

train_df = pd.read_csv('Defecttrain.csv')

test_df = pd.read_csv('Defecttest.csv')

Step 3: Exploratory Data Analysis (EDA)

Check basic statistics of the training dataset

print("Training Data Statistics:\n", train_df.describe())

271

Check for missing values in the training and test datasets

print("Missing Values in Training Data:\n", train_df.isnull().sum())

print("Missing Values in Test Data:\n", test_df.isnull().sum())

Plot the distribution of the target variable 'Defect length' in the

training data

plt.figure(figsize=(8, 6))

sns.histplot(train_df['Defect length'], kde=True, bins=30)

plt.title('Distribution of Defect Length in Training Data')

plt.xlabel('Defect Length')

plt.ylabel('Frequency')

plt.show()

Step 5: Extract features and target

X_train = train_df[features].values

y_train = train_df[target].values

X_test = test_df[features].values

y_test = test_df[target].values

Step 6: Initialize the scaler and the model

scaler = StandardScaler()

model = CatBoostRegressor(verbose=0, random_state=42)

Step 7: Create a pipeline that first scales the data then fits the model

pipeline = Pipeline([

 ('scaler', scaler),

 ('regressor', model)

])

Step 8: Set up cross-validation

kfold = KFold(n_splits=10, shuffle=True, random_state=42)

272

Step 9: Define the refined parameter distributions for CatBoost

param_dist = {

 'regressor__iterations': randint(500, 1000), # Increase iterations

for gradual learning

 'regressor__depth': randint(6, 7), # Reduce depth to

prevent overfitting

 'regressor__learning_rate': uniform(0.03, 0.05), # Lower learning rate

for smaller updates

 'regressor__l2_leaf_reg': uniform(10, 15), # Increase L2

regularization

 'regressor__subsample': uniform(0.6, 0.4), # Subsample ratio of

the training instances

 'regressor__bagging_temperature': uniform(0, 1), # Control randomness

in bagging

}

Step 10: Set up RandomizedSearchCV for CatBoost

random_search = RandomizedSearchCV(

 pipeline, param_dist, n_iter=50, cv=kfold, scoring='r2', n_jobs=-1,

random_state=42, verbose=2

)

Step 11: Fit the RandomizedSearchCV to find the best model

random_search.fit(X_train, y_train)

Step 12: Get the best model from the random search

best_model = random_search.best_estimator_

Step 13: Predict on the training and test sets using the best model

y_train_pred = best_model.predict(X_train)

y_test_pred = best_model.predict(X_test)

273

Step 14: Calculate R² scores

r2_train = r2_score(y_train, y_train_pred)

r2_test = r2_score(y_test, y_test_pred)

Step 15: Calculate RMSE for both training and test sets

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred))

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred))

Step 16: Output the results

print(f'Best Parameters: {random_search.best_params_}')

print(f'R² Score on Training Set: {r2_train}')

print(f'R² Score on Test Set: {r2_test}')

print(f'RMSE on Training Set: {rmse_train}')

print(f'RMSE on Test Set: {rmse_test}')

Step 17: Plot Actual vs Predicted for Training set

plt.figure(figsize=(8, 6))

plt.scatter(y_train, y_train_pred, alpha=0.6, color='blue',

label='Predicted')

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Training Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

Step 18: Plot Actual vs Predicted for Test set

plt.figure(figsize=(8, 6))

plt.scatter(y_test, y_test_pred, alpha=0.6, color='green',

label='Predicted')

274

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Test Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

#XGBoost (Increase in defect length)

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import KFold, train_test_split,

RandomizedSearchCV

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

from sklearn.metrics import r2_score, mean_squared_error

import xgboost as xgb

from scipy.stats import uniform, randint

Step 1: Load the dataset

df = pd.read_csv('Defect length increase.csv')

Step 2: Exploratory Data Analysis (EDA)

Check basic statistics of the dataset

print("Dataset Statistics:\n", df.describe())

Check for missing values

print("Missing Values:\n", df.isnull().sum())

275

Plot the distribution of the target variable 'Defect length'

plt.figure(figsize=(8, 6))

sns.histplot(df['Defect length'], kde=True, bins=30)

plt.title('Distribution of Defect Length')

plt.xlabel('Defect Length')

plt.ylabel('Frequency')

plt.show()

Step 4: Define features and target

features = ['Defect amplitude', 'Previous defect length', 'Time gap',

'Defect type']

target = 'Defect length'

Step 5: Prepare data

X = df[features].values

y = df[target].values

Step 6: Split the data into training and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

Step 7: Initialize the scaler and the model

scaler = StandardScaler()

model = xgb.XGBRegressor(objective='reg:squarederror', random_state=42)

Step 8: Create a pipeline that first scales the data then fits the model

pipeline = Pipeline([

 ('scaler', scaler),

 ('regressor', model)

])

Step 9: Set up cross-validation

276

kfold = KFold(n_splits=10, shuffle=True, random_state=42)

Step 10: Define the parameter distributions to sample from

param_dist = {

 'regressor__n_estimators': randint(100, 500),

 'regressor__max_depth': randint(3, 15),

 'regressor__learning_rate': uniform(0.01, 0.2),

 'regressor__subsample': uniform(0.6, 0.4),

 'regressor__colsample_bytree': uniform(0.6, 0.4),

 'regressor__min_child_weight': randint(1, 10),

 'regressor__gamma': uniform(0, 0.5),

 'regressor__reg_alpha': uniform(0, 1),

 'regressor__reg_lambda': uniform(0, 1)

}

Step 11: Set up RandomizedSearchCV

random_search = RandomizedSearchCV(pipeline, param_dist, n_iter=100,

cv=kfold, scoring='r2', n_jobs=-1, random_state=42)

Step 12: Fit the RandomizedSearchCV to find the best model

random_search.fit(X_train, y_train)

Step 13: Get the best model from the random search

best_model = random_search.best_estimator_

Step 14: Predict on the training and test sets using the best model

y_train_pred = best_model.predict(X_train)

y_test_pred = best_model.predict(X_test)

Step 15: Calculate R² scores

r2_train = r2_score(y_train, y_train_pred)

277

r2_test = r2_score(y_test, y_test_pred)

Step 16: Calculate RMSE for both training and test sets

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred))

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred))

Step 17: Output the results

print(f'Best Parameters for XGBoost: {random_search.best_params_}')

print(f'R² Score on Training Set: {r2_train}')

print(f'R² Score on Test Set: {r2_test}')

print(f'RMSE on Training Set: {rmse_train}')

print(f'RMSE on Test Set: {rmse_test}')

Step 18: Plot Actual vs Predicted for Training set

plt.figure(figsize=(8, 6))

plt.scatter(y_train, y_train_pred, alpha=0.6, color='blue',

label='Predicted')

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Training Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

Step 19: Plot Actual vs Predicted for Test set

plt.figure(figsize=(8, 6))

plt.scatter(y_test, y_test_pred, alpha=0.6, color='green',

label='Predicted')

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Test Set)')

278

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

#Random Forest (Increase in defect length)

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import KFold, train_test_split,

RandomizedSearchCV

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

from sklearn.metrics import r2_score, mean_squared_error

from scipy.stats import randint

import numpy as np

Step 1: Load the new dataset

df = pd.read_csv('Defect length increase.csv')

Step 2: Exploratory Data Analysis (EDA)

Check basic statistics of the dataset

print("Dataset Statistics:\n", df.describe())

Check for missing values

print("Missing Values:\n", df.isnull().sum())

Plot the distribution of the target variable 'Defect length'

plt.figure(figsize=(8, 6))

279

sns.histplot(df['Defect length'], kde=True, bins=30)

plt.title('Distribution of Defect Length')

plt.xlabel('Defect Length')

plt.ylabel('Frequency')

plt.show()

Step 4: Define features and target

features = ['Defect amplitude', 'Previous defect length', 'Time gap',

'Defect type']

target = 'Defect length'

Step 5: Prepare data

X = df[features].values

y = df[target].values

Step 6: Split the data into training and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

Step 7: Initialize the scaler and the model

scaler = StandardScaler()

model = RandomForestRegressor(random_state=42)

Step 8: Create a pipeline that first scales the data then fits the model

pipeline = Pipeline([

 ('scaler', scaler),

 ('regressor', model)

])

Step 9: Set up cross-validation

kfold = KFold(n_splits=10, shuffle=True, random_state=42)

280

Step 10: Define the parameter distributions to sample from

param_dist = {

 'regressor__n_estimators': randint(50, 200),

 'regressor__max_depth': [10, 15, 20],

 'regressor__min_samples_split': randint(5, 15),

 'regressor__min_samples_leaf': randint(2, 10),

 'regressor__max_features': ['sqrt', 'log2', 0.5]

}

Step 11: Set up RandomizedSearchCV

random_search = RandomizedSearchCV(pipeline, param_dist, n_iter=50,

cv=kfold, scoring='r2', n_jobs=-1, random_state=42)

Step 12: Fit the RandomizedSearchCV to find the best model

random_search.fit(X_train, y_train)

Step 13: Get the best model from the random search

best_model = random_search.best_estimator_

Step 14: Predict on the training and test sets using the best model

y_train_pred = best_model.predict(X_train)

y_test_pred = best_model.predict(X_test)

Step 15: Calculate R² scores

r2_train = r2_score(y_train, y_train_pred)

r2_test = r2_score(y_test, y_test_pred)

Step 16: Calculate RMSE for both training and test sets

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred))

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred))

281

Step 17: Output the results

print(f'Best Parameters: {random_search.best_params_}')

print(f'R² Score on Training Set: {r2_train}')

print(f'R² Score on Test Set: {r2_test}')

print(f'RMSE on Training Set: {rmse_train}')

print(f'RMSE on Test Set: {rmse_test}')

Step 18: Plot Actual vs Predicted for Training set

plt.figure(figsize=(8, 6))

plt.scatter(y_train, y_train_pred, alpha=0.6, color='blue',

label='Predicted')

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Training Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

Step 19: Plot Actual vs Predicted for Test set

plt.figure(figsize=(8, 6))

plt.scatter(y_test, y_test_pred, alpha=0.6, color='green',

label='Predicted')

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Test Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

#CatBoost to predict increase in defect length

282

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import KFold, train_test_split,

RandomizedSearchCV

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

from sklearn.metrics import r2_score, mean_squared_error

from catboost import CatBoostRegressor

from scipy.stats import uniform, randint

Step 1: Load the dataset

df = pd.read_csv('Defect length increase.csv')

Step 2: Exploratory Data Analysis (EDA)

print("Dataset Statistics:\n", df.describe())

print("Missing Values:\n", df.isnull().sum())

Plot the distribution of the target variable 'Defect length'

plt.figure(figsize=(8, 6))

sns.histplot(df['Defect length'], kde=True, bins=30)

plt.title('Distribution of Defect Length')

plt.xlabel('Defect Length')

plt.ylabel('Frequency')

plt.show()

Step 4: Define features and target

features = ['Defect amplitude', 'Previous defect length', 'Time gap',

'Defect type']

target = 'Defect length'

283

Step 5: Prepare data

X = df[features].values

y = df[target].values

Step 6: Split the data into training and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

Step 7: Initialize the scaler and the model

scaler = StandardScaler()

model = CatBoostRegressor(objective='RMSE', random_state=42, verbose=0,

early_stopping_rounds=100)

Step 8: Create a pipeline that first scales the data then fits the model

pipeline = Pipeline([

 ('scaler', scaler),

 ('regressor', model)

])

Step 9: Set up cross-validation

kfold = KFold(n_splits=10, shuffle=True, random_state=42)

Step 10: Define the parameter distributions to sample from

param_dist = {

 'regressor__depth': randint(3, 6), # Reduce depth to prevent

overfitting

 'regressor__learning_rate': uniform(0.01, 0.03), # Keep learning rate

low

 'regressor__iterations': randint(300, 600), # Decrease iterations to

avoid overfitting

 'regressor__l2_leaf_reg': uniform(10, 20), # Increase L2

regularization

284

 'regressor__bagging_temperature': uniform(0.3, 1), # Regularization

 'regressor__subsample': uniform(0.5, 0.5), # Subsample in (0.5, 1] to

avoid errors

 'regressor__random_strength': uniform(5, 10) # Increase randomness

}

Step 11: Set up RandomizedSearchCV

random_search = RandomizedSearchCV(pipeline, param_dist, n_iter=100,

cv=kfold, scoring='r2', n_jobs=-1, random_state=42, error_score='raise')

Step 12: Fit the RandomizedSearchCV to find the best model

random_search.fit(X_train, y_train)

Step 13: Get the best model from the random search

best_model = random_search.best_estimator_

Step 14: Predict on the training and test sets using the best model

y_train_pred = best_model.predict(X_train)

y_test_pred = best_model.predict(X_test)

Step 15: Calculate R² scores

r2_train = r2_score(y_train, y_train_pred)

r2_test = r2_score(y_test, y_test_pred)

Step 16: Calculate RMSE for both training and test sets

rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred))

rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred))

Step 17: Output the results

print(f'Best Parameters for CatBoost: {random_search.best_params_}')

print(f'R² Score on Training Set: {r2_train}')

print(f'R² Score on Test Set: {r2_test}')

285

print(f'RMSE on Training Set: {rmse_train}')

print(f'RMSE on Test Set: {rmse_test}')

Step 18: Plot Actual vs Predicted for Training set

plt.figure(figsize=(8, 6))

plt.scatter(y_train, y_train_pred, alpha=0.6, color='blue',

label='Predicted')

plt.plot([min(y_train), max(y_train)], [min(y_train), max(y_train)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Training Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

Step 19: Plot Actual vs Predicted for Test set

plt.figure(figsize=(8, 6))

plt.scatter(y_test, y_test_pred, alpha=0.6, color='green',

label='Predicted')

plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)],

color='red', lw=2, label='Perfect Fit') # Perfect fit line

plt.title('Actual vs Predicted (Test Set)')

plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.legend()

plt.show()

