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Abstract 

Is white matter the weakest link? - Early detection of white matter changes with MRI 

Stéfanie A. Tremblay, Ph.D. 
Concordia University, 2024        

White matter (WM) tracts play a crucial role in enabling efficient neural transmission, which is 

essential for optimal brain function. Once overlooked, WM is now recognized for its constant 

remodeling throughout life, responding to both enriching and adverse factors. These alterations in 

WM microstructure can enhance cognitive and motor performance through more efficient 

transmission, or conversely, contribute to functional decline. Notably, WM changes are among the 

earliest alterations observed in neurodegenerative disorders such as Alzheimer’s disease (AD) and 

other dementias, highlighting the potential for WM as a target for early interventions. 

However, our current knowledge is limited regarding: 1) the time scales at which plastic changes 

occur and 2) the biological mechanisms driving microstructural changes. This is largely due to the 

physiological non-specificity of commonly used neuroimaging techniques and the predominantly 

univariate focus of most studies in the field. 

This Ph.D. thesis presents four original studies focused on investigating early WM changes in 

health and disease. The first study examines longitudinal plastic changes in WM following short-

term motor learning in young, healthy participants, providing insights into activity-dependent WM 

remodeling. The second study introduces MVComp, an open-source toolbox developed to compute 

a multivariate distance metric—the Mahalanobis distance (D2). MVComp allows the integration 

of various imaging features, yielding individualized scores of deviation from a reference.  

The latter half of the thesis focused on the investigation of early pathological changes in WM 

among older adults at risk of dementia, using the multivariate framework developed in study two. 

The third study explored the relationship between WM alterations and cardiometabolic risk factors 

in older adults with a family history of AD. Individuals at higher genetic risk of AD 

(Apolipoprotein E (ApoE) ε4) displayed a distinct pattern where LDL-cholesterol negatively 

impacted WM health, with myelination changes as the primary underlying mechanism. Finally, the 

fourth study assessed WM deviations in coronary artery disease patients, linking higher D2 scores 

in specific arterial territories to lower fitness levels and poorer cognition. 
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Together, these findings underscore the dynamic nature of WM changes and demonstrate that 

multivariate approaches offer a comprehensive characterization, shedding light on the biological 

mechanisms at play.   
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CHAPTER I: General Introduction 

1.1 Executive Summary 

The brain’s white matter (WM) microstructure is shaped by our experiences – the sports we play, 

the things we learn, and the social connections we form – and this capacity for plasticity is 

maintained throughout the lifespan (Sampaio-Baptista & Johansen-Berg, 2017). WM 

microstructure is also highly sensitive to exposure to stressors and insults (Bartzokis, 2004a). With 

age, the increasing vulnerability of myelin formed by later-differentiating oligodendrocytes, along 

with the accumulation of exposures to stressors, result in myelin and axonal breakdown. Several 

factors impact the trajectory of myelin degeneration, influencing whether someone will age 

successfully or develop a neurodegenerative disorder (Bartzokis, 2004a, 2011). These include 

genetic factors, such as possessing one or more ε4 alleles of the Apolipoprotein E (ApoE) gene, as 

well as modifiable risk factors (e.g., education, hypertension, dyslipidemia, hyperglycemia, 

obesity, cardiovascular disease) (Bartzokis et al., 2007; Livingston et al., 2024). This vulnerability 

has made WM an early target in the pathological course of neurodegenerative diseases such as 

dementia (N. Adluru et al., 2014; Agosta et al., 2011; Araque Caballero et al., 2018; Maier-Hein et 

al., 2015). Importantly, the fact that WM retains its plastic potential into adulthood also means that 

improvements to WM microstructural health may be used as targets in interventions aimed at 

preventing neurocognitive disorders (Concha, 2014; Sampaio-Baptista & Johansen-Berg, 2017). 

Measuring WM microstructural properties may thus offer a promising avenue for the early 

detection of abnormalities, as well as for monitoring progression and assessing improvements in 

response to interventions. However, we lack a basic understanding of the time scales at which 

plastic changes in WM can occur, and of the alterations that occur at different stages of learning, 

even in healthy adults. This gap was addressed in Study 1. 

Furthermore, because most studies in the field rely on neuroimaging techniques that are 

physiologically non-specific and on predominantly univariate analysis methods, we lack a 

comprehensive understanding of the factors that impact WM microstructure and of the biological 

mechanisms driving these changes. We tackled these issues by developing a toolbox (Study 2) that 

allows the integration of several neuroimaging metrics into a multivariate distance score – the 
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Mahalanobis distance – and applying this framework to the study of two populations at risk of 

dementia: older adults with a familial history of Alzheimer’s disease (Study 3) and those with 

coronary artery disease (Study 4). 

In Chapter 1, I first provide a brief background on WM physiology (Section 1.2), followed by an 

overview of commonly used WM imaging techniques (i.e., diffusion-weighted imaging [DWI], 

magnetization transfer imaging [MTI]), several of which were used in this work (Section 1.3). The 

concept that WM alterations constitute an early pathological event in age-related diseases is then 

introduced, and literature on the impact of several risk factors on WM microstructure is reviewed 

(Section 1.4). Lastly, I discuss potential interventions aimed at promoting neuroplasticity and 

preventing cognitive decline and dementia (Section 1.5).  

The body of the dissertation contains four original manuscripts. In the first manuscript (Chapter 2), 

I investigated changes in WM across learning stages in a cohort of healthy young adults. The data 

used for this study were acquired at 7 Tesla at the Max Planck Institute for Cognitive and Brain 

Sciences in Leipzig. I analyzed the DWI data using the diffusion tensor model (DTI) and conducted 

all analyses. I also collaborated with a PhD student from Germany (Anna‑Thekla Jäger, second 

author on manuscript 1) to relate longitudinal structural changes in WM to the changes in resting-

state functional connectivity she found in the same cohort (Jäger et al., 2021).  

The second manuscript (Chapter 3) describes the MultiVariate Comparison (MVComp) toolbox 

(https://github.com/neuralabc/mvcomp ) that I co-created in collaboration with Zaki Alasmar (co-

first author), Amir Pirhadi (third author), and Christopher Steele (senior author). The toolbox 

allows the computation of the Mahalanobis distance (D2) from neuroimaging data. My main 

contributions were in developing the conceptual framework, defining the potential applications of 

the toolbox, and writing the manuscript, while my collaborators, Zaki Alasmar and Amir Pirhadi, 

focused on the technical implementation (i.e., writing the code in Python and preparing for public 

release on GitHub). The open-source Human Connectome Project (S1200) dataset was used in the 

validation experiments of this study. I preprocessed the DWI data of more than a thousand 

participants and fitted advanced models which yielded 10 microstructural maps. To our knowledge, 

MVComp is the only available toolbox for computing D2 from imaging data. 

https://github.com/neuralabc/mvcomp
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In the third manuscript (Chapter 4), I investigated the sex-specific and APOE genotype-related 

relationships between alterations in WM microstructure, quantified using the MVComp 

framework, and multiple risk factors in a cohort of older adults with a familial history of 

Alzheimer’s disease. This project was a collaboration with the PREVENT-AD Research Group 

who recruited the participants and collected the data used in this study (Tremblay-Mercier et al., 

2021). I preprocessed all data (DWI and multi-parametric mapping; MPM) and conducted all 

analyses for this manuscript.  

Finally, the fourth manuscript (Chapter 5) leveraged the D2 framework to assess WM deviations 

from a healthy reference in coronary artery disease patients. The links between WM alterations in 

atlas-based arterial territories, fitness, and cognition were also explored. As the coordinator for this 

study since the beginning of my PhD (January 2019), I have been involved in all stages of this 

project, from obtaining ethics approval to recruitment and collecting data in over 100 participants 

at the Montreal Heart Institute. I have been involved in all aspects of data collection, including the 

MRI acquisition, maximal cardiopulmonary exercise testing (VO2max), and the administration of 

cognitive assessments. This study is a collaboration with Zacharie Potvin-Jutras (co-first author) 

who preprocessed the MTI data and performed segmentations of WM hyperintensities and 

registrations of an arterial territories atlas. I was responsible for preprocessing the DWI data, 

computing D2 and performing registrations to bring all maps into a common space. I also did most 

of the formal analyses and of the writing. 

In the final chapter (Chapter 6), I highlight and discuss the contributions of this thesis to advancing 

our understanding of how the brain’s WM microstructural health is altered in individuals at risk of 

dementia. I also emphasize the importance of studying WM with a multivariate approach, 

demonstrating how the open-source toolbox we developed can facilitate the broader adoption of 

these methods, thus making a significant contribution to the field. Lastly, future directions for this 

work are outlined.  
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1.2 White matter physiology 

Efficient neural transmission is crucial for normal function as communication between brain 

regions, as well as between the brain and spinal cord, supports virtually all physiological functions 

and behaviors from the most basic to the most complex tasks (Susuki, 2010). Conduction of neural 

signals through axons must occur at very high speeds to allow for the integration and processing 

of large amounts of information in a coordinated manner. Myelin, a lipid-rich membranous sheath 

that surrounds most long-range axons in the central nervous system, increases the speed of neural 

transmission, enabling efficient information processing by optimizing neural timing (Baumann & 

Pham-Dinh, 2001; Paus, 2010; Waxman, 1975). Axons and their myelin, along with glial cells (i.e., 

oligodendrocytes, astrocytes, and microglia), form the brain’s white matter (WM). WM is located 

deep within the brain beneath the cortical grey matter and is named after the characteristic color of 

lipid-rich myelin. Long thought of as passive tissue that carries impulses between neurons, the 

importance of WM in coordinating information transmission is now widely recognized (Fields, 

2008b).  

White matter undergoes a long developmental process that extends well beyond that of grey matter, 

continuing until the end of the fifth decade of life (Bartzokis, 2004b; Sowell et al., 2003). The 

extent of myelination in the human brain is unique and has been posited as one of the most 

important features differentiating humans from other mammals (Bartzokis, 2004b). The human 

brain is unique in the amount of WM it contains compared to other species, but also in its 

“heterochronologic” development, that is, the fact that myelination in different regions follows 

different time courses. Primary motor and sensory regions myelinate early in life, while prefrontal 

and other association areas (temporal and parietal lobes) continue myelinating until the fifth decade 

(peaking at about 45 years of age) (Bartzokis, 2004b, 2011). Oligodendrocytes that differentiate 

later in life wrap thin myelin sheaths around a large number of axons of small diameters, whereas 

those that differentiate earlier ensheath thicker myelin around larger axons (Bartzokis, 2004b).  

According to the myelin model, this extensive myelination underlies not only our exceptional 

abilities, but also our unique vulnerability to various stressors, predisposing humans to age-related 

neurodegenerative disorders such as Alzheimer’s disease (Bartzokis, 2011). Age-related WM 

degeneration tends to follow a pattern that reverses the developmental pattern, with fibers that 

myelinated last (i.e., axons of smaller diameters with thinner myelin sheaths) being the first ones 
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to break down when degeneration begins (Bartzokis, 2004b, 2011; Braak & Braak, 1996). This 

“disconnection” results in cognitive decline, especially in higher order functions and in the 

formation of new memories, functions that require widely distributed neural networks (Bartzokis, 

2004b). Several factors can impact the trajectory of WM development and accelerate its 

breakdown. WM damage is thus a common feature of several neurological disorders including 

multiple sclerosis, Alzheimer’s disease, and other forms of dementia, and is also commonly 

reported in metabolic disorders such as hypertension, diabetes, and cardiovascular disease (Alfaro 

et al., 2018; Alotaibi et al., 2021; Bae et al., 2020; Santiago et al., 2015). 

Myelination follows an age-dependent developmental pattern that is influenced not only by adverse 

factors, but also by learning and training (Fields, 2015; Scholz et al., 2009). Myelination is thus an 

activity-dependent process as WM microstructure adapts to the demands imposed on itself in order 

to perform frequently-repeated tasks more efficiently (Deng et al., 2018). The long developmental 

timeline of WM means that a portion of oligodendrocytes precursor cells that have the capacity to 

differentiate into oligodendrocytes and produce myelin remain in adulthood (Sampaio-Baptista & 

Johansen-Berg, 2017). WM thus retains its capacity for experience-induced plasticity, supporting 

learning throughout life. Plastic changes in WM, which also involve changes in axon diameter and 

in internodal length in addition to myelin (Sampaio-Baptista & Johansen-Berg, 2017), occur even 

following short periods of training, attesting to its capacity for rapid remodelling (Hofstetter et al., 

2013).  

Because axons were traditionally thought of as passive passageways, WM has long been 

overlooked and has thus received much less attention than neurons and synapses (Fields, 2008b; 

Sampaio-Baptista & Johansen-Berg, 2017). There is now growing recognition that WM changes 

are highly dynamic and that its trajectory of development (and degeneration) can be altered through 

exposure to both enriching and adverse experiences throughout the lifespan.  

1.3 White matter imaging 

1.3.1 Overview 

Given the utmost importance of neuronal conduction and its reliance on WM microstructure, 

several magnetic resonance imaging (MRI) techniques have been designed to characterize 

properties of the brain’s WM in vivo. Diffusion-weighted imaging (DWI), one of the most 
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commonly used techniques, relies on the bulk motion of water molecules to indirectly probe WM 

microstructure (Le Bihan et al., 1988, 2001; Le Bihan & Iima, 2015). DWI provides invaluable 

information regarding axonal organization and density, yet these techniques alone do not provide 

a specific measure of myelin content as several other factors impact diffusion MRI metrics 

(Beaulieu, 2002; Paus, 2010). Myelin-specific imaging techniques, such as magnetization transfer 

imaging (MTI), should therefore be used alongside DWI to characterize WM more fully as neural 

transmission velocity and timing depend on both axonal diameter and myelin thickness (Fields, 

2008a; Waxman, 1975). Lastly, relaxometry can provide measures of the quantitative T1, T2* and 

proton density parameters, which allow further specificity by providing measures of iron content 

in addition to water and myelin (Margaret Cheng et al., 2012). These quantitative parameters can 

be acquired efficiently using multi-parametric mapping (MPM) imaging protocols (Helms, Dathe, 

& Dechent, 2008; Weiskopf et al., 2011). This is important given that iron accumulation is 

frequently observed in neurodegeneration, and it can confound other MRI measures if it is not 

taken into account. Using the quantitative parameters obtained through MPM, it is possible to 

determine whether iron is accumulating and whether myelin repair or demyelination is occurring 

(Callaghan et al., 2014). 

WM imaging techniques have numerous important research and clinical applications. These 

techniques allow the characterization of several aspects of the brain’s WM and of how they are 

altered during development, learning, and aging, as well as in neurological disorders (G. Adluru et 

al., 2014; Badji et al., 2019; Campbell et al., 2018; Fields, 2008a; Foong et al., 2001; Kado et al., 

2001). WM imaging offers the possibility to detect abnormalities and monitor progression in 

patients suffering from several conditions affecting the brain’s WM. For instance, pathological 

changes occurring in demyelinating disorders such as multiple sclerosis (MS) can be quantified 

using MTI, allowing for the characterization of the progression of disease and of the effects of 

treatment on remyelination (Campbell et al., 2018). Furthermore, combining techniques such as 

DWI, MTI, and MPM allows for more specific interpretations of observed differences or changes 

as it allows to disentangle changes in myelin, axons, and iron.  

The following sections will present MRI techniques that allow the quantification of different 

aspects of WM microstructure: DWI, MTI, and MPM. Each section will introduce the physics 

principles on which these techniques are based and present some examples of the acquisition 

schemes and models that can be used, along with the parameters that can be derived from these 
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models. Lastly, multivariate approaches that aim at integrating several parameters will be 

discussed. 

1.3.2 Diffusion-weighted imaging  

PRINCIPLES OF DIFFUSION IMAGING 
Diffusion-weighted imaging (DWI) is based on the widely known concept that small particles 

move in a random fashion as a result of the available thermal energy, a concept termed Brownian 

motion (Brown, 1828; Einstein, 1905; Le Bihan et al., 2001). DWI exploits this intrinsic physical 

property, which is not altered by MRI, along with the fact that motion is restricted/hindered by 

structural boundaries, such as cellular membranes, axons, and macromolecules in the brain (Le 

Bihan et al., 2001). With a mean displacement of 10 m during a typical diffusion time (i.e., 50 

ms), water molecules, the most frequently imaged molecules, allow for the probing of tissue 

structure at a microscopic level (i.e., microstructure). As an imaging voxel contains a large number 

of water molecules, DWI techniques aim at characterizing the displacement distribution of these 

molecules. The geometric organization of the brain microstructure can thus be inferred through 

characterization of the displacement distribution at every imaged voxel. Brain tissue at different 

locations possesses varying levels of anisotropy. In tissues with anisotropic configuration, the 

mobility of water molecules differs among directions due to physical barriers to diffusion. For 

instance, in coherently organised WM (i.e., arranged into bundles of parallel axons), diffusion is 

anisotropic, as water molecules preferentially diffuse in directions parallel to fiber bundles, while 

in cerebral ventricles filled with cerebrospinal fluid (CSF), diffusion is mostly isotropic (see Figure 

1). In WM, higher anisotropy values are found in areas where fibers are myelinated. Since axonal 

membranes are more permeable than myelin, diffusion perpendicular to the axon is restricted to a 

lesser extent in unmyelinated axons, resulting in lower anisotropy (Le Bihan et al., 2001). Through 

modeling and the estimation of diffusion metrics, several aspects of biological tissues can be 

assessed, including the detection of brain ischemia, quantification of WM microstructure, and 

mapping of fiber organization. Before proceeding to the description of these models and 

applications, the general DWI acquisition scheme will first be presented. 
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Figure 1. Isotropic (A) and anisotropic diffusion (B) in different brain compartments (lateral ventricles in A; parallel bundle of 
axons in B). (Rosenbloom et al., 2003). 

DWI ACQUISITION 

Most commonly, diffusion-weighed images are acquired using a spin-echo sequence, consisting in 

two radiofrequency pulses of 90 and 180. Moreover, two diffusion-sensitizing gradient pulses of 

equal amplitude and duration are applied on each side of the 180 pulse. This sequence, known as 

the Stejskal-Tanner pulsed gradient spin echo (PGSE) technique, was developed in the 1960’s and 

is still used today with some slight modifications to reduce artifacts (A. L. Alexander et al., 1997; 

Reese et al., 2003; Stejskal & Tanner, 1965). The first gradient dephases the spins and a second 

gradient, which has the opposite effect on the spins (because of the 180 pulse), then rephases 

stationary spins. However, moving spins keep accumulating phase between the two gradients and 

are thus not rephased by the second gradient. This dephasing of the spins causes signal attenuation, 

which is how diffusion is measured in DWI. Echo planar imaging (EPI) then allows for a quick 

readout after the second gradient, minimizing the effects of bulk motion (Le Bihan et al., 2001). In 

order to compute signal attenuation, a T2-weighted image, consisting in the same spin-echo 

sequence but without diffusion gradients, must also be obtained to serve as a baseline (i.e., non-

diffusion weighted) (Le Bihan et al., 2001). DWI acquisitions require long repetition times (TR~ 

10 s), reducing T1 contributions, and long echo time (TE~ 75 ms). Thus, the image contrast of 

DWI images is due to differences in transverse relaxation between tissue types (i.e., T2-weighted), 

as well as in attenuation due to diffusion.  

The signal measured (S) is a function of the attenuation (A) of the baseline signal 𝑆0, which depends 

on the gradient strength used (b) and on the amount of diffusion (D) present in tissue, and can be 

expressed by the following equations:  
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𝐴 = 𝑒𝑥𝑝(−𝑏𝐷),   (Eq. 1) 

𝑆(𝑏, 𝐷) = 𝑆0 𝑒𝑥𝑝(−𝑏𝐷),    (Eq. 2) 

where D is the diffusion coefficient (in mm2/s) and b is the b-value (in s/mm2), representing the 

strength of the gradient pulses, which depends on the amplitude (G), duration (𝛿), and shape of the 

pulses, as well as on the gyromagnetic ratio 𝛾 of the imaged nucleus (42.58 MHz/T for hydrogen) 

(Le Bihan et al., 1986). The b-value can be expressed with the following equation: 𝑏 =

𝛾2𝐺2𝛿2(𝛥 − 𝛿 3⁄ ), where 𝛥 is the interval between gradient pulses. Thus, the gradient amplitude, 

duration and time interval can be manipulated to achieve a given b-value. However, an important 

element to keep in mind is that the maximum G that can be used is limited by both the hardware 

and safety limits (i.e., the maximum specific absorption rate; SAR). Therefore, in some settings, it 

may be preferred to manipulate the duration of the gradient pulses to change the b-value 

(Descoteaux, 2015). Low b-values, acquired with weaker/shorter gradients, are sensitive to faster 

diffusion, which takes place in the extracellular compartment (Le Bihan et al., 2001). On the other 

side, larger b-values measure slower diffusion and result in more signal attenuation, as spins 

dephase to a greater extent when stronger gradients are applied. A DWI image provides a window 

into the diffusion process occurring along a single 

direction (i.e., the direction in which the diffusion 

gradient was applied) (see Figure 2). Therefore, the 

DWI acquisition must be repeated with gradients 

applied in different directions to obtain a complete 

picture of the three-dimensional diffusion process. 

Three orthogonal diffusion images (x, y, z) are 

sufficient to estimate the apparent diffusion 

coefficient (ADC), but at least six images are 

required for the diffusion tensor (DTI) model 

(Descoteaux, 2015). More complex models and 

applications, such as fiber tracking, require a much 

greater number of directions. The concept of q-

space must be introduced here for a better visual 

representation of angular sampling in DWI (see top 

Figure 2. Top left: Representation of the q-space showing 
sampling in 3 orthogonal directions (x direction = red; y 
= green; z = blue). Top right: Corpus callosum, a fiber 
tract oriented from left-right is dark (signal attenuated) on 
the x-direction image. Bottom left: Corticospinal tracts, 
oriented superior-inferior are dark on z-direction image. 
Bottom right: Cingulum, oriented post-ant, on the y-
direction image. (Descoteaux, 2015). 



 10 

left panel of Figure 2). In a similar way as phase- and frequency-encoding gradients (i.e., Gy and 

Gx) allow to travel k-space to acquire information at different spatial frequencies, diffusion 

gradients allow to navigate the diffusion space (i.e., q-space) to probe the diffusion process in 

different directions. Applying diffusion gradients in a large number of directions thus provides a 

rich sampling of q-space. Higher angular sampling provides several advantages but requires 

increased scanning time, making the use of acceleration techniques such as parallel imaging very 

important for DWI (Descoteaux, 2015). With an increasing number of directions, more baseline 

images (b = 0) are required (i.e., the acquisition of one b-zero image is recommended for every 10 

directions), which further increases scan time (Descoteaux, 2015).  

DIFFUSION TENSOR IMAGING 

The diffusion tensor (DTI) model was created to model the diffusion process in biological tissues 

(Basser et al., 1994a, 1994b). Indeed, unless diffusion is perfectly isotropic, it cannot be represented 

by a single scalar D (Le Bihan et al., 2001). The tensor is a 3x3 symmetric matrix representing 

diffusion along nine directions:  

𝐃 =  ( 

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

 ) ,     (Eq. 3) 

Therefore, the following equation, which is an extension of Eq. 2, must be solved for six unknown 

diffusion coefficients (𝐷𝑥𝑥 , 𝐷𝑦𝑦, 𝐷𝑧𝑧, 𝐷𝑥𝑦, 𝐷𝑥𝑧 and 𝐷𝑦𝑧), as the matrix is symmetric, (i.e., 𝐷𝑥𝑦 = 

𝐷𝑦𝑥): 

𝑆 = 𝑆0 𝑒𝑥𝑝(−𝑏𝑥𝑥𝐷𝑥𝑥 − 𝑏𝑦𝑦𝐷𝑦𝑦 − 𝑏𝑧𝑧𝐷𝑧𝑧 − 2𝑏𝑥𝑦𝐷𝑥𝑦 − 2𝑏𝑥𝑧𝐷𝑥𝑧 − 2𝑏𝑦𝑧𝐷𝑦𝑧),   (Eq. 4) 

where 𝐷𝑥𝑥 , for instance, is an element of the diffusion tensor matrix and 𝑏𝑥𝑥 is the corresponding 

term of the b matrix, the diffusion coefficient and the gradient pulse strength along the x-direction 

(i.e., left-right), respectively. A minimum of six diffusion-weighted images in different, uniformly 

spaced, directions is required to solve for the six unknown coefficients (𝐷𝑖𝑗) of Eq. 4 using 

weighted least-squares methods, with weights based on signal intensities (Basser et al., 1994a; 

Descoteaux, 2015; Le Bihan et al., 2001). Since Eq. 4 must be solved at every voxel, tensor 

computation yields a 4D image, or a series of six 3D volumes each containing the diffusion 
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coefficients 𝐷𝑥𝑥 , 𝐷𝑦𝑦, 𝐷𝑧𝑧, 𝐷𝑥𝑦, 𝐷𝑥𝑧 and 𝐷𝑦𝑧 at each voxel (Descoteaux, 2015). The tensor can 

then be diagonalized, that is the frame of reference can be changed to a frame where the tensor is 

reduced to its diagonal terms (𝐷𝑥𝑥 , 𝐷𝑦𝑦 and 𝐷𝑧𝑧), allowing to simplify the signal equation to: 

𝑆 = 𝑆0 𝑒𝑥𝑝(−𝑏𝑥′𝑥′𝐷𝑥′𝑥′ − 𝑏𝑦′𝑦′𝐷𝑦′𝑦′ − 𝑏𝑧′𝑧′𝐷𝑧′𝑧′),    (Eq. 5) 

where 𝑥′, 𝑦′ and 𝑧′ indicate the diagonalized frame of reference, which is aligned to the main 

diffusion directions. Diagonalization is also referred to as eigenvalue decomposition as it yields 

three eigenvectors (ε), the main directions of diffusion, and three eigenvalues (λ), the diffusivities 

in each of those directions, where λ1  >  λ2 >  λ3 (Descoteaux, 2015; Le Bihan et al., 2001). The 

principal orientation of the tensor (ε1) is thus given by the direction of the largest eigenvalue, λ1. 

Diffusion at each voxel can be represented visually as an ellipsoid where the main axis indicates 

the main direction of diffusion ε1 and the length of each axis, the displacement distance in that 

direction during the diffusion time Td (Figure 3) (Le 

Bihan et al., 2001). Importantly, the shape of the 

ellipsoid shows the degree of anisotropy; the more 

elongated the ellipsoid the higher the anisotropy of 

diffusion, and the higher the orientation coherence of the 

underlying microstructure in that voxel (Descoteaux, 

2015; Le Bihan et al., 2001). On the other hand, a 

spherical shape indicates a voxel where diffusion is 

isotropic and diffusivities are equal in all directions (λ1 = 

λ2 = λ3). These different aspects describing the diffusion 

process (i.e., overall molecular displacement, or 

diffusivity, degree of anisotropy, and main direction of 

diffusion), can be quantified by deriving scalar metrics 

from the tensor image (Le Bihan et al., 2001). 

Mean diffusivity (MD), the spatial extent of random motion at a given voxel, is computed by 

averaging the three eigenvalues: MD = (𝜆1 + 𝜆2 + 𝜆3) 3⁄ . This measure is very useful in clinical 

applications such as detecting early brain ischemia as diffusion drops almost immediately in 

ischemic regions due to intracellular swelling (Descoteaux, 2015; Le Bihan et al., 2001). In 

Figure 3. Diffusion ellipsoid of the DTI model. The 
red ellipsoid of the top panel represents a tensor with 
a fractional anisotropy (FA) value of approximately 
0.7 (coherently organised WM fibers as shown on the 
top left). The bottom part of the figure illustrates 
different possible tensor configurations (blue= 
isotropic, green= oblate, red = prolate). (Descoteaux, 
2015). 
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ischemia (e.g. stroke), the increased intracellular volume, and accompanying decrease in 

extracellular volume, in a given voxel leads to greater restriction for molecular motion as DWI is 

sensitive mainly to the extracellular compartment, where diffusion occurs at higher speeds 

(especially at low b values) (Le Bihan et al., 2001).  

Diffusion anisotropy is most frequently quantified using fractional anisotropy (FA) (A. L. 

Alexander et al., 2000). FA ranges from 0 to 1; values near zero describe isotropic diffusion while 

values above 0.7 are found in voxels containing fibers organised with high coherence (e.g., corpus 

callosum). FA images thresholded at 0.2 are often used as maps of WM since voxels with FA > 0.2 

tend to be located in WM while lower values are typically found in grey matter and CSF. 

FA =
3

2
  √

(𝜆1−𝜆2)2+(𝜆1−𝜆3)2+(𝜆2−𝜆3)2

𝜆1
2+𝜆2

2+𝜆3
2 ,     (Eq. 6) 

Two other commonly used metrics, axial and radial diffusivities (AD and RD), provide information 

on diffusivity along the principal direction (AD = 𝜆1) and in the plane perpendicular to ε1 (RD = 

(𝜆2 + 𝜆3) 2⁄ ) (Descoteaux, 2015). Lastly, fiber orientation can be tracked by aligning the principal 

direction vectors, ε1, at each voxel, allowing to map the connectional architecture of the brain in 

vivo. 

DTI is now widely used in clinical settings, to detect brain ischemia, as well as in research to 

investigate WM changes due to aging, pathology, and learning (Le Bihan et al., 2001). However, 

there are several limitations to the DTI model as metrics derived from DTI are sensitive but non-

specific (H. Zhang et al., 2012a). For instance, different tissue configurations, such as an area of 

crossing fibers and an area where diffusion is truly isotropic (i.e., ventricles) can lead to similar FA 

values (see Figure 4) (Descoteaux, 2015). Furthermore, DTI models the diffusion process as either 

Gaussian (e.g., water molecules in the extra-cellular space) or non-Gaussian (e.g., restricted 

diffusion in the intra-cellular space) and can thus only model one fiber population per voxel 

(Descoteaux, 2015; H. Zhang et al., 2012a). The Gaussian assumption is violated most of the time 

as over two thirds of WM voxels have multiple fiber populations with different orientations 

(Descoteaux, 2015). These limitations have led to the emergence of new, higher order, models that 
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require acquisitions of higher angular resolution and multiple b-values (i.e., shells) (Descoteaux, 

2015). 

NEURITE ORIENTATION DISPERSION AND DENSITY IMAGING 

In order to resolve crossing fibers and to distinguish changes in axonal density from changes in 

fiber organization, more advanced modelling approaches have been developed (Descoteaux, 2015; 

H. Zhang et al., 2012a). As these models involve complex mathematics and more degrees of 

freedom than DTI, a higher number of diffusion-weighted images must be acquired. The number 

of acquired directions (i.e., angular resolution), the number of b-values (i.e., shells), or both can be 

increased (Descoteaux, 2015). Several models were developed to overcome the limitations of DTI 

(e.g., composite hindered and restricted water diffusion model; CHARMED, minimal model of 

white matter diffusion; MMWMD and neurite orientation dispersion and density imaging; 

NODDI). These models integrate more compartments (i.e., 3 or 4) than the DTI model, providing 

a more realistic representation of tissue organization. However, some of these models (e.g., 

CHARMED and MMWMD) represent axons as parallel cylinders, an assumption that is rarely met 

outside the highly coherent WM tracts such as the corpus callosum. 

The NODDI model requires high angular sampling resolution of one or multiple shells (i.e., single-

shell HARDI and multi-shell HARDI) (Descoteaux, 2015; H. Zhang et al., 2012a). NODDI is a 

three-compartment tissue model that comprises an intracellular compartment, where diffusion is 

restricted, an extracellular compartment, where diffusion is hindered by surrounding neurites (i.e., 

“projections of neurons”, comprising axons and dendrites), and a CSF compartment, where 

diffusion is isotropic (H. Zhang et al., 2012a). The following equation describes the total 

normalized signal: 

Figure 4. Crossing fibers at an imaging voxel are represented by a sphere in DTI, and thus as isotropic. The true configuration 
can be resolved with more advanced modeling approaches which yield orientation dispersion functions (ODFs). Modified from 
Descoteaux, 2015. 
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𝐴 = (1 − 𝑣𝑖𝑠𝑜)(𝑣𝑖𝑐𝐴𝑖𝑐 + (1 − 𝑣𝑖𝑐)𝐴𝑒𝑐) + 𝑣𝑖𝑠𝑜𝐴𝑖𝑠𝑜 ,   (Eq. 7) 

where 𝐴𝑖 and 𝑣𝑖 are the signal and volume fraction of each compartment and the iso, ec and ic 

subscripts denote the isotropic (i.e., CSF-filled), extracellular, and intracellular compartments, 

respectively.  

The development of NODDI builds on other advanced DWI models with a higher number of 

compartments, but the NODDI model, unlike CHARMED and MMWMD, does not assume a 

parallel fiber orientation (H. Zhang et al., 2012a). Instead, a Watson distribution is used to model 

the orientation distribution of nonparallel axons, with organizations ranging from high to low 

dispersions (H. Zhang et al., 2011, 2012a). The intracellular compartment is represented as sticks 

of zero radius, to model the highly restricted diffusion perpendicular to the axon and the unhindered 

diffusion along the axon (H. Zhang et al., 2012a). These sticks are oriented at varying degrees of 

dispersion around a mean orientation (𝝁). The orientation dispersion index (OD) is a measure of 

the extent of dispersion around 𝝁 that ranges from 0 to 1, where an OD = 0 indicates perfectly 

parallel cylinders and OD = 1 indicates perfectly isotropic diffusion. A sample of orientation 

dispersions, from the Watson distribution, is illustrated in Figure 5, with different OD around the 

mean orientation (represented by the vertical axis). Diffusion in the extracellular compartment is 

hindered by surrounding neuronal structures and is thus 

modelled as a Gaussian anisotropic process (H. Zhang et al., 

2012a). Lastly, diffusion in CSF-filled spaces (𝑑𝑖𝑠𝑜) is 

modelled as a Gaussian isotropic process (H. Zhang et al., 

2012a). The intracellular diffusivity parallel to the axon (𝑑∥) 

and isotropic diffusivity (𝑑𝑖𝑠𝑜) can be approximated from 

known typical in vivo values (i.e., 3.0 x 10-9 mm2s-1 and 1.7 x 

10-9 mm2s-1, respectively), and are thus input as fixed 

parameters in the model (H. Zhang et al., 2012a). Reducing the 

number of unknown parameters enables estimation of other 

parameters by ensuring the system is well-determined.  

Figure 5. Sample of OD from the Watson 
distribution, with OD ranging from low to 
high dispersion around the mean orientation 
𝝁, represented by the vertical axis (OD ∈

{0.04, 0.16, 0.5, 0.84, 1.0}). From Zhang 
et al., 2012. 
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Two metrics derived from NODDI are of particular interest: neurite density, given by 𝑣𝑖𝑐, and the 

orientation dispersion index (OD). In coherently organized WM tracts, such as the corpus callosum, 

𝑣𝑖𝑐 is high and OD is low (which corresponds to high FA) (H. Zhang et al., 2012a). In areas of 

fanning and crossing fibers however, OD values are higher while 𝑣𝑖𝑐 values remain similar, as 

neurite density shows very little variation across healthy WM, though it may decrease in age and 

disease (e.g., Gozdas et al., 2021). These two metrics thus allow to distinguish changes in WM 

fiber density from changes in fiber organization (see Figure 6). This is highly pertinent in the 

investigation of learning-induced neuroplasticity, as well as in investigating changes associated 

with aging and different disorders affecting WM (Kodiweera et al., 2016; Schneider et al., 2017; 

Tavor et al., 2013). While FA is affected to a greater extent by OD (i.e., strong negative correlation 

with FA), changes in 𝑣𝑖𝑐 alone (i.e., weak positive correlation with FA), or in combination with 

changes in OD, may also lead to alterations in FA. This highlights the importance of specific 

metrics, such as OD and 𝑣𝑖𝑐, to disentangle factors contributing to FA. In grey matter, OD is higher 

and neurite density lower than in WM. In CSF-filled cavities such as ventricles, the diffusivity 

corresponds to 𝑑𝑖𝑠𝑜, OD is very high (i.e., near 1) and 𝑣𝑖𝑠𝑜 is high, while other volume fractions 

are low (H. Zhang et al., 2012a). 

The NODDI model provides WM metrics of greater sensitivity and specificity than DTI (G. Adluru 

et al., 2014; Kodiweera et al., 2016; Pines et al., 2020; Schneider et al., 2017; H. Zhang et al., 

2012a). Histology has shown that NODDI provides accurate measures of orientation dispersion 

and neurite density, even in areas of crossing fibers (Jespersen et al., 2010, 2012; Sepehrband et 

al., 2015). NODDI aims at quantifying neurite density and orientation dispersion but not axonal 

diameter, which is entirely absent from this model since it assumes sticks of zero radii (H. Zhang 

et al., 2012a). Zhang and colleagues (2012) have however showed that this simplification does not 

impact the accuracy of neurite density and orientation dispersion estimations and allows for shorter 

Figure 6. From left to right: Principal direction color map, FA, OD, 𝑣𝑖𝑐, and 𝑣𝑖𝑠𝑜maps. Area of crossing fibers in the centrum 
semiovale (in region encircled by yellow and black dashed lines) showing lower FA values corresponding to higher OD values, 
while 𝑣𝑖𝑐 remains high at that location (encircled by black dashed line). Modified from Zhang et al., 2012. 
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acquisition and computational times. Another limitation of NODDI is that a single mean orientation 

(and a single summary measure of neurite density) can be estimated per voxel. For this reason, 

NODDI is not the preferred method for tractography or if fibre-specific information is desired, in 

which case methods such as spherical deconvolution should be used instead (Daducci et al., 2014, 

2015). 

CONSTRAINED SPHERICAL 
DECONVOLUTION 

Spherical deconvolution (SD) methods 

use high angular resolution imaging 

(HARDI) to model multiple fiber 

orientations per voxel, overcoming one 

of the main limitations of DTI and 

NODDI: the crossing fibers “problem” 

(see Figure 7)  (Dell’Acqua & Tournier, 

2019). Initially thought of as an issue 

affecting just a few problematic areas, the 

extent of WM voxels in which more than 

one fiber populations are present has 

recently been estimated at about 70-90% 

of the entire WM (Jeurissen et al., 2013; 

Riffert et al., 2014). The capacity to 

model multiple fibers is thus essential to 

accurately estimate microstructural parameters and to map complex fiber organization with 

tractography (see Figure 8) (Dell’Acqua & Tournier, 2019). SD methods rely on the principle that 

the DWI signal reflects the ensemble of fiber populations present in a voxel (Jeurissen et al., 2014). 

The DWI signal can be expressed by the convolution of the fiber orientation density function 

(fODF) and of the response function, which is the typical DW signal profile of a given tissue type:  

𝐷𝑊 𝑠𝑖𝑔𝑛𝑎𝑙 = 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑓𝑐𝑡 ∗ 𝑓𝑂𝐷𝐹,  (Eq. 8) 

Figure 7. On the left, ellipsoids from the DTI model provide directional 
information for a single orientation per voxel. On the right, fiber 
orientation density functions (fODFs) from spherical deconvolution (SD) 
model multiple fiber directions. From Dell'Acqua & Tournier, 2019. 

Figure 8. Tractography performed with DTI (left) and SD (right) is shown. 
From Dell'Acqua & Tournier, 2019. 
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where ∗ denotes a convolution. Spherical deconvolution of the response function from the 

measured DWI signal can thus be performed to obtain the fODF. The response function is estimated 

directly from the DW signal, using a brain segmentation to define volume fractions of each tissue 

type at each voxel. SD can estimate all the fiber populations present in a voxel, regardless of the 

number (Jeurissen et al., 2014). Spherical harmonic basis functions, which are functions defined 

on the surface of a sphere, are frequently used to in SD. When performing SD, coefficients in this 

SH basis are obtained and stored in the “Fiber orientation distribution (FOD) image”. Similar to 

the ellipsoid from DTI, a representation of the fiber populations can be visualized (see Figure 9).   

 
Figure 9. The WM FOD, which shows the orientation and density of every fiber population in a voxel, is illustrated. The impact of 
lower fibre-specific FD in patients vs controls is shown in both the WM FOD and the ellipsoid from DTI. The higher FA in patients 
could be interpreted as higher white matter “integrity” if only DTI is used, even though patients experienced a loss in density in a 
fiber running orthogonal to the main direction. From Dhollander et al., 2021. 

Initially, SD techniques could only be applied to single-shell DWI data and yielded fODFs that 

were only accurate in voxels containing pure WM (Jeurissen et al., 2014). In voxels with partial 

voluming, inaccuracies occur because the WM response function does not reflect the signal profile 

of other tissues such as GM and CSF. Recently, the method has been expanded to multi-shell data, 

taking advantage of the b-value dependency of each tissue to estimate tissue-specific ODFs. This 

method is called multi-shell multi-tissue CSD (MSMT-CSD). The signal equation then becomes: 

𝐷𝑊 𝑠𝑖𝑔𝑛𝑎𝑙 = (𝑊𝑀 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑓𝑐𝑡 ∗ 𝑓𝑂𝐷𝐹) + (𝐺𝑀 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑓𝑐𝑡 ∗ 𝐺𝑀 𝑂𝐷𝐹) + 

(𝐶𝑆𝐹 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑓𝑐𝑡 ∗ 𝐶𝑆𝐹 𝑂𝐷𝐹),   (Eq. 9) 

Because SD is an ill-posed problem, a non-negativity constraint is added to reduce noise sensitivity, 

giving rise to constrained SD, or CSD (Tournier et al., 2007). CSD has led to improvements in 

tractography as well as the introduction of new quantitative measures of WM microstructure such 
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as apparent fibre density (AFD), which is proportional to the intra-axonal volume (Jeurissen et al., 

2014). A minimum of 3 shells (including a b-zero shell) is required to model the three main tissue 

types (WM, GM, and CSF). A fourth shell allows to also compute subcortical GM. Because low 

diffusion gradients are mostly sensitive to the extra-axonal space, one of the shells should have a 

value of ≥ 2500-3000s/mm2 to ensure that the AFD estimated accurately reflects the intra-axonal 

volume (Jeurissen et al., 2014). Other metrics such as fiber cross-section (FC) and a combined 

measure of fiber density and cross-section (FDC) were also introduced (see Figure 10) 

(Dhollander, Clemente, et al., 2021; Raffelt, Tournier, et al., 2017). Most importantly, CSD can 

provide information at a sub-voxel resolution, yielding measures for each fiber population (fixel; 

or fiber element) within voxels. The fibre-specific measures obtained through this framework, 

called fixel-based analysis, are thus highly specific. 

In a popular implementation of MSMT-

CSD, tissue-specific response functions are 

computed from the multi-shell DWI data and 

tissue segmentations (typically obtained 

from a T1-weighted structural image) 

(Jeurissen et al., 2014; S. M. Smith, 2002). 

Multi-tissue CSD of the response functions 

from the DWI data is then performed to 

obtain FODs (Eq. 9). A population template 

is created from the subjects’ FODs, and 

subject’s FODs are then registered and 

warped to the template space (Dhollander, 

Clemente, et al., 2021; Raffelt, Tournier, et 

al., 2017). Fixels are segmented from the 

FOD template, where each peak is interpreted as a fiber population. This determines the fixel grid. 

The WM FOD of each subject is then segmented to identify fixels’ location and their AFD (which 

will subsequently be referred to as FD). FD is defined by the amplitude of the FOD (FOD lobe 

integral) and is a measure of microstructural axonal loss/gain. Individual subjects’ fixels are then 

reoriented and mapped to the fixel grid. The cross-sectional size of the bundle (FC) is then estimated 

from the warps computed in the previous step (Raffelt, Tournier, et al., 2017). FC can be 

Figure 10. Axons (grey circles) comprised in a fiber bundle within a 
voxel (grid) are illustrated. In the bottom left, a loss in the number of 
axons results in decreased FD. In the middle, FC is decreased. In the 
bottom right, both FD and FDC are decreased, which is reflected by 
reduced FDC. From Raffelt et al., 2017. 
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conceptualized as the amount of expansion or contraction orthogonal to the fibre direction 

necessary to align to the template. It is a measure of macroscopic differences that would result from 

atrophy or tract swelling for instance. Lastly, a combined measure of fibre density and cross-section 

(FDC), calculated as 𝐹𝐷 ∙ 𝐹𝐶, yields a measure that represents the total information carrying 

capacity. It has been shown to be more sensitive than FD or FC alone, although a complete picture 

can only be obtained by using all three metrics together. For instance, edema without axonal loss 

would result in increased FC, decreased FD, and unchanged FDC (Raffelt, Tournier, et al., 2017). 

In this example, edema could not be captured using the FDC metric alone. 

The fixel-based analysis (FBA) framework has emerged in recent years as a solution to the main 

problems of DTI which yields metrics that are highly unspecific. In addition to being much more 

specific, FBA metrics have also been shown to be more sensitive (Adanyeguh et al., 2018), 

especially in crossing fibres regions (Raffelt et al., 2015). Further, since MSMT-CSD requires 

multiple shells and high b-values, the intra-axonal compartment can be directly estimated and the 

impact of other compartments (i.e, GM and CSF) is explicitly taken into account, resulting in more 

accurate fibre estimations (Jeurissen et al., 2014). NODDI also allows modeling of the intra-axonal 

compartment, providing more specific information than DTI, but like DTI, a single fibre orientation 

can be estimated at each voxel. MSMT-CSD thus provides highly specific information on each 

individual fibre bundle contained in a voxel. However, FBA metrics cannot differentiate changes 

in axon count from changes in axon diameters. Like other DWI techniques, CSD is also not specific 

to myelin (Jeurissen et al., 2014). The following section introduces myelin-sensitive techniques.     

1.3.3 Magnetization transfer imaging  

PRINCIPLES OF MAGNETIZATION TRANSFER IMAGING 
Magnetization transfer imaging (MTI) allows for the indirect estimation of myelin content in the 

brain in vivo using the binary spin-bath model (i.e., two pools model). Because of their ultra-short 

transverse relaxation times (T2 < 100 s), macromolecules such as myelin cannot be imaged 

directly (Campbell et al., 2018; Sled & Pike, 2001). However, myelin can be imaged indirectly by 
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saturating the macromolecular pool (i.e. bound 

protons), which will then interact with free 

water protons, producing an effect on the MR-

visible pool (Sled & Pike, 2001; Wolff et al., 

1991). In a typical MRI sequence, the 

radiofrequency excitation pulse applied at 

Larmor frequency (𝜔0) targets the free water 

pool. Conversely, in MTI, a specially designed 

off-resonance RF pulse, termed the MT pulse, is 

used to excite the macromolecular pool, causing its saturation (see Figure 11) (Helms, Dathe, 

Kallenberg, et al., 2008; Seeger et al., 2003). The saturated macromolecular pool then releases 

energy to the “lattice”, which, in this case, is the unexcited nuclei in the free water pool. This drives 

the free pool to a higher energy state which results in a greater number of spins down and thus in 

decreased net magnetization. This magnetization transfer from the saturated “bound” pool to the 

free water pool occurs through dipole-dipole interactions and chemical exchange, collectively 

referred to as cross-relaxation (Wolff et al., 1991; Yarnykh & Yuan, 2004). An on-resonance RF 

pulse is then applied to the free water pool, which now has a reduced net magnetization. This results 

in reduced signal compared to the same pulse sequence without a saturation pulse (Helms, Dathe, 

Kallenberg, et al., 2008). Because macromolecular content varies substantially across the brain, 

MTI offers high contrast between tissues (De Boer, 1995). MT contrast is more sensitive to lipids 

(the main constituent of myelin, axonal membranes, neurofilaments, and glial cells), than to 

proteins (Kucharczyk et al., 1994; Laule et al., 2007). For this reason, MTI is most commonly used 

to measure myelin content. The greater the macromolecular content in tissue, the greater the degree 

of interaction, or exchange, with the free water pool (i.e., MT effect), which is observed as a 

reduction in MR signal (De Boer, 1995).  

Figure 11. Schematic representation of excitation of the 
macromolecular pool, which has a short T2 and a broad 
resonance line shape, with an off-resonance pulse. 𝜔0= Larmor 
frequency. From McRobbie et al., 2017. 
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MTI ACQUISITION 

The basic acquisition scheme in MTI (see 

Figure 12) involves the combination of 

preparatory MT pulses with either a gradient 

echo (GE) or spin-echo sequence (Helms, 

Dathe, Kallenberg, et al., 2008; Pike, 1996; 

Pike et al., 1993). As each MT pulse only 

partially saturates the bound pool, pulses 

must be repeated at a frequency high enough, relative to the cross relaxation rate, to achieve 

saturation (Pike, 1996). Most commonly, a spoiled GE sequence is used (SPGE or FLASH; Fast 

Low Angle Shot), allowing for a fast acquisition (Helms, Dathe, Kallenberg, et al., 2008; Melki & 

Mulkern, 1992; Pike, 1996). The FLASH sequence employs a small flip angle (𝛼 < 15) and short 

TR (TR << T1) to induce a steady-state signal with minimal T1-weighing (Helms, Dathe, 

Kallenberg, et al., 2008). Spoiling is used to remove steady-state magnetization remaining in the 

transverse plane (Mxy), allowing for more magnetization to be available (i.e., in the longitudinal 

plane) for the next excitation, thus resulting in higher signal (Helms, Dathe, Kallenberg, et al., 

2008; Pike, 1996; Pike et al., 1993). In order to measure the magnitude of the MT effect, an 

acquisition with a preparatory MT pulse (MT-w) and one without MT pulse (proton density 

weighted; PD-w) are required (Lema et al., 2017; Wolff et al., 1991). 

Several MTI techniques have been developed over the years and allow for the calculation of various 

MT-based parameters. Two approaches will be described in the following sections: the MT ratio 

(MTR) and the MT saturation index. 

MAGNETIZATION TRANSFER RATIO 

The MTR metric provides a measure of the magnitude of the MT effect, and thus of 

macromolecular content in tissue (Wolff et al., 1991). The advantage of this MT-based parameter 

is that only two SPGE acquisitions are necessary – a MT-on and a MT-off (PD-w) image. The ratio 

can then be calculated simply by subtracting the signal of the MT-w acquisition (𝑆𝑀𝑇) from the 

signal of the PD-w acquisition (𝑆0) and dividing by 𝑆0 (see Eq. 10) (Lema et al., 2017). This is also 

illustrated in Figure 13. 

Figure 12. Basic acquisition scheme: first a shaped off-resonance 
MT pulse is applied, followed by a spoiled gradient echo sequence. 
From Sled & Pike, 2001. 
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𝑀𝑇𝑅 =  (𝑆0 − 𝑆𝑀𝑇) 𝑆0⁄ ,      (Eq. 10) 

 

Higher macromolecular content leads to more signal 

attenuation (𝑆𝑀𝑇) which results in a higher MTR 

(Helms, Dathe, Kallenberg, et al., 2008). MTR has been 

found to increase during development as fiber tracts 

undergo myelination (Rademacher et al., 1999) and to 

decrease in demyelinating disorders such as MS, 

indicating myelin loss in both normal-appearing WM 

(NAWM) and lesions (Filippi et al., 1995; Lema et al., 

2017). The interpretability of the MTR is however 

limited because of its dependence on longitudinal 

relaxation (T1), B1 inhomogeneities, and the choice of MT pulse parameters (frequency offset, 

shape, and bandwidth) (Helms, Dathe, Kallenberg, et al., 2008). For instance, increases in T1 due 

to edema in some MS lesions can mask myelin loss, since T1 and macromolecular content have 

opposite effects on the MTR (Levesque et al., 2005). For these reasons, more complex metrics that 

take those confounding effects into account have been developed. 

MAGNETIZATION TRANSFER SATURATION  

The MT saturation (MTsat) index is another MT-based parameter in which RF inhomogeneities 

and T1 dependence are reduced. The MTsat index represents the percentage of saturation 

transmitted by one MT pulse during the TR (Helms, Dathe, Kallenberg, et al., 2008). To compute 

this index, a T1-w image must be acquired in addition to the two SPGE acquisitions (MT-on and 

MT-off). A B1 map may also be acquired to correct for B1 inhomogeneities (Helms, Dathe, 

Kallenberg, et al., 2008). The saturation term (𝛿), the reduction in steady-state signal caused by the 

saturation effect of one MT pulse, can be calculated from the following signal equation (SMT):  

 

𝑆𝑀𝑇 ≅ 𝐴 𝛼 
𝑅1 𝑇𝑅

𝛼2
2⁄  + 𝛿 + 𝑅1 𝑇𝑅

,      (Eq. 11) 

 

Figure 13. Diagram of how MTR is calculated from a PD-
weighted image and a MT-weighted image. The resulting 
MTR map is shown on the right. From Fox et al., 2011.  
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where A, the amplitude of the signal when fully relaxed longitudinally, and R1, the relaxation rate, 

can be calculated from the signal of the non-MT-w sequences (𝑆𝑃𝐷 and 𝑆𝑇1) of different flip angles 

and TR. The metric of interest, 𝛿, a dimensionless value typically expressed as a percentage, is then 

calculated with the following equation: 

 

𝛿𝑎𝑝𝑝 = (
𝐴𝑎𝑝𝑝𝛼

𝑆𝑀𝑇
− 1) 𝑅1𝑎𝑝𝑝𝑇𝑅 − 𝛼2

2⁄ ,    (Eq. 12) 

 

Since the flip angle and relaxation rate (R1) are taken into account separately in the signal equation, 

the MTsat index is independent of those parameters and is thus a more specific measure of the 

magnetization exchange occurring between the bound and free water pool due to macromolecular 

content (e.g., myelin) (Helms, Dathe, Kallenberg, et al., 2008; Lema et al., 2017). Another 

advantage of this parameter is that it yields maps with improved contrast between WM and grey 

matter (GM), where 𝛿 values are highest in WM, lower in GM and close to zero in CSF-filled 

spaces such as ventricles (Figures 14 and 15). For this reason, Helms and colleagues (2008) have 

suggested that MTsat maps may be used for brain segmentation. MTsat is clinically feasible and 

has been shown to be more sensitive 

than MTR in assessing tissue 

damage in MS patients (Helms, 

Dathe, Kallenberg, et al., 2008; 

Lema et al., 2017). An MS study 

comparing these MTI-based 

metrics has found that disability 

scores correlate with MTsat in 

NAWM and in lesions, in both the 

brain and spinal cord, while MTR 

correlated to disability only in brain 

lesions, but not in NAWM nor in any 

cervical regions (Lema et al., 2017).  

 

However, a limitation of this model is that the MTsat index represents only a fraction of the bound 

spins since this metric measures the effect of a single MT pulse while several pulses are necessary 

Figure 14. MTsat map shows good contrast 
between WM and GM. The contrast is 
especially improved for the U-fibers, and for 
the WM tracts connecting to the globus 
pallidus and thalamus (internal capsule). 
Modified from Helms et al., 2008. 

Figure 15. The histogram of the top 
panel shows clear separation 
between the WM (red) and GM 
(green) modes in MTsat, evidenced 
by a deeper trough compared to the 
MTR histogram (bottom panel). 
From Lema et al., 2017. 
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to saturate the entire macromolecular pool (Helms, Dathe, Kallenberg, et al., 2008). Furthermore, 

even though the impact of RF inhomogeneities and T1 relaxation are mitigated, MTsat is still 

dependent on some sequence parameters, especially those relating to the MT pulse. For instance, 

MT saturation increases with the energy of the MT pulse, which depends on its flip angle and 

duration. However, particular attention must be paid in order not to exceed the specific absorption 

rate (SAR) limits when using MT pulses of high energy. The choice of MT pulse frequency offset 

also influences measures of MTsat (Helms, Dathe, Kallenberg, et al., 2008). MT pulses of low 

frequency offsets (i.e., 1 kHz) generate greater saturation, but direct RF energy absorption (i.e., by 

the free water pool) may occur. Ensuring the frequency of the MT pulse is far enough from Larmor 

frequency is therefore important to prevent direct absorption as the effects of direct saturation 

cannot be distinguished from magnetization transfer. However, if the frequency offset is too large, 

the amount of saturation is reduced. A frequency offset of 2.2 kHz is considered optimal and is 

thus typically used (Helms, Dathe, Kallenberg, et al., 2008; Lema et al., 2017).  

1.3.4 Multi-parametric mapping  

PRINCIPLES OF MULTI-PARAMETRIC MAPPING 

Multi-parametric mapping (MPM) uses an optimized protocol consisting in the acquisition of 

multi-echo data with different weightings to derive four quantitative maps of tissue microstructure: 

proton density (PD), (effective) transverse relaxation rate R2(*), longitudinal relaxation rate R1, 

and MTsat. Relaxometry principles are leveraged to estimate relaxation rates and PD. Relaxometry 

is a technique whereby multiple measurements with different parameters (i.e., different echo times 

for T2 and different inversion times for T1) allow the characterization of signal relaxation after the 

RF pulse and thus estimation of relaxation times (and rates). Longitudinal (T1) relaxation refers to 

the magnetization returning toward its initial position (Mz), precessing around the static B0 field, 

and occurs due to energy transfer with the surrounding “lattice” (i.e., spin-lattice relaxation) 

(Westbrook & Talbot, 2018). T1 is the time it takes for the net magnetization to reach about 63% 

of Mz (Figure 16). On the other hand, transverse relaxation refers to the dephasing of transverse 

components of magnetization due to interactions with neighboring spins (i.e., spin-spin relaxation). 

T2 is the time it takes for transverse magnetization (Mxy) to decay to about 37% of the initial Mxy 

(Figure 16). Once relaxation times are estimated, relaxation rates can easily be calculated (e.g., 

R1=1/T1). Proton density (PD) refers to the number of hydrogen protons per unit volume and is a 
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measure of the total amount of available signal (Westbrook & Talbot, 2018). The last parameter, 

MTsat, is the attenuation resulting from one MT pulse and is proportional to the size of the 

macromolecular pool (Helms, Dathe, Kallenberg, et al., 2008). MT has been discussed in detail in 

the previous section.  

MPM ACQUISITION AND PARAMETERS ESTIMATION 

Three spoiled multi-echo 3D fast low angle shot (FLASH) acquisitions with predominant PD (8 

equidistant echoes), T1 (6 echoes), and MT weighting (6 echoes) are required for MPM (Weiskopf 

et al., 2011). The repetition time (TR), and flip angle (α) are manipulated to obtain different 

weightings. A RF transmit field map (B1) and a static magnetic (B0) field map are also acquired 

to correct for field inhomogeneities. As described in the section on MTsat above, an MT pulse is 

applied prior to excitation to achieve MT-weighting.  

The R2* map is calculated by performing a linear regression from the logarithm of the signal 

intensities at different echo times (using the 8 PD-weighted echoes) (Weiskopf et al., 2013). The 

six first echoes of each scan are averaged to increase SNR. The three average images are then used 

to calculate MTsat, the signal amplitude (A), and apparent R1 using the Ernst equation that 

describes FLASH signals. Effective PD* is obtained by correcting the signal amplitude (A) for 

global and local receive sensitivity differences. The PD map obtained is said to be effective 

because, since the average across multiple echoes was used (effective TE = 8.45ms) to calculate 

PD, and it was not extrapolated to TE=0, the PD measure obtained is still partly dependent on R2*. 

Figure 16. Left: T1 recovery curve. Right: T2 decay curve. From Westbrook & Talbot (2011).  
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PD* maps are scaled to standardize the mean PD* in WM to the published value of 69%. This step 

ensures PD* maps are comparable across participants. Quantitative R1 maps are calculated by 

correcting the apparent R1 maps for local RF transmit field inhomogeneities and for imperfect RF 

spoiling. Lastly, MTsat maps, computed from the averaged MT-w and PD-w scans, are corrected 

for local RF transmit field (i.e., flip angle). 

QUANTITATIVE MAPS 

MPM yields quantitative parameters that are highly specific to macromolecular, myelin and iron 

content (Figure 17) (Callaghan et al., 2014; Weiskopf et al., 2013). R1 depends mainly on the 

mobility of water, it is thus higher in WM regions that have higher myelin content (bound pool of 

low mobility) but is also increased by iron, especially in iron-rich subcortical regions (Callaghan 

et al., 2014). PD*, the amount of observable free water, shows the opposite pattern with low PD* 

values in WM, especially in highly myelinated regions. R2* is specific to iron content. Iron 

accumulation, observed as increased R2* is frequently reported in the basal ganglia and 

hippocampus in aging (Bartzokis et al., 2007; Callaghan et al., 2014; Rodrigue et al., 2013). Myelin 

content is most accurately quantified by MTsat. However, myelination is a complex process that 

also involves iron as the cells responsible for myelin production and repair, oligodendrocytes, 

contain a high level of iron and require iron to sustain their metabolism. The concurrent use of all 

four parameters is thus highly pertinent in disentangling these aging-related processes (Callaghan 

et al., 2014). For instance, increased R2* with normal or maintained R1 levels may indicate an 

increased concentration in iron-rich oligodendrocytes as oligodendrocytes are actively working to 

maintain myelin levels. On the other hand, increased R2* with reduced MTsat suggest higher iron 

levels are rather a result of iron being released from damaged oligodendrocytes which then leads 

to impaired myelination. Lastly, a reduction in R2*, R1, and MTsat is likely to reflect later-stage 

loss of oligodendrocytes (and of its iron) and demyelination as R1 is dependent on both myelin and 

iron (Callaghan et al., 2014). 

MPM yields measures that are comparable across sites and time points, making longitudinal studies 

and data harmonization in multi-center studies more reliable (Weiskopf et al., 2013). Long scan 

times (~20 min) are however required, which may be challenging for some populations. Further, 

MPM acquisition requires high gradient performance and multi-channel RF receive coils 

(Weiskopf et al., 2013). 
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Figure 17. Quantitative maps from MPM. R1: longitudinal relaxation rate; PD*: effective proton density; MT: magnetization 
transfer saturation index; R2*: effective transverse relaxation rate. 

1.3.5 Integrating multiple MRI measures with multivariate approaches  

As shown in previous sections, each WM imaging technique can provide some insight into the 

underlying microstructure, but each technique also suffers from its own limitations. For instance, 

DWI techniques are sensitive to several aspects of the brain’s WM, including axonal density, 

diameter, and organization, as well as myelination. However, although changes in myelin content 

alter the DWI signal, as myelin constitutes an additional barrier to diffusion, these techniques 

cannot measure the water trapped in myelin sheaths because of its short transverse relaxation time. 

This limitation of DWI is what makes myelin-sensitive techniques relevant. Using MTI in 

conjunction with diffusion MRI provides rich information on myelin thickness as well as on axonal 

properties, which are both important for optimal neural conduction in the central nervous system. 

Lastly, using MPM, in addition to MTI and diffusion MRI techniques, allows to disentangle myelin 

and axonal changes, as well as detect the presence of iron, which is useful in monitoring 

pathological progression in age-related neurological disorders and assessing the efficacy of 

treatments.  

Further, biophysical models used to map tissue microstructure to the MRI signal (e.g., DTI, 

NODDI) comprise a certain set of assumptions (Novikov et al., 2018). The metrics derived from 

each of these models are thus imperfect representations of the underlying tissue properties, biased 

by these assumptions. Because a perfect one-to-one mapping between tissue property and MRI 

metric does not yet exist (i.e., a change in myelin will be reflected by a change in FA, R1, and 

MTsat, and conversely, a change in FA could be due to a change in fiber dispersion or in fiber 

density), multi-modal imaging has emerged as a potential avenue to address the lack of specificity 



 28 

of imaging-derived metrics (Tardif et al., 2016). Using several MRI metrics from different WM 

imaging models it is possible to leverage the strengths of each approach while mitigating their 

weaknesses and allowing for a more holistic and mechanistic characterization of tissue 

microstructure. However, to avoid multiple comparisons problems and retain statistical power, 

reducing data dimensionality through multivariate approaches is necessary (Avants, Duda, et al., 

2008; Naylor et al., 2014; Owen et al., 2021). 

Multivariate approaches that combine MRI metrics have been used in various contexts. At the 

group level, partial least squares (PLS) analyses and their variants assess the covariance between 

multiple measures (Khedher et al., 2015; Nestor et al., 2002). Other group-level multivariate 

techniques include principal component analysis (PCA), Sparse Group Lasso, independent 

component analysis (ICA), and non-negative matrix factorization (Calhoun et al., 2001; 

Chamberland et al., 2019; Khedher et al., 2015; Plitman et al., 2020; Richie-Halford et al., 2021; 

W. Yang et al., 2011). At the individual level, interregional correlations of multiple measures can 

be used to create individual-specific network maps based on morphometric similarity , which can 

then be linked to behavior (Seidlitz et al., 2018). These individualized network maps offer a 

comprehensive structural mapping that captures both biological complexity and individual 

variability by integrating multiple MRI features (Vandekar et al., 2016; Whitaker et al., 2016). 

However, in some of these approaches, the shared covariance between MRI measures is not 

accounted for (e.g., Seidlitz et al., 2018). This has the potential to bias inferences made from such 

analyses, as there is significant covariance among commonly used imaging parameters (Carter et 

al., 2022; Uddin et al., 2019). Various multivariate approaches address this issue, including 

multivariate linear regression (Naylor et al., 2014; Young et al., 2010), machine-learning (Calhoun 

et al., 2001; Carbonell et al., 2020; C. Chen et al., 2019; Guberman et al., 2022; Khedher et al., 

2015; W. Yang et al., 2011), and Hotelling’s T2 test (Avants, Duda, et al., 2008; Hotelling, 1947). 

Many of these methods, including multivariate linear regression and machine learning, are 

computationally expensive and some require making subjective decisions (Alexopoulos, 2010; 

Gyebnár et al., 2019; Hayasaka et al., 2006; Naylor et al., 2014). Hotelling’s T2 test, a multivariate 

extension of a two-sample t-test, is a simple yet powerful option for group comparisons (Avants, 

Duda, et al., 2008; Hotelling, 1947), though it provides little insight at the individual level.  



 29 

In contrast, the Mahalanobis distance (D2) offers an individual-level measure of deviation relative 

to a reference distribution, accounting for covariance between features (e.g., imaging metrics). 

Developed by P. C. Mahalanobis in 1936 to quantify racial similarities based on anthropometric 

skull measurements, D2 can be viewed as a multivariate z-score that accounts for metric-metric 

covariance (P. N. Taylor et al., 2020). D2 has been widely used in outlier detection, cluster analysis, 

and classification applications (Ghorbani, 2019; Kritzman & Li, 2010; Xiang et al., 2008). In 

neuroimaging, D2 has been used to detect lesions in neurological disorders (Gyebnár et al., 2019; 

Lindemer et al., 2015), and to evaluate abnormality in patients’ brains relative to controls (Dean et 

al., 2017; Guerrero-Gonzalez et al., 2022; Owen et al., 2021; P. N. Taylor et al., 2020), as well as 

to study healthy WM development (Kulikova et al., 2015). 

Despite their potential, these approaches are not frequently used to study WM changes in health 

and disease, likely due to their complexity and higher computational demands compared to 

univariate analyses (Alexopoulos, 2010; Gyebnár et al., 2019; Hayasaka et al., 2006; Naylor et al., 

2014). 

1.4 White matter changes as an early pathological process in age-related 

disease  

WM changes have been reported as one of the earliest pathological processes in several age-related 

neurological disorders (N. Adluru et al., 2014; Araque Caballero et al., 2018; Bartzokis et al., 2003, 

2004; Bronge et al., 2002; de la Monte, 1989; Roher et al., 2002). The myelin breakdown model 

posits that the disproportionately high WM volume and the very long myelination period of human 

brains could underlie the unique vulnerability of our species to neuropsychiatric and 

neurodegenerative disorders (Bartzokis, 2004b). Oligodendrocytes are particularly vulnerable to 

various insults due to the high metabolic demands of producing and maintaining myelin, which 

increases with age as the need for repair grows (Connor & Menzies, 1996; Wiggins, 1982). The 

capacity of oligodendrocytes to continually repair damaged myelin is a double-edged sword as 

iron-related toxicity increases with increased oligodendrocytes activity (Bartzokis, 2011). Because 

oligodendrocytes contain a high amount of iron, which is essential for its differentiation (Sow et 

al., 2006), increased myelin repair leads to higher brain iron levels and myelin breakdown results 

in iron release, in turn leading to greater toxicity (Bartzokis, 2011; Callaghan et al., 2014). 
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Myelination also depends on brain cholesterol levels since cholesterol is one of the main 

constituents of myelin (Bartzokis, 2004b). The dependence of the myelination process on such a 

wide array of factors (e.g., iron, cholesterol, and energy supply) means that any change in the 

supply or metabolism of these compounds, often due to environmental insults that can be 

exacerbated by some genetic variants, can start altering myelin’s production and repair cycles and 

ultimately accelerate breakdown (Bartzokis, 2004b, 2011). This, along with the capacity of 

oligodendrocytes to continuously repair myelin through life, producing increasingly more fragile 

myelin sheaths, has been posited to underlie the particular vulnerability of oligodendrocytes and 

myelin. In this model, myelin is thus regarded as the “weakest link”, where myelin breakdown 

would result in network disconnection in addition to increased neurotoxicity that lead to further 

damage (Bartzokis, 2011; Lynch et al., 2000). 

WM health declines with normal aging, but the damage is more pronounced in individuals with 

neurodegenerative diseases such as Alzheimer’s disease (AD) and other types of dementia (Mayo 

et al., 2017). In AD and cerebral small vessel disease, factors such as iron overload, oxidative 

stress, and endothelial dysfunction disrupt oligodendrocyte function, leading to demyelination and 

axonal loss (Tranfa et al., 2024). The presence of WM abnormalities in AD is now well established, 

with several brain imaging studies reporting macrostructural (i.e., reduced WM volume) (Chaim et 

al., 2007; Hua et al., 2010; Im et al., 2008) and microstructural changes (i.e., decreased axonal 

diameter, axonal density and myelination) in AD patients (Bozzali et al., 2002; Huang et al., 2012; 

P.-N. Wang et al., 2012). We now know that pathological changes start occurring decades before 

symptom onset and diagnosis of AD (Beason-Held et al., 2013; Perl, 2010). Conditions such as 

hypertension, diabetes, and dyslipidemia, as well as risk factors such as physical inactivity and 

smoking, have been associated with more subtle changes in WM integrity and may thus constitute 

an earlier stage along the health – disease continuum (Figure 18) (Alfaro et al., 2018; Foley et al., 

2014; Mole et al., 2020; R. Wang et al., 2015; O. A. Williams et al., 2019). Furthermore, genetic 

factors, and other non-modifiable risk factors that increase the likelihood of developing AD (e.g., 

female sex), also impact WM microstructure (Heise et al., 2011; Honea et al., 2009; Toschi et al., 

2020). Characterizing the impact of these risk factors on the brain’s WM has important implications 

in understanding the early phase of the disease which can aid in the design of more effective 

intervention strategies to prevent or slow down the progression of AD. 
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1.4.1 Dementia 

Dementia (“de-”: deprivation or loss, “ment-”: mind, “ia”: state), as its etymological meaning 

suggests, is characterized by a loss of function, particularly cognitive functions like memory, as 

well as changes in behaviors and personality (H. D. Yang et al., 2016). Dementia is an umbrella 

term designating a collection of symptoms that can be caused by several different brain diseases. 

Alzheimer’s disease (AD) is the most common form of dementia, followed by vascular, Lewy 

body, frontotemporal, and Parkinson’s disease-related dementia (Cao et al., 2020; Ritchie & 

Lovestone, 2002). There is however a great amount of overlap in the neuropathology and 

predisposing factors between different dementia types (Fierini, 2020; Korczyn, 2002; Ritchie & 

Lovestone, 2002). In fact, it has been argued that cases of pure AD are rather rare and that dementia 

most often presents as a mixed pathology (Fierini, 2020). Evidence of a vascular contribution in 

the pathogenesis of AD supports this view (Fierini, 2020; Iturria-Medina et al., 2016). Many have 

thus embraced a more multi-factorial view of dementia, where a different set of pathologies can be 

present in different individuals diagnosed with the same type of dementia and similar pathologies 

can occur in individuals with different diseases.   

In one of the predominant theories of Alzheimer’s disease, the disease is defined by the 

accumulation and deposition of amyloid- (A) plaques that are toxic to the brain (Kung, 2012). 

However, the presence of amyloid deposition in cognitively normal individuals, the lack of 

association between amyloid and cognitive performance, and the limited success of therapeutic 

approaches targeting amyloid that are only effective in specific subgroups and have several side 

effects, suggest amyloid is not the only etiology (Duchesne et al., 2024). Rather, AD would be 

caused by multiple concomitant and interacting factors (Iturria-Medina et al., 2017; Sheikh et al., 

2013) The numerous pathological changes present in AD have given rise to just as many 

hypotheses and theories of AD. These include: amyloid- and tau deposition, cerebrovascular 

changes, inflammation, oxidative stress, metabolic and mitochondrial dysregulation, as well as 

white matter degeneration (Duchesne et al., 2024). Genetic factors also come into play with the E4 

allelic variant of the apolipoprotein E (APOE) gene being the strongest risk factor for AD after age 

(Yamazaki et al., 2019). In light of this, there has been a push for reframing AD as a complex and 

heterogenous disease with a multi-factorial etiology (Duchesne et al., 2024; Iturria-Medina et al., 

2017). 
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Vascular risk factors (e.g., hypertension, hyperglycemia, dyslipidemia, etc.) have garnered a large 

amount of interest as they predispose not only to vascular dementia but also to Alzheimer’s disease 

and other dementias (Z.-C. Chen et al., 2022; Fierini, 2020). Moreover, our relatively advanced 

knowledge on prevention and treatment of vascular conditions, makes them promising targets for 

interventions aimed at preventing dementia (Konwar et al., 2023; Korczyn, 2002). Because WM is 

less perfused than GM, and owing to the particularly high metabolic demands of oligodendrocytes, 

WM is particularly vulnerable to changes in perfusion and metabolism (Bartzokis, 2011; Connor 

& Menzies, 1996; Inoue et al., 2023; Wiggins, 1982).  

The effect of the main AD risk factors – with an emphasis on cardiometabolic factors – on WM 

microstructure will be detailed in the following subsections. 

1.4.2 High blood pressure 

Hypertension is a known risk factor for AD and other forms of dementia, and several studies have 

documented its impact on WM, both at the macro- and microstructural levels (Gons et al., 2012; 

X. Li et al., 2015; Z. Li et al., 2023; Maillard et al., 2012; Rosano et al., 2015). Microstructural 

changes with hypertension are most often found in long-range fibers such as the anterior thalamic 

radiation (ATR) and inferior fronto-occipital fasciculus (IFOF), and WM lesions typically occur in 

the periventricular area (Z. Li et al., 2023). Importantly, reductions in WM integrity, often 

quantified as reduced FA and increased MD, in hypertensive individuals have been related to 

impairments in global cognition (Gons et al., 2012). These alterations in WM microstructure are 

also often accompanied by changes in the functional connectivity of networks connected by the 

affected tracts (X. Li et al., 2015). In a study by Li and colleagues (2015), altered WM 

microstructure in the bilateral superior longitudinal fasciculus was associated with impaired 

executive function, an association that was mediated by functional connectivity in the 

frontoparietal network. WM abnormalities associated with hypertension thus impact cognitive 

functions in a spatially-specific manner, likely through disruptions of neuronal communication and 

therefore functional connectivity in the affected networks (Gons et al., 2012; Z. Li et al., 2023). 

It was demonstrated that a history of high systolic blood pressure (SBP) in older adults was more 

predictive of lower WM integrity than high SBP at the time of imaging (Rosano et al., 2015). 

Although long-term exposure to high BP has been found to be more predictive of WM 

microstructure than BP at a single time point (Rosano et al., 2015), the effects of high blood 
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pressure are already detectable in young adults (Maillard et al., 2012), suggesting WM changes 

due to hypertension may start accumulating as early as the fourth decade of life. Interestingly, the 

study by Rosano and colleagues (2015) reported no relationship between SBP and grey matter, 

consistent with the idea that WM is particularly susceptible to the deleterious effects of vascular 

risk factors. 

1.4.3 Obesity 

Midlife obesity is associated with earlier onset of AD and higher AD pathology load at autopsy 

(Chuang et al., 2016). One of the mechanisms through which obesity may accelerate brain aging 

and precipitate AD onset is through alterations to WM microstructural health. Studies have reported 

changes in DTI metrics thought to reflect loss in WM integrity (↓ FA) with obesity, especially in 

WM tracts of the limbic system and in tracts connecting the temporal and frontal lobes (corpus 

callosum, fornix, cingulum and corona radiata) (Daoust et al., 2021; Kullmann et al., 2015; Stanek 

et al., 2011). Studies using more advanced techniques have reported decreased myelin content (↓ 

R1), increased water content (↓ R1 and ↑ PD*) and altered iron content in the superior longitudinal 

fasciculus, anterior thalamic radiation, internal capsule, and corpus callosum (Kullmann et al., 

2016). The impact of obesity on myelin was also found to be dependent on genetic risk where only 

individuals with a family history of AD who carry the APOE4 genotype showed an association 

between waist-to-hip ratio and reduced myelin (macromolecular proton fraction) (Mole et al., 

2020). Moreover, this association was found to be moderated by blood pressure and inflammation. 

As a host of cardiometabolic factors often co-occur with obesity, disentangling the individual effect 

of obesity from the effects of inflammation, hypertension, insulin resistance, diabetes, and 

dyslipidemia is difficult. Furthermore, those factors seem to work together in accelerating brain 

aging (García-García et al., 2022).  

On the other hand, other studies have reported beneficial effects of obesity on WM (i.e., higher FA 

and lower diffusivities) (Birdsill et al., 2017), something that has been termed “the obesity 

paradox” (Qizilbash et al., 2015). Growing evidence however points to methodological issues as 

the culprits behind the so-called paradox (Ades & Savage, 2010; Banack & Stokes, 2017; Donini 

et al., 2020). For instance, the use of BMI as a proxy for obesity is not ideal. Furthermore, the study 

reporting a beneficial effect of obesity on WM microstructure relied on DTI metrics, which are 

difficult to interpret, especially in regions of crossing fibers (as many as 63-90% of voxels contain 
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crossing fibers) (Jeurissen et al., 2013; Riffert et al., 2014). A reduction in FA thus does not always 

indicate a loss in WM integrity and may instead reflect increased complexity (e.g., development of 

a secondary fiber population in a different direction as the main fiber population). In conclusion, 

substantial evidence indicates that midlife obesity is detrimental to overall health including brain 

health. However, it is important to note that a body weight that is too low also comes with health 

risks, including reduced life expectancy and higher dementia risk (C. M. Lee et al., 2020; 

Minagawa & Saito, 2021; Qu et al., 2020). 

1.4.4 Cholesterol 

There is growing evidence that dysfunction in lipid metabolism is involved in the pathogenesis of 

AD and other neurodegenerative diseases (Area-Gomez & Schon, 2024; Di Paolo & Kim, 2011; 

Shobab et al., 2005; Vitali et al., 2014). This has sparked a large amount of interest in studying the 

impact of serum cholesterol on the brain and the potential of lipid-lowering medications in 

preventing and treating neurocognitive disorders (Alfaro et al., 2018; Di Paolo & Kim, 2011; 

Shobab et al., 2005). While most of the brain’s cholesterol is synthesized endogenously by 

astrocytes and oligodendrocytes, brain cholesterol is not fully independent from the periphery. 

Studies demonstrate that cholesterol from the circulation can enter the brain under the form of an 

oxidized oxysterol, 27-hydroxycholesterol, which has the ability to pass the blood-brain barrier 

(Vitali et al., 2014). HDL and LDL particles can also enter the brain via a multi-ligand receptor 

called the scavenger receptor class B type I (SR-BI). Considering that most of the brain’s 

cholesterol is contained in myelin, abnormal cholesterol profiles as well as factors that affect its 

metabolism and transport (e.g., APOE4 and other lipid-related genes) may impact WM.  

Several DTI studies report associations between serum cholesterol and WM microstructure, but 

findings are somewhat contradictory (Cohen et al., 2011; Iriondo et al., 2021; Warstadt et al., 2014; 

V. J. Williams et al., 2013). While evidence points to a well-established protective effect of HDL 

on cognition and brain structure (Iriondo et al., 2021; Van Exel et al., 2002; Vitali et al., 2014; 

Warstadt et al., 2014), the impact of peripheral LDL and total cholesterol on the brain is less clear 

(Alfaro et al., 2018; Lamar et al., 2020; Lv et al., 2016; Ma et al., 2017; Warstadt et al., 2014; Yaffe 

et al., 2002; Z.-X. Yin et al., 2012). Some studies report changes in DTI metrics that are typically 

associated with worse microstructural health in individuals with higher LDL (Cohen et al., 2011; 

Iriondo et al., 2021; V. J. Williams et al., 2013), whereas others report a positive association 
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between WM integrity and total cholesterol (Warstadt et al., 2014). Similarly, both negative (Lv et 

al., 2016; Z.-X. Yin et al., 2012) and positive (Elias et al., 2005; Lamar et al., 2020; Ma et al., 2017; 

Manolio et al., 1993; Yaffe et al., 2002) associations have been reported between cholesterol levels 

(both LDL and total cholesterol) and cognition. These discrepancies may be due to the unknown 

contribution of oxidized LDL to total LDL in these studies. Indeed, it has been shown that oxidized 

LDL, which shows an enhanced production in inflammatory conditions when oxidative stress is 

high, is a better predictor of atherosclerosis and cardiovascular disease than LDL itself (Hecht & 

Harman, 2003; Holvoet et al., 2003, 2004; Nishi et al., 2002). As previously mentioned, LDL can 

pass the blood-brain barrier (BBB) in its oxidized form and it has also been suggested that plasma 

oxycholesterols could damage the BBB, increasing its permeability and thus impacting brain health 

(Dias et al., 2014). Studies also report associations between oxidized LDL and neuronal death 

(Draczynska-Lusiak et al., 1998; Keller et al., 2002), ischemic damage in the brain (Uno et al., 

2005), and cognitive impairments (A. Wang et al., 2018). It has thus been hypothesized that the 

beneficial effects of statins may be due to decreased LDL oxidation and consequently lower 

oxidized LDL in plasma (Anderson et al., 1996; Ndrepepa et al., 2005; Sasaki et al., 2002; 

Vasankari et al., 2001).  

On the other hand, HDL has been consistently associated with positive cognitive outcomes, where 

lower levels of HDL are associated with poorer cognition, both cross-sectionally and longitudinally 

(Singh-Manoux et al., 2008; Vitali et al., 2014). Low HDL cholesterol has also been associated 

with higher dementia risk (Reitz et al., 2010; Van Exel et al., 2002). Several mechanisms may 

underlie this protective effect of HDL. Namely, the antioxidant and anti-inflammatory properties 

of HDL could reduce inflammation in the brain and HDL-mediated reverse cholesterol transport 

could contribute to decreasing atherosclerosis in cerebral blood vessels (Vitali et al., 2014). In 

addition, HDL has a beneficial effect on endothelial function (Vitali et al., 2014). The antioxidant 

property of HDL may also contribute to preventing LDL oxidation as HDL concentrations have 

been reported to be inversely related to the concentrations of oxidized LDL (Holvoet et al., 2004; 

Sigurdardottir et al., 2002). 

Interactions with obesity (Cohen et al., 2011) and APOE4 genotype (Ye et al., 2024) may 

complicate the relationships between cholesterol and WM. Cohen and colleagues (2011) have 

found that abnormal cholesterol profiles were associated with WM alterations only in obese adults. 

Further, APOE4 was found to moderate the relationship between WM microstructure and LDL, 
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where elevated LDL was detrimental in APOE4 carriers, but showed the opposite pattern in non-

carriers (Ye et al., 2024). Because APOE4 has a role in LDL metabolism and influences antioxidant 

concentrations, this negative impact of LDL on WM in APOE4 carriers may be due to increased 

LDL oxidation (Dias et al., 2014). Together, this highlights the complex interplay in the effects of 

multiple risk factors on WM. 

1.4.5 Elevated glucose 

Diabetes affects nearly all organs in the body and the brain is not spared. The risk of Alzheimer’s 

disease and other forms of dementia is higher in individuals with diabetes (Barbiellini Amidei et 

al., 2021). Alterations in cerebral blood flow, metabolism and structure associated with type 2 

diabetes can precipitate cognitive impairments, potentially culminating in the onset of dementia 

(Biessels, 2023; Gaspar et al., 2016). WM microstructural changes characterized using DTI have 

been observed in diabetes patients, mostly in frontal, temporal and limbic tracts, and these 

alterations were found to correlate with cognitive performance (Alotaibi et al., 2021; Moran et al., 

2017; Sanjari Moghaddam et al., 2019) Even sub-clinically elevated glucose (i.e., without a 

diagnosis of diabetes) can lead to changes in cognition and brain structure, including changes in 

WM microstructure and increased WM hyperintensity volume (Biessels et al., 2014; Garfield et 

al., 2021; Moran et al., 2017; Repple et al., 2021; Segura et al., 2009). This highlights the 

importance of assessing levels of blood glucose, even in non-diabetic individuals, as deleterious 

changes likely start occurring before the diagnostic threshold for diabetes is reached (Repple et al., 

2021). 

Diabetes risk, which can be indexed using glycated hemoglobin (HbA1c), was shown to be 

negatively associated with FA in later myelinating WM tracts (Foley et al., 2014), which are known 

to be particularly vulnerable to aging and AD risk factors according to the myelin breakdown model 

(Bartzokis, 2004b, 2011; Bartzokis et al., 2003, 2004). Interestingly, this association was only seen 

in older adults with the APOE4 genotype, suggesting glucose dysregulation poses a greater risk to 

APOE4 carriers (Foley et al., 2014; Irie et al., 2008; Peila et al., 2002). APOE4 is known to 

influence cerebral blood flow regulation and glucose metabolism (Thambisetty et al., 2010). Thus, 

the combined effects of elevated glucose and of vascular and metabolic dysregulation in APOE4 

carriers could be especially detrimental for the brain. In addition, high HbA1c has been shown to 

correlate with increased LDL oxidation in a cohort composed of both diabetic and nondiabetic 
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individuals (Holvoet et al., 2004), further highlighting the complex interactions between risk 

factors and their impact on WM. 

1.4.6 APOE genotype 

The apolipoprotein E (APOE) gene encodes the APOE protein that is involved in the transport of 

cholesterol and other lipids, as well as in glucose metabolism and cerebrovascular function 

(Yamazaki et al., 2019). The APOE gene has three allelic variants: E2, E3, and E4. Different 

variants encode proteins of slightly different structures, leading to variations in their lipid-binding 

properties. As a result, susceptibility to several diseases varies depending on the genotype.  

The APOE genotype is, after age, the strongest risk factor for Alzheimer’s disease (Yamazaki et 

al., 2019). Carrying one E4 allele is associated with a 3-4 fold increase in risk, whereas carrying 

two alleles would increase risk by as much as 9-15 fold (Farrer et al., 1997; Genin et al., 2011). 

APOE4 has also been associated with a younger age at onset. It has thus been hypothesized that 

APOE4 may accelerate age-related myelin breakdown, especially in late-myelinating WM regions, 

thus accelerating cognitive decline (Bartzokis et al., 2006, 2007; Triebswetter et al., 2022). WM 

differences in individuals of different APOE genotypes have also been observed in healthy older 

and younger adults (Heise et al., 2011; Honea et al., 2009). The high lipid-binding affinity of 

APOE4 makes cholesterol transport less efficient, resulting in impaired myelination and repair 

(Cheng et al., 2022). As a lipid-transporter, APOE thus plays an important role in myelination, 

modulating WM microstructure throughout the lifespan (Cheng et al., 2022; Mahley, 2016; 

Yamazaki et al., 2019). 

Further, as was mentioned in previous sections, the APOE4 genotype amplifies the effects of other 

risk factors on the brain’s WM (Foley et al., 2014; Irie et al., 2008; Mole et al., 2020; Peila et al., 

2002; R. Wang et al., 2015; O. A. Williams et al., 2019; Ye et al., 2024). Studies looking at the 

combined effects of vascular risk factors (e.g., hypertension, obesity, dyslipidemia, and diabetes) 

report reduced WM integrity (lower FA and higher MD) in older adults who have multiple risk 

factors, especially in those with the APOE4 genotype (Alfaro et al., 2018; R. Wang et al., 2015; O. 

A. Williams et al., 2019). The fact that APOE4 increases the deleterious impact of risk factors on 

WM also means APOE4 carriers may benefit to a greater extent from interventions aimed at 

modifying these risk factors. For instance, physical activity has been shown to be more effective 

in reducing amyloid burden, maintaining WM integrity, and reducing cognitive decline in APOE4 
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carriers compared to non-carriers (Head et al., 2012; L Woodard et al., 2012; Luck et al., 2014; 

Raffin et al., 2021; J. C. Smith et al., 2013, 2016). 

1.4.7 Coronary artery disease 

Cardiovascular disease, representing a higher vascular burden along the health – disease continuum 

(see Figure 18), also increases the risk of dementia (Justin et al., 2013). In fact, several risk factors 

for cardiovascular disease also increase the risk of dementia (Livingston et al., 2020). In coronary 

artery disease (CAD), one of the most common form of heart disease, the risk of cognitive 

impairment or dementia is 1.45 times greater than in those without CAD (Deckers et al., 2017). 

Furthermore, patients with both diabetes and CAD were found to be at even greater risk of both 

Alzheimer’s (adjusted hazard ratio; aHR= 1.41) and vascular dementia (aHR = 2.03), with a greater 

risk for the vascular type (Olesen et al., 2024).  

Atherosclerosis, the build-up of plaque inside artery walls that can lead to narrowing of the artery, 

is a major feature of coronary artery disease. When plaque ruptures, dislodged pieces obstruct the 

coronary artery causing ischemia of the heart muscle cells (i.e., myocardium) that results in cell 

death (Libby & Theroux, 2005). This is what constitutes a myocardial infarction (MI) and is 

commonly referred to as a heart attack. When part of the heart muscle cells dies in MI, the heart’s 

pumping capacity, along with circulation to the rest of the body, can be impaired. Furthermore, the 

presence of atherosclerosis is rarely confined to the coronary arteries alone, and plaques will 

typically also be found in the carotid arteries, as well as in small cerebral arteries, a condition 

termed cerebral small vessel disease (Kovacic et al., 2012). In small vessel disease, arterioles, 

capillaries and small veins that supply and drain WM and deep brain structures are most affected 

(Chojdak-Łukasiewicz et al., 2021). This results in reduced cerebral blood flow/perfusion, hypoxia, 

blood-brain barrier disruptions, vascular inflammation, and impaired A clearance (Bell & 

Zlokovic, 2009; Inoue et al., 2023; Justin et al., 2013), which lead to pathological changes in several 

types of brain cells.  

Studies report lower WM, GM and total brain volume, as well as more cerebral infarcts, 

microbleeds and WM lesions in CAD patients (Vidal et al., 2010). CAD patients are also more 

likely to have lower cognitive scores and the relationship between atherosclerotic burden and 

cognition has been shown to be mediated by brain pathology (Vidal et al., 2010). WM is 

particularly vulnerable to decreases in blood flow as WM is already less perfused compared to GM, 
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especially in border zones between arterial territories, regions known as the watershed areas (Inoue 

et al., 2023). The high metabolic demand of oligodendrocytes may also contribute to the 

vulnerability of WM to changes in perfusion (Bartzokis, 2011; Connor & Menzies, 1996; Wiggins, 

1982). 

Although WM macrostructural changes have been well-studied in CAD patients (Vidal et al., 2010; 

Vuorinen et al., 2014), fewer studies focus on microstructural changes that likely precede lesions 

and atrophy. In a recent study, WM alterations (decreased FA and increased MD) that go beyond 

aging-related changes were found in patients with ischemic heart disease (Poirier et al., 2024). 

Moreover, a study showed that WM microstructural integrity (FA) was associated with executive 

function and processing speed in cognitively unimpaired CAD patients, suggesting that WM 

microstructure alterations may underlie early subtle cognitive changes (Santiago et al., 2015). 

Importantly, changes to WM microstructure, as opposed to lesions, are reversible and WM health 

can be improved through exercise-based cardiac rehabilitation (Poirier et al., 2024). 

1.4.8 Protective factors  

In addition to the adverse risk factors of dementia discussed above, there are also protective factors. 

These include physical activity, cognitive and social engagement throughout life. Physical activity 

(PA) likely decreases dementia risk through mitigation of cardiometabolic risk factors such as 

diabetes, hypertension, obesity, and dyslipidemia (W. Xu et al., 2017). Other possible mechanisms 

through which PA may decrease dementia risk include increased neuroplasticity (i.e., neurogenesis, 

angiogenesis and synaptic plasticity) and improved A clearance (Andrieu et al., 2015; Varma et 

al., 2015).  

Cognitive engagement is commonly quantified using the number of years of formal education 

completed, perhaps because it is relatively easy to quantify. Education, and the cognitive 

stimulation it entails, is so powerful in protecting against dementia that the sex/gender gap in 

dementia prevalence that was consistently reported in older studies is now narrowing as women 

are reaching higher levels of education than in the past (Geraets & Leist, 2023; Wolters et al., 

2020). Education is known to contribute to brain development and several MRI studies report 

greater grey matter volume, cortical thickness, and WM integrity in highly educated individuals 

(Arenaza-Urquijo et al., 2013; Bartrés-Faz & Arenaza-Urquijo, 2011; Y. Liu et al., 2012; 

Seyedsalehi et al., 2023; Teipel et al., 2009). Together, these structural properties (i.e., increased 
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number of neurons, synapses, axons, etc.) are referred to as brain reserve, or “the neurobiological 

capital” (Stern et al., 2020). The brain reserve theory simply states that the more we gain through 

life experiences, the more we can afford to lose without noticeable functional impairment. 

Moreover, people with greater education attainments would also have a greater capacity to cope 

with brain pathology such as A plaques and tangles, resulting in a lessened risk for cognitive 

impairment and dementia (Roe et al., 2007). This phenomenon, referred to as cognitive reserve, 

may be due to greater adaptability and network efficiency as well as other compensatory 

mechanisms that allow highly educated individuals to maintain high cognitive function despite 

brain damage (Stern, 2006). In addition to the typical AD pathology markers, the protective effect 

of education has also been demonstrated with the presence of WM lesions and alterations in WM 

microstructure (Dufouil et al., 2003; Mortamais et al., 2014; Teipel et al., 2009). In this study by 

Teipel and colleagues (2009), reduced WM integrity was associated with less cognitive impairment 

in individuals with more education (Teipel et al., 2009). Social engagement, especially complex 

social activities, may operate in a similar fashion, boosting cognitive reserve hence reducing 

dementia risk (Penninkilampi et al., 2018). These protective factors provide several avenues for 

dementia prevention through individual interventions and public health strategies.  

1.5 Early intervention to prevent age-related diseases 

The fact that WM retains its capacity for remodeling throughout life also means damage to WM 

microstructure can potentially be repaired, provided interventions are initiated before damage is 

too severe and irreversible (see Figure 18) (Concha, 2014; Salsone et al., 2021; Sidaros et al., 

2008). As was discussed above, several adverse factors impact WM integrity (hypertension, 

obesity, abnormal cholesterol and glucose levels, etc.). Interventions that target these factors thus 

hold the potential of promoting WM repair. For instance, exercise-based interventions have been 

shown to promote neuroplasticity in healthy older adults (Mendez Colmenares et al., 2021) and in 

patients with prodromal to mild Alzheimer’s disease that have a high vascular burden (Konwar et 

al., 2023). Exercise-based cardiac rehabilitation has also been associated with WM improvements 

in patients with ischemic heart disease (Poirier et al., 2024). Further, controlling blood pressure 

with antihypertensive medications may lead to recovery of normal WM integrity in individuals that 

were previously diagnosed with hypertension (Haight et al., 2018).  
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Other interventions such as cognitive training have also proven to be effective in promoting WM 

plasticity (McPhee et al., 2019) and combining cognitive training with aerobic exercise may be 

even more effective, especially in older adults with cardiovascular risk factors (Roig-Coll et al., 

2024; Stephen et al., 2020). Multi-domain lifestyle interventions for dementia prevention have 

garnered a large amount of interest in the last decade, following the success of the FINGER 

(Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability) trial and 

with the recent launch of a worldwide network (Kivipelto et al., 2020; Ngandu et al., 2015; Stephen 

et al., 2020). In these trials, several factors including diet, exercise, cognitive training, and vascular 

risk factors monitoring, are targeted simultaneously (Kivipelto et al., 2020; Ngandu et al., 2015). 

Importantly, these intervention strategies have been found to positively impact WM health both 

individually and in combination, and to reduce the risk of cognitive decline (Kivipelto et al., 2020; 

McPhee et al., 2019; Ngandu et al., 2015; Roig-Coll et al., 2024; Roy et al., 2022; Stephen et al., 

2020). This multi-domain approach thus appears as a promising candidate to reduce the risk of 

dementia (Kivipelto et al., 2020; Ngandu et al., 2015) and WM plasticity may be an important 

mechanism contributing to the maintenance of cognitive function in these interventions (Roig-Coll 

et al., 2024; Stephen et al., 2020). 

 
Figure 18. Health – disease continuum and potential interventions that can be initiated to prevent or slow down progression are 
illustrated. These interventions have also been shown to promote white matter plasticity. 
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CHAPTER II: Short-term white matter plasticity in 
young adults 

Preface  
 
White matter (WM) retains its capacity for experience-induced plasticity in adulthood (Sampaio-

Baptista & Johansen-Berg, 2017). This has important implications for dementia prevention as WM 

changes that start occurring decades before the onset of neurodegenerative diseases could 

potentially be reversed through therapeutic interventions that promote neuroplasticity (Concha, 

2014; Salsone et al., 2021). We now know WM is remodeled in a highly dynamic manner, with 

changes observed within hours following the initiation of a new activity (Hofstetter et al., 2013). 

In addition to changes in WM structure occurring almost immediately when starting to learn a new 

task, plastic changes can also be maintained for long periods, even when the task that caused these 

alterations is no longer practiced (Dayan & Cohen, 2011). Since WM properties underlie the 

efficiency of signal conduction in brain networks, changes in WM microstructure impact the 

functions subserved by the affected network (Chorghay et al., 2018; Fields, 2015). Plastic changes 

in WM thus contribute to supporting learning and, potentially, the recovery of cognitive function. 

Interventions that promote neuroplasticity are promising strategies in preventing cognitive decline 

and neurodegenerative diseases such as dementia (Fissler et al., 2017; Stephen et al., 2020; ten 

Brinke et al., 2017). For instance, cognitive training, physical activity, and interventions that 

combine multiple modalities have been shown to induce changes in WM microstructure in various 

populations (Konwar et al., 2023; McPhee et al., 2019; Poirier et al., 2024; Roig-Coll et al., 2024; 

Stephen et al., 2020). However, because most plasticity studies have used a pre-post design 

(Hofstetter et al., 2013; Scholz et al., 2009; Steele et al., 2012), we lack a basic understanding of 

the time scales at which plastic changes in WM can occur, and of the alterations that occur at 

different stages of learning, even in healthy adults.  

Characterizing the dynamic nature of WM plastic changes in healthy adults thus appeared as a 

natural first step before investigating pathological changes in at-risk individuals. 
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2.1 Abstract 

Introduction: Efficient neural transmission is crucial for optimal brain function, yet the plastic 

potential of white matter (WM) has long been overlooked. Growing evidence now shows that 

modifications to axons and myelin occur not only as a result of long-term learning, but also after 

short training periods. Motor sequence learning (MSL), a common paradigm used to study 

neuroplasticity, occurs in overlapping learning stages and different neural circuits are involved in 

each stage. However, most studies investigating short-term WM plasticity have used a pre-post 

design, in which the temporal dynamics of changes across learning stages cannot be assessed.  

Methods: In this study, we used multiple magnetic resonance imaging (MRI) scans at 7 Tesla to 

investigate changes in WM in a group learning a complex visuomotor sequence (LRN) and in a 

control group (SMP) performing a simple sequence, for 5 consecutive days.  

Results: Consistent with behavioral results, where most improvements occurred between the two 

first days, structural changes in WM were observed only in the early phase of learning (d1-d2), and 

in overall learning (d1-d5). In LRNs, WM microstructure was altered in the tracts underlying the 

primary motor and sensorimotor cortices. Moreover, our structural findings in WM were related to 

changes in functional connectivity, assessed with resting-state functional MRI data in the same 

cohort, through analyses in regions of interest (ROIs).  Significant changes in WM microstructure 

were found in a ROI underlying the right supplementary motor area.  

Discussion: Together, our findings provide evidence for highly dynamic WM plasticity in the 

sensorimotor network during short-term MSL. 

 

https://doi.org/10.1007/s00429-021-02267-y
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2.2 Introduction 

The idea that structure determines function, and that function can modulate structure, is a well-

known concept governing biology (Kohn et al., 2018). Just like any other organ in the body, the 

structure of the brain changes in response to changing demands in order to support new functions, 

in a process termed neuroplasticity (Zatorre et al., 2012). Synaptic changes have been the main 

focus of early plasticity studies (Rioult-Pedotti et al., 2000; T. Xu et al., 2009), yet recent research 

now indicates that plastic changes can also involve alterations to neurons, glial cells, and cerebral 

vessels (Sampaio-Baptista & Johansen-Berg, 2017; Tardif et al., 2016; Zatorre et al., 2012).  

The plastic potential of white matter (WM), and the behavioral relevance of changes in the fiber 

tracts connecting neurons, has long been overlooked. However, growing evidence now shows 

modifications to astrocytes, microglia, and myelin-producing oligodendrocytes occur as a result of 

experience-dependent learning (Chorghay et al., 2018; Tardif et al., 2016). There is a large amount 

of evidence regarding activity-dependent myelination (Caeyenberghs et al., 2016; Lakhani et al., 

2016; Sampaio-Baptista et al., 2020; Sampaio-Baptista & Johansen-Berg, 2017 for review) and 

some studies have also shown that axonal diameter can change in adult brains (Chéreau et al., 2017; 

Lazari et al., 2018; S. Lee et al., 2012). Changes to axons and myelin would lead to changes in 

conduction speed and thus more efficient information processing through optimized timing of 

neural transmission (Chorghay et al., 2018; Fields, 2015; Sampaio-Baptista & Johansen-Berg, 

2017). Given the crucial role of efficient neural transmission for optimal brain function (Fields, 

2015; Waxman, 1975), a deeper understanding of the ways in which WM can be altered by 

experience is of critical importance.  

Motor sequence learning (MSL) tasks are a common paradigm used to study neuroplasticity 

(Doyon et al., 2009; Hikosaka et al., 2002; Nissen & Bullemer, 1987; Penhune & Steele, 2012). 

MSL occurs in overlapping stages that have been described by various models. As such, motor 

learning can be divided into an initial fast stage, where a large amount of improvement occurs in a 

short period of time, followed by a consolidation stage, which solidifies the gains in performance 

between training sessions, making them resistant to interference. In a final late/slow stage, the 

learned sequence is fine-tuned to optimize motor parameters such as force, timing and spatial 

accuracy (Dayan & Cohen, 2011; Doyon et al., 2002; Doyon & Benali, 2005; Karni & Sagi, 1993; 
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Korman et al., 2003; Luft & Buitrago, 2005). In each case, there is significant evidence from 

neuroimaging studies that different neural circuits are involved in each stage of learning (Dayan & 

Cohen, 2011; Halsband & Lange, 2006 for review).  

Studying neuroplasticity with magnetic resonance imaging (MRI) allows for the longitudinal 

investigation of functional and structural reorganization at the network (how are different brain 

regions connected to each other, i.e., whole-brain level) and microstructural levels (what properties 

do the fiber bundles that make up these connections have, i.e., voxel level), as whole-brain images 

can be obtained repeatedly (Tardif et al., 2016). Recent advances in MRI techniques and models, 

especially in the areas of connectivity and network theory, have created the opportunity for a better 

understanding of how brain architecture and network efficiency impact information processing and 

how these are modified through experience (Albert et al., 2009; Guye et al., 2010; Lewis et al., 

2009). Changes in connectivity can be defined structurally, with diffusion-weighted imaging 

(DWI), a technique that probes WM microstructural organization through imaging the bulk motion 

of water molecules (Abdul-Kareem et al., 2011; Klein et al., 2019; Le Bihan et al., 2001), and 

functionally, through the measurement of spontaneous activity at rest and the temporal correlation 

of the blood-oxygen-level-dependent (BOLD) signal between brain regions (resting-state 

functional MRI) (Albert et al., 2009; Lewis et al., 2009). In parallel, advances in hardware, such as 

the increasing use of ultra-high field MRI, and improved modeling approaches allow for the 

characterization and quantification of several properties of brain structures at finer spatial scales 

(Dumoulin et al., 2018; Frangou et al., 2020; Heidemann et al., 2012). These advances could allow 

us to bridge the gap between the knowledge gained from animal and human studies, and better 

define the mechanisms and time course at play when the brain is reshaped through experience 

(Sampaio-Baptista & Johansen-Berg, 2017; Tardif et al., 2016).  

Although the greatest gains in performance occur during the initial stage of learning (Dayan & 

Cohen, 2011; Halsband & Lange, 2006; Savion-Lemieux & Penhune, 2005), early investigations 

of WM plasticity mainly focused on the effects of long-term training with cross-sectional studies 

in musicians and dancers with several years of training (Abdul-Kareem et al., 2011; Bengtsson et 

al., 2005; Giacosa et al., 2016, 2019; Hänggi et al., 2010). The cross-sectional nature of many of 

these studies does not allow characterization of the temporal dynamics of learning nor 

distinguishing training-induced changes from pre-existing differences in WM (Abdul-Kareem et 
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al., 2011; Bengtsson et al., 2005; Giacosa et al., 2016, 2019; Hänggi et al., 2010; Steele et al., 

2012). More recently, longitudinal studies using DWI have shown that WM changes can occur at 

shorter timescales. For instance, changes to WM microstructure underlying the intraparietal sulcus 

were observed after 6 weeks of juggling training (Scholz et al., 2009) and another study reported 

such changes in the fornix as quickly as after a few hours of spatial learning in a car racing game 

(Hofstetter et al., 2013). However, most studies investigating short-term WM plasticity have used 

a pre-post design, or a single measurement at the end of learning, in which the temporal dynamics 

of changes across learning stages cannot be assessed (Hofstetter et al., 2013; Scholz et al., 2009; 

Steele et al., 2012). Moreover, the control group in some of these studies does not allow to 

distinguish changes due to sequence-specific learning from those due to motor execution (e.g., 

Scholz et al., 2009). In this study, we used multiple MRI scans at 7T to investigate changes in WM 

across learning stages in a group learning a complex visuomotor sequence, and in a control group 

performing a simple sequence. The DTI model used to derive diffusivity metrics from DWI data 

yields measures that are highly sensitive to changes in WM microstructure, although 

physiologically non-specific (Riffert et al., 2014). Moreover, we investigated WM plasticity in 

regions of interest (ROIs) near areas of change in functional connectivity, assessed with resting-

state fMRI (rs-fMRI) data in the same cohort (Jäger et al., 2021). 

2.3 Methods 

2.3.1 Participants 

Forty neurologically normal individuals of 21 to 30 years of age (M ± SD: 24.5 ± 2.44; 21 females) 

and without motor or correctible visual impairments were recruited from the participant database 

of the Max Planck Institute for Human Cognitive and Brain Sciences in Leipzig, Germany. All 

participants were task naïve prior to this study and right-handed according to the Edinburgh 

Handedness Inventory (M ± SD: 83.7 ± 16.9), except for one who was ambidextrous (EHI= 40). 

The majority of participants had no exceptional musical experience (M ± SD: 8.55 ± 8.83 years), 

but one participant self-identified as a professional musician and two as having advanced musical 

experience. Participants had an average sport experience of 5.83 ± 7.15 years and two participants 

self-identified as professional athletes. After ensuring the participants had no neurological 

conditions and no contraindication to MRI, they gave written informed consent according to the 
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declaration of Helsinki. Participants were randomized into two groups: the experimental group 

(N=20), who learned a complex visuo-motor sequence, and the control group (N=20), who learned 

a simple repetitive visuo-motor sequence. One participant from the experimental group was 

excluded from this study due to a large signal drop in DWI data. Table 1 shows the demographic 

data for each group. After completion of the study, participants were financially compensated for 

their time. The study was approved by the ethics review board of the Medical Faculty of the 

University of Leipzig and all participants provided written informed consent according to the 

Declaration of Helsinki.  

Table 1. Demographic data in each group. LRN= experimental group; SMP= control group; SD= 

standard deviation; EHI= Edinburgh Handedness Inventory 

 

Group  Sex  Age EHI (handedness) Music yrs 
(formal) 

Sport yrs 
(formal) 

N LRN 
 
SMP 
 
Missing 

19 
 
20 
 
1 

Male 
Female 
Male 
Female 

9 
10 
10 
10 

    

Mean LRN 
SMP 

   
25.1 
23.9 

84.8 
83.0 

7.87 
9.32 

4.95 
6.95 

SD LRN 
SMP 

   
2.47 
2.38 

18.0 
16.5 

8.29 
9.66 

6.97 
7.42 

Min. LRN 
SMP 

   
22 
21 

40.0 
40.0 

0 
0 

0 
0 

Max. LRN 
SMP 

   
30 
30 

100 
100 

28.0 
29.5 

25 
25 

  

2.3.2 Motor Sequence Learning Task 

The sequential pinch force task (SPFT) is a complex visuomotor sequence learning task requiring 

fine force control (Camus et al., 2009; Krakauer et al., 2019), and was previously shown to result 

in short-term plastic changes in grey matter (Gryga et al., 2012). During the SPFT, participants 

hold a pressure sensor between the thumb and index finger of their right hand (Figure 1a) and are 

required to exert force on the sensor in order to match the height of a moving reference bar (REF; 
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blue on Figure 1b) displayed on a computer screen. Another moving bar (FOR; yellow), 

representing the amount of pressure they are exerting on the device, is also displayed on the screen 

to provide visual feedback. The device samples force continuously throughout the task at a rate of 

80 Hz. The change in height of the REF bar follows one of two specific sequences, as illustrated 

in Figure 1 (c). In the learning condition (LRN), the bar moves following a complex sequence that 

is difficult to predict (blue on Figure 1c) (Gryga et al., 2012). In the control condition, the bar 

moves following a simple sinusoidal sequence (SMP) that is learned almost immediately (green). 

The SMP sequence was designed to match the LRN sequence in terms of the total magnitude of 

force, duration, and frequency at the maximum level of force. This control condition can be used 

to distinguish between potential structural alterations related to motor execution (i.e., participants 

pinch a device in both conditions) from alterations that are specific to learning a sequence. Lastly, 

in the rest condition (RST), participants were asked to fixate their gaze on the static REF and FOR 

bars (both at 50% of their maximal height). 

 
Figure 1. Sequential pinch force task (SPFT) and experimental design. a) SPFT device. Participants hold the pressure sensor 
between the thumb and index finger. b) They exert force on the sensor to match the height of the reference bar (REF; blue). The 
FOR bar (yellow) represents the amount of force they are exerting on the device. c) Visual representation of the complex (LRN; 
blue) and of the simple (SMP; green) sequences. d) Schema of the experimental design. The familiarization session (d0) takes place 
2 days before the first day of training (d1) and the retention scan (d17) 12 days after the last training day (d5). All training sessions 
(d1-d5) take place on consecutive days, Monday to Friday. Participants were in the scanner on d0, d1, d2, d5 and d17.  

...D5Familiarization RetentionD1 D2 D3 D4

Training

d)

a) b) c)

FOR

...

REF

...
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2.3.3 Experimental Design 

The experimental design is illustrated in Figure 1 (d). Participants performed the SPFT on 5 

consecutive days (Monday to Friday). A familiarization session (d0) on the previous Thursday or 

Friday, 2 days prior to the first day of training, allowed to test the participant’s maximum pinch 

force and calibrate the level of force required in subsequent training sessions in order to avoid 

fatigue. The minimum bar level corresponded to a force of 5% of the participant’s maximum force, 

while the maximum bar level corresponded to 30% of the participant’s maximal force. During this 

session, participants also became familiar with the device and the task as they performed 9 trials 

of the SMP sequence. Each training day (d1-d5), participants of the experimental group completed 

3 pseudo-randomly presented blocks each consisting of 3 trials of SMP, RST, and LRN, resulting 

in a total of 9 trials per condition every day. Participants in the control group also performed 3 

blocks of training, but LRN trials were replaced by SMP trials. Throughout this manuscript, the 

experimental group will be referred to as the LRN group and the controls as the SMP group. Each 

trial lasted 18 seconds and the entire training session lasted 20 minutes as in Gryga et al. (2012). 

Participants were given feedback on their performance (i.e., average accuracy in matching the 

height of the REF bar) after the SMP and the LRN trials. A retention session (d17) was conducted 

approximately 12 days after the last day of training and consisted in the same procedure as the 

previous training sessions (d1-d5). The task was performed inside the MRI scanner on d0, d1, d2, 

d5, and d17 and outside the scanner on d3 and d4 (see Figure 1d). Both MRI sequences of interest 

for this study (i.e., DWI and rs-fMRI) were acquired prior to SPFT training. All sessions for all 

participants took place in the morning to avoid the potential influence of circadian rhythms on our 

results as the time of the day has been shown to impact the relative volumes of the intra-axonal and 

extra-axonal spaces in WM (Voldsbekk et al., 2020). 

2.3.4 MRI Acquisitions 

MRI data was acquired on a Siemens 7 Tesla scanner (MAGNETOM, Siemens Healthcare, 

Erlangen, Germany) with a 32-channel Nova head coil at the Max Planck Institute in Leipzig, 

Germany. DWI data, acquired from an Echo Planar Imaging (EPI) sequence (TR= 10100 ms, TE= 

62.8 ms, FOV= 192 x 192 mm2, slice acceleration factor: 2, slice thickness = 1.2 mm, 102 slices, 

GRAPPA factor: 2, partial Fourier 6/8, b=1000 s/mm2, 20 directions, PE= AP, bandwidth= 1562 

Hz/Px, voxel size= 1.2 x 1.2 x 1.2 mm), was used to assess WM microstructure. Rs-fMRI data 
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were acquired with a blood-oxygen-level-dependent (BOLD) sequence (TR= 1130ms, TE= 22ms, 

flip angle= 40°, FOV = 192 x 192 mm², slice thickness = 1mm, 102 slices, GRAPPA factor 2, 

partial Fourier 6/8, bandwidth = 1562 Hz/Px, voxel dimensions = 1.2 x 1.2 x 1.2mm). Participants 

had their eyes open and were fixating their gaze on a cross during this 10-min acquisition. Rs-fMRI 

and DWI data were acquired prior to SPFT training. Uniform intensity T1-weighted images (UNI) 

were also acquired with an MP2RAGE sequence (TR = 5000 ms, TE = 2.45 ms, flip angle 1 = 5°, 

flip angle 2 = 3°, FOV = 224 x 224 x 240 mm3, slice thickness = 0.7 mm, 240 slices, bandwidth = 

250 Hz/Px, voxel size = 0.7 x 0.7 x 0.7 mm) (Marques et al., 2010). Fieldmaps were also acquired 

(TR = 18ms, TE1 = 4.08ms, TE2 = 9.18ms, flip angle = 10°, FOV = 256 x 256mm², slice thickness 

= 2mm, 80 slices, bandwidth 1 = 300 Hz/Px, bandwidth 2 = 300 Hz/Px, voxel dimensions = 2 x 2 

x 2mm) to correct distortions in BOLD images due to field inhomogeneities. As indicated above, 

one subject from the LRN group was excluded because of a large DWI signal drop in the temporal 

lobe. 

2.3.5 Image Preprocessing 

DWI data were preprocessed using the MRtrix (3.0) software which performs denoising of the data, 

corrects for motion and Eddy currents (Eddy tool in FSL 6.0.1), and for susceptibility-induced 

distortions (topup tool in FSL) using b0 volumes of opposite phase-encoding polarities (PA) 

(Andersson et al., 2003; Andersson & Sotiropoulos, 2016; Skare & Bammer, 2010; S. M. Smith et 

al., 2004; Tournier et al., 2019). The gradient scheme containing gradient vectors and b-values 

(bvecs and bvals) is stored in the header of the MRtrix file format (mif) and automatically 

reoriented by MRtrix functions. Bvecs and bvals were extracted from the preprocessed image 

before the next step, which requires the NIFTI format. Bias field correction was performed using 

the N4 algorithm of ANTs (3.0) within a mask computed using the brain extraction tool (bet) of 

FSL on the b=0 preprocessed volume (Tustison et al., 2010). A brain extraction of all DWI volumes 

was then applied using the b=0 mask in order to remove all non-brain voxels. Preprocessed DWI 

volumes were smoothed anisotropically, a method in which kernels are shaped based on the main 

directions of fiber tracts, using the 3danisosmooth function in AFNI (19.0.26 ‘Tiberius’) (2 

iterations, σ1= 0.5, σ2= 1.0) (Ding et al., 2005). This type of smoothing has been shown to preserve 

directional information, maintaining WM structure boundaries and limiting partial voluming 

effects (Van Hecke et al., 2010). This method was also shown to decrease the influence of 
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smoothing parameters, such as kernel size, on voxel-based analysis results (Jones et al., 2005; 

Moraschi et al., 2010; Van Hecke et al., 2010). 

DWI data were fitted to a tensor model with dwi2tensor (MRtrix 3.0) and the tensor images were 

converted to a symmetric matrix in the NIFTI format in the lower-triangular ordering (dxx, dxy, 

dyy, dxz, dyz, dzz) for ANTs. Spatial normalization was performed in ANTs using high-

dimensional non-rigid registration of the tensor images, which uses both spatial and directional 

tensor information, and was shown to improve alignment of WM tracts and minimize shape 

confounds on FA outcomes (H. Zhang et al., 2007). Warps were computed at 4 levels: first, using 

rigid and affine transforms (with mutual information; MI, as similarity metric) to compute the warp 

from DWI (using the b=0 volume which has the highest contrast) to anatomical space (UNI image 

from the MP2RAGE T1 acquired in the same session), and then from anatomical (one day) to 

subject space (across days), from subject to group space, and lastly to MNI space (MNI152) using 

rigid (MI), affine (MI), and SyN (symmetric normalization; with cross-correlation) transforms with 

the antsRegistration function (Avants, Epstein, et al., 2008; Avants et al., 2009). The first step of 

the registration process of tensor images takes care of the spatial alignment: all warps were applied 

to the tensor images in a single step, using antsApplyTransforms. Linear interpolation in the log 

space was used and, since the log of 0 is undefined, the background tensor value was set to 0.0007 

(Arsigny et al., 2006). All warps were then combined, and the combined transform was used to 

reorient the deformed tensor images (ReorientTensor), accounting for the orientational aspect of 

normalization (H. Zhang et al., 2007). Maps of fractional anisotropy (FA), mean diffusivity (MD), 

axial diffusivity (AD), and radial diffusivity (RD) were then computed on the reoriented tensor 

images (in MNI space) using ImageMath in ANTs. A WM mask was created from the mean FA 

image thresholded at 0.35 to include only WM voxels in statistical analyses. 

Rs-fMRI data was corrected for motion and for magnetic field inhomogeneities using the acquired 

fieldmaps. Nuisance regression, including 12 motion regressors (3 translations and 3 rotations plus 

their first derivatives), outlier regressors and physiological regressors, was performed using 

Nilearn’s NiftiMasker. A Gaussian smoothing kernel of 2.4mm was then applied before calculating 

voxel-wise network centrality metrics degree centrality (DC) and Eigenvector centrality (EC) 

(Wink et al., 2012). DC and EC maps were non-linearly registered to MNI space with ANTs 

(Avants et al., 2009). DC and EC provide a measure of the degree of connectivity of a node to other 
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nodes, with each grey matter voxel representing a node. All preprocessing, tissue segmentation and 

registration scripts, which were implemented in the CBS Tools environment, are openly available 

at https://github.com/AthSchmidt/MMPI/tree/master/preprocessing. Preprocessing of rs-fMRI 

data is explained in more details in Jäger et al. (2021). 

 
Figure 2. DWI data processing workflow. Preprocessing included correction for motion, Eddy currents, susceptibility-induced 
distortions, and bias B1 field correction (N4). The preprocessed DWI image (b=0 volume) of one participant is shown in a). 
Preprocessed DWI volumes were then smoothed anisotropically (b), fitted to a tensor model and converted to a symmetric matrix 
in the lower-triangular ordering (dxx, dxy, dyy, dxz, dyz, dzz) for ANTs. Four levels of warps were computed (native to T1, T1 to 
subject, subject to group, and group to MNI) and applied to the tensor image with linear interpolation in the log space in ANTs (c). 
All warps were combined, and the combined transform was used to reorient the deformed tensor image. Maps of fractional 
anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were computed on the reoriented tensor 
images. The FA map of the same participant is shown in d. These maps were analyzed with voxel-wise analyses. 

2.3.6 Statistical Analyses 

Performance improvement in the SPFT  

Performance and improvements in performance over the course of the training sessions were 

quantified using a measure of temporal synchronization (SYN) calculated using custom-built 

scripts in MATLAB (Version R2016a, The MathWorks, Inc., Natick, Massachusetts, United 

States). SYN was defined as the temporal deviation (in ms) between the time of the movement of 

the REF bar and the time when the FOR bar matches the height of the REF bar most closely. The 

time of best match between the REF and FOR patterns was determined using cross-correlation. 

https://github.com/AthSchmidt/MMPI/tree/master/preprocessing
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The time difference (SYN in ms) was then calculated between the time of movement of the REF 

bar and the time lag with the greatest cross-correlation (i.e., representing the best match between 

REF and FOR patterns). A SYN score of zero thus indicated perfectly timed performance. 

SYN score values of the three trials of each block were averaged for each participant, resulting in 

three block values per day. Block SYN scores were then averaged, yielding one SYN value per 

day. A repeated-measures ANOVA was conducted in Jamovi (https://www.jamovi.org; 

https://cran.r-project.org/; Lenth et al., 2018; Singmann et al., 2018), to assess the progression in 

performance, with Group-Task (LRN group-LRN task, LRN group-SMP task and SMP group-

SMP task) as a between-subject factor and Day (1-5 and 17) as the repeated-measures factor. 

Mauchly’s tests were conducted to assess sphericity, and the appropriate correction was applied if 

sphericity was violated (Greenhouse-Geisser if ε < 0.75 or Huynh Feldt if ε > 0.75). Post-hoc 

Tukey’s tests were then used to assess the specific temporal location of differences in significant 

effects and interactions (i.e., between which days the improvement in SYN score was significant). 

WM microstructural changes across learning stages  

We conducted voxel-wise analyses within a WM mask on all diffusion maps (FA, MD, AD, and 

RD) using a flexible factorial design for longitudinal data from the CAT12 (Computational 

Anatomy Toolbox: http://www.neuro.uni-jena.de/cat/) in SPM12 (Statistical Parametric Mapping 

software: http://www.fil.ion.ucl.ac.uk/spm/) implemented in MATLAB (Version R2019a, The 

MathWorks, Inc., Natick, Massachusetts, United States). The flexible factorial design accounts for 

dependency between time points for each participant, and included two factors: Group (LRN and 

SMP) and Scan (d1, d2, and d5). Based on the MSL literature, putative changes between d1-d2 

were interpreted as occurring during the initial fast learning stage, d2-d5 as the subsequent slow 

learning stage, and d1-d5 as overall learning. The contrasts assessed were the interaction between 

Group and Scan in the following manner: d2 > d1, d2 < d1, d5 > d2, d5 < d2, d5 > d1, and d5 < d1. 

These contrasts were assessed in both groups, only within the LRN group, and with the opposite 

direction of change in the LRN vs SMP group (e.g., d2 > d1 in LRN, d2 < d1 in SMP), which 

resulted in a total of 18 contrasts. Results are reported using cluster inference with the SPM default 

threshold of p < 0.001 and FWE correction for multiple comparisons at the cluster level (p < 0.05). 

All analyses were conducted within the WM mask. We defined sequence-specific changes as 

significant changes in the contrasts of opposite directions between groups, where the LRN group 

https://www.jamovi.org/
http://www.neuro.uni-jena.de/cat/
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was driving the interaction (i.e., greater change in LRN). Significant changes in both groups were 

defined as non-sequence specific and interpreted as related to motor execution of the SPFT. Similar 

voxel-wise interaction analyses were conducted on rs-fMRI centrality metrics with Group and Scan 

as factors, allowing to identify clusters of changes in functional connectivity (Jäger et al., 2021), 

which were used for ROI generation. 

WM microstructural changes associated with functional changes  

Work from our group focusing on the rs-fMRI data in the same cohort identified functional 

reorganization of the networks involved in MSL (Jäger et al., 2021). These regions were used to 

define ROIs in WM tracts associated with these task-relevant functional changes. Specifically, 

increases in centrality (DC and EC) were found in the right globus pallidus internal segment (GPi) 

in the initial learning stage (d1-d2) and bilaterally in the superior parietal cortex (SPC) in overall 

learning (d1-d5). Decreases in the right supplementary motor area (R SMA) and right pars 

opercularis (R PO) were also observed between d1-d5 in the LRN group. In order to relate structural 

changes in WM to functional changes, ROIs (Figure 3, in blue) were generated from the rs-fMRI 

clusters in grey matter (Figure 3, in red) using the 3dROIMaker function in AFNI (P. A. Taylor & 

Saad, 2013). The GM ROI was first inflated by two voxels to find where it overlapped WM (within 

our group WM mask) and then inflated by four voxels to define an ROI within the WM. Inflating 

parameters were adjusted when creating the R GPi and the R SPC ROIs, in order to yield ROIs of 

similar sizes, as these clusters were located closer to the WM mask. Resulting ROIs contained 79, 

187, 238, 161, and 69 voxels for the R GPi, L SPC, R SPC, R SMA and R PO, respectively. We 

extracted mean values from each ROI and conducted repeated-measures ANOVAs across 

timepoints (d1, d2, and d5) in the LRN group, with separate analyses for each diffusion metric (FA, 

MD, RD and AD) and ROI. Post-hoc Tukey’s tests were then conducted on significant effects and 

interactions to determine the locations of significant changes in WM metrics (i.e., between which 

days). These analyses focused on participants of the LRN group since ROIs from the rs-fMRI data 

come from an interaction analysis between groups which showed changes specific to the LRN in 

these regions.   
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Figure 3. Regions of interest (ROIs) in white matter (blue) created from grey matter ROIs (red) where sequence-specific changes 
in functional connectivity were found (Jäger et al., 2021). ROIs are displayed on the MNI152 template and WM ROIs are overlaid 
on a white matter mask created from the group average of FA maps thresholded at 0.35. a) Right and left superior parietal cortex 
(SPC) ROIs. b) Right supplementary motor area (SMA) ROI. c) Right pars opercularis (PO) ROI. d) Right globus pallidus internal 
segment (GPi) ROI. 
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Retention of WM microstructural changes  

To assess whether WM microstructural changes were maintained through the retention period, 

paired t-tests were conducted between mean values at d5 and those at d17 in clusters where 

significant changes were found during the training period (d1-d5). ROIs used for these analyses 

consisted in any cluster where a significant change was found with whole-brain voxel-wise 

analyses, as well as ROIs created from rs-fMRI clusters in which a significant change in WM 

microstructure was found with repeated-measures ANOVAs. These analyses focused on the LRN 

group and on the metrics (i.e., FA, MD, RD, or AD) that showed significant changes during the 

training period. A lack of significant change between mean values at d5 and those at d17 was 

interpreted as WM microstructural change retention.  

Correlation with improvements in performance 

Changes in WM metrics were correlated with performance improvements in the initial learning 

stage (d1-d2) and in overall learning (d1-d5). The slow learning phase (d2-d5) was not assessed 

since there were no significant behavioural or structural changes during this time period. 

Improvements in performance were expressed as a relative change from baseline in percent to 

account for different baseline performance levels (i.e., SYN score at the beginning of d1) across 

subjects. Relative improvements in SYN (%) were calculated as: [ABS(SYNd2 - SYNd1)/SYNd1] 

* 100 for initial fast learning and as: [ABS(SYNd5 - SYNd1)/SYNd1] * 100 for overall 

improvement. These analyses aimed at investigating whether the extent of changes in WM metrics 

during each learning stage was related to the improvements on the task during the same period. 

2.4 Results 

2.4.1 Performance improvement in the SPFT  

Participants in the LRN group learned the complex sequence progressively over the course of the 

training period as evidenced by the large decrease in temporal deviation (SYN) between the 

beginning of training (d1 block 1 mean SYN score= 224.01 ± 68.53) and the last block of d5 (89.31 

± 62.67). Moreover, the mean SYN score at the retention session (d17; 109 ± 60.5 ms) indicates 

that gains in performance were maintained. On the other hand, participants in the control group 

improved very minimally in performing the SMP task as the sequence was fairly easy and temporal 
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deviation was already minimal at the beginning of training (mean SYN score at d1 block 1= 33.98 

± 7.31; mean SYN at last block of d5= 19.23 ± 5.56). Scores were significantly different between 

groups; a repeated-measures ANOVA revealed a significant main effect of Group (F(2,53)= 62.0, 

p < 0.001) and an effect size (η2
p) of 0.700, further showing how different the sequences are (see 

Figure 4). There were no significant correlation between performance in the task and sport or 

musical experience (p > 0.05). 

There was also a main effect of Day (F(5,265)= 30.2, p<0.001, η2
p= 0.363) and a significant 

interaction of Day*Group (F(5,265)= 20.7, p<0.001, η2
p= 0.438). These main effects and 

interactions were still significant (p<0.001) after Greenhouse-Geisser correction which was applied 

because sphericity was violated in this analysis. Consistent with the theories of learning stages, 

most improvements took place in the first days and then reached a plateau at d4 in the LRN group 

performing the complex task (LRN); post-hoc Tukey was significant between d1-d2 (t=7.864, 

p<0.001), d2-d3 (t= 4.367, p=0.002), and nearly significant d3-d4 (t= 3.497, p= 0.054), but not 

significant between d4-d5 (t= -0.774, p= 1.000), nor between d5-d17 (t= -1.755, p= 0.953) (Figure 

4). Post-hoc Tukey was also significant between d1-d17 (t= 13.199, p<0.001) and d2-d17 (t= 5.335, 

p<0.001), but not between d5-d17 (t= -1.755, p= 0.953) indicating that performance in the task was 

maintained after 12 days without practice. 

In contrast, participants in the SMP group exhibited little significant improvement over the course 

of the 5 days of training. None of the pairwise comparisons between consecutive days were 

significant in this group and Post-hoc Tukey was also non-significant between d1-d5, indicating 

no significant improvement in the overall learning period. There was no significant difference 

between the performance of the LRN group and that of the SMP group on the SMP task (Post-hoc 

Tukey p > 0.05 between LRN group-SMP task and SMP group-SMP task at every time point). As 

expected, SYN scores of both groups performing the SMP task differed significantly from the SYN 

scores of the LRN task (Post-hoc p < 0.001 at every time point). Two participants from the SMP 

group were excluded from the analysis because their SYN scores on d3, and d4 for one of them, 

were outliers as they exceeded the mean by more than two SD.  



 58 

 
Figure 4. Behavioral Results. Temporal deviation (SYN; in ms) for each group and each task across training days (d1-d5) and 
retention session (d17), where the SYN value of each day is the mean across blocks. LRN – LRN task: learning group performing 
the LRN task (in blue); SMP – SMP task: control group performing the SMP task (in orange); LRN – SMP task: learning group 
performing the SMP task (in grey). Error bars represent the standard error of the mean. 

2.4.2 WM microstructural changes across learning stages 

Changes of opposite directions in both groups were found in the corticospinal tract, underlying the 

left primary motor cortex (M1) (t= 4.20, p= 0.002; Figure 5b). FA decreased in LRN, whereas FA 

increased in this cluster in SMP (d5 < d1 in LRN, d5 > d1 in SMP). The mean ΔFA in LRN was -

0.029, while FA increased by 0.0395 in the SMP group. Voxel-wise analyses also revealed a 

decrease in FA (t= 5.01, p= 0.005; mean ΔFA= -0.176) in the right ascending sensorimotor tract 

adjacent to the primary somatosensory cortex (S1), in the LRN group only, during overall learning 

(d5 < d1; see Figure 5a). Other DTI metrics for these contrasts were non-significant (pFWE > 0.05). 

There were also changes in FA in the same regions in both groups. These plastic changes were 

common to both groups and therefore considered non-sequence specific and more related to motor 

execution. FA had a near significant increase in the frontal inferior longitudinal (FIL) tract 

underlying the right pars opercularis (PO) in the early stage of learning (d2 < d1; Figure 5c) in 

both groups (t= 4.02, p= 0.063; mean ΔFA in all subjects= 0.115, mean ΔFA in LRN= 0.125, mean 

ΔFA in SMP= 0.104). In overall learning, FA increased significantly in the right anterior corona 

radiata adjacent to the frontal eye field (FEF; t= 5.28, p=0.023; Figure 5d) in both groups (mean 

ΔFA in all subjects= 0.119, mean ΔFA in LRN= 0.147, mean ΔFA in SMP= 0.093). Other metrics 

LRN - LRN task
SMP - SMP task
LRN - SMP task

Group - task

LRN - LRN task

SMP - SMP task

Group 

LRN - SMP task

S
Y

N
 (m

s)

50

100

150

200

Day
1 2 3 4 5

0

17



 59 

for these contrasts, and all other contrasts assessed, were non-significant (pFWE > 0.05). The results 

are summarized in Table 2. 

Table 2. Clusters in which significant changes in FA were found 

 k 
(#voxels) 𝘱FWE T Peak Coordinates in 

MNI (mm) Region 

d5 < d1 
in LRN 38 0.005 5.01 [14, -35, 60] R ascending sensorimotor tract 

adjacent to S1 (Figure 5a) 

d5 < d1 
in LRN; 
d5 > d1 in 
SMP 

42 0.002 4.20 [-24, -11, 30] L corticospinal tract adjacent to 
M1 (Figure 5b) 

d2 > d1 
in both 
groups 

25 0.063 4.02 [41, 14, 23] R frontal inferior longitudinal tract 
adjacent to PO (Figure 5c) 

d5 > d1 
in both 
groups 

30 0.023 5.28 [17, 29, 41] R Anterior corona radiata adjacent 
to FEF (Figure 5d) 
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Figure 5. Changes in FA from voxel-wise analyses. T-stat maps (maximum intensity projection for better visualization) are overlaid 
on the mean FA image. a) Decrease in FA in the LRN group between d1-d5 in the right ascending sensorimotor tract connecting to 
the primary somatosensory cortex (S1). b) Decrease in FA in LRN and increase in FA in SMP between d1-d5 in the left corticospinal 
tract connecting to the primary motor cortex (M1). c) Increase in FA in both groups between d1-d2 in the right frontal inferior 
longitudinal (FIL) tract connecting to the pars opercularis (PO). d) Increase in FA in both groups between d1-d5 in anterior corona 
radiata connecting to the right frontal eye field (FEF). 
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2.4.3 WM microstructural changes associated with functional changes  

WM microstructure in the ROI underlying the right SMA was altered during the training period in 

the LRN group (Figure 6a). FA was found to decrease significantly across days (F(2, 36)= 5.82, 

p=0.006, η2
p= 0.244; Figure 6b) and Tukey’s post-hoc test revealed that this decrease was 

significant between d1-d2 (t= 3.072, p=0.011) and between d1-d5 (t= 2.823, p=0.021), but not 

between d2-d5 (t= -0.249, p=0.966). There was also a significant decrease in AD (Figure 6c) in 

the R SMA (F(1.38, 24.91)= 6.27, p=0.012 after Greenhouse-Geisser correction, η2
p= 0.258) and 

post-hoc tests showed that the differences were statistically significant between d1-d2 (t= 3.300, 

p= 0.006) and between d1-d5 (t= 2.763, p= 0.024). RD increased significantly across days (F(1.44, 

25.99)= 3.93, p= 0.044 after Greenhouse-Geisser correction, η2
p= 0.179) (Figure 6d). This increase 

bordered on statistical significance in Post-hoc Tukey’s tests between d1-d2 (t= -2.419, p=0.053) 

and between d1-d5 (t= -2.438, p= 0.051), but not between d2-d5 (t= -0.0190, p= 1.000). MD 

showed no significant change in this ROI (p > 0.05). To test whether the DTI metrics changed in 

the SMP group, the same analyses (RM-ANOVAs) were conducted in that group. Diffusion metrics 

did not change significantly across days in the SMA ROI in the SMP group (p > 0.05). 

Diffusion metrics in the other ROIs (L and R SPC, R GPi, and R PO) did not change significantly 

across days in repeated-measures ANOVA analyses.  

Retention of WM microstructural changes  

Changes in FA in the right S1 and left M1, which both decreased significantly between d1-d5 in 

LRNs, were not maintained at the retention session (d17). Paired samples t-tests revealed 

significant differences between mean FA values at d5 and mean FA at d17 (S1: t(18)= 2.25, p= 

0.037; M1: t(18)= 2.94, p= 0.009) in the LRN group. There was however no significant difference 

between mean FA at d5 and at d17 in the WM tract underlying the left M1 in the SMP group (t(19)= 

1.11, p= 0.279). Refer to Supplemental Figure 1 for the time course of FA changes in S1 and M1. 

FA in the right PO was not significantly different between d5-d17 (t(38)= -1.31, p= 0.197). 

However, when inspecting the time course of changes relative to baseline (see Supplemental 

Figure 1; Appendix I), we can see that FA slowly decreases after the time point of significant 

change (d1-d2; in both groups), from d2-d17. Retention did not take place in the right FEF, where 
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FA, which increased across the overall training period (d1-d5) in both groups, then decreased 

significantly between d5-d17 (t(38)= -2.93, p= 0.006). 

Changes in all WM metrics were maintained at d17 in the right SMA (Figure 6). There were no 

significant differences between the mean values at d5 and those at d17 for FA and AD, which both 

decreased in the early stage of training (d1-d2) in the LRN group (FA: t(18)= 0.035, p= 0.972; AD: 

t(18)= -0.174, p= 0.863). The increased RD was also maintained at d17 as evidenced by the non-

significant t-test d5-d17 (t(18)= 0.025, p= 0.981). 

 
Figure 6. Changes in WM microstructure in the ROI underlying the right supplementary motor area (SMA) in which sequence-
specific changes in functional connectivity were found (Jäger et al., 2021). a) The right SMA ROI from resting-state analyses (in 
red) and the WM ROI (in blue; overlaid on the WM mask in white) are both overlaid on the MNI152 template. Mean change in DTI 
metrics from baseline (d1) in both groups: b-c) FA and AD decreased in the LRN group (blue lines) between d1 and d2 and remained 
lower at d5 and d17. d) RD increased between d1 and d2 in LRN and remained higher at d5 and d17. DTI metrics in the right SMA 
in the SMP group did not change significantly (p > 0.05). Error bars represent the standard error of the mean. 
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2.5 Discussion 

In this study, we investigated structural changes in WM over the course of 5 training days on a 

continuous visuomotor sequence task using DTI. Consistent with the behavioral results, where the 

greatest amount of improvements in temporal synchronization (SYN) were detected between the 

two first days (see Figure 4), we observed structural changes in WM only in the early phase of 

learning (d1-d2), and when looking at the overall learning period (d1-d5), which suggests a slower, 

more progressive change. Sequence-specificity was assessed through interaction analyses between 

the LRN group, who performed a complex sequence, and the control group (SMP), who performed 

a simple sequence, where the interaction is driven by the LRNs. FA was found to change in opposite 

directions in both groups in the left corticospinal tract (CST) inferior to the primary motor cortex 

(M1; Figure 5b) during overall learning. However, as the SMP group showed a greater change 

than the LRNs, we cannot establish that altered FA in WM underlying M1 is due to sequence 

learning per se. Changes in the right ascending sensorimotor tract (SMT) adjacent to the primary 

somatosensory cortex (S1) were also observed in the LRN group (Figure 5a). Changes underlying 

M1 and S1 were however not maintained at the retention session, 12 days after cessation of training. 

WM microstructure was altered during the early phase of learning in the ROI underlying the right 

supplementary motor area (SMA; Figure 6), where sequence-specific changes in functional 

connectivity were found during overall learning in this cohort (Jäger et al., 2021). Changes in WM 

microstructure underlying the right SMA were maintained at the retention session. Together, our 

findings provide evidence for training-dependent white matter plasticity in the sensorimotor 

network during short-term motor sequence learning.  

2.5.1 Changes in the LRN group 

Overall Learning - Right Primary somatosensory cortex (S1) 

Fractional anisotropy decreased in the right ascending SMT in participants of the LRN group 

during overall learning (d1-d5; Figure 5a). We hypothesize that this decrease in FA in fiber tracts 

connecting to the right S1 may reflect suppression of activity in S1 ipsilateral to the hand used in 

the SPFT (Kastrup et al., 2008; Staines et al., 2002). Increased activity in the contralateral S1, and 

suppression of activity in the ipsilateral S1, as a result of task-relevant somatosensory stimulation 

and voluntary movements, have been reported in fMRI and EEG studies (Kastrup et al., 2008; Lei 



 64 

& Perez, 2017; Nirkko et al., 2001; Staines et al., 2002). Blood flow suppression along with 

inhibition of S1 areas that are not involved in a task (e.g., ipsilateral body parts) from the prefrontal-

thalamic system have been suggested as mechanisms to selectively gate sensory inputs (Drevets et 

al., 1995; Knight et al., 1999; Staines et al., 2002; Yamaguchi & Knight, 1990). In work by Drevets 

and colleagues (1995), blood flow reductions were observed in S1 ipsilateral to the expected 

stimulus when participants were anticipating somatosensory stimulation. The fact that changes in 

the SMT were only found in the LRN group may be due to increased levels of anticipation and 

attention in participants performing a complex task (Drevets et al., 1995; Halsband & Lange, 2006; 

Staines et al., 2002). We speculated that the increased attention necessary to perform the complex 

task would likely require greater activation of the dorsolateral prefrontal cortex. This could lead to 

greater inhibition of the ipsilateral S1, through the prefrontal-thalamic sensory gating system, as a 

way to suppress background noise and enhance processing of task-relevant inputs (Corbetta & 

Shulman, 2002; Halsband & Lange, 2006; Staines et al., 2002; Yamaguchi & Knight, 1990). 

Participants of the SMP group on the other hand may not need to pay as much attention to the task 

at hand, and to the associated sensory inputs, and may perform the repetitive sinusoidal sequence 

in a more automated manner. 

This sensory gating, in which behaviorally-irrelevant regions are inhibited in order to effectively 

suppress unimportant, and potentially disruptive, inputs, may thus contribute to enhancing the 

responsiveness of the contralateral S1 to stimuli (Staines et al., 2002). Enhanced somatosensory 

inputs while performing a motor task have been associated with improvements in performance, and 

disrupting somatosensation during training impairs motor learning (Vidoni et al., 2010; Wei et al., 

2018). As participants in this study were holding a pressure sensor between their thumb and index 

fingers, enhanced somatosensory inputs to the central nervous system due to SPFT training could 

result in the acquisition of a new task-specific sensory map (Braun et al., 2000; Pascual-Leone et 

al., 2005). This would provide better sensory feedback when subsequently performing the task, 

which could translate into improved accuracy in matching the reference bar (Wei et al., 2018).  

Overall Learning - Left Primary motor cortex (M1) 

FA in the left CST connecting to M1 was found to decrease in the LRN group, while it increased 

in the SMP group during overall learning (d1-d5; Figure 5b), indicating a relatively slow change 

in this region over the course of the five training days. As the SMP group did not show any 
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significant improvement in the SPFT, we are cautious in interpreting a change in this group without 

supporting behavioral evidence. The change in the LRN group on the other hand was accompanied 

by a change in behavior. We will thus focus the interpretation on the LRN group although we could 

speculate that any plastic change occurring in the SMP group could mirror changes in the LRNs 

but occur on a shorter time scale, as the sequences learned by each group have different 

complexities (Dayan & Cohen, 2011; Hyde et al., 2009; Karni et al., 1995).  

Since we expect M1 to be activated when performing a motor task with the contralateral limb, as 

M1 has a known role in motor execution and the storage of learned sequence representations 

(Bengtsson et al., 2005; Hardwick et al., 2013; Hyde et al., 2009; Monfils et al., 2005; Penhune & 

Steele, 2012; Yokoi et al., 2018), this decrease in FA in the group performing a more complex task 

may seem contradictory. However, activity in M1 was previously shown to progressively decrease 

as a motor skill is learned (Dayan & Cohen, 2011; Poldrack, 2000; Seidler et al., 2005), possibly 

reflecting increased efficiency. Moreover, functional connectivity in M1 was found to increase in 

the LRN group during the early stage of training (Jäger et al., 2021). This suggests an important 

and active role of this area as we begin to learn a task, but then, as the motor sequence is learned, 

less neuronal resources would be needed to perform the task which could be reflected by decreased 

connectivity (Dayan & Cohen, 2011; Poldrack, 2000). In line with this, studies in musicians, 

experts in sensorimotor control, have also reported lower FA in motor circuits, including the 

bilateral CST and corona radiata (Imfeld et al., 2009; Penhune & Steele, 2012 for review; 

Schmithorst & Wilke, 2002). This decrease in anisotropy may be due to increased efficiency, or it 

may result from changes in the permeability of axonal membranes to water, or to an increased 

axonal diameter, which would lead to an increase in intracellular radial diffusivity (Beaulieu, 2002; 

Imfeld et al., 2009; Zatorre et al., 2012). Lastly, the development of a secondary fiber population 

in areas of crossing fibers is another potential mechanism through which FA could be reduced 

(Zatorre et al., 2012). Indeed, another study investigating structural changes associated with five 

days of MSL found that lower FA in the CST on the last training day correlated with better 

performance on the task (Steele et al., 2012). Since the significant correlation was located in a 

region where the CST and superior longitudinal fasciculus (SLF) cross, they hypothesized that 

maturation of the SLF, which would be the secondary fiber population here, drove the reduction in 

FA and promoted performance, as the SLF connects cortical regions that are involved in this task. 

The lack of significant changes in other diffusivity metrics in this study however does not allow to 
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disentangle the extent to which these factors contribute to the reduction in FA observed in the CST. 

Acquiring a greater number of diffusion gradient directions and strengths, and using more advanced 

diffusion models such as neurite orientation dispersion and density imaging (NODDI), and 

tractography, may allow to distinguish the underlying factors leading to altered FA in future studies 

(Steele & Zatorre, 2018; Tardif et al., 2016; H. Zhang et al., 2012a). However, the increase in 

functional connectivity observed during the early stage of learning (Jäger et al., 2021), along with 

the slower decrease in FA found in this study, support the hypothesis of a strong initial M1 

involvement, followed by decreased M1 activation as learning progresses, reflecting enhanced 

network efficiency (Bassett et al., 2015; Costa et al., 2004; Dayan & Cohen, 2011; Finc et al., 2020; 

Karni et al., 1995; Mohr et al., 2016; Poldrack, 2000). 

Fast Learning - Right Supplementary motor area (SMA) 

ROI-based analyses were conducted in WM tracts underlying clusters of changes in resting-state 

centrality metrics, which included bilateral SPC, right GPi, right SMA and right PO (inferior part) 

(Figure 3). These analyses revealed changes in the WM ROI underlying the right SMA, in a fiber 

pathway we identified as the frontal aslant tract (FAT) (Figure 6a). The FAT connects the superior 

frontal gyrus (SFG), including the supplementary motor area (SMA), to the IFG (Briggs et al., 

2018) and is thought to have a role in working memory, motor planning and coordination (Dick et 

al., 2019; Varriano et al., 2020). This pathway may function to coordinate sequential motor 

movements, especially in visuo-spatial tasks, to select the appropriate motor outputs (Dick et al., 

2019). Moreover, the SMA has been shown to be involved in long-term (Hikosaka et al., 1995, 

1996; Jenkins et al., 1994; Shima & Tanji, 2000; Tanji, 1996; van Mier et al., 1998), and short-

term MSL (Vollmann et al., 2013), especially in action planning and in the organization of temporal 

aspects, such as timing and order, in a wide range of domains (e.g., language, working memory, 

motor sequences) (Cona & Semenza, 2017; Krakauer et al., 2019). A study using the same task 

provided strong evidence of the implication of the SMA in sequence learning by showing that non-

invasive stimulation over the SMA led to improvements in performance of the SPFT (Vollmann et 

al., 2013).  

Considering the known role of the SMA and FAT in sequence processing (Cona & Semenza, 2017; 

Dick et al., 2019; Krakauer et al., 2019; Shima & Tanji, 2000; Tanji, 1996; Varriano et al., 2020; 

Vollmann et al., 2013), we may expect connectivity to be enhanced with this type of task. However, 
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work from our group has found decreases in functional connectivity in the right SMA and right PO 

during overall learning in the same cohort (Jäger et al., 2021). It was hypothesized that reduced 

connectivity in these regions may thus reflect increased efficiency, or decreased need for resources 

to plan and coordinate movements, which would result in segregation of the network. This 

hypothesis is consistent with the view that the integration of multiple large-scale networks is 

necessary in the early stages of learning (Finc et al., 2020) and then, as a skill is mastered and 

becomes nearly automatic, a more easily reachable network, consisting in autonomous segregated 

modules, is sufficient to execute the task (Bassett et al., 2015; Finc et al., 2020; Mohr et al., 2016). 

In the present study, we found decreases in FA and AD in the WM ROI underlying the right SMA 

in the LRN group, during the early stage of learning and in overall learning, which were maintained 

during the retention period (Figure 6a-c). These findings, along with the increase in RD during the 

same period (Figure 6d), suggest a decrease in structural connectivity in the right SMA, which 

precedes a reduction in functional connectivity in the same region (Jäger et al., 2021). The idea of 

structure preceding function may seem contradictory, however resting-state connectivity is not 

assessed online, during task performance. Since WM tracts form the structural basis of 

connectivity, linking regions within resting-state networks, modulation of the supporting 

connections may be necessary to allow for greater communication. We could thus hypothesize that 

WM microstructure is altered in response to increased or decreased activation in a region during 

task performance (online) (Day & Sweatt, 2011; Fields, 2015; Forbes & Gallo, 2017; Zatorre et 

al., 2012) and that this then leads to modulations of resting-state networks (offline; rs-fMRI). It is 

therefore possible that structural changes underlie the subsequent changes in functional 

connectivity, though future studies would be necessary to fully investigate this hypothesis. 

The spatial and temporal patterns of WM structural changes observed in the current study are in 

line with a theoretical framework describing two networks operating in parallel during MSL with 

different time courses (Hikosaka et al., 2002). Those two networks would each subserve distinct 

aspects of MSL: learning spatial coordinates, supported by a prefronto-parietal loop, and learning 

motor coordinates, which occurs more slowly and is supported by a M1-sensorimotor loop (Dayan 

& Cohen, 2011; Hikosaka et al., 2002). Both of these loops also receive contributions from 

different parts of the striatum and cerebellum depending on the learning stage and on the 

component learned (spatial vs motor) (Hikosaka et al., 2002; Penhune & Steele, 2012). 

Interestingly, we observed changes only in the motor loop (M1 and S1). This may be due to the 
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fact that learning spatial coordinates requires less time than learning motor coordinates (Hikosaka 

et al., 2002; Miller & Cohen, 2001; Penhune & Steele, 2012). This could mean, in the context of 

the SPFT, that spatial learning took place within the first session, perhaps on the timescale of 

minutes or hours considering the low complexity of the spatial coordinates to be learned in this 

task, and did not induce changes in WM that we could detect considering the much longer timescale 

of our measurements (i.e., days). Moreover, as a sequence is learned, its performance becomes 

more implicit, and thus relies more heavily on motor mechanisms and very little on attention-

demanding spatial mechanisms (Hikosaka et al., 2002; Penhune & Steele, 2012). The SMA, 

another area in which we observed changes, both functionally (Jäger et al., 2021) and structurally, 

would provide the link between those two parallel loops, allowing for updated spatial 

representations to be used by the M1-sensorimotor loop to optimize motor output, according to this 

framework (Hikosaka et al., 2002). Indeed, Penhune & Steele (2012) emphasized the need for a 

high degree of interaction between these parallel systems to optimize MSL. The time course of 

changes in WM tracts underlying the SMA (fast change; d1-d2), and S1-M1 (slower changes; d1-

d5), is also in line with the hypothesis that the SMA is involved in converting quickly acquired 

spatial coordinates to motor coordinates which are then processed by the M1-sensorimotor loop 

(Hikosaka et al., 2002). Moreover, the retention of WM microstructure alterations in the fiber tracts 

underlying the SMA points to a lasting role of this region in sequence learning. If the SMA is 

indeed involved in linking spatial to motor coordinates as has been shown previously (Hikosaka et 

al., 2002; Penhune & Steele, 2012), effectively mapping spatial representations to the appropriate 

motor outputs, this lasting change in underlying WM would suggest that these maps between 

coordinate spaces become part of long-term storage. The SMA is known for its role in sequence-

specific learning and has been shown to be involved in the storage of sequence representations 

(Krakauer et al., 2019). The lasting changes observed in the WM tracts underlying the SMA in our 

study may thus reflect enhanced sequence storage efficiency in a more segregated, or autonomous, 

network (Bassett et al., 2015; Mohr et al., 2016). 

Our findings are in line with previous literature (Bloechle et al., 2016; Karni et al., 1995; Klein et 

al., 2019; Lotze et al., 2003; Schmithorst & Wilke, 2002; Zatorre et al., 2012) and point to the 

highly dynamic plastic processes in WM tracts underlying the SMA-M1-sensorimotor loop, which 

parallel functional changes. It has been suggested that increases in anisotropy may reflect ongoing 
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enhancement of fibers organization while decreased FA may be related to increased network 

efficiency in later stages of learning (Schmithorst & Wilke, 2002). 

2.5.2 Changes in both groups  

Changes in anisotropy were also observed in both groups, suggesting the involvement of a number 

of regions in motor execution rather than sequence-specific learning. While no change in 

performance common to both groups was observed, participants of both groups performed a very 

similar task, made up of the same movements but ordered in sequences of different complexities, 

on five consecutive days. The element all participants have in common is thus the execution of 

these pinching movements daily. We provide a putative interpretation of these results below. 

FA increased in WM tracts underlying the inferior frontal gyrus (IFG; opercular part) in the early 

stage of training (d1-d2; Figure 5c), and in the right anterior corona radiata (aCR) adjacent to the 

right frontal eye field (FEF) during overall learning (d1-d5; Figure 5d). 

Overall Learning - Right Frontal Eye Field (FEF) 

The frontal eye field (FEF) is involved in processing visual inputs and controlling voluntary eye 

movements and its activation is thought to be dependent on the saliency of the target (i.e., whether 

the target is behaviorally relevant) (Schall & Bichot, 1998; Vernet et al., 2014). In this task, 

participants maintained the gaze on the computer screen where the REF and FOR bars (Figure 1) 

provided both instructions (REF) and feedback (FOR) for the SPFT. Maintaining the gaze on a 

visual target for extended periods of time (~20 min/day for 5 consecutive days) may require high 

sustained activation in the FEF which could translate into structural changes in fiber tracts 

connecting this region during the overall learning period. The FEF clearly plays an important role 

in visually guided tasks, but its role has been investigated mostly in the context of goal-oriented 

saccadic eye movements (Schall & Bichot, 1998). However, in addition to its role in target selection 

in saccades, the FEF is also involved in the detection and analysis of visual inputs during periods 

of fixation of the gaze (Posner, 1980; Schall, 2004; Schall & Bichot, 1998). Non-invasive 

neurostimulation of the right FEF was shown to enhance visual perception and improve 

performance in a visual detection task (Chanes et al., 2012). Other studies support the idea that the 

FEF, especially of the right hemisphere, is involved in shifting visual attention without eye 

movement (Donner et al., 2000; Grosbras & Paus, 2002). Moreover, the FEF may play a role in 
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short-term memory of visuo-spatial information (Clark et al., 2012; Gaymard et al., 1999). The 

high potential for plasticity of the FEF has made this region a target for neurostimulation to increase 

visuo-spatial attention in healthy and patient populations (Vernet et al., 2014). Our results, showing 

FA increases in both groups, support the view that the FEF is highly plastic and suggest that this 

region is relevant in directing visual attention regardless of task complexity.  

Fast Learning - Right Pars Opercularis (PO)  

Increased FA was also observed in the frontal inferior longitudinal (FIL) tract underlying the dorsal 

part of the right pars opercularis (PO) between d1-d2 (Figure 5c). The FIL tract is a chain of u-

shaped fibers connecting the dorsal part of the IFG (including the PO), to the middle frontal gyrus 

and pre-central gyrus (M1) (Catani et al., 2012). U-fibers of the frontal and parietal lobes have been 

shown to play an important role in sensorimotor integration (Catani et al., 2012, 2017), and have 

been hypothesized to coordinate movement planning and execution by linking motor and premotor 

regions (Catani et al., 2012). Moreover, the right PO has been specifically linked with fine motor 

control of manual motion (Briggs et al., 2019; Liakakis et al., 2011). 

Our findings suggest that high task complexity might not be necessary to recruit the PO and incur 

structural changes in the underlying WM tracts, as the SMP sequence also requires the integration 

of sensory information to execute the task, as well as fine motor control in order for the appropriate 

amount of force to be applied on the device at the right time. Furthermore, the change in fiber tracts 

underlying the PO was observed in the early stage of learning, which may indicate a greater need 

for sensorimotor integration at this stage.   

2.5.3 Relationships between behavioural and WM microstructural changes 

Although the fact that most improvements occurred in the initial stage of learning (d1-d2) is 

consistent with the time period when changes in WM microstructure were found (d1-d2 and d1-

d5), the time courses of behavioural and WM microstructural changes were different. While 

temporal deviation (SYN) followed an exponential decay across time (i.e., improvement in 

performance), changes in WM appeared highly dynamic, with early changes which were 

maintained in some instances (i.e., SMA), as well as slow decreases in FA which were not 

maintained at the retention session (e.g., S1 and M1). This makes it challenging to relate behavioral 

to structural changes at the same time point and may explain why significant correlations were not 
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found in this study. Other longitudinal plasticity studies have shown inconsistent relationships 

between brain plastic changes and behavioral outcomes with some studies reporting associations 

(e.g., Takeuchi et al., 2010), while others report no relationship (e.g., Scholz et al., 2009), or 

relationships in directions opposite to what is expected (for review, Zatorre et al., 2012). It has 

been suggested that correlations between performance and brain structural changes may be more 

closely linked to the amount of time spent training than on performance outcomes (Scholz et al., 

2009). However, the fact that we did not identify a significant correlation between behavioural 

change and WM microstructural change is likely due to behaviour being the result of the integration 

of structural changes in WM and GM, as well as functional changes. Thus, WM changes alone 

could not predict the extent of performance improvement on the task. However, as some of the 

significant changes in WM were observed only in the LRN group, the only group showing 

behavioral change, in regions known for their role in motor sequence learning (i.e., SMA, M1, and 

S1), we argue that this provides evidence of behavioral relevance. Lastly, our findings showed 

different brain regions are involved in different stages of learning, suggesting the SMA became 

involved early in learning and had a persistent role in learning the SPFT, with changes still present 

12 days after cessation of training, whereas sensorimotor regions played a more transient role. A 

better understanding of the relationships between changes in the brain’s structure and behavior 

would thus likely be achieved using multi-parametric models that take into account several aspects 

of brain plasticity to identify the most relevant parameters. 

2.5.4 Limitations and Future Considerations 

The main limitation of this study is that the high field strength (7T) may make our findings less 

generalizable across studies, as 3T is still much more commonly used in research. The high spatial 

resolution of our acquisition may have also led to a decrease in SNR. Moreover, despite the high 

spatial resolution of our acquisition, the angular resolution was low, with only 20 directions, and a 

single diffusion gradient strength was applied (i.e., one shell). The angular sampling, number of 

diffusion shells and gradient strength were limited due to time constraints, as the study involved 

the acquisition of several other MRI sequences of long duration. In future studies, DWI acquisitions 

with higher gradient strengths and a greater amount of directions would allow for tractography to 

be performed, which would increase certainty when identifying fiber tracts where changes in scalar 

DTI metrics are observed, and for tract-based quantification of DTI metrics (Mukherjee et al., 
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2008; Wakana et al., 2007). Furthermore, with a higher number of shells and directions, more 

advanced modelling approaches, such as NODDI, can be used, which would allow to disentangle 

factors such as fiber density and orientation dispersion, especially in areas of crossing fibers (Steele 

& Zatorre, 2018; Tardif et al., 2016; H. Zhang et al., 2012a). Furthermore, the combination of 

multiple quantitative MR parameters, such as magnetization transfer saturation (MTsat), proton 

density (PD) and longitudinal and transverse relaxation rates (R1 and R2*), would allow to specify 

the contributions of myelination and changes in axon morphology to training-induced WM plastic 

changes (Caeyenberghs et al., 2016; Deoni et al., 2008; Helms, Dathe, Kallenberg, et al., 2008; 

Weiskopf et al., 2015).    

Another challenge when investigating neuroplasticity in MSL is that high variability in the duration 

of each learning stage, depending on the complexity of the task, makes it difficult to relate stage-

specific findings across studies (Dayan & Cohen, 2011; Hyde et al., 2009; Karni et al., 1995). 

Moreover, our experimental design did not allow us to distinguish structural changes occurring 

during consolidation (i.e., offline), from those occurring during training (i.e., online). However, it 

is unlikely that the techniques used in the current study would have had the sensitivity to detect 

such subtle differences and the structural changes observed in WM are likely the sum of alterations 

taking place both during the training session (i.e., online) and in between sessions (i.e., offline).   

Lastly, the motor sequence training period was of short duration in the present study which may 

limit the amount of observable structural changes. A longer training duration may have led to a 

greater amount of plastic changes in WM tracts which could have provided further insights into 

MSL-related neuroplasticity.  

2.6 Conclusion 

Our study provided evidence for white matter plasticity in the sensorimotor network, where the 

SMA plays a role in linking the spatial and motor aspects, in short-term learning of motor 

sequences. Our findings also highlighted the time course of plastic changes in this network as we 

scanned participants not only in the beginning and at the end of training, but also on the second 

day, allowing for the characterization of changes occurring in the early stage of training. Future 

ultra-high field MRI studies investigating plasticity in the context of MSL should use a high angular 
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resolution, and a higher number of diffusion shells of varying strengths. This would provide more 

precision in localizing areas of change and in characterizing the biological underpinnings of plastic 

changes in brain white matter.   
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CHAPTER III: Development of a toolbox for 
multivariate analysis 

Preface 

As we have seen in Study 1 (Chapter II), the metrics derived from diffusion tensor imaging (DTI), 

which is still the most commonly used model in imaging studies focused on WM, lack biological 

specificity. This makes it difficult to interpret findings as biological underpinnings that underlie 

WM changes cannot be easily inferred. More advanced models that are based on multi-shell high 

angular resolution imaging (e.g., NODDI, constrained spherical deconvolution, etc.) are gaining 

popularity in the field as they provide greater specificity. Although more specific, these models 

still do not provide a perfect representation of the underlying microstructure. Each of the derived 

metric consists in an indirect measure linking the MR signal to microstructural properties, and each 

comprises a set of assumptions and biases (Novikov et al., 2018). Moreover, techniques based on 

DWI do not yield measures specific to myelin. These limitations, and the necessity to characterize 

several microstructural properties simultaneously, has led many researchers to adopt multi-modal 

imaging. The high dimensionality data generated by multi-modal imaging (and/or several DWI 

models) provides a rich and comprehensive view of the underlying microstructure. However, 

multivariate approaches are needed to reduce the dimensionality of the data. Such approaches allow 

to leverage the strengths of each technique while mitigating their weaknesses. They also reduce the 

amount of multiple comparisons correction required and offer greater statistical power than 

univariate approaches (Avants, Duda, et al., 2008; Naylor et al., 2014; Owen et al., 2021). 

The complexity of several multivariate approaches has been a significant hurdle in their adoption. 

For the second study of this thesis, I contributed to the development of an open-source toolbox for 

the computation of a multivariate distance measure (the Mahalanobis distance, or D2) that allows 

the integration of several MRI metrics. With the release of this toolbox, our aim is to enhance 

accessibility of the D2 approach for researchers from diverse backgrounds (e.g., those with limited 

computational skills or resources), thereby promoting its broader adoption in neuroimaging studies. 
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MVComp toolbox: MultiVariate Comparisons of brain MRI 

features accounting for common information across measures 

Tremblay, Stefanie A*, Alasmar, Zaki*, Pirhadi, Amir, Carbonell, Felix, Iturria-Medina, Yasser, 

Gauthier, Claudine J, Steele, Christopher J 
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3.1 Abstract 

Introduction: Multivariate approaches have recently gained in popularity to address the 

physiological unspecificity of neuroimaging measures and to better characterize the complexity of 

biological processes underlying behavior. However, commonly used approaches are biased by the 

intrinsic associations between variables, or they are computationally expensive and may be more 

complicated to implement than standard univariate approaches. Here, we propose using the 

Mahalanobis distance (D2), an individual-level measure of deviation relative to a reference 

distribution that accounts for covariance between measures. To facilitate its use, we introduce an 

open-source python-based tool for computing D2 relative to a reference group or within a single 

individual: the MultiVariate Comparison (MVComp) toolbox 

(https://github.com/neuralabc/mvcomp). The toolbox allows different levels of analysis (i.e., 

group- or subject-level), resolutions (e.g., voxel-wise, ROI-wise) and dimensions considered (e.g., 

combining MRI measures or WM tracts). Several example cases are presented to showcase the 

wide range of possible applications of MVComp and to demonstrate the functionality of the 

toolbox.  

Methods & Results: The D2 framework was applied to the assessment of white matter (WM) 

microstructure at 1) the group-level, where D2 can be computed between a subject and a reference 

group to yield an individualized measure of deviation. We observed that clustering applied to D2 

in the corpus callosum yields parcellations that highly resemble known topography based on 

neuroanatomy, suggesting that D2 provides an integrative index that meaningfully reflects the 

underlying microstructure. 2) At the subject level, D2 was computed between voxels to obtain a 

measure of (dis)similarity. The loadings of each MRI measure (i.e., its relative contribution to D2) 

https://doi.org/10.52294/001c.118427
https://github.com/neuralabc/mvcomp
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were then extracted in voxels of interest to showcase a useful option of the MVComp toolbox. 

These relative contributions can provide important insights into the physiological underpinnings 

of differences observed.  

Discussion: Integrative multivariate models are crucial to expand our understanding of the 

complex brain-behavior relationships and the multiple factors underlying disease development and 

progression. Our toolbox facilitates the implementation of a useful multivariate method, making it 

more widely accessible. 

 

Keywords: Multivariate analysis, white matter, covariance, personalized assessment, toolbox, 

python  
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3.2 Introduction 

In the past decade, there has been exponential growth in the number of modeling approaches that 

link white matter (WM) microstructural properties and the MR signal (Novikov et al., 2018). Since 

none of the existing models (e.g., diffusion tensor, neurite orientation dispersion and density 

imaging (NODDI), etc.) is a perfect representation of the underlying microstructure, choosing a 

model and contrast for analyses can be challenging, potentially leading to errors in biological 

interpretation (D. C. Alexander et al., 2019; Novikov et al., 2018). Multi-modal imaging, and 

multivariate frameworks that combine several parameters derived from different models and 

modalities, have been suggested as a promising avenue to harness the complementarity of different 

neuroimaging-derived measures (Bells et al., 2011; Tardif et al., 2016; Uddin et al., 2019).  

Multivariate frameworks have the potential to counteract issues arising from the physiologically 

unspecific nature of commonly used neuroimaging measures and to capture the complexity and 

heterogeneity of biological properties (Dean et al., 2017; Guberman et al., 2022; Seidlitz et al., 

2018; Tardif et al., 2016; P. N. Taylor et al., 2020). Multiple mechanisms give rise to brain structure 

(e.g., myelination, cell proliferation), support neuroplastic change (Azzarito et al., 2023; Taubert 

et al., 2012) and behavioral performance (Seidlitz et al., 2018; Thiebaut de Schotten & Forkel, 

2022) and are involved in neurological disorders (Iturria-Medina et al., 2017). Interpreting the 

results of univariate statistical analyses is thus challenging within this context. In addition to 

capturing a more nuanced picture of the expected mechanisms, multivariate statistical frameworks 

can offer greater statistical power than multiple univariate analyses as they reduce the amount of 

multiple comparisons correction required (Avants, Duda, et al., 2008; Naylor et al., 2014; Owen et 

al., 2021). Lastly, and perhaps most importantly, multivariate frameworks can be leveraged to 

move away from group comparisons and towards individual-level analyses, an essential step on 

the road to precision medicine (Chamberland et al., 2021; Marquand et al., 2016; Wolfers et al., 

2018). 

Multivariate approaches that combine structural MRI measures have been used in a number of 

promising contexts. At the group level, partial least squares (PLS) analyses and their variants can 

be used to assess the covariance between multiple measures (Khedher et al., 2015; Nestor et al., 

2002). Other multivariate approaches that can be used in group analyses include principal 
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component analysis (PCA), Sparse Group Lasso, independent component analysis (ICA) and non-

negative matrix factorization (Calhoun et al., 2001; Chamberland et al., 2019; Khedher et al., 2015; 

Plitman et al., 2020; Richie-Halford et al., 2021; W. Yang et al., 2011). At the individual level, 

inter-regional correlations of multiple measures can be used to create individual-specific network 

maps based on morphometric similarity that can then be linked to behavior (Seidlitz et al., 2018). 

Individualized network maps provide a more comprehensive structural mapping that captures both 

biological complexity and individual variability because they integrate multiple MRI features 

(Vandekar et al., 2016; Whitaker et al., 2016). However, in this study by Seidlitz et al., (2018), the 

shared covariance between MRI measures was not accounted for. This has the potential to bias 

inferences made from such analyses, as there is significant covariance between many commonly 

used imaging parameters (Carter et al., 2022; Uddin et al., 2019). Various multivariate approaches 

that can overcome this issue exist, including multivariate linear regression (Naylor et al., 2014; 

Young et al., 2010), machine-learning (Calhoun et al., 2001; Carbonell et al., 2020; C. Chen et al., 

2019; Guberman et al., 2022; Khedher et al., 2015; W. Yang et al., 2011), and Hotelling’s T2 test 

(Avants, Duda, et al., 2008; Hotelling, 1947). However, many of these approaches (including 

multivariate linear regression and machine learning) are computationally expensive and some 

necessitate making subjective decisions (Alexopoulos, 2010; Gyebnár et al., 2019; Hayasaka et al., 

2006; Naylor et al., 2014). The Hotelling’s T2 test, a multivariate extension of a two-sample t-test, 

is a simple yet powerful option for group comparisons (Avants, Duda, et al., 2008; Hotelling, 

1947), but provides little insight at the individual level (Guberman et al., 2022). 

Here we propose using the Mahalanobis distance (D2) (Mahalanobis, 1936) for analyzing 

multimodal MRI measures. D2 is closely related to Hotelling’s T2 but can also provide an 

individual-level measure of deviation relative to a reference distribution. It is defined as the 

multivariate distance between a point and a distribution in which covariance between features (i.e., 

imaging measures) is accounted for. Initially developed by P. C. Mahalanobis in 1936 to quantify 

racial similarities based on anthropometric measurements of skulls, D2 can be thought of as a 

multivariate z-score where the covariance between features is accounted for (P. N. Taylor et al., 

2020). 

The D2 approach has been used extensively in outlier detection, cluster analysis, and classification 

applications (Ghorbani, 2019; Kritzman & Li, 2010; Xiang et al., 2008). D2 has also been used in 
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neuroimaging, mainly in the study of neurological disorders, to detect lesions (Gyebnár et al., 2019; 

Lindemer et al., 2015), or to evaluate the degree of abnormality in the brains of patients relative to 

controls (Dean et al., 2017; Guerrero-Gonzalez et al., 2022; Owen et al., 2021; P. N. Taylor et al., 

2020; Yeatman et al., 2012), but also to study healthy WM development (Kulikova et al., 2015). 

Despite promising implementations and its high versatility, D2 has not yet been widely adopted. 

To facilitate its use, we present here an open-source python-based tool for computing D2 relative 

to a reference group or within a single individual: the MultiVariate Comparison (MVComp) 

toolbox. We provide a step-by-step guide to computing D2 using the MVComp tool 

(https://github.com/neuralabc/mvcomp) for two distinctive scenarios: a) comparisons between a 

subject and a reference group, and b) within-subject comparisons between voxels. Lastly, the 

results of these example cases are presented and the general approach is discussed (Tremblay, 

Alasmar, et al., 2024a). 

https://github.com/neuralabc/mvcomp
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Figure 1. Implementations of the D2 framework in neuroimaging studies. Analysis level: (1) Within an individual (left panel, in 
light blue): D2 can be computed between different voxels or brain regions (e.g., WM tracts) within a single subject. (2) Between an 
individual and a group (right panel, in light gray): D2 can be computed between a subject and a reference group (e.g., control 
group). Resolution of D2: (a) Voxel-voxel matrix D2: D2 can be computed between each voxel and all other voxels in a mask of 
analysis, resulting in a D2 matrix of size n voxels x n voxels (only applicable to analyses within an individual). (b) Voxel-wise D2: 
A D2 value can be computed at each voxel. (c) ROI D2: In this case, a D2 value is obtained for each WM tract, or other brain 
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region (ROI) defined by the user. (d) Subject D2: A single D2 value can be obtained per subject, resulting in a measure of global 
brain deviation from the reference (only applicable to analyses between an individual and a group). Dimensions combined: (i) MRI 
measures: when the dimensions combined through D2 are MRI measures, the length of the vector of data is the number of measures. 
(ii) Spatial dimensions: when WM tracts, or other parcellated brain regions, are combined through D2, the length of the vector of 
data is equal to the number of WM tracts (only applicable to analyses between an individual and a group; yields a single D2 value 
per subject). 

3.3 Methods 

3.3.1 General framework 

Since D2 can be defined relative to virtually any reference of matching features, MVComp has 

been designed to support a wide range of applications. The first step is to define the set of 

multivariate data that will serve as the reference for computing D2. This choice depends on the 

hypothesis of interest, which will determine the Level of Analysis (Figure 1). D2 can be computed 

between different brain regions within an individual (with the individual’s data also serving as the 

reference) or between an individual and a group, in spatially correspondent regions. In each case, 

multiple different Resolutions of analysis are possible, including voxel-wise and region of interest- 

(ROI) based comparisons. 

Lastly, the choice of which dimensions to combine, either MRI-derived measures or brain regions 

(e.g., WM tracts), depends on what we want to capture. Combining brain regions within a 

multivariate measure allows to capture the degree of deviation from a reference even in the 

presence of high spatial heterogeneity (Owen et al., 2021; P. N. Taylor et al., 2020), while 

combining features is useful in the presence of mechanistic heterogeneity (i.e., several concomitant 

underlying biological mechanisms) and when preserving regional specificity is desirable 

(Guerrero-Gonzalez et al., 2022; Gyebnár et al., 2019; Lindemer et al., 2015). Both brain regions 

and MRI measures can be combined, as has been done by Dean and colleagues (2017). See Figure 

1 for a comprehensive view of the possible combinations of levels of analysis, resolutions and with 

different dimensions combined. 

To illustrate the flexibility of the D2 approach, we present 4 examples: 
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Comparisons between an individual and a group (reference) 

Example 1: Computing a voxel-wise D2 map for each individual  

Data: Diffusion MRI (dMRI) data in several subjects 

Level of Analysis: Between an individual and a group (Figure 1 right panel) 

Feature Resolution: Voxel-wise D2 (in all WM voxels) (Figure 1b) 

Dimensions combined: dMRI-derived maps (Figure 1i) 

In this example the reference would be defined as the voxel-wise group average for 

each dMRI-derived measure (𝑚1, 𝑚2, 𝑚n, where n is the number of measures) and 

D2 is computed by comparing the feature values in each voxel of an individual to 

the corresponding voxel in the reference (see Figure 2a-c). The resulting D2 maps 

can then be entered into second-level analyses to, for example, identify brain-

behavior associations. If two groups are being analyzed (e.g., patients vs controls), 

the control group could be used as the reference and D2 values computed between 

each patient and the reference would represent voxel-wise multivariate distance 

from controls. 

Example 2: Computing a single D2 score per individual  

Data: dMRI data in several subjects 

Level of Analysis: Between an individual and a group (Figure 1 right panel) 

Feature Resolution: Subject D2 (Figure 1d) 

Dimensions combined: WM tracts (spatial dimensions) (Figure 1ii) 

A single MRI measure can also be used and combined across multiple ROIs (e.g., 

mean FA in pre-defined WM tracts). The reference is defined as the group mean of 

each tract (𝑚1, 𝑚2, 𝑚n, where n is the number of tracts) and a single D2 value is 

computed for each individual. In this case, D2 represents a measure of how different 

an individual's WM microstructure is relative to a reference, across multiple tracts. 

This workflow can also be used if the user wishes to combine both brain regions 

and MRI measures. The reference is then defined as the group mean of each MRI 

measure for each tract (𝑚11, 𝑚12, 𝑚1n, 𝑚i1, 𝑚i2, 𝑚in, where n is the number of MRI 

measures and i is the number of tracts and the length of the vector is n x i). Again, 
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a single D2 score is obtained for each subject. These applications are not 

demonstrated in the present article but have been shown by others (Owen et al., 

2021; P. N. Taylor et al., 2020) and can be implemented using MVComp.  

To ensure that each subject’s data will not bias their D2 values in single sample designs 

(i.e., where the entire sample is used as a reference) and to allow the evaluation of controls 

in two-sample designs, a leave-one-subject-out approach is also possible. In this way, the 

subject under evaluation is excluded from the group mean (reference) and covariance 

matrix prior to calculating D2. 

Comparisons within an individual 

Example 3: Computing D2 between lesion voxels and normal appearing WM 

(NAWM) 

Data: dMRI data in one subject 

Level of Analysis: within an individual (Figure 1 left panel) 

Feature Resolution: voxel-wise (in lesion voxels) (Figure 1b) 

Feature Dimensions: dMRI-derived maps (Figure 1i) 

Here, the level of analysis is within-subject, the dimensions combined are multiple 

dMRI-derived measures in each voxel, and the reference is the average of all voxels 

within a region of interest (ROI) for each dMRI measure. To investigate the distance 

between WM lesions and NAWM, the reference would be defined as the average of 

all NAWM voxels (𝑚1, 𝑚2, 𝑚n, where n is the number of measures) and D2 would 

be computed for each voxel classified as a lesion. Alternatively, the resolution could 

be ROI-wise if the user deems a single D2 value per lesion sufficient. This within-

subject approach can also be used as a measure of similarity by computing D2 

between all WM voxels and a reference ROI in a specific tract (e.g., voxels in the 

cortico-spinal tract, as in Figure 2d). Voxels within the same WM tract as the 

reference ROI are likely to have lower D2 values (indicating higher similarity) than 

voxels in other tracts or in areas of crossing fibers (Figure 2e). 
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Example 4: Computing D2 between each voxel and all other voxels in a mask 

Data: dMRI data in one subject 

Level of Analysis: within an individual (Figure 1 left panel) 

Feature Resolution: Voxel-voxel D2 matrix (Figure 1a) 

Feature Dimensions: dMRI-derived maps (Figure 1i) 

D2 can be calculated between every pair of voxels (voxel x − voxel y) within a mask 

of analysis to compute a voxel-voxel D2 matrix (see Figure 1a). In this case, the 

reference for computing the covariance matrix would be the data in all voxels 

contained in the mask.  

See Supplementary material for a summary of the workflow for the 4 examples 

(https://mvcomp.readthedocs.io/en/latest/UserGuide/index.html). 

https://mvcomp.readthedocs.io/en/latest/UserGuide/index.html


 85 

 

Figure 2. D2 workflow. Voxel-wise comparisons between a subject and a reference. (a) The multivariate space is illustrated here. 
In this example, we have a vector of 10 dMRI measures at each WM voxel for each subject.* (b) The covariance matrix is computed 
from the reference feature matrix of shape n voxels in WM x n features. The plot shows the amount of correlation between features 
in the reference sample (i.e., the whole group). (c) Voxel-wise D2 maps in two example subjects, where bright yellow represents 
areas of greater deviation from the reference population. Distinct patterns can be seen in the two subjects. Note that the leave-one-
subject-out approach was used so that the data of the subject under evaluation was not included in the group mean (i.e., reference) 
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and covariance matrix prior to D2 calculation. Within-subject comparisons between all WM voxels and a reference ROI. (d) 
Schematic representation of the multivariate comparisons showing that D2 was computed between all WM voxels and a ROI of 24 
voxels in the corticospinal tract (CST). (e) D2 map showing the multivariate distance between all WM voxels and the CST ROI (in 
pink).  
*Data used for these examples will be presented in section 3.3.7. 

3.3.2 Data preparation 

In all cases, data for all subjects should be preprocessed and all MRI measures of interest computed 

and transformed to bring them into the same voxel space. If instead of voxel-wise comparisons the 

user is interested in performing ROI-based comparisons, summary measures should be calculated 

for each region of interest (e.g., mean FA in each WM tract of interest) for each subject. Masks 

should also be generated to restrict analyses to chosen regions (e.g., WM) and these should also be 

transformed into the same space. Masks can be binary or thresholded at a later step within 

MVComp. 

3.3.3 Computing the reference mean and covariance matrix 

In the case of analyses between subject(s) and a reference (Figure 1 right panel), the reference 

mean and covariance matrix are derived either from multiple features (Figure 1i) or multiple ROIs 

(Figure 1ii) in another group (e.g., control group). The comparison can also be between each 

individual and the mean of all other individuals if only a single group is available. In the case of 

analyses within an individual (Figure 1 left panel), multiple features can be compared between 

voxels (e.g., Figure 1 a-b) or between ROIs (e.g., Figure 1c).  

Comparisons between an individual and a group (reference) 

Combining MRI measures 

For this application, the group average of each measure must be computed from the 

reference group (mvcomp.compute_average can be used to perform this task). The 

mvcomp.feature_list function can then be used to create a list of feature names and 

a list of the full paths of the average maps that were created with the compute_average 

function. The feature_gen function extracts the feature matrix from a set of input 

images. Run on the reference group mean images with a provided mask, it returns the 

feature matrix (m_f_mat of shape n voxels in the mask x n features), a mask vector 

(mat_mask of shape n voxels) and a nibabel object of the mask (mask_img). The mask 
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array contains zeros at voxels where values are nan or inf for at least one of the reference 

average maps in addition to the voxels below the threshold set for the mask. The 

norm_covar_inv function is then used to compute the covariance matrix (s) and its 

pseudoinverse (pinv_s) from the reference feature and mask matrices (m_f_mat and 

mat_mask). The correlation_fig function can be used to generate a correlation 

matrix from the covariance matrix (s), which is informative to verify if expected 

relationships between features are present.  

A leave-one-out approach (where the individual to be compared to the reference is left out 

of the average) is preferred in cases where the individual subject is also a member of the 

reference group. This functionality is directly available in the model comparison function 

(model_comp). If the leave-one-out approach is used, it is not necessary to compute the 

group average nor to use the feature_gen and norm_covar_inv functions since the 

average and covariance matrix will be computed within the model_comp function from 

a group that excludes the subject for which D2 is being computed. 

Combining spatial dimensions 

The reference mean values (e.g., reference group mean FA in each WM tract) and 

covariance matrix are computed within the spatial_mvcomp function described in 

detail below. See (Owen et al., 2021; P. N. Taylor et al., 2020) for example applications of 

this implementation. 

Comparisons within an individual 

Voxel-wise D2 resolution 

In the case of comparisons within a single subject, one of the possible applications is to 

compute D2 between specific ROIs. If the reference ROI is a set of NAWM voxels, the 

covariance matrix will be computed based on all voxels within that ROI in that subject. The 

path of the images (i.e., one image per measure) can be provided to the feature_gen 

function, along with the ROI mask, to create the reference feature matrix (m_f_mat) and 

mask vector (mat_mask). The norm_covar_inv function is then used to compute the 

covariance matrix (s) and its pseudoinverse (pinv_s) from the feature and mask matrices. 
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The correlation_fig function can again be used to visualize relationships between 

measures. 

Voxel-voxel matrix D2 resolution 

For this approach, the covariance matrix is computed from a feature matrix that includes 

all voxels in the mask of analysis. For instance, if we are interested in computing D2 

between each voxel and all other voxels in the whole WM, the covariance matrix is based 

on all WM voxels. Therefore, the matrix provided to the norm_covar_inv function will 

be of shape n voxels in the mask x n features. 

3.3.4 Computing D2 

Once the mean of the reference and the covariance matrix have been computed and the data for 

comparisons has been prepared, the D2 computation can be performed. Depending on the 

resolution of D2, this computation may be repeated several times (i.e., between every pair of voxels 

or once for each voxel or each ROI; Figure 1a-c), or it may only be done once if the user is 

interested in obtaining a single individualized score of deviation from a group (Figure 1d). The 

MVComp tool contains functions to easily compute D2 for each of these applications, according 

to this equation: 

 

𝐷2 = (𝑥 − 𝑚)𝑇𝐶−1(𝑥 − 𝑚),    (Eq. 13) 

 

where 𝑥 is the vector of data for one observation (e.g., one subject), 𝑚 is the vector of averages of 

all observations for each independent variable (e.g., MRI measures), and 𝐶−1 is the inverse of the 

covariance matrix. 

Comparisons between an individual and a group (reference)  

Combining MRI measures 

The model_comp function allows the calculation of voxel-wise D2 between each subject 

contained in the provided subject_ids list and the reference (group average) (Figure 

1 right panel; b). The user should specify the directories and suffix of the subjects’ features 

and of the reference images (feature_in_dir, model_dir, 
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suffix_name_comp and suffix_name_model), the mask of analysis (mask_f) 

and a threshold if the mask is not binary (mask_threshold). If subjects or features are 

to be excluded at this point, they can be specified with the exclude_subject_ids and 

the feat_sub options, respectively. If the user wishes to use the leave-one-out approach, 

the exclude_comp_from_mean_cov option should be set to True. If this option is set 

to True, the mean (reference) and pinv_s are computed for each subject comparison, 

excluding the subject being compared before computing its D2. Therefore, it is not 

necessary to specify the directory of the reference (model_dir) in this application. The 

model_comp function yields a matrix containing the D2 data of all subjects (of size 

number of voxels x number of subjects). To obtain a D2 map (in nifti format) for each 

subject, the dist_plot function can then be used. The function also outputs a mean D2 

map of all subjects and a histogram of all D2 values. 

Combining spatial dimensions 

The spatial_mvcomp function is used to compute a D2 score between each subject and 

the reference computed from all subjects (Figure 1ii). A matrix containing the data (e.g., 

mean FA in each WM tract) of all subjects (n subjects x n tracts) should be provided to the 

function. The spatial_mvcomp function returns a vector with a single D2 value per 

subject, reflecting the subject’s individualized score of deviation from the group. As in 

model_comp, setting the exclude_comp_from_mean_cov to True leaves out the 

current subject when computing the mean and covariance.  

Comparisons within an individual 

Voxel-wise D2 resolution 

The mah_dist_mat_2_roi function is used to compute voxel-wise D2 between all 

voxels within a mask and a specific ROI (Figure 1 left panel; b). Here, in addition to the 

feature matrix containing the data for the voxels to be evaluated (n voxels in the mask x n 

features), the user will need to provide a vector of data for the reference ROI (i.e., mean 

across voxels in the ROI for each measure) and the inverse of the covariance matrix 

(pinv_s) calculated previously. 
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Voxel-voxel matrix D2 resolution 

The voxel2voxel_dist function is used to compute D2 between each voxel and all 

other voxels in a mask (Figure 1 left panel; a). This yields a symmetric 2-D matrix of size 

n voxels x n voxels containing D2 values between each pair of voxels.  

3.3.5 Statistical analysis  

Once D2 values are computed, second-level statistical analyses can be used to assess group 

differences and longitudinal trajectories, to explore relationships between D2 and behavior. 

Machine learning techniques can also be used to reduce dimensionality and produce network maps 

based on (dis)similarity. 

Comparisons between an individual and a group (reference)  

For group comparisons, a two-samples t-test can be performed on D2 values (e.g., D2 

values in patients vs D2 in controls), which would be equivalent to performing a Hotelling’s 

T2 test on raw measures (i.e., without computing D2). Alternatively, a statistical method 

such as the Bhattacharyya coefficient can be used to estimate the degree of overlap between 

the distribution of each group, where less overlap indicates a higher probability that the 

groups differ, as in (Dean et al., 2017). However, such group analyses are likely to average 

out interindividual variability and may be problematic when heterogeneity is high 

(Guberman et al., 2022). Wilk’s criterion is another approach that can be used to define 

abnormality based on a calculated critical value that accounts for normative sample size, 

number of features, and multiple comparisons (Guerrero-Gonzalez et al., 2022; Gyebnár et 

al., 2019; Wilks, 1963). 

Comparisons within an individual 

In within-subject analyses, clustering approaches can be applied to the voxel-voxel matrix 

D2 to partition brain voxels into networks or other parcellations. 

Changes in D2, either from the group or subject-level, can also be assessed through longitudinal 

analyses, to investigate WM damage progression or brain maturation for instance (Kulikova et al., 

2015; Lindemer et al., 2015). D2, or changes in D2, can also be related to behavioral outcomes 
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(e.g., cognitive score, performance on a skill test, or symptom severity) in the same way one would 

with univariate measures of fractional anisotropy for instance (Dean et al., 2017; Owen et al., 2021; 

P. N. Taylor et al., 2020). 

3.3.6 Determining feature importance 

D2 summarizes the amount of deviation from a reference, based on several measures or brain 

regions, into a single score. This yields a useful metric to easily quantify abnormalities, whether 

due to pathology or to exceptional abilities such as musical skills. However, when summarizing 

several features into a single score, we lose specificity. To help address this limitation, it is possible 

to extract the contribution of each feature to the multivariate distances (D2) using functions of the 

MVComp tool to recover biological or spatial specificity. 

Comparisons between an individual and a group (reference)  

Combining MRI measures 

If the user is interested in understanding the physiological mechanisms underlying 

microstructural deviations in a region of interest (e.g., voxels where D2 is high), the 

return_raw option of the model_comp function can be used. This allows the 

extraction of each measure’s weight in D2. If return_raw is set to True, the function 

returns a 3D array of size (number of voxels) x (number of measures) x (number of subjects) 

that contains the voxel-wise distances for each feature and each subject. A flattened mask 

of the region of interest (e.g., a region of high D2) can then be applied to select voxels from 

the 3D array. The distances can be summarized across voxels and/or subjects to obtain a % 

contribution to D2 for each MRI measure within that region. 

Combining spatial dimensions 

The return_raw option is also available in the spatial_mvcomp function. If set to 

True, a 2D array of size (number of subjects) x (number of tracts) containing the distances 

between every subject's tract and the mean tract values is returned. These raw distances 

provide information regarding the contribution of each WM tract to D2, which gives 

insights on the localization of greatest deviation for each subject. 
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Comparisons within an individual 

Voxel-wise D2 resolution 

The return_raw option of the mah_dist_mat_2_roi function can be used to extract 

features’ contributions. In this case, the distances between features in all voxels being 

compared and feature values in the ROI are returned. The output will be of shape (number 

of voxels) x (number of measures). 

3.3.7 Experiments 

 Data Description  

We computed 10 microstructural features for 1001 subjects from the Human Connectome 

Project S1200 data release (Van Essen et al., 2013) for these experiments. DWI, T1- and 

T2-weighted data were acquired using a custom-made Siemens Connectom Skyra 3 Tesla 

scanner with a 32-channel head coil. The DWI data (TE/TR=89.5/5520 ms, FOV=210×180 

mm) were multi-shell with b-values of 1000, 2000 and 3000 s/mm2 and a 1.25 mm isotropic 

resolution, 90 uniformly distributed directions, and 6 b=0 volumes. T1-w data was acquired 

with a 3D-MPRAGE sequence and T2w images with a 3D T2-SPACE sequence, both with 

a 0.7mm isotropic resolution (T1w: 0.7 mm iso, TI/TE/TR=1000/2.14/2400 ms, 

FOV=224×224 mm; T2w: 0.7 mm iso, TE/TR=565/3200 ms, FOV=224×224 mm). 

Anatomical scans were acquired during the first session, and DWI data were acquired 

during the fourth session. More details on the acquisitions can be found at: 

https://www.humanconnectome.org/hcp-protocols-ya-3t-imaging. The imaging data of 

1065 young healthy adults, those who had undergone T1w, T2w and diffusion-weighted 

imaging, were preprocessed. The data of 64 participants were excluded due to poor 

cerebellar coverage. 

Preprocessing 

Diffusion Tensor Imaging  

The minimally preprocessed HCP data was used (Glasser et al., 2013; Van Essen et al., 

2013). The minimal preprocessing pipeline for DWI data includes intensity normalization 

of the b0 images, eddy current and susceptibility-induced distortions correction, using DWI 

https://www.humanconnectome.org/hcp-protocols-ya-3t-imaging
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volumes of opposite phase-encoding directions, motion correction and gradient 

nonlinearity correction. DWI data were registered to native structural space (T1w image), 

using a rigid transform computed from the mean b0 image, and diffusion gradient vectors 

(bvecs) were rotated accordingly.  

Most subsequent processing steps were performed using the MRtrix3 toolbox (Tournier et 

al., 2019). The minimally preprocessed DWI data was converted to the mif format, with the 

bvals and bvecs files embedded, after which a bias field correction was performed using 

the ANTs algorithm (N4) of the dwibiascorrect function of MRtrix3 (Tustison et al., 

2010). The tensor was computed on the bias field-corrected DWI data (using 

dwi2tensor) and DTI measures were then calculated (FA, MD, AD and RD) using 

tensor2metric (Basser et al., 1994a, 1994b; Veraart et al., 2013).  

Multi-tissue Multi-shell Constrained Spherical Deconvolution 

The multi-tissue Constrained Spherical Deconvolution (CSD) was performed following the 

fixel-based analysis (FBA) workflow (Tournier et al., 2019). The T1-w images were 

segmented using the 5ttgen FSL function of MRtrix3, which uses the FAST algorithm 

(Patenaude et al., 2011; R. E. Smith et al., 2012; S. M. Smith, 2002; S. M. Smith et al., 

2004; Y. Zhang et al., 2001). Response functions for each tissue type were then computed 

from the minimally preprocessed DWI data (without bias field correction) and the five-

tissue-type (5tt) image using the dwi2response function (msmt_5tt algorithm) 

(Jeurissen et al., 2014). The bias-uncorrected DWI data was used because bias field 

correction is performed at a later step in the FBA pipeline (Raffelt, Tournier, et al., 2017). 

The WM, GM and CSF response functions were then averaged across all participants, 

resulting in a single response function for each of the three tissue types. Multi-shell multi-

tissue CSD was then performed based on the response functions to obtain an estimation of 

orientation distribution functions (ODFs) for each tissue type (Jeurissen et al., 2014). This 

step is performed using the dwi2fod msmt_csd function of MRtrix3 within a brain 

mask (i.e., nodif_brain_mask.nii.gz). Bias field correction and global intensity 

normalization, which normalizes signal amplitudes to make subjects comparable, were then 

https://mrtrix.readthedocs.io/en/dev/fixel_based_analysis/mt_fibre_density_cross-section.html
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performed on the ODFs, using the mtnormalise function in MRtrix3 (Dhollander, 

Tabbara, et al., 2021; Raffelt, Dhollander, et al., 2017). 

Registration 

In order to optimize the alignment of WM as well as gray matter, multi-contrast registration 

was performed. Population templates were generated from the WM, GM and CSF FODs 

and the “nodif” brain masks of a subset of 200 participants using the 

population_template function of MRtrix3 (with regularization parameters: 

nl_update_smooth= 1.0 and nl_disp_smooth= 0.75), resulting in a group template for each 

of the three tissue types (Tournier et al., 2019). 

Subject-to-template warps were computed using mrregister in MRtrix3 with the same 

regularization parameters and warps were then applied to the brain masks, WM FODs, DTI 

metrics (i.e., FA, MD, AD and RD), T1w, and T2w images using mrtransform (Raffelt 

et al., 2011). T1w and T2w images were kept in native resolution (0.7mm) and the ratio of 

T1w/T2w was calculated to produce a myelin map (Glasser & Essen, 2011). WM FODs 

were transformed but not reoriented at this step, which aligns the voxels of the images but 

not the fixels (“fibre bundle elements”). A template mask was computed as the intersection 

of all warped brain masks (mrmath min function). This template mask includes only the 

voxels that contain data in all subjects. The WM volumes of the five-tissue-type (5tt) 4-D 

images were also warped to the group template space since these are then used to generate 

a WM mask for analyses.   

Computing fixel measures 

The WM FOD template was segmented to generate a fixel mask using the fod2fixel 

function (Raffelt et al., 2012; R. E. Smith et al., 2013). This mask determines the fiber 

bundle elements (i.e., fixels), within each voxel of the template mask, that will be 

considered for subsequent analyses. Fixel segmentation was then performed from the WM 

FODs of each subject using the fod2fixel function, which also yields the apparent fibre 

density (FD) metric. The fixelreorient and fixelcorrespondence functions 

were then used to ensure subjects’ fixels map onto the fixel mask (Tournier et al., 2019). 
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The fibre bundle cross-section (FC) metric was then computed from the warps generated 

during registration (using the warp2metric function) as FC is a measure of how much a 

fiber bundle has to be expanded/contracted for it to fit the fiber bundles of the fixel template. 

Lastly, a combined metric, fibre density and cross-section (FDC), representing a fibre 

bundle’s total capacity to carry information, was computed as the product of FD and FC. 

Transforming fixel measures into voxel space 

In order to integrate all measures into the same multi-modal model, fixel metric maps were 

transformed into voxel-wise maps. As a voxel aggregate of fiber density, we chose to use 

the l=0 term of the WM FOD spherical harmonic expansion (i.e., 1st volume of the WM 

FOD, which is equal to the sum of FOD lobe integrals) to obtain a measure of the total fibre 

density (FDtotal) per voxel. This was shown to result in more reproducible estimates than 

when deriving this measure from fiber specific FD (i.e., by summing the FD fixel metric) 

(Calamante et al., 2015). The FOD l=0 term was scaled by the spherical harmonic basis 

factor (by multiplying the intensity value at each voxel by the square root of 4π). 

For the fiber cross-section voxel aggregate measure, we opted for computing the mean of 

FC, weighed by FD (using the mean option of the fixel2voxel function). We thus 

obtained the typical expansion/contraction necessary to align fiber bundles in a voxel to the 

fixels in the template.  

Lastly, the voxel-wise sum of FDC, reflecting the total information-carrying capacity at 

each voxel, was computed using the fixel2voxel sum option. 

NODDI measures 

Bias field corrected DWI data was fitted to the neurite orientation dispersion and density 

imaging (NODDI) model using the python implementation of Accelerated Microstructure 

Imaging via Convex Optimization (AMICO) (Daducci et al., 2015; H. Zhang et al., 2012b). 

First, small variations in b values were removed by assigning the closest target bval (0, 

1000, 2000 or 3000) to each value of the bvals file. This is to prevent the fitting algorithm 

from interpreting every slightly different bval as a different diffusion shell. A diffusion 

gradient scheme file is then created from the bvecs, and the new bvals file. The response 
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functions are computed for all compartments and fitting is then performed on the unbiased 

DWI volumes, within the non-diffusion weighted brain mask (nodif_brain_mask.nii.gz). 

The resulting parameters obtained are: the intracellular volume fraction (ICVF, also 

referred to as neurite density), the isotropic volume fraction (ISOVF), and the orientation 

dispersion index (OD). In this study, we will use ICVF and OD. 

Generating masks for analyses 

The maps of each of the 10 measures of interest (FA, AD, RD, MD, T1w/T2w, FDtotal, 

FCmean, FDCsum, ICVF and OD) were then averaged across all subjects. These average 

maps served as the reference. A WM mask was created by computing the group average of 

the corresponding volume of the T1 5tt image (volume 2). A threshold of 0.99 was applied 

within the MVComp toolbox’s functions.  

Experiment 1: Comparisons between an individual and a group (reference)   

Here, we present an example case of using D2 in a large sample from the HCP dataset to 

quantify voxel-wise microstructural differences in WM according to several dMRI 

measures. Since the dataset used in this study contains the data of healthy young adults, a 

relatively homogeneous population, the entire sample was set as the reference and the leave-

one-out approach was used to exclude the subject under evaluation. The analysis was 

restricted to the corpus callosum (CC). Voxel-wise D2 from 10 microstructural features 

was computed in the CC for each subject, yielding a D2 matrix of 1001 subjects X 2845 

voxels. The D2 values represent voxel-wise microstructural differences in an individual’s 

CC relative to the group average, while accounting for the covariance between features. 

Large D2 scores in a voxel indicate greater deviation from the group average, whereas 

scores closer to 0 indicate lower distance (i.e., more typical microstructure).  

Past literature on CC neuroanatomy shows several segments that are distributed along the 

anterior to posterior axis, where each segment is defined by common microstructural 

properties and/or connectivity profiles (Aboitiz et al., 1992; Chao et al., 2009; Hofer & 

Frahm, 2006). We therefore hypothesized that these segments could be extracted via 

clustering, an unsupervised machine learning technique, of D2 values in the CC. We 

performed k-means clustering on the D2 matrix, setting the number of clusters to 9 based 
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on literature on CC topography (Aboitiz et al., 1992; Chao et al., 2009; Hofer & Frahm, 

2006). Prior to clustering, we applied z-score and power transformation on the D2 matrix 

to achieve gaussian distributions of the standardized scores. Due to the large number of 

datapoints and potential effects of partial voluming, we observed several outliers in D2 

maps of several subjects. We therefore excluded participants with at least 50 voxels that 

were deemed as outliers (i.e. exceeded a threshold of 5 standard deviations from the voxel 

mean D2). This yielded a final sample of 723 participants. Final visualization was done 

using BrainNet Viewer (http://www.nitrc.org/projects/bnv/). 

Experiment 2: Comparisons within an individual  

The within-subject approach allows the computation of voxel-voxel D2 in a single 

individual from multiple microstructural features. Here, D2 was calculated between each 

voxel and every other voxel in a subject’s CC, while accounting for the covariance between 

the 10 microstructural features. All voxels within the CC of that subject were used to 

compute the covariance matrix and this same covariance matrix was used in the D2 

calculation of every voxel. The resulting D2 matrix is a 2845 voxel X 2845 voxel dense 

matrix representing the distance between each voxel and every other voxel in the CC 

(Figure 4a-b). We standardized the matrix to z-scores and applied Principal component 

analysis (PCA) to reduce the matrix dimensionality (Figure 4c). Of note, 

eigendecomposition on the D2 matrix would be a valid alternative approach to reduce 

matrix dimensionality. In fact, because data was centered prior to applying PCA, the first 

eigenvector should be equivalent to the first principal component from PCA. We then 

extracted the contributions of each metric to D2 within the voxels with the largest and the 

lowest scores on the first principal component (Figure 4d-f). 

 

  

http://www.nitrc.org/projects/bnv/
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3.4 Results 

3.4.1 Experiment 1: Comparisons between an individual and a group 

 

Figure 3. Voxel-wise comparisons between each subject and the reference. (a) Voxel-wise D2 is calculated between the reference 
(group average of the whole sample, except the subject under evaluation) and each subject’s data (feature (10) X voxel (2845) 
matrix), in voxels of the corpus callosum (CC). (b) This results in a D2 matrix of size subject (723 after exclusion of outliers) X 
voxel (2845) containing the multivariate distance between a subject’s data and the reference at each CC voxel. (c) Applying k-
means clustering to the D2 matrix, voxels of the CC were partitioned into 9 clusters distributed along the anterior-posterior axis, 
in close accordance with known topography of the CC as seen in (d). (d) Schematic representation of CC topography based on 
literature (Aboitiz et al., 1992; Chao et al., 2009; Hofer & Frahm, 2006). 

For this experiment, D2 was computed voxel-wise in the CC between each subject and a 

reference consisting in all other subjects (Figure 3a-b). K-means clustering was applied to 

the D2 matrix of size (subjects) X (voxels). We observed that the 9 clusters were distributed 

along the anterior-posterior axis, in accordance with past evidence on CC microstructure 

and connectivity (Aboitiz et al., 1992; Chao et al., 2009; Hofer & Frahm, 2006). Figure 3c 

shows the clusters identified via k-means and Figure 3d shows the topography expected 

according to literature. The genu of the CC was clustered into 3 segments, while the 

midbody displays 2 segments. The splenium was divided into 4 segments (with one segment 

positioned on the isthmus). Segmentations from individual MRI measures are also 

presented in Supplementary material (Appendix II). 
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3.4.2 Experiment 2: Comparisons within an individual 

 
Figure 4. Within-subject voxel-voxel comparisons. D2 was computed between all voxel pairs from the (a) (features) x (voxels in the 
CC) matrix of a subject. (b) A voxel x voxel D2 matrix was generated. (c) PCA was then applied to the D2 matrix. The PCA matrix 
shows the first 10 principal components. (d) Voxels with the highest and lowest score on PC1 are shown. PC1 scores were scaled 
between -10 and 10 to facilitate visualization. (e) In the voxel with the lowest value on PC1, located in the midbody of the CC, all 
measures had approximately equal contribution to D2. (f) SumFDC contributed most to D2 in the voxel with the highest PC1 score, 
located in the genu of the CC. 

For the within-subject experiment, D2 was computed between all voxel pairs in the CC of 

a single individual, yielding a voxel X voxel D2 matrix (Figure 4a-b). PCA was applied to 

the D2 matrix. Figure 4c shows the first 10 principal components (PCs). We then extracted 

the contributions (i.e., loadings) of each metric to D2 within the voxels with the largest and 

the lowest scores on the first principal component. The first PC explained 95% of the 

variance in the voxel X voxel dense D2 matrix. The highest and the lowest PC1 scores were 

in the genu and in the midbody of the CC, respectively (Figure 4d). In the voxel with the 

largest value on PC1, the fibre density and cross-section metric (sumFDC) contributed most 
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to D2, while mean diffusivity (MD) contributed the least (Figure 4f). On the other hand, in 

the voxel with the lowest score on PC1, all microstructural features had nearly equal 

contributions to D2, indicating minimal variability in this voxel (Figure 4e).  

3.5 Discussion 

In the present study, we introduced the MVComp tool (Tremblay, Alasmar, et al., 2024a), a set of 

python-based functions that can be used to compute the Mahalanobis distance (D2) for a wide 

range of neuroimaging applications. At the group-level, MVComp allows the calculation of a score 

that quantifies how different the brain structure of an individual is from a reference group. The 

MVComp tool provides a versatile framework that can be used to answer various research 

questions, from quantifying the degree of abnormality relative to a control group in individuals 

with a pathology, to exploring interindividual variability in healthy cohorts. At the subject level, 

D2 can be used to assess differences between regions of interest or to compute a measure of 

similarity that can then be used for subsequent analyses (e.g., graph theory/network analyses). 

Lastly, D2 can combine multiple MRI measures in the same spatial locations, or it can combine a 

single metric across several brain regions.  

Our approach allows the integration of several variables while accounting for the relationships 

between these variables. Several biological properties influence the same neuroimaging metric and 

multiple neuroimaging measures indirectly reflect a similar underlying physiological property. 

This overlap means that accounting for covariance between measures is essential. It also means 

that using a single neuroimaging measure, or measures stemming from a single model, offers 

limited potential for interpretation and is biased by the set of assumptions of the chosen model 

(e.g., some models assume fixed compartment diffusivities while others attempt to estimate them) 

(Novikov et al., 2018). Similarly, integrating the assessment of multiple brain regions may map 

better onto behavior (e.g., cognition or disease severity) than assessing each region separately. 

Here, again the relationships between variables should be accounted for as observations are not 

completely independent from each other (i.e., in the same individual, there is likely a great amount 

of covariance between FA in different voxels or in different WM tracts). While some multivariate 

frameworks have been implemented in the neuroimaging field, several of them are either applicable 

at the group level or at the subject level (Alexander-Bloch et al., 2013; Hotelling, 1947; Marquand 
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et al., 2016; Seidlitz et al., 2018), and do not extend from one level to another. Frameworks using 

PCA can be implemented at both levels of analysis and recent studies have used PCA to combine 

dMRI measures, forming a reduced set of biologically interpretable variables (Chamberland et al., 

2019; Guberman et al., 2022). While this method is interesting as it allows for dimensionality 

reduction and visualization of patterns between variables, it differs from D2 in several aspects. For 

instance, in PCA, the component loadings are usually calculated once on the whole sample and 

yield a set of new variables that will then be used for all subjects and in all brain regions. On the 

other hand, the features’ loadings in D2 can be different for each subject and at each voxel. In this 

sense, D2 would provide a more individualized measure of deviation or dissimilarity relative to a 

reference, whereas PCA can be seen more as a dimensionality reduction method (Alexopoulos, 

2010; Gyebnár et al., 2019; Hayasaka et al., 2006). Another advantage of the D2 framework is that 

it is highly versatile and relatively simple to implement. Moreover, the open-source MVComp 

toolbox we propose makes its implementation accessible for flexibly assessing a wide variety of 

research questions (see Figure 1).  

One of the novelties of this work is that it provides the option to extract the contributions of all 

features within the D2 measure, similar to extracting loadings in PCA (Chamberland et al., 2019). 

This addresses one of the main limitations of some multivariate frameworks, allowing researchers 

to develop more mechanistic interpretations. In previous work using the D2 approach, the loadings 

(or weights) of the elements combined in the multivariate measure (i.e., either WM tracts or MRI 

measures) were not extracted, which has been a significant limitation (Dean et al., 2017). 

Characterizing the extent by which each feature contributes to D2 can provide important insights 

into the physiological underpinnings of the differences observed and/or their localization. To our 

knowledge, MVComp is the only available toolbox for computing D2 on imaging data. In this 

paper, we detailed the usage of MVComp through 4 example cases (see Supplementary material) 

covering a wide range of applications and presented the results of 2 experiments. 

3.5.1 D2 reflects the underlying microstructure of WM 

To provide specific examples of how MVComp can be used, the D2 framework was applied to the 

assessment of WM microstructure. We found the approach to be particularly suitable for the study 

of WM because of the number of modeling methods available for dMRI data. However, it is 

important to note that other types of tissues and imaging techniques can also be used within the 
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MVComp framework. By applying K-Means clustering to D2 in the corpus callosum, we observed 

a clear segmentation along the anterior-posterior axis (Figure 3), consistent with known 

topography from ex-vivo anatomical studies and tractography-based connectivity (Aboitiz et al., 

1992; Chao et al., 2009; Hofer & Frahm, 2006). This high correspondence between clustered D2 

and previously described CC topography suggests that the microstructural score obtained by 

combining several WM neuroimaging measures through D2 provides a useful index of 

microstructure.  

At the individual level, D2 can capture the amount of (dis)similarity between voxels and, through 

the extraction of features’ contributions (i.e., loadings), the specific microstructural properties 

underlying regional differences can be inferred. For example, in our within-subject experiment 

(Figure 4) we found high spatial heterogeneity in the relative contributions of different features to 

D2. The voxel with the highest loading on the first latent component (PC1) was primarily 

dominated by one metric (sumFDC) while the voxel with the lowest loading was characterized by 

similar weightings across all features. In the voxel with the highest PC1 score, sumFDC (combined 

metric of fiber cross-section and density, indicative of the amount of information-carrying 

capacity) contributed most to D2, meaning sumFDC had higher variability across CC voxels than 

other measures. This is consistent with the known microstructural properties of the CC, which 

shows regional variations in densities of fibers of different sizes along the CC (Aboitiz et al., 1992; 

Hofer & Frahm, 2006). Further, given that the CC is composed of tightly packed fiber tracts, MD 

would likely be very low in all those CC voxels (i.e., low variability), which would explain its low 

contribution. Overall, this supports the relevance of D2 in assessing variability in WM 

microstructure properties and showcases the use of the features contribution option (i.e., 

return_raw) included in MVComp. 

3.5.2 D2 in the study of pathologies 

Given the complexity of underlying pathological changes in various brain conditions, 

multiparametric approaches are a promising avenue to capture the combination of multiple changes 

in brain properties (Dean et al., 2017; Guberman et al., 2022; Guerrero-Gonzalez et al., 2022; 

Iturria-Medina et al., 2017; Owen et al., 2021; P. N. Taylor et al., 2020). For instance, D2 

incorporating fractional anisotropy (FA) in multiple WM tracts in epileptic patients was found to 

show stronger associations with epilepsy duration than any univariate measure (e.g., mean FA in a 
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single WM tract) (Owen et al., 2021). Another study reported better performance using D2 

encompassing FA in several WM tracts, vs using FA in a single tract, in discriminating between 

controls and individuals with TBI (P. N. Taylor et al., 2020). The multivariate D2 measure allowed 

for the discrimination of even mild TBI cases from controls and correlated significantly with 

cognitive scores. Similarly, using D2 combining both spatial (i.e., WM regions) and feature (i.e., 

different DTI measures) dimensions led to improved detection between autistic and typically 

developing individuals compared to univariate approaches or to D2 computed by combining brain 

regions only (Dean et al., 2017). Associations between D2 and autism symptom severity were also 

reported in this study, providing additional evidence that D2 can serve as a behaviorally relevant 

measure of WM abnormality.  

Other interesting implementations have used D2 to detect and characterize lesions. Gyebnár et al. 

(2019) combined DTI eigenvalues into a voxel-wise D2 measure between epilepsy patients and 

controls to detect cortical malformations in patients. Voxels were identified as belonging to a lesion 

if their D2 value exceeded a critical value calculated using Wilks’ criterion (Wilks, 1963), a 

criterion used for multivariate statistical outlier detection. In another implementation, D2 was 

employed to characterize the heterogeneity within WM lesions by computing the multivariate 

distance (combining T1-w, T2-w and PD-w signal intensities) between voxels in WM 

hyperintensities and those in normal appearing WM (NAWM) (Lindemer et al., 2015). D2 in WM 

hyperintensities progressed at a quicker rate in individuals who converted from mild cognitive 

impairment to Alzheimer’s disease (AD) compared to those who did not convert. Interestingly, the 

rate of change of WM hyperintensities volume (i.e., lesion load), a metric more commonly used 

(Bilello et al., 2015; Schmidt et al., 2005), did not differentiate converters from non-converters 

cross-sectionally and longitudinally, suggesting that a characterization of WM lesion heterogeneity 

through a multivariate framework was more informative than the volume of WM lesions (Lindemer 

et al., 2015). 

3.5.3 Limitations 

There are some limitations of D2 computation as presented in MVComp. First, D2 itself is a 

squared measure, thus the directionality of the difference is non-specific. As it is currently 

implemented, it is not possible to determine whether a given subject’s features are higher or lower 

than the average, although this information can be easily extracted by comparing the subject’s 
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voxel values or ROI means to the mean of the group average on a per-metric basis. Future studies 

could potentially address this limitation indirectly by integrating with studies that model ground-

truth biophysical properties to better interpret differences and/or splitting groups based on expected 

direction of change. Then, the directions of deviations from the average could be hypothesized a 

priori.  

D2 is a sensitive multivariate distance measure that has since found applications in various fields, 

such as classification, cluster analysis, and outlier detection. Our implementation makes use of the 

sensitivity of D2 to detect multivariate deviations in WM microstructure. This high sensitivity also 

means the method can be affected by registration inaccuracies and partial voluming (PV). 

Therefore, special attention must be paid to ensure optimal alignment across subjects and 

modalities (e.g., using directional information from dMRI to align WM tracts). Strict tissue type 

masking (e.g., using a high threshold on probabilistic segmentation images) can also be used to 

limit the amount of PV. However, this may result in a large number of excluded voxels, especially 

for low resolution images. Alternatively, the PV effect can be quantified and accounted for 

(González Ballester et al., 2002; Gyebnár et al., 2019). The latter option would be preferable if the 

D2 framework was used to detect tumors and estimate their volume, for instance.    

Another limitation of D2 as presented in MVComp is that its use is restricted to continuous 

variables. However, more recent formulations of D2 allow for nominal and ordinal variables to be 

incorporated in the model, in addition to continuous variables (Barhen & Daudin, 1995; de Leon 

& Carrière, 2005). Future developments of MVComp could thus allow generalization of D2 to 

include mixed data types (e.g. WM, sex, or other grouping variable).  

3.6 Conclusion 

We introduce a new open-source tool for the computation of the Mahalanobis distance (D2), the 

MVComp (MultiVariate Comparisons) toolbox (Tremblay, Alasmar, et al., 2024a). D2 is a 

multivariate distance measure relative to a reference that inherently accounts for covariance 

between features. MVComp can be used in a wide range of neuroimaging implementations, at both 

the group and subject levels. In line with the current shift towards precision medicine, MVComp 
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can be used to obtain personalized assessments of brain structure and function, which is essential 

in the study of brain conditions with high heterogeneity. 

Data and Code Availability 

The data is openly available from the Human Connectome Project 

(https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-

release) and the code of the MVComp toolbox is available at 

https://github.com/neuralabc/mvcomp (Tremblay, Alasmar, et al., 2024a). 

  

https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
https://github.com/neuralabc/mvcomp
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CHAPTER IV: Multivariate white matter in pre-
clinical Alzheimer’s disease 

Preface 

In study 2 (Chapter III), the usage of the MVComp toolbox was demonstrated in a large sample of 

healthy young adults. The toolbox allows the computation of the Mahalanobis distance (D2) from 

neuroimaging data, integrating information from several imaging metrics into a single score while 

considering the covariance between metrics. D2 provides a measure of deviation between a point 

and a reference distribution in a multi-dimensional space. Moreover, biological specificity can be 

recovered by extracting the contribution of each MRI metric to D2 in regions of interest. We 

showed in Chapter III that D2 is an integrative measure that meaningfully reflects the underlying 

microstructure, in line with known neuroanatomy. In addition, work by our group  showed that D2 

relates to cognitive and motor function in the same sample of healthy young adults (Alasmar et al., 

2024). Together, these studies validate the D2 method, as implemented in MVComp, for the 

personalized assessment of alterations in WM microstructure.  

For study 3, we applied the MVComp framework to the study of pathological alterations in a 

sample of older adults at risk of Alzheimer’s disease (AD). Studying brain abnormalities in 

individuals with a familial history, and other AD risk factors, provides an opportunity to better 

understand the nature of the pathological changes occurring at the earliest disease stage. Changes 

in WM microstructure have been found to precede macrostructural atrophy and symptom onset in 

the prodromal stage of AD (Agosta et al., 2011; Araque Caballero et al., 2018; Maier-Hein et al., 

2015). Alterations in WM microstructure have thus been suggested as early biomarkers for AD (G. 

Adluru et al., 2014; Bartzokis, 2004b; Maier-Hein et al., 2015). In study 3, we characterized WM 

microstructure comprehensively using 14 MRI metrics reflective of axonal density, fiber bundle 

cross-section, orientation dispersion, myelin and iron content, which were integrated within D2. 

Multivariate statistical analyses were then used to capture covariance patterns between multiple 

AD risk factors and WM microstructural deviations (D2) and links with cognition were explored. 
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4.1 Abstract 
 
Introduction: White matter (WM) alterations are among the earliest changes in Alzheimer’s 

disease (AD), yet limited work has comprehensively characterized the effects of AD risk factors 

on WM.  

Methods: In older adults with a family history of AD, we investigated the sex-specific and APOE 

genotype-related relationships between WM microstructure and risk factors. Multiple MRI-derived 

metrics were integrated using a multivariate approach based on the Mahalanobis distance (D2). 

The links between WM D2 and cognition were also explored. 

Results: WM D2 in several regions was associated with high systolic blood pressure, BMI, and 

glycated hemoglobin, and low cholesterol, in both males and females. APOE4+ displayed a distinct 

risk pattern, with LDL-cholesterol having a detrimental effect only in carriers, and this pattern was 

linked to immediate memory performance. Myelination was the main mechanism underlying WM 

alterations. 

Discussion: Our findings reveal that combined exposure to multiple cardiometabolic risk factors 

negatively impacts microstructural health, which may subsequently affect cognition. Notably, 

APOE4 carriers exhibited a different risk pattern, especially in the role of LDL, suggesting distinct 

underlying mechanisms in this group. 

 
Keywords: White matter, cardiometabolic risk factors, LDL-cholesterol, sex differences, familial 

history, APOE4, myelin, memory 

https://doi.org/10.1101/2024.08.21.608995
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4.2 Introduction 

Recent findings highlight widespread white matter (WM) alterations as a key mechanism in 

Alzheimer’s disease (AD) development and progression (Agosta et al., 2011; Araque Caballero et 

al., 2018; Bartzokis, 2004b; Bartzokis et al., 2003; Tian et al., 2023; Wearn et al., 2024; R.-H. Yin 

et al., 2015). In fact, changes in WM microstructure were found to precede macrostructural atrophy 

and symptom onset in AD patients (Agosta et al., 2011; Araque Caballero et al., 2018; Maier-Hein 

et al., 2015), which suggests myelin breakdown is an important contributor to the pathophysiology 

of AD (Bartzokis, 2011). The particular vulnerability of oligodendrocytes to various insults (e.g., 

toxins, oxidative damage) is hypothesized to result in myelin and axonal degeneration over time, 

precipitating other pathological changes seen in AD such as increased iron (Bartzokis, 2004b, 

2011). Alterations in WM microstructure have thus been suggested as early biomarkers for AD (N. 

Adluru et al., 2014; Bartzokis, 2004b; Maier-Hein et al., 2015). 

Despite WM microstructure being affected early, WM measures are not frequently included in the 

study of prodromal AD, as more attention has been given to grey matter (GM) abnormalities, such 

as loss of cortical and hippocampal GM volume (Barnes et al., 2009; W.-Y. Wang et al., 2015). 

Characterizing WM microstructural alterations in individuals at high risk of developing AD is thus 

crucial in understanding this early stage. Having a familial history and the E4 genotype of the 

apolipoprotein E (APOE) gene increase the likelihood of developing AD, with a higher risk in 

females (Altmann et al., 2014). The APOE4 genotype impacts the brain’s WM microstructure, 

likely due to its role in the transport of cholesterol, one of the main constituents of myelin 

(Bartzokis, 2004b). Modifiable risk factors such as physical inactivity, smoking, alcohol 

consumption, hypertension, diabetes, obesity, and low education also contribute to AD risk 

(Livingston et al., 2024). Understanding how these factors impact brain health may inform future 

interventions.  

These modifiable risk factors exhibit complex relationships with WM. For instance, obesity and 

hypercholesterolemia, known risks for cardiovascular disease and AD (Alfaro et al., 2018; Lamar 

et al., 2020; Shobab et al., 2005), show mixed associations with WM integrity and cognition (Alfaro 

et al., 2018; Lamar et al., 2020; Warstadt et al., 2014). These inconsistencies may stem from the 

limited specificity of diffusion MRI measures, typically derived from diffusion tensor imaging 
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(DTI). For instance, reductions in fractional anisotropy (FA), often interpreted as a measure of WM 

integrity, can be due to axonal loss, but also to increased fiber orientation dispersion (Riffert et al., 

2014). Advanced diffusion models such as NODDI (Dell’Acqua & Tournier, 2019; H. Zhang et 

al., 2012b) and myelin-sensitive techniques such as magnetization transfer imaging are thus needed 

to fully capture WM microstructural properties (Campbell et al., 2018; Helms, Dathe, Kallenberg, 

et al., 2008). 

The multifaceted interplay between risk factors and WM health may also introduce complexity, 

leading to seemingly inconsistent results as some factors synergistically influence outcomes while 

others counteract each other (Alfaro et al., 2018; Foley et al., 2014; Mole et al., 2020; R. Wang et 

al., 2015; O. A. Williams et al., 2019). Importantly, genetic risk (i.e., APOE4) seems to exacerbate 

the impact of modifiable risk factors on WM (Foley et al., 2014; Mole et al., 2020; R. Wang et al., 

2015; O. A. Williams et al., 2019). Together, this suggests that the combined effects of multiple 

risk factors contribute to alterations in WM microstructure. Therefore, integrative approaches, 

along with advanced WM imaging models, are needed to comprehensively assess the effects of 

AD risk factors on WM microstructure.  

Multi-modal imaging and multivariate frameworks that combine several parameters are promising 

avenues to harness the complementarity of different neuroimaging-derived metrics (Tardif et al., 

2016). One such approach, the Mahalanobis distance (D2) (Mahalanobis, 1936), provides an 

individual-level measure of deviation relative to a reference group, where voxels with greater D2 

values in an individual represent WM areas that differ to a larger extent from the reference group. 

D2 is a squared distance measure between a point (i.e., measurements in an individual) and a 

distribution (i.e., reference data) in a multi-dimensional space, integrating several MRI metrics 

while accounting for covariance between metrics (Figure 1). We previously demonstrated that this 

method yields an integrative index that meaningfully reflects underlying microstructure in WM in 

line with known neuroanatomy (Tremblay, Alasmar, et al., 2024b), and that relates to cognitive 

and motor function in normal subjects (Alasmar et al., 2024).  

In this study, we computed voxel-wise deviations in WM microstructure (WM D2) in a cohort of 

older adults with a family history of AD. We characterized the relationships between known risk 

factors for AD (education, BMI, blood pressure, cholesterol, and HbA1c) and WM D2 in each sex. 
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The effect of APOE4 genotype on the relationships between risk factors and WM microstructure 

was also assessed and links with cognition were explored in regions of interest. 

4.3 Methods 

4.3.1 Participants 

The study population was taken from the PResymptomatic EValuation of Experimental or Novel 

Treatments for Alzheimer’s Disease (PREVENT-AD) cohort which is composed of older adults (≥ 

55 years old) with a familial history of Alzheimer’s disease (parental or multiple-sibling) 

(Tremblay-Mercier et al., 2021). The participants, who were followed longitudinally starting in 

2011 (some participants are still currently being followed), were all cognitively unimpaired (MoCA 

≤ 25, or considered normal after an exhaustive neuropsychological evaluation if < 25, and CDR = 

0) at the time of recruitment. Participants gave informed written consent before participating in the 

study. The procedures of the PREVENT-AD study were approved by the McGill institutional 

review board and/or Douglas Mental Health University Institute Research Ethics Board. The study 

was performed in accordance with the ethical standards of the 1964 Declaration of Helsinki. 

In this study, we used the ‘stage 2’ MRI data acquired in 2019-2020 (data release 6.0) with a novel 

imaging protocol that includes multi-shell diffusion-weighted imaging (DWI) and multi-parametric 

mapping (MPM). Participants who had all DWI and MPM data were included in this cross-

sectional study (N= 134). Of those, 97 were female (age = 67.7 ± 4.8 years, education years = 15.3 

± 3.5) and 37 were male (age = 68.6 ± 6.5, education years = 15.7 ± 3.3). Previous time points were 

not used in this study since these advanced imaging protocols were not acquired in ‘stage 1’ 

(Tremblay-Mercier et al., 2021). 
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Table 1. Demographics data for each sex and for the sex-balanced reference group that was used 

for D2 calculation (mean ± standard deviation). Missing data, if any, is indicated.   

 
Females Missing Males Missing Reference 

N 97 
 

37 
 

74 

Age (yrs) 67.7 ± 4.8 
 

68.6 ± 6.5 
 

68.1 ± 5.9 

Education (yrs) 15.3 ± 3.5 
 

15.7 ± 3.3 
 

15.5 ± 3.2 

APOE4 status 35 (36.1%) 
 

18 (48.6%) 
 

33 (44.6%) 

SBP (mmHg) 124.0 ± 13.9 
 

127.4 ± 11.7 
 

124.2 ± 12.3 

BMI (kg/m2) 26.9 ± 4.9 
 

27.3 ± 4.1 
 

27.2 ± 4.8 

Total cholesterol (mmol/L) 5.52 ± 0.88 N = 1 4.80 ± 0.90 
 

5.19 ± 0.90 

HDL (mmol/L) 1.66 ± 0.44 N = 1 1.35 ± 0.33 
 

1.52 ±0.44 

LDL (mmol/L) 3.09 ± 0.79 N = 1 2.71 ± 0.88 N = 1 2.92 ± 0.83 

HbA1c (decimal percentage) 5.42 ± 0.30 
 

5.42 ± 0.44 
 

5.43 ± 0.36 

Hypertension treatment 22† 
 

10 
 

14 

Dyslipidemia treatment 15  
 

12 
 

19 

Diabetes treatment 1  
 

 
4 
 

 
4 

MoCA 28.35 ± 1.38 
 

27.78 ± 1.83 
 

28.0 ± 1.59 

RBANS - Immediate memory 106.5 ± 13.1 
 

102.1 ± 12.8 
 

105.0 ± 13.1 

RBANS - Delayed memory 104.9 ± 11.4 
 

103.6 ± 9.9 
 

105.6 ± 9.6 

RBANS - Total 101.1 ± 11.1 
 

101.9 ± 11.7 
 

102.6 ± 10.7 

 
SBP - systolic blood pressure, BMI - body mass index, HDL - high-density lipoprotein, LDL - low-density lipoprotein, HbA1c - 

glycated haemoglobin, MoCA - Montreal cognitive assessment, RBANS - Repeatable Battery for the Assessment of 

Neuropsychological Status. 
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*Normal ranges: SBP: < 120 mmHg, BMI: 18.5 to 24.9, total cholesterol: < 5.17 mmol/L, HDL: ≥ 1.55 mmol/L, LDL: < 2.6 

mmol/L, HbA1c: 4.0-5.2% (Cleeman, 2001; Karakaya et al., 2014). 
†Current (at the time of the MRI) and past treatments were combined. 

4.3.2 MRI Protocol 

MRI data were acquired on a 3T Siemens PrismaFit scanner at the Douglas Research Centre. The 

multi-shell DWI sequence was a spin-echo EPI sequence (TR = 3000 ms, TE = 66 ms, phase-

encoding direction = posterior-anterior (PA), resolution = 2 mm isotropic) with 100 measurements 

(isotropically spaced around a sphere) across 3 diffusion-weighted shells with gradient strengths 

of b = 300 s/mm2 (7 volumes), b = 1000 s/mm2 (29 volumes) and b = 2000 s/mm2 (64 volumes) 

and 9 volumes acquired without diffusion weighting (b = 0). Five non-diffusion weighted volumes 

(b = 0) were also acquired in the opposite phase encoding direction (AP) for distortion correction. 

 An MPM acquisition was performed using three multi-echo gradient echo sequences (resolution 

= 1 mm isotropic) with different repetition times (TR) and flip angles (α) to obtain images with 

predominant T1- (TR = 18 ms, 6 echoes, TE = 2.16-14.81 ms, echo-spacing = 2.53 ms, α = 20°), 

PD- (TR = 27ms, 8 echoes, TE = 2.04-22.20 ms, echo-spacing = 2.57 ms, α = 6°), and MT-

weighting (TR = 27 ms, 6 echoes, TE = 2.04-14.89 ms, echo-spacing = 2.57 ms, α = 6°). An off-

resonance MT pulse (off-resonance frequency = 2.2 kHz, duration = 12.8 ms, flip angle = 540°) 

was applied prior to RF excitation to obtain MT-weighting (Helms, Dathe, Kallenberg, et al., 2008). 

The RF transmit field was measured using two Siemens turbo-flash sequences with flip angles of 

8° and 80° (TR = 5000 ms, TE = 1.83 ms, resolution = 4 x 4 x 16 mm) preceded by a slice-selective 

preconditioning radiofrequency pulse, yielding anatomical and flip angle maps (Chung et al., 

2010). RF receive field inhomogeneities were estimated using a pair of PD-weighted turbo-flash 

sequences acquired using either a body coil or a 32-channel head coil (TR = 344 ms, TE = 1.55 

ms, α = 3°, resolution = 2 mm isotropic). 

A T1-weighted anatomical scan was also acquired using a Magnetization-Prepared Rapid 

Acquisition Gradient Echo (MPRAGE) sequence (TR = 2300 ms, TE = 2.96 ms, TI = 900 ms, α = 

9°, resolution = 1 mm isotropic) during the same session.  
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4.3.3 Preprocessing   

We computed 14 microstructural metrics from the DWI and MPM data of the ‘stage 2’ time point 

in 134 participants of the PREVENT-AD cohort. These metrics were derived from the diffusion 

tensor imaging (DTI) model, the fixel-based analysis framework that derives fibre density and 

cross-section from fibre orientation distributions (FODs) computed using multi-tissue constrained 

spherical deconvolution (CSD) (Jeurissen et al., 2014), and the neurite orientation dispersion and 

density imaging (NODDI) model (H. Zhang et al., 2012b). MPM was used to compute quantitative 

maps of longitudinal relaxation rate (R1), effective transverse relaxation rate (R2*),  effective 

proton density (PD*), and magnetization transfer saturation (MTsat) (Weiskopf et al., 2013).  

Diffusion Tensor Imaging 

Most processing steps were performed using the MRtrix3 toolbox (Tournier et al., 2019). DWI data 

were denoised and then preprocessed using the dwifslpreproc Mrtrix3 function, which 

includes correction for motion and Eddy currents (Eddy tool in FSL 6.0.1), and correction for 

susceptibility-induced distortions (topup tool in FSL) using b0 volumes of opposite phase-encoding 

polarities (AP). Preprocessed DWI data were then upsampled to the MPRAGE T1w image 

resolution (1mm isotropic). Bias field correction was performed using the N4 algorithm of ANTs 

(3.0) within a mask computed using the brain extraction tool (bet) of FSL on the b = 0 

preprocessed volume (Tustison et al., 2010). A brain extraction of all DWI volumes was then 

applied using the b = 0 mask to remove all non-brain voxels. The tensor was computed on the bias 

field-corrected DWI data (using dwi2tensor) and DTI metrics were then calculated (FA, MD, 

AD and RD) using tensor2metric (Basser et al., 1994b).  

Fixel-based analysis 

The fixel-based analysis (FBA) pipeline which allows the computation of fibre density and cross-

section from FODs was followed (Tournier et al., 2019). The workflow is described in details in 

(Tremblay, Alasmar, et al., 2024b) and briefly summarized here. First, MPRAGE T1-w images 

were segmented using the 5ttgen FSL function of Mrtrix3, which relies on the FAST algorithm 

(R. E. Smith et al., 2012). Response functions for WM, GM, and CSF were computed from the 

uncorrected DWI data and the five-tissue-type (5tt) image via the dwi2response function 

(msmt_5tt algorithm) (Jeurissen et al., 2014). The response functions were then averaged across 

https://mrtrix.readthedocs.io/en/dev/fixel_based_analysis/mt_fibre_density_cross-section.html
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participants to generate a single response function per tissue type. Multi-shell multi-tissue CSD 

was performed to estimate orientation distribution functions (ODFs) for each tissue type using the 

dwi2fod msmt_csd (Jeurissen et al., 2014). Finally, bias field correction and global intensity 

normalization were applied to the ODFs using mtnormalise (Raffelt, Dhollander, et al., 2017). 

Registration 

Multi-contrast registration was used to optimize the alignment of white and gray matter, as 

described previously (Tremblay, Alasmar, et al., 2024b). Population templates for WM, GM and 

CSF were created using the population_template function of Mrtrix3 (with 

nl_update_smooth= 1.0 and nl_disp_smooth= 0.75) from the FODs of all participants (Tournier et 

al., 2019). Subject-to-template warps were computed with mrregister and applied to brain 

masks, WM FODs, and DTI metrics (i.e., FA, MD, AD and RD) using mrtransform (Raffelt et 

al., 2011). A template mask, including only voxels present in all subjects, was derived from the 

intersection of all warped brain masks (mrmath min function). The WM volumes from the five-

tissue-type images were also warped to the group template space and averaged across participants 

to be used as a WM mask for analyses (thresholded at a later step).  

Computing fixel metrics 

Fixel metrics were computed as described in (Tremblay, Alasmar, et al., 2024b). Briefly, a fixel 

mask, containing all fiber bundle elements (i.e., fixels) for each voxel, was created by segmenting 

the WM FOD template (Raffelt et al., 2012; R. E. Smith et al., 2013). The WM FOD of each subject 

was then segmented using the fod2fixel function, which also provided the apparent fibre 

density (FD) metric. The fixelreorient and fixelcorrespondence functions were then 

used to ensure correspondence between the subjects’ fixels and the fixel mask (Tournier et al., 

2019). The fibre bundle cross-section (FC) metric was derived from the warps created during 

registration using the warp2metric function. FC quantifies the extent of expansion or 

contraction required for a fibre bundle to align with those in the fixel template. Finally, a combined 

metric, fibre density and cross-section (FDC), representing the overall capacity of a fibre bundle to 

carry information, was calculated as the product of FD and FC. 

Fixel metrics were then converted into voxel-wise maps to allow for integration with other voxel-

wise metrics. For the voxel aggregate of fiber density, we used the l=0 term of the WM FOD 
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spherical harmonic expansion (i.e., 1st volume of the WM FOD, equivalent to the sum of FOD lobe 

integrals), which provides a voxel-wise measure of total fibre density (AFDtotal). This approach 

yields more reproducible estimates than summing fiber-specific FD (Calamante et al., 2015). For 

the voxel aggregate of fiber cross-section, we calculated the mean of FC, weighted by FD, using 

the mean option of the fixel2voxel function. This metric represents the typical 

expansion/contraction required to align fiber bundles in a voxel to the template fixels. Finally, the 

voxel-wise sum of FDC, representing the total information-carrying capacity per voxel, was 

computed using the fixel2voxel sum option. 

NODDI metrics 

The python implementation of Accelerated Microstructure Imaging via Convex Optimization 

(AMICO) was used to fit the neurite orientation dispersion and density imaging (NODDI) model 

to bias field-corrected DWI data using default parameters (Daducci et al., 2015; H. Zhang et al., 

2012b). Fitting was performed within the brain mask and yielded 3 parameters: the intracellular 

volume fraction (ICVF, also referred to as neurite density), the isotropic volume fraction (ISOVF), 

and the orientation dispersion index (OD). The NODDI metrics were then warped to group space 

using the transforms generated previously.  

Multi-parametric mapping 

Multi-echo T1-w, PD-w and MT-w images were processed using the hMRI toolbox (v 0.3.0) in 

Matlab (Tabelow et al., 2019; Weiskopf et al., 2013). First, all images including field maps were 

re-oriented using the “AutoReorient” module. This reorientation is based on rigid-body 

coregistration of a reference image to an MNI template. The first T1-w echo was coregistered to 

the avg152T1 SPM canonical template and all other images were reoriented. Quantitative R2*, R1, 

PD and MTsat maps were computed from the reoriented images and field maps using the “Create 

hMRI maps” module with default parameters. Corrections for RF sensitivity bias, using measured 

body and head coil sensitivity maps, and for B1 transmit bias field using the TFL B1 mapping 

method (requires an anatomical image and a flip angle map) were also performed within the 

“Create hMRI maps” module. MPM maps were warped to the group space.   



 116 

4.3.4 Computing multivariate distance metric (D2) 

The MVComp toolbox was used to compute D2 from the 14 WM features (FA, AD, RD, MD, 

AFDtotal, meanFC, sumFDC, ICVF, ISOVF, OD, R2*, R1, PD and MTsat) (Tremblay, Alasmar, 

et al., 2024b). The first step in computing D2 is to determine the reference from which the 

multivariate distance will be calculated. Here, because the sample is unbalanced in terms of sex, a 

sex-balanced reference was built from the 37 male participants and 37 randomly selected females. 

Demographic characteristics of the reference group, shown in Table 1, were representative of the 

full sample in terms of age (68.1 ± 5.9), education, cognitive status, and other risk variables. Group 

averages were then computed from the reference group (N = 74) for each of the 14 metrics using 

the compute_average function of MVComp. The norm_covar_inv function was then used 

to compute the covariance matrix (s) and its pseudoinverse (pinv_s) from the reference. A figure 

showing the correlations between MRI metrics was generated using the correlation_fig 

function which uses the covariance matrix (s) to calculate correlations (Figure 1). D2 was then 

computed within MVComp according to this equation:  

𝐷2 = (𝑥 − 𝑚)𝑇𝐶−1(𝑥 − 𝑚), 

where x is the vector of data for one observation (e.g., one subject), m is the vector of averages of 

all observations for each independent variable (i.e., MRI metrics), and C-1 is the inverse of the 

covariance matrix. The model_comp function allows the computation of voxel-wise D2 between 

each subject and the reference average within a specified mask of analysis. Here, a WM mask 

generated from the average of the WM volumes of the five-tissue-type images of all participants 

was provided and the threshold was set at 0.99 to limit partial volume effects. The model_comp 

function yields a matrix containing the D2 data of all subjects (of size: number of voxels x number 

of subjects). The dist_plot function was then used to obtain a D2 map (in nifti format) for each 

subject. The workflow for D2 calculation is illustrated in Figure 1. 
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Figure 1. Methodological framework. a) Equation for computing D2. Two vectors, one containing the data of one observation (x) 
and the other containing the mean of all observations for each independent variable (m), are subtracted. The covariance between 
variables is accounted for by multiplying by the inverse of the covariance matrix (C-1). b) Schematic illustration of the D2 concept 
in a 2-dimensional space. The purple dots represent the reference distribution (each point represents a subject of the reference 
group). The probability distance (D2) is the distance, in multivariate space, between each of the blue points (two different subjects; 
A and B) and the distribution that takes into account covariance in the data. In this example, because the two metrics are positively 
correlated, A will have a larger D2 value than B. c) The vectors of data are illustrated: the first contains the data of one subject (x) 
and the second contains the reference group average (sex-balanced group) for each metric (m). d) The correlation matrix shows 
relationships between MRI metrics, highlighting the importance of accounting for covariance between variables in multivariate 
frameworks. e) Example D2 map of a subject. The intensity indicates the amount of deviation in the WM microstructure of this 
subject compared to the reference, at each voxel.   
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The effect of age on D2 was removed by fitting a linear model predicting voxel-wise D2 from age 

using LinearRegression in sklearn.linear_model and computing the residuals. Residualized D2 data 

were then normalized using yeo-johnson power transformation voxel-wise in sklearn (version 

0.23.2). The residualized and normalized D2 data were used as inputs for the partial least squares 

(PLS) analysis between WM D2 and risk factors.  

Since D2 is a measure of deviation from the reference distribution, the interpretation of D2 depends 

on the characteristics of the reference sample. High D2 could indicate a region of abnormality if 

the reference is healthy or it could be indicative of WM microstructure that is healthier than that of 

the reference sample if the reference is generally unhealthy. Here, the mean risk variable values of 

the reference group were slightly higher than the normal healthy ranges for these variables (i.e., 

SBP, BMI, total cholesterol, LDL, HDL and HbA1c) (Cleeman, 2001; Karakaya et al., 2014), 

suggesting the latter case.  

4.3.5 Blood samples  

Blood samples were collected at every annual visit. Variables known to be associated with 

cardiometabolic risk were used in PLS analyses: total cholesterol, high density lipoprotein (HDL) 

cholesterol, low density lipoprotein (LDL) cholesterol, and glycated haemoglobin (HbA1c), a 

clinical index that reflects long-term glycemic control. We used the average of all measurements 

available in years prior to the MRI date (2011-2018) to reflect cardiometabolic risk history. 

4.3.6 Body composition and physiological measures 

Blood pressure (BP), heart rate, and body weight (in kg) were measured at every annual visit, while 

height (in cm) was measured at the eligibility visit. Here we used the average of all measurements 

available for BP and weight. BMI was calculated as: mean weight (kg) / height2 (m). BMI and 

systolic BP (SBP) were used as ‘risk variables’ in PLS analyses. 

4.3.7 APOE4 genotyping 

Genotyping methods for this dataset have been described in (Tremblay-Mercier et al., 2021). 

Briefly, DNA was isolated from 200 µl whole blood using a QIASymphony apparatus and the 

DNABlood Mini QIA Kit (Qiagen, Valencia, CA, USA). Allelic variants of AD-related genes 

including APOE rs429358 and rs7412 were characterized using pyrosequencing (PyroMark24 or 
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PyroMark96) or DNA microarray (Illumina). Participants were classified as either APOE4+ (N= 

35 females; N= 17 males) if they had one or more E4 alleles or as APOE4- (N= 61 females; N= 19 

males) if they had none. The low number of participants with two E4 alleles (N= 3 females; N= 1 

male) did not allow the exploration of a dose-dependent effect of APOE4. 

4.3.8 Cognitive assessment 

The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) (Randolph et 

al., 1998), a brief test (less than 30 minutes) that measures performance in five cognitive domains, 

was administered to participants at every annual visit. The test yields scaled scores (i.e., age-

adjusted index scores with a mean of 100 and standard deviation of 15) for immediate memory, 

visuospatial/constructional, attention, language and delayed memory. For this study, the RBANS 

scores of the evaluation conducted on the same day as the MRI session were used and analyses 

focused on the immediate and delayed memory subscores, the components that were shown to be 

the best predictors of AD and mild cognitive impairment (Duff et al., 2010).  

4.3.9 Statistical analyses  

Relationships between WM microstructure and risk factors 

Partial least squares (PLS) analyses were conducted between D2 in WM and risk factors of AD, 

separately in each sex. PLS is a multivariate statistical approach that can be used to describe spatial 

relationships between brain MRI data and multiple other variables, in our case risk factors 

(McIntosh & Lobaugh, 2004). PLS finds the weight vectors that maximize the covariance between 

brain data and risk variables, forming new variables called latent variables (LVs). Each WM voxel 

is assigned a weight, or salience, indicating how strongly it covaries with the pattern of the latent 

variable, which is a linear combination of the risk factors data.  

PLS analyses were conducted in Matlab R2023b (Mathworks Inc.) using the PLS toolbox 

(McIntosh & Lobaugh, 2004). The “Regular Behav PLS” was selected as the type of analysis and 

risk factor data were loaded as the “behavioural data”. Risk factor variables included: education 

(total number of years of formal education), SBP, BMI, HDL, LDL, total cholesterol, and HbA1c. 

One participant in each group (males and females) were excluded from these analyses due to 

missing cholesterol data (see Table 1). The analyses were run with 1000 permutations to determine 

https://github.com/McIntosh-Lab/PLS
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the significance of each LV, and 1000 bootstraps to determine overall reliability of each voxel’s 

association to each LV by calculating the standard error of each voxel’s salience value. Only 

significant LVs (p < 0.05) and voxels with absolute bootstrap ratios (BSR) > 2 (equivalent to p < 

0.05) were interpreted. ROIs were created using the fsl-cluster function. BSR values greater 

than the level of significance were used as thresholds for cluster creation to limit the spatial extent 

of ROIs (described in the Results section).  

Similar analyses were conducted between D2 in WM and the same risk factors, this time 

disaggregating by APOE4 status (APOE4+ if one E4 allele or more; APOE4- if no E4 allele), 

irrespective of sex. ROIs were created following a similar process as described above. 

Analyses were conducted separately in each group to assess patterns specific to each APOE4 group 

and to each sex. Patterns common to more than one group were then tested for statistical group 

differences using a 2x2 ANOVA with sex and APOE4 status as fixed factors and with the brain 

scores (usc) from a PLS analysis in the overall group as the dependent variable. This allowed us to 

determine whether the pattern was expressed more strongly in one group compared to the others 

and to test for interaction between APOE4 and sex. 

Relationships between deviations in WM microstructure and cognition 

Correlation analyses were conducted between mean D2 in ROIs (significant clusters from PLS 

analyses) and the immediate and delayed memory subscores of the RBANS. Analyses were 

targeted to these two subscores, known to be the most affected cognitive domains in AD (Duff et 

al., 2010), and to significant clusters identified in the PLS analysis, to limit the number of 

comparisons. Correction for multiple comparisons was performed using the false discovery rate 

(FDR) Benjamini-Hochberg method (FDR-corrected p-value < 0.05 was considered statistically 

significant). 

Determining feature importance in regions of interest 

The relative contributions of each feature (i.e., MRI metric) to D2 in significant ROIs (of size > 

100 voxels) were then extracted using the return_raw option of the model_comp function in 

MVComp. The return_raw option yields a matrix of size (number of voxels) x (number of 

metrics) x (number of subjects). Contributions were then summarised by averaging distance values 

across voxels within the ROI and across subjects and dividing by the total distance (for all features), 
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resulting in one distance value per metric, expressed as a percentage, for each ROI. This analysis 

provides a measure of the importance of each metric in determining D2 in the ROI. 

4.4 Results 

4.4.1 Relationships between WM microstructure and risk factors in each sex 

Significant patterns of covariance were found between risk factors for AD and WM D2 in both 

males and females. In males, only the first LV of the PLS analysis was significant (p = 0.002) and 

it explained 34.4% of total crossblock covariance (Figure 2a-b). Low SBP, low BMI, low HbA1c 

and high cholesterol (total chol, HDL and LDL) were associated with high D2 in several WM 

regions including the body of corpus callosum, superior corona radiata, superior thalamic radiation 

(bilaterally) and the right frontal aslant tract. In females, only the first LV was significant (p < 

0.001) and explained 40.9% of total crossblock covariance (Figure 2c-d). Similar relationships 

were observed but in slightly different WM regions. D2 in the superior longitudinal fasciculus, 

corticospinal tract, cingulum, splenium of corpus callosum, posterior corona radiata, and arcuate 

fasciculus (bilaterally), as well as the right forceps major and body of corpus callosum was 

associated with these risk factors in females. Generally, associations were found in more frontal 

and parietal regions in males, while they were found in more posterior and temporal locations in 

females. There were also overlapping regions in both sexes, specifically in parietal regions and in 

WM tracts underlying the precentral gyrus. Education was the only non-significant factor in both 

groups. Figure 2 shows the strength and direction of the relationships between D2 and each risk 

factor (left panel), as well as the WM regions in which those relationships are located (right panel). 

Only significant voxels (|BSR| > 2.0) and those belonging to clusters of size > 100 voxels are 

shown. Clusters were formed from significant voxels. Thresholds higher than the significance limit 

(|BSR| = 2.0, equivalent to p = 0.05) were used to limit the spatial extent of clusters and different 

cluster thresholds were used in each sex to result in similarly sized clusters, so that D2 was averaged 

across a similar number of voxels for analyses with cognition (|BSR| > 2.5 in females and > 3.0 in 

males). Further analyses were focused on clusters of size > 100 voxels. Cluster information, 

including the size, maximal |BSR| and brain region, is displayed in Table 2. 
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Figure 2. Relationships between D2 in WM and risk factors in each sex. Left panel (a & c): The strength and direction of the 
relationship that each risk factor has with D2 in the voxels shown on the brain images on the right. Error bars show 95% confidence 
intervals. Correlations are non-significant when confidence intervals overlap with zero (faded bar). Right panel (b & d): Colored 
voxels (|BSR| > 2.0) have a positive relationship with the patterns shown in the left panel. The BSR maps are overlaid on a MPRAGE 
T1w group average image. Males (a-b) Several risk factors were associated with D2 across broad WM regions. Higher D2 was 
associated with lower SBP, BMI and HbA1c and with higher HDL, LDL and total cholesterol. Females (c-d) Similar relationships 
were observed in females but across different WM regions. 
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Table 2. Cluster information (PLS analyses in each sex). Location identified according to the JHU 

ICBM-DTI-81 White-Matter and XTRACT HCP Probabilistic tract atlases and cortical region 

closest to the WM region identified using the Harvard-Oxford cortical structural atlas. 

 
Size  

(#voxels) 

Max 

|BSR| 

WM region Cortical region near 

Males 
    

Cluster 

1 

346 5.63 Superior corona radiata & superior 

thalamic radiation L 

Precentral & superior frontal 

gyri 

Cluster 

2 

266 5.88 Body of corpus callosum, superior 

corona radiata & superior thalamic 

radiation L 

Superior frontal & cingulate 

gyri, supplementary motor 

cortex  

Cluster 

3 

140 4.93 Body of corpus callosum, frontal 

aslant tract & superior/ant corona 

radiata R 

Superior frontal, cingulate & 

paracingulate gyri 

Females 
    

Cluster 

1 

348 5.39 Superior longitudinal fasciculus 

(temporal part), arcuate fasciculus R 

Supramarginal, precentral & 

postcentral gyri, opercular 

cortex 

Cluster 

2 

252 5.2 Cingulum, splenium of corpus 

callosum, posterior corona radiata L 

Cingulate gyrus (posterior 

division), precuneous cortex 

Cluster 

3 

180 5.3 Splenium of corpus callosum, forceps 

major & cingulum R 

Cingulate Gyrus (posterior 

division), precuneous cortex 

Cluster 

4 

174 5.16 Superior longitudinal fasciculus, 

arcuate fasciculus & corticospinal 

tract L 

Precentral & postcentral gyri, 

parietal operculum cortex 
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Cluster 

5 

157 5.76 Cingulum, splenium & body of 

corpus callosum, posterior corona 

radiata R 

Cingulate gyrus 

Cluster 

6 

151 5.08 Corticospinal tract & superior 

longitudinal fasciculus L 

Precentral & postcentral gyri 

Cluster 

7 

107 4.66 Superior longitudinal fasciculus & 

corticospinal tract R 

Precentral & postcentral gyri 

 
 

 

4.4.2 Relationships between WM microstructure and risk factors in each 
APOE4 group 

Different patterns of covariance were found between risk factors for AD and WM D2 in the 

APOE4+ and APOE4- groups. In APOE4+, LV1 (p = 0.013, crossblock covariance = 34.9%) and 

LV2 (p = 0.048, crossblock covariance = 22.5%) were significant. The LV1 pattern revealed that 

low BMI and high cholesterol (total chol, HDL and LDL) were associated with high D2 in several 

WM regions including the left body of corpus callosum, frontal aslant tract, superior thalamic 

radiation, and arcuate fasciculus (Figure 3a-b). These risk factors and their directions of 

association to D2 represent a subset of the pattern seen in sex-specific analyses. On the other hand, 

LV2 revealed a different risk pattern: low SBP, low BMI, high HDL, low LDL, and low HbA1c 

were associated with high D2 in the right superior longitudinal fasciculus, superior corona radiata, 

superior thalamic radiation, and corticospinal tract (Figure 3c-d). Generally, associations of the 

first LV were found in the left hemisphere and included commissural fibers such as the corpus 

callosum, while LV2 associations were found mostly on the right and included projection fibers 

such as the superior corona radiata as well as association tracts.  

In APOE4-, only the first LV of the PLS analysis was significant (p < 0.001) and it explained 

46.5% of total crossblock covariance (Figure 3e-f). The risk factors pattern was very similar to 

that of previous analyses (sex-disaggregated PLS analyses). Low SBP, low BMI, low HbA1c and 

high cholesterol (total chol, HDL and LDL) were associated with high D2 in broad WM regions 

including the superior longitudinal fasciculus, arcuate fasciculus, superior corona radiata, and 
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corticospinal tract. Significant regions of the PLS analysis in APOE4- overlapped to a large extent 

with significant regions seen in sex analyses. 

Education was non-significant in all LVs. Figure 3 shows the strength and direction of the 

relationships between D2 and each risk factor (left panel), as well as the WM regions in which 

those relationships are located (right panel). Only significant voxels (|BSR| > 2.0) and those 

belonging to clusters of size > 100 voxels are shown. Clusters were formed from significant voxels. 

Thresholds of |BSR| > 2.5 in APOE4+ and > 3.0 in APOE4- were used for clustering to result in 

similar size clusters across groups and further analyses were focused on clusters of size > 100 

voxels. Cluster information is displayed in Table 3. 

Because a general common pattern was observed in both sexes and in the APOE4- group, we 

performed another PLS analysis in the whole sample to test for group differences and interactions 

between sex and APOE4. This analysis showed a very similar pattern as that observed in these 

groups (Supplementary Figure 1; Appendix III). The ANOVA on the brain scores (i.e., usc) from 

this analysis revealed a significant main effect of sex (p < 0.001), indicating that males expressed 

the pattern of the LV more strongly than females (Supplementary Table 1 and Supplementary 

Figure 2). There were no significant APOE4 group differences and no significant sex x APOE4 

interaction (p > 0.05) (Supplementary Table 1). 
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Figure 3. Relationships between D2 in WM and risk factors in each APOE4 group. Left panel: The strength and direction of the 
relationship that each risk factor has with D2 in the voxels shown on the brain images on the right. Error bars show 95% confidence 
intervals. Correlations are non-significant when confidence intervals overlap with zero (faded bar). Right panel: Colored voxels 
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(|BSR| > 2.0) have a positive relationship with the patterns shown in the left panel. The BSR maps are overlaid on a MPRAGE T1w 
group average image. APOE4+ (a-b) LV1: Higher D2 was associated with lower BMI and higher HDL, LDL and total cholesterol. 
(c-d) LV2: Higher D2 was associated with low SBP, low BMI, high HDL, low LDL, and low HbA1c. APOE4- (e-f) Higher D2 was 
associated with low SBP, BMI, HbA1c and with high HDL, LDL and total cholesterol. 

Table 3. Cluster information (PLS analyses in each APOE4 group). Location identified according 

to the JHU ICBM-DTI-81 White-Matter and XTRACT HCP Probabilistic tract atlases and cortical 

region closest to the WM region identified using the Harvard-Oxford cortical structural atlas. 

 
Size  

(#voxels) 

Max 

|BSR| 

WM region Cortical region near 

APOE4+ 

LV1 

    

Cluster 1 499 6.27 Body of corpus callosum, frontal 

aslant tract & superior thalamic 

radiation L  

Superior frontal, precentral & 

anterior cingulate gyri 

Cluster 2 326 7.12 Superior longitudinal fasciculus & 

arcuate fasciculus L 

Precentral & postcentral gyri, 

insular cortex & operculum 

cortex  

Cluster 3 106 6.63 Superior longitudinal fasciculus L Postcentral gyrus & superior 

parietal lobule 

Cluster 4 100 5.31 Superior corona radiata, frontal 

aslant tract & superior thalamic 

radiation L 

Superior & middle frontal 

gyrus 

LV2 
    

Cluster 1 391 5.48 Superior corona radiata, superior 

thalamic radiation & corticospinal 

tract R 

Precentral gyrus 

Cluster 2 190 6.37 Superior longitudinal fasciculus & 

corticospinal tract R 

Precentral & postcentral gyri 
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APOE4- 
    

Cluster 1 264 4.94 Superior longitudinal fasciculus & 

arcuate fasciculus R 

Precentral & postcentral gyri & 

operculum cortex 

Cluster 2 127 5.7 Superior corona radiata & 

corticospinal tract L 

Precentral gyrus, insular cortex 

& operculum cortex 

4.4.3 Determining feature importance in regions of interest 

In females, features’ contributions were extracted in the 7 clusters that were significant in the PLS 

analysis (Figure 4a). D2 in cluster 1 was driven mainly by MTsat (28.8%), R1 (23.4%), and RD 

(12.5%). In cluster 2, meanFC (29.9%), R1 (23.6%), and MTsat (11.9%) contributed the most to 

D2. Similarly, in cluster 3, meanFC (28.1%), R1 (18.3%), and MTsat (14.3%) were the top 

contributors. In cluster 4, R1 (28.7%), MTsat (25.5%), and ISOVF (15.6%) contributed most to 

D2. D2 in cluster 5 was driven mainly by R1 (44.5%) and meanFC (23.2%). In cluster 6, R1 

(20.8%), ISOVF (18.1%), meanFC (16.0%), and MTsat (14.2%) were the metrics that contributed 

the most to D2. In cluster 7, D2 was mainly driven by R1 (25.3%), meanFC (19.5%), AD (13.5%), 

and MD (10.8%). Overall, R1, meanFC, and MTsat were the most important metrics in females. 

The isotropic volume fraction (ISOVF) metric from NODDI was also an important contributor in 

2 clusters.  

In males, features’ contributions were extracted in the 3 significant clusters from PLS analysis 

(Figure 4b). D2 in cluster 1 was driven mainly by R1 (43.3%) and, to a lesser extent, by AD 

(10.9%). In cluster 2, R1 (17.8%), MTsat (15.5%), and PD (13.2%) contributed the most to D2. In 

cluster 3, R1 (33.7%) and MTsat (15.2%) were the top contributors. Like in females, R1 and MTsat 

emerged as top contributors to D2 in males. However, meanFC was not an important contributor 

to D2 (<10%) in any of the males’ clusters. 

In the APOE4+ group, there were 4 clusters from the first LV and 2 clusters from the second LV 

(Figure 5a-b). D2 in the first LV1 cluster was driven mainly by R1 (28.8%), MTsat (20.4%), and 

PD (12.6%). In cluster 2, R1 (28.4%), MTsat (28.1%), and meanFC (10.5%) were the top 

contributors. In cluster 3, R1, (26.1%), MTsat (17.1%), meanFC (12.5%), and ISOVF (12.4%) 

contributed most to D2.  D2 in cluster 4 was driven mainly by R1 (36.6%) and meanFC (20.5%). 
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In cluster 1 of the second LV, R1 (26.0%), MTsat (23.3%), and meanFC (18.5%) contributed most 

to D2. In cluster 2, MTsat (25.7%), R1 (24.4%), and OD (11.2%) were the metrics that contributed 

most to D2.   

In the APOE4- group, features’ importance was extracted in the 2 significant clusters (Fig 5d). D2 

in cluster 1 was driven mainly by R1 (27.1%), MTsat (23.5%), and RD (15.8%). In cluster 2, R1 

(38.0%), MTsat (17.1%), and ICVF (12.4%) contributed the most to D2. 
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Figure 4. Features contribution to D2 in each significant cluster from PLS analyses in females (a) and males (b). For each 
significant cluster, the relative contribution (%) of each MRI metric is indicated by its size on the pie chart (see the legend for color 
of each MRI metric). The metric name and its contribution (in %) is indicated only for the most important contributors (those that 
account for >10%), for clarity. MPM R1 = macromolecular content (axons and myelin) (Callaghan et al., 2014); MPM MTsat = 
more specific to myelin content (Helms, Dathe, Kallenberg, et al., 2008); MPM PD = amount of water (if increased could reflect 
neurite atrophy); CSD meanFC = fiber bundle cross-section (Raffelt, Tournier, et al., 2017); NODDI ISOVF = amount of free 
water (if increased it could reflect neurite atrophy) (H. Zhang et al., 2012b); AD = axonal integrity; RD = myelin integrity 
(Winklewski et al., 2018); MD = overall diffusivity (typically increased with higher water content/cell atrophy). 
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Figure 5. Features contribution to D2 in each significant cluster from PLS analyses in APOE4+ (a-b) and APOE4- (d). For each 
significant cluster, the relative contribution (%) of each MRI metric is indicated by its size on the pie chart (see the legend for color 
of each MRI metric). The metric name and its contribution (in %) is indicated only for the most important contributors (those that 
account for >10%), for clarity. c) Plots are shown for significant correlations between D2 and the RBANS memory items. Immediate 
memory was positively associated with D2 in cluster 2 of the APOE4+ analysis (LV2). MPM R1 = macromolecular content (axons 
and myelin) (Callaghan et al., 2014); MPM MTsat = more specific to myelin content (Helms, Dathe, Kallenberg, et al., 2008); 
MPM PD = amount of water (if increased could reflect neurite atrophy); CSD meanFC = fiber bundle cross-section (Raffelt, 
Tournier, et al., 2017); NODDI ISOVF = amount of free water (if increased it could reflect neurite atrophy); NODDI ICVF = 
neurite density; NODDI OD = orientation dispersion of fiber tracts (H. Zhang et al., 2012b); RD = myelin integrity (Winklewski et 
al., 2018). 
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4.4.4 Relationships between deviations in WM microstructure and cognition 

To understand the associations between deviations in WM microstructure and cognition, 

correlation analyses were performed between D2 in significant clusters from the PLS analysis 

disaggregated by APOE4 status (8 clusters; Table 3) and scores in the immediate and delayed 

memory RBANS items. D2 in the two LV2 clusters was positively associated with immediate 

memory. The first cluster, located in a WM region corresponding to part of the right superior corona 

radiata, superior thalamic radiation and corticospinal tract, had a product-moment correlation 

(Pearson’s) r = 0.313 and a p value = 0.024 (p-fdr corrected = 0.192). Cluster 2, located in a WM 

region corresponding to part of the right superior longitudinal fasciculus and corticospinal tract, 

had a product-moment correlation r = 0.428, p = 0.002 (p-fdr corrected = 0.032) (Figure 5c). Only 

the correlation in cluster 2 remained significant after FDR correction. All other correlations were 

non-significant (p > 0.05). 

4.5 Discussion 

In this study, we identified the presence of WM microstructural impairments linked to 

cardiometabolic risk factors in individuals with a family history of Alzheimer’s disease (AD). 

These impairments were identified using a novel approach, whereby we investigated the sex-

specific and APOE genotype-related relationships between WM microstructural deviations, 

quantified using a multivariate score derived from several MRI-derived features, and 

cardiometabolic risk factors. 

4.5.1 Sex-related effects 

In our sex-disaggregated analysis, we found that in both males and females, high systolic blood 

pressure, high BMI, high HbA1c (blood sugar levels), and low cholesterol (total, HDL, and LDL) 

were associated with low D2 (Figure 2, left panel). Due to the directions of relationships between 

risk factors and D2, we inferred that, in our analyses, greater D2 is likely to represent a healthier 

state. Since D2 represents the amount of deviation from the reference distribution (i.e., sex-

balanced reference group), this would mean that higher D2 indicates WM microstructure that is 

healthier than the average of our reference group. Although the patterns of association were similar 

in males and females, the WM regions in which these relationships were observed differed between 

sexes (Figure 2, right panel), with partially overlapping significant clusters, but more frontal 
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regions in males and more posterior and temporal locations in females. There was also a significant 

sex difference, where males expressed this general risk–WM pattern more strongly than females. 

There are known sex differences in WM microstructure (Kanaan et al., 2012a; van Hemmen et al., 

2017) and in the aging trajectory of myelin (Toschi et al., 2020). Age-related declines in WM health 

follow an anterior to posterior gradient and these changes start occurring later in life in females, 

likely owing to the pro-myelinating effects of female hormones (Bartzokis, 2004b; Toschi et al., 

2020). In this study, we regressed out age to remove any age effects and the pattern of WM 

differences we observe does not fit this model. The sex differences observed may thus be due to 

factors more specifically related to sex differences in WM susceptibility to vascular risk factors. 

More research is needed to understand the sex-specific relationships between risk factors, early 

pathological changes and AD, as well as to disentangle the contributions of gender (Dhamala et 

al., 2024), which may confound these relationships. 

The directions of several of the associations we found between WM D2 and risk factors are in line 

with the literature. Several studies report WM alterations in hypertensive individuals and the effects 

of high blood pressure may start accumulating as early as the fourth decade of life (Maillard et al., 

2012). Obesity has also been associated with changes in WM microstructure such as decreased FA 

and myelin content (R1) in several WM tracts (Kullmann et al., 2015, 2016). In line with the extant 

literature on subclinical hyperglycemia (Garfield et al., 2021; Repple et al., 2021), we also 

identified WM differences associated with HbA1c levels, even though the vast majority of 

participants did not have diabetes (99% of females and 92% of males). Moreover, HDL cholesterol 

was positively associated with WM D2, in line with the well-established protective role of HDL 

on cognition and brain structure (Vitali et al., 2014). 

4.5.2 APOE4-dependent effects of LDL 

We found complex relationships between WM microstructure and LDL. Peripheral LDL and total 

cholesterol were positively associated with better WM health (high D2) in all but one latent 

variable. While LDL and total cholesterol are typically thought of as being detrimental, evidence 

on their impact on the brain’s WM and on cognition is unclear (Alfaro et al., 2018; Lamar et al., 

2020; Lv et al., 2016; Silverman & Schmeidler, 2018; van Vliet, 2012; Warstadt et al., 2014). These 

discrepancies may be due to the unknown contribution of oxidized LDL to total LDL. Oxidation 

of LDL, which is enhanced in inflammatory states when oxidative stress is high, has been shown 
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to be a better predictor of atherosclerosis and cardiovascular disease than LDL itself (Hecht & 

Harman, 2003; Holvoet et al., 2003, 2004; Nishi et al., 2002) and is also associated with deleterious 

effects on brain health (Dias et al., 2014; Draczynska-Lusiak et al., 1998). It is thus likely that the 

relationship we observed between LDL and WM was due to predominantly non-oxidized LDL. 

The fact that LDL and HDL cholesterol were related to WM D2 in the same direction also supports 

this hypothesis as the antioxidant property of HDL would contribute to preventing LDL oxidation 

(Holvoet et al., 2004; Sigurdardottir et al., 2002; Vitali et al., 2014). Furthermore, as ~80% of 

participants in this study were taking lipid-lowering medications, LDL oxidation may be reduced 

in the participants taking statins (Ndrepepa et al., 2005). 

In contrast, we found that high LDL was associated with poorer WM health in APOE4 carriers 

(LV2). This is consistent with a study reporting a detrimental effect of elevated LDL on WM 

microstructure in APOE4 carriers, but a beneficial effect in non-carriers (Ye et al., 2024). As a 

cholesterol-transporter, APOE4 may modulate the impact of LDL on WM microstructure through 

increased LDL circulation time, increased free radical formation and decreased plasma antioxidant 

concentrations, increasing LDL oxidation (Dias et al., 2014). Overall, our study supports the idea 

of differential effects of LDL-cholesterol on the brain’s WM depending on APOE genotype. 

However, future studies that include measurements of oxidized LDL and a larger sample size 

(especially of APOE4 homozygotes) are needed to confirm these findings. 

The distinct pattern observed in APOE4 carriers (LV2), where low D2 was associated with high 

LDL, low HDL-cholesterol, high HbA1c, high BMI and high SBP, was found to be linked with 

cognition. D2 in a cluster of LV2 was positively associated with immediate memory performance, 

indicating that this pattern of risk factors likely had a negative impact on cognition in APOE4 

carriers. The direction of the relationship with cognition also supports our interpretation of low D2 

reflecting poor WM health. On the other hand, in non-carriers, WM D2 in regions associated with 

risk factors did not relate with cognition. Together, this suggests that WM health is differentially 

affected by cardiometabolic risk factors in APOE4 carriers and that the pattern uncovered by LV2 

may be more detrimental to cognitive health. 
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4.5.3 Role of myelin and other components 

Several WM regions were associated with the patterns of risk factors discussed above and 

extracting the contribution of each MRI feature to D2 in these regions revealed that inter-individual 

variations in myelin content (as measured by R1 and MTsat) was a major contributor in most 

significant clusters. Our results are partially in line with the myelin breakdown theory stating that 

late-myelinating WM tracts would be especially vulnerable to aging and adverse risk factors such 

as those investigated in this study (Bartzokis, 2004b, 2011; Bartzokis et al., 2003, 2004). For 

instance, decreased FA in late-myelinating tracts has been reported in individuals with elevated 

glycated hemoglobin (HbA1c) (Foley et al., 2014). Most of our significant clusters were located in 

late-myelinating regions (i.e., supramarginal, superior frontal, superior parietal, superior temporal, 

and precuneus WM), but we also found significant associations in the splenium of the corpus 

callosum, a region that develops at an intermediate stage (Bartzokis, 2004b, 2011; Bartzokis et al., 

2003, 2004; Foley et al., 2014). 

4.5.4 Strengths and limitations 

In this study, we assessed relationships between risk factors and WM microstructure separately in 

each sex and APOE4 group, which allowed the identification of patterns specific to APOE4 

carriers. Importantly, this pattern would not have been detected in a whole sample analysis (see 

Supplementary Table 1; Appendix III). Another strength of our study is the use of a multivariate 

approach to integrate several MRI measures of WM, allowing for a comprehensive assessment of 

the biological mechanisms underlying WM differences (Tremblay, Alasmar, et al., 2024b). This is 

of interest because multiple pathological mechanisms (e.g., demyelination, axonal changes, iron 

accumulation) are likely involved concurrently in AD and in its prodromal stage (Iturria-Medina 

et al., 2017). However, the D2 method has some inherent limitations. Because D2 is a squared 

measure, the directionality of differences is non-specific (Tremblay, Alasmar, et al., 2024b). Future 

studies could address this limitation by integrating models of ground-truth biophysical properties 

to better interpret these differences, or by stratifying groups based on the expected direction of 

change to have a strong prior on the directions of deviations. Further, the high sensitivity of D2 

makes it susceptible to registration inaccuracies and partial voluming. Special attention must thus 

be paid to optimize alignment and minimize partial voluming. In this study, strict masking (i.e., 

0.99 of group average tissue segmentation) was applied to restrict the analyses to voxels containing 
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only WM. Another limitation of this study is that the sample size did not allow the investigation of 

a dose-dependent effect of the number of APOE 𝜺4 alleles. Future studies, in larger samples, and 

with measurements of oxidized LDL could help clarify the effects of the APOE genotype on 

cholesterol metabolism and the downstream impact on WM microstructure. 

4.6 Conclusion 

Our findings support the myelin breakdown hypothesis of AD, suggesting that oligodendrocytes' 

vulnerability to aging and stressors makes myelin an early target in AD's pathology (Bartzokis, 

2004b, 2011). Modifiable risk factors for AD (e.g., hypertension, diabetes, dyslipidemia) act as 

stressors that negatively impact WM health and cognition, especially when combined with familial 

history and APOE4. We found that WM microstructural changes, especially myelination, were 

associated with cardiometabolic risk factors in older adults with a family history of AD. Notably, 

LDL-cholesterol adversely affected WM microstructure only in APOE4 carriers. Our results also 

suggest that these WM alterations lead to impaired cognition, particularly short-term memory, in 

APOE4 carriers. This aligns with the theory that genetic and environmental risk factors exacerbate 

myelin breakdown and accelerate cognitive decline (Bartzokis, 2004b, 2011; Burzynska et al., 

2023).  
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CHAPTER V: White matter microstructure in older 
adults with cardiovascular disease 

Preface 

In Study 3 (Chapter IV), we showed that WM microstructural alterations in older adults with a 

familial history of Alzheimer’s disease (AD) can be detected using the MVComp toolbox. These 

alterations, which were linked to the presence of cardiometabolic risk factors, likely represent an 

early disease stage. We also investigated how genetic risk (i.e., familial history of AD and APOE4 

genotype) and cardiometabolic factors interact to impact WM microstructure. Cardiovascular 

disease alone, even in the absence of genetic predisposition, can also increase the risk of both 

vascular and AD dementia (Kovacic et al., 2012; Olesen et al., 2024; Polidori et al., 2012; Zheng 

et al., 2012). 

In Study 4, we investigated cardiovascular risk more deeply by assessing the impact of coronary 

artery disease (CAD), the most common form of cardiovascular disease, on WM microstructure. 

CAD has been associated with WM damage (Johansen et al., 2021; Vidal et al., 2010; Vuorinen et 

al., 2014) and this damage is thought to contribute to cognitive impairments (Filley & Fields, 2016; 

O’Brien, 2014). However, most studies have focused on characterizing lesions (WM 

hyperintensities), while very few have investigated more subtle alterations in WM microstructure. 

Quantifying alterations to microstructural health in addition to WM hyperintensities is necessary 

to capture the full range of pathological alterations occurring in CAD and how they impact 

cognition.  

In this study, we used the MVComp framework to quantify WM alterations relative to a healthy 

sample. The inclusion of a healthy control group in this study (which was a limitation in Study 3) 

provided a robust reference sample, facilitating the interpretation of D2 scores, where a high D2 

value (indicating high deviation from the healthy reference) would suggest an area of abnormality. 

We also explored the impact of fitness (VO2max) on WM alterations in this population as fitness 

may provide a protective effect on WM health. 
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Multivariate white matter microstructure alterations link to fitness 

and cognition in older adults with coronary artery disease  

Stefanie A. Tremblay, Zacharie Potvin-Jutras, Dalia Sabra, Ali Rezaei, Safa Sanami, Christine 

Gagnon, Brittany Intzandt, Amélie Mainville-Berthiaume, Lindsay Wright, Ilana R. Leppert, 

Christine L. Tardif, Mathieu Gayda, Christopher J. Steele, Josep Iglesies-Grau, Anil Nigam, Louis 

Bherer, Claudine J. Gauthier 

In preparation. 

5.1 Abstract  

Introduction: Patients with coronary artery disease (CAD) are at an increased risk of cognitive 

impairment, dementia and stroke. Although white matter (WM) lesions are frequently reported in 

CAD patients, evidence regarding pathological alterations in WM microstructure is lacking. This 

study aimed to assess WM abnormalities in CAD patients, as well as the links with fitness 

(VO2max) and cognition.  

Methods: A novel multivariate approach - the Mahalanobis distance (D2) - was used to quantify 

WM abnormalities as the amount of deviation from a healthy reference group. D2 integrates the 

information from multiple MRI-derived metrics (here 12 metrics from diffusion-weighted imaging 

[DWI] and magnetization transfer imaging [MTI]), while accounting for the covariance between 

metrics. 46 CAD patients and 41 healthy controls (HC) aged 50 and older completed the study. An 

arterial territories atlas was applied to the WM D2 maps to conduct region of interest analyses.  

Results: CAD patients had higher D2 values compared to HC in the whole WM, right anterior 

cerebral artery (ACA) and left and right posterior cerebral artery (PCA). Higher cardiorespiratory 

fitness (VO2max) was associated with lower D2 values in the whole WM and in the PCA. 

Furthermore, higher processing speed was linked with lower D2 values in the left middle cerebral 

artery (MCA).  

Discussion: These findings suggest that higher WM abnormalities observed in CAD patients may 

contribute to a heightened risk of cognitive impairment and that cardiorespiratory fitness may 

provide a protective effect on WM health, potentially aiding in the management of the disease. 
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5.2 Introduction 

Patients with coronary artery disease (CAD) face a heightened risk of cognitive decline, dementia, 

and stroke (Kovacic et al., 2012; Olesen et al., 2017, 2024; Polidori et al., 2012; Zheng et al., 2012). 

Vascular risk factors such as hypertension impact several components of brain health, including 

cerebral vessels, grey matter and white matter (WM) (Barekatain et al., 2014; Haight et al., 2018; 

Launer et al., 2015; Vuorinen et al., 2014). Major cardiac events, such as myocardial infarction, 

are likely to accelerate brain damage and the ensuing cognitive decline (Schievink et al., 2022; Xie 

et al., 2019). For instance, WM lesions, appearing as WM hyperintensities (WMHs) in magnetic 

resonance imaging (MRI), are commonly reported in CAD patients (Johansen et al., 2021; Vidal 

et al., 2010; Vuorinen et al., 2014). Because it is not as well perfused as grey matter, WM is more 

vulnerable to changes in perfusion, and it is thus more prone to hypoxic injuries as a result of 

cerebrovascular dysfunction (Inoue et al., 2023). WMHs are known to contribute to the cognitive 

impairments seen in CAD patients (Filley & Fields, 2016; O’Brien, 2014). However, 

macrostructural measures do not suffice to fully explain the impact of CAD on cognition as shown 

in Zheng and colleagues (2012), where CAD remained significantly associated with cognition after 

adjusting for WMH, and hippocampal and cortical GM volumes (Santiago et al., 2015). This 

suggests that more sensitive neuroimaging metrics are needed to detect subtle changes in brain 

health, such as changes in the so-called “normal-appearing” WM. Diffusion-weighted imaging 

(DWI) and magnetization transfer imaging (MTI) allow to capture such changes in WM 

microstructure.  

Changes in diffusion tensor (DTI) metrics in several major WM tracts, including the fornix, body 

of the corpus callosum, superior corona radiata and superior fronto-occipital fasciculus, have been 

reported in CAD patients (Poirier et al., 2024). Importantly, WM microstructural integrity, 

quantified using fractional anisotropy (FA), has been linked with cognitive performance, especially 

executive function, in cognitively intact CAD patients (Santiago et al., 2015). This suggests that 

alterations in WM microstructure may be an important factor contributing to subtle changes in 

cognition in CAD patients. While there is evidence for an association between CAD and WM 

changes, the mechanisms through which WM damage occurs and causes cognitive decline are 

poorly understood, as the few studies that have looked at this used techniques that are 

physiologically unspecific (i.e., DTI) (Poirier et al., 2024; Riffert et al., 2014; Santiago et al., 2015). 
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Metrics derived from more advanced multi-compartment DWI models, complemented with 

quantitative measures of myelin (MTsat and R1), can provide greater insights into the 

pathophysiological mechanisms underlying WM microstructural alterations in CAD patients. This 

has important implications as WM microstructural impairments may be reversed through 

interventions such as exercise-based cardiac rehabilitation (Poirier et al., 2024). 

Fitness is an important contributor to both cardiovascular and cerebral health (España‐Irla et al., 

2021). In patients with CAD, higher cardiorespiratory fitness has been associated with preserved 

cognitive performance, including executive function (Swardfager et al., 2010). Furthermore, the 

relationship between fitness and cognition in CAD is believed to be mediated by enhanced cerebral 

health (Swardfager et al., 2010, 2011). For instance, greater cardiorespiratory fitness has been 

associated with higher cerebral gray matter density and perfusion in men with CAD (MacIntosh et 

al., 2014). The beneficial effect of exercise on WM integrity may thus be an important mechanism 

through which cognition can be preserved in CAD (Poirier et al., 2024; Roig-Coll et al., 2024; 

Stephen et al., 2020). 

In this cross-sectional study, we used a multivariate approach to comprehensively assess WM 

microstructural health. The MultiVariate Comparison (MVComp) toolbox was used to compute 

the Mahalanobis distance (D2), a measure of deviation between an observation (e.g., a patient) and 

a reference distribution (e.g., a control group) (Tremblay, Alasmar, et al., 2024b). D2 integrates 

several MRI measures into a single score, while accounting for the covariance between these 

metrics, yielding a measure of deviation, or abnormality at each WM voxel. The relationships 

between WM D2, fitness (VO2peak), and cognition were also assessed. 

5.3 Methods 

5.3.1 Participants  

One hundred and nine (109) participants of 50 years and above were recruited, from which 87 

completed the study (46 CAD patients and 41 healthy controls; HC). The study was approved by 

the Comité d’éthique de la recherche et du développement des nouvelles technologies (CÉRDNT) 

de l’Institut de Cardiologie de Montréal, in accordance with the Declaration of Helsinki. Written 

informed consent was obtained at the first visit. A medical questionnaire, which had been 

previously filled out on the phone, was also reviewed at this visit and the mini-mental state 
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examination (MMSE) was administered to ensure eligibility. Participants with a MMSE < 25 were 

excluded as it could indicate the presence of mild cognitive impairment. 

Inclusion criteria for patients included documented coronary artery disease (prior acute coronary 

syndrome, prior coronary angiography or revascularization, or myocardial ischemia documented 

on myocardial scintigraphy). Healthy controls (HCs) had to be free of any cardiac and neurological 

issues, diabetes, hypertension, and current use of medications known to be vasoactive (such as 

statins or beta-blockers). All participants had to be fluent in either English or French (for informed 

consent and cognitive assessment). 

Exclusion criteria for all participants included history of stroke, neurological, psychiatric or 

respiratory disorders, thyroid disease, cognitive impairment, tobacco use, high alcohol 

consumption (more than 2 drinks per day), contraindications to MRI (e.g., ferromagnetic implant, 

claustrophobia), and use of oral or patch hormone therapy. Participants were also excluded if they 

had surgery under general anesthesia within the last 6 months, a recent acute coronary event (< 3 

months), chronic systolic heart failure, resting left ventricular ejection fraction < 40%, symptomatic 

aortic stenosis, severe nonrevascularizable coronary artery disease, including left main coronary 

stenosis, awaiting coronary artery bypass surgery, implanted automatic defibrillator or permanent 

pacemaker. Limitations to exercise such as malignant arrhythmias during exercise, arthritis or 

claudication, severe exercise intolerance, as well as excessive discomfort due to hypercapnia (> 5 

on the dyspnea scale of Banzett et al., 1996) also constituted exclusion criteria. 

All participants completed a neuropsychological battery, a maximal cardiopulmonary exercise test 

(CPET), and an MRI session. Participants who had all DWI and MTI data were included in this 

study (N= 84). However, 5 participants were excluded due to the presence of artefacts in their DWI 

data (N=4) or of an incidental finding in their MRI data (N=1), resulting in a sample size of 79. Of 

those, 43 were CAD patients (age = 68.2 ± 8.7 years, 8 females) and 36 were HCs (age = 64.1 ± 

7.8, 10 females).  

 
 
 
 
 



 142 

Table 1. Demographic data of the cohort. 

 
SYNTAX score = complexity of coronary artery disease, WMH = white matter hyperintensity (volume), GM = gray 
matter, WM = white matter, SBP = systolic blood pressure, BMI = body mass index. 

  



 143 

5.3.2 MRI Protocol 

MRI data were acquired on a 3T Siemens Magnetom Skyra scanner at the Montreal Heart Institute. 

The multi-shell DWI acquisition was a spin-echo sequence with echo planar imaging (EPI) readout 

(TR= 6000 ms, TE= 106 ms, phase-encoding direction = posterior-anterior (PA), resolution = 2 

mm isotropic) across 3 diffusion-weighted shells with gradient strengths of b= 300 (10 directions), 

700 (30 directions), and 2500 s/mm2 (64 directions), and 3 volumes acquired without diffusion 

weighting (b = 0). Six non-diffusion weighted volumes (b = 0) were also acquired in the opposite 

phase encoding direction (AP) for distortion correction.  

Two gradient echo sequences (TR= 33 ms, TE= 3.81 ms, flip angle= 10°, resolution= 2 mm 

isotropic), one with (MT-w) and one without a preparatory MT pulse (MT-off), and a T1w image 

(TR= 15 ms, TE= 3.81 ms, flip angle= 25°, resolution= 2 mm isotropic) were acquired for MTsat 

computation. An off-resonance MT pulse (off-resonance frequency = 2.2 kHz, duration = 12.8 ms, 

flip angle = 540°) was applied prior to RF excitation to obtain MT-weighting (Helms, Dathe, & 

Dechent, 2008). A B1 map (an anatomical image and a flip angle map) was also acquired to correct 

B1 field inhomogeneities. 

High-resolution T1-weighted structural images were acquired with a Magnetization Prepared 

RApid Gradient Echo (MPRAGE) sequence (TR= 2300 ms, TE= 2.32 ms, flip angle= 8°, 

resolution= 0.9 mm isotropic). These images were used for segmentation by tissue type. Axial fluid 

attenuated inversion recovery (FLAIR) images (TR= 9000 ms, TE= 91 ms, TI= 2500 ms, flip 

angle= 150°, resolution= 0.9 x 0.9 x 5.0 mm) were acquired for WMH segmentation. 

5.3.3 Preprocessing  

We computed 12 microstructural metrics from the DWI and MTI data of 83 participants. These 

metrics were derived from the diffusion tensor imaging (DTI) model, the fixel-based analysis 

framework that derives fibre density and cross-section from fibre orientation distributions (FODs) 

computed using multi-tissue constrained spherical deconvolution (CSD) (Jeurissen et al., 2014), 

and the neurite orientation dispersion and density imaging (NODDI) model (H. Zhang et al., 

2012a). The MT saturation index was computed from the MT-w and MT-off images, using the 

T1w images to reduce T1 dependence (Helms, Dathe, & Dechent, 2008) and R1 maps were also 

generated.  
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Diffusion Tensor Imaging 

DWI data were denoised and preprocessed with the MRtrix3 (v3.0.2) function dwifslpreproc, 

which corrects for motion and Eddy current (using the Eddy tool in FSL 6.0.1) and susceptibility-

induced distortion (using the topup tool in FSL) (Andersson et al., 2003; Andersson & 

Sotiropoulos, 2016; S. M. Smith et al., 2004). Topup uses pairs of b0 volumes with opposite phase-

encoding polarities (AP) and with the same phase encoding as the input DWI series to correct for 

susceptibility-induced distortion. Preprocessed DWI data were then upsampled to match the 

MPRAGE T1w image resolution (0.9 mm isotropic) as recommended. A brain mask was created 

using FSL's brain extraction tool (bet) and applied to the DWI volumes to eliminate non-brain 

voxels (Jenkinson, 2005). Bias field correction was performed using the N4 algorithm of ANTs 

(3.0) (Tustison et al., 2010), and the tensor was computed on the bias field-corrected DWI data 

(using dwi2tensor). Finally, DTI metrics (FA, MD, AD, and RD) were calculated using 

tensor2metric (Basser et al., 1994a). 

Fixel-based analysis 

The fixel-based analysis (FBA) framework was used to compute fibre density and cross-section 

from FODs (Tournier et al., 2019) as in (Tremblay, Alasmar, et al., 2024b). MPRAGE T1-w images 

were registered and warped (rigid, linear) to the non-diffusion weighted (b=0) preprocessed DWI 

volume using antsRegistration (v2.4.2) before being segmented using the 5ttgen FSL 

function of Mrtrix3, which uses the FAST algorithm (Avants et al., 2009; R. E. Smith et al., 2012). 

Response functions for each tissue type were then computed from the preprocessed DWI data and 

the five-tissue-type (5tt) image using the dwi2response function (msmt_5tt algorithm) 

(Jeurissen et al., 2014). The WM, GM and CSF response functions were then averaged across all 

participants, resulting in a single response function for each of the three tissue types. Multi-shell 

multi-tissue CSD was then performed based on the average response functions to obtain an 

estimation of orientation distribution functions (ODFs) for each tissue type (Jeurissen et al., 2014). 

This step is performed using the dwi2fod msmt_csd function of Mrtrix3 within the previously 

generated brain mask. Bias field correction and global intensity normalization, which normalizes 

signal amplitudes to make subjects comparable, were then performed on the ODFs, using the 

mtnormalise function in Mrtrix3 (Raffelt, Tournier, et al., 2017). 
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Registration 

Multi-contrast registration was performed based on the WM, GM and CSF FODs using the 

population_template function of Mrtrix3 (Tremblay, Alasmar, et al., 2024b). This 

generates a group template for each of the three tissue types (Tournier et al., 2019). The WM FODs 

and DTI metrics (i.e., FA, MD, AD and RD) were then warped to the population templates using 

mrtransform (Raffelt et al., 2011). A template mask was computed as the intersection of all 

warped brain masks (mrmath min function). This template mask includes only the voxels that 

contain data in all subjects. The WM volumes of the five-tissue-type (5tt) 4-D images were also 

warped to the group template space and averaged across participants to be used as a WM mask for 

analyses.  

Computing fixel metrics 

Fixel metrics were computed as outlined in Tremblay et al. (2024). In summary, a fixel mask, 

which contains all fiber bundle elements (fixels) per voxel, was created by segmenting the WM 

FOD template (Raffelt et al., 2011; R. E. Smith et al., 2013). The WM FOD of each subject was 

then segmented using the fod2fixel function, which also provided the apparent fibre density 

(FD) metric. The fixelreorient and fixelcorrespondence functions were applied to 

ensure consistent fixel correspondence between subjects and the fixel mask (Tournier et al., 2019). 

The fibre bundle cross-section (FC) metric, which quantifies the degree of expansion or contraction 

needed to align a fibre bundle with the template fixels, was derived from the registration warps 

using the warp2metric function. A combined fibre density and cross-section (FDC) metric, 

representing the overall information-carrying capacity of a fibre bundle, was then calculated as the 

product of FD and FC. 

Next, the fixel metrics were converted into voxel-wise maps for integration with other voxel-wise 

metrics. For the aggregate fibre density per voxel (FD total), we used the l = 0 term of the WM 

FOD spherical harmonic expansion (i.e., the first volume of the WM FOD, equivalent to the sum 

of FOD lobe integrals). This approach yields more reproducible estimates than summing fibre-

specific FD (Calamante et al., 2015). For the aggregate fibre cross-section per voxel, the mean FC 

was calculated, weighted by FD, using the fixel2voxel mean function. This metric reflects 

the typical expansion or contraction required to align fibre bundles within a voxel to the template 



 146 

fixels. Finally, the voxel-wise sum of FDC, representing the total information-carrying capacity 

per voxel, was calculated using the fixel2voxel sum option. 

NODDI metrics 

DWI data was fitted to the neurite orientation dispersion and density imaging (NODDI) model 

using the python implementation of Accelerated Microstructure Imaging via Convex Optimization 

(AMICO) (Daducci et al., 2015; H. Zhang et al., 2012a). Response functions were computed for 

all compartments and fitting was then performed on the bias-corrected DWI volumes using default 

parameters. The NODDI metric maps, including intracellular volume fraction (ICVF, or neurite 

density), isotropic volume fraction (ISOVF), and orientation dispersion index (OD), were 

subsequently warped into group space. 

MTsat and R1 maps 

The MTsat and R1 maps were calculated using the hMRI-toolbox (v 0.3.0) in Statistical Parametric 

Mapping (Tabelow et al., 2019). The anterior and posterior commissure of the MT-w, MT-off and 

T1w images were reoriented to MNI space. The reorientation process was performed before 

processing the MTsat and R1 maps to enhance the alignment of the images’ WM. The B1 transmit 

bias correction field was computed using an anatomical map and a scaled flip angle map from a 

turbo flash sequence using the “Create hMRI maps” module of the hMRI-toolbox. Then, the B1 

correction field, MT-w, MT-off and T1w images were included in the “Create hMRI maps” module 

to measure MTsat and R1 maps with default parameters. Finally, non-brain voxels were removed 

from the T1w maps using FSL’s brain extraction tool (bet) (Jenkinson, 2005). The T1w brain masks 

were then applied to the MTsat and R1 maps. The MTsat and R1 maps were registered and warped 

(rigid, linear) using the MPRAGE image that was previously warped to the DWI space (within-

subject) as a target, with antsRegistration (Avants et al., 2009). The MTsat and R1 maps 

were then warped to the population template using the previously generated transforms. 

White matter hyperintensities 

White matter hyperintensities (WMH) were segmented using the Brain TISsue segmentatiON 

(BISON) classifier (Dadar & Collins, 2021). Prior to BISON segmentation, the T1w and FLAIR 

images were preprocessed with the minc-toolkit and ANTs packages. Initially, the images were 
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denoised using the mincnlm tool. Then, the FLAIR maps were co-registered to the T1w images 

using the minc-toolkit function bestlinreg_s2. Temporary masks were generated via 

minresample to facilitate non-uniformity correction with nu_correct. Intensity 

normalisation was conducted with the volume_pol tool. The FLAIR images were then registered 

to stereotaxic space using bestlin_reg and resampled with itk_resample (McCormick et 

al., 2014). Brain voxels were extracted using mincbeast, followed by nonlinear registration of 

the FLAIR images to the T1w maps using antsRegistration (Avants et al., 2009). Finally, 

the BISON classifier was applied to the preprocessed FLAIR and T1w images to segment WMH. 

Further details on the performance and methods of the BISON classifier can be found in (Dadar & 

Collins, 2021).  

5.3.4 Computing multivariate distance metric (D2) 

The MVComp toolbox was used to compute D2 from the 12 WM features (FA, AD, RD, MD, 

ICVF, ISOVF, OD, AFDtotal, meanFC, sumFDC, MTsat and R1) (Tremblay, Alasmar, et al., 

2024b). Prior to D2 calculation, the effect of age was removed from feature maps by fitting a linear 

model predicting voxel-wise metric values from age using LinearRegression in 

sklearn.linear_model and computing the residuals. Residualized maps were then used for 

D2 calculation.  

D2 was computed voxel-wise between each subject of the CAD group and the reference, consisting 

of the group average of the HCs. The D2 scores obtained thus indicate the extent of deviation in 

WM microstructure from a healthy reference. Group averages were computed from the reference 

group (N = 36) for each of the 12 metrics using the compute_average function of MVComp. 

The norm_covar_inv function was then used to compute the covariance matrix (s) and its 

pseudoinverse (pinv_s) from the reference. A figure showing the correlations between MRI metrics 

was generated using the correlation_fig function which uses the covariance matrix (s) to 

calculate correlations (Figure 1). D2 was then computed within MVComp according to this 

equation:  

𝐷2 = (𝑥 − 𝑚)𝑇𝐶−1(𝑥 − 𝑚), 
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where x is the vector of data for one observation (e.g., one subject), m is the vector of averages of 

all observations for each independent variable (i.e., MRI metrics), and C-1 is the inverse of the 

covariance matrix. The model_comp function allows the computation of voxel-wise D2 between 

each subject and the reference average within a specified mask of analysis. Here, a WM mask 

generated from the average of the WM volumes of the five-tissue-type images of all participants 

was provided and the threshold was set at 0.97 to limit partial volume effects. The model_comp 

function yields a matrix containing the D2 data of all subjects (of size: number of voxels x number 

of subjects). The dist_plot function was then used to obtain a D2 map (in nifti format) for each 

subject. The workflow for D2 calculation is illustrated in Figure 1. 

D2 maps were also computed for subjects of the HC group using a leave-one-out approach to 

exclude the subject under evaluation (i.e., comparing each subject of the HC group to all other 

HCs). This is done within MVComp using the exclude_comp_from_mean_cov option of 

the model_comp function. 

Because we wanted the reference to represent a healthy state, subjects of the HC group that were 

identified as outliers in D2 (i.e., mean D2 in whole WM > 2 SD) were excluded from the reference 

and from further analyses (N= 2). D2 was re-computed with this new reference (N= 34) for both 

the CAD and HC groups (using the leave-one-out approach). 
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Figure 1. Workflow for computing D2. a) For subjects of the CAD group, D2 is computed by subtracting the data of each patient i 

and the reference sample, here the average of the HC group (N= 34). b) For subjects of the HC group, D2 is computed by subtracting 

the data of each control i and the reference sample, here the average of the HC group excluding the subject under evaluation (HC 

group - control i). c) The correlation matrix shows relationships between MRI metrics (residualized for age), highlighting the 

importance of accounting for covariance between variables in multivariate frameworks. d) Example D2 map of a patient. The 

intensity indicates the amount of deviation in the WM microstructure of this subject relative to the reference, at each voxel. 
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5.3.5 Extracting D2 in arterial territories 

A cerebral arterial territories atlas (C.-F. Liu et al., 2023) was used to define regions of interests 

(ROIs) in WM (Figure 2). The 3D MR-based cerebral arterial atlas was registered and warped to 

the D2 maps space using antsRegistration (Avants et al., 2009). Average D2 values were 

then calculated across WM voxels in the left and right anterior cerebral artery (ACA), middle 

cerebral artery (MCA) and posterior cerebral artery (PCA).    

5.3.6 Cardiorespiratory fitness assessment 

Participants completed a maximal cardiopulmonary exercise test (CPET) on an electromagnetic 

braking ergometer bicycle (Ergoline 800s, Blitz, Germany) to measure peak oxygen uptake 

(VO2peak). The CPET protocol was individualised according to each subject’s level of physical 

activity. An electrocardiogram (ECG) (GE Healthcare, Case ® Marquette, Missouri, USA) was 

monitored by a nurse and reviewed by a cardiologist. Blood pressure and a Borg perception scale 

(ranging from 6 to 20) were assessed every 2 to 3 minutes. The CPET began with a 3-minute warm-

up at 10-20 watts, maintaining a cadence of 60 to 80 revolutions per minute. After the warm-up, 

the power was increased by 10 to 15 watt every minute until the subject could no longer maintain 

the cadence or met any of the following stopping criteria: 1) ECG abnormality or angina, 2) oxygen 

desaturation, 3) a reduced systolic blood pressure despite increase in workload or hypertensive 

response, 4) a rate of perceived exhaustion > 17, or 5) the subject’s desire to stop. A 5-minute 

recovery period was performed including 2 minutes of active recovery (10-20 watts) and 3 minutes 

of passive recovery. Oxygen uptake was continuously measured using a gas analyser (Quark CPET, 

COSMED, Rome, Italy) connected to a leak-free face mask. Participants’ relative VO2peak 

(ml/kg/min) was determined by measuring the highest oxygen consumption over a 10-second 

interval.  

5.3.7 Cognitive assessment 

A comprehensive neuropsychological assessment was administered in the following order. The 

Montreal Cognitive Assessment (MoCA) was first conducted to assess global cognition. The Rey 

auditory verbal learning test (RAVLT) was conducted through 5 learning trials of a 15-word list to 

assess verbal and auditory episodic memory. Participants attempt to recall as many words from this 

list as possible for each of the 5 trials, after an interfering list (immediate recall), and after a 30-
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min delay (delayed recall). The Digit Span forward and backward tests were then administered by 

asking participants to recall series of digits, starting with short sequences and then progressively 

increasing their length. Participants must repeat the series in the same order for the forward test 

and in the inverse order for the backward part. Both scores were used as proxies of working 

memory. In the Digit Symbol Substitution Test (DSST), measuring processing speed, participants 

have to draw the appropriate symbol corresponding to a number between 1-9, using a response key 

with 9 digit-symbol pairs. The score is the number of symbols drawn in 120 seconds. The Delis-

Kaplan Executive Function System (D-KEFS) Color Word Interference Test (CWIT) test consists 

of 4 conditions: color naming, reading, inhibition, and switching (Delis et al., 2001). In the color 

naming condition, participants have to name the color of colored squares presented to them as 

quickly as possible. In the reading condition, a page containing the words “red,” “green,” and 

“blue” printed in black ink is presented to participants who have to read the words. In the inhibition 

condition, participants have to inhibit reading and instead name the color of the ink as a page with 

the words “red,” “green,” and “blue” printed in incongruent colors is presented to them (Stroop, 

1935). Lastly, the switching trial requires participants to alternate between reading and color 

naming (inhibiting reading) as they are presented with a page similar to the preceding condition 

but with half the words enclosed in boxes. When enclosed within a box, the words should be read 

and when they are not enclosed, the color of the ink should be said instead. For each condition, 

participants should read all words, or name all colors, as quickly as possible without making 

mistakes. The first two conditions assess processing speed and the last two measure different 

aspects of executive function (inhibition, flexibility and switching) (Lezak, 2004). The Trail 

Making Test (TMT) part A, which measures processing speed, and part B, a measure of executive 

function, was administered last. In part A of this test, participants have to link numbers from 1-25 

in the ascending order as quickly as possible. For part B, participants must link numbers and letters, 

alternating between a number and a letter in ascending and alphabetical order.  

All scores were transformed into standardized z-scores and 4 composite scores, representing 

different cognitive domains, were then created using those z-scores: (1) working memory = ((DS 

forward + DS backward scores)/2); (2) processing speed = ((DSST+ TMT A+ CWIT 1+ CWIT 2 

scores)/4); (3) executive functioning = ((TMT B+ CWIT 3+ CWIT 4 scores)/3); and (4) verbal 

memory/episodic memory ((immediate recall + delayed recall + total words scores recalled during 

the 5 learning trials from the RAVLT test)/3) (Desjardins-Crépeau et al., 2014).   
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5.3.8 Statistical analyses 

As a sanity check, we performed independent sample t-tests to compare D2 in each arterial territory 

and in the whole WM between CAD and HCs. Given the unequal variances of the data (assessed 

by Levene’s test p < 0.05), Welch’s t-test was employed to compare the means between groups and 

one-tailed t-tests were used because patients were expected to have higher D2 values than HCs.  

Because there was an age difference between groups (p < 0.05), special attention was given to 

account for age in analyses. D2 maps were created from age residualized feature maps, and should 

thus be free of any age effects. Age was also regressed out from composite scores of cognition and 

from VO2max scores and the residuals were used in all subsequent analyses. Group differences in 

residuals of cognitive composite scores and of VO2max scores were tested using independent 

sample t-tests (Student’s t).  

Linear regression models were then used to assess the relationships between fitness (VO2max), 

cognition, and D2 in each arterial territory and in the whole WM, using age residualized scores and 

with sex and education as covariates. Analyses with cognition were focused on composite scores 

reflecting cognitive domains of interest (e.g., significant group difference). Linear regression 

models were also used to evaluate the relationship between fitness, cognition and WMH volume. 

Regression analyses were performed on the whole sample.  

To evaluate whether fitness had a differential effect on WM health in CAD patients, we added the 

interaction of Group * VO2 residuals to the regression model. Similarly, we evaluated whether D2 

had a differential effect on cognition by adding a group interaction term to significant models. 

5.3.9 Determining features contribution to D2  

The relative contributions of each feature (i.e., MRI metric) to D2 in the whole WM, as well as in 

each arterial territory, were extracted using the return_raw option of the model_comp 

function in MVComp (Tremblay, Alasmar, et al., 2024b). The return_raw option yields a matrix 

of size (number of voxels) x (number of metrics) x (number of subjects). Contributions were then 

summarised by averaging distance values across voxels within the mask and across subjects and 

dividing by the total distance (for all features), resulting in one distance value per metric, expressed 
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as a percentage, for each region. This analysis provides a measure of the importance of each metric 

in determining D2. 

 
Figure 2. Arterial territories within the WM mask, overlaid on the group average MPRAGE T1w image. 

5.4 Results 

5.4.1 Group differences 

There were significant group differences in WM microstructural deviations (WM D2) in the whole 

WM (Welch’s t (47.3) = -1.83, p = 0.037) and in several arterial territories, indicating that CAD 

patients had higher D2 values than HCs (Figure 3). D2 was significantly different between groups 

in the right ACA (Welch’s t (58.3) = -2.46, p = 0.008) and near significant on the left (Welch’s t 

(74.5) = -1.62, p = 0.055). The same trend was observed in the MCA, with patients having higher 

D2 values, but it did not reach statistical significance (left: Welch’s t (44.5) = -1.41, p = 0.082; 
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right: Welch’s t (46.9) = -1.59, p = 0.059). D2 was statistically different in both the left and the 

right PCA (left: Welch’s t (58.8) = -1.95, p = 0.028; right: Welch’s t (58.1) = -2.70, p = 0.005). 

In terms of fitness and cognitive measures, HCs had significantly higher fitness (VO2 residuals) 

than CAD patients (Student’s t (76.0) = 5.269, p < 0.001). Executive function (residuals) was also 

greater in HCs (Student’s t (75.0) = 2.006, p = 0.048) and there was a trend for processing speed 

(Student’s t (74.0) = 1.740, p = 0.086) in the same direction. There were no group differences in 

working memory and in episodic memory (p = 0.499 and p = 0.536, respectively). Further analyses 

were focused on executive function and processing speed. 

5.4.2 Features contribution to D2 

In the whole WM, D2 was driven mainly by R1 (14.6%), MTsat (11.2%), and RD (10.4%). In the 

left ACA, R1 (13.4%), ICVF (12.3%), and FA (10.7%) contributed the most to D2. D2 in the right 

ACA was driven mainly by R1 (18.0%) and MTsat (10.3%). In the left MCA, R1 (14.1%), RD 

(12.0%), and MTsat (10.7%) were the metrics that contributed the most to D2. In the right MCA, 

R1 (15.0%), MTsat (14.5%), and RD (10.7%) contributed most to D2. D2 in the left PCA was 

mainly driven by R1 (21.7%) and MTsat (10.5%), while it was driven by R1 (23%) and FA (10.4%) 

in the right PCA. Overall, R1 was an important contributor in all regions and MTsat was also an 

important metric for several arterial territories (4 out of 6) in addition to the whole WM. 
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Figure 3. Mean and median D2 in whole WM (a) and in each arterial territory (b-g) for each group. Significant group differences 

where CAD > HC are indicated with an asterisk. Pie charts show the relative contribution (%) of each MRI metric to D2 in each 

region. The metric name is indicated only for the most important contributors (those that account for >10%), for clarity. 
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5.4.3 Links between WM D2, fitness, and cognition 

Fitness was negatively associated with D2 in the whole WM (t = -2.206, puncorr. = 0.031) and in the 

left PCA (t = -2.41, p = 0.019), suggesting that participants with higher fitness had lower WM D2 

(i.e., less WM alterations) (Figure 4a,c). The association between fitness and D2 in the right MCA 

was also nearly significant (t = -1.924, p = 0.058). Sex and education were not significant in these 

analyses (p > 0.05).  

D2 in the left MCA was negatively associated with processing speed (t = -2.255, p = 0.027), 

indicating that participants with better performance in this cognitive domain had lower WM D2 

(Figure 5a). Sex was also significant (t = -2.143, p = 0.036) and education approached significance 

(t = -1.943, p = 0.056). 

There were no significant associations between D2 and executive function (p > 0.05). A subject of 

the CAD group who was identified as an outlier (whole WM D2 > 2 SD from the mean) was 

excluded from those analyses. 
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Figure 4. Associations between VO2max and D2 in whole WM (a-b) and in the left PCA (c-d) in the whole sample. Plots in the right 

panel (c, d) show the distribution of the data and the regression line for each group. 
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Figure 5. Associations between D2 in the left MCA and processing speed in the whole sample. 

5.4.4 Differential effects in patients vs controls 

Visual inspection of the scatterplot between VO2 residuals and D2 in the whole WM suggests the 

relationship was stronger in CAD than in HC (Figure 4b). However, the interaction was non-

significant (p > 0.05), and all main effects became non-significant when adding Group and 

Group*VO2 interaction terms to the regression model.   

Similarly, the relationship between D2 in the left MCA and processing speed appeared stronger in 

CAD patients (Figure 5b). However, the interaction was non-significant (p > 0.05), and all main 

effects, except sex (p = 0.046), became non-significant when adding Group and Group*D2 in left 

MCA interaction terms to the regression model. 

5.4.5 Links between WMH, fitness and cognition 

Total WMH volumes were correlated with MoCA scores (t = -2.517, puncorr. = 0.014), indicating 

that participants with lower cognitive performance had more WM lesions (Figure 6). Education 

was also significant (t = 2.893, p = 0.005), where greater MoCA scores were associated with higher 

education. The associations between cognitive composite scores and WMH volumes, as well as 

between fitness and WMH were non-significant (p > 0.05).  
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Figure 6. Associations between WMH volumes and MoCA in the whole sample. 

5.5 Discussion 

In this study, we demonstrated links between fitness, cognition and WM microstructural deviations 

from a group of healthy older adults in a population of CAD patients. Deviations in WM 

microstructure were quantified using a novel multivariate approach that allows the integration of 

several MRI measures of WM into a single score indicative of the extent of abnormality.  

5.5.1 WM microstructural alterations in CAD patients 

Cardiovascular disease is known to impact several aspects of brain health, including WM 

(Barekatain et al., 2014; Haight et al., 2018; Launer et al., 2015; Vuorinen et al., 2014). Here, we 

found that CAD patients had a significantly greater extent of WM alterations relative to healthy 

subjects in several arterial territories (right ACA, bilateral PCA), as well as in the whole WM 

(Figure 3). Very few studies have investigated WM microstructure in CAD patients (Poirier et al., 

2024; Santiago et al., 2015) as most have been focused on macrostructural changes in WM such as 

the volume of WM lesions (WMH) (Johansen et al., 2021; Vidal et al., 2010; Vuorinen et al., 2014). 

In the study by Poirier and colleagues (2024), impairments in WM microstructure were observed 

in several major WM tracts, including the fornix, body of the corpus callosum, superior corona 

radiata and superior fronto-occipital fasciculus, in CAD patients. Also of interest, loss in WM 
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integrity (i.e., decreased FA and increased MD) in widespread WM areas (corpus callosum, 

bilateral internal capsule/corona radiata/posterior thalamic radiation/inferior fronto-occipital 

fasciculus and right inferior/superior longitudinal fasciculus) have been reported in subjects with 

vascular cognitive impairment (H.-J. Chen et al., 2018). However, since our study is the first to 

characterize WM integrity in arterial territories in the context of vascular disease, we cannot 

directly compare our findings with others. Characterizing white matter (WM) changes in specific 

arterial territories is crucial, as WM damage in vascular disease often stems from episodes of 

misery perfusion and transient hypoxia. These events are likely to occur in distinct arterial regions, 

particularly where small vessels at the end of the vascular tree experience insufficient perfusion 

(Inoue et al., 2023; O’Rourke & Hashimoto, 2007). The dearth of evidence in this field calls for 

further research effort focused on comprehensively evaluating the impact of CAD on brain WM 

health.  

5.5.2 Links with fitness 

Cardiorespiratory fitness (VO2max) was negatively associated with WM alterations (D2) in the 

whole WM, as well as in the left posterior cerebral artery (PCA) territory in the whole sample 

comprising CAD patients and HCs (Figure 4). This indicates that individuals with greater WM 

deviations from a healthy reference had lower levels of fitness. In line with the association we 

found between fitness and lower whole WM D2, several studies have reported a positive effect of 

cardiorespiratory fitness on global WM integrity (Maleki et al., 2022; Sexton et al., 2016; Zhu et 

al., 2015). Although no other studies have focused on arterial territories, it is interesting to note 

that a study found positive associations between fitness and WM health (quantified using FA) in 

multiple WM posterior regions such as the splenium, sagittal stratum, posterior corona radiata, and 

superior parietal white matter in normal aging (Hayes et al., 2015), which is consistent with our 

findings in the PCA territory.   

Exercise-based interventions are promising tools in the prevention of cognitive decline and 

dementia and may be particularly beneficial for CAD patients. In this study, we observed a steeper 

association slope between VO2max and whole WM D2 in CAD patients, indicating that fitness 

may have a greater impact on WM health in patients than in healthy controls. The Group*VO2 

interaction was however not statistically non-significant, perhaps due to the small sample size. 

Moreover, in a study using an exercise intervention for cardiac rehabilitation in ischemic heart 
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disease patients, improvements in WM integrity were observed following intervention (Poirier et 

al., 2024). Our findings and that of others (Poirier et al., 2024) thus suggest that cardiorespiratory 

fitness and physical activity may act as protective mechanisms for WM health.  

5.5.3 Links with cognition 

WM abnormalities have been suggested to underlie cognitive impairments in aging and in vascular 

diseases (H.-J. Chen et al., 2018; Filley & Fields, 2016; Santiago et al., 2015; Vernooij et al., 2009). 

Santiago and colleagues (2015) found that FA in the left parahippocampal cingulum and inferior 

fronto-occipital fasciculus was positively associated with executive function and processing speed 

in CAD patients. Although we did find a significant group difference in executive function, WM 

D2 was not significantly associated with executive function in any of the arterial territories. We 

however found an association between WM D2 in the left MCA and processing speed, where 

participants with a greater amount of microstructural alterations had poorer performance in this 

cognitive domain (Figure 5). Other studies have reported associations between processing speed 

(e.g., reaction time) and WM microstructure in cognitively unimpaired older adults, where 

decreased FA was found to mediate the relationship between age and processing speed (Kerchner 

et al., 2012). Together, our findings support the idea that WM alterations are an important part of 

the pathophysiology behind vascular cognitive impairment. 

5.5.4 Biological mechanisms underlying WM alterations 

We found that WM alterations were greater in CAD patients than in HC in all regions, reaching 

statistical significance in the whole WM as well as in 3 arterial territories (right ACA, left and right 

PCA). The MCA territory is known to be most commonly affected in ischemic stroke and in CAD, 

likely due to its direct connection to the internal carotid artery, which is a common site of 

atherosclerosis (Mathur et al., 1963; Vigen et al., 2020). Although group differences in the MCA 

were non-significant, we found a significant association between D2 in the left MCA and 

processing speed, which suggests that perhaps subtle impairments in this region may be detrimental 

to cognition. 

Extracting the contribution of each MRI feature to D2 in each of these regions revealed that 

differences in myelin content (as measured by R1 and MTsat) was likely a primary mechanism 

driving microstructural alterations in CAD patients (Figure 3). Axonal degeneration may also have 
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been an important mechanism in the left ACA where ICVF was also a strong contributor. To our 

knowledge, no other studies have examined changes in myelination specifically in CAD patients. 

However, lower myelin content has been reported in older adults with cardiovascular risk factors 

such as hypertension and obesity (Trofimova et al., 2023). On the other hand, a study examining 

the impact of arterial stiffness found an association with axonal degeneration rather than 

demyelination (Badji et al., 2019). Overall, our findings suggest that axonal and myelin loss may 

occur concurrently in CAD. More studies are however needed to characterize WM health in this 

specific population. 

5.5.5 Limitations & Future directions 

A strength of our study is the use of advanced models of WM microstructure that yield several 

measures of WH health, including measures of axonal density, neurite dispersion and myelin 

content. These measures were integrated using a multivariate approach developed by our group 

that yields a single score of deviation (Tremblay, Alasmar, et al., 2024b). The interpretation of this 

score as a measure of the extent of WM abnormality was facilitated by the presence of a well-

defined control group, composed of healthy individuals. We were also the first to investigate WM 

microstructural health in arterial territories using a novel 3D MR-based atlas (C.-F. Liu et al., 

2023).  

However, our study also suffered from some limitations. The small sample size gave us limited 

statistical power, which may have impaired our ability to detect associations between fitness, 

cognition, and WM alterations. The sample size also did not allow the investigation of more 

complex interactions between variables. For example, there are known sex effects in the 

relationships between fitness, cognition, and WM that could be explored in a larger sample 

(Intzandt et al., 2023). In future analyses, participants from another study (ActionCardioRisk) will 

be added. These participants are at an intermediate disease stage between the HCs and CAD 

patients as they do not have overt disease, but they have a certain number of cardiovascular risk 

factors and are physically inactive. Their addition would thus allow for the characterization of a 

broader spectrum of the health - disease continuum in addition to increasing statistical power. Here 

we included subjects of the control group in the regression analyses as those that display higher 

than average (i.e., the average of all other subjects of the control group) WM D2 would represent 

individuals that have an intermediate level of microstructural health. As such, by including the 
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whole sample we were able to model both ends of the health - disease spectrum, as well as identify 

individuals of the HC group that are deviating from the healthy state, indicating potential 

subclinical vascular brain disease. 

5.6 Conclusion 

In summary, this study implemented a novel multivariate approach to assess WM health in both 

HCs and CAD patients. Our findings revealed that CAD patients had higher D2 values, indicative 

of greater WM deviation from a healthy reference group, compared to HC in the whole WM, right 

ACA and both left and right PCA. Additionally, fitness and cognition were linked to D2 values in 

specific arterial territories across all participants. Together, these results suggest that heightened 

WM abnormalities observed in CAD patients may elevate the risk of cognitive impairment. Thus, 

improving fitness could play an important role in managing CAD by promoting better WM health. 

Future research should investigate the effects of exercise interventions on WM integrity in 

individuals at risk or diagnosed with CAD. Research in this field is paramount as the progression 

from subclinical vascular disease to vascular cognitive impairment and dementia may be avoided 

through proper intervention (Inoue et al., 2023; Middleton et al., 2008; Moorhouse & Rockwood, 

2008; Poirier et al., 2024). 
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CHAPTER VI: General discussion 
 
The overarching goal of this thesis was to understand how the brain’s white matter (WM) 

microstructural health is altered in older adults at risk of dementia and how this impacts cognition. 

This is of particular importance as WM, which supports cognitive functioning and virtually all 

behaviors through efficient neural transmission, remains plastic throughout life (Sampaio-Baptista 

& Johansen-Berg, 2017) and can be remodeled by various interventions such as cognitive training 

and exercise (Konwar et al., 2023; McPhee et al., 2019; Mendez Colmenares et al., 2021; Poirier 

et al., 2024; Roig-Coll et al., 2024; Stephen et al., 2020). Interestingly, interventions that promote 

neuroplasticity are also known to be beneficial in slowing cognitive decline and reducing dementia 

risk (McPhee et al., 2019; Mendez Colmenares et al., 2021; Poirier et al., 2024; Roig-Coll et al., 

2024; Stephen et al., 2020). Measuring WM microstructural properties may thus offer a promising 

avenue for the early detection of abnormalities, which would allow interventions to be initiated 

earlier, as well as to monitor progression and assess improvements in response to treatment. Despite 

the importance of WM in supporting normal behavioral function and the promises WM plasticity 

holds as a target in interventions, the evidence on WM plasticity is rather scarce. For instance, 

while there is evidence for WM changes with learning, we have limited knowledge regarding the 

time scales at which plastic changes in WM can occur, and the specific alterations that occur at 

different stages of learning, even in healthy adults.  

Manuscript one thus aimed at characterizing the temporal dynamics of changes in WM 

microstructure across the learning stages of a motor sequence learning task, a common paradigm 

used to study neuroplasticity due to its straightforward implementation. Multiple MRI scans at 7 

Tesla were used to assess longitudinal changes in WM during a 5-days learning period and 

following a retention period. Our findings provided evidence for highly dynamic WM plasticity in 

the sensorimotor network, where most changes occurred between the two first days of training. 

The high-resolution 7T acquisition and longitudinal study design allowed for a temporally- and 

spatially-specific characterization of learning-induced WM changes. However, the single-shell 

DWI acquisition did not allow for advanced modeling, and we were thus limited to the use of DTI, 

a simplistic model yielding metrics that do not allow specific physiological interpretations (Riffert 
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et al., 2014). Therefore, in this study, we were unable to assign the changes observed in imaging 

metrics to a specific biological mechanism (i.e., myelination, neurite density, or dispersion). 

The ambiguity intrinsic to the DTI model can be partly addressed using more comprehensive 

diffusion methods. As most modern DWI acquisitions are multi-shell, it is now often possible to 

fit advanced models, which yield more readily interpretable metrics. However, with the rapid 

growth in the number of available modeling approaches, we were faced with a plethora of different 

methods to choose from (Novikov et al., 2018). Knowing each method comprises its own set of 

assumptions and biases, but also provides some insight into the underlying microstructure, the use 

of a single model is often limiting (Tardif et al., 2016; Uddin et al., 2019). We thus set out to 

develop a tool that would allow the integration of multiple MRI measures, leveraging the strengths 

of each method, while mitigating their weaknesses. The Mahalanobis distance (D2), a multivariate 

measure of deviation relative to a reference distribution, appeared as an ideal candidate as it is 

highly versatile, making it applicable for a wide array of research questions, and because it 

inherently accounts for covariance between measures. This makes it ideal for combining measures 

which are likely to be highly correlated, such as multiple metrics derived from the same DWI data. 

We created an open-source toolbox to facilitate the computation of D2 in neuroimaging: the 

MultiVariate Comparison (MVComp) toolbox (https://github.com/neuralabc/mvcomp). The 

second manuscript presents the toolbox, using example cases to demonstrate its usage and to 

validate the approach in a large sample of young healthy adults. Namely, we showed that D2 

meaningfully reflects the underlying WM microstructure, in line with known neuroanatomy 

(Aboitiz et al., 1992; Chao et al., 2009; Hofer & Frahm, 2006). Work by our group also 

demonstrated the use of D2 in the study of brain-behaviour associations in normal subjects 

(Alasmar et al., 2024). 

The subsequent manuscripts leveraged the MVComp toolbox to comprehensively assess WM 

alterations in two different populations of older adults at risk of dementia: individuals with a 

familial history of AD and patients with coronary artery disease. Manuscript 3 sought to 

characterize the associations between risk factors of AD, mostly cardiometabolic factors, and WM 

alterations, using D2 as a measure of deviation, in each sex and each genetic risk group (APOE4+ 

and APOE4-). Evaluating these associations through separate analyses allowed us to identify sex-

specific and APOE genotype-related patterns. Contrary to our hypothesis, similar risk – WM 

https://github.com/neuralabc/mvcomp
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associations were observed in males and females, but the association pattern was stronger in males. 

Considering the well-documented sex differences in WM microstructure (Kanaan et al., 2012b; 

van Hemmen et al., 2017), and in the aging trajectory of myelin (Toschi et al., 2020), we were 

expecting different risk factors to impact WM in each sex. However, our male sample size may 

have been too small to observe such differences. In our sample, the APOE genotype had a stronger 

effect on the risk – WM relationships. We found a pattern unique to APOE4 carriers, where LDL-

cholesterol seemed to have a detrimental effect only in carriers. Although the literature on the 

effects of LDL on WM health is inconsistent, the fact that APOE is a cholesterol transporter 

supports these differential effects depending on APOE genotype found by us and others (Ye et al., 

2024). Further analysis of metric contributions to D2 indicated that myelination was likely the 

primary mechanism driving microstructural alterations (D2). Additionally, exploratory analyses 

revealed that cognition was related to D2 only in subjects with high genetic risk (APOE4+). 

Together, our findings support the theory that the combined effects of genetic and cardiometabolic 

risk factors exacerbate age-related myelin breakdown and accelerate cognitive decline (Bartzokis, 

2004b, 2011; Burzynska et al., 2023). However, the absence of a control group without familial 

history to use as a reference complicated the interpretation of results in this study. This limitation 

was addressed in the fourth study. 

Lastly, in the fourth manuscript, we further investigated how cardiovascular risk impacts WM 

microstructural health and cognition, this time in individuals with coronary artery disease (CAD). 

Since cardiovascular diseases such as CAD are known to increase the risk of dementia (Kovacic et 

al., 2012; Polidori et al., 2012), studying this population may provide another window into the early 

disease stage. WM microstructure deviations from a healthy state were quantified using D2, with 

subjects of a healthy control group as the reference. The presence of a well-defined control group 

in this study facilitated the interpretation of results which had been a limitation in Study 3. As 

expected, we found that the extent of WM alterations was greater in CAD patients than in healthy 

controls in the whole WM, as well as in defined arterial territories. We also found that fitness and 

cognition were linked to WM D2 in specific arterial territories. To our knowledge, this study is the 

first to investigate WM health using regions defined by an arterial territories atlas (C.-F. Liu et al., 

2023). Since vascular impairment likely progresses from large arteries entering the brain that then 

propagates through cerebral arteries (Inoue et al., 2023; O’Rourke & Hashimoto, 2007), we believe 
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this approach can offer valuable insights into the pathophysiological mechanisms underlying WM 

changes in this population. 

 

6.1 Contributions of this thesis 

6.1.1 Studying white matter with a multivariate approach  

In manuscript one, we have shown that the use of a single MRI technique (i.e., DWI) and model 

(i.e., DTI) makes interpretation of underlying biological mechanisms very challenging. Although 

still the most commonly used model, DTI yields metrics that are particularly ambiguous (Curran 

et al., 2016; Riffert et al., 2014). For instance, we found both increases and decreases in FA 

following training on a motor sequence learning task. FA is often interpreted as a measure of WM 

integrity. However, FA is a summary measure, and several different fibers configurations can lead 

to the same FA value (Curran et al., 2016). Similarly, the same change in FA, say a decrease, can 

either be due to a loss in neurite density or to the development of a secondary fiber population in a 

direction perpendicular to the main orientation. FA, and other DTI metrics, are thus highly 

unspecific and their interpretation will often be guided by other factors, such as behavioral data. 

For instance, decreased FA associated with improved performance will likely be interpreted as an 

increased orientation dispersion rather than neurite loss. 

More advanced models can improve specificity in the characterization of microstructural 

properties. For example, with the NODDI model, changes in density can be disentangled from 

changes in orientation dispersion, two factors that impact FA (H. Zhang et al., 2012a). However, 

NODDI also has some limitations and relies on a specific set of assumptions, and this is the case 

for every model of microstructure (Novikov et al., 2018). Realizing no single model would give us 

a perfect, unbiased, measure of the underlying microstructure, led us to reflect on how to best 

integrate information from different methods, while considering the redundancy between metrics. 

By combining several MRI metrics, from different DWI models and different modalities, we were 

able to leverage the information given by each metric, capturing a more holistic view of the 

microstructure, while remaining agnostic to the model. Another advantage of multivariate 

approaches is their higher sensitivity compared to univariate approaches (Avants, Duda, et al., 

2008; Naylor et al., 2014; Owen et al., 2021). Because we were interested in detecting early, 
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potentially subtle, changes in WM microstructure in at-risk individuals, this high sensitivity was 

key. We opted for the Mahalanobis distance (D2), because of its flexibility and because it 

inherently accounts for covariance between metrics. We made its use more widely accessible 

through the creation of an open-source toolbox: MVComp (Tremblay, Alasmar, et al., 2024a). 

Study 2 details the comprehensive ways in which the D2 framework can be applied in 

neuroimaging studies. Importantly, using an unsupervised machine learning clustering technique, 

we showed that D2 meaningfully reflects the underlying microstructure as clusters obtained were 

in close accordance with known topography of the corpus callosum (Aboitiz et al., 1992; Chao et 

al., 2009; Hofer & Frahm, 2006). To assess whether D2 performed better than single metrics, we 

applied the same clustering technique to individual MRI measures. The segmentations we obtained 

appeared noisier (i.e., individual clusters not located in contiguous regions) than those obtained 

from D2 (Appendix II). This suggests that the integration of information from several WM 

microstructure MRI measures better reflects the underlying neuroanatomy than any of those 

measures alone and that D2 constitutes a practical mean of combining this information. 

In study 3, we used the D2 framework to obtain a comprehensive characterization of WM 

microstructural health, combining DWI and MPM metrics, and conducted a multivariate statistical 

analysis (i.e., PLS) to investigate the links between WM D2 and several risk factors of AD. 

Through this double multivariate approach, we were able to explore how the combined effects of 

multiple risk factors contribute to alterations in WM microstructure. Using the metrics contribution 

extraction feature of the MVComp toolbox, we were also able to show that myelination was likely 

the primary mechanism driving WM alterations, as MTsat and R1 were the most frequent high 

contributors in significant clusters. Univariate, or single model, approaches often don’t allow such 

detailed interpretations as researchers are typically limited to a few select MRI measures to avoid 

multiple comparisons issues. Lastly, in study 4, another application of MVComp was demonstrated 

in a two-samples study, where the healthy control group was used as the reference. In this case, D2 

can be interpreted in a more straight-forward manner, with high values reflecting a greater degree 

of abnormality.   

6.1.2 Dynamic white matter changes in health and disease 

The microstructure of WM changes highly dynamically in response to both enriching (e.g., learning 

a new task) and damaging (e.g., myocardial infarction) exposures. In Study 1, we demonstrated 
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how quickly microstructure can be remodeled following learning of a motor sequence task – as fast 

as within days – indicating cellular changes may start occurring immediately after, perhaps even 

during, training (Fields, 2015; Hofstetter et al., 2013; Wake et al., 2011). We also showed that the 

time course of WM changes differed in different WM regions, which may reflect the involvement 

of specific networks in distinct aspects of learning. Interestingly, we found that structural changes 

in WM preceded changes in resting-state functional connectivity in a region involved in the task 

(Jäger et al., 2021). This suggests that modulation of the supporting connections may be necessary 

to allow for greater communication as WM tracts form the structural basis of connectivity, linking 

regions within resting-state networks (Fields, 2015). Overall, our study adds to the literature on 

short-term WM plasticity and highlights specific spatial and temporal patterns over the course of 

motor learning. 

Knowing that WM microstructure can be altered in such a dynamic manner, it becomes evident 

that the use of a single scan in cross-sectional studies, such as Study 3 and 4, provides only a limited 

snapshot of microstructural health along an individual’s lifespan. Nevertheless, a cross-sectional 

design appeared appropriate as a first step in understanding the complex relationships between WM 

health and several risk factors of AD, as well as to disentangle the effects of sex and APOE4 genetic 

risk on these relationships, using a novel multivariate score (D2). Moreover, since multivariate 

methods are dependent on several types of data, obtaining a complete dataset can be challenging, 

even in cross-sectional studies. This can result in the exclusion of several participants due to 

missing or poor-quality data. This issue would likely be exacerbated in longitudinal studies 

although data imputation methods could be used to replace missing data.  

The dynamic nature of WM changes in response to adverse factors could thus not be assessed in 

Study 3 and 4, due to the cross-sectional design employed. However, we demonstrated that WM 

microstructure is altered not only following major events such as myocardial infarction (Study 4), 

but also as a result of subclinical conditions such as hypertension, dyslipidemia, and hyperglycemia 

(Study 3). This underscores the vulnerability of WM microstructure to even subtle alterations in 

biomarkers such as blood glucose and cholesterol.  
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6.1.3 Comparing AD- and vascular-related impairments in white matter  

Alzheimer’s disease and cerebral small vessel disease are the two most common causes of dementia 

(Cao et al., 2020; Ritchie & Lovestone, 2002). WM alterations have been reported in both dementia 

types (i.e., AD and vascular dementia), as well as their prodromal stage, albeit in different WM 

regions (Tranfa et al., 2024). Limbic tracts disruptions have been associated with AD pathology 

and APOE4, while damage to commissural, associative, and projection tracts has been related to 

cardiovascular risk and cerebral small vessel disease (Tranfa et al., 2024). This thesis examined 

WM microstructural health in individuals genetically predisposed to AD because of a familial 

history (Study 3) and in those perhaps more at risk of vascular cognitive impairment and dementia 

because of coronary artery disease (Study 4). While we did not tailor our study designs and analyses 

methods to explicitly compare findings between the two studies, some tendencies can be noted in 

the spatial localization of our findings. In Study 3 (AD-related), some of the significant clusters we 

found included parts of the cingulum, which is considered a limbic tract, but there were also several 

clusters in regions that are thought to be more vascular-related. The WM microstructural 

impairments observed in Study 3 may thus reflect mixed pathology. This is consistent with the fact 

that we focused on assessing the impact of cardiometabolic risk factors in this cohort with a genetic 

predisposition for AD. It is increasingly acknowledged that there is a great amount of overlap in 

the neuropathology and predisposing factors between different dementia types (Fierini, 2020; 

Korczyn, 2002; Ritchie & Lovestone, 2002) and that cases of pure AD are in fact rather rare. 

Evidence of a vascular contribution in the pathogenesis of AD supports this view (Fierini, 2020; 

Iturria-Medina et al., 2016). The observation of differential effects of cardiometabolic risk factors 

on WM microstructure depending on APOE genotype further highlights the complex interactions 

between genetic and lifestyle factors and the need to use integrative approaches to better understand 

these interactions. Another possibility for the lack of significant results in limbic tracts could be 

that these tracts, because of their complex architecture (Pascalau et al., 2018), would be harder to 

capture with MRI resolution. 

In Study 4, we used arterial territories as regions of interest for analysis which makes comparison 

with Study 3 difficult. However, the global effects we observed is consistent with the study by 

Tranfa and colleagues (2024) in which integrity in widespread WM regions, including 

commissural, associative, and projection tract, was associated with cardiovascular risk and cerebral 
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small vessel disease. Future analyses could employ a tract-based approach or smaller arterial ROIs 

to assess WM damage with greater spatial specificity. 

6.2 Future directions 

6.2.1 Studying white matter longitudinally  

Throughout this thesis, the important role of WM microstructure in supporting motor and cognitive 

function, as well as its vulnerability to several adverse factors (e.g., high blood pressure, blood 

sugar, CAD), were highlighted. We also touched on the potential role of fitness as a protective 

factor to maintain WM health. Few studies have assessed WM alterations in early disease stages 

using advanced imaging techniques, and even fewer have done so comprehensively, using multi-

modal imaging and multivariate frameworks to combine parameters. The work presented in this 

thesis thus aimed to address this gap and provide a foundation from which future studies should 

expand upon. For instance, using the D2 framework to characterize WM microstructure in 

longitudinal studies could provide a deeper understanding of healthy aging trajectories across the 

lifespan and of the factors that cause departures from this trajectory (Tucker-Drob, 2019). Because 

the work presented in Study 3 and 4 employed cross-sectional designs, causal inferences cannot be 

drawn from our findings. Longitudinal designs could also be used to test interventions that aim to 

promote neuroplasticity and rescue cognitive function. This would allow to gain further insight 

into the types of intervention that are most effective and the time scales at which neuroplastic 

changes occur in these populations, which would inform on the necessary duration. The use of a 

comprehensive assessment method such as the D2 framework would provide improved sensitivity, 

ensuring even minor improvements in microstructural health can be detected, in addition to 

providing specificity through extraction of metrics contributions. This could contribute to 

furthering our understanding of the biological mechanisms that underlie pathological changes in 

WM and of the repair mechanisms initiated by interventions. 

6.2.2 Expanding beyond white matter 

The D2 method can also be expanded beyond WM and into other imaging techniques and tissue 

types. For instance, brain vascular and metabolic measures (e.g., cerebral blood flow, 

cerebrovascular reactivity, oxygen extraction fraction) could be integrated through D2 and the links 
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between metabolic and structural changes could be examined using multivariate statistical analysis 

methods such as PLS (as in Wearn et al., 2024). Obtaining these measurements (e.g., functional, 

metabolic, structural) at several time points in individuals at risk of dementia could then provide 

insight into the spatiotemporal characteristics of different pathological alterations. For instance, in 

a large cohort from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), multifactorial data-

driven analysis revealed vascular dysregulation as the earliest change in the pathological course of 

AD, preceding Aβ pathology, functional and structural changes (Iturria-Medina et al., 2016). 

However, WM impairment was not included in this study. Considering the vulnerability of 

oligodendrocytes and myelin to damage, WM measures should be included to these data-driven 

models to understand when WM alterations occur in relation to other factors and how these factors 

interact with each other (Iturria-Medina et al., 2016, 2017). This could help elucidate whether WM 

truly is the weakest link. 

6.2.3 Assessing the entire health-disease continuum 

“There is no such thing as a single-issue struggle because we do not live single-issue lives"—

Audre Lorde 

Group analyses entail some limitations as humans tend not to fit into perfectly neat categories, or 

as stated by Audre Lorde: “we do not live single-issue lives” (Bertram & Pai, 2023). In case-control 

studies, researchers typically try to minimize heterogeneity within groups using strict criteria that 

effectively result in the exclusion of patients with comorbidities from patients’ groups and of 

subjects with common health conditions (e.g., hypertension) from HC groups. This approach 

simplifies the problem by reducing the number of potential confounding factors. Although non-

ideal, this approach is often necessary when resources don’t allow for data collection in large 

sample sizes, which is often the case for imaging studies. Because patients (e.g., CAD patients) 

rarely present with a single issue and older adults without any health conditions or history of trauma 

(e.g., head trauma) are rare, this approach however limits the generalizability of findings. 

Strict inclusion criteria can also pose challenge for recruitment as we have experienced in trying to 

recruit healthy older adults. We found that older adults with no health conditions were extremely 

difficult to find (especially in the 68 years and above range) and this resulted in our patients and 

control groups being unbalanced for age despite our attempt to age-match participants. 
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When resources permit, larger sample sizes are preferable as the higher statistical power allows for 

consideration of potential confounding effects (e.g., as covariates) in analyses and their interacting 

effects can also be explored. Further, by moving away from the case-control approach, we can 

begin to obtain a more representative picture of the individual, which could enable precision 

medicine in the future (Chamberland et al., 2021; Marquand et al., 2016). In study 4, the small 

sample size did not allow the exploration of interaction effects. For instance, it was not possible to 

investigate whether sex influenced the relationships between WM, fitness, and cognition. In the 

future, the data of participants from another study (ActionCardioRisk) will be added to our 

analyses. These participants are at an intermediate disease stage between the HCs and CAD patients 

as they do not have overt disease, but they have a certain number of cardiovascular risk factors and 

are physically inactive. Their addition would thus allow for the characterization of a broader 

spectrum of the health - disease continuum in addition to increasing statistical power. The effects 

of sex and of other variables of interest (e.g., physical activity) could then be assessed. 

6.2.4 Expanding beyond biology 

In the second half of this thesis, the impact of risk factors on WM microstructural health was 

assessed. Factors such as education level, hypertension, obesity, physical inactivity, diabetes and 

dyslipidemia are referred to as modifiable factors in the field (Livingston et al., 2024). However, it 

is evident that an individual’s ability to address these factors largely depends on their context – the 

environment in which they live and work and the resources available to them (Alzheimer Society 

of Canada, 2024; Tremblay, 2024). The upstream factors that influence lifestyle behaviors, called 

structural and social determinants of health, are thought to be the main drivers of disparities in the 

prevalence of dementia and of its risk factors (Adkins-Jackson et al., 2023). For instance, there is 

a higher prevalence of dementia in ethnic and cultural minority groups, such as Black people and 

Indigenous people in Canada (Iroanyah et al., 2021). Risk factors for dementia such as diabetes, 

physical inactivity, and obesity are also more prevalent in Latin American and Black individuals 

(M. Lee et al., 2022). Despite this, structural and social determinants of health remain understudied 

in the context of aging and dementia. The potential impact of addressing these factors through 

systemic changes in policy is enormous. Before these policies can be put into place, researchers 

must however address the glaring gaps in our knowledge through the recruitment of more 

culturally, ethnically and socioeconomically diverse cohorts and through the integration of 
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structural and social determinants of health as variables of interest in their analyses. If conscious 

efforts are not made to reduce inequities, people of ethnic, cultural, and sexual minorities will 

continue to be disproportionately impacted by dementia (Alzheimer Society of Canada, 2024). In 

addition to be fairer, a population-based approach that aims to reduce the risk of everyone across 

society has the potential of having a more far-reaching impact on dementia prevalence in Canada 

(Tremblay, 2024; Walsh et al., 2022). 
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CHAPTER VII: Conclusion 
In this thesis, we demonstrated that WM microstructure changes occur highly dynamically in 

response to both enriching (e.g., learning a new task) and damaging (e.g., cardiovascular risk 

factors) experiences and that these alterations underlie changes in behaviour. A wide array of 

adverse factors can impact WM health and there are complex interactions between non-modifiable 

and modifiable risk factors. Notably, in study 3, we were able to confirm the theory that the impact 

of modifiable risk factors on WM is exacerbated by genetic factors such as APOE4 and our findings 

provide a potential mechanism by which this may occur. A distinct risk pattern was observed in 

APOE4 carriers, where LDL-cholesterol appeared detrimental to WM microstructure, especially 

myelin, only in carriers. Since APOE4 is a cholesterol transporter and given that cholesterol is a 

main constituent of myelin, impaired cholesterol metabolism in carriers may lead to these 

differential effects of LDL on microstructure. We also highlighted the pertinence of using 

multivariate approaches in the study of early WM pathological changes as it allows for a more 

comprehensive characterization of the multiple factors contributing to impairments and of the 

biological mechanisms driving these changes.  

Our last manuscript provided evidence for the role of fitness in preserving WM microstructural 

health in a cohort of coronary artery disease patients and healthy subjects. Improving fitness 

through exercise-based interventions may thus constitute a promising strategy for promoting 

microstructural repair and preserving cognitive function, especially in individuals with 

cardiovascular risk factors. WM microstructural properties may thus constitute useful biomarkers 

to monitor improvements in response to interventions as plastic changes in WM can occur on short 

timescales as shown by us (study one) and others (Hofstetter et al., 2013; Scholz et al., 2009). 

Overall, this thesis made significant contributions to the field through the creation of an open-

source toolbox for the computation of a multivariate distance measure from neuroimaging data. 

Our hope is that this tool will make such approaches more accessible, thus promoting their wider 

use in the neuroimaging community. This thesis also provides a foundation for the use of 

integrative multivariate models in the study of early pathological alterations in older adults at risk 

of dementia. This foundation is essential in expanding our understanding of the complex brain-

behavior relationships and the multiple factors underlying disease development and progression. 
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Such a deeper understanding is crucial in designing therapeutic interventions that address the 

multifactorial causes of dementia. 
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Appendix I – Supplementary material Study 1 
 
 

 
Supplementary Figure 1 (from Study 1). Time course of changes in FA across training days (d1-d5) and the retention session (d17) 

in each group. a) Decrease in FA in LRN group between d1-d5 in the right ascending sensorimotor tract connecting to the primary 

somatosensory cortex (S1). The change was not maintained at the retention session (d17). b) FA decreased in the LRN group and 

increased in the SMP group between d1-d5 in the left corticospinal tract connecting to the primary motor cortex (M1). FA changed 

significantly between d5 and d17 in the LRN group, but not in the SMP group. c) Increase in FA in both groups between d1-d2 in 

the right frontal inferior longitudinal (FIL) tract connecting to the pars opercularis (PO). FA then progressively decreased between 

d2 and d17 in both groups. d) Increase in FA in both groups between d1-d5 in the anterior corona radiata connecting to the right 

frontal eye field (FEF). FA then decreased significantly between d5-d17 in both groups (Tremblay et al., 2021). 
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Appendix II – Supplementary material Study 2 
 
 

 
Supplementary Figure 1 (from Study 2). Comparison of corpus callosum segmentations obtained using k-means on D2 and on 

each individual MRI measures (Tremblay, Alasmar, et al., 2024b). 
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Appendix III – Supplementary material Study 3 
 
 

 
Supplementary Figure 1 (from Study 3). Relationships between D2 in WM and risk factors in the whole sample (males and 

females). a) The strength and direction of the relationship that each risk factor has with D2 in the voxels shown on the brain images 

on the right. Error bars show 95% confidence intervals. Correlations are non-significant when confidence intervals overlap with 

zero. b) Colored voxels (|BSR| > 2.0) have a positive relationship with the patterns shown in (a). The BSR maps are overlaid on a 

MPRAGE T1w group average image. Higher D2 in the WM regions shown on the right was associated with lower SBP, BMI and 

HbA1c and with higher HDL, LDL and total cholesterol (Tremblay, Spreng, et al., 2024). 
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Supplementary Table 1 (from Study 3). Results of the 2x2 ANOVA with sex and APOE4 

groups as fixed factors and the brain scores (usc) as the dependent variable. 

 

 
Supplementary figure 2 (from Study 3). Marginal means plot shows males expressed the pattern of the LV more strongly than 

females (errors bars = confidence intervals). Males = 0, Females = 1. 
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