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Abstract

Advancements in model combination and uncertainty quantification with applications in

actuarial science

SÂebastien Jessup, Ph.D.

Concordia University, 2024

In this thesis, we focus on model combination, incorporating elements of uncertainty quantifi-

cation to address different actuarial science issues. We first tackle the issue of overconfidence from

a single model combination approach, highlighting how different combination assumptions can lead

to different conclusions about the predicted variable. This is illustrated with an extreme precipita-

tion example for the regions of Montreal and Quebec. We then focus on Bayesian model averaging

(BMA), a very popular model combination technique relying on Bayes’ theorem to attribute weights

to models based on the likelihood that the observed data comes from the models considered. We

propose a correction to the classical expectation-maximisation algorithm to account for data un-

certainty, where we assume that the observed data is in fact not the only possible observable data.

We then generalise our method to include Dirichlet regression, allowing for combination weights to

vary depending on risk characteristics. These BMA approaches are applied to a simulation study as

well as a simulated actuarial database and are shown to be very promising, as they allow for a more

formal model combination framework for combining actuarial reserving methods in a smooth way

based on predictive variables. Next, we adapt Bayesian model averaging using Generalised Like-

lihood Uncertainty Estimation to extreme value mixture models, and show that this modification

allows for identifiying the ªbestº extreme value threshold, although a combination of models will

outperform the single best mixture model. This is illustrated using the Danish reinsurance dataset.

Finally, we show that the generalised BMA algorithm can be used to identify flexible extreme value

thresholds depending on predictive variables. We use this generalised mixture model combination

on a recent dataset from a Canadian automobile insurer.
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continuer à collaborer!

Next, my thanks go out to all the professors and colleagues with whom I discussed research

ideas through the years, particularly Professor James A. Goulet, who played a role in forming some

of the ideas in Chapter 3. Sharing ideas with people from diverse backgrounds helped me approach

problems from different angles, allowing for new perspectives and interesting solutions. I will

definitely be carrying this mentality forward.

Thank you to the reviewers of the articles in Chapters 2 and 3 for providing thoughtful and

insightful comments that helped to improve our work. Further thanks to the evaluation committee

for reviewing this thesis. I am also thankful for the financial support of Concordia University and

the Chaire Co-operators en analyse des risques actuariels.

A special thank you goes to my family. To my parents, for their infallible support in everything

I do. To my brother, for trying to understand what I was doing and throwing ideas at me. To my

partner, for her love and support. Je vous aime!

And finally, thanks to those who will take the time to read this thesis. It is the result of quite a

bit of work, hopefully you will find some parts of it interesting!

iv



Contributions of Authors

This thesis is based on three research articles:

I Jessup, S., Mailhot, M., & Pigeon, M. (2023). Impact of combination methods on extreme

precipitation projections. Annals of Actuarial Science, 17(3), 459-478.

Jessup is responsible for a substantial portion of the analysis and the primary portion of writ-

ing, with supervision by Mailhot and Pigeon.

II Jessup, S., Mailhot, M. & Pigeon, M. Uncertainty in heteroscedastic Bayesian model averag-

ing.

This joint work has been resubmitted to the Insurance: Mathematics and Economics journal

after revisions. Jessup is responsible for a substantial portion of the analysis and the primary

portion of writing, with supervision by Mailhot and Pigeon.

III Jessup, S., Mailhot, M. & Pigeon, M. Flexible extreme thresholds through generalised Bayesian

model averaging.

This joint work is still in preparation and constitutes a draft. Jessup is responsible for a

substantial portion of the analysis and the primary portion of writing, with supervision by

Mailhot and Pigeon.

v



Contents

List of Figures ix

List of Tables xii

1 Introduction 1

1.1 Uncertainty quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Model Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Non-parametric methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Parametric methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Extreme values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Impact of combination methods on extreme precipitation projections 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Model combination methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Inverse Distance Weighting . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Non-parametric calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Bayesian Model Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Application to Areal Reduction Factors . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Non-equiprobable pooling . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Calculating areal reduction factors . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vi



3 Uncertainty in heteroscedastic Bayesian model averaging 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Bayesian Model Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Error integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Symmetric uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Asymmetric uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.3 Desirable model properties for optimal performance . . . . . . . . . . . . 47

3.3.4 Generalised error integration . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 Single weight per model . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.2 Generalised weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.2 Underlying models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5.3 Model combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.4 Performance and runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Flexible extreme thresholds through generalised Bayesian Model Averaging 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 Extreme value theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.2 Mixture model combination . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.3 Tail-Weighted GLUE for Threshold Selection in BMA . . . . . . . . . . . 70

4.2 Homogeneous setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Heterogeneous setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

vii



4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Conclusion 88

Appendix A Appendices 90

A.1 Expectation-Maximisation Bayesian Model Averaging algorithm . . . . . . . . . . 90

A.2 Quantile and ARF changes bootstrap distribution for a 1 in 20 year return level for

Quebec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.3 Quantile and ARF percent changes for a 1 in 20 year return level for Quebec . . . . 93

A.4 Proof of heteroscedastic BMA weights . . . . . . . . . . . . . . . . . . . . . . . . 93

A.5 Proof of Kullback-Leibler conditions . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.6 Fitted Dirichlet log-coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.7 The skew-normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Bibliography 100

viii



List of Figures

Figure 1.1 The bias-variance tradeoff . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 2.1 Grid cell MSE of the expectation-maximisation algorithm (left) and Cooke’s

method (right) in the Montreal region from 2001 to 2020 . . . . . . . . . . . . . . 23

Figure 2.2 Model weight by method for Montreal (left) and Quebec (right) for precipi-

tation from 2001 to 2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 2.3 Cumulative distribution for model MPI MR and real data in Montreal for a

grid cell between 2001 and 2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 2.4 Upper tail of empirical cumulative distribution functions of pooled annual

maximum daily rainfall (mm) for Montreal from 2016 to 2021 with different weight-

ing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 2.5 Upper tail of empirical cumulative distribution functions of pooled annual

maximum daily rainfall (mm) for Quebec from 2016 to 2021 with different weight-

ing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 2.6 Upper tail of empirical cumulative distribution functions of pooled annual

maximum daily rainfall (mm) for Montreal from 2001 to 2020 with different weight-

ing methods, and minimum and maximum boundaries . . . . . . . . . . . . . . . . 27

Figure 2.7 Comparison of bootstrap densities under different combination methods for

the 90th quantile (left) and 95th quantile (right) in Montreal between 2001 and 2020

for 10000 iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 2.8 Distribution of projected quantile change at a 1 in 20 year return level in

Montreal between 2001-2020 and 2011-2030 (left) or 2071-2090 (right) . . . . . . 30

ix



Figure 2.9 Distribution of projected ARF change at a 1 in 20 year return level in Mon-

treal between 2001-2020 and 2011-2030 (left) or 2071-2090 (right) . . . . . . . . . 31

Figure 2.10 Percentage change in quantiles for a 1 in 20 year return level between 2001-

2020 and 2071-2090 for the region of Montreal using Cooke’s method (left) and

BMA-EM (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 2.11 Percentage change in ARFs for a 1 in 20 year return level between 2001-

2020 and 2071-2090 for the region of Montreal using Cooke’s method (left) and

BMA-EM (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 3.1 Simulation study random draw . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 3.2 Diebold-Mariano test statistic . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 3.3 Simulation study combination random draw (left) and densities (right), and

zoomed in densities for x = 850, 900, 980 . . . . . . . . . . . . . . . . . . . . . . 55

Figure 3.4 Second simulation study random draw . . . . . . . . . . . . . . . . . . . . 56

Figure 3.5 Dirichlet regression weights for each model . . . . . . . . . . . . . . . . . 56

Figure 3.6 Second simulation study combination random draw (left) and combination

densities (right), and zoomed in densities for x = 850, 900, 980 . . . . . . . . . . . 57

Figure 3.7 Underlying reserve model distributions with (left) and without (right) strong

predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 3.8 Result of BMA combination using different approaches with (left) and with-

out (right) strong predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 4.1 Danish mean residual life plot . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 4.2 Model weights for different thresholds . . . . . . . . . . . . . . . . . . . . 77

Figure 4.3 QQ-Plot of model combination and the identified threshold for the Danish

test set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 4.4 Weights by threshold quantile when gender is unavailable (left) and available

(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 4.5 MRL plot by gender with the identified thresholds . . . . . . . . . . . . . . 85

Figure 4.6 QQ-Plots for combined mixture models (left) and the identified threshold

(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

x



Figure A.1 Distribution of projected quantile change at a 1 in 20 year return level in

Quebec between 2001-2020 and 2011-2030 (left) or 2071-2090 (right) . . . . . . . 92

Figure A.2 Distribution of projected ARF change at a 1 in 20 year return level in Quebec

between 2001-2020 and 2011-2030 (left) or 2071-2090 (right) . . . . . . . . . . . 92

Figure A.3 Percentage change in quantiles for a 1 in 20 year return level between 2001-

2020 and 2071-2090 for the region of Quebec using Cooke’s method (left) and

BMA-EM (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure A.4 Percentage change in quantiles for a 1 in 20 year return level between 2001-

2020 and 2071-2090 for the region of Quebec using Cooke’s method (left) and

BMA-EM (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xi



List of Tables

Table 2.1 Comparison of mean and variance of uniform weight attribution and model

combination weights for Montreal and Quebec from 2001 to 2020 at the 95th quantile 29

Table 3.1 Poisson and inverse Gaussian fitted parameters . . . . . . . . . . . . . . . . 52

Table 3.2 Weighted average Diebold-Mariano test statistic and Kullback-Leibler diver-

gence between combined distributions and real distribution . . . . . . . . . . . . . 55

Table 3.3 Weighted average Diebold-Mariano test statistics and Kullback-Leibler diver-

gence between combined distributions and real distribution . . . . . . . . . . . . . 57

Table 3.4 Loss development triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Table 3.5 Weights obtained from each method without strong predictor . . . . . . . . . 61

Table 3.6 Weights obtained from each method with strong predictor . . . . . . . . . . 62

Table 3.7 Proportion of sufficient reserves and runtime with & without predictive vari-

able at a 99th level quantile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Table 4.1 Hellinger distance (×10−5) and KL divergence by combination method . . . 78

Table 4.2 Absolute error (%) of fitted distributions on the test dataset . . . . . . . . . . 79

Table 4.3 Quartile and variance values by gender . . . . . . . . . . . . . . . . . . . . 84

Table 4.4 Hellinger distance (×10−5) and KL divergence by combination method . . . 85

Table 4.5 MAE (%) of fitted distributions for the test dataset . . . . . . . . . . . . . . 86

Table A.1 Dirichlet log-coefficients without strong predictor . . . . . . . . . . . . . . . 97

Table A.2 Dirichlet log-coefficients with strong predictor . . . . . . . . . . . . . . . . 98

xii



Chapter 1

Introduction

In most statistical problems, we study data in order to identify patterns and make predictions.

This is particularly useful in fields such as insurance, where we face an inverted production cycle.

This cycle stems from charging a premium for insurance coverage before knowing the actual cost

of claims. Insurers use multiple different methods to anticipate future claims, among which us-

ing historical data and statistical models to set premiums accurately. If premiums are set too low,

the insurer may not have sufficient funds to cover the claims, leading to financial instability. Con-

versely, if premiums are set too high, it can drive away potential customers, making the insurance

product less competitive in the market. Thus, it is essential to accurately model risk to ensure that

the insurer has sufficient funds to cover the insureds’ losses, while also providing a fair premium to

insureds. Moreover, in the context of climate change, catastrophic risks are becoming more preva-

lent each year and require special focus. These catastrophic events can include natural disasters like

hurricanes, floods, and wildfires, which are occurring with increasing frequency and intensity. The

financial impact of these events can be staggering, as only a handful of catastrophes can account for

a significant portion of an insurer’s losses. For instance, in 2023, 23 events in Canada resulted in

over $30 million in damages each, collectively accounting for over a quarter of the $3.1 billion in

total Canadian insured losses for that year (CatIQ, 2024).

This heightened need for accurate risk modeling necessitates extensive data analysis and in-

ference. In order to make these inferences, the classical approach is to fit multiple models to the

observed data, then evaluate the predictive power of each model, before finally keeping the single

1



model that best fits the data. This selection implies that we consider the chosen model as fully rep-

resentative of the true model generating the observed data. However, this approach can be overly

simplistic and potentially misleading, as it assumes that the selected model captures all the under-

lying complexities of the data, which is rarely the case in real-world scenarios.

Natural questions that arise from this process, and that are central to this thesis, are the fol-

lowing: What if the chosen model is not actually the true model? What if the disregarded models

contain useful information? Is there then a way to use the information from multiple models si-

multaneously? These questions highlight the limitations of traditional model selection techniques

and suggest the need for more sophisticated methods that can combine information from multiple

models.

1.1 Uncertainty quantification

To efficiently combine information from multiple models, addressing notions of uncertainty is

essential. Uncertainty can be broadly categorised into two types: random and model error, also

called aleatoric and epistemic uncertainty in machine learning (HÈullermeier and Waegeman, 2021).

Consider a general model

Y = f(x) + ϵ. (1)

In this model, random error is represented by ϵ, capturing the irreducible noise inherent in nearly

any dataset. On the other hand, model error can be reduced. This type of error can be decomposed

into bias and variance components. It is related to the inaccuracy of f(x) and can be minimised

by addressing the well-known bias-variance tradeoff (see, for example, Belkin et al. (2019)). This

is illustrated with a classical example in Figure 1.1, where data is generated with a sine wave and

random noise around this wave. We can see a high bias model that is not sufficiently adjusted to the

data, and an overfitted model that has no bias, but large variance.

2



Figure 1.1: The bias-variance tradeoff

In Chapter 2, we first address model error in the context of integrating information from multiple

models. Combining models is widely recognised as an effective strategy to reduce bias, thereby

enhancing model accuracy (e.g. Webb and Zheng (2004)). However, as will be discussed in 1.2,

different combination methods rely on varying assumptions, which can mitigate model error in

different ways. We will demonstrate that, when examining extreme precipitation, these differences

can lead to substantial variations in projections of both intensity and spatial distribution. As such,

Chapter 2 focuses on the uncertainty of model combination methods.

Next, we turn our attention to random error in a heteroscedastic setting. In Figure 1.1, ran-

dom error is depicted as constant or homoscedastic, where the noise is independent of the variable

x. However, in actuarial contexts, losses are influenced by risk characteristics, leading to varying

levels of uncertainty. In Chapter 3, we discuss how a commonly used combination method, which

integrates information from multiple models using predictive variables, often fails to account for

random variation. In this chapter, we propose a way to model residuals in order to quantify random

error based on predictive variables.

1.2 Model Combination

With these notions of uncertainty quantification in hand, we can address the central questions

of the thesis through model combination. This is a very broad field with numerous different ap-

proaches. For example, Cooke et al. (1991) offered a review of early expert combination techniques,

3



while Kotsiantis et al. (2006) and Mohandes et al. (2018) review machine learning combination

techniques. We will focus on linear combination, which aims to assign weights wm ∈ [0, 1] to M

different models with
∑

wm = 1 such that

f(y) =

M
∑

m=1

wmfm(y), (2)

where fm(y) is the distribution under model Mm. In this kind of setting, we aim to establish

weights such that f(y) is most accurate.

1.2.1 Non-parametric methods

The first general family of methods for obtaining combination weights is non-parametric ap-

proaches. These methods rely on scoring rules, which broadly aim to evaluate the quality of pre-

dictions compared to actual observations. For distributions P and Q, the expected score of a rule S

under P, given the predictive distribution Q, is defined as

S(Q,P) =

∫

S(Q, ω)dP(w). (3)

A scoring rule S is said to be proper if S(P,P) ≥ S(Q,P) ∀ P,Q. It is strictly proper if equality

holds if and only if P = Q (Gneiting and Raftery, 2007).

In practice, we can evaluate the score of a distribution Q empirically by looking at n realisa-

tions of a random variable Y , {y1, . . . , yn} from P. For example, one well-known strictly proper

scoring rule is the logarithmic score, for which a score S is attributed to each observation yi under

distribution Q such that

S(Q, yi) = − ln(fQ(yi)) (4)

and the expected score is then approximated as

Ŝ(Q,P) =
1

n

n
∑

i=1

S(Q, yi). (5)

4



This score is minimised if Q = P, where P is the real distribution. A variation of this scoring rule is

used by Cooke et al. (1991), who attributes a score based on a calibration component and an entropy

component. The first component evaluates how well the predictions fit the observations, while the

second component evaluates whether the prediction is informative. This method will be explored in

more detail in Chapter 2.

Importantly, the method proposed by Cooke et al. (1991) does not require a full distribution, but

rather allows for the incorporation of expert opinions about specific values, which is particularly

useful in fields such as actuarial science. Indeed, experts often have an idea of what constitutes

a low, medium, and large claim, without being able to provide a full loss model. In such cases,

non-parametric methods are necessary to attribute weights to expert predictions.

1.2.2 Parametric methods

In contrast to non-parametric methods, the second family of methods, namely parametric ap-

proaches, which require specifying a complete model, offer the advantage of Bayesian updating,

where weights are revised with new observed data. One such approach is Bayesian Model Averag-

ing (BMA), first proposed by Raftery et al. (1997). BMA assigns weights to each model based on

the probability that the data originate from those models. Specifically, for a given dataset D, the

weights are determined as

wm = Pr(Mm|D) =
Pr(D|Mm) Pr(Mm)

∑M
l=1 Pr(D|Ml) Pr(Ml)

, (6)

where Pr(Mm) represents the prior belief concerning model Mm. BMA has gained significant at-

tention across various scientific fields in recent years (Fragoso et al., 2018). Several algorithms are

available to implement BMA, two of which are used in Chapters 2 to 4. While very popular, BMA

assumes that one of the models must be correct (Hoeting et al., 1999), which can cause convergence

issues, as it considers the observed data as fully representative of its underlying model. This con-

cern is addressed in Chapter 3, where we incorporate uncertainty quantification to acknowledge the

inherent randomness in data and prevent convergence to a single model.

Additionally to allowing for Bayesian updating, BMA can be modified to incorporate predictive
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variables. We propose a modification to a BMA expectation-maximisation algorithm in Chapter

3 that allows for flexible weights based on vectors of characteristics. This is valuable in diverse

actuarial contexts, as will be shown in Chapter 3 for reserving, and Chapter 4 for loss modelling.

It is worth noting that BMA works best when the models are independent. In cases where

dependencies exist, such as when a hierarchical approach relies on the output of another model, the

more complex structure may be favoured, while the initial one could be disregarded. Although this

idea is intriguing, it was not explored further and is left for future research.

Another promising approach to model combination in machine learning that is similar to linear

combination is the mixture-of-experts (MoE) method, reviewed by Masoudnia and Ebrahimpour

(2014). Unlike the previous approaches that compare models spanning the entire sample space,

MoE combines localised models over different parts of the sample space, collectively covering the

full space. While MoE presents a very interesting and promising direction, it is beyond the scope of

this thesis and is also left for future research.

1.3 Extreme values

As we explore these methodological nuances, it becomes clear that insurers are frequently ex-

posed to substantial risks originating from various sources, such as injuries, high-value property,

and, as previously discussed, catastrophic events. These risks can lead to significant financial losses

and operational challenges. Revisiting the third central question of our study, another important

question arises: If we can leverage the information from multiple models, how can we effectively

account for these large risks to which insurers are exposed?

To address this question, we must delve into extreme value theory (EVT). Broadly speaking,

EVT is the study of extreme values in the tails of data distributions, focusing on the behaviour of

very large or very small values. This area of statistical theory is particularly relevant for insurers

because it provides the tools to model and predict the occurrence of rare, yet high-impact events.

By studying the distribution of extreme values, insurers can better estimate the probabilities and po-

tential magnitudes of significant losses, which is crucial for risk management and decision-making.

There are two ways of modeling these values. The first approach, mostly used when studying
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time series, is to separate the data into blocks, and then use properties of rank statistics to study

block maxima. The Fisher-Tippett-Gnedenko theorem (Coles et al., 2001) states that for a sequence

of iid random variables X1, X2, . . ., Xn with cumulative distribution function F (x), if there exists

a sequence of numbers an and bn such that

lim
n→∞

Pr

(

max(X1, · · · , Xn)− bn
an

≤ x

)

= G(x) (7)

for a non-degenerate distribution G(x), then F is in the maximum domain of attraction of G, and G

must be among three possible families. The generalised extreme value distribution is then defined

as

G(x) =















exp
(

−
[

1 + ξ x−µσ
]−1/ξ

)

if ξ ̸= 0

exp
(

− exp
[

−x−µ
σ

])

if ξ = 0,

(8)

where µ, σ and ξ are respectively location, scale, and shape parameters. This approach allows for

studying annual maxima, which is useful to obtain risk estimates at very high levels such as a 1

in 100 years frequency. Block maxima are implicitly related to Chapter 2, where we use model

combination to study precipitation annual maxima without fitting GEV distributions.

The second approach studies exceedance over a high threshold. It is linked to the maxima

approach through the Pickands-Balkema-De Haan theorem (Pickands, 1975), which states that if

lim
u→∞

Pr

(

Y − u

c(u)
≤ x|Y > u

)

= G(x) (9)

for a non-degenerate function G(x), then G(x) must follow a generalised Pareto distribution such

that

G(x) =















1−
(

1 + ξ(x−u)
σu

)−1/ξ
for ξ ̸= 0 and x > u

1− exp
(

−x−u
σu

)

for ξ = 0 and x > u,

(10)

where σu and ξ are again scale and shape parameters.

To apply equation (10), a sufficiently high threshold value u is required. The selection of an ap-

propriate threshold is a challenging problem in the literature, with no universally accepted method.

Chapter 4 tackles this problem, demonstrating that model combination can not only identify the
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correct threshold but also reduce the dependence on specifying a precise threshold value. This

is feasible because the GEV and GPD distributions share the same ξ parameter, and their shape

parameters are linearly linked through u. Specifically, for a sufficiently high threshold u,

σu = σ + ξ(u− µ). (11)

This link implies that any sufficiently high choice of threshold yields a valid GPD distribution, as

will be further explained in Chapter 4.

1.4 Contributions

In Chapter 2, we study the inherent uncertainty associated with model combination to quantify

the differences in outputs derived from various combination methods. Specifically, we compare two

non-parametric model combination methods, namely Cooke’s method and inverse distance weight-

ing, with two Bayesian model averaging (BMA) algorithms when applied to extreme precipitation

data. These combination methods are used to analyse the changes in tail quantiles and the spa-

tial distribution of extreme daily rainfall in Montreal and Quebec over two time periods between

a current period (2001-2020) and a future period (2071-2090). Our findings indicate that the non-

parametric combination methods, which compare distributions, yield significantly different projec-

tions compared to Bayesian methods that use quantiles. This disparity suggests that relying on a

single combination method could lead to overconfidence in projections, as the choice of combi-

nation hypothesis can notably alter the results. Furthermore, the confidence intervals derived from

model combination methods contradict the standard confidence intervals obtained with extreme pre-

cipitation ensembles where all models are weighted equally, underscoring the critical importance of

model combination in assessing uncertainty.

The insights gained from studying uncertainty in model combination in Chapter 2 lead naturally

to the developments in Chapter 3, where we focus on enhancing BMA to address similar challenges

in actuarial applications. In particular, we propose an enhancement to the classical Expectation-

Maximisation (EM) algorithm to address its known tendency to converge to a single model. By

incorporating data uncertainty into the EM algorithm, we examine model residuals to condition on
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random error, enabling the numerical integration of the error by simulating instances of this uncer-

tainty. Additionally, we generalise our method to allow for flexible weights based on predictive vari-

ables through Dirichlet regression. Instead of averaging simulations to numerically integrate random

error, we treat the simulations as realisations of a Dirichlet random variable. These approaches are

illustrated through simulation studies and applied to a simulated actuarial database. The introduction

of the flexible weight combination method is novel in the actuarial literature and shows significant

promise, enabling smoother transitions between different actuarial reserving methods across various

data segments. Furthermore, our proposed method outperforms an existing combination method for

aggregate reserve models, highlighting its potential effectiveness.

Together, these chapters highlight the critical role of model combination in both climate risk as-

sessment and actuarial reserving. By exploring uncertainty in Chapter 2 and proposing methodolog-

ical enhancements in Chapter 3, we provide a framework that improves the reliability of projections

in diverse fields, from extreme precipitation forecasts to insurance reserves. The tools developed

in these chapters then allow us to examine combinations of mixture models that allow for extreme

values in Chapter 4.

In this last chapter, we propose a modification to the Generalised Likelihood Uncertainty Es-

timation (GLUE) BMA algorithm to identify the optimal Generalised Pareto Distribution (GPD)

threshold. By employing a weighted-likelihood approach that gives more weight to tail quantiles,

we demonstrate both mathematically and through an example based on the well-known Danish

dataset that comparing the two GLUE combination methods facilitates the identification of the best

GPD threshold. We further illustrate how model combination methods are preferable to a single

mixture model with the correct threshold, highlighting their lower dependence specifying the cor-

rect threshold. We use a similar idea to obtain flexible thresholds depending on predictive variables

with an adjustment of the method proposed in Chapter 3, where we modify the algorithm to work

with mixture models. Our high-level quantile projections are found to be similar to those obtained

using a two-step quantile regression method with an actuarial dataset from a Canadian insurer. This

new flexible threshold identification method using model combination surpasses existing variable-

dependent threshold methods by enabling the determination of the full distribution, rather than just

the excess over a high threshold.
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In summary, this thesis explores the applications of model combination techniques in actuar-

ial science, emphasizing their role in quantifying uncertainty and managing extreme events. In

Chapter 2, we highlight how different model combination methods yield varying results in extreme

precipitation projections, underscoring the importance of addressing uncertainty in model outputs.

Building on this, Chapter 3 improves BMA by incorporating heteroscedasticity and flexible weights,

enhancing its application in actuarial reserving. Finally, Chapter 4 uses elements from the previous

chapters by modifying the GLUE BMA algorithm to identify optimal thresholds for extreme value

distributions. This chapter also introduces a flexible threshold method based on predictive variables

using the method developed in Chapter 3, integrating the advancements in model combination from

earlier chapters. Through these advancements, we aim to enhance the accuracy of actuarial models

in addressing uncertainty and extreme events.
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Chapter 2

Impact of combination methods on

extreme precipitation projections

2.1 Introduction

Climate change and global warming are expected to lead to increases in catastrophic weather

events such as wildfires, droughts, and extreme precipitation. These changes can have many effects

such as crop damage, soil erosion, and increased risk of flooding. Quantifying severe weather events

is of particular interest to actuaries, since events such as flooding account for a large part of global

economic losses (Boudreault et al., 2020). An increase in extreme rainfall can lead to a possibly

greater increase in river discharge (Breinl et al., 2021). Therefore, one would gain from obtaining

reliable rainfall projections to assess flood risks.

Modelling precipitation behaviour, and weather events in general, requires complex models.

For example, seasonality needs to be taken into account (e.g. Kodra et al. (2020)), as well as wind

patterns, which also use advanced models (see for example Gracianti et al. (2021)). One further

needs to model spatial interpolation (Wagner et al. (2012), Hu et al. (2019), etc.). As such, pro-

jecting changes in extreme precipitation would mean combining these elements with extreme value

theory in a limited data context. Given that different models may capture different elements of a

system’s behaviour, when interested in extreme precipitation, one will often receive diverging in-

formation from multiple sources and may wish to combine these sources of information. These
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sources can often be considered as expert opinions, which are used in actuarial science, for exam-

ple, particularly in mortality studies, where deterministic projections are incorporated into mortality

forecasting via Continuous Mortality Investigation (Huang and Browne, 2017) and P-Splines (Dje-

undje, 2022). Combining expert opinions and models is especially important for actuaries to set

credible hypotheses when modelling losses from weather events.

Extreme weather events caused $2.1 billion in insured damage in Canada alone in 2021 (In-

surance Bureau of Canada, 2022), and losses from natural catastrophes have been increasing over

the last 20 years. In this context, the last few years have seen increased demand for catastrophe

insurance, particularly flood insurance, and private insurers have been developing new products to

respond to this demand. The challenge with modelling flood losses, or severe weather events in gen-

eral, is that the covered events do not occur frequently, and the changing nature of climate implies

that only relatively short spans of time can be considered to have similar risks. This compounds the

lack of data necessary for developing actuarial models with traditional techniques requiring a high

volume of frequency and severity data. Given that expert climate models specialise in the complex

dynamics of weather events, combining these models offers an appealing solution for insurers by

allowing for an alternate way of obtaining reliable models for catastrophic events.

To efficiently combine models, one needs to determine how much weight to give to each ex-

pert’s opinion. Clemen (1989) reviewed forecast combination literature, concluding that combin-

ing individual forecasts substantially improves accuracy, and that simple methods work reasonably

well relative to more complex methods. By reviewing statistical techniques for combining multiple

probability distributions, Jacobs (1995) showed that independent experts yield more information

than dependent experts, where dependent experts might for example have models relying on one

another. Cooke et al. (1991) also reviewed expert combination and offered a non-parametric ap-

proach for attributing weights to experts based on specific quantiles. From a different perspective

allowing for the potential use of a prior opinion about each of the experts, Mendel and Sheridan

(1989) and Raftery et al. (1997) used Bayesian approaches to combine expert distributions.

Such methods have been further developed, in particular with Bayesian Model Averaging (BMA)

gaining popularity in recent years. For example, Broom et al. (2012) considered BMA in a limited

data context, and Fragoso et al. (2018) provided a review of its applications in 587 articles from
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1990 to 2014, covering biology, social sciences, environmental studies, and financial applications.

In the last few years, the concept of BMA has been generalised into Bayesian Predictive Synthesis

(BPS) in a financial time series context (e.g. Johnson (2017), McAlinn and West (2019), McAlinn

et al. (2020)). Model combination can be useful in areas such as climate modelling, where signif-

icant uncertainty is present, especially in the context of climate change, and different models rely

on different hypotheses. BMA is currently used to this end, for example Massoud et al. (2020) used

BMA to study mean precipitation changes in the US by region.

In the context of extreme rainfall leading to flooding, spatial distribution becomes important

as it can significantly change risk exposure, where a local rainfall does not lead to the same risks

as widespread rainfall. To analyse this spatial distribution, areal reduction factors (ARF) are of-

ten used to convert point rainfall into areal rainfall (see for example Svensson and Jones (2010)).

The impact of climate change on ARFs was studied by Li et al. (2015) for the region of Sydney,

Australia. A limitation of this study is that the authors used a single expert model to obtain precip-

itation projections. One would seek to improve this type of analysis by combining multiple expert

projections. A challenge with this idea is that combination methods often require larger datasets

than are available in an extreme precipitation context. This is especially true given that precipitation

patterns are changing, where considering an extended span of time means differences in precipita-

tion distribution within the dataset. To circumvent this issue, Innocenti et al. (2019) used a model

pooling approach with a 50-member ensemble when studying extreme precipitation in Northeast-

ern North-America, allowing the authors to use 3-year periods of data. Supposing that all expert

projections are equally likely, the authors could then apply frequency analysis to study 99th quan-

tiles. An advantage of this method, beyond its simplicity and effectiveness, is that it allows for

observing how variability between expert models can be used to improve the estimation of annual

maxima statistics. A question that naturally arises is whether attributing weights to each expert

based on combination methods instead of supposing all projections are equally likely would yield

significantly different projections. This question is of particular interest to actuaries, since changing

the underlying precipitation hypotheses would have an effect on event probabilities, and thus affect

both pricing and reserving.
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We thus focus on the impact of model combination methods on quantile and ARF projec-

tions when applied to the pooling approach of Innocenti et al. (2019) in Montreal and Quebec,

Canada. The paper is divided as follows: Section 2.2 provides details regarding parametric and

non-parametric model combination methods, Section 2.3 applies these methods to pooling to obtain

extreme precipitation quantile and ARF projections, and briefly explains how such projections can

be used for flood damage modelling. Finally, Section 2.4 provides concluding comments. Addi-

tional material can be found in Appendices A.1 to A.3.

2.2 Model combination methods

Expert climate research groups often provide diverging information based on varying methods

and underlying hypotheses regarding greenhouse gas emissions, changes in global convection pat-

terns, the impact of topography, etc. One may seek to combine this information by using an array of

tools such as non-parametric approaches or Bayesian approaches. This section presents approaches

from various combination methods relying on different hypotheses. To easily analyse the differ-

ences between approaches, we choose well known approaches allowing for establishing weights to

attribute to each expert, as compared to less transparent machine learning methods such as neural

networks, for example. Such methods are however increasing in popularity, as highlighted in a re-

view of recent AI applications in actuarial science by Richman (2021). As will be shown in Section

2.3, the choice of method can lead to very different probabilities attributed to each expert’s projec-

tions, suggesting that one can benefit from investigating the differences between expert models with

higher probability.

Before going into each method’s details, the following notation will be used throughout the

remainder of this paper. Consider a vector of years τ⃗ = {s, s + 1, . . . , t}, where s ∈ {0, . . . , t},

t ≤ T , with T ∈ N the latest available year. Let Y⃗τ⃗ ,x be a vector of random variables representing

the precipitation annual maxima of G(x, τ⃗ , d), the daily precipitation at site x for day d, for years

in τ⃗ . Further let the vector of random variables Y⃗τ⃗ ,A be the annual maxima of H(A, τ⃗ , d) for

the same period from s to t, where H(A, τ⃗ , d) is the average areal rainfall for day d, such that

H(A, τ⃗ , d) = 1
card(X)

∑

x∈X G(x, τ⃗ , d) for a collection of sites x ∈ X within the area A. The
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respective realisations of G(x, τ⃗ , d) and H(A, τ⃗ , d) are then y⃗τ⃗ ,x and y⃗τ⃗ ,A, with length t− s+ 1.

Consider M experts providing a model Mm allowing for projections of annual maxima for

site x and area A, y⃗
(m)
τ⃗ ,x and y⃗

(m)
τ⃗ ,A respectively, where m ∈ {1, . . . ,M}, over a period τ⃗ as de-

scribed above. With a certain weight wm attributed to each expert, the objective is then to obtain a

precipitation projection with a weighted sum of the experts’ projections, that is,

˜⃗yτ⃗ ,x =
M
∑

m=1

wmy⃗
(m)
τ⃗ ,x .

The goal of each method is then to obtain these wm from calibration variables. These are

variables for which we know the true values, while the experts providing their opinion do not.

This information then allows us to calibrate how much weight we give to each expert. Consider

K such calibration variables V1, . . . , VK . We specify Q percentages for which each one of M

experts provides corresponding quantiles v
(m)
k,q , k = 1, . . . ,K; q = 1, . . . , Q; and m = 1, . . . ,M .

In the context of extreme precipitation projection, we would have card(X) calibration variables

corresponding to Y⃗τ⃗ ,x for a calibration period τ⃗ .

2.2.1 Inverse Distance Weighting

A first possible approach to model combination is to intuitively build weights based on the

distance between an expert’s projection about a variable of interest, or vector of variables, and the

true value of this variable. This idea can be achieved through Inverse Distance Weighting (IDW).

The advantage of this approach is its intuitiveness and ease of use.

Classically, IDW was used with Euclidean distance. In a geometric context, Shepard (1968)

used IDW to consider distance while taking angles into account. In a probabilistic setting, the

challenge with this method is then to determine an appropriate distance measure. One such measure

is the Wasserstein distance, which Kantorovitch and Rubinštein (1958) first realised was applicable

to probability distributions. This idea was expanded on by Givens and Shortt (1984), and used

recently by Pesenti et al. (2021) for sensitivity analysis. In the univariate case, the distance for
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expert M over time period τ⃗ at location x is defined as

D(m) =

∫

|F
Y

(m)
τ⃗ ,x

(y)− F
Y
τ⃗ ,x

(y)|dy,

with FYτ⃗ ,x the real cumulative distribution function and F
Y

(m)
τ⃗ ,x

the expert’s CDF.

With this distance, the weight attributed to each expert’s projection is then

wm =
1/D(m)

∑M
l=1 1/D

(l)
.

2.2.2 Non-parametric calibration

From a literature-based approach, model combination can be approached from many angles.

Cooke et al. (1991) offered a review of early expert combination methods. Clemen and Winkler

(1999) further elaborated on this review, suggesting issues that need to be considered when combin-

ing expert opinions such as expert selection and the role of interaction between experts. Since then,

Cooke and Goossens (2008) and Hammitt and Zhang (2012) compared the performance of multiple

combination methods, among which a classical approach which was first presented by Cooke et al.

(1991).

This combination method uses desirable properties of scoring rules, namely that they should be

coherent, strictly proper, and relevant (see Cooke et al. (1991) for details). A three-part method was

established attributing weights to each expert distribution based on a relative information compo-

nent, a calibration component, and an entropy component. This method has the advantage of being

non-parametric, suggesting that an expert does not need to have a complete statistical model. Such

a method can be appropriate for example in actuarial science, where an expert might reasonably

provide an estimate for a small, medium, and large loss, but not a full loss distribution.

From the calibration variables V1 to VK defined previously, we set vk,0 and vk,Q+1 such that

vk,0 < v
(m)
k,q < vk,Q+1 ∀ q,m.

We compare these selections and expert-provided values with the true observed values to find the

proportion of calibration variables in each interquantile space. This forms an empirical distribution
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z⃗ = {z1, . . . , zQ+1} that we can compare to the theoretical proportion p⃗ = {p1, . . . , pQ+1}. As

shown by Cooke et al. (1991), we can obtain the calibration and entropy components, C(m) and

O(m) respectively, as

C(m) = 1− χ2
K−1((2K)I(z, p)),

where

I(z, p) =

Q+1
∑

q=1

zq ln

(

zq
pq

)

is the relative information component, and

O(m) =
1

K

K
∑

k=1



ln(vk,Q+1 − vk,0) +

Q+1
∑

q=1

pq ln





pq

v
(m)
k,q − v

(m)
k,q−1







 .

It can readily be shown that the relative information component I(z, p) multiplied by 2K (i.e. twice

the number of calibration variables) follows a Chi-squared distribution. The calibration component

uses this fact to measure the goodness of fit of each expert forecast, while the entropy component

measures the distance of expert forecasts from a uniform distribution. The intuition for this compo-

nent is that a uniform model provides very little useful information. From these, we finally obtain

w′
m = C(m)O(m)I{C(m)>α}

for a specified threshold α chosen by optimising the score of the combined distributions, where

0 < α < 1. This α can be seen as a hyperparameter representing the minimal calibration level that

each model needs to satisfy to receive weight. As such, a higher α means we give probability to less

models. This also implies that the maximal value for α is the highest value of C(m). We can then

recalibrate the weights to make their sum equal to 1 by dividing w′
m by the sum over all experts:

wm =
w′
m

∑M
l=1w

′
l

.
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These wm do not require the analyst to have a prior opinion of each expert’s projections. We will

refer to this method as Cooke’s method for the sake of brevity. In the context of daily precipitation

annual maxima, the corresponding calibration variable is then Y⃗τ⃗ ,x, where we consider K different

sites x.

2.2.3 Bayesian Model Averaging

As an alternative to the previous approaches, one may seek to exploit their prior knowledge

using Bayesian methods, updating a prior belief with observed data to obtain a posterior distribution

more representative of recent data.

Bayesian Model Averaging (BMA) is a widely used tool for model combination. Recently, in

the United States, BMA was used to study extreme rainfall density as well as daily mean rainfall

by Zhu et al. (2013) and Massoud et al. (2020) respectively. First made popular by Raftery et al.

(1997) in linear models, BMA uses observed data to update weights to different models based on

their likeliness. This relies on the premise that any of the models could be right, but selecting

only one model would fail to capture the uncertainty around this choice. This in turn leads to

reducing overconfidence from ignoring a model’s uncertainty. BMA however implicitly relies on

the assumption that one of the models must be right (Hoeting et al., 1999). Note that the method

presented in Cooke et al. (1991) relies on a similar assumption, given that the optimal α requires at

least one model to be chosen.

Let M be a discrete variable representing this best model, with possible values {M1, . . . ,MM}.

An analyst has some prior belief about the probability that each expert’s model is right, Pr(M =

Mm), which we will denote Pr(Mm), normalised such that
∑M

m=1 Pr(Mm) = 1. In the absence

of prior information, then Pr(Mm) = 1/M, ∀m. Given data y⃗τ⃗ ,x, the analyst can update these

probabilities through Bayesian updating, that is

Pr(Mm|y⃗τ⃗ ,x) =
Pr(y⃗τ⃗ ,x|Mm) Pr(Mm)

∑n
l=1 Pr(y⃗τ⃗ ,x|Ml) Pr(Ml)

,

where Pr(y⃗τ⃗ ,x|Mm) is the probability of observing y⃗τ⃗ ,x under model Mm. Since we divide by

∑M
l=1 Pr(y⃗τ⃗ ,x|Ml) Pr(Ml), it follows that

∑M
m=1 Pr(Mm|y⃗τ⃗ ,x) = 1, and posterior probabilities
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Pr(Mm|y⃗τ⃗ ,x) can therefore be considered as updated weights attributed to each expert. This sup-

poses that all models are independent since we ignore possible interactions between models. This

assumption is appropriate in this case since all experts rely on different approaches, but this will be

discussed in Section 2.4. There are different ways of calculating the expert-associated probabilities.

A first possibility is to use an Expectation-Maximisation (EM) algorithm, as shown by Darband-

sari and Coulibaly (2019), where the residuals between the model projections y⃗
(m)
τ⃗ ,x , representing an

expert’s projection generated from model Mm about the variable Y⃗τ⃗ ,x, and actual data are assumed

to follow a Gaussian distribution. This assumption allows for iterating through these residuals’

Gaussian likelihood while updating the weights attributed to each expert model until the difference

between iterations is less than some threshold β. The algorithm is outlined in Appendix A.1. The

algorithm allows for projecting a posterior distribution for a period ψ⃗ = {s′, s′ + 1, . . . , t′}, with

s′ ∈ {t, t+1, . . . , t′}, t < t′ ≤ T . This approach must be used carefully as it can lead to overfitting.

With a low threshold, expectation-maximisation will be optimised for training data, but will also

learn the noise surrounding the signal. Because of this, the algorithm can then perform poorly on

testing data. This limitation of the EM algorithm will be further explored in section 2.3.

The same hypothesis that residuals follow a normal distribution was used by Zhu et al. (2013),

but with a different approach due to limited datasets, where the authors used bootstrapping, that

is, sampling with replacement, under Generalised Likelihood Uncertainty Estimation (GLUE, see

Beven and Freer (2001)) to obtain the posterior likelihoods. The algorithm is presented in Algorithm

1, where yτ⃗ ,x,q is the qth quantile of the vector y⃗τ⃗ ,x, yτ⃗ ,x,q,b is the bth bootstrap resampling of this

quantile with B resamplings, and Pr(Y
ψ⃗,x

= y|Mm) is the probability distribution of extreme

precipitation under model Mm for a future period ψ⃗.
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Algorithm 1: Generalised Likelihood Uncertainty Estimation

1: Resample yτ⃗ ,x,q to obtain B bootstrap iterations yτ⃗ ,x,q,b.

2: Calculate the variance for quantile q as σ2q =
1
B

∑B
b=1

(

yτ⃗ ,x,q,b − 1
B

∑B
i=1 yτ⃗ ,x,q,i

)2
.

3: Calculate the likelihood assuming residuals follow a normal distribution:

L(y⃗
(m)
τ⃗ ,x , q) =

1√
2πσq

exp






−

1
B

∑B
b=1

(

yτ⃗ ,x,q,b − y
(m)
τ⃗ ,x,q,b

)2

2σ2q







L(y⃗
(m)
τ⃗ ,x ) =

1

Q

Q
∑

q=1

L(y⃗
(m)
τ⃗ ,x , q).

4: Update the probability of each expert as

Pr(Mm|y⃗τ⃗ ,x) =
L(y⃗

(m)
τ⃗ ,x ) Pr(Mm)

∑M
l=1 L(y⃗

(l)
τ⃗ ,x) Pr(Ml)

.

5: Calculate posterior distribution as

Pr(y|y⃗τ⃗ ,x) =
∑M

m=1 Pr(y|Mm) Pr(Mm|y⃗τ⃗ ,x).

2.3 Application to Areal Reduction Factors

In the context of extreme precipitation, where projections from multiple models are available,

model combination can become a particularly useful tool. The issue with combining models with

annual maxima data is that datasets are limited. To find projected precipitation trends in annual

maxima at a 1 in 100 return level, Innocenti et al. (2019) pooled y⃗
(m)

ψ⃗,x
across all experts for projected

time period ψ⃗, thus significantly increasing available data for small spans of time. Let Y⃗
ψ⃗,x

be the

vector of random variables describing annual maxima for period ψ⃗. The pooled ªobservationsº for

this variable are then

y⃗
ψ⃗,x

= (y⃗
(1)

ψ⃗,x
, y⃗

(2)

ψ⃗,x
, . . . , y⃗

(M)

ψ⃗,x
),

where all elements of y⃗
ψ⃗,x

are considered equiprobable, such that

Pr(Y
ψ⃗,x

= y) =
1

(t′ − s′ + 1)M
,

with y ∈ y⃗
ψ⃗,x

, M experts, and ψ⃗ having length t′ − s′ + 1.
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Applying frequency analysis to this pooled set, we define the quantile corresponding to a certain

frequency R as Y ∈ Y⃗
ψ⃗,x

such that

Y
ψ⃗,x,R

= min{Y
ψ⃗,x

: Pr(Y ≤ Y
ψ⃗,x

) ≥ 1− 1/R},

where for example for a 1 in 20 year return level, we would have 1− 1/20 = 0.95.

2.3.1 Non-equiprobable pooling

In the previous section, we saw different methods to attribute weights to expert opinions depend-

ing on the probability of each expert projection being accurate. We can incorporate these ideas into

the pooling idea of Innocenti et al. (2019). We use their pooling method as a baseline, where one

may consider all expert-provided models as equally likely, which we will refer to as the equiproba-

ble scenario. Instead of supposing that all model projections are equally likely (Pr(Mm) = 1/M ),

we can update our belief about the probability of each model with observed data. By defining

Pr(Y
ψ⃗,x

= y) =
Pr(Mm|y⃗τ⃗ ,x)
t′ − s′ + 1

,

with y ∈ y⃗
ψ⃗,x

, we obtain a shifted distribution reflecting this updated belief, where t′ − s′ +1 is the

number of years in the future projection period ψ⃗, and τ⃗ is the historical observed period.

2.3.2 Calculating areal reduction factors

We can now incorporate the model combination methods and pooling presented previously into

ARFs to investigate their impact on extreme precipitation quantile and ARF projections.

Although there are slightly varying definitions of ARFs, we will focus on the one used by Le

et al. (2018), which can be thought of as a quantile of average areal precipitation over an average of

point precipitation quantiles. This particular definition has the advantage of being applicable to any

station within a region and not only one station. Starting from the notation introduced in Section

2.2, let Yτ⃗ ,A,R and Yτ⃗ ,x,R respectively represent the areal and point rainfall for area A, point x, and

frequency R over period τ⃗ . The ARF based on daily precipitation is then

21



ARF(A,R,τ⃗) =
Yτ⃗ ,A,R

1
card(X)

∑

x∈X Yτ⃗ ,x,R
,

where there are a collection of sites x ∈ X within area A. In words, this can be thought of as the

ratio of the quantile of the area’s average precipitation to the average of the individual pointwise

quantiles across the area.

An issue that arises when calculating ARFs with climate models is that expert projections are

often not available at each point x, but rather at a grid scale. This issue can however be solved

by assuming that scaling from point precipitation to grid average precipitation is time invariant. Li

et al. (2015) demonstrated the validity of this hypothesis, enabling the use of grid cells for ARF

calculation, where we would have grid-to-area instead of point-to-area.

With this notion of time-constant scaling, we can thus consider the points x as grid cell coordi-

nates instead of stations. This enables us to calculate ARFs using grid data, as made available by

climate agencies such as Climate Data Canada and Copernicus Climate Change Service. Grid cells

are available at a resolution of approximately 0.1 degrees of latitude and longitude, and represent

average precipitation over the grid cell. We consider zones of 6 × 4 grid cells in the regions of

Montreal and Quebec. We have access to 24 different climate models using historical data from

1951 to 2005 to project precipitation from 2006 to 2100. These models rely on three different Rep-

resentative Concentration Pathways (RCP) emission scenarios: a low emissions scenario (RCP 2.6),

a moderate emissions scenario (RCP 4.5) and a high emissions scenario (RCP 8.5). In keeping with

Innocenti et al. (2019), we will focus on the 8.5 scenario, corresponding to a 4.5 degree increase by

2100. We calibrate weights using data from 2001 to 2020, for which we have both real and projected

precipitation. This allows us to compare quantiles for Bayesian Model Averaging, or interquantile

space for Cooke’s method and inverse Distance Weighting, and so calibrate combination weights

using each method. With the obtained weights, all future time periods are then forecasted. It is

worth noting that this relies on the hypothesis that weights remain the same whether forecasting

near or far future.

To use pooling, we need to have sufficient data for frequency analysis. Due to having 24 models

instead of the 50 in Innocenti et al. (2019), we consider 6-year periods, such as precipitation from
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2016 to 2021, rather than 3-year periods to obtain a similar number of data points. Applying weights

calculated using the different methods presented in Section 2.2, we calculate shifted densities re-

flecting these adjusted weights, as can be observed in Figures 2.4 and 2.5. However, before using

the BMA-EM algorithm, a threshold or number of iterations must be chosen to prevent overfitting.

This is because too many iterations of the expectation-maximisation algorithm will lead to learning

the signal as well as the noise in the training data. Figure 2.1 illustrates the average MSE resulting

from splitting data from 2001 to 2020 into ten-year training and testing periods. Overfitting occurs

passed 4 iterations of the expectation-maximisation algorithm, where we see that the testing sam-

ple MSE starts increasing significantly while the training sample MSE stabilises and even slightly

increases. To prevent this overfitting, we choose to stop the algorithm after 4 iterations. This is a

known issue of BMA (see for example Domingos (2000)), added to BMA tending to select only

one model asymptotically, as BMA implicitly relies on the assumption that one of the models is true

(Hoeting et al., 1999). An α of 0.65 is also selected for Cooke’s method by optimising the error as

shown in Figure 2.1.

Figure 2.1: Grid cell MSE of the expectation-maximisation algorithm (left) and Cooke’s method

(right) in the Montreal region from 2001 to 2020

We first note that different combination methods can yield very different weights attributed to

each model. Figure 2.2 illustrates the difference in weights for the cities of Montreal and Quebec

for a period from 2001 to 2020. Note that for the rest of the article, when we refer to Quebec, this

will imply Quebec City and not the province. We see that for Montreal, the two BMA methods

generally agree, whereas they do not for Quebec. On the other hand, both Cooke and IDW lead
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to relatively similar weights in both locations, but they differ from BMA results. These different

weight attributions can lead to different projected quantiles.

One may seek to investigate the expert models with larger probability to ensure they agree with

those models’ hypotheses. For example, in Montreal, the next to last model (MPI MR) receives a

large weight from the EM algorithm, but gets truncated by the calibration approach. This happens

because the model has a jump in precipitation level around the 50th quantile, as illustrated in Figure

2.3. 7 observations out of 20 fall in the 45-50% interquantile space for model MPI MR. This causes

a poor fit in calibration in terms of Cooke’s method, but the quantile-to-quantile residuals are quite

small, meaning that we still have a good fit in terms of low residuals when compared to real data,

making the BMA methods give this model high weight. In similar fashion, one can gain additional

insight by comparing the outputs of different combination approaches.

Figure 2.2: Model weight by method for Montreal (left) and Quebec (right) for precipitation from

2001 to 2020
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Figure 2.3: Cumulative distribution for model MPI MR and real data in Montreal for a grid cell

between 2001 and 2020

Figures 2.4 and 2.5 illustrate the upper tail of the resulting empirical cumulative distribution

functions under different possible combination methods for Montreal and Quebec respectively. We

see that the quantiles obtained from varying combination methods are substantially different de-

pending on the weights attributed to each model. From a risk management perspective, such differ-

ences can alter conclusions reached by an analyst concerning risk level. As such, one would benefit

from considering multiple combination methods, given that this would allow for better understand-

ing of projection uncertainty.

Figure 2.4: Upper tail of empirical cumulative distribution functions of pooled annual maximum

daily rainfall (mm) for Montreal from 2016 to 2021 with different weighting methods
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Figure 2.5: Upper tail of empirical cumulative distribution functions of pooled annual maximum

daily rainfall (mm) for Quebec from 2016 to 2021 with different weighting methods

Since different combination methods yield different results, one may be interested in the vari-

ability induced by attributing weights to each expert. Let F
(m)
τ⃗ ,x be the cumulative distribution func-

tion corresponding to model Mm. We define the CDF of Yτ⃗ ,A as

Fτ⃗ ,A(y) = w1F
(1)
τ⃗ ,A(y) + . . .+ wMF

(M)
τ⃗ ,A (y),

where w1, . . . , wM are the weights attributed to each expert (which correspond to probabilities

Pr(Mm|y⃗τ⃗ ,A)). It is easy to show that for a given return level, the boundaries for Yτ⃗ ,A,R will be the

minimum and maximum of {Y (1)
τ⃗ ,A,R, . . . , Y

(M)
τ⃗ ,A,R}. Indeed, we have

Yτ⃗ ,A,R = min
(

Yτ⃗ ,A : Pr(Y ≤ Yτ⃗ ,A) ≥ 1− 1/R
)

= min
(

Yτ⃗ ,A : Fτ⃗ ,A(Yτ⃗ ,A) ≥ 1− 1/R
)

= min
(

Yτ⃗ ,A : w1F
(1)
τ⃗ ,A(Yτ⃗ ,A) + . . .+ wMF

(M)
τ⃗ ,A (Yτ⃗ ,A) ≥ 1− 1/R

)

.

Now suppose F
(i)
τ⃗ ,A(Yτ⃗ ,A) ≥ F

(j)
τ⃗ ,A(Yτ⃗ ,A) for some i ∈ {1, . . . ,M} and ∀ j ∈ {1, . . . ,M}. Then

it follows that F
(i)
τ⃗ ,A(Yτ⃗ ,A) ≥ w1F

(1)
τ⃗ ,A(Yτ⃗ ,A) + . . . + wMF

(M)
τ⃗ ,A (Yτ⃗ ,A) ≥ 1 − 1/R, provided that

w1, . . . , wM ∈ [0, 1] with
∑

wi = 1, and so F−1
τ⃗ ,A(Yτ⃗ ,A) must be the minimum for Yτ⃗ ,A,R for any

combination of weights. Similarly, the reverse logic allows for stating that the lowest CDF must

yield the maximum quantile.
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From this reasoning, Figure 2.6 illustrates the CDF obtained with each combination method in

Montreal between 2001 and 2020 compared to the minimum and maximum boundaries of quantiles,

where the period is expanded to 20 years to allow for empirical quantiles from each expert in a

short enough period that precipitation is not expected to change significantly. We notice that the

combination methods are grouped within a much narrower range than the theoretical boundaries

from the minimum and maximum projections.

Figure 2.6: Upper tail of empirical cumulative distribution functions of pooled annual maximum

daily rainfall (mm) for Montreal from 2001 to 2020 with different weighting methods, and minimum

and maximum boundaries

We can suppose that the weights provided by the different combination methods will improve

the variance around a quantile estimate compared to having no information about each expert. While

we cannot obtain this variance mathematically, we can use bootstrap resampling to compare the

quantile distribution under each combination scenario. Figure 2.7 illustrates the resulting density

distributions for the 95th quantile in Montreal between 2001 and 2020. In keeping with intervals

presented in Climate Data Canada, the 10% and 90% quantiles of the distribution supposing no

information about experts are shown (corresponding to the equiprobable scenario), which can be

thought of as the lower and upper bounds that a user with no evaluation of the expert models might

consider as plausible. We notice that the two BMA methods differ largely from the other two

methods, with modes lying outside the 10%-90% boundaries, while the other methods are more

similar to not evaluating experts, particularly for the 95th quantile.
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This difference is driven by the same phenomenon as the difference in weight attribution. BMA

methods rely on the assumption that residuals between projections and real data follow a normal

distribution, whereas Cooke’s method and IDW using Wasserstein distance use the distance between

(cumulative) densities of the projections and real data. If expert distributions have jumps in their

CDFs, this will cause aggregation for both Cooke and Wasserstein, leading to these models receiving

little weight. Nonetheless, the residuals between these experts’ projections and real data might still

be small, such that BMA methods will attribute larger weight to these models. These different

weights cause the gap between quantile values of BMA methods compared to the other methods,

as observed in Figure 2.6. Given the similarity in results between the non-parametric methods

using densities, and the BMA methods using residuals as in Figure 2.7, it is natural to suppose that

keeping only one method using densities and another using residuals provides sufficient information

for analysis purposes.

Moreover, these combination methods allow for alternate confidence bounds based on an eval-

uation of expert models as opposed to supposing all expert projections are equally likely. Table 2.1

also highlights the reduction in variance for the 95th quantile in Montreal, while the much lower

variance is similar for all methods in Quebec.

Figure 2.7: Comparison of bootstrap densities under different combination methods for the 90th

quantile (left) and 95th quantile (right) in Montreal between 2001 and 2020 for 10000 iterations

Applying the same exercise to multiple grid cells within the Montreal region, we can calculate

the resulting ARF for each method. Given that we observe a 10% difference in 95th quantiles

between methods, we can expect different weights to yield significantly different ARF curves.

It is worth noting that directly using quantiles found with model combination methods can yield
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Table 2.1: Comparison of mean and variance of uniform weight attribution and model combination

weights for Montreal and Quebec from 2001 to 2020 at the 95th quantile

Montreal Quebec

Mean Variance Mean Variance

No information 78.4 40.2 72.3 3.4

Cooke 76.4 33.1 72.2 4.3

Wasserstein 77.4 34.8 71.3 3.9

EM 70.0 28.4 70.1 3.7

GLUE 69.3 26.9 70.0 4.0

nonsensical results when computing ARFs. This is because the spatiotemporal relation between the

full region Yτ⃗ ,A,R and the underlying grid cells Yτ⃗ ,x,R for each expert’s projection is broken when

comparing a weighted average of y
(m)
τ⃗ ,x,R and y

(m)
τ⃗ ,A,R, leading to ARFs possibly exceeding 1. From

a point-to-area point of view, this would not make sense, seeing as a whole area cannot have more

intense precipitation than its maximal component, limiting the applicability of such a method. This

effect is lessened by using the same weights for all grid cells within an area.

From the significant variability in higher quantiles observed in the previous figures depending

on the weights attributed to model projections, we choose to study percentage changes in ARF and

quantiles because they yield more comparable information between the different combination meth-

ods than actual quantile and ARF values. Mathematically, the modelled quantile change for area A

corresponds to ∆quant = Y
ψ⃗,A,R

/Yτ⃗ ,A,R, and the ARF change to ∆ARF = ARF
A,R,ψ⃗

/ARFA,R,τ⃗

for future period ψ⃗ and current period τ⃗ .

Using the quantile boundaries found previously, we can establish boundaries for possible quan-

tile change by comparing the future maximum to the current minimum, and vice-versa for the min-

imum possible change. This exercise is not well-defined for ARFs, since the area value depends

on the underlying grid cells, and so we cannot for example use the highest area quantile with the

lowest grid quantiles, as this would not make sense from a rainfall perspective. Keeping the same

20-year period, we compare it to a near-future period of 2011-2030 and a far future of 2071-2090.

The idea behind comparing two future periods is that the variability in near future should be lower

than for a later period. Figures 2.8 and 2.9 show the change in quantiles and ARFs in Montreal for

the near future and far future at a 1 in 20 year return level. While we observe the expected change in
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variability for quantiles, Figure 2.9 shows that change in ARF does not significantly vary between

near and far projections. This could be explained by looking at the underlying composition of the

ARF, where

∆ARF = ARF
A,R,ψ⃗

/ARFA,R,τ⃗ =

(

Y
ψ⃗,A,R

1
card(X)

∑

x∈X Y
ψ⃗,x,R

)

(

Yτ⃗ ,A,R
1

card(X)

∑

x∈X Yτ⃗ ,x,R

)

=
Y
ψ⃗,A,R

Yτ⃗ ,A,R

∑

x∈X Yτ⃗ ,x,R
∑

x∈X Yψ⃗,x,R
= ∆quant

∑

x∈X Yτ⃗ ,x,R
∑

x∈X Yψ⃗,x,R
,

such that the first ratio is the change in quantiles, but the second ratio has the current period and

future period inverted, suggesting that it will be approximately inversely proportional to the quantile

change. As such, the two ratios will cancel out, other than the random noise between different grid

cell precipitation, which is what we observe in Figure 2.9. The fatter tails for Bayesian methods

are induced by the distribution of quantile change, which is less centered around a mode, as seen in

Figure 2.8.

Figure 2.8: Distribution of projected quantile change at a 1 in 20 year return level in Montreal

between 2001-2020 and 2011-2030 (left) or 2071-2090 (right)
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Figure 2.9: Distribution of projected ARF change at a 1 in 20 year return level in Montreal between

2001-2020 and 2011-2030 (left) or 2071-2090 (right)

The same idea is applied to Quebec in Appendix A.2, where all methods generally agree, and

the Bayesian quantile change projections are more centered around their mode than for Montreal,

such that the ARF change projection has smaller tails. The distributions resulting from different

combination methods can provide valuable information about the uncertainty of projections, where

for example in this case the confidence level is higher regarding Quebec projections than Montreal

projections. Moreover, compared to the 10% to 90% confidence bounds usually presented, we

see that the resulting distributions from combination methods provide alternate bounds based on

an evaluation of expert projections. In an actuarial context, this could be very important as it can

highlight whether a projection is too conservative or not conservative enough.

Figures 2.10 and 2.11 compare the mean percentage change in ARF and quantiles respectively

for a 1 in 20 year return level for Montreal between Cooke’s method and BMA-EM, divided into

approximately 24km x 22km areas. These two methods are chosen to illustrate the substantial vari-

ation between a density-based method and a residuals-based method. For example, both methods

project increases in quantile, but one projects a 10% increase with little change to the ARF, while

the other projects a 22% increase with a reduction to the ARF. From a risk management perspec-

tive, this would imply differing scenarios of a moderate increase with similar spatial distribution

and a heavier increase with more localised precipitation, which can lead to different losses (see for

example Cheng et al. (2012) and American Academy of Actuaries (2020)).
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Flood losses provide a particular example of how Cooke’s method and Bayesian model averag-

ing with expectation-maximisation would lead to different loss projections. While the link between

extreme rainfall and flooding is complex, the difference in scenarios between Cooke’s method and

BMA-EM allows for a theoretical discussion of its impact for an actuary. Through a combination

of hydrological and hydraulic models such as Hydrotel (Fortin et al., 2001), HEC-RAS (Brunner,

2016) or the Hillslope Link Model (Demir and Krajewski, 2013), one can produce discharge flood

projections under different rainfall scenarios. Breinl et al. (2021) used elasticity to illustrate the

relationship between extreme precipitation and flooding, where depending on ground dampness, an

increase in precipitation will have an at least equivalent increase in river discharge, leading to in-

creased flood severity. Supposing that the reduction in ARF will mitigate the impact of an increase

in quantiles due to more localised rainfall, such that for example we have an approximately 7%

and 19% increase under respectively the Cooke and BMA-EM scenarios, the relationship between

discharge and rainfall would clearly imply a greater risk of increased flood losses in the latter case.

Using a hierarchical model such as the one used by Boudreault et al. (2020), flood intensities

are associated to different levels of discharge, and their respective probabilities are established from

frequency analysis. In their study, the second and third levels of flood intensities have discharges

of 1570m3/s and of 1740m3/s respectively, with occurrence probabilities of 0.01496 and 0.00842.

This 10.8% difference in discharge is lower than the projected increase in extreme precipitation

using BMA-EM, which is not the case for Cooke’s method. All else being equal, the probability

of observing more severe flooding in the BMA-EM scenario would increase relative to the Cooke

scenario. This change in probability can then be used to calculate premiums and/or reserves for

flooding, where BMA-EM would lead to a more conservative estimate than the other method in this

case. In a changing climate perspective, the range of scenarios resulting from different combination

methods becomes even more important to have a fuller understanding of the impact of climate

change on insurable losses. An analyst using only one method would fail to obtain a complete

picture of projection uncertainty, and may find themselves being overconfident in the result of a

single combination method.
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Figure 2.10: Percentage change in quantiles for a 1 in 20 year return level between 2001-2020 and

2071-2090 for the region of Montreal using Cooke’s method (left) and BMA-EM (right)

Figure 2.11: Percentage change in ARFs for a 1 in 20 year return level between 2001-2020 and

2071-2090 for the region of Montreal using Cooke’s method (left) and BMA-EM (right)

Similar graphics are available in Appendix A.3 for Quebec. Projections for this city are much

more similar across methods, leading to smaller confidence intervals in this case.

In summary, we see that the different combination methods considered can yield varying sets

of weights, or probabilities, assigned to each model, which impacts projected quantiles. From the

similarities between methods using densities compared to methods using residuals, we see that one

only needs to use one method from each approach to obtain a picture of the underlying projec-

tion uncertainty, and the difference between the approaches provides a measure of this uncertainty.

In cases where methods agree, one could more confidently reach conclusions about the analysed

data, but in cases where methods disagree, using only one method would fail to capture projection

uncertainty. Moreover, combination methods can yield alternate confidence bounds based on an
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evaluation of expert models, and offer an improved pooling projection over considering all expert

projections as equally likely. While we did not test the relative performance of different methods,

given that non-parametric methods require very little input from experts, they may be better suited

to low-data environments, while parametric methods should perform better with more data.

2.4 Conclusion

In this paper, we applied model combination methods to the pooling approach used by Innocenti

et al. (2019) to highlight the resulting difference in quantile estimation and areal reduction factor

(ARF) calculation. More specifically, we compared Cooke’s method, an inverse distance weighting

approach, and two Bayesian model averaging approaches to equiprobable pooling when considering

precipitation annual maxima.

Our main focus was to investigate the impact, if any, of various model combination methods

on quantiles obtained through pooling, and therefore on the resulting ARFs. We considered two

non-parametric approaches, namely Cooke’s method as well as Inverse Distance Weighting using

Wasserstein distance, in addition to Bayesian Model Averaging using an Expectation-Maximisation

algorithm, and a Generalised Likelihood Uncertainty Estimation algorithm. The choice of these

methods was motivated by having an approach not requiring much information, an easy to use and

intuitive method, and Bayesian approaches frequently used in recent studies.

We focused on a 1 in 20-year return level in Montreal and Quebec to show that different weight-

ing methods lead to significantly different results for both quantiles and ARF curves. By consid-

ering the projected percentage change in quantiles and ARFs from 2001-2020 to 2071-2090, the

variability in results offered insight into the uncertainty of future projections, where results seemed

to generally agree around Quebec, whereas results varied significantly between methods for Mon-

treal. This suggests that despite past literature demonstrating that combination methods significantly

increase accuracy (Clemen, 1989), one should use more than one combination method, given that

a single method may lead to overconfidence about projections. Moreover, it may be sufficient to

compare a method using densities to another using residuals to obtain alternate confidence bounds
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instead of the standard bounds used in weather projections. Combination methods can be of partic-

ular interest to actuaries in a changing climate context to have a better understanding of the impact

of projected changes on potential losses.

A limitation of this study is that the combination methods used ignored the potential dependence

between different expert projections by assuming independence between experts. The new method

of Bayesian Predictive Synthesis presented in McAlinn and West (2019) would be an interesting

extension, as it is a generalisation of Bayesian Model Averaging taking dependence into account in

a time-series context.
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Chapter 3

Uncertainty in heteroscedastic Bayesian

model averaging

3.1 Introduction

Evaluating outstanding claim liabilities is of central importance to insurance companies for

solvency purposes. Regulators impose constraints that insurers must respect relative to capital re-

quirements and risk measures, as outlined in the ORSA guidelines for North America and Solvency

II guidelines in Europe. These guidelines help to ensure that insureds’ claims will be covered up

to a high risk level. As such, much research is devoted to the development of stochastic models to

evaluate claims liabilities, as outlined in WÈuthrich and Merz (2008).

This research can generally be divided into two main categories: aggregate (collective) reserve

models and granular (individual) reserve models. Classical collective models, such as the stochas-

tic Chain-Ladder proposed by Mack (1993), have seen many developments, such as Generalised

Linear Models (GLM, Taylor and McGuire (2016)) and Generalised Additive Model for Location,

Scale and Shape (GAMLSS, Spedicato et al. (2014)). Meanwhile, individual models have grown in

popularity in the last 15 years as computational power has increased. These models include semi-

parametric approaches (e.g. Zhao et al. (2009), Antonio and Plat (2014)), dependence modeling

with copulas (e.g. Zhao and Zhou (2010) Pešta and Okhrin (2014)), and more recently approaches

based on machine learning (e.g. Duval and Pigeon (2019), WÈuthrich (2018)).
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While the literature devoted to claim liability estimation is very well developed, it is almost

exclusively devoted to the performance of a single best model. Recently, Avanzi et al. (2024) in-

stead proposed to use linear pooling to exploit the fact that different reserve models have different

strengths (Taylor (2012), Friedland (2010)). This idea is new to the actuarial reserving literature,

where combination was otherwise done based on ad-hoc rules, except for a proposal by Taylor

(2012) of attributing weights to minimise the variance of total reserves. Avanzi et al. (2024) adapted

a standard linear pool to combine collective reserve models, taking into consideration particularities

of reserve triangles.

Their method is equivalent to Bayesian Model Averaging (BMA), which was initially proposed

by Raftery et al. (1997), and has gained much popularity in recent years. Fragoso et al. (2018)

reviewed the application of BMA in 587 articles published between 1994 and 2014 with applications

in environmental studies, biology, social sciences, and finance. In actuarial science, Jessup et al.

(2023a) compared BMA to other combination methods when projecting extreme precipitation, and

a related concept of Mixture-of-Experts has been used in pricing (e.g. Bladt and Yslas (2023),

Tseung et al. (2022)).

Despite BMA’s recent popularity, it has a well-known issue of overfitting the observed data

(Domingos, 2000) and converging to a single model. This convergence can be problematic in cases

where BMA does not converge to the true model. A practical solution to this problem is to use an

Expectation-Maximization (EM) algorithm (Raftery et al., 2005) and to stop after a certain opti-

mal number of iterations to prevent convergence to a single model. The user chooses this number

through a score function such as RMSE, a distance measure, or a divergence measure. Different

score functions do not necessarily yield the same optimal numbers of iterations, making this choice

highly subjective.

The overfitting problem may arise from the algorithm considering the observed data as the only

data, leading to the neglect of random error, defined as the irreducible uncertainty in data, which is a

key type of uncertainty in modelling (Abdar et al., 2021). As noted by HÈullermeier and Waegeman

(2021), the distinction between aleatoric uncertainty (or random error) and epistemic uncertainty

is becoming increasingly significant in a machine learning context. We propose integrating over
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random error using Bayesian conditioning, which allows BMA to consider more than just the ob-

servable data. By assuming knowledge of the distribution of random error, we can condition on this

error and integrate over it, resulting in a single sweep update of weights that removes random error.

This method prevents the convergence to a single model when multiple models are plausible, thus

preserving model diversity.

The next main issue we address is the assignment of a unique weight per model across the

entire data distribution in BMA, which can be suboptimal as different models may better describe

different parts of the data. We extend the idea of integrating over random error by treating the

weights as Dirichlet random variables, enabling flexible weight adjustments based on predictive

variables. Such flexibility is particularly valuable for actuarial reserves, where it is well known that

different reserve models perform differently depending on accident years and development periods.

Our error integration approach allows for weights to vary across different parts of the data.

In light of these considerations, we propose a new error integration approach that mitigates the

issue of converging to a single model and introduces the concept of weights as random variables

for greater flexibility. The paper is divided as follows: Section 3.2 explains Bayesian Model Aver-

aging, Section 3.3 explains the proposed Error Integration approach and its generalisation, Section

3.4 illustrates the approaches in a simulation study, Section 3.5 applies the proposed methods to

simulated loss reserving data, and Section 3.6 finally provides concluding comments.

3.2 Bayesian Model Averaging

A popular approach in statistics is selecting the model that best fits the data, then considering

it as true and disregarding the uncertainty in model selection. Ensemble learning literature offers

multiple approaches to model combination, allowing us to consider this model selection uncertainty.

In the context of linear pooling, for M different models, we seek to attribute weights wm ∈ [0, 1],

where
∑

wm = 1, to each model Mm, such that

f(y(k)|X(k)) =
M
∑

m=1

wmfm(y
(k)|X(k)), (12)
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where fm is the distribution under model Mm, and the kth response variable y(k) depends on a

vector of characteristics X
(k). One simple approach is to weigh all models equally, i.e. setting

wm = 1/M . While this approach does not dismiss any models, it does not evaluate which models

offer a better fit. Another approach we are interested in is determining weights wm for each model

to optimise a score function.

A common approach to establishing these weights is to use Bayesian Model Averaging. In the

pure statistical sense of Bayesian model averaging, the weights wm to each model are defined as

wm = Pr(Mm|D) =
Pr(D|Mm) Pr(Mm)

∑M
l=1 Pr(D|Ml) Pr(Ml)

, (13)

where Pr(D|Mm) is the probability of observing data D under model Mm. In cases where the

density can be evaluated, finding this probability is straightforward. However, the density function

is not necessarily always available, such as with an overdispersed Poisson distribution or with recent

machine learning models. In these cases, we need an assumption to evaluate the likelihood of each

model. While it would certainly be possible to use MCMC (see for example Geyer (1992)), such a

method is computationally expensive, and a simpler approach is desirable.

Raftery et al. (2005) defined a dynamic expectation-maximisation (EM) algorithm supposing

that residuals follow a normal distribution. This allowed for obtaining a vector of weights ŵ for all

M models as

ŵ = argmax
w

∑

y(k)∈D

log

(

M
∑

m=1

wmfm(y
(k)|σ2m)

)

, (14)

where each model was assumed normal with unknown homoscedastic variance σ2m, a common

assumption used for example by Darbandsari and Coulibaly (2019) working with streamflow simu-

lation. Most articles applying BMA are variations of the EM algorithm.

When heteroscedasticity is present, a modification to this idea is necessary to account for chang-

ing variance. One approach is to combine heteroscedastic models for which density can directly be

evaluated (e.g. Avanzi et al. (2024) and Liu and Maheu (2009)). Also, using bootstrapping to cal-

culate a variance for each quantile is conducted in (Zhu et al., 2013). Our suggested approach is to
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suppose that for the random variable Y (k) corresponding to the kth observation,

Y (k) − E(Ŷ (k)) ∼ N(0, σ2k), (15)

where σ2k varies for each observation k. In other words, we assume that the random error around

each observation is normally distributed with varying variance. This alternative approach allows

us to use the benefits of the EM algorithm, while also considering heteroscedasticity when density

cannot be directly evaluated. Such heteroscedastic cases can arise when considering climate-related

variables such as extreme precipitation, where climate change affects the uncertainty around pro-

jections, or in an insurance context, where the variance depends on the expected loss amount.

The distributional assumption in (15) allows equation (14) to be adapted to heteroscedastic

variance. Let

ŵ = argmax
w

∑

y(k)∈D

log

(

M
∑

m=1

wmf̃m(y
(k))

)

(16)

where f̃m(y
(k)) = ϕ

(

y(k)−E(Ŷ (k))
σk,m

)

, with ϕ the density of a standard normal distribution and σk,m

the mth model’s standard deviation for observation k. It can readily be shown that assuming nor-

mality of residuals as in equation (16) does not affect the EM algorithm. The proof is in Appendix

A.4 and follows a logic similar to Conflitti et al. (2015). Note that we approximate the residual error

as a normal distribution, but make no assumption about the shape of the initial model, including

model error, implying that the residual hypothesis should be applicable to most models.

3.3 Error integration

The EM algorithm has the well-known issue that it converges to a single model, as demon-

strated by Le and Clarke (2022). Indeed, unless a stopping criterion is set, successive updates of

the weights will lead to a single model receiving full weight. This is related to BMA supposing

that the true model is among the candidate models. However, since the true model is often not one

of the proposed ones, a combination can outperform any individual proposed model. To mitigate

convergence to a single model, we can use cross-validation to determine the optimal number of

iterations to achieve the lowest mean squared error (MSE). Determining this optimal number can
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however be computationally demanding. A different approach is to exploit another source of error

by incorporating data uncertainty into BMA.

When evaluating Pr(Mm|D) in the usual BMA algorithm, we suppose that the dataset D is

fully representative of its underlying model. This can lead to cases where, given two equally valid

models, one would receive a weight of 0 while the other would receive a weight of 1, depending

on the data. For example, consider a case where data comes from a normal distribution with a

certain mean µ and variance σ2. Two normal models with the same variance are compared, one

model with mean µ − 1, and the other with mean µ + 1. Suppose the observed data has mean

X̄ = µ − 0.1. Then, the first model will have higher likelihood, such that iterative weight updates

will converge to it, despite both models being equally distant from the true distribution. Data has

inherent uncertainty, which needs to be considered to avoid alternating between a model receiving

full weight or no weight.

To address this issue, we know that real data follows some unknown distribution P such that

Y (k) ∼ P(X(k);Θ), depending on covariates X(k) with parameters Θ. The observed data D rep-

resents one iteration from P, from which we fit models with known distribution Qm and estimated

parameters such that Ŷ
(k)
m ∼ Qm(X

(k); Θ̂m).

3.3.1 Symmetric uncertainty

Suppose the uncertainty around Y (k) can be approximated reasonably well by a normal distri-

bution, such that

y(k) = E(Y (k)) + ϵk, (17)

where ϵk ∼ N(0, σ2k). Then,

y(k) − E(Ŷ (k)
m ) = y(k) − E(Y (k)) + E(Y (k))− E(Ŷ (k)

m )

= ϵk + E(Y (k))− E(Ŷ (k)
m ),
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where E(Ŷ
(k)
m ) should converge to its true value when observing more data, s.t.

y(k) − E(Ŷ (k)
m ) ∼ N(E(Y (k))− E(Ŷ (k)

m ), σ2k).

If we further suppose that

E(Ŷ (k)
m ) = E(Y (k)), (18)

that is, that models are unbiased, then this hypothesis is equivalent to equation (15). While sup-

posing equality of means is a strong hypothesis, for a model for which this does not hold, we have

Pr(Mm|D) → 0. A misspecified model tending to 0 is due to the hypothesis of the distribution

of residuals. If residuals are not centered at 0, then the model likelihood will certainly be lower

than that of unbiased models. The mismatch in variance will also lead to a lower likelihood. Using

Bayes’ theorem will thus result in a small weight for the misspecified model.

We want to take data uncertainty, which can be thought of as random error, into account when

combining models. Let ϵ be a vector of random variables representing this uncertainty, such that

y(k) = E(Y (k))+ ϵk. Consider its distribution π(ϵ) ∼ N(0,Σ), where Σ is a diagonal matrix with

diagonal elements σ2k (assuming each observation’s random error is considered independent). We

then have

Pr(Mm|D) =

∫

Pr(Mm|D, ϵ)π(ϵ|D)dϵ

=

∫

· · ·
∫

Pr(D|Mm, ϵ) Pr(Mm)
∑M

l=1 Pr(D|Ml, ϵ) Pr(Ml)
π(ϵ(1)|D) · · ·π(ϵ(K)|D)dϵ(1) · · · dϵ(K),

which, supposing no prior information about each model, such that Pr(Mm = 1/M), reduces to

=

∫

· · ·
∫

Pr(D|Mm, ϵ)
∑M

l=1 Pr(D|Ml, ϵ)
π(ϵ(1)|D) · · ·π(ϵ(K)|D)dϵ(1) · · · dϵ(K). (19)

This formula cannot be evaluated analytically, but it can be approximated by simulating S draws

of random errors to each observation such that ŷ
(k)
m,s = E(Ŷ

(k)
m ) + ϵ

(k)
s and approximating the
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resulting weight as

Pr(Mm|D) ≈ 1

S

S
∑

s=1

1

|D|
∑

y(k)∈D

Pr(y(k)|ϵ(k)s ,Mm)
∑M

l=1 Pr(y
(k)|ϵ(k)s ,Ml)

, (20)

where Pr(y(k)|ϵ(k)s ,Mm) = ϕ((y(k) − ŷ
(k)
m,s)/σk,m). Equation (20) however implies that variance

of random errors must be known, which is generally not the case in practice.

To solve this issue, we use an approach initially proposed by Harvey (1976). Using the equality

in means in equation (18), we can measure σ2k by further supposing that σ2k = g(X(k)θm) for a link

function g which is convex and differentiable on its domain, and a vector of parameters θm, such

that

g−1(σ2) = Xθm + υ (21)

for an error term υ and matrix X grouping vectors of covariates X(k) for allK observations. Taking

a standard loss function such as quadratic loss, we then need to solve

θ̂m = argmin
θm

K
∑

k=1

(

g−1((y(k) − E(Ŷ (k)
m ))2)−X

(k)θm

)2
, (22)

which has the well-known solution

θ̂m = (X′
X)−1

X
′g−1(σ2). (23)

Although there are other possible choices, we use the quadratic loss function due to its pop-

ularity in fitting procedures and its properties, especially in our linear framework, e.g. Judge and

Mittelhammer (2004).

Take the link function g to be the exponential function. This ensures positivity of the result,

which is desirable for a variance function. Then, g−1(σ2) = Rm, where Rm,k = ln((y(k) −

E(Ŷ
(k)
m ))2).

Notice that this estimator is different from each model’s error. Call this modelled variance

σ̃2m,k = eX
(k)θ̂m to distinguish it from σ2m,k. We can then simulate using the modelled variance

σ̃2m,k and calculate resulting weights with normal densities using each model’s error σ2k,m, which
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can be evaluated with a model-specific function hm(X
(k)). Then, averaging according to equation

(20), we obtain weights numerically integrated over random error.

3.3.2 Asymmetric uncertainty

The approach discussed so far supposes that error is symmetric around E(Y (k)), which is not

always true. In cases where skewness is observed, we need to simulate uncertainty from a skewed

distribution. Depending on the value γ of skewness, different options are possible. If |γ| < 1, an

alternative to the normal distribution would be to consider the skew-normal distribution, which has

density

f(x) =
2

ω
ϕ

(

x− ξ

ω

)

Φ

(

α

(

x− ξ

ω

))

, (24)

with ϕ and Φ, respectively the standard normal density and cumulative normal density, and ξ ∈ R,

ω > 0 and α ∈ R the location, scale and shape parameters. It is easy to verify that when α = 0,

this is equal to the normal distribution. If |γ| ≥ 1, a better alternative would be to consider extreme

value theory with a Generalized Extreme Value (GEV) distribution (see for example Hosking et al.

(1985)).

Suppose γk depends on the kth observation. Then, similarly to variance, we wish to model

skewness based on covariates, such that γk = g(X(k)ζk) for a vector of parameters ζk and a link

function g. Just like equation (22), we have

ζ̂m = argmin
ζm

K
∑

k=1

(

g−1

(

(y(k) − E(Ŷ
(k)
m ))3

σ̃3m,k

)

−X
(k)ζm

)2

.

It would be desirable to take g−1 as ln to bring all values to a similar scale, but (y(k) − E(Ŷ
(k)
m ))3

can take negative values. To deal with this issue, we can separate the positive and negative terms,

then obtain a prediction for both. Consider K+ = {k : y(k) − E(Ŷ
(k)
m ) > 0}, and K− = {k :

y(k) − E(Ŷ
(k)
m ) < 0}. Then,

ζ̂
+

m = (X′
X)−1

X
′
S
+
m and ζ̂

−

m = (X′
X)−1

X
′
S
−
m, (25)

where S+
m,k = ln((y(k)−E(Ŷ (k)))3/σ̃3m,k) and S−

m,k = ln(−(y(k)−E(Ŷ (k)))3/σ̃3m,k) for k ∈ K+
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and K− respectively. With this equation, we finally have

γ̃k = eX
(k)ζ+

k − eX
(k)ζ−

k , (26)

where we subtract the negative skewness that we artificially made positive. Note that taking a log

function can potentially introduce bias through Jensen’s inequality, but this step is necessary to

obtain stable results.

Algorithm 2 explains this procedure, where we have S simulations of a skewed normal, with

α = 0, or equivalently γ = 0, the special case of the normal distribution. This algorithm is

appropriate if −1 < γk < 1, and would otherwise need to be adapted using for example a GEV

distribution. Note that our algorithm updates the weights only once, thus guaranteeing weights to

be positive, and arbitrarily close to 0 for a model that is poorly adjusted to the data.

In the case where a GEV distribution is more appropriate, MLE parameters are not as readily

available as with a skew-normal, but can be obtained through iterative algorithms, or the parameters

can be estimated using the method of moments. The remainder of the algorithm then follows the

same steps, where step 4 of Algorithm 2 is a GEV simulation instead of a skew-normal simulation.
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Algorithm 2: BMA with Numerical Error Integration

1: Set initial weights, variance and skewness as

w(0)
m = 1/M ∀m,

σ̃2k,m = eXθ̂m ,

γ̃k,m = eXζ̂
+
m − eXζ̂

−

m ,

σ2k,m = hm(X
(k)).

2: Calculate the skew-normal parameters as

δk,m =

√

π|γ1.5k,m|
2(|γk,m|1.5 + ((4− π)/2)2/3)

αk,m =
δk,m

√

1− δ2k,m

ωk,m =

√

√

√

√

π · σ̃2m,k
π − 2α2

k,m/(1 + α2
k,m)

ξk,m = E(Ŷ (k))− ωk,m

√

2αk,m
π(1 + α2

k,m)

3: for s in 1 : S, do

4: Simulate error-adjusted ŷ(k)m,s for each model m and claim k as

ŷ(k)m,s = SN(ξk,m, ωk,m, αk,m)

5: Obtain proportion from normal densities for each expert m and claim k as

zs,m,k =

w
(0)
m ϕ

(

y(k)−ŷ
(k)
m,s

σk,m

)

∑M
l=1w

(0)
l ϕ

(

y(k)−ŷ
(k)
m,s

σk,l

)

6: Update the probability associated to each model as

Pr(M = Mm|D) =
1

K

K
∑

k=1

1

S

S
∑

s=1

zs,m,k.

7: Calculate posterior distribution as

Pr(y|D) =
∑M

m=1 Pr(y|Mm) Pr(M = Mm|D).

46



3.3.3 Desirable model properties for optimal performance

By comparing the Kullback-Leibler (KL) divergence of the BMA algorithm with the divergence

of the error integration (EI) algorithm, we can establish desirable properties for models that we wish

to combine for EI to perform optimally. The KL divergence between two distributions P and Q is

defined as

DKL(P||Q) =

∫

fP(x) log

(

fP(x)

fQ(x)

)

dx. (27)

Consider the case where Q = P. Then, it directly follows that

DKL(P||Q) = DKL(P||P) = 0,

such that if the true model Mm∗ is in the set H = {M1, . . . ,MM} and BMA converges to this

model, then DKL(P||Q(BMA)) = 0. For EI however, from equation (20), model weight can tend

towards 0 for bad models, but is strictly greater than 0. We then have

DKL(P||Q(EI)) =

∫

fP(x) log

(

fP(x)
∑M

m=1

∫

Pr(Mm|D, ϵ) Pr(ϵ|D)dϵfQ⋗
(x)

)

dx

>

∫

fP(x) log

(

fP(x)

fQm∗ (x)

)

dx

= 0,

such that if BMA converges to the true model, then BMA will outperform EI. Note, however, that a

model can have higher likelihood than the true model for the observed data, such that BMA could

converge to the wrong model.

Next, consider the case where the true model is not in H. While there is no closed form allowing

us to compare KL divergence in terms of general distributions, a closed form exists for normal

distributions (Hershey and Olsen, 2007). By taking normally distributed approximations P̂ and Q̂

to P and Q respectively, we know that

DKL(P̂||Q̂) =
1

2

(

log
|Σ

Q̂
|

|Σ
P̂
| − n+ Tr(Σ−1

Q̂
Σ
P̂
) + (µ

P̂
− µ

Q̂
)TΣ−1

Q̂
(µ

P̂
− µ

Q̂
)

)

. (28)
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Proposition 1.

If

n
∑

k=1

∣

∣

∣

∣

∣

M
∑

m=1

w2
mσ

2
m,k − σ2k

∣

∣

∣

∣

∣

≤
n
∑

k=1

∣

∣σ2m∗,k − σ2k
∣

∣ and

n
∑

k=1

log

(
∑M

m=1w
2
mσ

2
m,k

σ2m∗,k

)

≥ 0,

then DKL(P̂||Q̂(EI)) ≤ DKL(P̂||Q̂(BMA)).

Proof. Suppose BMA converges to a single model s.t. Q(BMA) = Qm∗ for the model Mm∗ with

highest likelihood, while EI yields

Q(EI) =
M
∑

m=1

wmQm,

where wm =
∫

Pr(Mm|D, ϵ)π(ϵ|D)dϵ. Further suppose that DKL(P̂||Q̂(EI)) ≤ DKL(P̂||Q̂(BMA)).

Then,

n
∑

k=1

[

log

(

M
∑

m=1

w2
mσ

2
m,k

)

+
σ2k

∑M
m=1w

2
mσ

2
m,k

+
(µk −

∑M
m=1wmµm,k)

2

∑M
m=1w

2
mσ

2
m,k

]

≤
n
∑

k=1

[

log(σ2m∗,k) +
σ2k
σ2m∗,k

+
(µk − µm∗,k)

2

σ2m∗,k

]

.

Under the same assumption as equation (18), the last terms on either side of the equality fall to 0,

and we can rearrange terms to obtain

n
∑

k=1

log

(
∑M

m=1w
2
mσ

2
m,k

σ2m∗,k

)

≤
n
∑

k=1

σ2k(
∑M

m=1w
2
mσ

2
m,k − σ2m∗,k)

(
∑M

m=1w
2
mσ

2
m,k)σ

2
m∗,k

.

With this simplified inequality, the result follows by induction, as shown in Appendix A.5.

In a case where some models have σ2m,k > σ2k and others have σ2m,k < σ2k, then there exists

a combination of weights w̃m s.t.
∑M

m=1 w̃
2
mσ

2
m,k = σ2k, while σ2m∗,k ̸= σ2k. Even though w̃m ̸=

wm, it follows that under the unbiased hypothesis, we can reasonably expect the EI algorithm to

outperform BMA, provided that some models are overdispersed and others are underdispersed.
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We can further develop this intuition by looking at the divergence measure proposed by Bhat-

tacharyya (1946), defined as

DB(P,Q) = − ln

(∫

√

p(x)q(x)dx

)

. (29)

Again under the assumption of equation (18) and supposing normal distributions,

DB(P̂, Q̂) =
1

2
ln

(

σ2
P̂
+ σ2

Q̂

2σ
P̂
σ
Q̂

)

. (30)

Then, solving a similar inequality as with Kullback-Leibler, and knowing that the ln terms are non-

negative, we obtain the following conditions for the inequality to hold.

If

K
∑

k=1

σ2m∗,k >
K
∑

k=1

M
∑

m=1

w2
mσ

2
m,k, then

K
∑

k=1

σ2k ≤
K
∑

k=1

σ2m∗,k.

If

K
∑

k=1

σ2m∗,k <

K
∑

k=1

M
∑

m=1

w2
mσ

2
m,k, then

K
∑

k=1

σ2k ≥
K
∑

k=1

σ2m∗,k.

These conditions tell us that EI will perform at least as well as BMA if we have a mix of overdis-

persed and underdispersed models, where the first condition corresponds to the best model being

overdispersed, while the second corresponds to the model being underdispersed.

As such, this discussion allows us to conclude that for the error integration algorithm to work

optimally and potentially outperform BMA, one needs a mix of models with some overdispersed

models and some underdispersed models. This conclusion will be further illustrated in the simula-

tion study in Section 3.4.

3.3.4 Generalised error integration

The combination methods considered so far assume a single weight to be applied to each model,

as per equation (12). While this is certainly useful, cases can arise where one model can fit a part

of the data better, whereas another model might be best for another part of the data. This idea has

been explored by Kapetanios et al. (2015), who proposed a generalised density combination where
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weights depend on the variable of interest, such that

f(y) =
M
∑

m=1

wm(y)fm(y). (31)

Due to the nearly infinite possibilities for functions wm(y), the authors focus on piecewise linear

weights, which is similar to Mixture-of-Experts, an idea used in pricing consisting of selecting one

model for each part of the data using logit gating functions (e.g. Tseung et al. (2020)).

We propose to consider wm not as a function of a random variable, but as a random variable

itself. Suppose w
(k)
m varies for the kth observation, such that

f(y(k)) =
M
∑

m=1

w(k)
m fm(y

(k)), (32)

where w
(k)
m ∈ [0, 1] and

∑

mw
(k)
m = 1 ∀k, such that f(y(k)) is a proper probability distribution inte-

grating to 1. We can then think of {W1, . . . ,WM} as a random M-tuple from a Dirichlet distribution

(see for example Frigyik et al. (2010)), defined as

g(w1, . . . , wM |ι1, . . . , ιM ) =
Γ
(

∑M
m=1 ιm

)

∏M
m=1 Γ (ιm)

M
∏

m=1

wιm−1
m , (33)

for ιm > 0, where 0 ≤ wm ≤ 1 ∀m and
∑M

m=1wm = 1. Using this distribution, we then have

E(Wm) =
ιm

∑M
m=1 ιm

. (34)

We can then establish a loglink for the kth observation, similarly to GLMs, such that

log(ι(k)m ) = βmX(k), (35)

allowing us to use maximum likelihood estimation to determine β̂m, and so obtain

ι̂(k)m = exp(β̂mX(k)). (36)
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Notice that in the case of non-informative characteristics X(k), we recover constant weights, and we

can recover convergence to a single model by letting all ιm → 0 except for the best model with

ιm∗ > 0. In such a way, with this more general approach, we can still obtain the results presented

in the previous section.

Including a Dirichlet regression modifies steps 6 and 7 of Algorithm 2. Instead of averaging over

the K observations, we fit a Dirichlet regression (see package VGAM (Yee, 2010)), then use the

predicted weights to obtain the density generated by Equation (32). Note that the choice of a linear

structure is not the only possible approach, and was chosen mainly for its strong interpretability.

3.4 Simulation Study

3.4.1 Single weight per model

To illustrate the single weight methods proposed in Section 3.3, consider the following simu-

lation study. Suppose we have data such that Y ∼ LN(µ = 0.0009968x, σ = 0.008
√
x). This

data has a mean, or signal, of exp(0.01x), is heteroscedastic, where the variance depends on x, and

has positively skewed uncertainty around the signal. Suppose a Poisson Generalised Linear Model

(GLM) and an inverse Gaussian (IG) GLM are fitted to this data, as well as a misspecified Poisson

model set as half of the Poisson GLM. Figure 3.1 illustrates the data, as well as a random draw from

the fitted models. Here, in order to match mean and variance, thus providing underdispersed mod-

els, the Poisson GLMs are fitted to continuous data despite being discrete. For large amounts, this

discretisation is frequent in practice. Note that the equal mean and variance of the Poisson GLM

provides a classical benchmark for the chain-ladder reserving method, such that it is a standard

actuarial choice.
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Figure 3.1: Simulation study random draw

We see that the first two models accurately predict the signal of exp(0.01x), as seen by the fitted

parameters of these models, namely λ̂ for the Poisson, as well as ν̂ and δ̂ for the inverse Gaussian in

Table 3.1, but have very different uncertainties around the prediction, while the misspecified Poisson

model is a poor fit. The Poisson model is clearly largely underdispersed, while the inverse Gaussian

model is slightly overdispersed. If we are interested in accurately predicting quantiles, we need to

match the data’s uncertainty.

Table 3.1: Poisson and inverse Gaussian fitted parameters

Intercept x

Poisson λ̂0 = −0.10446 λ̂1 = 0.010136

IG
ν̂0 = 0.175029 ν̂1 = 0.009826

δ̂ = 8.35078 ∗ 10−6 NA

With θ̂ and γ̃ obtained respectively with equations (23) and (26), we simulate 10,000 draws as

E(Ŷ (k)) + SN(0, σ̃k, γ̃k), where

E(Ŷ
(k)

Pois) = exp
(

λ̂0 + λ̂1 ∗ x
)
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and

E(Ŷ
(k)

IG ) = exp (ν̂0 + ν̂1 ∗ x) ,

then calculate normal densities using the Poisson and inverse Gaussian variances, evaluated as

V ar(Ŷ
(k)

Pois) = exp
(

λ̂0 + λ̂1 ∗ x
)

and

V ar(Ŷ
(k)

IG ) = δ̂ ∗ (exp (ν̂0 + ν̂1 ∗ x))3 .

Averaging over the 10, 000 draws, we obtain a weight of 88.5% for the inverse Gaussian model

and 8.3% for the Poisson model, while the wrong model receives 3.2%. The algorithm successfully

avoids convergence to a single model and recognises the bad model. To compare with the BMA

expectation-maximisation algorithm, we need to determine the optimal number of iterations to avoid

convergence to a single model, which is the inverse Gaussian model in this case. To this end,

we use the Diebold-Mariano (DM) test, which allows for comparing distributions and obtaining

significance levels (Diebold and Mariano, 2002). Looking at Figure 3.2, we see that the lowest DM

statistic is achieved after a single iteration, where the 0 iteration corresponds to equal weights to

each model.
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Figure 3.2: Diebold-Mariano test statistic

by number of iterations of the EM algorithm

Figure 3.3 shows the real data and random draws from the weighted distributions obtained

through EI as well as BMA stopped after one iteration. We see that both methods visually closely

match the data’s uncertainty, which is further supported by the zoomed in densities for specific val-

ues of x, where both methods have similar predicted densities. Looking at Table 3.2, this matching

of uncertainty is confirmed, where both methods outperform BMA without a stopping point, have

similar Kullback-Leibler (KL) divergence, and error integration significantly outperforms the other

two methods in terms of DM test statistics, achieving a p-value of 0.2. Note that the requirement of

mixing over and under-dispersed models is respected here, where if the inverse Gaussian model had

not been overdispersed, then EI could not have outperformed BMA.
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Figure 3.3: Simulation study combination random draw (left) and densities (right), and zoomed in

densities for x = 850, 900, 980

Table 3.2: Weighted average Diebold-Mariano test statistic and Kullback-Leibler divergence be-

tween combined distributions and real distribution

Method Diebold-Mariano Kullback-Leibler

Statistic p-value Divergence

EI 2.35 0.20 0.070

BMA - until convergence 7.49 2.06 ∗ 10−6 0.081

BMA - optimal iterations 6.86 1.85 ∗ 10−5 0.072

Given the similar results between the two methods, the main advantage of error integration

compared to BMA is that it removes the need for determining the optimal number of iterations,

which can be computationally intensive, and subjective.

3.4.2 Generalised weights

To illustrate the generalisation proposed in subsection 3.3.4, consider a slightly different case,

where data comes from a mixture of a Poisson with mean exp(0.01x) and a lognormal with µ =

0.00995x and σ = 0.01
√
x, with weights linearly changing from 100% for the Poisson to 100% for
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the lognormal. Once again, Poisson and inverse Gaussian GLM are fitted to this data, as well as a

misspecified Poisson model. Instead of averaging the 10,000 draws to obtain a single weight, we

average the draws for each x, then use a Dirichlet regression to obtain a prediction for the weights

that depend on x. Figure 3.4 illustrates the underlying data and a random draw from the fitted

distributions, while Figure 3.5 illustrates the weights obtained, where we see that the algorithm

recognises that the data initially follows a Poisson, while the inverse Gaussian is a better fit for

larger values of x. Note that due to the nature of the Dirichlet distribution, no link function can

allow for predicted weights to change linearly. While this is suboptimal in this specific example, for

larger datasets with categorical explanatory variables, this limitation is not expected to cause issues.

Figure 3.4: Second simulation study random

draw

Figure 3.5: Dirichlet regression weights for each

model

Comparing the usual BMA approach to the generalised EI approach with flexible weights, in

this case the generalised approach outperforms the BMA approach. This can be seen in both Figure

3.6 and Table 3.3. Indeed, the density of the generalised combination is closer to the real distribu-

tion except for high values of x, where BMA and the generalised approach return similar outputs.

Moreover, the generalised approach has lower DM test statistic and KL divergence than BMA.
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Figure 3.6: Second simulation study combination random draw (left) and combination densities

(right), and zoomed in densities for x = 850, 900, 980

Table 3.3: Weighted average Diebold-Mariano test statistics and Kullback-Leibler divergence be-

tween combined distributions and real distribution

Method Diebold-Mariano Kullback-Leibler

Statistic p-value Divergence

Single weight EI 0.67 0.03 0.170

Generalised EI 0.21 0.03 0.158

BMA - optimal iterations 6.09 0.06 0.205

3.5 Analysis

In this section, we present a case study based on a simulated Property and Casualty insurance

dataset. While the example is actuarial in nature, the proposed algorithms are applicable to any

model combination when faced with heteroscedastic data.
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3.5.1 Data

We work with the Simulation Machine created by Gabrielli and WÈuthrich (2018) to obtain a

dataset D with a single line of business with approximately 10,000 claims for which we know

the claim code, accident year/quarter, the age of the insured, the injured body part, the amounts

paid each year, and the ultimate amount paid. We add random calendar year inflation following a

normal distribution with mean 2% and standard deviation 0.5%. We also create a strong predictive

variable for large losses by setting this variable equal to 1 if the ultimate claim is above 1000, and 0

otherwise. In such a way, this variable has a correlation of approximately 0.3 with ultimate losses.

D is separated into a training set Dtrain and a prediction set Dpred by splitting payment infor-

mation before and after a certain valuation date. The prediction set represents outstanding claims

that actuaries must evaluate, also known as the actuarial reserve. This separation ensures that all

available information is considered, which is necessary in practice, and enables comparisons with

the results obtained by Avanzi et al. (2024), who also use model combination to project reserves.

This approach can lead to leakage of information, such that a claim can have payments in the

training and prediction datasets. To avoid such a situation, we can exclude a subset of claims from

the training set, and use this excluded subset for testing, as in Gabrielli et al. (2020). In our case,

this methodology provides comparable reserve sufficiency projections compared to using the full

dataset.

The training set is further separated to obtain a calibration set Dcalib by randomly selecting 30%

of the payment information from the most recent calendar year. This calibration set is necessary

in order to determine the weights attributed to each model. The choice of the most recent calendar

year for calibration is justified by its practical applicability. Additionally, the calibration set needs

to be further separated for the EM algorithms to determine how many iterations are optimal.

Table 3.4 presents a short development triangle, grouping data between accident year and devel-

opment year. Paid claims represent the training data. These claims are known on the valuation date.

This dataset is further separated by randomly sampling 30% of the claims in the latest calendar year

to calibrate the ensembling weights. Outstanding claims occur after the valuation date and form the
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prediction period. Note that when using aggregate models, the latest accident year and develop-

ment period cannot be used for calibration, as the information in the claims triangle is necessary for

training models.

Table 3.4: Loss development triangle

Development period

AY 1 2 3 4 5 6

1 P P P P P O

2 P P P P O O

3 P P P O O O

4 P P O O O O

5 P O O O O O

Note: paid claims (P), outstand-

ing claims (O), calibration pe-

riod (P)

3.5.2 Underlying models

As explained by Fragoso et al. (2018), the model space for any model selection problem can be

vast, and fitting all possible models is not realistic. In the context of actuarial reserving, we face

a similar issue, where given the recent literature on granular reserving, many models are available

for modelling purposes. Avanzi et al. (2024) describe three criteria to select models in an aggregate

combination scenario: models that can be fitted automatically, models with different strengths and

limitations, and models that are easily identifiable and interpretable.

An efficiency argument justifies the first argument; if component models are hard to adjust, the

combination algorithm would be inefficient and have little practical interest.

The second criterion allows all potential data patterns to be covered. Moreover, it is known that

independent models yield optimal combination results (Jacobs, 1995). Models relying on different

hypotheses should have lower correlation in their predictions and provide more information than

dependent models. From our previous discussion, we also wish to have models with varying levels

of dispersion.

The third criterion limits the use of machine learning models, which makes sense in an aggregate

context due to the low availability of data. In a granular data setting, sufficient data is available for
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these methods, but the first criterion implies that we need machine learning methods that are efficient

computationally and do not require user input.

In their article, the authors use these criteria to select multiple generalised linear models with

different effects, smoothing splines (Green and Silverman, 1993), and generalised additive models

for location, scale, and shape (GAMLSS, Rigby and Stasinopoulos (2005)).

With the same criteria in mind, we choose Gamma and overdispersed Poisson (ODP) gener-

alised linear models (GLM, see De Jong et al. (2008) for more details on GLMs), as well as an

overdispersed Poisson double GLM (see Smyth and Jùrgensen (2002)). We also consider an ag-

gregate overdispersed Poisson GLM (see WÈuthrich and Merz (2008)) and an aggregate generalised

additive model for location, scale, and shape (GAMLSS, see Rigby and Stasinopoulos (2005)) ap-

plied to individual data. The models are fitted to payments by accident year and development year,

with the individual models also using claim-specific covariates.

While recent actuarial literature on reserve models includes interesting developments in machine

learning methods, such methods require intensive adjustments and are not necessarily transparent.

We have therefore chosen not to consider them for combination purposes for now.

3.5.3 Model combination

With a single simulated database, Figure 3.7 shows the reserve distributions obtained for the

five models that are combined, and the vertical black line represents the total amount of outstanding

claims of the simulated loss dataset. In the absence of a strong predictive variable, models give

similar outputs, slightly underestimating the real amount due to calendar year inflation, except for

the Gamma GLM. With a strong predictor, the granular GLMs slightly overestimate the real amount,

while the DGLM performs better than without this predictive variable.
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Figure 3.7: Underlying reserve model distributions with (left) and without (right) strong predictor

Tables 3.5 and 3.6 list the resulting weights from the classical BMA-EM algorithm, the het-

eroscedastic version, and the EI procedure, where the first table is obtained without a strong predic-

tive variable, while the second table is obtained with this variable.

Table 3.5: Weights obtained from each method without strong predictor

Weights (%) from BMA based on

Model Homoscedastic Heteroscedastic Error integration

Gamma GLM 28.9 0.1 17.9

ODP GLM 18.0 0.3 18.5

ODP DGLM 20.6 99.3 27.4

Aggregate GLM 15.6 0.3 18.0

Aggregate GAMLSS 16.9 0.0 18.2
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Table 3.6: Weights obtained from each method with strong predictor

Weights (%) from BMA based on

Model Homoscedastic Heteroscedastic Error integration

Gamma GLM 21.1 9.0 25.0

ODP GLM 40.4 3.0 17.4

ODP DGLM 29.3 73.5 30.0

Aggregate GLM 5.0 14.0 13.5

Aggregate GAMLSS 4.2 0.1 14.1

We note that the homoscedastic algorithm favours the granular GLM models, the heteroscedas-

tic algorithm puts almost all weight on the DGLM, while the EI procedure favours the DGLM, but

gives weight to all models. The homoscedastic algorithm avoids convergence to a single model

because of the variance assumption, leading to large variance even for low losses, such that all

models seem to perform similarly. The heteroscedastic algorithm corrects the issue of misstating

the variance of individual losses, but faces the problem of rapid convergence to a single model.

We can note here that the algorithm is not converging to the model most centered around the true

reserve amount, highlighting how convergence to a single model can be problematic when the algo-

rithm does not converge to the true model. This further accentuates the usefulness of our proposed

method, since EI successfully avoids convergence to a single model, and spreading weights across

multiple models yields a better output than any individual model. We can see that in the presence

of a strong predictor, the individual models receive more weight than without this predictor under

homoscedastic BMA and EI, which makes sense since the individual models use this variable while

the aggregate models do not.

Using the generalised EI algorithm, we can analyse the impact of characteristics on the weights

attributed to each model. We find that the fitted log-coefficients (β̂m) become increasingly negative

for more recent accident years, suggesting greater uncertainty about which models are best suited for

those years. Additionally, there is some fluctuation in the log-coefficients; however, this variation

has only a minor effect on the weights themselves. This indicates a notable level of uncertainty
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regarding the optimal models. Despite this, a strong predictive variable leads to aggregate models

receiving less weight for more recent accident years compared to granular models. This result is

intriguing, as it aligns with the intuition that older years with more data are better suited to aggregate

models, while granular reserve models can better predict more recent accident years. The fitted log-

coefficients are available in Appendix A.6.

Note that the data generator that we use in R shows that the idea of Dirichlet regression works

well even with a simple case. Indeed, with the Simulation Machine proposed by Gabrielli and

WÈuthrich (2018), the transition is smoother than the ADLP method proposed in Avanzi et al. (2024).

This method splits the reserve triangle in two (or more), which, when used on a small triangle,

leaves little information for calibration, causing weights to converge to a single model for the upper

portion of the triangle. This creates a large jump in weights from one year to the next, which does

not happen with our method.

With a more complex data generator such as SynthETIC (Avanzi et al., 2021), we expect the

idea to yield even better results, which we leave as an area for future research. However, if little data

is available, we believe a Dirichlet regression could lead to overfitting, which could cause jumps in

weights. This could be mitigated by penalising the regression to ensure smoothness in weights

between different parts of the data.

Figure 3.8 illustrates the distributions obtained using the proposed combination methods, as

well as using the standard linear pool aggregate method. As expected from the similarity between

models in the absence of a strong predictive variable, the combination methods yield similar results

in this case, with the EI algorithm performing slightly better than its counterparts. With a strong

predictive variable, where models were more different, generalised EI yields clearly better results,

where it is centered around the true outstanding loss amount.
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Figure 3.8: Result of BMA combination using different approaches with (left) and without (right)

strong predictor

While EI outperforms standard linear pooling of aggregate models in this particular example,

we did not compare it to the accident and development year adjusted pooling proposed by Avanzi

et al. (2024), other than observing that splitting the triangle causes convergence to a single model

for older accident years. Moreover, in a limited data context where aggregate methods are usually

preferred to individual models, it is expected that aggregate model combination would perform

better than individual model combination. Performing both combinations would allow for avoiding

overconfidence in a combination method.

3.5.4 Performance and runtime

Given that the database is simulated, we can investigate how often a reserve set at the 99th quan-

tile is sufficient by simulating 200 different databases and calculating reserves for each database.

We then look at whether the real amount from the simulated database is lower than the 99th quan-

tile to evaluate reserve sufficiency, which should happen 99% of the time. Simulating multiple

databases allows for mitigating the potential bias from a single simulated database as in Section

3.5.3. Table 3.7 illustrates the percentage of sufficiency, the mean reserve, and the runtime for each

reserve simulation. We see that in the absence of a strong predictive variable, generalised weights

return similar results to a single weight, only slightly outperforming the latter. This makes sense,

as both approaches should be equivalent with non-informative predictive variables. In the presence

of a strong predictor, generalised weights outperform the single weight approach. In terms of com-

putation time, the generalised weight approach is however significantly more expensive, where the
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computation time more than doubles using variable weights compared to single weights.

Note that the generated databases’ losses were limited at 50,000 to be closer to reality. Given the

simplicity of the chosen models despite the large losses, this explains the slight underperformance

of model combinations in terms of sufficiency. We see that in the presence of a strong predictive

variable, generalised weights allow for a less conservative approach than the classical bootstrap

Chain-Ladder method, which overestimates the necessary reserves.

Method Sufficiency (%) Mean reserve (M) Runtime

Without predictor
Single weight 91.5 1.418 4.5min

Generalised weight 94.5 1.421 10.5min

With predictor
Single weight 94.5 1.447 4.5min

Generalised weight 99 1.608 10.5min

Bootstrap CL 100 1.746 0.5min

Table 3.7: Proportion of sufficient reserves and runtime with & without predictive variable at a 99th

level quantile

3.6 Conclusion

In this paper, we proposed two model combination algorithms based on Bayesian Model Av-

eraging taking heteroscedasticity into account in an actuarial reserving context. More specifically,

we adjusted the classical Expectation-Maximisation algorithm to account for heteroscedasticity, we

proposed a numerical error integration approach to take data uncertainty into account, and we pro-

posed a generalisation to this approach allowing for flexible weights through a Dirichlet regression.

Through a simulation study, we showed that the proposed error integration algorithm success-

fully identifies better models while avoiding convergence to a single model, and performs at least

as well as the BMA algorithm adapted to heteroscedastic data. We demonstrated that to perform

optimally, model combination using error integration requires a mix of overdispersed and underdis-

persed models.
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We applied the proposed algorithms to a simulated dataset using the simulation machine created

by Gabrielli and WÈuthrich (2018). We found that in the presence of a strong predictive variable, the

proposed error integration approach outperformed other approaches. Without this strong predictor,

all methods performed similarly, suggesting that error integration will perform at least as well as

its more classical BMA counterpart. Generalised EI performed much better with a strong predic-

tive variable, but was also found to be computationally much more expensive than single weight

approaches.

It would be interesting to relax the assumption of independence in random error, where depen-

dence could be induced by an unobservable variable confounding causal links (Liu et al., 2023).

This could allow for better representation of the distribution over which we integrate. It would fur-

ther be interesting to allow for more complex models with better predictive variables, which would

be expected to improve the performance of model combination.
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Chapter 4

Flexible extreme thresholds through

generalised Bayesian Model Averaging

4.1 Introduction

Insurers are often exposed to large losses resulting from diverse sources such as injuries follow-

ing an accident, crashes of high value vehicles, or catastrophic events. In 2023, 23 of these events

in Canada each resulted in over $30 million in damages, contributing to nearly a quarter of the $3.1

billion in total insured losses (CatIQ, 2024). As such, insurers need models capable of accounting

for these large losses as well as for the bulk of losses composed of smaller claims in order to account

for all possible events.

4.1.1 Extreme value theory

One approach to dealing with large losses is to use Extreme Value Theory (EVT). Initially

developed by FrÂechet (1927) and Fisher and Tippett (1928), then later by Gumbel (1958), this

theory deals with the tail of a distribution. There are two broad categories to extreme value analysis:

block maxima and Peak-over-Threshold. The first approach studies the largest observations from

successive blocks of independent and identically distributed data. This is well explained in Coles

et al. (2001) and has many applications in insurance and finance, such as flood risk modelling

(Boudreault et al., 2020), catastrophe risk (Embrechts et al., 2013), climatic extremes (Cheng et al.,
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2014), and risk management (McNeil et al., 2015).

The second approach examines values that exceed a specified level, known as the Peak-over-

Threshold method. For a sufficiently high limit, the excess values can be demonstrated to follow

a generalised Pareto distribution (GPD), developed by Pickands (1975), with cumulative density

function

G(x) =















1−
(

1 + ξ(x−u)
σ

)−1/ξ
for ξ ̸= 0 and x > u

1− exp
(

−x−u
σ

)

for ξ = 0 and x > u,

(37)

with location, scale, and shape parameters u, σ, and ξ. This approach can be used in a similar variety

of contexts as block maxima, such as extreme daily precipitation (Thiombiano et al., 2017), oper-

ational risk (Chavez-Demoulin et al., 2006), stock returns (He et al., 2022), as well as catastrophe

risk (Li et al., 2016), and has the main advantage over block maxima that it allows for more data.

The main challenge with this method is identifying a suitable threshold beyond which losses follow

a GPD. Threshold selection, however, is an open problem with no universally accepted method.

Caeiro and Gomes (2015) explain a few of the available methods based on a heuristic choice or

minimization of mean squared error.

Recently, in a homogeneous setting, automatic threshold selection methods have been proposed

such as using L-moments (Silva Lomba and Fraga Alves, 2020), parameter stability (Curceac et al.,

2020), goodness-of-fit (Bader et al., 2018), and other methods partly reviewed by Benito et al.

(2023), who find that different thresholds can yield similar market risk measures. These methods

generally require establishing potential threshold values through a range of quantiles, from which a

ªbestº threshold is chosen.

This range of values can be fully automated, such as choosing a standard set of quantiles, or it

can be chosen graphically using extreme value theory. It is well known that for a sufficiently large

threshold u0, the mean excess loss is a linear function of u > u0, such that

E(X − u|X > u) =
σu0 + ξ(u− u0)

1− ξ
+

ξ

1− ξ
u. (38)

We can then look at a mean residual life plot and select a point where the plot becomes linear,

choosing as a function of the bias-variance trade-off, where a higher threshold reduces bias, but
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increases variance. Many other methods are available, and can be implemented using the ªteaº

package in R (Ossberger, 2020).

4.1.2 Mixture model combination

While there is a significant body of literature devoted to identifying a single best threshold, a

question central to this article is whether it could be better to use model combination to simultane-

ously consider multiple potential threshold values. Such a combination would be less affected by

threshold misspecification than selecting a single best threshold. In fact, Northrop et al. (2017) re-

cently used Bayesian Model Averaging (BMA), a method initially proposed by Raftery et al. (1997)

that gained significant popularity across many scientific fields (Fragoso et al., 2018), to reduce sen-

sitivity to threshold selection when studying the number of exceedances over a high threshold in

ocean storms.

Oppositely to Northrop et al. (2017) who focus on the tail of the distribution, in an actuarial

context, we are often interested in all the potential values that data can take rather than only the

exceedances above a threshold. In such cases, each model must account for the full range of values

that the data can take. Therefore, we require a model that can efficiently represent both the bulk

and the tail of the data. LaudagÂe et al. (2019) proposed a mixture of a generalised linear model

(GLM) and a GPD for a known threshold, which was expanded on by Ghaddab et al. (2023) in an

excess-of-loss reinsurance context, where the threshold was estimated using MRL plots and Hill

plot estimators. Li and Liu (2023) proposed a three-part mixture model dividing low, medium, and

high claims according to a 20%/60%/20% rule of thumb. These proposed approaches are subject to

threshold misspecification.

To reduce the issue of threshold selection, we will focus on a mixture model proposed by Mac-

Donald et al. (2011). The authors suggested using a non-parametric distribution with kernels for the

bulk of the data and a GPD for the tail beyond a threshold u. Replacing the kernel distribution by a

parametric distribution, this has density

f(y|Λ, u, σu, ξ) =











(1− ϕu)× h(y|Λ)
H(u|Λ) y ≤ u

ϕu × g(y|u, σ, ξ) y > u,
(39)
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where h(y|Λ) is the bulk density with parameters Λ, while g(y|u, σ, ξ) is a GPD density with

parameters σ and ξ. Note that ϕu is simply the proportion of data above u and is not a parameter

as such. This can cause a point discontinuity at u, which could be reduced by optimising both

the bulk and tail parameters simultaneously using MCMC (MacDonald et al., 2011). Another less

computationally demanding method is to adjust ϕu to ensure continuity (Pigeon and Denuit, 2011).

Such an approach does however remove the intuition of ϕu being a proportion.

By considering mixture models following equation (39), we can apply combination methods

such as BMA to allocate weights to each model. This enables the use of a range of thresholds, thus

reducing the impact of threshold misspecification.

4.1.3 Tail-Weighted GLUE for Threshold Selection in BMA

We propose using a tail-weighted version of Generalised Likelihood Uncertainty Estimation

(GLUE, see Beven and Freer (2001)) within BMA to identify the ªbestº threshold, which outper-

forms single threshold selection methods. We will show that by placing more weight on tail like-

lihood compared to the bulk of the data, we can identify this threshold using extreme value theory

principles. This idea will be compared to the results obtained through the ForwardStop methodology

proposed by Bader et al. (2018). Furthermore, our proposed approach offers an improvement over

the BMA method proposed by Northrop et al. (2017) since it allows for studying the full distribution

instead of focusing on the tail.

Moving beyond the homogeneous setting, Coles et al. (2001) argued that the threshold can de-

pend on several covariates. Recent approaches to flexible threshold selection using covariates often

rely on quantile regression. For example, Youngman (2019) used quantile regression to calculate

thresholds at 0.90 to 0.99 levels and selected the threshold with the lowest RMSE. Similarly, Fu and

Sayed (2023) selected thresholds based on parameter stability.

Our proposed approach relies on an idea similar to weighted GLUE which allows us to identify

thresholds based on predictive variables without using quantile regression. First, the mixture model

proposed by MacDonald et al. (2011) is generalised by considering generalised additive model

(GAM) versions of the mixed models (Hastie, 2017). We then combine these models to account for

predictive variables using a modified version of the BMA method proposed by Jessup et al. (2023b),
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which models residual uncertainty and integrates out random error. This approach can be applied to

a mixture model, modifying the algorithm to account for changing uncertainty between the bulk of

data and the extreme value tail. Heavier tail weights help obtain thresholds varying with predictive

variables.

This method is preferable to quantile regression approaches for identifying flexible thresholds,

such as Youngman (2019), because it provides immediate results over the entire distribution. While

homogeneous threshold selection methods like Bader et al. (2018) run very fast, they require con-

sidering each predictive variable value separately, given that the Anderson-Darling test is not well-

defined for categorical variables.

We thus propose a method for identifying the ªbestº threshold through model combination in a

homogeneous setting and demonstrate that a combination of mixture models performs better than

a single model with the right threshold while reducing dependence on choosing this threshold. We

extend this idea to Bayesian model averaging of GAM models in the presence of predictive variables

to obtain flexible thresholds based on risk characteristics. Our method proves preferable to other

threshold selection methods, both with and without predictive variables, in terms of high quantiles

while providing distributions for the full data.

The paper is divided as follows: Section 4.2 establishes the main theoretical results and applies

them to the Danish dataset, Section 4.3 generalises the results in a regression setting and applies

them to an actuarial dataset, and Section 4.4 concludes the article.

4.2 Homogeneous setting

4.2.1 Theory

Due to the frequent scenario of limited data for analysis, we often need to study only the variable

of interest, without any explanatory variables. In such cases, we usually consider data to be inde-

pendent and identically distributed. We can attempt to model this data by proposing M different

models, then using model combination to accurately model the data by combining these models.

In particular, Bayesian Model Averaging (BMA) is a popular model combination method used

in many fields of science (Fragoso et al., 2018) relying on Bayesian updating in a context of linear
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pooling. The broad category of linear combination attributes weights wm ∈ [0, 1] to M different

models, where
∑

wm = 1, to each model Mm, such that

f(y) =
M
∑

m=1

wmfm(y), (40)

where fm is the distribution under model Mm. While there are many ways of establishing these

weights, BMA sets the weights wm as the probability that each model is the true model given the

observed data, or

wm = Pr(Mm|D) =
Pr(D|Mm) Pr(Mm)

∑M
l=1 Pr(D|Ml) Pr(Ml)

, (41)

where Pr(D|Mm) is the likelihood of data D under model Mm.

We know that the data comes from an unknown distribution P, such that the observed data D

is in fact not the only possible observable data. Generalised Likelihood Uncertainty Estimation

(GLUE, see Beven and Freer (2001)) can be used within BMA to take this uncertainty into account.

This method uses the asymptotic normality of quantile estimates (Van der Vaart, 2000) to evaluate

the likelihood of each model, where the variance is quantile-dependent to take into account quantile

heteroscedasticity (e.g. Jessup et al. (2023a), Zhu et al. (2013)). A limitation of this approach is that

it assumes the sample size is sufficiently large for asymptotic properties to hold. This assumption is

often invalid, especially when dealing with large values, as data for such cases is typically limited.

Smaller sample size can cause bias and skewness, such that a distribution taking skewness into

account may be more appropriate. We propose to adjust the GLUE algorithm to consider skewness

as well as variance in a skew-normal distribution. Details concerning the skew-normal are available

in Appendix A.7, and the GLUE algorithm is described in Algorithm 3.

Note that the normal distribution is a special case of the skew-normal distribution (with skewness

0), and so, with sufficient data, using a skew-normal version of GLUE will asymptotically converge

to the standard GLUE methodology. Proof of equivalence when there is no skewness is shown in

Appendix A.7.

In the standard GLUE algorithm, we put equal weight 1/Q to all quantiles when calculating
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data likelihood under each model, such that

L(D|Mm) =
1

Q

Q
∑

q=1

L(ŷ(q)m ), (42)

where ŷ
(q)
m is the predicted qth quantile of model Mm. In the context of extreme values, although

these values account for only a fraction of the events, they represent the scenarios where important

damage or losses can happen. As such, we want to ensure that this portion of the distribution is

well-modeled. By taking a weighted mean such that

L∗(D|Mm) =

Q
∑

q=1

ŷ
(q)
m

∑Q
j=1 ŷ

(j)
m

L(ŷ(j)m ), (43)

the weight assigned to the mth model will depend more on the tail of the distribution. Note that the

choice of weights is motivated by the intuition of losses receiving a weight corresponding to their

percentage of total loss, and that other reweighting methods are possible. As such, we propose to

use weighted-GLUE by replacing equation (42) with equation (43). Comparing the results of these

two equations in the context of mixture models allows for Proposition 2.

Proposition 2. Let M different models Mm, m ∈ {1, . . . ,M}, be mixture models as defined

by equation (39) ∀ m, with each model having a different predetermined threshold um s.t. the

models cover a wide range of possible thresholds. Let wm and w∗
m be the weights to the mth model

under respectively the mean and weighted mean GLUE. Further let u be the best threshold. Then

w∗
m ≥ wm if um ≥ u, and w∗

m ≤ wm if um ≤ u.

Proof. From the Fisher-Tippett-Gnedenko and Pickands-Balkema-De Haan theorems (Coles et al.,

2001), if a variable has a distribution function belonging to a maximum domain of attraction, then

its maximum distribution belongs to a GEV and there is an equivalence between the GEV and GPD

parameters. This implies that beyond a sufficiently high threshold, all threshold choices yield valid

GPD distributions.

Consider a combination with only two models, M1 and M2, where u1 < u and u2 ≥ u. Given

that both models are mixture models defined by Equation (39), it follows that M2 must be better
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adjusted to the tail beyond u2 than M1, seeing as the Pickands-Balkema-De Haan theorem implies

that M2 will have lower bias for the tail beyond u2 than M1.

This further suggests that for quantiles beyond u2, |y(q)− ŷ(q)1 | > |y(q)− ŷ(q)2 |, where y(q) is the

observed qth quantile, and ŷ
(q)
m is the qth quantile from the mth model. Then, from the skew-normal

density, L(ŷ
(q)
1 ) < L(ŷ

(q)
2 ) for q s.t. F−1(pq) > u2.

Then, comparing Equations (42) and (43), for pq large enough, we must have

y
(q)
m

∑Q
j=1 y

(j)
m

>
1

Q
.

Since more weight is placed on tail quantiles, and L(ŷ
(q)
1 ) < L(ŷ

(q)
2 ) for q s.t. F−1(pq) > u2, it

follows that the weight to M2 should increase, which means the weight to M1 must decrease, since

∑

wm = 1.

For each additional model, from the same argument, if the model has um ≥ u (um < u),

then it will have higher (lower) tail likelihood than the models with threshold under (over) u. With

the quantile-weighted version of GLUE, the weight to the additional model must thus increase

(decrease). Generalising to M models, the result directly follows.

Note that the proof of Proposition 2 assumes a combination of values both below and above the

optimal threshold. It is not immediately clear what would occur when all models have values either

exclusively below or above the best one, emphasizing the importance of a wide range of selected

thresholds to ensure that the model with the optimal value is included within the combination.

Algorithm 3 describes how to identify the threshold using Proposition 2, where y(q) is the ob-

served qth quantile, y
(q)
b is the qth quantile of the bth bootstrap resampling of data D and ŷ

(q)
m,b is a

similar quantile for the mth model, with B bootstrap iterations and Q quantiles.
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Algorithm 3: Skewed Generalised Likelihood Uncertainty Estimation

1: Resample D to obtain B bootstrap iterations y
(q)
b of the qth quantile.

2: Calculate the variance for quantile q as σ2q =
1

B−1

∑B
b=1

(

y
(q)
b − 1

B

∑B
i=1 y

(q)
i

)2
.

3: Calculate the skewness for quantile q as γq =
1
B

∑B
b=1

(

y
(q)
b

− 1
B

∑B
i=1 y

(q)
i

)3

σ3
q

.

4: Calculate the skew-normal parameters as:

δq =

√

π|γ1.5q |
2(|γq|1.5 + ((4− π)/2)2/3)

αq =
δq

√

1− δ2q

ωq =

√

π ∗ σ2q
π − 2α2

q/(1 + α2
q)

ξq = y(q) − ωq

√

2αq
π(1 + α2

q)

5: Calculate the likelihood and weighted-likelihood assuming residuals follow a skew-normal

distribution, with ϕ and Φ the standard normal density and cumulative function respectively:

L(ŷ(q)m ) =
2

ωq





B
∏

b=1

ϕ





ŷ
(q)
m,b − ξq

ωq



Φ



αq





ŷ
(q)
m,b − ξq

ωq













1/B

(44)

L(D|Mm) =
1

Q

Q
∑

q=1

L(ŷ(q)m ).

L∗(D|Mm) =

Q
∑

q=1

ŷ
(q)
m

∑Q
j=1 ŷ

(j)
m

L(ŷ(j)m )

6: Update the probability of each model as

wm =
L(D|Mm) Pr(Mm)

∑M
l=1 L(D|Ml) Pr(Ml)

,

w∗
m =

L∗(D|Mm) Pr(Mm)
∑M

l=1 L
∗(D|Ml) Pr(Ml)

.

7: Identify the optimal threshold u∗ with corresponding model Mm∗ as

u∗ = argmin
m

(um : w∗
m ≥ wm).

8: Calculate posterior distributions as

Pr(y|D) =
M
∑

m=1

Pr(y|Mm) Pr(Mm|D),

Pr u∗(y|D) = Pr(y|Mm∗).
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Proposition 2 and Algorithm 3 allow us to identify the best threshold. While this is certainly

desirable, a natural question in the context of model combination is whether combined models can

outperform the model fitted with the right threshold. When fitting the mixture model in equation

(39), the threshold automatically implies truncation of the left part of the data. This truncation

in turn means that the parameters obtained through MLE for the bulk of the data will be biased.

Note that while this bias can be reduced by using censored MLE (see for example Zeng and Lin

(2007)), since the truncated observations affect the evaluation of parameters in a finite data setting,

some bias will remain. Model combination can reduce this bias by considering multiple parameters

simultaneously. In theory, a combination will thus be closer to the true distribution than a model

fitted with the best threshold.

4.2.2 Application

To illustrate Proposition 2, consider the well-known Danish reinsurance dataset (McNeil, 1997).

There are 2,167 losses between 1 million and 263 million Danish krones, expressed in millions.

Embrechts et al. (2013) suggested that a threshold of 10 or 18 is appropriate for this dataset based

on the mean residual life (MRL) plot shown in Figure 4.1. We can see that around the suggested

points, the mean excess is approximately linear from 10 to 18, then from 18 to 30 with a different

slope. This method of selecting a threshold is highly subjective, but gives a reasonable idea of where

the threshold might be.

Figure 4.1: Danish mean residual life plot
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We randomly split the data into a training and testing set, where both sets have approximately

the same size. We then fit mixture models where we suppose that the bulk of the data follows a

lognormal distribution and the tail follows a GPD. Figure 4.2 illustrates the weights obtained by

combining models with thresholds ranging from 6 to 15 under both GLUE and weighted-GLUE.

As expected from Proposition 2, the weight reversal happens at 10, the suggested threshold.

Figure 4.2: Model weights for different thresholds

In order to support the argument that a combination can outperform a fitted model with the right

threshold, consider the Hellinger distance (Beran, 1977) and the Kullback-Leibler (KL) divergence

(Van Erven and Harremos, 2014). Hellinger distance is defined (under Lebesgue measure) as

H2(f, g) =
1

2

∫

(

√

f(x)−
√

g(x)
)2
dx, (45)

which can easily be shown to be equivalent to

= 1−
∫

√

f(x)g(x)dx,

where H2(f, g) = 0 if f = g and H2(f, g) = 1 is the case where f and g have entirely different

supports.
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KL divergence between distributions P and Q is defined as

DKL(P||Q) =

∫

fP(x) log

(

fP(x)

fQ(x)

)

dx. (46)

When adjusting the model with a sufficiently high threshold, the parameters for the tail of the

distribution are accurate, but the estimated parameters for the lognormal bulk of the data are sys-

tematically biased. Indeed, right truncation leads to the location parameter being underestimated,

where

µ̂ =

∑n
i=1 ln(xi)I(xi < u)
∑n

i=1 I(xi < u)
< µ.

This should in turn lead to the distance and divergence between this model and the data being higher

than with a combination of multiple thresholds.

Table 4.1 shows the Hellinger distance and KL divergence comparing the empirical distribution

of the test set to the distributions obtained using GLUE and weighted-GLUE combinations, a simple

mean, and the thresholds of 10 and 18 proposed by Embrechts et al. (2013). The results indicate

that the GLUE combinations perform similarly to each other and outperform both the simple mean

and the single threshold model. Additionally, the mean model outperforms both single thresholds,

reinforcing the argument that using combinations is preferable to identifying a single best threshold

if we are interested in the full distribution.

Threshold

GLUE weighted-GLUE Mean 10 18

Hellinger distance 8.01 8.05 8.23 10.15 13.7

KL divergence 0.166 0.167 0.170 0.228 0.320

Table 4.1: Hellinger distance (×10−5) and KL divergence by combination method

In addition to fitting the overall distribution, we can compare high-level quantiles obtained

through model combination with those derived using an automated threshold selection method,

specifically the Anderson-Darling ForwardStop (FS) algorithm proposed by Bader et al. (2018).

This method involves fitting a GPD to data above increasing thresholds, using the Anderson-Darling

p-value to identify the first threshold that exceeds a certain significance level. By applying the FS
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method with a 5% significance level across the 85th to 99th quantiles, we obtain a threshold of

16.55, compared to a threshold of 10 using our approach.

We then compare the absolute differences between projections and observed values in the test

dataset for three cases: the FS threshold, our model combination, and our identified threshold at the

99th and 99.5th quantiles. As shown in Table 4.2, when the threshold is misspecified, the FS method

produces less accurate results than our identified threshold, which aligns with thresholds commonly

accepted in the literature. The model combination yields results similar to those of the correct

threshold for high quantiles, as illustrated in Figure 4.3. In the QQ-plots of the random test set

from the Danish data, the single threshold and model combination produce very similar outcomes,

particularly for the tail. This outcome is theoretically sound, as using the correct threshold reduces

bias in the tail, while the combination approach mitigates bias in the bulk of the data.

Threshold method

FS Identified Combination

99th quantile 5.5 0.1 2.4

99.5th quantile 10.2 2.1 0.5

Table 4.2: Absolute error (%) of fitted distributions on the test dataset

Figure 4.3: QQ-Plot of model combination and the identified threshold for the Danish test set

In a general setting with no predictive variables, comparing the usual GLUE BMA algorithm

with a quantile-weighted version thus allows for identifying the correct threshold, and this method

models the full distribution instead of only the tail. While the identified threshold provides similar
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tail projections as a combination, model combination provides a better Hellinger distance than a

single threshold.

4.3 Heterogeneous setting

4.3.1 Theory

Extending beyond a homogeneous setting, the methodology in Section 4.2 can be generalised

to incorporate a vector of explanatory variables X in a regression setting. In climate risk studies,

geographical and environmental factors are known to influence risk levels. Similarly, in insurance,

predictive variables are used to differentiate between various risks. It is natural to assume that

risk levels depend on problem-specific predictive variables, causing the parameters for the extreme

portion of risks to vary accordingly. We thus want a mixture model capable of accounting for this

dependence. However, a varying threshold becomes complex from a parameter adjustment point of

view. As such, consider a generalised mixture model with a fixed threshold such that

f(y(k)|X(k),Λ(X(k)), u, σ(X(k)), ξ(X(k))) =











(1− ϕu)× h(y|X(k),Λ(X(k)))

H(u|X(k),Λ(X(k)))
y ≤ u

ϕu × g(y(k)|u, σ(X(k)), ξ(X(k))) y > u,

(47)

where the prediction depends on the characteristics X(k) for the kth observation. Bulk distributions

where parameters depend on predictive variables can be modeled by Generalised Additive Models

for Location, Scale, and Shape (GAMLSS, see Rigby and Stasinopoulos (2005)). For the excess

over the threshold, we can use Generalised additive extreme value models (evgam, see Youngman

(2020)). Note that similarly to the homogeneous case, (47) can lead to point discontinuities, but in

this situation there is no direct solution to this issue.

In the homogeneous setting, we used the GLUE algorithm to compare quantiles across the

full dataset. However, when predictive variables are present, the quantiles vary depending on these

variables, preventing the use of the same approach. Specifically, we lack empirical quantiles for each

possible combination of predictive variables, making it impractical to apply the GLUE algorithm.

As an alternative, Jessup et al. (2023b) propose an approach that involves working with residuals

80



instead of quantiles, which we can use in this context. In this framework, suppose that

y(k) = E(Y (k)) + ϵ(k), (48)

where ϵ(k) is a normally distributed random error. The weights are then approximated as

Pr(Mm|D) ≈ 1

S

S
∑

s=1

1

|D|
∑

y(k)∈D

Pr(y(k)|ϵ(k)s ,Mm)
∑M

l=1 Pr(y
(k)|ϵ(k)s ,Ml)

, (49)

where S is the number of simulations, ϵ
(k)
s is the sth simulation of ϵ(k), and |D| is the cardinality of

the data.

For a mixture model incorporating extreme values, this approach needs to be adjusted. In the

GLUE homogeneous approach, uncertainty is assumed to depend on quantiles. It is reasonable to

suppose that similarly, residuals will behave differently between the extreme tail and the bulk of

the data. As such, the approach proposed by Jessup et al. (2023b) can be modified to separate the

components of the mixture model.

Consider DB,m and DT,m, the data for the bulk and the tail for each model, where DB,m =

{D : y(k) ≤ um} and DT,m = D\DB,m depending on the model’s specified threshold um. For

both of these datasets, we want to find parameters θm and ζm for each model Mm such that σ2m =

g1(X
(k)θm) and γm = g2(X

(k)ζm). Similarly to Jessup et al. (2023b), we choose an exponential

link function g1 as it ensures positivity of results for the variance estimator and minimise under

quadratic loss, such that

θ̂m = (X′
X)−1

X
′Rm, (50)

where X is a matrix of covariates X(k) and Rm,k = ln((y(k)−E(Ŷm,k))
2), to finally obtain σ̃m,k =

eX(k)θ̂m .

We can further model skewness under the hypothesis that residual uncertainty might be skewed.

Using the same logic as for variance, we set

γ̃k = eX
(k)ζ+

k − eX
(k)ζ−

k , (51)
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where

ζ̂
+

m = (X′
X)−1

X
′
S
+
m and ζ̂

−

m = (X′
X)−1

X
′
S
−
m, (52)

with the second term in equation (51) being subtracted to correct for the negative skewness that was

artificially made positive. Full details are available in Jessup et al. (2023b).

In order to modify Algorithm 1 in Jessup et al. (2023b) to account for the difference in residuals

stemming from a mixture model, we need to obtain estimators of variance and skewness for both

the bulk and the tail, where the bulk uncertainty is assumed skew-normal while the tail uncertainty

can be assumed to follow a GEV. The main difference is that variance and skewness are estimated

separately for the bulk and the tail, and error-adjusted ŷ
(k)
m,s depend on whether the observation is in

the bulk or the tail.

Similarly to Section 4.2, we want to focus mostly on the tail to determine the weights to each

model. We can again use a weighted mean instead of an average, such that equation (49) becomes

Pr(Mm|D) ≈ 1

S

S
∑

s=1

∑

y(k)∈D

y(k)
∑

D
Pr(y(k)|ϵ(k)s ,Mm)

∑M
l=1 Pr(y

(k)|ϵ(k)s ,Ml)
. (53)

We then obtain a result very similar to Proposition 2, where instead of considering quantiles, we

consider the kth observation.

This result is particularly promising when combined to the Dirichlet regression component pro-

posed by Jessup et al. (2023b). We suppose that the weights for the kth observation follow a Dirichlet

distribution depending on covariates, such that

f(y(k)) =

M
∑

m=1

w(k)
m fm(y

(k)). (54)

This allows for flexible weights depending on covariates, which combined to the previous result,

leads to Corollary 1.

Corollary 1. Let M different models Mm, m ∈ {1, . . . ,M}, be mixture models as defined by

equation (47) ∀ m, with each model having a different predetermined threshold um s.t. the models

cover a wide range of possible thresholds. Let w
(k)
m and w

∗(k)
m be the weights to themth model under

respectively the mean and weighted mean Dirichlet regression for the kth observation. Further
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let u(k) be the best threshold for the kth observation. Then w
∗(k)
m ≥ w

(k)
m if um ≥ u(k), and

w
∗(k)
m ≤ w

(k)
m if um ≤ u(k).

Proof. The proof is nearly identical to the proof of Proposition 2, where we consider observations

k instead of quantiles q.

Corollary 1 allows for identifying flexible thresholds based on covariates. Additionally, this

approach provides the entire distribution alongside the thresholds. This represents an improvement

over methods like quantile regression, where, for instance, Youngman (2019) outlines a two-step

procedure: using quantile regression to identify thresholds and then fitting a GAM version of GPD

to the excesses over those thresholds. Such methods do not model the full distribution.

Moreover, once again, through bias reduction, flexible model combination can outperform a

single model with the right threshold.

4.3.2 Application

To illustrate this generalised idea, we work with an automobile claims dataset from a Canadian

insurer. We have data from over one million claims from 2015 to 2021 for multiple coverages. We

choose to study only Vehicle Damage claims in Ontario, which has claims between 2 and 561,000

dollars.

We separate data into a training and testing set by taking historical data from 2015 to 2019 as

the training data and the more recent 2020 and 2021 losses as the testing data. The training data

is further separated to include a calibration component from which combination weights can be

calculated by randomly sampling 30% of claims in the training set.

We set potential thresholds as the 50th to 97.5th quantiles by jumps of 2.5%, a common ap-

proach in automatic threshold selection algorithms. To use model combination, for each model

with a different threshold, we fit a GAMLSS lognormal model on the bulk and a GAM version of

the GPD on the tail. For ease of interpretability, Figure 4.4 presents the Dirichlet results of the

error integration (EI) BMA algorithm, comparing weight variation when gender is available versus

unavailable. The weights are nearly identical between males and females, so only one figure is

presented for both. To reduce calculation time, we regroup quantiles to have 10 weights instead of
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20. The threshold identified by our method varies based on the predictive variable, showing a lower

threshold when gender is not available, that is, approximately 7000 compared to 8700 for male and

female.

Figure 4.4: Weights by threshold quantile when gender is unavailable (left) and available (right)

This difference in threshold can be explained by the quartile values and variance shown in Table

4.3. We see that while losses are mostly lower when gender is not available, there is significantly

more tail uncertainty than when gender is known, as reflected by a larger variance despite the 75th

quantile being the lowest.

Male Female Not available

25% 745 809 217

50% 2591 2467 1485

75% 5808 5384 4717

Variance 7.02 ∗ 107 4.74 ∗ 107 1.06 ∗ 108

Table 4.3: Quartile and variance values by gender

Figure 4.5 illustrates the MRL plots obtained by gender, along with the identified threshold

values. We see that male and female have similar MRL curves, while the other curve behaves

differently. This can offer further insight into why the threshold is different, where the distribution

seems significantly different when gender is not available.
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Figure 4.5: MRL plot by gender with the identified thresholds

Using the weights in Figure 4.4, we can obtain densities and predict high quantiles by gender.

Table 4.4 shows the Hellinger distance between the empirical density function of the test dataset

and the densities obtained with weighted-EI, compared to the identified threshold. Across the full

distribution, the combined approach is closer to the true distribution than a single threshold. Only

the tail-weighted results are presented, as we are focused on high quantiles, where these weights are

expected to perform better than a simple mean of the likelihood of each observation.

weighted-EI Single threshold

Hellinger distance 1.35 1.85

KL divergence 0.10 0.14

Table 4.4: Hellinger distance (×10−5) and KL divergence by combination method

Next, Table 4.5 compares the mean absolute error (MAE) as a percentage of quantiles obtained

with model combination and with the two-step procedure of quantile regression with a fixed level

of 0.97, then fitting a GAM version of GPD to the excess, as suggested by Youngman (2019).

Given the significant uncertainty for high level quantiles, the two-step quantile regression and model

combination offer similar performance, where the combination is only slightly better than quantile
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regression for the 99.5th and 99.9th quantiles, while the single identified threshold performs better

for the 99.5th quantile, but not for the 99.9th quantile. Again, the similarity between the identified

threshold and the combination for tail quantiles makes sense from a theoretical point of view, where

we expect the tail to be unbiased, such that model combination does not offer an improvement,

while it reduces bias for the bulk of the data. We can further compare the fit over the full tail using a

normalised root mean squared error (NRMSE, see Curceac et al. (2020)). We find that the identified

thresholds and full combination yield nearly identical values of 0.167 and 0.168, compared to 0.248

for the quantile regression approach. Since these values are close to 0, we can conclude that all

methods yield good results.

Threshold method

QR Identified Combination

99th quantile 19.1 16.9 15.1

99.5th quantile 16.3 12.0 15.3

99.9th quantile 13.7 13.7 12.4

Table 4.5: MAE (%) of fitted distributions for the test dataset

Figure 4.6 shows the QQ-plots over the full distribution for the model combination as well as

the mixture model with the identified threshold. We can see that the results are quite similar, with

the combination performing slightly better, especially for the bulk of the data, and the large MAE

being explained by the higher quantiles when gender is not available.

Figure 4.6: QQ-Plots for combined mixture models (left) and the identified threshold (right)
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In light of these results, the main advantage of model combination over quantile regression

is that it allows for obtaining a full distribution of the data depending on predictive variables. This

shows a promising application of Proposition 1, where the idea could be used when studying climate

risk to have a combined model with stations and climate factors as variables to obtain the full

distribution instead of studying only high quantiles. Moreover, from the similarity in tail quantiles

between the identified thresholds and the combinations in both the general and predictive setting, if

the goal is only to predict tail quantiles, only the models with the identified threshold could be kept,

which would allow for faster computing.

4.4 Conclusion

In this paper, we proposed a modification of the Bayesian model averaging GLUE algorithm to

identify the ªbestº threshold in a homogeneous setting. By combining mixture models, we demon-

strated the effectiveness of our approach using the Danish reinsurance dataset. We showed that

model combination can outperform a single model with the correct threshold and is preferable for

forecasting high quantiles.

Additionally, we modified the error integration (EI) BMA algorithm proposed by Jessup et al.

(2023b) to combine mixture models that include predictive variables. When combined with the

Dirichlet regression component of the EI algorithm, this approach allows for identifying flexible

thresholds based on predictive variables. We compared our method to a two-step quantile regression

procedure and found that it provides similar high quantile predictions. Our method’s main advantage

is producing a full distribution rather than only modelling the excess over the thresholds. This is

particularly useful in insurance contexts, where extreme values are important, but the bulk of the

data is also of interest.

For future work, it would be interesting to consider multiple coverages simultaneously, such

as different car insurance coverages known to be correlated. Dependence could affect threshold

values, requiring multiple coverages to be considered together. While this does not affect marginal

distributions, it could improve overall loss projections. Additionally, applying our flexible threshold

approach to datasets like extreme precipitation, where different stations are treated as variables

rather than separately, could increase data availability and enhance analysis.
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Chapter 5

Conclusion

This Chapter concludes the thesis, which is based on three manuscripts focused on advance-

ments in model combination and uncertainty quantification applied to actuarial science.

In Chapter 2, we explore various model combination methods to illustrate the uncertainty inher-

ent in model combination. Using two non-parametric methods and two Bayesian model averaging

algorithms, we derive weights for an ensemble of 24 experts. These methods are applied to generate

predictive densities for the annual maxima of daily rainfall in Montreal and Quebec City. By em-

ploying areal reduction factors and quantile projected changes, we demonstrate that non-parametric

combination methods produce significantly different outcomes compared to parametric combination

methods. We emphasize the importance for actuaries to consider multiple combination methods to

avoid overconfidence in their projections.

In Chapter 3, we introduce a novel approach to Bayesian model averaging that accounts for data

uncertainty. We critique the BMA Expectation-Maximisation algorithm for treating the data as the

only observable data, leading to convergence on a single model unless a stopping criterion is speci-

fied. Our approach uses residuals to model data uncertainty and integrates random error numerically,

enabling a single-sweep weight update that does not converge on one model. We illustrate the con-

ditions under which this error integration algorithm performs optimally and propose treating com-

bination weights as Dirichlet variables, allowing weights to vary with predictive variables. These

methods are validated through simulation studies and a Property & Casualty simulated insurance

dataset, demonstrating that flexible weights are particularly advantageous for reserving purposes,
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where Dirichlet regression facilitates a smooth transition between different reserving methods for

different data segments.

In Chapter 4, we demonstrate that BMA can be employed to identify extreme value thresholds in

both homogeneous and heterogeneous settings. In the homogeneous setting, by combining mixture

models where each model shares the same structure but has a different threshold, we show that

placing more weight on tail quantiles allows for a reversal in combination weights at the correct

threshold. This approach outperforms an automated threshold selection method on the well-known

Danish reinsurance dataset. In the heterogeneous setting, a similar concept of weighting larger

losses is applied, with a slight modification to the algorithm proposed in Chapter 3 to achieve flexible

thresholds depending on predictive variables. Our method yields comparable projections to a two-

step quantile regression procedure, with the added advantage of projecting the full distribution rather

than just the tail.

The ideas presented in Chapters 3 and 4 pave the way for numerous future research opportu-

nities. First, by integrating the approaches from both chapters, we can develop a reserve model

that takes extreme values into account, addressing the exclusion of extreme losses in Chapter 3.

Additionally, flexible weights can be used to identify change-point models. Lastly, thresholds that

depend on predictive variables enable large-scale studies of extreme weather events, allowing for

the comprehensive use of all available data instead of analysing each location individually.
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Appendix A

Appendices

A.1 Expectation-Maximisation Bayesian Model Averaging algorithm

The following table illustrates the algorithm followed for expectation-maximisation under bayesian

model averaging forM experts andQ quantiles, where y
(m)
τ⃗ ,x,q is the qth quantile of vector y⃗

(m)
τ⃗ ,x , yτ⃗ ,x,q

is the qth quantile of real values, σ2m and wm are respectively the variance and weight for each ex-

pert’s model, ϕ(yτ⃗ ,x,q|y(m)
τ⃗ ,x,q, σ

2) is the density of a normal distribution evaluated at yτ⃗ ,x,q with mean

y
(m)
τ⃗ ,x,q and variance σ2, and θ is a vector of parameters s.t. θ = {wm, σ2m,m = 1, . . . ,M}.
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Algorithm 5: Expectation-Maximisation Bayesian Model Averaging

1: Initialize variance and weights as

σ2
(0)

=
1

QM

Q
∑

q=1

M
∑

m=1

(

yτ⃗ ,x,q − y
(m)
τ⃗ ,x,q

)2
,

w(0)
m = 1/M ∀m.

2: Calculate initial likelihood as

l(θ(0)) =

Q
∑

q=1

log

(

M
∑

m=1

w(0)
q ϕ(yτ⃗ ,x,q|y(m)

τ⃗ ,x,q, σ
2(0))

)

.

3: while |l(θ(j))− l(θ(j−1))| > β, do

4: Obtain proportion from normal densities for each expert m and quantile q as

z(j)m,q =
w

(j−1)
m ϕ(yτ⃗ ,x,q|y(m)

τ⃗ ,x,q, σ
2(j−1)

)
∑M

m=1w
(j−1)
m ϕ((yτ⃗ ,x,q|y(m)

τ⃗ ,x,q, σ
2(j−1))

.

5: Update weights and variance to each expert, i.e.

w(j)
m =

1

Q

Q
∑

q=1

z(j)m,q

σ2m
(j)

=

∑Q
q=1 z

(j)
m,q(yτ⃗ ,x,q − y

(m)
τ⃗ ,x,q)

2

∑Q
q=1 z

(j)
m,q

.

6: Calculate updated likelihood as

l(θ(j)) =

Q
∑

q=1

log

(

M
∑

m=1

w(j)
m ϕ(yτ⃗ ,x,q|y(m)

τ⃗ ,x,q, σ
2(j))

)

.

7: Update iteration count j = j + 1.

8: end while

9: Update the probability associated to each expert as Pr(M = Mm|y⃗τ⃗ ,x) = w
(j)
m .

10: Calculate posterior distribution as

Pr(Y
ψ⃗,x

= y|y⃗τ⃗ ,x) =
∑M

m=1 Pr(Yψ⃗,x = y|Mm) Pr(M = Mm|y⃗τ⃗ ,x).
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A.2 Quantile and ARF changes bootstrap distribution for a 1 in 20

year return level for Quebec

Figure A.1: Distribution of projected quantile change at a 1 in 20 year return level in Quebec

between 2001-2020 and 2011-2030 (left) or 2071-2090 (right)

Figure A.2: Distribution of projected ARF change at a 1 in 20 year return level in Quebec between

2001-2020 and 2011-2030 (left) or 2071-2090 (right)
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A.3 Quantile and ARF percent changes for a 1 in 20 year return level

for Quebec

Figure A.3: Percentage change in quantiles for a 1 in 20 year return level between 2001-2020 and

2071-2090 for the region of Quebec using Cooke’s method (left) and BMA-EM (right)

Figure A.4: Percentage change in quantiles for a 1 in 20 year return level between 2001-2020 and

2071-2090 for the region of Quebec using Cooke’s method (left) and BMA-EM (right)

A.4 Proof of heteroscedastic BMA weights

Following a logic similar to Conflitti et al. (2015), for the jth iteration, take

η(w(j)) =
∑

y(k)∈D

log

(

M
∑

m=1

w(j)
m f̃m(y

(k))

)

− λ

M
∑

m=1

w(j)
m ,

where λ is a Lagrange multiplier, subject to the constraint that
∑M

m=1wm = 1. We cannot directly

optimise this function, seeing as deriving with respect to a particular w
(j)
n would not allow for
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isolating this weight. Instead, we consider an alternative function

ψ(w(j),a) =
∑

y(k)∈D

M
∑

m=1

f̃m(y
(k))am

∑M
l=1 f̃l(y

(k))al
ln

(

w
(j)
m

am

M
∑

l=1

f̃l(y
(k))al

)

− λ
M
∑

m=1

w(j)
m ,

with a = {a1, . . . , aM}. We have that ψ(a,a) = η(a) for any a, and ψ(w(j),a) ≤ η(w(j)) for any

a and w
(j), so ψ(w(j),a) is an appropriate alternative function (Conflitti et al., 2015). Indeed,

ψ(a,a) =
∑

y(k)∈D

M
∑

m=1

f̃m(y
(k))am

∑M
l=1 f̃l(y

(k))al
ln

(

am
am

M
∑

l=1

f̃l(y
(k))al

)

− λ

M
∑

m=1

am

=
∑

y(k)∈D

ln

(

M
∑

l=1

alf̃l(y
(k))

)

− λ

M
∑

m=1

am

= η(a),

and the inequality condition follows from the concavity of the ln function, where

M
∑

m=1

f̃m(y
(k))am

∑M
l=1 f̃l(y

(k))al
ln

(

w
(j)
m

am

M
∑

l=1

f̃l(y
(k))al

)

≤ ln

(

M
∑

m=1

f̃m(y
(k))am

∑M
l=1 f̃l(y

(k))al

w
(j)
m

am

M
∑

l=1

f̃l(y
(k))al

)

= ln

(

M
∑

m=1

f̃m(y
(k))w(j)

m

)

.

Then, deriving with respect to the nth weight,

dψ(w(j),a)

dw
(j)
n

= 0 =
1

w
(j)
n

∑

y∈D

f̃n(y
(k))an

∑M
l=1 f̃l(y

(k))al
− λ

from which we obtain

ŵ(j)
n =

1

λ

∑

y(k)∈D

f̃n(y
(k))an

∑M
l=1 f̃l(y

(k))al
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and using the constraint on w
(j), we can replace λ s.t.

M
∑

m=1

w(j)
m = 1 =

M
∑

m=1

1

λ

∑

y(k)∈D

f̃m(y
(k))am

∑M
l=1 f̃l(y

(k))al

⇔ λ = |D|,

and finally

ŵ(j)
m =

1

|D|
∑

y(k)∈D

f̃m(y
(k))am

∑M
l=1 f̃l(y

(k))al
.

Now, set am as w
(j−1)
m , i.e. the weight from the previous iteration, and so

ŵ(j)
m =

1

|D|
∑

y(k)∈D

f̃m(y
(k))w

(j−1)
m

∑M
l=1 f̃l(y

(k))w
(j−1)
l

.

We thus obtain the same update formula as the standard algorithm since this phase of EM does not

depend on σk.

A.5 Proof of Kullback-Leibler conditions

We want to show that if
∑n

k=1 |
∑M

m=1w
2
mσ

2
m,k − σ2k| ≤

∑n
k=1 |σ2m∗,k − σ2k| and

∑n
k=1 log

(

∑M
m=1 w

2
mσ

2
m,k

σ2
m∗,k

)

≥ 0, then DKL(P̂||Q̂(EI)) ≤ DKL(P̂||Q̂(BMA)).

Consider the case with n = 1, and let ak =
∑M

m=1w
2
mσ

2
m,k, bk = σ2m∗,k, and ck = σ2k for brevity

of notation. Let |a1 − c1| ≤ |b1 − c1| and let a1 ≥ b1, s.t. log(a1/b1) ≥ 0.

If a1 ≤ c1, then b1 ≤ c1, so by the Taylor expansion of log(a1/b1),

log

(

a1
b1

)

≤ a1 − b1
b1

≤ c1
a1

a1 − b1
b1

,

and DKL(P̂||Q̂(EI)) ≤ DKL(P̂||Q̂(BMA)).

95



If a1 ≥ c1, then b1 ≤ c1 and c1 − b1 ≥ a1 − c1. Again using the Taylor expansion of log(a1/b1),

c1(a1 − b1)

a1b1
≥ (a1 + b1)(a1 − b1)

2a1b1
≥ log(a1/b1),

and again DKL(P̂||Q̂(EI)) ≤ DKL(P̂||Q̂(BMA)).

Now suppose the inequality is true for n observations, s.t.

n
∑

k=1

log

(

ak
bk

)

≤
n
∑

k=1

ck(ak − bk)

akbk
.

Then it follows that for an n+ 1th observation,

n+1
∑

k=1

log

(

ak
bk

)

≤
n
∑

k=1

ck(ak − bk)

akbk
+ log

(

an+1

bn+1

)

≤
n+1
∑

k=1

ck(ak − bk)

akbk

by the arguments above, and so the result holds in general.
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A.6 Fitted Dirichlet log-coefficients

Model

AY Gamma ODP DGLM Agg. GLM Agg. GAMLSS

2 -0.46 -0.49 -0.73 -0.52 -2.70

3 -1.42 -1.34 -1.58 -1.20 -4.92

4 -1.11 -0.93 -1.16 -0.91 -2.39

5 0.81 1.33 1.35 1.44 -6.29

6 -1.76 -1.82 -2.45 -1.73 -4.51

7 -1.74 -1.62 -2.04 -1.50 -5.42

8 -1.75 -1.59 -1.99 -1.58 -4.12

9 -1.78 -2.08 -3.67 -2.13 -6.43

10 -2.16 -2.71 -3.59 -2.67 -5.92

11 -1.57 -1.91 -2.53 -1.93 -5.50

12 -1.72 -2.13 -2.56 -2.09 -5.40

Table A.1: Dirichlet log-coefficients without strong predictor
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Model

AY Gamma ODP DGLM Agg. GLM Agg. GAMLSS

1 -1.28 -1.38 -1.33 -1.42 -3.54

2 -2.19 -2.12 -2.09 -2.31 -5.60

3 -1.63 -1.59 -1.46 -1.66 -3.03

4 -0.09 0.14 0.27 0.06 -6.93

5 -2.34 -2.46 -2.23 -2.41 -5.00

6 -2.64 -2.66 -2.40 -3.19 -7.19

7 -2.74 -2.79 -2.47 -3.01 -6.03

8 -2.11 -2.69 -2.15 -2.72 -6.75

9 -2.67 -2.98 -2.54 -3.35 -6.57

10 -3.07 -3.24 -3.00 -3.59 -7.13

11 -3.56 -3.66 -3.47 -3.78 -6.86

12 -1.81 -1.28 -1.99 -0.98 -1.89

Table A.2: Dirichlet log-coefficients with strong predictor

A.7 The skew-normal distribution

The skew-normal distribution, first introduced by Azzalini (1985), is defined as

f(x) =
2

ω
ϕ

(

x− ξ

ω

)

Φ

(

α
x− ξ

ω

)

,

where ξ, ω, and α are respectively the location, scale, and shape parameters. ϕ and Φ are the

standard normal density and cumulative distribution functions. The relationship between ξ and ω

and the usual normal parameters µ and σ can be expressed through the mean and variance, such that

µ = ξ + ω
α√

1 + α2

√

2

π

σ2 = ω2

(

1− 2

π

α2

1 + α2

)

.
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In particular, if α = 0, then ξ = µ and ω = σ.

The equivalence with the normal distribution can easily be shown by setting α = 0 as follows.

f(x) =
2

ω
ϕ

(

x− ξ

ω

)

Φ

(

α
x− ξ

ω

)

=
1

ω
ϕ

(

x− ξ

ω

)

=
1

σ
ϕ

(

x− µ

σ

)

=
1√
2πσ

exp

(

−(x− µ)2

2σ2

)
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