
Optimized Multi-Agent Deep Reinforcement
Learning for Target Search and Localization

Ahmed Alagha

A Thesis

in the Concordia Institute

for

Information and Systems Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy (Information and Systems Engineering) at

Concordia University

Montréal, Québec, Canada

November 2024

© Ahmed Alagha, 2024

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Ahmed Alagha

Entitled: Optimized Multi-Agent Deep Reinforcement Learning for Target

Search and Localization
and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Information and Systems Engineering)

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Rodolfo Coutinho

External Examiner
Dr. Georges Kaddoum

Arm’s Length Examiner
Dr. Lyes Kadem

Internal Examiner
Dr. Farnoosh Naderkhani

Internal Examiner
Dr. Manar Amayri

Supervisor
Dr. Jamal Bentahar

Co-supervisors
Dr. Rabeb Mizouni & Dr. Shakti Singh

Approved by
Dr. Farnoosh Naderkhani, Graduate Program Direction

October 30, 2024

Date of Defense
Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

Optimized Multi-Agent Deep Reinforcement Learning for Target Search
and Localization

Ahmed Alagha, Ph.D.

Concordia University, 2024

In a world that increasingly relies on autonomous systems, swarm robotics hold the

promise of revolutionizing how complex tasks, such as target search and localization, are

approached. The ability of multiple autonomous agents, such as robots and UAVs, to work

together, exchange information, and adapt to dynamic environments is critical for target lo-

calization applications ranging from search and rescue missions to environmental monitor-

ing. However, efficiently coordinating a swarm of robots to search for targets in uncertain

and complex environments poses significant challenges. Most existing solutions for target

search and localization still possess challenges and limitations in terms of adaptability to

different environments and scalability. These challenges become even more intricate when

the target may not exist (i.e. false alarms) or is unreachable.

In this thesis, the main motivation is to leverage AI, specifically Multi-Agent Deep Re-

inforcement Learning (MDRL), to address the target search and localization problem. The

aim is to develop MDRL solutions where the agents intelligently and autonomously learn

to tackle the problem and its different complexities, with minimum human intervention.

The capacity of MDRL in producing agents capable of learning from their experiences in

the environment proves efficient in handling complex and dynamic scenarios, such as coor-

dinating with other agents, translating data readings into actions that lead to the target, and

iii

navigating obstacles in the environment. This research is motivated by four main needs:

(1) Adaptable solutions for collaborative target search and localization for varying environ-

ment complexities; (2) autonomous and intelligent sensing agents with decision-making

that addresses scenarios like false alarms and target unreachability; (3) scalable and effi-

cient AI-based learning process for the sensing agents, and (4) mechanisms for knowledge

exchange across different users and parties from different domains for better accessibility

to AI solutions.

The aforementioned needs are addressed in this thesis by: (1) Developing novel MDRL

algorithms for collaborative target search in both simple and cluttered environments by

modeling the problem as a Markov Decision Process (MDP), (2) designing novel methods

based on ideas from MDRL, Imitation Learning (IL), and reward shaping for enhanced and

quick learning performance, (3) enhancing the proposed MDRL algorithms by integrating

complex decision-making, where agents can take actions ranging from mobility to deciding

on the existence and reachability of the target, (4) developing a blockchain-based platform

for Deep Reinforcement Learning as a Service (DRLaaS) allowing collaborative training

and better accessibility to DRL solutions for target localization problems, and (5) ensuring

the scalability of all the proposed solutions through the use of concepts such as Centralized-

Learning and Distributed Execution (CLDE) MDRL methods coupled with Convolutional

Neural Networks (CNNs) for optimized analysis of the agents’ collected observations. Be-

sides these contributions, we present several experimental studies and simulations that val-

idate the proposed methods and compare them against existing state-of-the-art benchmarks

in the literature.

iv

Acknowledgments

First and foremost, I am grateful to God for granting me the strength, patience, and

guidance throughout this challenging journey.

I would like to extend my sincere gratitude to my supervisor, Dr. Jamal Bentahar, for his

unwavering support and guidance throughout my research. I am also deeply thankful to my

co-supervisors, Dr. Rabeb Mizouni and Dr. Shakti Singh, for their expertise, constructive

feedback, and constant support. I would like to offer special thanks to Dr. Hadi Otrok,

who has been not only a mentor but also an older brother to me. His guidance and belief in

me have been a source of strength throughout this path. Looking back at how much I have

grown and developed over the past years, I feel immensely fortunate and grateful to have

crossed paths with such incredible mentors, whose guidance and support have been pivotal

to my journey.

I extend my heartfelt gratitude to the esteemed members of my PhD committee: Dr.

Lyes Kadem, Dr. Farnoosh Naderkhani, Dr. Manar Amayri, and Dr. Georges Kaddoum.

Their insightful feedback, constructive criticism, and invaluable guidance throughout the

evaluation process have greatly enriched this work. I deeply appreciate their time and effort

in reviewing my research and contributing to the success of this thesis.

The journey through this PhD would not have been the same without the incredible

support and friendship of those around me. To my dear friends: Ahmad Hammoud, Ka-

reem Hamdash, Mario Chahoud, Hani Sami, Mouhamad Arafeh, Osama Wehbi, Mohamad

v

Wazzeh, and my dear brother Ali Alagha, your companionship made even the most chal-

lenging days manageable. I am truly blessed to have such a remarkable group of friends

who have stood by me, and I am deeply grateful for the laughter, support, and strength you

have provided along the way.

Last but not least, none of this would have been possible without the love and support of

my family. To my parents, your endless sacrifices, guidance, and constant faith in me have

laid the foundation for everything I have achieved. To my brothers, your constant support

has been invaluable throughout this journey.

This research was made possible through the support of the Fonds de recherche du

Québec - Nature et technologies (FRQNT) and Concordia University.

vi

Contents

List of Figures xii

List of Tables xvii

1 Introduction 1

1.1 Target Search and Localization: An Example 4

1.2 Problem Statement and Research Questions 7

1.3 Research Objectives and Contributions . 10

1.4 Thesis Organization . 13

2 Background and Literature Review 15

2.1 Background . 15

2.1.1 Target Search and Localization . 15

2.1.2 Markov Decision Process . 16

2.1.3 Multi Agent Deep Reinforcement Learning (MDRL) 18

2.1.4 Convolutional Neural Networks (CNNs) 19

2.1.5 Proximal Policy Optimization (PPO) 19

2.2 Literature Review . 21

2.2.1 Target Localization . 22

2.2.2 Multi-Agent Deep Reinforcement Learning (MDRL) 23

2.2.3 Reward Shaping . 24

vii

2.2.4 Imitation Learning-assisted RL . 25

2.2.5 Federated Reinforcement Learning 26

2.2.6 Machine Learning as a Service . 27

2.2.7 Crowdsourcing for Machine Learning 29

3 Target Localization using Multi-Agent Deep Reinforcement Learning with Prox-

imal Policy Optimization 31

3.1 Introduction . 31

3.2 MDRL formulation for Target Localization 32

3.3 Proposed Approach . 33

3.4 Centralized Multi-Agent Target Localization (CMTL) 35

3.4.1 Observation Space . 36

3.4.2 CNN architecture and learning process 37

3.5 Distributed Multi-Agent Target Localization (DMTL) 40

3.5.1 Observation Space . 41

3.5.2 CNN architecture and learning process 41

3.6 Optimized DMTL (ODMTL) . 44

3.6.1 Observation Space . 44

3.6.2 CNN architecture and learning process 47

3.7 Evaluation . 48

3.7.1 Simulation Environment . 49

3.7.2 Cumulative Testing Rewards . 50

3.7.3 Episodic Length and Cost . 54

3.7.4 Varying Environments . 58

3.7.5 Behavioral Analysis . 61

3.7.6 Benchmarks: Localization Methods 62

3.8 Conclusion and Discussion . 65

viii

4 Multi-Agent Deep Reinforcement Learning with Demonstration Cloning for

Target Localization in Complex Environments 68

4.1 Introduction . 68

4.2 General Overview of the Proposed Solutions 70

4.3 Observation Space . 71

4.4 Action Space . 75

4.5 Actor and Critic Networks . 76

4.6 Reward Function and Learning Process 78

4.6.1 Model 1: MDRL with Shaped Rewards (MDRL-SR) 78

4.6.2 Model 2: MDRL with Demonstration Cloning (MDRL-DC) 81

4.7 Experiments and Evaluation . 84

4.7.1 Performance of MDRL-SR . 87

4.7.2 Performance of MDRL-DC . 89

4.7.3 Benchmarks . 90

4.8 CONCLUSION . 94

5 Blockchain-assisted Demonstration Cloning for Multi-Agent Deep Reinforce-

ment Learning 96

5.1 Introduction . 96

5.2 Multi-Expert Demonstration Cloning (MEDC) 101

5.3 Blockchain-based model sharing for Demonstration

Cloning . 106

5.3.1 Smart Contract Implementation 108

5.3.2 Framework Time Sequence . 111

5.4 Simulation and Evaluation . 112

5.4.1 Performance of MEDC . 113

5.4.2 MEDC vs Benchmarks . 116

ix

5.4.3 Adaptability to Other Applications 119

5.4.4 Smart Contracts Complexity Analysis 121

5.5 Conclusion . 122

6 Adaptive Target Localization under Uncertainty using Multi-Agent Deep Re-

inforcement Learning with Knowledge Transfer 124

6.1 Introduction . 124

6.2 Proposed System . 126

6.2.1 Observation and Action Spaces 127

6.2.2 Policy Networks and Learning Process 128

6.2.3 Target Estimation with Transfer Learning 131

6.3 Experiments and Evaluation . 132

6.3.1 MDRL Performance Analysis . 133

6.3.2 Target Estimation . 138

6.3.3 Benchmarks . 138

6.4 Conclusion . 140

7 Blockchain-assisted Demonstration Cloning for Multi-Agent Deep Reinforce-

ment Learning 142

7.1 Introduction . 142

7.2 DRL Design and Training Requirements 148

7.2.1 Expertise: Environment, Reward, and Optimization 148

7.2.2 Computational Capabilities . 149

7.2.3 Model Availability and Compatibility 150

7.3 Overview: Blockchain-based DRLaaS Framework 150

7.4 Problem Formulation . 152

7.5 Worker Recruitment Parameters . 153

x

7.5.1 DRL Training Tasks . 154

7.5.2 DRL Model Sharing Tasks . 159

7.6 Recruitment Optimization Process . 161

7.7 Smart Contracts Implementation . 162

7.8 Framework Time Sequence . 166

7.9 Experiments and Evaluation . 168

7.9.1 DRL Application Environments 168

7.9.2 DRL Training Tasks . 172

7.9.3 DRL Model Sharing . 174

7.9.4 Recruitment Optimization . 176

7.9.5 Blockchain and Smart Contracts Complexity Analysis 178

8 Conclusion and Future Direction 181

8.1 Conclusion . 181

8.2 Future Directions . 183

Bibliography 185

xi

List of Figures

Figure 1.1 A representation of the target localization problem. 5

Figure 2.1 The different scenarios to be addressed by the agents. 17

Figure 3.1 An example of the observation set for the case of 3 agents under the

CMTL model, consisting of 5 (2+N) observations. 36

Figure 3.2 The architecture of the actor network (CNN) used in the proposed

models. The parameters of the network are optimized using PPO. 38

Figure 3.3 An example of the observation space for an agent in a team of 3

agents under the CLDE model. 42

Figure 3.4 An example of the observation space for the case of 3 agents. Local

observations are highlighted in red, while global observations are high-

lighted in yellow. 45

Figure 3.5 An example showing the different placement of the window. 46

Figure 3.6 The average episodic reward for the three models, for a system of

(a) one agent, (b) two agents, (c) three agents, (d) four agents, and (e) ten

agents. 53

Figure 3.7 The localization time achieved, per episode, for a system of (a) one

agent, (b) two agents, (c) three agents, (d) four agents, and (e) ten agents. . 56

Figure 3.8 The cost of localization, for the three models, for a system of (a)

one agent, (b) two agents, (c) three agents, (d) four agents, and (e) ten agents. 57

xii

Figure 3.9 Testing the learning process of the MDRL models on environments

with different area sizes. 59

Figure 3.10 Testing the learning process of the MDRL models on environments

with different grid sizes. 59

Figure 3.11 Testing the MDRL models on an environment with varying target

intensities. 60

Figure 3.12 Examples of the different behaviors developed by the agents for the

cases of (a) a single agent and (b) multi agents. 62

Figure 3.13 Comparison between the different benchmarks in terms of (a) local-

ization time and (b) total cost, for varying target strength. 66

Figure 4.1 General overview of the proposed models. 70

Figure 4.2 The set of original and reduced observations collected by an agent,

in a team of 3 agents. Amongst the reduced observations, local observa-

tions are highlighted in green (windowed), while the global observations

are highlighted in red. 72

Figure 4.3 The architecture used for the CAE. The CAE is pre-trained using a

dataset of walls, after which the encoder is used to embed the wall maps as

part of the proposed MDRL models. 75

Figure 4.4 The actor and critic networks (CNN) used in the proposed models. . 78

Figure 4.5 An example of the distance map obtained at the beginning of an

episode. Each cell contains a value representing the shortest distance (in

number of steps) between the cell and the target (marked with ×). 80

Figure 4.6 MDRL with Demonstration Cloning. 84

Figure 4.7 The episodic length throughout the learning for a system of (a) one

agent, (b) two agents, (c) three agents, and (d) four agents, for varying

numbers of walls within the environment 88

xiii

Figure 4.8 The episodic cost throughout the learning for a system of (a) one

agent, (b) two agents, (c) three agents, and (d) four agents, for varying

numbers of walls within the environment 89

Figure 4.9 The episodic time throughout the learning for a system of (a) 3

agents and (b) 4 agents, in an environment of 3 walls, for different learning

models . 91

Figure 4.10 The episodic cost throughout the learning for a system of (a) 3

agents and (b) 4 agents, in an environment of 3 walls, for different learning

models. 91

Figure 4.11 Performance comparison between the benchmarks in terms of (a)

episode length and (b) episode cost, throughout the learning process. 93

Figure 5.1 A general overview of the proposed framework. 100

Figure 5.2 The proposed Multi-Expert Demonstration Cloning method. 103

Figure 5.3 The proposed Blockchain-assisted model sharing framework for

Demonstration Cloning. 107

Figure 5.4 The interactions between the users and smart contracts as part of the

proposed framework. 112

Figure 5.5 The episodic length throughout the learning for an environment of

3 agents and (a) 2 walls and (b) 3 walls. 115

Figure 5.6 The episodic length throughout the learning for an environment of

3 agents and 2 walls, while using different faulty and malicious experts. . . 116

Figure 5.7 The episodic length throughout the learning for an environment of

3 agents and (a) 2 walls or (b) 3 walls, while comparing MEDC with the

benchmarks. 118

Figure 5.8 The episodic length throughout the learning for an environment of

3 agents and 2 walls, while using faulty and malicious experts. 119

xiv

Figure 5.9 The episodic length throughout the learning for the (a) fleet coordi-

nation and (b) maze cleaning environments. 121

Figure 5.10 The episodic length throughout the learning for the (a) fleet coordi-

nation and (b) maze cleaning environments, while using 3 faulty experts. . . 121

Figure 6.1 An overview of the model proposed, which is to be deployed on

each sensing agent. 126

Figure 6.2 The actor architecture trained through MDRL (top), and the archi-

tecture of the estimation model trained through DL and TL (bottom). 129

Figure 6.3 The final model deployed on each of the sensing agents. 132

Figure 6.4 A summary of the training plots for different team sizes and for

varying target strengths. The episodic reward is shown in (a)-(c), the episodic

length is shown in (d)-(f), and the episodic cost is shown in (g)-(i). 135

Figure 6.5 Agents’ performance under the different scenarios in terms of (a)

episodic time and (b) episodic cost, for a team of 4 agents and varying

target strengths. 137

Figure 6.6 The training and validation loss for the target estimation model us-

ing transfer learning. 139

Figure 6.7 Comparison between the performance of the proposed method and

the benchmarks in terms of (a) episode length and (b) episode cost. 141

Figure 7.1 A general overview of the proposed framework. 147

Figure 7.2 The proposed Blockchain-assisted DRLaaS framework. The dif-

ferent steps could involve a single entity, or an interaction between two

entities. Entities include requesters, workers, the blockchain, and IPFS. . . 152

Figure 7.3 Flowchart of the recruitment optimization process. 162

Figure 7.4 The interactions between the users and smart contracts as part of the

proposed framework. 169

xv

Figure 7.5 Use-case scenarios of the DRL application environments used to

validate the proposed methods. 171

Figure 7.6 The effect of parallelizing the DRL process over a varying number

of CPU cores on the learning convergence, for different DRL environments. 173

Figure 7.7 The total number of training steps in a 12h duration, while (a) vary-

ing the number of CPU cores (parallelized DRL) and (a) varying the use of

GPU. 174

Figure 7.8 The effect of model similarity on the learning performance, when

training a 3-agent 3-wall target localization problem (3A3W), a 5-agent

maze cleaning environment, and a 3-agent 10-target fleet coordination prob-

lem (3A10T). 175

Figure 7.9 Comparison between the proposed greedy-based recruitment and

the benchmarks for different group sizes. 177

Figure 7.10 Comparison between the proposed method and different bench-

marks in terms of (a) QoS for different group sizes and (b) DRL training

results for a group size of 4, using the maze cleaning environment. 179

xvi

List of Tables

Table 3.1 Actor and critic networks architectures. 48

Table 3.2 Hyperparameters used for PPO. 51

Table 3.3 Summary of the key results in Fig 3.6. Convergence refers to the

time step (×106) at which the max reward is first achieved. 52

Table 3.4 Number of trainable parameters for each model for different team

sizes. DMTL and OMDTL have slightly smaller values for team size = 1

compared to other team sizes because the Map of Other Locations is ignored. 54

Table 3.5 Summary of the key results in Fig. 3.7 and Fig. 3.8, representing

the lowest time and cost achieved by each model, for each team size, on

average. Time is given in (timesteps) and cost is given in (Moving steps). . 55

Table 3.6 Comparison between ODMTL and DDQN in terms of localization

time (time steps) and cost (moving steps). 64

Table 4.1 Hyperparameters used for PPO and CAE training. 86

Table 5.1 Users Manager Contract (UMC) . 108

Table 5.2 Models Manager Contract (MMC) 109

Table 5.3 Hyperparameters used for PPO and MEDC. 113

Table 5.4 Blockchain gas cost. 122

Table 6.1 PPO and CAE Hyperparameters . 133

Table 7.1 List of attributes and their definitions. 155

Table 7.2 Users Manager Contract (UMC) . 164

xvii

Table 7.3 Tasks Manager Contract (TMC) . 165

Table 7.4 Models Manager Contract (MMC) 166

Table 7.5 Blockchain gas cost. 180

xviii

Chapter 1

Introduction

With the rapid development of sensing technologies, target search and localization has

emerged as a problem of interest in tasks related to homeland security and environmental

monitoring [1, 2]. The problem is defined as the process of identifying the location of a

certain target using sensory data readings collected by sensing agents. Examples of such

tasks include radiation monitoring [1, 3], forest fires detection [4], intruder tracking [5,

6], and search and rescue missions [7, 8]. In such applications, a set of sensing nodes

collaborate to identify the location of (i.e. localize) a target in an Area of Interest (AoI).

A traditional approach to estimate the target location is to aggregate and fuse data read-

ings from a group of sensing nodes in a central unit. Such data fusion methods include Max-

imum Likelihood Estimate [9], Bayes’ theorem [10, 11], and Copula theory [12]. Existing

proposals using this approach mainly aim at optimizing either the deployment of sensing

nodes or the selection of active nodes [1, 13]. An alternative approach is to specifically

deploy a group of mobile sensing agents, such as UAVs or robots, to perform surveillance

and localize the target. Most works adopting this method optimize target detection time

by surveying some pre-defined or data-driven paths [3, 14, 15]. However, localizing the

target through location estimates or pre-defined survey paths has several limitations. The

proposals in data fusion mainly deal with stationary sensing nodes, and hence the estimated

1

target location comes with uncertainty, since no physical agents are actually at the target

location. On the other hand, the existing works using pre-defined survey paths with mobile

agents suffer from adaptability issues, as further re-modeling and supervision are required

with the increasing complexity and dynamicity of the environment.

To tackle the aforementioned issues, Reinforcement Learning (RL) comes as an effi-

cient method in obtaining agents that are capable of building their own intelligence, with

limited supervision. RL has been proposed to tackle problems in several domains, includ-

ing robotics [7, 16, 17], online games [18], and wireless channel access [19]. In robotics,

the goal of RL is to endow robots with the ability to learn, improve, adapt, and reproduce

tasks with dynamically changing constraints [16, 20]. In RL, an agent learns a policy for

decision-making based on its experience in the environment, guided by a numerical reward

signal that the agent tries to maximize [21]. This makes RL suitable for localization tasks,

since localization agents continuously interact with the environment and collect observa-

tions (sensor readings), which can be used to determine their next actions.

While many of the initial works in RL utilize a single agent; several real-world decision-

making problems, like target localization, naturally fall in the realm of Muti-Agent Systems

and Multi-Agent RL (MARL). In MARL, multiple autonomous agents act in a common

environment aiming to maximize their reward, through the interaction with the environment

and other agents [22]. Agents could be cooperative, i.e. aiming to achieve a common goal,

or competitive, i.e. each with its own goal. MARL has applications in video games [23],

autonomous driving [24], resource allocation problems [25], traffic control [26], and robot

swarms [17], to name a few.

Amongst the main challenges faced in MARL is the curse of dimensionality, which

refers to the increasing calculations that need to be made with increasing number of input-

s/agents [22, 27]. The recent breakthroughs in Deep Learning [28], and its integration in

Deep Reinforcement Learning (DRL) [18], have helped in partially overcoming the curse

2

of dimensionality. As a result, several proposals have successfully employed Multi-Agent

Deep Reinforcement Learning (MDRL), such as OpenAI Five, which is a multi-agent AI

that won against the world champions in the competitive five-on-five video game Dota 2

[23]. Another challenge is that of non-stationarity. While an agent is only concerned with

the outcome of its own actions in single-agent settings, agents in the multi-agent domain

need to observe the behavior of other agents. The agents here learn concurrently, and hence

the environment is in constant reshaping, thus becoming non-stationary from the perspec-

tive of each agent [22, 29].

In this thesis, we aim to address the target search and localization problem and its com-

plexities using MDRL, while also tackling the challenges associated with MDRL. In this

context, we develop scalable MDRL methods in which sensing agents autonomously learn

how to execute the target localization problem in a timely and cost-effective manner, and in

different scenarios of varying complexities. The agents not only learn how to search for the

target, but also learn to coordinate to manage resources. We also focus on the efficiency of

the learning algorithm and ensure its convergence by proposing novel methods combining

ideas from MDRL, Imitation Learning (IL), and reward shaping to speed up the learning.

These methods are further enabled through the development of a novel blockchain-based

knowledge sharing platform that allows users and entities to request tasks related to design-

ing and training Deep Reinforcement Learning (DRL) models, increasing the accessibility

to DRL solutions for target search and localization. In summary, this thesis develops novel

scalable MDRL methods, integrating IL and reward shaping, to efficiently solve the target

search and localization problem under varying complexities, while also enabling collabo-

ration and accessibility through a blockchain-based knowledge-sharing platform.

3

1.1 Target Search and Localization: An Example

The target localization problem tackled in this work is represented in Fig. 1.1 using a

radioactive environment with 3 agents and 3 walls. The readings collected by each agent

(in photon counts per minute), at each time step ti, are given along the paths. The problem

is defined as follows: given N agents and a certain area of interest (AoI) within which

an unknown target is located, the agents are to cooperate to search the area and find this

target. An agent should use the collected observations, including the data readings and

information about the environment and other agents, to take movement actions in the envi-

ronment aiming to find the target. The observations are collected in a progressive manner

and are updated after each step in the environment. Data readings might not always be

sufficient, which requires the agents to cooperate in exploring the environment to collect

more readings, which can be then used for better decision-making. It is assumed that agents

are capable of storing their history in terms of data readings and locations visited. Agents

are also capable of communicating with each other to share information. Obstacles in the

environment increase the complexity of the problem, as they attenuate the signal from the

source (i.e. the radiation), affect the mobility of the agents, and could potentially lead to

the target being unreachable.

The desired behavior in such environments is for the agents to quickly reach the un-

known target location while cooperating to preserve resources. The idea is, even though the

target location is unknown, the data readings induced by the target should help the agents

take the right actions that lead to exploring the environment in a way that leads to quick

localization. The agents should be able to tackle the localization problem for any target lo-

cation and any initial distribution of agents and walls. Initially, a coordinated exploration is

needed for the agents collect some readings and build an intuition about the possible target

locations. Cooperation should also be seen in resource management, as agents should only

attempt to contribute to the task (by searching) if they can add benefit to the team. These

4

Figure 1.1: A representation of the target localization problem.

desired behaviors are illustrated in Fig. 1.1, which presents a simplified scenario. Initially

(t0-t1), the three agents have similar low readings, and hence the ideal situation would be

to coordinate and split to cover and explore a wider area. At t2, and given the readings and

location histories of the 3 agents, it is evident that agent 2 has come closer to the target, and

hence agents 1 and 2 choose to stay idle to preserve resources. At the same time step, agent

2 is uncertain as to which direction to move, and hence chooses to explore the area to the

right, before realizing that the better action is to move left. This example summarizes three

desired behaviors in the agents: 1) To cooperate and explore when data readings are insuf-

ficient, 2) to incorporate the history of readings/locations into the decision-making process

with the aim of moving towards areas with potentially higher readings, and 3) to preserve

resources when the agents cannot be beneficial to the target localization task. This is while

considering the existence of obstacles/walls that increase the complexity of the problem.

These behaviors are to be developed by the agents themselves through rewarded interac-

tion with the environment using the proposed MDRL models. The problem increases in

difficulty in scenarios such as false alarms (i.e. the target does not exist) and unreachable

5

targets, requiring higher coordination between the agents.

The aforementioned behaviors are difficult to achieve through the existing target search

works in the literature. Works using pre-defined survey paths might guarantee target local-

ization since the entire area is scheduled for scanning, but the lack of coordination or smart

decision-making results in a high localization time and a waste of resources. On the other

hand, data-driven methods use guided decision-making based on the collected readings,

where agents move towards higher readings. Such methods fall inefficient in complex envi-

ronments that cannot be modeled. For example, in environments with obstacles (Fig. 1.1),

agents might not always need to move towards higher readings due to the obstacles block-

ing the direct path. Additionally, obstacles attenuate the collected data readings, making it

difficult to fully depend on the readings. It is also difficult to incorporate obstacles, their lo-

cations, and their features into decision-making mathematical models. Alternatively, Deep

Neural Networks (DNNs) have been common in modeling complex environments in DRL.

Some works adopted DRL to tackle the target search environment in single-agent settings

[2]. The DNNs in DRL allow modeling complex environments in different formats, making

it possible to develop complex behaviors. However, these works only tackle single-agent

environments, and cannot be directly extrapolated to multi-agent environments due to the

lack of coordination in single-agent settings and the curse of dimensionality in multi-agent

settings.

In summary, existing methods for target localization and MDRL suffer from the fol-

lowing limitations:

• Traditional target estimation methods suffer from uncertainty when localizing the

target, since they rely on the use of previously placed stationary sensing nodes that

only give an estimation to the target location.

• Existing target search and localization methods cannot be adapted to complex envi-

ronments where coordination and optimized decision-making is needed.

6

• Single-agent DRL method for target search and localization cannot be directly ex-

trapolated to multi-agent settings, due to the lack of coordination in single-agent

settings and the curse of dimensionality in multi-agent settings.

1.2 Problem Statement and Research Questions

Target search and localization using collaborative sensing agents presents several chal-

lenges. The main challenge is to develop a system that is adaptable to different environ-

ments without the need of human intervention to re-design solutions. This has pushed

researchers to explore the use of DRL in addressing the problem in single-agent settings,

where an algorithm is developed that the agent follows to build its own intelligence by

experiencing the environment. However, the target search and localization problem is nat-

urally a multi-agent problem, and extrapolating existing single-agent DRL solutions into

multi-agent settings bring many issues in terms of the curse of dimensionality [22, 27].

This refers to the exponential growth of the state/action search space of the problem with

the increasing number of agents. Additionally, having multiple agents collaborating in

the same environment increases the difficulty of decision-making per each agent, as they

need to consider the behaviors of other agents for optimal collaboration and quick target

localization process. This leads to the first research question (RQ1) of this thesis:

• RQ1: How to design MDRL solutions that are scalable with the number of

agents and the observations they collect, while also ensuring efficient collabo-

ration?

The decision-making by an agent in the target search and localization problem relies

mainly on the observations collected by the agent and how they translate into actions. In

this problem, these observations are usually related to the complexity of the environment,

sensory data, as well as observations about other agents. Since the problem is a sequential

7

decision-making one, these spatial observations accumulate over time, which calls for effi-

cient representations of the collected observations to ensure the agents can capture spatial

and temporal features without the need of constant re-design of the learning model. With

the increase of the number of agents in the environment, the number of observations in-

creases, which is another issue to be addressed by the representation task. In addition to

scalability issues regarding the observations, the action space of the problem exponentially

grows with the number of agents. Given a single agent with A possible mobility deci-

sions/actions in a given timestep, the action space becomes AN if the problem extends to

multi-agent settings with N agents. Finally, DRL is based on rewarded interaction with the

environment, where an agent aims to maximize its own reward. Without proper considera-

tions to collaborative behaviors, an agent in a multi-agent environment could act selfishly

to maximize its own reward without considering the performance of the team, which is

another major issue. All the aforementioned are challenges associated with the adoption of

MDRL for target search and localization problems even in simple environments. However,

how does that change for more complex environments? How is the problem affected by

scenarios of environments with obstacles, false alarms, and unreachable targets? Hence-

forth, our second research question (RQ2) is:

• RQ2: How to extend MDRL solutions to consider complex environments and

varying target localization scenarios?

In environments with obstacles, agents must navigate through obstructed spaces where

mobility is significantly affected, often requiring more complex paths to reach the target.

These obstacles not only hinder the movement of the agents but also attenuate the data

readings that reach their sensors, introducing more uncertainty into the observations. Addi-

tionally, having obstacles could lead to scenarios where the target exists but is unreachable,

which requires more complex decision-making where the agents need to flag the existence

8

of the target and attempt to estimate its location. All of the above adds additional lay-

ers of difficulty to the task, as agents must account for inaccurate data while analyzing

the environment and coordinating with one another. The increased complexity of both the

observation and action spaces in these scenarios could lead to slower learning and longer

convergence times. Therefore, addressing the challenges of such environments requires not

only extending MDRL to handle these scenarios, but also optimizing the learning process

to ensure faster convergence. This leads to the third research question (RQ3):

• RQ3: How to optimize MDRL for target localization to ensure efficient explo-

ration, fast convergence, and robust performance in complex environments with

obstacles?

Training MDRL solutions is notoriously demanding due to the complexity of multi-

agent interactions, which require the agents to learn both individually and collaboratively.

Due to the increased state and action spaces in multi-agent settings, and the inherent com-

plexity of the target search and localization problem in complex environments, there is a

dire need to optimize the learning process and ensure convergence in a timely manner. In-

adequately modeling the problem or the observations can lead to a misrepresentation of

the environment, resulting in sub-optimal policies and reduced agent performance. Fur-

thermore, poorly designed or sparse reward functions can slow down the learning process,

as agents struggle to associate their actions with meaningful feedback. Even if the re-

ward function and the observations are well-designed, the inherent complexity of the target

search and localization problem could potentially lead to slow convergence. Therefore,

optimizing the MDRL learning process to ensure efficient exploration, faster convergence,

and robust performance across complex environments is essential. Successfully address-

ing these challenges requires expertise not only in DRL but also in the specific domain of

the problem, such as target localization and environmental dynamics. Given the complexity

and multi-disciplinary nature of the task, knowledge sharing and collaboration are essential

9

to develop robust DRL solutions. This necessitates leveraging crowdsourced DRL services

and expertise to accelerate innovation. Hence, the final research question (RQ4) is:

• RQ4: How can we facilitate knowledge sharing and provide DRL services to

enhance MDRL solutions for complex environments?

Developing effective DRL solutions requires a wide range of expertise, including knowl-

edge of DRL algorithms, multi-agent systems, reward engineering, and domain-specific

understanding of the problem at hand. For many users, especially those without a strong

technical background, accessing this expertise is a significant barrier. Existing DRL ser-

vices tend to be centralized, proprietary, and often prohibitively expensive, limiting acces-

sibility for researchers, small organizations, or individuals. This creates a demand for more

democratized and crowdsourced solutions, where experts can contribute their knowledge,

share models, and offer DRL services on an open platform. Crowdsourced DRL not only

facilitates knowledge sharing but also provides a more affordable and scalable way to ac-

cess ready-made solutions for inexperienced users. Moreover, this collaborative approach

can ease the training of other models by offering pre-trained models, best practices, and

domain-specific insights, ultimately lowering the entry barrier for those wishing to imple-

ment MDRL in complex multi-agent environments like target search and localization.

1.3 Research Objectives and Contributions

The ultimate goal of this thesis is to develop novel scalable MDRL methods, integrating

IL and reward shaping, to efficiently solve the target search and localization problem under

varying complexities, while also enabling collaboration and accessibility through a crowd-

sourced blockchain-based knowledge-sharing platform. To achieve this, we have outlined

specific objectives as follows:

10

• Objective 1: Model the target search and localization environment in MDRL. This

includes the careful design of the agents’ observations in the environment, in addition

to the interactions between the agents and the environment and between the agents

themselves, in simple and complex environments.

• Objective 2: Design optimized and scalable MDRL methods for target search and

localization, which achieve the desired performance in terms of localization time and

resource management.

• Objective 3: Develop and implement MDRL solutions that consider scenarios such

as false alarms (target non-existence) and unreachable targets, which demands com-

plex decision-making.

• Objective 4: Design methods to speed up the learning in MDRL, for the target lo-

calization problem and other similar problems, using ideas from IL and knowledge

sharing.

• Objective 5: Design a framework to increase the accessibility to DRL solutions by

utilizing the expertise of the crowd for complex problems such as target localization.

To achieve the stated objectives, and to fill the gaps in existing literature (Section 1.1)

and answer the presented research questions (Section 1.2), this thesis makes the following

significant contributions:

(1) Contribution 1: We propose novel MDRL methods for cooperative target search

and localization in simple environments, with emphasis on solution scalability, op-

timized representation of observations, and efficient collaboration. The proposed

method proves efficient in producing intelligent agents capable of achieving the de-

sired behaviors in terms of quick, cooperative, and cost-efficient target localization.

(This contribution is discussed in Chapter 3).

11

(2) Contribution 2: We extend the proposed MDRL methods to account for complex

environments with obstacles. We address the increased complexity of the problem by

proposing a novel method, named Demonstration Cloning (DC), that combines ideas

from MDRL and IL for fast learning convergence. (This contribution is discussed

in Chapter 4).

(3) Contribution 3: We propose a novel blockchain-assisted Multi-Expert Demonstra-

tion Cloning (MEDC) method that allows for the sharing of pre-trained MDRL

models to assist in training new solutions for target localization, using an upgraded

version of the previously proposed DC method (This contribution is discussed in

Chapter 5).

(4) Contribution 4: We develop new MDRL methods that account for target search

and localization scenarios with uncertainties, such as false alarms where the target

does not exist and unreachable targets. The proposed methods combine actions on

different dimensionalities, such mobility, flagging the reachability and existence of

the target, and estimating its location. Multiple models are combined into one us-

ing ideas from Transfer Learning (TL) combined with MDRL (This contribution is

discussed in Chapter 6).

(5) Contribution 5: We design a novel crowdsourced blockchain-assisted Deep Rein-

forcement Learning as a Service (DRLaaS) framework that addresses the lack of

diverse expertise and computational capabilities for typical users, by crowdsourc-

ing DRL design and training tasks to experts instead of relying solely on centralized

platforms, which is proven to be essential for complex problem like target search and

localization (This contribution is discussed in Chapter 7).

12

1.4 Thesis Organization

The thesis is organized as follows:

Chapter 2 presents a detailed background on topics such as target search and local-

ization, Markov Decision Processes (MDPs), MDRL, CNNS, and Proximal Policy Opti-

mization (PPO), which is the used DRL algorithm in this work. It also includes a literature

review on existing solutions for target localization, MDRL, reward shaping, IL-assisted

DRL, Federated Reinforcement Learning (FRL), Machine Learning as a Service (MLaaS),

and crowdsourcing for machine learning, which are important topics related to the proposed

solutions.

Chapter 3 presents and discusses the proposed scalable MDRL solutions for target

search and localization in simple environments. It focuses on modeling the problem in

MDRL settings, designing the observations and reward function for optimized and collab-

orative learning, and uses methods in CNNs and PPO to define and optimize the agents’

policies. We show the efficiency and scalability of the proposed methods and compare

them to several benchmarks.

Chapter 4 presents an extension of our MDRL methods to account for more complex

environments, specifically those filled with obstacles that hinder mobility and attenuate

sensor data. We introduce a novel method named Demonstration Cloning (DC), which

integrates principles from MDRL and IL to accelerate learning convergence in these chal-

lenging environments. Several experiments and benchmarks are used to validate the pro-

posed methods.

Chapter 5 expands on the DC method by incorporating a novel blockchain-assisted

framework which facilitates the sharing of pre-trained MDRL models across users. The

chapter discusses the integration of blockchain for secure and decentralized sharing of mod-

els, addressing scalability and collaboration challenges in the training of MDRL agents.

Experiments and implementations of smart contracts are discussed, and comparisons with

13

existing literature are conducted.

Chapter 6 focuses on addressing uncertainties such as false alarms and unreachable

targets in target search and localization tasks. We propose novel methods that allow agents

to make decisions across multiple dimensions, including mobility, flagging unreachable

or non-existing targets, and estimating target locations. By combining TL with MDRL,

the chapter highlights how various models are integrated to tackle complex uncertainties,

ensuring robust agent behavior in unpredictable environments, with several experiments

conducted to validate the proposed methods.

Chapter 7 introduces a novel crowdsourced blockchain-assisted DRL as a Service

(DRLaaS) framework, which provides a decentralized platform for users to access diverse

DRL expertise and computational resources. This framework allows for the outsourcing

of complex DRL design and training tasks to experts, enabling scalable and efficient solu-

tions for target search and localization. The chapter explores the benefits of moving beyond

centralized services and how crowdsourcing ensures greater accessibility and innovation in

DRL/MDRL applications like target search and localization.

Finally, we summarize the thesis contributions in Chapter 8 and highlight on the exist-

ing research gap that require further consideration by the research community and highlight

some potential future directions.

14

Chapter 2

Background and Literature Review

This chapter presents a detailed background on topics such as target search and lo-

calization, Markov Decision Processes (MDPs), MDRL, CNNS, and Proximal Policy Op-

timization (PPO), which is the used DRL algorithm in this work. It also includes a lit-

erature review on existing solutions for target localization, MDRL, Federated Reinforce-

ment Learning (FRL), reward shaping, IL-assisted DRL, Machine Learning as a Service

(MLaaS), and crowdsourcing for machine learning, which are important topics related to

the proposed solutions. These serve as foundations for the understanding of this thesis, the

used methods, as well as related works and their limitations.

2.1 Background

2.1.1 Target Search and Localization

The target search and localization problem has been previously defined and explained

in Chapter 1. In this section, we give more elaboration on the different scenarios to be

addressed in this thesis. As discussed earlier, the target localization problem is defined

as follows: given N agents and a certain AoI within which a target is located, the agents

15

are to cooperate to localize this target. Two main goals are usually associated with such

tasks: fast localization and low cost. Here, cost could be in terms of power consumption

or incentives paid to individuals to carry out the tasks (as in the case of crowdsensing). At

a given step, an agent observes its own location and reading, in addition to the location of

other agents and the readings collected by them. In such an environment, the agents need to

cooperate to localize the target and manage their resource, and this cooperation can be seen

in two forms: 1) in case all agents initially have low readings, they are expected to split and

give good coverage of the area, aiming to gather more informative readings, and 2) if some

agents cannot contribute to the localization process (i.e. the agents are far from the target

and hence keep getting very low readings), they are expected to become idle at some point

to save resources, given that other agents have more informative readings. These cooper-

ative behaviors are expected to be developed by the agents themselves, through rewarded

interaction with the environment. The complexity of the problem significantly increases

with the existence of the obstacles, which hinder the movement of the sensing agents and

attenuate their readings. The existence of obstacles could also lead to scenarios of unreach-

able targets, requiring additional decisions about estimating its location. Additionally, in

many scenarios of continuous surveillance, false alarms could arise about the existence of

the target, which requires the agents to be able to quickly identify such alarms for better

resource management. Figure 2.1 shows the different scenarios to be addressed by the

sensing agents.

2.1.2 Markov Decision Process

An MDP is a mathematical framework used to model the decision-making in environ-

ments where outcomes are partly random and under the control of a certain decision-maker.

It provides a formalism for modeling problems where an agent interacts with the environ-

ment in discrete time steps, making decisions that influence future states. An MDP is

16

(a) Simple environments (b) Complex environments (obstacles)

(c) Unreachable targets (d) False alarms

Figure 2.1: The different scenarios to be addressed by the agents.

defined by the tuple < S,A,P ,R, γ >, where:

• S represents the state space, which defines all the possible situations an agent can

encounter in the environment.

• A is the action space, defining the set of actions available to the agent in each state.

• P(s
′|s, a) is the transition probability function that gives the probability of transi-

tioning to a state s
′ given the current state s and the action a.

• R : S×A → R is the reward function that assigns a scalar reward to the agent based

on the action a taken in a state s.

17

• γ ∈ [0, 1] is the discount factor for the trade-off between instantaneous and future

rewards.

Generally, an MDP exhibits the Markov Property, which implies that the future state

depends only on the current state and the action taken, and not on the sequence of previous

states and actions. The agent’s goal in an MDP is to find a policy π(a|s) that defines the

probability of selecting action a in state s and that maximizes the expected cumulative

return. This return is typically defined as the sum of discounted future rewards, given as:

Gt =
∞∑
k=0

γkR(st+k, at+k) (1)

2.1.3 Multi Agent Deep Reinforcement Learning (MDRL)

One way to generalize MDP to account for multiple agents is using Markov Games

[30], which redefines the game-theoretic stochastic games in the RL context. In target lo-

calization problems, the state space of the environment is defined by the target location and

the distribution of agents throughout the area, i.e. each target location combined with a dis-

tribution of agents gives a unique state. Since the target location is unknown, the problem

is modeled as a Partially Observable Markov Game (POMG). POMG can be defined as a

tuple (N ,S,A,O,P ,R, γ), where:

• N = 1, ..., N denotes the finite set of N ≥ 1 agents;

• S denotes the finite set of states;

• A = A1 × A2 × ... × AN is the set of joint actions, where Ai denotes the finite set

of actions available for agent i, and a = (a1, ..., aN) denotes a joint action;

• O = O1 ×O2 × ...×ON is the set of joint observations, where Oi denotes the finite

set of observations for agent i, and o = (o1, ..., oN) denotes a joint observation;

18

• P is a set of Markovian state transition and observation probabilities, where P(s′, o |

s, a) denotes the probability that taking joint action a in state s results in a transition

to state s′ and joint observation o;

• R : S ×A → R is a reward function for agent i;

• γ ∈ [0, 1] is the discount factor for the trade-off between instantaneous and future

rewards.

2.1.4 Convolutional Neural Networks (CNNs)

CNNs are a class of deep learning models designed to process and analyze grid data,

such as images. The have proven to be successful in computer vision applications, espe-

cially for capturing spatial correlations in images, and became the cornerstone of computer

vision tasks like image classification, object detection, and segmentation. Typically, a CNN

consists of an encoder followed by fully connected layers. The encoder contains multiple

convolution and pooling layers, which are responsible for the extraction of features and

the dimensionality reduction of the data. The learned features are then fed into the fully

connected layers which perform classification or regression tasks. One key advantage of

CNNs is their ability to automatically learn relevant features without the need for manual

feature engineering, making them highly effective in various vision-related applications,

including medical imaging, autonomous driving, and facial recognition.

2.1.5 Proximal Policy Optimization (PPO)

The curse of dimensionality renders tabular RL methods, such as Q-Learning, in-

feasible when dealing with multi-agent systems. Alternatively, function approximators,

such as deep neural networks, come as efficient tools to generalize from seen to unseen

states, which has made them widely used recently in MDRL systems. Here, a policy πθ,

19

parametrized by θ, is to be optimized with the objective of maximizing the cumulative re-

ward throughout the episode. The policy maps the current state to a probability distribution

over possible actions. Amongst the several RL techniques used to optimize the policy are

Policy Gradient (PG) methods, which use the rewards in computing an estimator of the

policy gradient and plugging it into a stochastic gradient ascent algorithm.

In this work, we use Proximal Policy Optimization (PPO) [31]; a state-of-the-art policy

gradient method for RL that uses the actor-critic structure. In this structure, the policy (ac-

tor) is used to select actions, while the estimated value function (critic) is used to criticize

the actions made by the actor. PPO uses the current experiences, combined with the cri-

tique, and tries to take the biggest improvement step to update the current policy, without

moving far from it. This tackles the issue of destructively large policy updates in traditional

PG methods, which could cause considerable loss of performance. PPO alternates between

sampling data through interaction with the environment, and optimizing a clipped policy

surrogate, which is given as:

LCLIP (θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)

]
(2)

where ε is a clipping hyperparameter. In this function, rt(θ) =
πθ(at|st)
πθold (at|st)

is the probability

ratio of taking certain actions between the old and the current policy. rt(θ) is greater than

1 if at is more likely to be taken in st after the latest policy update, and less than 1 if

the opposite is true. Ât corresponds to an estimator of the advantage function; a function

that measures how good a certain action is, given a certain state. In this work, we use

Generalized Advantage Estimate (GAE) [32] to estimate Ât. For each update, PPO uses a

fixed length trajectory H , known as the horizon length, which runs the policy for H time

steps to collect experiences. The estimator of the advantage function is then given as:

Â
GAE(γ,λ)
t =

H∑
l=0

(γλ)lδt+l, δt+l := rt+l + γV (st+l+1)− V (st+l) (3)

20

where δt+l is the Temporal Difference (TD) residual, γ,λ ∈ [0, 1] are discount factors, and

V (st) is the value predicted by the value function network (critic). The original work in

[32] uses a summation that goes to ∞ in Eq. 3, however this can be replaced with H instead

since the PPO update occurs after H time steps.

In Eq. 2, the first term in the min (rt(θ)Ât) pushes the policy towards actions that yield

high positive advantage, while the second term (clip(rt(θ), 1 − ε, 1 + ε)Ât) clips rt(θ),

which removes the incentive of moving outside the interval [1− ε, 1+ ε]. The minimum is

taken over both terms, resulting in the final objective being a lower bound on the unclipped

objective. This helps in improving the current policy without moving far from it.

The objective function in Eq. 2 is combined with two other terms, LV F
t (θ) and S[πθ](st),

to give the following final objective function that is maximized at each iteration:

LCLIP+V F+S(θ) = Êt

[
LCLIP
t (θ)− c1L

V F
t (θ) + c2S[πθ](st)

]
(4)

where c1 and c2 are coefficients. In this function, LV F
t = (Vθ(st) − V targ

t)2 denotes the

squared-error loss (value function error), while S denotes an entropy bonus that ensures

sufficient exploration.

PPO is known for its simplicity, low computational complexity, and balance between

sample efficiency and wall-time, especially when compared to other state-of-the-art meth-

ods such as Trust Region Policy Optimization (TRPO)[33].

2.2 Literature Review

In this section, we overview the existing literature work for (1) Target Localization, (2)

MDRL, (3) Reward Shaping, (4) Imitation Learning (IL)-assisted DRL, (5) Federated Re-

inforcement Learning (FRL), (6) Machine Learning as a Service (MLaaS), and (7) Crowd-

sourcing for Machine Learning.

21

2.2.1 Target Localization

Existing works for target localization mainly fall into one of two categories: 1) math-

ematical data fusion models and 2) node placement/selection and path planning. In both

categories, several approaches are presented with the aim of finding or estimating the tar-

get location as quick as possible, based on collected readings. Data fusion models propose

mathematical solutions for integrating the data readings from multiple sources in order to

reach a final estimate. The works in [10] and [11] proposed a data fusion algorithm based

on Bayesian methods in which readings are iteratively fused to update the prior belief about

the target location, while taking radiation localization as a running example. Other algo-

rithms are based on the Time Difference of Arrival (TDoA) and Direction of Arrival (DoA),

with exemplary scenarios of sound event localization [34, 35]. Maximum Likelihood Es-

timation (MLE) and Inverse Square Law are other mathematical methods used to fuse the

data readings for the aim of localizing certain events [9, 36].

Works that fall in the second category are mainly concerned with the design of sens-

ing systems that optimize resources while localizing the target. Such efforts focus on the

optimized deployment of sensing nodes, or the selection of active nodes which collect

readings for the localization process. The works in [11, 37, 38] consider the placement of

stationary and mobile nodes, in a certain AoI, using greedy and genetic methods, aiming

to minimize the localization time, minimize the number of deployed nodes, and maxi-

mize the localization accuracy. In [1, 13, 39], the authors propose data-driven mechanisms

for selecting active nodes for localization tasks, while considering parameters such as the

nodes’ residual energy, data confidence, and area coverage. These works target either sta-

tionary sensing nodes or mobile sensing devices in crowdsensing systems. Other works

build survey paths, which are either pre-defined or data-driven, that agents follow to find

the target. The traditional uniform search method [40] is extrapolated in many works due

22

to its implementation simplicity, where a uniform survey path of different forms is pre-

defined. The work in [3] proposed circular path planning strategies utilizing the directional

characteristics of sensors. A data-driven surveying approach, using Bayesian methods to

build probability density functions (PDFs) about the target location, is used in [15]. Local

PDFs at the individual agents are shared to obtain a global PDF, which is then used in an

optimization objective that decides what actions to take, aiming to find the target while

balancing resource consumption between agents.

While these works prove efficient at providing estimates for the target location, while

minimizing time and error and optimizing resources, they lack flexibility in adapting to

different environments without the need of significant supervision. RL comes as an alter-

native with increased adaptability, where with the right learning algorithm, agents can learn

to localize the target in varying environments. The work in [2] introduced the use of RL in

tackling the problem of target localization, specifically in radioactive environments, for sin-

gle agent systems. The proposed algorithm utilizes Double Deep Q-learning (DDQN) with

a CNN to train a sensing agent to navigate in a 10m x 10m area looking for the radiation

source. While the work is the first of its kind, it faces scalability issues, as the algorithm

cannot be adapted for multi-agents, and the training process would be very complex for big

inputs.

2.2.2 Multi-Agent Deep Reinforcement Learning (MDRL)

Following the recent advances in deep learning and its integration in RL, MARL solu-

tions re-emerged, as MDRL, after being idle for years due to the increasing complexity of

their state and action spaces [27]. Since then, several works showed promising results using

MDRL for different complex applications, such as games and autonomous driving. In Ope-

nAI’s Hide & Seek problem [41], agents in two opposing teams are trained to maximize

23

their own team’s reward, using Recurrent Neural Networks (RNNs), which are updated us-

ing PPO, an actor-critic method. Through the use of self-play, agents on one team develop

policies, which are later countered by the other team with new policies, and so on. The

work shows cooperation between agents, where hiders split and collect objects to block

routes that lead to their whereabouts. Another similar approach by OpenAI is used to train

a team of five agents playing the Dota 2 game, which was able to beat a team of profes-

sionals [23]. Another work in [24] proposes a framework for autonomous driving using

Deep Q-Learning with RNNs and CNNs, in which agents displayed successful behavior in

staying in lane. In [42], the authors propose a traffic control model using cooperative multi-

agent reinforcement learning for the optimization of traffic systems. The proposed model

shows great improvements to traffic control, and it proves it can realize real-time dynamic

traffic control. The authors in [43] propose a multi-agent coordination framework based on

deep reinforcement learning for traffic signal control. A spatial differentiation is designed

for cooperation, where temporal-spatial information in the Q-learning replay buffer is used

to amend the reward for each action. The problem of multi-agent path finding is addressed

in [17] using a combination of multi-agent reinforcement learning and imitation learning.

In this work, agents (robots) plan paths in a partially observable world while exhibiting co-

ordination. Once a policy is learned, it can be copied onto any number of agents, showing

scalability with team size.

2.2.3 Reward Shaping

In DRL, a sparse reward is a case where the environment rarely produces a useful re-

ward signal. Sparse rewards are the easiest and most common form of rewards, as the

desired goals in most applications naturally induce a sparse reward, such as achieving

a checkmate in chess. However, due to the complexity of DRL problems, especially in

MDRL, sparse rewards induce difficulty in learning, especially during the exploration stage

24

where the agents initially act randomly in the environment and barely collect rewards. Sev-

eral works have introduced shaped reward functions, which distribute the reward over the

course of the learning. One common form of shaped rewards are distance-based rewards,

where agents get rewarded in each step of an episode if they get closer to achieving the

goal. For example, in the problem of target localization [2, 44, 45], agents get rewarded at

each step if they get closer to the target, where measures like Euclidean Distance, Manhat-

tan Distance, or Breadth-First Search are used in each step to compute the distance. In [41],

the authors tackle the problem of Hide-and-Seek, where a vision-based reward is designed

that rewards seekers in each step if they keep hiders within their sight, and rewards hiders

in each step otherwise. Other proposed reward shaping methods alter the original reward

with values generated from a shaping function. The authors in [46] propose a scheme for

reward shaping based on Graph Convolutional Recurrent Networks to predict and produce

reward shaping values. Another work in [47] proposes a reward shaping method based on

Lyapunov stability theory, which tempts the RL process into maximal reward region by

driving the reward to make the Lyapunov function.

Despite the fact that reward shaping is seen to speed up the learning in DRL and MDRL,

designing shaped rewards requires considerable engineering, and could still lead to local

optima [48, 49]. Additionally, many of the shaped rewards or reward shaping methods are

computationally expensive, such as search methods or graph neural networks, which adds

additional overhead to the learning.

2.2.4 Imitation Learning-assisted RL

A recent alternative method to speed up the learning in RL, instead of reward shaping, is

to combine RL with Imitation Learning (IL). In this approach, previously obtained experts

(or expert demonstrations) are used partially to help in training new agents. Here, the

demonstrations are used in a supervised learning method where the goal is to minimize the

25

loss between the agent’s actions and the expert’s demonstrations. During IL, the agents do

not collect rewards, and the learning is entirely based on the expert’s demonstrations which

act as labeled data in supervised learning. In [48, 49], the authors propose methods that

alternate between RL and IL for off-policy RL. In their case, the expert demonstrations

are stored in a buffer, and for a portion of the RL period, the RL agent is trained with

Behavioral Cloning (BC), where the aim is to exactly mimic the behavior of the expert

with no reward feedback. The authors in [17, 50] extrapolate these works into MDRL,

where agents alternate between MDRL and behavioral cloning (IL) from an expert.

The above works prove efficient in speeding up the learning, under the assumption that

an expert model that is proficient with the environment exists. However, if there is a slight

variance in the expertise of such an expert (i.e. the expert is familiar with a similar environ-

ment that is not exactly the same as the agent’s environment), this introduces difficulties in

the learning convergence. This is because, in behavioral cloning, the agents have no way

of determining whether the expert demonstrations are good or bad, and are just tasked to

mimic the expert’s behavior into their own policies.

2.2.5 Federated Reinforcement Learning

Federated Reinforcement Learning (FRL) brings RL into the realm of FL. FRL aims

to build a better policy from multiple RL agents without requiring them to share their raw

experiences. Several works have adopted FRL, especially in the domain of MDRL, with the

aim of increasing the sample efficiency of the training process, by aggregating models from

different users trained on different experiences. In mobile edge computing, the authors in

[51] propose a multi-agent framework for data offloading. The problem of data allocation

is formulated as a multi-agent Markov Decision Process (MDP), and a joint cooperation

algorithm that combines the edge federated model with the multi-agent RL is proposed.

Another work in [52] proposes a FRL framework for collaboration among edge nodes to

26

exchange learning parameters, with the aim of better training and inference. FRL has

also been combined with Blockchain, where the authors in [53] propose a framework that

trains DRL models for computation offloading and resource allocation in 5G ultra-dense

edge computing networks. The DRL models are trained in a distributed manner via a FL

architecture, in which the communication is done securely over the Blockchain. In robotics

applications, the authors in [54] propose a FRL architecture for cloud robotic technologies,

in which a shared model on the cloud is upgraded with knowledge from different robots

performing autonomous navigation. In autonomous driving, the authors in [55] propose an

online FRL transfer process for real-time knowledge extraction, where agents take actions

based on their own knowledge and the knowledge shared by others.

Despite the several advantages of FRL, it comes with several drawbacks. In a realistic

scenario, if the models are trained in environments that inherit different dynamics, the

learning convergence of the aggregated model could face issues [56]. Additionally, in most

FRL frameworks, the global model is obtained by averaging the shared models, which

requires all the models to have the same architecture in the case of neural networks. While

this could be tackled by other additional steps, such as model compression (knowledge

distillation), it introduces additional overhead and risk of losing information. Moreover,

FRL is vulnerable to random failures or adversarial attacks, in which the shared models

give harmful behavior that could affect the aggregated global model [57].

2.2.6 Machine Learning as a Service

The advent of MLaaS provided several platforms in the industry that allow users with

varying skill sets to leverage its capabilities. Several MLaaS providers offer pre-built ML

models and/or tools that enable MLaaS users to obtain ML models. Google Cloud is one

platform providing users with services, such as AutoML and Vertex AI. AutoML provides

a user-friendly interface for users with limited experience, where users can upload their

27

labeled datasets and the service takes care of model training and optimization. AutoML

offers services for a varying set of tasks, including image recognition, natural language

processing, and video analysis. Vertex AI, on the other hand, is an end-to-end ML platform

that offers a set of tools for building and training ML models. Similar to AutoML, Amazon

SageMaker and Microsoft Azure facilitates the end-to-end ML process by offering a range

of tools that cater to different skill levels. Google Colab provides a cloud-based develop-

ment environment for ML through a Jupyter Notebook interface. Colab is mainly known

for providing access to powerful, but limited without paid subscription, GPUs and TPUs

(Tensor Processing Units) for faster training. While SageMaker, Azure, and Colab can be

used to train DRL systems, the higher complexities of DRL problems hinder their usability,

especially for inexperienced users.

In terms of research, MLaaS attracted many scientists over the past few years. The pro-

posal in [58] is amongst the first works addressing MLaaS, where the authors present an

architectural design for a MLaaS platform. In the proposed design, the data is received and

processed by a Data Gatherer, and then a model is built and trained by a Modeler Compos-

ite. The authors in [59] propose Acumos, a platform capable of packaging ML models into

portable containerized microservices, which can be easily integrated into different business

applications. The main aim is to reduce the technical burden on developers when apply-

ing ML models to their applications. The authors in [60] propose a privacy-preserving

MLaaS on resource-constrained devices at the pervasive edge. The proposed framework

uses methods such DNN splitting and quantization, enclave parallelization, and resource-

aware offloading policies to protect clients’ private data while using computing resources

in the pervasive edge ecosystem. The authors in [61] propose a MLaaS framework that op-

timizes the allocation of limited ML resources by intelligently considering attributes such

as service profile, region-wise resource usage patterns, and current ML resource usage. In

[62], the authors propose Cashew, a service for ML data processing that caches common

28

input data pipelines across jobs from different clients to optimize training throughput.

The aforementioned platforms and research proposals prove efficient automating and

increasing accessibility to ML. However, they cannot be adapted to DRL problems due to

the higher complexity of such problems and the lack of human expertise to design and train

DRL solutions.

2.2.7 Crowdsourcing for Machine Learning

The intersection between Crowdsourcing and ML is twofold: some works utilize ML

and DRL in designing crowdsourcing systems [63, 64, 65], while other works crowdsource

certain ML tasks [66, 67, 68, 69, 70]. We present an overview of the second set of works in

the literature, since our work aims to crowdsource DRL tasks. Existing works using crowd-

sourcing for ML mainly use the crowd for data collection and processing. In [66], a dataset

of breathing and coughing sounds that are collected via crowdsourcing is used for COVID-

19 diagnosis. The authors in [67] propose a ML framework for flood forecasting systems

using data collected through crowdsourcing, where workers report data about actual flood-

ing incidents, such as rainfall intensity levels, continuing rainfall duration, and drainage

ability. The authors in [68] develop a ML model to evaluate the performance of workers

in categorizing neurotypical and autistic children. The data are collected through a crowd-

sourcing platform, where workers watch videos of children and fill out a series of questions

about the child’s behavior. In [69], the authors propose a collaborative crowdsourcing sys-

tem for ML data labeling. In the proposed system, groups of workers collaborate in labeling

data through three stages: Vote (choosing the label), Explain (reasoning behind the label),

and Categorize (review other workers’ explanations). The authors in [70] propose a crowd-

sourced annotation framework for data in sound event detection applications. The goal is

to estimate strong labels, i.e. data labels with high confidence, using weak labels that go

through methods such as majority voting.

29

Despite the numerous research put into crowdsourcing data-related tasks for ML, there

are no proposals, to our knowledge, that crowdsource the ML (or DRL) training process.

This work aims to propose a comprehensive framework that addresses this issue by utilizing

the expertise of the crowd in training DRL solutions.

30

Chapter 3

Target Localization using Multi-Agent

Deep Reinforcement Learning with

Proximal Policy Optimization

3.1 Introduction

In this chapter, we tackle the target localization problem by designing novel MDRL

models. In target localization tasks, agents equipped with sensing devices are deployed in

an area of interest to identify the location of the target. The intended cooperation among

such agents, along with the need for automated learning that is adaptable to different com-

plex environments, motivates the use of MDRL. We first propose initial models that directly

extend single agent RL into the multi-agent domains, and show their scalability issues. A

final novel model is then proposed, based on the concept of centralized learning and de-

centralized execution, which is scalable in terms of the number of agents. Moreover, the

proposed model is optimized with regard to the input size, where image processing tech-

niques are used to efficiently downsize the input observations to focus on the important

31

features, resulting in a reduced number of trainable parameters. The proposed models uti-

lize PPO to optimize actor and critic networks that are based on CNNs. In summary, the

contributions of this chapter are as follows:

(1) The formulation and modeling of the multi-agent target localization problem in MDRL.

(2) The design of MDRL models using PPO and CNNs, in which agents show coopera-

tion in localizing the target, achieved through a team-based reward function.

(3) The design of a distributed target localization approach, which ensures scalability,

through the use of centralized learning with distributed execution, and the use of

downsized observations.

The proposed approach is tested and evaluated for the scenario of radioactive target

localization. The environment is modeled using radiation physics, where the agents are

to localize a radioactive source of a given intensity. The proposed models are analyzed

in terms of the learning performance, showing scalability and adaptability to variations of

the environment, with a human-like performance developed by the localization agents in

cooperating to find the target. The performance of the resultant agents is compared against

existing localization benchmarks, namely Bayesian-based survey methods [15], uniform

survey methods [40], and single-agent RL-based target localization using Double Deep

Q-Networks [2]. The final proposed model shows better performance and resources man-

agement, proving the efficacy of the achieved cooperation between the agents.

3.2 MDRL formulation for Target Localization

Following the MDRL formulation presented in Section 2.1.3, and for the target local-

ization problem, the game unfolds over a finite sequence of steps, i.e. the game has a finite

horizon. At every step, each agent i analyzes its observation oi ∈ Oi and takes action

32

ai ∈ Ai based on a policy πi : Oi × Ai → [0, 1] and receives a reward ri. When looking

at the full picture, all agents simultaneously select an action a = (a1, ..., aN) and receive a

reward and observation o = (o1, ..., oN). The objective for each agent is to maximize the

expected sum of rewards it receives during the game.

3.3 Proposed Approach

This section first presents the initial proposed approach, and then discusses improve-

ments in an incremental manner.

Localizing the target is a challenging task, which becomes more complex to model

when cooperation between agents is expected. To push the agents to cooperate, we propose

a team-based (joint) reward [41, 71]. Following the individual actions taken by the agents,

the environment releases a shared reward to all agents based on the combined/joint actions.

This helps the agents realize the advantage of taking actions that benefit the team. This is

due to the fact that, with a team-based reward, each agent’s reward is affected by the actions

of other agents, and hence an agent learns to adapt its actions according to the environment

and the behaviors of other agents, resulting in the desired cooperative behavior. Given a

joint action a at step t, the team reward at that step is given as:

Rt =

1− b if min(Dt) < min(Dt−1)

−1− b otherwise
(5)

where b is the number of agents who took a moving action, i.e. did not stay idle, and D is

the set of distances between the agents and the target. The first term of the equation above,

i.e. +1 or −1, depends on whether the team has moved towards the target (+1) or not (-1).

The team is considered to have moved closer to the target if the closest agent in step t− 1

makes a move towards the target in step t, i.e. when min(Dt) < min(Dt−1). The term

33

(−b) in the equation above represents the cost of movement. This reward representation is

a form of shaped rewards (i.e. the reward is not sparse) [72]. Agents get feedback/rewards

throughout the episode steps, and not only when the target is successfully localized, which

helps in learning even if the episode terminates without finding the target. The maximum

possible reward in a step is 0, which corresponds to the case where a single agent moves

towards the target while all other agents are idle. The maximum reward is not expected,

mainly because agents need initially to take costly "exploration" steps to gather data that

help decide consequent actions. Agents also are not motivated to collectively stay idle,

since this results in accumulating a -1 reward throughout the entire episode. Hence, agents

are motivated to finish the localization episode as fast as possible, to accumulate less neg-

ative reward. Generally, this reward function incentivizes agents to find the target as soon

as possible, while also incentivizing cooperation in managing resources. The cooperative

behavior developed due to this reward function will be further analyzed and discussed in

Section 3.7.5.

For the agents to make beneficial decisions, it is important to store previous obser-

vations. For this reason, the agents’ observations are modeled as 2D maps containing

information related to the readings collected and the agents’ locations. This helps in accu-

mulating information, if needed, in the same 2D maps without the need of changing their

sizes. Additionally, observations like readings and agents’ locations are spatially correlated

in localization tasks, and hence can be maintained and analyzed through 2D maps. Further-

more, 2D representations are more scalable in comparison with 1D representations, while

increasing the number of agents. 1D representations would require increased policy input

size with the increase of the number of agents, which may require modifying the policy net-

work architecture or its hyperparameters. Alternatively, the input size could be maintained

using 2D representations, and this will be shown later in Section 3.6. For these reasons,

CNNs are used for the actor and critic networks. More details regarding the structure of

34

these networks and the observations will be discussed in the following sections. Thus, three

models are proposed in this section, where each incrementally improves the previous one.

These models are based on the actor-critic structure, using CNNs, and optimized by PPO.

The three models are as follows:

(1) Centralized Multi-Agent Target Localization (CMTL):

This model directly extends single-agent RL into multi-agent domains, where multi-

ple agents are treated as one big agent with complex combinations of actions.

(2) Distributed Multi-Agent Target Localization (DMTL):

This model uses the experiences of multiple agents to model the behavior of a single

agent around other agents. In other words, this teaches an agent how to act based on

its observations, which include the sensor readings and the locations of other agents.

(3) Optimized DMTL (ODMTL):

This model extends DMTL by optimizing the agents’ observations and focusing on

the important features, using image processing techniques.

3.4 Centralized Multi-Agent Target Localization (CMTL)

In this model, the multi-agent environment is treated as a single-agent one, and learning

happens in the joint observation-action space. This model extrapolates centralized learn-

ing centralized execution methods, sometimes referred to as the Joint Actor Critic (JAC)

methods [73]. This method is a straightforward adaptation of single-agent algorithms in

multi-agent settings, and it completely avoids the non-stationarity issue. This is because a

centralized actor learns a policy that controls all agents.

35

3.4.1 Observation Space

The centralized actor network here takes as input the combined observations from all

agents, and gives a joint action. In this work, observations are modeled as a stack of 2D

maps of size m × n, each representing an observation. Here, m × n represents the size of

the AoI in terms of number of grid elements. When mapped to a real-life application, these

dimensions could represent any kind of measurements, i.e. meters or kilometers, depending

on the application. Given N agents, the actor network here takes 2+N observations, Fig.

3.1 illustrates all the input observations for the case of 3 agents, which are:

• Location Maps (Fig. 3.1a): N maps reflecting agents’ locations.

• Readings Map (Fig. 3.1b): a 2D map showing the last reading collected in each grid

element. Grid elements that have not been visited are given a reading of 0.

• Visit Counts Map (Fig. 3.1c): a 2D matrix showing the number of visits each grid

element has received from all agents combined.

(a) Location Maps (b) Readings Map (c) Visit Counts

Figure 3.1: An example of the observation set for the case of 3 agents under the CMTL model,
consisting of 5 (2+N) observations.

This way of modeling observations helps preserve information from previous experi-

ences. The readings map helps in guiding agents towards the target location, where the

36

agent is expected to learn to follow high sensor readings to reach to the target. The visit

counts map is important for exploration, especially in cases where collected readings are

very low (agents are very far from the target). In such cases, keeping track of previously

visited locations would help agents learn to explore unvisited areas for better information

gathering. It is worth mentioning that each of these observations is normalized before being

fed to the CNN.

3.4.2 CNN architecture and learning process

As discussed earlier, CNNs are used for the actor and critic networks. For the actor

network, at each time step, the 2+N joint observations of all agents are fed to a CNN that

gives 5N outputs, each corresponding to a possible combination of actions. A Softmax

function is used at the last layer so that the outputs correspond to a probability distribution

over the possible action combinations. For example, in the case of 2 agents, the network

takes 4 observations at each step and outputs 25 values that add up to 1, each corresponding

to a combination of actions, given that each agent has 5 possible actions (move in one of

the 4 directions or stay idle). The architecture of the actor network is shown in Fig. 3.2.

This architecture is similar to the LeNet-5 architecture [74] which is widely used in image

analysis tasks. The critic network has a similar structure, with only one output representing

the state value, which is used in computing the advantage function (Eq. 3).

The training process for the CMTL model using PPO is summarized in Algorithm 3.1.

Each episode starts with a reset that returns the initial observations (o0 = (o01, ..., o
0
N)).

Given these observations, the centralized actor network gives a set of joint actions (aj =

(aj1, ..., a
j
N)). The agents act in the environment, which returns a new set of observations

(oj+1), a reward value (rj), and a termination flag (dj) indicating whether the episode is

finished or not. These items are stored in their corresponding buffers. After a certain

number of steps (H), the buffered observations and rewards are used to update the actor

37

Figure 3.2: The architecture of the actor network (CNN) used in the proposed models. The param-
eters of the network are optimized using PPO.

and critic networks, using the objective function in Eq. 4. The inference of the CMTL

model is shown in Algorithm 3.2, which only uses the actor network.

38

Algorithm 3.1: CMTL training with PPO
Input: Initial actor and critic networks
1: while Step ≤ MaxNumOfSteps do
2: o0 = Env_Reset() #initial observations
3: for i = 0, 1, 2, ..., Episode_Length:
4: ai = actor(oi) #get actions
5: oi+1, ri, di = Env_Step(ai)
6: Store oi+1, ai, and ri in their corresponding buffers
7: Step = Step + 1
8: if Step % H == 0 then: #PPO update
9: Compute the advantage estimate Â using the rewards

and the value function V (critic)
10: Update the actor (policy) and critic networks using

the loss LCLIP+V F+S(θ)
11: Empty all buffers
12: end if
13: if di == 1 then break #if episode terminates
14: end for
15: end while

Algorithm 3.2: CMTL Inference
Input: Trained actor network
1: o0 = Env_Reset() #initial observations
2: for i = 0, 1, 2, ..., Episode_Length:
3: ai = actor(oi) #get actions
4: oi+1, ri, di = Env_Step(ai)
5: if di == 1 then break #if episode terminates
6: end for

PPO trains a stochastic policy in an on-policy way. This means that it explores by

sampling actions according to the latest version of its stochastic policy. The amount of ran-

domness in action selection depends on both initial conditions and the training procedure.

During training, the choice of action through the actor policy is stochastic over the proba-

bility distribution. Over the course of training, the policy typically becomes progressively

less random, as the PPO update encourages the network to exploit good actions. During

execution, i.e. when the learning stops, the action selection is greedy, where the output

with the maximum value is chosen.

As can be noticed, this way of modeling the multi-agent problem as a big single agent

39

has significant scalability issues during the training phase. The observation space increases

linearly, and the action space increases exponentially, with the number of agents. Addition-

ally, even during execution (after the learning is done), agents still receive actions from a

central unit, i.e. the single actor network.

3.5 Distributed Multi-Agent Target Localization (DMTL)

To tackle the scalability limitations in the previous model, this section proposes a

DMTL model, which is based on the centralized learning distributed execution (CLDE)

approach [41]. In DMTL, the actor network is trained for a single agent, based on the ex-

periences of all agents. In other words, the experiences of each individual agent are used

to update a single network, which is then used by each agent to make decisions around

other agents. This is viable since agents are cooperating and have the same goal. This

method uses local observations for each agent to update the networks during training. A

centralized critic network is used to avoid the non-stationarity issue, which is caused due

to the environment being influenced by other agents from a single agent’s perspective. Pol-

icy gradient methods in multi-agent settings are known to exhibit high variance gradient

estimates, since an agent’s reward depends on the actions of other agents. Hence, a central-

ized critic (value function) which has access to the observations and actions of all agents

helps in tackling the variance issue [73, 75]. This is viable since the critic network is only

used during training in the process of updating the actor network, and is omitted during

execution. During execution, each agent gets a copy of the actor network, and they act

independently in a distributed manner.

40

3.5.1 Observation Space

Similar to Model 1, observations are modeled as a stack of 2D maps of size m × n,

equivalent to the AoI size, each representing an observation. For a given agent i, the actor

network takes 4 observations, illustrated in Fig. 3.3, which are:

• Location Map (Fig. 3.3a): a 2D matrix showing the agent i’s location.

• Map of Other Locations (Fig. 3.3b): a 2D matrix showing the number of agents

located in each grid element (excluding agent i).

• Readings map (Fig. 3.3c): a 2D matrix showing the last reading collected in each

grid element. Grid elements that have not been visited are given a reading of 0.

• Visit Counts Map (Fig. 3.3d): a 2D matrix showing the number of visits each grid

element has received from all agents combined.

As discussed in Section 1.1, it is assumed that agents can communicate, and hence ex-

periences are shared to update the observation of each agent. However, each agent takes

an action on its own. Given that an agent observes the locations of other agents, the de-

sired outcome is for an agent to incorporate this information into making a decision that is

beneficial to the team as a whole.

3.5.2 CNN architecture and learning process

The CNN architecture used for this model is shown in Fig. 3.2. It is similar to the

one used for CMTL but with different input and output sizes. Here, the actor network

takes 4 observations and gives 5 possible actions. Similar to what has been discussed in

Section 3.4.2, action selection is stochastic during training, and greedy during execution.

Each agent gets a copy of the latest network, upon which they act independently. The

individual experiences, along with the team-based rewards obtained, are then used to update

41

(a) Location map (b) Map of Other Locations

(c) Readings map (d) Visit counts map

Figure 3.3: An example of the observation space for an agent in a team of 3 agents under the CLDE
model.

the network using PPO. The centralized critic network takes the joint observations of all

agents and outputs the state value. The joint observations here can be represented in 3

maps: 1) All Locations Map which shows the locations of all agents, 2) Readings Map,

and 3) Visit Counts Map. These 3 maps summarize the observable state of the environment

considering all agents.

The training and inference processes for the DMTL model are summarized in Algo-

rithms 3.3 and 3.4. This process is similar to that for CMTL (Algorithms 3.1 and 3.2),

42

however the actor network (shown in Fig. 3.2) is called for each agent separately.

Algorithm 3.3: DMTL (and ODMTL) training using PPO
Input: Initial actor and critic networks
1: while Step ≤ MaxNumOfSteps do
2: o0 = Env_Reset() #initial observations
3: for i = 0, 1, 2, ..., Episode_Length:
4: for j = 1, 2, ..., Team_Size:
5: aij = actor(oij) #get action for agent j
6: end for
7: ai = [ai1, a

i
2, ...]

8: oi+1, ri, di = Env_Step(ai)
9: Store oi+1, ai, and ri in their corresponding buffers
10: Step = Step + 1
11: if Step % H == 0 then: #PPO update
12: Compute the advantage estimate Â using the

rewards and the value function V (critic)
13: Update the actor (policy) and critic networks using

the loss LCLIP+V F+S(θ)
14: Empty all buffers
15: end if
16: if di == 1 then break #if episode terminates
17: end for
18: end while

Algorithm 3.4: DMTL and OMDTL Inference
Input: Trained actor network
1: o0 = Env_Reset() #initial observations
2: for i = 0, 1, 2, ..., Episode_Length:
3: for j = 1, 2, ..., Team_Size:
4: aij = actor(oij) #get action for agent j
5: end for
6: ai = [ai1, a

i
2, ...]

7: oi+1, ri, di = Env_Step(ai)
8: if di == 1 then break #if episode terminates
9: end for

During execution, agents act in a fully decentralized manner, as each agent acts based on

its copy of the actor network combined with the observations. Unlike the case in CMTL, for

a given agent, the actor network takes the observations and gives only one of the 5 actions.

43

The cooperation is induced here through considering other agents and their readings in

the agent’s observations. As a result, this model can be scaled up to accommodate many

agents. This model, however, has a limitation when it comes to the size of each observation,

as increasing the observation size (i.e. increasing m × n) would increase the learning

complexity. The next model tackles this issue as discussed next.

3.6 Optimized DMTL (ODMTL)

The previous model helps in scaling up the solution to accommodate multiple agents.

However, as the size of each observation increases, the model’s complexity (number of

trainable parameters) increases. To tackle this, ODMTL aims at reducing the input dimen-

sionality, while maintaining the important features of the observations.

3.6.1 Observation Space

In this model, the observations an agent collects are divided into two sets: Local and

Global, as shown in Fig. 3.4. Local observations help an agent make a local decision based

on the area surrounding them. This is equivalent to a real-life scenario of a person carrying a

detector and adjusting their actions based on the immediate readings he/she obtains. Global

observations help in cooperation between agents, as they give a summarized view of the

entire AoI. In this model, given an AoI that is gridded into m×n grid elements, observation

maps are resized to w × w, where m,n > w > 1 and w is an odd number. w here is a

hyperparameter, where smaller values result in less network parameters (and hence reduced

learning complexity), but also lead to higher loss of information, when compared to higher

values. The aim here is to capture the essential features of the observations in the resized

version, hence reducing the learning required by the network. To achieve this, the local

observations at step t are given as:

44

• Windowed Location Map (Fig. 3.4a): a 2D matrix showing the agents’ location in

a w × w window centered around the agent’s location in step t − w−1
2

. This map is

used to correlate the agent’s location with respect to the windowed readings map.

• Windowed Readings Map (Fig. 3.4c): a 2D matrix showing the last reading collected

in each grid element in a w×w window centered around the agent’s location in step

t− w−1
2

.

(a) (b) (c) (d)

Figure 3.4: An example of the observation space for the case of 3 agents. Local observations are
highlighted in red, while global observations are highlighted in yellow.

The windows here are centered around the agent’s location in step t− w−1
2

to capture as

many of the previously collected readings as possible. Specifically, this ensures that at least

the readings collected in the interval [t− w − 1, t], i.e. the last w readings, are captured in

the window. For example, Fig. 3.5 shows the readings collected over 6 time steps, where

the agent’s current location is at time step t. If a window of size w = 3 is centered at the

agent’s current location at time step t (red window), only the last 2 readings can be captured

(readings in in the interval [t − 1, t]). However, if the window is centered at the location

in step t − 1 (blue window), the last 3 readings can be captured (readings in the interval

45

[t− 2, t]). This is sufficient for an agent to make a local decision based on the readings in

the area surrounding them.

Figure 3.5: An example showing the different placement of the window.

On the other hand, the global observations are given as:

• Downsized Location Map (Fig. 3.4a): a 2D matrix of size w×w, which is the result

of downsampling the original location map of size m× n.

• Downsized Map of Other Locations (Fig. 3.4b): a 2D matrix of size w×w, which is

the result of downsampling the original map of other locations of size m× n.

• Downsized Readings Map (Fig. 3.4c): a 2D matrix of size w×w, which is the result

of downsampling the original readings map of size m× n.

• Downsized Visit Counts Map (Fig. 3.4d): a 2D matrix of size w × w, which is the

result of downsampling the original visit counts map of size m× n.

The maps are downsampled using bi-linear interpolation. A Gaussian filter with stan-

dard deviation (σ) of 1 is used before downsampling the maps, which helps in reducing

the loss of information when downsampling inputs with high frequency components. Gen-

erally, the minor loss of information in the downsized maps through downsampling is in-

significant here, as long as the trends in the maps are preserved. This is mainly because

46

these maps are intended for the cooperation between agents, which only requires a summa-

rized overview of the entire area.

With these modified inputs, the actor network takes 6 observations of size w × w.

Irrespective of the area size, w could have small odd values, which significantly reduces the

amount of learning needed. The local observations preserve only the surrounding readings,

and help correlate them with the agent’s location in order to determine the direction of

movement. The global observations preserve a summary of the distribution of other agents,

the readings collected, and the exploration done throughout the AoI, with respect to the

agent’s location, which is sufficient for the purpose of cooperation. This model preserves

the informative part of the full observations, which are sufficient for each agent to make a

decision that helps the entire team.

3.6.2 CNN architecture and learning process

The CNN architecture used for this model is shown in Fig. 3.2. The actor network

takes 6 input observations and gives 5 outputs, one for each action. Similar to the previous

two models, action selection is stochastic during training, and greedy during execution. The

critic network takes the joint observations of all agents and outputs the state value. The joint

observations here can be represented in 3 maps: 1) Downsized Locations which reduces a

map showing all agents locations, 2) Downsized Readings Map, and 3) a Downsized Visit

Counts Map. These 3 maps summarize the observable state of the environment considering

all agents.

The learning and inference processes for the ODMTL model is the same as described

in Algorithms 3.3 and 3.4 for DMTL, with only the observations being optimized. It is

important to note that using centralized learning with decentralized execution is essential

in ODMTL for the reduced observations to show effectiveness. For example, if reduced

47

Table 3.1: Actor and critic networks architectures.

CMTL DMTL ODMTLLayer actor critic actor critic actor critic
Input (obser-

vations)
2 +N maps 4 maps 3 maps 6 maps 3 maps

Convolutional
Layer

size = 3× 3, No. filters = 8, padding = 1, stride = 1, activation = ReLU

MaxPool
Layer

size = 2× 2, stride = 2

Convolutional
Layer

size = 3× 3, No. filters = 16, padding = 1, stride = 1, activation = ReLU

Fully
Connected

Layer

size = 32, activation = ReLU

Fully
Connected

Layer

size = 16, activation = ReLU

Output
(actions)

5N 1 5 1 5 1

observations were introduced in CMTL, the model would still suffer from scalability is-

sues, since the observation/action spaces increase linearly/exponentially with the number

of agents. Table 3.1 summarizes the architectures of the actor and critic networks for all

three models.

3.7 Evaluation

In this section, several experiments are conducted to assess and evaluate the perfor-

mance of the proposed approaches. The simulations for these experiments have been per-

formed using an Intel E5-2650 v4 Broadwell workstation equipped with 128 GB, 800 GB

SSD, and NVIDIA P100 Pascal GPU (16G HBM2 memory). The implementation of PPO

is similar to [76], which has been modified to incorporate discrete actions, GAE, and Cen-

tralized Learning for Distributed Execution, when needed.

48

The performance of each of the proposed models is analyzed in terms of episodic cu-

mulative reward, episode length, and cost. The reward reflects the team reward obtained in

each episode. The episode length reflects the number of steps needed to finish the local-

ization process. In a step, agents simultaneously act in the environment by taking one of

the five actions: moving up, down, right, left, or staying idle. The cost is reflected in the

total distance traveled by all agents, since a moving action by an agent is accompanied with

consumption of resources. Further tests are performed on scenarios with varying agents’

group size, input size, area size, and target strengths. A behavioral analysis is conducted

in Section 3.7.5, discussing the different behaviors developed by the agents. Finally, the

performance of the resultant agents is compared against existing localization benchmarks,

such as Bayesian-based survey methods [15], uniform survey methods [40], and single-

agent RL-based target localization using Double Deep Q-Networks (DDQN) [2].

3.7.1 Simulation Environment

For all the experiments, radioactive target localization is used as an environment, where

the aim is to localize a radioactive target of strength 1× 109 photons/minute, in an area of

size 1km × 1km. The data readings are generated using the principles of radiation physics,

as explained in [10, 11]. Assuming agents are carrying radiation detectors, the radiation

readings at each detector follow a Poisson distribution that is given as [77]:

CPMi ∝
I

d2i
(6)

where CPMi is the counts per minute at agent i’s detector, I is the source intensity in

photons per minute, and di is the distance between agent i and the source. The background

radiation is ignored since it is negligible when compared to the radioactive target. Addi-

tionally, the background radiation is assumed to be uniform throughout a given area, and

hence it would not affect the localization task which relies mainly on the difference between

49

readings at different locations [10, 11].

Although radiation localization is used as an example to evaluate the proposed mod-

els, the applicability of the proposed system is valid for any localization task, under the

same assumptions of having a single target. This is due to the fact that a sensor reading in

localization tasks is given as a function of the distance between the agent and the target;

the closer the agent is to the target, the higher the reading. For example, in several envi-

ronmental applications, this idea is given as the Inverse Square Law, which states that a

physical quantity at a certain location is inversely proportional to the square of the distance

between the source of that physical quantity and that location. This is used to represent

quantities such as radiation, heat, and sound [36, 78]. In applications where sensing agents

are equipped with cameras, images can also be translated into sensor values depending on

the proximity of the agent to the target, if present in the field of view.

For all the following experiments, each of the models was trained for 10 million steps.

In each training episode, the environment is reset with a randomized target and agents’

locations. It is assumed here that an agent cannot start in the same location as the target

or another agent. An episode terminates when the target is found, or when a limit of 100

timesteps is reached. After every 1000 training episodes, the average results of 100 testing

episodes, where the agents act greedily based on the latest policy update, are recorded. The

list of PPO hyperparameters used in training are shown in Table 3.2. The values for ε, c2,

γ, and λ are as suggested in the corresponding PPO work [31].

3.7.2 Cumulative Testing Rewards

Fig. 3.6 shows the cumulative reward obtained per episode while running the three

models for the cases of 1-4 and 10 agents, in an AoI of size 1km×1km, gridded into a

10×10 grid (each grid element has a size of 100m×100m). The ODMTL model is used

here with w = 3. The cumulative reward in an episode represents the accumulation of the

50

Table 3.2: Hyperparameters used for PPO.

Hyperparameter Value
Learning rate 3× 10−4

PPO clipping parameter ε 0.2
Entropy coefficient c2 0.01

Discount factor γ 0.99
Discount factor λ 0.95

Timesteps per update (Horizon H) 4000
Number of epochs per update 50

reward at each time step, i.e. Eq. 5, throughout the episode. Table 3.3 summarizes the

key points in Fig. 3.6 (convergence step and the max reward) for all team sizes given the

3 different models. For the case of one agent (Fig. 3.6a), it can be noticed that all models

eventually achieve the same performance, with an average episodic reward of -3.5. This is

expected since DMTL reduces to CMTL (by omitting the map of other locations). How-

ever, ODMTL is seen to converge faster than the other approaches. Specifically, ODMTL

achieves ∼1.8 and ∼1.7 times faster convergence when compared to CMTL and DMTL,

respectively. This is attributed to the reduction in observation sizes, which leads to less

trainable parameters in the CNN networks, as seen in Table 3.4. For the case of a sin-

gle agent, the networks in CMTL and DMTL have ∼3.51 times the number of trainable

parameters in ODMTL. As the number of agents increases (Figs. 3.6b-3.6d), it can be no-

ticed that the performance of CMTL significantly deteriorates, which due to the increase in

dimensionality of the observation and action spaces, resulting in the exponential increase

in trainable parameters, as seen in Table 3.4. For the cases of 3-4 agents, CMTL fails to

localize the target, where most episodes terminate after reaching the limit. On the other

hand, while DMTL and ODMTL both show convergence in all scenarios, ODMTL always

has faster convergence, due to the reduced observations and the lower number of trainable

parameters. Specifically, ODMTL is ∼25%, ∼12%, ∼41%, and ∼62% faster when com-

pared to DMTL for team sizes of 2, 3, 4, and 10, respectively. However, despite the faster

51

convergence, ODMTL has slightly lower maximum reward, when compared to DMTL. On

average, ODMTL achieves a maximum reward that is lower than DMTL by 0.7, 1.5, 1.8,

and 0.7, for the cases of 2-4 and 10 team sizes. For example, for the case of 4 agents,

DMTL eventually reaches an average reward of -1.9 per episode, while ODMTL reaches

-3.7. This means that, while the agents in both cases learn to correctly localize the target,

agents in ODMTL take nearly 2 additional exploration steps in the environment (in total).

This is attributed to the minor loss of information resulting from the reduction of observa-

tions. In terms of localization success rate, both ODMTL and DMTL achieve a success rate

of 100% in all scenarios (a-e), while CMTL achieves a success rate that drops from 100%

to 45% as the team size goes from 1 to 4 agents. The success rate is computed by averaging

the outcome of 1000 testing episodes conducted after the 10 million training steps, where

success represents the case of localizing/finding the target within the 100 episodic steps.

Table 3.3: Summary of the key results in Fig 3.6. Convergence refers to the time step (×106) at
which the max reward is first achieved.

Team Model
Size Attribute CMTL DMTL ODMTL

1
Convergence 5 4.5 1.8
Max Reward -3.5

2
Convergence 10 6 4.8
Max Reward -12 -3.1 -3.8

3
Convergence

N/A

5.5 4.5
Max Reward -2.3 -3.8

4
Convergence 3.1 2.2
Max Reward -1.9 -3.7

10
Convergence 3.4 2.1
Max Reward -2.1 -2.8

52

(a) (b)

(c) (d)

(e)

Figure 3.6: The average episodic reward for the three models, for a system of (a) one agent, (b) two
agents, (c) three agents, (d) four agents, and (e) ten agents.

53

Table 3.4: Number of trainable parameters for each model for different team sizes. DMTL and
OMDTL have slightly smaller values for team size = 1 compared to other team sizes because the
Map of Other Locations is ignored.

Team SizeModel 1 2 3 4 5
CMTL 14837 15249 17021 25593 68165
DMTL 14837 14909

ODMTL 4229 4301

3.7.3 Episodic Length and Cost

The general aim of localization tasks is to achieve fast localization at low cost. Lo-

calization time is measured by the number of time steps it takes to localize the target, i.e.

for an agent to step into the grid element that has the target. The cost represents the total

number of movement steps in an episode. In a single time step, the number of movement

steps could be as low as 0 (none of the agents has moved) or as high as number of agents

(all agents have moved). As discussed in Section 3.7.1, each point in the following results

is the average of 100 testing episodes conducted at the corresponding training step. Figs.

3.7 and 3.8, along with Table 3.5, compare the three models in terms of the localization

time and cost per episode, respectively. In both cases, CMTL shows poor performance as

the number of agents increases, due to its scalability issues. When comparing DMTL and

ODMTL in terms of localization time, it can be seen that both have a similar performance,

with an advantage for ODMTL in terms of convergence time, and a slight advantage for

DMTL in terms of final localization time. On average, DMTL achieves ∼9% less localiza-

tion time and ∼8% less cost after the training is concluded, when compared to ODMTL,

while ODMTL achieves ∼34% faster convergence. The higher difference between DMTL

and ODMTL in terms of cost, when compared to time, means that cooperation between

agents in ODMTL is slightly affected by the loss of information in the reduced observa-

tions. Considering the case of 4 agents (Fig. 3.7d), for example, DMTL converges to an

54

average localization time of 4.5 steps, as opposed to 5.5 for ODMTL. This means that, on

average, the agents in ODMTL take an additional exploration step (in total), when com-

pared to DMTL. This is not significant, given that ODMTL reduces the learning required

and converges faster. As for the cost (Fig. 3.8d) at step 1M, it can be seen that ODMTL

has less than half the cost of DMTL. This is although both models converge in terms of

localization time by the same step (Fig. 3.7d). This means that while agents in DMTL

learn to localize the target by step 1M, cooperation between them is still not fully learned,

unlike the case on ODMTL. DMTL eventually converges to a cost of 4.0, as opposed to 4.9

for ODMTL. More analysis on the cooperative behavior is to be discussed in Section 3.7.5.

Table 3.5: Summary of the key results in Fig. 3.7 and Fig. 3.8, representing the lowest time and
cost achieved by each model, for each team size, on average. Time is given in (timesteps) and cost
is given in (Moving steps).

Team Model

Size
Attribute

CMTL DMTL ODMTL

1
Min. Time 9.8 9.0 8.3

Min. Cost 9.8 9.0 8.3

2
Min. Time 7.7 5.5 5.7

Min. Cost 13.1 7.8 8.1

3
Min. Time

N/A

4.7 5.8

Min. Cost 5.1 6.3

4
Min. Time 4.5 5.5

Min. Cost 4.8 5.8

10
Min. Time 2.8 3.2

Min. Cost 6.2 6.8

55

(a) (b)

(c) (d)

(e)

Figure 3.7: The localization time achieved, per episode, for a system of (a) one agent, (b) two
agents, (c) three agents, (d) four agents, and (e) ten agents.

56

(a) (b)

(c) (d)

(e)

Figure 3.8: The cost of localization, for the three models, for a system of (a) one agent, (b) two
agents, (c) three agents, (d) four agents, and (e) ten agents.

57

3.7.4 Varying Environments

As discussed in Section 1.2, the ability to learn in different environments, without

human supervision, motivates the use of MDRL. Here, this ability is tested while using

the proposed MDRL models. For each of the following environment variations (different

area/input sizes), the learning process is initiated and the actor/critic networks are retrained

following the same MDRL models proposed in this work, i.e. DMTL and ODMTL. CMTL

is not considered since it already displayed scalability issues, as seen in Figs. 3.6-3.8.

Fig. 3.9 shows the rewards obtained while using DMTL and ODMTL for 3 agents, as

the area size is increased to 2km × 2km and 3km × 3km, while the gridding is kept at

10 × 10. Although both models displayed similar performance for an area size of 2km ×

2km, DMTL’s performance deteriorates as the area size is increased, while ODMTL main-

tains high performance. Since the localization becomes harder with increased area size,

DMTL would need significantly more training to reach convergence, which is achieved

early through ODMTL. In terms of localization success rate, ODMTL maintains a success

rate of 100% in both scenarios, while DMTL achieves a success rate of 100% in Fig. 3.9a

that drops to 24% in Fig. 3.9b. On the other hand, Fig. 3.10 shows the results as the grid

size (m×n) is increased to 13 × 13 and 15 × 15, while maintaining the area size at 1km ×

1km (i.e. each grid element has a size of 80m×80m and 67m×67m, respectively). Increas-

ing the grid size, while fixing the area, makes the localization process more detailed, i.e.

agents make decisions more frequently. Since DMTL deals directly with the entire grid,

increasing the size makes the learning more complex, as more network parameters need to

be trained/learned. As a result, its performance is poor, as seen in Figs. 3.10a and 3.10b,

which is unlike ODMTL that maintains high performance, since its input is not affected by

the grid size due to observations reduction. In both scenarios, ODMTL achieves a localiza-

tion success rate of 100%, while DMTL achieves a low rate of 22%, which emphasizes on

the struggle DMTL faces as the localization problem gets harder.

58

(a) area = 2km×2km (b) area = 3km×3km

Figure 3.9: Testing the learning process of the MDRL models on environments with different area
sizes.

(a) Grid size = 13×13 (b) Grid size = 15×15

Figure 3.10: Testing the learning process of the MDRL models on environments with different grid
sizes.

In all the previous experiments, agents had to localize a radioactive target of intensity

1 × 109 photons/minute. In the following experiment, the agents learn to localize in an

environment of varying target intensities. In each training episode, the environment resets

with one of 3 target intensity values from [1×108, 5×108, 1×109] photons/minute, which

correspond to targets of weak, medium, and high intensities, respectively. These three

values are enough to represent the different patterns of data readings that could be obtained

throughout the AoI. During inference/testing, the agents are placed in environments with a

59

target of intensity in the range [1× 108, 1× 109], i.e. the target could have any value in this

continuous uniform range. Fig. 3.11 shows the results of this experiment, for a group of 3

agents in a 1km×1km area, gridded into 10×10. Each point in this figure is the average of

100 testing episodes, where in each episode the target intensity is randomly set to a value

in the range [1 × 108, 1 × 109], which follows a uniform distribution. As can be seen,

given 10 million training steps, DMTL struggles to converge, while ODMTL converges

early with the same amount of experience. Additionally, ODMTL maintains a localization

success rate of 100% after the learning is concluded, which is unlike the success rate of

76% achieved by DMTL. This is attributed to the reduction of observation dimensionality,

which leads to faster learning. Thus, these experiments validate that ODMTL is easily

adaptable to different environments. It also shows that the resultant agents can handle any

target intensity given that they are trained on the three intensity types: low, medium, and

high.

Figure 3.11: Testing the MDRL models on an environment with varying target intensities.

60

3.7.5 Behavioral Analysis

This section analyzes the different behaviors developed by the agents in the target lo-

calization problem. These behaviors mainly result from the nature of the observations fed

to the actor network, in addition to the reward function. It is worth mentioning that in all

proposed models, the agents develop the same behavior described below, given that the

learning converges. Hence, we here report the behaviors obtained through the ODMTL

approach.

Fig. 3.12 shows scenarios illustrating the behaviors developed by the agents, using the

ODMTL model. In Fig. 3.12a, a human-like behavior by the agent is noticed. Initially, a

single reading is not enough to determine which direction to move towards, and hence the

agent explores by going up. With a second reading collected, the agent determines that the

target is more likely downwards, and hence moves towards that direction. Similarly, an-

other exploration step is taken when the agent is near the target, as the previously collected

readings could indicate multiple possible target locations. On the other hand, 2 different

behaviors are developed for the case of multi-agents, in which cooperation can be noticed,

as seen in Fig. 3.12b. The first behavior can be seen initially, where all agents have very

low readings and cannot tell which direction to move towards. Hence, they decide to split

to cover a bigger area. The second behavior is a conservative one, and can be seen in Agent

2’s actions, as it sees that the other two agents are sufficient to cover the area, and hence

decides to stay idle after one exploration step. This behavior can also be seen as agent 1

decides to stop after few exploration steps, since it could be noticed that agent 3 is getting

increasingly higher readings, and hence is getting closer to the target. It is also worth men-

tioning that there are rare cases where multiple agents end up in the same grid. In such

scenarios, cooperation is hard to achieve, mainly because each agent has the same copy of

the actor network, and hence both would end up taking the same action. Nonetheless, it

was noticed that in all such rare scenarios, the target is still localized (by both agents), but

61

cooperation is not fully achieved.

(a) (b)

Figure 3.12: Examples of the different behaviors developed by the agents for the cases of (a) a
single agent and (b) multi agents.

Another interesting aspect is related to the different stages during the learning process

at which the agents develop the aforementioned behaviors. When studying the progression

of behavior throughout the learning process, it was noticed that agents initially learn to

localize, without focusing on cooperation. For example, when considering Fig. 3.6c, it

is noticed that agents develop the localization behavior nearly by step 1M with minimal

cooperation, where agents sometimes could take unnecessary actions. The cooperative

behavior is noticed to be developed later, which explains the slight increase in the reward

afterwards.

3.7.6 Benchmarks: Localization Methods

In this section, the performance of the localization agents obtained by ODMTL is

benchmarked against several localization methods from the literature, which are given as:

(1) DDQN: a localization approach based on Double Deep Q-learning for a system with

62

a single agent [2], which is trained for 10 million steps.

(2) DDQN-2: an extrapolation of DDQN [2] in multi-agent settings, using centralized

execution, which is trained for 10 million steps. The policy network here takes the

observations of all agents, and gives a joint action vector.

(3) Bayesian: a multi-agent cooperative localization approach using a Bayesian ap-

proach [11, 15]. In [15], a Bayesian framework is used to build and update local

probability density functions (PDFs) of the target location, which are then shared

between the agents to obtain a global PDF. This is then used in an optimization ob-

jective that aims to find the target while balancing resources consumption between

agents. We do not focus on the different types of resource consumption in this work,

and assume each agent has 1 cost unit if decided to take a moving action.

(4) Uniform: a traditional target search method where each agent moves in a pre-defined

path that uniformly covers the entire area [40]. Here, agents are placed in different

starting positions, and each agent covers the area in a zigzag fashion.

For the ODMTL, DDQN-2, Bayesian, and Uniform approaches, a group of 3 agents is

used for comparison. Each of the results is an average of 1000 testing episodes, where in

each episode the target is placed in a random location. All the aforementioned benchmarks

succeed in localizing the target in all scenarios, with differences in terms of localization

time and cost.

Table 3.6 shows a comparison between single-agent DDQN and multi-agent ODMTL,

in terms of localization time and total cost, for varying target strengths. The use of DDQN

as a benchmark is to show the trade-off between localization time and the cost of using

multiple agents instead of a single agent. The total cost here represents the total number

of moving steps taken by the team of agents. For the single-agent DDQN, the localization

time and cost are equal, since each time step corresponds to one moving action by the

63

agent. When compared to the single DDQN agent, it is expected that ODMTL agents

perform faster localization, as seen in the table. However, what is worth highlighting is

the fact that the 3-agent ODMTL has less cost when compared to the single-agent DDQN.

Specifically, 3-agent ODMTL costs 7.9% less, on average, when compared to a single-

agent DDQN. While ODMTL has triple the number of agents, the cooperation between

agents in achieving fast localization and managing their resources leads to low cost in total,

which motivates the use of multiple cooperative agents for such problems.

Table 3.6: Comparison between ODMTL and DDQN in terms of localization time (time steps) and
cost (moving steps).

Attribute Model Target Strength (photon/min)
1×108 2.5×108 5×108 7.5×108 1×109

Loc. Time
ODMTL 11.27 9.27 8.61 7.71 7.54
DDQN 14.12 12.3 11.52 9.31 9.58

Loc. Cost
ODMTL 13.3 10.99 9.76 9.38 8.78
DDQN 14.12 12.3 11.52 9.31 9.58

Fig. 3.13 shows the results of comparing ODMTL to the multi-agent DDQN-2, Bayesian,

and uniform approaches. When compared to DDQN-2, ODMTL achieves up to 2.9 times

faster localization. When it comes to the cost, both models are on par. This shows that,

given the same amount of experience for both models (10 million steps), the learning in

DDQN-2 is incomplete, and agents prefer the idle action most of the time, hence resulting

i slow localization and low cost. This is mainly because of the scalability issues faced in

DDQN-2 due to the centralized execution. ODMTL agents also outperforms Bayesian-

based agents, with up to 58% faster localization and up to 62% reduction in cost. This

can be primarily attributed to two reasons. Firstly, the Bayesian approach heavily depends

on the data readings collected by the agents, and hence struggles when such readings are

insignificant. This can be seen for the case of the weakest target strength, where there is

a noticeable difference between ODMTL and Bayesian, in terms of localization time and

64

cost. Secondly, the Bayesian approach focuses on balancing resources between agents. As

a result, some agents could be of use to the localization task, but decide not to move if the

amount of resources they have is much less than the average of the team, and this affects

the localization time. In terms of cost, while the Bayesian approach achieves balance be-

tween agents in terms of resource consumption, the total consumption is still high, due to

the same aforementioned reason. The traditional uniform search approach is the simplest

in terms of implementation, yet it has relatively the worst performance, which is attributed

to the absence of cooperation between agents, and not using any data-driven methodologies

to localize the target. ODMTL agents achieve up to 3 times faster localization with up to

87% reduction in cost, when compared to uniform methods.

3.8 Conclusion and Discussion

In this chapter, the problem of target localization is tackled using Multi-Agent Deep

Reinforcement Learning (MDRL) models, where agents learn to cooperate to localize a

target. Observations were modeled as stacks of 2D heatmaps, representing agents’ lo-

cations and readings. Proximal Policy Optimization (PPO) was adapted to optimize an

actor-critic structure, represented by a Convolutional Neural Network. Three models were

designed and analyzed: 1) a centralized model (CMTL) which extrapolates single-agent

deep RL into multi-agents settings, 2) a decentralized model (DMTL) where agents act in-

dependently during execution, and 3) an optimized decentralized model (ODMTL) which

builds on DMTL by reducing the dimensionality of agents’ observations to focus on im-

portant features. CMTL was shown to have scalability issues, where increasing the number

of localization agents increases the dimensionality of the state and action spaces, and ren-

ders the model poor. DMTL was shown to tackle the scalability issues with CMTL, and

was able to prove efficient in achieving cooperation between increasing number of agents

65

(a)

(b)

Figure 3.13: Comparison between the different benchmarks in terms of (a) localization time and
(b) total cost, for varying target strength.

while localizing the target. ODMTL was shown to achieve faster learning and prove adapt-

able in varying localization environments. The agents were found to develop human-like

behavior in cooperating to localize the target. When compared to a single-agent Double

Deep Q-learning (DDQN) benchmark, ODMTL was found to achieve an average of 7.9%

reduction in cost, which proves the efficiency of the cooperation between agents in manag-

ing their resources, while achieving fast localization. The localization agents obtained by

ODMTL were also found to outperform existing multi-agent localization approaches, such

as Bayesian- and uniform-based methods, with up to 3 times faster localization and 87%

66

reduction in cost.

While this chapter serves as an introduction to MDRL for target localization problems,

there are certain improvements to be considered for future work. The complexity of the

environment is to be further increased, through introducing obstacles that could hinder the

movement of the agents and affect their readings. Additionally, communication between

agents should be restricted, to increase the realism of the proposed models. Moreover,

recent works on Federated RL [79] could prove efficient in handling distributed learning,

which could be suitable for localization systems where the learning occurs in the physical

world.

67

Chapter 4

Multi-Agent Deep Reinforcement

Learning with Demonstration Cloning

for Target Localization in Complex

Environments

4.1 Introduction

In this chapter, we extend the proposed MDRL methods to address the challenges posed

by complex environments filled with obstacles. While the previous chapter focused on col-

laborative and scalable target search and localization in simpler and more controlled set-

tings, real-world environments are often cluttered with physical barriers that impede agent

mobility and attenuate sensor data. These obstacles introduce significant complexities, as

agents must navigate through restricted spaces, avoid collisions, and maintain accurate data

interpretation despite noisy or incomplete observations.

To tackle these challenges, this chapter discusses two novel MDRL methods that tackle

68

the target localization through search in complex environments. The main goal is to uti-

lize agents’ observations, i.e. data readings and information about the other agents and the

environment, to decide on movement actions to optimally search the area for the target. Ini-

tially, a model is designed which utilizes PPO with CNNs to model, train, and optimize the

agents’ policies. Agents’ observations are modeled as 2D heatmaps capturing information

about their own, and the locations of other agents, in addition to the collected readings and

the distribution of walls in the environment. A shaped team-based reward function, using

Breadth First Search (BFS), is designed to guide the agents in cooperating to localize the

target. Convolutional Autoencoders (CAE) are used to create embeddings that efficiently

represent the walls in the environment. A centralized-learning and decentralized-execution

(CLDE) method is used to train the agents, which helps in tackling the curse of dimension-

ality issue in MDRL. This model is then further improved in a second model by replacing

the shaped reward function with a sparse reward to speed up the learning. This is combined

with Demonstration Cloning (DC), a novel approach that utilizes demonstrations from ex-

pert or semi-expert agents, similarly to Imitation Learning (IL), to guide the MDRL agents

in the learning process, aiming to achieve faster and more resilient learning. This results

in two efficient methods that could be used depending on the availability of expert demon-

strations. In summary, the contributions of this chapter are as follows:

(1) The formulation of the multi-agent target localization problem in complex environ-

ments using MDRL.

(2) The modeling of the agents’ observations as 2D heatmaps, and using CAEs to create

embeddings for walls. Observations are fed to CNNs that specify the actions, which

are optimized using PPO, and guided by a shaped reward function that is designed

using BFS.

(3) The design of Demonstration Cloning (DC); a method that utilizes expert experiences

69

in guiding agents into faster and more resilient on-policy MDRL in the presence of

sparse rewards.

4.2 General Overview of the Proposed Solutions

This section presents the two proposed MDRL models for target localization tasks. Fig.

4.1 gives a general overview of the two proposed models. In the first model (MDRL-SR),

agents’ policies translate observations into actions that are executed in the environment to

obtain a shaped reward and the next observations, which are used for the following step.

PPO incorporates the collected rewards to update the agents’ policies. Given the availability

of expert demonstrations, the second model (MDRL-DC) builds on the first model by using

demonstration cloning (DC) in guiding the agents towards collecting better experiences in

the environment. The proposed models share the same observation and action spaces, as

well as the same policy structure, but differ in the reward function and the learning process.

Figure 4.1: General overview of the proposed models.

70

4.3 Observation Space

The process of localizing the target requires knowledge of current and historical data

readings, in addition to the locations where these readings were collected. For this reason,

the agents’ observations are modeled as 2D maps containing information related to the

readings collected, in addition to the agents’ locations. To obtain this, the AoI is represented

as a grid of size m×n, and the observations are modeled as a stack of 2D maps, where each

of them has a size of m×n. The choices of m and n affect the details of the representation,

where higher values allow representing finer details at the cost of higher computational

complexity. The grid dimensions are not to be confused with the actual dimensions of

the AoI. The dimensions of the AoI could be in meters or kilometers, depending on the

application, which would be divided into the corresponding m × n grid. Each of the 2D

maps is normalized before being fed to the neural networks, which is a standard practice

in deep learning that ensures faster convergence [80]. Here, the normalization of a 2D map

is done by dividing all of its elements by the maximum pixel value, resulting in values

between 0 and 1. Fig. 4.2 shows the 5 normalized observations collected by each agent at

a given timestep t, which are:

• Location Map: a 2D map showing the agent’s own location.

• Team Locations Map: a 2D map showing the locations of all the other N − 1 agents.

• Readings Map: a 2D map showing the last data reading collected in each grid element

by any of the agents. Grid elements that have not been visited are assigned a data

reading of 0.

• Visit Counts Map: a 2D map that keeps track of the frequency at which each grid

element has been visited by any of the agents.

• Walls Map: a 2D map showing the walls in the area.

71

Figure 4.2: The set of original and reduced observations collected by an agent, in a team of 3
agents. Amongst the reduced observations, local observations are highlighted in green (windowed),
while the global observations are highlighted in red.

Modeling the observations as 2D maps helps in preserving information. This way,

the information could be accumulated in a progressive manner on the same 2D maps as

the target localization process carries on. Additionally, agents’ locations and the readings

collected are spatially correlated in target localization tasks, and such spatial features can

be maintained and analyzed when the observations are modeled as 2D maps.

In the target localization problem, each agent bases its actions solely on the aforemen-

tioned observations. In these observations, the readings map is used to guide the agents

towards the target location, where the agents are expected to follow the paths leading to

higher readings. The readings map is built in a progressive manner, where the map initially

could have insufficient and uninformative readings (due to the agents being far from the

target or due to signal attenuation because of walls). At each step, the agents take actions

and update the readings map with the collected readings, after which it can be better used to

guide the agents to reach the target. With the existence of walls in the area, the agents could

initially need to move away from the target (and hence move towards low data readings),

as seen in Fig. 1.1 for agent 2. This could be achieved when incorporating the readings and

walls maps together. In cases where the agents fail to collect good readings initially, they

are expected to explore unvisited areas, which is enabled through keeping track of the vis-

ited locations in the Visit Counts map. To help with cooperation and coordination between

72

the team members, the Team Locations map is used. The agents are assumed to have full

communication, and hence are capable of sharing their own locations and readings.

Before feeding the observations to the actor and critic networks, they undergo pre-

processing steps to reduce dimensionality while maintaining the important features. This

helps with speeding up the learning process, as the number of trainable parameters is re-

duced. To do so, the 5 aforementioned original observations are converted into the 9 re-

duced observations, as shown in Fig. 4.2. Each of the first 8 reduced observations has a

size of w × w, where m,n > w > 1 and w is odd. w is a hyperparameter, where smaller

values lead to less trainable parameters in the policy network (and hence reduced learning

complexity), but also lead to higher loss of information, when compared to higher values.

The main goal is to obtain reduced observations that still maintain the essential informa-

tion from the original observations. To achieve this, the reduced observations are divided

into two sets: local and global observations. The local observations help an agent make

local decisions regarding the areas surrounding them. Such decisions include overcoming

nearby obstacles and moving towards unvisited areas or areas with higher readings within

the small region around them. On the other hand, the global observations give the agent a

summary of the information in the AoI, which helps in coordinating with other agents and

planning ahead.

The local observations capture the information surrounding the agent, in a w × w map

centered around the agent’s current location, and are given as follows at step t:

• Windowed Location Map: a 2D map showing the agent’s location.

• Windowed Readings Map: a 2D map showing the latest data readings collected in a

small region around the agent.

• Windowed Visit Counts Map: a 2D map showing the frequency of the visited areas

around the agent.

73

• Windowed Walls Map: a 2D map showing the walls near the agent.

The global observations have a size of w × w and are as follows for a given agent, at

timestep t:

• Reduced Location Map: a 2D map obtained by downsampling the agent’s original

location map.

• Reduced Team Locations Map: a 2D map obtained by downsampling the agent’s

original team locations map.

• Reduced Readings Map: a 2D map obtained by downsampling the agent’s original

readings map.

• Reduced Visit Counts Map: a 2D map obtained by downsampling the agent’s original

visit counts map.

• Walls Embedding: an embedding of size 1×d obtained through encoding the agent’s

original walls map using a pre-trained Convolutional AutoEncoder (CAE).

The first 4 global observations are obtained through downsampling using bi-linear in-

terpolation. While generic downsampling is effective for these observations, the loss of

information would be notable when applied to the walls map. This is mainly because, in

some cases, the agents need to navigate through narrow areas/entrances, and information

may be lost if traditional downsampling techniques are used. To overcome this, Convo-

lutional AutoEncoders (CAE) are used to embed the walls map into an embedding (1D

vector) of reduced dimensions. The structure of the used CAE is shown in Fig. 4.3. Given

a dataset of walls, which is synthetically created using variations of wall placements and

wall lengths, the CAE is trained to embed the walls map into a vector of length d. A typical

autoencoder consists of two components: an encoder and a decoder. The encoder maps the

74

input to an embedding (a code), and the decoder aims to reconstruct the original input from

the code. Typically, the training loss is based on the difference between the input and the

reconstructed map, which is to be minimized, indicating that the code has enough informa-

tion to reconstruct the original image from. Once an autoencoder is trained, the encoder is

then used to create embeddings for the wall maps observations.

Figure 4.3: The architecture used for the CAE. The CAE is pre-trained using a dataset of walls,
after which the encoder is used to embed the wall maps as part of the proposed MDRL models.

4.4 Action Space

In the proposed models, the agents take discrete actions in the AoI: to either move in

a certain direction or stay idle. The choice of staying idle helps in preserving resources,

while moving affects the contribution the agent has towards the target localization task.

The direction of movement is discretized into B possible directions {1, 2, ..., bi, ..., B},

where the direction (or angle) of movement is given as:

θ = 2π
bi
B

(7)

75

B here is a hyperparameter that could be determined based on the desired details and the

available computational capabilities. Higher values of B allow more mobility freedom

for the agents, but also increase the learning overhead as the policy network would have

more trainable parameters. In this work, the agent has 9 possible actions, being 8 possible

cardinal directions (B=8) and one action for staying idle. This has been proved sufficient

in this work, as it covers the horizontal, vertical, and diagonal directions. It is assumed

that all agents have the same fixed speed. At each time step, certain actions may be invalid

(such as moving into a wall or outside the boundaries of the AoI). In such cases, these

actions are masked out, and the agent has to choose from the set of viable actions. This

is applied during the learning and the inference processes. Additionally, during learning

and inference, if all agents choose to stay idle for 3 successive timesteps, the idle action is

masked out for the next step for all agents, to encourage exploration and to speed up the

learning.

4.5 Actor and Critic Networks

The proposed models use an actor-critic structure in the learning process, optimized

by PPO. The actor (policy) network translates input observations into actions, while the

critic network is used to estimate the value function. Since the observations in this work

are modeled as 2D maps, Convolutional Neural Networks (CNNs) are used to represent the

actor and critic. CNNs help in capturing spatial features in input maps, which are common

in the aforementioned observations.

The structures of the actor and critic networks are shown in Fig. 4.4. This architec-

ture is similar to the LeNet-5 architecture [74] which is widely used in image analysis

tasks. At each time step, for a given agent, the actor network takes as input the 9 reduced

observations, shown previously in Fig. 4.2, and produces B+1 actions. The first 8 observa-

tions (2D maps) are fed through convolutional and Max-Pooling layers to extract features.

76

The resultant maps are flattened and concatenated with walls embedding, and fed to the

fully-connected layers. The 1D walls embedding does not contain any spatial information,

and hence is not passed through the convolutional layers. A SoftMax function is used at

the last layer so that the outputs correspond to a probability distribution over the possible

actions. The proposed models in this work follow a Centralized-Learning & Decentralized-

Execution (CLDE) [41] method. Each agent has the same copy of the actor network during

learning and execution, and acts based on its own observations in a decentralized manner.

However, during the learning process, the critic network has access to all observations. A

centralized critic helps in tackling the non-stationarity issue, which is caused due to the

environment being influenced by other agents from a single agent’s perspective [73]. This

is viable since the critic is not needed and emitted during the execution/deployment stage.

For this reason, the critic CNN takes as input the following 4 observations:

• Reduced All-Locations Map: a downsampled version of a 2D map showing the lo-

cations of all agents in the AoI.

• Reduced Readings Map

• Reduced Visit Counts Map

• The walls embedding

These observations are sufficient for the critic to give a value to the current state of the

environment, which is a singular output given by the critic network. The critic considers

the global observations and gives a value representing how good the current state is. This

value is used in the PPO process to update the networks, as discussed later in Section 4.6.

The input 2D maps to the neural networks are normalized beforehand, which is a typical

process when using CNNs.

77

Figure 4.4: The actor and critic networks (CNN) used in the proposed models.

4.6 Reward Function and Learning Process

This section presents and discusses the two proposed models. The two models share

the same previously presented observation and actions spaces, and the same network archi-

tectures, but differ in terms of the reward function and the learning process.

4.6.1 Model 1: MDRL with Shaped Rewards (MDRL-SR)

This section presents the first model tackling the target localization problem in complex

environments.

Reward Function: This model uses a shaped reward function to guide the learning

process. To push the agents to cooperate, the reward function is also team-based (joint)

[41]. Following the actions taken individually by the agents, the environment releases a

shared (equal) reward to all the agents based on the joint actions. This helps the team in

realizing the advantage of taking actions that benefit the team.

At a given time step, and given N agents with the joint action at at step t, the reward

function is given as:

78

Rt =

−b+ 1 if min(Dt) < min(Dt−1)

−b− 1 otherwise
(8)

where D is the set of distances between the agents and the target, and b be the number of

agents that took a moving action (i.e. did not choose to stay idle). The (−b) term represents

the cost of movement, being -1 for each agent that moves. The second term (±1) assesses

if the agents have gotten closer to the target or not. At step t, the team is considered to

have gotten closer to the target if the closest agent (or one of the closest agents) to the

target at step t − 1 gets closer to the target at step t, i.e. if min(Dt) < min(Dt−1). For

example, considering the scenario in Fig. 1.1, the team would get a reward of -2 at t0 (3

agents moved and the team got closer to the target), a reward of -2 at t2 (1 agent moved

and the team did not get closer to the target), and a reward of 0 at t3 (one agent moved and

the team got closer to the target). It is worth mentioning that the reward function is used

only during the training stage (offline in simulations) as a feedback mechanism to assess

the actions taken by the agents. While the reward function is based on the distance to the

target, the agents solely act based on their observations, with no knowledge of the target

location. Once the training is completed, i.e. during the inference/deployment stage, the

reward function is omitted, and the agents exploit whatever policy they have already learnt.

Distance-based reward functions are common in similar works, as in [2, 44, 81].

Using this shaped reward, the agents get feedback throughout the episode, and not only

when the target is localized, which helps in learning even if the episode terminates without

finding the target. The agents are motivated to finish the localization quickly, to accumulate

less moving cost. Additionally, the agents are motivated to cooperate in order to move only

when necessary (i.e. when they can contribute to the task), which helps in performing the

task efficiently while managing resources.

79

To compute the distance between the agents and the target (during learning), conven-

tional methods like Euclidean/Manhattan distance cannot be used due to the existence of

walls. To tackle this, the proposed model uses the m× n gridded AoI presented in Section

4.3, along with the Breadth First Search (BFS) method to compute the shortest distance

between each agent and the target. BFS starts from an initial node, and gradually explores

paths starting from this node until the goal is reached. A path here is given as a set of

grid elements that lead the agent to the target. It is computationally expensive to perform

BFS at each time step, for each agent. To expedite the process, at the beginning of each

episode, a distance map is built by computing the distance between the target and all the

grid elements in the AoI grid. This can be done with a single BFS process by setting the

starting node as the target’s location and ignoring the goal check in the BFS algorithm. As

a result, BFS would continue to explore all nodes, and hence compute the distance to all

the grid elements. A sample of the distance map is shown in Fig. 4.5.

Figure 4.5: An example of the distance map obtained at the beginning of an episode. Each cell
contains a value representing the shortest distance (in number of steps) between the cell and the
target (marked with ×).

Learning Process: This model follows a Centralized-Learning & Decentralized-Execution

(CLDE) [41] method, with PPO to train the actor/critic networks. The training process is

80

similar to that explained in Algorithm 3.3. Each episode starts with a reset that returns the

initial observations for each agent (o0 = (o01, ..., o
0
N)). Each agent gets a copy of the actor

network, which takes a set of observations for agent j and returns an action aj . Each of

the agents acts in the environment and receives a set of new observations, a shared reward

(the same for all agents), and a termination flag (d) indicating whether the episode is fin-

ished or not. These items are stored in their corresponding buffers, and later used (after H

timesteps) to update the actor and critic networks. H here represents the horizon, i.e. the

number of steps in the environment after which a PPO update occurs. During deploymen-

t/inference, only the actor network is used, where each agent gets a copy of the network

and acts in a distributed manner. This model proves efficient in obtaining agents that are

capable of localizing the target in complex environments, as will be shown in Section 4.7.

The proposed reward function helps in pushing the agents to quickly localize the target,

while cooperating to manage resources. However, the complexity overhead of using BFS

in each episode could be reduced, which is the purpose of the second model.

4.6.2 Model 2: MDRL with Demonstration Cloning (MDRL-DC)

This model builds on the first model by introducing a novel concept: Demonstration

Cloning (DC). The main idea here is to use an existing expert to guide the agents into

collecting better experience. An expert is an existing agent that has expertise in tackling

the same environment. In this work, a semi-expert is defined as an agent that has expertise

in tackling a similar environment that slightly differs from the current one.

Reward Function: As discussed in Section 4.6, the reward function in Eq. 8 is com-

putationally expensive, as it requires performing BFS in each episode. Alternatively, this

model uses a sparse reward function given as:

81

Rt =

−b+ S if target is localized

−b otherwise
(9)

where S is a constant representing the sparse reward given to the agents if the target is

found. This reward function maintains the same cost penalties as the ones in Eq. 8, but

gives a large positive reward only when the target is localized.

Learning Process: The idea of using expert demonstrations with RL is derived from

Imitation Learning (IL). In IL, agents learn to mimic the behavior of an expert by using

expert demonstrations as a labeled dataset in a supervised learning process, in which the

aim is to reduce the loss between the agent and expert actions. Unlike RL, the concept of

rewards does not exist in IL, as agents solely consider the expert as the main reference,

without any input from their own experience. The work in [49] proposed using expert

demonstrations with off-policy RL, where demonstrations are combined in the same buffer

as agents’ experiences and used to update the networks. Other works combine IL with off-

policy [48] and on-policy [17] RL. In these works, the proposed models alternate between

using the agent’s own experience (i.e. rewards) and IL (i.e. mimicking an expert with no

rewards). One issue in such works is the assumption that an expert, who is fully suited for

the environment, exists. This limits the usability of such methods, as such experts may not

always be available.

In this work, we propose MDRL-DC, a method that utilizes expert demonstrations

while always maintaining the "learning from rewards" concept in RL. The proposed model

alternates between RL and DC as follows: during RL, the agents explore the environment

using the actions suggested by their own actor networks. During DC, the agents explore

the environment based on the actions suggested by the expert. This way, while the expert

guides the learning during DC, the agents are still learning based on their own experience,

i.e. based on the rewards collected. This could result in better experiences, where the

82

agents are more exposed to the sparse reward. This allows the use of semi-experts, i.e. ex-

perts that are familiar with similar environments but not necessarily the same environment.

Bad actions suggested by the semi-expert will be identified through the collected rewards.

Using the aforementioned works (RL+IL) with such semi-experts would not be efficient,

since they are not fully suitable for the current environments, and agents during IL have

no inputs in deciding whether an experience is good or not. As a result, the agents during

the IL phase may learn what is against the learnt policy during the RL phase, resulting in a

slower and potentially unstable learning.

Figure 4.6 and Algorithm 4.1 illustrate and summarize the learning process of this

model, which alternates between RL and DC. At the beginning of each episode, an ex-

pert probability E determines whether the episode will follow RL or DC. During RL, the

process is similar to that described in Algorithm 4.1, where agents act based on their copies

of the actor network, and their experiences (observations, rewards, idle flags) are buffered.

When the expert is switched on, the expert takes the observations seen by the agents and

suggests actions. These actions are then followed by the agents and the corresponding ex-

periences are stored in the same buffers as the previous experiences. One key point here is

that the actions suggested by the expert are conditioned on being probable under the agents’

actor networks. This is because PPO is an on-policy algorithm, which means that the sam-

pled actions need to follow the most recent version of the actor network. To handle this,

a hyperparameter l is proposed, which represents the minimum probability needed, under

the agent’s own policy, for an action to be considered. In the proposed model, instead of

suggesting the best action, the expert ranks all possible actions from best to worst, given

higher values to better actions. An agent then takes the best action a, as suggested by the

expert, that satisfies P (a) > l, where P is the probability distribution over the actions given

by the agent’s own policy. This way, the demonstrations given by the experts can help the

agents get more exposed to rewards, while not violating the agents’ own actor networks

83

for on-policy learning. It is also worth mentioning that, despite using a fixed expert rate E

throughout the learning, the effect of the expert is automatically annealed as the learning

progresses. This is because the actor network becomes increasingly more confident, which

results in less actions meeting the P (a) > l condition.

Figure 4.6: MDRL with Demonstration Cloning.

It is assumed that there is access to the expert policy, and hence expert demonstrations

can be generated online as needed. This is suitable for problems like target localization,

where the expert could be previously trained on simpler environments (with no walls or

with a single agent).

4.7 Experiments and Evaluation

This section presents several experiments conducted to evaluate the performance of the

proposed methods. Simulations have been conducted using an Intel E5-2650 v4 Broadwell

workstation equipped with 128 GB RAM, 800 GB SSD, and NVIDIA P100 Pascal GPU

(16 GB HBM2 memory).

The performance of the proposed models is analyzed in terms of episodic length and

84

Algorithm 4.1: The training process for the second model
Input: Initial actor and critic networks, Expert policy
1: while Step ≤ MaxNumOfSteps do:
2: o0 = Env_Reset() #initial observations
3: ExpertProb = rand() #generate a random probability
4: for i = 0, 1, 2, ..., Episode_Length:
5: for j = 1, 2, ..., Team_Size:
6: P j = actor(oij) #get prob. dist. under actor network for agent j
7: if ExpertProb < E :
8: ae = Expert(oij) #get the action values from the expert, sorted from best to worst
9: ae[P j[ae] < l] = 0 #mask out actions that do not meet the threshold l.
10: aij = max(ae)
11: else:
12: aij = sample(P j) #sample an action from the actor distribution
13: end for
14: ai = [ai1, a

i
2, ...]

15: oi+1, ri, di = Env_Step(ai)
16: Store oi+1, ai, and ri in their corresponding buffers
17: Step = Step + 1
18: if Step % H == 0 then: #PPO update
19: Compute the advantage estimate Â
20: Update the actor and critic networks using LCLIP+V F+S(θ)
21: Empty all buffers
22: end if
23: if di == 1 then break #if episode terminates
24: end for
25: end while

cost. As discussed in Section 1.1, the main aim of the target localization methods is to

achieve fast localization with low cost. The localization time is measured here by the

episodic length, i.e. the number of steps it takes the agents from the beginning of the

episode until the target is localized. The cost is given as the total number of movement

steps taken by the agents, since a moving action reflects consumption of resources. In

a single episodic step, the cost could be as low as 0 (no agents move) or N (all agents

moved). At each step, each of the agents takes one of the 9 actions discussed in Section

4.4. A moving action moves the agent 50m in the chosen direction, after which another

step (action) is required to carry on, based on newer observations. The maps dimensions

85

(m × n) are set to 30×30, while the reduced dimensions are with a window size (w × w)

of 7×7. For all the experiments, a problem of radioactive target localization is used as an

environment, as discussed in Section 3.7.1.

For all the following experiments, each of the models was trained for 50 million steps.

Each step represents a single interaction between the agents and the environment. In each

training episode, the environment is reset with a randomized target and agents’ locations,

and with randomized walls placements and lengths. The number of walls is fixed for a sin-

gle experiment. Walls here are always originating from the sides of the AoI. It is assumed

that an agent cannot start in the same location as the target or another agent. An episode

terminates when the target is found, or when a limit of 100 timesteps is reached. After

every 40,000 training steps, the average results of 4,000 testing steps, where the agents act

greedily based on the latest policy update, are recorded and plotted. The list of hyperpa-

rameters used in training PPO, CAE, and DC, are shown in Table 4.1. The values for ε, c2,

γ, and λ are set as suggested in the corresponding PPO work [31].

Table 4.1: Hyperparameters used for PPO and CAE training.

PPO Hyperparameters Value
Learning rate 3× 10−4

PPO clipping parameter ε 0.2
Entropy coefficient c2 0.01

Discount factor γ 0.99
Discount factor λ 0.95

Timesteps per update (Horizon H) 4000
Number of epochs per update 20

CAE Hyperparameters Value
Learning rate 1× 10−3

Embedding Size d 128
Dataset Size 100000

DC Hyperparameters Value
Expert Rate E 0.2

Action Probability Threshold l 0.05

86

4.7.1 Performance of MDRL-SR

This section studies the performance of the MDRL-SR model in varying scenarios of

team size and environment complexities. Specifically, the number of agents is varied from

1 to 4, while the number of walls is varied from 0 to 3. Fig. 4.7 and Fig. 4.8 show

the episodic length and cost obtained throughout the learning process. As seen in all fig-

ures, the learning converges regardless of the team size or the environment complexity,

with faster convergence in simpler environments. For all of these figures, the localization

success rate is 100% at the end of the learning process, showing the effectiveness of the

proposed approach. Intuitively, and as seen in the figures, longer episodes with higher cost

are obtained as the environment gets more complex (more walls), since agents need more

steps to navigate through the environment, and since more walls result in more attenuation

of the radioactive readings, and hence harder localization.

As seen in Fig. 4.7, faster localization is achieved as the team size is increased from

1 (Fig. 4.7a) to 4 (Fig. 4.7d), for all environment complexity levels. On the other hand,

the cost follows a slightly different behavior in Fig. 4.8. The episodic cost is affected by

two factors: the episode length and the team size. Though having a bigger team results in

more cost per step, on average, yet bigger teams result in faster localization, as per Fig.

4.7, and hence less total cost per episode. This trade-off depends on the complexity of the

problem. For example, in the case of simple environments with 0 or 1 wall, it can be seen

that the cost is slightly reduced as the team size increases. That is, even when increasing

the number of agents, the cooperation achieved by the agents results in faster localization

at lower cost, as agents learn to prefer the IDLE action if they are not beneficial to the

localization process (as discussed in Section 1.1). For more complex environments (2 or 3

walls), more exploration is needed since readings are significantly attenuated. As a result,

increasing the number of agents could result in increasing the total cost, as seen when

comparing Fig. 4.8a with Fig. 4.8b for the cases of 2 and 3 walls. This cost saturates at a

87

certain team size, indicating that enough agents are available to handle the task and balance

their resources without the need of unnecessary exploration. For example, for the case of

2 walls, the cost slightly increases from 20 to 38 when going from a team of 1 member to

two members, then saturates around the same cost for higher team sizes. This saturation

point happens at a later team size for a more complex environment of 3 walls, as the cost

increases from 36 to 53 as the team size is increased from 1 to 3, and saturates for higher

team sizes. This saturation, in all the aforementioned scenarios, is an indication that the

agents have achieved good cooperation and resource management, even when the team size

is increased.

(a) Team size = 1 (b) Team size = 2

(c) Team size = 3 (d) Team size = 4

Figure 4.7: The episodic length throughout the learning for a system of (a) one agent, (b) two
agents, (c) three agents, and (d) four agents, for varying numbers of walls within the environment

88

(a) Team size = 1 (b) Team size = 2

(c) Team size = 3 (d) Team size = 4

Figure 4.8: The episodic cost throughout the learning for a system of (a) one agent, (b) two agents,
(c) three agents, and (d) four agents, for varying numbers of walls within the environment

4.7.2 Performance of MDRL-DC

This section analyzes the performance of the MDRL-DC model in comparison with the

MDRL-SR model. This is done for teams of size 3 to 4 agents, in a complex environment

of 3 walls. The performance of MDRL-DC with two different semi-experts is studied. The

first is an expert in a multi-agent free environment (no obstacles) while the second is an

expert in a single-agent complex environment. The first expert is familiar with cooperation

(and not complex environments), while the second expert is familiar with complex envi-

ronments and not cooperation. Additionally, to show the drawback of using sparse rewards

(without experts), the model MDRL-Sparse is included in the comparison. A sparse reward

89

with the value S =50 is used, as this was found to be sufficient to incentivize the agents.

Figures 4.9 and 4.10 compare MDRL-SR with MDRL-Sparse and MDRL-DC in terms

of episode length and cost. It is evident, when comparing MDRL-Sparse to the rest of the

models, that using a sparse reward results in poor performance, which is due to the fact that

agent is rarely exposed to the reward. It can also be seen that, when using a free expert,

MDRL-DC is at least as good as MDRL-SR, if not better. This is significant since MDRL-

DC is able to overcome the reward sparsity using expert demonstrations, and achieve a

performance similar to a MDRL-SR that uses a shaped reward. Additionally, since the

computationally expensive shaped reward is emitted in MDRL-DC, the learning process of

50M steps consume nearly 47% less wall-clock time when compared to MDRL-SR. When

looking at the behavior of MDRL-DC with a free expert in Fig. 4.9, it can be seen that

the performance is similar to MDRL-SR in terms of episode length. However, it can be

seen in Fig. 4.10 that MDRL-DC with a free expert has a slightly better performance when

compared to MDRL-SR, as it achieves faster convergence. This is attributed to the fact

that the free expert is familiar with cooperation, and hence is capable of guiding the new

agents into learning this attribute quicker. On the other hand, MDRL-DC with a complex

expert slightly outperforming MDRL-SR in terms of time and cost, while maintaining the

same 47% less wall-clock time for the learning process. This shows that, despite using a

sparse reward and semi-experts that are not fully familiar with the same environments, the

proposed DC method is able to achieve similar, if not better, performance to a system with

shaped reward at almost half the runtime.

4.7.3 Benchmarks

This section compares the performance of MDRL-DC with several benchmarks. These

benchmarks are either MDRL-based target localization or traditional target localization

90

(a) Team size = 3 (b) Team size = 4

Figure 4.9: The episodic time throughout the learning for a system of (a) 3 agents and (b) 4 agents,
in an environment of 3 walls, for different learning models

(a) Team size = 3 (b) Team size = 4

Figure 4.10: The episodic cost throughout the learning for a system of (a) 3 agents and (b) 4 agents,
in an environment of 3 walls, for different learning models.

methods. In all of the following results, a simulation environment of 3 agents with a vary-

ing complexity of 1-3 walls is used to compare the performance in terms of episode length

(time) and cost. The produced agents, following the training process, are placed in ran-

dom environments for inference, where the episode length and cost is averaged over 1000

different episodes.

Figure 4.11 compares the performance of MDRL-DC with 3 other deep RL models and

2 traditional methods, which are:

91

• ODMTL: the MDRL approach for target localization [44] in free environments (no

obstacles), which was developed in Chapter 3. This model ignores the existence of

walls and attempts to localize the target without considering them in agents’ obser-

vations.

• MDRL-IL: a MDRL model that alternates between RL and Imitation Learning (IL)

[17]. Unlike our proposed model, the agents in MDRL-IL during the IL stage blindly

copy the behavior of the expert into their actor networks using Behavioral Cloning

(BC), without having to experience any rewards in the environment.

• Bayesian: a multi-agent cooperative approach using Bayesian methods [11, 15]. In

[15], a Bayesian framework is used to build and update local probability density

functions (PDFs) of the target location, which are shared between the agents to build

a global PDF. This is used in an optimization objective that aims to find the target

while balancing resources consumption between agents.

• Uniform: a traditional method where each agent moves in a pre-defined path that

uniformly covers the area [40].

As can be seen in the figure, the performance of the ODMTL model significantly falls

behind the proposed MDRL-DC. Specifically, MDRL-DC has 50% less localization time

and 24% less cost, on average, when compared to ODMTL. This shows the significance

of considering walls/obstacles, as they have effects on sensor readings and agents planned

paths. While both MDRL-IL and MDRL-DC use experts’ demonstrations during the train-

ing, their performances are different. Here, both models use an expert that is familiar with

single-agent complex environments. When analyzing Fig. 4.11a, similar performance in

terms of episodic length is noticed when comparing both models. However, when ana-

lyzing Fig. 4.11b, the significance of MDRL-DC can be noticed. Since the expert is not

familiar with cooperation, the agents in MDRL-IL struggle to cooperate. Even though these

92

agents could learn cooperation during the RL stage (which is 80% of the learning), this is

overwritten by BC in the IL stage, since the expert always acts greedily and has no sense

of the other agents. On the other hand, since the agents in MDRL-DC learn based on their

own experience/rewards, they can identify through rewards if such experiences are good

or bad, even if suggested by the expert. As a result, the model outperforms MDRL-IL,

and shows its ability of using demonstrations from semi-experts. Specifically, the model

achieves 32% less cost, on average, when compared to MDRL-IL.

(a)

(b)

Figure 4.11: Performance comparison between the benchmarks in terms of (a) episode length and
(b) episode cost, throughout the learning process.

93

When compared to traditional target localization methods, MDRL-DC shows domi-

nance. Traditional methods could be efficient in handling free environments, but struggle

with complex environments with walls, as such environments are difficult to define and

represent. When compared to Bayesian methods, MDRL-DC localizes the target with 63%

less time and 43% less cost, on average. On the other hand, uniform search methods do

guarantee finding the target, since the agents scan the entire area, however this comes at

huge costs, since all the agents are always active.

4.8 CONCLUSION

In this chapter, the problem of target localization in complex environments is tackled,

where two MDRL models are proposed. Agents’ observations are modeled as 2D heatmaps

that capture essential information about their locations and readings, in addition to infor-

mation about the environment complexity in terms of walls distribution. Convolutional

Autoencoders are used to create embeddings to represent walls, while Convolutional Neu-

ral Networks are used for the actor-critic structures in the Proximal Policy Optimization

algorithm that is used to optimize the learning. The first model, MDRL-SR, uses a shaped

reward function, based on breadth first search, to guide the agents into cooperating to local-

ize the target. The second model, MDRL-DC, builds on the first model by using a sparse

reward instead, combined with a novel Demonstration Cloning method that utilizes expert

demonstrations to guide the learning of the new agents. MDRL-DC was found to achieve

similar, if not better, performance as MDRL-SR despite using a sparse reward, and while

consuming 47% less wall-clock time. MDRL-DC has also shown dominance when com-

pared to existing benchmarks, including traditional localization methods and DRL-based

methods. Specifically, MDRL-DC is found to achieve up to 63% less localization time and

43% less localization cost, when compared to traditional methods. When compared against

works that combine reinforcement and imitation learning, it was seen to achieve 32% less

94

cost during the localization process, indicating its ability to produce better cooperative

agents.

95

Chapter 5

Blockchain-assisted Demonstration

Cloning for Multi-Agent Deep

Reinforcement Learning

5.1 Introduction

In this chapter, we build upon the Demonstration Cloning (DC) method introduced in

the previous chapter by integrating a blockchain-assisted framework to facilitate the sharing

of pre-trained MDRL models across multiple users. As environments become more com-

plex, the need for faster learning and robust collaboration between agents becomes even

more critical. However, training agents from scratch in such scenarios is time-consuming

and resource-intensive. To address this, we propose a novel Multi-Expert Demonstration

Cloning (MEDC) method that leverages models from multiple experts to assist in training

MDRL solutions. The blockchain is used for decentralized sharing of pre-trained models.

The proposed methods are tested on the target search and localization problem, as well as

other similar problems such as maze cleaning and fleet coordination.

96

Despite its great achievements, DRL comes with several challenges that hinder its us-

ability. One challenge is sample efficiency, which refers to the difficulty of learning from

insufficient interactions with the environment, due to the high cost of collecting such in-

teractions. This problem has been recently tackled by several works using Federated Re-

inforcement Learning (FRL) [57, 82, 83], in which multiple agents learn from their local

experiences and periodically share their models to be aggregated in a global model, which

is then shared to all agents. Another challenge associated with DRL, and amplified in

MDRL, is the curse of dimensionality, which refers to the increasing size and complexity

of the state and action spaces with the increasing number of agents [22]. This challenge is

further amplified with the use of sparse rewards, which are rewards that are rarely present

in the state space of the environment. One common sparse reward function is to assign

a single reward value only when the task is successfully completed, such as delivering a

checkmate in a game of chess or destroying the opponent team’s Ancient in a game of

Dota. This increases the difficulty of the learning, as the agents are rarely exposed to the

reward, especially in the early stages of the learning where the agents act randomly in the

environment to collect experiences. This has been addressed through reward shaping, in

which specific reward functions are designed for each problem with the aim of exposing

the agents to the reward frequently in the environment [46, 84, 85].

The existing methods in the literature suffer from several drawbacks when tackling the

aforementioned challenges. While FRL helps in addressing the sample efficiency issue,

faulty and inaccurate shared models could adversely impact the aggregated model (back-

door poisoning attacks), leading to severe difficulty in learning [86]. Additionally, in appli-

cations where the models are represented as deep neural networks (DNN), the architecture

of the DNN might vary from one user to the other. In FRL, the global model is obtained

by averaging the shared models, which cannot be simply achieved if the models are of

different architectures, and would require additional steps (such as knowledge distillation)

97

that increase the computational overhead. This constrains all the FRL nodes to use the

same DNN architecture, which is inefficient as some nodes might have capabilities to train

more complex architectures than other nodes. In knowledge distillation, a smaller model

(student) is trained to mimic the behavior of a larger and more complex model (teacher).

While this allows different DNN architectures to learn from each other, knowledge distilla-

tion algorithms usually train both the student and teacher models using the same data (i.e.

same application), since they are only concerned with reducing the complexity of the model

[87]. Therefore, applying the aforementioned methods in RL environments of inherently

different dynamics leads to struggles in learning convergence [56]. This is mainly because

these methods operate directly on the model weights by averaging models (FRL) or alter-

ing weights according to external models (student-teacher), without verifying if the source

models are suitable for the current environment dynamics. On the other hand, while reward

shaping helps in providing frequent feedback to the agents during training, shaped reward

functions require considerable engineering and experimentation, and could frequently lead

to unstable learning or convergence to local optima [48, 49].

In summary, existing works suffer from the following drawbacks:

(1) FRL methods can be severely impacted by faulty or malicious models, which affects

the performance of the aggregated model.

(2) Typical FRL methods do not allow for different DNN architectures to be used in the

same process.

(3) FRL and knowledge distillation methods cannot handle models from environments

of different dynamics.

(4) Methods based on reward shaping require considerable engineering and could lead

to local optima.

To tackle the aforementioned issues, we propose a Blockchain-assisted Multi-Expert

98

Demonstration Cloning (MEDC) for MDRL. Inspired by Imitation Learning (IL), MEDC

is a novel method that uses expert demonstrations in guiding the learning of new MDRL

agents. Rather than averaging MDRL models, the proposed method utilizes experiences

from previously trained models (experts) to suggest actions for new MDRL agents to fol-

low during the training. This enhances the quality of the new collected experiences and

helps the agents get more exposed to sparse rewards. The proposed method utilizes the

suggested actions from the expert models in guiding the learning, without the need of ag-

gregating or averaging, which allows for models of different architectures to be utilized in

the same learning process. Additionally, the proposed method is resilient to faulty and ma-

licious expert models, since the new agents are still learning based on their own experiences

and rewards, which would reflect bad actions if suggested by experts. To allow for model

sharing across different users, a framework based on a Consortium Blockchain is proposed,

in which users share or request expert models. Model sharing on centralized servers, as in

the typical FRL systems, introduces several issues including single point-point-of-failure,

the need of a single trusted server, and the vulnerability to security bottlenecks such as

the modification of the information shared by FRL nodes [88]. Unlike centralized cloud

computing, Blockchain helps in providing a decentralized, transparent, and autonomous

platform for model sharing with no repudiation. A Consortium Blockchain, specifically,

provides better privacy, scalability, and efficiency when compared to public Blockchains

[89], and better allowance for collaboration and data sharing between entities when com-

pared to private Blockchains, making them suitable for model sharing. The InterPlanetary

File System (IPFS) is used to manage the storage of models, and Smart Contracts (SCs) on

the Blockchain are designed to manage the model allocation across users, while consider-

ing the models’ contexts and performances, as well as the users’ reputations. In summary,

the contributions of this work are as follows:

(1) The design of a novel multi-expert Demonstration Cloning (MEDC), a method that

99

utilizes experiences from multiple trained models to guide the learning of new MDRL

agents.

(2) A Consortium Blockchain-based framework for model sharing across MDRL users,

with the assistance of IPFS for storage.

(3) A model allocation mechanism, implemented through smart contracts, which con-

siders the models’ quality and users’ reputations when assigning models to users.

Collectively, the entire proposed framework is responsible for managing model sharing

on the Blockchain, and training through MEDC locally, and is generally described in Fig.

5.1. Users locally train their MDRL models for their respective problems and share models

via IPFS to the Blockchain, with the hope of receiving incentives. A user can request

a set of models from the Blockchain for a certain pre-determined price. The requested

models can be used locally with MEDC. The smart contracts on the Blockchain manage

users’ registrations and model submissions, in addition to allocating suitable models for

users based on their requirements. The owners of the shared expert models are then paid

accordingly, which incentivizes users to share their models.

Figure 5.1: A general overview of the proposed framework.

The proposed methods are evaluated for the problem of target localization, where sens-

ing agents are to be trained using MDRL to learn how to localize a radioactive target by

progressively searching the area of interest. The environment of the problem could be of

100

many different complexities, i.e. with varying number of agents or environment obstacles,

which represents a suitable scenario for model and knowledge sharing across the different

environments of the same problem. The adaptability of the proposed methods is tested on

other applications, such as fleet coordination and maze cleaning, which are typical envi-

ronments used to test MDRL algorithms. The proposed methods are tested and analyzed in

terms of learning performance, showing scalability to different environments and resilience

towards faulty models. The proposed methods are also benchmarks against works in FRL,

Reward Shaping, and IL-assisted RL, showing dominance in terms of performance.

5.2 Multi-Expert Demonstration Cloning (MEDC)

The main idea of the proposed MEDC method is to use demonstrations from experts to

guide the MDRL agents into collecting better experiences. In MDRL environments with

sparse rewards, better experiences are defined as ones where the agents are more frequently

exposed to the sparse reward. In this work, and for a given problem of interest, an expert is

defined as a previously trained model with expertise in tackling a similar environment. On

the other hand, a semi-expert is one with expertise in tackling a similar environment that

slightly differs in complexity. For example, in the problem of target localization with a team

of 5 agents in an area that has 3 obstacles, an expert model is one that has been previously

trained on a similar environment, while a semi-expert model is one that has been trained

on a target localization environment with only a single agent. The semi-expert is not fully

capable of tackling the current environment (5 agents), but can still provide some guidance

that would be better than acting randomly in the environment. One of the main issues faced

in MDRL with sparse rewards is the rare occurrence of reward states, which is dominant

in the early stages of the learning where the agents’ policies produce randomized actions.

The proposed method aims at utilizing demonstrations from experts and/or semi-experts to

assist a new MDRL process by providing better experiences with more rewards during the

101

learning stage.

In this work, the proposed MEDC method utilizes the experiences from multiple experts

(or semi-experts) to guide the learning of the new agents, while maintaining the “learning

from rewards" concept in RL. In the proposed method, the learning alternates between

MDRL and MEDC. During MDRL, the agents take actions in the environment based on

their policy networks, and collect rewards accordingly. During MEDC, the experts sug-

gest actions to be followed by the MDRL agents to explore the environment. Here, even

though the actions are suggested by the experts, the agents still learn from their own exe-

cution of those actions, i.e. based on the collected rewards. As a result, experiences with

more frequent occurrence of reward states are expected. This method is resilient to faulty-,

malicious-, and semi-experts, i.e. models that might occasionally suggest bad actions, as

such actions could be identified through the collected rewards. This is unlike the methods

using IL, in which bad- or semi-experts would significantly deteriorate the performance of

the new agents who have no input in deciding whether the suggested actions are good or

bad.

The learning process of MDRL with MEDC is described in Fig. 5.2, which is an exten-

sion to the previously proposed DC method in Section 4.6.2, Chapter 4. At the beginning of

each episode, an expert probability RE determines whether the episode will follow MDRL

or MEDC. During MDRL (i.e. the switch is closed), a typical process is followed where

agents act based on their copies of the actor network. During MEDC, i.e. when the switch

is on, one of the experts is selected, which takes the observations seen by the agents and

suggests actions. The selection of the expert, out of the available experts, is done using

a roulette wheel based on the attribute RS , which is a common way used for selection

[90, 91]. In this method, each candidate is associated with a probability which is pro-

portional to RS , where experts with higher RS have higher probability of being selected.

After arranging the experts on a roulette wheel according to their probabilities, the wheel

102

is spun to randomly select an expert. In this work, the attribute RS reflects a similarity

measure between the environment of the expert and the current environment of interest.

The method of computing RS depends heavily on the application. Some applications favor

the number of agents as a measure of similarities, where environments with similar num-

ber of agents are favored, while other applications have problem-specific attributes related

to the environment dynamics. In this work, we use a QoS (Quality of Service) metric to

obtain the value of RS , which is later discussed in Section 5.4. Experts trained on environ-

ments/problems similar to the one of interest are more probable to be selected than ones

trained on slightly different environments. Experts with lower similarities are still desired,

as they introduce some variance in the experiences collected, which could be beneficial to

the learning process. The actions suggested by the expert are then followed by the agents

and the corresponding experiences are stored. This method is resilient to faulty-, malicious-

, and semi-experts, i.e. models that might occasionally suggest bad actions, as such actions

could be identified through the collected rewards.

Figure 5.2: The proposed Multi-Expert Demonstration Cloning method.

Since PPO is an on-policy RL algorithm, the sampled actions taken by an agent should

103

follow the agent’s latest policy. If an agent follows actions that are not probable under their

own policies, the learning would be unstable. To tackle this in the proposed MEDC method,

the actions suggested by an expert are followed by the agents only if they meet a probability

condition l. Given a probability distribution P generated by the agent’s policy over the

actions, an action a suggested by an expert is followed by the agent only if P (a) > l.

During MEDC, the expert ranks the possible actions, and the agent picks the best action

that satisfies the l condition. This helps utilize demonstrations to collect better experiences,

while not violating the on-policy learning. The value of l should be selected in a way that

balances between the expert involvement and the on-policy learning. A very high value of l

might limit the benefit of using an expert, as most of the suggested actions would not meet

the threshold. On the other hand, a very low value of l results in most of the suggested

actions being followed by the agents, even those that are far from the agents’ own policy,

which could lead to unstable learning when using the on-policy PPO. At later stages of

the learning, the agents become more confident of their decisions, and the involvement of

experts gets reduced since actions suggested by them will rarely meet the l threshold. This

is because the probability distribution P is concentrated in one action, and all other actions

would have very low probabilities.

Algorithm 5.1 describes the learning process of MDRL with MEDC. The process is

similar a typical MDRL process (Algorithm 3.3), with the addition of MEDC (lines 3 and

7-14) that only affects the action selection process. Before the beginning of each episode,

a randomly generated probability (ExpertCheck) determines if the episode follows MDRL

or MEDC. If the value does not meet the Expert Rate (i.e. ExpertCheck ≥ RE), then the

agents follow a typical MDRL process. If the Expert Rate is met (i.e. ExpertCheck < RE),

the agents follow MEDC. Here, a roulette wheel selects which expert model to use ac-

cording to their RS values. The agents’ observations are fed into the chosen expert model,

104

which returns the suggested expert actions (ExpActions). For each agent k, the expert ac-

tions that do not meet the threshold l under the agent’s policy distribution Pk are eliminated.

The agents then follow the most valued expert actions in the environment to collect experi-

ences. The process repeats throughout the episode, and the collected experiences are then

used to update the actor and critic networks.

Algorithm 5.1: Training MDRL with MEDC
Input: Environment dynamics, actor/critic networks, Expert Models, Simi-
larity Measures (RS), Expert Rate (RE)
1: for i = 0,1,...,TotalSteps:
2: o0 = reset()
3: ExpertCheck = rand() #random probability
4: for j = 0,1,. . . ,EpisodeLength:
5: for k = 1,2,. . . ,TeamSize:
6: Pk = actor(ojk) #probability distribution under agent k’s actor
7: if ExpertCheck < RE then: #MEDC
8: ExpertModel = RouletteWheel(ExpertModels, RS)
9: ExpActions = ExpertModel(ojk) #expert suggested actions
10: for x = 0,1,. . . ,len(ExpActions):
11: if Pk[x]< l:
12: ExpActions[x] = 0 #exclude improbable actions under Pk

13: end for
14: ajk = argmax(ExpActions) #take most probable action
15: else:
16: ajk = sample(Pk) #sample an action from Pk

17: end if
18: end for
19: aj = [aj1, a

j
2, . . .]

20: oj+1, rj, f j = Step(aj)
21: Store oj+1, aj , and rj

22: if i % H == 0 then: #PPO update
23: Compute Â using the collected experiences
24: Use LCLIP (θ) to update the actor and critic networks
25: end if
26: if f j == 1 then break #if the episode is done
27: end for
28: end for

105

5.3 Blockchain-based model sharing for Demonstration

Cloning

This work proposes a Blockchain-based framework that complements the MEDC method.

The framework is responsible for managing the users’ registration, model submission, and

appropriate model allocation to requesting users. A Consortium Blockchain is used due to

its ability to offer increased privacy, shared control, efficiency, cost savings, and trust for

multiple organizations or entities collaborating on a project or sharing data [92]. A Con-

sortium Blockchain is operated by a group of entities, which introduces increased privacy

and trust when compared to public Blockchains, and more collaboration allowance when

compared to private Blockchains. This makes Consortium Blockchains suitable for data

sharing across entities, and hence suitable for the purpose of model sharing in the proposed

framework.

A high-level view of the proposed framework is shown in Fig. 5.3. The framework is

built using two smart contracts: 1) Users Manager Contract (UMC) and 2) Models Manager

Contract (MMC). The users interact with the UMC to register in the system and add their

information. Users could also share their trained models by interacting with the MMC,

with the hope of receiving incentives if the models are requested and used by other users.

A user could share their trained model on IPFS, which returns a unique Content Identi-

fier (CID) that can be used to access the file. The IPFS is a protocol designed to create

a content-addressable Peer-to-Peer (P2P) decentralized file system [93]. Users share the

CID with the MMC when submitting a trained model, along with information describing

the problem and the environment details. In the proposed framework, the user indicates

the problem of interest from a set of pre-defined problems. Additionally, the environment

details are given as a tuple of pre-defined features that the user needs to specify. For ex-

ample, in the field of target localization, the problem is defined as "target localization",

106

while the environment details could be given as (Number of agents = 3, Number of tar-

gets = 1, Number of obstacles = 3). A user requests a set of models by interacting with

the MMC and specifying the requirements. The MMC allocates suitable models after the

requester submits the required payment, which is shared with the model owners. This

incentivizes users to share their models with the hope of receiving payments. To further in-

centivize users to share efficient models, extra payments could be given if the shared model

meets performance requirements. Alternatively, instead of paying fixed amounts for the

shared models, model owners could have different valuations for their shared models based

on their complexities and performances. Specific cost-efficient incentive mechanisms that

motivate model owners to be truthful about their valuations are outside the scope of this

work, but some potential works include auction-based incentive mechanisms [94, 95]. For

example, one possible way is to use variations of reverse auctions, where model requestors

post their requirements on the blockchain, and model owners bid lower costs progressively.

Another example is using a variation of second-price auctions, where model owners give

valuations for their models and the lowest bid wins and gets picked by the requestor but

gets paid the second lowest bid [96].

Figure 5.3: The proposed Blockchain-assisted model sharing framework for Demonstration
Cloning.

107

5.3.1 Smart Contract Implementation

The details of the User Manager Contract (UMC) are shown in Table 5.1. The User data

structure is designed to hold user information, including their Ethereum address and repu-

tation. The Models Alloc. Count reflects the number of times the user’s models have been

allocated to other users/requesters, while the Total Review reflects the numerical sum of

all the reviews submitted by requesters upon using the user’s previously submitted models.

Using these information, user i’s reputation is computed as

Repi =
Total Review

Models Alloc. Count
. (10)

The UMC keeps users’ information in the Users List mapping, which maps a user’s

address to their User object. The addUser() function is responsible for registering users

by creating a User object and mapping it in the Users List. The updateInfo() function is

invoked when one or more of the user’s shared models are allocated to requesters, in order

to update the user’s information (Models Alloc. Count). The updateReputation() function

is responsible for updating the user’s reputation as per Eq. 10.

Table 5.1: Users Manager Contract (UMC)

Data Structure
User

User Address (address) Reputation (uint)
Models Alloc. Count (uint) Total Review (uint)

Variables
Users List (address → User)

Function Parameters Return
addUser() address -

updateInfo() No. Models -
updateReputation() Review -

The details of the Models Manager Contract (MMC) are shown in Table 5.2. The

Model data structure is designed to hold the information of a submitted MDRL model. This

108

includes the Owner’s Ethereum address, the CID generated by IPFS, the Model Reputation,

the Allocation Count of the model indicating the number of times the model has been

allocated to requesters, the Total Model Review based on previous requesters, a general

Description of the model indicating its architecture and input requirements, the Application

for which the model has been trained, and a tuple/array of Environment Details giving

values to each of the specific environment details. The MMC keeps the details of the shared

models in a Models List mapping, which maps an application to all the available models

shared by users. The addModel() function is responsible for registering the details of a

newly submitted model. The allocateModel() function is responsible for allocating models

to a requester based on their requirements. The updateModelRep() function is responsible

for updating the model’s reputation following a submitted review by a requester, which is

computed for model m as

Repm =
Total Model Review

Allocation Count
. (11)

Table 5.2: Models Manager Contract (MMC)

Data Structure
Model

Owner (address) CID (string)
Model Reputation (uint) Allocation Count (uint)

Total Model Review (uint) Description (string)
Application (string) Environment Details (uint[])

Variables
Models List (string → Model[])

Function Parameters Return
addModel() Model Info -

allocateModels() Model Requirements Model[]
updateModelRep() Review -

The allocateModel() function employs a Greedy method to allocate models to the re-

quester. A requester specifies a set of requirements including the application, the minimum

109

model reputation, the minimum owner reputation, the desired environment details, and the

number of models desired. The owner’s reputation Repi is important to consider as it re-

flects the owner’s historical performance, which is essential especially when the current

shared model is new and has not been reviewed yet. On the other hand, the model’s rep-

utation Repm reflects the effectiveness of the shared model in guiding the learning, as per

previous requesters. It is assumed that a requester pays the same amount of incentives for

each requested model, and hence the number of models requested reflects the available

budget. Models within the same application that do not meet the reputation requirements

are filtered out. The rest of the models are ranked based on the following Quality of Service

(QoS) metric:

QoSm =
Repi ×Repm

Dm

, (12)

where QoSm is the QoS of model m, Repi is the reputation of m’s owner, Repm is the

reputation of model m, and Dm is a similarity measure between the environment in which

model m has been trained and the requester’s environment. Given a set of p environment

attributes E = [E1, E2, . . . , Ep], the value of Dm is computed as

Dm =

p∑
i

wi × |Em
i − Er

i | ,
p∑
i

wi = 1, (13)

where Em is the set of environment attributes associated with the model, Er is the set of

attributes associated with the requester’s environment, and wi are weighting parameters.

The weights wi in Eq. 13 reflect the importance of each attribute. Higher values give

more significance to the difference between the environment of the model and that of the

requester, which lowers the QoS if that difference increases. All environment attributes are

given equal weights by default, unless specified otherwise by the requester in the Model

Requirements when invoking the allocateModel() function.

110

5.3.2 Framework Time Sequence

Fig. 5.4 shows a time sequence diagram for a scenario under the proposed Blockchain-

based framework for MEDC. It presents the interactions between the users and the smart

contracts constituting the framework, which are given as follows:

• User Registration: Users register to the UMC by invoking the addUser() function.

The function creates a User object and appends it to the User List. Each user is

assumed to have a single Ethereum address linked to their account. The reputations

are initialized with a value of 0.5, while Models Alloc. Count and Total Review are

initialized with a value of 0.

• Model Training (MDRL): Users locally train MDRL models for their respective

problems/applications. This step could occur at any time (before or after registra-

tion). Previously trained models could be stored by the users and shared later.

• Model Sharing: Users who wish to share their models upload the model files to

IPFS, which returns a CID for each submitted model. The users then submit model

details to the MMC by invoking the addModel() function and passing the required

information. The MMC creates a Model object and appends it to the Models List.

• Model Allocation: A user who wishes to request a set of expert models commu-

nicates with the MMC by invoking the allocateModel() function and passing the

requirements. The MMC runs the allocation mechanism and returns the models and

their details to the user. The user accesses the models files on IPFS using the provided

CIDs.

• Model Training (MDRL + MEDC) and feedback: The user utilizes the proposed

MEDC with the allocated expert models to help in training MDRL agents for the

problem of interest. The user then submits feedback reviewing the obtained models,

which are used to update the models’ and users’ reputations.

111

• Payments: The owner of each requested model is paid a pre-determined amount in

return for the shared model.

Figure 5.4: The interactions between the users and smart contracts as part of the proposed frame-
work.

5.4 Simulation and Evaluation

This section presents and discusses different experiments conducted to validate the pro-

posed methods. The experiments are first conducted in a custom environment for a task of

Target Localization, which is a complex multi-agent problem requiring agents to cooper-

ate in finding the target location. Subsequently, the adaptability of the proposed method is

tested across two additional typical Multi-Agent applications, which are Fleet Coordination

for Autonomous Vehicles [97, 98] and Multi-Agent Maze Cleaning [99]. All the simula-

tions have been conducted using an Intel E5-2650 v4 Broadwell workstation equipped with

128 GB RAM, 800 GB SSD, and NVIDIA P100 Pascal GPU (16 GB HBM2 memory).

Target localization is chosen as a real-world problem to test the proposed methods due

to the different possible variations the environment, which would be a good fit to test the

112

proposed MEDC method and compare it with FRL. The environment could vary in terms

of the number of agents or the number of walls, where each combination of agents and

walls gives a different learning problem with its own complexity. In the following experi-

ments, we first conduct analysis on the proposed MEDC and its effectiveness in achieving

good learning, in addition to its resilience to faulty or malicious models, then compare it

against existing benchmarks. Table 5.3 shows the training hyperparameters used with PPO

and MEDC. Here, the expert similarity measure RS that is used to determine the usage

rate of each expert model is proportional to the QoS of that model. We later extend the

applicability of the proposed methods to other applications such as fleet coordination and

maze cleaning.

Table 5.3: Hyperparameters used for PPO and MEDC.

PPO Hyperparameters Value
Learning rate 3× 10−4

PPO clipping parameter ε 0.2
Entropy coefficient c2 0.01

Discount factor γ 0.99
Discount factor λ 0.95

Timesteps per update (Horizon H) 4000
Number of epochs per update 20

MEDC Hyperparameters Value
Expert Rate RE 0.1

Expert Similarity RS
QoSi∑
QoSj

Action Probability Threshold Q 0.05

5.4.1 Performance of MEDC

This section analyzes the performance of the proposed MEDC method and its effec-

tiveness in guiding the learning for new agents in an MDRL system. During training, a

localization episode has a maximum length of 100 steps, and the total number of training

steps is given as 2 × 107. An episode terminates when the target is found, or when the

113

maximum episode length is reached. After every 40,000 training steps, the average results

of 4,000 testing steps, where the agents act greedily based on the latest policy update, are

recorded and plotted. In this work, the target localization problem is characterized by two

features: the number of agents and the number of walls. We report the results in terms

of episodic length throughout the learning, as it reflects the time needed by the agents to

localize the target, which is the main aim of target localization. We use the notation AyWz

to denote an environment with y agents and z walls.

To show the effectiveness of MEDC in enhancing the learning and tackling issues with

sparse rewards, Fig. 5.5 compares variations of an environment trained using MDRL and

MEDC with one that is trained using MDRL with sparse rewards. Here, the problem of

interest is one with 3 agents aiming to localize the target in an environment of 2 walls

(A3W2) or 3 walls (A3W3). Three types of experts are used to guide the learning: a “Free

Expert” is a model previously trained to tackle an environment with a single agent and no

walls (A1W0), a “Complex Expert” is a model previously trained to tackle an environment

with a single agent and 3 walls (A1W3), and “Combined Experts” refers to using both

aforementioned experts at the same time in MEDC to guide the learning. It is evident that

the used experts come from environment that are not exactly the same as the current en-

vironments of interest. Here, a better learning is indicated by a smaller episode length, as

it reflects faster localization. As shown in Fig. 5.5, using MEDC with experts from simi-

lar environments to guide the MDRL agents helps in achieving better and faster learning,

when compared to training MDRL independently using a sparse reward. Even though both

experts are not familiar with a multi-agent environment, and can only tackle a single agent

environment (hence they are not familiar with cooperation), they are partially beneficial in

guiding the new agents into collecting better experiences, especially in the initial stages

of the learning. Additionally, it can be seen that using the complex expert (A1W3) gives

better results than using the free expert (A1W0), because it is trained in an environment

114

closer to the current environment of interest. This reflects the importance of considering

the QoS (Eq. 12) when allocating expert models. In this scenario, and assuming that Repm

and Repi are constant across both experts, the complex expert would have a higher QoS

than the free expert since it has smaller Dm values (assuming the features have the same

importance).

(a) Number of walls = 2 (b) Number of walls = 3

Figure 5.5: The episodic length throughout the learning for an environment of 3 agents and (a) 2
walls and (b) 3 walls.

To study the resiliency of the proposed MEDC method, the following experiment uses

faulty and malicious experts. Fig. 5.6 shows the learning performance in an environment

of 3 agents and 2 walls, while using the following faulty experts:

• Random Expert: a model that suggests random actions in the environment.

• Biased Expert: a model that always suggests the same action regardless of the col-

lected observations.

• Malicious Expert: a model that is aware of the right action, but suggests the opposite

action (opposite direction).

For each MEDC scenario, 5 of the mentioned expert types are used. For example, in

“MEDC Random Experts”, the agents are being trained using MDRL and MEDC with

115

5 Random Experts. “MEDC Proper Experts” is a scenario where 5 good experts are

used from different environments, while “MDRL-Sparse” shows a scenario of training the

MDRL agents independently using a sparse reward. As seen in the figure, the proposed

MEDC is resilient to faulty and malicious expert models. At worst, the performance of

MEDC drops to match that of “MDRL-Sparse”. This means that, the use of experts in

MEDC could either help the learning in MDRL or cause no harm. This is mainly because

the experts are used for a small portion of the learning (RE = 0.1). Additionally, the main

purpose of the experts is to expose the agents to the sparse reward more frequently. If

this does not occur, then the agents are still learning based on their own experience, even if

these experiences are induced by the experts, which explains why the performance at worse

is similar to the MDRL with sparse reward and no experts.

Figure 5.6: The episodic length throughout the learning for an environment of 3 agents and 2 walls,
while using different faulty and malicious experts.

5.4.2 MEDC vs Benchmarks

This section discusses and highlights the main advantages of MEDC when compared

frameworks in FRL, Reward Shaping (RS), and IL-assisted RL. The benchmarks are sum-

marized as follows:

116

• In FRL, models from different users are averaged frequently in a global model, which

is shared back to them. We benchmark with the works in [54, 55], where FRL is used

to combine DRL models across different users.

• In Reward Shaping (RS), a shaped reward function is used to guide the learning.

Here, we use a distance-based reward function, where the agents receive a positive

reward in each step if they move closer to the target during the training, which is

similar to the works in [2, 44]. In each episode, the distances are computed using

Breadth-First Search (BFS). BFS is used due to the existence of walls, which makes

simpler distance measures (such as Euclidean distance) inapplicable.

• In IL-assisted RL, the learning alternates between RL and IL, similar to the works in

[17, 50]. For fairness, We extrapolate this work to use the same structure of MEDC

with multiple experts. The main difference is, when IL is switched on, the MDRL

agents use Behavioral Cloning (BC) to mimic the behavior of the expert without any

reward input.

Figure 5.7 compares Blockchain-assisted MEDC with the 3 benchmarks. For MEDC

and FRL, the learning involves 8 users of varying environments. The 8 users are training

on different environments, given as A1W0, A3W0, A2W1, A2W2, A2W3, A3W1, A3W2,

A3W3. For FRL, during the training, the models are shared and a global model is returned

to each user to carry on the training. In MEDC, the first 6 users share their models to the

Blockchain, which are then used by A3W2 and A3W3 in MEDC to guide the learning.

For IL-assisted RL, the models of the first 6 users are used as experts, from which the

MDRL agents in A3W2 and A3W3 choose to imitate. We show the training results from

the perspective of the A3W2 and A3W3 users. As seen in the figure, the performance of

the models trained with MEDC is significantly better than that of FRL. As discussed in

Section 5.1, if the models are trained in environments that inherit different dynamics, the

117

learning convergence of the aggregated model could face issues [56], which is seen in the

obtained results. This is unlike MEDC, in which the expert models only suggest actions,

and the MDRL agents still learn based on their experience. Similarly, MEDC outperforms

IL-assisted RL, whose performance is negatively affected by experts being from different

variations of the environment. This is because the agents in IL-assisted RL blindly clone

the behavior of the expert into their models. Additionally, the performance of MEDC when

compared to the model trained on a shaped reward shows slight outperformance. Even

though RS gives a similar performance towards the end of the training, it is worth noting

that the model trained with the BFS shaped reward required double the wall time to train

for 2 × 107 steps. This due to the computational power wasted on executing BFS in each

episode, which reflects the complexity of most shaped rewards. MEDC, on the other hand,

is able to achieve similar, if not better, results, with a simple sparse reward.

(a) Environment: A3W2 (b) Environment: A3W3

Figure 5.7: The episodic length throughout the learning for an environment of 3 agents and (a) 2
walls or (b) 3 walls, while comparing MEDC with the benchmarks.

To evaluate the resiliency of MEDC in comparison with FRL and IL-assisted RL, Fig.

5.8 compares the methods in the same scenario of 8 users, out of which 3 random users

have the faulty experts discussed in section 5.4.1. It is evident that the proposed MEDC

method is more resilient and is able to maintain faster and better learning than FRL and

IL-assisted RL, which are negatively affected by the bad actions suggested by the faulty

118

and malicious experts.

Figure 5.8: The episodic length throughout the learning for an environment of 3 agents and 2 walls,
while using faulty and malicious experts.

5.4.3 Adaptability to Other Applications

This section analyzes the adaptability of the MEDC method to the following applica-

tions:

• Fleet Coordination for Autonomous Vehicles [97, 98]: in this problem, a team of

autonomous vehicles is tasked with picking up and dropping costumers at specific

locations. Each vehicle has a limit in terms of the number of costumers it can ac-

commodate simultaneously. At the beginning of each episode, all agents (vehicles)

and costumers are placed randomly in the environment, with each costumer having

a desired destination. The vehicles are tasked with cooperation and coordination,

such that the time needed to drop all costumers at their destinations is minimized.

This requires the agents to learn how to divide the costumers according to their loca-

tions. The agents receive a small reward for picking up a costumer, a large reward for

dropping all costumers correctly, and a small negative reward for each time step to

119

account for time cost. The agents observe their locations, the costumers’ locations,

and the desired destinations in a 2D format similar to the target localization problem.

• Multi-Agent Maze Cleaning [99]: in this problem, the agents are placed in a maze

with the task of cleaning the maze as fast as possible. At the beginning of the episode,

a maze is randomly generated, where the maze is considered entirely dirty initially,

and each spot covered by a cleaning agent is considered to have been cleaned. The

agents are required to coordinate and distribute in the maze in a way that minimizes

the time needed for the maze to be fully cleaned. Each agent observes its own loca-

tion as well as other agents’ locations, in addition to the maze cleaning status in 2D

format. At each step, the team gets a positive reward for each spot cleaned, and a

negative reward as time cost.

The two environments are simulated using MEDC against the FRL and IL-assisted RL

benchmarks. Both environments are simulated for a 10×10 grid and 3 agents, with the fleet

coordination environment having 8 costumers. The episode length is used as a metric to

assess the learning process, since both applications require the tasks to be finished as fast as

possible. Similar to process describe in Section 5.4.2, MEDC and IL-assisted RL use 6 pre-

viously trained single- and multi-agent experts from environments of varying complexities

(i.e. different number of agents and costumers, and different maze complexities) to assess

in training. For FRL, 7 users of varying environments are used in each application, where

users share their models to update a global model that is then returned to the users. We re-

port the performance from the perspective of a single user with an environment of 3 agents.

Fig. 5.9 and Fig. 5.10 compare MEDC with benchmarks for the cases of truthful and faulty

experts, respectively. Similarly to the results obtained for the target localization environ-

ment, it can be seen that MEDC outperforms the benchmarks for both environments, and

under the two scenarios of truthful and faulty experts. MEDC achieves faster convergence

and better performance, in terms of episodic length, even with the existence of faulty and

120

malicious experts, showing the resiliency of the proposed method.

(a) Fleet Coordination (b) Maze Cleaning

Figure 5.9: The episodic length throughout the learning for the (a) fleet coordination and (b) maze
cleaning environments.

(a) Fleet Coordination (b) Maze Cleaning

Figure 5.10: The episodic length throughout the learning for the (a) fleet coordination and (b) maze
cleaning environments, while using 3 faulty experts.

5.4.4 Smart Contracts Complexity Analysis

This section analyzes the complexity of the developed smart contracts in terms of gas

cost. Since a Consortium Blockchain is proposed, the deployment and execution of the

smart contracts do not require any payments by the users. However, the gas cost is a good

measure of the complexity of the smart contracts to indicate their feasibility. Table 5.4

121

presents the gas cost of the deployment and execution of the smart contracts and their func-

tions. As seen in the table, the gas costs are low, reflecting the feasibility of the proposed

contracts. For reference, we present a benchmark of the gas cost of deploying and executing

a similar UMC smart contract as discussed in [92].

Table 5.4: Blockchain gas cost.

Contract Function gas cost

UMC

deployment 433933
addUser() 35857

updateInfo() 67582
updateReputation() 77286

MMC

deployment 1557311
addModel() 287448

allocateModels() 43842
updateModelRep() 79374

UMC - Benchmark
deployment 1228566
addUser() 352352

5.5 Conclusion

In this chapter, the problems of sample efficiency and reward sparsity in Multi-Agent

Deep Reinforcement Learning systems is tackled. A novel Blockchain-assisted Multi-

Expert Demonstration Cloning (MEDC) framework is proposed, in which users share

trained models to be used as expert models by other users in the MEDC method. The

proposed MEDC method utilizes expert models to suggest actions to new MDRL agents,

aiming to provide better experiences where the sparse reward is more frequently obtained,

which speeds up the learning. Unlike methods such as FRL, the proposed MEDC method is

more resilient to faulty and malicious shared models, and allows for models of different ar-

chitectures to be used together. On a Consortium Blockchain, smart contracts are designed

122

to manage the model sharing and allocation process using a Greedy method, in which at-

tributes about the model and the users are used in the assignment process. Experiments in

the target localization environment show that the proposed MEDC method speeds up the

learning noticeably when compared to models trained only with sparse rewards. Addition-

ally, it was shown that the MEDC is resilient to faulty and malicious expert models, where

the performance of MEDC could be the same as MDRL with sparse reward at worse. When

compared to FRL, RL with shaped rewards, and IL-assisted RL, MEDC showed dominance

in terms of utilizing experiences from different environments in guiding the learning, and

in being resilient against bad expert models. Moreover, the adaptability of the proposed

methods is tested on two other multi-agent environments, namely Fleet Coordination and

Maze Cleaning, showing dominance in learning convergence and resiliency to faulty mod-

els, when compared to FRL and IL-assisted RL. Finally, the developed smart contracts that

manage users’ and models’ allocations are analyzed in terms of gas cost and compared to

benchmarks, showing low cost that reflects their feasibility.

123

Chapter 6

Adaptive Target Localization under

Uncertainty using Multi-Agent Deep

Reinforcement Learning with

Knowledge Transfer

6.1 Introduction

In this chapter, we extend the challenge of target search and localization to cover scenar-

ios involving uncertainties, such as false alarms and unreachable targets due to obstacles.

In complex environments, agents often face situations where the target may be physically

blocked by obstacles, or the search process might be complicated by false signals indicating

targets where none exist. These uncertainties significantly complicate the decision-making

process, requiring agents to not only navigate the environment but also discern whether a

target is reachable or even present.

124

To tackle these challenges, we propose novel MDRL methods that incorporate multi-

dimensional decision-making. Agents must assess target reachability, flag false alarms,

and modify their search strategies accordingly. A key innovation in this approach is the

use of Transfer Learning (TL) to reuse the encoder from pre-trained MDRL models. This

allows us to create a final model with multiple action heads, each responsible for different

action dimensionalities (e.g., mobility, flagging, and localization), while sharing a common

encoder. This design not only reduces the computational burden but also enables efficient

reuse of learned representations, ensuring that the model is capable of handling complex,

multi-dimensional tasks with minimal redundancy. The key contributions of this work are

summarized as:

(1) The formulation of the target localization problem in uncertain environments using

MDRL.

(2) The design of a reward function and decision-making actions over three dimension-

alities that determine agents’ mobility, target detection, and target reachability.

(3) The development of a learning framework based on TL that leverages the knowledge

of the trained MDRL model in training a DL model for target estimation, allowing

for reduced computational overhead.

The proposed method is assessed within the context of radiation localization, in which

a team of sensing agents is tasked with finding the location of a radioactive material by

intelligently searching the area. The proposed work is compared with multiple target local-

ization benchmarks [11, 15, 17, 40, 44, 45] in terms of the learning performance and target

localization efficiency.

125

6.2 Proposed System

This section presents the MDRL method used to intelligently produce sensing agents

capable of tackling the different complex scenarios of target localization. An overview

of the final proposed model is presented in Fig. 6.1. At each timestep, and for a given

agent, the MDRL model translates its observations into one of three possible action dimen-

sionalities: Movement, Detection, and Reachability. Movement actions are responsible

for controlling the mobility of the sensing agent in the environment. A detection action is

concerned with flagging the existence of a target in the AoI, with the aim of conserving

resources if the target does not exist. A reachability action determines if a target exists

but is unreachable due to environment complexity. Given that the target is unreachable, an

estimation process is triggered, which is responsible for estimating the location of the un-

reachable target. The key challenge here is to produce all actions, as well as the estimation

process, in one AI model capable of translating an agent’s observations, while ensuring its

cooperation with other sensing agents. This section formulates the MDRL problem and

discusses the modeling of the MDRL methods used to obtain the final model.

Figure 6.1: An overview of the model proposed, which is to be deployed on each sensing agent.

126

6.2.1 Observation and Action Spaces

In this work, we re-use the same method of modeling the observation space presented

in Section 4.3 and Fig. 4.2. The original observations, i.e. the location map, team locations

map, readings map, visit counts map, and walls map are processed into local and global

observations, which are fed into the policy for decision-making. The global observation

of the walls map is obtained using a Convolutional AutoEncoder (CAE) with the structure

shown previously in Fig. 4.3.

To address the complex scenarios of target localization, the action space at a given

step for an agent is divided into mobility, detection, and reachability actions. In terms of

mobility, the agent has a fixed speed and decides on the direction of movement. Given B

possible discrete directions {1, 2, ..., bi, ..., B}, the movement angle is given as:

θ = 2π
bi
B

(14)

where the hyperparameter B determines how detailed the movement is. In this work, we

use B = 8, which allows the agent to move in one of the cardinal or ordinal directions.

Assuming a fixed speed, the agent can move a fixed distance in one of these directions

with the aim of contributing to the localization task. It has been found in this work that

discretizing the direction of movement into 8 possible values is sufficient. On the other

hand, choosing to stay idle, if needed, helps in preserving resources.

The detection and reachability actions are each represented by a binary value to flag

the existence of the target and its reachability, respectively. At a given time step t, an

agent could determine that the target does not exist and hence set the existence flag to 1.

Similarly, an agent could determine that a target is unreachable by setting the reachability

flag to 1.

The decision-making process is discretized, where at each step, an agent can choose

only one of the 11 actions. If the majority of the agents declare that the target does not exist,

127

the search process stops. Similarly, if the majority declare that the target is unreachable, a

target estimation process is triggered, which estimates the target location (to be explained

later in Section 6.2.3). In certain time steps, some actions may not be possible, such as

moving outside the boundaries of the AoI or into a wall. Such invalid actions are masked

out during the decision-making process, where the agent only chooses from the available

actions.

6.2.2 Policy Networks and Learning Process

In this work, we use PPO to train the MDRL agents, with CNNs representing the actor

and critic since the observations of each agent are represented as 2D maps. CNNs are cru-

cial for the target localization problem as they effectively correlate spatial features within

the input maps.

Fig. 6.2 shows the architecture used for the actor (upper part of the figure), which is

similar to the LeNet-5 architecture [74]. The network takes the first 9 reduced observa-

tions as input, which are then processed in convolution and max pooling layers for feature

extraction. The embedding for the environment layout observation is concatenated with

the processed and flattened observations, before being fed into the fully connected layers.

The fully connected layers produce 11 outputs, which are fed into a softmax function that

produces a probability distribution for the possible actions. During the decision-making

process, the agent samples an action from this distribution, which is then executed in the

environment.

The proposed MDRL method uses Centralized Learning and Distributed Execution

(CLDE) [41]. Here, a copy of the actor is given to each agent, where agents act indepen-

dently based on their observations. During the training stage, a centralized critic is used

to assess the experiences collected by the agents. The architecture of the critic is similar

to that of the actor, but with 1 output representing the value function. Using a centralized

128

Figure 6.2: The actor architecture trained through MDRL (top), and the architecture of the estima-
tion model trained through DL and TL (bottom).

critic is essential in addressing the non-stationarity problem that is common in MDRL due

to the influence agents have on each other’s view of the environment [73]. The value func-

tion, which is the critic’s output, is used during the PPO process to update the actor and the

critic.

A team-based shaped reward function is proposed in this work to guide the learning.

A team-based (joint) reward function gives equal rewards to the agents according to the

collective behavior. As a result, the agents would be motivated to act in a way that benefits

the entire team. A shaped reward gives more frequent feedback to the agents during the

task, which helps speed up the learning process. Following the joint action taken by the

agents in a given time step, the environment returns to all the agents a similar reward. To

achieve all the desired behaviors, the reward function after step t is given as:

129

Rt =

−Q if flags are incorrect

−v + 1 if min(Dt) < min(Dt−1)

−v − 1 otherwise

(15)

where Q is a large penalty, v is the total number of mobility actions taken, and Dt represents

the set of distances between the agents and the target. In the function, the first condition

gives the team a high negative reward (in this work Q = 500) if a target is incorrectly

declared non-existent or unreachable. Alternatively, in the second and third conditions, the

agents are rewarded according to their proximity to the target and their resource consump-

tion. At each timestep, the agents are penalized by (−v), where v is the number of agents

who moved in the environment. This indicates resource consumption, which is essential

in pushing the agents towards finishing the task as fast as possible. It also motivates the

agents to only move in the environment if needed and stay idle otherwise. The agents re-

ceive an additional positive or negative reward (±1) based on their proximity to the target.

The reward would be positive if they have moved closer to the target from step t − 1 to t,

otherwise they receive a negative reward. The team is considered to have moved closer to

the target if the nearest agent(s) at step t − 1 took a mobility action towards the target at

step t, meaning min(Dt) < min(Dt−1). Due to the environment complexity and the exis-

tence of obstacles, it is inaccurate to compute the travel distance between an agent and the

target using generic methods like Manhattan and Euclidean distance. Instead, Breadth First

Search (BFS) is used, which determines reward calculations. BFS explores different paths

starting from an initial node until the goal is reached, aiming to find the shortest path. It is

worth mentioning that the agents have no knowledge of the location of the target, and act

only based on their observations. The reward function serves as a feedback mechanism,

used only during the training stage, to improve the policies of the agents using PPO.

The training process is done using a Centralized-Learning & Decentralized-Execution

130

(CLDE) method [41], which is described previously in Algorithm 3.3. In this method,

the agents act in a distributed manner in the environment according to their actor network

copies. The experiences collected by the agents are then gathered and used centrally for

updating the actor and critic. Once the training is over (which usually occurs in simula-

tions), the final model is deployed on the sensing agents which act independently based on

their observations.

6.2.3 Target Estimation with Transfer Learning

The MDRL model discussed in Section 6.2.2 is responsible for regulating the contin-

uous decision-making process for each agent throughout the localization task. However,

if a target is determined unreachable, it is essential to provide an estimate for its location.

To reduce the complexities of the MDRL training process and the final model, the target

estimation is not performed at each time step, but only when target unreachability is de-

termined. To achieve this, a separate model is trained using a typical Deep Learning (DL)

process with Transfer Learning (TL). Here, based on the observations collected until un-

reachability is determined, the aim is to provide an estimate for the (x,y) coordinates of

the target. A dataset is pre-built using sets of observations and the corresponding target

locations to be estimated, which are used to train the DL model to estimate the location

based on the observations. To reduce the training and deployment complexities, we use

TL to utilize knowledge from the previously obtained MDRL model, as shown in Fig. 6.2.

Here, rather than training a new DL model from scratch for target estimation, the weights

of the MDRL actor network are initially copied into the new DL model. During the training

process, these layers are frozen, i.e. not trained, and only the last fully connected layer is

trained. This is viable because the initial layers, especially the convolution layers, have

already been trained to extract features related to target localization in the MDRL process.

Such features would still be similar in the target estimation model, and hence only a final

131

classification layer would be sufficient. Following the training process, and since both the

MDRL and DL models have common initial layers, they can be combined into one model

with two output heads; one for continuous decision making (mobility, detection, and reach-

ability) and one for target estimation, as shown in Fig 6.3. Both action heads take the same

set of extracted features from the initial layers, but only differ in the weights of final layer,

with the target estimation output head only getting triggered when unreachability is deter-

mined.

Figure 6.3: The final model deployed on each of the sensing agents.

6.3 Experiments and Evaluation

Extensive experiments are conducted in this section to validate the efficiency of the

proposed method, as well as benchmark it against existing works in the literature. All

the simulations have been conducted using an Intel E5-2650 v4 Broadwell workstation

equipped with a 128 GB RAM, an 800 GB SSD, and an NVIDIA P100 Pascal GPU (16 GB

HBM2 memory). To validate the proposed methods, a sample environment of radioactive

source localization is used as discussed in Section 3.7.1.

For all the following experiments, each model is trained for 30 million environment

steps using MDRL. At the beginning of each episode, the target location, the agents’ initial

132

distribution, and the environment layout (with varying number of obstacles) are random-

ized. Hence, the model is trained on variations of random combinations of the possible

states. Additionally, each episode is randomly set to one of three possible scenarios: 1)

target exists and reachable, 2) target exists and unreachable, and 3) target does not ex-

ist, where each scenario has an equal chance of occurring. An episode terminates if the

agents make the right decisions based on the scenario, or if a 100-timestep limit is reached.

Following each 40k training steps, the agents are placed in a testing environment for 4k

steps where they follow the most probable actions based on their policy (instead of sam-

pling). The average performance of the testing steps is then recorded and plotted. The set

of hyperparameters used in the PPO and CAE methods is shown in Table 6.1. The PPO

hyperparameters are based on the original work in [31].

Table 6.1: PPO and CAE Hyperparameters

PPO Value
ε 0.2
γ 0.99
λ 0.95
H 4000

Epochs per update 20
Learning rate 3× 10−4

CAE Value
Learning rate 1× 10−3

Embedding Size d 128
Dataset Size 500000

6.3.1 MDRL Performance Analysis

The performance of the proposed MDRL model is analyzed in terms of the collected

reward, episode length, and cost. The episodic reward reflects the total accumulated reward

collected in an episode, on average. The episodic length represents the number of steps until

133

an episode is terminated, which reflects how quick the agents are in finishing the task. The

episodic cost reflects the total number of movement actions taken during an episode, which

reflects resources consumption. The lowest movement cost in a given time step is 0 if none

of the agents moved, while the highest is N if all the agents have moved.

Figure 6.4 summarizes the MDRL training results of the proposed method under dif-

ferent scenarios. Each sub-figure shows the results for varying team sizes to validate the

scalability of the proposed approach. The figure also shows different target strengths, where

S varies from 1 × 109 (strong) to 1 × 108 (weak). A strong target can be detected from

further away, and hence is easier to detect and localize when compared to weaker target. It

is worth mentioning that target estimation is not considered here yet since it is a different

training process.

As seen in the figure, the training converges in all scenarios, indicating the feasibility

of the proposed methods. When comparing the reward plot across different team sizes

in Fig. 6.4a, it can be seen that the 2-agent team performs the worst, while the other

three team sizes perform better. This reflects the challenging nature of the problem for

a team of only 2 agents, as it would require them more time to search the area. On the

other hand, the similar performance across the other team sizes indicates that the agents

efficiently learn to cooperate to finish the task in a timely manner with reduced resource

consumption. The reason behind converging to negative rewards is because the agents take

exploration steps in the early stages of an episode, which are necessary for data collection.

In scenarios where a target exists, the agents initially do not have sufficient readings to

take proper decisions and move towards the target, and hence could collaborate to move

in the environment to collect data, which could initially give negative rewards if agents

move away from the target. In cases where the target is behind obstacles, the agents might

need to move more to collect data, resulting in more negative rewards. Nonetheless, once

data are gathered, the agents immediately learn to make the right decisions, which explains

134

(a) Target Strength: 1× 109 (b) Target Strength: 5× 108 (c) Target Strength: 1× 108

(d) Target Strength: 1× 109 (e) Target Strength: 5× 108 (f) Target Strength: 1× 108

(g) Target Strength: 1× 109 (h) Target Strength: 5× 108 (i) Target Strength: 1× 108

Figure 6.4: A summary of the training plots for different team sizes and for varying target strengths.
The episodic reward is shown in (a)-(c), the episodic length is shown in (d)-(f), and the episodic cost
is shown in (g)-(i).

the low magnitude of negative rewards (around -17) that the models converge to. This

efficient performance, in terms of time and cost, can be seen in Fig. 6.4d and Fig. 6.4g.

In terms of episode length, it can be noticed that bigger team sizes give lower search time,

as expected. However, proving the efficacy of the proposed team-based reward function, it

can be noticed that nearly all the team sizes (aside from team size = 2) converge to a similar

episodic cost. This indicates that, while larger teams have higher expected cost per step, the

efficient coordination and the timely search result in lower episodic cost. The agents make

cost efficient decisions, such as staying idle if found non-beneficial to the team, resulting

in lower resource consumption.

135

Studying the performance across different target strength shows the increasing diffi-

culty of the problem with lower target strengths. It can be seen that, as the target strength

increases, the difference in performance between the different team sizes increases, as

smaller team sizes need to put more effort to finish the task. It is evident that all teams

achieve a lower reward when going from higher target strength to a lower one, i.e. from

Fig. 6.4a to Fig. 6.4b and from Fig. 6.4b to Fig. 6.4c. The two-agent and three-agent

teams collect the lowest rewards for the low target strengths, indicating the need for bigger

teams. This is evident when analyzing the episode length (Fig. 6.4d-6.4f) and the episode

cost (Fig. 6.4g-6.4i). In terms of episodic length, more time is needed to search for weaker

targets. This is mainly because weaker targets can be detected within a shorter range, hence

requiring the agents to get closer. It can be also seen that the weakest target shows the need

for larger teams for faster execution, since more search can be done in less time. When

looking at the episodic cost, it is noticed that it increases when going from strong to weak

targets, since more search is needed and hence more resource consumption. However, it is

evident that regardless of the team size, the cost is nearly similar, with a slight advantage

for bigger teams.

To further study the model’s behaviors, Fig. 6.5 analyzes the agents’ performance under

different scenarios, namely target search, target non-existence, and target unreachability,

given a team of 4 agents under different target strengths. To obtain these results, the trained

agents are deployed in the corresponding environment for 40,000 steps and the average

performance is collected. As evident, in terms of time, the agents are equally able to reach

the correct decision regardless of the scenario or the target strength. However, as evident

in Fig. 6.5b, more cost is spent as the target strength gets weaker. This indicates that due to

the increased difficulty of the process with weaker targets, more agents need to be involved

to maintain a timely decision-making, resulting in higher costs. This behavior reflects the

desired cooperation between the agents to achieve quick decision-making. Additionally, It

136

can be noticed that the difference between time and cost is insignificant for stronger targets.

For example, in the case of the strongest target, the search process on average takes 7.7 time

steps and costs 12.4 movement steps in total. This means that, the agents quickly determine

their informativeness to the task, and only informative agents carry the tasks while others

maintain idle status to preserve resources.

(a)

(b)

Figure 6.5: Agents’ performance under the different scenarios in terms of (a) episodic time and (b)
episodic cost, for a team of 4 agents and varying target strengths.

137

6.3.2 Target Estimation

The aforementioned results analyze the performance of the MDRL model, which is

responsible for the decision-making related to target search and flagging its non-existence

or unreachability. Following the unreachability flag, a DL model is used to estimate the

target locations based on the collected observations. Fig. 6.6 shows the training loss and

validation loss curves obtained while training a DL model, using TL, for target estimation.

Here, a dataset is built combining the observations collected by the MDRL agents until the

unreachability flag is produced, and then used to train the model to estimate the target. The

dataset is split into training and validation sets, where the training set is used to update the

model and the validation set is used to assess the model on unseen data. The training is

done to reduce the Mean Squared Error (MSE) loss between the predicted (x,y) coordinates

and the true coordinates. As can be seen in the figure, upon the completion of the training,

both the training and validation loss values converge to 0, indicating that the model is able

to accurately estimate the target location. One factor leading to these good results is the

use of TL to transfer knowledge from the MDRL model to the DL model. Additionally,

the observations collected by the MDRL agents and used to determine the unreachability

of the target prove efficient in estimating its location.

6.3.3 Benchmarks

This section compares the performance of the proposed MDRL method with some ex-

isting benchmarks in the literature. Existing methods struggle when addressing the realistic

scenarios of target localization. To reflect on this, we compare the proposed approach with

three existing benchmarks covering traditional target search techniques, single-agent DRL

methods, and MDRL-based methods with no considerations to the uncertainties about the

target. For the subsequent results, 4 agents are placed in a simulation environment with

varying target strengths to analyze the episode length (time) and cost. After training, the

138

Figure 6.6: The training and validation loss for the target estimation model using transfer learning.

agents are placed in different environments for inference, where the episode length and

cost are averaged throughout 40k time steps. Agents obtained following these methods are

placed in the environment, where the aim is to make decisions regarding the target loca-

tion, its existence, and its reachability. Each episode has a limit of 100 steps, within which

the agents are to finish the task. For fair comparison, the DRL- and MDRL-based solutions

have been trained for the same number of steps as the proposed approach, i.e. for 30 million

environment steps. The benchmarks are summarized as the following:

• Uniform: A traditional method where agents follow a search path that is pre-defined

to cover the area uniformly[40].

• DDQN: A single-agent DRL approach using Double Deep Q-learning for target

search. The model is extrapolated into multi-agent settings by having a single model

control all the agents in a centralized manner. The policy takes all the observations

of the agents at once and produces a joint action vector [2].

• ODMTL: An optimized deep multi-agent target localization using MDRL [44], as

presented in Chapter 4. Here, the methods follow a CLDE approach, but they do not

139

consider scenarios of target unreachability or target non-existence.

Figure 6.7 summarizes the performances of the different benchmarks under varying tar-

get strengths in terms of time and cost. As can be seen, the proposed work outperforms

all the benchmarks by achieving faster and less costly localization tasks. Traditional uni-

form search methods do guarantee finding the target, but cannot handle cases where the

target is unreachable or does not exist. In such scenarios, the agents keep searching the

environment and waste resources. Additionally, due to the lack of cooperation between

agents, there is an increased resource consumption. When comparing the proposed work

with single-agent DDQN methods, it can be seen that these methods struggle to learn to

perform the task. Here, within the same amount of learning experience, the agents fail

to learn any desired behaviors and resort to staying idle most of the time, hence the high

localization time and low cost. This is a form of local optima, which is a result of the

scalability issues faced in single-agent DRL methods when extrapolated into multi-agent

settings. The ODMTL method generally performs better than the other two methods, due

to the existence of intelligent decision-making and cooperation between agents. However,

the lack of consideration of the uncertainties in the environment, such as the non-existence

of the target or its unreachability, hinder their ability.

6.4 Conclusion

In this chapter, the target localization problem is addressed using MDRL methods,

while considering realistic scenarios of target non-existence and unreachability. Based on

the collected observations, which are modeled as 2D maps representing the environment,

the agents learn efficient decision-making through MDRL, encapsulating actions related

to the mobility in the environment and determining the existence and reachability of the

target. The MDRL policy is represented by a Convolutional Neural Network (CNN) which

140

(a)

(b)

Figure 6.7: Comparison between the performance of the proposed method and the benchmarks in
terms of (a) episode length and (b) episode cost.

is optimized using Proximal Policy Optimization (PPO) and a team-based shaped reward

function. Using Transfer Learning (TL), the same model is expanded to also cover target

estimation, where the target coordinates are approximated if it is unreachable. The pro-

posed MDRL method was tested on different scenarios, covering varying target strengths

(from weak to strong) and varying number of agents. The scalability and adaptability of

the proposed method was verified through quick and efficient target localization tasks, with

very accurate target estimation. Compared to traditional and DRL-based benchmarks, the

proposed work shows outperformance, especially in tackling scenarios with uncertainties

such as target non-existence and unreachability.

141

Chapter 7

Blockchain-assisted Demonstration

Cloning for Multi-Agent Deep

Reinforcement Learning

7.1 Introduction

Despite its significant success, designing and training DRL solutions has been, and still

is, a challenging task. From one side, designing DRL solutions for real-world problems

requires tremendous expertise and domain knowledge. Designers often have to go through

intricate steps which include the modeling of the environment and its interactions, the mod-

eling of the agents’ observations, the choice of the policy optimization algorithm and the

tuning of its hyperparameters, and the design of the reward function, to name a few [100].

Each of these steps could significantly affect one another as well as the outcome of the

learning process, and require customized solutions tailored to each application. These ob-

stacles are further amplified with the typical challenges faced in DRL, which include sam-

ple inefficiency, curse of dimensionality, reward sparsity, and the exploration-exploitation

142

dilemma [101]. On the other side, training DRL requires a significant amount of computa-

tional resources that might not be available for certain users or businesses. This is mainly

due to the complexity of DNNs and DRL algorithms, and the high dimensionality of typ-

ical DRL environments. For example, the authors in [23] used nearly 51 thousand CPUs

and 512 GPUs to train a DRL system for the game of Dota, and such resources are not

accessible to the majority of users and researchers.

Over the past few years, the paradigm of Machine Learning as a Service (MLaaS) came

as a way to promote greater accessibility to Machine Learning (ML) solutions for develop-

ers, business, and the general public. MLaaS is an offering that provides ML capabilities

and infrastructure as a service to users in exchange for money [102]. Generally, MLaaS

providers target a wide spectrum of users, ranging from those with no experience in ML,

to those who have the expertise but lack computational resources. In the first case, users

interact with ML APIs by providing training data, which is used by the service to produce

a trained model [103]. The automated process usually involves data pre-processing, model

training, and evaluation. Such services often cover a range of ML applications, including

but not limited to classification, regression, clustering, and natural language processing.

Service providers include Google AutoML and Vertex AI, which enable developers with

limited ML expertise to train high-quality models. In the second case, MLaaS provides in-

frastructure and tools for experienced users to build and develop models, as well as compu-

tational resources, if needed. Such services include Amazon SageMaker, Microsoft Azure,

and Google Colab.

Extending MLaaS directly into the realm of DRL is infeasible with the existing services.

Firstly, DRL commonly requires much longer time and more computational resources to

train when compared to typical ML problems. This would induce significant overhead on

existing MLaaS providers, which usually operate via a shared platform between users that

is allocated on demand [58]. Secondly, the environment variability in DRL results in a

143

highly dynamic, and often unpredictable, interaction between the agent and the environ-

ment during the training process. This contrasts with most ML scenarios in which the

environment is static or well-defined. Thirdly, having few MLaaS providers entails higher

costs on users, especially those with problems requiring high computational resources and

long training times. Finally, and most importantly, the design and training processes in

DRL are much more complex when compared to ML, hence requiring more human exper-

tise and interventions. Since ML problems generally rely on static and available datasets,

the learning process can be automated. This is unlike DRL, which relies on dynamic and

sequential interactions with the environment that need to be modeled and optimized by an

expert. Recent works in the literature propose crowdsourcing systems for ML tasks, with

the aim of using the scalability, diversity, and expertise of the crowd [66, 68, 70, 104, 105].

Crowdsourcing refers to the practice of obtaining services (to requesters) by soliciting con-

tributions from a group of people (workers) [13, 106, 107]. However, all the existing works

in ML only crowdsource tasks related to data collection, data annotation, and model valida-

tion. To our knowledge, none of the existing methods discuss the crowdsourcing of ML or

DRL training and model sharing tasks, which require expertise and computational capabil-

ities in addition to DRL-related attributes. In summary, the drawbacks in existing methods

are:

(1) Existing MLaaS systems are usually centralized and automated services, making

them infeasible to DRL tasks that have higher computational overhead and require

more distributed solutions and long training times.

(2) Having few MLaaS platforms entails higher costs and low accessibility to solutions.

(3) The lack of diverse expertise in existing MLaaS solutions hinders them incapable of

addressing the complex and diverse DRL tasks that require intricate modeling and

optimization by experts.

144

(4) Existing crowdsourcing systems for ML focus on data gathering and model valida-

tion tasks, with no consideration for training and model sharing tasks that require

computational capabilities and expertise.

To circumvent the aforementioned issues, this chapter introduces a novel blockchain-

based crowdsourced DRL as a service (DRLaaS) framework. In this work, the proposed

framework addresses the lack of diverse expertise and computational capabilities in MLaaS

by crowdsourcing DRL training tasks instead of relying solely on centralized platforms. It

also introduces DRL-related worker recruitment for crowdsourcing, which existing ML

crowdsourcing systems do not consider. The proposed framework covers two types of

tasks, namely DRL training and model sharing. In DRL training tasks, users have the

ability to request the full design and training of DRL solutions based on the specified re-

quirements to be executed by the recruited workers. Such a task depends heavily on the

computational capabilities and expertise of the worker. In model sharing tasks, users can

benefit from pre-trained and available models by expert workers, which can be used to

assist in training new DRL solutions using methods in knowledge transfer, such as Imi-

tation Learning-based DRL and Demonstration Cloning [44, 48]. Here, the reputation of

a worker and the suitability of the models they provide are instrumental when allocating

pre-trained models to requesters. For both types of tasks, the proposed framework is re-

sponsible for managing the allocation of training tasks and models to suitable workers. For

DRL training tasks, specific DRL-related metrics are designed to assess candidate workers

according to the task requirements and based on their capabilities. Specifically, attributes

like expertise in designing and training DRL solutions, reputation in accepting and finish-

ing DRL tasks, and computational capabilities are considered in a Quality of Service (QoS)

metric that is optimized using a greedy algorithm. The computational capability parame-

ters are designed to assess critical worker attributes like GPU availability, RAM capacity,

and CPU parallelization, which are pivotal for effective DRL training. For model sharing

145

tasks, in addition to the worker’s expertise and reputation in managing this type of tasks, a

DRL model similarity metric is designed to assess the available models, which considers

the DRL environment of the model and how suitable it is based on the requester’s re-

quirements. The framework is deployed on a Consortium Blockchain, which manages the

interaction between requesters and workers, the task and resource allocation, and the model

sharing processes. Blockchain is used, instead of centralized cloud-servers, to mitigate is-

sues related to single-point of failure and the need of a single trusted server, by providing

a decentralized, transparent, and autonomous platform with no repudiation. A Consortium

Blockchain, specifically, provides better privacy, scalability, and efficiency when compared

to public blockchains [89], and better allowance for collaboration and data sharing between

entities when compared to private Blockchains. Simple and efficient Smart Contracts (SCs)

are designed to manage the task and model allocation processes, and the InterPlanetary File

System (IPFS) is used to manage the storage of models. In summary, the contributions of

this chapter are as follows:

(1) The design of a comprehensive framework for crowdsourced DRLaaS that utilizes

the expertise and computational capabilities of expert workers in answering tasks

related to the design, training, and sharing of DRL solutions, aiming to assist inex-

perienced and experienced users in return for incentives.

(2) The design of task and model allocation processes using greedy methods that con-

sider DRL-related and workers-related attributes, such as computational capabilities,

task requirements, DRL environment details, model quality, and workers expertise

and reputation.

(3) The design of DRL-related computational capability and model similarity attributes.

Computational capability attributes consider the effect of RAM, CPU, and GPU

specifically on the DRL training task. Model similarity attributes consider features

146

in the DRL environment to assess how existing models can be beneficial to the re-

questing user.

(4) The design of simple and efficient smart contracts that fully manage the aforemen-

tioned processes on the blockchain, with the assistance of IPFS to store trained mod-

els.

A general overview of the proposed DRLaaS framework is shown in Fig. 7.1. Re-

questers submit tasks by interacting with the smart contracts on the blockchain. The smart

contracts manage users’ registrations, tasks allocations, and model sharing processes. Once

tasks are allocated and executed by workers, the returned outcomes (trained models) are

shared via IPFS. The tasks’ outcomes are then shared back to the requesters, and workers

are paid accordingly.

Figure 7.1: A general overview of the proposed framework.

The proposed framework is evaluated for several complex DRL applications, including

Target Localization [44], Autonomous Vehicles Fleet Coordination [97], and Multi-Agent

Maze Cleaning [99].

147

7.2 DRL Design and Training Requirements

The design and training of DRL models are complex tasks, requiring specialized ex-

pertise, computational capabilities, and often compatible pre-trained models. This section

explains these needs, which are to be met by the proposed crowdsourcing framework.

7.2.1 Expertise: Environment, Reward, and Optimization

The process of designing and training DRL solutions requires expertise in several areas.

This process can be summarized in three main steps, namely 1) Environment Design, 2) Re-

ward Engineering, and 3) Policy Optimization. The Environment Design step is concerned

with modeling the problem of interest in an environment that follows the DRL formulation.

This requires the designer to have expertise in developing environments that mimic real-

world dynamics and encapsulate the possible interactions (actions) between the agent(s)

and the environment. For example, in a simple environment for the game of chess, the de-

signer needs to fully understand the rules that govern the game, which are needed to define

the possible actions for the chess agent. Additionally, the state of the chess environment

could be modeled as a grid image of the board, or by numerical features representing the

locations of the pieces. Such a choice is critical to be made by the designer, as it affects the

training process. The Reward Engineering step is critical since the behavior of the agents

in DRL is directly influenced by the reward function. Reward functions require consid-

erable engineering, which if done poorly could lead to local optima [48]. This requires

the designer to have knowledge in the domain of interest, as well as expertise in reward

shaping [46, 108]. For the game of chess, for example, a simple reward function is to as-

sign a positive value only for a checkmate. However, this complicates the learning since

the agent does not get regular feedback, and hence calls for the need for more complex

reward functions that require expertise in this domain. In the Policy Optimization step, the

aim is to design policies that translate the agent’s observations into actions, which are then

148

optimized using the collected rewards. In DRL, policies are represented as DNNs, and the

choice of architecture depends on several attributes, such as the type and dimensionality of

the input and the problem complexity, which require expertise in DL. On the other hand,

the optimization algorithm determines how the collected experiences (observations and re-

wards) update and optimize the agent’s policy. Designing and choosing the appropriate

optimization algorithm requires expertise in the domain of the application, as well as in

hyperparameter tuning, which is essential in finding optimal solutions. For example, in the

aforementioned chess environment, convolutional neural networks (CNNs) could be used

as policy architectures if the state is represented as an image, while feed forward networks

(FFNs) could be used if the state is represented in numerical features. These could be

optimized using methods such as Proximal Policy Optimization (PPO), Deep Q-Networks

(DQN), or Deep Deterministic Policy Gradients (DDPG). All of the aforementioned are

decisions to be made by the designer.

7.2.2 Computational Capabilities

Due to the complexity of DRL, the training process usually requires heavy computa-

tional resources. While the choice of optimization algorithm has a significant effect on the

learning speed and convergence, the availability of computational resources holds equal

significance. For example, the availability of GPUs could significantly speed up the execu-

tion of DNNs, which in turn speeds up the learning, especially for image-based applications

(2D data with Convolutional Neural Networks). Additionally, many policy optimization

algorithms for DRL can harness parallel processing on multiple processing units (CPU

cores or GPUs) to speed up the learning process by parallelizing the experience collection

process. Moreover, most DRL optimization methods come with many several hyperpa-

rameters, which should be fine-tuned for each application. This process requires heavy

computational resources, in addition to expertise in this domain.

149

7.2.3 Model Availability and Compatibility

The DRL training process has been recently approached using methods from imitation

learning. Recent works [45, 48, 50] proposed using demonstrations from an expert in guid-

ing the learning of DRL agents. An expert model is a pre-trained model that is already

familiar with the environment (or with a similar environment), and can help the agents col-

lect better experiences, or can be used partially in Behavioral Cloning (BC) to enhance the

DRL policy. Here, the availability of such expert models becomes an important issue to

address. Additionally, the compatibility of the expert models with the current environment

of interest is another crucial challenge. If the demonstrations suggested by the expert in-

troduce variances to the current DRL training problem, this introduces difficulties in the

learning convergence. This necessitates the availability of models that are similar to the

current environment.

All the aforementioned needs are to be met by the proposed crowdsourcing framework

in this work. The complicated design processes call for the need of expertise, which can

be obtained through crowdsourcing. Additionally, crowdsourcing could help in providing

computational resources through workers that have access to multiple CPUs and GPUs.

The recent methods enhancing DRL through expert demonstrations call for the need of

compatible expert models, which can also be obtained through crowdsourcing.

7.3 Overview: Blockchain-based DRLaaS Framework

The proposed framework aims to target two types of DRLaaS tasks that can be re-

quested by users, namely DRL training and model sharing. In DRL training tasks, users

can request the design and training of DRL solutions to be done by expert workers, i.e.

workers with experience in tackling problems in the domain of interest using DRL. This

150

task is highly dependent on the worker’s expertise and computational capabilities, as dis-

cussed in Section 7.2. On the other hand, in model sharing tasks, users can request pre-

trained models in certain domains, which can be shared by other expert workers. This task

depends on the efficiency and compatibility of the available models with the requester’s

environment. The flow of the proposed framework is shown in Fig. 7.2, which is to be

detailed in the next sections by discussing the different DRLaaS tasks, the recruitment met-

rics and processes, and the design of the smart contracts. In this framework, users register

in the system by submitting information about their attributes. Users can then submit task

requests by indicating their requirements. For DRL training tasks, workers are selected

following the designed recruitment process. The recruitment is done based on the workers’

attributes and their expected Quality of Service (QoS), which considers metrics related to

the expertise and computational capabilities of the candidate workers. A recruited worker

then performs the training task, which includes steps such as environment design, reward

engineering, policy optimization, and model tuning, before submitting the resultant model.

For DRL model sharing, workers initially declare the availability of DRL models by sub-

mitting information about their models to the platform. Once a model request is submitted,

a selection mechanism uses these information to compute the QoS for the candidate work-

ers based on their attributes, as well as their model’s attributes, to assess their efficiency

and compatibility. When a worker is selected, they are tasked with sharing their model

through the IPFS. In all the tasks, once the workers finish execution, the platform returns

the outcomes to the requesters and forwards payments to workers. Subsequently, requesters

rate the tasks by submitting reviews, which are used in the future to compute the QoS of a

worker, as will be discussed in this section.

151

Figure 7.2: The proposed Blockchain-assisted DRLaaS framework. The different steps could in-
volve a single entity, or an interaction between two entities. Entities include requesters, workers,
the blockchain, and IPFS.

7.4 Problem Formulation

Each task type, i.e. DRL training and model sharing, has its own requirements and

recruitment metrics to be used when selecting workers. Generally, given a set of tasks

T = {T1, T2, T3, ...} submitted by requesters and a pool of candidate workers W =

{W1,W2,W3, ...}, the aim is to select a set of workers W Ti = {W Ti
1 ,W Ti

2 ,W Ti
3 , ...} for

each task Ti. Each task Ti is defined as a tuple in the form of Ti = (IDTi , NW Ti , KTi , DTi

152

, RepTi
min, R

Ti
min, DomTi , TCTi , CRTi), where IDTi is the task ID, NW Ti is the number of

workers desired for task Ti , KTi is the task type (training or sharing), DTi is a detailed

description of the problem of interest, RepTi
min and RTi

min are the minimum reputation and

rating required for a worker to perform the task, DomTi is the task domain, TCTi is the

time constraint specified for the task to be completed within, and CRTi is the computa-

tional requirements for the task. On the other hand, a worker Wj is defined as a tuple

in the form Wj = (IDWj , Rep
Wj

Tr , Rep
Wj

MS.R
Wj

Tr , R
Wj

MS, DomWj , Exp
Wj

Tr , Exp
Wj

MS, CCWj),

where IDWj is the worker’s ID, Rep
Wj

Tr−DomTi
and Rep

Wj

MS−DomTi
are the worker’s repu-

tations based on historical performances in the platform for the two task types in domain

DomTj , RWj

Tr−DomTi
and R

Wj

MS−DomTi
are the worker’s ratings for the two task types in do-

main DomTj , DomWj is the set of domains that the worker is familiar with, Exp
Wj

Tr−DomTi

and Exp
Wj

MS−DomTi
are the worker’s expertise in the two task types in domain DomTj , and

CCWj is the worker’s computational capabilities. It is worth mentioning that a worker’s

reputation is mainly based on their commitment to accepting and finishing tasks before the

specified deadlines. On the other hand, a worker’s rating is based on their performance,

obtained through feedback on the trained models from users that have already used the

service. Table 7.1 summarizes the task and worker attributes and their definitions.

The aforementioned attributes are utilized differently based on the task type. For each

of the tasks, the following section describes the task requirements and worker recruitment

process.

7.5 Worker Recruitment Parameters

Each of the two task types requires a dedicated worker recruitment process to select the

most suitable set of workers to execute the task. To address this, we propose two different

Quality of Service (QoS) metrics which are used to assess candidate workers and select

the most suitable for each type of tasks. The proposed QoS metrics take into consideration

153

the task requirements and worker attributes, and ensure that the selected workers meet the

desired expectations.

7.5.1 DRL Training Tasks

A worker here is asked to design a suitable environment for the task and engineer an

efficient reward function. Additionally, the worker is required to choose a suitable DRL

optimization algorithm, train a policy for the task at hand, and fine-tune the trained model

(policy). The worker’s expertise is essential for designing the environment and choosing

a suitable policy architecture (type of neural network) and optimization method based on

the provided environment. The availability of computational resources is also crucial for

training and fine-tuning the model in a reasonable time.

To quantify the computational capabilities of a worker, we consider three important

computational resources that are essential for DRL training: Central Processing Unit (CPU),

Graphics Processing Unit (GPU), and Random Access Memory (RAM). The availability

of multiple CPU cores and a powerful GPU is crucial for DRL training, as discussed in

Section 7.2. Since the series/brand of the GPU is what matters the most, it is assumed that

the proposed crowdsourcing platform accepts a pre-defined list of GPU series, which are to

be checked against the one available for the worker in the constraints. Finally, during the

process of DRL training, huge amounts of data in the form of experiences (observations

and rewards) need to be stored, which requires high RAM storage.

For a given DRL training task Ti, the requester specifies a set of requirements and

constraints, given as:

• Problem Description (DTi): this requirement describes the detailed nature of the

problem for task Ti, which is needed by the worker to design the DRL environment.

This includes descriptions of the type of data available to collect, the type of inter-

actions between the agent and the environment, the type of interactions between the

154

Table 7.1: List of attributes and their definitions.

Attribute Definition

W Ti Set of workers for task Ti

IDTi ID of task Ti

NW Ti Number of workers desired for task Ti

KTi Type of task Ti

DTi Description of task Ti

RepTi
min Minimum reputation requirement for task Ti

RTi
min Minimum rating requirement for task Ti

DomTi Domain of task Ti (DRL training or model sharing)

TCTi Time constraint of task Ti

CRTi Computational requirements for task Ti

IDWj ID of worker Wj

DomWj Set of domains covered by worker Wj

Rep
Wj

Tr−DomTi
Reputation of worker Wj in DRL training for DomTi

Rep
Wj

MS−DomTi
Reputation of worker Wj in model sharing for DomTi

R
Wj

Tr−DomTi
Rating of worker Wj in DRL training for DomTi

R
Wj

MS−DomTi
Rating of worker Wj in model sharing for DomTi

Exp
Wj

Tr−DomTi
Expertise of worker Wj in DRL training for DomTi

Exp
Wj

MS−DomTi
Expertise of worker Wj in model sharing for DomTi

CCWj Computational capabilities of worker Wj

agents themselves (in multi-agent systems), etc. This attribute comes in the form of

a textual description. For example, in the problem of target search, where a group of

UAVs try to find a certain target, the problem description contains information about

the number of sensing agents, the number of targets (single/multi), the dynamicity of

the environment (with or without obstacles), the type of data that can be collected by

155

the agents (images or sensor readings), etc.

• Problem Domain (DomTi): this requirement describes the general domain of the de-

sired task Ti, which is essential to focus on candidate workers with experience in

similar tasks within the same domain. For example, in the problem of target search,

the problem domain could be "robot swarms", which encompasses a range of prob-

lems that demand similar expertise.

• Reputation Requirement (RepTi
min): this requirement describes the minimum reputa-

tion required by the requester, to be met by the candidate workers for task Ti. Repu-

tation is a measurement of the historical commitment of the worker, which is mainly

based on acceptance and completion of previous tasks.

• Time Constraint (TCTi): this requirement specifies the time window within which

task Ti is to be completed.

• Number of Workers (NW Ti): in some problems, a requester might desire the task to

be performed by multiple independent workers, to increase the likeliness of efficient

results.

• Minimum number of CPU cores CRTi
CPU .

• Minimum RAM capacity CRTi
RAM .

It is worth mentioning that, in most cases, the number of GPU cores does not signif-

icantly affect the learning process, hence only the availability of a suitable GPU will be

checked, regardless of the number of cores. To assess the expertise of a candidate worker

for a task of DRL training, assume N
Wj

Tr−DomTi
is the number of DRL training tasks com-

pleted by worker Wj in domain DomTi , then their expertise Exp
Wj

Tr−DomTi
for DRL training

in that domain is computed as:

156

Exp
Wj

Tr−DomTi
=

N
Wj

Tr−DomTi

Nmax
Tr−DomTi

(16)

where Nmax
Tr−DomTi

is the maximum number of training tasks completed by one of the candi-

date workers in the same domain, which is used for normalization. This equation measures

the expertise of a candidate worker relative to the pool of available workers, normalized be-

tween 0 and 1, where 1 is given to the candidate worker with the greatest number of tasks

completed. On the other hand, the worker’s reputation Rep
Wj

Tr−DomTi
for DRL training in

domain DomTi is characterized by two attributes, namely commitment rate CM
Wj

Tr−DomTi

and completion rate CP
Wj

Tr−DomTi
. Assume A

Wj

Tr−DomTi
is the total number of tasks as-

signed to worker Wj , Ac
Wj

Tr−DomTi
is the total number of tasks accepted by worker Wj , and

E
Wj

Tr−DomTi
is the total number of tasks completed by worker Wj , all for DRL training in

domain DomTi , then CM
Wj

Tr−DomTi
and CP

Wj

Tr−DomTi
are given as:

CM
Wj

Tr−DomTi
=

Ac
Wj

Tr−DomTi

A
Wj

Tr−DomTi

(17)

CP
Wj

Tr−DomTi
=

E
Wj

Tr−DomTi

Ac
Wj

Tr−DomTi

(18)

In these equations, CM
Wj

Tr−DomTi
reflects the confidence the platform has in worker Wj

to accept the assigned task, while CP
Wj

Tr−DomTi
reflects the confidence in worker Wj to

complete the tasks they accepted to perform. The reputation Rep
Wj

Tr−DomTi
of the worker is

computed using the geometric mean, which is given as:

Rep
Wj

Tr−DomTi
=

√
CM

Wj

Tr−DomTi
× CP

Wj

Tr−DomTi
(19)

Another metric to be considered in the QoS is the worker’s performance rating R
Wj

Tr−DomTi

for DRL training tasks in the desired domain, which is based on reviews given to the worker

by previous requesters. Here, reviews could be in the form of a numerical rating in a given

157

scale, which are averaged to give the worker a score between 0 and 1. Finally, to quan-

tify the computational capabilities of a worker CCWj , a metric is proposed based on the

number of CPU cores. Assume that the numbers of CPU cores available for worker Wj are

given as NWj

CPU , then the worker’s computational capabilities CCWj is quantified as:

CCWj =
2

π
tan−1(w1N

Wj

CPU) (20)

The tan−1(x) function is used because its output increases rapidly initially with x then

slows down as x gets higher. This is essential to capture the effect of CPU cores on DRL

training. The parallelization process in the training process significantly speeds up the

learning. However, after a certain number of parallel environments (depending on the

problem), further parallelization does not bring more benefit. Generally, more complex

DRL tasks could benefit from more parallelization. The weight w1 controls the stretch (the

rapid increase) of the function. High values of these weights help differentiating between

workers with low number of CPU cores, but workers with high number of cores would

nearly get the same score (which is sufficient for less complex DRL tasks). On the other

hand, low values help differentiating between workers with high number of cores (which

is desirable for more complex DRL tasks). The tan−1(x) function is multiplied by 2
π

to

normalize the output between 0 and 1.

Considering all the aforementioned metrics, the QoS of worker Wj for the DRL training

task in domain DomTi is then given as:

QoS
Wj

Tr−DomTi
= Exp

Wj

Tr−DomTi
×Rep

Wj

Tr−DomTi
×R

Wj

Tr−DomTi
× CCWj (21)

In this QoS function, all the attributes have values between 0 and 1. The format of

Eq. 21 is common in crowdsourcing literature [39, 92], as it provides normalized metrics

that are used to assess and compare candidate workers. The aforementioned attributes

158

are updated regularly following task assignments and completion by the workers. The

proposed QoS is to be maximized while meeting the constraints for each candidate worker,

given as:

• Rep
Wj

Tr−DomTi
≥ RepTi

min

• R
Wj

Tr−DomTi
≥ RTi

min

• DomTi ∈ DomWj

• N
Wj

CPU ≥ CRTi
CPU

• N
Wj

RAM ≥ CRTi
RAM

• The brand and series of Wj’s GPU is in the accepted list.

The QoS, along with the task constraints, are then used in an optimization method to

select most suitable workers, which is described later in Section 7.6.

7.5.2 DRL Model Sharing Tasks

In model sharing tasks, a user shares information about their pre-trained model with

the platform, with the hope of receiving incentives if the model is requested by other users.

For a given model sharing task Ti, a requester specifies the Problem Description (DTi),

Problem Domain (DomTi), Reputation Requirement (RepTi
min), Time Constraint (TCTi),

and Number of Workers (NW Ti). In DTi , the requester specifies information about the

environment they hope to train, which are essential to find suitable shared models. The

number of workers indicates the desired number of models to be shared with the requester,

as some DRL methods require multiple models to assist in the learning [109].

For model sharing tasks in the framework, the worker’s expertise Exp
Wj

MS−DomTi
, rep-

utation Rep
Wj

MS−DomTi
, and performance rating R

Wj

MS−DomTi
are defined similar to the at-

tributes for the DRL training tasks in Section 7.5.1 (as per Eqs. 16-19). Additionally, it

159

is essential to assess the similarity between the environment within which the worker’s

model has been trained and the environment of the requester. It is assumed that DRL

problems in the same domain DomTi have a set of d pre-defined environment attributes

A = [F1, F2, ..., Fd] that characterize the environment. Let mWj

k be the kth model shared

by worker Wj (assuming a worker can share multiple models). If mWj

k is within the task

domain DomTi , then the similarity S between model m and the requirements of task Ti is

given as:

S(m
Wj

k , Ti) =
d∑

n=1

wn × |Fm
n − F Ti

n | ,
d∑

n=1

wn = 1 (22)

where Fm is the set of environment attributes associated with shared model, and F Ti is the

set of environment attributes required by the task. The main intuition behind this metric is

that models from similar environments could be of more benefit to the requester. The nature

of the environment attributes depends on the task, but some examples include the number

of agents, number of obstacles (in obstacle avoidance tasks), number of destinations (in

autonomous vehicles applications), etc. Depending on the problem, some attributes might

have more importance than others, and hence we use a weighted some with a weight wn

for each attribute.

Considering all the aforementioned metrics, the QoS of worker Wj for the DRL model

sharing task is then given as:

QoS
Wj

MS−DomTi
=

Exp
Wj

MS−DomTi
×Rep

Wj

MS−DomTi
×R

Wj

MS−DomTi

1 + S(m
Wj

k , Ti)
(23)

where the +1 in the denominator is used for smoothing to avoid issues when S(m
Wj

k , Ti) is

zero, indicating that the two environments are exactly the same. The QoS is subject to the

following constraints:

160

• Rep
Wj

MS−DomTi
≥ RepTi

min

• R
Wj

MS−DomTi
≥ RTi

min

• DomTi ∈ DomWj

7.6 Recruitment Optimization Process

Given a task Ti and a pool of candidate workers, the recruitment optimization process

aims to recruit a group of NW Ti workers that maximize the expected QoS, while meeting

the task requirements and constraints. To do so, a Greedy algorithm for worker recruitment

is used, where the optimization process is treated as a knapsack problem. Greedy algo-

rithms are the common in crowdsourcing recruitment works [89, 91], due to their simplic-

ity and scalability. While other algorithms, such as Genetic algorithm and Particle Swarm

Optimization, could be used, the simplicity of Greedy algorithm makes it more suitable for

deployment on the blockchain. In this problem, the aim is to maximize the weight of items

filled in the knapsacks without violating its maximum capacity. In the context of worker

recruitment, the maximum capacity represents the specified group size NW Ti , while the

weights represent the individual QoS values of the workers. Regardless of the task type

(training or model sharing), the recruitment process is the same, with the QoS evaluation

and task requirements being the difference between the task types. Once a task is pushed

to a worker, they are given a time limit to accept, after which the task request is retracted

and given to the next best worker. The recruitment process used in this work is described

in Fig. 7.3.

161

Figure 7.3: Flowchart of the recruitment optimization process.

7.7 Smart Contracts Implementation

In this work, the crowdsourcing platform is built on top of a Consortium Blockchain.

The blockchain is responsible for managing users’ registration, task requests, task alloca-

tion, and feedback through smart contracts. A blockchain is used instead of a centralized

management system to provide a decentralized, transparent, and autonomous platform for

crowdsourcing with no repudiation. A Consortium Blockchain, specifically, is used due to

its ability to offer increased privacy, shared control, efficiency, cost savings, and trust for

multiple organizations or entities collaborating on a project or sharing data [92]. A Con-

sortium Blockchain is operated by a group of entities, which introduces increased privacy

and trust when compared to public Blockchains, and more collaboration allowance when

162

compared to private Blockchains, making them suitable for crowdsourcing. Recent works

explored the utilization of blockchain with DRL [109, 110], where agents cooperate to train

models on the chain, but none provided solutions or services for users.

To execute the proposed crowdsourcing framework on the blockchain, three smart con-

tracts are designed: 1) Users Manager Contract (UMC), Tasks Manager Contract (TMC),

and Models Manager Contract (MMC). The users interact with UMC to register in the

system by providing information. Task requesters interact with the TMC to submit tasks

and provide requirements. The TMC is responsible for the worker recruitment, task al-

location, task submission, and feedback processes. If users decide to share their trained

models with the platform, they interact with the MMC, which manages and keeps track of

the available DRL models. In all tasks, a worker could share the task outcomes, including

trained models, through the InterPlanetary File System (IPFS). IPFS returns a unique Con-

tent Identifier (CID) that can be used to access the file. The IPFS is a protocol designed

to create a content-addressable Peer-to-Peer (P2P) decentralized file system [93]. Workers

share the CID with the smart contracts when returning the task outcomes.

The details of the Users Manager Contract (UMC) are shown in Table 7.2. The

Worker data structure holds the worker’s information. The information in this structure

include the Worker Address (Ethereum address) and their Reputation. The Tasks Assigned

and Tasks Accepted attributes reflect the total number of tasks assigned to and accepted by

the worker. The Domains attribute lists the domains covered by the worker, where each

domain is represented by an index. The Status indicates whether the worker is active or

idle. The Expertise indicates the number of tasks completed by the worker per each of the 2

task types. The Total Ratings indicates the sum of ratings received for the tasks performed

by the worker, for each of the 2 task types. The Comp. Capabilities attribute represents

the number of CPU cores, the RAM capacity, and the GPU type available for the worker.

Finally, the Requester data structure holds the Requester Address.

163

Table 7.2: Users Manager Contract (UMC)

Data Structure
Worker

Worker Address (address) Reputation (uint)
Tasks Assigned (uint) Domains (uint[])
Tasks Accepted (uint) Status (uint)

Expertise (uint[2]) Total Ratings (uint[2])
Comp. Capabilities (uint[3])

Requester
Requester Address (address)

Variables
Workers List (address → Worker)

Domain Workers (uint → address[])
Function Parameters Return

addWorker() Worker Information -
addRequester() Requester Address -
updateStatus() Status -
updateInfo() Performance Details -
getWorkers() Domain Worker[]

The UMC stores workers’ information in the Workers List mapping, which maps a

worker’s address to their Worker object. Workers are grouped into domains in the Domain

Workers mapping, which maps a domain code to an array of Ethereum addresses for work-

ers in that domain. The addWorker() and addRequester() functions allow users to register

in the platform by providing necessary information to create Worker or Requester objects.

The updateStatus() and updateInfo() functions are responsible for updating the worker’s

attributes frequently following events in the platform, like performing a task or receiving a

review. The getWorkers() function is responsible for retrieving all worker objects in given

a domain code.

The Task Manager Contract (TMC) is shown in Table 7.3. The Task data structure

holds information about the task, including the Requester’s Ethereum address, the Duration

limit within which the task is to be finished, and the Type of the task. The No. Workers

attribute reflects the number of workers required by the requester, Min. Reputation and Min.

164

Rating describe the reputation and rating requirements for the task, Domain indicates the

domain code of the task, Problem Description contains a textual description of the problem

details, the Status indicates whether the task is pending or completed, and Computational

Reqs. indicates the minimum requirements for CPU, GPU, and RAM.

Table 7.3: Tasks Manager Contract (TMC)

Data Structure
Task

Requester (address) Duration (uint)
Type (uint) No. Workers (uint)

Min. Reputation (uint) Min. Rating (uint)
Problem Description (string) Status (uint)

Computational Reqs. (uint[3]) Domain (uint)
Variables

Domain Tasks (uint → Task[])
Function Parameters Return
addTask() Task Information -

allocateTask() Task Requirements -
updateTaskStatus() Status -
submitOutcome() Task Outcomes -

The TMC stores the tasks information in a Domain Tasks mapping, which maps a do-

main code to an array of task objects in that domain. The requester interacts with the

addTask() function by providing necessary information about the task to create a Task ob-

ject. The allocateTask() function is responsible for worker recruitment and forwarding the

task to the selected workers. the task status throughout the process is updated through the

updateTaskStatus() function, while the submitOutcome() functions is called to submit the

outcomes of a given task.

The Model Manager Contract (MMC) is shown in Table 7.4. The MMC is respon-

sible for storing information about shared models. The Owner attribute stores the address

of the owner, the CID stores the IPFS identifier for the shared files, Description stores a

textual description of the model and its application, Domain indicates the domain code of

the model’s application, and Environment Details stores attributes that identify the model’s

165

environment.

Table 7.4: Models Manager Contract (MMC)

Data Structure
Model

Owner (address) CID (string)
Description (string) Domain (uint)

Environment Details (uint[])
Variables

Domain Models (uint → Model[])
Function Parameters Return

addModel() Model Info -
allocateModel() Model Requirements Model[]

The MMC stores models’ information in the Domain Models mapping, which maps

a domain code to the available models for that domain. A worker calls the addModel()

function to add details about the shared model, while the allocateModel() function is re-

sponsible for finding the most suitable models amongst the available models based on the

requester’s requirements.

In terms of time complexity, most of the functions in the three smart contracts have a

complexity of O(N) or O(1). The addWorker(), addRequester(), addTask(), and addModel()

functions have a complexity of O(N), where N is the number of existing elements (workers,

requesters, etc.), since the functions check for duplicates before adding. Aside from the

allocation functions, all the remaining functions have a simple complexity of O(1). The

allocateTask() and allocateModel() functions employ a greedy algorithm that uses a sorting

mechanism to find the best workers, which hence has a time complexity of O(N logN).

7.8 Framework Time Sequence

Figure 7.4 shows a time sequence diagram for scenarios under the proposed blockchain-

based crowdsourced DRLaaS. It discusses the interactions between the users and the smart

166

contracts constituting the framework. For DRL training tasks, these interactions are given

as follows:

• User Registration: Users register to the UMC by invoking the addWorker() and

addRequester() functions. Each user, worker or requester, has a unique Ethereum

address linked to their account. Workers provide information related to their domains

and computational capabilities. The rest of the attributes are initialized and updated

following task executions.

• Task Request and Allocation: A request creates a task by interacting with the TMC

through the addTask() function and providing the necessary information and the re-

quired payment. The TMC allocates the task to suitable workers through the allo-

cateTask() function, and workers perform the task and return their outcomes through

IPFS to TMC through the submitOutcome() function. The outcomes are then for-

warded to the task requester.

• Feedback: Requesters rate the provided outcomes, and the ratings are used in the

UMC to update workers’ attributes. Workers then get paid for the tasks performed.

As for the DRL model sharing tasks, following the user registration, the process is as

follows:

• Model Upload: Workers who wish to share their trained models upload their files to

the IPFS and interact with the MMC through the addModel() function by sharing the

model details.

• Task Request and Allocation: A requester creates a model sharing task by inter-

acting with the TMC and specifying the task type and the attributes of the desired

environment. The TMC interacts with the MMC by invoking the allocateModel()

function, which returns the most suitable models, which are then forwarded to the

requester.

167

• Feedback: The requester rates the shared model, and the UMC updates the workers’

attributes accordingly and provides the payments

7.9 Experiments and Evaluation

This section presents and discusses several experiments conducted to validate the pro-

posed methods. The experiments are conducted on several Multi-agent DRL environments,

namely Target Localization [44, 45], Fleet Coordination for Autonomous Vehicles [97], and

Multi-Agent Maze Cleaning [99]. We opted to employ Multi-agent DRL instead of single-

agent DRL due to its increased complexity, which allows for a more rigorous examination

of the robustness and adaptability of our proposed methods. All the simulations have been

conducted using an Intel E5-2650 v4 Broadwell workstation equipped with 128 GB RAM,

800 GB SSD, and NVIDIA P100 Pascal GPU (16 GB HBM2 memory). To validate the pro-

posed framework, the key attributes in the worker selection metrics are evaluated, including

agent’s computational capabilities CCWj and model similarity S(m
Wj

k , Ti). The learning

convergence in the following experiments is evaluated in terms of Episode Length, which

is the time it takes for the agents to finish the task. The episode length is tracked throughout

the learning, to reflect how fast the agents learn to efficiently perform the task. It is also

essential to track how long the training process takes, in wall time, in order to verify the

importance of the proposed selection metrics. For all the experiments, the conditions of the

simulations are fixed, and only the variables under examination are varied.

7.9.1 DRL Application Environments

The DRL environments used in to validate the proposed methods are:

• Target Localization [44, 45]: this is a multi-agent problem in which the location of

168

Figure 7.4: The interactions between the users and smart contracts as part of the proposed frame-
work.

169

a certain target is to be identified, based on sensory readings collected by the sens-

ing agents. This is common in applications related to radiation monitoring, search

and rescue, and path-finding. In this problem, the sensing agents (robots or UAVs)

observe the environment, collect data readings, and communicate with each other in

order to cooperate and locate the unknown target. The learning problem is compli-

cated since the agents need to learn how to communicate and coordinate, in addition

to how to take the best set of actions in order to reach the target as fast as possible.

We model the DRL environment as discussed and presented in [44]. The agents’

observations are modeled as 2D heatmaps and fed to a Convolutional Neural Net-

work (CNN) that acts as an actor network in a Proximal Policy Optimization (PPO)

algorithm. A sample scenario of the target localization problem is shown in Fig.

7.5a.

• Multi-Agent Maze Cleaning [99]: in this problem, a group of agents is placed in a

maze with the task of cleaning it as fast as possible. Initially, the maze is entirely

dirty, and each spot covered by an agent is considered to have been cleaned. This

problem requires coordination between the agents to allocate tasks, and for them

to learn how to quickly clean the maze. Each agent observes its own location, the

location of the other agents, as well as the status of the map, in 2D format. The

observations are fed to a CNN as the actor network in a PPO algorithm. A sample

scenario of the maze cleaning problem is shown in Fig. 7.5b.

• Fleet Coordination for Autonomous Vehicles [97]: in this problem, a team of au-

tonomous vehicles is tasked with picking up and dropping customers at specific lo-

cations. Customers are randomly distributed in a certain area of interest, with each

customer having a certain desired destination. Vehicles have a limit in terms of the

number of customers accommodated simultaneously. The team’s goal is to minimize

170

the time needed to pick up and drop off customers off at their destinations. The com-

plexity of the learning comes from the fact that the agents (i.e. the vehicles) need

to cooperate to properly allocate tasks, such as the time is minimized. This is seen

as a multi-objective DRL problem, since each agent is required to find the shortest

path that goes through customers towards their destinations, while coordinating with

other agents. The agents observe their locations, the customers’ locations, as well as

the desired destinations, and take actions accordingly. The observations are modeled

as 2D heatmaps and fed to CNNs with PPO as the DRL optimization algorithm. A

sample scenario of the fleet coordination problem is shown in Fig. 7.5c.

(a) Target Localization (b) Maze Cleaning

(c) Fleet Coordination

Figure 7.5: Use-case scenarios of the DRL application environments used to validate the proposed
methods.

171

These environments are examples of complex DRL problems that require expertise and

computational resources. In the following sections, the proposed methods will be validated

using these environments, in which users rely on the proposed DRLaaS framework to push

tasks to workers and get outcomes.

7.9.2 DRL Training Tasks

As discussed in Section 7.5.1, most common DRL algorithms utilize parallelized pro-

cessing to run copies of the environment for experience collection during training. To

verify the importance of considering the worker’s CPU capabilities CC
Wj

CPU during the re-

cruitment stage for DRL training tasks, Fig. 7.6 presents the effect of varying the number

of CPU cores on the training convergence of DRL for the 3 applications. For many appli-

cations, parallelizing the data collection in DRL does not significantly affect the learning

convergence, which is the case for Target Localization (Fig. 7.6a) and Fleet Coordination

(Fig. 7.6c). However, in some applications where the task has a long horizon (takes gener-

ally longer time steps to finish), increasing the number of parallel processes brings benefits,

as seen in Fig. 7.6b for the Maze Cleaning environment. This is because parallelizing the

data collection enhances the exploration process, since more unique experiences in differ-

ent parallel environments are being collected, resulting in better training.

While the training convergence across different number of cores is similar for most

applications, and slightly better with more cores for some other applications, the case is

different in terms of wall time. Fig. 7.7a elaborates on the number of training steps obtained

in each of the DRL applications within 12 hours of wall time, for varying number of CPU

cores. It can be seen that, despite the similar training convergence in Target Localization

and Fleet Convergence environments (previously shown in Fig. 7.6), the training time is

significantly different. Specifically, a training method using 16 cores can execute 2.5, 2.4,

and 2.2 times the training steps with 2 cores, for the Target Localization, Maze Cleaning,

172

(a) Target Localization (b) Maze Cleaning

(c) Fleet Coordination

Figure 7.6: The effect of parallelizing the DRL process over a varying number of CPU cores on the
learning convergence, for different DRL environments.

and Fleet Coordination environments, respectively. This means that, in the case of Target

Localization for instance, the algorithm with 16 CPU cores needed less than half the wall

time to converge when compared to the algorithm with 2 CPU cores. This shows the

importance of the CPU capabilities attribute used to assess candidate workers. It is also

essential to point out that the effect of CPU cores on the wall time begins to saturate as

the CPU cores increase, which can be shown when going from 8 to 16. This verifies the

discussion in Section 7.5.1, which states that at a certain point, further parallelization does

not bring more benefit, and justifies the use of the tan−1 function in the assessment process.

In terms of GPU, Fig. 7.7b presents the effect of training with and without GPU, for

173

the 3 different applications. GPUs are essential when training DNNs, especially when

dealing with CNNs. As can be seen in the figure, training with GPU for a duration of 12

hours executes up to 19 times the training steps executed without GPU, which validates the

consideration of GPU capabilities in the worker assessment process.

(a) Training Steps vs CPU Cores (b) Training Steps vs GPU

Figure 7.7: The total number of training steps in a 12h duration, while (a) varying the number of
CPU cores (parallelized DRL) and (a) varying the use of GPU.

7.9.3 DRL Model Sharing

To study the importance of the similarity metric proposed in Eq. 22 for the DRL model

sharing tasks, Fig. 7.8 shows the learning performance when using different expert models

in assisting DRL, using Demonstration Cloning (DC) [45]. In DC, expert models help

current agents collect better experiences with more exposure to reward values, resulting in

better learning. For the target localization problem (Fig. 7.8a), a team of agents is to be

trained on environment with 3 agents and 3 walls (3A3W), with the help of 3 expert models

that have been previously trained on different environments, including 1A0W, 1A2W, and

2A2W. It can be seen that the closer the expert model is to the current environment of

interest (3A3W), the better the learning and the faster the convergence. Specifically, the

expert model from the 2A2W environment assists the training the best, since it is the closest

to the current environment. Similarly, for the maze cleaning problem, an expert model

174

trained on a 3-agent environment provides the best assistant to train a 5-agent environment,

when compared to expert models trained on single- and two-agent environments. For fleet

coordination, an expert model trained on an environment of 2 agents and 5 targets (2A5T)

gives the best assistant when training an environment of 3 agents and 10 targets (3A10T),

when compared to expert models trained on 1A2T and 1A5T environments.

(a) Target Localization (3A3W) (b) Maze Cleaning (5-agent)

(c) Fleet Coordination (3A10T)

Figure 7.8: The effect of model similarity on the learning performance, when training a 3-agent
3-wall target localization problem (3A3W), a 5-agent maze cleaning environment, and a 3-agent
10-target fleet coordination problem (3A10T).

175

7.9.4 Recruitment Optimization

To validate the choice of the greedy algorithm for the optimization of the recruitment

process, the proposed method is benchmarked against common methods in crowdsourcing

works, such as Genetic Algorithm (GA) [1], Particle Swarm Optimization (PSO) [95], and

Ant Colony Optimization (ACO) [111]. In GA-based methods, a population of candidate

solutions (i.e. possible sets of workers) is created and iteratively modified through genetic

operators such as crossover, mutation, and selection, aiming to converge toward an opti-

mal solution eventually. In PSO-based methods, a swarm of candidate solutions (particles)

explores potential worker selections based on their QoS values. Here, the positions and

velocities of the particles are iteratively updated based on their own experience (personal

best) and the experience of the swarm (global best). In ACO-based methods, the recruit-

ment problem is modeled as a graph where nodes represent workers and edges represent

possible selections. Ants placed on the graph deploy pheromones on the paths they take,

which is proportional to the quality of the solution. Fig. 7.9 compares the performance

of the greedy-based recruitment method with the benchmarks in terms of group average

QoS for different group sizes, where a group size is the number of workers recruited. The

results are obtained using a synthetic dataset of 600 candidate workers, where the workers’

attributes are generated randomly following a uniform distribution for fair comparison. It

can be seen in the figure that, regardless of the group size, a greedy-based method always

outperforms the other benchmarks. This is mainly because the selection of workers occurs

independently for each worker in a greedy method. Hence, the size of its search space is

simply the available pool of workers, making the search process simple. On the other hand,

GA-, PSO-, and ACO-based methods operate on a broader search space by considering

the different combinations of groups of workers, making the search problem harder. It is

worth mentioning that for the current results in Fig. 7.9, on average, the greedy algorithm

is nearly 200 times faster than GA, 73 times faster than PSO, and 132 times faster than

176

ACO. This is significant for the deployment of the proposed framework on the blockchain.

Figure 7.9: Comparison between the proposed greedy-based recruitment and the benchmarks for
different group sizes.

To analyze the effect of the recruited workers on the QoS and the DRL training results,

Fig. 7.10 compares the proposed work based on the QoS in Eq. 21 with several recruitment

benchmarks. Since no works in the literature address the crowdsourcing of DRL training

tasks, we choose benchmarks from similar domains in crowdsourcing and federated learn-

ing. Reputation-based recruitment methods [65] focus on reputation-related attributes to

assess the workers, with the aim of selecting the most reputed ones. CPU-based recruit-

ment methods [112, 113] focus on the computational capabilities of the workers in terms

of CPU and RAM. We also consider a random recruitment method as a baseline. As shown

in Fig. 7.10a, the three benchmarks fall short in terms of QoS when compared to the pro-

posed work. This is mainly because each of the benchmarks considers only a subset of the

DRL-related parameters considered in Eq. 21. To demonstrate the effect of the recruit-

ment of the DRL task, Fig. 7.10b shows the training results (in terms of episode length to

be minimized) using the workers selected by each benchmark. Here, the aforementioned

600-candidate workers dataset is used, and selected workers are given the task of training a

model to solve a maze-cleaning environment of 4 agents. For a fair comparison, we modify

our method to match each of the benchmarks by keeping only the attributes considered by

177

them. As can be seen in the figure, reputation-based and random recruitment benchmarks

struggle with convergence. This is due to the lack of DRL-related attributes such as compu-

tational capabilities. On the other hand, the CPU-based recruitment benchmark performs

nearly as well as the proposed work, with the latter showing a slight performance advantage

in terms of episode length. It is also worth noting that the workers chosen by the proposed

work are nearly 20 times faster than the CPU-based benchmark in training the 30M steps,

which is due to the use of GPU that is missing from the benchmark.

7.9.5 Blockchain and Smart Contracts Complexity Analysis

To analyze the complexity and feasibility of the proposed smart contracts, Table 7.5

presents the gas cost of the deployment and execution of the smart contracts and their func-

tions. Gas cost is defined as the computational effort required to execute operations such as

smart contracts. In public blockchains, the gas cost can be used to determine the fees to be

paid for executing transactions or running smart contracts based on the gas price. Since a

Consortium Blockchain is proposed, the deployment and execution of the smart contracts

do not require any payments by the users since the gas price is zero. However, the gas cost

is a good measure of the complexity of the smart contracts and its functions to indicate

their feasibility. As seen in the table, the gas costs are low, reflecting the feasibility of the

proposed contracts. For reference, we present a benchmark of the gas cost of deploying

and executing a similar UMC as discussed in [92].

It is worth mentioning that consortium blockchains are generally known to have a sig-

nificantly lower latency and a higher throughput when compared to public blockchains.

This is mainly because they have a predetermined set of nodes that are known to each

other, which allows faster transaction processing due to optimized consensus mechanisms

with a small number of trusted validators. The exact computations of latency and through-

put depend on several factors such as the number of nodes, security requirements, and the

178

(a)

(b)

Figure 7.10: Comparison between the proposed method and different benchmarks in terms of (a)
QoS for different group sizes and (b) DRL training results for a group size of 4, using the maze
cleaning environment.

consensus mechanisms, which are out of the scope of this work. However, since DRL

task allocation in the proposed crowdsourcing system is not time-sensitive, studying the

latency and throughput is not significant to this work. Nonetheless, in common consor-

tium blockchains such as Quorum, the blockchain can handle hundreds to thousands of

transactions per second (throughput) with latency as low as few milliseconds to 2 seconds.

179

Table 7.5: Blockchain gas cost.

Contract Function gas cost

UMC

deployment 735736
addWorker() 85455

addRequester() 74569
updateStatus() 37286

updateInfo) 67486
getWorkers() 95287

TMC

deployment 1477451
addTask() 487452

allocateTask() 1053842
updateTaskStatus() 99374
submitOutcome() 29374

MMC

deployment 1357425
addModel() 634341

allocateModel() 903842

UMC - Benchmark [92]
deployment 1228566
addUser() 352352

180

Chapter 8

Conclusion and Future Direction

8.1 Conclusion

This thesis focused on designing scalable Multi-Agent Deep Reinforcement Learning

(MDRL) methods to address the complex problem of cooperative target search and local-

ization in dynamic and uncertain environments. It began by addressing the fundamental

problem of cooperative target search and localization using Multi-Agent Deep Reinforce-

ment Learning MDRL in simple environments. The initial focus was on developing scal-

able methods that could handle increasing numbers of agents while ensuring efficient coor-

dination and collaboration between them. In these simpler scenarios, the primary challenge

was to ensure that the agents could work together effectively, translate their observations

into cooperative actions, and achieve quick and cost-efficient localization. This early work

laid the groundwork for exploring more realistic and challenging environments.

As the research progressed, we shifted our focus to more realistic and challenging envi-

ronments, where obstacles introduced significant complexities. These obstacles impacted

both agent mobility and the accuracy of sensor data, making the task far more demanding.

181

The complexity of the problem is further amplified when considering scenarios with uncer-

tainties, where targets could be unreachable or non-existing. We proposed initial MDRL-

based methods while using methods such as Convolutional AutoEncoders and Breadth-

First Search. While these initial methods proved successful in such complex environments,

they faced long training times to reach convergence. To overcome these challenges, we

introduced a novel Demonstration Cloning (DC) method, which integrates ideas from Im-

itation Learning (IL). This solution enabled agents to learn from the expertise of others, in

addition to their own experiences, which significantly reduces training times. Building on

this, we proposed the Multi-Expert Demonstration Cloning (MEDC) method, leveraging

blockchain technology to allow for decentralized sharing of pre-trained models. Realizing

the need for knowledge sharing and the lack of available pre-trained MDRL models, we

proposed a framework where trained models could be easily shared between users to assist

in training new MDRL solutions. The blockchain-assisted MEDC framework provided the

foundation for this, ensuring that new models could benefit from the collective intelligence

of previous agents, thereby significantly reducing the time required to develop new MDRL

solutions.

Finally, recognizing the challenges that users face when attempting to train DRL mod-

els, we proposed a novel platform: Deep Reinforcement Learning as a Service (DRLaaS).

DRLaaS offers a crowdsourced solution to the difficulties of accessing computational re-

sources and expertise, allowing users to outsource DRL design and training tasks to a

community of experts rather than relying on expensive, centralized services. This service-

oriented approach democratizes access to DRL development, providing a scalable and cost-

effective way for users to develop complex multi-agent systems for problems like target

search and localization.

182

8.2 Future Directions

Throughout this thesis, we have showcased the effectiveness of our proposed solutions

through rigorous experiments and evaluations on real-world applications and scenarios of

target search and localization. However, the target localization problem remains sensitive,

demanding, and continually evolving. Real-world applications, such as search and rescue,

environmental monitoring, and surveillance, are characterized by dynamic conditions that

constantly push the boundaries of existing MDRL solutions. The unpredictability of en-

vironments, the presence of obstacles, and the uncertainty in target behavior all contribute

to the complexity of the problem. As these applications become more critical, there is a

continuous need to design new, innovative solutions to keep up with the evolving demands

of target localization tasks.

One key direction for future work lies in the sustainability of multi-agent systems in

target localization applications, particularly in long-term deployments where agents need

to operate for extended periods. Introducing energy management solutions, such as in-

tegrating charging stations within the environment, could ensure that the agents maintain

their effectiveness over longer missions. This would require designing policies, based on

MDRL, that consider charging stations in the decision-making process, and address the

increased complexity in the coordination between agents.

Another promising direction is to extend the current MDRL methods to support target

tracking, where the target is mobile and potentially evasive. In such scenarios, the target

may actively avoid detection, requiring agents to adapt their strategies dynamically and

work collaboratively to track and intercept the moving target. This can be tackled using

self-play, a technique in DRL where two teams of agents, acting as the trackers and the

targets, take turns building their policies. This allows the agents to learn the evasive be-

haviors and develop policies that counter those of the evasive target, ultimately enhancing

their ability to handle complex, dynamic interactions with mobile targets.

183

Lastly, the issue of explainability is particularly critical in sensitive target search and

localization applications, such as military operations, disaster response, and intrusion de-

tection. In these contexts, the decisions made by autonomous agents must be interpretable

and transparent, as incorrect decisions can have severe consequences. Future work should

focus on developing explainable MDRL (XMDRL) systems that provide clear interpre-

tations for their decision-making processes, allowing human operators to understand the

rationale behind actions taken by the agents during the target search.

184

Bibliography

[1] Ahmed Alagha, Shakti Singh, Rabeb Mizouni, Anis Ouali, and Hadi Otrok. Data-

driven dynamic active node selection for event localization in IoT applications-a case

study of radiation localization. IEEE Access, 7:16168–16183, 2019.

[2] Zheng Liu and Shiva Abbaszadeh. Double Q-learning for radiation source detection.

Sensors, 19(4):960, 2019.

[3] Tomas Lazna, Petr Gabrlik, Tomas Jilek, and Ludek Zalud. Cooperation between

an unmanned aerial vehicle and an unmanned ground vehicle in highly accurate

localization of gamma radiation hotspots. Int. Journal of Advanced Robotic Systems,

15(1):1729881417750787, 2018.

[4] Mohsen Sadi, Youmin Zhang, Wen-Fang Xie, and FM Anim Hossain. Forest fire

detection and localization using thermal and visual cameras. In 2021 Int. Conf. on

Unmanned Aircraft Systems (ICUAS), pages 744–749. IEEE, 2021.

[5] Saleh O Al-Jazzar, Sami Ahmed Aldalahmeh, Des McLernon, and Syed Ali Raza

Zaidi. Intruder localization and tracking using two pyroelectric infrared sensors.

IEEE Sensors Journal, 20(11):6075–6082, 2020.

[6] Raghuram Bharadwaj Diddigi, KJ Prabuchandran, and Shalabh Bhatnagar. Novel

sensor scheduling scheme for intruder tracking in energy efficient sensor networks.

IEEE Wireless Communications Letters, 7(5):712–715, 2018.

185

[7] Farzad Niroui, Kaicheng Zhang, Zendai Kashino, and Goldie Nejat. Deep reinforce-

ment learning robot for search and rescue applications: Exploration in unknown clut-

tered environments. IEEE Robotics and Automation Letters, 4(2):610–617, 2019.

[8] Ebtehal Turki Alotaibi, Shahad Saleh Alqefari, and Anis Koubaa. Lsar: Multi-UAV

collaboration for search and rescue missions. IEEE Access, 7:55817–55832, 2019.

[9] Er-wei Bai, Kidane Yosief, Soura Dasgupta, and Raghuraman Mudumbai. The max-

imum likelihood estimate for radiation source localization: Initializing an iterative

search. In 2014 53rd IEEE Conference on Decision and Control, pages 277–282.

IEEE, 2014.

[10] Annie Liu and et al. Design tradeoffs for radiation detection sensor networks.

Preprint, available at http://www. cs. caltech. edu/˜ aliu/documents/IPSN_ final. pdf,

2009.

[11] Annie H Liu, Julian J Bunn, and K Mani Chandy. An analysis of data fusion for

radiation detection and localization. In 2010 13th International Conference on In-

formation Fusion, pages 1–8. IEEE, 2010.

[12] Ashok Sundaresan, Pramod K Varshney, and Nageswara SV Rao. Distributed de-

tection of a nuclear radioactive source using fusion of correlated decisions. In 2007

10th Int. Conf. on Information Fusion, pages 1–7. IEEE, 2007.

[13] Ahmed Alagha, Shakti Singh, Hadi Otrok, and Rabeb Mizouni. RFLS-resilient fault-

proof localization system in IoT and crowd-based sensing applications. Journal of

Network and Computer Applications, 170, 2020.

[14] Alexei V Klimenko, William C Priedhorsky, Nicolas W Hengartner, and Kon-

stantin N Borozdin. Efficient strategies for low-statistics nuclear searches. IEEE

Transactions on Nuclear Science, 53(3):1435–1442, 2006.

186

[15] Hu Xiao, Rongxin Cui, and Demin Xu. A sampling-based bayesian approach for

cooperative multiagent online search with resource constraints. IEEE Transactions

on Cybernetics, 48(6):1773–1785, 2017.

[16] Petar Kormushev, Sylvain Calinon, and Darwin G Caldwell. Reinforcement learning

in robotics: Applications and real-world challenges. Robotics, 2(3):122–148, 2013.

[17] Guillaume Sartoretti, Justin Kerr, Yunfei Shi, Glenn Wagner, TK Satish Kumar,

Sven Koenig, and Howie Choset. Primal: Pathfinding via reinforcement and imita-

tion multi-agent learning. IEEE Robotics and Automation Letters, 4(3):2378–2385,

2019.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. Human-level control through deep reinforcement learning. nature,

518(7540):529–533, 2015.

[19] Rashid Ali, Imran Ashraf, Ali Kashif Bashir, and Yousaf Bin Zikria. Reinforcement-

learning-enabled massive internet of things for 6g wireless communications. IEEE

Communications Standards Magazine, 5(2):126–131, 2021.

[20] Athanasios S Polydoros and Lazaros Nalpantidis. Survey of model-based reinforce-

ment learning: Applications on robotics. Journal of Intelligent & Robotic Systems,

86(2):153–173, 2017.

[21] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

MIT press, 2018.

[22] Thanh Thi Nguyen et al. Deep reinforcement learning for multiagent systems: A

review of challenges, solutions, and applications. IEEE transactions on cybernetics,

50(9):3826–3839, 2020.

187

[23] Christopher Berner et al. Dota 2 with large scale deep reinforcement learning. arXiv

preprint arXiv:1912.06680, 2019.

[24] Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. Deep

reinforcement learning framework for autonomous driving. Electronic Imaging,

2017(19):70–76, 2017.

[25] Jingjing Cui, Yuanwei Liu, and Arumugam Nallanathan. Multi-agent reinforcement

learning-based resource allocation for UAV networks. IEEE Transactions on Wire-

less Communications, 19(2):729–743, 2019.

[26] Junchen Jin and Xiaoliang Ma. Hierarchical multi-agent control of traffic lights

based on collective learning. Engineering applications of artificial intelligence, 68:

236–248, 2018.

[27] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learn-

ing: A selective overview of theories and algorithms. Handbook of Reinforcement

Learning and Control, pages 321–384, 2021.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. Advances in neural information processing

systems, 25:1097–1105, 2012.

[29] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. A survey and critique

of multiagent deep reinforcement learning. Autonomous Agents and Multi-Agent

Systems, 33(6):750–797, 2019.

[30] Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement learning: a

survey. Artificial Intelligence Review, pages 1–49, 2021.

[31] John Schulman et al. Proximal policy optimization algorithms. arXiv preprint

arXiv:1707.06347, 2017.

188

[32] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.

High-dimensional continuous control using generalized advantage estimation. In

2016 Proc. Int. Conf. on Learning Representations (ICLR), 2016.

[33] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.

Trust region policy optimization. In Proceedings of the 32nd Int. Conf. on Machine

Learning (ICML), volume 37, pages 1889–1897, Lille, France, 07–09 Jul 2015.

PMLR.

[34] Saurabh K Pandey and Mukesh A Zaveri. Event localization in the internet of things

environment. Procedia computer science, 115, 2017.

[35] François Grondin et al. Sound event localization and detection using crnn on pairs of

microphones. In 2019 Proc. Detection and Classification of Acoustic Scenes Events

Workshop, 2019.

[36] Jren-Chit Chin, David KY Yau, Nageswara SV Rao, Yong Yang, Chris YT Ma, and

Mallikarjun Shankar. Accurate localization of low-level radioactive source under

noise and measurement errors. In Proceedings of the 6th ACM conference on Em-

bedded network sensor systems, pages 183–196. ACM, 2008.

[37] Zhenyu Liu, Wenhan Dai, and Moe Z Win. Node placement for localization net-

works. In 2017 IEEE International Conference on Communications (ICC), pages

1–6. IEEE, 2017.

[38] AH Mohamed and KH Marzouk. Optimizing the energy consumption of wireless

sensor networks. International Journal of Applied Information Systems (IJAIS) Vol-

ume, 10, 2015.

[39] Ahmed Alagha, Rabeb Mizouni, Shakti Singh, Hadi Otrok, and Anis Ouali. SDRS:

189

A stable data-based recruitment system in IoT crowdsensing for localization tasks.

Journal of Network and Computer Applications, 177:102968, 2021.

[40] KP Ziock and WH Goldstein. The lost source, varying backgrounds and why big-

ger may not be better. In AIP Conference Proceedings, volume 632, pages 60–70.

American Institute of Physics, 2002.

[41] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob

McGrew, and Igor Mordatch. Emergent tool use from multi-agent autocurricula. In

2020 Proc. Int. Conf. on Learning Representations (ICLR), 2020.

[42] Deepak A Vidhate and Parag Kulkarni. Cooperative multi-agent reinforcement

learning models (cmrlm) for intelligent traffic control. In 2017 1st International

Conference on Intelligent Systems and Information Management (ICISIM), pages

325–331. IEEE, 2017.

[43] Junjia Liu, Huimin Zhang, Zhuang Fu, and Yao Wang. Learning scalable multi-

agent coordination by spatial differentiation for traffic signal control. Engineering

Applications of Artificial Intelligence, 100:104165, 2021.

[44] Ahmed Alagha, Shakti Singh, Rabeb Mizouni, Jamal Bentahar, and Hadi Otrok. Tar-

get localization using multi-agent deep reinforcement learning with proximal policy

optimization. Future Generation Computer Systems, 136:342–357, 2022.

[45] Ahmed Alagha, Rabeb Mizouni, Jamal Bentahar, Hadi Otrok, and Shakti Singh.

Multi-agent deep reinforcement learning with demonstration cloning for target lo-

calization. IEEE Internet of Things Journal, 2023.

[46] Hani Sami, Jamal Bentahar, Azzam Mourad, Hadi Otrok, and Ernesto Damiani.

Graph convolutional recurrent networks for reward shaping in reinforcement learn-

ing. Information Sciences, 608:63–80, 2022.

190

[47] Yunlong Dong, Xiuchuan Tang, and Ye Yuan. Principled reward shaping for re-

inforcement learning via lyapunov stability theory. Neurocomputing, 393:83–90,

2020.

[48] Ashvin Nair et al. Overcoming exploration in reinforcement learning with demon-

strations. In 2018 IEEE international conference on robotics and automation

(ICRA), pages 6292–6299, 2018.

[49] Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bi-

lal Piot, Nicolas Heess, Thomas Rothörl, Thomas Lampe, and Martin Riedmiller.

Leveraging demonstrations for deep reinforcement learning on robotics problems

with sparse rewards. arXiv preprint arXiv:1707.08817, 2017.

[50] Mehul Damani, Zhiyao Luo, Emerson Wenzel, and Guillaume Sartoretti. Primal

_2: Pathfinding via reinforcement and imitation multi-agent learning-lifelong. IEEE

Robotics and Automation Letters, 6(2):2666–2673, 2021.

[51] Zheqi Zhu, Shuo Wan, Pingyi Fan, and Khaled B Letaief. Federated multiagent

actor–critic learning for age sensitive mobile-edge computing. IEEE Internet of

Things Journal, 9(2):1053–1067, 2021.

[52] Xiaofei Wang, Yiwen Han, Chenyang Wang, Qiyang Zhao, Xu Chen, and Min Chen.

In-edge ai: Intelligentizing mobile edge computing, caching and communication by

federated learning. Ieee Network, 33(5):156–165, 2019.

[53] Shuai Yu, Xu Chen, Zhi Zhou, Xiaowen Gong, and Di Wu. When deep reinforce-

ment learning meets federated learning: Intelligent multitimescale resource man-

agement for multiaccess edge computing in 5g ultradense network. IEEE Internet of

Things Journal, 8(4):2238–2251, 2020.

191

[54] Boyi Liu, Lujia Wang, and Ming Liu. Lifelong federated reinforcement learning:

a learning architecture for navigation in cloud robotic systems. IEEE Robotics and

Automation Letters, 4(4):4555–4562, 2019.

[55] Xinle Liang, Yang Liu, Tianjian Chen, Ming Liu, and Qiang Yang. Federated

transfer reinforcement learning for autonomous driving. In Federated and Trans-

fer Learning, pages 357–371. Springer, 2022.

[56] Jiaju Qi, Qihao Zhou, Lei Lei, and Kan Zheng. Federated reinforcement learning:

Techniques, applications, and open challenges. arXiv preprint arXiv:2108.11887,

2021.

[57] Xiaofeng Fan, Yining Ma, Zhongxiang Dai, Wei Jing, Cheston Tan, and Bryan

Kian Hsiang Low. Fault-tolerant federated reinforcement learning with theoreti-

cal guarantee. Advances in Neural Information Processing Systems, 34:1007–1021,

2021.

[58] Mauro Ribeiro, Katarina Grolinger, and Miriam AM Capretz. Mlaas: Machine learn-

ing as a service. In 2015 IEEE 14th international conference on machine learning

and applications (ICMLA), pages 896–902. IEEE, 2015.

[59] Shuai Zhao, Manoop Talasila, Guy Jacobson, Cristian Borcea, Syed Anwar Aftab,

and John F Murray. Packaging and sharing machine learning models via the acumos

ai open platform. In 2018 17th IEEE International Conference on Machine Learning

and Applications (ICMLA), pages 841–846. IEEE, 2018.

[60] Abhinav Kumar, Reza Tourani, Mona Vij, and Srikathyayani Srikanteswara. Sclera:

A framework for privacy-preserving mlaas at the pervasive edge. In 2022 IEEE

International Conference on Pervasive Computing and Communications Workshops

and other Affiliated Events (PerCom Workshops), pages 175–180. IEEE, 2022.

192

[61] Sukhdeep Singh, Joseph Thaliath, Isma Farah Siddiqui, Ashish Jain, Seungil Yoon,

Mohammad Attique, and Nawab Muhammad Faseeh Qureshi. Machine learning as a

service for beyond 5g networks. In 2022 IEEE Globecom Workshops (GC Wkshps),

pages 455–460. IEEE, 2022.

[62] Dan Graur, Damien Aymon, Dan Kluser, Tanguy Albrici, Chandramohan A

Thekkath, and Ana Klimovic. Cachew: Machine learning input data processing

as a service. In 2022 USENIX Annual Technical Conference (USENIX ATC 22),

pages 689–706, 2022.

[63] Menatalla Abououf, Hadi Otrok, Rabeb Mizouni, Shakti Singh, and Ernesto Dami-

ani. How artificial intelligence and mobile crowd sourcing are inextricably inter-

twined. IEEE Network, 35(3):252–258, 2020.

[64] Yingying Ren, Wei Liu, Anfeng Liu, Tian Wang, and Ang Li. A privacy-protected

intelligent crowdsourcing application of iot based on the reinforcement learning.

Future generation computer systems, 127:56–69, 2022.

[65] Menatalla Abououf, Shakti Singh, Hadi Otrok, Rabeb Mizouni, and Ernesto Dami-

ani. Machine learning in mobile crowd sourcing: A behavior-based recruitment

model. ACM Transactions on Internet Technology (TOIT), 22(1):1–28, 2021.

[66] Mahmoud Aly, Kamel H Rahouma, and Safwat M Ramzy. Pay attention to the

speech: Covid-19 diagnosis using machine learning and crowdsourced respiratory

and speech recordings. Alexandria Engineering Journal, 61(5):3487–3500, 2022.

[67] Supattra Puttinaovarat and Paramate Horkaew. Flood forecasting system based on

integrated big and crowdsource data by using machine learning techniques. IEEE

Access, 8:5885–5905, 2020.

193

[68] Peter Washington, Emilie Leblanc, Kaitlyn Dunlap, Yordan Penev, Aaron Kline,

Kelley Paskov, Min Woo Sun, Brianna Chrisman, Nathaniel Stockham, Maya

Varma, et al. Precision telemedicine through crowdsourced machine learning: test-

ing variability of crowd workers for video-based autism feature recognition. Journal

of personalized medicine, 10(3):86, 2020.

[69] Joseph Chee Chang, Saleema Amershi, and Ece Kamar. Revolt: Collaborative

crowdsourcing for labeling machine learning datasets. In Proceedings of the 2017

CHI Conference on Human Factors in Computing Systems, pages 2334–2346, 2017.

[70] Irene Martín-Morató and Annamaria Mesaros. Strong labeling of sound events us-

ing crowdsourced weak labels and annotator competence estimation. IEEE/ACM

Transactions on Audio, Speech, and Language Processing, 31:902–914, 2023.

[71] Guillaume Sartoretti, Yunfei Shi, William Paivine, Matthew Travers, and Howie

Choset. Distributed learning for the decentralized control of articulated mobile

robots. In 2018 IEEE Int. Conf. on Robotics and Automation (ICRA), pages 3789–

3794. IEEE, 2018.

[72] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward

transformations: Theory and application to reward shaping. In Icml, volume 99,

pages 278–287, 1999.

[73] Xueguang Lyu, Yuchen Xiao, Brett Daley, and Christopher Amato. Contrasting

centralized and decentralized critics in multi-agent reinforcement learning. In Proc.

of the 2021 20th International Conference on Autonomous Agents and MultiAgent

Systems (AAMAS), pages 844–852, 2021.

[74] Yann LeCun et al. Lenet-5, convolutional neural networks. URL: http://yann. lecun.

com/exdb/lenet, 20(5):14, 2015.

194

[75] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mor-

datch. Multi-agent actor-critic for mixed cooperative-competitive environments. Ad-

vances in neural information processing systems, 30, 2017.

[76] Nikhil Barhate. Minimal pytorch implementation of proximal policy optimization.

https://github.com/nikhilbarhate99/PPO-PyTorch, 2021.

[77] Glenn F Knoll. Radiation detection and measurement. John Wiley & Sons, 2010.

[78] Don Davis and Eugene Patronis. Sound system engineering. CRC Press, 2014.

[79] Rashid Ali, Yousaf Bin Zikria, Sahil Garg, Ali Kashif Bashir, Mohammad S Obaidat,

and Hyung Seok Kim. A federated reinforcement learning framework for incumbent

technologies in beyond 5g networks. IEEE Network, 35(4):152–159, 2021.

[80] Jorge Sola and Joaquin Sevilla. Importance of input data normalization for the ap-

plication of neural networks to complex industrial problems. IEEE Transactions on

nuclear science, 44(3):1464–1468, 1997.

[81] Philippe Proctor, Christof Teuscher, Adam Hecht, and Marek Osiński. Proximal

policy optimization for radiation source search. Journal of Nuclear Engineering, 2

(4):368–397, 2021.

[82] Zhu Tianqing, Wei Zhou, Dayong Ye, Zishuo Cheng, and Jin Li. Resource alloca-

tion in iot edge computing via concurrent federated reinforcement learning. IEEE

Internet of Things Journal, 9(2):1414–1426, 2021.

[83] Chetan Nadiger, Anil Kumar, and Sherine Abdelhak. Federated reinforcement learn-

ing for fast personalization. In 2019 IEEE Second International Conference on Arti-

ficial Intelligence and Knowledge Engineering (AIKE), pages 123–127. IEEE, 2019.

195

https://github.com/nikhilbarhate99/PPO-PyTorch

[84] Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao,

Feng Wu, and Changjie Fan. Learning to utilize shaping rewards: A new approach

of reward shaping. Advances in Neural Information Processing Systems, 33:15931–

15941, 2020.

[85] Hani Sami, Hadi Otrok, Jamal Bentahar, Azzam Mourad, and Ernesto Damiani. Re-

ward shaping using convolutional neural network. arXiv preprint arXiv:2210.16956,

2022.

[86] Dinh C Nguyen, Ming Ding, Pubudu N Pathirana, Aruna Seneviratne, Jun Li, and

H Vincent Poor. Federated learning for internet of things: A comprehensive survey.

IEEE Communications Surveys & Tutorials, 23(3):1622–1658, 2021.

[87] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge

distillation: A survey. International Journal of Computer Vision, 129:1789–1819,

2021.

[88] Dinh C Nguyen, Ming Ding, Quoc-Viet Pham, Pubudu N Pathirana, Long Bao Le,

Aruna Seneviratne, Jun Li, Dusit Niyato, and H Vincent Poor. Federated learning

meets blockchain in edge computing: Opportunities and challenges. IEEE Internet

of Things Journal, 8(16):12806–12825, 2021.

[89] Maha Kadadha, Shakti Singh, Rabeb Mizouni, and Hadi Otrok. A context-aware

blockchain-based crowdsourcing framework: Open challenges and opportunities.

IEEE Access, 2022.

[90] Adam Lipowski and Dorota Lipowska. Roulette-wheel selection via stochastic ac-

ceptance. Physica A: Statistical Mechanics and its Applications, 391(6):2193–2196,

2012.

196

[91] Ahmed Alagha, Shakti Singh, Hadi Otrok, and Rabeb Mizouni. Influence-and

interest-based worker recruitment in crowdsourcing using online social networks.

IEEE Transactions on Network and Service Management, 2022.

[92] Maha Kadadha, Hadi Otrok, Rabeb Mizouni, Shakti Singh, and Anis Ouali. On-

chain behavior prediction machine learning model for blockchain-based crowd-

sourcing. Future Generation Computer Systems, 136:170–181, 2022.

[93] Juan Benet. Ipfs-content addressed, versioned, p2p file system. arXiv preprint

arXiv:1407.3561, 2014.

[94] Yingjie Wang, Zhipeng Cai, Zhi-Hui Zhan, Yue-Jiao Gong, and Xiangrong Tong.

An optimization and auction-based incentive mechanism to maximize social welfare

for mobile crowdsourcing. IEEE Transactions on Computational Social Systems, 6

(3):414–429, 2019.

[95] Yingjie Wang, Yang Gao, Yingshu Li, and Xiangrong Tong. A worker-selection in-

centive mechanism for optimizing platform-centric mobile crowdsourcing systems.

Computer Networks, 171:107144, 2020.

[96] Karl-Martin Ehrhart, Marion Ott, and Susanne Abele. Auction fever: Rising revenue

in second-price auction formats. Games and Economic Behavior, 92:206–227, 2015.

[97] Elias Xidias, Paraskevi Zacharia, and Andreas Nearchou. Path planning and schedul-

ing for a fleet of autonomous vehicles. Robotica, 34(10):2257–2273, 2016.

[98] Cane Punma. Autonomous vehicle fleet coordination with deep reinforcement learn-

ing. 2018.

[99] Shuo Jiang and Christopher Amato. Multi-agent reinforcement learning with di-

rected exploration and selective memory reuse. In Proceedings of the 36th annual

ACM symposium on applied computing, pages 777–784, 2021.

197

[100] Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint

arXiv:1701.07274, 2017.

[101] Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement learning: a

survey. Artificial Intelligence Review, pages 1–49, 2022.

[102] Qizheng Wang, Wenping Ma, and Weiwei Wang. B-lnn: Inference-time linear model

for secure neural network inference. Information Sciences, 638:118966, 2023.

[103] Zijie Pan, Jiajin Zeng, Riqiang Cheng, Hongyang Yan, and Jin Li. Pnas: A privacy

preserving framework for neural architecture search services. Information Sciences,

573:370–381, 2021.

[104] Yu Dong, Liangxiao Jiang, and Chaoqun Li. Improving data and model quality in

crowdsourcing using co-training-based noise correction. Information Sciences, 583:

174–188, 2022.

[105] Yao Zhang, Liangxiao Jiang, and Chaoqun Li. Instance redistribution-based label

integration for crowdsourcing. Information Sciences, 674:120702, 2024.

[106] Nada Elsokkary, Hadi Otrok, Shakti Singh, Rabeb Mizouni, Hassan Barada, and

Mohammed Omar. Crowdsourced last mile delivery: Collaborative workforce as-

signment. Internet of Things, 22:100692, 2023.

[107] Decui Liang, Wen Cao, Zeshui Xu, and Mingwei Wang. A novel approach of two-

stage three-way co-opetition decision for crowdsourcing task allocation scheme. In-

formation Sciences, 559:191–211, 2021.

[108] Hani Sami, Hadi Otrok, Jamal Bentahar, Azzam Mourad, and Ernesto Damiani.

Reward shaping using convolutional neural network. Information Sciences, 648:

119481, 2023.

198

[109] Ahmed Alagha, Jamal Bentahar, Hadi Otrok, Shakti Singh, and Rabeb Mi-

zouni. Blockchain-assisted demonstration cloning for multi-agent deep reinforce-

ment learning. IEEE Internet of Things Journal, 2023.

[110] Hani Sami, Rabeb Mizouni, Hadi Otrok, Shakti Singh, Jamal Bentahar, and Az-

zam Mourad. Learnchain: Transparent and cooperative reinforcement learning on

blockchain. Future Generation Computer Systems, 150:255–271, 2024.

[111] Yang Wang, Chenxi Zhao, and Shanshan Xu. Method for spatial crowdsourcing task

assignment based on integrating of genetic algorithm and ant colony optimization.

IEEE Access, 8:68311–68319, 2020.

[112] Osama Wehbi, Sarhad Arisdakessian, Omar Abdel Wahab, Hadi Otrok, Safa Otoum,

Azzam Mourad, and Mohsen Guizani. Fedmint: Intelligent bilateral client selection

in federated learning with newcomer iot devices. IEEE Internet of Things Journal,

2023.

[113] Mario Chahoud, Hani Sami, Azzam Mourad, Safa Otoum, Hadi Otrok, Jamal Benta-

har, and Mohsen Guizani. On-demand-fl: A dynamic and efficient multi-criteria fed-

erated learning client deployment scheme. IEEE Internet of Things Journal, 2023.

199

	List of Figures
	List of Tables
	Introduction
	Target Search and Localization: An Example
	Problem Statement and Research Questions
	Research Objectives and Contributions
	Thesis Organization

	Background and Literature Review
	Background
	Target Search and Localization
	Markov Decision Process
	Multi Agent Deep Reinforcement Learning (MDRL)
	Convolutional Neural Networks (CNNs)
	Proximal Policy Optimization (PPO)

	Literature Review
	Target Localization
	Multi-Agent Deep Reinforcement Learning (MDRL)
	Reward Shaping
	Imitation Learning-assisted RL
	Federated Reinforcement Learning
	Machine Learning as a Service
	Crowdsourcing for Machine Learning

	Target Localization using Multi-Agent Deep Reinforcement Learning with Proximal Policy Optimization
	Introduction
	MDRL formulation for Target Localization
	Proposed Approach
	Centralized Multi-Agent Target Localization (CMTL)
	Observation Space
	CNN architecture and learning process

	Distributed Multi-Agent Target Localization (DMTL)
	Observation Space
	CNN architecture and learning process

	Optimized DMTL (ODMTL)
	Observation Space
	CNN architecture and learning process

	Evaluation
	Simulation Environment
	Cumulative Testing Rewards
	Episodic Length and Cost
	Varying Environments
	Behavioral Analysis
	Benchmarks: Localization Methods

	Conclusion and Discussion

	Multi-Agent Deep Reinforcement Learning with Demonstration Cloning for Target Localization in Complex Environments
	Introduction
	General Overview of the Proposed Solutions
	Observation Space
	Action Space
	Actor and Critic Networks
	Reward Function and Learning Process
	Model 1: MDRL with Shaped Rewards (MDRL-SR)
	Model 2: MDRL with Demonstration Cloning (MDRL-DC)

	Experiments and Evaluation
	Performance of MDRL-SR
	Performance of MDRL-DC
	Benchmarks

	CONCLUSION

	Blockchain-assisted Demonstration Cloning for Multi-Agent Deep Reinforcement Learning
	Introduction
	Multi-Expert Demonstration Cloning (MEDC)
	Blockchain-based model sharing for Demonstration Cloning
	Smart Contract Implementation
	Framework Time Sequence

	Simulation and Evaluation
	Performance of MEDC
	MEDC vs Benchmarks
	Adaptability to Other Applications
	Smart Contracts Complexity Analysis

	Conclusion

	Adaptive Target Localization under Uncertainty using Multi-Agent Deep Reinforcement Learning with Knowledge Transfer
	Introduction
	Proposed System
	Observation and Action Spaces
	Policy Networks and Learning Process
	Target Estimation with Transfer Learning

	Experiments and Evaluation
	MDRL Performance Analysis
	Target Estimation
	Benchmarks

	Conclusion

	Blockchain-assisted Demonstration Cloning for Multi-Agent Deep Reinforcement Learning
	Introduction
	DRL Design and Training Requirements
	Expertise: Environment, Reward, and Optimization
	Computational Capabilities
	Model Availability and Compatibility

	Overview: Blockchain-based DRLaaS Framework
	Problem Formulation
	Worker Recruitment Parameters
	DRL Training Tasks
	DRL Model Sharing Tasks

	Recruitment Optimization Process
	Smart Contracts Implementation
	Framework Time Sequence
	Experiments and Evaluation
	DRL Application Environments
	DRL Training Tasks
	DRL Model Sharing
	Recruitment Optimization
	Blockchain and Smart Contracts Complexity Analysis

	Conclusion and Future Direction
	Conclusion
	Future Directions

	Bibliography

