
Generalization of Urban Wind Field Using Fourier Neural Operators
Across Different Wind Directions and Cities

Cheng Chen

A Thesis
In the Department

of
Computer Science & Software Engineering

Presented in Partial Fulfillment of the
Requirements for the Degree of

Master of Computer Science (Computer Science & Software Engineering)
at Concordia University

Montreal, Quebec, Canada

September 2024

© Cheng Chen, 2024

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Cheng Chen

Entitled: Generalization of Urban Wind Field Using Fourier Neural
Operators Across Different Wind Directions and Cities

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science (Computer Science & Software Engineering)

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final Examining Committee:

 Dr. Shin Hwei Tan Chair

 Dr. Shin Hwei Tan Examiner

 Dr. Biao Li Examiner

 Dr. Jinqiu Yang Co-supervisor

 Dr. Liangzhu (Leon) Wang Co-supervisor

 Dr. David Vidal Co-supervisor

Approved by __

Dr. Joey Paquet, Chair
Department of Computer Science & Software Engineering

 Dr. Mourad Debbabi, Dean
 Faculty of Engineering & Computer Science

ii

Abstract
Generalization of Urban Wind Field Using Fourier Neural Operators Across Different

Wind Directions and Cities

Cheng Chen

In urban environments, the most common forms of air transportation are helicopters and
unmanned aerial vehicles (UAVs). There is a high demand for air transport of small and medium
sized aircraft, including UAVs. Wind field simulations in urban environments are typically
performed using computational fluid dynamics (CFD), and most of these models fall into the
categories of direct numerical simulation (DNS) and large eddy simulation (LES). Although
these models are accurate, they are time-consuming, so there is a need to develop a more
convenient method to replace the traditional CFD methods. In recent years, with the rapid
development of artificial intelligence technology and graphics processing unit (GPU) hardware, a
promising research direction has emerged. Currently, many studies are using artificial
intelligence-based deep learning techniques to transform the computational processes associated
with wind field simulation. The goal of these studies is not only to achieve the accuracy of
traditional CFD models, but to surpass them while significantly accelerating the computational
process. In this paper, we apply the Fourier Neural Operator (FNO) method based on deep
learning technology to simulate the wind field in a two-dimensional urban environment. The
method uses a Fourier module to extract and learn features in the Fourier frequency domain of
the input data. Compared to traditional convolutional neural network (CNN) modules, Fourier
modules aim to learn global features in the Fourier frequency domain of the input data. In
contrast, a convolutional neural network (CNN) module performs feature learning in the local
spatial domain of the input features. In addition, the input features are processed by a Multi-
Layer Perceptron (MLP) module, and the feature output of the MLP module is added to the
feature output of the Fourier module. This structure is based on a residual network (ResNet),
which can mitigate the phenomenon of gradient vanishing or gradient explosion that occurs
when input data propagates through a multilayer network.

The FNO model ultimately maps the input features (i.e., the input wind field) to the desired
output features (i.e., the output wind field dimensions). Gradients are updated through back
propagation to reduce the discrepancy between the FNO model’s output wind field and the actual
wind field, thus facilitating the deep learning process. After a series of experiments, the optimal
settings for the Fourier layer number and the intermediate feature dimensions of the MLP in the
FNO model were determined. In this context, “intermediate feature dimensions” refers to the
number of features extracted by the MLP module. These settings ensure that the FNO model
achieves the best results on the dataset while minimizing computational overhead and resource
consumption. The training phase utilized wind field data from Niigata with westerly winds, with
a time step of 0.1 seconds, and the output consisted of wind fields at the same location with a
time step of 1 second (i.e. 10 time steps). Experimental results demonstrated that the FNO model
could predict the wind field over the entire Niigata urban area for the next 7 seconds (i.e. 70 time

iii

steps), with an average absolute error of less than 0.5 m/s. Importantly, the FNO exhibited strong
generalization capabilities in different wind conditions: although the training data consisted of
westerly wind data from Niigata, the model performed well in tests with northerly winds. Further
validation across different urban geometries revealed that the FNO model could accurately
predict 70 time steps (7 seconds) of wind fields in the vertically flipped version of Niigata,
indicating that it generalizes well when the geometry is similar to the training data. However, in
Montreal, which has a significantly different urban geometry, the model’s accuracy diminished
after 10 time steps. This highlights the significance of urban geometry in wind field prediction.
During this process, the FNO’s wind field simulation was 300 times faster than that of the
CityFFD model we employed, with CityFFD requiring 2.2 seconds per step, whereas FNO took
only 0.006 seconds. This further underscores the potential of the FNO model for practical
applications in wind field simulation.

Although it is premature to use FNO directly to replace wind field simulation due to the
exponential growth of errors with time, it is possible to use it in conjunction with CityFFD and
other technologies as a complementary model. For example, the wind field output by CityFFD at
a given time step can be used as input to FNO, which can generate the wind field in the same
area at subsequent time steps. The final output wind field can be used as input to CityFFD, thus
reducing the intermediate computation time of CityFFD.

iv

Content

List of Figures ...vii

List of Tables ..x

List of Acronyms and Abbreviations ...xi

Chapter 1 Context ...1

1.1 Urban Wind Field Simulation and Challenges 1

1.2 Motivation and Objective ..2

Chapter 2 Literature Review ...4

2.1 Fast Urban Airflow Simulation ...4

2.1.1 FFD ...4

2.1.2 PMM ...5

2.1.3 MM ...6

2.1.4 CityFFD ..7

2.2 AI Technologies ...8

2.2.1 Physics-Informed Neural Network (PINN) 9

2.2.2 DeepONet ...10

2.2.3 Convolutional Neural Operator (CNO) 12

2.2.4 FourCastNet (FCN) ..14

2.2.5 Fourier Neural Operator (FNO) ..15

2.3 Summary ...16

Chapter 3 Methodology ..17

3.1 Overview of Methodology ..17

3.2 Training Data Preparation ...17

3.3 FNO Model Architecture ..19

3.3.1 CNN Layers ..19

v

3.3.2 Fourier Layers ...20

3.3.3 ResNet Connection ...21

3.3.4 Network Configuration ...22

3.4 Parameter Selection ..23

3.5 Training and Testing Process ..24

3.6 Evaluation Metric ...25

3.7 Spectral Analysis ..26

Chapter 4 Results And Discussion ..27

4.1 Comparison of Model Trained on Patches and Whole Urban Area ..28

4.2 Influence of the SDF Data on Urban Wind Field Prediction 32

4.3 Hyperparameters Researchs ..36

4.4 Performance of Model on Different Wind Directions 44

4.5 Performance of Model on Different Urban Arrangement 49

4.6 Time Consumption ..56

4.7 Ablation Study ...56

Chapter 5 Conclusion and Future Work ...62

5.1 Conclusion ...62

5.2 Future Work ...63

References ...64

vi

List of Figures

Figure 1.1 CFD wind simulation by SimScale [66] . ..1

Figure 2.1 FFD simulation [22]. ..5

Figure 2.2 PINN architecture [67]. ..9

Figure 2.3 Different DeepONet architectures [50]. ...11

Figure 2.4 CNO architecture [52]. ...12

Figure 2.5 An example of input and output (ground truth) samples at 4 different
resolutions for the NS experiment [37]. ..13

Figure 2.6 FourCastNet structure [56]. ..14

Figure 2.7 FNO architecture [62]. ...15

Figure 3.1 (a).binary image. (b).SDF of Niigata. ..18

Figure 3.2 Convolutional kernel [39]. ...19

Figure 3.3 Fourier layer [62]. ..20

Figure 3.4 ResNet layer architecture[65]. ...21

Figure 4.1 Simulation error of wind speed (left axis) and temperature (right axis)
by different tools [46]. ...27

Figure 4.2 (a). The original whole block layout. (b). The layout segmented into
smaller blocks for FNO-based generalization tasks. ...28

Figure 4.3 Comparison of accumulated average absolute error in Niigata over time
between the models trained on the whole wind field and the one trained on 64 * 64
patches wind field. ...29

Figure 4.4 Prediction results of the Niigata wind field at five selected time steps (t
= 14, 28, 42, 56, 70) using the FNO model trained on 64 * 64 urban patches wind
field. ...30

Figure 4.5 Prediction results of the Niigata wind field at five selected time steps (t
= 14, 28, 42, 56, 70) using the FNO model trained on whole urban wind field. 31

Figure 4.6 Comparison of the radial energy spectrum absolute differences between
the Ground Truth and models trained on Patches (red) and Whole Training (green). .

 32

vii

Figure 4.7 Visualization of the building layout(left) and corresponding Signed
Distance Function (SDF)(right) for the Niigata urban environment. 32

Figure 4.8 Comparison of accumulated error over time between the models trained
With SDF (red line with squares) and Without SDF (cyan line with triangles). 33

Figure 4.9 Prediction results without SDF at five selected time steps (t = 14, 28, 42,
56, 70). ...34

Figure 4.10 Comparison of radial energy spectrum absolute differences between
Ground Truth vs With SDF (red) and Ground Truth vs Without SDF (green). 35

Figure 4.11 Accumulated average absolute error in Niigata over time for wind field
predictions with different batch sizes. ...36

Figure 4.12 Accumulated average absolute error in Niigata over time for wind field
predictions with different modes. ..37

Figure 4.13 Accumulated average absolute error over time for wind field
predictions with different width (convolutional kernel size). 38

Figure 4.14 Accumulated average absolute error in Niigata over time for wind field
predictions with different output in one iteration. ...39

Figure 4.15 Accumulated average absolute error in Niigata over time for wind field
predictions with different input in one iteration. ...40

Figure 4.16 Accumulated average absolute error in Niigata over time for wind field
predictions comparing 16 fixed areas (blue line) and different configurations of
random areas (dashed lines). ...41

Figure 4.17 Accumulated average absolute error in Niigata over time for wind field
predictions with different coverage levels: 00 coverage, 25 coverage, 50 coverage,
and 75 coverage. ..43

Figure 4.20 Comparison of ground truth, predicted results, and the corresponding
error maps for the North wind simulation without rotation in Niigata. 46

Figure 4.21 Comparison of radial energy spectrum absolute differences in different
wind directions ..48

Figure 4.22 Illustration of Niigata urban building layout: (a) displays the building
layout with black shapes representing buildings within a circular area,
demonstrating their spatial structure. (b) shows the same layout but with a vertical
flip. ...49

viii

Figure 4.23 Comparison of accumulated prediction error in Niigata between the
original west wind training data and the up down flipped west wind test data over
150 time steps. ...50

Figure 4.24 Comparison of the ground truth (top row), the predicted velocity fields
(middle row), and the error distributions (bottom row) for the Niigata wind field
after vertical flipping. ..51

Figure 4.25 Accumulated error comparison over 150 time steps between the
Niigata, Montreal, and Niigata UpDown Flipped setups. 52

Figure 4.26 Comparison of ground truth, prediction, and error fields at time steps t
= 14, t = 28, t = 42, t = 56, and t = 70 for the Montreal wind field test. 53

Figure 4.27 Comparison of Radial Energy Spectrum Absolute Differences between
different city layout configurations. ..54

Figure 4.28 Comparison of SSIM(structural similarity) difference between Niigata
original and Niigata vertically flipped wind fields. ...55

Figure 4.29 Comparison of the SSIM(structural similarity) difference between
Niigata and Montreal wind fields. ...55

Figure 4.30 Sequential time step prediction comparison at different ablation
experiment ...57

Figure 4.31 Sequential time step prediction comparison at 2m high horizontal slice,
Montreal, full FNO. ...58

Figure 4.32 Sequential time step prediction comparison at 2m high horizontal slice,
Montreal and Fourier block only. ..59

Figure 4.33 Sequential time step prediction comparison at 2m high horizontal slice,
Montreal and MLP block only. ..60

ix

List of Tables

Table 3.1 Network Configuration ..22

Table 3.2 Hyper Parameters ...25

Table 4.1 Time Consumption Parameters ..56

Table 4.2 Inference Time Comparison ..56

Table 4.3 Ablation Study Comparison ..61

x

List of Acronyms and Abbreviations

xi

Acroym/Abbreviation Full name

CNN Convolutional Neural Network

FNO Fourier Neural Operator

PMM Porous Media Model

MM Multilezone Med

FFD Fast Fluid Dynamics

SSIM Structure Similarity

Chapter 1 Context

1.1 Urban Wind Field Simulation and Challenges

Figure 1.1 CFD wind simulation by SimScale [66] .

In recent years, the primary means of air transportation in human cities, namely helicopters
and drones, have been the subject of considerable attention. The combination of power systems,
distributed propulsion technologies, and new demands for commercial or medical delivery, aerial
surveillance, etc., have provided established original equipment manufacturers (OEMs) such as
Bell and small companies such as Beta with new solutions for urban air traffic. Nevertheless,
guaranteeing the seamless operation of these novel aircraft in an urban air environment
represents a formidable challenge. To address this challenge, it is necessary to conduct sufficient
training in urban wind field simulations, a process that is currently complex and resource-
intensive. The prevailing experimental techniques for simulating urban wind fields are wind
tunnel experiments and computer simulation experiments. The high cost of wind tunnel
experiments has made them a significant financial burden, leading to the adoption of
computational fluid dynamics (CFD) methods for simulating urban wind fields. In urban
environments, CFD methods can calculate physical variables, including but not limited to wind
fields, temperature, and pressure fields. In virtual environments simulating aircraft operations,
the wind field has the most significant impact on the performance of the aircraft. To accurately
simulate wind field variations in urban environments, it is crucial to understand the fundamental
principles governing airflow dynamics. CFD methods are grounded in these physical laws,
offering strong interpretability and a solid mathematical and physical foundation for urban wind
field simulations. Numerous organizations, including CAE, have employed CFD methods to

1

create virtual urban wind field environments for pilot training to meet new airworthiness
standards.

However, despite advancements in traditional CFD software enabling the simulation of
micro-urban wind fields on personal computers, high-resolution CFD simulations still demand
substantial computational resources and time, posing challenges for their practical application in
industrial settings. To address these limitations, researchers are exploring new methods. With the
development of GPU hardware and artificial intelligence (AI) technologies, AI has provided
faster and more efficient solutions for high-precision wind field simulations. This not only offers
significant potential for urban planning and environmental management but also provides new
approaches to overcome the limitations of traditional CFD methods.

1.2 Motivation and Objective

In order to enhance the efficiency of wind field simulation using traditional CFD methods
while reducing costs, this paper draws upon deep convolutional network technology after an in-
depth examination of existing CFD numerical methods and deep learning-based approaches.
Among AI methods for solving partial differential equations (PDEs), such as PINN and neural
operators, we selected the Fourier Neural Operator (FNO) due to its superior performance in
recent AI methods. FNO achieves the highest prediction accuracy and the shortest training time
while consuming the same hardware resources, making it particularly successful in optimizing
micro-urban wind field simulation tasks. This method is combined with the CityFFD simulation
method proposed by Mortezazadeh, M[37] to enhance the efficiency and accuracy of the
simulation process. This paper examines the generalization ability and computational efficiency
of the FNO method for different wind directions, urban patterns and heights. It combines the
powerful ability of deep learning to identify implicit connections between data with the
simulation ability of CFD, which is supported by explicit mathematical logic. The aim is to
enhance the efficiency of CFD simulation and the generalization ability for different urban wind
field datasets. In this paper, we utilize the CityFFD solver to generate Niigata westerly wind data
as a training set and Niigata northerly wind data as a test set. These data sets are employed to
assess and analyze the performance and analytical conclusions of the FNO method, and to
summarize the primary contributions and innovations of this paper.

1) The FNO Fourier neural operator method is employed to generalize wind field
prediction over different wind directions and urban structures. Firstly, we proposed a feature
representation method for wind flow field data to address the issue of how to represent the input
data for deep learning of the FNO method. We constructed a training dataset and test dataset for
Niigata's unsteady-to-steady wind field using a CityFFD-based numerical simulation solver.
Secondly, we conducted an experimental study on the optimal The hyper-parameters for FNO
learning of the wind field, including the layer number, batch size, input-output strategy, and other
model parameters, were tested against each other. In terms of performance evaluation metrics,
given the primary focus on simulation accuracy in the wind task, only the average absolute error
was considered, rather than the relative error. In the analysis of the dataset, we employed the
spectral analysis method to elucidate the learning effect of the dataset. Ultimately, we attained an
average absolute error of less than 0.5 m in the initial 70 steps (0.1 second interval for each time

2

step) of the output on the test set, which has already reached the simulation error level of the
mainstream CFD software [64]. Moreover, each step of the prediction process is completed in a
mere 0.006 seconds, a figure that is 300 times faster than that achievable with CFD solvers.

2) We propose a novel training method for fluid data in the context of deep learning. When
using the complete wind field data directly for GPU training, the required number of modes
exceeds the standard specifications of our GPU hardware (32GB VRAM). Conversely, if the
number of modes is too low, higher frequencies, which represent more complex features in urban
wind fields, cannot be captured. To solve this issue, we divided the wind field data into discrete
blocks for training, enabling the capture of higher frequency features while reducing the number
of modes. After completing the FNO model training, the test area was similarly divided into
discrete sections, ensuring no direct contact between adjacent sections. The FNO was then
employed to independently predict the wind field for each section, and the individual predictions
were combined to generate a complete wind field representation of the urban area. Experimental
results demonstrated that the FNO method based on small-block training was more effective than
the method based on larger blocks with fewer modes, improving prediction accuracy by 50%
over a 7-second wind field simulation, while also reducing the time required for single-step
predictions. Notably, we also incorporated Signed Distance Function (SDF) data, which resulted
in approximately a 60% increase in prediction accuracy during the first 7 seconds of output. Few
researchers have previously applied neural operators to fluid simulation by dividing blocks,
making this work a novel approach to training scientific computations in deep learning under
low-performance hardware conditions.

3

Chapter 2 Literature Review

In recent years, artificial intelligence (AI) technology has not only made a big splash in the
field of computer science [1,2,3,4,5], but also become a research hotspot in many cross-
disciplinary applications [6,7,8,9,10]. There is an influx of researchers in the fields of computer
vision, materials, aerospace, etc. [11,12,13,14], and among them, deep learning techniques are
especially suitable for finding implicit data connections in large amounts of data, so deep
learning-based methods have become an important means of data connection mining. Deep
learning methods have an immeasurable potential for the simulation of micro-city wind s and the
CFD field in general [15]. To facilitate the description of our work, this chapter first introduces
several recent fundamental methods for micro urban wind field simulation, mainly including
FFD, PMM, MM and CityFFD [16], which are all based on models optimizing the solution
process of the Navier-Stokes equations; then introduces recent deep learning-based deep learning
methods with CFD application cases, including PINN and neural operator methods, and finally
clarify why we choose the FNO method and the problem we want to solve.

2.1 Fast Urban Airflow Simulation

For urban wind simulation, due to the design of complex building geometry [17] and
complex mesh generation requirements [18], the computational cost of traditional CFD
simulation methods is high, so related researchers are looking for methods that can optimize and
simplify the traditional CFD simulation methods in order to simulate the urban wind simulation
more efficiently, and the following are a few methods that appeared in recent years and received
a lot of attention.

2.1.1 FFD
With the development of computer resources, computational fluid dynamics is increasingly

used to study airflow and pollutant dispersion around buildings, from individual buildings to city
blocks [19], CFD simulation methods provide data for the entire flow field by solving the
Navier-Stokes equations, however, the computational efficiency of CFD methods is still difficult
to meet the high demand of simulation for industrial applications, for example [20], which was
simulated for more than 100 hours. In contrast, Fast Fluid Dynamics (FFD), proposed by Stam in
1999 [21], is a fast simulation method that can provide airflow and contamination dispersion,
which was firstly applied to airflow simulation in video games. FFD reduces numerical diffusion
by tracking the motion rules of fluid particles in time steps through a semi-Lagrangian method,
and avoids the numerical instability that may be brought by explicit solutions by implicitly
solving for the diffusion and source terms. Numerical instability that may come with the explicit
solution is avoided by solving the diffusion and source terms implicitly to improve the
computational speed;

4

The fundamental equation in FFD is derived from the simplified form of the
incompressible Navier-Stokes equations:

Where:
• is the velocity field
• p is the pressure field
• is the fluid density
• is the kinematic viscosity of the fluid
• represents external forces

Figure 2.1 FFD simulation [22].

As shown above, in 2001, Zuo et al [22] used FFD to simulate smoke motion in a real
industrial application, and they found that FFD is 50 times faster than CFD; because FFD is
simpler to implement than CFD and has lower resource requirements, FFD has the potential to be
applied to large-scale hydrodynamic simulations; However, due to the simplified numerical
scheme, FFD is not as good as CFD methods for tasks requiring high level of detail, and due to
the fact that it is based on specific physical assumptions, e.g., low Reynolds number, FFD does
not perform well in complex turbulent structures or complex geometries.

2.1.2 PMM

The Porous Media Model (PMM), which considers an entire urban area as a cluster of
buildings with different porosities, was originally proposed by Parker [23] et al. Each cluster
consists of an array of porous cubes with a single porosity and uniform building height. In the
study by Lien [24] et al. the units of the building and fluid portions of the complex are referred to
as representative elementary volumes (REVs). There are two main approaches to the definition
of REV in PMM applied to urban environments. In the work of Hang [25] et al. two forms of
REV were used for micro-turbulence simulation of building complexes and tested the spatially

u

ρ
ν
f

5

∂u
∂t

+ (u ⋅ ∇)u = −
1
ρ

∇p + ν ∇2u + f

averaged flow velocity in the horizontal profile, the vertical velocity out of Z=0.5H and the
Forchheimer coefficient at Z=H. To better capture the resistance effects within porous media,
especially under high Reynolds number conditions, the Forchheimer equation is used to extend
Darcy’s law. The Forchheimer equation is as follows:

where:
• p is the pressure gradient;
• µ is the dynamic viscosity;
• K is the permeability of the porous medium;
• u is the velocity of the fluid;
• β is the Forchheimer coefficient, representing the strength of the nonlinear

resistance;
• ρ is the fluid density.

The Forchheimer equation captures both linear and nonlinear resistance terms, allowing for
a more accurate description of flow behaviour within porous media, especially under high flow
velocity or turbulent conditions, thereby enhancing the flow simulation capabilities of the PMM
model.

In general, the RANS model is the most commonly used model for closing the time-
averaged Navier-Stokes equations [26], and the standard k-e turbulence model can be used to
evaluate the averaged and turbulent flow characteristics under steady-state, incompressible, and
isothermal flow conditions in an urban area; however, in the case of the PMM model, the
conventional RANS model does not take into account the surface voids of the porous medium
that generate the viscous forces and drag forces, therefore, it is necessary to introduce the
reference averaging technique to solve the model specific kernel problem.Hang et al [27]
modified the general double equations based on incompressible flow porous media by basing the
CFD coefficients in each REV on the calculation of the pressure difference between the surface
of the windward wall and the surface of the leeward wall for each building.
 The PMM method is computationally less expensive, efficient and requires fewer grids
for computation, and can be embedded into already existing CFD tools, which facilitates
incumbent CFD practitioners to use PMM directly for urban wind field simulations. However,
the accuracy of PMM simulation is limited and depends on the physical characteristics of the
urban complex, and the accuracy will decline when the geometrical layout is more complex.

2.1.3 MM

Unlike the PMM model, the MM(Multi-zone Model) model assumes that the urban canopy
is a network of interconnected street canyons, and the entire urban agglomeration can be divided
into zones, and then the relevant equations for mass, pressure, and energy balances are developed

∇p =
μ
K

u + βρ |u |u

6

separately for each zone. In the study of Yao [28] in 2011, five atmospheric zones are newly
defined: the urban boundary layer (the part of the city that exceeds 100 meters in the vertical
direction) and the lateral boundary layer in four directions. meters) and the lateral boundary layer
in four directions.The basic principle of the MM method is to model the heat and air flow
equilibrium equations of the urban air flow network in time, and then solve them by numerical
methods.

For each zone, the MM method describes mass conservation using the simplified mass
balance equation:

where:
• represents the mass flow rate of air from zone I.

• represents the mass flow rate of air from zone .

• is the mass source or sink in zone i.

The MM method simplifies the modeling of complex urban structures, which is highly
efficient in the simulation of large urban areas, especially when the researcher's simulation area
needs to simulate the wind-heat environment and energy consumption as a whole, the MM
model is able to deal with the simulation of the heat balance and energy consumption, and the
UrBEC model using the MM method is on average 5 times faster than the Ansys Fluent and 20
times faster than the ENVI-met platform for the same simulation scenario. ENVI-met platform
block by 20 times. However, due to the neglect of vertical differences within the region, this
approach may have insufficient accuracy when dealing with complex urban layouts.

2.1.4 CityFFD

Wang [29] et al. developed a new urban climate model, CityFFD, for fast and accurate
simulation of urban microclimates, which includes some new higher-order temporal and spatial
schemes to achieve accurate results on coarse grids.

The traditional semi-Lagrangian method is based on a linear interpolation scheme, which
leads to high dissipation errors [30], to solve this problem, CityFFD uses a higher-order
interpolation scheme based on two third-order polynomials to reduce the high dissipation errors;
CityFFD includes some new higher-order temporal and spatial schemes to achieve accurate
results on coarse grids [31,32,33,34]. ; in addition to this, CityFFD takes advantage of multi-core
CPU (i.e. OpenMP) and GPU computing to alleviate the high dependence on supercomputers
typically required for previous urban microclimate simulations. It makes it possible for
researchers to model entire cities using personal desktop computers [35,36]. By saving
computational time and resources, CityFFD also opens up new possibilities for capturing
complex turbulence phenomena in urban microclimates using LES [37]. Fast and accurate
models like CityFFD that run on personal computers make it relatively easy to develop
integrated multi-scale simulation tools (e.g. mesoscale and building models) [38]. It helps to

∑
j

(mij − mji) = Mi

mij

mji

Mi

7

integrate atmospheric and climate models with building models to meet the demand for advanced
multiscale modeling of urban systems.

CityFFD solves the following three conservation equations, where⃗ U, θ, and p, Re, Gr, Pr,
, and represent the velocity, temperature, pressure, Reynolds number, Grashof number,

Prandtl number, turbulent viscosity, and turbulent thermal diffusivity, respectively:

The detection terms in equation 1 are addressed using the Lagrangian method, where
values for the unknown variables (e.g. velocity and temperature) at position are determined
by calculating the values of ⃗U and θ at position , as illustrated in equation below:

To capture the turbulence behaviour, a large eddy simulation (LES) turbulence model is
applied, and the turbulent viscosity is calculated using equation below.

In this equation, , ∆, and S represent the Smagorinsky constant, filter scale, and large-
scale strain rate, respectively, with typically ranging from 0.1 to 0.24. CityFFD is equipped
with a 4th-order interpolation scheme to model airflow on coarse grids and mitigate high
dissipation errors. Comprehensive details of the method are available in earlier literature [29].

2.2 AI Technologies

Since the 21st century, with the development of GPU hardware, the theory and technology
related to AI have gained a great deal of momentum, and deep learning has made a big splash in
various fields due to its powerful ability to search for implicit associations in data and its low
need for explicit mathematical formulas. Common deep learning models are CNN, GNN, RNN
and Transformer [39,40,41,42]. In addition, deep learning has made breakthroughs in combining
with reinforcement learning, and graph neural networks, resulting in research areas such as deep
reinforcement learning [43]. The rapid development of deep learning provides new ideas and
methods for miniature urban wind simulation, and the core idea of using deep learning methods
to improve the efficiency of CFD simulation of urban wind s is based on the neural network to
find and construct the mapping function from input wind data to output wind field data, thus

νt αt

∇ ⋅ ⃗U = 0

∂ ⃗U
∂t

+ (⃗U ⋅ ∇) ⃗U = − ∇p + (1
Re

+ νt)∇2 ⃗U −
Gr
Re2

θ

∂θ
∂t

+ (⃗U ⋅ ∇) θ = (1
Re ⋅ Pr

+ αt)∇2θ

sn+1
c

Sn
c

Sc = ⃗Udt → Sn
c ≈ Sn+1

c − ⃗UΔt

νt = (csΔ)2 |S |

cs
cs

8

accelerating the iterative computation process of the CFD solver, which is different from the
traditional CFD simulation methods, and the deep neural network does not need to explicitly
provide the parameters of the equations that need to be found, but only need to give a large
amount of training data, and the deep neural network will learn the representation from a given
input to the corresponding output in the large amount of training data.

For the characteristics of the flow field data, we found that employing the image-to-image
[44] method in computer vision is particularly suitable for our wind field simulation task. In this
section, we will focus on two mainstream AI for Science methods and explain why we chose the
FNO neural operator as our method.

2.2.1 Physics-Informed Neural Network (PINN)

Figure 2.2 PINN architecture [67].

Physics-Informed Neural Network (PINN) is a machine learning technique used in
scientific computing for solving problems involving Partial Differential Equations (PDEs). PINN
approximates the solution of PDEs by training a neural network to minimize a loss
function.Unlike traditional ANNs, it incorporates a physical loss term of the desired PDE in the
loss function, which includes initial conditions reflecting the convenience along the
spatiotemporal domain and the boundary conditions as well as terms that reflect the residuals of
the partial differential equation at selected points in the domain. The trained PINN can generate
the estimated solution at a given input point in the domain of function definition, since the
solution is determined directly from the physical equations, it can be considered as an
unsupervised strategy. Originally PINN was proposed by the work of Raissi [45], who devised
purely physics-driven methods for inferring solutions to general nonlinear partial differential
equations and constructing computationally efficient models of physical agents, which not only

9

demonstrates a range of promising approaches in scientific computing, but also opens up a path
between the worlds of deep learning and mathematical physics modeling. This is in line with the
trend of deep learning techniques in recent years, and is a timely contribution that can benefit
practitioners in a wide range of scientific fields to easily enjoy these benefits for applications
including, but not limited to, model predictive control, multi-physics modeling, and simulation.

However, PINN still has some pending challenges. Numerical methods such as finite
element, spectral methods, etc. have matured over the past 50 years, and in many cases they
fulfill the robustness and computational efficiency criteria required by industrial practice [46,47].
Neural networks are limited by the lack of mathematical logic and frequency bias in the network
itself, and are not comparable in accuracy and stability to PDE solvers that are backed by explicit
mathematical logic. This leads to the fact that even extremely small deviations from the initial
conditions may result in extremely large deviations from the PINN, and secondly, the ability of
the PINN to handle problems with inhomogeneous parameter space is still extremely limited, e.g.
for the problem of NS equations, fewer PINN methods are available to handle high Reynolds
numbers. Learning effectiveness for the PDE parameter inhomogeneity case is also a major
challenge for PINN. As a result, purely data-driven neural operator methods have emerged,
where neural operator learning aims at exploring the properties of the underlying dynamical
system or partial differential equations from the given simulation or real PDE data [48], and we
discuss the definition of neural operators and the main neural operator methods in recent years in
the next chapter.

2.2.2 DeepONet

Hornik et al. have shown that neural networks with a single hidden layer can accurately
approximate any nonlinear continuous operator [49]. However, this theorem only guarantees the
approximation error under a sufficiently large network, and does not take into account the
generalization error and computational cost during the actual optimization process. To address
these issues, Lu et al. [50] proposed Deep Operator Networks (DeepONets), which aim to learn a
broader range of continuous nonlinear operators, improving the performance of neural networks
in handling nonlinear problems.

10

Figure 2.3 Different DeepONet architectures [50].

The above figure shows the model structure of DeepONet, A above is the most basic
DeepONet structure, C and D denote the Stacked and Unstacked DeepONet respectively; are the
corresponding output functions. For any point in the domain, the output is a real number. In
practice, we represent these input functions discretely in order to apply network approximations.
Here we explore different ways of representing functions in the input space. The simplest one is
based on a sufficient but finite number of function values at locations , ... called “sensors”
in the structure of the DeepONet, as shown in Figure B above. There are other ways to represent
a function, such as using spectral expansion or as an image, DeepONet is divided into an offline
training phase and an online inference phase, in the offline phase DeepONet uses data computed
using classical numerical methods as training data, depending on the size of the data, DeepONet
requires from one to hundreds of Graphics Processing Units (GPUs) hours, and it can use
experimental or simulation data for training at different scales and accuracies. And DeepONet
trained in the online phase can be used as an alternative to CFD methods because the process
does not require re-training and only involves forward passes of the network, and thus can be
used for high-dimensional data to accelerate computationally intensive applications.

x1 x2 xn

∂s
∂t

= D
∂2s
∂x2

+ ks2 + u(x), x ∈ [0,1], t ∈ [0,1]

11

 The above equation is the diffusion-reaction partial differential equation where D=0.01 is
the diffusion coefficient and k=0.01 is the reaction rate. DeepONets learn the operator from (x) to
the PDE solving s(x, t), in this case multiple random points are used for training.To generate the
training dataset the second order implicit finite difference method is used to solve the diffusion-
reaction system with a grid size of 100x100 and then P randomly selected points in this grid
range are used as training data. When DeepONet is trained with only 100 u-samples, the test
error can reach the 10-5 level, which demonstrates the potential of DeepONet to be used for
small-sample learning [51].

2.2.3 Convolutional Neural Operator (CNO)

Figure 2.4 CNO architecture [52].

The CNO model architecture is shown in the figure above, CNO is a neural operator based
on deep learning method proposed by [52] et al. Unlike FNO which uses Fourier module [53] to
extract the frequency features, CNOs are directly convolved in the physical space which makes
the operation more intuitive and easier to adapt to a variety of different types of data, before
inputting to the activation function, the CNOs performs the up and down sampling and the
feature merging process to combine features of different dimensions, which facilitates the
retention of features of different dimensions, this structure is inspired by the U-Net structure
proposed by Ronneberger et al. U-Net was initially used in the field of medical image
segmentation, and is now being borrowed by neural networks in other fields [54]. There are four
Blocks in the above figure: Downsampling (D) Block downsampling block; Upsampling (U)
Block upsampling block; ResNet (R) Block residual block and Invariant (I) Block invariant
block, u is the input function, is a vector, which is first dimensionally increased by a linear layer
The number of channels is increased by a linear layer, and then downsampling is used to reduce
the resolution while extracting higher dimensional features, which are finally merged into a

12

single vector after the residual module and upsampling.

Figure 2.5 An example of input and output (ground truth) samples at 4 different
resolutions for the NS experiment [37].

From the Figure 2.5, it can be seen that CNO also has excellent generalization ability, with
low prediction error on different resolution data in the test of solving NS equation. Raonic et al.
also did a comparison between CNO and other NO methods in terms of performance,
computational efficiency, out-of-distribution generalization, and data scaling, etc., and the
comparison results show that CNO is basically at the optimum, which provides a possibility for
its future application in science and engineering fields. This provides a possibility for its future
application in science and engineering, however, CNO still requires high computational
resources, and the computational cost will increase exponentially when scaling to 3D space, and
is affected by the curse of dimensionality [55], so this will be the direction of CNO's further
research in the future.

13

2.2.4 FourCastNet (FCN)

Figure 2.6 FourCastNet structure [56].

FourCastNet is a neural operator model based on Adaptive Fourier Neural Operators
(AFNO), proposed by Pathak et al. [56,57]. In recent years, the Vision Transformer (ViT)
architecture [60] and its variants have made significant advancements in computer vision,
performing well in tasks such as image recognition, image segmentation, and video prediction
[58,59,60]. However, the ViT model requires quadratic token operations for high-resolution
images, leading to exponentially increased memory consumption as the resolution grows,
making it difficult to apply directly to high-resolution meteorological data prediction. In contrast,
AFNO’s strength lies in transforming token mixing operations into global convolutions in the
Fourier domain, efficiently implemented via Fast Fourier Transform (FFT). This gives AFNO
greater flexibility and scalability in both spatial and channel dimensions, while reducing the time
complexity of spatial mixing to O(), where N is the number of tokens, significantly
lowering the computational cost.
 The model structure and workflow is shown in the figure above, where the input data is

NlogN

14

first projected onto a two-dimensional network () of small patches, each represented as a d-
dimensional token, and then the sequence consisting of cuts into small blocks is sent together to
a series of AFNO layers, each given an input tensor X () of blocks for spatial mixing
and channel mixing. Finally, an inverse Fourier transform is performed to obtain the output. The
experimental results show that the prediction speed of FourCastNet is four to five orders of
magnitude faster than the traditional numerical weather prediction (NWP) model, which suggests
that FourCastNet has the prospect of replacing or assisting the NWP in the industrial land,
however, due to the lack of data assimilation setup, FourCastNet is not yet able to perform real-
time weather prediction, and the training FourCastNet is a purely data-driven deep learning
model, which requires a lot of computational resources, and there are still deficiencies in the
training phase and interpretability, which will be a challenge for FourCastNet to face in the next
stage.

2.2.5 Fourier Neural Operator (FNO)

Neural operators do not need to know the details of the underlying partial differential
equations, and only need to find the implicit PDE relationships in the data, but previous neural
operators are generally less computationally efficient than CNN/RNN [61]. The Fourier
transform is commonly used in spectral methods for solving differential equations because
differentiation is equivalent to multiplication in the Fourier domain, and the Fourier transform
has played an important role in the development of deep learning, and there has been work on
using the Fourier transform for accelerating convolutional neural networks such as neural
network architectures involving the use of the Fourier transform, and the FNO, a neural network
architecture based on the Fourier transform, which was proposed by Li [62] et al. FNO is a new
deep learning architecture that is capable of learning mappings between functions in an infinite
dimensional space.

Figure 2.7 FNO architecture [62].

h * w

H * w * d

15

The model architecture of FNO is shown in the figure above, starting from the input a(x),
which is boosted to the channel space of higher dimensions through the linear layer , then four
Fourier layers and activation functions are applied, and finally passed back to the target
dimensions through the linear layer Q. The Fourier layer consists of upper and lower circuits; in
the upper circuit, the input undergoes a single Fourier transform , and then a linear transform
is applied to the low-frequency signals, which filters out the signals of higher frequencies and
then the Fourier inverse transform is applied. In the lower circuit a local linear transform
is applied and finally the results of the upper and lower circuits are summed to the output. The
Fourier layer is discretization invariant since it can learn and evaluate functions that are
discretized in an arbitrary way. Since the parameters are learned directly in Fourier space,
analyzing the function in physical space requires only the projection, and these bases are well-
defined everywhere on the top, so the FNO is capable of zero-point super-resolution; after
learning on simulated fluid data with a fixed resolution of 64 * 64, the FNO can be reasoned
about in 0.005 seconds, whereas the pseudo-spectral method takes 2.2 seconds to solve the NS
equations, which shows that the FNO has a huge speed advantage, and FNO learned on 64 * 64
resolution data can be inferred on 256 * 256 data without any degradation in accuracy, which
indicates that FNO has the ability to learn resolution invariant solutions for the family of NS
equations in turbulent flow.

Compared with PINN, the FNO method only requires pure data without physical error and
has better generalization ability, and since our data amount is not large enough and GPU
resources are limited, FNO performs better than FourCastNet, while the training efficiency and
inference time under the same data volume are better than DeepONet and CNO, therefore, we
choose FNO as our experimental method

2.3 Summary

In this chapter, we first clarify the problems in CFD for micro-urban wind field simulation
to be solved by deep learning techniques and methods by comparing the workflow of traditional
CFD solvers and deep learning-based micro-urban wind field simulation, and then introduce
several mainstream CFD methods for urban wind field simulation, with a focus on how they
describe the fluid motion laws at the macroscopic and microscopic levels. Finally, the main AI
which can be used for CFD simulation in recent years are introduced, focusing on the Neural
Operator method and the reason why we chose the FNO method.

P

F R

F−1 W

16

Chapter 3 Methodology

This chapter introduces the Fourier neural operator FNO method based on deep learning
and how to apply it to urban wind field prediction tasks. First, the urban wind field data
generated by CityFFD is expressed as an input acceptable to the deep neural network through
appropriate methods, and then based on Depending on the GPU hardware resources and training
efficiency requirements, we generate a data set by cutting the training data into small patches,
and splice the predicted flow field of the test set into a complete predicted flow field in the urban
area. We predict the flow field in different wind directions and different urban geometries. A
comprehensive generalization prediction test was conducted on different wind directions and
different urban pattern, and an ablation study was conducted to explore the role of the Fourier
module.

3.1 Overview of Methodology

In 2020, Zong Yili [62] team adopted the FNO network. This kind of network is different
from traditional solvers that solve equations through discrete spaces, such as the finite element
method (FEM) [46] and the finite difference method (FDM) [63]. Traditional methods require a
trade-off in resolution: coarse meshes are fast but have low accuracy, and fine meshes have high
accuracy but are slow. FNO networks overcome the reliance of traditional numerical methods on
grids by generating a set of grid parameters that can be used for different discretization. It can be
solved at different grid sizes, and FNO only needs to be trained once to predict new inputs. Prior
to FNO, no purely data-driven method could compete with CFD methods in limited-dimensional
settings. FNO solves this problem by extracting feature components through fast Fourier
transform.

3.2 Training Data Preparation

The first problem to be solved when using the FNO method based on deep learning
technology to predict micro-city wind fields is the representation of flow field data, that is, how
to represent boundary conditions, physical fields (such as velocity vector fields), etc. into
something acceptable to the neural network. form. Here we introduce the distance function
(Signed Distance Function, SDF) and binary representation (binary representation)

Signed distance function For a two-dimensional Cartesian image, each Cartesian grid point
on the image domain Ω ∈ R2 is (), and use to represent the signed distance function
sign. For points through which the geometry passes, the value of f (i; j) is 0. Suppose the set of
boundary points is Z, then:

When the point is inside the geometry, < 0, when When the point is outside the

geometry,) > 0, the specific calculation formula of the signed distance function is
as follows:

i : j f (i : j)

Z = {(i, j) ∈ ℝ2 : f (i, j) = 0}
f (i; j)

f (i; j) D(i : j)

17

(a)	 	 	 	 	 	 (b)

Figure 3.1 (a).binary image. (b).SDF of Niigata.

 represents the shortest distance from a given point to the geometric
boundary. Figure 3.1 represent the binary image and SDF of Niigata. First, the geometric figure
is projected onto the Cartesian grid, and is used to represent the binary method. Then
when the point is inside or on the boundary of the geometry, = 1. When the point is
outside the geometry, = 0. This representation can represent the geometry as an "artificial
image". Compared with SDF, the binary method is further simplified, and the physical distance
from each point to the boundary is not explicitly represented.

For the west wind field data of Niigata City, we performed the following preprocessing.
The original data has a resolution of 256 * 256 and contains a total of 1200 time steps. Since the
wind has not yet covered the entire urban area within the first 180 steps, we discarded the wind
field simulation data within the first 180 time steps in order to ensure the learning effect of the
model. Each time step is 0.1 seconds.

We divide the wind field data into 64 * 64 grid patches. On this basis, 80 positions were
randomly selected for training. For each location, the model uses 5 time steps of data as input
and predicts 10 time steps of data as output. Specifically, for a given location, we input the data
from steps 181 to 185 and output the data from steps 186 to 195. Then, we move two steps at a
time, input the data from steps 183 to 187, and output the data from steps 188 to 197, and so on
until step 1200.

To ensure comprehensive coverage of data, we conducted multiple sampling processes to
ensure that 80 locations covered more than 90% of Niigata urban area. The above process
constitutes our data processing process, and we hope to provide sufficient and effective training
data for the deep learning model.

D(i, j) = min
(i′ , j′)∈Z

(i, j) − (i′ , j′) sign(f (i, j))

D(i : j) (i : j)

B(i : j)
B(i : j)

B(i : j)

18

3.3 FNO Model Architecture

3.3.1 CNN Layers

In the FNO benchmark network, the convolutional layer is also an important component
[39,62]. A typical convolutional layer is responsible for extracting features. The convolution
process regards the convolution kernel as a filter for subsequent work, processes the selected
area of the input image data, and then obtains a simplified expression of the characteristics of the
corresponding area. From a mathematical point of view, convolution is to multiply the matrix of
the input image after processing and the matrix of the convolution kernel. A convolution
operation outputs a corresponding value, and the entire convolution process is to convert the
selected convolution kernel The matrix is slid on the processed matrix of the input image, and
finally a new matrix is obtained, as shown in the figure below [37] :

Figure 3.2 Convolutional kernel [39].

Common convolution processes generally include the following four parameters:
① The size of the convolution kernel: The size of the convolution kernel represents the

range of its receptive field in the neural network There are many types of convolution kernels.
The setting of the convolution kernel should be set according to the specific network structure
size to complete the extraction task. As shown in the figure above, the convolution kernel in the
convolution operation process diagram is 3 * 3.

② Step size: The step size represents the accuracy during the convolution process, which
represents the distance spanned by each movement of the convolution kernel on the matrix after
processing of the input image. Under normal circumstances, the step size defaults to 1. As shown

19

in Figure 3.2, if it is the default step size, the problem of secondary coverage will occur during
the movement of the convolution kernel; if the step size is 3, the movement process Then
complete coverage cannot be achieved, so the convolution operation in the figure adopts a step
size of 2.

③ Padding: During the convolution process, sometimes the convolution kernel does not
match the matrix parameters. For example, as shown in Figure 3.2, the matrix size after wind
field image processing is 5 * 5, and the kernel is 3 * 3. According to the default step size
Precision, the convolution kernel will slide out of the matrix, so the matrix needs to be expanded
to 6x6, that is, filling processing.

④ The number of input and output channels: The number of input channels of the
convolution kernel is equal to the number of channels of the input matrix, and the number of
output channels is equal to the number of output channels of the convolution kernel. Multi-
channel sharing reduces the number of parameters to a large extent, and the output feature map is
only related to the local input feature. It is not only is retained the powerful feature extraction
ability of CNN, but also comprehensively reduce the amount of parameters and the amount of
calculation.

3.3.2 Fourier Layers

Figure 3.3 Fourier layer [62].

The basic idea of the Fourier layer originates from Fourier analysis, that is, any periodic
function can be expressed as a linear combination of sine and cosine functions of different
frequencies. In FNO, the Fourier layer as shown in Figure 3.3 converts the input data from the
physical domain to the frequency domain by performing a Fast Fourier Transform (FFT) on it.
This step reveals the frequency domain characteristics of the input data, providing a richer and
deeper representation for subsequent processing. Specifically, the workflow of the Fourier layer
can be divided into the following steps:

Frequency domain transformation: First, the input feature data is converted from a physical
space representation to a frequency domain space representation using Fast Fourier Transform
(FFT). This transformation demonstrates the composition of the input data at different
frequencies, making it possible for Fourier layers to capture complex spatial patterns.

Frequency domain operation: In frequency domain space, the transformed features are
applied with linear transformation. The Fourier layer multiplies them with a learnable frequency
domain weight matrix and filters the frequency components outside the specified number of
modes, thereby retaining the desired frequency features.

20

Inverse Transform: Finally, the transformed frequency domain data is converted back to
physical space using the inverse fast Fourier transform (IFFT), and the input data is re-converted
into a physical space table.

The introduction of the Fourier layer brings significant advantages to solving PDE: the
Fourier layer can learn the global characteristic frequency of the input data in the frequency
domain, and is not limited to the physical coverage of the convolution kernel of the CNN, thus
improving the model’s learning ability.

3.3.3 ResNet Connection

Figure 3.4 ResNet layer architecture[65].

The ResNet network was originally proposed by a research team headed by He Kaiming of
Microsoft Research [65]. It showed its talents in the computer vision competition in 2015 and
won the championship. The ResNet paper was also selected as the best paper of the CVPR 2016
conference. Excellent paper. In the early days of deep learning research, many researchers found
that when the number of network layers reached a certain level, gradients would disappear or
explode [39]. This constrained the number of network layers in deep learning, and the emergence
of ResNet solved the problem. Solving this problem, it makes effective training of deep networks
possible.

The core advantage of the ReNet network is its ability to have identity mapping inside the
neural network. As shown in the figure above, this is the core part of ResNet. This module solves
the negative problems caused by the increase in network depth in reality: network degradation.
The ResNet module changes the model training process from H(x)=F(x) to H(x)=F(x)+x, In this
way, when F(x)=0, the function process will become the identity mapping H(x)=x, which
effectively prevents the problem of gradient disappearance or gradient explosion in deep neural
networks, and allows the number of network layers to be increased than before.

21

3.3.4 Network Configuration

Table 3.1 Network Configuration

22

Layer Kernel Size Input Size Output Size Kernel
Number

Parameters

P1 8 64x64x25 64x64x40 40 360

SpectralConv
0

1x1
 40x64x64 40x64x64 40->40 2,163,200

SpectralConv
1

1x1 40x64x64 40x64x64 40->40 2,163,200

SpectralConv
2

1x1 40x64x64 40x64x64 40->40 2,163,200

SpectralConv
3

1x1 40x64x64 40x64x64 40->40 2,163,200

MLP0 1x1 40x64x64 40x64x64 40->40 3280

MLP1 1x1 40x64x64 40x64x64 40->40 3280

MLP2 1x1 40x64x64 40x64x64 40->40 3280

MLP3 1x1 40x64x64 40x64x64 40->40 3280

W0 1x1 40x64x64 40x64x64 40->40 1640

W1 1x1 40x64x64 40x64x64 40->40 1640

W2 1x1 40x64x64 40x64x64 40->40 1640

W3 1x1 40x64x64 40x64x64 40->40 1640

Norm0 —— 40x64x64	 40x64x64	 ——
——

Q0 40->160

160->10

40x64x64	 10x64x64 2 10585

Total 15,187,785

Table 3.1 above shows the specific details of the FNO network structure used in this
article. For input and output, 64 * 64 * 5 and 64 * 64 * 10 respectively represent feature maps
with 5 and 10 channels and a size of 64x64. For the P1 layer, 64 * 64 * 40 means increasing the
number of input vector channels from 5 to 40. In the four Fourier modules, each input feature
will be summed after two passes. The first pass is the SpectralConv layer. In the SpectralConv
layer, the input features will first be converted into Fourier space representation, and frequency
components other than the modes (32) number will be discarded, and the remaining Fourier
inversion is converted into a physical space representation and then linearly transformed through
the convolution layer MLP; the second path is the W layer, which performs convolution
transformation on the input features to extract features and then adds them to the first output.
After four layers of Fourier layers, the number of channels is changed to 10 through the linear
layer Q, which represents the predicted flow field data of 10 consecutive time steps.

3.4 Parameter Selection

In this study, we used the Fourier neural operator (FNO) model for urban wind field
prediction. The FNO model consists of four Fourier modules, each module includes the addition
of two outputs of a Fourier layer and a convolutional neural network (CNN) layer. The following
is a detailed description of the parameter selection and tuning process.

1). Model parameters :
• Four Fourier modules: Each module consists of a Fourier layer and a CNN layer, and

their outputs are summed through a residual connection (ResNet connection).
• Activation function: Use Gelu activation function after the output of each layer to

enhance the nonlinear expression ability of the model.
• Total number of parameters: The entire model contains approximately 3.8 million

parameters.
2). Training parameters :
• Learning rate: set to 0.01. The initial learning rate is chosen based on experience and a

small range of pre-experiments to ensure that the model converges quickly early in training.
• Optimizer: Adam optimizer selected. The Adam optimizer combines momentum and

adaptive learning rate adjustment and is suitable for processing large-scale data and complex
models.

• Batch Size: Set to 100. Larger batch sizes can fully utilize the computing power of the
GPU and help stabilize gradient updates. But too large batch size may affect the learning
effect. After several experiments we have chosen 100 based on the results.

• Number of training epochs : The model was trained for 100 epochs. Based on
experimental results, 100 epochs of training can ensure convergence while avoiding
overfitting.

3). Dataset information :
• Training data set: The data set size is 39600 samples, and the size of each sample is

64x64x15.

23

• Data preprocessing: Cut the original 256x256 flow field into 64x64 small blocks and
calculate the Signature Distance Function (SDF) data. The training set contains 39600 small
blocks, the first 5 time steps are used as input, and the next 10 time steps are predicted.

• Data augmentation: Due to the complexity of urban wind field data, we perform data
augmentation through patching and SDF calculations to ensure the diversity and
representativeness of the training set.

4). Hyperparameter tuning
• Methods: Hyperparameter adjustment is mainly performed through empirical adjustment.

Different learning rate and batch size combinations were tested in preliminary experiments,
and the current parameter configuration was finally chosen.

• Result evaluation: Choose the best parameter combination by evaluating the performance
(MAE) on the validation set.

5). Hardware and software environment
• Computing resources: NVIDIA A100 GPU (32GB VRAM)was used for training. The

A100 GPU provides powerful computing power that can significantly accelerate the training
process of large-scale models.

• Training platform: The PyTorch framework is used for model construction and training.
PyTorch has a flexible dynamic calculation graph and rich community resources, suitable for
developing and experimenting with complex neural networks.

• Training time: A single training run of 100 rounds takes approximately 1.5 hours.

3.5 Training and Testing Process

 In this study, in order to speed up data access and improve training efficiency, the training
data is first loaded into memory. The training process uses an NVIDIA A100 GPU with 32GB
RAM. This high-performance computing resource ensures that the model can efficiently handle
large-scale data and complex calculations, and a single round of training takes about 1.5 hours.
Our training process is as follows:

(1). Data loading and preprocessing:
The size of the training dataset is 39,600 samples, and each sample has dimensions of 64 *

64 * 15. Data preprocessing consists of cutting the original 256 * 256 flow field into 64 * 64 tiles
and calculating the Signature Distance Function (SDF) data. The data set is divided into an input
part and an output part. The input is the data of the first 5 time steps, and the output is the
prediction results of the next 10 time steps.

(2) Training process:
We use a batch size of 100 for training, and the FNO model performs feature extraction by

passing the input data to the Fourier layer. During the training process, we use the relative error
between the predicted 10-step results and the true value as a measure of the loss function to
evaluate the accuracy of the model prediction. At the same time, the FNO model uses the back
propagation algorithm to calculate the relative error based on the relative error. The error
calculates the gradient and updates the model parameters to achieve the purpose of learning the
implicit relationship between data. During the training process, use the tqm library to display

24

errors in training in real time to monitor and evaluate model performance. The tqm library
provides detailed training error curves to help adjust training strategies in a timely manner.

(1). Data preparation:
 The test data set we use consists of 16 non-overlapping 64 * 64 * 5 wind field data. We

splice the 64 * 64 wind field data together from left to right and top to bottom to form the entire
Niigata area. This method can achieve wind field prediction in the entire Niigata 256 * 256 urban
area.

(2). Prediction and evaluation:
 We use the trained FNO model to predict the test data and predict the wind field 150 time

steps after the input. We use the mean absolute error (MAE) to evaluate the accuracy of the
model, which reflects the difference between the predicted value and the true value. During the
test, we used the same hardware resources (NVIDIA A100 GPU) to ensure the fairness of the
experimental comparison.

Through the above training and testing process, we ensure that the FNO model has good
performance and efficient computing power in complex urban wind field prediction tasks. These
processes describe in detail data loading, model training, error calculation, performance
monitoring and testing methods in practical applications, providing an important reference for
subsequent research and applications.

Table 3.2 Hyper Parameters

3.6 Evaluation Metric

This article uses [64] CFD prediction accuracy to compare and evaluate FNO’s prediction
results for urban wind fields.

(1) Fluent (2) OpenFoam (3) Aysns
The average error of the above CFD method is 0.5 meters per second.
For the prediction results of the FNO model, this article uses the Mean Absolute Error

(MAE) to compare the difference between the predicted wind field and the true value, and
conduct an overall assessment of the prediction accuracy of the wind field. Our task is more
concerned with specific areas. The prediction results, such as the wind field in the urban building

25

Learning Rate 0.001

Optimizer Adam

Loss Function Relative Error

Activation Function Gelu + Relu

Layers 4

Batch Size 100

Learning Rate Decay 50

area, are more helpful for the design of the aircraft. Therefore, for the wind field data used in this
article, we performed regional segmentation and only included the wind field in the urban area,
removing our Don't care about the part of the city outside the wind field where there are no
buildings.

Absolute error calculation formula :

SDF calculation formula :

3.7 Spectral Analysis

we provide the process to compute the radial energy spectrums. To maintain the total
energy, the radial energy spectrum employed in this work differs from the commonly used radial
averaged energy spectrum.

• Compute the 2D Fourier transform. Use the Fast Fourier Transform (FFT) to
transform the input 2D matrix from the spatial domain to the frequency domain.

• Compute the wave numbers. For each entry in the Fourier-transformed matrix,
compute its wave number, which is the distance of that entry from the center of the Fourier-
transformed matrix.

• Bin the wave numbers. Each bin represents a range of wave numbers. For the 64 * 64
matrix, we set 32 bins, each with a range of 1.

• Compute energy in each bin. For each bin, sum the squared magnitudes of the Fourier
coefficients that fall within the corresponding wave number range. This sum represents the
energy in that frequency range. The radial energy spectrum redistributes the energy of the 2D
spectrum radially, resulting in a clearer visualization.

MAE =
1
n

n

∑
i=1

yi − ̂yi

SDF(p) = sign(p) ⋅ min
q∈S

∥p − q∥

26

Chapter 4 Results And Discussion

Figure 4.1 Simulation error of wind speed (left axis) and temperature (right axis) by
different tools [46].

In this section, we benchmark the performance of our Fourier neural operator (FNO)
method against the errors of mainstream computational fluid dynamics (CFD) software in the
simulation of urban wind fields. By establishing this benchmark, we can clearly understand the
limitations and room for improvement of existing methods in wind field prediction. Figure 1
shows the errors of various CFD software in predicting wind speed, air temperature, and surface
temperature. As can be seen, the average error in wind speed (blue bars) is about 0.5 m/s for all
software. This benchmark is crucial as it represents the current state of the art regarding the
accuracy of CFD methods in complex urban environments. Understanding this value not only
helps us understand the upper limit of the performance of traditional CFD methods but also
provides a clear target for comparison with our proposed new method, underscoring the
significance of our research.

In all experiments below, the output time step interval is 0.1 seconds, with the first output
time step (t1) corresponding to the 181st step in the test data, and subsequent time steps added
sequentially.

27

4.1 Comparison of Model Trained on Patches and Whole Urban Area

Figure 4.2 (a). The original whole block layout. (b). The layout segmented into smaller
blocks for FNO-based generalization tasks.

The wind field data division pattern utilized in the two distinct training methodologies are
illustrated in Figure 4.2(a) and Figure 4.2(b), respectively. Figure 4.2(a) depicts the
comprehensive wind field training method, which employs the wind field data from the entire
city. In this manner, the model is able to simultaneously observe the wind speed distribution
across the entire city and the impact of buildings on the wind field. Figure 4.2(b) depicts the
training method that utilizes smaller wind fields, wherein the city wind field is partitioned into
numerous discrete local regions, each comprising local information about the wind field. The
model is trained in these local areas to enhance its capacity to capture local details. This
comparison elucidates the distinction between the two training methods: the complete wind field
training method prioritizes global information, whereas the small patches training method
emphasizes local precision.

28

Figure 4.3 Comparison of accumulated average absolute error in Niigata over time
between the models trained on the whole wind field and the one trained on 64 * 64 patches wind
field.

Figure 4.3 illustrates the absolute prediction errors of the FNO model trained on patches
wind field and the FNO model trained on the whole urban wind field in the T186-T255 Niigata
north wind field. As illustrated in Figure 4.3, the prediction errors of the FNO model trained on
patches wind field in the T186-T255 time period are less than those of the FNO model trained on
the whole urban wind field, with the error being less than 0.5 m/s. The results demonstrate that
the FNO model trained on patches wind field has reached the same level of prediction accuracy
as that of mainstream CFD software like Fluent and OpenFoam, with an absolute prediction error
of 0.5 m/s. In contrast, the FNO model trained on the whole urban wind field exhibits an error
greater than 0.5 m/s after the 25th step, with a faster accumulation of errors than that observed in
the FNO trained on patches wind field. Based on the result, it can be concluded that training
FNO with patches wind fields is preferable to training FNO with whole wind fields.

29

Figure 4.4 Prediction results of the Niigata wind field at five selected time steps (t = 14,
28, 42, 56, 70) using the FNO model trained on 64 * 64 urban patches wind field.

30

Figure 4.5 Prediction results of the Niigata wind field at five selected time steps (t = 14,
28, 42, 56, 70) using the FNO model trained on whole urban wind field.

Figure 4.4 and Figure 4.5 illustrate the performance of the FNO model trained on patches
wind field and the FNO model trained on the whole wind field at 70 steps of prediction. Each
figure depicts the actual wind speed field, the model-predicted wind speed field, and the error
map between the two at distinct time points (t=14, t=28, t=42, t=56, t=70), arranged in columns.
The initial row depicts the actual wind speed field. The flow of wind speed between buildings
gives rise to a complex pattern, particularly at the periphery of the wind field and in areas
characterized by a high density of buildings, where the speed gradient is pronounced. The second
row depicts the prediction outcomes of the FNO model. At the initial time steps (t=14 and t=28),
both the prediction results of the small-block training model and the whole-block training model
exhibit a closer alignment with the actual values. However, as the time step increases,
particularly at t=56 and t=70, the prediction results begin to diverge from the actual values,
particularly at the edges of the wind field and in areas with complex geometries. The third row
depicts the discrepancy between the predicted and actual wind speed fields. The discrepancy
between the two figures is relatively minor at the outset but progressively accumulates with the
passage of time. The model trained with small patches (Figure 4.2(a)) exhibited a lower error rate
in long-term step prediction than the model trained with a whole patch (Figure 4.2(b)),
particularly at time steps 56 and 70. The model trained with a whole patch exhibits a more
pronounced error, particularly in regions with dense urbanization and at the periphery of the
wind field. In conclusion, the model trained with small wind field segments demonstrates
superior performance in capturing the local characteristics of the wind field and long-term step
prediction. Conversely, the model trained with the whole wind field exhibits larger errors in
long-term step prediction, particularly in complex geometric areas.

31

Figure 4.6 Comparison of the radial energy spectrum absolute differences between the
Ground Truth and models trained on Patches (red) and Whole Training (green).

Figure 4.6 shows a comparison of the absolute mean energy difference. The red line
represents Ground Truth vs Patches Training, and the green line represents Ground Truth vs
Whole Training. As can be seen from the figure, in the region of small wave numbers, the
difference between the two is relatively small, but as the wave number increases, the energy
difference of the whole training increases significantly, while the small patch training maintains a
relatively small energy difference. This further shows that small patch training can better
approximate the true energy distribution at high wave numbers (small scales). In summary, the
analysis in the figure shows that small patch training is superior to whole patch training in
capturing the energy distribution of small-scale turbulence.

4.2 Influence of the SDF Data on Urban Wind Field Prediction

Figure 4.7 Visualization of the building layout(left) and corresponding Signed Distance
Function (SDF)(right) for the Niigata urban environment.

In Figure 4.7, the map on the left depicts the distribution of buildings in an urban area.
Black areas indicate the presence of buildings, while white areas represent open spaces or non-
buildings. The map has been processed using a binary method, with the objective of clearly
identifying the contours and distribution of buildings in the city. The resulting SDF (signed
distance function) map, generated based on the aforementioned image, is presented on the right.
The coloration gradually transitions from the center to the periphery, with purple indicating areas
situated at a greater distance from the edifices and green and yellow indicating areas in closer
proximity to the buildings. The SDF map reflects the distance of each pixel from the nearest

32

building boundary. The gradual change in color allows for the visualization of the relative
distance distribution of different locations in space from the buildings.

Figure 4.8 Comparison of accumulated error over time between the models trained With
SDF (red line with squares) and Without SDF (cyan line with triangles).

Figure 4.8 illustrates the absolute prediction errors of the FNO model trained with SDF
data and the FNO model trained without SDF data in the T1-T150 Niigata North wind field. The
data utilized for training were derived exclusively from the Niigata West wind field. As
illustrated in the figure, the prediction error of the FNO model trained with SDF data is less than
0.5 m/s during the T1-T150 time period. In contrast, the error of the FNO model trained without
SDF data exceeds that of the FNO model trained with SDF data at approximately T30 and
continues to increase. In light of these findings, it can be concluded that the FNO model trained
with SDF data outperforms the FNO model without SDF data under identical experimental
conditions. The incorporation of SDF data enhances the spatial correlation between data points,
thereby enabling FNO to extract a greater number of physical characteristics and to achieve more
stable prediction outcomes.

33

Figure 4.9 Prediction results without SDF at five selected time steps (t = 14, 28, 42, 56,
70).

Figure 4.9 illustrates the outcomes of a 70-step prediction utilizing a FNO model that was
trained with a limited wind field on the North Wind test set, without the incorporation of SDF
data. The figure illustrates the true value, the predicted value, and the discrepancy between the
two at various time points (t=14, t=28, t=42, t=56, t=70) for each column 1. The true value
(presented in the first row) illustrates the true wind speed distribution at varying time points. The
regions exhibiting elevated wind speeds are concentrated in the flow channels between the
edifices, particularly in the vicinity of the edges, which evinces intricate fluid dynamics in these
areas. The predicted value is presented in the second row. The model’s prediction is more closely
aligned with the actual wind speed field at the outset (t=14, t=28). However, as the time step
increases, the discrepancy between the predicted and actual values widens, particularly at t=56
and t=70, where the prediction deviation in the vicinity of the building edges is pronounced. The
error field is presented in the third row. As time progresses, the model’s errors accumulate
gradually, particularly in the vicinity of complex geometric boundaries, where the error values
increase significantly. This further indicates that the FNO model, which does not use SDF data,
has certain limitations when dealing with complex geometric structures and capturing physical
relationships, particularly in the prediction of longer time steps, where the error diffusion is more
pronounced. In conclusion, the model that was trained using the small-scale wind field without
SDF data demonstrated a slight decline in performance when evaluated on the North Wind test
set. While the initial predictions were relatively accurate, the error increased significantly with
the passage of time. The absence of SDF data impeded the model’s capacity to accurately
delineate the spatial relationships and geometric features intrinsic to the wind field, thereby
compromising the overall accuracy of the prediction.

34

Figure 4.10 Comparison of radial energy spectrum absolute differences between Ground
Truth vs With SDF (red) and Ground Truth vs Without SDF (green).

Figure 4.10 shows a comparison of the absolute difference in radial energy spectra trained
with and without SDF. The vertical axis of the figure represents the absolute mean energy
difference, and the horizontal axis is the wave number, which represents the change from large
scale to small scale. The red line represents Ground Truth vs With SDF, i.e. the absolute energy
difference between the model and the real data when SDF data is involved in training. The green
line represents Ground Truth vs Without SDF, i.e. the absolute energy difference between the
model and the real data when SDF data is not involved in training.

As can be seen from the figure, the energy difference between training with SDF (red line)
and without SDF (green line) is generally lower in all wave number ranges, especially in the low
wave number (indicating large-scale structure) region. As the wave number increases (entering
the small-scale region), the difference between the two gradually decreases, but overall the
model with SDF still performs better. This shows that the introduction of SDF data significantly
improves the model’s accuracy in predicting the energy distribution of the wind field, especially
when capturing large-scale turbulent structures. SDF provides more physical information,
bringing the model closer to the real energy distribution.

35

4.3 Hyperparameters Researchs

Figure 4.11 Accumulated average absolute error in Niigata over time for wind field
predictions with different batch sizes.

Figure 4.11 illustrates the experimental results of wind field prediction at a specified time
point for 70 consecutive time steps, and evaluates the impact of different batch sizes on the
cumulative prediction error. Each curve represents the trend of the prediction error with respect
to the time step for different batch sizes under the same model settings. As illustrated in Figure
17, the model with a batch size of 100 demonstrates the most optimal performance throughout
the time period. The cumulative error remains relatively stable during the 70 steps of prediction,
and the error maintains the lowest level compared with other batch sizes’ result. This
demonstrates that a batch size of 100 represents an optimal balance between the frequency of
gradient updates and the model’s predictive performance. The use of smaller batch sizes (e.g., 25
and 50, indicated by the blue and green lines, respectively) results in lower initial prediction
errors. However, the cumulative errors increase rapidly with the number of time steps and exhibit
greater fluctuations in long-term predictions than batch size 100. This phenomenon may be
attributed to the fact that smaller batch sizes prompt the model to update the gradient during
prediction, which results in a gradual accumulation of errors in long-term predictions.
Conversely, while the batch sizes of 400 and 800 result in lower errors in the initial predictions,
the cumulative errors increase larger than batch size 100 with the increase of the time step.
Notably, the batch size of 800 exhibits a pronounced surge in errors pertaining to long-term

36

predictions. A larger batch size may result in a lower update frequency during model training,
thereby making it challenging to adjust the prediction error in a timely manner, particularly in the
later stages of the prediction, where the impact is pronounced.

In contrast, although the batch size of 200 shows superior performance compared to 400
and 800, its accuracy is not significantly improved compared to the batch size of 100, and it
requires more GPU resources. In conclusion, the batch size of 100 can effectively balance the
gradient update of the model and the prediction accuracy, resulting in enhanced generalization
ability and a reduced cumulative error in long-term wind field prediction.

Figure 4.12 Accumulated average absolute error in Niigata over time for wind field
predictions with different modes.

37

Figure 4.13 Accumulated average absolute error over time for wind field predictions with
different width (convolutional kernel size).

The objective of this study was to evaluate the impact of varying settings for the modes
and width parameters of the FNO model. The modes parameter denotes the number of modes
extracted by the FNO model following a Fourier transform of the input data. In contrast, the
width parameter represents the size of the convolution kernel employed by the FNO model
during internal linear transformation. The results demonstrate that augmenting these two
hyperparameters has a considerable, beneficial impact on the model’s performance.

In Figure 4.12, the influence of varying the number of modes was investigated, with values
ranging from 8 to 32. Given that the dimensions of the input patch are 64 * 64, the maximum
number of modes that can be obtained is 32. The results demonstrate that as the number of
modes increases, the model’s predictive accuracy improves gradually. This is presumably due to
the fact that a greater number of modes allows for a more comprehensive capture of the intricate
patterns and characteristics inherent in the data, thereby enhancing the model’s expressiveness.
However, an excessive number of modes can result in a considerable increase in computational
cost. Therefore, it is essential to achieve a balance between performance and computational
resources. The utilization of 128 modes on a complete block of 256 * 256 is not currently
supported by our GPU; And the largest mode we can choose for 64x64 patches is 32. Thus, 32
modes were employed instead. Figure 4.13 illustrates that an expanded width enables the FNO
model’s convolutional kernel to discern intricate data structures with greater precision, thereby

38

enhancing prediction accuracy. However, an increase in width is also accompanied by an
increase in training time and memory consumption. Therefore, although a larger width performs
better in terms of accuracy, it is necessary to consider the consumption of computing resources in
practical applications. We selected 48 as the maximum width that our GPU resources can
accommodate within a tolerable usage time.

Figure 4.14 Accumulated average absolute error in Niigata over time for wind field
predictions with different output in one iteration.

The FNO model is a single input-output model. Accordingly, in order to enhance the
efficacy of the FNO model in forecasting wind patterns, it is essential to ascertain the optimal
number of input-output time steps within a single iteration. An experiment was designed to test
the input-output strategy employed in a single iteration. The impact of varying output step
lengths (1, 10, 20, 40) was evaluated under the same input length (5 time steps). The results
demonstrate that the 10-step output setting exhibits the optimal performance in terms of model
efficacy.

As illustrated in Figure 4.14, when the output step is 1, although the short-term prediction
error is minimal, the overall model exhibits reduced efficiency and suboptimal long-term
prediction. This is due to the fact that excessive iterative updates result in a cumulative error that
is repeated multiple times. Furthermore, the implicit equation associated with a multiple-step
input and a single-step output is inherently more complex, ultimately leading to a reduction in

39

prediction accuracy within a single iteration. When the output step is 10, the model is able to
significantly reduce the number of iterations while still outputting the same 70-step wind field.
Furthermore, it has achieved a good balance between efficiency and prediction performance,
particularly in medium- and long-term predictions (more than 10 steps). The existing data and
FNO model parameter settings have been found to result in a significant increase in prediction
error when the output step lengths are set to 20 and 40, particularly larger than outputting 10
steps in one iteration, despite a reduction in the number of iterations. An excessively long output
step length in a single iteration impairs the FNO model’s ability to effectively capture finer-
grained wind field changes, resulting in a decline in prediction accuracy.

By comparing the same input (5 steps) with different output step lengths, we found that an
output step length of 10 can achieve the optimal balance between model efficiency and
prediction accuracy. This provides a valuable reference for selecting an appropriate iterative
strategy for future practical applications.

Figure 4.15 Accumulated average absolute error in Niigata over time for wind field
predictions with different input in one iteration.

After determining that the 10-step output is the optimal setting, further tests were
conducted to assess the impact of different input step sizes (1, 5, 10, 20) on model performance
while maintaining the output step size at 10. As shown in Figure 4.15, the configuration with 5
input steps and 10 output steps in a single iteration exhibited the highest prediction accuracy. As
illustrated in the figure, the prediction results for the 1-step input were significantly worse
compared to the other three input configurations. This is because the 1-step input provides

40

insufficient feature information, preventing the FNO model from fully capturing the time series
characteristics necessary for wind field prediction. In contrast, the 5-step input achieved optimal
prediction results with minimal memory usage, particularly in capturing the complex temporal
variations of the wind field. Although the prediction accuracy of the 10-step input is comparable
to that of the 5-step input, the 10-step input requires more memory and computing resources.
Further increasing the input step size did not significantly improve model performance,
indicating that, in this case, additional input steps introduced a degree of information
redundancy, with limited improvement in the FNO model’s wind field prediction accuracy.
Additionally, the experiments found that under the 20-step input configuration, prediction
accuracy declined after the 20th output step compared to the 5-step input configuration. This
could be attributed to the additional input steps increasing the complexity of the data
relationships the model must learn, thereby reducing the overall learning efficiency of the FNO
model. In summary, the optimal configuration for the FNO model in a single iteration is 5 input
steps and 10 output steps.

Figure 4.16 Accumulated average absolute error in Niigata over time for wind field
predictions comparing 16 fixed areas (blue line) and different configurations of random areas
(dashed lines).

To further substantiate the efficacy of our segmentation method (dividing the whole urban
area into 16 patches which cover the whole urban area completely), a comparative analysis was
conducted with the random segmentation method displayed by Figure 4.16. In the random

41

segmentation method, 16, 32, 48, 64, or 80, 64 * 64 patches were randomly selected. However,
the experimental results demonstrated that none of these randomly selected schemes exhibited
the same efficacy as our segmentation method. Our segmentation method ensures comprehensive
coverage of the entire 256 * 256 wind, and the overlapping regions of adjacent small blocks
permit the model to capture continuous local features and boundary information. The
comprehensive and consistent coverage of the data ensures the model’s capacity for
generalization across the entire dataset, thereby enhancing the accuracy of the predictions. The
random tessellation method is subject to the following limitations: In the random tessellation
method, although different numbers of small blocks are randomly selected (16, 32, 48, 64, or 80),
the resulting coverage of each tessellation is not guaranteed due to the inherent randomness and
uncertainty of the process. It is possible that some crucial regions within the wind field may not
receive sufficient training, while other areas may be sampled excessively. This could impede the
model’s ability to learn the uniform characteristics of the entire wind field. The randomness
inherent to this method results in an uneven distribution of data, which in turn affects the
accuracy of the model in certain areas and diminishes the overall efficacy of the approach,
particularly in comparison to our solution. The presence of data redundancy and asymmetric
information: Despite the random selection of larger numbers of smaller patches (such as 48, 64,
and 80), this method does not yield sufficient information improvement. In comparison to the
systematic coverage of our segmentation method, randomly selected small patches may result in
data redundancy in certain areas, leading to the repetition of unnecessary information.
Conversely, other areas may lack sufficient training data, which ultimately affects the overall
performance of the model.

42

Figure 4.17 Accumulated average absolute error in Niigata over time for wind field
predictions with different coverage levels: 00 coverage, 25 coverage, 50 coverage, and 75
coverage.

In the context of training the FNO in patches wind fields, it is essential to develop an
effective and optimal small partition scheme. The 256 * 256 wind field data was divided into 64
* 64 small patches, with the division occurring from left to right and top to bottom. Four
different step length schemes were then tested, with the step lengths varying from 64 to 16. The
step lengths thus determine the degree of overlap between adjacent small patches, which in turn
affects the data coverage and data volume. In the 64-step scheme, the split blocks are completely
disjoint, resulting in a total of 16 64 * 64 patches. Although this method requires less training
data and allows for more rapid model training, the lack of overlap between the small blocks
makes it challenging for the model to capture the continuous information between boundaries,
resulting in lower prediction accuracy. In comparison to the 64-step solution in Figure 4.17, the
48-step solution results in an increased overlap between the small patches, thereby increasing the
amount of training data and enhancing the model’s capacity to capture boundary information.
However, the larger step size results in insufficient data coverage and no significant
improvement in model performance. The results of our experiments indicate that the 32-step
method produces the most optimal outcomes. At this juncture, the degree of overlap between
each small block is considerable, the quantity of data following segmentation is augmented, and
the model is able to discern the local characteristics and boundary information of the wind field
from a more substantial corpus of training data, thereby exhibiting enhanced accuracy in
prediction. This demonstrates that a moderate step size can achieve an optimal equilibrium
between data coverage and model performance. Although the step size of 16 provides the
greatest quantity of data, the overlap between each small patch is excessive, resulting in high
data redundancy and, consequently, an adverse effect on the training efficiency of the model. The
excessive overlap does not result in a notable enhancement in model performance and instead
leads to an increase in computational overhead. The scheme with a step size of 32 was found to
provide sufficient data coverage without excessively increasing data redundancy, thus achieving
the optimal balance between performance and efficiency. This result provides a basis for
optimizing data processing schemes for future urban wind field prediction models, especially
when processing large-scale urban wind field data. A reasonable chunking step size can
effectively improve model performance. This description clearly conveys the impact of the step
size on model performance, explains why step size 32 is optimal, and provides a reasonable
conclusion based on experimental results.

43

4.4 Performance of Model on Different Wind Directions

Figure 4.18 Accumulated average absolute error in Niigata over time comparing Train
(West Original) and Test (North Rotated 90 degrees CCW, counter-clock wise).

Figure 4.18 above depicts the cumulative error of the FNO model (AI method) trained on
the west direction Niigata urban wind field and subsequently generalized to the rotated Niigata
north urban wind field. In the experiment, with the exception of a change in wind direction, the
wind speed and urban geometry remained constant. The red line represents the performance of
the FNO model on the West Wind training set, and the blue triangle line illustrates the error
performance on the rotated North Wind test set. As illustrated in the figure, the FNO model
demonstrates robust generalization capabilities with respect to the rotated North Wind test set.
The cumulative error between the training and test sets is comparable between time steps T1 and
T30, indicating that the model can maintain consistent prediction accuracy under varying wind
conditions as it did under training conditions. Following T30, the discrepancy between the test
and training sets is marginal, with the former exhibiting a slight elevation in error relative to the
latter. However, this prediction absolute mean error remains within the 0.45 m/s range, which is
in close alignment with the established benchmark for error in mainstream CFD software, such
as Fluent (0.5 m/s). It is noteworthy that despite an increase in error when dealing with wind
direction changes, the FNO model demonstrates comparable overall prediction accuracy to CFD
methods within a limited time frame, while exhibiting a substantial advantage in computational

44

speed. In comparison to traditional CFD methods, the FNO model markedly reduces the
computational time through the utilization of deep learning technology based on pure data-driven
methods, thereby facilitating the generation of high-precision wind field prediction results within
a specified output time frame. The experimental results demonstrate that the FNO model is not
only capable of generating prediction results in a relatively short time frame, but also exhibits
robust generalization capabilities. In particular, when the wind speed and urban geometric
structure remain constant, the impact of wind direction changes on the model is minimal. In
summary, FNO achieves a level of accuracy comparable to CFD in a shorter calculation time,
thereby providing an efficient and accurate solution for complex wind field prediction. This
provides further evidence of the potential applications of FNO in urban wind field simulation.

Figure 4.19 Accumulated average absolute error in Niigata comparison between
predictions on North No Rotation Niigata data and the North Rotated Niigata data over 150 time
steps.

Figure 4.19 illustrates the predictive outcomes of the FNO model in Niigata north wind
urban field. A comparison of the cumulative error performance of the unrotated north wind (red
line) with that of north wind rotated 90 degrees counterclockwise (blue triangle) is presented.
The experimental results demonstrate that the prediction accuracy of the rotated northerly wind
field is markedly superior to that of the unrotated wind field. The cumulative error of the rotated
northerly wind remains below 0.4 m/s throughout the prediction process, whereas the error of the
unrotated northerly wind rises rapidly after T40, reaching a peak value of over 0.8 m/s. The
objective of this experiment is to rotate the northerly wind 90 degrees counterclockwise to create

45

a visual similarity to the westerly wind, thereby aligning it more closely with the training data of
the model, which is based on the westerly wind. Despite the maintenance of constant wind speed
and urban geometry, the unrotated north wind test set exhibited notable divergence from the
training set in the spatial domain, resulting from the alteration in wind direction. This
discrepancy impeded the model’s capacity to generalize, leading to a pronounced surge in
cumulative error. Following the rotation, the test set and training set exhibited a congruent wind
direction, thereby enabling the FNO model to more effectively apply the features acquired during
training to the test set, thereby enhancing prediction accuracy. The results of this experiment
have significant implications for future research on the generalization of deep learning models.
The results demonstrate that ensuring consistency between the visual wind directions of the test
set and the training set is a crucial step in enhancing the generalization ability of the model when
dealing with wind field prediction tasks. By modifying the wind direction, the test set can be
aligned with the training set, thereby enhancing the accuracy of the predictions. This offers a
novel perspective for future deep learning research, particularly in the context of addressing
directional discrepancies between data sets. This strategy can be directly applied to other fluid
dynamics or wind field prediction tasks, thereby enhancing the generalization performance of the
model.

Figure 4.20 Comparison of ground truth, predicted results, and the corresponding error
maps for the North wind simulation without rotation in Niigata.

46

Figure 4.20 illustrates the outcomes of a forecast conducted using a FNO model that was
trained with a modest wind field situated in a northerly wind field. The experiment did not entail
a rotation of the northerly wind field. The figure depicts the true value, the predicted value, and
the discrepancy between the two at various time points (t=14, t=28, t=42, t=56, t=70) for each
column.

The true value (presented in the first row) depicts the authentic wind speed distribution at
varying time points. The velocity of the fluid forms a more complex distribution in the channel
between the buildings, particularly in the marginal area of the wind field, which exhibits a
pronounced velocity gradient.

The second row displays the predicted values. At the initial time steps (t=14, t=28), the
model’s prediction in close agreement with the true values. Nevertheless, as the time step
increases, the model’s prediction error gradually increases in complex areas of the wind field
(such as the edges of buildings and low wind speed areas), particularly at t=56 and t=70,
exhibiting significant deviations. This suggests that the FNO model is challenging to maintain
stability in long-term prediction without rotation. The error field (third row) illustrates the
distribution of discrepancies between the predicted and actual values. Although the initial error is
minimal, the error in the vicinity of the building increases markedly with the prolongation of the
time step, particularly at t=56 and t=70.

Furthermore, the accumulation of error is more pronounced, particularly in the peripheral
regions of the wind field. This suggests that, in the absence of rotation, the model is unable to
effectively capture the global characteristics of the northerly wind field. In conclusion, the
unrotated northerly wind field prediction demonstrates that the model exhibits suboptimal
performance in complex geometric regions and over extended time steps, with errors
accumulating over time. These findings further suggest that appropriate geometric
transformations (such as rotation) may play a pivotal role in enhancing the model’s
generalization capacity in diverse wind directions.

47

 Figure 4.21 Comparison of radial energy spectrum absolute differences in different wind
directions

Figure 4.21 shows a comparison of the absolute differences between the radial energy
spectra of the wind field prediction and the ground truth for different wind directions. The
vertical axis is the absolute mean energy difference, and the horizontal axis is the wave number,
which indicates the structure from large to small scales.

The red line represents North Rotate Ground Truth vs North Rotate Prediction, i.e. the
difference between the ground truth and the prediction after the north wind has been rotated. The
green line represents North No Rotate Ground Truth vs North No Rotate Prediction, i.e. the
difference between the ground truth and the prediction after the north wind has not been rotated.
The blue line representsWest No Rotate Ground Truth vsWest No Rotate Prediction, i.e. the
difference between the ground truth and the prediction after the west wind has not been rotated.

As can be seen from the Figure 4.21, in the low-wave number region (large-scale
structure), the energy difference of the green line is significantly higher than that of the red and
blue lines, indicating that the unrotated northerly wind model has a larger error in large-scale
prediction. However, the difference between the rotated northerly wind model (red line) and the
westerly wind model (blue line) is relatively small, indicating that the rotated northerly wind
prediction results have a smaller error in the large-scale structure and are closer to the westerly
wind prediction results. As the wave number increases (small-scale structure), the difference in

48

energy between the three lines gradually decreases and basically converges in the high-wave
number region, indicating that the effect of rotation processing on the prediction error is
relatively small at small scales. There is not much difference in prediction error between the
rotated northerly wind model and the unrotated northerly wind model, as well as the westerly
wind model.

Overall, the prediction of the rotated northerly wind model is closer to the true value in
terms of large-scale structure, while the unrotated northerly wind model has a larger error.

4.5 Performance of Model on Different Urban Arrangement

Figure 4.22 Illustration of Niigata urban building layout: (a) displays the building layout
with black shapes representing buildings within a circular area, demonstrating their spatial
structure. (b) shows the same layout but with a vertical flip.

Figure 4.22 depicts two distinct urban geometries employed in the experiment. Figure 4.22
(a) depicts the original Niigata urban geometry, which was employed to train the model for wind
field prediction. Figure 4.22 (b) depicts the “new" geometry, which was generated by inverting
the Niigata urban geometry. This method is employed to generate a novel geometric scene,
which is then utilized to assess the model’s capacity for generalization when a new CFD
simulation is not feasible.

49

Figure 4.23 Comparison of accumulated prediction error in Niigata between the original
west wind training data and the up down flipped west wind test data over 150 time steps.

Figure 4.23 illustrates the cumulative error of the FNO model trained on the West wind
Niigata wind field (red line) in comparison with its generalization performance on the upside-
down test set (blue triangle line). The upside-down scenario is equivalent to the generation of a
novel urban geometry. It should be noted that this operation is not a strict CFD simulation.
However, due to the lack of sufficient data, this method was employed to conduct generalization
experiments on the wind field. As illustrated in the figure, despite the discrepancy between the
upside-down test set and the original geometry, the model exhibits robust generalization
capabilities. Following the flipping of the data, the error increased rapidly before T20, with the
cumulative error being marginally higher than that of the original training set. However, after
T50, the error stabilized and remained at approximately 0.45 m/s. This demonstrates that despite
the introduction of a novel geometric configuration, the FNO model retains the capacity to
discern and replicate the underlying geometric characteristics, thereby facilitating precise wind
field projections.

50

Figure 4.24 Comparison of the ground truth (top row), the predicted velocity fields
(middle row), and the error distributions (bottom row) for the Niigata wind field after vertical
flipping.

Figure 4.24 illustrates the outcomes of the forecast following the inversion of the Niigata

west wind field. The figure depicts the true value, the predicted value, and the discrepancy
between the two at various time points (t=14, t=28, t=42, t=56, t=70) for each column.

The true value (presented in the first row) depicts the authentic wind speed distribution at
varying time points. The wind speed in the passageway between the buildings and the edge area
exhibits a complex distribution, particularly in the flipped geometry, which displays discernible
flow patterns.

The predicted value is presented in the second row. The model predicts a value that is in
close proximity to the true value at the initial time steps (t=14, t=28). However, as time
progresses, particularly at t=56 and t=70, the prediction error in the vicinity of the building
increases. This demonstrates that although the model is capable of replicating certain global wind
field characteristics following the processing of this geometric transformation, it is somewhat
deficient in its ability to accurately predict long-term time steps. Error Field (Third Row): The
error map illustrates the discrepancy between the predicted and true values. While the
discrepancy is minimal at the initial time steps (t=14, t=28), it increases significantly at later time
steps, particularly at t=56 and t=70. This is evident in the error maps, which show a larger
deviation from the true value at the edge of the building and in areas with lower wind speeds.
The flipped geometry presents a significant challenge to the model in long time steps, resulting

51

in a gradual accumulation of errors. In conclusion, the model demonstrates initial proficiency in
replicating the flipped west wind Niigata wind field, yet the error rate progressively rises in
extended time steps, particularly in regions with intricate geometries. These findings indicate that
while the model demonstrates some capacity for generalization with regard to geometric flips,
there is still scope for enhancement in the context of long-term step prediction.

Figure 4.25 Accumulated error comparison over 150 time steps between the Niigata,
Montreal, and Niigata UpDown Flipped setups.

Figure 4.25 illustrates the cumulative discrepancy in wind speed forecasts over time for
three scenarios employing the Fourier Neural Operator model. The Niigata scenario, represented
by the red square line, demonstrates a rapid increase in error up to approximately time step 25,
after which it stabilizes. In contrast, the Montreal scenario, illustrated with a cyan circle line,
demonstrates a gradual increase in error over the entire series, indicating a persistent challenge in
modeling this region. The blue triangle line represents the Niigata scenario with the data flipped
upside down, exhibiting a low error similar to the original Niigata data, which highlights the
model’s resilience to such transformations.

52

Figure 4.26 Comparison of ground truth, prediction, and error fields at time steps t = 14, t
= 28, t = 42, t = 56, and t = 70 for the Montreal wind field test.

Figure 4.26 offers a comprehensive comparison of ground truth, prediction, and error fields
for wind velocity predictions using the Fourier Neural Operator (FNO) at different time steps for
the Montreal wind field test. The top row depicts the actual wind velocities at selected time steps
(t=14, 28, 42, 56, and 70), thereby illustrating the dynamic behaviour of the wind over time. The
middle row depicts the predicted velocities at the same time steps, indicating the degree of
alignment between the model’s predictions and the ground truth. The bottom row visualizes the
absolute errors between the predictions and the ground truth, with error magnitude represented in
grayscale. This format effectively highlights areas where the model performs well and where it
deviates, providing valuable insights into the model’s accuracy and potential avenues for
improvement in urban wind field simulations.

53

Figure 4.27 Comparison of Radial Energy Spectrum Absolute Differences between
different city layout configurations.

Figure 4.27 depicts the absolute discrepancies in the radial energy spectrum between the
ground truth and the predicted values for two scenarios utilizing the Fourier Neural Operator
(FNO) model. The scenarios involve the wind field data from Niigata, with one set rotated upside
down (red curve) and the original orientation (green curve). Furthermore, a third scenario (blue
curve) presents data from Montreal’s west side. The plot demonstrates that the error differences
for both Niigata configurations are significantly lower and closely aligned across the wave
number spectrum, indicating robust model performance even with the rotated data. In contrast,
the Montreal scenario demonstrates a consistently higher error across all wave numbers,
suggesting greater challenges in modeling accuracy for this region.

This comparison highlights the necessity for further model refinement to enhance
prediction accuracy in complex urban settings like Montreal.

54

Figure 4.28 Comparison of SSIM(structural similarity) difference between Niigata original
and Niigata vertically flipped wind fields.

Figure 4.29 Comparison of the SSIM(structural similarity) difference between Niigata and
Montreal wind fields.

Figure 4.28 illustrate a comparison of the structural similarity of the urban wind fields,
assessed using the Structural Similarity Index (SSIM), for scenarios involving Niigata, both in its
original form and vertically flipped, and Montreal. In Figure 4.28, the relatively small SSIM
difference of 0.5784 for the original and flipped Niigata wind fields means that the structural
integrity of the wind field is well preserved after the manipulation, indicating that the FNO
model effectively captures and predicts the underlying dynamics even when the data orientation
is changed. In stark contrast, Figure 4.29 shows a more significant SSIM of 0.4689 between the
Niigata and Montreal wind fields. This larger SSIM difference underscores a significant
challenge - the lower prediction accuracy of the FNO model for Montreal, where the distinctive
structural and environmental characteristics differ markedly from those of Niigata. The notable
decrease in SSIM values for the Montreal scenario directly correlates with a decrease in model
performance, underscoring the need for improvements in the FNO model’s adaptability to
different urban configurations to improve forecast accuracy in diverse urban environments such
as Montreal.

55

4.6 Time Consumption

In this subsection, we will present the time and computational resources required to train
the FNO model for one iteration using the Niigata 2-meter westerly wind field data. This
information is of practical significance for other researchers seeking to replicate our findings.

Table 4.1 Time Consumption Parameters

As shown in Table 4.1, the total training time for 100 epochs is 82 minutes, requiring 25.26
GB of VRAM, which is sufficient for training on hardware equipped with an Nvidia A100 GPU
with 32 GB of VRAM. Additionally, loading our training data requires approximately 41 GB of
memory and takes about 50 seconds.

Table 4.2 Inference Time Comparison

 Table 4.2 compares the GPU computation time required for the Fourier Neural Operator
(FNO) and CityFFD methods. The GPU time is shown in seconds. The FNO model completes
the task in 0.006 seconds, while CityFFD takes 2.21 seconds. This means that the FNO method is
approximately 368 times faster than CityFFD. This significant difference highlights the
computational efficiency of the FNO model, especially in scenarios where fast computation is
essential.

4.7 Ablation Study

In this section, we investigate the role of the Fourier module in accurately learning wind
field features using the FNO model through ablation experiments. We conduct experiments using
the complete FNO model, the FNO model with only the Fourier layers, and the FNO model
without the Fourier layers. These models are trained on Niigata westerly wind data and tested on
Niigata northerly wind data.

Total Training Time 82 minutes for 100 epochs

VRAM requirement 25.26 GB

Memory requirement 41 GB

Time cost for reading training data 50 seconds

A100 VRAM 32 GB

Method GPU time(s)

FNO 0.006s

CityFFD 2.21s

56

Figure 4.30 Sequential time step prediction comparison at different ablation experiment

Figure 4.30 illustrates the accumulated mean absolute error (MAE) over time for three
different configurations of the FNO model on the Niigata north wind test data. Specifically, the
figure compares the performance of the following three models: the full FNO model (solid black
line with circles), the FNO model using only the Fourier module (black dashed line with
triangles), and the FNO model using only the MLP module (black dotted line).

As shown in the figure, the full FNO model achieves the best prediction accuracy, with the
lowest accumulated error across the entire time sequence, consistently maintaining a low error
within the first 70 time steps. In contrast, the FNO model with only the Fourier module performs
slightly worse, starting with a lower error but gradually accumulating more error as the time
steps increase, eventually surpassing the full FNO model. The FNO model with only the MLP
module performs the worst, with error accumulating rapidly as the time steps increase,
eventually exceeding 1 meter per second.

These results indicate that the full FNO model is more effective at capturing the dynamic
characteristics of the wind field, significantly outperforming the models that use only the Fourier
or MLP modules. This further demonstrates the importance of the synergy between the Fourier
and MLP modules in the FNO model for improving prediction accuracy.

57

Figure 4.31 Sequential time step prediction comparison at 2m high horizontal slice,
Montreal, full FNO.

Figure 4.31 presents the prediction results of the complete FNO model at different time
points for the Niigata north wind field. The first row shows the ground truth of the wind field, the
second row displays the predicted values from the FNO model, and the third row illustrates the
difference between the ground truth and the predicted values. These images correspond to five
time points: t=14, t=28, t=42, t=56, and t=70.As can be seen from the figure, in the early time
steps (such as t=14 and t=28), the FNO model's predictions closely match the actual wind field,
with minimal differences. However, as the time steps increase (for example, at t=56 and t=70),
the discrepancies between the predictions and the ground truth gradually become more
pronounced. This is particularly evident in the difference maps in the third row, especially around
the edges of the wind field and near building structures.

Overall, while the FNO model is able to capture the main features of the wind field in most
cases, there are still some prediction errors, especially in more complex areas or as time
progresses. These errors may stem from the model's limitations in handling small-scale
variations in the wind field.

58

Figure 4.32 Sequential time step prediction comparison at 2m high horizontal slice,
Montreal and Fourier block only.

Figure 4.32 shows the prediction results of the FNO model using only the Fourier module
at different time points for the Niigata north wind field. The first row presents the ground truth,
the second row displays the predictions made by the Fourier-only FNO model, and the third row
shows the difference between the ground truth and the predicted values. These images
correspond to five time points: t=14, t=28, t=42, t=56, and t=70. From the figure, it is evident
that compared to the full FNO model, the Fourier-only FNO model performs worse in predicting
the wind field. In the early time steps (such as t=14 and t=28), although the model captures some
of the major features of the wind field, the discrepancies between the predictions and the ground
truth are already noticeable, especially around the edges of the wind field and near buildings. As
the time steps increase (such as at t=56 and t=70), the prediction errors grow more pronounced,
particularly in capturing small-scale variations in the wind field.

Overall, while the Fourier module has some capability in capturing large-scale features of
the wind field, its predictive accuracy significantly declines in more complex areas and as time
progresses. This suggests that the FNO model using only the Fourier module is less effective in
wind field prediction tasks compared to the full FNO model, and it would benefit from the
inclusion of MLP modules to enhance overall performance.

59

Figure 4.33 Sequential time step prediction comparison at 2m high horizontal slice,
Montreal and MLP block only.

Figure 4.33 displays the prediction results of the FNO model using only the MLP module
at different time points for the Niigata north wind field. The first row shows the ground truth, the
second row presents the predictions made by the MLP-only FNO model, and the third row shows
the difference between the ground truth and the predicted values. These images correspond to
five time points: t=14, t=28, t=42, t=56, and t=70. As can be seen from the figure, compared to
the full FNO model and the Fourier-only FNO model, the MLP-only FNO model performs
significantly worse in predicting the wind field. Although the model captures some key features
of the wind field in the early time steps (such as t=14 and t=28), its overall prediction accuracy is
lower, particularly around the edges of the wind field and near buildings. As the time steps
increase (such as at t=56 and t=70), the prediction errors further increase, becoming more
apparent across the entire wind field, as shown in the error maps.

In summary, the MLP-only FNO model struggles to capture the complex features of the
wind field, with prediction errors accumulating rapidly over time, especially when dealing with
small-scale wind field variations. This indicates that the MLP-only FNO model cannot achieve
satisfactory accuracy in wind field prediction tasks and would require the incorporation of the
Fourier module or other techniques to improve its predictive capabilities.

60

Table 4.3 Ablation Study Comparison

Table 4.3 summarizes the results of the ablation studies on different configurations of the
FNO model, specifically showing the number of time steps required to maintain an error below
0.5 meters per second and the corresponding number of parameters. Specifically:

1). Original FNO Model: Maintains an error below 0.5 meters per second for up to 50
time steps, with 15,187,785 parameters.

2). Fourier Block Only: Maintains an error below 0.5 meters per second for 19 time steps,
but requires 30,318,705 parameters.

3). MLP Block Only: Maintains an error below 0.5 meters per second for 12 time steps,
with the same number of parameters as the original FNO, in total 15,187,785.

The results indicate that the original FNO model performs the best in terms of maintaining
low error over more time steps, with a moderate number of parameters. Although the Fourier-
only model has more parameters, its effective time steps are significantly reduced. The MLP-
only model performs the worst, with the fewest effective time steps and no reduction in the
number of parameters. This suggests that the structure of the full FNO model is crucial for
optimizing both the accuracy and efficiency of wind field predictions.

Ablation type Steps under 0.5m/s Number of parameters

Original FNO 50 15187785

Fourier Block Only 19 30318705

MLP Block Only 12 15187785

61

Chapter 5 Conclusion and Future Work

5.1 Conclusion

In this thesis, a series of in-depth learning experiments were conducted to investigate the
generalization ability of the FNO model for urban wind field simulation tasks. The experiments
focused on different wind directions and urban layouts, and all experiments employed the
Fourier Neural Operator (FNO) model. Based on the experimental results, the following
conclusions can be drawn:

(1) Due to GPU hardware limitations, the number of modes and the width that can be set in
the FNO model are restricted, making training on smaller wind field blocks more effective than
training on the entire wind field. Training on localized blocks allows the model to better capture
dynamic features in specific areas, avoiding performance degradation caused by hardware
constraints. Compared to full wind field training, block-based training improves the accuracy of
localized predictions and significantly reduces computational costs. This approach is particularly
efficient in resource-constrained scenarios, providing a practical solution for precise urban wind
field forecasting.

(2) The absence of Signed Distance Function (SDF) data significantly degrades the
model’s predictive performance in complex urban wind fields, especially in densely built areas
where wind field discontinuities are common. These discontinuities highlight the model’s lack of
physical boundary constraints, making it challenging to accurately simulate the impact of
buildings and terrain. Incorporating SDF data resolves these discontinuities by providing
accurate boundary information, thus enhancing the physical consistency and overall accuracy of
predictions. SDF is crucial for applications such as wind energy optimization and urban pollution
dispersion, where precise wind field predictions are essential.

(3) Despite being trained exclusively on west wind data, the FNO model demonstrated
strong generalization capabilities when tested under north wind conditions. This suggests that the
model effectively captures core dynamic features of the wind field and can adapt to untrained
wind directions. The ability to generalize from west wind to north wind highlights the FNO
model's flexibility, making it particularly useful in scenarios where only single-directional wind
data is available for training.

(4) The FNO model's performance in cross-city applications heavily depends on the
structural similarity between the target and training cities. The study showed that when the
architectural layout and terrain characteristics of the target city are similar to those of the training
city, such as in the flipped version of Niigata, the model maintained high prediction accuracy.
However, when the target city differs significantly in structure, as in the case of Montreal, the
model's predictive accuracy decreased substantially. Therefore, the structural similarity between
cities is critical for successful cross-city wind field predictions, particularly in areas with dense
buildings or complex terrain. Evaluating the physical characteristics of the target city against the
training city is essential for ensuring accurate predictions in cross-city applications.

62

5.2 Future Work

The next research directions for this topic are as follows :
(1) This paper’s deep learning-based FNO model for simulating micro-city wind fields has

not yet made full use of the prior knowledge of CFD data. It is purely data-driven and lacks the
mathematical logic support of CFD. In the next step, our work can be based on the mathematical
logic foundation of CFD. By adding a physical loss function in FNO, we can make the FNO
training and testing process physically interpretable.

(2) At the current stage, the FNO model and the CityFFD solver have not been fully
integrated. In the next stage, the FNO model and the CityFFD solver can be designed to actually
be combined to accelerate the CityFFD simulation process.

(3) Our FNO model will accumulate errors rapidly in later prediction steps after 70th step.
We can reduce the error accumulation rate of the model as much as possible by increasing
training data or redesigning the model structure.

(4) The experimental examples in this article are currently limited to Niigata and Montreal.
Our goal is to develop an urban wind field simulation model that can be generalized in multiple
cities. In the future, wind field data from more cities may be used for learning, extending the
current research results to more complex urban wind field structures, and seeking to combine
more advanced deep neural network technology to improve the generalization ability of the FNO
model.

63

References
[1] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.

[2] Min, S., Lee, B., & Yoon, S. (2017). Deep learning in bioinformatics. Briefings in bioinformatics,
18(5), 851-869.

[3] Bakator, M., & Radosav, D. (2018). Deep learning and medical diagnosis: A review of literature.
Multimodal Technologies and Interaction, 2(3), 47.

[4] Mambou, S. J., Maresova, P., Krejcar, O., Selamat, A., & Kuca, K. (2018). Breast cancer detection
using infrared thermal imaging and a deep learning model. Sensors, 18(9), 2799.

[5] Zhao, X., Wu, Y., Song, G., Li, Z., Zhang, Y., & Fan, Y. (2018). A deep learning model integrating
FCNNs and CRFs for brain tumor segmentation. Medical image analysis, 43, 98-111.

[6] Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep learning for
computer vision: A brief review. Computational intelligence and neuroscience, 2018(1), 7068349.

[7] Pang, G., Shen, C., Cao, L., & Hengel, A. V. D. (2021). Deep learning for anomaly detection: A
review. ACM computing surveys (CSUR), 54(2), 1-38.

[8] Helbing, G., & Ritter, M. (2018). Deep Learning for fault detection in wind turbines. Renewable and
Sustainable Energy Reviews, 98, 189-198.

[9] Mater, A. C., & Coote, M. L. (2019). Deep learning in chemistry. Journal of chemical information and
modeling, 59(6), 2545-2559.

[10] Otter, D. W., Medina, J. R., & Kalita, J. K. (2020). A survey of the usages of deep learning for natural
language processing. IEEE transactions on neural networks and learning systems, 32(2), 604-624.

[11] Mokayed, H., Quan, T. Z., Alkhaled, L., & Sivakumar, V. (2023). Real-time human detection and
counting system using deep learning computer vision techniques. In Artificial Intelligence and
Applications (Vol. 1, No. 4, pp. 221-229).

[12] Choudhary, K., DeCost, B., Chen, C., Jain, A., Tavazza, F., Cohn, R., ... & Wolverton, C. (2022).
Recent advances and applications of deep learning methods in materials science. npj Computational
Materials, 8(1), 59.

[13] Tyystjärvi, T., Virkkunen, I., Fridolf, P., Rosell, A., & Barsoum, Z. (2022). Automated defect
detection in digital radiography of aerospace welds using deep learning. Welding in the World, 66(4),
643-671.

[14] Hao, Y., Yang, W., & Yin, K. (2023). Novel wind speed forecasting model based on a deep learning
combined strategy in urban energy systems. Expert Systems with Applications, 219, 119636.

[15] Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat, F.
(2019). Deep learning and process understanding for data-driven Earth system science. Nature,
566(7743), 195-204.

64

[16] Xu, X., Gao, Z., & Zhang, M. (2023). A review of simplified numerical approaches for fast urban
airflow simulation. Building and Environment, 234, 110200.

[17] Carpentieri, M., & Robins, A. G. (2015). Influence of urban morphology on air flow over building
arrays. Journal of Wind Engineering and Industrial Aerodynamics, 145, 61-74.

[18] Cipollina, A., Di Silvestre, M. L., Giacalone, F., Micale, G. M., Sanseverino, E. R., Sangiorgio, R., ...
& Zizzo, G. (2018). A methodology for assessing the impact of salinity gradient power generation in
urban contexts. Sustainable cities and society, 38, 158-173.

[19] Liu, J., & Niu, J. (2016). CFD simulation of the wind environment around an isolated high-rise
building: An evaluation of SRANS, LES and DES models. Building and Environment, 96, 91-106.

[20] Toparlar, Y., Blocken, B., Maiheu, B., & van Heijst, G. J. F. (2017). A review on the CFD analysis of
urban microclimate.

[21] Stam, J. (2003, March). Real-time fluid dynamics for games. In Proceedings of the game developer
conference (Vol. 18, No. 11).

[22] Zuo, W., & Chen, Q. (2009). Real-time or faster-than-real-time simulation of airflow in buildings.
Indoor air, 19(1), 33.

[23] Parker, J. C. (1989). Multiphase flow and transport in porous media. Reviews of Geophysics, 27(3),
311-328.

[24] F.S. Lien, E. Yee, Numerical modelling of the turbulent flow developing within and
over a 3-D building array, part I: a high-resolution Reynolds-averaged Navier-
Stokes approach, Boundary-Layer Meteorol. 112 (3) (2004) 427–466,

[25] J.A. Hang, Y.G. Li, Wind conditions in idealized building clusters: macroscopic
simulations using a porous turbulence model, Boundary-Layer Meteorol. 136 (1)
(2010) 129–159

[26] Yusuf, S. N. A., Asako, Y., Sidik, N. A. C., Mohamed, S. B., & Japar, W. M. A. A. (2020). A short
review on rans turbulence models. CFD Letters, 12(11), 83-96.

[27] J.A. Hang, Y.G. Li, Wind conditions in idealized building clusters: macroscopic
simulations using a porous turbulence model, Boundary-Layer Meteorol. 136 (1)
(2010) 129–159

[28] R.M. Yao, Q. Luo, B.Z. Li, A simplified mathematical model for urban microclimate
simulation, Build. Environ. 46 (1) (2011) 253–265

[29] J. Huang, A. Zhang, R. Peng, Evaluating the multizone model for street canyon
airflow in high density cities, in: Building Simulation Conference Proceedings,
2015.

[30] Mortezazadeh, M., Wang, L. L., Albettar, M., & Yang, S. (2022). CityFFD–City fast fluid dynamics
for urban microclimate simulations on graphics processing units. Urban Climate, 41, 101063.

[31] Liu, W., Sun, H., Lai, D., Xue, Y., Kabanshi, A., & Hu, S. (2022). Performance of fast fluid dynamics
with a semi-Lagrangian scheme and an implicit upwind scheme in simulating indoor/outdoor airflow.
Building and Environment, 207, 108477.

65

[32] Mortezazadeh, M., & Wang, L. L. (2020). Solving city and building microclimates by fast fluid
dynamics with large timesteps and coarse meshes. Building and Environment, 179, 106955.

[33] Mortezazadeh, M., & Wang, L. (2019). An adaptive time-stepping semi-Lagrangian method for
incompressible flows. Numerical Heat Transfer, Part B: Fundamentals, 75(1), 1-18.

[34] Mortezazadeh, M., & Wang, L. (2019). SLAC–a semi-Lagrangian artificial compressibility solver for
steady-state incompressible flows. International Journal of Numerical Methods for Heat & Fluid Flow,
29(6), 1965-1983.

[35] Mortezazadeh, M., & Wang, L. L. (2017). A high-order backward forward sweep interpolating
algorithm for semi-Lagrangian method. International Journal for Numerical Methods in Fluids, 84(10),
584-597.

[36] Katal, A., Mortezazadeh, M., & Wang, L. L. (2019). Modeling building resilience against extreme
weather by integrated CityFFD and CityBEM simulations. Applied Energy, 250, 1402-1417.

[37] Mortezazadeh, M., Jandaghian, Z., & Wang, L. L. (2021). Integrating CityFFD and WRF for
modeling urban microclimate under heatwaves. Sustainable Cities and Society, 66, 102670.

[38] Tominaga, Y., Yoshie, R., Mochida, A., Kataoka, H., Harimoto, K., & Nozu, T. (2005). Cross
comparisons of CFD prediction for wind environment at pedestrian level around buildings. Part, 2,
2661-2670.

[39] Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2021). A survey of convolutional neural networks:
analysis, applications, and prospects. IEEE transactions on neural networks and learning systems, 33(12),
6999-7019.

[40] Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., ... & Sun, M. (2020). Graph neural networks:
A review of methods and applications. AI open, 1, 57-81.

[41] Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent neural networks for
sequence learning. arXiv preprint arXiv:1506.00019.

[42] Vaswani, A. (2017). Attention is all you need. Advances in Neural Information Processing Systems.

[43] Li, Y. (2017). Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274.

[44] Weiss, Y. (2001, July). Deriving intrinsic images from image sequences. In Proceedings Eighth IEEE
International Conference on Computer Vision. ICCV 2001 (Vol. 2, pp. 68-75). IEEE.

[45] Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational physics, 378, 686-707.

[46] Mano, M. (2003). Finite element method.

[47] Guo, B. (1998). Spectral methods and their applications. World Scientific.

[48] Kovachki, N. B., Lanthaler, S., & Stuart, A. M. (2024). Operator learning: Algorithms and analysis.
arXiv preprint arXiv:2402.15715.

[49] Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal
approximators. Neural networks, 2(5), 359-366.

66

[50] Lu, L., Jin, P., Pang, G., Zhang, Z., & Karniadakis, G. E. (2021). Learning nonlinear operators via
DeepONet based on the universal approximation theorem of operators. Nature machine intelligence, 3(3),
218-229.

[51] Zhou, X. S., & Huang, T. S. (2001, December). Small sample learning during multimedia retrieval
using biasmap. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. CVPR 2001 (Vol. 1, pp. I-I). IEEE.

[52] Raonic, B., Molinaro, R., De Ryck, T., Rohner, T., Bartolucci, F., Alaifari, R., ... & de Bézenac, E.
(2024). Convolutional neural operators for robust and accurate learning of PDEs. Advances in Neural
Information Processing Systems, 36.

[53] Liu, S. (2013, July). Fourier neural network for machine learning. In 2013 international conference
on machine learning and cybernetics (Vol. 1, pp. 285-290). IEEE.

[54] Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical
image segmentation. In Medical image computing and computer-assisted intervention–MICCAI 2015:
18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18 (pp.
234-241). Springer International Publishing.

[55] Kuo, F. Y., & Sloan, I. H. (2005). Lifting the curse of dimensionality. Notices of the AMS, 52(11),
1320-1328.

[56] Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., ... &
Anandkumar, A. (2022). Fourcastnet: A global data-driven high-resolution weather model using adaptive
fourier neural operators. arXiv preprint arXiv:2202.11214.

[57] Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., & Catanzaro, B. (2021). Adaptive fourier
neural operators: Efficient token mixers for transformers. arXiv preprint arXiv:2111.13587.

[58] Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S., & Shah, M. (2022). Transformers in
vision: A survey. ACM computing surveys (CSUR), 54(10s), 1-41.

[59] Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., & Schmid, C. (2021). Vivit: A video
vision transformer. In Proceedings of the IEEE/CVF international conference on computer vision (pp.
6836-6846).

[60] Yuan, H., Cai, Z., Zhou, H., Wang, Y., & Chen, X. (2021). Transanomaly: Video anomaly detection
using video vision transformer. IEEE Access, 9, 123977-123986.

[61] Goswami, S., Bora, A., Yu, Y., & Karniadakis, G. E. (2023). Physics-informed deep neural operator
networks. In Machine Learning in Modeling and Simulation: Methods and Applications (pp. 219-254).
Cham: Springer International Publishing.

[62] Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., & Anandkumar, A.
(2020). Fourier neural operator for parametric partial differential equations. arXiv preprint
arXiv:2010.08895.

[63] Moczo, P., Robertsson, J. O., & Eisner, L. (2007). The finite-difference time-domain method for
modeling of seismic wave propagation. Advances in geophysics, 48, 421-516.

[64] Yang, S., Wang, L. L., Stathopoulos, T., & Marey, A. M. (2023). Urban microclimate and its impact
on built environment–a review. Building and Environment, 238, 110334.

67

[65] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

[66] Brook-Lawson, J., & Holz, S. (2020). CFD comparison project for wind simulation in landscape
architecture. J. Digit. Landsc. Archit, 5, 318-329.

[67] Cai, S., Mao, Z., Wang, Z., Yin, M., & Karniadakis, G. E. (2021). Physics-informed neural networks
(PINNs) for fluid mechanics: A review. Acta Mechanica Sinica, 37(12), 1727-1738.

68

	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	Chapter 1 Context
	Chapter 2 Literature Review
	Chapter 3 Methodology
	Chapter 4 Results And Discussion
	Chapter 5 Conclusion and Future Work
	References

