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Abstract 
BIM-Based Automated Fault Detection and Diagnosis in HVAC Systems Using Knowledge Models 
Arash Hosseini Gourabpasi, Ph.D 
Concordia University, 2024 
Automated Fault Detection and Diagnosis (AFDD) of building mechanical systems, including HVAC 
(Heating, Ventilation, and Air Conditioning), has received substantial attention recently from both research 
and application angles. The reasons are attributed to potential savings in energy consumption and 
maintenance. Various methods, including simulation and Grey-Box, are offered, but data-driven ones have 
received the most attention due to reduced manual effort, integrability, and scalability. Accordingly, to 
enhance energy efficiency and reduce operational costs, various Machine Learning (ML) models have 
been developed for AFDD of HVAC systems. However, the implementation of such data-driven 
approaches has often translated into a loss of contextual data. This study integrates operational data with 
building information and its various disciplines, linking the two to facilitate AFDD model development. BIM 
(Building Information Model) and BAS/BMS (Building Automation System/Building Management System) 
data are the repositories utilized for this integration. 
The proposed solution integrates bottom-up (data-driven via Machine Learning) and top-down 
(knowledge-oriented via Semantic Web Technologies) AI approaches to generate an effective AFDD 
knowledge model. The study materializes a two-way flow of data and knowledge between the BIM and 
BMS by utilizing an ontology named AFDDOnto, which integrates building components with fault types, 
methods, and parameters. The solution enables AFDD algorithms to utilize static and dynamic information 
related to HVAC and building spaces to develop enriched AFDD models. It incorporates building spatial 
information and stores analytics to represent the facility's as-is state. The proposed BIM-based knowledge 
solution can be used for AFDD model development, tracking changes, and analysis and visualization in 
two ways. Firstly, to integrate the BIM features with BMS features for creating ‘context-aware’ AFDD 

models. Secondly, to semantically store BIM-based AFDD performance analytics through AFDDOnto that 
can be used for model comparison, reproduction and visualization through knowledge graphs. 
The knowledge stored in the repository can be queried, which enables access to contextual information 
(knowledge graphs, images, videos, project snippets); spatial data (locations, states); and apriori 
knowledge (configuration and analytics) to enable development, application, and visualization of context-
aware AFDD models. Additionally, the proposed solution can maintain access to external project files and 
databases to enable interoperability between BIM and BAS/BMS. The potential users include HVAC 
operators, BIM Managers, and Facility Managers tasked with the operation and maintenance of HVAC 
systems.  
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Chapter 1: Introduction  
1.1 Motivation and Background  

The heating, ventilation, air conditioning (HVAC), and refrigeration systems are arguably use 
up the most energy out of all a building’s physical assets. HVAC/R systems regulate the 

temperature, humidity, quality, and air movement in buildings, making them critical for occupant 
comfort, health, and productivity. In Canadian commercial stores, HVAC and lighting combined 
contribute to 90% of energy consumption [1]. In 2011, heating systems, particularly furnaces 
(57%), followed by electric baseboards (27%) and boilers (5%), were the primary type of heating 
system used by Canadian households [2]. This energy consumption indicates the dependency of 
Canadian households and commercial buildings on the HVAC system, and hence emphasizes 
the importance of timely and accurate identification of its faults. 

Performance in HVAC systems and sub-systems are negatively affected by system 
degradation, operational misuse, reduced maintenance, and sensor issues [3] [4]. Many HVAC 
faults that require repair or immediate attention go unnoticed and cause progressive damages. 
The most common components where faults occur are the damper, fan, filter, and other parts 
such as sensors [5]. Furthermore, faults in HVAC systems affect the HVAC’s energy consumption. 

For example, when the refrigerant charge is less than 25% of the design value, it can reduce the 
energy efficiency by 15%. Moreover, 20% capacity loss is also reported in such situations [6]. The 
reasons mentioned above can lead to increased energy usage in addition to user discomfort, 
shorter equipment life, and less reliability [4]. Malfunctioning sensors, components, and control 
systems and degrading systems in HVAC and lighting systems are the main reasons for energy 
wastage and an unsatisfactory indoor environment [7]. 

Fault detection and diagnostics in HVAC systems enable asset managers to promptly identify 
and locate faults, a process known as fault detection, and to further specify the type of fault, a 
process known as fault diagnosis. Current advancements in the Internet of Things (IoT) have led 
to the application of big data for creating automated fault detection and diagnostic (AFDD) models, 
which can be developed using machine learning (ML) techniques. The sensory data available in 
building automation systems (BAS) and building management systems (BMS) are used to detect 
the HVAC’s faults and perform diagnostics. In asset management of buildings, energy 

management and maintenance models differ in scope and structure. While models for energy 
management describe continuous states (energy, temperature, etc.) and usually assume the 
HVAC to be in a healthy condition, the models used for maintenance do not consider human 
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factors such as comfort and only describe discrete states, such as faulty/non-faulty states of 
equipment and fault typology [8]. 

Data-driven AFDD methods that have garnered significant attention from practitioners and 
researchers often lack context related to HVAC and its faults in terms of spatial information and 
their relationship with surroundings. In this regard, BIM (Building Information Modelling) presents 
a promising solution for managing assets and improving facility operations. BIM as a solution 
contains geometric, spatial, and semantic relationships which AFDD models lack. However, BIM 
in its current implementation lacks the ability to gather and display up-to-date information about 
building components.  

Typically, BIM data is only exported for analysis without updating the BIM model, resulting in 
a disconnect between the digital model and the actual condition of assets. This limitation arises 
from the perception of BIM as a static model, primarily reflecting the as-built or as-designed state 
of components rather than the ongoing state of the facility. Consequently, BIM is underutilized for 
asset management. To harness BIM’s full potential, it must transform to become a dynamic model 

capable of representing the facility in near real-time or periodically. This involves linking entity-
related data and ensuring connectivity with sensor-generated data streams.  

In this research Experts’ knowledge was also directly extracted twice during the study; first 

time for association rules identified in the literature, through a survey, completed by 13 experts 
from Mechanical and Machine Learning areas with expertise in FDD of HVAC; and second time, 
through semi-structured interviews with seven experts in the domain of HVAC, Machine Learning 
and asset management with expertise in FDD of HVAC to validate the developed AFDDOnto. 
1.2 Problem Statement 

Buildings account for one-third of worldwide energy consumption, while HVAC systems 
consume half of all building energy. HVAC-related issues can decrease energy efficiency by as 
much as 15% [6]. In addition to lowering energy efficiency, HVAC problems can cause discomfort 
for building occupants and drive-up operating expenses. A building's annual energy costs can be 
reduced by as much as 10% when AFDD (Automated Fault Detection and Diagnostics) models 
are used to restore functionality to its original state [9] [10]. Hence, detecting faults accurately is 
essential as it allows it to control, mitigate, and further allow its users to understand energy 
consumption patterns.  

AFDD models provide means of automated fault discovery by detecting anomalies. HVAC 
performance can be negatively impacted by system degradation over time, reduced maintenance, 
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and sensor-related issues such as availability and condition [3]. The absence of a suitable AFDD 
method in HVAC can cause false negatives and false positive alarms or allow faults to go 
unnoticed, which can contribute to increased building energy consumption and affect the reliability 
of the HVAC system, leading to user discomfort and shortening the HVAC equipment life 
expectancy [4].  

There has been a significant increase in the utilization of data-driven techniques for FDD [11] 
[12]. The primary motivation behind opting for these methods is that AFDD models can be created 
mainly by relying on the sensory data that is stored in BAS/BMS (Building Automation System/ 
Building Management System).  

Typically, such systems collect near real-time data from sensors available within a building 
environment or system at a predefined and periodic interval of time. The data types can vary 
depending on the type of sensors used in the HVAC system and building type. For example, 
multiple sensors can be installed in a building facility to collect temperature, humidity, and 
pressure data. The data collection process involves continuous monitoring of the system and 
logging of sensory data to capture building systems' behavior. However, building facilities are 
often equipped with a limited number of sensors. 

A major challenge for AFDD models is the lack of semantic information and contextual data 
related to buildings and HVAC systems. This absence of detailed context often results in AFDD 
solutions being perceived as 'black-boxes' which complicates interpretation and decision-making 
compared to 'white-box' models that are based on physical principles. Without comprehensive 
contextual information, these models struggle to accurately diagnose faults and are frequently 
underutilized as decision support systems. This gap in semantic understanding significantly 
impairs the effectiveness and reliability of AFDD models in real-world applications, limiting their 
ability to fully support fault localization and analysis. 

BIM offers a valuable source of contextual information to overcome these challenges. A BIM-
based approach can cover the entire lifecycle of a building, including the Operation and 
Maintenance (O&M) phase. While traditionally utilized the most during the building design and 
construction phase; BIM’s potentials extend beyond. BIM integrates 3D geometry models with the 
semantics of the building and physical asset data and metadata such as HVAC and its peripherals 
like sensors. 

Additionally, BIM fosters collaboration during the entire lifecycle of the building and is utilized 
for HVAC asset management during the operation stage phase. By integrating BIM with BMS, it 
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becomes possible to create a decision support system, which enables capturing essential 
knowledge that can be leveraged for AFDD model development [13] [14] [15]. The AFDD model 
can benefit from access to building contextual data and utilizing BIM data to generate additional 
features for AFDD model development. 

However, to fully unlock its potential for use cases such as HVAC AFDD, the technology 
needs to evolve beyond its current state. This evolution entails representing and providing access 
to an accurate "as-is" model of the building, facility, and its components. Such an evolved BIM 
framework can enable feature generation and diagnostic capabilities and serve as a knowledge 
model to facilitate the AFDD of HVAC. By incorporating knowledge models in the form of 
ontologies, BIM modules can be extended to support HVAC AFDD analytics, facilitating the bi-
directional flow of data and knowledge between BIM and BAS. Existing literature suggests that 
BIM-based knowledge models can address the limitations of HVAC AFDD models by effectively 
using BIM-compatible ontologies [16] [17] [18] [19] [20]. However, a comprehensive methodology 
for implementation is currently lacking, with existing solutions still in the early stages of research 
or conceptual form. 
1.3 Research Objectives 

The primary objective of this research is to use BIM-based semantic knowledge related to 
building and physical assets to improve the AFDD of HVAC in commercial buildings by adding 
dynamic features created using BIM and BMS data. By doing so, the research aims to create a 
method that can use semantic information using BIM to enhance the AFDD of HVAC, which is 
conventionally supported by information sources such as BAS and BMS. The following five sub-
objectives are defined along with their corresponding tasks to achieve the expected outcome. 

Research Sub-objective 1: To identify the requirements of sensory data needed for creating 
a BIM-based knowledge model to apply AFDD into HVAC systems. Extensive literature analysis 
is performed to identify the sensory data required from BIM and BMS/BAS, as well as the 
algorithms, fault types, and HVAC types that need to be identified. 

Research Sub-objective 2: To examine integration methods for BAS/BMS data and BIM for 
AFDD of HVAC based on the IFC schema. Integration strategies and methods between BIM and 
BAS/BMS are tested for the use case of AFDD of HVAC by extending the IFC Schema to capture 
and store AFDD data analytics in BIM. 

Research Sub-objective 3: To develop a BIM-based knowledge model to facilitate 
interoperability between BIM and BAS/BMS, enabling a bi-directional flow of data and analytics. 
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A knowledge model in the form of an ontology is created to apply AFDD of HVAC using dynamic 
BIM concepts and capture model parameters and model evaluation. 

Research Sub-objective 4: To implement the proposed methodology for developing a BIM-
based knowledge model for AFDD of HVAC. A test facility is utilized as a case study in which the 
BIM model is used to enrich the AFDD model using additional BIM-based features. Conversely, 
the analytics from the AFDD model are captured to represent the present state of the building 
asset. 
1.4 Thesis Organization  

This thesis is based on the core ideas addressed in the publications in the form of a book 
chapter, a conference paper, and three journal papers. Figure 1.1 , Shows the components and 
their overlap to achieve the objectives and sub-objectives of the research work. The rest of this 
thesis is organized as follows:  

Chapter 2: Literature Analysis – This chapter introduces AFDD for HVAC systems and 
discusses the role of knowledge management through ontologies. It begins by presenting the 
inputs, algorithms, and types of HVAC faults. Subsequently, association mining techniques are 
employed to form rules that are utilized in the proposed knowledge model. The final section 
identifies gaps in the existing literature and outlines the scope of the study investigated in this 
thesis. 
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Figure 1.1: Thesis Organization 

Chapter 3: This chapter provides an in-depth analysis of the role of dynamism in BIM, 
explores the dynamic BIM enablers, and explains how the data required for AFDD of HVAC 
systems can be integrated with BIM. 

Chapter 4: Methods – This chapter covers two main topics: the development of a knowledge 
model in the form of an ontology, and the integration methods between BIM and BAS/BMS. The 
integration method extends BIM using the proposed ontology, enabling a bi-directional flow of 
data to facilitate the development of a BIM-based AFDD model. 

Chapter 5: Implementation – In this chapter, a case study is used to demonstrate the 
applicability of the proposed integration method. A BIM model is employed to create additional 
dynamic features to facilitate the AFDD model. Furthermore, the analytics stored in the form of 
knowledge are accessed through knowledge graphs and queries. 

Chapters 6 and 7: The final two chapters present the findings of the case study and 
discussions on the topic. The last chapter comprises the research conclusions, contribution to the 
field's knowledge, and suggestions for future work.  
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Chapter 2: Literature Analysis – AFDD of HVAC System and Application of Knowledge Models 1 
The literature review and analysis conducted in this study aims to provide a comprehensive 

understanding of the current state of research on AFDD models for HVAC systems. The review 
begins by exploring the existing body of knowledge on FDD methods and analyzing their strengths 
and limitations. It then focuses on the potential application of knowledge models in the form of 
ontologies applicable to building operation. By examining the available literature, this review 
highlights the current gaps in research and sheds light on the potential benefits and challenges. 
2.1 Automated FDD of the HVAC System 

At a holistic level, HVAC can be studied at a system or local level [21]. Local-level 
classification can be divided into (i) sub-system level and (ii) equipment/component level [22], 
which we refer to as ‘HVAC levels’ in this thesis. The full HVAC system consists of the sub-
systems and/or components coupled together. In the past two decades, fault detection has been 
mainly applied to the HVAC at the sub-system level, and very few researchers have looked at 
detecting faults at the whole building level [7].  

Hereafter in this thesis, we use the term HVAC system in a general sense, by which we also 
refer to sub-systems and pieces of equipment in HVAC. System-level faults refer to the 
occurrence of a fault in one sub-system or equipment and its consequence at the system level 
[7]. Previous literature reviews in the domain of FDD have focused on overall FDD modeling 
methods [23] [24] [25] [26] [27] or data-driven methods [12]. Another group of review studies 
focuses on a specific step of the procedure, such as algorithms [28] or fault types [29].  

However, the current thesis is different in the way that it analyzes the models developed in 
the literature by looking at the features used, fault types identified, corresponding HVAC systems, 
and algorithms used for data-driven FDD models. Through an affinity analysis of these studies, 
we extract knowledge in the form of association rules and deploy them in the form of a 
recommender system. The scope of this study and the recommender system is mainly 

 1 The material of this chapter is published in form of the following publications: 1. Hosseini Gourabpasi A, Nik-Bakht M. Knowledge Discovery by Analyzing the State of the Art of Data-Driven Fault Detection and Diagnostics of Building HVAC. CivilEng. 2021; 2(4):986-1008. https://doi.org/10.3390/civileng2040053 2.  Hosseini Gourabpasi A, Nik-Bakht M (01 Jul 2024): An ontology for automated fault detection & diagnostics of HVAC using BIM and machine learning concepts, Science and Technology for the Built Environment, https://doi.org/10.1080/23744731.2024.2363104  

https://doi.org/10.1080/23744731.2024.2363104
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commercial buildings since the majority of AFDD models developed in the literature have been of 
this type. 

One classification for AFDD methods is the top-down versus bottom-up approach. The top-
down approach detects faults that manifest themselves at the whole building level, whereas the 
bottom-up approach focuses on the component or sub-system level. In both approaches, models 
of ideal operation conditions are compared with actual measurements to detect faulty or abnormal 
behavior [30]. Whole-building fault detection usually makes use of a top-down fault detection 
strategy [7]; the top-down approach is comparatively more difficult than the bottom-up. In the top-
down approach, further analysis is required to locate faults because of the system-level effect that 
causes the faults’ symptoms to spread across the system [31] [32]. 

Based on ASHRAE’s recommendations [33] as found in [34], the two main modeling methods 
are the forward (classical) approach and the data-driven (inverse) approach. The forward 
approach is known as white box/engineering methods. Forward approaches usually require 
detailed knowledge of various system processes and interactions. Most simulation software tools 
use such approaches. The data-driven and model-based classifications have been found to be 
the most common FDD classification approaches [35] [36] [37] [38], which have also been referred 
to as model-free methods and model-based methods [39] in the literature. 

The other common classification found in the literature categorizes the AFDD techniques into 
model-based methods, rule-based methods, and data-driven methods [5] [40]. The data-driven 
methods are also called process history-based [32] [41]. In some cases, knowledge-based is also 
included in data-driven models [36]. Further, model-based classification is also referred to as 
quantitative [41] [42]. The other classifications found are analytical model-based, signal-based, 
and data-driven methods [43].  

On the other hand, the data-driven models are classified by ASHRAE into calibrated 
simulation models, grey-box models, and black-box models/empirical approaches. In simple 
terms, calibrated simulation is similar to forward approaches and requires detailed knowledge of 
the system and processes, but black-box models are data-driven and use statistical or artificial 
intelligence approaches to develop models. Grey-box models, on the other hand, are formulated 
using training data and physical principles and are a mix of simulation and black-box model [34]. 

The AFDD techniques (black-box methods) reviewed in the literature are broadly grouped 
and categorized into supervised and unsupervised learning. Most of the reviewed studies 
implementing AFDD are supervised methods and treat the FDD as essentially a classification 
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problem. Unsupervised methods are mainly adopted in the pre-processing phase or are used for 
fault detection through clustering. 

Extensive research has been conducted on HVAC FDD at various levels, including systems 
[44] [45], sub-systems , and components/equipment [46] [47]. Three main categories of HVAC 
FDD are: Calibrated Simulation [48] [49], Grey-Box models [50] [51], and Empirical Approach.  

As illustrated in Figure 2.1  . Calibrated Simulation models can predict HVAC system behavior 
with high accuracy, but developing such models requires significant time and involves domain 
expertise. This is because such models often require calibration against real-world data. In 
contrast, Grey-Box models integrate and utilize data in addition to utilizing expert knowledge and 
physical system models to improve the accuracy of FDD models [52]. 

 
Figure 2.1: Fault Detection and Diagnostics of HVAC 

On the other hand, the Empirical Approach prioritizes and emphasizes a more data-driven 
model development strategy, hence making it easier to develop but potentially lacking in-depth 
contextual information [52]. This study specifically concentrates on Automated Fault Detection 
and Diagnosis (AFDD) within the broader scope of FDD. The AFDD emphasizes data-dependent 
models, i.e., mathematical models that aim to detect and diagnose faults in the mechanical 
systems by analyzing their sensory data.  

The common source of sensory data needed for AFDD model development is found in BMS 
and BAS systems. AFDD models leverage diverse machine learning algorithms designed for the 
FDD of HVAC systems. The selection of a specific machine learning model is contingent upon 
the characteristics of the HVAC and facility, such as the type of HVAC, faults considered, and 
sensory data available. 

A comprehensive approach is necessary to ensure accurate and timely diagnosis of faults in 
HVAC systems, incorporating contextual information and knowledge. This involves considering 
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expert opinions, historical data, industry guidelines, and best practices due to these systems' 
complex and interconnected nature [53] [54]. However, the trend shifts towards adopting more 
data-centric approaches in AFDD models, such as empirical models, due to lesser dependability 
on expert opinion. As a result, models dependent on data usually lack contextual information 
about the building, environment, and occupants.  

Therefore, striking a balance between data-driven approaches and the inclusion of contextual 
information is crucial for reliable and effective HVAC diagnosis. One valuable source of 
information is Building Information Modeling (BIM), which contains detailed data often available 
in calibrated simulation models but frequently absent in AFDD models of HVAC systems. This 
wealth of information from BIM can provide the contextual and semantic data necessary to bridge 
the gap and enhance the utility of AFDD models. 

AFDD models for HVAC systems rely heavily on the type of data available and the choice of 
algorithms suitable for the specific HVAC equipment. The effectiveness of AFDD models is 
contingent upon the quality and diversity of sensory data accessible from the BMS or other 
sources. Additionally, selecting appropriate algorithms plays a crucial role in accurately detecting 
and diagnosing faults in HVAC components [52]. Therefore, to enhance the performance of AFDD 
models, it is essential to consider the availability of relevant data types and employ algorithms 
tailored to the specific HVAC systems being monitored.  
2.2 Features, Fault Types and Algorithms for AFDD 

A total of 109 papers (Appendix A), were initially collected and reviewed to focus on those 
providing a complete FD (Fault detection) or FDD model. From this review, 82 studies were 
selected. Machine learning algorithms used in pre-processing and post-processing stages were 
excluded; only data-driven techniques applied during HVAC fault detection and diagnosis were 
considered. Supplementary information collected includes HVAC type, data sources for the AFDD 
process (both synthetic and real), and data collection frequency. Features and faults for each 
HVAC system were gathered and visualized with a Sankey diagram.  

Figure 2.2, summarizes the features used in the analyzed literature for AFDD. They are 
ranked based on their frequency of use in the HVAC FDD models reported in the literature. It is 
evident that ‘temperature’ is the single most crucial feature used for AFDD, as its application also 
extends to the second most frequently used feature, i.e., the ‘calculated measure’. This feature 

commonly uses arithmetic operations such as subtraction and often uses features such as 
‘temperature’ or ‘pressure’ as the calculation component; for example, the calculated measure is 
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used to show the temperature difference between the supply and return air or pressure difference 
between the entrance and the exit (inlet and outlet) to indicate pressure drop or increase. Other 
frequently used parameters include the ‘pressure’ and ‘flow rate’. State-representative information 
and energy-related parameters such as ‘Opening/position’, which represents physical 

characteristics such as position or percentage of a valve being open or closed, and ‘Load’ and 
‘Energy’ categories are among other attributes frequently used by AFDD models. 

 
Figure 2.2: Common Features Selected for AFDD of HVAC (18 categories formed for 
706 features used in the analyzed literature and the numbers in brackets represent the 
frequency of occurrence in the literature) 

Several fault classification systems exist in the literature, such as lists of prioritized HVAC 
faults or the faults targeted more specifically, such as those for chillers [55] [56] [57] [58]; however, 
they cannot be used in this study. Some classifications are specific to a particular sub-system, 
such as chillers [55], or, if they cover the whole HVAC system [56] [57] [58] , they are too detailed 
and elaborate and cannot support the abstraction required for rule mining. Accordingly, in this 
study, eighteen (18) fault categories were created and introduced to solely organize, categorize 
and analyze more than 400 faults reported in the literature investigated for HVAC’s most common 

faults detected using data-driven methods in this thesis.  
It must be noticed that the categories shown in Table 1, are not meant to provide a 

comprehensive classification of all fault types. The faults considered apply to the HVAC system, 
sub-system, and/or components. The faults are categorized based on the following procedure. 
The categories are created using a hypernym keyword. The faults are hyponym and belong to 
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only one of the eighteen hypernyms created. Then, logical reasoning is performed to assign each 
fault to the category that it best represents. In cases where a hyponym consists of more than one 
word in its description, the first word will be selected, and the assignment is carried out based on 
that word. For example, for the fault type referred to as ‘control unstable’, the term ‘control’ is 

considered the primary word, and ‘unstable’ is a condition associated with controlling. Hence, the 
fault is assigned to the ‘control’ category. The only exception applies to faults that include 

bias/drift. In particular, for sensor faults, we skip the sensor type, even if it is the first word of the 
fault description and look at the following term in the description.  
Table 1: Category of Faults Identified for Data-driven Techniques 

Rank Fault category Count 
1 Limit issue 68 
2 

Stuck/Partially 
closed 67 

3 Flow problems 54 
4 Bias/Drift/Calibration 49 
5 Leakage 41 
6 Foul  38 
7 Other faults 20 
8 Non-functioning 20 
9 Non-condensable 18 
10 Control 18 
11 Temperature issue 12 
12 Speed 12 
13 Set point 8 
14 Performance 8 
15 Capacity reduction 5 
16 Blockage 4 
17 Schedule 3 
18 Sizing issue 3  

The categories of the faults are sorted in Table 1 in descending order of occurrence 
frequency in our database. The ‘Limit issue’, which is the dominant category, comprises faults 

related to over/undercharge, excess oil, or reduced evaporator. The second category, 
‘stuck/partially closed’, includes faults such as exhausted air, damper stuck (fully open), or cooling 

coil valve partially closed (15% open). The other categories’ names such as ‘temperature issue’, 
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’blockage’, ’speed’, and ‘non-functioning’ are self-explanatory. ‘Flow problems’ and sensor-related 
faults, which are categorized as ‘bias/drift/calibration’ alongside ‘leakage’ and ‘foul’-related faults, 
comprise the top six frequent categories of HVAC faults. The ‘other faults’ comprises of different 

types of faults that did not form a category due to limited appearance in the database.  
The fault categories such as ‘set point’ and ‘non-condensable’ belong to a particular type of 

fault, and on the other hand, fault categories such as ‘control’ and ‘performance’ belong to a more 

diverse pool of faults pertaining to their respective categories. It is evident that most studies have 
relied purely on sensory data and very few categories with a small occurrence in our database 
represent faults that may be detected given static information such as ‘schedule’ and ‘sizing 

issue’, which are categories with the lowest counts in the table. 
3.3 Systematic Association of HVAC Faults and AFDD algorithms 

In order to understand the latent relationships and associations between the common HVAC 
faults and/or AFDD techniques, association rule mining (ARM) has been used. ARM is an 
unsupervised machine learning procedure in which the aim is to observe the frequently occurring 
patterns, correlations, and associations in a dataset. Association mining is performed in two steps. 
The first step is to generate ’frequent itemsets’. The second is generating rules, where rules are 

generated and filtered based on set constraints. Two models were trained in this study: one for 
detecting affinity between various fault types and a second model to investigate the association 
between the FDD techniques and the HVAC’s most common faults. 

The FP-growth algorithm is an improved affinity analysis algorithm, in which the number of 
scans of the database is reduced to find the frequent itemsets [59]. In this study, FP-growth was 
implemented in the model to generate frequent itemsets of fault types and then extract 
relationships of a high level of support and confidence as rules. The rules take the form of a 
‘premise’, followed by a ‘conclusion’. The metrics considered in the model development 

are support and confidence, where confidence is used as a measure of the strength of the rule 
and support correlates to statistical significance. The equation for support of a rule 
and confidence of a rule are as shown below: 

Rule: (𝑋 → Y)  (1) 
Support(𝑋 → Y) =  Pr(X, Y)  =

n(X,Y)

N
  (2) 

Confidence(𝑋 → Y) =  Pr(Y|X) =  
Pr(X,Y)

Pr(X)
   (3) 



  14 

where X and Y are independent items or itemsets, n is the relative frequency of occurrence 
and N is the total transaction numbers. 

Minimum support andminimum confidence are needed to eliminate the unimportant 
association rules [59] [60]. Syntactic constraints were enforced for the second model to add 
restrictions on items that can be included in the rule.  

The frequent itemsets are created using the FP-growth algorithm, which has been assigned 
minimum support of 20% for the frequent itemsets and minimum confidence of 70% for detecting 
the association rules. By applying these criteria, five frequent fault types and 13 rules are identified 
through the FP-growth algorithm as shown in Figure 2.3. On the left-hand side of each rule are 
the premises and, on the right, after, the arrow is the conclusion. For example, rule #5 indicates 
that “if ‘limit issue’ fault and ‘foul’ fault are found simultaneously in the HVAC system for the 

designed FDD algorithm found in the literature, then it is likely that the system is also designed to 
detect ‘flow problem’-related issues”, with 77.3% confidence. 

 The rules mined have either one or two fault categories in their premises. In seven of the 
rules that have one fault category in their premises, rule #9 and rule #10 have equal  support of 
22%, and confidence of 100%, which indicates “if ‘non-condensables’ fault occurs then there are 
equal chances that ‘foul’ and ‘flow problems’ related issues can be existing separately” or as per 

rule #11 the ’foul’ and ’flow problems’ can appear simultaneously. The first rule mined indicates 

that when ‘flow problems’ are found using the particular FDD algorithm, then it is likely that the 
FDD algorithm can detect ‘leakage’ in the HVAC system considered, which shows the correlation 

among these two fault categories in the database recorded.  
The other six rules mined show how the faults in the HVAC can be interrelated as they have 

two premises. Rules #12 and #13 have the highest confidence and represent how different 
combinations of fault in their premises and respective conclusion can be indicative of the 
correlation between ‘foul’, ’non-condensable’, and ‘flow problems’ fault categories in the given 

database. Model 1′s mined rules only indicate correlations found in the database for the select 

FDD algorithms specifically designed to detect the faults investigated and cannot be used to 
investigate causality or indicate that FDD algorithms were designed to detect faults 
simultaneously. 
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Figure 2.3: Association Rules for the Co-occurrence of Common HVAC Faults for the 
Literature Analyzed 

A second ARM model is developed for faults and FDD techniques found in the literature to 
determine the association between the faults and the methods used to detect and diagnose HVAC 
faults. The accuracy and performance of the FDD methods are not considered, and only their 
quantitative adoption in the literature is considered as a measure for the effectiveness of an FDD 
algorithm for detecting certain fault types. The support for FDD techniques was determined and 
selected to understand how frequently the items for the methods under investigation appear in 
the dataset. 

For the complete list of algorithms considered in this thesis please refer to Appendix B. The 
followings are the frequency of occurrence, i.e., the support, of different analysis methods in our 
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database: 20% for SVM (Support vector machine), 19% for ANN (Artificial Neural Network) and 
17% for dimensionality reduction techniques, and 11% for Bayesian networks. A 
minimum support of 2% and minimum confidence of 50% were selected for model 2, which is 
appropriate when compared to the highest support (20%) found, which is indicative of a limited 
number of algorithms in our database. Setting lower thresholds for the second model leads to the 
generation of a large number of rules that need syntactic constraints to prune and only show the 
associated faults and methods. The rules found for 100% confidence are removed at the 
2% support, as this was considered an indicator of the availability of a few examples, and hence 
may not represent useful rules. We further limited the rules to those with a single item in their 
conclusion, which should belong to one of the FDD techniques. 

A total of 16,703 rules were mined before being pruned (an excerpt of which is shown in 
Figure 2.4). Four methods, namely SVM, ANN, dimensionality reduction, and decision tree (with 
a confidence of 50%, 67%, 50%, and 67%, respectively) resulted in forming 12 rules where eight 
rules belong to SVM; two rules were found for ANN, and dimensionality reduction and decision 
tree have one rule each. Other than rule #9, which belongs to ANN, all rules have more than one 
item in their premises. 
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Figure 2.4: Excerpt of a Deductive Self-organizing Graph (ISOM) for Rules Generated 
for Techniques Used for Different HVAC Fault Types (minimum support = 2%) 
 At 50% confidence, the rules consist of the following fault categories, namely ‘leakage’, 

‘control’, ‘stuck/partially closed’, and ‘speed’, which when combined form rule #9. The initial four 
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rules have two premises made up of the combination of these fault categories, and rules #6 and 
#7 have three fault categories in their premises which are detected using the SVM algorithm.  

The ANN algorithms are found to be utilized for diagnosing the ‘set point’ faults or a 

combination of sensor-related issues and the ‘control’ category of faults. Rule #11 indicates the 

applicability of dimensionality reduction techniques when ‘Foul’ or ‘other faults’ are found together 

in our database. The decision tree technique, which has the highest joint confidence of 67%, is 
used for detecting the ‘non-functioning’ and ‘speed’ categories of faults.  

The findings of this study merely indicate how specific types of faults are often addressed in 
the sampled research literature, using specific types of algorithms, and they do not provide 
information on the actual co-occurrence of the faults in building mechanical systems, nor on the 
performance of the data-driven algorithms with respect to faults. 

The rules discovered through the first model, i.e., the association among HVAC’s most 

common faults, were validated by taking experts’ opinions through structured surveys and are 

validated in the context of the data gathered from the academic papers reviewed to reflect experts’ 

opinions. The survey contained thirteen questions corresponding to the rules detected by the first 
model.  

The correspondents were given the Likert scale anchors for the frequency of use, i.e., ‘never’, 

‘almost never’, ‘occasionally/sometimes’, ‘almost every time’, and ‘every time’. In addition to 

these, an ‘I do not know’ option was added to reduce the uncertainty resulting from enforcing the 

respondents to answer all the questions in the survey. The survey was made available to 
respondents with HVAC and FDD experience in the industry or those with relevant research 
background expertise and was made available for two months. It must be noted that later in the 
study, another survey is conducted to validate the proposed method (ontology) using a semi-
structured survey. 

Additionally, model 2 provides four FDD algorithms and their associated faults in the form of 
a set of rules that allows the asset managers to decide on the type of algorithm that can be 
selected for AFDD of the HVAC system faults. For example, the SVM algorithm is found to be 
effective in FDD when fault types belong to ‘leakage’, ‘stuck/partially closed’, and ‘control’ issues. 

It was found that some algorithms are used more often for detecting particular faults. The 
algorithms that can be utilized for each category of the top six common HVAC faults separately 
are shown in below Table 2 and are organized in descending order. 
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Table 2: Recommend Algorithms for an Individual Category of HVAC Systems Most 
Common Faults 

Fault category Recommended algorithms 
Limit issue SVM – ANN - BN 
Stuck/Partially closed ANN – SVM - DT 
Flow problems ANN – SVM - BN 
Bias/Drift/Calibration ANN - Dimensionality reduction methods - SVM 
Leakage SVM – ANN - Dimensionality reduction methods 
Foul SVM – ANN - Dimensionality reduction methods 

 
The set of rules extracted through association mining techniques, combined with taxonomies 

developed from the literature analysis on HVAC types, algorithms, and features, serve as the 
input for the proposed knowledge model for Automated Fault Detection and Diagnostics (AFDD) 
in HVAC systems. While this approach effectively captures the intricacies of HVAC systems and 
associated faults, it lacks spatial and semantic information related to the building. The next section 
of this thesis addresses the Building Information Modeling (BIM) approach adopted to access 
such information, which is then integrated to capture the relationships comprehensively. This 
integrated model is discussed in greater detail in a subsequent section of this chapter. 
2.4 Knowledge Management with Ontologies - Case of BIM-based AFDD of HVAC 

The semantic web is a vision advocated by W3C as a web of linked data. Semantic web 
technologies allow the creation and linking of data collections known as user data stores, building 
vocabularies, and writing rules for handling data [61] [62]. The Resource Description Framework 
(RDF) is the standard model for data interchange on the web that allows for modeling graphs of 
resources over the web.  

The RDF triples consist of three parts: subject, object, and predicate, as shown in Figure 2.5. 
When considering relationships, the subject is the source node, and the object is the destination 
node for a directed edge; the label of the edge is the name of the relationship node [63]. For 
example, the class “Algorithm” is Subject, and the class “Fault” is the Object. The Algorithm and 
Fault Classes are connected using an object property “canDetect” which is the predicate in the 

triple. 
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Figure 2.5: Resource Description Framework (RDF) Triple 

Ontologies are structured representations of knowledge that consist of individual entities, 
called instances, and the relationships that exist between them. Figure 2.6. illustrates the 
instances denoted as circles and the relationships denoted as arrows, which are used as a 
building block of an ontology. To begin with, an entity (instance) can be considered an abstraction 
of any physical, logical, or virtual item, the actual ‘things’ in a building. Sets of attributes show 

what kind of entity it is and what concepts (classes) it represents [63] [64]. 
 Secondly, Terminology is a set of terms that belongs to one unique language which denotes 

a particular discipline. Finally, Taxonomy is not only a unified vocabulary but a semantic model of 
how to categorize domain concepts and their interdependencies. Taxonomy is a hierarchy of 
terms and ontologies set up as a network [65] [66] [67]. Ontology is a set of formal names, 
concepts, definitions, and relationships that constitute the knowledge domain. Ontology class 
hierarchy allows defining rules to resolve ambiguities, such as specifying synonyms in the 
ontology as “equivalent classes” [63] [64] [68].  

The OWL (Web Ontology Language) is an ontology language for the Semantic Web with a 
formally defined meaning. OWL provides classes, properties, individuals, and data values that 
can be stored and used with information written in RDF. OWLs themselves are primarily 
exchanged as RDF documents [69] [70]. An ontology can also imply relationships not explicitly 
expressed in the model and influence a query processor’s interpretation of relationships. To 
populate a newly developed ontology, instances can be brought in from other ontologies by a 
procedure called mapping and matching [71] [72], or their entire class can be brought in, which 
is often referred to as ontology reuse [66].  
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Implementing semantic web technologies will allow the server host to combine the building 
and HVAC asset data to respond to requests through the proposed ontology. The applications 
that utilize linked data define the relationships among readable and accessible data by semantic 
web tools [73] and can follow the RDF links by accessing the ontology developed through their 
unique identifiers [74]. The ABOX (Assertion BOX) represents the knowledge model with 
assertions and individuals, and the TBOX (Terminological Box) refers to the ontology 
representation of concepts and relationships [75]. 

 
Figure 2.6: Structure of an Ontology 

BIM is proposed by ASHRAE to be applicable during the entire lifecycle of the building and 
defines how to incorporate BIM requirements within the project using standards [76]. The IFC 
schema is commonly utilized in ontology development studies as the primary source of BIM data 
[77] [78] [79]. During the facility management phase of a building, the IFC format is used to store 
objects and related information or COBie (Construction-Operations Building information 
exchange) data which is a subset of IFC for facility management and maintenance work [77].  

BIM provides a basis for human reasoning through visual analytics to facilitate fault detection 
and diagnostic processes [80] [81]. The schema from IFC can be translated to OWL [77] [79] or 
IFCOWL [82]; however, the semantic relationship is limited to inferred knowledge representation 
as different schemas are being utilized [77]. The spatial classes residing in the IFC schema can 
be extracted from the IFC file to a proposed ontology automatically and systematical ly using the 
value of property ID [77]. Ontology approaches for BIM allow the development of the Information 
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Delivery Manual (IDM), which is manually defined by industry experts and is transferred and 
stored in OWL/XML that can be ultimately translated to a specific Model view definition (MVD) 
[79].  

According to the literature [83], the current applications of semantic web technologies in AEC 
(Architecture, Engineering, and Construction) can be broken down into three distinct groups: 
Interoperability, Linking domain, and Logical inferences. Within the scope of this study, which 
investigates the ontologies and their application for HVAC FDD, the main areas of research are 
automation, configuration, selection, deployment, and evaluation of services for FDD [82] [84] 
[85] [86]. The following sections will explore ontologies pertinent to the application of HVAC FDD 
in buildings. Ontologies and rule sets enable mechanisms to reason in time, deduce spatial 
information, and detect and diagnose faults [69]. Ontologies can be broadly classified into 
domain-specific and domain-independent ontologies [69]. The ontologies that capture HVAC and 
building concepts provide modeling support for HVAC systems, sensor systems, and spatial 
information, which are vital for AFDD [87].  

Project Haystack, as a domain-specific example, is one of the initial ontology attempts in the 
building domain that allowed its users to tag objects such as HVAC or other systems. It is an 
open-source initiative that enables its users to work with IoT data [88]. An example of a domain-
independent ontology is the SAREF (Smart Appliances REFerence) ontology [89], which can be 
used to define HVAC and sensor data.  

The Brick ontology [76] is an example of an ontology explicitly made for the building’s 

operation stage and contains most of the building’s asset information, including HVAC. However, 

there was no automatic conversion from IFC to Brick at the time of research. Google’s Digital 

Buildings [90] is an example of an ontology specifically created for an organization, comprising 
more than one existing ontology. This ontology is inspired by the Brick ontology and Project 
Haystack, aiming for human readability and cross-compatibility. 

Domain-specific ontologies, such as the industry EXPRESS IFC schema, are the primary 
source of building information throughout the lifecycle. Industry Foundation Classes (IFC) is a 
conceptual schema language that defines the building and construction domain and is introduced 
by buildingSMART International. The schema serves as an open data standard for BIM, enabling 
the exchange of information between various software tools through a software-agnostic data 
schema.  
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To ensure interoperability, scalability, and readability, the IFC schema can be encoded in 
different formats, including IFCOWL, which is the expression of IFC in the Ontology Web 
Language (OWL). This leverages semantic web and linked data technologies to represent and 
share building data. The SPC schema can be converted to IFCOWL using existing converters 
[91]. While IFC is a general schema, modular ontologies represent a subset of a broader concept 
that can be reused in other ontologies. 

For example, the Building Topology Ontology (BOT) is a lightweight ontology that includes 
only essential topological concepts of buildings. BOT uses IFC subset concepts, such as site, 
building, story, space, and zone classes, as well as the relationships between them [92]. Another 
relevant ontology is the Ontology for Property Management (OPM), which enables tracking the 
history, reliability, and provenance of a property of some feature of interest (FOI) in three main 
categories: spatial elements (spaces, zones, stories), physical elements (walls, windows, heaters, 
and sensors), and abstract elements (interfaces, systems, and concepts) to manage interrelated 
projects in AEC [86]. Modular ontologies are preferred for ontology development to maintain 
compatibility. 

Table 3. compares relevant ontologies reviewed in this thesis for the research work, focusing 
on their application for FDD in HVAC systems. The comparison is based on different modeling 
supports, indicating which ontologies cover the necessary concepts such as HVAC, spatial, 
operational, state, and FDD-related concepts. The symbol () represents the presence of 
modeling support by an investigated ontology, while the symbol (X) indicates a lack of modeling 
support from the investigated ontology. 
Table 3: Comparison of Ontologies Applicable to the Operation Phase of Buildings. 
Adapted from [93]  
Modeling Support IFC Brick Digital 

Buildings 
BOT OPM 

HVAC Systems    X X  
Spatial Information     X 
Operational Relationships    X X 
State 
 X X X X  
FDD 
 X X X X X 
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The analysis signified that no ontology during this research could provide the modeling 
support required for AFDD. Some modeling supports, such as spatial information, are widely 
adopted, and some, such as state-related information, are found exclusive. No existing ontology 
covers the modeling support for AFDD of HVAC. Hence, an ontology is required for AFDD model 
development and analytics.  

Ontologies can be developed in response to competency questions identified and be further 
extended to include new competency questions such as a description of property reliability, 
reasoning logic for derived properties, and parametric queries [94]. As such BIM is identified as a 
solution that encompasses the missing modelling support required for AFDD of HVAC. 

The primary reason for adopting IFCOWL in this study is to establish connections between 
building and HVAC-related data. By utilizing IFCOWL, the proposed model can capture and 
extend the knowledge necessary for developing AFDD models, which is currently missing from 
the existing IFC schema [95] [96].  The proposed solution should enable users to perform AFDD 
of HVAC systems using BIM and machine learning concepts, encompassing the information 
needed for the development or comparison of HVAC AFDD models. 

The FDD modeling support captures knowledge of FDD analytics and parameters, such as 
the type of algorithm for FDD, the parameters used for model development, and the 
corresponding values required for model comparison and development. Presently, none of the 
ontologies investigated are aimed specifically at the FDD of HVAC or AFDD and generally have 
a broader scope, making them unsuitable for direct adoption for HVAC FDD. 

The analytical tools can access the BIM and BAS data by performing a suitable query from 
the ontology, enabling access through graph-based queries such as SPARQL (Simple Protocol 
and RDF Query Language). Further, the SPARQL server can perform queries, export, 
add/remove data over the web  [82] [84], or build applications that can be developed based on 
query engines that support OWL-based ontology. For example, the ARQ query engine can be 
used with Jena API, which can return results of FM information, such as work types, IFC objects 
(e.g., spaces and building elements), and facility properties from COBie in XML, which is easy to 
use [77].  

Further, BIM can be enriched with rules (expressed in SWRLS) to allow reasoning and 
deriving logical inferences; logical IF-THEN rules are specified and executed by a reasoner. This 
approach is reported to be suitable for identifying faults’ root causes and assessing their 

consequences[85]. Evidence from the literature suggests that data and information from BIM can 
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be helpful for FDD in HVAC; however, the information is often disconnected from other data 
systems like BMS/BAS, which contain data needed for AFDD model development and do not get 
updated with the results of the analytics. 

BIM provides access to the knowledge model, enabling examining the as-is model and 
gathering maintenance-related information. Sensory data stored in BMS/BAS can be integrated 
with BIM using different methods [97], which can be broadly categorized as Integration using 
databases, Linking to resources, and ontology-based integration [45] [46] [47]. Using database 
integration methods, the BIM and BAS/BMS data is stored in a central repository [101] [102]. In 
contrast, in linking to resources, the databases are provided with connections to retrieve data as 
needed [97] [103].  

The ontology-based approach offers a solution in the form of a knowledge model to capture 
semantic relationships and context, enabling intelligent data integration, knowledge 
representation, and reasoning [104] [105]. This approach can enhance the accuracy and 
effectiveness of AFDD systems by facilitating context-aware fault detection and diagnosis. 
Ontologies can be created or reused and extended to meet the user-identified requirements. 

This chapter outlines the development of the AFDD model, beginning with feature inputs and 
fault types, from which association rules and a taxonomy were derived. These elements will be 
captured using ontologies as part of a knowledge management system. Chapter 3 will explore 
how dynamic BIM can be utilized for AFDD of HVAC systems, where the integration of BIM 
concepts and relationships will provide essential contextual information.  

Subsequently, Chapter 4 will develop an ontology specifically tailored for AFDD of HVAC 
systems, leveraging BIM and Machine Learning concepts. This ontology will draw on information 
gathered and classified through literature analysis, enabling AFDD systems to incorporate 
building context in the form of spatial semantics. 
2.5 Gaps in the Literature 

The primary challenge facing current AFDD models for HVAC systems is the lack of 
contextual information and limited sensory data. This deficiency hinders the ability of HVAC 
modelers to use these models to understand the complex interactions within buildings. 
Additionally limited sensory data means only certain faults can be detected while others may go 
un-noticed. Without incorporating crucial data related to building layout, assets, and spatial 
relationships, AFDD models struggle to provide meaningful insights. Their reliance on only 
sensory data (Specific types) from BMS and BAS, which often lack this contextual and semantic 
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depth, only exacerbates the problem. Furthermore, the absence of a methodology to enable the 
bi-directional flow of contextual information limits the broader adoption and effectiveness of AFDD 
solutions.  

In contrast, as shown in Figure 2.7, BIM can contain information such as HVAC schedules, 
building parameters, and supplementary information pertaining to building and HVAC that can 
help with AFDD of HVAC. At present, the concepts required by BIM to create an effective AFDD 
model are not integrated with BMS data sources and, hence, do not communicate with each other. 
As a result, AFDD models built using sensory data often lack semantics related to building spaces, 
HVAC information, and environment.  

The AFDD of HVAC can be facilitated through knowledge models that contain the information 
needed for AFDD model development using BIM and BMS-infused features. Such a knowledge 
model can capture the dynamism of the facility to attain connectivity between time-series data 
and context-representative data. Moreover, the data stored in a knowledge model can be 
leveraged to create and access AFDD models for buildings that have comparable HVAC systems 
or similar building envelopes. Such models can be employed to keep a record of modifications, 
which can help to assist in diagnostic tasks, such as visual inspections. 

 
  Figure 2.7: Data-driven FDD (AFDD) of HAVC Enriched with BIM Contextual 
Information 

To address these challenges, literature analysis indicates one effective approach can be 
integrating BIM features with BMS/BAS to enhance AFDD by utilizing BIM-based knowledge 
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models. BIM-based knowledge models are advocated by literature as a viable solution to 
overcome the shortcoming of HVAC AFDD models by effectively using BIM-compatible ontologies 
for HVAC FDD [16] [17] [18] [19] [20].  

However, a complete methodology is lacking since the solutions are either in the early stages 
of research or in conceptual form. To bridge these gaps, a comprehensive approach involving the 
integration of BIM throughout the AFDD process is required. BIM can be extended to support 
HVAC AFDD analytics by the addition of dynamic BIM features and facilitating the bi-directional 
flow of data and knowledge between BIM and BAS. Effective integration of BIM and BMS systems 
is essential to unlocking valuable contextual resources, improving fault detection and diagnostics 
capabilities, and ultimately enhancing building energy efficiency and occupant comfort.  
2.6 Scope of the Study 

The scope of this study is confined to purely data-driven techniques that utilize sensory data 
available in BMS or BAS systems to build their models and do not pose context related to building, 
HVAC, environment, spatial, and occupant-related information. i.e., a subset of AFDD models for 
HVAC is investigated (based on literature analyzed), which pertains to data-driven models utilized 
for fault detection and diagnostics of faults at the system, sub-system, equipment, and parts levels 
in HVAC, in which machine learning and data mining techniques are commonly used.  

In this study, BIM is selected as the primary contextual resource to enrich AFDD models. To 
enhance interoperability, BIM is extended through an IFC schema-based ontology, specifically 
developed as AFDDOnto [121]. AFDDOnto functions as a BIM-based knowledge management 
system designed to support data-driven FDD for HVAC systems, integrating concepts from IFC, 
BOT, and Brick.  

As defined earlier, scope of this research is primarily focused on HVAC systems of medium 
to large commercial buildings, as most of the relevant literature pertains to this category. The 
proposed methodology is tested and validated in a controlled facility due to limitations in the 
availability of a BIM model and suitable data for AFDD. However, it is important to note that, as 
the ontology is based on existing literature, not all types of faults, HVAC systems, and their 
relationships may be fully captured. 
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Chapter 3: AFDD of HAVC as a Dynamic BIM Use 
In response to the gap identified in the previous chapter regarding the lack of access to 

contextual information and limited sensory data in AFDD models, this chapter focuses on three 
main areas: the role of dynamic BIM, integration approaches for sensory data typically found in 
BMS/ BAS, and the methods to achieve such dynamism. To address these areas, various 
integration methods and schemas are identified to facilitate the development of a BIM-based 
solution for AFDD of HVAC systems.  

Specifically, this chapter explores the integration of sensory data from BMS/BAS, the 
utilization of dynamic BIM models, and the schemas required to develop and implement a 
dynamic BIM solution for AFDD of HVAC systems. The findings from this chapter, along with 
those from Chapter 2, will be further utilized in Chapters 4 and 5. 
3.1 Dynamic BIM – Case of FDD of HVAC  

In this study, BIM is categorized into static and dynamic models, with dynamic BIM further 
divided into Live BIM and Stateful BIM [122] [123]. Live BIM represents an evolving model in near-
real time, while Stateful BIM tracks the entities of interest over a predefined term. The Live BIM 
refers to the real-time overlay of sensory data that represents dynamic changes in the BIM model. 
This includes changes to entities such as objects, spaces, and occupants.  

Conversely, stateful BIM uses the data captured from Live BIM over time to represent the 
current state of entities, such as the state of HVAC equipment. The sensory data for capturing 
the dynamism is sourced from BMS/BAS systems. This integration creates a unified system that 
reduces duplication of data for different use cases and also prevents overpopulating the BIM by 
only storing stateful information and retaining links for live data, which prevents the need for large 
BIM files [108]. 

  Within the context of FDD, BAS/BMS sources focus on data-centric information, while BIM 
sources provide context-oriented information. The realization of dynamic BIM involves capturing 
analytics performed on BAS/BMS and BIM data and storing it as DT entities. For example, as 
shown in Figure 3.1, linking BMS-recorded temperature sensory data to associated BIM spaces 
enables the capture of dynamic information as Live BIM. In addition to the stream of data (Time-
series), some sensors are state representatives (Binary) and can indicate states such as air 
conditioning status, closure/opening of doors, or windows at any given time by maintaining links 
between BIM elements and corresponding sensors being in the BMS/BAS. Additionally, Stateful 
BIM is achieved by tracking the state of entities such as rooms and associated states (e.g. , 
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cooling, ventilation, heating) over predefined intervals (e.g., HVAC maintenance schedule) and 
recording them in the model. Access to dynamic BIM facilitates various use cases, including 
diagnostics, life expectancy estimation, predictive maintenance, HVAC condition assessment, 
and feature engineering purposes. 

 
Figure 3.1: Dynamism in BIM for FDD of HVAC 

To fully utilize BIM for asset management use cases, it is necessary to augment BIM with 
provisions that capture and store knowledge about the state or events for a defined time interval. 
The specific categories, types, and frequencies of states depend on the identified use case and 
the defined competency or task. The transfer rate of analytics from the knowledge model must be 
predetermined to create a dynamic BIM of a facility. This transfer frequency is crucial for 
upgrading BIM from a static model to an accurate representation of the facility's current state, 
enabling case-specific solutions during the operation and maintenance phase. When coupled with 
real-time data, this dynamic form of BIM can provide access to the most recent state of the facility 
essential for various operational applications, including AFDD of HVAC systems. 

 However, in practice, BIM is mostly used as a static model, and BAS/BMS systems that store 
sensor data are utilized independently, without any connection between them. Hence, BIM in its 
current form cannot be utilized to add additional contextual, static, or dynamic features to that of 
BMS features for AFDD model development. In this study, AFDDOnto [109], which is a BIM-based 
ontology, is used as a knowledge model to capture AFDD analytics and is further used for BIM-
based feature engineering to facilitate the effectiveness of AFDD for building HVAC systems.  
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The overarching goal of this study is to develop a BIM-based knowledge model of the 
building, specifically the mechanical and architectural systems, to facilitate the fault detection and 
diagnosis process. This goal is followed under two major research directions. The first direction 
is (BIM-to-AFDD) aims to enrich the operation data with static (and dynamic) information of the 
building systems, from BIM, and upgrade the data-driven AFDD for HVAC systems.  

The second direction is (AFDD-to-BIM) uses the BIM, as a semantic and granular model of 
the building elements and spaces, to visualize the results of detected and diagnosed faults. To 
achieve these objectives, a methodology will be introduced that enables BIM to contribute 
additional context-aware features and link them with the BMS data for an improved data-driven 
AFDD. Furthermore, the study uses ontology concepts in the form of a knowledge model to 
capture knowledge related to fault detection and diagnostics of HVAC.  
3.2 Dynamic BIM Enablers 

The past ten years (2009-2019) studies were reviewed and analyzed that have utilized BIM 
in its dynamic and have demonstrated the use case using a case study or approach. The studies 
are sourced from Concordia University library that allows access to multiple databases such as 
ASCE, Science direct and Google scholar, to name a few that are used in this study. Further 
different attributes such as application, technology, variable and building type, frequency and Year 
are recorded. Based on the most significant application of study, the BIM uses are selected and 
recorded.  

Overall, eighty-nine studies were selected that have implemented dynamic BIM. In Appendix 
C, the table is provided. BIM use is defined by Penn State as “a method of applying Building 

Information Modeling during a facility’s lifecycle to achieve one or more specific objectives” [110]. 
In this study, the methodology encompasses several detailed steps to ensure a comprehensive 
analysis of BIM and its dynamic applications as shown in Figure 3.2:  .  

Initially, specific terminology used throughout the study is defined for clarity. A survey of BIM 
use guidelines is conducted to gather existing practices. Using these guidelines, a unified BIM 
use list is developed (Appendix D), considering the entire building lifecycle. The competency of 
dynamic BIM uses is examined through a review of literature and guidelines, and further 
established through brainstorming sessions with BIM practitioners. Sensory data that make each 
BIM use dynamic and stateful are identified through literature review.  
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Figure 3.2: The Framework of the Methodology Adopted to Identify Dynamic BIM-
sensory Data Integration 



  32 

The sensory data that are the enablers of dynamic BIM are identified for each of BIM uses. The 
BIM Uses identified are further investigated for types of data (variables) that are related and 
required to add dynamism to BIM. As shown in Figure 3.3, The most significant enablers are 
Temperature followed by Location/Traction and Humidity. 

Sensory data such as CO2 and CO are associated with time-series data types and are 
suitable for Live BIM applications where the latest reading of sensory data can be beneficial. In 
contrast, Dynamic BIM uses can use sensory data enablers such as Close/Open or Count for 
both Live BIM and Stateful BIM applications depending on the intended use case. The 
requirements can range from needing only the most recent value to tracking the changes over a 
specified period. Calculated measures effectively transform time-series data to states that can be 
further utilized by dynamic BIM applications. 

 
Figure 3.3: Dynamic BIM Enablers (Built Environment Sensory data) 

In practice, sensory data may be integrated into BIM by a variety of direct and indirect 
sources, including IoT devices and existing dedicated systems like BMS, building energy 
management systems (BEMS), and BAS [127] [128] [129] [130] [131] [132] [133]. Sensory 
information is the primary enabler of the dynamic building information model. The below graphic 
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(Figure 3.4) illustrates an interactive Sankey diagram for dynamic BIM applications and the 
sensory data enablers for the required dynamism.  

This graph captures the overall relationship between BIM uses and sensory data. The BIM 
uses significance is shown concerning the variety and the percentage data type, meaning that 
each link is weighted to reflect how frequently the sensory data is used for the specified BIM use; 
this can be viewed as an indicator of the value or significance of the sensory data for the selected 
BIM use.  

Asset management, which accounted for 35% of the total examined papers with possible 
dynamic BIM applications, was found to use temperature, location, and humidity as the top three 
sensory data to achieve the BIM application. According to the research, temperature (17%) is the 
most prevalent sensory data enabling the dynamic BIM, with location data (16%) as the second 
significant enabler. The interactive Sankey diagram is accessible online2.  

 
2 Interactive Sankey Diagram of an aggregated weighted view of dynamic BIM and 
their enablers (sensory data) 
[https://public.tableau.com/profile/arash4461#!/vizhome/Book2_15676945815550/Dashboard1?publish=yes]. 

https://public.tableau.com/profile/arash4461#!/vizhome/Book2_15676945815550/Dashboard1?publish=yes
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Figure 3.4: Sankey Diagram of an Aggregated Weighted View of Dynamic BIM and 
Their Enablers (sensory data) 
3.3 Integration Methods –  Towards Dynamism Utilizing Data from BIM and BAS 

In practice, data integration in BIM can be a one-way function [134] [135] [136] [137] [138]; 
or bi-directional [97]. This functionality implies that in one-way function systems, the information 
is not retained on the BIM model; therefore, the BIM information is extracted, exported, and used 
for specific BIM purposes outside the BIM [139] [140]. Most of the reviewed research has 
examined the one-way function. However, realizing a digital twin of the facility would require the 
BIM to be stateful and allow for bi-directional communication and operation between BIM and IoT 
through adopting effective integration mechanisms. Contextual information residing in BIM and 
state representative data being captured by sensors are the enablers of dynamic BIM. 
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Integrating information between the building's context and sensory data is accomplished 
using services to store, integrate, and retrieve data. This integration can facilitate access to data 
and information or knowledge capture, useful in decision-making. The current data integration 
practices for BIM-IoT fusion are depicted in Figure 3.5. The system's four key components are 
BIM, sensory data, query, and visualization. The users can interact with the integrated system 
through Query and Visualization. In order to get at the data, a query must be executed, and 
various query languages are available.  

For the most part, there are two distinct varieties of query: those explicitly designed for the 
construction industry, such as BIMQL (BIM Query Language), and more general-purpose ones, 
like SQL (structured query language), NoSQL (Non-SQL), and SPARQL (SPARQL Protocol and 
RDF Query Language). Data visualization can be accomplished via tools, plug-ins, or a graphical 
user interface (GUI). An additional layer, such as a web service layer, is necessary to implement 
and allow the protocols for data transfer over the web. Three tiers or layers are required for 
integrating BIM and sensory data, namely Static Data tier, Dynamic data tier, and Service layer 
tier, that result in one of the integration methods shown in Figure 3.5. 

Data integration methods: As indicated in Figure 3.5, there are three methods of integration 
defined. In the first method identified, the static and dynamic tier data is saved in databases. 
These databases could be relational [141] [142] or non-relational [127]. Microsoft Access and 
SQL Servers are the most commonly utilized databases for storing BIM contextual and sensory 
data [128]. Depending on the objectives and sources, the number of databases used could range 
from one, to many databases of similar or different structures. 

The second method of integration, Involves an ontology to bring all the data from various 
sources together [145] [146] [147]. At this level of integration, RDF triples are used to turn the 
data files into ontologies. In this method, each data source, like BIM or sensor data, is stored in 
RDF format to make a domain ontology. One of the most common ontology schemas for BIM data 
is IFCOWL [132], which is a formalization of the IFC’s subset in OWL (Ontology Web Language). 

The most common ontology for sensor data is SSN (Semantic Sensor Network). SPARQL can be 
used to access and retrieve semantic data. Literature indicates such solutions are suitable when 
interclasses are involved, for example building and physical assets such as HVAC system. 
However, it is less useful for dealing with data that is streaming in real time [133]. 

The third integration method is not a separate integration method, but rather a combination 
of the ontology approach and the database [134]; this decreases the load of data conversion. In 
a level three integration, time-series data from sensors and semantically characterized building 
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contextual data from BIM are combined. To accomplish this, it is necessary to construct 
ontologies that contain the existing database schema information [135].  

 
Figure 3.5: BIM-IoT Integration Methods 
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The literature demonstrates the suitability of such approach for creating web tools or solutions 
involving data mining solutions for energy management through ontologies [113]. This approach 
can promote connectivity  by connecting BIM with existing resources through linked data, such 
as data on materials and building systems, profiles of occupants, and information on weather 
patterns, where are related, connected data can be queried and retrieved [129] [147] [150]. 

Static data tier: This layer contains the BIM contextual information. Various file formats are 
identified that can hold the data at the static data tier. However, this diversification often means 
files are associated with multiple schemas. The files within the static data layer can be either 
proprietary or open source in nature. Typically, proprietary file formats are only compatible with 
specific applications, whereas neutral file formats can be transmitted more easily between tools 
that support such formats. Contextual data can be stored in more than one file based on the 
intended use. In fact, multiple file types can be used to store the data [136] in one or more files 
containing overlapping data and information. The adoption of multiple files enables the retention 
of complete contextual information and sharing of only the information the user requires. 

The most common proprietary design authoring tool format used in the studies investigated 
is Revit with (.rvt) file extension [137] format, which Autodesk develops; additional files from the 
same vendor are namely (.fbx),(.dwg) and (.dxf) [138] [139] which are used for design data, 
metadata, and interoperability. 

 The standard neutral format endorsed by building alliances is IFC (Industry Foundation 
Classes). The IFC file is based on the EXPRESS schema and is used extensively for data 
interchange and collaboration [152] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] 
[167] [168] [169] [170] [171] [172]. IFC includes definitions for all areas, volumes, and elements 
of a building [106]. However, additional support is still needed to cover other definitions that BIM 
uses require. The other prevalent open-source file format is gbXML (green building Extensible 
Markup Language), which allows engineering analysis tool access to building data. 

Regarding the usage of multiple files, gbXML and IFC files can be used by engineering 
analysis tools to detect HVAC faults [157] by linking HVAC and building envelope elements, 
surfaces, and zones. Also, users can use IFC alongside Collada (.dae) files, an ISO standard 
used as an open-source interchange file format for interactive 3D applications to facilitate 
geometric data sharing. XML [158] and JSON (JavaScript Object Notation) [159] are the other file 
formats used for data interchange. These schemas offer more flexibility and extensibility and are 
a choice of communication over the web. However, the reason for the lack of wide adoption is 
often, such files are lesser expressive when compared to schemas such as EXPRESS [160] . 
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In practice, presently, proprietary environments are more often used than neutral file formats 
to avoid sharing information that is not necessary [161] and prevent Information loss. For 
example, CAD and 3D modeling tools use the (.dxf) file format to exchange information about 
objects, drawings, and material details. They also use the (.fbx) file format to integrate data such 
as ambient information with the BIM model to provide a 3D view. 

Dynamic data tier: The sensory input can be directly transmitted or temporarily stored for 
integration purposes. Although time-series data predominates in the construction domain, this 
layer's data contain other multimedia data types. The type of the data and the frequency depend 
on the use case intended. The BIM-IoT integrated system can save sensory data in various file 
formats with relevant schemas. The reviewed literature identifies several prevalent file formats for 
sensory data, which can be classified into the following categories: data frame formats, text file 
formats, meta-language formats, and semantic web formats.  

The primary difference among these formats lies in how the data is structured and accessed. 
Data frame storage is similar to databases but is more suitable for subsets of data. In contrast, 
flat files come with various structures and schemas, employing different mechanisms for data 
access, retrieval, and storage. 

 The most commonly used format is CSV, which is used for storing time-series data [106], 
[161] or schedule information [149]. Proprietary spreadsheet formats, such as XLS format, are 
used to store data coming from BEMS (Building Energy Management Systems) and CMMS 
(Computerized Maintenance Management System) [152]. More recently, the studies have used 
XML-based files called (.XLSX) as a replacement for (.XLS) for storing QTO (Quantity Take-off) 
data [119].  

Alternatively, data can be stored in simple text files (.txt) [148] and RDF(Resource Description 
Framework), Terse RDF Triple Language (.TTL) [134] The proposed integrated solution flat-files. 
Dynamic data tier can utilize the exchange data in XML or JSON formats [162]. Instead of storing 
sensory information in a file or spreadsheet, data can be saved to a database. For example, data 
from temperature and oxygen sensors, together with their respective timestamps, can be logged 
in a database [163]. 

Service layer tier: The service layer facilitates data integration, parsing, and transformation 
from the static and dynamic data layers to the data integration layer via various means such as 
APIs (Application programming interface), ETL (Extract, transform, load) processes, tools, and 
scripts that are used to achieve data parsing, transformation, and mapping. 
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API serves as a gateway for the data access [141] [152] [166]. The Autodesk DB connection 
API allows data to be transferred to and from a database [154] [180]. Similarly, JDBC (Java 
Database Connectivity) is used for applications built in the Java programming language to 
connect to a database using the JDBC-ODBC (Open Database Connectivity) bridge [148].IFC file 
can be parsed using an API called JSDAI (Java Standard Data Access Interface) for a STEP 
(Standard for the Exchange of Product model data) based application; this allows the creation of 
IFC objects via the parsing and exporting of BIM applications [148].  

ETL (Extract, transform, load) is often utilized when there are multiple sources of data or data 
from one database to a data warehouse needs to be transferred. [171] [172]. Identifiers such as 
UUID (universally unique identifier), GUID (Globally Unique Identifier), uniqueID (unique 
identifier), and URI (Uniform Resource Identifier) or unaltered ID  are utilized to store and retrieve 
data at different integration levels [161] [181] [182].  

Tools and Scripts can be authored and developed using numerous programming languages 
such as Python, C#, and JavaScript, as well as graphical programming interfaces such as 
Dynamo [137], which enables users to write scripts for a proprietary tool. Custom GUI (Graphical 
user interface)can be developed using programming languages to display room information  [163]. 
3.4 Summary and Discussion 

In this thesis based on the scope defined, AFDD of HVAC systems is investigated to highlight 
its growing adoption by academia and industry, as well as to present the shortcomings that may 
arise for system users. The goal is to facilitate context-aware fault detection and diagnostics of 
HVAC systems in specific buildings. The literature analysis of AFDD methods identified the types 
of features, algorithms, and their associations with HVAC types and fault types.  

Additionally, the application of ontologies as knowledge management tools is examined, 
emphasizing their significance in contributing to the missing context, such as spatial information 
pertaining to HVAC systems. As such the taxonomy of concepts required for model development 
and model evaluation are fed to the knowledge model proposed for knowledge management 
using the analysis performed in chapter 2 of this thesis.  

Further, in chapter 3 of this thesis, the use of BIM is explored as an existing solution that 
contains comprehensive building information and is applicable to the operation and maintenance 
phases of buildings. As a semantic model, BIM can compensate for the lack of contextual 
information in AFDD models [110] [111] by the addition of dynamic BIM features. Additionally, 
BIM can provide spatial relationships, construction details, and system configurations that 
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facilitate the AFDD of HVAC systems. BIM's 3D visualization aids fault localization, while its 
historical data repository enables baselining, deviation detection, and pattern recognition [78] 
[112]. 

Previous studies have leveraged BIM for FDD and combined it with machine learning 
techniques for enrichment, automation, and comparison [113] [114] [115]. BIM can be utilized 
throughout different phases of AFDD model development [18] [101]. It supports knowledge model 
development and configuration before AFDD implementation [13] [116], and during the AFDD 
development phase, BIM data integration plays a crucial role [117] [118]. The most common 
application of BIM for AFDD in literature is reported during the implementation phase and involves 
inferences and diagnostics of HVAC faults [119] [120]. The challenges identified include the black-
box nature of current AFDD techniques that lead to loss of information pertaining to relationships 
between HVAC and the building, the unavailability of BIM in a dynamic form, and the lack of an 
existing comprehensive ontology. These challenges necessitate the development of a 
comprehensive framework that utilizes BIM to add context by creating dynamic features that 
integrate both BAS and BIM.  

The availability of BIM as an open standard in the form of an ontology presents an opportunity 
to develop an ontology that can utilize BIM concepts existing in IFCOWL, along with Machine 
Learning concepts identified through the analysis. This can be achieved by employing the 
integration methods identified in the thesis to facilitate a BIM-based solution aimed at AFDD of 
HVAC systems.  A knowledge model connecting BIM and BMS can greatly aid the development 
of the AFDD model. As an existing solution, BIM can serve as a basis for an ef ficient knowledge 
management system. It enables the integration of new applications without the need for a 
completely new model to be built from scratch. 

 This framework can be used for AFDD model development and for creating a knowledge 
model that enables the flow of data between isolated systems. This, in turn, facilitates context-
aware model development and provides a mechanism to store model configurations for 
comparison and reuse. The next chapter will explore how dynamic BIM can be utilized for AFDD 
of HVAC systems. 

 Following this, Chapter 4 will focus on the development and deployment of the proposed 
knowledge model to develop an ontology specifically aimed at AFDD of HVAC systems. This 
ontology will leverage BIM and Machine Learning concepts, using information collected and 
classified through literature analysis to facilitate AFDD of HVAC systems. The goal is to enable 
these systems to benefit from building context in the form of spatial semantics and allow BIM to 
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be used for generating additional context-aware dynamic features that can be used for the AFDD 
model development of HVAC systems. 
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Chapter 4: Methodology – BIM-based Knowledge Modeling for AFDD of HVAC 3 
In this chapter, an ontology named "AFDDOnto" is proposed and developed, drawing from 

BIM and BAS/ BMS resources. AFDDOnto encompasses concepts related to buildings, physical 
HVAC assets, and AFDD model development. The necessary relationships are captured within 
AFDDOnto to enable access to competencies identified in this chapter, facilitating the AFDD of 
HVAC systems. The taxonomy, concepts, and relationships are derived from Chapters 2 and 3, 
which focus on AFDD of HVAC and BIM, respectively.  

Additionally, a framework is introduced to enable the flow of information from BIM to BMS 
datasets, which are used for AFDD model development. This framework also allows for the 
capture of knowledge in terms of FDD analytics and model development. This chapter aims to 
realize a BIM-based semantic model that facilitates the AFDD of HVAC systems in commercial 
buildings by incorporating dynamic features created using BIM and BMS data 
4.1 Knowledge Model Development – AFDDOnto Overview 

In this section of thesis, the intention is to create a semantically enabled knowledge model 
using BIM that can be used to generate AFDD models for an HVAC system, reusable in other 
projects that can be used for model comparison. The proposed ontology is intended to 
supplement the present BIM schema (IFC).  

Three sub-objectives have been outlined to achieve this goal. 1- To develop a taxonomy for 
the information required for a semantically enabled AFDD knowledge model using BIM and BMS 
concepts. 2- To create a BIM-based knowledge model with the necessary axioms for AFDD. 3- 
To construct data access queries for the proposed AFDDOnto for select competencies defined 
by literature analysis.  

Initially, relevant ontologies are analyzed, and further gaps and scopes of the ontology are 
defined. Additional concepts and classes are required to ensure the connectivity between BIM 
and BMS/BAS for AFDD is achieved. Predefined ‘competency questions’ (or ‘competencies’ for 

short) are required that are identified through the literature analysis. The information captured will 
serve as the foundation for developing an ontology that can be tested and validated. The proposed 

 3The material of this chapter is published in form of the following publications: 1.  Hosseini Gourabpasi A, Nik-Bakht M (01 Jul 2024): An ontology for automated fault detection & diagnostics of HVAC using BIM and machine learning concepts, Science and Technology for the Built Environment, https://doi.org/10.1080/23744731.2024.2363104 2. Hosseini Gourabpasi A, Nik-Bakht M. BIM-based automated fault detection and diagnostics of HVAC systems in commercial buildings; Journal of Building Engineering, Volume 87, 15 June 2024, 109022. https://doi.org/10.1016/j.jobe.2024.109022 
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solution aims to assist its users in two ways. Firstly, integrating BIM with BAS/BMS concepts in 
the form of a knowledge model to facilitate AFDD model development; Secondly, capturing and 
updating the BIM-based model with configuration and analytics derived from AFDD models in the 
AFDDOnto.  

Hereafter, descriptions of the terminologies, related definitions, and concepts employed in 
this study are discussed to make the present work comprehensible without resorting to extra 
resources. This study adopts and implements a methodology proposed by Fernández et al. (1997) 
called “Methontology” [178]. The following initial questions are identified and investigated: the 
ontology’s purpose, use cases, and the stakeholders benefiting from them [179]. The results of 
the analysis were validated using brainstorming sessions. Also, white papers, books, and 
manuals were used to enrich the knowledge captured.  

HVAC system is chosen as the scope of the proposed ontology since it is the highest 
contributor to energy consumption and maintenance budget and a significant factor affecting 
occupant comfort within physical asset management. The proposed system's end users could be 
HVAC Controllers, AI engineers, asset managers, facility managers, BIM managers, and owners. 

Given that no single ontology can be relied upon to address all questions pertaining to a given 
area, through a review of the relevant literature, it was possible to identify the most pressing 
competency problems for which the proposed AFDDOnto offers a potential remedy; these 
questions were then translated into the setting of a specific use case to illustrate the ontology's 
practicality.  

Figure 4.1. depicts the procedure followed for developing the proposed ontology, which 
involves an iterative approach where a pool of competencies is defined based on which taxonomy 
is developed in parallel to identify the existing ontologies that can be used to answer the 
competencies that can be re-used from other existing ontologies. In the next stage, ontology 
axioms in the form of concepts and relationships are added to the ontology, which is then tested 
and validated. Only necessary axioms in each cycle are retained, and based on the 
competencies, this development cycle needs to undergo several iterations before a complete 
ontology is formed that can answer the competencies identified. 
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Figure 4.1: The methodology Implemented for the Development of AFDDOnto 
(generated based on Methontology) 
4.2 AFDDOnto Development 

The literature analysis conducted in chapter 2 of this thesis is used to identify and categorize 
the characteristics needed by literature for effective AFDD model development, fault detection, 
and diagnostics. Further, the areas where BIM can contribute to the AFDD of HVAC were 
analyzed and used from chapter 3. The characteristics identified by the analysis required by 
facility managers to develop AFDD models that can utilize BIM to Facilitate AFDD in terms of 
semantics for fault detection and diagnostics are namely Location, Features, and Parameters 
used for AFDD, Type of HVAC and Fault, and History. Which can answer to questions such as 
the following: 

• Location - Where is the faulty component situated? 
• Type – What type of algorithm(s) is used for detecting and diagnosing the HVAC 

system? 
• Parameters -What model parameters are used for AFDD model development? 
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• History – What changes are made to the AFDD model? The track of evolving entities 
such as AFDD analytics, including the accuracy and configuration of the produced 
models (if dynamic) 

• Features -What type of sensory data is used for detecting the faulty component? 
These are the main categories identified as required by facility managers to develop and 

perform AFDD of HVAC. Hence, the proposed AFDDOnto includes the modeling support required 
for AFDD of HVAC by capturing the classes and relationships between HVAC types, building 
spaces, and the AFDD algorithm used for model development to retrieve this information. 

As evident, most of the information needed for AFDD indicates that present AFDD models 
lack semantic information related to space, context, and model information. Hence, a case study 
will be devised to include the characteristics identified by the literature to allow the capture of such 
information with the proposed ontology. These characteristics are framed to case-specific 
competencies to evaluate the proposed AFDDOnto.  

The proposed ontology follows a bottom-up approach that defines the ontology classes from 
a group of instances. The Protégé editor environment [180] for knowledge management is used 
to create and map the alignments. In this research, the ‘subsumption approach is adopted for 

defining alignments as they offer more flexibility [181]. The knowledge extracted is then 
transformed into TBOX. The OWL language is used to formalize the ontology since the OWL 
language can be easily translated to languages that use directed graph structure, such as RDF, 
that can be easily searched. 

The proposed AFDDOnto uses two main sources of information, namely BIM and BMS, which 
are used for AFDD model development. As shown in Figure 4.2, BIM populates five concepts: 
Track, Element, Zone, State, and Information. Additionally, BMS populates the Algorithm, 
Feature, State, and Fault super-classes through the AFDD model analytics. The State concept is 
dependent on both BIM and BMS. The concepts construct the AFDD modules needed for HVAC 
FDD. The ontologies reused for the development of AFDDOnto are the Brick (Element Concept) 
and BOT (Zones), which are reused ontologies, and OPM (State) is used indirectly as adapted 
for AFDDOnto. The BOT is used as a subset of IFCOWL in the proposed ontology. 

For example, BIM information of a building facility can capture HVAC and maintenance-
related information using the Element concept that captures building semantic information such 
as building spaces and zones. Further BMS data used for AFDD model development, and its 
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analytic results are stored in the classes Algorithm, Fault, and Feature. By having AFDD model 
configuration and analytics integrated with building semantics, the AFDDOnto can retrieve 
information such as fault type, location concerning the building facility, and features and 
parameters used for AFDD model development. Additionally, in the case of the dynamic BIM 
model, the historical information and state changes can be tracked which can enable the facility 
manager for the AFDD model to be used for comparison, development, and management. 

 
Figure 4.2:  The AFDDOnto Lightweight Model 

AFFDDOnto includes multiple sub-classes, each associated with a respective superclass in 
a multi-level structure. The subclasses have all axioms from their parent classes and an additional 
attribute or restriction that distinguishes them from other subclasses at the same level. However, 
instances can exist under multiple branches and are not limited to a tree structure. In addition, 
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the definitions of the AFDDOnto axioms are included in Appendix E. The defined relationships 
enable the enforcement of the defined subject-object relationships in AFDDOnto.  

The AFDDOnto is developed over an iterative cycle. The ontology has undergone four main 
development stages to have the 4th iteration as its most current version. As shown in Table 4, 
the axioms have been subjected to rigorous revisions to meet the requirements of competency 
questions. This involves metrics such as logical and declarative axioms, classes, sub-classes, 
and axioms related to object properties available in AFDDOnto. Metrics such as axioms indicate 
the number of logical and non-logical axioms, which include subclass relationships, property 
restrictions, or disjoint-ness assertions.  

In contrast, the logical axiom metric only indicates the relationships and constraints based on 
logical principles in each iterative cycle of the AFDDonto. Further class and object property axiom 
breakdowns used in AFDDonto are indicated in the below table. The iteration cycle in each stage 
of ontology development illustrates how the proposed ontology has undergone rigorous changes 
to construct axioms that can answer the competencies used in this research work. As can be 
seen, the axiom count until the third iteration has been reduced to include absolutely necessary 
axioms, and in the fourth iteration, which is the final iteration, it is based on expert feedback that 
is validated. 
Table 4: AFDDOntology Development Stages 

AFDDOnt  1st Iteration 2nd  Iteration 3rd  Iteration 4th Iteration Metrics       No. of Axioms 6,959 3,342 1,402 1,411  Logical Axiom Count 4,540 1,243 825 830  Declaration Axiom Count 1,425  917 429 433  No. of Classes 144 274 256 256  Object Property Count 26 36 29 31  Annotation Property Count 14 23 5 5   Class Axioms 
     

 SubClassOf 155 416 250 250  DisjointClasses 3 0 9 9 Object Property Axioms 
      

 SubObjectPropertyOf 2 16 7 7  InverseObjectProperties 9 6 1 1   DisjointObjectProperties 0 0 2 2   TransitiveObjectProperty 0 6 1 1   SymmetricObjectProperty 0 0 2 2   ObjectPropertyDomain 4 26 25 27   ObjectPropertyRange 3 28 24 26 
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  SubPropertyChainOf 0 0 2 2 
The AFDDOnto's modular design allows revising, updating, or extending classes, 

relationships, and axioms to cover other use cases beyond the proposed ontology's scope to 
cover other built environment domain use cases. 
4.3 Knowledge Model Evaluation  

Verification of AFDDOnto involves the use of several metrics, including Competency, 
Consistency, Completeness, and Clarity. The Competency metric examines the scope of the 
ontologies in relation to predefined requirements, while the Consistency metric verifies the 
ontology's hierarchal information, relationships, and restrictions. Completeness is another metric 
used to test if the defined competencies enable the ontology to retrieve required individuals. 
Finally, Clarity examines the ease with which users can interact with the ontology model. Table 5  
provides a detailed list of the tools, resources, and approaches used for these metrics in this 
study. 
Table 5: FRP Case Study Metrics and Approaches Implemented 

Metrics Approach Tool or Resource 
Competency Competency Questions Case Study 
Consistency Automated Consistency 

Checking HermiT Reasoner and Pellet 
Reasoner 

Completeness SPARQL query  Blazegraph 
Clarity Questionnaire Semi-structured survey 

 
 The proposed AFDDOnto is developed to enable users to retrieve the information needed to 

answer the competencies defined based on literature analysis, identifying the information needed 
to facilitate the development of AFDD models as follows: location, type, parameters, history, and 
features. The case study is used to test and validate these competencies. 

Initially, the AFDDOnto is checked with "HermiT," an automated consistency checking tool 
as a theorem prover that assesses the ontology by inferences. As a result of the consistency test, 
the ontology iterations underwent multiple checks until no inconsistencies were found. A task-
based evaluation was done as the next step in the evaluation process to verify the competency 
and completeness metrics. This is where the ontology is evaluated based on how well it can be 
used for the tasks that have been identified. In this study, SPARQL queries were written to retrieve 
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information about the defined competencies and check if the queries were complete. The 
competencies were constructed using the identified characteristics for the FRP case study. The 
SPARQL queries were able to retrieve information that was intended and, hence, indicate the 
completeness of the ontology against the competencies defined.  

In a criteria-based evaluation, several criteria, such as Competency, Completeness, 
Conciseness, and Consistency, are chosen and grouped based on previous validation outcomes. 
The final metric in the evaluation process of the proposed knowledge model is using a 
questionnaire in the form of a survey that utilized domain experts to validate the applicability of 
the AFDDonto against all metrics and specifically the clarity in terms of capturing the concepts 
needed for AFDD model development. 

Additionally, the ontology is verified and validated, ensuring the accuracy and 
comprehensiveness of the taxonomy's categories and hierarchical relationships. The ontology 
evaluation approaches include Task-based evaluation, Automated Consistency Checking, Data-
driven, and criteria-based evaluation, which consists of one or more metrics, as shown in Figure 
4.3.  

 
Figure 4.3: Metrics Used for Evaluation of AFDDOntology Adapted from [179] 
4.4 AFDDOnto Validation 

In this study, the Data-driven Evaluation is not performed as there are no known similar 
existing ontologies to be tested against. In addition, the AFDDOnto is tested for criteria-based 
evaluation using an online ontology evaluation tool named OOPS! (Ontology Pitfall Scanner!) 
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[182] which classifies pitfalls based on the Structural, Functional and Usability-Profiling 
dimensions resulting from an empirical analysis of over 693 ontologies. The tool was used to 
make sure no critical or important pitfalls are present and unresolved. The AFDDOnto is verified 
against ontology metrics, namely competency, completeness, and consistency metrics, which are 
used to demonstrate the suitability of an ontology for the competency questions defined.  

In addition to validation using an online tool, a semi-structured survey is designed and 
conducted over three months to cover the suggested AFDDOnto principles required to assert and 
validate the SPARQL-constructed competency questions to satisfy the clarity metric of the 
ontology. The survey was conducted in one-on-one sessions with the experts. It consists of three 
sections with three closed-ended questions, four open-ended questions, two explanations, and 
one reference section. This necessitated the use of a semi-structured survey to accommodate 
any unforeseen changes that might arise based on the experts' feedback. The survey can be 
found in Appendix G.  

The domain expertise of the respondents included HVAC FDD and Facility management 
familiar with BIM, BMS, and Machine Learning subjects that verification of the concepts developed 
for the competencies identified for the proposed AFDDOnto. The respondents were introduced to 
the main overarching concepts covered by the AFDDOnto and were then provided with the 
competencies being considered.  

The experts were then asked to assess if the concepts were clear and covered the necessary 
information needed to reach the desired conclusion based on the available evidence. Additionally, 
three sets of concepts within the proposed AFDDOnto were analyzed and validated separately to 
understand and revise the relationship and structure between the concepts. Maintenance and 
Information concepts formed the first group and were investigated for the application of AFDD in 
HVAC. While the second group, Feature and State regarding HVAC Elements that are intended 
to enable tracking changes were analyzed. Finally, the third group, Track concepts, were 
investigated when considering with Feature AND/ State concepts of the proposed AFDDOnto. 

A semi-structured survey was conducted to validate AFDDOnto, with the participation of 
seven experts. The limited number of interviewees was due to the requirement of interdisciplinary 
domain knowledge in BIM, Ontology Engineering, FDD of HVAC, and Applied AI. This reduced 
the pool of qualified interviewees. Although the small sample size is a limitation of the study, the 
survey analysis indicates a high level of consistency as the revisions were based on a systematic 
approach of triangulations which ensured experts' opinions were taken into consideration and 
necessary changes were made at each step. The survey results were further investigated through 
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quantitative and qualitative analysis to refine the ontology for Clarity. In discussion 1, 57% of 
respondents indicated the overlap of Maintenance and Information concepts, suggesting potential 
shared elements between the two and, hence, the applicability of the Information concept at the 
Meta-data level. This means that the Maintenance concept is to be used exclusively by HVAC, 
and the Information plays a more general role in considering information pertaining to the building 
envelope. The two sources are expected to provide supplementary details for proactive 
maintenance planning. Hence, both concepts are well within coverage for AFDD of HVAC. 

Furthermore, in discussion two, when considering the HVAC system (Element), 100% of 
respondents (7 out of 7) acknowledged an overlap between Feature and State concepts when 
considering the Element concept. Hence, the hasState object property was modified to capture 
the relationship between these two concepts. All respondents agreed on the overlap between 
Feature and State concepts but stressed that they must be captured separately to separate 
Features that can be fed for AFDD model development and State, representing a subset of state 
representative features.  

In the third discussion, 86% of the participants agreed that the term 'Track' can be used in 
the context of keeping a record of historical HVAC system issues. This can be done by utilizing 
the State concept, where the AFDD model's features can make use of the 'hasState' property. In 
order to enhance wider adoption beyond AFDD, there was an emphasis on the need for further 
use cases, such as predictive maintenance. Respondents agreed that certain concepts within the 
AFDDOnto model overlapped, particularly between Feature and State, and that it was necessary 
to have separate concepts to capture them.  

The ontology is revised based on the feedback received from the experts to include all the 
relevant axioms required by the ontology to answer the competencies directed at AFDD of HVAC, 
resulting in the fourth version of AFDDOnto proposed in this thesis. The survey indicate that the 
proposed knowledge model can answer competency questions and cover the necessary axioms 
and concepts. However, additional competencies require additional relationships to be defined 
between the existing concepts available in the AFDDOnto. The fourth version of the AFDDOnto, 
after testing against metrics and expert opinions, was published and is accessible through 
Github4. 

 

 4 https://github.com/arashhosseiniarash/AFDDOntology 

https://github.com/arashhosseiniarash/AFDDOnto
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4.5 BIM-BAS Integration and Automation  
The limited availability of sensory and contextually related data is a challenge in developing 

AFDD models for commercial buildings. To address this issue, a research methodology has been 
proposed that involves generating dynamic BIM features and incorporating them into the AFDD 
model. These contextual features are added to compensate for the lack of sufficient sensory data. 
This approach facilitates leveraging BIM throughout the stages of AFDD model development and 
deployment. 

The proposed solution integrates four main concepts: BIM, BMS, the AFDD model, and the 
"AFDDOnto" ontology, as shown in Figure 4.4, AFDDOnto is developed based on the outcomes 
of chaoter 2 and chapter 3. This approach has enabled the BIM to be extended with AFDDOnto 
to capture building and HVAC data along with their relationships, serving as a knowledge 
repository for the facility.  

The bi-directional information flow between AFDD and BIM enables the incorporation of 
analytics and, subsequently, provision for updating them. By utilizing static and dynamic features 
from BIM and BMS, the AFDD model gains access to a new set of features that can enhance fault 
detection and diagnostics or compensate for not having access to important features. Additionally, 
storing AFDD analytics back into the knowledge model maintains an up-to-date representation of 
the facility, accessible for examination and querying by facility managers. The combined strength 
of BIM and machine learning techniques facilitates the effectiveness of AFDD for HVAC systems 
and compensates when relevant data is unavailable. 



  53 

 
Figure 4.4: BIM and BMS Integration (Use case of AFDD of HVAC) 

The proposed DT is created by integrating BIM with BMS through four steps, i.e., (i) Schema 
Conversion, (ii) Feature Engineering, (iii) Machine Learning for AFDD, and (iv) Knowledge Model 
Management. These steps are shown in Figure 4.5. As previously mentioned, AFDDOnto is 
developed to integrate BIM with BMS, drawing from knowledge extracted in the form of 
association rules, taxonomies, concepts, and relationships derived from the literature analysis of 
AFDD for HVAC systems and BIM. Furthermore, a case study is used to implement and 
demonstrate the proposed methodology in the subsequent section of this thesis to generate new 
dynamic BIM features and update the proposed model. 
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Figure 4.5: Proposed Methodology for BIM-based AFDD of HVAC 

Schema Conversions: The first step in developing the proposed BIM-based knowledge model 
involves schema conversion, aiming to integrate isolated information from BIM and BAS/BMS 
using an accessible schema. This process facilitates centralized access to the integrated dataset. 
IFC is typically stored in EXPRESS Schema, but it can also be stored in IFCOWL to ensure 
compatibility with ontologies. However, as IFCOWL tends to have a larger file size and lacks all 
the necessary concepts for AFDD, the methodology proposed utilizes AFDDOnto, which 
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maintains compatibility with IFCOWL and incorporates AFDD-related concepts. The modular 
ontology utilizes existing BOT ontology concepts, hence allowing for the reuse of BOT and IFC-
SPC schema alignments for the proposed BIM-based ontology. The conversion and alignment 
procedure involves initially converting the IFC-SPC schema to IFCOWL and mapping it through 
BOT modules to AFDDOnto. The resulting ontology contains the necessary concepts for HVAC 
AFDD, maintenance, and tracking states, extracted from machine learning models developed 
using BIM and BMS features, as shown in Figure 4.6. 

The suggested IFC MVD (Model View Definition) for exporting IFC data includes two options. 
Firstly, the IFC4 Reference View, which is the broadest MVD; and secondly, the IFC4 Design 
Transfer View, a subset of the IFC4 Reference View used for transferring BIM data to IFC format. 
The resulting IFC data is converted to the target schema, IFCOWL, using conversion tools such 
as IFCtoLBD [183]. The mapping between EXPRESS schema and IFCOWL utilizes the BOT 
ontology, transforming IFC entities such as Site, Building, Story, Space, and Elements into the 
destination knowledge model. Each BIM entity retains a GUID (Globally Unique Identifier) during 
this conversion for reference purposes. 

On the other hand, BAS/BMS sensory data is imported for analytics, which may vary in 
format, requiring compatibility with specific analytics tools. In this study, the dataset was available 
in CSV format, and TensorFlow and Keras libraries were utilized for model development. The 
parameters, configurations, and results are imported into the BIM-based knowledge model, where 
relationships between concepts are captured in the form of axioms, allowing the assertion of 
individuals. The proposed knowledge model can be accessed using SPARQL for making queries. 

Additional custom property sets can be incorporated into the IFC to supplement the 
knowledge model, containing product information, installation dates, change orders, maintenance 
work orders, or related data. These details are typically found in manuals, work orders, or product 
webpages and can be stored by BIM managers in COBie files. In BIM authoring tools such as 
Revit, ‘P-sets’, or ‘Property Sets’, are utilized to denote a collection of properties linked to an 
object in a BIM (model). These properties define specific attributes.  

On the other hand, 'Entities' in the BIM model refer to individual elements with identifiable 
characteristics. Within ontology vocabulary, the 'P-set' and 'entities' are treated as individuals, 
while 'Defined type' and 'Enumeration type' are classes or concepts. 
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Figure 4.6: Schema Conversion and Mapping Used by AFDDOnto to Integrate BIM and 
AFDD Analytics 

Feature Engineering: In practice, the availability of the features for AFDD model development 
depends on the number and type of sensors installed in the facility, including the HVAC and 
spaces. The purpose of the Feature engineering step is to use dynamic BIM and BMS data to 
enable the introduction of a new set of Features of Interest (FOI) that can be created as calculated 
measures (referring to a custom or derived measure that is calculated based on other existing 
measures or data elements within a dataset).  

The goal of the feature engineering step is to improve the dataset by adding features that 
capture the dynamism of the facility that can be used for AFDD. The Feature Engineering step 
involves the usual data preparation activities during the pre-processing stages of model 
development. In addition, it requires identifying and selecting key variables or attributes that can 
indicate the system's state or condition, which can aid in diagnosing HVAC faults. This can be 
accomplished by utilizing one or more related features and performing arithmetic operations to 
introduce a new set of features that capture the building asset's dynamism.  

An example of a calculated feature that uses arithmetic operations is the 'Temperature 
Differential' for an HVAC system. This calculated feature can be created by subtracting the outlet 
temperature from the inlet temperature. The generated calculated feature can be used as a metric 
to show the cooling efficiency of HVAC and can be further monitored in real-time to evaluate the 
performance of the system. 
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The Features of Interest (FOIs) identified in this study can capture the dynamism and context 
of HVAC and its associated spaces by using the state of operation of the HVAC system and 
spatial information such as the location of the HVAC sub-system and air conditioning function. 
The duration and frequency of data capture and storage are determined based on the type of 
HVAC fault under consideration. In cases where specific information is unavailable, the 
knowledge model incorporates concepts to define the frequency of knowledge capture.  

The features utilized in this study are sourced from both BIM and BMS. The AFDDOnto 
axioms are employed to form connections for the relevant features needed for a given task, 
considering the connections between fault types, system types, and specific features. In the case 
study under investigation, static BIM features and BMS features are used to introduce a category 
of FOI that consists of multiple features for each of the building spaces to capture facilities' 
dynamism and compensate for limited sensory data.  

The constraints associated with the type of sensory data that can be used for the AFDD 
model in addition to the needs of the algorithm being used, depend on factors such as the building 
type, HVAC type, the variations in occupancy and window states, as well as the number and type 
of sensors available (the features), and the placement of sensors in the building and HVAC. To 
assess the importance of the identified features, the study leverages statistical correlation 
analysis and machine learning algorithms to determine feature importance. These analytical 
techniques enable feature analysis by allowing identified features relative significance with those 
of existing features that the fault detection and diagnosis process can use.  

The introduced features can be incorporated into the model by uncovering underlying 
relationships and patterns, contributing to AFDD model development, particularly in situations 
where relevant features may be unavailable. Sensory data can be categorized based on their 
function and be grouped and undergo statistical correlation analysis and feature importance 
analysis to determine which of the generated features can improve the AFDD process or 
compensate for the lack of availability of certain categories of features.  

Dataset and Machine Learning Algorithm for AFDD: The key engineering steps for AFDD 
model development include firstly the data collection from BIM and BMS/BAS sources. The 
second step is feature engineering, which enables the generation of BIM-based features, i.e., 
performing feature transformation to transform static BIM features into dynamic ones. This leads 
to the creation of a dataset that in this study is referred to as the ‘curated dataset’. Different 

machine learning algorithms can be then developed over this dataset, for detection (and/or 
diagnosis) of various faults. Development of such algorithms typically follows the six steps of the 
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CRISP-DM (Cross-Industry Standard Process for Data Mining), i.e., problem understanding; data 
understanding; data preparation; modeling; evaluation; and deployment [184]. The study aims to 
integrate data from BIM and BMS to illustrate the importance of utilizing contextual information 
and dynamic BIM features. In this step of the proposed methodology, the curated dataset 
containing features from both the BMS and BIM data sources is utilized for the development of 
the AFDD model.  

The initial BIM features are static and need to be transformed into dynamic BIM features 
using calculated measures in the feature engineering step. The dynamic features created capture 
the temporal characteristics and behavior of the HVAC system that can be used to replace or to 
be added to the dataset in events where certain sensory data are unavailable or that can provide 
for additional fault-type diagnostics of HVAC. These temporal characteristics can include time 
intervals, temporal dependencies, or other external factors such as seasonality. These 
additionally introduced features represent the state of the system and their applicable spaces that 
are not typically available in BMS/BAS and are added to the curated dataset in the form of new 
features that can be used for AFDD of HVAC. 

The proposed methodology enables the use of various algorithmic techniques tailored to 
meet specific requirements and characteristics of HVAC levels and faults without being restricted 
to any particular data-driven algorithm. The effectiveness of an automated fault detection and 
diagnostics model is assessed in this study by measuring its sensitivity to the introduced set of 
features.  

This sensitivity measure is based on the accuracy of diagnostic results for the faults being 
investigated. This measure is then used to compare and select the most suitable AFDD model. 
By comparing algorithms, the methodology enables the asset manager with decision-making 
capability for informed algorithm selection and comparison. While this study does not directly 
contribute to developing new machine-learning algorithms, it plays a crucial role in AFDD for 
HVAC systems by allowing the introduction of new features to help with fault detect ion, fault 
diagnostics, and limited sensory data availability. 

BIM-based Knowledge Model: The proposed BIM-based model includes ten provisions in 
terms of concepts or classes to store analytics obtained from AFDD, as shown in Figure 4.7. The 
Track and State concepts enable the knowledge model to be updated at predetermined intervals 
to represent the present state of the facility. By enriching BIM with analytics instead of the entire 
AFDD data, the knowledge model retains only relevant information needed for AFDD use cases, 
avoiding redundancy. This is achieved by mapping BIM elements and associated features using 
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Uniform Resource Identifiers (URIs) that maintain compatibility with IFC, including source GUID 
and custom parameters that are added to the BIM model for AFDD purposes.  

The link between BIM and BMS sources is established and maintained by mapping relevant 
concepts essential for AFDD, ensuring seamless integration. The BIM-based knowledge model 
requires periodic updates with new analytics based on the HVAC system’s maintenance 

schedule, following predefined intervals recommended by ASHRAE, such as monthly, three-
monthly, semi-annually, or annually [189], and additionally whenever AFDD models detect faults. 
The knowledge model includes this concept under the maintenance class, providing information 
about frequency, type of maintenance action, and diagnostics pertaining to HVAC. 

 
Figure 4.7: Concepts Used in BIM-Based Knowledge Model (AFDDOnto) 

Access to the BIM-based knowledge model is facilitated through the SPARQL query 
language. It allows users to construct queries and retrieve information about features, 
configurations, analytics, spatial details, maintenance information, images, and links to external 
files. The semantic model in OWL format can be stored in RDF and TTL formats, making it 
accessible online. The application of the BIM-based knowledge model for the proposed 
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methodology is demonstrated in the case study section, and further details are provided in the 
discussion section of this thesis. 
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Chapter 5: Implementation of the Proposed Integration Solution 5

5.1 HVAC AFDD Case Study 
The ORNL’s Flexible Research Platform (FRP) [186] is selected as a case study to 

demonstrate the proposed solution's analysis, testing, and evaluation. The FRP is a 3,200 ft 2 
facility designed to emulate a 1980s-era office building equipped with a single packaged RTU 
(Roof-Top Unit)  connected to a multi-zone VAV (Variable Air Volume) sub-system [187] , as 
depicted Figure 5.1. The test facility is designed as a controlled and fully equipped lab experiment, 
where faults are intentionally introduced individually and targeted. This controlled environment 
allows for precise investigations and analysis, as all sensory data necessary for fault detection 
and diagnosis are readily available. 

The case example used in this study is modeled using two of the most common algorithms 
used in AFDD (according to the literature analysis carried out in chapter 2 [52]), namely ANN and 
SVM. The ANN models work based on processing the input data by means of one or more 
interconnected neuron layers which perform transformation to data [192] [193].  

The SVM classifiers work by determining the optimal hyperplane to maximize the margin 
between a set of classes of data in the feature spaces to enable classification [194] [195]. 
Common parameters that are fine-tuned when training an ANN include the Activation function 
(ReLU and softmax), Hidden drop-out ratio, stopping tolerance, random seed, hidden layer size, 
epoch, and the optimizer (Adam). For SVM, the most common parameters include Loss Function, 
C value, and Kernel type. In this study, both model families were trained and tested using Python 
libraries such as TensorFlow, Keras, and scikit-learn.   

The case study model, which utilized both BIM and BMS data as input for model 
development, is used to test the knowledge model using different case-representative algorithms 
for analytics. Initially, AFDD models are developed using SVM algorithms, with one focusing on 
fault detection (FD) achieving 96% accuracy and the other targeting diagnostics (FDD) achieving 
97% accuracy. Additionally, two models are constructed using ANN, where the Fault Detection 
model achieved 98% accuracy and the fault detection and diagnostics model achieved 99% 
accuracy. The high accuracy of the models is due to the controlled environment nature of the test 
facility, in which the faults are introduced individually for a period of one day. 

 5 The material of this chapter is published in form of the following publications: 1. Hosseini Gourabpasi A, Nik-Bakht M. BIM-based automated fault detection and diagnostics of HVAC systems in commercial buildings; Journal of Building Engineering, Volume 87, 15 June 2024, 109022. https://doi.org/10.1016/j.jobe.2024.109022 
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The model incorporated a curated dataset that includes BIM and BMS features. In the case 
study of this thesis, some groups of features were intentionally removed to simulate limited 
sensory data availability in commercial buildings. This enabled the study to assess the 
effectiveness of dynamic BIM features.  

The accuracy of the model for fault detection and diagnostics was used as a sensitivity test 
to determine the most suitable AFDD algorithm that is compatible with the dynamic BIM features 
in the curated dataset. This approach enables the development of an AFDD model in various 
ways, such as improving model accuracy, accommodating additional fault types, and addressing 
the unavailability of sensory data. 

 
Figure 5.1: The FRP BIM Model 

The BIM model for the case study is created by author of this thesis using related documents 
pertaining to building, HVAC assets, experiment setup and documents that could provide 
additional context as a source of BIM [196] [197] [198] [199] [200] [201]. The BIM model is 
authored using Autodesk’s Revit to represent architectural and mechanical models of the test 

facility, including the RTU system.  
The BMS data is stored in CSV format, representing the sensory data originating from the 

BMS system of the HVAC. The dataset is used to create machine learning models, namely SVM 
models and ANN models for fault detection and diagnostics of seven fault types with a data 
collection interval of one minute, which can be accessed through Kaggle1. The AFDDOnto 
integrates data from both BIM and AFDD models, including the custom properties that can be 
created in BIM for specific use cases such as FDD. The methodology for utilizing BIM and BMS 

 1 https://www.kaggle.com/datasets/claytonmiller/lbnl-automated-fault-detection-for-buildings-data 

https://www.kaggle.com/datasets/claytonmiller/lbnl-automated-fault-detection-for-buildings-data
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data to populate the AFDDOnto involves four main modules, namely format exchange, dataset 
curation, BIM to AFDD, and AFDD to BIM, which are based on the author's proposed methodology 
for using BIM and BMS data using AFDDOnto [198].  

In the first module, the BIM model is required to be converted to IFCOWL to be compatible 
with AFDDOnto. The second module is utilized to add BIM-based features to the BMS dataset 
using feature engineering. The third module involves the development of AFDD models for the 
FDD of HVAC, where the results and configurations are stored externally. The last module 
enables the integration of the extracted knowledge into AFDDOnto by retaining links through 
GUID. 

The content of the AFDDOnto can be accessed by the facility manager in three ways namely 
through query, knowledge graph models, and as well as retaining links to external models. To 
query the knowledge model SPARQL queries are constructed based on the 13 competencies 
identified by literature analysis to retrieve the required data. The competencies listed in Appendix 
F are used to populate the AFDDOnto with the required information. 

Additionally, the knowledge model can be visualized through a knowledge graph and also 
retains the links to external files such as the BIM model. The result of this integration results in 
the inclusion of data from the BIM and as well as the data AFDD model developed using the BMS 
dataset. The AFDDOnto serves as a framework for organizing and managing the data and 
insights derived from the case study, facilitating future analysis, comparisons, and further 
improvements in the HVAC fault detection and diagnosis model using the relevant concepts 
capturing the relationship between HVAC as an asset and the building. 

The lab facility provides an ideal setting for investigating the proposed methodology by 
allowing the research to explore how the AFDD may differ in real-world scenarios. In practice, 
there could be limitations or challenges in obtaining comprehensive sensory data or additional 
uncertainties due to weather, environment, occupants, and HVAC assets. Therefore, it becomes 
crucial to explore the potential of utilizing BIM to compensate for any potential shortcomings 
encountered in practical settings where access to desired sensory data for an effective AFDD 
model is not feasible.  

The objective of incorporating BIM into the study is to evaluate whether BIM can serve as a 
valuable resource to bridge the gap between the controlled lab experiment and real-world 
applications. The study aims to investigate the potential of BIM to overcome practical limitations 
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and improve the overall performance and reliability of HVAC fault detection and diagnosis 
techniques in real-world scenarios.  

The proposed methodology generates dynamic BIM features incorporating BIM and BMS 
features to develop fault detection and diagnostics models for an RTU system connected to ten 
VAV sub-systems. The floor plan for the two-story building is shown in Figure 5.2, which consists 
of 10 spaces used as rooms and two additional spaces on each floor used for staircases.  

   
Figure 5.2: Floor Plan of the FRP Facility 
5.2 AFDD of HVAC Using BIM and BMS Integration  

The conversion process is shown in Figure 5.3. The BIM (model) used in this study is at LOD 
300 as per the BIMFORUM standard [199]. At this level of development, the 3D model contains 
detailed geometric representations of components such as ductwork, equipment, and 
accessories. While the model provides accurate representations of equipment dimensions, 
specific details such as insulation, hangers, and supports are not required [199].  

The built-in converter of Revit is used to export the model to the IFC-SPC schema. IFC4 
Reference view is selected, which is the most comprehensive IFC output. To maintain 
compatibility between the BIM-based knowledge model and the model created using the BIM 
authoring tool, the output file includes the GUID of the entities, including the custom entities 
created in BIM. The IFC model is separately imported to an IFC viewer called “usBIM.viewer+” 
[200] for analysis.  

In this study, the process of converting IFC to IFC OWL is automated using the recommended 
“IFCtoRDF” converter [71] by buildingSMART. This converter is capable of extracting and 
mapping the necessary information from the source to the target ontology, making it easier to 
identify and map the entities required for the AFDD of HVAC. As the IFC file output is now made 
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available in the SPC schema, it needs to be converted to a schema applicable to ontology. Hence, 
the model is converted to OWL schema using the IFC to LBD converter [183], which maps the 
entities in both schemas and populates the schema with BIM data. The IFCOWL is imported to 
the BIM-based ontology. The “Protégé” ontology editor and framework for building intelligent 

systems [180] is used for knowledge model management of the BIM and BMS integrated data. 

 
Figure 5.3: Model Conversion for the FRP Case Study 

The FRP dataset used in this study consists of 68 features extracted from BMS, representing 
sensory data collected by various sensors in both time-series and state-representative formats. 
To analyze the dataset effectively, the BMS features were grouped into 11 categories based on 
their similarity, regardless of the sensor's location. These categories include VAV temperature, 
room temperature, humidity, status, supply and return temperature, metered data, setpoint, flow 
rate, circuits 1 and 2, related features. 

To address potential scenarios where certain BMS features required for effective AFDD may 
be unavailable, 80 static features were sourced from BIM. The BIM features were further divided 
into Live and Static BIM features. The static features are directly imported, while the dynamic BIM 
features are the FOI, which act as calculated features comprising both BMS time-series data and 
BIM data. These dynamic BIM features provide crucial contextual information necessary for AFDD 
of HVAC systems.  

The static BIM features encompass spatial data, including features such as distance to HVAC 
from VAV (the distance at which the VAV is located from the RTU), room area, window area, door 
area, opening area (indicates the area of the sum of the opening, including the door and windows 
for each space), next to the shaft (indicates if the staircase shaft surrounds the walls), and exterior 
room (signifies if the room is situated inside the floor or is facing outdoors) features. Additionally, 
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custom properties are defined to offer supplementary contextual details about HVAC components, 
faults, and historical information, further enhancing the overall AFDD process. 

The FRP dataset is combined with BIM data to create a new curated dataset as a result of 
model conversion explained above to have the dataset ready for AFDD model development. The 
GUIDs assigned to the static features of the FRP architectural and mechanical model serve as 
identifiers to associate the BIM elements with BMS time-series data. This curated dataset 
contains both BIM and BMS features and acts as a pool of candidate features. To identify the 
most important features, a feature importance analysis is conducted.  

A Random Forest classifier is used to train the dataset, and feature importance is measured 
as the mean and standard deviation of impurity decrease within each tree. Other feature 
importance techniques, such as XGBoost Classification Feature Importance (based on gain), 
Random Classification, and Decision Tree Classification (normalized total reduction of criterion 
brought by the feature), were also assessed. After evaluating various classifiers, the Random 
Forest Classifier was selected because it effectively highlights the importance of BIM features in 
the dataset. 

 This approach identifies key features that play a significant role in the AFDD process, 
particularly when certain BMS features are limited or unavailable. In this study, the top feature 
categories were only considered to limit the number of features. In practice, the number of 
features can be modified based on the algorithm in use or is limited to the actual availability of 
BMS features and BIM data for the use case of AFDD. In this study, the following feature 
categories are investigated, i.e., Air humidity, Discharge Temp, Suction Temp, Air temp and 
cooling setpoint, and "spaceAirConditioned"; which were selected by performing feature analysis 
to identify the most impactful features.  

The categories that have been selected are determined through feature analysis of the 
curated dataset. Most of these categories come from the BMS, except for the 
spaceAirConditioned category. The main reason is that spaceAirConditioned is the only Live BIM 
feature among other static features, indicating the importance of such features. Nevertheless, if 
the dataset is accessible for an extended period and maintenance information is available for the 
fault types under consideration, the maintenance information will be incorporated to form BIM 
features. It is anticipated that the use of the proposed methodology in existing buildings will signify 
the role of BIM features. 
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The spaceAirConditioned category, which represents the 12 spaces used as rooms in the 
FRP case study, is translated to 10 calculated features that depend on the states of two circuits 
and two compressors and air conditioning of ten zones. The remaining two spaces are staircases 
not directly connected to VAV (Variable air volume) and act as a shaft in the building connecting 
the two stories.  

Further, the calculated measure takes into account the HVAC schedule pertaining to the time 
of operation and modes, The state of the HVAC, i.e., cooling, heating, or fan state, and the spaces 
having access to VAV considered as being air-conditioned or not, to define the dynamic feature. 
Each HVAC mode is activated once the thresholds are met. The thresholds of the HVAC schedule 
are defined based on the occupancy in the facility, which is predefined. The details are provided 
below. 

In the interest of brevity, this study only looks at the system-level function of the defined FOI 
(spaceAirConditioned). The FOI category uses time-series data from BMS to denote the HVAC 
in the air conditioning state, denoted in binary form (True/False) in the dataset. Figure 5.4 
represents the HVAC schedule for both Occupied (Left) and un-Occupied Mode (Right).  

The thresholds for both occupancy modes are different as shown. The RTU has a supply air 
temperature of 12.7 °C. In the occupied mode where occupancy is simulated, once the 24°C 
threshold is met, the HVAC begins to air condition (Cool) the building spaces; below the defined 
threshold, only the fan is activated until the space temperature drops below 21°C at which heating 
is turned on.  

To further explain, in this case based on AFDD’s taxonomy, the RTU, is the ‘HVAC system’ 
and is associated with the cooling ‘function’. The fan is the ‘HVAC equipment’, and the VAV 
represents the ‘sub-system’ level of the HVAC and has the heating ‘function’. The “dynamic BIM” 
feature, is presented in the form of a calculated measure which is shown in Figure 5.5, thus 
enables us to combine the streams of real-time data to be enriched with contextual data from BIM 
and create a synthetic feature that can be added to the dataset to be used for AFDD. This dynamic 
BIM feature is intended to compensate for missing sensory data (Context-aware) in this case 
study spatial information that can be added for AFDD model development.  



  68 

 
Figure 5.4: BIM Based Calculated Feature Generation for FRP Case Study 

For the calculated measure (spaceAirConditioned) to be True i.e., to indicate the HVAC 
system is in an air conditioning state; the following conditions must be met. (As illustrated in Figure 
5.5). At least one True value must be present in each row i.e., in the case of following features 1-
Compressor 1 and Circuit 1, 2- Compressor 2 and Circuit 2, or 3- both Compressors 1 and 2 with 
Circuits 1 and 2 at least one must hold True. Please note since Rooms 11 and 12 don't have a 
separate VAV, so the air conditioning mode in those rooms remains as False. 

 
Figure 5.5: Calculated Measure Defined in FRP Case Study for Creating Dynamic BIM 
Feature 

The curated dataset, which combines BMS and BIM features, is imported into the Anaconda 
distribution program [201], acting as a virtual environment specifically set up to develop AFDD 
models. ANN modes are initially developed using the newly created dataset, and further, this 
study uses SVM to test and compare the models. Analytics such as FDD accuracies and 
parameters used for model development are fed to the knowledge model, and sensitivities of the 
models for the given features are measured.  
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The developed models are divided into fault detection models using ANN and fault 
diagnostics models using ANN. Similarly, SVM models are developed for comparative analysis. 
The highest accuracy achieved using Berkeley Lab FDD dataset [202] for the AFDD models 
developed are 0.98 and 0.96 for fault detection utilizing ANN and SVM models, respectively. For 
fault diagnostics of HVAC faults, the accuracies are 0.99 and 0.97 for ANN and SVM models. The 
reason for such high accuracies can be attributed to the usage of new HVAC equipment and 
controlled nature of the facility, individual introduction of faults and a set of diverse sensors 
installed in the facility with the main objective of AFDD applications.  

To understand the importance of the type of sensory data and its availability on the model. 
The AFDD models were developed by focusing on the top 5 important features, namely Terminal: 
Room Air Humidity, RTU: Circuit 2 Discharge Temperature, RTU: Circuit 2 Suction Temperature, 
Terminal: Room 102 Air Temperature, Terminal: Room Air Temperature Cooling Setpoint. Several 
models were created in which one or more combinations of BMS features denoted above were 
dropped and replaced with the BIM features to simulate scenarios where facilities have limited 
sensory data available to examine the significance of dynamic BIM features in the absence of 
common and impactful features.  
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Chapter 6: Results and Discussion 
The results of the study are presented by considering the flow of data, i.e., from BIM to AFDD 

and, conversely, AFDD to BIM, as shown in Figure 6.1, to illustrate the bi-directionality that can 
enable realization of the Digital Twin of the facility in terms of the flow of data. The proposed 
methodology applies to AFDD of HVAC at the system, equipment, and sub-system levels.  

The generated dynamic BIM FOI category is made possible by integrating the BIM model of 
the facility that enables the utilization of the spatial relationships of room spaces and HVAC 
components with the real-time stream of data being captured by BAS/BMS. The dynamic BIM, 
utilizes dynamic features generated using sensory and contextual information from BIM and BMS. 

 
Figure 6.1: Bi-directional Flow of Data Between BIM and BAS/BMS 

Initially, in the BIM to AFDD flow, the BIM and BMS data are used to introduce additional 
features that take into account spatial/contextual information about the HVAC and the thermal 
zones it serves; by doing so, the generated features are exported to the AFDD model to perform 
Fault detection and diagnostics using various algorithms. The introduced features are intended to 
either compensate for the lack of specific sensory data availability or to improve the model.  

The results of the AFDD models from the case study Indicate that when features belonging 
to a specific category are dropped from the curated dataset and replaced with dynamic BIM 
features; it can lead to an improvement or similar accuracy in fault detection. For instance, when 
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the Room air humidity category, consisting of 12 features for each zone, is unavailable, adding 
dynamic BIM features can enhance the detection accuracy. 

Moreover, in cases where the most significant features are not available, integrating BIM 
features has shown a slight increase in performance for ANN models but not for SVM models. 
The findings suggest that BIM features have a more significant impact on ANN models compared 
to SVM models. 

The impact of replacing the top 5 most important features with BIM sensory information from 
the curated dataset demonstrates the significance of BIM features. Although BIM features can 
partially compensate for the absence of the most influential features, the models generally did not 
surpass their performance. The behavior of BIM features in the AFDD model depends on the 
classification model used. BIM features improved accuracy only when specific BMS features, 
such as Terminal: Room Air Temperature Cooling Setpoint and Terminal: Room Air Humidity, 
were omitted.  

It is essential to understand the interplay between BIM and BMS features and their influence 
on the overall performance of the AFDD model. Notably, for ANN models, replacing dynamic BMS 
data with BIM features improved the fault detection and diagnosis accuracy by up to 6%, 
considering the facilities’ fully controlled environment that significantly reduces the need for BIM 

features. 
In the flow direction from AFDD to BIM, the parameters and configurations alongside 

analytics obtained using the AFDD model are imported into the BIM-based knowledge model that 
includes provision for AFDD knowledge extracted from the model. This knowledge capture serves 
as a repository for storing AFDD analytics and updating the model to reflect the facility’s current 

state. This process allows for the development of AFDD models using the same configuration for 
similar facilities and facilitates comparisons between different AFDD models.  

The AFDD model’s parameters, features, and results, including accuracy, are transferred and 

stored in CSV format for each fault detection and diagnostics model. Acknowledging that the case 
study takes place in a fully controlled environment reduces the significance of dynamic BIM 
features regarding contextual information.  

However, this controlled setup allows testing of the AFDD model under limited sensory 
availability. In real-world scenarios, sensor failures or biases may lead to incomplete data capture, 
and in such situations, utilizing BIM features becomes valuable, as they can partially compensate 
for the lack of dynamic data. Despite the controlled environment downplaying the importance of 
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BIM features in terms of accuracy, their inclusion remains relevant in practical applications, 
contributing to a more comprehensive and accurate fault detection and diagnosis process.  

Although this study does not contribute directly to the development of AFDD algorithms, it 
was necessary to reproduce existing AFDD models to demonstrate the introduction and usage of 
dynamic BIM features, particularly in the absence of sensory data commonly used for AFDD. 
Moving forward, the main contribution of this study will be presented, which is the access to the 
developed knowledge model and its application for BIM-based AFDD model development. 
Additionally, the visualization of BIM-based AFDD results in HVAC systems using knowledge 
models will be discussed. 
6.1 Accessing Knowledge in BIM-Based AFDD of HVAC Systems 

In the FRP case study, Blazegraph [203] database and Protégé knowledge management 
editor are used to support SPARQL queries. Blazegraph serves as a scalable and high-
performance triplestore for storing RDF data, facilitating efficient and flexible querying of the 
knowledge model. On the other hand, Protege is employed as an ontology editor and knowledge 
representation tool, enabling the development and management of the BIM-based ontology.  

The knowledge model allows for adequate access and retrieval of information pertaining to 
features, configurations, analytics, spatial data, maintenance details, images, and links to external 
files related to the facility. Further, Protégé is used to import the AFDD analytics. This involves 
importing the analytics and configurations of the AFDD models to the BIM-based ontology, i.e., 
the parameter’s features, which are specific settings, configurations, fault types, and model 
accuracy. While this step was done semi-manually for the case study, this step can be automated 
using scripts for full automation of the process. 

The AFDD analytics are imported into AFDDOnto using BIM and BMS data. Figure 6.2, 
depicts a snippet of the ABOX version of the AFDDOnto for the 4 AFDD models developed, which 
is represented in the form of a knowledge graph. This represents how the AFDDOnto concepts 
of Zone, Information, Element, Algorithm, and Feature populate AFDDOnto. The ABOX model of 
the AFDDonto with respective instances is stored in the Blazegraph [203] database to facilitate 
queries, which can be accessed using SPARQL queries. 
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Figure 6.2: Conceptual Excerpt of the ABOX Version of the AFDDOnto Populated with 
FRP Case Study Instances           

Knowledge graphs can be effectively visualized by loading the ontology into Protégé and 
utilizing the "Graph View" tab; users can visually explore the interconnected nodes and edges 
representing classes, individuals, and properties within the knowledge graph. This interactive and 
intuitive graphical representation aids in understanding the hierarchical structure and 
relationships within the graph, facilitating analysis.  

On the other hand, accessing knowledge graphs is possible using Blazegraph's SPARQL 
endpoint. HVAC operators can execute SPARQL queries to retrieve specific information from the 
knowledge graph. This enables complex queries (HVAC equipment, spaces and occupant 
related), relationship analysis (Spatial, associated faults), and valuable insights from the data 
(Status and historical), making such semantic databases a suitable choice for managing and 
querying large-scale knowledge graphs in various applications, including the semantic web, data 
integration, and knowledge representation. 

Figure 6.3. depicts a sample query for the AFDDOnto, which contains the IRI namespaces 
and the query construct to access the AFDDOnto knowledge using the SPARQL query. Based 
on the competency identified, the user may be interested to know about the parameters used for 
each algorithm during model development. The SPARQL query retrieves parameters and 
associated values for SVM and ANN models used in the case study. 
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Figure 6.3: Competency Question Constructed using SPARQL for Accessing 
AFDDOnto 
Additional related information can be retrieved by combining queries which gives the type of 
algorithm used for AFDD, the respective parameters used for model development, and their 
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respective values. Such information can be used to reproduce models or improve them. Further, 
the knowledge capture allows for an informed comparison among AFDD algorithms developed 
by allowing the operator to identify and compare the type, name and value of the parameters used 
for model development. The data residing in AFDDOnto can be stored in OWL, RDF, and TTL file 
formats. Most databases that enable SPARQL endpoints permit retrieval, access, and 
modification of AFDDOnto knowledge. 

The import of analytics using the proposed methodology results in populating the knowledge 
model in the form of ABOX ontology, which means the knowledge graph is populated with 
assertations and individuals as opposed to TBOX, which constitutes the knowledge model itself, 
i.e., formal naming, definition of categories and properties [204]. This entitles the flow of data from 
AFDD to BIM. The ontology is populated with analytics and configurations from the AFDD model, 
including data extracted from the BIM.  

AFDDOnto incorporates a maintenance concept within its ontology framework, allowing 
access to maintenance-related information and specifying the frequency of updates for stateful 
BIM under the Maintenance concept, which uses the ASHRAE’s concepts [189] for the 

maintenance of HVAC. However, due to the nature of the BMS dataset, which contains about a 
month of data related to HVAC and is much shorter than the required maintenance schedule 
needed for stateful BIM demonstration.  

The limited dataset makes it impossible to test the tracking of maintenance information, which 
would enable the generation of dynamic BIM features. The minimum duration needed for such a 
dataset is typically about three months to represent maintenance data of the RTU and VAV 
systems, but it is expected to show its significance when maintenance data is recorded for much 
longer durations to cover multiple maintenance. It must be noted that the features that are 
exported from BIM maintain their link to the BIM objects using the GUIDs. As features are inserted 
into the knowledge model, the BMS and BIM features in the model can be exported using the 
protégé export tool to a CSV file that constitutes the URI in the knowledge model for referencing 
and queries.  

The knowledge model can be queried for information about features, maintenance, and 
AFDD configurations and further used for model comparison between models such as ANN and 
SVM, as done in this study. In the event of the availability of the dataset for a longer interval of 
time, the knowledge model can be periodically updated by analytics to represent the as-is state 
of the facility in the form of a Digital Twin (DT) that can present live state of the asset and building 
and as well the stateful information. 
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6.2 Visualizing BIM-Based AFDD Results in HVAC Systems with Knowledge Models 
Currently, BIM does not incorporate analytics, and once the AFDD model is run, the model’s 

configuration and analytics are not saved. This limits the effectiveness of comparisons and does 
not allow for the reproduction of the same models. However, using the proposed methodology, 
such information can be brought into the knowledge model.  Knowledge graphs are preferred for 
visualizations at more abstract levels to identify the relationships between the classes.  

There are multiple tools for visualization using knowledge graphs; WebVOWL [205], for 
example, can be used to represent the graph online. Through the knowledge graph visualization, 
stakeholders can visually navigate and interact with the BIM and AFDD data, gaining a holistic 
view of the building’s digital representation and its associated analytics. This visual representation 

enhances comprehension, facilitates data exploration, and supports decision-making processes 
related to HVAC system’' fault detection, diagnosis, and maintenance strategies.  

For example, as shown in Figure 6.4, when the AFDD analytics were executed separately 
using the ANN and SVM model, both the model’s analytics were imported into the knowledge 

model; the knowledge graph below shows RTU-1 for ANN and RTU-2 for the SVM model created 
where assertations are visualized using tools such as OWLViz and OntoGraf that can be found in 
Protégé and also can be listed.  

The information provides the facility manager with a clear understanding of each parameter 
used for AFDD models, along with corresponding values and additional details, such as the 
accuracy of the model. This information can be utilized to develop similar models for similar 
facilities, taking into account HVAC systems, layouts, and analysis. 
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Figure 6.4: An Excerpt of the ABOX Knowledge Graph for Inserting ANN and SVM 
Model Configuration (Visualization through knowledge graphs) 

This knowledge can be accessed using the BIM-based ontology through SPARQL queries, 
which enables retrieving information from knowledge graphs. This ability enables the asset 
manager to access the analytics, such as faults associated with the HVAC system, spaces, and 
the configuration to detect them. If access to data is needed, which in terms of knowledge models 
is known as individuals, then queries need to be constructed using SPARQL to retrieve the 
necessary data.  

For example, a SPARQL query is written to allow the asset manager to identify the specific 
HVAC system in different rooms. The query output shown in Figure 6.5, provides the GUID 
reference that can be tracked in the IFC model. When coupled with maintenance information, 
such queries can provide additional information regarding the product’s maintenance status, 

replacement, or life expectancy when BIM information is available. 
prefix : <https://github.com/arashhosseiniarash/AFDDOntology#> 
prefix owl: <http://www.w3.org/2002/07/owl#> 
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
prefix xml: <http://www.w3.org/XML/1998/namespace> 
prefix xsd: <http://www.w3.org/2001/XMLSchema#> 
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> 
Prefix bot: <https://w3id.org/bot#> 
Prefix brick:<https://brickschema.org/schema/Brick#> 
SELECT DISTINCT ?space ?ELement_GUID ?Description 
WHERE { 
?space bot:containsElement ?ELement_GUID . 
?ELement_GUID rdfs:comment ?Description 
} 

(a) SPARQL query construct to retrieve spaces that have HVAC equipment located in them  
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(b) The retrieval of SPARQL query for both algorithms used in RTU case study 

Figure 6.5: An Excerpt of the Results of Query Retrieval Showing Spaces in the 
Knowledge Model and Associated GUIDs in BIM 

In addition to visualization using the knowledge graphs, the knowledge models allow for 
storing files and images or providing access to external files such as the BIM model. As an 
example, from the case study, a PNG file was used to capture a snippet image from the Revit 
model of the RTU. This image was then linked to the knowledge model and is displayed in Figure 
6.6.  

In practice, maintenance slips, product images, and manuals can be linked to models for 
referencing. However, IFC files, which can be utilized by IFC viewers, can also be used to link 
faulty entities and their associated metadata. In this research, access to files and images was 
performed manually, as automated conversion from IFCOWL to IFC was not available at the time 
of the study. 
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Figure 6.6: A Snippet of an Image Stored in the BIM-based Knowledge Model 
(Visualization of fault at system level through BIM) 
6.3 Discussion 

The proposed integrated model aims to improve decision-making capabilities by providing 
access to context-aware data and a comprehensive knowledge model, as well as spatial 
allocation of the output analytics. This interaction between the users and the knowledge model 
aims to optimize maintenance processes and elevate overall operational efficiency. Also, such an 
integrated solution bridges the gap between traditionally isolated systems, namely BIM and BMS.  

As a semantic model of the building, BIM integrates the information and attributes of the 
building’s physical and conceptual elements within a 3D/spatial representation. BIM is composed 

of various disciplines, i.e., architectural, structural, and MEP, as a single and coordinated model. 
Hence, BIM fosters accessibility and flow of information needed for HVAC and its maintenance 
and extends to various use cases applicable to the entire lifecycle of the building.  

The proposed BIM-based automated FDD solution for HVAC systems is developed using the 
following three main components namely AFDDOnto, BIM, and BMS/BAS. The AFDDOnto 
leverages existing BIM and BMS as essential data repositories, which serve as the primary inputs 
for the proposed solution. The knowledge model incorporates the necessary axioms to capture 
essential concepts required for AFDD of HVAC systems, including features, fault types, 
algorithms, elements, and zones to effectively capture interrelationships. 
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Additionally, by adopting an ontology-based integration strategy and developing AFDDOnto, 
which is compatible with IFCOWL, interoperability with IFC, a standard in the industry, is 
maintained. This integrated model was made possible by following the proposed methodology, 
which includes schema conversion, feature engineering, machine learning for AFDD, and 
knowledge model management. These steps are crucial for creating the semantic model. 

The applicability of the proposed solution was demonstrated through a case study that tested 
and validated AFDDOnto and the integration method. This case study showcased how dynamic 
BIM features, combined with sensory data from BMS, were used to enhance the dataset for AFDD 
model development. This highlighted the significance of the proposed solution, particularly in 
scenarios with limited sensory data availability 
The proposed solution illustrates how BIM contextual information, such as spatial data including 
geometry and connectivity, can be effectively leveraged. The impact of BIM features, especially 
dynamic BIM, is anticipated to be more significant in real-world HVAC scenarios compared to 
controlled environments like the FRP case study. Real HVAC assets and their built environments 
involve multiple uncertainties not typically captured by BMS systems, such as environmental 
conditions, occupancy, and the state of building elements like doors and windows 

Furthermore, the role of knowledge graphs and databases in enabling access to previously 
isolated resources of BIM and BMS is presented through AFDDOnto. This integrated model is 
designed to maintain connectivity with BIM and BMS using links maintained through URIs. The 
results illustrate a bi-directional flow of data and knowledge between BIM and BMS for AFDD. 
This enhances the BMS with enriched contextual information and transforms BIM from a static 
model to a dynamic one. This dynamic model can evolve into a Digital Twin of the facility by 
capturing FDD analytics and retaining connectivity to live data streams in BMS. 
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Chapter 7: Summary and Conclusion 
AFDD is crucial for HVAC systems because it ensures efficient operation, reduces energy 

consumption, and minimizes maintenance costs. These methods are widely being adopted by 
both industry and academia for the fault detection and diagnosis of HVAC systems. They are 
generally easier to develop, faster, and often deployed for real-time FDD. Moreover, they improve 
over time as the model is trained on more data, thereby playing a crucial role in the field.   

However, AFDD methods face significant challenges, particularly those that rely solely on 
sensory data, which is often limited in both number and type in existing buildings. Additionally, 
the lack of contextual information significantly hinders HVAC modelers and facility managers in 
effectively diagnosing and managing faults. Addressing these challenges is essential to fully 
realize the potential of AFDD in improving HVAC system performance and reliability. 

The study findings suggest that the present shortcomings associated with AFDD of HVAC 
can be addressed by utilizing BIM in its dynamic form. This thesis resolved these challenges by 
defining the goal of developing a BIM-based semantic knowledge methodology applicable to the 
AFDD of HVAC systems in commercial buildings. This methodology aimed to incorporate dynamic 
features into the AFDD dataset generated using BIM and BMS data, addressing the challenges 
of limited sensory data availability and the lack of contextual information.  

The developed solution enabled the flow of enriched data from BMS through BIM, 
compensating for the limited sensory data available for AFDD model development. Additionally, 
the solution addressed the issue of knowledge loss during AFDD model development by capturing 
this knowledge in the developed ontology, AFDDOnto. The developed ontology reused IFCOWL 
to ensure compatibility with the well-established IFC schema, capturing the relationships between 
HVAC systems and building spaces, and storing model parameters and deployment results. 
Furthermore, the developed solution enables visualization and access to this knowledge through 
well-established databases and knowledge graphs, while maintaining connectivity to BIM. 

The proposed solution was developed and tested using a methodology and case study. To 
demonstrate its effectiveness, a case-representative facility was considered in this research, 
where both BIM data and BMS data were available. The generation of dynamic features illustrated 
the solution's effectiveness in scenarios with a limited number of sensors and demonstrated the 
application of BIM in generating context-aware features that can be supplemented to the AFDD 
dataset for model development. Although the model improvement may not be significant due to 
the controlled environment and new HVAC systems in the test facility, it is expected that in 
practice, as uncertainties related to building usage, occupant behavior, environmental factors, 
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and the state of HVAC systems increase, the significance and impact of the model will become 
more pronounced. 
7.1 Research Contributions  

The novelty of this research is extracting additional contextual features to amend the BMS 
data for AFDD of HVAC. This is achieved by adopting both bottom-up (data-driven) and top-down 
(knowledge-based) approaches to AI, namely machine learning and ontology engineering, 
respectively. This dual approach captures knowledge in the form of AFDD analytics and updates 
the BIM-based ontology of the facility to archive and represent the status of the HVAC and its 
subsystems.  

The major contribution of this research work is as follows: 
• Utilizing BIM to support AFDD of HVAC by generating dynamic BIM features (context-

aware) using BIM and BMS 
• Capturing knowledge pertaining to AFDD of HVAC (Model development and 

deployment) In a BIM-based ontology (AFDDOnto)  
• Creating a bi-directional flow of data and information between BIM and BAS/BMS for 

AFDD of HVAC 
The developed integrated solution enables data-driven FDD methods to benefit from the 

dynamic features generated using BIM and BMS, utilizing the contextual information that resides 
in BIM. These features can compensate for buildings where limited sensor types are deployed. 
Additionally, BIM adds context in the form of building semantics, such as spatial relationships, to 
facilitate AFDD of HVAC systems.  

Additionally, the developed BIM-based knowledge model streamlines the AFDD processes 
by providing users with access to configurations and points of reference (knowledge history) for 
each of the models created. It also enables the capture of BIM-based AFDD analytics by storing 
configurations used for AFDD model development, along with model evaluation results. 
Ultimately, the semantic model allows access to spatial inferences such as HVAC, location, state, 
and usage. 

Furthermore, the developed methodology enables importing the AFDD analytics to the 
knowledge model without duplicating the data existing in its primary sources. Subsequently, the 
bidirectional nature of the developed method bridges the previously isolated BIM and BMS data 
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sources by transforming BIM into a dynamic form and allowing BMS to utilize contextual 
information available in BIM. 

Moreover, this unification enables seamless access to information for developing AFDD 
models using the historical knowledge captured by AFDDOnto, as well as accessing data using 
SPARQL queries to answer commonly asked questions by its users, which is typically a tedious 
process.  
AFDDOnto is designed to streamline the storage, access, and retrieval of data, enabling the reuse 
of the ontology in future projects. By integrating concepts from both BIM and BMS/BAS, 
AFDDOnto enhances access to spatial inferences related to HVAC, location, state, and usage. 
The incorporation of dynamic BIM features into the AFDD model is expected to provide significant 
benefits to users such as AFDD model developers, building owners, facility managers, and asset 
managers, particularly when dealing with a limited set of sensors and uncertainties in building and 
HVAC systems. 
 The advantage of using the developed solution compared to existing AFDD models is that it 
enables the generation of context-aware features from a confined set of existing features. This 
can facilitate AFDD of HVAC systems and compensate for the lack of a diverse set of features. 
Additionally, it addresses the inherent limitations of such AFDD models, which often lack 
contextual information about the building and facility. 
7.2 Limitations 

The limitations of this research are discussed from two perspectives: research methodology 
limitations and case study limitations. 

From the research methodology perspective, the extensive domain of HVAC maintenance 
means that the developed BIM-based knowledge model may not capture every aspect of user 
requirement, necessitating additional competencies for other use cases. Consequently, additional 
axioms in the form of concepts and relationships may be required. Furthermore, BMS and BAS 
schemas were not investigated as they were beyond the scope of this study, but maintaining 
direct connectivity with these systems could provide significant benefits. The developed ontology 
could also benefit from further refinement through testing on other BIM applications to ensure 
broader applicability beyond the AFDD of HVAC. Additionally, the conversion procedure from IFC 
to IFCOWL was not automated during the research, which prevented updates to the IFC file, a 
common BIM format widely adopted by AEC/FM (Architecture, Engineering, Construction, and 
Facility Management). 
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From the case study perspective, several limitations were identified that affected the 
demonstration of the application of dynamic BIM for AFDD of HVAC, specifically the impact of 
generated features and stateful BIM features.  

However, it is important to note that the selection of this case study served a specific purpose. 
The aim was to illustrate the impact of adding BIM features to scenarios where a limited set of 
sensory data is available for the AFDD of HVAC. Thus, the case study enabled a focused analysis 
of purely data-driven solutions for various sensory data related to HVAC and its environment. 
Hence, it should be acknowledged that the magnitude at which the BIM features could affect the 
AFDD may not have been fully demonstrated under these specific conditions. The limitations of 
the case study are as follows; 

Dataset: The duration needed for stateful BIM creation limited the ability to demonstrate 
dynamism through the used dataset to only Dynamic BIM (live BIM). The BIM feature's impact 
was limited by the controlled environment of the case study, which prevented a demonstration of 
the full potential of dynamic BIM such as and its impact on AFDD. This study can immensely 
benefit by testing the methodology on the dataset of actual buildings to determine and quantify 
the impact of dynamic BIM on AFDD for real commercial buildings. Ideally, a large dataset 
covering the entire life span of HVAC equipment is necessary. 

Excessive instrumentation and monitoring: In the FRP case study, the energy management 
control system sets room temperature, scheduling, and other variables. The FRP data includes 
time-series data such as temperature, humidity, air supply, return airflow, and state representative 
sensors such as the state of the compressor, condenser, supply fan state (On or Off), and VAV 
reheating energy sensors that collect data in 1-, 15-, and 60-min frequencies. It also includes the 
FRP roof’s dedicated weather station measured air temperature, humidity, solar radiation (direct 
normal, diffuse, and global), wind speed, and direction. Presently, most buildings do not possess 
such a high level of instrumentation and monitoring. As shown in this study, the spatial and 
dynamic BIM features extracted from BIM could be helpful to compensate for or improve the 
AFDD development in the absence of features needed for AFDD. 

Operational constrain: The RTU-based HVAC system used in the FRP case study defines 
restrictions in the form of limits for refrigerant temperature, pressure, air temperature, air RH, 
airflow, and sensor data streams: status, commands, and control signals. The limit is set to 
increase the accuracy of FDD, whereas, in reality, the data can be erratic, corrupted, missing, 
and contain anomalies that are not necessarily faults. The BIM in dynamic form can be 
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provisioned with building-specific context and baselines applicable to the facility, including access 
to maintenance and HVAC-related information. 

Controlled environment and building envelope: The building used in the study imposes 
system environmental constraints such as having no blinds and using the insulated ground 
beneath the floor to emulate no sensible or hidden internal loads. Further, to limit the effect of 
uncertainty and lack of contextual information, the following simulated or predetermined 
parameters are introduced: Simulated occupancy, Specific RTU discharge temperature, and 
blocking outside air or exhaust air while maintaining static pressure.  

All this indicates that environment and building parameters can significantly differ from a 
controlled environment for example, the occupants’ use of windows and blinds adds uncertainty 
to the model, and having access to the as-is model of the dynamic BIM, can provide better 
assistance in decision making by proving access to the present state of the DT or having access 
to stateful information. Moreover, having access to dynamic BIM will enhance the applicability of 
AFDD models in actual buildings, as opposed to the high accuracies typically achievable only in 
controlled test facilities with limited environmental variations. 

Fault imposition (experimental and simulated) method: Faulty and nonfaulty scenarios for the 
preliminary dataset, including HVAC systems, data types/facilities, and fault types, last for a 
predefined duration of one day, as the faults are introduced (Simulated mechanically) for the 
testing. In reality, the faults can be superimposed, simultaneous, intermittent, or continuous. 
When complexities related to faults occur, BIM information and visualization can be utilized to 
make informed decisions.  

Additionally, in the developed methodology, BIM can serve as a point of reference for 
comparing different models, whether they are experimental or simulated. This allows for better 
assessment and validation of AFDD models in real-world scenarios. 

Maintenance: The HVAC system and all its components in the FRP case study have been 
new and in perfect condition. Hence, no maintenance was carried out on the system, which 
reduces the uncertainty that the condition of the HVAC can have on FDD. In reality, the HVAC 
components can be repaired or replaced, which impacts the impact of the remaining life of the 
equipment and its condition on FDD. In such cases, the developed dynamic BIM can provide 
useful insight by tracking the maintenance changes in the model. 

All the above stated indicates that due to the complexities of HVAC, most AFDD models show 
higher accuracy in test setups and not necessarily in real buildings. Hence, AFDD models may 
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benefit from contextual information to compensate for the uncertainties associated with HVAC, 
building, occupants, and usage.  
7.3 Future Work 
The future direction of the present research effort is illustrated using Figure 7.1, which shows the 
application of the developed model for the DT version of the solution. It is expected that the BIM- 
based DT not only provides an ever-updated reality capture of the system but to be enriched with 
data, analytics, and essential knowledge for various use cases. 

 
Figure 7.1: Application of BIM-based Knowledge Model for HVAC FDD in Digital Twin 
Form 

The developed BIM-based DT can facilitate real-time monitoring and control of HVAC 
systems by being connected to BMS and BAS systems. This integration enables the facility 
manager to visualize the building and HVAC and further optimize HVAC system performance 
based on factors such as occupancy patterns, outdoor weather conditions, and sunlight 
orientation.  

Also, having access to stateful information, such as HVAC usage data and equipment life 
expectancy, can be further utilized for tasks such as HVAC upkeep by connecting the facility data 
with manufacturer data, such as product catalogs, using linked data technologies. By leveraging 
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this comprehensive data, the BIM-based DT can contribute to the overall efficiency and 
sustainability of HVAC systems, leading to energy savings and improved comfort levels.  

The concept of dynamic BIM is relatively new, and while the conceptual aspects are well 
discussed and developed in the literature, the practical solutions and use cases in action are 
limited. The lack of application is mostly due to the absence of integration tools (between BIM, 
BMS, and AFDD algorithms, and the developed AFDDOnto in this thesis is one example of such 
tools and technologies.  

Hence, there are currently no established industry standards or best practices for the 
development of BIM-based AFDD in HVAC systems. Products of this study enable other future 
technology developments to support such solutions in practice, to eventually contribute to future 
standard developments in this domain. The usage of the developed ontology-based knowledge 
model utilizing a semantic web framework is designed to improve compatibility, interoperability, 
and shareability among various stakeholders to facilitate further use cases.  

Future work can investigate BMS/BAS systems and relevant schemas to identify how the 
developed model can be extended beyond AFDD of HVAC to provide support for HVAC 
maintenance and, ultimately, facility management. The combination of additional use cases can 
facilitate the generation of a digital twin of the facility. 

Researchers could explore the integration of BMS/ BAS with the developed model to enhance 
its capabilities. By examining relevant schemas, it may be possible to extend the model's 
functionality to cover a broader range of HVAC maintenance tasks. This, in turn, could lead to 
more efficient and effective facility management practices. 

Furthermore, incorporating additional use cases could enable the creation of a 
comprehensive digital twin of the facility. A digital twin would provide a dynamic, real-time 
representation of the physical building, allowing for improved monitoring, analysis, and 
optimization of various building systems. This approach could significantly enhance the overall 
management and maintenance of the facility, leading to better performance, reduced costs, and 
increased sustainability. 
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Appendices  
Appendix A: List of the 82 Studies Considered for Knowledge Discovery Through Association Rule Mining 
No.  Author(s)  Title  Year  
1.  K. Yan, J. Huang, W. 

Shen, and Z. Ji  
Unsupervised learning for fault detection and diagnosis of air 
handling units  

2020  

2.  K. Yan, A. Chong, and Y. 
Mo  

Generative adversarial network for fault detection diagnosis 
of chillers  

2020  

3.  A. Ranade, G. Provan, A. 
El-Din Mady, and D. 
O’Sullivan  

A computationally efficient method for fault diagnosis of fan-
coil unit terminals in building Heating Ventilation and Air 
Conditioning systems  

2020  

4.  S. Miyata, J. Lim, Y. 
Akashi, Y. Kuwahara, and 
K. Tanaka  

Fault detection and diagnosis for heat source system using 
convolutional neural network with imaged faulty behavior 
data  

2020  

5.  Z. Zhang, H. Han, X. Cui, 
and Y. Fan,  

Novel application of multi-model ensemble learning for fault 
diagnosis in refrigeration systems  

2020  

6.  Y. Fan, X. Cui, H. Han, 
and H. Lu  

Chiller fault detection and diagnosis by knowledge transfer 
based on adaptive imbalanced processing  

2020  

7.  A. Montazeri and S. M. 
Kargar,  

Fault detection and diagnosis in air handling using data-
driven methods  

2020  

8.  J. Liu et al.  Data-driven and association rule mining-based fault 
diagnosis and action mechanism analysis for building 
chillers  

2020  

9.  M. Elnour, N. Meskin, and 
M. Al-Naemi  

Sensor data validation and fault diagnosis using Auto-
Associative Neural Network for HVAC systems  

2020  

10.  Z. Li et al.  Machine learning based diagnosis strategy for refrigerant 
charge amount malfunction of variable refrigerant flow 
system  

2020  

11.  Y. Fan, X. Cui, H. Han, 
and H. Lu  

Feasibility and improvement of fault detection and diagnosis 
based on factory-installed sensors for chillers  

2020  
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12.  K. Yan, Z. Ji, H. Lu, J. 
Huang, W. Shen, and Y. 
Xue  

Fast and Accurate Classification of Time Series Data Using 
Extended ELM: Application in Fault Diagnosis of Air 
Handling Units  

2019  

13.  A. Motomura et al.  Fault evaluation process in HVAC system for decision 
making of how to respond to system faults  

2019  

14.  Z. Li et al.  An efficient online wkNN diagnostic strategy for variable 
refrigerant flow system based on coupled feature selection 
method  

2019  

15.  G. Li and Y. Hu  An enhanced PCA-based chiller sensor fault detection 
method using ensemble empirical mode decomposition 
based denoising  

2019  

16.  D. Li, D. Li, C. Li, L. Li, and 
L. Gao  

A novel data-temporal attention network based strategy for 
fault diagnosis of chiller sensors  

2019  

17.  D. Li, Y. Zhou, G. Hu, and 
C. J. Spanos  

Handling Incomplete Sensor Measurements in Fault 
Detection and Diagnosis for Building HVAC Systems  

2019  

18.  H. Han, X. Cui, Y. Fan, 
and H. Qing  

Least squares support vector machine (LS-SVM)-based 
chiller fault diagnosis using fault indicative features  

2019  

19.  D. Bigaud, A. Charki, A. 
Caucheteux, F. Titikpina, 
and T. Tiplica  

Detection of Faults and Drifts in the Energy Performance of 
a Building Using Bayesian Networks  

2019  

20.  A. Beghi, R. Brignoli, L. 
Cecchinato, G. 
Menegazzo, and M. 
Rampazzo  

A data-driven approach for fault diagnosis in HVAC chiller 
systems  

2019  

21.  J. Liu, M. Zhang, H. 
Wang, W. Zhao, and Y. 
Liu  

Sensor Fault Detection and Diagnosis Method for AHU 
Using 1-D CNN and Clustering Analysis  

2019  

22.  C. Zhong, K. Yan, Y. Dai, 
N. Jin, and B. Lou  

Energy Efficiency Solutions for Buildings: Automated Fault 
Diagnosis of Air Handling Units Using Generative 
Adversarial Networks  

2019  
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23.  C. Yang, W. Shen, B. 
Gunay, and Z. Shi  

Toward Machine Learning-based Prognostics for Heating 
Ventilation and Air-Conditioning Systems,  

2019  

24.  L. Gao, D. Li, D. Li, L. Yao, 
L. Liang, and Y. Gao  

A Novel Chiller Sensors Fault Diagnosis Method Based on 
Virtual Sensors  

2019  

25.  M. Tahmasebi, K. Eaton, 
N. Nassif, and R. Talib  

Integrated Machine Learning Modeling and Fault Detection 
Approach for Chilled Water Systems  

2019  

26.  J. Liu, G. Li, B. Liu, K. Li, 
and H. Chen  

Knowledge discovery of data-driven-based fault diagnostics 
for building energy systems: A case study of the building 
variable refrigerant flow system  

2019  

27.  A. Behravan, M. Abboush, 
and R. Obermaisser  

Deep Learning Application in Mechatronics Systems’ Fault 

Diagnosis, a Case Study of the Demand-Controlled 
Ventilation and Heating System  

2019  

28.  H. Zhang, H. Chen, Y. 
Guo, J. Wang, G. Li, and 
L. Shen  

Sensor fault detection and diagnosis for a water source heat 
pump air-conditioning system based on PCA and 
preprocessed by combined clustering  

2019  

29.  M. Elnour, N. Meskin, and 
M. Al-Naemi  

Sensor Fault Diagnosis of Multi-Zone HVAC Systems Using 
Auto-Associative Neural Network  

2019  

30.  Y. Fan, X. Cui, H. Han, 
and H. Lu  

Chiller fault diagnosis with field sensors using the technology 
of imbalanced data  

2019  

31.  B. Jin, D. Li, S. Srinivasan, 
S.-K. Ng, K. Poolla, and A. 
Sangiovanni-Vincentelli  

Detecting and Diagnosing Incipient Building Faults Using 
Uncertainty Information from Deep Neural Networks  

2019  

32.  K. Yan and J. Hua  Deep Learning Technology for Chiller Faults Diagnosis  2019  
33.  X. J. Luo, K. F. Fong, Y. J. 

Sun, and M. K. H. Leung  
Development of clustering-based sensor fault detection and 
diagnosis strategy for chilled water system  

2019  

34.  Y. H. Eom, J. W. Yoo, S. 
B. Hong, and M. S. Kim  

Refrigerant charge fault detection method of air source heat 
pump system using convolutional neural network for energy 
saving  

2019  

35.  K. Yan, C. Zhong, Z. Ji, 
and J. Huang  

Semi-supervised learning for early detection and diagnosis 
of various air handling unit faults  

2018  
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36.  K. Yan, L. Ma, Y. Dai, W. 
Shen, Z. Ji, and D. Xie  

Cost-sensitive and sequential feature selection for chiller 
fault detection and diagnosis  

2018  

37.  Z. Wang, Z. Wang, X. Gu, 
S. He, and Z. Yan  

Feature selection based on Bayesian network for chiller fault 
diagnosis from the perspective of field applications  

2018  

38.  C. G. Mattera, J. 
Quevedo, T. Escobet, H. 
R. Shaker, and M. Jradi  

Fault Detection and Diagnostics in Ventilation Units Using 
Linear Regression Virtual Sensors  

2018  

39.  M. Hu et al.  A machine learning bayesian network for refrigerant charge 
faults of variable refrigerant flow air conditioning system  

2018  

40.  Y. Guo et al.  Deep learning-based fault diagnosis of variable refrigerant 
flow air-conditioning system for building energy saving  

2018  

41.  M. Dey, S. P. Rana, and 
S. Dudley  

Smart building creation in large scale HVAC environments 
through automated fault detection and diagnosis  

2018  

42.  M. Dey, S. P. Rana, and 
S. Dudley  

Semi-Supervised Learning Techniques for Automated Fault 
Detection and Diagnosis of HVAC Systems  

2018  

43.  F. Simmini, M. Rampazzo, 
A. Beghi, and F. Peterle  

Local Principal Component Analysis for Fault Detection in 
Air-Condensed Water Chillers  

2018  

44.  Y. Chen and J. Wen  Development and Field Evaluation of Data-driven Whole 
Building Fault Detection and Diagnosis Strategy  

2018  

45.  K. Yan, C. Zhong, Z. Ji, 
and J. Huang  

Evaluating Semi-supervised Learning for Automated Fault 
Detection and Diagnosis of Air Handling Units  

2018  

46.  Y. Chen, J. Wen, T. Chen, 
and O. Pradhan  

Bayesian Networks for Whole Building Level Fault Diagnosis 
and Isolation  

2018  

47.  G. Li et al.  An improved decision tree-based fault diagnosis method for 
practical variable refrigerant flow system using virtual 
sensor-based fault indicators  

2018  

48.  X. Liu, Y. Li, X. Liu, and J. 
Shen  

Fault diagnosis of chillers using very deep convolutional 
network  

2018  
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49.  R. Huang et al.  An effective fault diagnosis method for centrifugal chillers 
using associative classification  

2018  

50.  Z. Wang, L. Wang, K. 
Liang, and Y. Tan,  

Enhanced chiller fault detection using Bayesian network and 
principal component analysis  

2018  

51.  J. Liu, G. Li, H. Chen, J. 
Wang, Y. Guo, and J. Li  

A robust online refrigerant charge fault diagnosis strategy for 
VRF systems based on virtual sensor technique and PCA-
EWMA method  

2017  

52.  K. Yan, Z. Ji, and W. 
Shen  

Online fault detection methods for chillers combining 
extended kalman filter and recursive one-class SVM  

2017  

53.  K. Verbert, R. Babuška, 

and B. De Schutter  
Combining knowledge and historical data for system-level 
fault diagnosis of HVAC systems  

2017  

54.  P. M. Van Every, M. 
Rodriguez, C. B. Jones, A. 
A. Mammoli, and M. 
Martínez-Ramón  

Advanced detection of HVAC faults using unsupervised 
SVM novelty detection and Gaussian process models  

2017  

55.  W. J. N. Turner, A. Staino, 
and B. Basu  

Residential HVAC fault detection using a system 
identification approach  

2017  

56.  S. Sun, G. Li, H. Chen, Q. 
Huang, S. Shi, and W. Hu  

A hybrid ICA-BPNN-based FDD strategy for refrigerant 
charge faults in variable refrigerant flow system  

2017  

57.  S. Shi et al.  Refrigerant charge fault diagnosis in the VRF system using 
Bayesian artificial neural network combined with Relief 
Filter  

2017  

58.  S. C. Mukhopadhyay, O. 
A. Postolache, K. P. 
Jayasundera, and A. K. 
Swain, Eds.  

Sensors for everyday life: environmental and food 
engineering  

2017  

59.  K. Mittal, J. P. Wilson, B. 
P. Baillie, S. Gupta, G. M. 
Bollas, and P. B. Luh  

Supervisory Control for Resilient Chiller Plants Under 
Condenser Fouling  

2017  
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60.  Y. Guo et al.  Modularized PCA method combined with expert-based 
multivariate decoupling for FDD in VRF systems including 
indoor unit faults  

2017  

61.  Y. Guo et al.  An enhanced PCA method with Savitzky-Golay method for 
VRF system sensor fault detection and diagnosis  

2017  

62.  Y. Chen and J. Wen  A whole building fault detection using weather based pattern 
matching and feature based PCA method  

2017  

63.  L. Chang, H. Wang, and L. 
Wang  

Cloud-Based parallel implementation of an intelligent 
classification algorithm for fault detection and diagnosis of 
HVAC systems  

2017  

64.  Z. Wang, Z. Wang, S. He, 
X. Gu, and Z. F. Yan  

Fault detection and diagnosis of chillers using Bayesian 
network merged distance rejection and multi-source non-
sensor information  

2017  

65.  Y. Chen and J. Wen  Whole building system fault detection based on weather 
pattern matching and PCA method  

2017  

66.  J. Wang et al.  Liquid flood back detection for scroll compressor in a VRF 
system under heating mode  

2017  

67.  S. Shi et al.  An efficient VRF system fault diagnosis strategy for 
refrigerant charge amount based on PCA and dual neural 
network model  

2017  

68.  R. Yan, Z. Ma, Y. Zhao, 
and G. Kokogiannakis  

A decision tree based data-driven diagnostic strategy for air 
handling units  

2016  

69.  K. Sun, G. Li, H. Chen, J. 
Liu, J. Li, and W. Hu  

A novel efficient SVM-based fault diagnosis method for 
multi-split air conditioning system’s refrigerant charge fault 

amount  
2016  

70.  J. Liu, Y. Hu, H. Chen, J. 
Wang, G. Li, and W. Hu  

A refrigerant charge fault detection method for variable 
refrigerant flow (VRF) air-conditioning systems  

2016  

71.  J. Liu, H. Chen, J. Wang, 
G. Li, H. Li, and W. Hu  

Fault diagnosis of refrigerant charge based on PCA and 
decision tree for variable refrigerant flow systems  

2016  
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72.  G. Li et al.  An improved fault detection method for incipient centrifugal 
chiller faults using the PCA-R-SVDD algorithm  

2016  

73.  G. Li et al.  A sensor fault detection and diagnosis strategy for screw 
chiller system using support vector data description-based 
D-statistic and DV-contribution plots  

2016  

74.  D. Li, G. Hu, and C. J. 
Spanos  

A data-driven strategy for detection and diagnosis of building 
chiller faults using linear discriminant analysis  

2016  

75.  Y. Hu, G. Li, H. Chen, H. 
Li, and J. Liu  

Sensitivity analysis for PCA-based chiller sensor fault 
detection  

2016  

76.  S. He, Z. Wang, Z. Wang, 
X. Gu, and Z. Yan  

Fault detection and diagnosis of chiller using Bayesian 
network classifier with probabilistic boundary  

2016  

77.  Y. Gao, S. Liu, F. Li, and 
Z. Liu  

Fault detection and diagnosis method for cooling 
dehumidifier based on LS-SVM NARX model,  

2016  

78.  A. Beghi, R. Brignoli, L. 
Cecchinato, G. 
Menegazzo, M. 
Rampazzo, and F. 
Simmini  

Data-driven Fault Detection and Diagnosis for HVAC water 
chillers  

2016  

79.  R. Yan, Z. Ma, G. 
Kokogiannakis, and Y. 
Zhao  

A sensor fault detection strategy for air handling units using 
cluster analysis  

2016  

80.  D. A. T. Tran, Y. Chen, H. 
L. Ao, and H. N. T. Cam  

An enhanced chiller FDD strategy based on the combination 
of the LSSVR-DE model and EWMA control charts  

2016  

81.  D. A. T. Tran, Y. Chen, 
and C. Jiang  

Comparative investigations on reference models for fault 
detection and diagnosis in centrifugal chiller systems  

2016  

82.  C. Audivet Durán and M. 
E. Sanjuán  

On-Line Early Fault Detection of a Centrifugal Chiller Based 
on Data Driven Approach  

2016  

Appendix B: Data-Driven FDD Algorithms Based on Machine Learning Approach 
The AFDD techniques reviewed and used in the thesis are broadly grouped and categorized 

into supervised and unsupervised learning. This study also covers more general algorithms, such 
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as Bayesian network (BN) and ARM algorithms, which may not traditionally fit in any of these two 
broad categories. Most of the reviewed studies implementing AFDD are supervised methods and 
treat the FDD as essentially a classification problem. Unsupervised methods are mainly adopted 
in the pre-processing phase or are used for fault detection through clustering. 

Figure 9.1, shows the machine learning algorithms for FDD based on learning type. SVM 
(support vector machine), decision tree, and regression methods are grouped into supervised, 
and dimensionality reduction techniques, instance-based classification and clustering belong to 
the unsupervised category. However, ANN/deep learning, ensemble learning, Bayesian 
networks, and ARM in the literature have used both supervised and unsupervised methods. 
Bayesian methods are used where event information is required to be included in the models. 
The events describe the states of discrete or continuous variables, such as a room being occupied 
or not by its occupants or considering the HVAC operation schedule, respectively. In hybrid 
methods, the machine learning approach for fault detection and diagnostics are different from one 
another. For detailed definitions of the algorithms, readers can refer to the author's published 
journal paper [52].  

 
Figure 9.1: Machine learning FDD algorithms based on learning type 
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Appendix C: List of Potential BIM Uses That Can Benefit from Dynamism 
Sl No. BIM use Title Application Variable (Data) 
1 Logistic Planning [206] Tracking and information management Location 

2 Building System Analysis [113] Energy monitoring and control interface 
Co2, Motion detector, Temperature, Humidity, Energy consumption 

3 Logistic Planning / Space Management and Tracking [158] 
Tracking in dynamic and complex indoor construction sites/ tracking system using BIM and multimodal sensors 

Location, Motion 

4 Safety [163] Improved Health and Safety Temperature, Humidity 
5 Building (Preventative) Maintenance Scheduling/safety [126] Structural condition assessment Contact scanning, Strain 
6 Safety [207] Construction safety Location 

7 Asset Management [142] Performance Monitoring 
Temperature, RH, Illuminance, Windows opening, User presence(occupancy), Electrical consumption 

8 Logistic Planning [208] Visibility and traceability Location 
9 Asset Management [209] Personalized lighting control Quality of service: (system response time + lighting performance), Lighting 
10 Building System Analysis [128] Monitoring thermal comfort Temperature, Humidity 
11 3D Control and Planning (Digital layout) [210] Mobile Cross-Media Visualizations Image 

12 Building (Preventative) Maintenance Scheduling [150] Facilities management (Conditions of the mechanical assets and their visualization codes), Status 
13 Space Management and Tracking/ Asset Management/Safety [211] Continuous progress monitoring function and workspace safety Location, Temperature, Humidity, Illumination 

14 
Phase Planning 
(4D Modeling)/ 
Safety 

[212] Safety hazard identification and prevention Schedule 

15 Building System Analysis [156] Energy Efficient Building Operations Temperature, Humidity, CO2, Lux level 
16 Engineering Analysis [164] Building Energy Benchmarking Temperature, Humidity, Co2, Energy consumption 
17 Engineering Analysis /safety [213] Temporary structure monitoring On/off, Weight, Motion, Location 
18 Safety [161] Worker safety in confined spaces Temperature, Oxygen 
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19 Asset Management [214] BIM-FM integration Barcode, (Location) ,COBie data 

20 
Phase Planning 
(4D Modeling)/ 
Design Reviews 

[149] 4D modeling Monitoring of construction process, Schedule 

21 Asset Management [151] Smart Home Visualizations 
(Case 1) Temperature Humidity, Air quality and Pressure difference 
(Case 2) Temperature 

22 Asset Management/ Construction System Design (Virtual Mockup) [139] Interactive AR and VR environment Building condition, Energy consumption 
23 Logistic Planning [215] Construction asset tracking Location 
24 Asset Management [136] Facility management Object and model link, Location, Motion, Rotation 
25 Disaster Planning [125] Fire Prevention and Disaster Relief System Temperature, Smoke 
26 Building System Analysis [159] Building energy performance visualization Temperature, CO2, Humidity, Energy, Lighting 
27 Logistic Planning [216] Logistics and Supply Chain–Management System Location 

28 Space Management and Tracking [160] Sensor-based building monitoring 
Person count, Environmental monitor, Temp, Lux, Monitoring 

29 Logistic Planning [217] On-site assembly services in prefabricated construction Location 

30 Construction System Design (Virtual Mockup) /Design Reviews [144] Virtual reality for the construction industry 
(Gesture User language), Motion, Sound, Point cloud, Video 

31 Asset Management [155] Query-efficient and spatially enabled database Objects (Count) 

32 Building (Preventative) Maintenance Scheduling / Disaster Planning [153] Decision support in facility management and maintenance (Asset tracking) location 

33 Building System Analysis / Asset Management [141] 
Integrates the built environment data with IoT sensors in a campus space/utilization, user comfort, energy usage monitoring and energy-saving and a reduced carbon footprint 

CO2, Humidity, Temperature And other sensors, Campus booking system, (occupancy), Heating and ventilation 

34 Phase Planning (4D Modeling) [218] Status of work-space occupation and to identify workspace–related problems, 
(Construction method DB and material information DB), Schedule, Occupancy, Material information 

35 3D coordination/Safety [219] Safety clashes Raw textual injury reports 
36 Disaster Planning [220] Visualization and warning system for fire rescue Temp, CO, Visibility 
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37 Existing Conditions Modeling [221] As built Point cloud 

38 Building system analysis/ Code Validation/Safety [131] (Building environmental monitoring and compliance checking) 
Temp, Humidity, Light, Air quality 

39 Disaster Planning [138] Fire safety management Simulation (Escape route Fire equipment information), Condition 
40 Engineering analysis [137] Solar thermal integration in early design Orientation, Inclination 
41 Engineering analysis /Asset Management [222] Detection, Identification and Pose Estimation of Lamps Point cloud data, Location, Image 
42 Engineering analysis/ Asset Management [223] Detection, Identification and Pose Estimation of Lamps Point cloud data, Image 

43 Existing Conditions Modeling [224] Scan-vs-BIM based automated construction progress monitoring Point cloud, Image 

44 Asset Management [225] Appliance control for smart buildings 
Position data (9 data points per second), Acceleration data 

45 Building System Analysis [226] Energy efficiency during operation Humidity, Luminosity, Temperature 
46 Phase Planning [227] Improving schedule performance of prefabricated house construction Schedule, Location 

47 Building (Preventative) Maintenance Scheduling [157] Fault Detection and Diagnostics Energy Consumption 

48 Safety/ Space Management and Tracking [228] Sensor-based tower crane navigation system Location tracking 

49 Asset Management [229] Integration of the BIM software with real-time monitoring (Energy) 
Energy consumption, Voltage sensor, Current transducer 

50 Phase Planning (4D Modeling) [230] 
Progress monitoring and management of the construction of a reinforced concrete (RC) structure 

Construction progress (Schedule) 

51 Logistic Planning/ Phase Planning (4D Modeling) [231] Logistics Schedule 
52 Asset Management [140] Visualizing thermal changes in spaces Light, Current, Co2, Motion, Humidity 
53 Cost Estimation [147] Cost estimation for tender of building projects Cost 
54 Sustainability (LEED) Evaluation [232] Streamline the environmental assessment of buildings (LEED evaluation), Code 
55 Cost Estimation (Quantity Take-Off) [154] Detailed Estimate cost 
56 Building System Analysis [233] Post occupancy evaluation (energy house example) Temperature, Humidity 
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57 Engineering Analysis [134] Integrating building and urban semantics to empower smart water solutions Water consumption 

58 Building System Analysis [118] Thermal performance analysis and thermal comfort evaluation Temp, Humidity 

59 Asset Management/ Space Management and Tracking [234] Image-based indoor localization Image 

60 Asset Management [152] Corrective maintenance Condition, Temperature, CO2, Occupancy, Point cloud 
61 Building (Preventative) Maintenance Scheduling [143] Building preventive maintenance image 
62 Disaster Planning [106] Emergency response Temperature, Location 
63 3D Control and Planning (Digital Layout)/safety [235] Steel column inspection Video, Location, Position(tilt) 

64 
3D Control and Planning (Digital layout)/ Phase Planning (4D Modeling)/ Cost Estimation 

[119] Construction material layout planning Schedule, (QTO) 

65 Code Validation [148] Automated compliance checking Building code (Text) 

66 Existing Conditions Modeling [236] Automatically identify structural elements for the purposes of Scan to-BIM Point cloud 

67 Building System Analysis [135] Measured and predicted environmental and energy performance Energy consumption data 

68 Asset Management [237] (BIM) Enabled Facilities Management Temperature, Water sensor 

69 code validation/ Phase Planning (4D Modeling) [238] Automatic Safety Checking of Construction Models and Schedules 
Schedule, best practice (text)(code) 

70 Building System Analysis [239] Thermal Energy Modelling and Simulation, Air temp, Relative humidity 
71 Asset Management [120] Streamlined Fault Localization Video, location 
72 Digital Fabrication [240] Free-Form Building Project Drawing (image) 
73 Cost Estimation [241] Quantity takeoff/ Labor productivity/ visual progress control systems Cost, Schedule 
74 Digital Fabrication [121] Digital Fabrication - 
75 Existing Conditions Modeling [242] Construction progress monitoring Point cloud, Location 

76 Engineering Analysis [122] 
Thermal environment design system for renovation using 
augmented reality 

Indoor wall temperature, Outdoor temp, Emissivity, Absorptivity, Transmissivity, Camera 
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Appendix D: List of Unified BIM Uses 
Unified BIM use list 

Sl No. Building 
Phase 

BIM use 
  Sl No. Building 

Phase 
BIM use 

 
1 Plan Design Construct 

Operation 

Existing Conditions Modeling 
 

13 Construct  Digital Fabrication 
 

2 Plan Design Construct 
Operation 

Cost Estimation  14 Design Construct Construction System Design (Virtual Mockup)  
3 Plan Design 

Construct 
Phase Planning (4D Modeling) 

 
15 Construct 

 
Logistic Planning 

 
4 Plan Site Analysis 16 Construct Safety 

77 Asset Management/ Building System Analysis [133] Environmental and energy management of buildings Room temperature, Relative humidity 
78 Phase Planning (4D Modeling) [243] Dynamic Time–Space Conflict Detection and Quantification Schedule 

79 Logistic Planning [244] 
Automated identification and location estimation of construction materials, equipment, and tools 

Location, Tracking 

80 Building System Analysis [114] Facilities management/Building performance Energy consumption 
81 Asset Management [245] Operation and maintenance HVAC, Electrical supply, Water supply 
82 Engineering Analysis [246] Impact of building orientation on energy consumption Orientation 
83 Asset Management [247] Facility management using indoor localization Image, Position, Orientation 
84 Cost Estimation [146] FM Cost 
85 Code Validation/Safety [248] Rule-based Code Checking validates Code 
86 Cost Estimation [116] Building Management System to support building renovation Cost, HVAC, Lightening 

87 Building System Analysis [249] Reduce energy consumption and provide comfort conditions 
Humidity, Temperature, Lightening, Ambient noise, User behavior 

88 Existing Conditions Modeling [250] Collecting automatically live “as-
built” data. (RFID) location 

89 Design Reviews [251] Virtual prototype (Predefined task) 
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Design  Operation  
5 Plan 

Design 
Programming 

 17 Construct 
Operation 

Record Modeling 
 

6 Plan 
Design 

Design Reviews 
 18 Operation 

 
Disaster Planning 

 
7 Design Code Validation 19 Operation 

 
Space Management and Tracking 

 
8 Design 

 
Sustainability (LEED) Evaluation 

 
20 Operation 

 
Asset Management 

 
9 Design 

 
Engineering Analysis 

 
21 Operation 

 
Building System Analysis 

 
 

10 Design 
 

Design Authoring 
 

22 Operation 
 

Building (Preventative) Maintenance Scheduling 
 

11 Design 
Construct 

3D Coordination 
 23 Operation 

 
Commissioning 

 
12 Construct  3D Control and Planning (Digital layout) 

 

Appendix E: Object Properties and Their Characteristics for the Proposed AFDDOnto 
Object Property Domain  Range SubProperty Of Inverse Of Characteristics Disjoint With 

adjacentZone Zone Zone   Symmetric intersectsZ
one 

algorithmBelongsT
o 

Algorithm Element     
canDetect Algorithm Fault     

canUse Algorithm Feature     
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containsZone Zone Zone   Transitive  

hasBuilding Zone Building ContainsZon
e 

   

hasSpace Zone Space ContainsZon
e 

   

hasStorey Zone Storey ContainsZon
e 

   

elementsLocation Element Zone ContainsEle
ment 

   

faultBelongsTo Fault Element     

featureBelongsTo Feature Element     

hasAlgorithm Element Algorithm     
hasAssociated Element Feature     

hasElement Zone Element ContainsZon
e o 

hasElement 
subProperty
Of:hasEleme

nt 

   

adjacentElement   hasElement   intersecctin
gElement 

containsElement   hasElement 
containsZone 

o 
containsElem

ent 
subProperty

Of:containsEl
ement 

elements
Location 

  

intersectingElement   hasElement   adjacentEl
ement 
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hasFault Element Fault     
hasInspection Fault Maintena

nceInspe
ction 

    

hasMaintenance Element Maintena
nceActio

n 
    

hasParameter Algorithm Algorithm     

hasState Feature State     

hasSubElement Element Element     

interfaceOf Interface      
intersectsZone Zone Zone  intersects

Zone 
Symmetric adjacentZo

ne 
isAssociatedWith Feature Fault     

isParameter Algorithm Algorithm     
isRecorded State Track     

 
Appendix F: Natural Language Competencies and SPARQL Construct 
prefix : <https://github.com/arashhosseiniarash/AFDDOnto#>  
prefix owl: <http://www.w3.org/2002/07/owl#>  
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>  
prefix xml: <http://www.w3.org/XML/1998/namespace>  
prefix xsd: <http://www.w3.org/2001/XMLSchema#>  
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>  
Prefix bot: <https://w3id.org/bot#> 
Prefix brick:<https://brickschema.org/schema/Brick#> 
 
1- Query the name of the Algorithms used under NeuralNeteorks and SVM 
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SELECT * 
{ 
   ?NN_Algorithms_used a :NeuralNetworksOrDeepLearining . 
   ?SVM_Algorithm_used a :Svm 
} 
 
2- What are the instances belonging to the RTU class 
SELECT ?x 
WHERE { 
 ?x rdf:type brick:RTU 
} 
 
3- RTU belongs to which class? AND AHU belongs to which class? AND HVAC_Equipment 
belongs to which class? 
SELECT ?x  
WHERE { 
 brick:RTU rdfs:subClassOf ?x       
} 
AND 
SELECT ?x  
WHERE { 
 brick:AHU rdfs:subClassOf ?x       
} 
AND  
SELECT ?x  
WHERE { 
 brick:HVAC_Equipment rdfs:subClassOf ?x       
} 
 
4- List the Fault names belonging to HVAC x 
SELECT * 
{ 
   ?Fault_name :faultBelongsTo ?HVAC . 
   } 
 
5- List the parameters used for all the respective algorithm 
OR List the parameters used for Svc 
OR List the parameters used for SequentialNeuralNetworkModel 
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SELECT * 
{ 
   ?ParametersUsed :isParameter ?AlgorithmUsed .  
} 
OR 
SELECT ?ParametersUsed 
{ 
   ?ParametersUsed :isParameter :Svc.  
} 
OR 
SELECT ?ParametersUsed 
{ 
   ?ParametersUsed :isParameter :SequentialNeuralNetworkModel.  
} 
 
6- What is the name of the Algorithm(instance) under the class SVM  
    OR 
    What is the name of the Algorithm (instance) under the class NN 
?AlgorithmNAme a :Svm  
OR 
?AlgorithmNAme a :NeuralNetworksOrDeepLearining  
 
7- For HVAC x, what Features are needed? 
SELECT ?HVAC_Name ?Feature_Name 
WHERE { ?HVAC_Name :hasAssociated ?Feature_Name } 
 
8- For Hvac x, which algorithm is used?  And to which class does the algorithm belong. 
SELECT ?HVAC_Name ?Algorithm_Used ?Class_name 
WHERE { ?HVAC_Name :hasAlgorithm ?Algorithm_Used . 
        ?Algorithm_Used a ?Class_name 
      } 
 
9- For Algorithm x, what Parameters are needed? 
SELECT  ?Algorithm_name ?Parameter ?Value_Or_Description ?value 
WHERE { ?Algorithm_name :hasParameter ?Value_Or_Description . 
        ?Value_Or_Description a ?Parameter .  
OPTIONAL 
{?Algorithm_name :hasParameter ?Value_Or_Description . 
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        ?Value_Or_Description a ?Parameter . 
 ?Value_Or_Description rdfs:comment ?value .} 
       } 
ORDER BY ASC (?Algorithm_name) 
 
10- For HVAC x which faults are detected? 
SELECT  ?HVAC_Name ?Fault  
WHERE { ?HVAC_Name :hasFault ?Fault . 
       } 
ORDER BY ASC (?HVAC_Name) 
 
11-What features are needed for Algorithm x? 
SELECT  ?Algorithm_Name ?Feature_Name  
WHERE { ?Algorithm_Name :canUse ?Feature_Name  . 
       }   
ORDER BY ASC (?Algorithm_Name) 
 
12- What subsystems does HqVAC system x contain? Provide their GUIDs? 
SELECT ?HVAC_system ?Element_GUID ?HVAC_sub_system ?Additional_information 
WHERE { 
?HVAC_system bot:hasSubElement ?Element_ID . 
  ?Element_GUID a ?HVAC_sub_system . 
  ?Element_GUID rdfs:comment ?Additional_information 
} 
 
13- The HVAC equipment name and GUID at each space 
SELECT DISTINCT ?space ?ELement_GUID ?Description 
WHERE { 
?space bot:containsElement ?ELement_GUID . 
    ?ELement_GUID rdfs:comment ?Description 
} 
Appendix G: Semi-structured Survey for Clarity Validation of AFDDOnto 

The "AFDDOnto" survey captures the main concepts for the building and its HVAC system 
that most users need to know to make an AFDD model. This survey is meant to determine how 
clear the model is to its users and to look more closely at some concepts exclusively used in 
AFDDOnto. 
These main concepts are: 
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1-Algorithm: The type of Machine Learning algorithm that was used for AFDD. 
2-Element: It contains the different types of HVAC Equipment. 
3-Fault: The different kinds of problems that can happen to the HVAC system. 
4-Feature: Data being collected from the sensor that can be used for AFDD. 
5-Information: Supplementary information about the building envelope and HVAC as a physical 
asset 
6-Interface: A general term for the relationship between two or more things in the world, where 
at least one is a building element or zone. 
7-Maintenance: Information about HVAC system maintenance, including an action plan and 
inspection plan 
8-State: This shows how an entity of interest is doing right now. 
9-Track: Keeping an eye on a State for a certain amount of time. 
10-Zone: A part of the real world or a virtual world that is both in this world and has a 3D space. 
Is there important information that can be used for AFDD that you couldn't  find in the AFDDOnto 
concepts? 

Here are the survey discussion topics you can contribute to increasing the Clarity of the 
'AFDDOnto'; Clarity measures how effectively the 'AFDDOnto' communicates the intended 
meaning of the defined terms.  

Concepts: Maintenance and Information for AFDD 
Discussion 1: Do the concepts of Maintenance and Information overlap in any way that can be 
used for AFDD? 
Maintenance: Information about HVAC system maintenance, including an action plan and 
inspection plan 
 
Information: Supplementary information about the building envelope and HVAC as a physical 
asset 

If Yes, What are the areas of overlap between Maintenance and Information concepts? 
If No, how can the two concepts (Maintenance and Information) be related? 
What information from these two can be used for AFDD? If any, note the relationship. 

Concepts: Feature and State with respect to Element 
Discussion 2: When considering the HVAC system (Element), is there any overlap 
between Feature and State concepts? 
Feature: Data being collected from the sensor that can be used for AFDD. 
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State: This shows how an entity of interest is doing right now. 
Element: It contains the different types of HVAC Equipment. 

If Yes? What are the areas of overlap between the Feature and State concepts? 
How can the Feature and State concepts be related individually (Feature and State separately) 
or together (In terms of States representing different Features) to the Element concept 
representing HVAC equipment? 

Concept: Track with respect to Feature AND/ State 
Discussion 3: How can the Track concept be used to give the user a history of the HVAC 
system's problems in either a binary form of faulty or un-faulty or categories (Type of the faults)? 
Considering the existence of Feature and State concepts. 
Track: Keeping an eye on a State for a certain amount of time. 
Feature: Data being collected from the sensor that can be used for AFDD. 
State: This shows how an entity of interest is doing right now. 
In AFDDOnto, the Feature concepts have States, and States can further be Tracked. 

 
Is there any overlap between Track, Feature, and State concepts? Can you identify the type 

of relationship that may exist? 
 


