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Abstract

A hybrid NFV/In-Network Computing MANO Architecture for provisioning Holographic

Applications

Farzaneh Ghasemi Javid

The emergence of innovative holographic applications, such as holographic concerts, have

requirements on network infrastructure such as high bandwidth and ultra-low latency. As demon-

strated in recent research, for efficient provisioning of these types of applications, we require a

Hybrid Network Function Virtualization (NFV) / IN-Network Computing (INC) network infras-

tructures.

INC, a novel technology, distributes computational workloads across the network by deploying

computational tasks on programmable devices like routers and switches. However, integrating INC

into existing infrastructure presents significant challenges in terms of life-cycle management and

orchestration of network functions and components. The network functions in these hybrid environ-

ments consist of two types of components, including VNFs and INCs. While the ETSI Management

and Orchestration (MANO) framework enables application provisioning in NFV-enabled networks,

it does not provide support for INC-enabled environments. Therefore it is necessary to develop a

new MANO architecture capable of provisioning applications that incorporate both VNF and INC

components.

The main contribution of this thesis is twofold. First, we propose a novel hybrid NFV-INC

MANO architecture which is specifically designed for provisioning holographic applications within

a hybrid NFV/INC environment. This architecture builds upon the foundation established by the

ETSI NFV MANO framework. Second, the proposed architecture is prototyped and measurements

are made to evaluate the deployment time of the hybrid Network Services and showing that deploy-

ing INC components takes less time than deploying VNFs.
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The essential NFV-INC MANO functional entities, such as INC management module, NFV-

INC orchestration, and INC infrastructure manager are identified. In addition, a set of RESTful

interfaces is proposed to enable interaction with components.

To validate the proposed concept, the prototype is constructed utilizing Open Source MANO

(OSM) for orchestration and management network services. Microk8s is employed for container

orchestration, automating the deployment of Kubernetes Network Functions (KNFs). Also, the

Mininet emulator prepares the programmable switches which serve as the INC infrastructure. The

performance of the proposed architecture is evaluated through comprehensive measurements. Addi-

tionally, the architecture is validated by concrete measurements on the deployment latency for five

different test cases.
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Chapter 1

Introduction

1.1 Definitions

This section starts with an overview of the key terms associated with our research such as Holo-

graphic Applications, IN-Network Computing (INC), and Network Functions Virtualization (NFV)

Management and Orchestration (MANO) Architectures. Then, the motivation and problem state-

ment are discussed. Finally, the summary of our contributions and organization of the thesis are

presented.

1.1.1 Holographic Applications

The functionality of holographic applications involves transmitting and interacting with holo-

graphic data remotely. For instance, in a holographic concert, performers in one location can be

presented as holograms for an audience in another location, enabling real-time interaction. Unlike

2D and 3D content, holographic content introduces parallax, allowing viewers to engage actively,

with the image changing based on perspective. This shift from passive to interactive viewing in-

creases the demands on hardware, such as head-mounted displays (1).

The required network bandwidth for such applications varies from 100 Gb/s to 2 Tb/s, compared

to the 1±5 Mb/s bandwidth for HD video transmission. In addition, the ultra-low latency, specifically

when using a head-mounted display, is needed to avoid cybersickness. The jitter value need to be

within the range of 15 ms, in order to preserve the stability of the hologram (2).
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For transmission over the network, the three important functions are encoding, decoding, and

transcoding which consists of decoding, reformatting, and re-encoding. Transcoding typically de-

creases the size of the holograms in order to enhance quality on the receiving endpoint (3).

1.1.2 In-Network Computing

In-Network Computing (INC) is a promising technology that aims to distribute the computa-

tional workload across the network by placing network functions on programmable devices (e.g.,

routers or switches). This technology offers an alternative to computing on servers that are outside

the network (4; 5). According to reference (4), this concept is described as a ºdumb idea whose

time has comeº. While its origins can be traced back to the active networks of the late 1990s, it has

recently gained momentum in the late 2010s and early 2020s, driven by advancements in data plane

programmability.

The initial step into data plane programmability is Software-Defined Networking (SDN). This

technology separates the control plane and data plane (6). While it permits customization of the

control plane, it provides only protocol-dependent actions in the data plane. Additionally, it lacks

the capability for in-field runtime re-programmability. Addressing these limitations, the emerging

programmable data plane devices, including switches and network interfaces, offer significantly

enhanced flexibility. Users can directly program these devices using languages such as P4 (6).

1.1.3 NFV Management and Orchestration (MANO) Architectures

NFV decouples Network Functions (NF) from network hardware and allow them to run on com-

modity servers (7; 8). This decoupling leads to the creation of Virtual Network Functions (VNF),

which interact with both the hardware and software infrastructure in new ways. The infrastructure

required for NFV is referred to as NFV Infrastructure (NFVI).

To manage and coordinate these new relationships and operations, a specific architectural frame-

work known as NFV MANO is essential (9). NFV-MANO is composed of two primary compo-

nents: the NFV Orchestrator (NFVO) and the VNF Manager (VNFM). The NFVO is responsible

for allocating resources across various Virtual Infrastructure Managerss (VIMs) to oversee the life

cycle of network services for VNFs. Meanwhile, VIMs manage the NFVI resources, and the VNFM

5



handles the setup and life cycle management of VNFs deployed in virtual machines or containers.

(7).

1.2 Motivation

Recent research by (3) underscores the critical role of Hybrid Network Function Virtualization

(NFV) / INC network infrastructures for efficiently delivering applications with high bandwidth

and ultra-low latency demands, such as holographic applications. NFV provides flexibility and

efficiency in network management, while INC distributes computation tasks across the network to

meet these stringent requirements.

The study by (3) investigated the impact of transcoder placement on latency, jitter, and network

load. According to their scenarios for deploying transcoder on edge server, user’s computer, and

within the network near the audience, their findings demonstrate that placing the transcoder near

the server delivering the hologram (INC) resulted in the lowest latency for most viewers. This is

because it avoids sending the large data all the way to the edge server first. All scenarios achieved

acceptable jitter levels below 15ms, with slight variations based on network connections. Impor-

tantly, INC significantly reduced network load compared to other options by shrinking data size

before transmission, minimizing overall traffic.

1.3 Problem Statement

The integration of NFV and INC into a hybrid environment that incorporates both VNFs (virtu-

alized network functions) and INC components (P4 programs) presents a new challenge: managing

and orchestrating these different network functions and components. Effective lifecycle manage-

ment of network functions, including deployment, instantiation, termination, upgrades, and migra-

tions, necessitates dedicated management modules.

The existing Management and Orchestration (MANO) framework for NFV includes a VNF

management module that handles VNFs within the network. However, this module lacks the ca-

pability to place components on INC-enabled devices such as programmable routers or switches.

This limitation necessitates the development of new functional modules or extending the existing
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modules of the MANO architecture. For the lifecycle management of an INC component, the devel-

opment of a new INC management module is needed. Additionally, extending the existing modules

such as INC/NFV orchestration module is required to receive the output of the placement algorithm

and use it to fetch a component from the repository and determine the appropriate management

module (VNFs Management or INC-programs Management) for its placement on network devices.

Consequently, defining clear interfaces, protocols, and management and orchestration modules is

crucial for effectively placing these components within a hybrid environment.

1.4 Thesis Contributions

• A set of requirements on the general architecture of MANO for a hybrid NFV/INC environ-

ment;

• A review on the state of the art solutions for MANO architecture based on our sets of our

requirements;

• Proposed extensions of existing functional entities of MANO architecture for hybrid NFV/INC,

consisting: NFV/INC Orchestrator (NIO), NFV/INC Infrastructure Manager (NIIM), NFV/INC

Infrastructure (NII), Network Service (NS) Catalog, NFV/INC Infrastructure (NII) Resources,

and NS Instances;

• Development of new functional entities for hybrid NFV/INC MANO architecture, consisting:

INF Manager (INFM), In-Network Function (INF) Catalog, and a set of interfaces including

NIO-INFM interface (Nio-Infm), NIIM-INFM interface (Niim-Infm), and INFM-INF inter-

face (Infm-Inf);

• An implementation architecture, a proof-of-concept prototype, and performance evaluation.

1.5 Thesis Organization

The rest of the thesis is organized as follows:

• Chapter 2 presents the background key concepts related to our research domain in detail.
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• Chapter 3 introduces the motivating scenarios and the set of requirements derived from these

scenarios. The state of the art is also evaluated against the requirements.

• Chapter 4 presents the proposed architecture for the Management and Orchestration of a

hybrid NFV/INC environment. Functional entities and the proposed interfaces are discussed.

• Chapter 5 describes the implementation architecture and technologies used for the proof-

of-concept prototype. Then the performance measurements evaluating the architecture are

presented.

• Chapter 6 concludes the thesis by providing a summary of the overall contributions and iden-

tifying the future research directions.
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Chapter 2

Background

This chapter presents the background concepts relevant to the research domain of this thesis.

The following concepts are explained in the upcoming sections: Holographic Applications (HA),

In-Network computing and a brief description of Software-Defined Networking (SDN), and finally

the NFV Managemen and Orchestration (MANO).

2.1 Holographic Applications

2.1.1 General Definition of Holographic Applications

Holographic applications revolutionize remote interaction by enabling the real-time transmis-

sion, interaction, and manipulation of data representing objects in six degrees of freedom (6DoF)

like holographic data. To achieve truly immersive experiences like holographic streaming, six de-

grees of freedom (6DoF) are essential (10). Unlike traditional video where viewers are passive

observers or 360-degree video that only allows head movement, 6DoF enables users to freely move

and interact within a virtual environment.

Computer-generated holograms can be categorized into two primary types: image-based and

volumetric. Image-based holograms are constructed by assembling a collection of images captured

from various perspectives of an object. Light field video (LFV) is a prime example of this approach

(11). While conceptually straightforward, image-based holograms present challenges in terms of

storage and data transmission due to the vast number of individual images required. For instance,
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a hologram encompassing a 30-degree viewing angle and a 10-degree tilt angle would necessitate

an array of 3300 images if each image is captured at a 0.3-degree interval. Nevertheless, the redun-

dancy inherent in these image sets allows for the application of advanced compression techniques

to mitigate storage and transmission demands, albeit at the expense of increased computational

requirements (12).

The contemporary approach to holographic representation leans towards volumetric media,

specifically ºpoint clouds.º Here, objects are depicted as collections of three-dimensional volume

pixels, or voxels, within a conceptual three-dimensional space. The visual image is subsequently

generated dynamically from any perspective at the receiving end, allowing for the integration of

multiple point cloud objects into a single scene. This process entails intricate preprocessing and

rendering, utilizing systems equipped with multiple cameras capable of capturing both color and

depth information. A key advantage of volumetric media is its inherent compressibility, as each

voxel is transmitted only once, irrespective of the number of viewing angles or tilts. To establish

a standardized compression format for volumetric media, the MPEG group has recently adopted a

reference encoder known as V-PCC (13). This encoder transforms point clouds into two distinct

video sequences, encapsulating geometric and textural data, which are subsequently compressed

using conventional video coding methods.

Regardless of the specific holographic media format, the processes of compression and decom-

pression introduce computational overhead, which directly impacts the resulting latency. Conse-

quently, a higher compression ratio necessitates increased computational resources and potentially

higher latency, while a lower compression ratio demands greater network bandwidth and latency.

This trade-off between computational and network resources is a critical factor in the design and

optimization of holographic systems (1).

For instance, in a holographic concert the performers which are located at one end-point in

the network can be appeared as life-size, interactive holograms for a geographically distributed

audience remotely. In this concert, hologram streaming has three main phases: capturing, rendering,

and streaming an aim object which is the performer. First the target object is captured by a camera

array from multiple various perspectives and angles. The output images are merged and rendered

into a hologram. Then this hologram object is encoded and streamed through the network. On
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the receiving end point the audiences receive the stream, decode it, and render it to provide the

hologram to show on a holographic display. Unlike traditional 2D and 3D content, holographic

displays leverage parallax, allowing viewers to actively interact with the content as their perspective

change. This transition from passive viewing to active participation necessitates advanced hardware,

such as head-mounted displays (HMDs) (1).

Holographic applications necessitate a network infrastructure significantly more demanding

than conventional video streaming. The required network bandwidth for such application varies

from 100 Gb/s to 2 Tb/s, while for the HD video transmission the 1-5 Mb/s bandwidth is needed.

Furthermore, the ultra-low latency is demanded to avoid cybersickness especially when using a

head-mounted display. The jitter value need to be within the range of 15 ms, in order to preserve

the stability of the hologram. (2).

To facilitate efficient network transmission, holographic data undergoes a three-stage processing

pipeline: encoding, decoding, rendering, and transcoding. During transcoding, the data is decoded,

reformatted, and re-encoded, typically with the goal of reducing file size while optimizing quality

at the receiving end. (3).

2.1.2 Requirements of Holographic Applications

According to (3), provisioning holographic communication and applications necessitates ad-

dressing two critical challenges: bandwidth and latency. While data compression techniques can

mitigate bandwidth demands to some extent, holographic data inherently requires a significant

amount of information to be transmitted. In this section, we delve into these requirements discuss

about them in more detail (1):

2.1.2.1 High Bandwidth

The emergence of holographic applications, like HTC streaming, is projected to trigger a signif-

icant growth in network bandwidth requirements. These applications require the high bandwidths

reaching the terabit-per-second (Tb/s) range, representing a significant increase by several orders

of magnitude compared to conventional high-definition (HD) video streaming or even 3D virtual

reality (VR) video.
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Visual capture technologies like the Microsoft Kinect sensor for Windows v2 generate signifi-

cant bandwidth demands. Capturing high-resolution color and depth information results in roughly

8.8 MB of raw data per frame, or 2.06 Gb/s of raw data per second at 30 FPS. This burden in-

tensifies with additional sensors, viewpoints, or higher resolutions. Light Field Video (LFV), for

example, may require bandwidths exceeding 1 Tb/s. Efficient data compression and robust network

infrastructure are crucial to support these evolving data requirements.

Under these circumstances, high-bandwidth demands are undeniable for supporting holographic

applications, even with advanced compression and user interaction prediction. 5G uses higher re-

gions of the electromagnetic spectrum to address this, but novel management techniques are crucial

to fully exploit its potential.

2.1.2.2 Ultra-low latency

In addition to the need for extremely high bandwidths achievable through novel wireless infras-

tructures, the 5G paradigm establishes a target latency of 1 millisecond (ms) for round-trip commu-

nication. However, achieving such low latency over vast distances remains a significant challenge

due to the fundamental physical limitation imposed by the speed of light. Nonetheless, ultra-low

latency is paramount for fostering a truly immersive holographic experience, particularly when uti-

lizing head-mounted displays (HMDs), where latency can induce simulator sickness. Additionally,

real-time communication applications necessitate stringent latency requirements for a seamless user

experience.

2.2 In-Network Computing

2.2.1 Definition

The term ºin-network computingº lacks a universally agreed-upon definition. One perspective,

offered by ACMSIGARCH (14), describes it as running programs typically executed on individual

computers directly within the network itself. This approach leverages existing network elements,

like switches, that already manage data flow within the network. Alternatively, Sapio et al. (4) de-

fine in-network computing by its ability to offload computational tasks from individual computers.
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There are four types of SDN interfaces (15):

• Northbound Interface: it enables the connection between the network’s control center (SDN

controller) and the software that uses the network (network application). The software decides

what kind of information is shared, how it’s formatted, and how often.

• Southbound Interface: This link connects the network’s control center with the physical net-

work equipment (like switches and routers) so they can communicate and work together.

• Eastbound Interface: This is the bridge between the traditional internet (using IP addresses)

and the new network (SDN). There’s no standard way to do this yet, so it depends on how

the old network is built. To make them work together, a special tool is needed to translate

information between the two types of networks.

• Westbound Interface: This connection lets different control centers in different parts of the

network talk to each other. It also makes it possible to manage network traffic smoothly across

these different areas while getting a complete picture of the entire network.

In this context, there have been introductions of programming languages like P4, aimed at en-

abling the programming of networking devices, both in software and hardware. P4, which stands

for Protocol-independent Packet Processors, is a specialized language designed for configuring how

data plane devices, including switches, NICs, routers, and filters, handle incoming packets. P4

presents the opportunity to leverage the advantages of two core methodologies: the heightened

packet processing performance offered by hardware-based networking solutions and the inherent

adaptability and programmability found in software-centric network operations (16). Overall, P4

contains the following key elements ():

• Header Format: P4 can handle different types of data packets, including standard ones like

Ethernet, IP, TCP, or UDP, as well as custom ones. The P4 program needs to clearly define

how these packets are structured.

◦ Parser: The parser figures out the structure of incoming packets. It breaks down the

packet into smaller parts and stores this information for later use. The parser can make

decisions about what to do next based on the information it finds.
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◦ Match+action pipeline: This part decides what to do with the packet based on its con-

tents. It uses a set of rules to match packet information and then performs specific

actions, like sending the packet out a certain port or changing its address.

◦ Deparser: The deparser takes the changed packet and prepares it to be sent to the next

network device.

• P4 Compilers: P4 compilers translate P4 code into instructions that the network hardware

can understand. They have two main parts: one that converts P4 code into a general format,

and another that changes this general format into instructions for specific hardware. The

compiler also creates tools to control the network devices.

• P4 Runtime: The P4 Runtime manages communication between the network hardware and

the software that controls it. This allows different types of network hardware to work together

and gives software the flexibility to control the network from different locations.

2.2.3 Benefits of In-Network Computing

The adoption of in-network computing offers a multitude of advantages. In this section, accord-

ing to the (17) we propose some of the in-network computing benefits that raise the importance of

existing this technology.

2.2.3.1 High Throughput

In-network computing offers a significant advantage in terms of throughput. Network elements

within this paradigm are capable of processing data at rates exceeding billions of packets per second.

To illustrate this, the Tofino chip developed by Barefoot demonstrates the feasibility of line-rate

processing at 12.8 Tb/s. Consequently, in-network computing surpasses host-based solutions by

providing orders of magnitude higher throughput processing capacity.

2.2.3.2 Low Latency

In contrast to the inherent variability and delays experienced in host-based solutions, in-network

computing offers significant advantages in terms of latency. Network elements within this paradigm

15



boast sub-microsecond processing latencies. This low and stable latency (jitter) is achieved due to

the pipeline design, which avoids accessing external memory at each processing stage. As high-

lighted by the use cases discussed earlier, in-network computing performs computations directly

within the network. This enables transactions to terminate within their path, eliminating the need

for detours to distant servers. Consequently, the delays associated with data transmission between

network elements and end-hosts are significantly reduced. In essence, in-network computing brings

computation closer to the user, achieving a level of proximity that surpasses even edge/cloud com-

puting architectures.

2.2.3.3 Bandwidth Usage Reduction

By performing computations directly within the network, in-network computing enables data

processing to be completed on the path, eliminating the need to transmit data all the way to edge or

cloud servers. This significantly reduces the amount of data traversing the backhaul links, thereby

minimizing bandwidth consumption and alleviating potential traffic congestion.

2.2.3.4 Load Balancing

In-network computing inherently introduces a novel form of load balancing. By strategically

processing requests within the network itself, network elements can offload computation from tra-

ditional end-hosts. This capability fosters a distribution of workload, enabling network elements

to handle latency-sensitive applications, while tasks with less stringent latency requirements can

be directed to end-hosts. For instance, traffic generated by latency-tolerant applications could be

forwarded to end-hosts for processing, while network elements could prioritize and handle requests

demanding ultra-low latency.

2.2.3.5 Energy Efficiency

In-network computing presents a significant advantage in terms of energy consumption com-

pared to traditional host-based processing. Network elements employed in this paradigm are inher-

ently more energy-efficient for performing computations. This is due to their specialized architec-

ture, enabling them to execute billions of operations per watt of energy utilized. For instance, the
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Arista 7170 series programmable switch demonstrates exceptional efficiency, consuming less than

5 watts per 100 Gigabit Ethernet port. Further substantiating this claim, research presented in (18)

indicates that processing millions of queries within network elements can be achieved with a power

consumption of less than 1 watt. This translates to a significant improvement in processing effi-

ciency per unit of energy compared to general-purpose computers. Additionally, network elements

are designed for packet forwarding as their primary function, resulting in minimal energy consump-

tion during idle periods. In contrast, general-purpose computers often experience higher baseline

energy consumption even when not actively processing tasks.

2.3 NFV Management and Orchestration

2.3.1 Definition

Network Functions Virtualization (NFV), as explored by (7) and (8), stands as a transforma-

tive technology for next-generation networks. It fundamentally disrupts the traditional approach

by decoupling network functions (NFs) from specialized hardware. This separation allows NFs

to operate on readily available, commercially-produced servers, often referred to as ºcommodity

serversº. This shift offers significant advantages.

Firstly, NFV fosters the creation of Virtual Network Functions (VNFs). Unlike their hardware-

bound predecessors, VNFs exist purely in software. This software-defined nature enables them to

interact with the underlying infrastructure, encompassing both hardware and software components,

in novel and more flexible ways (7; 8). This flexibility empowers network operators to tailor their

network services to specific needs.

Secondly, NFV unlocks the potential for network consolidation. Traditionally, diverse network

functions relied on dedicated hardware, leading to a complex network environment with a multitude

of specialized devices. NFV paves the way for the integration of various network equipment, in-

cluding servers, switches, and storage, into a centralized data center network (8). This consolidation

simplifies network management and potentially reduces operational costs.

In essence, NFV allows for the virtualization of network functions previously confined to spe-

cialized hardware, often referred to as ºmiddleboxesº. These functions are transformed into VNFs,
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becoming software-defined and readily deployable. This software-oriented approach streamlines

service implementation and fosters greater network agility (8).

2.3.2 NFV MANO

By decoupling network functions from hardware and embracing software-defined VNFs, NFV

empowers network operators with a more flexible, efficient, and manageable network infrastructure.

To manage and coordinate these new relationships and operations, a specific architectural frame-

work known as Network Functions Virtualisation Management and Orchestration (NFV-MANO) is

essential (9). Figure 2.2 shows the NFV-MANO architecture. NFV-MANO is composed of two pri-

mary components: the NFV Orchestrator (NFVO) and the VNF Manager (VNFM). The NFVO is

responsible for allocating resources across various virtual infrastructure managers (VIMs) to over-

see the life cycle of network services for VNFs. Meanwhile, VIMs manage the NFVI resources,

and the VNFM handles the setup and life cycle management of VNFs deployed in virtual machines

or containers. (7).

The emergence of network functions virtualization (NFV) necessitates a management and or-

chestration framework to guide the lifecycle of virtualized resources. NFV Management and Or-

chestration (NFV-MANO) a framework designed to handle these complex virtualized network op-

erations (9). As stated by (7), NFV-MANO operates through two key components: the NFV Or-

chestrator (NFVO) and the VNF Manager (VNFM).

The NFVO acts as the central conductor, allocating resources across diverse virtual infrastruc-

ture managers (VIMs) (7). This enables it to oversee the entire lifecycle of network services for

VNFs, ensuring their smooth operation. Meanwhile, VIMs meticulously manage the underlying

NFVI infrastructure, providing the foundation upon which VNFs reside. Finally, the VNFM takes

center stage for individual VNFs, handling their setup, lifecycle management, and ensuring their

proper functioning within virtual machines or containers (7). In essence, NFV-MANO acts as the

invisible hand, coordinating the complex interplay between these components to create a seamless

and efficient virtualized network environment.
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2.4 Conclusion

In this chapter, we focused on the major concepts that are relevant to this thesis. The chapter

began with a brief discussion on the Holographic Applications couvering the general definition and

the requirements of Holographic Applications. Then, we followed by discussing the concept of In-

Network computing, its initial step which is SDN, and the benefits of In-Network Computing. The

definition of Network Function Vitualization (NFV), its advantages, and the NFV MANO described

in brief before concluding the chapter.
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Chapter 3

Use cases and State of the art

In order to capture the requirements of a hybrid NFV/INC MANO architecture for provisioning

holographic applications, two motivating use cases of holographic applications are first presented,

then the requirements are derived from them. Finally, we evaluate and summarize the current state

of the arts against the requirements followed by the conclusion.

3.1 Use Case

This section presents an illustrative motivating scenario; a holographic concert scenario. The

motivating scenario help to derive the requirements for a hybrid NFV/INC MANO framework solu-

tion that enables the provisioning of the holographic applications. These types of application require

ultra-low-latency and high bandwidth which leads us to a hybrid management and orchestration so-

lution for their network services. The required network service for provisioning the holographic

applications are composed of VNFs and INC components and need a deployment of service chains

on the network devices.

3.1.1 Holographic concert scenario

Holographic concerts are a practical application of holographic technology. In this type of per-

formance, artists located in one place can appear as life-sized, interactive holograms to audiences
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in different locations. This process involves three main steps: capturing, processing, and transmit-

ting the performer’s image. Initially, the performer is recorded from various angles using multiple

cameras. These images are then combined and transformed into a hologram. This holographic

representation is compressed and sent over a network. At the concert venue, the received data is

decoded and reconstructed to create a lifelike holographic image of the performer for the audience

to view (1). To transmit a hologram across a network, a three-step process is employed: capturing,

rendering, and streaming the target object. The initial stage involves capturing the subject from

diverse angles using an array of cameras. The resulting images are then combined and transformed

into a holographic representation. This hologram is subsequently compressed and transmitted over

the network. Upon reaching the destination, the data is decoded and reconstructed to produce a

lifelike holographic image for display (12). There are two primary types of computer-generated

holograms: image-based and volumetric. Image-based holograms are constructed from a series of

images captured from various perspectives of an object. Light field video (LVF) is an example of

this approach (11). While conceptually straightforward, image-based holograms demand substan-

tial storage and network capacity due to the immense quantity of individual images required. For

instance, representing an object with images captured every 0.3 degrees for a 30-degree viewing an-

gle and 10-degree tilt would necessitate an array of 3300 images. Nevertheless, as adjacent images

within the array exhibit minimal variations, compression techniques can be employed to reduce data

volume, albeit at the expense of increased computational effort. The prevailing method for creating

holographic representations is through volumetric media, specifically point clouds. This approach

involves representing objects as collections of three-dimensional pixels, or voxels, within a con-

ceptual three-dimensional space. Images are then generated dynamically from any viewpoint at

the viewing location, allowing for the integration of multiple point cloud objects into a single scene.

This process necessitates sophisticated preprocessing and rendering techniques, utilizing camera se-

tups that capture both color and depth information. A key advantage of volumetric media is its high

compressibility, as each voxel is transmitted only once, regardless of the number of viewing angles

or tilts (12). To establish a standard for volumetric media compression, MPEG has recently adopted

V-PCC as a reference encoder (13). This encoder separates point cloud data into two distinct video

sequences representing geometry and texture information, respectively, and employs conventional
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video compression methods to reduce data volume. Regardless of the holographic media format,

data compression and decompression introduce computational overhead, which directly impacts the

resulting delay. Consequently, increasing the compression ratio necessitates a trade-off between

computational resources and latency on one hand, and network bandwidth and latency on the other

(12).

3.2 Requirements

According to the motivating scenario, the identified requirements of ultra-low latency and high

bandwidth lead us to a hybrid NFV/INC network to tackle these challenges. In this novel network,

we need the deployment of holographic network services that composed of both VNFs and INC

components. These components require life cycle management and orchestration. For provision-

ing the requirements of holographic applications we need to have a hybrid management, a hybrid

orchestration, a hybrid infrastructure, and hybrid network service composed of VNFs and INC com-

ponents. In the next subsections we discuss these needs.

3.2.1 A hybrid management module

The hybrid NFV/INC MANO architecture should enable the management of both VNFs and

INC components on the network devices. This is needed while for provisioning holographic appli-

cations and meeting its requirements both VNFs and INC components are necessary. In the holo-

graphic concert senario, for instance, we may need to deploy an encoder and decoder as a VNF and

a transcoder as an INC component. As these components have different lifecycle management such

as different deployment and configuration process and the existing NFV MANO is not supporting

INC lifecycle management, so we need to propose new INC management module.

3.2.2 A hybrid orchestration module

In the holographic concert scenario, the holographic application is composed of a chain of net-

work functions for instance encoder as VNF, transoder as INC component, and decoder and renderer

as VNF. For deploying these components as one Network Service there should be an orchestrator
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to distinguish these function and decide which management module should deploy them on the tar-

geted network. Therefore, a hybrid NFV/INC MANO architecture should be exist to distinguish the

targeted VNF and INC components and decide which management module have to deploy that com-

ponent on network devices. This module also need to maintains the information of the repositories

and coordinates the functions and infrastructure managers.

3.2.3 Hybrid infrastructure and infrastructure manager

The holographic concert scenario has specific ultra-low latency and high bandwidth require-

ments. As demonstrated in (3), we need to execute some of the computational tasks on the pro-

grammable switches or router to meet these two requirements. With regards to this fact, we require

to have a hybride NFV/INC infrastructure in our MANO architecture by adding INC-enabled routers

or switches. Also we need to have a hybrid infrastructure manger which able to manage both NFV

and INC infrastructures.

3.2.4 A hybrid network service

Acording to (3), in the holographic concert scenario, the functions enabling transmission and in-

teractions with holographic data from remote locations across a network are the encoder, transcoder,

decoder, and renderer. These components are deployed as VNF on edge servers or INC components

on the programmable swiches or routers. In the existing NFV MANO we have the VNF components

but there is still need to add the INC components. These network functions are connected to each

other as a service chain to produce a holographic network service.

3.3 State of the Art

In the subsequent sections, we evaluate the state of arts and draw summary from it focusing on

MANO architectures for hybrid NFV/INC environments.
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3.3.1 Works on resource provisioning for holographic applications in hybrid NFV/INC

networks

To the best of our knowledge, no work has so far considered the management and orchestration

of resources in a hybrid NFV/INC infrastructure. There are actually very few works on NFV/INC

infrastructure. (3) present a novel architectural framework that addresses the critical need for ef-

ficient resource provisioning for holographic-type applications. The authors try to propose an ar-

chitecture centers around the concept of INC-enabled slices. These slices provide a dedicated and

optimized network environment specifically tailored to meet the demanding requirements of holo-

graphic applications. Their motivation for exploring In-Network Computing (INC) stems from its

inherent focus on achieving these goals: high bandwidth and ultra-low latency. Network slicing

offers a compelling solution for accommodating applications with diverse requirements within a

single network. This concept becomes particularly relevant for holographic applications, which

will undoubtedly coexist with other services in next-generation networks. However, to cater to the

specific needs of holographic experiences, these slices will require INC capabilities. The core of

their proposed architecture, is to provide a method for creating slices specifically designed for holo-

graphic applications with INC capabilities. These slices cater to the unique needs of holographic

experiences. The architecture is built with several key goals in mind. The proposed architecture

has some main goals: First, it allows holographic application providers to easily request slices with

customizable features, such as bandwidth, latency, and the ability to handle varying numbers of

participants, as seen in holographic concerts. Second, the architecture ensures the slice provider

can seamlessly integrate these requested slices into the network’s existing resources. This requires

constant monitoring of network usage to optimize allocation and avoid conflicts. To handle the

diverse needs of future networks, the architecture utilizes network slicing. This allows multiple

applications, including holographic ones, to coexist within the same network infrastructure, each

operating on its own dedicated slice with its specific requirements met. Additionally, the architec-

ture prioritizes incorporating INC functionalities within these slices. This is crucial for achieving

the demanding bandwidth and latency requirements necessary for smooth holographic experiences.

Finally, the architecture acknowledges the inherent heterogeneity of network environments and is
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designed to adapt and function seamlessly even when network components or functionalities differ.

While this study shows that combining Network Function Virtualization (NFV) and In-Network

Computing (INC) is a good approach for setting up holographic applications, it does not address

how to manage and orchestrate issues of having integrated NFV and INC and the nouvel relationship

between new components.

3.3.2 Works on the integration of NFV and INC

While the exploration of novel approaches for NFV deployments continues, it is important to

acknowledge their limitations in the context of hybrid scenario. One such example is P4NFV, intro-

duced by (16). This architecture leverages the P4 programming language for implementing Network

Functions (NFs), aiming to achieve dynamic data plane reconfiguration.

P4NFV addresses the challenges of managing network functions in dynamic environments

through three key design principles. Abstraction simplifies development by shielding NF creators

from hardware intricacies, enabling a wide range of NF offerings. Flexibility ensures adaptabil-

ity through mechanisms like feature upgrades, instance migrations, and runtime reconfigurations to

meet evolving network needs. Consistency guarantees reliable performance and NF functionality

across diverse hardware and during runtime changes, safeguarding critical stateful NFs. By priori-

tizing these principles, P4NFV enhances the agility and reliability of network function management.

P4NFV enables dynamic network function reconfiguration while preserving consistency through

state management. A prototype evaluation demonstrates the effectiveness of NF relocation for

adapting to traffic changes and the importance of data plane pipeline design. P4NFV maintains func-

tion liveness and acceptable performance compared to traditional VM solutions, but some hardware

reconfigurations may induce packet loss. Future research should focus on lossless reconfiguration

mechanisms.

P4NFV’s exclusive reliance on programmable devices limits its applicability to hybrid NFV/INC

environments. While it can provision individual network functions, P4NFV lacks support for func-

tion chaining, essential for holographic applications. Additionally, the architecture’s inability to

perform network slicing on the programmable data plane restricts its flexibility and efficiency in

handling diverse traffic demands.
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3.3.3 Works on the implementation of NFV MANO

While there are work on NFV management and orchestration, including official standards, open-

source projects, and even efforts to improve upon these standards, none of them take Information

Centric Networking (INC) into account. This section will explore these prominent NFV manage-

ment and orchestration frameworks and explain why they are currently incapable of managing the

lifecycle of INC components.

ETSI MANO (19) provides a high-level architecture for NFV management and orchestration,

defining functional components and communication channels. While it outlines the system blueprint,

it lacks specific implementation details and focuses solely on VNFs and software components, ne-

glecting INC management and orchestration.

Building upon the ETSI MANO standard, Open Source MANO (OSM) offers an open-source

implementation for practical use (20). Our proof-of-concept prototype leverages this framework for

its functionality. The goal of ETSI OSM (Open Source MANO) is the development of a community-

driven production-quality Network Service Orchestrator (NSO) designed for telecom services. This

NSO is built for real-world use and can handle the intricate nature of managing telecom services in

production environments. ETSI OSM offers several benefits: it accelerates the development of NFV

technologies and standards, fosters a wider range of vendors who can create Network Functions,

and provides a testing ground to validate how the NSO interacts with other crucial components like

commercial network infrastructure and various types of Network Functions. This reference also

does not support the management and orchestration of INC components’ lifecycle.

While OSM provides a solid foundation for automating network services, Open Network Au-

tomation Platform (ONAP) (21) takes things a step further. It’s an open-source platform designed

for real-time, policy-driven service orchestration and automation. This translates to faster and sim-

pler network service management for providers and developers. ONAP automates the setup and

configuration of both physical and virtual network functions, and even supports their entire lifecy-

cle. What sets ONAP apart is its incorporation of big data and artificial intelligence. This adds an

extra layer of sophistication by optimizing policy management for network services. The architec-

ture behind ONAP boasts two key components: 1) The ONAP Design Time Framework and 2) The
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ONAP Execution Time Framework. The first key component streamlines the creation of blueprints

for virtual network functions (VNFs), making it easier to design and deploy them. The second key

component employs metadata-driven modules to automate the configuration and instantiation of

VNFs, further simplifying the process. Contrary to these efforts, ONAP also does not offers a solu-

tion for managing and orchestrating neither INC components nor hybrid components that combine

both VNFs and INC components.

3.3.4 Works on the extension of NFV MANO

In this among we revised the examples of an architectures which is an extension of ETSI

MANO. A first example of a proposal for enhancing / extending is MANOaaS (22). ETSI MANO

adopts a centralized approach to management and orchestration. This leads to significant perfor-

mance issues. This paper proposes MANOaaS, a novel architecture that abstracts the centralized

NFV-MANO framework into distributed tenant MANO (t-MANO) instances. This empowers ten-

ants with greater control over their allocated network slice resources. 5G networks require managing

diverse services with stringent performance demands for various industries. Network slicing enables

provisioning isolated virtual networks over shared infrastructure. A robust Network Slice Manage-

ment and Orchestration (MANO) system is crucial. The current, centralized ETSI NFV-MANO

framework might face performance and management challenges. It introduces MANOaaS, which

breaks down the centralized MANO stack to enable network slicing. The architecture includes

distributed t-MANO instances and differentiated management agreements between infrastructure

providers and tenants. The authors believe MANOaaS is a significant step towards full network

slicing isolation with performance and management benefits.

Another example is LightMANO (23). It also tackles the issues inherent to the centralized

approach followed by ETSI MANO. While the ETSI MANO framework provides a reference archi-

tecture for NFV, challenges remain for deploying NFV in distributed edge environments like those

required for 5G and Industrial IoT. LightMANO introduces a lightweight platform for managing

and orchestrating network services at the network edge. It converges SDN and NFV functionali-

ties and leverages containerization and programmable packet processing technologies. The authors

demonstrate its effectiveness through a content caching use case and plan to further improve its
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Chapter 4

Proposed Architecture

In this chapter, we focus on our proposed hybrid NFV/INC MANO architecture for holographic

applications. First we provide a description of our designed architecture and each module in de-

tail. The required interfaces are also discussed to show the communication way between necessary

modules. Then the main procedures about deployment of VNF and INC component are explained

with the help of presenting of the illustrative sequence diagrams for the interaction between involved

modules within the hybrid NFV/INC MANO. Finally, we conclude this chapter by a brief evaluation

of proposed architecture against the requirements followed by a conclusion section.

4.1 Proposed Architecture

This section outlines an extension to the existing NFV MANO architecture to accommodate

the lifecycle management of Network Services (NSs) composed of multiple interconnected Virtual

Network Functions (VNFs) and In-Network Functions (INFs) operating within a hybrid NFV/INC

infrastructure (NII). INFs represent networking applications or functionalities executed directly on

INC-enabled devices, such as programmable switches or SmartNICs. As illustrated in Figure 4.1,

the proposed NFV/INC MANO architecture introduces an INF Manager (INFM) and modifies two

existing components: the NFV/INC Infrastructure Manager (NIIM) and the NFV/INC Orchestrator

(NIO), which replace the VIM and NFVO, respectively. Furthermore, our architecture includes

an INF Catalog and modifies three additional repositories: the NS Catalog, NS Instances, and NII
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with the NFV-MANO system to manage older network technologies. OSS/BSS have a complete

view of all services provided by both new and old network equipment.

4.1.1.2 VNF Manager (VNFM)

The VNF Manager (VNFM) is responsible for managing the entire lifecycle of individual VNF

instances. It obtains the necessary information about each VNF from its corresponding VNF De-

scriptor, which is stored in the VNF Catalog. To manage the VNF’s resources, the VNFM works

closely with the VIM. Additionally, it may interact with an external Element Management system

to handle various management tasks related to the VNF.

4.1.1.3 NFV Resources

NFV Resources refers to the physical and software components that host VNFs. This includes

servers and virtualization technologies like hypervisors and containers. NFV Resources also in-

cludes network components like SDN controllers that allow the NIIM to connect and link multiple

VNFs together to create network services.

4.1.1.4 VNF Catalog

The VNF Catalog is a central repository for storing information about VNFs. It contains detailed

descriptions of VNFs, including software components and configuration details. Both the NIO and

VNFM can access this catalog to obtain information needed for managing and deploying VNFs.

4.1.1.5 Element Management (EM)

Element Management (EM) is responsible for overseeing the various aspects of a Virtual Net-

work Function (VNF) and In-Network Function (INF). This includes managing its configuration,

identifying and resolving faults, tracking usage, measuring performance, and ensuring security. The

EM can work together with the VNF and INF Manager to manage the VNF’s and INF’s resources

within the virtualized environment.
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4.1.2 The modified modules

4.1.2.1 NFV/INC Infrastructure Manager (NIIM) and NFV/INC Infrastructure (NII)

The NIIM expands upon the VIM by incorporating the allocation, release, and monitoring of

INC resources within the NII. NII, comprising the underlying infrastructure of programmable net-

work devices and servers, provides the physical resources for executing both VNFs and INFs. INC

resources comprise tables, memory, and processing capabilities of programmable data plane de-

vices, such as switches and SmartNICs, which execute the deployed INFs. Consequently, NIIM

oversees the hybrid NFV and INC infrastructure, assigning VNFs and INFs to appropriate NII re-

sources. Similar to NFVI, NII encompasses network controllers, such as SDN controllers, which

empower NIIM to interconnect and sequence multiple VNFs and INFs for the deployment of hybrid

NSs.

4.1.2.2 NFV/INC Orchestrator (NIO)

The NIO expands upon the NFVO by incorporating the onboarding and lifecycle management

of hybrid network services (NSs), which consist of interconnected virtual network functions (VNFs)

and In-Network Functions (INFs) forming a service chain topology. Similar to the NFVO, the NIO

maintains information within the various repositories (INF Catalog, VNF Catalog, NS Catalog,

NS Instances, and NII Resources), coordinates the functions and infrastructure managers (VNFM,

INFM, and NIIM), and may interact with external OSS/BSS platforms. The NIO stores INF de-

scriptors (INFDs) of onboarded INFs in the INF Catalog repository while maintaining VNFs in the

VNF Catalog repository. Within the NS Catalog repository, network service descriptors (NSDs) of

onboarded hybrid NSs include references to INFs and their connections to other VNFs and INFs

within the service chain topology. The NS Instances repository extends upon the NFV Instances by

recording operational data and runtime information of instantiated INFs and hybrid NSs. The NII

Resources repository expands upon the NFVI Resources by supporting allocation and management

information for INC Resources within the NII.
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4.1.2.3 NS Catalog

The NS Catalog stores information about hybrid Network Services (NSs). These descriptions

include details about how Network Instances (INFs) are incorporated into the service and how they

connect with other VNFs and INFs within the service’s structure.

4.1.2.4 NS Instances

The NS Instances repository is an extension of the NFV Instances repository. It specifically

tracks and stores operational data and runtime information related to deployed Network Instances

(INFs) and hybrid Network Services (NSs).

4.1.2.5 NII Resources

The NII Resources repository is an expansion of the NFVI Resources repository. It specifically

handles the allocation and management of resources within the NII environment.

4.1.3 The new modules

4.1.3.1 INF Manager (INFM)

The INFM is responsible for managing the entire lifecycle of INF instances, including their

installation, configuration, updating, and removal. It retrieves the INF Descriptor (INFD) from

the INF Catalog repository to acquire deployment and operational details for the corresponding

INF. INFDs encompass specifications and templates essential for INF management, such as pro-

grammable architectures and matching tables. During the INF onboarding process, the NIO stores

INFDs within the INF Catalog repository. The INFM collaborates with the NIIM to allocate and re-

lease INC resources by requesting the installation, updating, and removal of INFs on programmable

data plane devices. For INF configuration, the INFM can interact directly with INF instances or

through an external Element Manager (EM). The EM also facilitates FCAPS management opera-

tions on INFs for the INFM. Additionally, the INFM can subscribe to and receive monitoring and

configuration reports from the NIIM regarding INC resources (tables, memory, and processing cy-

cles) utilized by a specific INF.
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4.1.3.2 INF Catalog

The INF Catalog is a central repository for storing information about INFs. It contains detailed

descriptions of INFs, including software components and configuration details. Both the NIO and

INFM can access this catalog to obtain information needed for managing and deploying INFs. The

NIO stors INFDs in the INF Catalog repository when new INF instantiated. The INFM retrieves the

INFD from the INF Catalog to get the necessary details for deploying and operating the INFs.

4.1.3.3 NIO-INFM interface (Nio-Infm)

This interface serves as the communication link between the NFV/INC Orchestrator (NIO) and

the INF Manager (INFM) , facilitating directives for the deployment, management, and termination

of INC instances, coordinating in-network resource allocation, enforcing policies, and relaying per-

formance metrics to ensure cohesive and compliant operation of in-network computing functions

within the orchestrated network services.

4.1.3.4 NIIM-INFM interface (Niim-Infm)

The Niim-Infm interface enables exchanging information between NFV/INC Infrastructure Man-

ager (NIIM) and INFM . This interfaces provides managing and monitoring services such as per-

formance management, fault management, and change notification for virtualized resources (cloud,

network, storage).

4.1.3.5 INFM-INF interface (Infm-Inf)

This interface represents the link through which the INFM configures, manages, and monitors

the lifecycle of INFs, ensuring that these embedded computational elements within the network

infrastructure operate in harmony with the orchestrated network services.
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4.2 Procedures

The proposed architecture includes the following VNFs and INC components lifecycle proce-

dures: network function deployment and deletion. We describe the deployment and deletion proce-

dures for the both VNF and INF in the subsequent subsections below. First we start by describing

the deployment of VNF followed by the deletion procedure of a VNF using their sequence diagram.

Then we move forward with describing the deploying and deleting procedures of an INF by using

their sequence diagram. While the lack of documentation and CLI commands presents a challenge,

future work could explore alternative approaches or the development of necessary tools to facilitate

OSM migration.

4.2.1 Deployment of a VNF network function

As an example scenario, figure 4.2 illustrates the procedural and interactive elements within the

NFV-MANO framework requisite for the deployment of a novel VNF instance. It is imperative to

note that the deployment of a VNF may constitute a component of an instantiation of a complete

NS, such as the transcoder function of a holographic service. The request for deploying the net-

work service can originate from an external orchestration and support system or a user interface

directly integrated within the NFV orchestrator. In the event of a non-existent VNF instance com-

prising the network service, the NFV orchestrator initiates the deployment of a new VNF instance

as necessary. Moreover, this exemplar posits the prior onboarding of the VNF package by the NFV

orchestrator, thereby ensuring the presence of the corresponding VNF descriptor within the VNF

catalog repository.

Figure 4.2 illustrates the sequential interactions among NFVO, VNFM, VNF Catalog, and VIM

for VNF instantiation. Initiated by the NFVO (1), a request is forwarded to the VNFM, accompanied

by pertinent VNF details. Upon receiving this request, (2-3) the VNFM retrieves the requisite VNF

descriptor from the VNF Catalog repository to ascertain the VNF’s deployment and operational

specifications. Subsequently, (4) the VNFM requests authorization from the NFVO to proceed with

VNF instantiation, concurrently communicating the necessary NFVI resource demands (computa-

tional, storage, and networking). (5-7) The NFVO then evaluates the availability of these resources
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The INFM subsequently accesses the INF Catalog repository to acquire the deployment and oper-

ational specifications outlined in the INF descriptor (2,3). Following this, (4) the INFM submits

the INF’s resource requirements, encompassing tables, memory, and processing cycles, to the NIO

as a prerequisite for proceeding with the INF instantiation. In response, (5,6) the NIO retrieves

available INC resource information from the NII Resources repository and conducts a comparative

analysis to determine the feasibility of the instantiation. Upon confirmation that the available INC

resources meet the INF’s requirements (7), the NIO collaborates with the NFV/INC Infrastructure

Manager (NIIM) to secure a reservation of the necessary INC resources from the NFV/INC Infras-

tructure (NII) (8,9). Once the NIO receives acknowledgment of successful INC resource reservation

from both NII and NIIM (10,11), it updates the INC resource information within the NII Resources

repository (12).

Subsequently, (13) the NIO communicates the INC resource reservation details, including NIIM

and switch identifiers, to the INFM as authorization to proceed with INF instantiation. In response,

(14) the INFM interacts with the designated NIIM to transmit the INF deployment specifications

outlined in its INF descriptor and requests the installation of the INF on the reserved INC resources,

such as a programmable switch. The NIIM proceeds to install the requested INF on the allocated

INC resources (15), awaiting installation confirmation from the NII before acknowledging the INFM

(16). The INFM then leverages the operational specifications from the INF descriptor to directly

configure the INF deployment, including the configuration of matching tables (18). Upon complet-

ing the INF configuration, (19) the INFM informs the NIO of the successful creation of the new

INF instance. Finally, (20,21) the NIO establishes a new record in the NS Instances repository,

documenting the operational and runtime details of the deployed INF, and updates the status of the

utilized INC resources within the NII Resources repository.

4.2.4 Deletion of a INF network function

Figure 4.5 illustrates the sequential interactions among NIO, INFM, INF Catalog, and NIIM

for INF termination and deletion. Initiated by the NIO (1), a request is forwarded to the INFM,

accompanied by pertinent INF details. Upon receiving this request, INFM terminate the targeted
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targeted network function and decide which management module have to deploy that component

on network devices as well as managing network services lifecycle including deployment, chaining,

execution, monitoring, and migration. Moreover, the required repositories and catalogs introduced

for maintaining information of network services. Hence, the proposed architecture supports the

need for a hybrid NFV/INC orchestration.

The proposed NFV/INC MANO architecture includes a hybrid NFV/INC infrastructure man-

ager (NIIM) for allocation, release, and monitoring of INC resources within the NII. The need for

a hybrid infrastructure is also covered by adding INC Resources to the architecture. Therefore, the

proposed architecture fulfills requirements regarding extention of infrastructure manager.

Finally, a hybrid network service is designed to manage the VNF and INC components men-

tioned in the hybrid architecture.

4.4 Conclusion

In this chapter, we presented our proposed architecture, explained the module’s functionality

in detail along with interfaces for communication between necessary modules. Afterward, we pro-

vided an illustrative sequence diagrams, showing how an INC components of the proposed architec-

ture can be deployed on an INC-enabled switches or routers. Finally, we justified how the proposed

architecture was able to meet the previously derived requirements from the motivating use-cases.

In the following chapter, we will present an implemented prototype of the proposed architecture

followed by the results and conclusion from it.
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Chapter 5

Validation of the Architecture

In this chapter, we start by an overview on prototype architecture including first used softwares,

a general description of implemented prototype, a description on implemented scenario, a set of

Interfaces used in prototype, followed by programming languages we used. We also describe the

experimental setup in the last part of same section. Finally, we discuss the performace evaluation

by mentioning the performance metric, test cases, and results of various experiments and analyze

them accordingly. We finally conclude the chapter by summarizing it.

5.1 Prototype Architecture Overview

In this section we first present the implemented scenario followed by a description of how

prototype operates along with the prototype architecture and the set of Interfaces used in prototype

to provision the communication between necessary modules. At the end, a brief description of the

hardware and software used for implementing the prototype is given as well as the experimental

setup in the last subsection.

5.1.1 Used Softwares

In this subsection, we describe the softwares used for implementing the prototype NFV/INC

MANO framework for holographic applications.
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5.1.1.1 OSM

Open Source MANO (OSM) is an open-source platform designed for the orchestration and

management of Network Functions Virtualization (NFV). It automates the lifecycle management of

Virtual Network Functions (VNFs). OSM utilizes a blueprint approach. It leverages standardized

Network Service Descriptors (NSDs) based on the YANG Model. OSM supports YANG-based data

modeling and integrates with multiple VIM vendors, including OpenStack, VMware, and Azure.

These NSDs, typically written in YAML format, define the deployment, configuration, and lifecycle

management of VNFs within an OSM environment. OSM platform consists of different modules

while North Bound Interface (NBI), Life Cycle Management (LCM), and Resource Orchestrator

(RO) are three main components. Modules run in separate Docker containers. One of the key

strengths of OSM is its multi-vendor support. It can integrate with various VNFs and VIMs, offering

flexibility in network infrastructure management.

5.1.1.2 MicroK8s

MicroK8s is a simplified, open-source platform that helps for deployment, scaling, and manage-

ment of container-based applications. It provides the functionality of core Kubernetes components,

but in a smaller package, and can be used on a single computer or a complex network of machines.

5.1.1.3 OpenLDAP

OpenLDAP is an open-source implementation of the Lightweight Directory Access Protocol

(LDAP) standard. It provides a directory service that stores, organizes, and retrieves information

about users, computers, networks, and other resources.

5.1.1.4 Mininet

Mininet is a free software tool for emulating computer networks on a single machine. It allows

users to build virtual networks, test network applications and protocols, and develop high-speed

software. Unlike real networks, Mininet simplifies the process by using virtual network links and
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servers that can be controlled programmatically. This makes it easier to experiment with and simu-

late real-world networking protocols in a controlled environment. Mininet is a flexible and portable

tool that can be controlled using Python scripts. One of the main purposes of Mininet is to support

the development of software-defined networks (SDN) and network function virtualization (NFV).

5.1.1.5 BMv2 Switch

The P4.org organization has created an open-source software switch known as Behavioral Model

version 2 (BMv2). This software switch functions specifically as a target for P4 programs. In

essence, P4 programs can be compiled and executed on BMv2, allowing them to determine how the

switch processes network packets.

5.1.1.6 Flask

Flask is a lightweight WSGI web application framework written in python and is considered a

micro-framework since it does not require any specific libraries. It offers a core set of features and

lets add more functionality using third-party libraries as needed.

5.1.2 Description of Implemented Prototype

To demonstrate the implementation of our proposed NFV/INC MANO architecture, we de-

veloped a prototype system. As depicted in Figure 5.1, our prototype builds upon the Open Source

MANO (OSM) (20) platform, a production-ready implementation adhering to the ETSI NFV MANO

(19) standards. The OSM platform comprises three primary modules: a Northbound Interface (NBI)

offering Command Line Interface (CLI) and RESTful services for user interaction, a Life Cycle

Manager (LCM) overseeing VNF lifecycle management, and a Resource Orchestrator (RO) inter-

facing with various VIMs through dedicated plugins. These components collaborate and exchange

information through a message bus and shared storage services.

Figure 5.1 illustrates the components added, modified, and reused in our prototype. New or

modified elements are highlighted by background color. For the INC (in purpule), we introduce a

P4 Manager and a P4 plugin which are the new modules added. The P4 Manager implements the

INC infrastructure manager within the NFV/INC Infrastructure Manager (NIIM) modules, enabling
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commands. Upon receiving the NS deployment request, NBI delegate the deployment request to the

Life Cycle Manager (LCM) which identifies VNF and INF components from the NSD (2). While we

onboarded NS and VNF packages using OSM’s NBI CLI, the INF descriptor was embedded within

the P4 plugin’s code to simulate a hybrid NS. For each component, the LCM send a request to the

Resource Orchestrator (RO) to allocate resources of VNF (3) and INF (11). Then RO collaborates

with it’s K8s plugin (4) and P4 plugin (12) to instantiate the function using the corresponding

descriptor. VNF instantiation leverages the K8s plugin to deploy a K8s-based VNF on MicroK8s

(5) and configuring VNF deployment (6), while INF instantiation employs the P4 plugin to install a

P4 program on a designated P4 switch by requesting to P4 Manager (13,14). An acknowledgement

(ACK) packet is sent back for each request until we reach to the placement algorithm (7-10,15-20).

5.1.4 Interfaces

The fundamental design principle governing the interactions between the various modules and

domains is the adoption of the Representational State Transfer (REST) architectural style. The se-

lection of REST is attributed to its lightweight, standards-based nature and adaptability to diverse

data formats (e.g., plain text, XML, and JSON), enabling generic Application Programming Inter-

face (API) descriptions. All interfaces offer Create, Read, Update, and Delete (CRUD) operations.

5.1.4.1 Interface for deploying an INC component

The INC deployment Interface allows the NFV/INC MANO modules can communicate with

programmable switches for the INC components lifecycle management and orchestration. Table

5.1 shows the REST API for an INC component deployment. The REST API endpoint for deploy-

ing an INC component (a P4 program) is a POST request sent to the URI http://{host IP}/switches/

{switch id}/programs. The switch id parameter specifies the target switch for installation and exe-

cution of the P4 program. Upon successful deployment, the server returns a 201 Created status code

with a JSON response containing the program id.

This API streamlines the process of installing and running P4 programs on network switches.

By providing the switch ID and the P4 program file, clients can offload the deployment logic to the

server. The server handles the installation and execution phases, ensuring proper configuration and
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operation of the P4 program on the target switch. The returned program ID serves as a reference for

future management or removal of the deployed component. This API adheres to REST principles

by using clear URIs, standard HTTP methods, and well-defined request and response formats.

REST

Resource

Operation HTTP Action &

Resource URI

Request

Body

Parameters

Response

code

Response

content

Switch

Programs

Deploy INC

component

(P4

program)

POST:

/switches/switch id/

programs

None 201

(created)

program id

(string)

Table 5.1: Example of POST API exposed by the NIO to the NIIM

5.1.4.2 Interface for deleting an INC component

Table 5.2 shows the REST API for deleting an INC component from a target switch. The REST

API endpoint for deleting an INC component (a P4 program) from a switch is a DELETE request

sent to the URI http://{host IP}/switches/{switch id}/programs/{program id}. Both the switch ID

and program ID are required path parameters to identify the target switch and the P4 program to be

removed, respectively. Upon successful deletion, the server returns a 200 OK status code with an

empty response body.

This API provides a straightforward mechanism for removing P4 programs from network switches.

By specifying the unique identifiers for the switch and the P4 program, clients can request the dele-

tion of the desired component. The server handles the removal process, ensuring that the P4 program

is uninstalled and its associated resources are released. The 200 OK response indicates successful

deletion without the need for additional information. This API follows REST principles by utilizing

a clear URI, a standard HTTP method, and a well-defined response structure.

5.1.5 Programming Language and IDE Used

For the extended modules including P4-plugin and P4 Manager the Python programming lan-

guage was used. We used Flask for developing the P4 Manager which requires the REST API to

communicate with P4-plugin. We used P4 programming language for controlling packet forwarding
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REST

Resource

Operation HTTP Action &

Resource URI

Request

Body

Parameters

Response

code

Response

content

Switch

Programs

Delete INC

component

(P4

program)

DELETE:

/switches/switch id/

pro-

grams/program id

None 200 (OK) None

Table 5.2: Example of DELETE API exposed by the NIO to the NIIM

planes on bmv2 switches.

5.1.6 Experimental Setup

As illustrated in Figure 5.1, our prototype was deployed on a virtualized test environment hosted

on a physical server located in the Montreal lab. The server was equipped with an Intel Xeon E5-

2430 v2 processor operating at 2.50 GHz and 40 GB of RAM. A Windows Server 2012 operating

system served as the host for the VirtualBox hypervisor, which managed three Ubuntu 20.04 virtual

machines (VMs).

The first VM was configured with four virtual cores, 14 GB of RAM, and 85.9 GB of disk

space. It served as the primary platform for the Open Source MANO (OSM) framework, modified

to accommodate our specific requirements. The second VM, allocated two virtual cores and 4 GB

of RAM, hosted the MicroK8s Kubernetes distribution using the containerd runtime. The third VM,

with a single virtual core, 4 GB of RAM, and 34 GB of disk space, ran the P4 Manager, Mininet

network emulator, and the BMv2 software switch.

For the network function virtualization (NFV) component, we leveraged the OpenLDAP K8s-

based VNF (KNF) provided by OSM. The INF was implemented using a P4 program adapted from

(3). The VNF and INF occupied 4.2 MB and 116.3 KB of disk space, respectively.

5.2 Performance Evaluation

In this section we commence with an exposition of the performance metrics employed, fol-

lowed by a delineation of various test cases designed to evaluate these metrics. Finally, the section

concludes with a presentation and analysis of the acquired results.
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5.2.1 Proof-of-concept

For the prof-of-concept, we illustrate the deployment of the VNF and INF components by the

screenshots. As depicted in figure 5.1, our prototype deployed on a virtualized test environment.

In figure 5.3, we demonstrate the screenshots of the VNF and INF components deployment. We

have the first VM (VM1) as a virtual core for running the main OSM application which is shown in

5.3, the second VM (VM2) is hosting the microk8s for deploying the VNFs which is shown in 5.4,

and the third VM (VM3), which is shown in 5.5, hosting the Mininet topology and bmv2 switches

provisioned for deploying INF on a switch. By running the CLI script in VM1, the VNF and INF

are deployed on Microk8s in VM2 and the Mininet bmv2 switch in VM3 respectively. While the

INF deployed on the bmv2 switch, the INF execution starts. In our implementation, we used a

transcoder used in paper (3). This is a free software transcoder written in C as an extern function

that we instantiated in the switch core through a P4 program.

For instance, in figure 5.4 we deploy a transcoder which is called inc.p4 on switch 4 (s4). After

receiving and compiling the inc.p4 file, the inc.p4.p4ifo.txt is created which can be seen in the red

box on the figure. According to (3), they show a network load reduction by executing a transcoder

on a bmv2 switch using a network load monitoring graph. We use their network load monitor graph

to show that the transcoder is executing correctly in our topology in addition showing the CLI logs

of running transcoder on switch 4 (s4).

On the other hand, the figure 5.5 demonstrate the successful deployment of VNF which is an

OpenLDAP by getting the list of pods running on the microk8s.

5.2.2 Performance Metric

5.2.2.1 Deployment delay

To assess our prototype’s performance, we measured the time required to deploy a Network

Service (NS) comprising four network functions. A holographic service consisting of encoder,

decoder, transcoder, and renderer components (3). We use a transcoder as INF which is implemented

as p4 and assume the VNF for the rest of the functions. In our evaluation, deployment delay is

defined as the elapsed time in seconds (s) necessary to instantiate the Virtual Network Functions
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Test Case Test Case 1 Test Case 2 Test Case 3 Test Case 4 Test Case 5

Average

Deployment

Latency

66.909498 60.1107975 38.83748152 28.6457915 21.12778552

Standard

Deviation

2.728128959 2.31931146 2.026029247 1.96878594 1.88851354

Table 5.3: The average deployment delay and standard deviation of deploying a network service

via Mininet and BMv2, which are not for production-grade. We would expect that the installation

time of a P4 program on a real programmable switch (e.g., Tofino-based switch) takes longer than on

an emulated P4 switch. Nevertheless, instantiating VNFs with standard K8s would take longer than

with MicroK8s since the former provides a large-scale, multi-node production environment. The

VNF instantiation time would further increase when using VMs (instead of containers) because they

require the installation of a complete operating system. Further evaluation with production-grade

NFV and INC resources is needed to analyze the time and performance when deploying hybrid NSs.

5.3 Conclusion

The prototyped architecture and implemented scenario was discussed in brief along with the

softwares and programming languages used to develop it. Afterward, the performance metric and

test cases were made. Finally, the result was shown and analyzed. We conclude our thesis in the

next chapter by focusing on the summary of the thesis and the future work to be done.
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Chapter 6

Conclusion

In this chapter, we will first summarize the contributions of this thesis and then focus on the

possible future research direction

6.1 Contributions Summary

Holographic applications, such as holographic concerts, necessitate high-performance network

infrastructure characterized by high bandwidth and low latency. Recent studies suggest that Hybrid

NFV/INC networks are ideal for efficiently delivering these services. INC, a cutting-edge technol-

ogy, enhances network efficiency by distributing computational tasks across network devices. How-

ever, integrating INC into existing infrastructure poses challenges related to lifecycle management

and orchestration. Hybrid networks comprise VNFs and INCs. While the ETSI MANO framework

supports application provisioning in NFV-enabled networks, it lacks capabilities for INC-based en-

vironments. Consequently, a new MANO architecture is required to accommodate applications that

leverage both VNFs and INCs.

The hybrid management module was one of the novel requirements. The ability of deploying

both VNF and INC component is essential in provisioning holographic application. The hybrid

orchestration module is the next requirement. The holographic application is composed of a chain

of network functions for instance encoder as VNF, transoder as INC component, and decoder and
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renderer as VNF. For deploying these components as one Network Service there should be an or-

chestrator to distinguish these function and decide which management module should deploy them

on the targeted network. We also required the hybrid infrastructure and infrastructure manager for

provisioning the deployment of the hybrid network service which is another requirement. Based on

the requirements we evaluated the existing NFV MANO architecture and frameworks. None of the

state-of-the-art was able to fulfill all the requirements.

We then proceeded to propose a hybride NFV/INC MANO architecture that can fulfill the

derived requirements. In this regard, we proposed a novel NFV MANO architecture for hybrid

NFV/INC systems. In contrast to the existing MANO solutions, the proposed solution enables the

management and orchestration of the deployment of both VNF and INC components in the network.

We also proposed all the required interfaces between each two modules. In the end, we show the

deployment procedures of VNF and INC components respectively.

Then, a prototype for validating the hybride NFV/INC MANO was implemented using the

OSM. A subset of the proposed architecture was implemented. Some extensions of the OSM was

made to enable the fulfillment of all the requirements. Namely, the INF Management module, the

INF infrastructure manager and the INC-enabled infrastructure. Also a REST interface is used to

make the communication between the INF Management and INF infrastructure manager.

Finally, a performance metric and experimental setup was defined. A set of experiments are

conducted to evaluate the feasibility of the architecture and explore possible options for deployinf

VNF and INC components. The results from the experiment were shown and analyzed. The results

show the lower deployment delay as we increase the number of INC components in a Network

Service. These experiments conducted that provisioning holographic applications over a hybrid

NFV/INC setting is the best choice.

6.2 Future Research Direction

Our future research aims to expand the capabilities of our existing prototype to fully realize the

proposed NFV/INC MANO architecture and facilitate the complete deployment of hybrid network

services. This expansion will involve creating a new INF Descriptor (INFD) template and modifying
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the existing Network Service Descriptor (NSD) template and OSM’s LCM to accommodate the

onboarding and instantiation of network services composed of both VNFs and INFs.

Additionally, we intend to enhance the P4 modules, such as the manager and plugin, to effec-

tively manage P4 controllers. This will enable the configuration of match-action tables to seam-

lessly interconnect VNFs and INFs, thereby implementing the desired service-chaining topology

of the hybrid network service. To ensure the practical viability of our hybrid NFV/INC infrastruc-

ture, we plan to establish testing environments utilizing production-grade resources. This will allow

us to rigorously evaluate the performance and efficiency of deploying hybrid network services in

real-world scenarios.

In this thesis, we proposed a hybrid NFV/INC MANO architecture and implement the deploy-

ment and deletion procedures of hybrid network service composed of VNFs and INFs. We did not

cover sending flow through the components or executing a chain because it is not in the scope of the

thesis. We simplify the implementation environment to make sure there is enough isolation that if

there is latency is only due to the NS deployment and different aspects like the ip address or bridging

do not interfere the latency issues and our results. So executing a chain or sending flow through the

components is possible to do and can be done in the future work.
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