
Efficient Fine-Tuning Strategies for Federated Learning:
Optimizing Model Performance Across Distributed

Networks

Nicolas Bernier

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Computer Science (Computer Science) at

Concordia University

Montréal, Québec, Canada

November 2024

© Nicolas Bernier, 2024



CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Nicolas Bernier

Entitled: Efficient Fine-Tuning Strategies for Federated Learning: Optimizing

Model Performance Across Distributed Networks

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Abdelhak Bentaleb

Examiner
Dr. Mirco Ravanelli

Supervisor
Dr. Eugene Belilovsky

Approved by
Joey Paquet, Chair
Department of Computer Science and Software Engineering

2024
Mourad Debbabi, Dean
Faculty of Engineering and Computer Science



Abstract

Efficient Fine-Tuning Strategies for Federated Learning: Optimizing Model Performance
Across Distributed Networks

Nicolas Bernier

Federated Learning (FL) allows a global model to be trained collaboratively by a number of

clients without sharing data. This setting is often characterized by resource-constrained clients con-

nected over a low-bandwidth network. Hence, algorithms designed for the setting must account

for important factors such as computer and memory requirements, robustness under changing data

distributions and communication. Recent works, have started demonstrating the benefits of using

pretrained models over random initialization on these considerations. We cover these recent ad-

vancements before introducing methods conceived along the same lines. We show that in the FL

setting, fitting a classifier using the Neurest Class Means (NCM) can be done exactly. We demon-

strate its efficiency and combine it with full fine-tuning to produce stronger performance. Then, we

introduce an adapted zeroth-order method capable of bringing a model to convergence with a mini-

mal per-round compute budget while reducing the memory burden for clients during training down

to that of inference. This work presents several experiments demonstrating the effectiveness of the

proposed methods and highlights the importance for additional work into the application pretrained

models in the FL setting.
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Chapter 1

Introduction

1.1 Overview

Most of Machine Learning (ML) requires a centralized access to training data. However, its

applications continue to grow to increasingly privacy-sensitive use cases where data is required to

be collected closer to the end-user. In some of these common use cases, it may be intractable to

share data amongst data producing clients for any number of reasons. An often cited example is

that of hospitals each having a limited number of cases locally that may benefit from the collective

knowledge of other institutions who are each unable to share their own cases for privacy and regu-

latory reasons (D. Li and Wang (2019)). This describes the cross-partition setting that tends to have

a smaller number of stable clients each with their own sizeable dataset. It places itself in contrast

to the cross-device setting characterized by a larger number of diverse and often unreliable set of

clients with wide differences in local data distribution and volume. In this setting, these clients

largely considered to be resource constrained devices like phones, sensors or other edge devices

connected over a low-bandwidth and unstable network.

Federated Learning (FL) allows these clients to collaborate in training a global model while

ensuring client data and model training remain on-device. The algorithms of interest to this the-

sis are orchestrated by a centralized server. They train the model for several rounds. During each

round, the server selects a number of clients and sends them the global model weights. The selected

clients train the model on their local data for a number of gradient steps and send the updated model

weights back to the server. Lastly, the server aggregates the updated client models. Following the
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aggregation, the server begins the next round of updates by selecting a new set of clients. This

setting presents a number of challenges often exacerbated by the heterogeneity of client data lead-

ing to performance degradation when the model is trained on popular baselines including FedAvg

(McMahan, Moore, Ramage, Hampson, and y Arcas (2017)). Due to the nature of cross-device

FL, it is desirable for algorithms to have smaller communication budgets, represented by the total

amount of data sent between the server and its clients (in GB), to train a model to convergence. As

state-of-the-art models have continued to grow in number of parameters as a consequence of the

discovery of the Neural Scaling Laws (Kaplan et al. (2020)), communication budgets for common

FL algorithms have faced upwards pressure. Intuitively, larger models also require more memory

and compute when training, which, due to the hardware limitations of clients in the cross-device

setting, introduces further points of consideration.

To minimize the amount of time required for training, transfer learning reuses a model developed

for a given task on a different, but similar task instead of training another model from a randomly

initialized set of weights. Transfer learning from pretrained models that have been trained on suffi-

ciently abundant and diverse data is well known to produce strong results in tasks related to vision

(Girshick, Donahue, Darrell, and Malik (2014); K. He, Girshick, and Dollar (2019)), natural lan-

guage processing (NLP) (Radford et al. (2019)), and other domains. Indeed, pretraining combined

with fine-tuning to specialize the model for a specific downstream task often leads to better gener-

alization and faster model convergence in the centralized setting (Patel, Gopalan, Li, and Chellappa

(2015); Weiss, Khoshgoftaar, and Wang (2016)). In the context of FL, faster convergence is exhib-

ited as a smaller number of rounds required to train the model to convergence and, consequently,

as a smaller amount of total communication cost. Although there has been a subset of studies in

FL indicating that pretraining does improve performance of standard FL algorithms (Chen, Tu, Li,

Shen, and Chao (2023); J. Nguyen et al. (2023)), FL literature has been largely focused on models

trained from a random initialization (Karimireddy et al. (2020); T. Li et al. (2020a); McMahan et al.

(2017)) and the impact of heterogeneity on algorithmic convergence.

To mitigate the compute requirements of transfer learning with large models, parameter-efficient

fine-tuning (PEFT) methods freeze most of the model weights and only update a small fraction

of total weights (Hu et al. (2021); X. L. Li and Liang (2021)). These methods do still require
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backprobagating the loss through the entire model. This important step ultimately results increased

memory requirement for training that is up to an order of magnitude larger than that at inference.

This presents an important constraint for FL clients that are often both compute and memory bound.

It is important to note that clients only share updated model weights back to the server. Hence,

PEFT reduces the communication cost per round. Outside of a few works (Babakniya et al. (2023)),

the rate of model convergence when training on these algorithms in the FL setting remains largely

under-explored.

1.2 Contributions

This thesis centers on the use of pretrained models within federated learning. We adapt our

methods to optimize for important factors when considering an FL algorithm including the amount

of data needing to be shared by clients per round (communication cost), total compute requirements

and final model accuracy. We introduce methods adapting zeroth-order and first-order learning

algorithms to the setting with the goal of improving on these measurements. The main contributions

of this work are as follows:

• We provide empirical evidence for numerous downstream tasks in vision and text domains in

the federated learning setting that using pretrained models ultimately results in better perfor-

mance when the model is trained to convergence in both Chapter 3 and 4.

• We provide empirical evidence for numerous downstream tasks in vision and text domains in

the federated learning setting that adapting PEFT methods ultimately leads to models lower

communication cost, memory and compute requirements to train a global model to conver-

gence in both chapter 3 and 4.

• In chapter 3, we propose a two-stage process consisting of an initial HeadTuning step via

FedNCM or a linear probe, followed by full fine-tuning. Combining these approaches results

in high accuracy and increased speed of convergence than using either approach on its own.

For this work, we submitted to and were accepted at the NeurIPS 2023 main conference track

under a paper titled Guiding The Last Layer in Federated Learning with Pre-Trained

Models. This paper introduce FedNCM covered in this thesis.
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• In chapter 4, we demonstrate the capability of zeroth-order methods to adapt to the distributed

setting resulting in theoretically and empirically equivalent results for the method proposed

when trained on iid or non-iid data across any number of clients.

• We present FedMeZO, an adaptation of MeZO, discussed in the Background section, that

reduces communication cost per round and produces a strong baseline for future works. This

is covered in chapter 4.

Personal Contributions: During my Master’s program, I worked on meaningfully reducing

the communication budget for FL algorithms by leveraging pretrained models.

Since starting my research, an increasing number of papers have been produced on the topic

and accepted at top conferences including Guiding The Last Layer in Federated Learning with pre-

trained models, which I collaborated on with others. This work focuses on tuning the last layer of

the model using a Nearest Class Means Classifier. Gwen Legate and I worked closely to produce this

paper with valuable contributions from Lucas Caccia, Edouard Oyallon and, my advisor, Eugene

Belilovsky. For this work covered in chapter 3, I took the primary responsibility of building the code

base starting from the original FLSim repository (J. Nguyen et al. (2023)) and running a portion of

the main experiments for both Vision and NLP tasks. Beyond this, I contributed to a number of

items.

• I implemented the majority of the code used in the research including the integration of the

algorithms referred to as FedNCM, FedNCM+FT, LP and random methods for both vision

and language tasks.

• I implemented the initial experimental framework used in the research and wrote the code for

the scripts used to run experiments on SLURM-based clusters.

• I conducted the experiments and created the plots for CIFAR and NLP datasets.

• I was primarily responsible for the NLP experiments during the rebuttal and final draft pro-

duction periods.

For the work covered in chapter 4, I was the primary contributor. I produced the entire code base

4



starting from the original MeZO repository (Malladi et al. (2024)). I also took the responsibility of

writing the paper and producing all the experiments.
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Chapter 2

Background

2.1 Federated Learning

Federated learning aims to iteratively train a global model through local training of client models

on-device and aggregating the result models. The most well known approach in FL is the FedAvg

algorithm proposed by (McMahan et al. (2017)). FedAvg aggregates client models by averaging

them out. More formally, distributed optimization occurs over K clients with each client k 2

{1, ...,K} having data Xk,Yk that contains nk samples drawn from distribution Dk. The total

number of samples across all clients can be defined as n =
PK

k=1 nk. The data Xk at each node

may be drawn from different distributions and/or may be unbalanced with some clients possessing

more training samples than others. The typical objective function for federated optimization is given

in Eq. 4 (Konečnỳ, McMahan, Ramage, & Richtárik, 2016) and aims to find the minimizer of the

loss over the sum of the client data:

w⇤ 2 argmin
w

KX

k=1

nk

n
L(f(w,Xk)) . (1)

In the random initialization setting, convergence of FedAvg and related algorithms has been

widely studied for both independent and identically distributed (iid) client data (Stich (2019); Wang

and Joshi (2018)) and non-iid settings (Fallah, Mokhtari, and Ozdaglar (2020); Karimireddy et al.

(2020); T. Li et al. (2020a); Yu, Yang, and Zhu (2019)).
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A commonly cited problem in the literature is the challenge of heterogeneous clients where a

variety of algorithms have been developed to tackle this. Data heterogeneity, or non-iid data, is

represented by the significantly varying data distributions across clients. A lot of the work in this

area focuses on reducing the difference in client updates and limiting the importance of outliers

(Hsu, Qi, and Brown (2019); Karimireddy et al. (2020); Legate, Caccia, and Belilovsky (2023);

T. Li et al. (2020a)). System heterogeneity manifests itself with clients having varying physical

limitations including compute, memory, network and storage capacity. Asynchronicity (X. Lian,

Zhang, Zhang, and Liu (2018); Xie, Koyejo, and Gupta (2020); Zheng et al. (2020)) and resource-

aware participation (Lyu, Xu, and Wang (2020); Nishio and Yonetani (2019)) are two areas of focus

for their type of heterogeneity. We concern ourselves in this work with data heterogeneity.

In addition to heterogeneity, communication cost (in Gb) presents another important concern

in distributed optimizations (McMahan et al. (2017)). With FL, this becomes especially relevant

when discussing the cross-device setting where devices are connected over long distances through

a low-bandwidth and unstable network. This budget is represented by the product of the amount

of communication per round between clients and the server and the number of rounds it takes for

the model to converge. Importantly, this presents two factors to improve upon. Some works have

focused on compression of the updates themselves (Alistarh, Grubic, Li, Tomioka, and Vojnovic

(2017); Du, Yang, and Huang (2020); Konečný et al. (2017); Lin, Han, Mao, Wang, and Dally

(2020)). We instead choose to focus on improving convergence speed and reducing the number of

parameters needing to be shared each round.

2.2 Privacy and Security in Federated Learning

One of the main motivations for FL as an approach to distributed learning is privacy and security.

Indeed, FL enables federating training of a global model to a set of clients each training on their

own local dataset which remains on-device at all times. FedAvg (McMahan et al. (2017)), the

seminal paper in the field, runs local models through multiple epochs of the local datasets, which

demonstratively makes stronger privacy guarantees. These often come through differential privacy

designed to make strong privacy assurances by adding controlled noise to data or computations as to

7



limit the impact of individual data points on output (Abadi et al. (2016); Dwork and Roth (2014)).

More formally, differential privacy (DP) can be defined by Equation 2. (Dwork and Roth (2014))

where M is the algorithm of interest. D1 and D2 are two adjacent examples differing by a single

unit in the dataset for which S is some subset of algorithm outputs. The privacy terms are defined

as ✏ representing loss of privacy and � representing some approximation (certainty) term of the

algorithm’s guarantee.

Pr[M(D1) 2 S]  e✏ · Pr[M(D2) 2 S] + � (2)

Many FL algorithms have been developed to incorporate stronger differential privacy constraints

(T. Li et al. (2020b); Noble, Bellet, and Dieuleveut (2023); Wei et al. (2019)). It is worth noting

that common approaches aiming to improve model performance on non-iid data also tend to make

improvements to the privacy guarantees. This is because they also often tend to focus on reducing

the impact of individual examples. Beyond improving on DP guarantees, other works have focused

on formalizing attacks on models in the distributed learning setting more broadly (Hitaj, Ateniese,

and Perez-Cruz (2017); T. D. Nguyen et al. (2023)). We do not explicitly design our methods for

differential privacy, but do make the claim that they are at least as private as the original FedAvg.

We make this claim because our clients share an equal or smaller amount of information per round

back to the server. Additionally, we use FedAvg as our primary aggregation mechanism in both

methods proposed.

2.3 Transfer Learning

Transfer learning is widely used in many domains where data is scarce (Alyafeai, AlShaibani,

and Ahmad (2020); Girshick et al. (2014); Yazdanpanah et al. (2022); Zhuang et al. (2020)). A

number of approaches for transfer learning have been proposed including the most commonly used

full model fine-tuning and last layer tuning (Kornblith, Shlens, and Le (2019)). Fine-tuning billions

of parameters is a compute and memory intensive operation. In many cases, it is intractable to

do on edge-devices, which are often the subject of FL studies. In the centralized setting, we have

seen increased attention on efficient learning methods. For instance, feature selection reduces the
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computational cost by analyzing the activations of different model layers and selecting the most

relevant ones based on the training dataset and objective (Evci, Dumoulin, Larochelle, and Mozer

(2022)). The addition of trainable affine parameters, or smaller layers, at various points in the model

also improves computational overhead to fine-tune a model to convergence, but can act as a form of

regularization helping to limit forgetting (D. Lian, Daquan, Feng, and Wang (2022); Yazdanpanah

et al. (2022)). Here, the rest of the weights remain frozen. Similarly, methods to attach adapters to

transformers have also shown strong results (Houlsby et al. (2019); Hu et al. (2021)). Among these,

Low-Rank Adaptation (LoRA) stands out for its ability to drastically reduce the number of trainable

parameters in language models (Hu et al. (2021)). LoRA fixes the weight matrix, denoted W0, in

language models and redefines it as the sum W0 + B · A, where matrices B and A have a much

smaller rank than W0. The weights matrix is updated through training these much smaller matrices,

which results in a lower computation cost compared to full fine-tuning. For language tasks where

we use transformer models, our methods are compatible with LoRA.

Transfer learning and the effects of pretraining in FL have so far only been explored in limited

capacity. There is evidence that initializing a model with pretrained weights consistently improves

training accuracy and reduces the performance gap between homogeneous and heterogeneous client

data distributions (J. Nguyen et al. (2023)). Follow-up work adapted parameter-efficient fine-tuning

(PEFT) methods, more specifically LoRA, to the setting showing it can reduce performance degra-

dation with non-iid clients (Babakniya et al. (2023)).

The primary constraint to using transfer learning in the FL setting is the inability to interact

with client data to choose a source model trained on a similar dataset. Although mitigated by

the recent surge in web-scale training enabling broader generalization for most use cases, it is still

difficult to select the proper pretraining dataset given the often limited number of local examples that

often differ widely between clients. Knowledge distillation in FL is a line of research presenting

methods to learn from a broadly available public dataset as clients learn from their private data

(Mora, Tenison, Bellavista, and Rish (2022); Zhu, Hong, and Zhou (2021)). Additionally, in the

case where pretrained data is not readily available, producing synthetic data and training the global

model centrally on this new data has been shown to be beneficial to FL model performance (Chen et

al. (2023)). For much of the work covered in this thesis, we assume some level of overlap between
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the pretraining and target datasets.

2.4 Zeroth-Order Optimization

The application of gradient descent and other first-order optimizations in deep learning has

been established for a long time (Rumelhart, Hinton, and Williams (1986)). During training, these

methods generally backpropagate a global loss across the entire model. This requires storing inter-

mediate activations and gradients from each layer in memory. In contrast, inference only requires

the current layer’s activations to be stored while they are used for computing the input to the next

layer. Hence, most deep learning (DL) algorithms have much higher memory requirements during

training than inference. This has important consequences for larger models on the maximum batch

size and overall training times. Naturally, this memory overhead in training shows up in vision,

language models and other domains (Chakrabarti and Moseley (2019); Gomez, Ren, Urtasun, and

Grosse (2017); K. He, Zhang, Ren, and Sun (2015)).

Where first-order methods require explicit access to the gradients of the loss function across

all model layers, zeroth-order methods seek to indirectly evaluate the loss at different points in the

model during forward pass. Once the estimated gradient is calculated at a given point, activations

can be discarded (S. Liu et al. (2018)). This represents the same amount of activations that needing

to be retrained at inference time, thus making the memory requirements of training a model with

zeroth-order algorithms equivalent to those at inference. However, these methods do require more

forward passes and evaluations of the loss. This combined with their tendency to converge more

slowly than first-order methods presents a computer efficiency and memory usage trade-off (S. Liu

et al. (2020)).

More recently, MeZO (Malladi et al. (2024)) demonstrated the effectiveness of adapting zeroth-

order stochastic gradient descent (ZO-SGD)(S. Liu et al. (2018)) with pretrained language models

(LMs). The work showed that not starting from a random initialization helps zeroth-order meth-

ods significantly close the gap on their first-order equivalent. The method naturally eliminates the

need for backpropagation through layer-wise gradient estimation. This gradient is estimated as the

Simultaneous Perturbation Stochastic Approximation (SPSA) (S. Li, Xia, and Xu (2022)). Given
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some batch X and set of weights ✓, SPSA can be described by Eq. 3 (Malladi et al. (2024)).

r̂L(✓;X ) =
L(✓ + ✏z;X )� L(✓ � ✏z;X )

2✏
(3)

This definition requires at least two forward passes through the set of parameters where we

set some perturbation ✏ in opposite directions. This perturbation is multiplied by some direction

z 2 R with z ⇠ N (0, I). z is sampled after every model update. In this work, we modify the

sampling strategy to adapt it to the distributed setting.

2.5 Nearest Class Means Classifier

The use of the Nearest Class Means (NCM) algorithm in ML also has a long history. Each

class is represented as a point in feature space defined by the mean feature vector of its training

samples. New samples are classified by computing the distances between them and the class means

and selecting the class whose mean is the nearest. In 1990, (Ratcliff (1990)) proposed to use NCM

to mitigate catastrophic forgetting in continual learning and since then the use of NCM has been

widely adopted and extended by continual learning researchers. This is due to its simplicity and

minimal compute requirements to obtain a final classifier when a strong representation has already

been learnt. Some of these methods include (Davari, Asadi, Mudur, Aljundi, and Belilovsky (2022);

Z. Li and Hoiem (2017); Rebuffi, Kolesnikov, Sperl, and Lampert (2017)) who maintain a memory

of exemplars used to compute an NCM classifier. Related to our work, recent literature in continual

learning that have considered pretrained models were shown to ignore a simple NCM baseline (Jan-

son, Zhang, Aljundi, and Elhoseiny (2022)) which can outperform many of the more complicated

methods proposed.

Our focus on NCM here is based on a set of past observations commonly referred to as neural

collapse (Mixon, Parshall, and Pi (2020); Papyan, Han, and Donoho (2020)). The phenomenon is

an emergent property of neural network features after training. During training with examples of

the same class, the model’s logits begin cluster around a single point. As the model converges, these

points grow further apart and equidistant from one another. NCM presents an important foundation

for one of the methods proposed in Chapter 3.
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2.6 Real-World Applications of Federated Learning

FL presents an array of opportunities for sectors with stringent privacy and regulatory require-

ments. The most commonly cited setting is that of healthcare where individual institutions having

a relatively small number of examples may want to train a global model that stands to benefit from

being trained on examples from other institutions (Darzidehkalani, Ghasemi-rad, and van Ooijen

(2022); Dhade and Shirke (2023)). Internet of Things (IoT) is another domain often represented by

studies in the cross-device setting with resource constrained clients (Bonawitz et al. (2019); Gill et

al. (2024); D. C. Nguyen et al. (2021)). Larger institutions in finance and banking may also want to

enable customers to benefit from each other’s activities without have their highly confidential data

leave their device or local branch. A few papers have looked at the applicability of FL in finance

(T. Liu et al. (2023); Long, Tan, Jiang, and Zhang (2021)). Lastly, there has perhaps been the most

work in the broader categories of NLP and computer vision (CV) in FL. Of the NLP use cases,

search engines and next word predictions are an area of particular interest (Hard et al. (2019)). For

CV, object detection and image classification are both tasks which have received their own attention

(C. He et al. (2021); Y. Liu et al. (2020)). The methods covered in this work have applications across

these domains including settings with comparatively low communication budgets where clients are

connected over a wireless low-bandwidth network.
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Chapter 3

Guiding the last layer with NCM

3.1 Method

3.1.1 Background and Notation

As we described in Chapter 2, distributed optimization in the FL setting occurs over K clients

with each client k 2 {1, ...,K} having data Xk,Yk that contains nk samples drawn from a dis-

tribution Dk. We concern ourselves with settings where Xk at each node is drawn from different

distributions with some clients possessing more training samples than others. This setting proves

more challenging for most FL algorithms who often suffer from performance degradation. We mod-

ify the definition for the typical objective function for federated optimization in Eq. 4 using the chain

rule.

w⇤,v⇤ 2 argmin
w,v

KX

k=1

nk

n
L(g(f(w,Xk),v)) . (4)

Here we have split the model prediction into f , a base parameterized by w that produces repre-

sentations, and g, a task head parameterized by v. In this work we will focus on the case where the

task head is a linear model, and the loss function, L represents a standard classification or regression

loss. The w are derived from a pre-trained model and they can be optimized or held fixed.

One approach to obtain the task head while using a fixed w is to optimize only v in a federated

manner over all the data. In the case that g is given as a linear model and we absorb the softmax into
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Algorithm 1 FedNCM. K is the total number of clients, C is the number of classes in the training
dataset, Dc is the total number of samples of class c
Require: (X1,Y1), (X2,Y2), . . . , (XK ,YK) - Local datasets, wpt - pre-trained model

SERVER EXECUTES:

1: for each client k 2 K in parallel do

2: [mk
c ]c2C  LocalClientStats(Xk, Yk,wpt) . Send to all clients, receive weighted class

means

3: end for

4: for each class c 2 C do

5: lc  1
Dc

PK
k=1 m

k
c . lc can be used in NCM classifier

6: end for

CLIENT SIDE:

7: function LOCALCLIENTSTATS(X,Y,w)

8: for each class c 2 N do

9: Let Xc = {xi 2 X, yi = c}

10: mc  
P

x2Xc
fw(x)

11: end for

12: return [mc]c2C

13: end function

L this defaults to Linear Probing (LP)(J. Nguyen et al., 2023; Ren, Guo, Bae, & Sutherland, 2023).

3.1.2 FedNCM Algorithm

An alternative approach to derive an efficient g is through the use of NCM. We note that Fed-

NCM, the federated version of NCM, can be derived exactly in a federated setting. In FedNCM,

outlined in Algo. 1., the server only communicates pre-trained weights once to each of the clients

and the clients only communicate once with the server to send back their weighted class means.

The server can then use each client’s class means to compute the NCM exactly and use them either
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to perform classification directly using the class centroids, or to initialize a linear task head for fur-

ther fine-tuning. FedNCM allows an efficient classifier approximation for pre-trained models and

addresses many critical concerns in the FL setting including:

(a) communication and computation: FedNCM is negligible in both compute and communi-

cation, it requires one communication from the server to each client and back. Used as an

initialization for further FT, FedNCM speeds up convergence and reduces the communication

and computation burden

(b) client statistical heterogeneity: Robust to typical non-iid distribution shifts (not the case for

LP or FT). A FedNCM initialization also makes further FT more robust to heterogeneity.

Notably, FedNCM can be computed using secure aggregation methods. Furthermore, the lack

of update to the base model parameters naturally improves differential privacy guarantees (Cattan,

Choquette-Choo, Papernot, & Thakurta, 2022).

To use NCM as an initialization, consider the cross-entropy loss and (g�f)(x) = vf(x;w)+b.

We can set the matrix v corresponding to the class c logit with the normalized class centroid lc/klck

and the bias term to 0. This allows us to initialize the task head with FedNCM and obtain further

improvement through fine-tuning f .

3.1.3 Two-stage Approach for Transfer Learning in FL (HeadTune + FineTune)

This section was written by Edouard Oyallon as part of our collaboration for NeurIPS 2023.

FL algorithms are often unstable due to the mismatch in client objectives which can lead to large

changes during local training causing significant deviations amongst the different client models.

When using a pre-trained model which allows us a powerful initial representation, we argue that

a two-stage procedure will improve training stability and converge more quickly. In the first stage

(HeadTune) we perform HeadTuning where the parameters of g are updated e.g. by linear probing

in federated fashion or by using FedNCM. As stated in Sec. 3.1.2, FedNCM is highly efficient,

imposing a negligible cost in compute and communication with respect to any typical fine-tuning

stage. In the second stage (FineTune), both f and the classifier initialized in stage one, are fine tuned
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together in a federated setting according to the FL objective function specified in Eq. 4. Taking the

negligible cost of communication and compute provided by FedNCM into account, our two-stage

approach can have a substantial advantage in convergence when compared to simply a fine-tuning

stage (Chen et al., 2023; J. Nguyen et al., 2023).

We now give an intuitive interpretation of the advantages of our method using the framework of

(Ren et al. (2023)). Assume that the k-th worker is initialized via w0, and trained locally with SGD

for several steps until it reaches the parameter wk. Writing w⇤ the optimal parameter, via triangular

inequality, we obtain the following inequality:

EXk [kf(wk;Xk)�f(w⇤;Xk)k]  EXk [kf(w0;Xk)�f(w⇤;Xk)k+kf(wk;Xk)�f(w0;Xk)k] .

(5)

In the neural tangent kernel (NTK) ((Jacot, Gabriel, & Hongler, 2018; Ren et al., 2023)) regime,

for sufficiently small step size, (Ren et al. (2023)) showed that the second term depends on the

approximation quality of the head g0 at initialization, which is bounded (where � is the sigmoid

activation and {ei}i the canonical basis) for some c > 0, by:

EXkkf(wk;Xk)� f(w0;Xk)k  c · E(Xk,Yk)keYk � gv(f(w0;Xk))k .

This suggests in particular that a good choice of linear head v will lead to a smaller right hand side

term in Eq. 5, and thus reduce the distance to the optimum. Consequently, FedNCM or LP derived

v (compared to a random v) may be expected to lead to a more rapid convergence. Thanks to the

initial consensus on the classifier, we may also expect less client drift to occur, at least in the first

round of training, when v it initialized by HeadTuning, compared to a random initialization.

3.2 Experiments

In this section we will experimentally demonstrate the advantages of our proposed FedNCM

and FedNCM+FT. Additionally, we show that simple LP tuning can at times be more stable and

communication efficient than undertaking the full fine tuning considered almost exclusively in prior
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work on FL with pre-trained models.

Our primary experiments focus on standard image classification tasks. We also provide some

NLP classification tasks in Sec. 3.2.2. We consider a setting similar to J. Nguyen et al. (2023) using

the CIFAR 10 dataset (Krizhevsky, 2009) and expand our setting to include four additional standard

computer vision datasets shown in Tab. 3.1. Following the method of Hsu et al. (2019), data is

distributed between clients using a Dirichlet distribution parameterized by ↵ = 0.1 for our primary

experiments. We set the number of clients to 100, train for 1 local epoch per round, and set client par-

ticipation to 30% for CIFAR (as in J. Nguyen et al. (2023)). For all other datasets we use full client

participation for simplicity.

Dataset
Num. Num.

Classes Images

CIFAR-10 10 50000

Flowers102 102 1020

Stanford Cars 196 8144

CUB 200 5994

EuroSAT-Sub 10 5000

Table 3.1: Summary of datasets used in
our experiments.

Like J. Nguyen et al. (2023), we use SqueezeNet (Ian-

dola et al., 2016), we also consider a ResNet18 (K. He,

Zhang, Ren, & Sun, 2016) for experiments in Ap-

pendix A.5. When performing fine-tuning and evaluation

for all datasets, we resize images to 224⇥224, the training

input size of ImageNet. We run all experiments for three

seeds using the FLSim library described in (J. Nguyen et

al. (2023)).

Baseline methods We compare our methods to the fol-

lowing approaches as per J. Nguyen et al. (2023): (a)

Random: the model is initialized at random with no use

of pre-trained model or NCM initialization. This setting corresponds to the standard FL paradigm

of (McMahan et al. (2017)). (b) LP: Given a pre-trained model, we freeze the base and train only

the linear head using standard FL optimizer for training. (c) FT: A pre-trained model is used to

initialize the global model weights and then a standard FL optimization algorithm is applied. (d)

LP and FT Oracles: These are equivalent baselines trained in the centralized setting that provide an

upper bound to the expected performance.

All of the above baseline methods as well as our FedNCM and FedNCM+FT can be combined

with any core FL optimization algorithm such as FedAvg and FedAdam ((Reddi et al., 2020)). Our
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experiments, we focus on the high-performing FedAvg, FedProx and FedAdam which have been

shown to do well in these settings in prior art (J. Nguyen et al., 2023).

Hyperpameters We follow the approach of (J. Nguyen et al. (2023); Reddi et al. (2020)) to select

the learning rate for each method on the various datasets. For CIFAR-10 and SqueezeNet experi-

ments we take the hyperparameters already derived in (J. Nguyen et al. (2023)). Additional details

of selected hyperparameters are provided in Appendix A.2.

Communication and Computation Budget We evaluate the communication and computation

costs of each proposed method. Costs are considered both in total and given a fixed budget for

either communication or computation. For the communication costs, we assume that each model

parameter that needs to be transmitted is transmitted via a 32-bit floating point number. This as-

sumption allows us to compute the total expected communication between clients and server. It is

important to emphasize that linear probing only requires that we send client updates for the classifier

rather than the entire model as is the case in the other settings. Consequently, LP has much lower

communication costs when compared to FT for any given number of rounds. Our proposed Fed-

NCM is a one-round algorithm and therefore has even lower communication costs than any other

algorithm considered.

For computation time we consider the total FLOPs executed on the clients. We assume for

simplicity that the backward pass of a model is 2⇥ the forward pass. For example, in the case of

LP (with data augmentation) each federated round leads to one forward communication on the base

model, f , and one forward and one backward (equivalent to two forward passes) on the head, g.

Similarly, for FedNCM the communication cost consists only one forward pass through the data.

3.2.1 Efficiency of Pure HeadTuning for FL

As discussed in Sec. 3.1.1 tuning the classifier head is at times as effective or more effective

than updating the entire model in the context of transfer learning Evci et al. (2022). In prior work,

this situation was briefly considered as a limited case in J. Nguyen et al. (2023, Appendix C.2) for

CIFAR-10 and suggested that tuning just the linear head (LP) might be a weak approach in the
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Dataset Method Accuracy (%) Total Compute (⇥F) Total Comm. (GB)

CIFAR-10

Random 67.8 ± 0.6 4.5 ⇥ 108 1803.71

FT 85.4 ± 0.4 3.0 ⇥ 107 120.25

FedNCM+FT 87.2 ± 0.2 3.0 ⇥ 107 120.25

LP 82.5 ± 0.2 1.0 ⇥ 106 0.82

FedNCM 64.8 ± 0.1 1 4.1 ⇥ 10�3

CIFAR-10 ⇥32

Random (J. Nguyen et al. (2023)) 34.2 1.5 ⇥ 108 601.24

FT (J. Nguyen et al. (2023)) 63.1 1.5 ⇥ 108 601.24

FedNCM+FT 67.9 ± 0.4 7.5 ⇥ 107 300.62

LP (J. Nguyen et al. (2023)) 44.7 5.0 ⇥ 107 4.10

FedNCM 40.02 ± 0.04 1 4.10 ⇥ 10�3

FLOWERS-102

Random 33.2 ± 0.7 9.2 ⇥ 106 1916.76

FT 64.5 ± 1.0 7.7 ⇥ 105 159.73

FedNCM+FT 74.9 ± 0.2 7.7 ⇥ 105 159.73

LP 74.1 ± 1.2 5.1 ⇥ 105 20.93

FedNCM 71.8 ± 0.03 1 4.2 ⇥ 10�2

CUB

Random 15.0 ± 0.7 5.4 ⇥ 107 2037.18

FT 52.0 ± 0.9 1.8 ⇥ 107 679.06

FedNCM+FT 55.0 ± 0.3 1.8 ⇥ 107 679.06

LP 50.0 ± 0.3 9.0 ⇥ 106 122.88

FedNCM 37.9 ± 0.2 1 8.2 ⇥ 10�2

STANFORD CARS

Random 5.6 ± 0.8 8.6 ⇥ 107 2370.97

FT 48.7 ± 2.0 2.4 ⇥ 107 677.42

FedNCM+FT 54.8 ± 1.2 2.4 ⇥ 107 677.42

LP 41.2 ± 0.5 2.0 ⇥ 107 200.70

FedNCM 20.33 ± 0.04 1 8.0 ⇥ 10�2

EUROSAT-SUB

Random 85.8 ± 2.7 5.3 ⇥ 107 2104.32

FT 95.6 ± 1.0 1.5 ⇥ 107 601.24

FedNCM+FT 96.0 ± 0.5 1.5 ⇥ 107 601.24

LP 92.6 ± 0.4 5.0 ⇥ 106 4.10

FedNCM 81.8 ± 0.6 1 4..10 ⇥ 10�3

Table 3.2: Accuracy, total computation and total communication costs of pure HeadTuning meth-
ods (below dashed lines) and their full training counterparts. CIFAR-10 ⇥32 indicates CIFAR-10
without re-sizing samples to 224 ⇥ 224, we include this setting so we can compare directly with
values for FT, Random and LP reported by (J. Nguyen et al. (2023)). We observe pure HeadTuning
approaches, FedNCM and LP can be powerful, especially under compute and communication con-
straints. The unit, F, used to measure communication is one forward pass of a single sample, details
of the communication and computation calculations are provided in AppendixA.1.

heterogeneous setting. Here we first revisit this claim and expand the scope of these experiments
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to highlight where LP can be beneficial in terms of performance, communication costs, and com-

pute time. Subsequently, we show another approach for approximating a good classifier, FedNCM,

which can be competitive with orders of magnitude less computation and communication cost. We

will demonstrate how to get the best of both HeadTuning and fine-tuning in the FL setting.

In (J. Nguyen et al. (2023)) the CIFAR-10 fine-tuning is done by feeding the 32⇥32 input image

directly into a pre-trained ImageNet model. Since the architectures are adapted to the 224 ⇥ 224

size and trained at this scale originally, such an approach can lead to a very large distribution shift

and may be sub-optimal for transfer learning. Thus we additionally compare to CIFAR-10 using

the traditional approach of resizing the image to the source data (Evci et al., 2022; Kornblith et al.,

2019).

Tab. 3.2 shows accuracy, compute, and communication cost results for Pure HeadTuning Meth-

ods (FedNCM and LP) as well as full tuning approaches including our FedNCM+FT. We note that

in Tab. 3.2, CIFAR-10-32⇥ 32 refers to results published in J. Nguyen et al. (2023). We first point

out the difference image input size has on the results and conclusion. Overall accuracy is much

higher (highest is 86% vs 63%) and the gap between FT and LP is substantially smaller when using

the model’s native input size, it shows an absolute improvement of only 4.6% vs 18.4%. For both

sizes of CIFAR-10 CUB, Stanford Cars and Eurosat. FedNCM without FT can substantially exceed

random performance while maintaining a highly competitive compute and communication budget.

For the Flowers102 dataset, FedNCM can already far exceed the difficult-to-train FT setting and

furthermore, LP alone exceeds both FedNCM and FT. Our two-stage method of FedNCM+FT out-

performs all other methods in terms of accuracy. In what follows we will show how FedNCM+FT

also allows high efficiency given a specific, potentially limited compute and computational budget.

When considering the results, we note that CIFAR-10 contains the same object categories as the

original ImageNet dataset but the Flowers102 and CUB datasets, represent more realistic transfer

learning tasks and under these conditions we observe the true effectiveness of HeadTuning methods

such as FedNCM and LP.
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Figure 3.1: A comparison of the accuracy between models initialized with pre-trained weights and
trained on CIFAR-10. The final result for both an LP and an FT oracle are shown and we remark
that the NCM initialization allows the model to outperform the results of the LP oracle.

0 100 200 300 400 500

Rounds

0

20

40

60

80

100

A
cc

ur
ac

y

Accuracy vs Rounds Flowers
FedNCM: 71.8 ± 0.03

LP oracle

FT oracle

NCM+FT: 74.9 ± 0.2

LP: 74.1 ± 1.2

FT: 64.5 ± 1.0

Random: 33.2 ± 0.7

103 104 105 106

Total Communication (Mb)

0

10

20

30

40

50

60

70

80
A
cc

ur
ac

y
Accuracy vs Communication Budget Flowers

LP

FT

FedNCM+FT

Random

101 102 103 104

Total Compute (GFLOPs)

0

10

20

30

40

50

60

70

80

A
cc

ur
ac

y

Accuracy vs Compute Budget Flowers

LP

FT

FedNCM+FT

Random

Figure 3.2: A comparison of the accuracy between models initialized with pre-trained weights and
trained on Flowers. The final result for both an LP and an FT oracle are shown and we remark that
the NCM initialization allows the model to outperform the results of the LP oracle.

3.2.2 FedNCM then FineTune

We now study in more detail the two-stage approach described in Sec. 3.1.3. Figures 3.1, 3.2,

3.3, 3.4 and 3.5 show the comparison of our baselines and FedNCM+FT with FedAvg. We show

both accuracies versus rounds as well as accuracy given a communication and computation cost

budget. Firstly, we observe that when going beyond CIFAR-10, LP can converge rather quickly

and sometimes to the same accuracy as FT. This result shows the importance of HeadTuning and

supports the use of LP in federated learning scenarios. Secondly, we can see the clear advantage

of FedNCM+FT. After the stage one FedNCM initialization, it is able to achieve a strong starting

accuracy and in stage two, it converges with a better accuracy than FT given the same computation

budget. We note that FedNCM+FT for Cars and EuroSAT-Sub sees an initial performance decrease

during the first few rounds of fine-tuning before rebounding to reach the best performance. This

phenomenon is related to the chosen learning rate and further study is required to determine if this

drop behaviour can be eliminated, potentially by using an initial warm-up period at a lower learning
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Figure 3.3: A comparison of the accuracy between models initialized with pre-trained weights and
trained on CUB. The final result for both an LP and an FT oracle are shown and we remark that the
NCM initialization allows the model to outperform the results of the LP oracle.
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Figure 3.4: A comparison of the accuracy between models initialized with pre-trained weights and
trained on Cars. The final result for both an LP and an FT oracle are shown and we remark that the
NCM initialization allows the model to outperform the results of the LP oracle.

rate.

FedNCM+FT converges rapidly, allowing it to be highly efficient under most communica-

tion budgets compared to other methods. The second column of Tab. 3.2 shows that as we im-

pose increasingly severe limitations on communication budgets, the performance gap between Fed-

NCM+FT and all other methods widens significantly in favour of FedNCM+FT. Indeed for all the

datasets FedNCM+FT is always optimal early on. For three of the datasets (Flowers, CUB, Cars)

it exceeds LP over any communication budget. For CIFAR-10 and Eurosat LP can overtake it after

the early stage, however, FedNCM+FT remains competitive and ultimately reaches higher perfor-

mance. Similar trends are observed for computation time.We note overall as compared to FT the

performance improvement can be drastic when considering the trade-off of accuracy as a function

of communication and compute available. We also remark that the variance of LP and FedNCM+FT

is lower across runs than the FT and Random counterparts.
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Figure 3.5: A comparison of the accuracy between models initialized with pre-trained weights and
trained on EuroSAT. The final result for both an LP and an FT oracle are shown and we remark that
the NCM initialization allows the model to outperform the results of the LP oracle.

Figure 3.6: A comparison of the accuracy
between models initialized with pre-trained
trained using LP, FT and FedNCM+FT.
We remark that the FedNCM alone obtains
strong performance.

We note that the Random baseline, typically re-

quires longer training than others to reach the con-

vergence criteria, thus for the purpose of our visual-

ization we do not show the fully converged random

baseline, which always requires many more commu-

nication rounds than the other approaches; however,

the full curves are included in Appendix A.6.

NLP Experiments

We now explore the effectiveness of our ap-

proach on NLP tasks. For these experiments, we

train a DistillBert model (Sanh, Debut, Chaumond,

& Wolf, 2019) on the AG News dataset (Zhang,

Zhao, & LeCun, 2015). Fig. 3.6 shows the com-

parison of LP, FT and FedNCM+FT where we vary

the number of examples per class (15, 90, 1470).

We observe the strong performance of FedNCM as

a stand alone method, reinforcing previous obser-

vations around the importance of HeadTuning. As

models get larger, the importance of the final layer
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on the overall size of the model diminishes resulting in larger gaps in communication cost between

one LP or FedNCM round and an FT round. Additionally, we find that FedNCM’s accuracy is robust

to sample size decreases and FedNCM+FT provides substantial convergence, and by extension com-

munication cost benefits. Indeed it is well known that centroid based classifiers perform robustly in

the case of few samples (Snell, Swersky, & Zemel, 2017). We provide additional confirmation of

this in Appendix A.4 with experiments using small subsets of Cifar-10.

3.2.3 Analysis and Ablations

Figure 3.7: Varying the heterogeneity (Dirichlet-↵) for
CIFAR-10 and Flowers102 datasets.

We now focus on demonstrat-

ing other advantages of our two-

stage method, with a focus on us-

ing FedNCM as the method of choice

for stage one (FedNCM+FT). In par-

ticular, we investigate robustness to

larger number of clients, insensitivity

to hyperparameters and compatibility

with multiple FL algorithms and ar-

chitectures. In Appendix A.3 we ab-

late our two-stage method by com-

paring FedNCM, LP and a three-layer

MPL as methods for stage one.

Choice of FL Algorithm

So far we have focused on com-

parisons using FedAvg as the base-

line algorithm; however, since our

method can be widely applied in FL, we further analyze FedNCM+FT using the FedAdam opti-

mizer and the FedProx algorithm. Tab. 3.3 summarizes the results of using each method with 1.)

FedNCM+FT and 2.) only FT, for the Cifar-10 and Flowers datasets.
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Dataset Algorithm FedNCM FedNCM + FT FT

CIFAR-10
FEDAVG 64.8 ± 0.1 87.2 ± 0.2 85.4 ± 0.4

FEDPROX 64.8 ± 0.1 88.1 ± 0.1 87.8 ± 0.08

FEDADAM 64.8 ± 0.1 89.4 ± 1.1 88.2 ± 0.2

FLOWERS102
FEDAVG 71.8 ± 0.03 74.9 ± 0.2 64.5 ± 1.0

FEDPROX 71.8 ± 0.03 75.2 ± 0.1 65.5 ± 1.5

FEDADAM 71.8 ± 0.03 76.7 ± 0.2 66.6 ± 1.0

Table 3.3: Model performance with different methods for a variety of FL algorithms for FedAvg,
FedADAM and FedProx. FedNCM+FT outperforms in all cases.

We observe that improved FL optimizers can complement the two-stage FedNCM+FT which

systematically exceeds the performance obtained when only fine-tuning. Regardless of the federated

algorithm used, FedNCM alone continues to exceed the performance of FT on Flowers102. Our

results suggest that choice of the FL optimization algorithm (J. Nguyen et al., 2023) is not always

the most critical consideration for optimal performance when using pre-trained models.

Hyperparameter Tuning FL algorithms are known to be challenging for hyperparameter se-

lection (Reddi et al., 2020) and this can affect their practical application. We first note that FedNCM

does not have any hyperparameters which already provides a large advantage. In Fig. 3.9, we ob-

serve the final performance for a grid search over a range of server and client learning rates for

FedAdam using both FT and FedNCM+FT. We observe that FedNCM+FT not only has higher per-

formance but it is also more stable over the entire hyperparameter grid on Flowers dataset, and

outperforms for all settings on CIFAR-10.

Heterogeneity J. Nguyen et al. (2023) points out that starting from a pre-trained model can re-

duce the effect of system heterogeneity. This is evaluated by comparing a specific Dirichlet distribu-

tion (↵ = 0.1) used to partition data into a non-iid partitioning. Although the effect of heterogeneity

is reduced we observe that in highly heterogeneous settings we still see substantial degradation in

FT as shown in Fig. 3.7. Here we consider for CIFAR-10 the nearly iid ↵ = 100, ↵ = 0.1 as

considered in J. Nguyen et al. (2023), and a very heterogeneous ↵ = 0.01. Firstly, we observe that

FedNCM+FT can provide benefits in the iid setting.
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As heterogeneity degrades the naive FT setting sees a large absolute and relative drop in perfor-

mance. On the other hand, FedNCM+FT as well as LP are able to degrade more gracefully.

Figure 3.8: We vary the number of local epochs. FedNCM+FT always
outperforms FT and nearly always LP in this challenging setting.

Varying the Local Epoch

The number of local epochs

can drastically affect FL

aglorithms, typically a larger

amount of local computa-

tion between rounds is de-

sired to minimize commu-

nication. However, this can

often come at a cost of de-

graded performance. We

observe in Fig. 3.8 as in

J. Nguyen et al. (2023) that

FT can be relatively robust

in some cases (CIFAR-10)

to increasing local epochs. However, we also observe for some datasets that it can degrade, while

LP and FedNCM+FT are less likely to degrade. Overall FedNCM+FT continues to outperform for

larger local epochs.

Figure 3.10: We increase the number of
clients on CIFAR-10. FedNCM+FT de-
grades more gracefully than FT and LP.

Increasing clients Tab. 3.10 shows that as we in-

crease the number of clients we observe that the degra-

dation of FedNCM+FT is less severe than both LP and

FT, suggesting it is stable under a large number of work-

ers being averaged. As discussed in Sec. 3.1.3 it is ex-

pected in the same round that a representation would

shift less from a starting point, and therefore since the

starting point is the same for all clients, we expect the

client drift within a round to be less given a fixed update

budget. Hence, we expect to observe the same pattern
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Figure 3.9: Hyperparameter grids for FedAdam for CIFAR-10 FT, FedNCMFT (left) and Flowers
(right). We observe CIFAR-10 FedNCM-FT tends to do better or equal for all hyperparameters
compared to FT. For Flowers it is much easier to tune, achieving strong values over a wide range, a
noticeable advantage in FL



of robustness for FedNCM+FT under an increasing number of clients when training on tasks.

3.3 Conclusion

We have highlighted the importance of the last layers in FL from pre-trained models. We used

this observation to then derive two highly efficient methods FedNCM and FedNCM+FT whose

advantages in terms of performance, communication, computation, and robustness to heterogeneity

were demonstrated. A limitation of our work is that it focus on image data and models, as this the

primary set of data and models studied in prior work particularly in the context of transfer learning.
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Chapter 4

Adapting zeroth-order learning to

optimize communication costs

4.1 Method

In this section we describe FedMeZO a zeroth-order learning algorithm adapted to the FL set-

ting. The algorithm follows the initial setup described in Chapter 2 where each client k 2 {1, ...,K}

possesses data Xk consisting of nk samples drawn from distribution Dk. The total number of sam-

ples across all clients is denoted as n =
PK

k=1 nk. The data Xk at each client may stem from

different distributions and differ in quantity between individual clients. However, we demonstrate

both theoretically and empirically that FedMeZO yields equivalent results regardless of the number

of clients and whether data is iid or non-iid.

FedMeZO has a per-round communication cost of just a few bytes making it optimal in settings

where total communication budget is extremely low. This is an important characteristic of the cross-

device setting where clients are connected over unstable and low-bandwidth networks. Indeed,

the clients and server limit themselves to exchanging a couple of scalar values per round. We

describe this exchange in detail in Section 4.1.1. Importantly, our algorithm requires us to sample

a consistent direction Z across clients enabling them to reconstruct the global model on-device

once the average projected gradient is shared. This is not only key to optimizing client-server

communication and preventing the exchange of any model weights, but it also ensures FedMeZO
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produces results equivalent to its counterpart in the centralized setting Malladi et al. (2024) given

full client participation and an equivalent step size.

4.1.1 FedMeZO

As is the case for most FL algorithms, FedMeZO trains a global model iteratively by performing

local updates on a set of chosen clients and aggregating the updated models. For most algorithms,

local updates measure model gradients by performing forward passes on the client’s local data used

to generate a global loss signal, which is backpropagated through the model. However, FedMeZO

performs client updates using an adaption of MeZO (Malladi et al. (2024)). As described in Chapter

2, MeZO estimates a layer-wise loss by conducting two forward passes with some perturbation in

opposite directions. It uses this signal to measure the gradient direction used to update the weights

for the current model layer. With FedMeZO, we return the gradient direction to the server rather than

update the client model directly. This direction is a scalar. We average projected gradients across

all selected clients and use it to update models as we would in the centralized setting. Global model

update occurs on-device across all clients. We describe FedMeZO more formally in Algorithms 2

(server orchestration) and 3 (local training). When measuring the amount of communication per

round, we importantly notice that we do not share any weights beyond the initial pretrained model

at the start of training. Rather, a round involves the communication of three numbers (1 byte each)

between the server and each of its clients. These integers are shared at different times during a

given round and are represented in chronological order by the seed, the individual client’s estimated

gradient and the average estimated gradient across clients.

In FedMezo, the server’s only job is to select a random seed s and compute the average of all

projected client gradients. The server does not receive or update model weights as this is done

by each client on-device. Intuitively, the information shared each round represents a set of scalars

numbered in proportion to the number of round participants. This procedure addresses the following

critical concerns in the FL setting:

(1) communication: FedMeZO requires the server and clients to communicate a relatively small
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Algorithm 2 FedMeZO: Server (main) orchestrates training across clients.
Require: Number of rounds R, number of clients K, model parameters w0, seed s, number of

samples num z.

1: procedure SERVER EXECUTES:

2: Send initial model w0 to all clients

3: for i = 1 to R do

4: Pick seed s

5: for each client k 2 K do

6: proj grads k  ClientFedMeZOProj(s, num z) . Compute projected gradients

for client k

7: end for

8: proj grad avg  Average(proj grads k) for k 2 K . Average gradients across all

clients

9: for each client k 2 K do

10: ClientFedMeZOUpdate(s, num z, proj grad avg)

11: end for

12: end for

13: end procedure
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Algorithm 3 FedMeZO: FedMeZOProj and FedMeZOUpdate run the local forward passes and
reconstruct the global model using the average projected gradient.
Require: Perturbation scale ✏, model parameters w k, local learning rate lr, seed s, number of

samples num z, size of model layer D.

CLIENT EXECUTES:

1: function CLIENTFEDMEZOPROJ(s,num z)

2: SetSeed(s)

3: Z = random(num z,D) . The same Z is consistently generated across clients.

4: for p = 1 to num z do

5: Xk = LoadNextBatch()

6: zp = Z[p, :] . Use the p-th slice of random matrix

7: proj grad J [p] = MeZO(Xk, current model on client wk, ✏, zp)

8: end for

9: return proj grad . Return the projected gradient

10: end function

11: function CLIENTFEDMEZOUPDATE(s,num z,proj grad avg)

12: SetSeed(s)

13: Z = random(num z,D) . The same Z is consistently generated across clients.

14: grad est = 0 . Initialize gradient estimate

15: for p = 1 to num z do

16: grad est+ = proj grad avg[p] ⇤ Z[p, :]

17: end for

18: grad est = grad est/num z . Estimate the client gradient direction

19: wk+1 = wk � lr ⇤ grad est . Update the model parameters locally

20: end function



number of scalars rather than all or portions of the entire model. This reduces the com-

munication cost for model convergence. It also holds the per-round communication budget

steady regardless of model size. As models get larger, the gap in communication budget for

FedMeZO and other PEFT or full fine-tuning methods grows.

(2) client memory: As described in the original paper, MeZO requires 5x less memory than

traditional backpropagation. The algorithm is also complementary to other PEFT methods

like LoRA (Hu et al. (2021)).

(3) privacy: Given the low dimensionality of the information shared by clients, FedMeZO re-

duces the risk of information leakage. The method never requires clients to directly share

model parameters or their gradients with the server. Notably, information is also never shared

directly between clients who are the only ones to hold updated model parameters. Returning

the average of the projected gradients to clients rather than a set of individual client projected

gradients ensures the solution is at least as private as widely accepted aggregation methods

like FedAvg (McMahan et al. (2017)).

4.1.2 Setting the seed

In this section, we reinforce the importance and manner in which we set the random seed across

clients for local training. Broadly, seeds are used by random number generators to create repro-

ducible outputs. Hence, FedMeZO requires a random number generator capable of maintaining

context across all clients, so that the server and its clients K generate the same set of random direc-

tions Z for a given round as shown in Fig. 4.1.

This is critical to ensure the model update is equivalent regardless of the number of clients and

whether the data is iid or non-iid across clients. Empirically, we observe that allowing clients to

independently generate Z produces a gap in performance when training on non-iid data. For a given

training step, the same Z is used during both gradient projection and client update. FedMeZO’s

gradient projection step is equivalent to running MeZO (Malladi et al. (2024)) for multiple batches

and accumulating the projected gradient for a number of batches equal to the number of clients.

Consequently, our current implementation of FedMeZO requires us to limit local training to a single
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Figure 4.1: For each round, a new seed s is set by the server and shared with every client. During
local gradient projection, clients randomly generate the same value for Z.

step per client per local round. Then, the client model update step enables each clients to reconstruct

the global model locally using the average projected gradient shared by the server. When scaling

the step size to the Xk, this update is again equivalent to that of the model update in the centralized

setting. In Fig. 4.2, we emphasize the importance of properly setting the seed by highlighting the

gap in accuracy between FedMeZO and a naive implementation of MeZO (Malladi et al. (2024)) in

the distributed setting where the seed is set independently for each client and local training occurs

for a number of steps. FedMeZO outperforms DistMeZO Naive across all tasks.

4.2 Experiments

In this section, we detail the main components of our experimentation and demonstrate the

ability of FedMeZO to perform well on iid and non-iid data. Our primary experiments focus on

natural language processing tasks and more specifically sentence classification.

4.2.1 Experimental Details

All experiments are carried out using a pretrained RoBERTa-large (Y. Liu et al. (2019)) based

on implementations in (Gao, Fisch, and Chen (2021); Malladi, Wettig, Yu, Chen, and Arora (2023)).

We perform some tuning of the learning rate and perturbation scale. Both have similar effects on
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Figure 4.2: A comparison of the final accuracy between models trained using FedMeZO and a naive
implementation of MeZO in the distributed setting (DistMeZO Naive). To converge, DistMeZO
Naive requires a larger amount of local steps per round. As described, FedMeZO results in better
model performance across the set of tasks.

the step size, so we choose to hold the perturbation scale steady at 1e � 3 across our experiments

after some testing and choose to tune the learning rate.

Dataset
Num. Num.

Classes Rows (in thousands)

SST-2 2 67.3

SST-5 5 8.54

MNLI 3 392.7

Table 4.2: Summary of datasets used in our ex-
periments.

Baseline methods We compare our method

to SLoRA (Babakniya et al. (2023)), which is

designed to improve the performance of tuning

using LoRA in the FL setting. As reflected in

Table 4.1, this method has a considerably larger

per-round communication cost. However, we

choose this method as our baseline given its

ability to demonstrate strong performance on

NLP tasks using pretrained models in the FL

setting. We also chose it given its compatibility

with LoRA and other PEFT methods, which is
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Dataset Method # Clients Accuracy (%) Total Comm. (GB)

SST-2 FedMeZO IID 10 89.7 7.863 ⇥ 10�5 (2621 rounds)

FedMeZO NON-IID 10 89.7 7.863 ⇥ 10�5 (2621 rounds)

SLoRA IID 10 93.5 69.254

SLoRA NON-IID 10 83.1 69.254

MNLI FedMeZO IID 10 63.3 5.115 ⇥ 10�5 (1705 rounds)

FedMeZO NON-IID 10 63.3 5.115 ⇥ 10�5 (1705 rounds)

SLoRA IID 10 82.3 69.254

SLoRA NON-IID 10 78.1 69.254

SST-5 FedMeZO IID 10 41.4 2.907 ⇥ 10�5 (969 rounds)

FedMeZO NON-IID 10 41.4 2.907 ⇥ 10�5 (969 rounds)

SLoRA IID 10 52.0 69.254

SLoRA NON-IID 10 41.8 69.254

Table 4.1: Accuracy and total communication cost of FedMeZO and SLoRA (above dashed line).
We collect results for the methods on Stanford Sentiment Treebank (SST-2, SST-5) and the Multi-
Genre Natural Language Inference (MNLI). We exclude the initial model sharing step between the
server and clients from the total communication given its outsides impact (> 99.99%) on the total
communication when training with FedMezo.

also a property of our method. We run experiments for MeZO, but do not include them out ex-

plicitly. As mentioned in Section 4.1.1, it is trivial to derive the equivalence between MeZO in the

centralized setting with gradient accumulation for multiple batches and FedMeZO assuming full

client participation. Hence, MeZO and FedMeZO result in the same final accuracy when adjusting

for step size. For SLoRA, we conduct our experiments with 50 total global rounds and 10% density

during model priming (step 1). We train the model using step 1 for 20% of the total training rounds.

This setup aligns with a subset of the main results displayed in Babakniya et al. (2023). They report

the importance of ensuring a sufficient number of training rounds for step 1.

Federated Learning We carry out our experiments in the iid and non-iid setting where data is

distributed to clients using a Dirichlet distribution parameterized by ↵ = 100 and ↵ = 0.1 respectively

(Hsu et al. (2019)). Our experiments are conducted with 1 local step per round with full client
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participation across the 10 clients. The random seed is set by the server and shared with clients. Its

value is unique to every round.

Figure 4.3: A comparison of the accuracy
between models trained using FedMeZO,
SLoRA on iid data and SLoRA on non-iid
data. As described, FedMeZO converges the
same regardless of number of clients or data
distribution.

Datasets We measure the effectiveness of our

approach on sentence classification and textual en-

tailment tasks. SST-2 (Socher et al. (2013)) is a bi-

nary classification task where the goal is to predict

whether a given movie review expresses positive or

negative sentiment. SST-5 has more granularity (5

classes), but is similarly composed by a set of re-

views. Lastly, the Multi-Genre Natural Language

Inference (MNLI) (Williams, Nangia, and Bowman

(2018)) dataset evaluates the model’s ability to per-

form natural language inference across various gen-

res, testing its understanding of textual entailment

across a number of contexts. The datasets are de-

scribed in Table 4.2.

Communication Budget We measure the com-

munication cost of proposed methods in Gb. We de-

rive the per-round cost and extrapolate based on the

number of rounds to train the model to convergence.

We assume models are set at 32-bit floating point

precision for model parameters and 8-bit numbers

for the random seeds and gradient directions. This

allows us to calculate the total communication be-

tween the server and clients.

For FedMeZO, the per-round communication

cost is directly proportional to the number of for-

ward passes used to estimate the projected gradient

denoted in Algorithms 2 (server orchestration) and 3 (local training) by numz and the number of
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participating clients K. We set numz to 2 for all of our experiments as to be consistent with the

method described in Malladi et al. (2024). This represents two random directions for 1 step per

local client update. To reconstruct the global model locally, clients are each sent proj grad avg

and the seed used to generate Z. Equation 6 describes MeZO’s total communication cost Cost after

sending the initial model to clients.

Cost = R · (K + 2 ·K · num z) · 1⇥ 10�9 in GB (6)

For SLoRA, the communication cost can be easily derived from the the density used for step 1

(model priming) and the percentage of total rounds covered by step 1. The remaining rounds are

covered by step 2 (LoRA). As noted, we use RoBERTa-large in all of our experiments, which is

composed of 355M parameters with LoRA set the dimension of the low-rank matrices at 16. Eq. 7

describes SLoRA’s total communication cost Cost.

Cost = Rstep 1 ·K · density · model size in GB + Rstep 2 ·K · LoRA size in GB (7)

When comparing the communication cost of both algorithms, we notice they are naturally a

factor of the number of total rounds R. However, the term density ⇤ model size in GB is the

primary driver across both algorithms considering:

model size in GB� (K + 2 ·K · num z) bytes.

Hence, the large gap in communication budget between FedMeZO and SLoRA can be explained

by the former leveraging a form of compressed update information rather than sharing its raw model

weights. This method of aggregation also shelters FedMeZO’s communication cost from rising

dramatically due to training substantially larger models.
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4.2.2 Results

Although FedMeZO can be applied to a number of NLP tasks, our initial experiments focus

on text classification. As demonstrated in Table 4.1, FedMeZO reaches convergence with mini-

mal communication cost. Across all datasets in Figure 4.3, FedMeZO initially converges faster

than SLoRA in the non-iid setting, thus demonstrating that it can potentially outperform SLoRA in

settings where the communication budget represents a small fraction of the total model size. For

SLoRA, our results are consistent with previous findings stressing the importance of proper model

priming. Indeed, we find that model convergence at the end of step 1 is a strong indicator of final

model performance. As expected, SLoRA does suffer from some performance degradation in the

non-iid setting. The gap in performance caused by non-iid data is most pronounced for our simplest

task, SST-2. We do not experiment with pathological non-iid data where SLoRA seems to suffer

from its sharpest performance drop Babakniya et al. (2023).

The results for FedMeZO are equivalent regardless of the data being iid or non-iid. Empirically,

we find it is critical that the local batch size is set to the size of the local dataset. This ensures the

model performs a forward pass using every example in the dataset once per round across all settings.

It also improves stability and reduces variance of projected local gradients regardless of the number

of clients, thus ensuring a more accurate estimation of the projected gradient across all clients.

Reducing the batch size prevents the model from converging. Assuming full client participation, a

complete distribution of the original dataset to clients and a tuned step size via the local learning rate

and perturbation scale, FedMeZO converges at the same rate as MeZO regardless of the number of

clients. As mentioned in Section 4.1.1, FedMeZO is able to accommodate for models up to x5 larger

as measured by the number of total parameters compared to SLoRA. We leave this comparison up

to future works.

4.3 Conclusion

We highlighted the resource constraints presented by the FL setting and explored the ability to

learn in a distributed setting without directly sending updated model parameters over the network.
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Our method, FedMeZO, inherits properties of MeZO in the centralized setting, which reduces mem-

ory constraints for model fine-tuning down to those required for model inference. We further adapt

it to minimize the total communication budget. Future directions for this work will not only include

more experiments, but also an adaptation of FedMeZO incorporating some model priming and local

learning based on a layer-wise objective.
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Chapter 5

Conclusions and Future Work

5.1 Contributions

In this work, we focused on the use of pretrained models to increase convergence speed in the

federated learning setting. We introduced methods for first-order and zeroth-order learning using

pretrained models in the language and vision domains. We demonstrated our methods’ ability to

reduce communication budget, compute and memory requirements for clients.

Last layer tuning: With this work, we confirmed previous observations made by J. Nguyen

et al. (2023) demonstrating the effectiveness of pretrained models in FL where the objective is to

produce a global model. Through a number of experiments, we highlighted the importance of tuning

the last layer or classifier. We continued by exploring the application of Nearest Means Classifiers

and introduced FedNCM and LP as two forms of head tuning. We demonstrated the effectiveness of

combining FedNCM with full fine-tuning to improve final model accuracy and convergence speed.

Zeroth-order optimization: With this work, we demonstrated the ability of zeroth-order meth-

ods using pretrained models to translate to the FL setting. We adapted the algorithm described by

Malladi et al. (2024) to the setting reducing the communication cost per round to a factor of 3 scalars

per client. We emphasized the method’s lowered memory requirements and showed that it yields

equivalent results regardless of client data distribution. This positioned our method as a viable op-

tion in the cross-device where clients are often hardware-constrained and connected over unreliable

networks.
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5.2 Future Work

Improving convergence: We established the benefits of pretrained over randomly initialized

models in the FL setting to reduce client memory and compute as well as increase robustness with

non-iid data. During our training, we notice some success tuning clients for very large number of

local rounds as compared to global rounds. It may be relevant to expand on this observation to for-

malize the relationship between these two hyperparameters on their effects on accuracy. Although

we demonstrate strong performance under tight communication budgets, gaps also remain between

FedMeZO and other state-of-the-art FL methods like SLoRA applying PEFT to the setting for larger

budgets. Algorithms could be developed improving on the model’s learning objective. Improving

on the model’s local objective would maintain memory requirements while perhaps ultimately re-

ducing the need for a second forward pass and improve final model accuracy.

Moving beyond classification: The bulk of the experiments in this thesis cover classification

tasks across language and vision. With sequence completion in text being the primary driver for

the broader application of Large Language Models (LLMs), it could be beneficial to adapt the

methods described in this work to this task and others such as sequence labeling, summary creation

or question and answering. Beyond language and vision, the methods are applicable to a broader

set of domains.
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Appendix A

Appendix

Appendix

A.1 Calculation of Communication and Computation Values in Tab.

3.2

A.1.1 Communication

For HeadTuning methods such as LP and FedNCM, communication is calculated according to

equation 8 where LLin and LLout are the input and output dimensions of the linear layer, R is the

number of federated rounds, K is the total number of clients and F is the fraction F 2 (0, 1] of

clients participating in each federated round:

commlp = 2 ⇤ (LLout ⇤ LLin) ⇤K ⇤R ⇤ F ⇤ (32 bit) (8)

For methods training the complete model, communication is calculated according to equation 9

where P is the number of parameters present in the base model (excluding the linear layer) and

LLin, LLout, R, K and F have the same meanings as above:

commft = 2((LLout ⇤ LLin) + P ) ⇤K ⇤R ⇤ F ⇤ (32 bit) (9)
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A.1.2 Computation

For computation, let F be one forward pass of a single sample, Let S be the subset of clients,

K, selected to participate in each federated round, R. We define one backward pass as 2F therefore

each sample contributes 3F per round in a full fine-tuning situation. For HeadTuning a complete

backward pass is not necessary since we only update the linear layer weights and each sample

contributes F per round. Eq. 10 and Eq. 11 formalize our computation calculation method in units

of F, where E is the number of local epochs performed by each client and Ns is the sum of the

number of samples at each selected client, S.

compft = 3 ⇤R ⇤ E ⇤Ns (10)

compft = R ⇤ E ⇤Ns (11)

A.2 Hyperparameter Settings

For CIFAR-10, CUB, Stanford Cars and Eurosat datasets the learning rates for the FedAvg algo-

rithm were tuned via a grid search over learning rates {0.1, 0.07, 0.05, 0.03, 0.01, 0.007, 0.005, 0.003, 0.001}.

For Flowers102, based on preliminary analysis we used lower learning rates were tuned over learn-

ing rates

{0.01, 0.007, 0.005, 0.003, 0.001, 0.0007, 0.0005, 0.0003, 0.0001}. Tab. A.1 summarizes the num-

ber of rounds conducted for each dataset and method combination.

Prior work on federated learning with pre-trained models has indicated that for FedADAM lower

global learning rates and higher client learning rates were more effective. As a result for CIFAR-

10 and Flowers the client learning rate was tuned over {1, 0.1, 0.01, 0.001, 0.0001} and the server

learning rate was tuned over {0.001, 0.0001, 0.00001, 0.000001}, each combination of server and

client learning rates were tried.
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Dataset FT+FedNCM FT LP Random

CIFAR-10 200 200 200 3000

CIFAR-10 32 ⇥ 32J. NGUYEN ET AL. (2023) 1000 500 1000 1000

FLOWERS-102 250 250 500 3000

STANFORD CARS 1000 1000 2500 3500

CUB 1000 1000 1500 3000

EUROSAT-SUB 1000 1000 1000 3500

Table A.1: rounds conducted for each dataset and method combination. For CIFAR-10 32 ⇥ 32
experiments were conducted in J. Nguyen et al. (2023) with the exception of FedNCM+FT (our
method)

A.3 Additional HeadTuning Analysis

A.3.1 MLP HeadTuning

We compare HeadTuning methods by replacing the linear layer in the LP method with a three

layer MLP. Tab. A.2 shows the HeadTuning results obtained using LP and MLP. We observe no

advantage to using an MLP instead on a linear layer since most of our results are comparable or in

some cases even inferior to the LP case.

A.3.2 LP and FT

In this section we explore the use of LP as the HeadTuning method in our two-stage algorithm.

Tab. A.3 indicates performance of our two stage HeadTuning + fine-tuning method using five rounds

of LP, ten rounds of LP and FedNCM as the HeadTuning methods. The bottom row in each dataset

category where stage 1 Methods is denoted as n/a, is the result of only fine-tuning, i.e. not using our

two stage method, which shows that HeadTuning prior to fine-tuning is always at least as effective

as FT alone and, depending on the HeadTuning method selected, much more effective.
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Dataset HeadTuning Method Accuracy

CIFAR-10
LP 82.5 ± 0.2

MLP 84.1 ± 0.2

FLOWERS102
LP 74.1 ± 1.2

MLP 72.5 ± 0.3

CUB
LP 50.0 ± 0.3

MLP 50.3 ± 0.3

CARS
LP 41.2 ± 0.5

MLP 41.0 ± 0.4

EUROSAT-SUB
LP 92.6 ± 0.4

MLP 91.7 ± 0.8

Table A.2: LP and MLP HeadTuning results prior to the fine-tuning stage.

A.4 Experiments Using Small Subsets of Data

We conduct experiments using only a small subset of Cifar-10 with nine samples of each class,

i.e. 90 samples in total. We distribute these samples between five clients using a Dirichlet distri-

bution with ↵ = 0.1 so each client will have very few samples and some will be entirely missing

samples from many classes. Tab. A.4 shows a � 10% improvement in accuracy between FT and

FedNCM, which we attribute to overfitting of the FT model and the challenge of heterogeneity that

FedNCM is not susceptible to. We also observe that LP does quite a bit better than FT indicating

the benefit of HeadTuning methods in this setting.

A.5 ResNet Experiments

We perform experiments for LP, FT, FedNCM and FedNCM+FT using the ResNet18 model

using the FedAvg algorithm and the CIFAR-10 and Flowers102 datasets. Results are summarized

in Tab. A.5 where we observe that FedNCM performance is better by almost 13% compared to

squeezenet, while FT performance is degraded compared to squeezenet. We hypothesis this is due to

the challenges of deeper networks in heterogenous federated learning. For the Flowers102 dataset,

FedNCM and FedNCM+FT produce the best results by far. Additionally, for flowers FedNCM
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Dataset stage 1 Method Accuracy

CIFAR-10
LP (5 ROUNDS) 85.9 ± 0.4

LP (10 ROUNDS) 84.5 ± 0.17

FEDNCM 87.2 ± 0.2

N/A 85.4 ± 0.4

FLOWERS102
LP (5 ROUNDS) 68.6 ± 1.3

LP (10 ROUNDS) 68.3 ± 0.6

FEDNCM 74.9 ± 0.2

N/A 64.5 ± 0.1

Table A.3: Outcomes using LP as the HeadTuning method in our two stage training algorithm,
FedNCM results from Tab. 3.2 are included for comparison.

LP FT FedNCM FedNCM + FT

53.8 ± 0.3 45.2 ± 2.4 55.6 ± 0.8 56.7 ± 0.7

Table A.4: ResNet18 model performance for FedAvg. As with Squeezenet, FedNCM+FT continues
to outperforms in all cases.

outperformed all other methods. The variance between runs using ResNet18 is much higher than

was observed for SqueezeNet, FedNCM appears to help stabilize the results since it provides the

most consistency by for both datasets.

A.6 Extended Accuracy Comparison Figures

Fig. A.1 is the extended version of Fig. 1 in the main body of the paper. In the paper we truncate

the number of round displayed for the random setting since random requires many more rounds to

converge than the other methods. Fig. A.1 shows these same figures with the entirety of the training

rounds displayed for the random setting.
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Dataset FedNCM FedNCM + FT FT+Pretrain LP+Pretrain

CIFAR-10 77.74 ± 0.05 79.05 ± 1.31 77.87 ± 4.07 74.73 ± 3.03

FLOWERS102 74.13 ± 0.31 74.1 ± 0.26 34.41 ± 10.16 25.35 ± 2.59

Table A.5: ResNet18 model performance for FedAvg. As with Squeezenet, FedNCM+FT continues
to outperforms in all cases.
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Figure A.1: The full training of Random baseline corresponding to Fig. 1 in the paper is shown. We
observer Random is always very far from the other baseliens and converges slowly.

A.7 Compute

We use a combination of NVIDIA A100-SXM4-40GB, NVIDIA RTX A4500, Tesla V100-

SXM2-32GB and Tesla P100-PCIE-12GB GPUs for a total of 1.1 GPU years . In addition to

the experiments reported in the paper, this includes preliminary experiments and hyperparameter

searches.
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