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Abstract

Frames for measures on Cantor sets

René Girard

In this study of frames for measures on Cantor sets, we consider four measures with support

contained in a Cantor set. These are the mass distribution measure, the Hausdorff measure of

the appropriate dimension restricted to the Cantor set, the unique measure from Hutchinson’s

theorem for self-similar sets and the unique Lebesgue-Stieltjes measure with respect to the

Cantor-Lebesgue function. For the ternary and quaternary Cantor sets, respectively, we show

that these four measures give the same measure µ . This allows us to study frames in L2(µ).

While the theory of frames is well developed, the literature on frames on Cantor sets is recent

and limited. Central in defining frames of exponentials on Cantor sets is the set of integers

(hereafter called spectrum) obtained from the Fourier transform of each measure supported on

the corresponding Cantor set. After giving some background on frames, we follow the work of

Jorgensen and Pedersen (1998) to find the spectrum of the mass distribution measure on the

quaternary Cantor set from its Fourier transform and show that we do have an orthonormal

basis, which is a special case of a frame. We also present the result of Jorgensen and Pedersen

(1998) for the mass distribution measure on the ternary Cantor set, that it is not possible to

have a spectrum that yields an orthonormal set of exponentials. However, this leads to the

question: can we show the existence of a frame from the spectrum of the mass distribution

measure on the ternary Cantor set? Recent work (for example, Lev (2018), Picioroaga and

Weber (2017)) study this question but it remains an open problem.
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Chapter 1

Introduction

In this study of frames for measures on Cantor sets, we consider four measures with support

contained in a Cantor set. For any Borel set A ⊂ R, these are:

• mass distribution measure µm(A)

• Hausdorff measure restricted to a Cantor set C, H s(A∩C) with dimension s

• unique measure µH(A) from Hutchinson’s theorem for self-similar sets.

• unique Lebesgue-Stieltjes measure µF(A) where F is the Cantor-Lebesgue function ex-

tended to R

We prove a theorem that these four measures are equivalent. The necessary elements em-

ployed in the proof include:

• The construction process of the ternary and quaternary Cantor sets that can be either

by removal of specific open intervals or by successive application of Iterated Functions

System (IFS).

• The characteristics of the ternary Cantor set including its cardinality and its corresponding

Cantor-Lebesgue function. Also, the construction of the quaternary Cantor set comes with

its corresponding Cantor-Lebesgue function.
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• The definitions and characteristics of the aforementioned four measures on these Cantor

sets including for some of these, their respective relation with the corresponding Cantor-

Lebesgue functions. In particular, we give

– a more comprehensive proof than the original one [14, pp. 14-15], that Hausdorff

measure of the ternary Cantor set is equal to 1 that includes some original additions

and details.

– our own proof that mass distribution measure satisfies the recursive relation that

defines the measure on self-similar sets provided by Hutchinson’s theorem

In studying vector spaces, basis arises to be of a notion of paramount importance. Having

a basis represents an ideal tool to represent every vector in a given vector space by a linear

expansion in terms of basis elements. However, that ideal tool often imposes requirements

on the basis elements such as to be linearly independent and orthogonal with respect to an

inner product. If additional requirements need to be satisfied, then that ideal tool becomes

difficult or sometimes impossible to sustain. So, to obtain a more flexible tool, we have to relax

these requirements. That is, new elements are added to the original basis to satisfy additional

requirements but these new elements need not be independent and perhaps be orthogonal with

respect to the inner product. This gives an “extended basis” that is called a frame and it has the

same property as a basis which is that every vector in a given vector space can be represented

by a linear expansion in terms of frame elements.

While the theory of frames is well developed (see [4],[5]), the literature on frames on Cantor

sets is recent and limited, see [10],[11],[12],[23],[24]. Central in defining frames of exponentials on

Cantor sets is the set of integers obtained from the Fourier transform of each measure supported

on the corresponding Cantor set. That set of integers is hereafter called a spectrum. Jorgensen

and Pedersen [20] and [21] were among the first authors to discuss the spectrum of a measure

supported on the corresponding Cantor set. In this expository work, we follow some parts of

their work to arrive at these spectra.
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After giving some background and elements on frames, we find the spectrum of the mass

distribution measure on the quaternary Cantor set from its Fourier transform and show that we

do have an orthonormal basis which is a special case of a frame. The mass distribution measure

on the binary Cantor set is in fact the Lebesgue measure and the spectrum of that measure

leads to Fourier series which is also a frame. Next, we show that for mass distribution measure

on the ternary Cantor set it is not possible to have a spectrum that yields an orthonormal set

of exponentials to conclude that we cannot have a frame for the ternary Cantor set. However,

this leads to the question that can we show the existence of a frame from the spectrum of the

mass distribution measure on the ternary Cantor set? Recent work by Lev [23], Picioroaga and

Weber [24] study this question but it remains an open problem.

1.1 Statement of originality

The original contributions of this thesis can be summarized as follows:

(a) For some Cantor set in R, we considered four measures with support contained in Cantor

set. We show in Theorem 3.0.1 that these measures give the same measure. In particular,

we give our own proof that the mass distribution measure for the ternary and quaternary

Cantor sets satisfies the recursive relation for Hutchinson’s measure for self-similar sets.

While this result may be known, we have not found it proved in the literature.

(b) The proof of Theorem 3.1.7 is based on a sketch of the proof by Falconer [14, pp. 14-15],

but we provide more details to show that the Hausdorff measure of the ternary Cantor set

is 1 and its dimension is log2/ log3.

(c) We provide results from calculations that complete the characterization of the mathematical

objects encountered in this work as follows.

(i) The construction process of the ternary Cantor set easily brings the conclusion that it

spreads over [0,1/3]∪ [2/3,1] but the construction of the quaternary Cantor set does

3



not lead to such straightforward conclusion. We provide calculations and a limiting

process in Appendix A, showing that it spreads over [0,1/6]∪ [1/2,2/3].

(ii) We provide calculations in the form of graphs that illustrate the convergence of se-

quence of functions giving the Cantor-Lebesgue function for the ternary (Figure 2.4)

and quaternary (Figure 2.6) Cantor sets.

(iii) We provide calculations in Appendix I showing that the Fourier transform of the

ternary and quaternary measures, µ̂3(t) and µ̂4(t) respectively, can be obtained from

their corresponding Cantor-Lebesgue functions, F and W respectively, considered as

distribution function of their corresponding measure. This represents an alternate

approach to the one used by Jorgensen and Pedersen [20].

(d) In Appendix J, we extend in general form, the derivations in one dimension of the Fourier

transform of the ternary and quaternary measure, µ3 and µ4, respectively of scale 3 and

4 respectively, to odd and even scales higher than 3 and 4 . The key element in doing so

is to establish general Iterative Function Systems (IFSs) that each leads to a Cantor set

C ⊂ [0,1] of Lebesgue measure m(C) = 0.
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Chapter 2

Construction of Cantor Sets

From the closed interval [0,1], the construction of Cantor sets stems from a sequence of removals

of open intervals. It results in two sequences:

1. a first sequence of (Cn)n∈N where for each n ∈N, Cn is a finite union of disjoint closed and

bounded intervals.

2. a second sequence of deleted open intervals used in calculating the total length of the

removed intervals.

In this chapter, we first describe the application of this construction process for creating

the ternary Cantor set. While that process is in general classic, we introduce Iterated Function

Systems (IFS) for constructing Cantor sets as IFS offer a formulation necessary for the topics

presented later in this work.

2.1 Classic Construction

Constructing the ternary Cantor set (also called the middle-third Cantor set) calls for the re-

moval of a proportional “middle-third” open interval in each of the closed and bounded intervals

from a given construction level to obtain the next.
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2.1.1 Construction of ternary Cantor set in R

The construction process start with the closed interval [0,1], labelled C(3)
0 , by removing the

middle-third open interval leaving two closed intervals of equal length 1/3 with their union

labelled C(3)
1 :

C(3)
1 =

[︃
0,

1
3

]︃
∪
[︃

2
3
,1
]︃

(2.1)

Removing the middle-third open interval means the removal of an open interval of length

1/3 from the middle of the closed interval [0,1]. It should be noted that 1/3 represents a

proportion of the closed interval [0,1] of length equal to 1. Also, observe the pattern where

from construction level 0, C(3)
0 is the “parent” interval and the removal of the middle-third open

interval creates two “child” closed intervals at construction Level 1 in a union as given in eq.

( 2.1).

The construction continues by the removal of the middle-third open interval from each of

the closed intervals in the union C(3)
1 . These removals amount to removing a proportion of 1/3

of each closed interval of length 1/3 which amounts to the removal of an open interval of length

1/9. So at Level 1, in C(3)
1 we have two “parent” intervals and the removals create at Level

2, four identical “child” closed intervals, two for each “parent” interval. These four identical

“child” intervals form the union C(3)
2 :

C(3)
2 =

[︃
0,

1
9

]︃
∪
[︃

2
9
,
1
3

]︃
∪
[︃

2
3
,
7
9

]︃
∪
[︃

8
9
,1
]︃

(2.2)

Next, we reach Level 3 from Level 2 by the removal of the middle-third open interval of

each of the “parent” intervals in C(3)
2 that creates two “child” intervals. These removals create

at Level 3, eight identical “child” closed intervals that form the union C(3)
3 :

C(3)
3 =

[︃
0,

1
27

]︃
∪
[︃

2
27

,
1
9

]︃
∪
[︃

2
9
,

7
27

]︃
∪
[︃

8
27

,
1
3

]︃
∪
[︃

2
3
,
19
27

]︃
∪
[︃

20
27

,
7
9

]︃
∪
[︃

8
9
,
25
27

]︃
∪
[︃

26
27

,1
]︃

(2.3)
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Observe from the construction of these three levels that in the creation of two “child”

intervals from a “parent” interval, the length of the removal represents the same proportion

for each level.

This gives us an important property of the Cantor set: its self-similarity across the scales

[8].

Continuing this process recursively we obtain for each n ∈ N a set Cn that is the finite union

of 2n closed intervals of length 1/3n. The following Figure 2.1 illustrates this proportional

construction for the first three steps:

0 1
3

C(3)
1 after removal of J1

2
3

1

0 1
9

2
9

1
3

2
3

7
9

C(3)
2 after removal of J2

8
9

1

0 1
27

2
27

1
9

2
9

7
27

8
27

1
3

2
3

19
27

20
27

7
9

8
9

25
27

C(3)
3 after removal of J3

26
27

1

0 1 2 Coeff. ternary expan.
0

1
3

2
3 1

C(3)
0

Figure 2.1: Few construction levels of the ternary Cantor set

where:
J1 =

(︁1
3 ,

2
3

)︁
J2 =

(︁1
9 ,

2
9

)︁
∪
(︁7

9 ,
8
9

)︁
J3 =

(︁ 1
27 ,

2
27

)︁
∪
(︁ 7

27 ,
8

27

)︁
∪
(︁19

27 ,
20
27

)︁
∪
(︁25

27 ,
26
27

)︁ (2.4)

Figure 2.1 shows the unions C(3)
0 to C(3)

3 to be nested downward so C(3)
0 ⊃C(3)

1 ⊃C(3)
2 ⊃C(3)

3 ⊃

. . . ⊃ C(3)
n . . .. Moreover, each of these C(3)

n is closed being a finite union of disjoint closed sets

(intervals). This leads to:

Definition 2.1.1 (Cantor set; C(3)).

C(3) =
∞⋂︂

n=1

C(3)
n (2.5)

Observe that by construction if y is the endpoint of some close subinterval of a given C(3)
n

then it is also the endpoint of some of the subintervals of C(3)
n+1. At each step of the construction,

endpoints are never removed. It follows that y ∈C(3)
n ∀n ∈ N. Thus, by definition, C(3) contains

7



all the endpoints generated in the construction of that Cantor set. Since arbitrary intersection

of closed sets (intervals) in R is closed, then C(3) is closed in R.

So, the question arises as what, besides the endpoints, is in the Cantor set? An answer to

this question can be obtain by referring back to Figure 2.1 where the removal of:

• J1 from C(3)
0 gives C(3)

1 and the Lebesgue measure of J1 is m(J1) = m((1/3,2/3)) = 1/3

• C(3)
2 obtained by the removal of J2 from C1 where m(J2) = 2/9 = 21/32

• C(3)
3 obtained by the removal of J3 from C2 where m(J3) = 4/27 = 22/33.

Inductively C(3)
n is obtained by the removal of an open interval of length 1/3n from each

closed interval in Cn−1 that contains 2n−1 closed intervals. So the removed disjoint intervals

when constructing Cn from Cn−1, have total measure equal to 2n−1/3n. Since the sets {Jn}∞
n=1

are pairwise disjoint, additivity gives:

m([0,1]\C(3)) = m(
∞⋃︂

n=1

Jn) =
∞

∑
n=1

m(Jn) =
∞

∑
i=n

2n−1

3n =
1
2

2
3

∞

∑
n=0

(︃
2
3

)︃n

= 1 (2.6)

Thus, starting with the closed interval [0,1] with measure m([0,1]) = 1, eq. ( 2.6) tells us

the measure of all the removed intervals is 1. Then there should be nothing left of [0,1]. We

established above that this is not the case since at each step of the construction, endpoints

are never removed which gives that C(3) ̸= /0. This seems at first like a paradox. However, we

showed that m([0,1]\C(3)) = 1 and with m([0,1]) = 1 and [0,1]\C(3)∩C(3) = /0 then m(C(3)) = 0.

So, continuing this construction process to the limit we are left with what, a priori, might be

a “small” countable set of numbers, since the endpoints are rational numbers, which can be

viewed as the “dust” left from the initial closed interval [0,1] at the limit of the construction

process [3, p. 26]. The next section aims at showing the Cantor set may not be such a small

set after all. In fact, it concludes that both C(3) and [0,1] have the same cardinality i.e. the

Cantor set is uncountable!
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2.1.2 Characteristics of the ternary Cantor Set in R

This section presents three lemmas on bijections between the half-open set [0,1) and binary

and ternary expansions. We use these in a theorem on the cardinality of the ternary Cantor

set: card(C(3)). We start by defining two sets B and B0, used throughout this section.

Definition 2.1.2. B: The set of all binary expansions 0.b1b2b3 . . . corresponding to sequences of

0’s and 1’s.

Definition 2.1.3. B0: The set of all binary expansions 0.b1b2b3 . . . corresponding to sequences of

0’s and 1’s which do not have a tail of all 1’s

Definition 2.1.4. B1 = B0 ∪{0.111111 . . . (base 2) } ⊂ B.

Definition 2.1.5. T : the set of ternary expansions 0.a1a2a3 . . . corresponding to sequences of 0’s

and 2’s.

We then use the following bijections to establish the cardinality of the ternary Cantor set.

2.1.2.1 Bijection between [0,1) and B0

Lemma 2.1.6. There exists a map

f : [0,1)−→ B0

x ↦−→ 0.b1b2b3 . . . with bi = 0 or 1
(2.7)

which is a bijection. In addition, that mapping combined with the subdivison process in Fig-

ure 2.2 gives binary expansions which do not have a tail of all 1’s.

Proof.

Starting with half-open interval I(0) = [0,1) we employ the subdivision process illustrated in

Figure 2.2:
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a1 = 0 L
Level 1

a1 = 1R

a2 = 0
Level 2

L
a2 = 1

R
a2 = 0

L
a2 = 1

R

Level 0
0

1
4

1
2

3
4 1

Figure 2.2: Subdivision process employed in showing bijection between [0,1] and binary expan-
sions.

We observe the subdivision process creates at each level a set of disjoint half-open intervals

whose union is [0,1). Let

sk = 0.b1b2 . . .bk(base 2) =
k

∑
i=1

bi

2i . (2.8)

We will use Ik below for labelling the closed interval that has sk as its left endpoint.

Step 1: First, we use induction to show that ∀x ∈ [0,1) we have:

0 ≤ x− sn <
1
2n ∀n ∈ N (2.9)

(a): Level n= 1: Cut [0,1) in 21 = 2 pieces of equal length 1/2= 1/21. There is a unique

j either equal to 0 or 1 such that x ∈ I(1)j = [ j
2 ,

j+1
2 ). Let a1 = j then:

x ∈ I(1)s1 =

[︃
a1

2
,
a1 +1

2

)︃
,

a1

2
= s1 ≤ x and 0 ≤ x− a1

2
<

1
2

(2.10)

This ensures the choice of the subinterval I(1)s1 is unique and we have I(1)s1 ⊂ I(0) =

[0,1). Note on symbol I(1)s1 : superscript ”(1)”: interval at Level 1, subscript ”s1”

(see eq. ( 2.8)): interval at Level 1 corresponding to the value of a1 i.e. if a1 = 0

then first interval else if a1 = 1 then second interval.

(b): Level n = 2: Cut [0,1) in 22 = 4 pieces of equal length 1/4 = 1/22. This implies

that I(1)s1 is cut in two pieces of equal length 1/4. There is a unique j either equal
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to 0 or 1 such that x ∈ I(1)j = [a1
2 + j

22 ,
a1
2 + j+1

22 ). Let a2 = j then:

s2 = a1
2 + a2

22

x ∈ I(2)s2 =
[︂

a1
2 + a2

22 ,
a1
2 + a2+1

22

)︂
, 0 ≤ x− s2 <

1
22

(2.11)

(c): Induction Hypothesis:

(i) Assume for n = k that:

x ∈ I(k)sk =
[︂
∑

k−1
i=1

ai
2i +

ak
2k ,∑

k−1
i=1

ai
2i +

ak+1
2k

)︂
=

[︂
∑

k
i=1

ai
2i ,∑

k
i=1

ai
2i +

1
2k

)︂ (2.12)

(ii) with I(k)sk ⊂ I(k−1)
sk−1

(iii) Also, we formulate the condition in eq. ( 2.12) as:

0 ≤ x− sk <
1
2k (2.13)

with sk = ∑
k
i=1

ai
2i

(d): Induction Step: Let n = k+ 1. Since x ∈ I(k)sk , we cut I(k)sk in two pieces of length

1/2k+1. There is a unique j either equal to 0 or 1 such that x ∈ I(k+1)
j . Let ak+1 = j

then we have

x ∈ I(k+1)
sk+1 =

[︄
k+1

∑
i=1

ai

2i ,
k+1

∑
i=1

ai

2i +
1

2k+1

)︄
(2.14)

to obtain

0 ≤ x− sk+1 <
1

2k+1 (2.15)

and I(k+1)
sk+1 ⊂ I(k)sk . Again this ensure the choice of I(k+1)

sk+1 is unique.

(e): Therefore

0 ≤ x−
n

∑
i=1

ai

2i <
1
2n ∀n ∈ N (2.16)
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Step 2: Now, let ε > 0, by the Archimedean Principle ∃N ∈N such that 0 < 1
2N < ε , then ∀n ≥ N:

0 ≤ |x− sn|<
1
2n ≤ 1

2N < ε so |x− sn|< ε. (2.17)

Step 3: Since inequality ( 2.17) is ∀n ≥ N and ε > 0 is arbitrary, we get [6, p. 3]:

x = lim
n→∞

sn =
∞

∑
i=1

ai

2i (2.18)

Step 4: In the above, the selection of the an’s shows that for each x ∈ [0,1) there exists a unique

sequence {a1,a2, . . .} corresponding to a binary expansion in B0. It also shows that x is

in each of these nested downward half-open intervals I(n)sn ∀n ∈ N giving the intersection

of these is {x}. To see this:

(a) Let x ∈
⋂︁

∞
n=1 I(n)sn .

(b) If y ∈
⋂︁

∞
n=1 I(n)sn then ∀n ∈ N,

|x− y|< ℓ(I(n)sn ) = 1/2n →
n

0. (2.19)

(c) This implies that x = y and we get that

∞⋂︂
n=1

I(n)sn = {x}. (2.20)

(d) Therefore the construction gives a well-defined mapping from [0,1) to B0. That is

for any x ∈ [0,1) we get a unique sequence of 0’s and 1’s.

Step 5: Since that unique sequence corresponds to a binary expansion that gives x, the mapping

f : [0,1)−→ B0 is one-to-one.

Step 6: From inequality ( 2.16) we have that sn ≤ x ∀n ∈ N. Therefore sn is the left-hand side

endpoint of one of the 2n subintervals on Level n.

12



Step 7: Now, to show that f is onto, let (an)n∈N ∈ B0. Consider the partial sum sN = ∑
N
i=1

ai
2i

then each term ai
2i ≤ 1

2n and {sN}N∈N is a monotone increasing sequence. Then:

sN =
N

∑
i=1

ai

2i ≤
N

∑
i=1

1
2i = 1− 1

2N →
N

1 (2.21)

So 0 ≤ sN ≤ 1 ∀N ∈ N and {sN}N∈N is bounded and monotone increasing sequence that

converges to a real number x∈ [0,1). Since (an)n∈N is arbitrary, then for each (an)n∈N ∈B0

there is x ∈ [0,1) such that f (x) = 0.a1a2 . . .= ∑
∞
i=1

ai
2i .

Step 8: Therefore f : [0,1)−→ B0 is onto and with f one-to-one, f is a bijection between [0,1)

and B0.

Step 9: Let x ∈ [0,1) and suppose for contradiction that x = 0.b1b2 . . .bk11111 . . . with:

(a) b1,b2,b3, . . . ,bk−1 can be either 0’s or 1’s

(b) bk = 0 where k is the maximum value of i for which bi = 0

(c) k could be 0 then the sequence would be 0.111111 . . .)base 2 which is equal to 1 but

1 /∈ [0,1). This leads to an additional assumption that k ≥ 1.

(d) Example: consider x = 0.01111 . . .)base 2 where k = 1, b1 = 0 and bi = 1 ∀i ≥ 2. So

x = 0.01111 . . .)base 2 =
∞

∑
i=2

1
2i =

1
4

∞

∑
i=0

1
2i =

1
4

2
1
=

1
2
⇐⇒ 0.1000 . . .)base 2 =

1
2

(2.22)

Step 10: By assumption bi = 1 ∀i ≥ k+1 and this implies for subsequent levels n ≥ k+1 that the

right interval will always be chosen for where x lands giving a sequence LRRR . . . giving

that x does not land across the middle point p of I(k−1)
sk−1 . In fact, x “stays” within the

left I(k)sk but we get that

x = sk +
∞

∑
i=k+1

bi

2i = sk +
∞

∑
i=k+1

1
2i = sk +

1
2k (2.23)

which contradicts the fact that |x− sk|< 1/2k. This completes the proof.
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Remark 2.1.1. From Figure 2.2, we observe the subdivision process creates a binary tree. As

we step from one level k− 1 to the next level k, the choice I(k)sk ⊂ I(k−1)
sk−1 being unique is either

on the left “L” or on the right “R” half-open interval subset of I(k−1)
sk−1 . This gives a unique path

across the binary tree, “LRLRLLRLR . . .” for example.

2.1.2.2 Bijection between Cantor set and ternary expansions

Lemma 2.1.7. There exists a map

g : C(3) −→ T

x ↦−→ 0.a1a2a3 . . . with ai = 0 or 2
(2.24)

which is a bijection.

Proof. Let C(3) be the ternary Cantor set. We will identify C(3) with the subset T of [0,1]

consisting of all numbers having a ternary expansion ∑
∞
i=1

ai
3i with ai equal to either 0 or 2.

To see this, consider again the proportional construction process of middle-third open interval

removal of each subinterval as illustrated below for 2 steps:

0 1
3

Level 1
a1=0 L

C(3)
12

3
1

a1=2R

0 1
9

Level 2
a2=0

L
2
9

1
3

a2=2

R
2
3

7
9

a2=0

L
C(3)

28
9

1a2=2

R

0
1
3

2
3 1

C(3)Level 0

Figure 2.3: Proportional construction of ternary Cantor set by middle-third open interval re-
moval.

Remark 2.1.2. When comparing Figure 2.3 to Figure 2.2, we observe they have in common the

characteristic of being a binary tree. For C(3), each level k is a union of disjoint sets with a
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distance between them of at least 1/3k and these disjoint sets are closed intervals. In particular,

including the right endpoint of these closed intervals implies that some ternary expansion in

0’s and 2’s will have a tail of 2’s. For example, 1/3 is one of these right endpoints. It can be

expressed as 0.1 (base 3) but this is not acceptable as it corresponds to the removed middle-

third open interval (1/3,2/3). Instead, we have 1/3 = 0.1 (base 3) = 0.02. For a given x ∈C(3),

stepping from one level to the next gives a unique path across the binary tree.

Let

tk = 0.a1a2 . . .ak =
k

∑
i=1

ai

3i . (2.25)

We will use tk below for labelling closed interval that has tk as its left endpoint.

Step 1: First, for x ∈C(3), C(3) ⊂ [0,1], we use induction to show that

0 ≤ x−
n

∑
i=1

ai

3i ≤
1
3n ∀n ∈ N (2.26)

(a) Level n = 1: If x does not belong to the middle-third open interval of the initial

interval I(0) = [0,1], then there is a unique j equal to either 0 or 2 such that x ∈

I(1)t1 = [ j
3 ,

j+1
3 ]. Let a1 = j then:

x ∈ I(1)t1 =

[︃
a1

3
,
a1 +1

3

]︃
,

a1

3
≤ x and 0 ≤ x− a1

3
≤ 1

3
. (2.27)

This ensures the choice of the subinterval I(1)t1 is unique and we have I(1)t1 ⊂ I(0)= [0,1).

When comparing eq. ( 2.27) to eq. ( 2.10), the last inequality is no longer strict

because each level k is a union of disjoint closed sets with a distance between them

of at least 1/3k, so, x ∈ C(3) could be equal to the right endpoint of one of these

disjoint closed intervals.

(b) Induction Hypothesis:
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(i) Assume for n = k that:

x ∈ I(k)tk =

[︄
k−1

∑
i=1

ai

3t +
ai

3i ,
k−1

∑
i=1

ai

3i +
ai +1

3i

]︄

=

[︄
k

∑
i=1

ai

3i ,
k

∑
i=1

ai

3i +
1
3i

]︄ (2.28)

with I(k)tk ⊂ I(k−1)
tk−1

⊂ . . .⊂ I(2)t2 ⊂ I(1)t1 ⊂ I(0) = [0,1].

(ii) Also, we formulate the condition in eq. ( 2.28) as:

0 ≤ x− tk ≤
1
3k (2.29)

(c) Induction Step: Let n = k + 1. Deletion of the middle-third open interval of I(k)tk

implies there is a unique j equal to either 0 or 2 such that x ∈ I(k+1)
j . Let ak+1 = j

then we have

x ∈ I(k+1)
tk+1

=

[︃
tk+1, tk+1 +

1
3k+1

]︃
(2.30)

with

0 ≤ x− tk+1 ≤
1

3k+1 (2.31)

and I(k+1)
tk+1

⊂ I(k)tk . Again this ensure the choice of I(k+1)
tk+1

is unique.

(d) Therefore

0 ≤ x−
n

∑
i=1

ai

3i ≤
1
3n ∀n ∈ N (2.32)

Step 2: Now, let ε > 0, by the Archimedean Principle ∃N ∈N such that 0 < 1
3N < ε then ∀n ≥ N:

⃓⃓⃓
x−

n

∑
i=1

ai

3i

⃓⃓⃓
≤ 1

3n ≤ 1
3N < ε so

⃓⃓⃓
x−

n

∑
i=1

ai

3i

⃓⃓⃓
< ε. (2.33)
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Step 3: Since inequality ( 2.33) is ∀n ≥ N and ε > 0 is arbitrary, we get [6, p. 3]:

x = lim
n→∞

tn =
∞

∑
i=1

ai

3i (2.34)

Step 4: In the above, the selection of the an’s shows that for each x ∈C(3) there exists a unique

sequence {a1,a2, . . .} corresponding to a ternary expansion in T . It also shows that x

is in each of these nested downward closed remaining intervals I(n)tn ∀n ∈ N, giving the

intersection of these, is {x}. To see this:

(a) Let x ∈
⋂︁

∞
n=1 I(n)tn .

(b) If y ∈
⋂︁

∞
n=1 I(n)tn then ∀n ∈ N,

|x− y|< m(I(n)sn ) = 1/3n →
n

0 (2.35)

(c) This implies that x = y and we get

∞⋂︂
n=1

I(n)sn = {x}. (2.36)

(d) Therefore the construction gives a well-defined mapping from C(3) to T . That is for

any x ∈C(3) we get a sequence of 0’s and 2’s in a unique way.

Step 5: Since that unique sequence corresponds to a ternary expansion that gives x, the mapping

g : C(3) −→ T is one-to-one.

Step 6: Now, to show that g is onto, let (an)n∈N ∈ T be a sequence of 0’s and 2’s that does not

have a tail with all 2’s. Consider the partial sum tN = ∑
N
i=1

ai
3i then each term ai

3i ≤ 2
3i and

{tN}N∈N is a monotone increasing sequence. Then:

tN =
N

∑
i=1

ai

3i ≤
N

∑
i=1

2
3i = 1− 1

3N →
N

1 (2.37)
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So 0 ≤ tN ≤ 1 ∀N ∈ N and {tN}N∈N is bounded and monotone increasing sequence that

converges to a real number x. Since (an)n∈N is arbitrary, then for each (an)n∈N ∈ T there

is x ∈C(3) such that g(x) = 0.a1a2 . . .ak = ∑
∞
i=1

ai
2i .

Step 7: Therefore g : C(3) −→ T is onto and with g one-to-one, g is a bijection between C(3) and

T .

From inequality [ 2.32] and eq. ( 2.25) we have that tn ≤ x ≤ tn+ 1
3n ∀n ∈N. Therefore tn and

tn + 1
3n are respectively the left-hand and right-hand endpoint of one of the 2n closed intervals

on Level n.

Remark 2.1.3. The proof of Lemma 2.1.7 shows the endpoints are dense in C(3). That is, we

showed that x = limn→∞tn and x ∈C(3).

2.1.2.3 Cardinality of ternary Cantor set

Lemma 2.1.8. The cardinality of the ternary Cantor set C(3) is equal to the cardinality of [0,1].

card(C(3)) = card([0,1]) (2.38)

Thus, C(3) is uncountable.

Proof. We establish the cardinality of ternary Cantor set as follows:

Step 1: Lemma 2.1.6 proves that f : [0,1)−→ B0 is a bijection.

Step 2: Identifying the number 1 with the expansion 0.11111 . . . base 2, we have from Lemma 2.1.6,

the bijection [0,1]−→ B1 = B0 ∪{0.11111 . . .) base 2 ⊂ B. Given that B1 ⊂ B, we have

that

card(B1)≤ card(B) (2.39)
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Step 3: Consider h : T −→ B, h is division by 2 which is a bijection.

Step 4: Lemma 2.1.7 proves that g : C(3) −→ T is a bijection. Since the composition of bijections

is a bijection we can write that h◦g : C(3) −→ B is a bijection. From this result and from

ineq. ( 2.39) we obtain:

card(C(3)) = card(B) ≥ card(B1) = card([0,1])

card(C(3)) ≥ card[0,1]
(2.40)

but C(3) ⊂ [0,1] giving that

card(C(3))≤ card([0,1]). (2.41)

Step 5: From ineq.( 2.40), ineq.( 2.41) and Bernstein’s Theorem [3, p. 24] we have:

card(C(3)) = card([0,1]) (2.42)

Therefore C(3) is uncountable.

2.1.2.4 Other characteristics of ternary Cantor set

Lemma 2.1.9. The ternary Cantor set is perfect.

Proof. We use the property that C(3) is a closed set.

Step 1: Let x ∈C(3), ε > 0 and let a neighbourhood G of x be G = (x− ε,x+ ε).

Step 2: By the construction process of the ternary Cantor set, we have at construction level n

that x is in some closed interval in C(3)
n for each n ∈ N.
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Step 3: We take n ∈ N such that ε > 1
3n > 0. This implies that (x− ε,x+ ε) contains the two

endpoints of this closed interval in Cn.

Step 4: We get that for each n ∈ N, (x− ε,x+ ε)\{x}∩C(3)
n ̸= /0 and x is an accumulation point

of C(3).

Step 5: Since x is arbitrary then every point of C(3) is an accumulation point. In addition, C(3)

is closed, so it contains all its accumulation points. Therefore C(3) = C(3)′ and C(3) is

perfect.

Lemma 2.1.10. Ternary Cantor set is nowhere dense.

Proof. We use a proof by contradiction.

Step 1: Assume that C(3) does contain an open interval.

Step 2: Let a,b ∈ [0,1] a < b a,b ∈R with a and b fixed. In addition let (a,b)⊂C(3) with length

ℓ(b−a) = b−a > 0.

Step 3: We have that C(3) =
⋂︁

∞
n=1C(3)

n and (a,b)⊂C(3) gives that ∀n, (a,b) is contained in one

of the interval of C(3)
n . That is, an interval cannot be contained in the union of two of

more separated intervals.

Step 4: This implies that (b−a)< 1
3n and as n −→ ∞ we have that 1

3n −→ 0 then (b−a)−→ 0.

Contradiction since (b− a) > 0. Therefore C(3) contains no non-empty open intervals

and the interior of C(3), C(3)◦ = /0 giving that C(3) is nowhere dense.
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2.1.3 Cantor-Lebesgue function for ternary Cantor set

This section gives the definition of the Cantor-Lebesgue function for the ternary Cantor set

using Definition 2.1.2 of B and the notation in Section 2.1.2.3. From Section 2.1.2.3, we have

that the map h◦g : C(3) −→ B is a bijection. We apply the map

g′ : B −→ [0,1]

0.b1b2b3 . . . ↦−→ ∑
∞
i=1

bi
2i .

(2.43)

to the map h◦g to give the definition of the Cantor-Lebesgue (C-L) function:

Definition 2.1.11. The Cantor-Lebesgue function f : C(3) −→ [0,1] is defined by :

f = g′ ◦h◦g

(︄
∞

∑
n=1

2bn

3n

)︄
=

∞

∑
n=1

bn

2n (bn = {0,1}) (2.44)

∞

∑
n=1

2bn

3n ↦−→
∞

∑
n=1

bn

2n (bn = {0,1}) (2.45)

Lemma 2.1.12. The domain of the Cantor-Lebesgue function f : C(3) −→ [0,1] can be extended

to the whole interval [0,1] with the extended function denoted by F .

Proof.

Let u and v be respectively the left and right endpoints of the same open interval (u,v) re-

moved in step n in the construction of the ternary Cantor set. These endpoints have the following

form:

(u,v) = (0.a1a2a3 . . .an1,0.a1a2a3 . . .an2) both base 3 with ai = 0 or 2 for 1 ≤ i ≤ n. In par-

ticular, u can be written as u = 0.a1a2a3 . . .an02. Then

f (u) = ∑
n
k=1

ak
2

1
2k +

0
2n+1 +∑

∞
k=n+2

1
2k

= ∑
n
k=1

ak
2

1
2k +

1
2n+1 since ∑

∞
k=n+2

1
2k =

1
2n+1

(2.46)
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on the other hand
f (v) = ∑

n
k=1

ak
2

1
2k +

1
2n+1 +∑

∞
k=n+2

0
2k

= f (u)
(2.47)

We conclude that f takes on the same value on the endpoints of the removed intervals. Therefore,

since the union of C(3) with all the removed middle third intervals is [0,1], we can define the

extension of f (x), F : [0,1]−→ [0,1] as F(x) = f (x) for x ∈C(3) and for any y ∈ (u,v), a removed

interval, F(y) = f (u) = f (v).

Lemma 2.1.13. The extended Cantor-Lebesgue function F : [0,1]−→ [0,1] is continuous on [0,1].

Proof. This proof requires analysing three cases:

Case (i) Let x /∈ C(3), that is, x ∈ I ⊂ [0,1] \C(3) where I is an open interval removed in the

construction of C(3). By Lemma 2.1.12, F is constant on I giving that F is continuous.

Case (ii) Let x ∈ C(3) and let ε > 0, then by the Archimedean Principle [6, p. 2], there exist

N ∈ N such that 0 < 1/2N < ε .

• For n sufficiently large and n > N let δ = 1/3n > 0. Consider the open interval

U = (x−1/3n,x+1/3n).

• Let y ∈ U , if y ∈ C(3) and |x− y| < 1/3n, then x and y lie in the same closed

interval in the union C(3)
n (see Figure 2.1). So, the ternary expansions of x and

y must agree for the first n terms. We can then write

|F(x)−F(y)|<
∞

∑
k=n+1

1
2k =

1
2n+1

∞

∑
k=0

1
2k =

1
2n <

1
2N < ε (2.48)

Hence, F is continuous at x ∈C(3).

Case (iii) Similarly, let x ∈ C(3) and let ε > 0 with N ∈ N such that 0 < 1/2N < ε and U =

(x−1/3n,x+1/3n). Let y ∈U , if y /∈C(3), then there exists an endpoint z ∈C(3) close

to x such that F(y) = F(z) with |x− z|< 1/3n. Again x and z must agree for the first
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n terms. Then we can write:

|F(x)−F(y)|= |F(x)−F(z)|<
∞

∑
k=n+1

1
2k =

1
2n+1

∞

∑
k=0

1
2k =

1
2n <

1
2N < ε (2.49)

Hence, F is continuous at x ∈C(3).

Therefore, from Cases (i),(ii) and (iii), F(x) : [0,1]−→ [0,1] is continuous on [0,1].

Lemma 2.1.14. The extended Cantor-Lebesgue function F : [0,1]−→ [0,1] is increasing on [0,1].

Proof. First we show that F is increasing on C(3) and then extend that result to [0,1]

(i) Let u,v ∈C(3) with u < v where they are expressed by a ternary expansion u = ∑
∞
k=1 uk/3k

and v = ∑
∞
k=1 vk/3k.

(ii) u and v are in the same closed interval for each of the construction level down to level

n. The closed interval may change when stepping from one level to the next but still it

contains u and v until reaching some construction level n+1.

(iii) For construction level n+1, the coefficients un+1 < vn+1 and they are both in {0,2} giving

that un+1 = 0 and vn+1 = 2 giving that v is in a later closed interval.

(iv) So, we can write

F(u) = ∑
n
k=1

uk
2

1
2k +

0
2

1
2n+1 +∑

∞
k=n+2

uk
2

1
2k

≤ ∑
n
k=1

vk
2

1
2k +

1
2n+1 since ∑

∞
k=n+2

uk
2

1
2k < ∑

∞
k=n+2

1
2k =

1
2n+1

≤ ∑
n
k=1

vk
2

1
2k +

1
2n+1 +∑

∞
k=n+2

vk
2

1
2k = F(y)

(2.50)

To obtain that F(x) is increasing on C(3).

(v) Let u,v∈ [0,1] with u< v and assume for contradiction that F(u)>F(v). By Lemma 2.1.12,

there exist u′,v′ ∈C(3) such that F(u) = F(u′) and F(v) = F(v′). Choosing u′ to be the left

endpoint of the removed interval where u lies and similarly for v′, we have by assumption
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that F(u) ̸= F(v), so u′ and v′ cannot be the endpoints of the same interval. Then, u′ < v′

since u < v. But u′,v′ ∈C(3) so we obtain by assumption that F(u) = F(u′)> F(v′) = F(v).

This is a contradiction since we showed that F(u′)≤ F(v′) on C(3).

(vi) Therefore, ∀u,v ∈ [0,1] with u < v, F(u)≤ F(v) and F : [0,1]−→ [0,1] is increasing on [0,1].

2.1.3.1 Characterization of F(x) as a fixed point

The extended Cantor-Lebesgue function F(x) is well-defined, continuous, monotone increasing

on [0,1]. The left endpoint of each removed middle third open interval is in the form of a finite

sequence 0.a1a2a3 . . .an1 (base 3) (an+1 = 1) which is equal to 0.a1a2a3 . . .anan+12 (base 3), a

ternary expansion of 0’s and 2’s with an+1 = 0 and a tail of 2’s. For such a number x, the

extended Cantor-Lebesgue is given by:

F(x) = ∑
n
i=1

bi
2i +

0
2n+1 +

1
2n+2 +

1
2n+3 +

1
2n+4 + · · · (bi =

ai
2 ∈ {0,1})

= ∑
n
i=1

bi
2i +

1
2n+1

(2.51)

Lemma 2.1.15. By the definition of the Cantor-Lebesgue function, the following identity holds:

F(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2F(3x) for 0 ≤ x ≤ 1

3 ,

1
2 for 1

3 < x < 2
3 ,

1
2F(3x−2)+ 1

2 for 2
3 ≤ x ≤ 1.

(2.52)

Proof. We start by few facts:

• Let x = 0.a1a2a3 . . . (base 3) with ak = {0,2}, then the map x ↦−→ 3x corresponds to the

left shift of the sequence {a1,a2,a3, . . .} to become {a2,a3,a4, . . .}.

• The ternary representation for 0 ≤ x ≤ 1/3 is of the form 0.0a2a3 . . . (base 3) and for

2/3 ≤ x ≤ 1 is of the form 0.2a2a3 . . . (base 3). Also, 2.0 (base 10) = 2.0 (base 3).
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• Let x = 0.b1b2b3 . . . (base 2) with bk = {0,1}, then x divided by 2 corresponds to the right

shift of the sequence {b1,b2,b3, . . .} to become {0,b1,b2,b3, . . .}.

Step 1 Let 0 ≤ x ≤ 1/3, then x is of the form 0.0a2a3a3a4 . . . (base 3) with ak = {0,2}, so F(x) =

0.0b2b3b3b4 . . . (base 2) with bi = ai/2 and 3x = 0.a2a3a3a4 . . ..

Step 2 By definition of F , F(3x) = 0.b2b3b3b4 . . . (base 2) but F(3x)/2 = 0.0b2b3b3b4 . . . (base 2)

= F(x).

Step 3 Let 2/3 ≤ x ≤ 1, then x is of the form 0.2a2a3a3a4 . . . (base 3) with ak = {0,2}, so F(x) =

0.1b2b3b3b4 . . . (base 2) with bi = ai/2 and 3x−2 = 2.a2a3a3a4 . . .−2.0 = 0.a2a3a3a4 . . ..

Step 4 By definition of F , F(3x− 2) = 0.b2b3b3b4 . . . (base 2) but 1/2+F(3x− 2)/2 = (0.1+

0.0b2b3b3b4 . . .) = (0.1b2b3b3b4 . . .) (base 2) = F(x).

Step 5 For 1/3 < x < 2/3, F(x) = 1/2 as defined in extending the Cantor-Lebesgue function over

[0,1].

Therefore, the identity in eq. ( 2.52) holds.

Definition 2.1.16. Let (B([0,1],∥·∥∞ = supx∈[0,1]|·|) be the Banach space of all uniformly bounded

real-valued functions on [0,1] with the supremum norm. Define a sequence of functions fn :

[0,1]−→ R as follows:

fn+1(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2 fn(3x) for 0 ≤ x ≤ 1

3 ,

1
2 for 1

3 < x < 2
3 ,

1
2 +

1
2 fn(3x−2) for 2

3 ≤ x ≤ 1.

(2.53)

where the functions fn ∈ (B([0,1],∥·∥∞) with n = {1,2,3, . . .} and f0 : [0,1]−→ R is arbitrary.

Appendix E presents a proof that (B([0,1],∥·∥∞) is complete.

As a preliminary to Proposition 1, we give the definition of a contraction, following Elaydi[13,

p. 318] and adapted to the present context:
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Definition 2.1.17. A map H : B([0,1],∥·∥∞) → B([0,1],∥·∥∞) is said to be a contraction if for

some 0 < α < 1, we have:

∥H(g1)−H(g2)∥∞ ≤ α∥g1 −g2∥∞ ∀g1,g2 ∈B([0,1],∥·∥∞) (2.54)

Proposition 1. The Cantor-Lebesgue function F for the ternary Cantor set, is the unique element

of(B([0,1],∥·∥∞) for which the identity in eq. ( 2.52) holds. If f0 ∈ (B([0,1],∥·∥∞), then the

sequence { fn}∞
n=0 converges uniformly to F .

Proof.

Step 1 Define a map H : (B([0,1],∥·∥∞)→ (B([0,1],∥·∥∞) by

H(g)(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2g(3x) for 0 ≤ x ≤ 1

3 ,

1
2 for 1

3 < x < 2
3 ,

1
2 +

1
2g(3x−2) for 2

3 ≤ x ≤ 1.

(2.55)

We need to show that H(g)(x) is bounded on [0,1], that is ∥H(g)∥∞ < ∞. This is done

as follows:

(i) let g(x) ∈B([0,1],∥·∥∞) so ∥g∥∞ < ∞ on [0,1].

(ii) if x ∈ [0,1/3] we have

H(g)(x) = 1
2g(3x)

|H(g)(x)| = 1
2 |g(3x)| ≤ 1

2∥g∥∞

(2.56)

(iii) if x ∈ (1/3,2/3) we have

H(g)(x) =
1
2

(2.57)
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(iv) if x ∈ [2/3,1] we have

H(g)(x) = 1
2 +

1
2g(3x−2)

|H(g)(x)| ≤ 1
2 +

1
2 |g(3x−2)| ≤ 1

2 +
1
2∥g∥∞

(2.58)

From eqs. ( 2.56), ( 2.57) and ( 2.58) we take

∥H(g)∥∞ ≤ max{1
2∥g∥∞,

1
2 ,

1
2 +

1
2∥g∥∞}

∥H(g)∥∞ ≤ 1
2 +

1
2∥g∥∞ < ∞

(2.59)

and we conclude that H(g)(x) is bounded on [0,1] that is H(g) ∈B([0,1],∥·∥∞)

Step 2 We need to show that H is a contraction and this done by applying the mapping H to

any two g1,g2 ∈B([0,1],∥·∥∞) as follows:

(i) if x ∈ [0,1/3] we have

H(g1)(x)−H(g2)(x) = 1
2(g1(3x)−g2(3x))

|H(g1)(x)−H(g2)(x)| = 1
2 |(g1(3x)−g2(3x))| ≤ 1

2∥g1 −g2∥∞

(2.60)

(ii) if x ∈ (1/3,2/3) we have

H(g1)(x)−H(g2)(x) =
1
2
− 1

2
= 0 (2.61)

(iii) if x ∈ [2/3,1] we have

H(g1)(x)−H(g2)(x) = 1
2(g1(3x−2)−g2(3x−2))

|H(g1)(x)−H(g2)(x)| = 1
2 |(g1(3x−2)−g2(3x−2))| ≤ 1

2∥g1 −g2∥∞

(2.62)
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From eqs. ( 2.60), ( 2.61) and ( 2.62) we take

∥H(g1)−H(g2)∥∞ ≤ max{0, 1
2∥g1 −g2∥∞}

∥H(g1)−H(g2)∥∞ ≤ 1
2∥g1 −g2∥∞

(2.63)

showing that the mapping H is a contraction. Applying the Banach contraction principle

(see Appendix F) to the mapping H, we have that there is a unique fixed point u0 ∈

(B([0,1],∥·∥∞) such that H(u0) = u0 and by Lemma 2.1.15, u0 = F .

Consider the sequence { fn} ∈ (B([0,1],∥·∥∞) in Definition 2.1.16. In the proof of the Banach

contraction principle (see Appendix F), the choice of the initial function f0(x) is arbitrary as

long as f0 ∈ B([0,1],∥·∥∞). Usually, f0(x) = x and Figure 2.1.3.1 presents graphs of fn(x) for

increasing n. We observe that fn(x) converges relatively quickly to a function fn(x) for n= 100000

graphically close to the Cantor-Lebesgue function F . Since f0 is arbitrary, Appendix F presents

results when f0 is a bounded step function on [0,1] and we can observe the same convergence

as in Figure 2.4.
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Figure 2.4: Graph of the functions fn(x) for n = 0,1,2,5,100,100000 for the ternary Cantor set
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Remark 2.1.18. Adding the condition F(y) = 0 for y < 0 or y > 1 to the identity in Lemma 2.1.15

for the Cantor-Lebesgue function, allows F(x) to be written as a single expression:

F(x) =
1
2

F(3x)+
1
2
+

1
2

F(3x−2) ∀x ∈ [0,1] (2.64)

which will be revisited in the next section.

2.2 Construction of Cantor sets by IFS

Iterated Function Systems (IFS) can be used to construction Cantor sets. We present two IFS’s:

one for the ternary Cantor set and the other one for a quaternary Cantor. These IFS’s will be

used later in this work.

2.2.1 Construction of ternary Cantor set by IFS

Starting with the closed interval C(3)
0 = [0,1] being the construction level 0, we apply the fol-

lowing IFS

T0(x) =
x
3

(2.65)

T1(x) =
x+2

3

to the endpoints of [0,1] to obtain the endpoints of the two closed intervals at construction

level 1: T0(0) = 0, T0(1) = 1/3, T1(0) = 2/3 and T1(1) = 1 or C(3)
1 = T0(C

(3)
0 )∪ T1(C

(3)
0 ). To

obtain the subsequent construction levels we continue to apply the IFS in eq.( 2.65) to give that

C(3)
n+1 = T0(C

(3)
n )∪T1(C

(3)
n ). Eqs. ( 2.1) and ( 2.2) give the results for construction level 2 and 3

respectively, illustrated in Figure 2.5(a).
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Since T0 and T1 are strictly increasing and continuous linear maps on R, their inverses

T−1
0 (x) = 3x (2.66)

T−1
1 (x) = 3x−2

have the same properties. Then the single expression for Cantor-Lebesgue function, eq. ( 2.64),

can be written:

F(x) =
1
2

F(T−1
0 (x))+

1
2
+

1
2

F(T−1
1 (x)) ∀x ∈ [0,1] (2.67)

recalling the condition F(y) = 0 for y < 0 and y > 1.

2.2.2 Construction of a quaternary Cantor set by IFS

We present the construction of a particular quaternary Cantor set for the reason that it used

later in this work. The construction levels come from the repeated application of the following

Iterated Function System (IFS):

τ0(x) =
x
4

(2.68)

τ1(x) =
x+2

4

Since τ0(x) and τ1(x) are strictly increasing and continuous linear maps on R, their inverses

τ
−1
0 (x) = 4x (2.69)

τ
−1
1 (x) = 4x−2

have the same properties.

This particular quaternary Cantor set could be constructed by removal of open intervals.

Starting from [0,1] and dividing in four equal parts we remove the open intervals (1/4,1/2)
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and (3/4,1] where [0,1/4] and [1/2,3/4] are the remaining closed interval at construction level

1. (3/4,1] is an open interval by the following consideration: let [a,b] ⊂ R with a < c < b, let

[a,c]⊂ [a,b], with [a,c] closed, then [a,b]\ [a,c] = (c,b] is an open set being the complement of

[a,c] in [a,b]. The process continue by dividing [0,1/4] in four equal parts removing the open

intervals (1/16,1/8) and (3/16,1/4]. That process is applied to [1/2,3/4] to give at construction

level 2 the following remaining closed intervals: [0,1/16], [1/8,3/16], [1/2,9/16] and [5/8,11/16]

as illustrated in Figure 2.5(b).

Starting with the closed interval C(4)
0 = [0,1] being the construction level 0, we apply the

IFS in eq, ( 2.68 to the endpoints of [0,1] to obtain the endpoints of the two closed intervals

at construction level 1: τ0(0) = 0, τ0(1) = 1/4, τ1(0) = 1/2 and τ1(1) = 3/4 or C(4)
1 = T0(C

(4)
0 )∪

T1(C
(4)
0 ). To obtain the subsequent construction levels we continue to apply the IFS in eq.( 2.68)

to give that C(4)
n+1 = τ0(C

(4)
n )∪τ1(C

(4)
n ). Figure 2.5(b) illustrates the results for construction level

2 and 3 respectively.

The overall construction process by either removal of open intervals or IFS is continued to

obtain the quaternary Cantor set.

Dividing the closed intervals in four and keeping the first and third subintervals imply the

coefficients of the expansion in base 4 would be 0’s and 2’s, similar to ternary Cantor set where

the coefficients of the expansions in base 3 are also 0 and 2(see Figure 2.5). For the expansions

in base 4, these coefficients corresponds to the first and third subintervals that were kept. From

Figure 2.5, we observe that 1/2 is the common endpoint different from 0 among the first three

construction levels and by construction, to all construction levels. 1/2 equals 0.24 (subscript

“4” means “base 4”). Normally, we should be able to express the endpoints 1/4 and 3/4 of C(4)
1

by an expansion in base 4 with coefficients 0 and 2 such that we can generate the endpoints on

the next construction levels using right shift only or right shift plus translation as done for the

ternary Cantor set. However, in Appendix A we show this is not possible.

In Figure 2.5, part (a) illustrates few construction levels of the ternary Cantor set with

the value of the endpoints included and similarly, part (b), for the quaternary Cantor set. We
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Figure 2.5: Few construction levels of the ternary and quaternary Cantor sets

observe:

(i) For the ternary Cantor set the left and right endpoints of the closed intervals remain when

going from one construction level to the next. Whereas, for the quaternary Cantor set only

the left endpoints remain but the right endpoints generated in the construction process

do not. These right endpoints are not in C(4).

(ii) From Figure 2.5 the quaternary Cantor set ends up being skewed to the left of the interval

[0,1].

(iii) Referring to Figure 2.5, define:

• C(4)
L = {x ∈ R : x ∈C(4)∩ [0,1/4]},

• C(4)
R = {x ∈ R : x ∈C(4)∩ [1/2,3/4]},

• α = supx∈C(4)(C
(4)
L ),
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• β = supx∈C(4)(C
(4)
R ).

Appendix A shows that α = 1/6 and β = α +1/2 = 2/3. Thus, the left and right parts of

the quaternary Cantor set C(4) spread respectively over [0,1/6] and [1/2,2/3].

2.2.2.1 Cantor-Lebesgue function for quaternary Cantor set W (x) as a fixed point

As observed above, in the construction of the quaternary Cantor set, we see the right endpoints

replaced by right endpoints of smaller value. One could think with that phenomenon, it may

appears more difficult to construct a Cantor-Lebesgue function for the quaternary Cantor set

that can be extended over [0,1]. However, using the same technique as in Sec. 2.1.3.1 for F in

the ternary Cantor set case, we can arrive at that goal matching, for instance, the requirement

that for 1/6 ≤ x ≤ 1/2, W (x) = 1/2 and for 2/3 ≤ x ≤ 1, W (x) = 1. To achieve this we have:

Definition 2.2.1. Let (B([0,1],∥·∥∞) be the Banach space of all uniformly bounded real-valued

functions on [0,1] with the supremum norm. Define a sequence of functions hn : [0,1]−→ R as

follows:

hn+1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2hn(4x) for 0 ≤ x ≤ 1

4 ,

1
2 for 1

4 < x < 1
2 ,

1
2 +

1
2hn(4x−2) for 1

2 ≤ x ≤ 3
4 ,

1 for 3
4 ≤ x ≤ 1.

(2.70)

where the functions hn ∈ (B([0,1],∥·∥∞) n = {1,2,3, . . .} and h0 : [0,1]−→ R is arbitrary.

Proposition 2. If h0 ∈ (B([0,1],∥·∥∞), then the sequence {hn}∞
n=0 converges uniformly to a unique

fixed point u0 which we define to be W , the Cantor-Lebesgue function for quaternary Cantor

set.

Proof.

34



Step 1 Similar as for the ternary Cantor set, we define a map H : (B([0,1],∥·∥∞)→ (B([0,1],∥·∥∞)

by

H(g)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
2g(4x) for 0 ≤ x ≤ 1

4 ,

1
2 for 1

4 < x < 1
2 ,

1
2 +

1
2g(4x−2) for 1

2 ≤ x ≤ 3
4 ,

1 for 3
4 < x < 1.

(2.71)

We need to show that H(g)(x) is bounded on [0,1], that is ∥H(g)∥∞ < ∞. This is done

as follows:

(i) let g ∈B([0,1],∥·∥∞) so ∥g∥∞ < ∞ on [0,1].

(ii) if x ∈ [0,1/4] we have

H(g)(x) = 1
2g(4x)

|H(g)(x)| = 1
2 |g(4x)| ≤ 1

2∥g∥∞

(2.72)

(iii) if x ∈ (1/4,1/2) we have

H(g)(x) =
1
2

(2.73)

(iv) if x ∈ [1/2,3/4] we have

H(g)(x) = 1
2 +

1
2g(4x−2)

|H(g)(x)| ≤ 1
2 +

1
2 |g(4x−2)| ≤ 1

2 +
1
2∥g∥∞

(2.74)

(v) if x ∈ (3/4,1] we have

H(g)(x) = 1 (2.75)

From eqs. ( 2.72), ( 2.73), ( 2.74) and ( 2.75) we obtain ∥H(g)∥∞ ≤ max{1,1/2 +

1/2∥g∥∞} < ∞. For 1/2+ 1/2∥g∥∞ ≥ 1, it implies that ∥g∥∞ ≥ 1. It results that we

take ∥H(g)∥∞ ≤ max{1,∥g∥∞} < ∞ to conclude that H(g) is bounded on [0,1] that is

H(g) ∈B([0,1],∥·∥∞).
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Step 2 We need to show that H is a contraction and this done by applying the mapping H to

any two g1,g2 ∈B([0,1],∥·∥∞) as follows:

(i) if x ∈ [0,1/4] we have

H(g1)(x)−H(g2)(x) = 1
2(g1(4x)−g2(4x))

|H(g1)(x)−H(g2)(x)| = 1
2 |(g1(4x)−g2(4x))| ≤ 1

2∥g1 −g2∥∞

(2.76)

(ii) if x ∈ (1/4,1/2) we have

H(g1)(x)−H(g2)(x) =
1
2
− 1

2
= 0 (2.77)

(iii) if x ∈ [1/2,3/4] we have

H(g1)(x)−H(g2)(x) = 1
2(g1(4x−2)−g2(4x−2))

|H(g1)(x)−H(g2)(x)| = 1
2 |(g1(4x−2)−g2(4x−2))| ≤ 1

2∥g1 −g2∥∞

(2.78)

(iv) if x ∈ (3/4,1] we have

H(g1)(x)−H(g2)(x) = 1−1 = 0 (2.79)

to obtain that

∥H(g1)−H(g2)∥∞ ≤ 1
2
∥g1 −g2∥∞ (2.80)

showing that the mapping H is a contraction. Applying the Banach contraction principle

(see Appendix F) to the mapping H, we have that there is a unique fixed point u0 ∈

(B([0,1],∥·∥∞) such that H(u0) = u0. We define W to be the fixed point.
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To have that W = u0 we need to show that the following identity holds:

W (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2W (4x) for 0 ≤ x ≤ 1

4 ,

1
2 for 1

4 < x < 1
2 ,

1
2 +

1
2W (4x−2) for 1

2 ≤ x ≤ 3
4 ,

1 for 3
4 ≤ x ≤ 1.

(2.81)

Step (i) if 0≤ x≤ 1/4, then 0≤ 4x≤ 1, so 0≤W (4x)≤ 1 and we get that 0≤W (4x)/2≤

1/2 and 0 ≤W (x)≤ 1/2

Step (ii) if 1/4 < x < 1/2, then W (x) = 1/2

Step (iii) if 1/2 ≤ x ≤ 3/4, then 0 ≤ 4x−2 ≤ 1, so 0 ≤W (4x−2)≤ 1, 0 ≤W (4x−2)/2 ≤

1/2, and we get that 0+ 1/2 ≤ 1/2+W (4x− 2)/2 ≤ 1/2+ 1/2, simplifying,

1/2 ≤ 1/2+W (4x−2)/2 ≤ 1 and 1/2 ≤W (x)≤ 1.

Step (iv) if 3/4 < x < 1, then W (x) = 1

We conclude the identity ( 2.81) holds and u0 =W .

Consider the sequence {hn} ∈ (B([0,1],∥·∥∞) in Definition 2.70. In the proof of the Banach

contraction principle (see Appendix F), the choice of the initial function h0(x) is arbitrary as long

as h0 ∈B([0,1],∥·∥∞. Usually, h0(x) = x and Figure 2.6 presents graphs of hn(x) for increasing n.

We observe that hn(x) converges relatively quickly to a function hn(x) for n = 100000 graphically

close to the Cantor-Lebesgue function W . In particular, we see the left endpoints of the first

plateau at W (x) = 1/2 converge quickly to α = 1/6 as it should since it is the supremum of all

the right endpoints of the closed intervals arising in the construction of the quaternary Cantor

set. Similarly, the left endpoints of the second plateau at W (x) = 1 converge quickly to β = 2/3

as it should. Since h0 is arbitrary, Appendix F presents results when h0 is a bounded step

function on [0,1] and we can observe the same convergence as in Figure 2.6.
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Figure 2.6: Graph of the functions hn(x) for n = 0,1,2,5,100,100000 for the quaternary Cantor
set
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Remark 2.2.2. Adding the condition W (y) = 0 for y < 0 and W (y) = 1 for y > 3/4 to the identity

( 2.81) for the Cantor-Lebesgue function W , allows W (x) to be written as a single expression:

W (x) =
1
2

W (4x)+
1
2
+

1
2

W (4x−2) ∀x ∈ [0,1]. (2.82)

We observe the difference between F and W for the second condition: for F , F(y) = 0 for y > 1

whereas for W , W (y) = 1 for y > 3/4
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Chapter 3

Measure and dimension on Cantor sets

In this chapter, we consider four measures with support contained in a Cantor set C. For any

Borel set A ⊂ R, these are:

• mass distribution measure µm(A)

• Hausdorff measure restricted to a Cantor set C, H s(A∩C) with dimension s

• unique measure µH(A) from Hutchinson’s theorem for self-similar sets.

• unique Lebesgue-Stieltjes measure µF(A) where F is a Cantor-Lebesgue function on a

Cantor set C extended to R

We show the following theorem:

Theorem 3.0.1. Let F , be a Cantor-Lebesgue function on a Cantor set C extended to R, then

for every Borel set A ∈ B(R) we have the following equivalence:

µm(A) = H s(A∩C) = µF(A) = µH(A) (3.1)

While this result may be known, we have not found it proved in the literature. Here B(R)

is the Borel σ -algebra on R [19, p. 34].
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The steps followed to prove Theorem 3.0.1 are best seen in the following flowchart:

Thm 3.2.2: Suppose that G : R −→
R is an increasing, right-continuous
function. Then there exists a unique
Borel measure µG : B(R) −→ [0,∞]
such that µG((a,b]) = G(b)−G(a) for
every a < b.

Prop. 4: For F , the C-L function,
µm3((a,b]) = F(b)−F(a) for every a< b
and a,b ∈ [0,1]

For F , the C-L and ∀ Borel set A,
µm3(A) = H s(A∩C(3)) = µF(A)

Prop. 6: For F , the C-L function,
H s((a,b]∩C(3)) = F(b)− F(a) for
every a < b and a,b ∈ [0,1] with
s = log2/ log3

Figure 3.1: Relation between µm3(A), H s(A∩C(3)) and µF(A) for every Borel set A ∈ B(R)
.

We present Hutchinson’s Theorem [18] that states that there exists a unique Borel mea-

sure µH with support contained in a Cantor set C such that for any Borel set A ∈ B(R),

µH(A) = 1/2∑
2
j=1 µH(T−1

j (A)). We then show that µm(A) satisfies the recursive relation for

µH(A). Therefore, by the uniqueness of µH we have that µm(A) = µH(A) for every Borel set

A ∈ B(R). This is illustrated in Figure 3.2 below. That result enable us to complete the

proof of Theorem 3.0.1. Since we showed that µm(A) = H s(A∩C) = µF(A), we obtain by using

µm(A) = µH(A) the desired result: µm(A) = H s(A∩C) = µF(A) = µH(A) for every Borel set

A ∈ B(R).
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Hutchinson’s thm: There exist
a unique Borel measure µH with
support contained in C(3) such
that for any Borel set A, µH(A) =
1/2∑

2
j=1 µH(T−1

j (A)).

Sec. 3.3.1 ∀ Borel set A,
µm3(A) satisfies µm3(A) =

1/2∑
2
j=1 µm(T−1

j (A))

∀ Borel set A, µH(A) = µm3(A)

Figure 3.2: Relation between µm3(A) and µH(A) for every Borel set A ∈ B(R)
.

3.1 Hausdorff measure and dimension

3.1.1 Hausdorff measure

This section presents definitions of Hausdorff measure and dimension taken from references

[14, 15].

Definition 3.1.1. Let A be any non-empty subset of R. We define its diameter |A|, by |A| =

sup{|x− y| : x,y ∈ A}.

Definition 3.1.2. A δ -cover of a set F is a countable (or finite) collection of sets {Ui} with

diameters 0 < |Ui| ≤ δ that cover F .

Definition 3.1.3. Let F ⊂ R and s ∈ R with s ≥ 0. For each δ > 0, we define

H s
δ
(F) = inf

{︄
∞

∑
i=1

|Ui|s : {Ui} is a δ -cover of F

}︄
(3.2)
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Definition 3.1.3 expresses a process that looks at all covers of F by sets of diameter at most

δ to find the infimum of the sum of the sth powers of the diameters. As δ decreases, the family

of permissible covers of F in eq. ( 3.2) is reduced. Therefore, the infimum H s
δ
(F) increases or

at least does not decreases, as δ → 0 and so approaches a limit. To see this:

Step 1 Let δ1 ≥ δ2 ≥ δ3 ≥ . . . ≥ δ j ≥ . . ., assume F j is a family of all covers of F by sets of

diameter at most δ j.

Step 2 Since the δ j’s are decreasing we have that F1 ⊃ F2 ⊃ . . .⊃ F j ⊃ . . . .

Step 3 For any non-empty sets A ⊂ B ⊂ R, we have that inf(B)≤ inf(A) [6, p. 26].

Step 4 Since F j+1 ⊂ F j ∀ j ≥ 1 then H s
δ j
(F)≤ H s

δ j+1
(F).

Step 5 H s
δ
(F) is monotone increasing as δ −→ 0 and so approaches a limit in [0,∞].

Definition 3.1.4. H s(F), s-dimensional Hausdorff measure of F , is defined by:

H s(F) = lim
δ→0

H s
δ
(F). (3.3)

The limit in eq.( 3.3) exists for any subset F of R although the limiting value can be 0 or

∞. In fact, as we shall see below that limiting value is usually 0 or ∞. We note that H s( /0) = 0

and for any non-empty set F , H s(F)≥ 0.

3.1.2 Hausdorff dimension

We can see from Definition 3.1.3 that for any given set F ⊂R and δ < 1, H s
δ
(F) is non-increasing

with s. It follows by eq. ( 3.3) that H s(F) is also non-increasing. More information on the

behaviour of H s(F) as a function of s can be obtained by the following:

Step 1: Consider s fixed.
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Step 2: If t > s and {Ui} is a δ -cover of F , then

∑
i
|Ui|t = ∑

i
|Ui|t−s|Ui|s ≤ δ

t−s
∑

i
|Ui|s. (3.4)

Step 3: Taking infima over all δ -covers, we get:

H t
δ
(F)≤ δ

t−sH s
δ
(F) (3.5)

Step 4: If we assume H s
δ
(F)< ∞ then taking the limit δ → 0 on both sides gives:

0 ≤ H t(F)≤ 0 (3.6)

and H t(F) = 0 for t > s

Step 5: If t < s and

∑i |Ui|s = ∑i |Ui|s−t |Ui|t ≤ δ s−t
∑i |Ui|t

∑i |Ui|t ≥ ∑i |Ui|s
δ s−t

(3.7)

Step 6: Taking infima over all δ -covers, we get:

H t
δ
(F)≥

H s
δ
(F)

δ t−s (3.8)

Step 7: If we assume 0 < H s
δ
(F)< ∞ then taking the limit δ → 0 on both sides gives:

H t(F)≥ ∞ (3.9)

and H t(F) = ∞ for t < s

Figure 3.3 illustrates the above discussion where we clearly see the jump of H t(F) from ∞

down to 0 when t goes across s. This brings the following definition:
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Definition 3.1.5. The Hausdorff dimension for any set F ⊂ R is given by [15, p. 48]:

dimH(F) = inf{s ≥ 0 : H s(F) = 0}= sup{s : H s(F) = ∞} (3.10)

so that

H s(F) =

⎧⎪⎨⎪⎩ ∞ if 0 ≤ s < dimH(F)

0 if s > dimH(F)
(3.11)

and if s = dimH(F), then H s(F) may be 0 or ∞ or may satisfy

0 < H s(F)< ∞ (3.12)

The discussion on the behaviour of H s(F) as a function of s shows that if ineq. ( 3.12)

holds then dimH(F) = s.

0 dimH(F) 1
s-axis0

H s(F)

∞

Figure 3.3: Graph of H s(F) against s for a set F ⊂ R.

45



The discussion on the behaviour of H s(F) as a function of s brings the following questions.

How do we know that such a finite s exist? What if H s(F) = ∞ ∀s or H s(F) = 0 ∀s? These

questions can be answered by proving the following claim in the form of a Lemma.

Lemma 3.1.6. If F ⊂ R then there exists s ≤ 1 such that H s(F) = 0 ∀s > 1.

Proof.

It is enough to show that H s(R) = 0 ∀s > 1.

Step 1 Consider the δ -cover of R by
⋃︁

∞
−∞Un with |Un| = δ/|n| as illustrated in Figure 3.4. By

definition of H s
δ
(·) we have:

H s
δ
(R)≤

∞

∑
−∞

|Un|s = δ
s

∞

∑
−∞

1
|n|s

. (3.13)

Step 2 Taking the limit δ −→ 0 in eq.( 3.13), we obtain that

H s(R)≤ 0. (3.14)

Step 3 By definition H s(·)≥ 0, therefore we get that H s(R) = 0 ∀s > 1.

δ

4
δ

3
δ

2 δ

0

δ
δ

2
δ

3
δ

4

Figure 3.4: Covering of R by sets of diameter δ/n, n = 1,2,3, . . .
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3.1.3 Hausdorff measure and dimension of the ternary Cantor set

This section presents a proof that the Hausdorff dimension of C(3) is s = log2/ log3 and the

Hausdorff measure of C(3), H s(C(3)) = 1. The present proof adds many details to the original

one presented in [14, pp. 14-15] and claim to some originality by:

(i) including cases where one or both the endpoints of the intervals in the cover is an element

of C(3)

(ii) extending the reduction and methodology of the original proof in [14, pp. 14-15] used to

obtain a lower bound for H s(C(3)).

Theorem 3.1.7. The Hausdorff measure of the ternary Cantor set C(3), H s(C(3)) = 1 with s =

log2/ log3.

The proof consists of two parts:

Part (a) Upper bound: prove that H s(C(3))≤ 1

Part (b) Lower bound: prove that H s(C(3))≥ 1

to conclude that H s(C(3)) = 1

Proof.

We do a heuristic calculation [15, p. 52] to justify an assumption used in the proof that

the Hausdorff dimension of C(3) is s = log2/ log3. The Cantor set spreads over two equal and

disjoint parts: CL =C(3)∩ [0,1/3] and CR =C(3)∩ [2/3,1]. Each of these parts is geometrically

similar to C(3) but scaled down by a factor of 1/3. So, by the scaling property of Hausdorff

measure [15, p. 46] and since C(3) =CL ∪CR, we have:

H s(C(3)) = H s(CL)+H s(CR)

= 1
3s H s(C(3))+ 1

3s H s(C(3))
(3.15)
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Assuming H s(C(3)) ∈ (0,∞), we can divide eq. ( 3.15) by H s(C(3)), to obtain s = log2/ log3.

In fact, this heuristic calculation gives a “guess” for the value of the Hausdorff dimension of

C(3). That “guess” is then used to obtain upper and lower bounds for H s(C(3)).

Upper bound for H s(C(3))

For k ∈N, since C(3) may be covered by the 2k closed intervals of length 3−k that form C(3)
k ,

we have that

H s
3−k(C(3))≤ 2k(3−k)s = 2k(3s)−k = 2k2−k = 1. (3.16)

Letting k → ∞ we have H s(C(3))≤ 1

Lower bound for H s(C(3))

We need to prove that H s(C(3)) ≥ 1 (lower bound). This is equivalent to proving that for

any cover {Ui} of the Cantor set C(3), we have ∑i |Ui|s ≥ 1. The proof consists of two parts:

1. Obtaining from {Ui} a finite collection G of closed intervals that covers C(3).

2. Replacing each of the closed intervals in G by a finite set of closed intervals arising from

the construction of the ternary Cantor set that offer the same covering.

Finite collection G

We assume that {Ui} to be any countable collection F of intervals covering C(3). So,

F = {Ui}∞
i=1 and C(3) ⊂

⋃︁
∞
i=1Ui.

The Cantor set C(3) is closed and bounded so C(3) is compact. This latter property of C(3)

is used in obtaining from F a finite collection G of closed intervals that covers C(3) as follows:

Step 1: Expand slightly each interval in F to obtain an open cover of C(3):

(i) For each i ∈ N we consider Ui ∈ F with endpoints ai ≤ bi.

(ii) Let ε > 0 and define ˜︁Ui = (ai − ε/2i+1,bi + ε/2i+1). Then {˜︁U}∞
i=1 is an open cover

of C(3) and |˜︁Ui|
s
= (|Ui|+ ε/2i)s.
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(iii) Since s = log2/ log3 < 1, 2s > 1 so 1/2s < 1; recalling for ∀x,y ∈ R+ ∪ {0} and

0 ≤ α < 1, (x+ y)α ≤ xα + yα then

∞

∑
i=1

|˜︁Ui|
s
=

∞

∑
i=1

(|Ui|+ ε/2i)s ≤
∞

∑
i=1

(|Ui|s +
(︂

ε

2i

)︂s
) (3.17)

we have
∞

∑
i=1

(︂
ε

2i

)︂s
= ε

s
∞

∑
i=1

(︃
1
2s

)︃i

=
εs2−s

1−2−s (3.18)

to obtain
∞

∑
i=1

|˜︁Ui|
s ≤

∞

∑
i=1

|Ui|s + ε
s 1
2s −1

(3.19)

Step 2: Since C(3) is compact and {˜︁U∞
i=1} is an open cover of C(3), there exists a finite sub-cover

of C(3), {Vi}n
i=1 with C(3) ⊂ ∪n

i=1Vi and each Vi = ˜︁Ui for some i.

Step 3: Since Vi ⊂ V i for i = 1,2, . . . ,n and |V i| = |Vi|, we take G = {V i}n
i=1, a finite collection

of closed intervals that covers C(3). We observe that nothing precludes these closed

intervals to overlap each other. That is, some pairwise intersections of these intervals

may contain more that one element. From ineq. ( 3.19) we have that:

∞

∑
i=1

|Ui|s + ε
s 1
2s −1

≥
∞

∑
i=1

|˜︁Ui|
s ≥

n

∑
i=1

|V i|
s (3.20)

Step 4: Thus, we have to show that
n

∑
i=1

|V i|
s ≥ 1 (3.21)

Step 5: Since G originates from an arbitrary countable open cover of C(3), we have no information

concerning the endpoints of each of these closed intervals. In this step, the left and right

endpoints of each of the closed intervals in G are further adjusted using the following

methodology, best explained by considering a generic example:

Step 5.1 Figure 3.5 shows the five first steps in the construction of the Cantor set. The
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collections C(3)
i of closed intervals that stem from the construction of C(3) form

a net. That is, any two such intervals are either disjoint or else one is contained

in the other. This net exists due to the self-similar pattern in the collections

C(3)
i of closed intervals. Let ∪iC

(3)
i be the finite union of the closed interval in

the collection C(3)
i . By definition, the Cantor set C(3) =

⋂︁
∞
i=1∪iC

(3)
i and the line

at the bottom of Figure 3.5 illustrates C(3) as the “dust” remaining from taking⋂︁
∞
i=1∪iC

(3)
i .

Step 5.2 Consider V i = [1/18,1/4] as illustrated in Figure 3.5. That V i defines a “slice”

of the net but its left endpoint 1/18 belongs to the complement of C(3). Its

right endpoint 1/4 is an element of the Cantor set and it does not coincide with

any of the right endpoints of the closed intervals in all of the C(3)
i [14].

Step 5.3 The endpoints are adjusted without reducing the actual covering of C(3) by V i.

• The left endpoint of V i is moved right to the left endpoint of some of the

closed intervals in the C(3)
i as illustrated in Figure 3.6.

• The endpoint 1/4 of V i is modified: starting from C(3)
4 and a given ε >

0, there exists a j such that endpoint 1/4 ∈ C(3) is increased slightly to

coincide with the right endpoint of one of the children closed intervals on

level C(3)
j ( j could be much larger than i = 4 and the smaller ε is, the

larger j will be). In this instance, the right endpoint of V i goes from 1/4

to 547/2187 which implies the “given” ε > 1/8748. Since every element

of C(3) is approached by a sequence of endpoints, we can find such a right

endpoint arbitrary closed to 1/4 no matter how small ε is.

Step 5.4 Steps 5.1 to 5.3 are applied to each interval V i ∈ G . This results in a refined

covering of C(3) by a finite collection G of closed intervals V i each having their

left and right endpoints coincide respectively with the left and right endpoints

of some closed intervals in all of the C(3)
i .
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Step 5.5 The generic example used to illustrate Steps 5.1 to 5.4 is indeed generic as it

includes most if not all the possible cases that we could have. For instance:

• the endpoints of a given V i coincide with the left and right endpoints of

some closed intervals in all of the C(3)
i so there is no need to apply Steps

5.1 to 5.4 .

• the endpoints of a given V i are such that the left endpoint is in the com-

plement of C(3) but the right endpoint coincide with the right endpoint of

some closed intervals in all of the C(3)
i and vice versa.

• the endpoints of a given V i are such that the left endpoint is in C(3) but

it is not a left endpoint of any of the closed intervals in all of the C(3)
i but

the right endpoint of V i coincide with the right endpoint of some closed

intervals in all of the C(3)
i and vice versa.
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Figure 3.5: Ternary Cantor Set
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Reduction and replacement methodology

Up to now, we have that each V i is a finite union of some of the closed intervals from

the construction of C(3), perhaps from different construction levels, together with open intervals

between them. In proving inequality ( 3.21), the goal is to get rid of these “gaps” (open intervals)

without increasing the sum ∑
n
i=1 |V i|

s. We use a reduction and replacement methodology based

on the approach of Falconer given in [14, p. 15] to reach that goal follows:

Step 1: Referring to Figure 3.5, the closed intervals are labelled as “J” and the opened intervals

as “K”. In any C(3)
i , consider any closed interval J which is of length 1/3i.

• By construction of the net, if J is not at one of the extremities of V i, an opened

interval, say K1 precedes J and another opened interval, say K2 follows J with the

property that the length of K1 and K2 is greater or equal to the length of J.

• The construction of the ternary Cantor yields a self-similar net with the unique

particularity observed in Figure 3.5 that no J is immediately preceded and followed

by two K′s of exactly same length as J.

• If J is at the left extremity then it is followed by a K or if at the right extremity it

is preceded by a K with the length of K equal to the length of J.

Step 2: Any of the V i defines a “slice” of the net as shown in Figure 3.5. The endpoints of V i

coincide with endpoints of some J′s in that “slice” and can be represented by a finite

union of J′s and K′s. Amongst the K′s in that union, there exists a largest K that is

unique. Proof (by contradiction):

Step 2.1 Assumption: that union contains two largest K′s of same length equal to

3−(i+1).

Step 2.2 By construction of the net and the properties of the net intervals (see Fig-

ure 3.5), the “slice” contains either the full length of a J of a parent at level

C(3)
i , part of it or parts of two J′s separated by one K of length greater than
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3−i. These yield or define one K larger than any other K′s at the children levels

that is for C(3)
j with j > i. This contradicts the assumption made in Step 2.1

Step 2.3 The latter is supported by the fact that no J is immediately preceded and

followed by two K′s of exactly the same length as J as one side is always

bigger.

Step 2.4 Therefore, in the above union representing V i there exists a largest K that is

unique .

Remark 3.1.8. The above proof relies on the uniqueness of a larger K if the finite union

of J′s and K′s representing V i. This is particular to the ternary Cantor set as this

uniqueness is lost when constructing Cantor set by removing two or more open inter-

vals of equal length from a parent closed interval. For instance, a Cantor set can be

constructed by dividing a parent closed interval in five equal parts and removing the

second and fourth open intervals. So the parent closed interval is replaced by the union

of three J′s and two K′s of equal length. This gives one J preceded and followed by K′s

of same length as J.

Step 3: By construction of the net,

V i = (∪N
i=1Ji)∪ (∪N−1

i=1 Ki) (3.22)

with one of the K′
i s, say K j being the largest in that union. K j divides the remaining

J′s and K′s into two unions I1 and I2 respectively on the left and the right of K j with

|K j| ≥ |I1|, |I2|. I1 and I2 are closed intervals since their respective union starts and ends

with a J. We use a reduction and replacement methodology to show that

|V i|
s ≥

N

∑
i=1

|Ji|s (3.23)

giving that replacing V i by the Ji does not increase the sum ∑
n
i=1 |V i|

s in inequalities
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( 3.20) and ( 3.21) . Also, removing the K′s does not change the covering property as

they do not contain any part of C(3).

Step 4: Basic case: for N = 2 (smallest value for N) we have V i = J1 ∪K1 ∪ J2. That is I1 = J1

and I2 = J2 and K j = K1. Then

|Vi|
s
= (|J1|+ |K1|+ |J2|)s (3.24)

Since |K1| ≥ |J1|, |J2| we have that |K1| ≥ |J1|/2+ |J2|/2 to obtain

|V i|
s ≥
(︃

2+1
2

(|J1|+ |J2|)
)︃s

= (2+1)s
(︃

1
2
|J1|+

1
2
|J2|
)︃s

(3.25)

Since f (t) = ts ∀t > 0, 0 < s < 1 is concave we obtain with (2+1)s = 3s = 2 that

|V i|
s ≥ 2

(︃
1
2
|J1|s +

1
2
|(|J2)

s
)︃
= |J1|s + |J2|s (3.26)

Thus replacing V i by J1 and J2 does not increase the sum ∑
n
i=1 |V i|

s.

Step 5: General case: Let N > 2 and from Steps 3 and 4 we can write

|Vi|
s
= (|I1|+ |K j|+ |I2|)s (3.27)

Since |K j| ≥ |I1|, |I2| we have that |K j| ≥ |I1|/2+ |I2|/2 to obtain

|V i|
s ≥
(︃

2+1
2

(|I1|+ |I2|)
)︃s

= (2+1)s
(︃

1
2
|I1|+

1
2
|I2|
)︃s

(3.28)

Since f (t) = ts ∀t > 0, 0 < s < 1 is concave we obtain with (2+1)s = 3s = 2 that

|V i|
s ≥ 2

(︃
1
2
|I1|s +

1
2
|(|I2)

s
)︃
= |I1|s + |I2|s (3.29)

Thus replacing V i by I1 and I2 does not increase the sum ∑
n
i=1 |V i|

s. Inner steps follow
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to reduce I1 and I2 to one net interval (i.e. one Ji) or to a union of two Ji’s and one K j

that is addressed using Step 3. In the union( 3.22) representing |V i| there are 2N − 1

(odd number) Ji’s and Ki’s (including K j) and for I1 and I2 they contain together 2N−2

(even number) Ji’s and Ki’s. By construction of the net interval and since the sum of

two odd integers is even then I1 and I2 contain each an odd number of Ji’s and Ki’s.

Then this reduction is accomplished as follows

Step 5.1 Let I1 and I2 contain respectively 2M1 − 1 and 2M2 − 1 (odd numbers) of Ji’s

and Ki’s. Then by Step 2.4, I1 and I2 contain respectively a unique and largest

K j1 and K j2 .

Step 5.2 By Step 3 we obtain I1 = I11 ∪K j1 ∪ I12 and I2 = I21 ∪K j2 ∪ I22.

Step 5.3 By Step 4 we have

|I1|s ≥ |I11|s + |I12|s (3.30)

and

|I2|s ≥ |I21|s + |I22|s (3.31)

to obtain

|V i|
s ≥ |I11|s + |I12|s + |I21|s + |I22|s (3.32)

Thus replacing V i by I11, I12, I21 and I22 does not increase the sum ∑
n
i=1 |V i|

s.

Step 5.4 Then with I11, I12, I21 and I22 we go back to Step 5.1 to obtain the new collection

I111, I112, I121, I122, I211, I212, I221 and I222 to obtain

|V i|
s ≥ |I111|s + |I112|s + |I121|s + |I122|s + |I211|s + |I212|s + |I221|s + |I222|s (3.33)

Thus replacing V i by I111, I112, I121, I122, I211, I212, I221, and I222 does not increase

the sum ∑
n
i=1 |V i|

s. We continue this reduction and replacement process until

all the Iiii... reduced to either one net interval (i.e. one Ji) or to a union of two
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Ji’s and one K j which is further reduced using Step 4. This results in V i being

replaced in a finite number of steps by the N Ji’s in the union for V i in ( 3.22)

with

|V i|
s ≥

N

∑
i=1

|Ji|s (3.34)

which is the desired result. This completes the proof of inequality ( 3.23).

Step 6: Using the same for all the other V ′
is in the cover G of F are replaced using the same

methodology.

Step 6.1 Since the Ji’s replacing the V i’s are net intervals, there is a k such that all

|Ji| ≥ 3−k. Using the same methodology of replacement, we reach, in a finite

number of steps, a covering of C(3) by equal intervals of length 3−k, which does

not increase the sum ∑i |Ji|s.

Step 6.2 These must include, at least, all the closed intervals of Jk and possibly more

since in the finite cover G of C(3) some of the V i could overlap each other. Then

the number of closed intervals of length 3−k in this new cover of C(3) will be

greater of equal to the number of closed intervals of same length in C(3)
k .

Step 6.3 This implies that

∑
i
|V i|

s ≥ 2k(3−k)s = 2k(3s)−k) = 2k(s−k) = 1 (3.35)

This completes the proof of ( 3.21).

For the original covering {Ui}, by ( 3.20), this gives

∞

∑
i=1

|Ui|s + ε
s 1
2s −1

≥ 1 (3.36)
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since ε > 0 was arbitrary we get that

∞

∑
i=1

|Ui|s ≥ 1 (3.37)

Taking the infimum over all δ -covers gives

H s
δ
(C(3)) = inf

{︄
∑

i
|Ui|s

}︄
≥ 1 (3.38)

Letting δ → 0 we obtain that H s(C(3))≥ 1.

In this section, we have shown that for s = log2/ log3, 1 ≤ H s(C(3)) ≤ 1 which gives at

once that the ternary Cantor set C(3) has dimension s = log2/ log3 and Hausdorff measure

H s(C(3)) = 1.

3.2 Measure of subset of R by mass distribution

This section presents the definition of a measure supported on a subset of R by mass distribution

which is then applied to the ternary Cantor set. This is followed by giving a proof that the mass

distribution measure of any subset of [0,1] of the form (a,b], (a,b ∈ [0,1 and a < b) is given in

terms of the extended Cantor-Lebesgue function as F(b)−F(a). Similarly, we obtain the same

result for the Hausdorff measure restricted to C(3).

3.2.1 Mass distribution on a subset of R

The construction of a mass distribution [15, pp. 14-15] involves repeated subdivisions of a mass

between parts of a bounded Borel subset E ⊂ R.

Step 1 Preliminaries:

(i) Let E0 be a collection consisting of the single set E.
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(ii) For k = 1,2, . . .(k ∈ N), let each Ek be a finite collection of disjoint Borel subsets

{U (k)
i }Nk

i=1 of E such that each set U (k)
i in Ek is contained in one of the sets of Ek−1.

(iii) We assume that the maximum diameter of the sets U (k)
i in Ek tends to 0 as k → ∞.

(iv) We define a mass distribution on these sets by repeated subdivision.

Step 2 We let µ(E) satisfy 0< µ(E)<∞ and we split this mass between the sets {U (1)
1 ,U (1)

2 ,U (1)
3 , . . . ,U (1)

N1
}

in E1 by defining µ(·) in such a way that

3

∑
i=1

µ(U (1)
i ) = µ(E) (3.39)

It should noted that the mass distribution among {U (1)
1 ,U (1)

2 ,U (1)
3 , . . . ,U (1)

N1
} need not be

uniform.

Step 3 Similarly, we assign masses to the sets of E2 so that if {U (2)
1 ,U (2)

2 , . . . ,U (2)
k j

} are the sets

of E2 contained in U (1)
j of E1 then (see Figure 3.7)

k j

∑
i=1

µ(U (2)
i ) = µ(U (1)

j ), j = 1,2, . . . ,N1 (3.40)

In general, we assign masses so that

∑
i

µ(Ui) = µ(U) (3.41)

for each set U in Ek, where {Ui} are the disjoint set in Ek+1 contained in U .

Step 4 For each k, let Ek be the union of the sets in Ek, that is:

Ek =U (k)
1 ∪U (k)

2 ∪U (k)
3 ∪ . . .∪U (k)

Nk
(3.42)

The subscript N ∈ N in the last term of the union in eq.( 3.42) emphasizes the mass

distribution to be over a finite number of sets.
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Step 5 We define µ(A) = 0 for all A with A∩Ek = /0

To complete the above method, let E denote the collection of sets that belong to Ek for some

k together with the subsets of Ec
k =R\Ek which is the complement of Ek relative to R. That is:

E = {E : ∃k,E ⊂ Ek or E ⊂ Ec
k} (3.43)

In eq.( 3.43), the “∃k” means “some k” and eq.( 3.43) can be written as follows:

E =
∞⋃︂

k=0

(Ek ∪ P(Ec
k)) (3.44)

Since Ek is the union of the sets in Ek then µ(Ek) is equal to the total mass being distributed.

We can employ the above method to define the mass µ(A) for every set A in E . This leads to

the claim that by building sets from the sets in the collection E , it specifies enough about the

distribution of the mass µ across E to determine µ(A) for any Borel set A. Falconer states that

this is indeed the case and we present a proposition in [15, p. 15] with a slight clarification:

Proposition 3. Let µ be defined on a collection of sets E as above. Then the definition of µ may

be extended to all Borel subsets of Rn so that µ becomes a measure with its value µ(A) uniquely

determined where A ⊂ Rn is a Borel set. The support of µ is contained in E∞ = ∩∞
k=1Ek.

with the following notes:

1. If A is any subset of Rn, let

µ(A) = inf

{︄
∞

∑
i=1

µ(Ui) : A∩E∞ ⊂
∞⋃︂

i=1

Ui ∈ E

}︄
(3.45)

To obtain µ(A), we take the greatest lower bound of the set of possible values of ∑
∞
i=1 µ(Ui)

where the sets Ui are in E and cover A∩E∞. In the above, µ(Ui) is defined for such Ui.

2. If A ∈ E then eq. ( 3.45) reduces to the mass µ(A) as specified in the construction.

60



3. As µ(Rn \Ek) = 0, µ(A) = 0 if A is a set that A∩Ek = /0 for some k. This implies the

support of µ is in Ek for all k.

Remark 3.2.1. The mass distribution measure µ can also be obtain as the weak-limit of a

sequence of measures. We will not touch on this here.

3.2.2 Mass distribution on the ternary Cantor set

This section presents how the above methodology can be used to define a mass distribution on

the ternary Cantor set in such a way that it is as uniform as possible. The mass distribution is

accomplished as follows:

Step 1 Let [0,1] be the bounded Borel subset of R considered in this definition of a mass distri-

bution. Let C
(3)
0 be a collection consisting of the single set [0,1].

Step 2 By construction, for k = 1,2, . . .(k ∈ N), let each C
(3)
k be a collection of 2k closed and

disjoint intervals as illustrated in Figure 3.7. The union of these intervals in C
(3)
k cor-

responds to Ek in the general mass distribution process above. These intervals are the

required 2k Borel subsets U (k)
i of [0,1] with i = 1,2, . . . ,2k. The construction of the Can-

tor set leads to a self-similar pattern and the generated closed intervals form a net such

that each consecutive pair of intervals U (k)
i in C

(3)
k is contained in one of the sets of

C
(3)
k−1. In turn, each U (k)

i contains a consecutive pair of the sets in C
(3)
k+1. For example, if

U (2)
1 = [0,1/3] then it contains the two consecutive pairs [0,1/9] and [2/9].

Step 3 Each of these closed intervals in C
(3)
k has a length (diameter) of 1/3k which clearly tends

to 0 as k → ∞.

Step 4 Figure 3.7 shows the repeated subdivision generated by construction. For instance, C
(3)
k

contains 2k closed intervals then by construction, the next subdivision gives for C
(3)
k+1

2k+1 closed intervals and 2k consecutive pairs where each pair are subsets of one closed

interval in C
(3)
k .

61



C (∋)
0

[0,1]

C (∋)
1

[0,1/3] [2/3,1]

C (∋)
2

{[0,1/9], [2/9,1/3]} {[2/3,7/9], [8/9,1]}

Figure 3.7: Steps in the construction of a mass distribution µ by repeated subdivision.
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Step 5 Let µ([0,1]) = 1 and we split this mass uniformly between the 2k closed intervals in C
(3)
k ,

giving a mass of 1/2k for each closed interval in C
(3)
k . Clearly,

2k

∑
i=1

µ(U (k)
i ) = µ([0,1]) = 1 ∀k ∈ N (3.46)

Step 6 For each k, let Ck be the union of the sets in C
(3)
k , that is:

Ck =U (k)
1 ∪U (k)

2 ∪U (k)
3 ∪ . . .∪U (k)

2k (3.47)

Step 7 Define µ(A) = 0 for all A with A∩Ek = /0

Step 8 Let C denote the collection of sets that belongs to C
(3)
k for some k together with the

subsets of [0,1]\Ck which is the complement of Ck relative to [0,1]. Since Ck is the union

of the sets in C
(3)
k then by eq. ( 3.46) µ(Ck) = 1. Then, we can define the mass µ(A) for

every set A in C , noting that if A ∈ [0,1]\Ck then µ(A) = 0 since the mass is distributed

only over C
(3)
k .

Step 9 The preceding step specifies the distribution of the mass µ across C and Proposition 3

gives us the measure µ(A) for any Borel set A ⊂ [0,1].

Example 1: Let A = [0,5/12], we then have that 5/12 ∈ (1//3,2/3) ∈ [0,1]\Ck. We have

5/12 > 1/3 but µ((1/3,5/12]) = 0 since (1/3,5/12]∩Ck = /0 and µ([0,1/3]) =

1/2 so, µ([0,5/12] = µ([0,1/3])+µ((1/3,5/12]) = 1/2+0 = 1/2.

Example 2: What is the mass distribution measure of a singleton like {0} = [0,0]? We

know that
⋂︁

∞
i=1[0,0+1/3i] = [0,0] = {0}. So, by the theorem on measure of

a decreasing intersection [2, p. 44] we have

µ
(︁⋂︁

∞
i=1[0,0+1/3i]

)︁
= lim

i→∞
µ([0,0+1/3i])

= lim
i→∞

1/2i = 0
(3.48)
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Therefore, the mass distribution measure µ({0}) = 0 and it also means that

the mass of a single point is 0

3.2.3 Relation between mass distribution measure and the ternary Cantor-
Lebesgue function

This section presents the relation between the mass distribution measure and the ternary Cantor-

Lebesgue function by giving a proof of Proposition 4:

Proposition 4. For any closed interval [0,a] ⊂ [0,1], the mass distribution measure is given by

µm([0,a]) = F(a) and for half open interval (a,b], we have µm((a,b]) = µm([0,b])− µm([0,a]) =

F(b)−F(a) for every 0 ≤ a < b ≤ 1.

Proof. We prove the proposition by induction:

Step 1 k = 0: Trivial cases: a = 0 and a = 1

(i) Since [0,0] is a singleton, we showed by eq.( 3.48) in 92 the mass of a single point

is 0. So, µ([0,0]) = 0 = F(0) = 0.

(ii) µ([0,1]) = 1 = F(1) = 1 by definition of unit mass.

(iii) We can write for these two trivial cases that |µ([0,a])−F(a)| ≤ 1 = 1/20

Step 2 k = 1: endpoints are {0,1/3,2/3,1}, µm([0,1/3]) = F(1/3) = 1/2 and µm([0,2/3]) =

F(2/3) = 1/2. By monotonicity of µm and F , and that µm = 0 on E c
1 , we have: From

Table 3.1 we conclude that |µm([0,a])−F(a)| ≤ 1/21 = 1/2.

Step 3 From the above, we can then formulate the Induction Hypothesis: For k = n−1 and for

any interval from construction E = [a0,b0] ∈ En−1 (at level k = n−1) with positive mass,

we suppose true that q0 = µm([0,a0]) = F(a0) and ∀a ∈ [0,1], |µm([0,a])−F(a)| ≤ 1/2n−1.

Step 4 Induction Step: For k = n and for any interval from construction E = [a0,b0]∈ Ek−1 (level

k = n− 1) and having a positive mass, we have that when a is an endpoint at the nth
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Construction level 1 (k = 1)
Sub-case Interval Implications Implications

No. considered for µm(·) for F(·)
1 a ∈ (0,1/3) 0 ≤ µm([0,a])≤ 1/2 0 ≤ F(a)≤ 1/2

2 a ∈ [1/3,2/3] µm([0,a]) = µm([0,1/3] = 1/2 F(a) = 1/2

3 a ∈ (2/3,1) 1/2 ≤ µm([0,a])≤ 1 1/2 ≤ F(a)≤ 1

Table 3.1: Mass distribution measure and Cantor function for construction level k = 1.

level which is not a0 or b0, then a = a0 + 1/3n or a = a0 + 2/3n and by construction

µm([0,a]) = q0 + 1/2n. This can also been seen in Table 3.2 where by construction,

µm([a0,b0]) is decomposed equally by mass distribution as follows:

µm([a0,b0]) = µm([a0,a0 +1/3n])+µm([a0 +2/3n,a0 +3/3n = b0]) (3.49)
1

2n−1 =
1
2n +

1
2n

By Induction Hypothesis, µm([0,a0]) = q0 = F(a0) and F(a) = F(a0)+ 1/2n from con-

struction of F , so µm([0,a]) = F(a). We conclude that |µm([0,a])−F(a)| ≤ 1/2n and

Construction level n (k = n)
Sub-case Interval Implications Implications

No. considered for µm(·) for F(·)
n1 a ∈ (a0,a0 +1/3n) q0 ≤ µm([0,a])≤ q0 +1/2n q0 ≤ F(a)≤ q0 +1/2n

n2 a ∈ [a0 +1/3n,a0 +2/3n] µm([0,a]) = q0 +1/2n F(a) = q0 +1/2n

n3 a ∈ (a0 +2/3n,a0 +1/3n−1 = b0) q0 +1/2n ≤ µm([0,a])≤ q0 +1/2n−1 q0 +1/2n ≤ F(a)≤ q0 +1/2n−1

Table 3.2: Mass distribution measure and Cantor function for one group of sub-cases at con-
struction level k = n.

equality holds at the endpoints of level k = n. Now, as n→∞, µm([0,a]) =F(a) ∀a∈ [0,1]

and µm((a,b]) = µm([0,b])−µm([0,a]) = F(b)−F(a) for every 0 ≤ a < b ≤ 1. This com-

pletes the proof of Proposition 4.
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Appendix C presents a proof of Proposition 5 for the quaternary Cantor-Lebesgue function

W (x).

Proposition 5. For any closed interval [0,a] ⊂ [0,1], the mass distribution measure is given by

µm([0,a]) =W (a) and for a half open interval (a,b], we have µm((a,b]) = µm([0,b])−µm([0,a]) =

W (b)−W (a) for every 0 ≤ a < b ≤ 1.

3.2.4 Relation between Hausdorff measure and the ternary Cantor-Lebesgue
function

In this section we establish a relation between the Hausdorff measure of dimension s= log2/ log3,

restricted to C(3), of [0,a]⊂ [0,1] and the extended Cantor-Lebesgue function F . More precisely,

we prove the claim that for every 0 ≤ a ≤ 1, H s([0,a]∩C(3)) = F(a). Then, the section con-

cludes by the proof of relation between the Hausdorff measure restricted to C(3) of (a,b]⊂ [0,1]

and F , H s((a,b]∩C(3)) = F(b)−F(a) for every 0 ≤ a < b ≤ 1.

By Theorem 3.1.7, C(3) has dimension s = log2/ log3 and Hausdorff measure H s(C(3)) = 1.

The ternary Cantor set can be constructed using the IFS given in eq. ( 2.65). T0(x) and T1(x)

are similarity transformations of scale factor 0 < λ = 1/3 < 1. The value of λ makes them

contractions and also Lipschitz mappings:

|T0(x)−T0(y)| ≤ 1
3 |x− y| ∀x,y ∈ [0,1]

|T1(x)−T1(y)|= |T0(x)+ 2
3 −T0(y)− 2

3 |= |T0(x)−T0(y)| ≤ 1
3 |x− y|

(3.50)

Then, by the scaling property of Hausdorff measure [15, p. 46] we have for every 0 ≤ a < b ≤ 1:

H s(Tk([a,b])) =
(︃

1
3

)︃s

H s([a,b]) =
1
2
H s([a,b]) k = {0,1} (3.51)

Then, the heuristic calculation performed in proving Theorem 3.1.7 can be extended as follows:

(a) At construction level 2, define CL1 = [0,1/9]∩C(3), CL2 = [2/9,1/3]∩C(3), CR1 = [2/3,7/9]∩

C(3), CR2 = [8/9,1]∩C(3) all disjoint, to obtain: C(3) =CL1 ∪CL2 ∪CR1 ∪CR2 .
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(b) We can write

H s(C(3)) = H s(CL1)+H s(CL2)+H s(CR1)+H s(CR2)

= 4× 1(︁
32
)︁s H s(C(3))

1 = 4× 1
(3s)2 .

(3.52)

Eq. ( 3.52) implies that H s(CL1) = H s(CL2) = H s(CR1) = H s(CR2) = 1/22.

(c) Continuing inductively, then at construction level n, the Hausdorff measure of the intersec-

tion of each closed interval in the union C(3)
n with C(3) equals 1/2n since the scaling ratio is

1/3n.

At construction level n, section 3.2.2 concluded to the uniform distribution of the unit mass,

assigning a mass of 1/2n to each closed interval giving mass distribution measure of 1/2n.

Clearly, the mass of each of these closed intervals U in C(3)
n equals the Hausdorff measure of

the intersection of each of these closed intervals with C(3), 1/2n and this ∀n ∈ N. So, we obtain

that H (U ∩C(3)) = µm(U) for every closed interval U arising in the construction of C(3) where

by the definition of E in eq.( 3.44, U ∈ E Also, the mass of the subsets of the complement of

C(3) is 0 which implies the Hausdorff measure of these subsets is 0. This leads to the following

proposition:

Proposition 6. For any closed interval [0,a] ⊂ [0,1], the Hausdorff measure, restricted to C(3),

is given by H ([0,a]∩C(3)) = F(a) and for half open interval (a,b], we have H ((a,b]∩C(3)) =

H ([0,b]∩C(3))−H ([0,a]∩C(3)) = F(b)−F(a) for every 0 ≤ a < b ≤ 1.

Proof.

With every closed interval U arising in the construction of C(3) contained in E , we have es-

tablished that H (U ∩C(3)) = µm(U) ∀U ∈ E . So the proof of Proposition 6 is exactly the same

as that of Proposition 4, since all that proof uses is the knowledge of µm(U) for such U .

Appendix D presents a proof of Proposition 6 for the quaternary Cantor-Lebesgue function

which formulation is as follows:
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Proposition 7. For any closed interval [0,a] ⊂ [0,1], the Hausdorff measure, restricted to C(4),

is given by H ([0,a]∩C(4)) =W (a) and for half open interval (a,b], we have H ((a,b]∩C(4)) =

H ([0,b]∩C(4))−H ([0,a]∩C(4)) =W (b)−W (a) for every 0 ≤ a < b ≤ 1.

3.2.5 Lebesgue-Stieltjes measures

From [19, p. 30-31], we briefly present the Lebesgue-Stieltjes measures on R. These are a

generalization of the Lebesgue measure. To obtain these Lebesgue-Stieltjes measures on R we

first take an increasing, right-continuous function G : R→ R, and second, assign to a half-open

interval (a,b] the measure:

µG((a,b]) = G(b)−G(a) (3.53)

Four reasons motivates the use of half-open intervals:

(a) a non-zero measure could be assign to a single point (see 2 below)

(b) we observe that the complement of a half-open interval of the type (a,b] can be a finite

union of half-open intervals of the same type where some of the half-open intervals could

be infinite.

(c) the Borel σ -algebra on R, B(R), can be generated from the algebra of unions of disjoint

half-opened intervals [16, Prop. 1.2(c), p. 22; p. 33]. We use that proposition from Folland

to arrive at the conclusion of Theorem 3.0.1

(d) intervals half-open at the left offer consistency when verifying the right-continuity of G,

since
∞⋂︂

k=1

(a,a+1/k] = /0 (3.54)

so, from the measure of a decreasing intersection [2, p. 44] and if G is to define a measure

we need

µG(
∞⋂︂

k=1

(a,a+1/k]) = lim
k→∞

µG((a,a+1/k]) = 0 (3.55)
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or by direct right continuity

lim
k→∞

[G(a,a+1/k)−G(a)] = lim
x→a+

G(x)−G(a) = 0 (3.56)

Conversely, as stated in the next theorem, any such function G defines a unique Borel

measure on R.

Theorem 3.2.2. (Ref:[19, p.30], [16, Thm 1.16, p. 35]) Suppose that G : R→R is an increasing,

right-continuous function. Then there is a unique Borel measure µG : B(R)→ [0, ] such that

µG((a,b]) = G(b)−G(a) (3.57)

for every a < b.

Here B(R) is the Borel σ -algebra on R [19, p. 34].

We have the following relevant examples:

Example 1: If G(x) = x then µG is Lebesgue measure on R with µG((a,b]) = G(b)−G(a) =

b−a = m((a,b]).

Example 2: If G monotone function on R, so G has only points of continuity or jump disconti-

nuity. Then ∀x ∈ R,

µG({x}) = lim
n→∞

µG((an,bn]) = lim
n→∞

(G(bn)−G(an)) (3.58)

for all sequences an < bn with an → x− and bn → x+. Therefore,

µG({x}) = G(x+)−G(x−) =

⎧⎪⎨⎪⎩ 0 if G is continuous at x

h otherwise, h: height of jump at x
(3.59)

This example illustrates the significance of using half-open intervals because by eq.

( 3.59), the Lebesgue-Stieltjes measure assigns non-zero measure to a single point
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where G has a finite jump.

The Cantor-Lebesgue functions F and W are both an increasing, right-continuous functions.

From Propositions 4 and 6, and Theorem 3.2.2, the question arises whether there is a relation

between µm3 ,H s and µF (G replaced by F)? By Theorem 3.2.2 any such increasing, right-

continuous function G defines a unique Borel measure on R. F is increasing and continuous

function on [0,1] but that can be further extended to the whole R by requiring that F(x) = 0 if

x ≤ 0 and F(x) = 1 for x ≥ 1, preserving the continuity of F on R. Then using the proposition

by Folland cited above, that B(R), can be generated from the algebra of unions of disjoint

half-opened intervals, we get that F defines a unique Borel Measure µF such that for every

Borel set A ∈ B we have:

µm3(A) = H s(A∩C(3)) = µF(A) (3.60)

answering the question in the affirmative. The above is illustrated in Figure 3.1. Similarly for

the quaternary Cantor set, we have that W defines a unique Borel Measure µW such that for

every Borel set A ∈ B we have:

µm4(A) = H s(A∩C(4)) = µW (A) (3.61)

This completes the first part of the proof of Theorem 3.0.1.

3.2.5.1 Measure on an interval as a Cantor set

In Section 2.1.2.1, the subdivision process used to create a binary tree of disjoint half-open

intervals (see Figure 2.2) is in fact a process to obtain the binary Cantor set which is [0,1)∪1 =

[0,1]. To see this, we take the intersection of all the unions of half-open intervals created at each

level k that gives [0,1) then we add 1 to obtain the binary Cantor set [0,1]. We have shown

in Example 1 above that for G(x) = x that Lebesgue measure m is a unique measure such that

µG((a,b]) = G(b)−G(a) = b−a = m((a,b]) for every 0 ≤ a < b ≤ 1. The binary Cantor set can
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be constructed using the following IFS:

B0(x) =
x
2

(3.62)

B1(x) =
x+1

2

Since B0(x) and B1(x) are well-defined and continuous over R, their inverses

B−1
0 (x) = 2x (3.63)

B−1
1 (x) = 2x−1

have the same properties. The binary Cantor set [0,1] enjoys results similar to what is found in

Propositions 4 and 6 for the ternary and quaternary Cantor sets with similar proofs that will

not be repeated here. These results are (s = 1):

µm2((a,b]) = µm2([0,b])−µm2([0,a])

= G(b)−G(a) = (b−a) for every 0 ≤ a < b ≤ 1

H s((a,b]) = H s([0,b])−H s([0,a])

= G(b)−G(a) = (b−a) for every 0 ≤ a < b ≤ 1.

(3.64)

3.3 Hutchinson’s theorem: measure on self-similar sets

In this section, we present a theorem by Hutchinson [18] that there exists a unique measure with

support on the ternary and quaternary Cantor sets and which satisfies recursive relations. This

is followed by a proof that the mass distribution measure satisfies these recursive expressions.

Following [14, p. 119], a mapping ψ :R−→R is called a contraction if |ψ(x)−ψ(y)| ≤ c|x−y|

for all x,y ∈ R, where c < 1. Clearly, the IFS’s for the ternary and quaternary Cantor sets are

contraction. They are also continuous over R as well as their respective inverse. The infimum

of c in each of the IFS’s is the contraction ratio r: 1/3 and 1/4 for the ternary and quaternary
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Cantor sets respectively. A contraction that transforms every subset of R to a geometrically

similar set is called a similitude. In the present case, each of the IFS’s represents a similitude

being a composition of a dilation and a translation. The contraction ratio is the scale factor of

the similitude.

Definition 3.3.1. A set E ⊂ R is called invariant for a set of contractions ψ1, . . . ,ψm if E =

∪m
j=1ψ j(E).

The ternary and quaternary Cantor sets, C(3) and C(4), are invariant for their respective

IFS. We adopted Falconer [14, p. 120] statement of Hutchinson’s theorem [18], in the following

form:

Theorem 3.3.2. There exist a unique Borel measure µ with support contained in E, such that

for any Borel set F ,

µ(F) =
m

∑
j=1

rs
jµ(ψ

−1
j (F)) (3.65)

where each IFS equation ψ j has a contraction ratio r j. For the ternary and quaternary the

contraction ratio r j is the same in both equations of the IFS so the infimum of the {r j} defining

r is 1/3 and 1/4.

For the ternary and quaternary Cantor sets with respective Hausdorff dimension of s3 =

log2/ log3 and s4 = log2/ log4 = 1/2, eq.( 3.65) takes the form for any Borel set F :

µ3(F) =
1
2
(µ3(T−1

0 (F))+µ3(T−1
1 (F))) ternary (3.66)

µ4(F) =
1
2
(µ4(τ

−1
0 (F))+µ4(τ

−1
1 (F))) quaternary (3.67)

For the ternary Cantor set, r j = 1/3 for both j = {0,1} and (1/3)s3 = 1/2. Similarly, for

the quaternary Cantor set r j = 1/4 for both j = {0,1} and (1/4)s4 = 1/2. This explains the

1/2 factor on the right-hand side of both eqs.( 3.66) and ( 3.67). We observe the absence of an

explicit expression for µ3 and µ4, rather the expressions for µ3 and µ4 are recursive.
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3.3.1 Ternary and Quaternary Cantor Measure by mass distribution

We present a verification that for any Borel set A ⊂ [0,1], the mass distribution measures mm3(·)

and mm4(·) satisfy the recursive relations in eq. ( 3.66) and eq. ( 3.67) respectively. The IFS’s

and their inverse for the ternary and quaternary Cantor sets are given by the eqs. ( 2.65),

( 2.66), ( 2.68) and ( 2.69). The main difference between these is the contraction ratio and

this enable writing these in a common form for C(p) where p ∈ {3,4} (ternary when p = 3 and

quaternary when p = 4):

γ0(x) =
x
p

(3.68)

γ1(x) =
x+2

p

γ
−1
0 (x) = px (3.69)

γ
−1
1 (x) = px−2

and the recursive expression for the measure takes the form

µmp(A) =
1
2
(µmp(γ

−1
0 (A))+µmp(γ

−1
1 (A))) (3.70)

Step 1 Note that γ0(x), γ1(x), γ
−1
0 (x) and γ

−1
1 (x) are linear transformations, straight lines in R2,

continuous over all of R.

Step 2 Additional properties of γ0, γ1,γ−1
0 and γ

−1
1 when domain is the set of closed intervals in

construction of C(p):

(i) Figure 3.8 shows the trees of application of γ0, γ1, γ
−1
0 and γ

−1
1 on the set of closed

intervals - represented as • - in construction of C(p)
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(ii) Base case k = 0, let J0,0 = [0,1] then γ0(J0,0) = [0,1/p] = J1,0 ∈ E and γ1(J0,0) =

[2/p,3/p] = J1,1 ∈ E .

(iii) For k ≥ 1 (see Figure 3.8):

E L
k =

{︁
Jk,ℓ : Jk,ℓ ⊂ [0,1/2]

}︁
=

{︁
Jk,ℓ : 0 ≤ ℓ≤ 2k−1 −1

}︁
E R

k =
{︁

Jk,ℓ : Jk,ℓ ⊂ [1/2,1]
}︁

=
{︁

Jk,ℓ : 2k−1 ≤ ℓ≤ 2k −1
}︁ (3.71)

(iv) As linear maps in R, γ0 and γ1 are bijections since:

(a) From Figure 3.8(a), γ0 maps the whole tree at level k−1 onto the left-half tree

at level k and γ1 maps the whole tree at level k−1 onto the right-half tree at

level k

(b) From Figure 3.8(b), γ
−1
0 maps the left-half tree at level k onto the whole tree

at level k−1 and γ
−1
1 maps the right-half tree at level k onto the whole tree at

level k−1

(c) From Figure 3.8(a) and (b), these mappings are clearly one-to-one.

(v) Consider the 2k−1 closed intervals
{︁

Jk−1,ℓ
}︁2k−1−1
ℓ=0 contained in Ek−1.

(a) Each Jk−1,ℓ = γ
−1
0 ( ˜︁Jk,n) for some ˜︁Jk,n ∈ E L

k since γ0 is a bijection between Ek−1

and E L
k . Hence, for ˜︁Jk,n ∈ E R

k , that is ˜︁Jk,n ⊂ [2/p,3/p], γ
−1
0 ( ˜︁Jk,n) ⊂ [2,3] by

eq. ( 3.69) since γ
−1
0 is continuous over all of R. Therefore, ˜︁Jk,n ∈ E R

k implies

γ
−1
0 ( ˜︁Jk,n) disjoint from any Jk−1,ℓ ∈ Ek−1.

(b) Each Jk−1,ℓ = γ
−1
1 ( ˜︁Jk,n) for some ˜︁Jk,n ∈ E R

k since γ1 is a bijection between Ek−1

and E R
k . Hence, for ˜︁Jk,n ∈ E L

k , that is ˜︁Jk,n ⊂ [0,1/p], γ
−1
1 ( ˜︁Jk,n) ⊂ [−2,−1] by

eq. ( 3.69) since γ
−1
1 is continuous over all of R. Therefore, ˜︁Jk,n ∈ E L

k implies

γ
−1
1 ( ˜︁Jk,n) disjoint from any Jk−1,ℓ ∈ Ek−1.

(c) Thus, γ
−1
0 (E R

k ) does not intersect any Jk,ℓ ∈ Ek−1 so ∀ ˜︁Jk,n ∈ E R
k , γ

−1
0 ( ˜︁Jk,n) ⊂

E c
k−1 ⊂ (C(p))c and the mass µmp(γ

−1
0 ( ˜︁Jk,n)) = 0. Similarly, γ

−1
1 (E L

k ) does not

intersect any Jk,ℓ ∈ Ek−1, so the mass µmp(γ
−1
1 ( ˜︁Jk,n)) = 0 ∀ ˜︁Jk,n ∈ E L

k .
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(d) For all U ⊂ (−∞,0]⊂ (C(p))c, the mass µmp(U ) = 0. Since γ
−1
0 is continuous on

all of R then by eq.( 3.69), γ
−1
0 (U )⊂ (−∞,0] and the mass µmp(γ

−1
0 (U )) = 0.

Similarly, since γ
−1
1 is continuous on all of R then by eq.( 3.69), γ

−1
1 (U ) ⊂

(−∞,−2] and the mass µmp(γ
−1
1 (U )) = 0.

(e) For all U ⊂ (3/p,∞)⊂ (C(p))c, the mass µmp(U ) = 0. Since γ
−1
0 is continuous

on all of R then by eq.( 3.69), γ
−1
0 (U )⊂ (3,∞) and the mass µmp(γ

−1
0 (U )) = 0.

Similarly, since γ
−1
1 is continuous then by eq.( 3.69), γ

−1
1 (U )⊂ (2,∞) and the

mass µmp(γ
−1
1 (U )) = 0.

(vi) In terms of mass distribution we have

Case 1: Consider Jk,ℓ ∈ E L
k then

1
2k = µmp(Jk,ℓ) = 1

2

[︁
µmp(γ

−1
0 (Jk,ℓ))+µmp(γ

−1
1 (Jk,ℓ))

]︁

= 1
2

[︂
1

2k−1 +0
]︂
= 1

2k

(3.72)

Case 2: Consider Jk,ℓ ∈ E R
k then

1
2k = µmp(Jk,ℓ) = 1

2

[︁
µmp(γ

−1
0 (Jk,ℓ))+µmp(γ

−1
1 (Jk,ℓ))

]︁

= 1
2

[︂
0+ 1

2k−1

]︂
= 1

2k

(3.73)

Case 3: For all U ⊂ (−∞,0]⊂ (C(p))c

0 = µmp(U ) = 1
2

[︁
µmp(γ

−1
0 (U ))+µmp(γ

−1
1 (U ))

]︁

= 1
2 [0+0] = 0

(3.74)
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Case 4: For all U ⊂ [1,∞)⊂ (C(p))c

0 = µmp(U ) = 1
2

[︁
µmp(γ

−1
0 (U ))+µmp(γ

−1
1 (U ))

]︁

= 1
2 [0+0] = 0

(3.75)

Therefore, in terms of mass distribution, we have shown that ∀U ∈ E :

µmp(U ) =
1
2
[︁
µmp(γ

−1
0 (U ))+µmp(γ

−1
1 (U ))

]︁
(3.76)

•
J0,0

E0

•
J1,0

γ0

•
J1,1

γ1

E1

· ·· · Intermediate construction levels· ·· ·· ·•Jk−1,0

γ0

•Jk−1,1

γ0

. . . Other Jk−1,l . . . • Jk−1,2k−1−2

γ1

• Jk−1,2k−1−1

γ1

Ek−1

•Jk,0

γ0

•

γ0

•

γ0

•

γ0

•
γ1

•

γ1

•

γ1

• Jk,2k−1

γ1

Ek

E L
k E R

k
(a)

•
E0

•

γ
−1
0

•

γ
−1
1

E1

· ·· · Intermediate construction levels· ·· ·· ·•

γ
−1
0

•

γ
−1
0

•

γ
−1
1

•

γ
−1
1

Ek−1

•

γ
−1
0

•
γ
−1
0 •

γ
−1
0

•

γ
−1
0

•
γ
−1
1

•

γ
−1
1

•

γ
−1
1

•

γ
−1
1

Ek

E L
k E R

k
(b)

Figure 3.8: Trees of application of γ0, γ1, γ
−1
0 and γ

−1
1 on the set of closed intervals in construction

of C(p)
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Step 3 Lower bound for µmp(A):

(i) Consider a cover {Vi} of A∩C(p) with Vi ∈ E . That is, A∩C(p) ⊂
⋃︁

iVi. Since γ
−1
0

and γ
−1
1 are continuous on all of R, we have that

{︁
γ
−1
0 (Vi)

}︁
and

{︁
γ
−1
1 (Vi)

}︁
are in

E . Now consider:

γ0(γ
−1
0 (A)∩C(p)) = γ0(γ

−1
0 (A))∩ γ0(C(p))⊂ A∩C(p) ⊂

⋃︂
i

Vi (3.77)

where γ0(C(p)) is the left part of C(p) with γ0(C(p)) ⊂ C(p). Then from eq. (3.77)

we have that

A∩ γ0(C(p))⊂
⋃︂

i

Vi (3.78)

Then we obtain from eq. ( 3.78) that

γ
−1
0 (A∩ γ0(C(p))) ⊂ γ

−1
0 (

⋃︁
iVi)

γ
−1
0 (A)∩C(p) ⊂ γ

−1
0 (

⋃︁
iVi)

(3.79)

(ii) By definition:

µmp(γ
−1
0 (A)) = inf

{︂
∑i µmp(Ui) : γ

−1
0 (A)∩C(p) ⊂

⋃︁
i Ui, Ui ∈ E

}︂
≤ ∑i µmp(γ

−1
0 (Vi))

(3.80)

where from eq. ( 3.79), we take Ui = γ
−1
0 (Vi). Similarly,

µmp(γ
−1
1 (A))≤ ∑

i
µmp(γ

−1
1 (Vi)) where we take Ui = γ

−1
1 (Vi) (3.81)

(iii) Combining ineq. ( 3.80) and ( 3.81), we obtain:

1
2
[︁
µmp(γ

−1
0 (A))+µmp(γ

−1
1 (A))

]︁
≤ 1

2

[︄
∑

i
µmp(γ

−1
0 (Vi))+∑

i
µmp(γ

−1
1 (Vi))

]︄
(3.82)
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By eq.( 3.76) we have:

1
2
[︁
µmp(γ

−1
0 (A))+µmp(γ

−1
1 (A))

]︁
≤ ∑

i
µmp(Vi) (3.83)

and eq.( 3.83) is true for any cover of A∩C(p) ̸= /0 by elements of E .

(iv) Taking the infimum over all such covers on the right-hand side of ineq.( 3.83),

keeping in mind the left-hand side of ineq.( 3.83) is already an infimum (fixed real

number) , we get the lower bound for µmp(A):

1
2
[︁
µmp(γ

−1
0 (A))+µmp(γ

−1
1 (A))

]︁
≤ µmp(A) (3.84)
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γ
−1
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0 ([2/3,1]) = [2,3]

(a): for p = 3, ternary Cantor set
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γ
−1
1 (AL)⊂ γ

−1
1 ([0,1/4]) = [−2,−1]

γ
−1
1 (AR)⊂ γ

−1
1 ([1/2,3/4]) = [0,1]

γ
−1
0 (AL)⊂ γ

−1
0 ([0,1/4]) = [0,1]

γ
−1
0 (AR)⊂ γ

−1
0 ([1/2,3/4]) = [2,3]

(b): for p = 4, quaternary Cantor set

Figure 3.9: Sets AL and AR and location of γ
−1
0 (AL), γ

−1
0 (AR), γ

−1
1 (AL), γ

−1
1 (AR) with respect to

[0,1] for both p = {3,4}.

Step 4 Upper bound for µmp(A):

(i) Given ε > 0, the aim of this step is to show:

µmp(A)<
1
2
[︁
µmp(γ

−1
0 (A))+µmp(γ

−1
1 (A))

]︁
+ ε (3.85)
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and since ε is arbitrary, we would obtain:

µmp(A)≤
1
2
[︁
µmp(γ

−1
0 (A))+µmp(γ

−1
1 (A))

]︁
, (3.86)

an upper bound for µmp(A).

(ii) With A ⊂ [0,1], the mass of A∩ (1/p,2/p) is equal to 0. Thus, we define AL =

A∩ [0,1/p] and AR = A∩ [2/p,3/p] as illustrated in Figure 3.9. Clearly, AL and AR

are disjoint and we have in terms of mass distribution:

µmp(A) = µmp(A
L)+µmp(A

R) (3.87)

(iii) Since γ0 and γ1 are bijection, referring to Figure 3.9 we can write:

γ
−1
i (A) = γ

−1
i (AL)∪ γ

−1
i (AR) i = {0,1}. (3.88)

Since γ
−1
i (AL) and γ

−1
i (AR) are disjoint, we have in terms of mass distribution:

µmp(γ
−1
i (A)) = µmp(γ

−1
i (AL))+µmp(γ

−1
i (AR)) i = {0,1} (3.89)

(iv) From Figure 3.9 we make the key observation that γ
−1
0 (AR)∩C(p) = /0 and γ

−1
1 (AL)∩

C(p) = /0. So, µmp(γ
−1
0 (AR)) = 0, µmp(γ

−1
1 (AL)) = 0 and eq. ( 3.89) becomes:

µmp(γ
−1
0 (A)) = µmp(γ

−1
0 (AL)) (3.90)

and

µmp(γ
−1
1 (A)) = µmp(γ

−1
1 (AR)). (3.91)
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(v) By using eqs. ( 3.90) and ( 3.91) in ineq. ( 3.85), it suffices to show that:

µmp(A)<
1
2
[︁
µmp(γ

−1
0 (AL))+µmp(γ

−1
1 (AR))

]︁
+ ε (3.92)

(vi) By definition:

µmp(γ
−1
1 (AR)) = inf

{︄
∑

i
µmp(Ui) : γ

−1
1 (AR)∩C(p) ⊂

⋃︂
i

Ui, Ui ∈ E

}︄
(3.93)

We choose for cover, a collection of closed intervals Ji from the construction of C(p).

For those we obtain:

µmp(γ
−1
1 (AR))≤ ∑

i
µmp(Ji) (3.94)

Note: As illustrated in Figure 3.9, γ
−1
1 (AR) “spreads” over [0,1].

(vii) γ1 is a bijection and a contraction. In addition, it is continuous. So µmp(γ1(Ji))<

µmp(Ji) and all γ1(Ji) are closed subsets [2/p,3/p] and γ(Ji) ∈ E . Taking for cover

these γ1(Ji) we have by definition of µmp(·) (a set function):

µmp(A
R)≤ ∑

i
µmp(γ1(Ji)) (3.95)

(viii) For closed sets (intervals) J in E we showed in Step 3, (vi) that

µmp(J) =
1
2
[︁
µmp(γ

−1
0 (J))+µmp(γ

−1
1 (J))

]︁
(3.96)

So, using eq. ( 3.96), we can write ineq. ( 3.95) as follows:

µmp(A
R)≤ ∑

i
µmp(γ1(Ji)) =

1
2 ∑

i

[︁
µmp(γ

−1
0 (γ1(Ji)))+µmp(γ

−1
1 (γ1(Ji)))

]︁
(3.97)
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Since all γ1(Ji)⊂ [2/p,3/p], µmp(γ
−1
0 (γ1(Ji))) = 0 ∀i∈N, then ineq. (3.97) becomes:

µmp(A
R)≤ 1

2 ∑
i

µmp(γ
−1
1 (γ1(Ji))) =

1
2 ∑

i
µmp(Ji) (3.98)

(ix) Let ε > 0. By Archimedean Principle [6, p. 27] and recalling that µmp(γ
−1
1 (AR)) is

an infimum, there exists a cover of closed intervals from the construction of C(p)

such that:

µmp(γ
−1
1 (AR)) ≤ ∑i µmp(Ji) < µmp(γ

−1
1 (AR))+ ε

1
2 µmp(γ

−1
1 (AR)) ≤ 1

2 ∑i µmp(Ji) < 1
2 µmp(γ

−1
1 (AR))+ ε

2

(3.99)

(x) Using the < part of ineq. ( 3.99), ineq. ( 3.98) becomes:

µmp(A
R)≤ 1

2 ∑
i

µmp(Ji)<
1
2

µmp(γ
−1
1 (AR))+

ε

2
(3.100)

(xi) By definition:

µmp(γ
−1
1 (AL)) = inf

{︄
∑

i
µmp(Ui) : γ

−1
0 (AL)∩C(p) ⊂

⋃︂
i

Ui, Ui ∈ E

}︄
(3.101)

We choose for cover, a collection of closed intervals Ji from the construction of C(p).

For those we obtain:

µmp(γ
−1
0 (AL))≤ ∑

i
µmp(Ji) (3.102)

Note: As illustrated in Figure 3.9, γ
−1
0 (AL) “spreads over [0,1]. That is γ

−1
0 (AL) is

not confined to [0,1/4]

(xii) γ0 is a bijection and a contraction. In addition, it is continuous. So µmp(γ0(Ji))<

µmp(Ji) and all γ0(Ji) are closed subsets [0,1/4] and γ(Ji) ∈ E . Taking for cover
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these γ0(Ji) we have by definition of µmp(·) (a set function):

µmp(A
L)≤ ∑

i
µmp(γ0(Ji)) (3.103)

(xiii) Using eq. ( 3.96), we can write ineq. ( 3.103) as follows:

µmp(A
L)≤ ∑

i
µmp(γ0(Ji)) =

1
2 ∑

i

[︁
µmp(γ

−1
0 (γ0(Ji)))+µmp(γ

−1
0 (γ1(Ji)))

]︁
(3.104)

Since all γ0(Ji)⊂ [0,1/p], µmp(γ
−1
0 (γ1(Ji))) = 0 ∀i ∈N, then ineq. (3.104) becomes:

µmp(A
L)≤ 1

2 ∑
i

µmp(γ
−1
0 (γ0(Ji))) =

1
2 ∑

i
µmp(Ji) (3.105)

(xiv) Let ε > 0. By Archimedean Principle [6, p. 27] and recalling that µmp(γ
−1
0 (AL)) is

an infimum, there exists a cover of closed intervals from the construction of C(p)

such that:

µmp(γ
−1
0 (AL)) ≤ ∑i µmp(Ji) < µmp(γ

−1
0 (AL))+ ε

1
2 µmp(γ

−1
0 (AL)) ≤ 1

2 ∑i µmp(Ji) < 1
2 µmp(γ

−1
0 (AL))+ ε

2

(3.106)

(xv) Using the < part of ineq. ( 3.106), ineq. ( 3.105) becomes:

µmp(A
L)≤ 1

2 ∑
i

µmp(Ji)<
1
2

µmp(γ
−1
0 (AL))+

ε

2
(3.107)

(xvi) Adding the < part of ineqs. ( 3.100) and ( 3.107) and using eq. ( 3.87) we obtain:

µmp(A) = µmp(A
L)+µmp(A

R)<
1
2
[︁
µmp(γ

−1
0 (AL))+µmp(γ

−1
1 (AR))

]︁
+ ε (3.108)

Since ε > 0 is arbitrary, ineq. ( 3.108) becomes:

µmp(A)≤
1
2
[︁
µmp(γ

−1
0 (AL))+µmp(γ

−1
1 (AR))

]︁
(3.109)
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Ineq.( 3.109) with eqs. ( 3.90) and ( 3.91) imply that:

µmp(A)≤
1
2
[︁
µmp(γ

−1
0 (A))+µmp(γ

−1
1 (A)

]︁
(3.110)

which is the desired result for this step.

Step 5 From ineqs. ( 3.84) and ( 3.110) we obtain that:

µmp(A) =
1
2
[︁
µmp(γ

−1
0 (A))+µmp(γ

−1
1 (A)

]︁
(3.111)

This completes the proof by mass distribution for µmp(·) of eq. ( 3.70) for any Borel set

A ⊂ [0,1].

As defined in Section 3.2.5.1, the binary Cantor set [0,1] enjoys results similar to what is

found in eq. ( 3.70) and ( 3.114) with similar proof that will not be repeated here. We then

have :

µm2(A) =
1
2
[︁
µm2(B

−1
0 (A))+µm2(B

−1
1 (A)

]︁
for any Borel set A ⊂ [0,1] (3.112)

3.4 Relation between measures on Cantor sets

In Section 3.2.5 gives the proof of the first part of Theorem 3.0.1. The proof follows the steps

in the flowchart of Figure 3.1 and shows the results given in eq. ( 3.1).

In the above we have shown the following results:
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1. for ternary Cantor set (s = log2/ log3):

µm3((a,b]) = µm3([0,b])−µm3([0,a])

= F(b)−F(a) for every 0 ≤ a < b ≤ 1

H s((a,b]∩C(3)) = H s([0,b]∩C(3))−H s([0,a]∩C(3))

= F(b)−F(a) for every 0 ≤ a < b ≤ 1.

µm3(A) = 1
2

[︁
µm3(T

−1
0 (A))+µm3(T

−1
1 (A)

]︁
for any Borel set A ⊂ [0,1]

(3.113)

2. for quaternary Cantor set (s = log2/ log4 = 1/2):

µm4((a,b]) = µm4([0,b])−µm4([0,a])

= W (b)−W (a) for every 0 ≤ a < b ≤ 1

H s((a,b]∩C(4)) = H s([0,b]∩C(4))−H s([0,a]∩C(4))

= W (b)−W (a) for every 0 ≤ a < b ≤ 1.

µm4(A) = 1
2

[︁
µm4(τ

−1
0 (A))+µm4(τ

−1
1 (A)

]︁
for any Borel set A ⊂ [0,1]

(3.114)

Note: Slight change in nomenclature: µm3(·) is mass distribution measure on C(3) and

µm4(·) is mass distribution measure on C(4).

The Cantor-Lebesgue functions F and W are both an increasing, right-continuous function.

From Propositions and Theorem 3.2.2, the question arises whether there is a relation between

µm3 ,H s and µF (G replaced by F)? By Theorem 3.2.2 any such increasing, right-continuous

function G defines a unique Borel measure on R. F is increasing and continuous function on

[0,1] but that can be further extended to the whole R by requiring that F(x) = 0 if x ≤ 0 and

F(x) = 1 for x ≥ 1, preserving the continuity of F on R. Then F defines a unique Borel Measure

µF such that for every Borel set A ∈ B we have:

µm3(A) = H s(A∩C(3)) = µF(A) (3.115)
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answering the question in the affirmative. The above is illustrated in Figure 3.1. Similarly for

the quaternary Cantor set, we have that W defines a unique Borel Measure µW such that for

every Borel set A ∈ B we have:

µm4(A) = H s(A∩C(4)) = µW (A) (3.116)

where the function W (x) is further extended to the whole R by requiring that W (x) = 0 if x ≤ 0

and W (x) = 1 for x ≥ 3/4, preserving the continuity of W on R.

Hutchinson’s Theorem states that there exists a unique Borel measure µH with support

contained in C(3) such that for any Borel set A ∈ B(R), µH(A) = 1/2∑
2
j=1 µH(T−1

j (A)). We

showed that µm3(A) satisfies the recursive relation for µH(A). Therefore, by the uniqueness of

µH we have that:

µm3(A) = µH(A) (3.117)

for every Borel set A ∈ B(R). This is illustrated in Figure 3.2. Similarly, for the quaternary

Cantor set we have:

µm4(A) = µH(A) (3.118)

for every Borel set A ∈ B(R).

This completes the proof of the second part of Theorem 3.0.1 and the theorem is completely

proved.
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Chapter 4

Frames for measures on Cantor sets

4.1 Background on Frames

Duffin and Schaeffer [9] were the first to introduce frames and present their general definition.

However, the core subject of their paper [9] is non-harmonic Fourier series in the context of se-

quences of complex exponential functions. The monograph of Young [28] presents non-harmonic

Fourier series including frames of exponentials.

In studying vector spaces, basis arises to be of a notion of paramount importance. Having

a basis represents an ideal tool to represent every vector in a given vector space by a linear

expansion in terms of basis elements. However, that ideal tool often imposes requirements

on the basis elements such as to be linearly independent and orthogonal with respect to an

inner product. If additional requirements need to be satisfied, then that ideal tool becomes

difficult or sometimes impossible to sustain. So, to obtain a more flexible tool, we have to relax

these requirements. That is, new elements are added to the original basis to satisfy additional

requirements but these new elements need not be independent and perhaps be orthogonal with

respect to the inner product. This gives an “extended basis” that is called a frame and it has the

same property as a basis which is that every vector in a given vector space can be represented
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by a linear expansion in terms of frame elements.

On top of linear independence and orthogonality, uniqueness of representation of vectors is

also a requirement that comes in for any practical use of representations, may they be linear

combinations or series. Again, this requirement can cause problem rather than help. For

example, let en be an orthonormal basis for a Hilbert space. Then f = ∑n⟨ f ,en⟩en is unique and

the sequence of coefficients {⟨ f ,en⟩}n∈N characterise f . In data transmission, prior “sending” f

as a “signal”, f is represented by a unique series f = ∑n⟨ f ,en⟩en where sequence of coefficients

{⟨ f ,en⟩}n∈N characterise f . Ideally the data transmission consists in actually sending only the

sequence of coefficients and at the receiving point, the “signal” f is recovered by using its series

representation. However, the lost of only one coefficient ⟨ f ,en⟩ has a profound consequence. It

makes the recovery of the “signal” f a very difficult, if not impossible, task. There could be a

lost of more than one coefficient and redundancy in the sequence of coefficients could represent

a viable way to recover the “signal” f from the coefficients that reach the receiving point.

Having redundancy points to an “extended basis” where, for example, elements of the basis

would be repeated but multiplied by a scalar making the basis no longer linearly independent

and orthogonal. Frames provide such basis-like but usually redundant series representations

of vectors in a Hilbert space. Although frames found many applications in engineering, pure

mathematics sees them as important tools.

In this section we present the elements of frames in Hilbert spaces with some examples.

4.2 Elements of frames

Each orthonormal basis {en} for a Hilbert space H satisfies the Plancherel equality. It states

that ∑n ∥⟨x,en⟩∥2 = ∥x∥2 ∀x ∈ H . However, a sequence {xn} can satisfy Plancherel equality

without being orthonormal or a basis. For example, let H = R2 and

x1 = (1,0), x2 = (0,1), x3 = (
1√
2
,

1√
2
), x4 = (− 1√

2
,

1√
2
) (4.1)
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We observe that {x1,x2} and {x3,x4} are each an orthonormal basis for R2 so we have

4

∑
i=1

∥⟨x,xn⟩∥2 = 2∥x∥2 (4.2)

Therefore the sequence {xn/
√

2}4
i=1 satisfies the Plancherel equality i.e.

4

∑
i=1

∥⟨x,xn⟩∥2

2
=

2∥x∥2

2
= ∥x∥2; (4.3)

however, it is neither orthogonal nor a basis for R2. Such sequences that satisfy the Plancherel

equality are called Parseval frames.

Let us look at another, less trivial, example of a Parseval frame defined by:

x1 = (0,1), x2 = (−
√

3
2

,−1
2
), x3 = (

√
3

2
,−1

2
) (4.4)

then
3

∑
i=1

∥⟨x,xn⟩∥2 =
3
2
∥x∥2 ∀x ∈ R2 (4.5)

So, if we set a =
√︁

2/3 then the sequence {ax1,ax2,ax3} is a Parseval frame. To see this let

x = (u,v) ∈ R2 then

3

∑
i=1

∥⟨x,
√︃

2
3

xn⟩∥2 =

⃓⃓⃓⃓
⃓0+

√︃
2
3

v

⃓⃓⃓⃓
⃓
2

+

⃓⃓⃓⃓
⃓−
√︃

2
3

u

√
3

2
−
√︃

2
3

v
2

⃓⃓⃓⃓
⃓
2

+

⃓⃓⃓⃓
⃓
√︃

2
3

u

√
3

2
−
√︃

2
3

v
2

⃓⃓⃓⃓
⃓
2

=
2v2

3
+

u2

2
+

uv√
3
+

v2

2 ·3
+

u2

2
− uv√

3
+

v2

2 ·3

=
u2

2
+

u2

2
+

2v2

3
+

v2

2 ·3
+

v2

2 ·3

= u2 + v2 = ∥x∥2

(4.6)

Although it is a Parseval frame, it is not a union of orthogonal bases in R2 as in the previous

example. This frame is called the Mercedes frame as shown in Figure 4.1:

Using three-dimensional visualization, it can seen the Mercedes frame is the orthogonal
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x

y
1

1

x1

x2 x3

Figure 4.1: The three vectors of the Mercedes frame with blue dashed unit circle for comparison.

projection of a certain orthonormal basis for R3 onto a two-dimensional plane (see Appendix G).

The definition of a generic frame imposes a less stringent requirement than for a Parseval

frame where the Plancherel equality must satisfied.

Definition of Frame: A sequence {xn} in a Hilbert space H is a frame for H if there exist

constants A,B > 0 such that the following pseudo-Plancherel inequality holds:

A∥x∥2 ≤ ∑
n
|⟨x,xn⟩|2 ≤ B∥x∥2 ∀x ∈ H (4.7)

The constants A and B are called the frame bounds. These constants A and B are of

paramount importance not only for the existence of the frame itself but also for the reconstruc-

tion of the original function f from the transmitted coefficients of the representation of the

function f . “Unfortunately, in many cases of interest only a crude upper bound B and only the

existence of a lower bound A are known. The determination of frame bounds is often a difficult

mathematical problem and for instance there is only a handful of situations in wavelet theory

where explicit estimates are known” [17].

The following special type of frames are important:

Definition Let {xn} be a frame for a Hilbert space H , then:

• {xn} is a tight frame if we can choose A = B as frame bounds.
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• {xn} is a Parseval frame if A = B = 1 are frame bounds.

• {xn} is an exact frame if it ceases to be a frame whenever any single element is deleted

from the sequence.

Note: One-sided inequalities gives Bessel sequences and Riesz-Fischer sequence [25, pp.

75-76].

4.3 Fourier transform of Binary, Ternary and Quaternary Measures

While the theory of frames is well developed (see [4],[5]), the literature on frames on Cantor

sets is recent and limited, see [10],[11],[12],[23],[24]. Central in defining frames of exponentials

on Cantor sets is the set of integers obtained from the Fourier transform of each measure

supported on the corresponding Cantor set. That set of integers is hereafter called a spectrum.

Jorgensen and Pedersen [20] and [21] were among the first authors to discuss the spectrum of

a measure supported on the corresponding Cantor set. Following some parts of their work,

this section provides an analysis of the Fourier transform of the binary, ternary and quaternary

measures with the aim of defining a frame for each one of them on their respective Cantor

set. Theorem 3.0.1 shows an equivalence between four measures considered in this work for the

ternary and quaternary Cantor sets. These are self-similar measures and they are denoted by

µp (p = {2,3.4}) with support respectively in:

• the binary Cantor set [0,1], since µ2 is the Lebesgue measure on [0,1],

• the ternary Cantor set C(3),

• the quaternary Cantor set C(4).

Defining N0 = {0}∪N, we show the analytic functions {en = ei2πnx : n ∈ N0, x ∈ R} contain

an orthonormal basis in L2(µ) for each of the binary and quaternary measures, but not for the
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ternary measure. A distinct subset P ⊂N0 identifies each of these orthonormal bases such that

{en : n ∈ P} form an orthonormal basis for L2(µ).

We start by the definition of the Fourier transform:

Definition 4.3.1. For t ∈ R, the Fourier transform of µp (p = {2,3,4}) is given by

µ̂ p(t) =
∫︂

A
ei2πtxdµp(x) (4.8)

where A is a Borel set that contains the support of the measure.

Taking the Fourier Transform of these measures implies integration of ei2πtx with respect

with these measures.

We analyse first the Fourier transform of quaternary measure followed by the analysis of the

binary and ternary measures.

4.3.1 Fourier transform of the Quaternary Measure

Jorgensen and Pedersen developed in [20] what they call “a unique probability measure µ4 on

R of compact support”, such that:

∫︂
f dµ4 =

1
2

(︃∫︂
f
(︂x

4

)︂
dµ4(x)+

∫︂
f
(︃

x
4
+

1
2

)︃
dµ4(x)

)︃
(4.9)

for all continuous functions f . The support of µ4 is the quaternary Cantor set C(4) obtained

by dividing I = [0,1] into four equal subintervals, and retaining only the first and third. The

quaternary Cantor set can also be constructed as done in Chapter 3 using the following Iterated

Function System (IFS) (see Figure 4.2):

τ0(x) =
x
4

(4.10)

τ1(x) =
x+2

4
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where τ0(x) and τ1(x) are the argument of the continuous function f in the first and second

integrals respectively, on the right-hand side of eq. ( 4.9).

E1

E2

E3

0
1
4

1
2

3
4
3
4 1

E0

Figure 4.2: Few construction levels of the quaternary Cantor set for the support of µ4

µ4 defined by Jorgensen and Pedersen in [20] is in fact our µ4. The measure µ4 on C(4)

assigns a measure of 1/2 to each of the sets C(4) ∩ [0,1/4] and C(4) ∩ [1/2,3/4], measure 1/4

to each of the four closed intervals at the next stage, etc. Eq. ( 4.9), developed by Jorgensen

and Pedersen in [20], gives in fact a formula to obtain
∫︁

f dµ4 for all continuous functions f .

Although we could have use that formula straight away, in this work, we take the different

approach of developing eq. ( 4.9) by combining the recursive relations for µp (p = {2,3,4}) with

a change of variable as documented in Appendix B.

Since ei2πtx is continuous, then by eq.( 4.9) we can write:

µ̂4(t) =
∫︁

ei2πtxdµ4(x) = 1
2

(︂∫︁
ei2π

t
4 xdµ4(x)+

∫︁
ei2π

t
4 x+i2πt 1

2 dµ4(x)
)︂

= 1
2

(︂∫︁
ei2π

t
4 xdµ4(x)+ eiπt ∫︁ ei2π

t
4 xdµ4(x)

)︂
= 1

2

(︁
1+ eiπt)︁∫︁ ei2π

t
4 xdµ4(x)

= 1
2

(︁
1+ eiπt)︁ µ̂4(

t
4)

(4.11)

Appendix I gives an alternate way to arrive at eq. ( 4.11) by considering the C-L function W as

the distribution function of µ4. From eq.( 4.11) (last line), we define for the quaternary Cantor

set:

χ4(t) =
1
2
(︁
1+ eiπt)︁ . (4.12)
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Then eq.( 4.11) can be written as follows:

µ̂4(t) = χ4(t)µ̂4(
t
4
) (4.13)

From eq. ( 4.11) we can write:

µ̂4(
t
4
) =

1
2

(︂
1+ eiπ t

4

)︂
µ̂4(

t
42 ) (4.14)

For t = 0, eq. ( 4.8) becomes

µ̂4(0) =
∫︂

1dµ4 =
∫︂

χC(4)dµ4 = µ4(C(4)) (4.15)

By mass distribution µ4(C(4)) = 1 and we get that µ̂4(0) = 1. Then, we iterate the relation in

eq. ( 4.14) N times to obtain:

µ̂4(t) =

[︄
N

∏
n=0

χ4(
t

4n )

]︄
µ̂4(

t
4N+1 ) (4.16)

Taking N → ∞ and using the continuity of µ̂4(t) at t = 0, we can write

µ̂4(t) =
[︁
∏

∞
n=0 χ4(

t
4n )
]︁

lim
N→∞

µ̂4(
t

4N+1 )

= ∏
∞
n=0

1
2

(︂
1+ ei πt

4n
)︂ (4.17)

Eq. ( 4.17) can be written as follows:

94



µ̂4(t) = ∏
∞
n=0

1
2

(︂
1+ ei πt

4n
)︂
= ∏

∞
n=0

1
2

(︂
ei πt

2·4n −i πt
2·4n + ei πt

2·4n +i πt
2·4n
)︂

= ∏
∞
n=0 ei πt

2·4n

(︃
ei πt

2·4n +e−i πt
2·4n

)︃
2

= ∏
∞
n=0 ei πt

2·4n cos
(︁

πt
2·4n

)︁
= e∑

∞
n=0 i πt

2·4n ∏
∞
n=0 cos

(︁
πt

2·4n

)︁
= ei πt

2 ∑
∞
n=0

1
4n ∏

∞
n=0 cos

(︁
πt

2·4n

)︁
= ei π2t

3 ∏
∞
n=0 cos

(︁
πt

2·4n

)︁

(4.18)

Clearly, with t ∈ R, µ̂4(t) in eq.( 4.18) is a continuous function in t. Also, in Appendix H,

we show that the product in eq.( 4.18) converges ∀t ∈R. Then, how do we find the spectrum of

µ4? To answer that question, we follow Jorgensen and Pedersen [20] and present two of their

Lemmas adapted to the case of C(4) with some original enhancements in their respective proof.

Lemma 4.3.2. Let P4 = {ℓ0+4ℓ1+42ℓ2+ · · ·+4kℓk : ℓ j ∈ L4, finite sums } with L4 = {0,1}, then

the functions {eλ : λ ∈ P4} are mutually orthogonal in L2(µ4) where

eλ (x) := ei2πλx (4.19)

Proof.

Let λ = ∑ j 4 jℓ j, λ ′ = ∑ j 4 jℓ′j be elements of P4 and assume that λ ̸= λ ′. Then

⟨eλ |eλ ′⟩ =
∫︁

eλ eλ ′dµ4

=
∫︁

ei2π(λ ′−λ )xdµ4(x)

= µ̂4(λ
′−λ )

(4.20)

Let

t = (λ ′−λ ) = ℓ′0 − ℓ0)+4(ℓ′1 − ℓ1)+42(ℓ′2 − ℓ2)+ · · ·+4k(ℓ′k − ℓk) (4.21)
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Using eq.( 4.11), we have

µ̂4(t)=
1
2

(︃
1+ eiπ

(︂
∑

k
j=0 4 j(ℓ′j−ℓ j)

)︂)︃
µ̂4(

ℓ′0 − ℓ0

4
+(ℓ′1−ℓ1)+4(ℓ′2−ℓ2)+42(ℓ′3−ℓ3)+· · ·+4k−1(ℓ′k−ℓk))

(4.22)

In eq. ( 4.22, we can simplify the first factor as follows:

1+ eiπ
(︂

∑
k
j=0 4 j(ℓ′j−ℓ j)

)︂
= 1+∏

k
j=0 eiπ4 j(ℓ′j−ℓ j)

= 1+ eiπ(ℓ′0−ℓ0)∏
k
j=1 eiπ4 j(ℓ′j−ℓ j)

(4.23)

Since ℓ j = {0,1}, then if ℓ′j ̸= ℓ j then ℓ′j − ℓ j = 1 or −1, otherwise ℓ′j − ℓ j = 0. Then, for each

j, 1 ≤ j ≤ k the argument of the product in eq. ( 4.23) becomes

eiπ4 j(ℓ′j−ℓ j) = 1 if ℓ′j − ℓ j = 0

= e−iπ4 j
= cos(π4 j)− isin(π4 j) = 1 if ℓ′j − ℓ j =−1

= eiπ4 j
= cos(π4 j)+ isin(π4 j) = 1 if ℓ′j − ℓ j = 1

(4.24)

So eq. ( 4.23) becomes using eq. ( 4.24)

1+ eiπ(ℓ′0−ℓ0)
k

∏
j=1

eiπ4 j(ℓ′j−ℓ j) = 1+ eiπ(ℓ′0−ℓ0) (4.25)

Introducing eq ( 4.25) in eq. ( 4.22) we get

µ̂4(t) =
1
2

(︂
1+ eiπ(ℓ′0−ℓ0)

)︂
µ̂4(

ℓ′0 − ℓ0

4
+(ℓ′1 − ℓ1)+4(ℓ′2 − ℓ2)+42(ℓ′3 − ℓ3)+ · · ·+4k−1(ℓ′k − ℓk))

(4.26)

Since ℓ j = {0,1}, then if ℓ′0 ̸= ℓ0 then ℓ′0−ℓ0 = 1 or −1 and we obtain that χ4(1) = (1+eiπ) = 0,

χ4(−1) = (1+ e−iπ) = 0 and χ4(ℓ
′
0 − ℓ0) = 0. If ℓ′0 = ℓ0 then ℓ′0 − ℓ0 = 0 and we would have

χ4(0) = 2. In this case we go back to the expression for t in eq. ( 4.21) to search for the least
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n ≤ k such that ℓ′n ̸= ℓn to obtain a new t:

t = (λ ′−λ ) = 4n(ℓ′n − ℓn)+4n+1(ℓ′n+1 − ℓn+1)+4n+2(ℓ′n+2 − ℓn+2)+ · · ·+4k(ℓ′k − ℓk) (4.27)

since for all 0 ≤ j ≤ n−1, ℓ′j − ℓ j = 0. Using eq. ( 4.11) to perform n iterations we get with the

new t

µ̂4(t) = µ̂4(λ
′−λ ) = µ̂4(4

n(ℓ′n − ℓn)+4n+1(ℓ′n+1 − ℓn+1)+4n+2(ℓ′n+2 − ℓn+2)+ · · ·+4k(ℓ′k − ℓk))

=
[︂
∏

n−1
j=0 χ4

(︁ t
4 j

)︁]︂
χ4
(︁ t

4n

)︁
µ̂4

(︂
t

4n+1

)︂
= χ4(ℓ

′
n − ℓn)µ̂4

(︂
ℓ′n−ℓn

4 +(ℓ′n+1 − ℓn+1)+4(ℓ′n+2 − ℓn+2)+ · · ·+4k(ℓ′k − ℓk)
)︂

= 0
(4.28)

since χ4(ℓ
′
n − ℓn) = 0. To arrive at eq. ( 4.28) the following simplifications have been used:

(a) Simplification of first factor ∏
n−1
j=0 χ4

(︁ t
4 j

)︁
. For 0 ≤ j ≤ n−1 we have ℓ′j − ℓ j = 0. Then

n−1

∏
j=0

χ4

(︂ t
4 j

)︂
=

1
2

(︄
1+

k

∏
q=n

eiπ4q− j(ℓ′q−ℓq)

)︄
= 1 (4.29)

(b) Simplification of second factor χ4(t/4n):

χ4
(︁ t

4n

)︁
= 1

2

(︃
1+ eiπ

(︂
∑

k
j=n 4 j−n(ℓ′j−ℓ j)

)︂)︃
= 1

2

(︂
1+ eiπ(ℓ′n−ℓn)

)︂
∏

k
j=n+1 eiπ4 j−n(ℓ′j−ℓ j)

= χ4(ℓ
′
n − ℓn)

(4.30)

where ∏
k
j=n+1 eiπ4 j−n(ℓ′j−ℓ j) = 1 as shown for a similar case in eq. ( 4.24).

This completes the proof.

We have the following remarks on Lemma 4.3.2:

(a) in the statement of the Lemma, that the set L4 ⊂ Z, is a requirement for the proof to show

that P4 = {ℓ0 +4ℓ1 +42ℓ2 + · · · : ℓ j ∈ L = {0,1}, finite sums } is the spectrum of µ4(·).
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(b) Clearly P4 ⊂ N∪{0}

(c) In the proof of Lemma, we observe that the difference between elements of P4 are in the set

of zeros of µ̂4(·).

(d) the Lemma only shows that {eλ : λ ∈ P} is an orthonormal subset of L2(µ4) and not an

orthonormal basis for L2(µ4).

The following Lemma from [20, p. 190] gives the criterion for {eλ : λ ∈ P4} to be an or-

thonormal basis for L2(µ4).

Lemma 4.3.3. Let

Q4(t) := ∑
λ∈P4

|µ̂4(t −λ )|2, t ∈ R. (4.31)

Then {eλ : λ ∈ P4} is an orthonormal basis for L2(µ4) if and only if Q4 ≡ 1 on R.

Proof.

Step 1 (⇒): If {eλ : λ ∈ P4} is an orthonormal basis for L2(µ4), then the Bessel inequality [25,

p. 20] becomes an identity when applied to any et = e2πitx ∈ L2(µ4). That is

1 = ∥et∥2 = ∑
λ∈P4

|⟨eλ |et⟩µ4|
2 = ∑

λ∈P4

|µ̂4(t −λ )|2 (4.32)

Step 2 (⇐): At the beginning of this step {eλ : λ ∈ P4} is an orthonormal set and we need to

show that it is an orthonormal basis. By assumption, Q4 ≡ 1 on R, that is for any t ∈R

the following series converges to 1:

∑
λ∈P4

|⟨eλ ,et⟩µ4|
2 = 1 (4.33)

For any h in an Hilbert space H and for an orthonormal set {ei}∞
i=1, we show the claim

that h ∈ span{ei}∞
i=1 ⇐⇒ ∥h∥2 = ∑

∞
i=1|⟨h,ei⟩|2 with the following proof:
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(a) The projection of h onto span{e1,e2, . . . ,en} is ∑
n
i=1⟨h,ei⟩ei. Then, (h−∑

n
i=1⟨h,ei⟩ei)⊥

∑
n
i=1⟨h,ei⟩ei.

(b) By Pythagoras we get

∥h∥2 = ∥h−∑
n
i=1⟨h,ei⟩ei +∑

n
i=1⟨h,ei⟩ei∥2

= ∥h−∑
n
i=1⟨h,ei⟩ei∥2 +∥∑

n
i=1⟨h,ei⟩ei∥2

= ∥h−∑
n
i=1⟨h,ei⟩ei∥2 +∑

n
i=1|⟨h,ei⟩ei|2

(4.34)

(c) The second term on the last line of eq.( 4.34) comes from the application of Pythago-

ras multiple times to ∥∑
n
i=1⟨h,ei⟩ei∥2: since {⟨h,ei⟩ei}n

i=1 are pairwise orthogonal

vectors in H , by Pythagoras we have that

∥∑
n
i=1⟨h,ei⟩ei∥2 = ∑

n
i=1∥⟨h,ei⟩ei∥2

= ∑
n
i=1|⟨h,ei⟩|2

(4.35)

To obtain

∥h∥2 −
n

∑
i=1

|⟨h,ei⟩|2 = ∥h−
n

∑
i=1

⟨h,ei⟩ei∥2 (4.36)

(d) Therefore, we have that:

h = lim
n→∞

n

∑
i=1

⟨h,ei⟩ei in the norm, ⇐⇒∥h∥2 = lim
n→∞

n

∑
i=1

|⟨h,ei⟩|2 (4.37)

(e) Now, let sn = ∑
n
i=1⟨h,ei⟩ei, since h is arbitrary, h = lim

n→∞
∑

n
i=1⟨h,ei⟩ei in the norm

implies that for every h ∈ H there is a sequence {sn} in H such that ∥sn −h∥→ 0.

Hence, span{ei}∞
i=1 is dense in H .

(f) So, we have shown h ∈ span{ei}∞
i=1 is equivalent to ∥h∥2 = ∑

∞
i=1|⟨h,ei⟩|2

By assumption, ∑λ∈P4|⟨eλ ,et⟩µ4|2 = 1. Since for any t ∈ R, ∥et∥2 = 1, we have that

∑λ∈P4|⟨eλ ,et⟩µ4|2 = ∥et∥2 and by the above claim we get that et ∈ span{eλ : λ ∈ P4}

Step 3 Let f ∈ L2(µ4)⊖{eλ : λ ∈ P4}, that is, f ∈ {eλ : λ ∈ P4}⊥ = (span{eλ})⊥ = (span{eλ})
⊥
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by the continuity of the inner product. By the conclusion of Step 2, this implies that

⟨et , f ⟩µ4 = 0 for all t ∈ R.

Step 4 Recall that the continuous functions are dense in L2(µ4), that is, ∀u ∈ L2(µ4) and ∀ε > 0,

there exists g continuous such that ∥u−g∥L2(µ4)
< ε/2.

Step 5 Consider P, the collection of all the trigonometric polynomials:

PN(θ) = ∑
N
n=−N cneinθ = ∑

N
n=−N cnzn with z = eiθ

= ∑
N
n=0 cnzn +∑

N
n=1 c−nzn with z = e−iθ .

(4.38)

There are polynomial in z and z and they form an algebra A which is self-adjoint,

vanishes at no point of [0,1] and separate points on [0,1]. Then the Stone-Weierstrass

theorem tells us that P is dense in C([0,1]) i.e., ∀g ∈ C([0,1]), ∀ε > 0, there exists a

trigonometric polynomial P such that

∥g−P∥∞ = sup
θ∈[0,1]

|g(eiθ )−P(eiθ )|< ε/2. (4.39)

Therefore, we have:

∥g−P∥L2(µ4)
=

(︃∫︂
|g−P|2dµ4

)︃ 1
2

≤ ∥g−P∥∞ < ε/2. (4.40)

For every f ∈ L2(µ4), by the triangle inequality we obtain

∥ f −P∥L2(µ4)
≤ ∥ f −g∥L2(µ4)

+∥g−P∥L2(µ4)
< ε/2+ ε/2 = ε (4.41)

So, the collection P of all the trigonometric polynomials PN as in eq. ( 4.38) is dense

in L2(µ4) and f ∈ P. But, for f ∈ {eλ}⊥ we showed that ⟨et , f ⟩µ4 = 0, that is, et ⊥ f

for all t ∈ R. Letting t = n/2π, n ∈ Z, we have that P = span{et : t = n/2π,n ∈ Z} and

with 0 =
∫︁

f etdµ4 =
∫︁

f e−inθ dµ4 gives that f ∈ P⊥. The only function f that can be
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at the same time f ∈ P and f ∈ P⊥ is f = 0. This implies that {eλ : λ ∈ P4}⊥ = {0}.

Therefore, {eλ : λ ∈ P4} is an orthonormal basis in L2(µ4).

Table 4.1 gives the first 15 elements of P4 where for example, for λ5, {ℓ0, ℓ1, ℓ2, ℓ3}= {1,0,1,0}

and λ5 = 40 ·1+41 ·0+42 ·1+43 ·0 = 17

n {ℓ0, ℓ1, ℓ2, ℓ3} λn
0 {0,0,0,0} 0
1 {1,0,0,0} 1
2 {0,1,0,0} 4
3 {1,1,0,0} 5
4 {0,0,1,0} 16
5 {1,0,1,0} 17
6 {0,1,1,0} 20
7 {1,1,1,0} 21
8 {0,0,0,1} 64
9 {1,0,0,1} 65
10 {0,1,0,1} 68
11 {1,1,0,1} 69
12 {0,0,1,1} 80
13 {1,0,1,1} 81
14 {0,1,1,1} 84
15 {1,1,1,1} 85

Table 4.1: Value of λn ∈ P4 for finite sums of four elements (ℓi : i = 0,1,2,3)

Jorgensen and Pedersen [20, p. 215] show that for P4, Q4(t)≡ 1. This presents an interesting

results because as discussed in Section 4.2, we have that {eλ : λ ∈ P4} is an orthonormal basis.

From Eq.( 4.18), the set of zeros of µ̂4(t) is:

Z(µ̂4) = {4n(1+2Z)} ⊂ Z (4.42)

In the proof of Lemma 4.3.2, we observe that the difference between elements of P4 are in

Z(µ̂4). In fact all those differences are in Z(µ̂4) and since 0 ∈ P4, we have that {P4 \ {0}} ⊂

Z(µ̂4)⊂ Z. An illustration of that fact is given in Table J.2.
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Operations on elements of P4 Some elements of Z(µ̂4)
as differences between elements of P4

λ1 minus each of λ0 down to λ0 {1}
λ2 minus each of λ1 down to λ0 {3,4}
λ3 minus each of λ2 down to λ0 {1,4,5}
λ4 minus each of λ3 down to λ0 {11,12,15,16}
λ5 minus each of λ4 down to λ0 {1,12,13,16,17}
λ6 minus each of λ5 down to λ0 {3,4,15,16,19,20}
λ7 minus each of λ6 down to λ0 {1,4,5,16,17,20,21}
λ8 minus each of λ7 down to λ0 {43,44,47,48,59,60,63,64}
λ9 minus each of λ8 down to λ0 {1,44,45,48,49,60,61,64,65}
λ10 minus each of λ9 down to λ0 {3,4,47,48,51,52,63,64,67,68}
λ11 minus each of λ10 down to λ0 {1,4,5,48,49,52,53,64,65,68,69}
λ12 minus each of λ11 down to λ0 {11,12,15,16,59,60,63,64,75,76,79,80}
λ13 minus each of λ12 down to λ0 {1,12,13,16,17,60,61,64,65,76,77,80,81}
λ14 minus each of λ13 down to λ0 {3,4,15,16,19,20,63,64,67,68,79,80,83,84}
λ15 minus each of λ14 down to λ0 {1,4,5,16,17,20,21,64,65,68,69,80,81,84,85}

Table 4.2: λ ’s (in red) among the elements of the Zero Set
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4.3.2 Spectrum of the Binary Measure

(a) Appendix B shows that we can arrive at eq. ( 4.9) using a change of variables using the

recursive relations for µp (p = {2,3,4}). Since ei2πtx is continuous, then by eq.( 4.9) we can

write:

µ̂2(t) =
∫︁

ei2πtxdµ2(x) = 1
2

(︂∫︁
ei2π

t
2 xdµ2(x)+

∫︁
ei2π

t
2 x+i2πt 1

2 dµ2(x)
)︂

= 1
2

(︂∫︁
ei2π

t
2 xdµ2(x)+ eiπt ∫︁ ei2π

t
2 xdµ2(x)

)︂
= 1

2

(︁
1+ eiπt)︁∫︁ ei2π

t
2 xdµ2(x)

= 1
2

(︁
1+ eiπt)︁ µ̂2(

t
2)

(4.43)

From eq.( 4.43) (last line), we define for the binary Cantor set:

χ2(t) =
1
2
(︁
1+ eiπt)︁ . (4.44)

Then eq.( 4.11) can be written as follows:

µ̂2(t) = χ2(t)µ̂2(
t
2
) (4.45)

From eq. ( 4.43) we can write:

µ̂2(
t
2
) =

1
2

(︂
1+ eiπ t

2

)︂
µ̂4(

t
22 ) (4.46)

For t = 0, eq. ( 4.8) becomes for p = 2

µ̂2(0) =
∫︂

1dµ2 =
∫︂

χC(2)dµ2 = µ2(C(2)) (4.47)
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By mass distribution µ2(C(2)) = 1 and we get that µ̂2(0) = 1. Then, we iterate the relation

in eq. ( 4.46) N times to obtain:

µ̂2(t) =

[︄
N

∏
n=0

χ2(
t

2n )

]︄
µ̂2(

t
2N+1 ) (4.48)

Taking N → ∞ and using the continuity of µ̂2(t) at t = 0, we can write

µ̂2(t) =
[︁
∏

∞
n=0 χ2(

t
2n )
]︁

lim
N→∞

µ̂2(
t

2N+1 )

= ∏
∞
n=0

1
2

(︂
1+ ei πt

2n
)︂ (4.49)

Eq. ( 4.49) can be written as follows:

µ̂2(t) = ∏
∞
n=0

1
2

(︂
1+ ei πt

2n
)︂
= ∏

∞
n=0

1
2

(︂
ei πt

2·2n −i πt
2·2n + ei πt

2·2n +i πt
2·2n
)︂

= ∏
∞
n=0 ei πt

2·2n

(︃
ei πt

2·2n +e−i πt
2·2n

)︃
2

= ∏
∞
n=0 ei πt

2n+1 cos
(︂

πt
2n+1

)︂
= ∏

∞
n=1 ei πt

2n cos
(︁

πt
2n

)︁
= e∑

∞
n=1 i πt

2n ∏
∞
n=1 cos

(︁
πt
2n

)︁
= eiπt ∑

∞
n=1

1
2n ∏

∞
n=1 cos

(︁
πt
2n

)︁
= eiπt

∏
∞
n=1 cos

(︁
πt
2n

)︁

(4.50)

With t ∈ R, µ̂2(t) in eq.( 4.50) is a continuous function in t.

(b) To find the spectra of µ2, we go through Lemma 4.3.2 but with P2 = {ℓ0+2ℓ1+22ℓ2+ · · ·+

2kℓk : ℓ j ∈ L2, finite sums } with L2 = {0,1} to obtain P2 = N∪{0} = {0,1,2,3, . . .}. Since

the proof is similar the one for µ4, it is not repeated here.

(c) Using the trigonometric identity sin2u = 2sinucosu, Eq.( 4.50) can be simplified to a form
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that easily yields the zero set for µ̂2. We have:

µ̂2(t) = lim
N→∞

eiπt
∏

N
n=1 cos

(︁
πt
2n

)︁
= lim

N→∞
eiπt

∏
N
n=1

sin
(︂

πt
2n−1

)︂
2sin

(︁
πt
2n
)︁

= lim
N→∞

eiπt sin(πt)
2sin

(︁
πt
2
)︁ · sin

(︁
πt
2
)︁

2sin
(︂

πt
22

)︂ · · · sin
(︂

πt
2N−1

)︂
2sin

(︂
πt
2N

)︂
= lim

N→∞
eiπt sin(πt)

2N sin
(︂

πt
2N

)︂
= lim

N→∞
eiπt sin(πt)

πt

πt
2N

sin
(︂

πt
2N

)︂
= eiπt sin(πt)

πt

(4.51)

where in the last step in eq.( 4.51) we use the fact that lim
u→0

sinu/u = 1. Eq.( 4.51) readily

gives the zero set of µ̂2(t) to be Z(µ̂2) = Z\{0}. Similar as for the quaternary measure, we

have that {P2 \{0}} ⊂ Z(µ̂2) since 0 ∈ P2

Since µ2 is supported on [0,1], it is in fact Lebesgue measure. Because L2(µ2) could be

identified with L2 on the circle, we are back to Fourier series. As discussed in Section 4.2, the

functions {eλ : λ ∈ P2} are orthonormal basis.

4.3.3 Spectrum of the ternary measure

(a) Appendix B shows that we can arrive at eq. ( 4.9) using a change of variables using the

recursive relations for µ3. Since ei2πtx is continuous, then by eq.( 4.9) we can write:

µ̂3(t) =
∫︁

ei2πtxdµ3(x) = 1
2

(︂∫︁
ei2π

t
3 xdµ3(x)+

∫︁
ei2π

t
3 x+i2πt 2

3 dµ3(x)
)︂

= 1
2

(︂∫︁
ei2π

t
3 xdµ3(x)+ eiπ 4t

3
∫︁

ei2π
t
3 xdµ3(x)

)︂
= 1

2

(︂
1+ eiπ 4t

3

)︂∫︁
ei2π

t
3 xdµ3(x)

= 1
2

(︂
1+ eiπ 4t

3

)︂
µ̂3(

t
3)

(4.52)
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Appendix I gives an alternate way to arrive at eq. ( 4.52) by considering the C-L function

F as the distribution function of µ3. From eq.( 4.52) (last line), we define for the ternary

Cantor set:

χ3(t) =
1
2

(︂
1+ eiπ 4t

3

)︂
. (4.53)

Then eq.( 4.11) can be written as follows:

µ̂3(t) = χ3(t)µ̂3(
4t
3
) (4.54)

From eq. ( 4.52) we can write:

µ̂3(
t
3
) =

1
2

(︂
1+ eiπ 4t

32
)︂

µ̂4(
t

32 ) (4.55)

For t = 0, eq. ( 4.8) becomes for p = 3

µ̂3(0) =
∫︂

1dµ3 =
∫︂

χC(3)dµ3 = µ3(C(3)) (4.56)

By mass distribution µ3(C(3)) = 1 and we get that µ̂3(0) = 1. Then, we iterate the relation

in eq. ( 4.55) N times to obtain:

µ̂3(t) =

[︄
N

∏
n=0

χ3(
t

3n )

]︄
µ̂3(

t
3N+1 ) (4.57)

Taking N → ∞ and using the continuity of µ̂3(t) at t = 0, we can write

µ̂3(t) =
[︁
∏

∞
n=0 χ3(

4t
3n )
]︁

lim
N→∞

µ̂3(
t

3N+1 )

= ∏
∞
n=0 χ3(

t
3n )

= ∏
∞
n=1

1
2

(︂
1+ ei 4πt

3n
)︂ (4.58)
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where we used the definition of χ3(t) (eq. ( 4.53)) to obtain the last line of eq. ( 4.58) which

can be written as follows:

µ̂3(t) = ∏
∞
n=1

1
2

(︂
1+ ei 4πt

3n
)︂
= ∏

∞
n=1

1
2

(︂
ei 4πt

2·3n −i 4πt
2·3n + ei 4πt

2·3n +i 4πt
2·3n
)︂

= ∏
∞
n=1 ei 2πt

3n

(︃
ei 2πt

3n +e−i 2πt
3n
)︃

2

= ∏
∞
n=1 ei 2πt

3n cos
(︁2πt

3n

)︁
= e∑

∞
n=1 i 2πt

3n ∏
∞
n=1 cos

(︁2πt
3n

)︁
= ei2πt ∑

∞
n=1

1
3n ∏

∞
n=1 cos

(︁2πt
3n

)︁
= eiπt

∏
∞
n=1 cos

(︁2πt
3n

)︁

(4.59)

With t ∈ R, µ̂3(t) in eq.( 4.59) is a continuous function in t.

(b) the spectrum of µ3 with L3 ⊂ Z (a requirement) would take the form:

P3 = {ℓ0 +3ℓ1 +32ℓ2 + · · · : ℓ j ∈ L3, finite sums } (4.60)

but going through the proof of Lemma 4.3.2 for P3, we come to the step where we would show

that χ3(ℓ
′
0 − ℓ0) = 0. From the definition of χ3(t) in eq. ( 4.53), we see that with t =±3/4,

χ3(±3/4) = 0. This implies, for example, that L3 would have be equal to {0,3/4}. This is

incompatible with the requirement that L3 ⊂ Z. So, we cannot define the set P3. Therefore,

the proof of Lemma 4.3.2 for P3 with L3 = {0,1} fails.

(c) Additional support to this last statement arises from the following considerations. From eq.

( 4.59), the zero set of µ̂3(t) is given by

Z(µ̂3) =

{︃
3n

4
(1+2Z) : n = 1,2, . . .

}︃
(4.61)

which indicates that if a set of functions {eλ = ei2πλx : λ ∈U} would be mutually orthogonal
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in L2(µ3), then the set U would contain values whose mutual differences would be in the

zero set of µ̂3(t). However, following Jorgensen and Pedersen [20, p. 217] we have the

following theorem specific to µ̂3 that proves the contrary, confirming that we cannot have

a set of more than two functions that are mutually orthogonal in L2(µ3).

Theorem 4.3.4. Any set of µ3-orthogonal exponentials contains at most two elements.

Proof.

Step 1 Recall that

Z(µ̂3) =

{︃
3n

4
(1+2Z) : n = 0,1,2, . . .

}︃
(4.62)

Step 2 Assume that λ j, j = 1,2,3 are such that the eλ j ’s are mutually orthogonal in L2(µ3),

then the differences λi −λ j (i ̸= j) are in Z(µ̂3).

Step 3 Let γ1 = λ1 −λ2, γ2 = λ2 −λ3 and γ0 = λ1 −λ3 with

γ j =
3n j

4
(1+2z j) z j ∈ Z (4.63)

Step 4 Since

γ1 + γ2 = γ0 (4.64)

we obtain that

3n1(1+2z1)+3n2(1+2z2) = 3n0(1+2z0). (4.65)

This is a contradiction since in eq. ( 4.65), the left-hand side is even but the right-

hand side is odd. This completes the proof.

Now, assume that we can generate a countable sequence {eλ}λ∈U of functions ({eλ =

ei2πλx : λ ∈ U}) where U is an index set. For example, using L3 = {0,3/4} and 3/4, the
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smallest positive element of Z(µ̂3), we can calculate a set U = {0,3/4,3/2,9/4,3,15/4, . . .} ≡

{λ0,λ1,λ2,λ3,λ4,λ5, . . .} giving that ⟨eλ0 ,eλ1⟩ = 0, ⟨eλ1,eλ2⟩ = 0, ⟨eλ2,eλ3⟩ = 0 . . .⟨eλk
,eλk+1

⟩ = 0

but ⟨eλ0,eλ2⟩ ̸= 0, since (3/2− 0) ̸∈ Z(µ̂3). Similarly, ⟨eλ1,eλ3⟩ ̸= 0 . . .⟨eλk
,eλℓ

⟩ ̸= 0 because by

inspection, (λℓ−λk) ̸∈ Z(µ̂3) ∀ℓ ≥ k+ 2 So, for U as defined above, only consecutive pairs of

exponentials are µ3-orthogonal giving an illustration of the statement of Theorem 4.3.4.

{eλ}λ∈U having the characteristic that any of its subsets µ3-orthogonal exponentials contains

at most two elements, cannot be a basis for L2(µ3) but {eλ}λ∈U ⊂ L2(µ3). Since {eλ}λ∈U is

countable then, can {eλ}λ∈U be a frame for L2(µ3)? That is, by the definition of a frame [4, p.

3], {eλ}λ∈U is a frame for L2(µ3) if there exist constants A,B > 0 such that:

A∥ f∥2 ≤ ∑
λ∈U

|⟨ f ,eλ ⟩|2 ≤ B∥ f∥2 ∀ f ∈ L2(µ3) (4.66)

The key to obtain such a frame is to find the constants A,B > 0 such that eq. ( 4.66) is satisfied

∀ f ∈ L2(µ3) but as indicated in Section 4.2 this not a simple task.

4.4 Concluding remarks

The question of finding a frame for L2(µ3) was considered by Lev [23] and by Picioroaga and

Weber [24] but, at of this writing, the question remains an open problem. Staying within the

framework of identifying, among self-similar measures that satisfy the Hutchinson’s recursive

relationship, the ones that leads to an orthonormal basis, we have

(a) in Appendix J, we extend in general form the derivations in one dimension of the Fourier

transform of the ternary and quaternary measure, µ3 and µ4 to odd and even scales higher

than 3 and 4 . The key element in doing so is to establish general Iterative Function Systems

(IFSs) that each leads to a Cantor set C ⊂ [0,1] of Lebesgue measure m(C) = 0. We show

that we can obtain the Fourier transform of (2k+1)-ary measure (odd scale), k ∈N, for scale

larger than 3, but from Jorgensen and Pedersen [20, Thm 6.1, p. 217], any set of (2k+1)-
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ary µ-measure orthogonal exponentials contains at most two elements. We conclude that

for (2k+1)-ary measure (odd scale) we cannot have an orthonormal basis of L2(µ2k+1). For

even scales, we conjecture that the quaternary results of Jorgensen and Pedersen [20] can

be extended to a scale of 6 or (2k)-ary measure (even scale).

(b) Laba and Wang [22] studied self-similar measures that satisfy the Hutchinson’s recursive

relationship where the self-similar sets are generated by IFS having more than two equations.

The aim of their work is identifying among these self-similar measures the ones that leads

to an orthonormal basis. Their work extends the one of Jorgensen and Pedersen [20].

(c) Wang and Yin [27] studied the equal-weighted Moran measures. They first characterize all

the maximal orthogonal sets in an L2 space via a tree mapping. With this characterization,

they arrive at sufficient conditions to identify an orthonormal basis.
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Appendix A

Details of the construction of a quaternary
Cantor set by IFS

In this Appendix, we give the details of the construction of a particular quaternary Cantor set.

This means that there are others but the focus is on the one presented here as it becomes central

later in this work. Although, we should normally be able to express the right endpoint of the

closed intervals generated by construction endpoints by an expansion in base 4 with coefficients

0 and 2. This would enable the generation of these endpoints on the next construction levels

using right shift only or right shift plus translation as done for the ternary Cantor set. However,

this Appendix shows this to be impossible.

The construction levels come from the repeated application of the following Iterated Function

System (IFS):

τ0(x) =
x
4

(A.1)

τ1(x) =
x+2

4

starting with interval [0,1] we have the first three construction levels of the quaternary Cantor

set C(4):

111



C(4)
0 =

[︃
0
1
,
1
1

]︃
(A.2)

C(4)
1 =

[︃
0
4
,
1
4

]︃
∪
[︃

1
2
,
3
4

]︃
(A.3)

C(4)
2 =

[︃
0

16
,

1
16

]︃
∪
[︃

1
8
,

3
16

]︃
∪
[︃

1
2
,

9
16

]︃
∪
[︃

5
8
,
11
16

]︃
(A.4)

C(4)
3 =

[︃
0
64

,
1
64

]︃
∪
[︃

1
32

,
3

64

]︃
∪
[︃

1
8
,

9
64

]︃
∪
[︃

5
32

,
11
64

]︃
∪
[︃

1
2
,
33
64

]︃
∪
[︃

17
32

,
35
64

]︃
∪
[︃

5
8
,
41
64

]︃
∪
[︃

21
32

,
43
64

]︃
,

(A.5)

illustrated in Figure A.1 below.

C(4)
1

C(4)
2

C(4)
3

0
1
4

1
2

3
4 1

0 1 2 3 Coeff. Quaternary Expan.
C(4)

0

Figure A.1: Few construction levels of the quaternary Cantor set.

Dividing the closed intervals in four and keeping the first and third subintervals imply

the expansion in base 4 would be with 0’s and 2’s as coefficients similar to ternary Cantor

set where expansions are in base 3 with also 0 and 2 as coefficients (see Figure A.2 below).

These coefficients corresponds to the first and third subintervals that were kept. The common

endpoint among the three construction levels in eqs. ( A.3, A.4, A.5) is 1/2 which is equal

to 0.24 (subscript 4 indicates a base 4 number). Normally, we should be able to express the

endpoints 1/4 and 3/4 of C(4)
1 by an expansion in base 4 with coefficients 0 and 2 such that we

can generate the endpoints on the next construction levels using right shift only or right shift

plus translation as done for the ternary Cantor set. However, we observe that
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0.0024 =
2
43 +

2
44 +

2
45 + · · · (A.6)

=
2
43

(︃
1+

1
4
+

1
42 +

1
43 + · · ·

)︃
=

1
24

<
1
4

0.024 =
2
42 +

2
43 +

2
44 + · · · (A.7)

=
2
42

(︃
1+

1
4
+

1
42 +

1
43 + · · ·

)︃
=

1
6
<

1
4

0.24 =
2
4
+

2
42 +

2
43 +

2
44 + · · · (A.8)

=
2
4

(︃
1+

1
4
+

1
42 +

1
43 + · · ·

)︃
=

2
3
>

1
4

From eqs ( A.6),( A.7) and ( A.8) we obtain:

0.0024 < 0.024 <
1
4
< 0.24 =

1
2
< 0.2 (A.9)

Thus, starting from the second position of the quaternary expansion, any infinite combina-

tion of 0’s and 2’s always sum up to a value less than 1/4. Any quaternary expansion starting

from the first position always sum up to a value greater than 1/4. We conclude that 1/4 cannot

be expressed as a quaternary expansion with 0’s and 2’s as coefficients. The same conclusion

applies to the other endpoint 3/4 since 0.24 = 2/3 < 3/4. Therefore, on construction level 1,
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only the left endpoints of the closed intervals can be expressed as a finite quaternary expansion

with coefficients 0’s and 2’s. The same occurs at deeper construction levels. For instance, for

Construction level 2 we have:

1. 0 = 0.04, 1/8 = 0.024, 1/2 = 0.24, 5/8 = 0.224

2. 0.0024 = 1/24 < 1/16 < 0.024 = 2/15

3. 0.024 = 2/15 < 3/16 < 0.24 = 1/2

4. 0.24 = 1/2 < 9/16 < 0.24 = 2/3

5. 0.24 < 11/16

Clearly, all the left endpoints of the closed intervals in construction level 2 can be expressed as

a finite quaternary expansion with coefficients 0’s and 2’s, the respective right endpoints cannot

be.

However, consider Figure A.2, part (a) illustrates few construction levels of the ternary

Cantor set with the value of the endpoints included and similarly, part (b), for the quaternary

Cantor set. We observe:

(i) For the ternary Cantor set that left and right endpoints of the closed intervals remain when

going from one construction level to the next. Whereas, for the quaternary Cantor set

only the left endpoints remain and implies that C(4) contains none of the right endpoints

generated in the construction process.

• Indeed, define C(4)
L = {x∈R : x∈C(4)∩[0,1/4]} and C(4)

R = {x∈R : x∈C(4)∩[1/2,3/4]}.

From Table A.1, with increasing level comes an increased value of the left endpoints

of the right-most closed intervals subset of [0,1/4] and [1/2,3/4] respectively and

these endpoints are in the quaternary Cantor set C(4). Whereas, the value of right

endpoints decrease for the corresponding intervals.

• From Figure A.1 and Table A.1, the quaternary Cantor set ends up being skewed to

the left of the interval [0,1].
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0 1
3

C(3)
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1
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1
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9
1

0 1
27
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0

(a)

0 1
4

C(4)
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2
3
4

0 1
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1
8

3
16

1
2

9
16
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8
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16

0 1
641
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64

1
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645
3211

64

1
233

6417
3235

64

5
841

64

C(4)
3

21
3243

64

0
1
4

1
2

3
4 1

0 1 2 3 Coeff. quaternary expan.
C(4)

0

(b)
C(4)

L C(4)
R

α= 1
6 β= 2

3

Figure A.2: Few construction levels of the ternary and quaternary Cantor sets

(ii) Define α = supx∈C(4)(C
(4)
L ) and β = supx∈C(4)(C

(4)
R ) and consider the following claim that

α = 1/6 and β = α +1/2 = 2/3. From Table A.1, we can write:

(iii) We concluded that only each of the left endpoints of the closed intervals in the unions

in eqs. (A.3), ( A.4) and ( A.5) can be expressed by a finite quaternary expansion with

“0′′ and “2′′ for coefficients, as it must. However, to express the right endpoints as finite

quaternary expansions, the coefficients will have to include “1′′ and “3′′ on top of “0′′ and

“2′′. That is, the set of coefficients is {0,1,2,3}. Since at a given construction level k,

the length of any of the closed intervals is 1/4k, we obtain the right endpoints in base 4

by adding 1/4k to the last coefficient of the expansion for the left endpoint of the closed

interval:

C(4)
1 = [0.04,0.14]∪ [0.24,0.34] (A.10)
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Constr. Level Right-most subset of
[0,1/4] [1/2,3/4]

1 [0,1/4] [1/2,3/4]
2 [1/8,3/16] [5/8,11/16]
3 [5/32,11/64] [21/32,43/64]

Table A.1: Right-most subsets of [0,1/4] and 1/2,3/4 that cover some parts of C(4)

Constr. Level Left and right parts of C(4)

C(4)
L C(4)

R
1 0 < α < 1/4 1/2 < β < 3/4
2 1/8 < α < 3/16 5/8 < β < 11/16
3 5/32 < α < 11/64 21/32 < β < 43/64

Table A.2: Upper and lower bounds for α and β

C(4)
2 = [0.004,0.014]∪ [0.024,0.034]∪ [0.204,0.214]∪ [0.224,0.234] (A.11)

C(4)
3 = [0.0004,0.0014]∪ [0.0024,0.0034]∪ [0.0204,0.0214]∪ [0.0224,0.0234] (A.12)

∪ [0.2004,0.2014]∪ [0.2024,0.2034]∪ [0.2204,0.2214]∪ [0.2224,0.2234]

(iv) In quaternary representation, 0 = 0.04 and 1 = 0.34 = 0.33333 . . .4 then C(4)
0 =

[︁
0.04,0.34

]︁
.

Let σ4 be defined as the right shift equivalent to τ0 in eq. ( 2.65). Since τ1(x) = τ0(x)+1/2

and 1/2 = 0.24 then adding 0.24 to a right shift σ4 is equivalent to τ1(x) in eq. ( 2.65), a

combination of a contraction and translation. That is:

σ4(0.x1x2x3 . . .) = 0.0x1x2x3 . . . (A.13)

σ4(0.x1x2x3 . . .)+0.24 = 0.2x1x2x3 . . .
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Applying the right shift σ4 to each endpoint at level k gives the left half of level k+ 1.

Similarly, applying the right shift σ4 with the translation by 0.23 to each endpoint at level

k gives the right half of level k+ 1. Starting with C(4)
0 =

[︁
0.04,0.34

]︁
, application of eq.

( A.13) three times results in eqs. ( A.10), ( A.11) and ( A.13).

(v) From eqs. ( A.10), ( A.11) and ( A.13), we write Table A.3 with endpoints in base 4:

Constr. Level Left and right parts of C(4)

C(4)
L C(4)

R
1 0.04 < α < 0.14 0.24 < β < 0.24 +0.14 = 0.34
2 0.024 < α < 0.024 +0.014 = 0.034 0.224 < β < 0.224 +0.014 = 0.234
3 0.0224 < α < 0.0224 +0.0014 = 0.0234 0.2224 < β < 0.2224 +0.0014 = 0.2234
... ... ...
k 0.0 2222 . . .24⏞ ⏟⏟ ⏞

k−1 times
< α < 0.0 2222 . . .2⏞ ⏟⏟ ⏞

k−2 times
34 0.2222 . . .24⏞ ⏟⏟ ⏞

k times
< β < 0. 2222 . . .2⏞ ⏟⏟ ⏞

k−1 times
34

Table A.3: Upper and lower bounds for α and β in base 4

(vi) For construction level k, we write the inequalities for α and β in terms of quaternary

expansions:

∑
k
j=2

2
4 j < α < ∑

k
j=2

2
4 j +

1
4k

∑
k
j=1

2
4 j < β < ∑

k
j=1

2
4 j +

1
4k

(A.14)

(vii) Using eqs. ( A.7) and ( A.8) and applying the Squeeze Theorem with k → ∞, eq. ( A.14)

becomes :
1
6 ≤ α ≤ 1

6

2
3 ≤ β ≤ 2

3

(A.15)

giving that α = 1/6 and β = 2/3. Proving the claim that α = 1/6 and β = α +1/2 = 2/3.

Thus, the left and right parts of the quaternary Cantor set C(4) spread respectively over

[0,1/6] and [1/2,2/3].
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Appendix B

Change of Variable for Integration with Respect
to a Measure

The binary, ternary and quaternary Cantor sets, [0,1], C(3) and C(4) respectively, can be con-

structed using the following IFS’s:

(i) for binary Cantor set [0,1]

B0(x) =
x
2

(B.1)

B1(x) =
x+1

2

Since B0(x) and B1(x) are well-defined and continuous over R, their inverses

B−1
0 (x) = 2x (B.2)

B−1
1 (x) = 2x−1

have the same properties.

118



(ii) for ternary Cantor set C(3)

T0(x) =
x
3

(B.3)

T1(x) =
x+2

3

Since T0(x) and T1(x) are well-defined and continuous over R, their inverses

T−1
0 (x) = 3x (B.4)

T−1
1 (x) = 3x−2

have the same properties.

(iii) for quaternary Cantor set C(4)

τ0(x) =
x
4

(B.5)

τ1(x) =
x+2

4

Since τ0(x) and τ1(x) are well-defined and continuous over R, their inverses

τ
−1
0 (x) = 4x (B.6)

τ
−1
1 (x) = 4x−2

have the same properties.

We showed that for any Borel set A that

(i) for binary Cantor set [0,1]

µm2(A) =
1
2
(︁
µm3(B

−1
0 (A))+µm2(B

−1
1 (A))

)︁
(B.7)
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(ii) for ternary Cantor set C(3)

µm3(A) =
1
2
(︁
µm3(T

−1
0 (A))+µm3(T

−1
1 (A))

)︁
(B.8)

(iii) for quaternary Cantor set C(4)

µm4(A) =
1
2
(︁
µm4(τ

−1
0 (A))+µm4(τ

−1
1 (A))

)︁
(B.9)

To analyse the spectrum of µm2 , µm3 or µm4 , we need to take their Fourier transform which

implies the need to be able to integrate a continuous function f on either [0,1], C(3) or C(4) with

respect to µm2 , µm3 or µm4 respectively. Since B0,B1,T0,T1,τ0,τ1 are all well-behaved, bijective

and continuous functions, we do the integration of f with respect to µm3 , the integration with

respect to µm2 and µm4 is very similar not to say identical. Using eq. ( B.8), we have for any

Borel set A ∫︂
A

f dµm3 =
1
2

(︃∫︂
T0(A)

f d(µm3 ◦T−1
0 )+

∫︂
T1(A)

f d(µm3 ◦T−1
1 )

)︃
(B.10)

Do we have a way to verify that eq. ( B.10) make sense? We can answer that question by the

affirmative by considering f ≡ 1, a continuous function over all of R, to obtain by [2, (3.4), p.

75] that

∫︁
A f dµm3 =

∫︁
A χAdµm3 = µm3(A)∫︁

T0(A) f d(µm3 ◦T−1
0 ) =

∫︁
T0(A) χT0(A)d(µm3 ◦T−1

0 ) = µm3 ◦T−1
0 (T0(A)) = µm3(A)∫︁

T1(A) f d(µm3 ◦T−1
1 ) =

∫︁
T1(A) χT1(A)d(µm3 ◦T−1

1 ) = µm3 ◦T−1
1 (T1(A)) = µm3(A)

(B.11)

so we get ∫︁
A f dµm3 = 1

2

(︂∫︁
T0(A) f d(µm3 ◦T−1

0 )+
∫︁

T1(A) f d(µm3 ◦T−1
1 )

)︂
µm3(A) = 1

2(µm3(A)+µm3(A)) = µm3(A)
(B.12)

To evaluate the integrals on the right-hand side of eq. ( B.10) we need to do a change of

variables. That is, we need to prove the following Lemma for the first integral. The proof for
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the second integral is similar.

Lemma B.0.1. T0(·) is a well-behave, bijective and continuous function. We then have for any

Borel set A that: ∫︂
T0(A)

f d(µm3 ◦T−1
0 ) =

∫︂
A

f ◦T0 dµm3 (B.13)

Proof.

Step 1 Let f be a non-negative function, then there exists a sequence of simple measurable

functions:

φn =
mn

∑
i=1

cn,iχBn,i (B.14)

such that φn ↗ f and where for each n, {Bn,i} is a sequence of disjoints set in the σ -algebra

on A.

Step 2 By the Monotone Convergence Theorem [2, p. 78] we can write:

∫︁
T0(A) f d(µm3 ◦T−1

0 ) = lim
n→∞

∫︁
T0(A)φnd(µm3 ◦T−1

0 )

= lim
n→∞

∫︁
T0(A)∑

mn
i=1 cn,iχBn,id(µm3 ◦T−1

0 )

= lim
i→∞

∑
mn
i=1 cn,i

∫︁
T0(A) χBn,id(µm3 ◦T−1

0 )

= lim
i→∞

∑
mn
i=1 cn,iµm3(T

−1
0 (χBn,i))

= lim
i→∞

∑
mn
i=1 cn,i

∫︁
A χT−1

0 (Bn,i)
dµm3

= lim
i→∞

∑
mn
i=1 cn,i

∫︁
A χBn,i ◦T0 dµm3

= lim
i→∞

∫︁
A
(︁
∑

mn
i=1 cn,iχBn,i

)︁
◦T0 dµm3

= lim
i→∞

∫︁
A φn ◦T0 dµm3

=
∫︁

A f ◦T0 dµm3

(B.15)

The last equality is established because φn ◦ T0 is a simple measurable function such

that φn ◦T0 ↗ f ◦T0.
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Step 3 The equality between χT−1
0 (Bn,i)

and χBn,i ◦T0 in the above step, can be deduced as follows:

(i) if x ∈ T−1
0 (Bn,i) then χT−1

0 (Bn,i)
= 1, that is, if x is in the pre-image of Bn,i by T0 then

T0(x) ∈ Bn,i and we have χBn,i(T0(x)) = 1

(ii) if x ̸∈ T−1
0 (Bn,i) then χT−1

0 (Bn,i)
= 0, that is, if x is NOT in the pre-image of Bn,i by

T0 then T0(x) ̸∈ Bn,i and we have χBn,i(T0(x)) = 0

This completes the proof of the Lemma.

Applying Lemma B.0.1 to eq.( B.10) we obtain for

(a) for the binary Cantor set

∫︂
A

f dµm2 =
1
2

(︃∫︂
A

f (B0(x))dµm2 +
∫︂

A
f (B1(x))dµm2

)︃
(B.16)

(b) for the ternary Cantor set

∫︂
A

f dµm3 =
1
2

(︃∫︂
A

f (T0(x))dµm3 +
∫︂

A
f (T1(x))dµm3

)︃
(B.17)

(c) for the quaternary Cantor set

∫︂
A

f dµm4 =
1
2

(︃∫︂
A

f (τ0(x))dµm4 +
∫︂

A
f (τ1(x))dµm4

)︃
(B.18)

Eq.( B.16) is obtained by B0 playing the role of T0 and B1 playing the role of T1 as B0 and B1

have the same properties as T0 and T1, respectively. Eq.( B.18) is obtained by τ0 playing the

role of T0 and τ1 playing the role of T1 as τ0 and τ1 have the same properties as T0 and T1,

respectively.
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Appendix C

Relation between mass distribution measure and
the quaternary Cantor-Lebesgue function

This Appendix presents the relation between mass distribution measure and quaternary Cantor-

Lebesgue function by giving a proof of Proposition 5 which statement is repeated here for

convenience:

For any closed interval [0,a]⊂ [0,1], the mass distribution measure is given by µm([0,a]) =W (a)

and for a half open interval (a,b], we have µm((a,b]) = µm([0,b])−µm([0,a]) =W (b)−W (a) for

every 0 ≤ a < b ≤ 1.

Proof.

Step 1 We recall that W is defined as the limit of the sequence defined by the recursive relation

( 2.70). The properties W we will use below can be derived by induction starting with

h0(x) = x. We start by considering the values for h1 and h2 for construction level 1 and

2 respectively

(a) Referring to Figure 2.5(b) for the quaternary Cantor set, we observe that all left

endpoints of closed intervals generated by the construction process remain when go-
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Construction level 1 (k = 1)
Sub-case Interval h1(x)

No. considered
1 x ∈ (0,1/4) 0 ≤ h1(x)≤ 1/2

2 x ∈ [1/4,1/2] h1(x) = 1/2

3 a ∈ (1/2,3/4) 1/2 ≤ h1(x)≤ 1

4 a ∈ [3/4,1] h1(x) = 1

Table C.1: Values for h1 at construction level k = 1.

Construction level 2 (k = 2)
Sub-case Interval h2(x)

No. considered
1 x ∈ (0,1/16) 0 ≤ h2(x)≤ 1/22

2 x ∈ [1/16,1/8] h2(x) = 1/22

3 a ∈ (1/8,3/16) 1/22 ≤ h1(x)≤ 1/2

4 a ∈ [3/16,1/2] h2(x) = 1/2

5 x ∈ (1/2,9/16) 1/2 ≤ h2(x)≤ 3/22

6 x ∈ [9/16,5/8] h2(x) = 3/22

7 a ∈ (5/8,11/16) 3/22 ≤ h2(x)≤ 1

8 a ∈ [11/16,1] h2(x) = 1

Table C.2: Values for h2 at construction level k = 2.

ing from one construction level to the next. For instance, 1/2 is the left endpoint of

[1/2,3/4] at construction level 1,the left endpoint of [1/2,9/16] at construction level

2 and the left endpoint of [1/2,33/64] at construction level 3. The same occurs for left

endpoint 1/8 of [1/8,3/16] and left endpoint 5/8 of [5/8,11/16] but starting at con-

struction level 2. So, at construction level 1 we have 2 left endpoints {0,1/2} repeated

at construction level 2 (in red) where we have 22 left endpoints {0,1/8,1/2,5/8}. At

construction level 3 we have 23 left endpoints {0,1/32,1/8,5/32,1/2,17/32,5/8,21/32}.

Also, by construction all left endpoints eventually start to repeat from one level to
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the next.

(b) Tables C.1 and C.2 indicates using the recursive relation ( 2.70), that h1(h0(1/2)) =

1/2+h0(4(1/2)−2) = 1/2 and h2(h1(h0(1/2))) = h2(1/2) = 1/2+(1/2)h1(4(1/2)−

2) = 1/2 to get that for a repeated left endpoint like 1/2, h2(1/2) = h1(1/2) =

h0(1/2) = 1/2. Continuing inductively we obtain that at construction level k = n,

hn(a/b) = hn−1(a/b) = . . .= hℓ(a/b) = pℓ for repeated left endpoint a/b where ℓ is the

construction level at which a/b first appears. So, ∀n ∈N, hn(a/b) = pℓ (a constant).

Then lim
n→∞

hn(a/b) =W (a/b) = pℓ.

(c) We can then write the following properties of W :

• for a repeated left endpoint a/b, we have that W (a/b) = hℓ(a/b) = pℓ where ℓ is

the construction level at which a/b first appears.

• by definition of W , W (x) = pℓ (a constant) for al ≤ x ≤ a/b where al is the first

right endpoint of a closed interval on the left of a/b.

We now prove the proposition by induction:

Step 2 k = 0: Trivial cases: a = 0 and a = 1

(i) Since [0,0] is a singleton, we showed by eq.( 3.48) in 92 the mass of a single point

is 0. So, µ([0,0]) = 0 =W (0) = 0.

(ii) µ([0,1]) = 1 =W (1) = 1 by definition of unit mass.

(iii) We can write for these two trivial cases that |µ([0,a])−W (a)| ≤ 1 = 1/20

Step 3 k = 1: endpoints are {0,1/4,1/2,3/4}, W (1/2) = 1/2 and by definition of W , W (x) = 1/2

for 1/4 ≤ x ≤ 1/2 . Then, µm([0,1/4]) =W (1/4) = 1/2 and µm([0,1/2]) =W (1/2) = 1/2.

Similarly, for x = 1, hn(1) = 1, ∀n ∈ N so W (1) = 1. By extension of W , W (x) = 1 for

3/4 ≤ x ≤ 1. By monotonicity of µm and by the properties of W , and that µm = 0 on E c
1 ,

we have: From Table C.3 we conclude that |µm4([0,a])−W (a)| ≤ 1/21 = 1/2.
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Construction level 1 (k = 1)
Sub-case Interval Implications Implications

No. considered for µm(·) for W (·)
1 a ∈ (0,1/4) 0 ≤ µm([0,a])≤ 1/2 0 ≤W (a)≤ 1/2

2 a ∈ [1/4,1/2] µm([0,a]) = µm([0,1/4] = 1/2 W (a) = 1/2

3 a ∈ (1/2,3/4) 1/2 ≤ µm([0,a])≤ 1 1/2 ≤W (a)≤ 1

4 a ∈ [3/4,1] µm([0,a]) = µm([0,3/4] = 1 W (a) = 1

Table C.3: Mass distribution and Cantor function for construction level k = 1.

Step 4 From the above, we can then formulate the Induction Hypothesis: For k = n− 1 and

for any interval from construction E = [a0,b0] ∈ En−1 (at level k = n − 1) with posi-

tive mass, we suppose true that q0 = µm([0,a0]) = W (a0) by properties of W and ∀a ∈

[0,1], |µm([0,a])−W (a)| ≤ 1/2n−1.

Step 5 Induction Step: For k = n and for any interval from construction E = [a0,b0]∈ Ek−1 (level

k = n− 1) and having a positive mass, we have that when a is an endpoint at the nth

level which is not a0 or b0, then a = a0 + 1/4n or a = a0 + 2/4n and by construction

µm([0,a]) = q0 + 1/2n. This can also been seen in Table C.4 where by construction,

µm[a0,b0] is decomposed equally by mass distribution as follows:

µm([a0,b0]) = µm([a0,a0 +1/4n])+µm([a0 +2/4n,a0 +4/4n = b0]) (C.1)
1

2n−1 =
1
2n +

1
2n

By Induction Hypothesis, µm([0,a0]) = q0 =W (a0) and W (a) =W (a0)+1/2n by proper-

ties of W , so µm([0,a]) =W (a). We conclude that |µ([0,a])−W (a)| ≤ 1/2n and equality

holds at the endpoints of level k = n. Now, as n → ∞, µm([0,a]) =W (a) ∀a ∈ [0,1] and

µm((a,b]) = µm([0,b])−µm([0,a]) =W (b)−W (a) for every 0 ≤ a < b ≤ 1. This completes

the proof of Proposition 5.
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Construction level n (k = n)
Sub-case Interval Implications Implications

No. considered for µm(·) for W (·)
n1 a ∈ (a0,a0 +1/4n) q0 ≤ µm([0,a])≤ q0 +1/2n q0 ≤W (a)≤ q0 +1/2n

n2 a ∈ [a0 +1/4n,a0 +2/4n] µm([0,a]) = q0 +1/2n W (a) = q0 +1/2n

n3 a ∈ (a0 +2/4n,a0 +3/4n) q0 +1/2n ≤ µm([0,a])≤ q0 +1/2n−1 q0 +1/2n ≤W (a)≤ q0 +1/2n−1

n4 a ∈ [a0 +3/4n,a0 +1/4n−1 = b0] µm([0,a]) = q0 +1/2n−1 W (a) = q0 +1/2n−1

Table C.4: Mass distribution and Cantor function for one group of sub-cases at construction
level k = n.
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Appendix D

Relation between Hausdorff measure and the
quaternary Cantor-Lebesgue function

In this Appendix we establish a relation between the Hausdorff measure of dimension s = 1/2,

restricted to C(4), of [0,a]⊂ [0,1] and the extended Cantor-Lebesgue function W for C(4). More

precisely, we prove the claim that for every 0 ≤ a ≤ 1, H s([0,a]∩C(4)) = W (a). Then, the

Appendix concludes by the proof of relation between the Hausdorff measure restricted to C(4)

of (a,b]⊂ [0,1] and W , H s((a,b]∩C(4)) =W (b)−W (a) for every 0 ≤ a < b ≤ 1.

We have that C(4) has dimension s = log2/ log4 = 1/2 and we make the assumption that

Hausdorff measure H s(C(4)) = 1. The quaternary Cantor set can be constructed using the IFS

given in eq. ( 2.68). τ0(x) and τ1(x) are similarity transformations of scale factor 0< λ = 1/4< 1.

The value of λ makes them contractions and also Lipschitz mappings:

|τ0(x)− τ0(y)| ≤ 1
4 |x− y| ∀x,y ∈ [0,1]

|τ1(x)− τ1(y)|= |τ0(x)+ 1
2 − τ0(y)− 1

2 |= |τ0(x)− τ0(y)| ≤ 1
4 |x− y|

(D.1)

Then, by the scaling property of Hausdorff measure [15, p. 46] we have for every 0 ≤ a < b ≤ 1:

H s(τk([a,b])) =
(︃

1
4

)︃s

H s([a,b]) =
1
2
H s([a,b]) k = {0,1} (D.2)
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Then, the heuristic calculation performed in proving Theorem 3.1.7 can be extended as follows:

(a) At construction level 2, define CL1 = [0,1/16]∩C(4), CL2 = [1/8,3/16]∩C(4), CR1 = [1/2,9/16]∩

C(4), CR2 = [5/8,11/16]∩C(4) all disjoint, to obtain: C(4) =CL1 ∪CL2 ∪CR1 ∪CR2 .

(b) We can write

H s(C(4)) = H s(CL1)+H s(CL2)+H s(CR1)+H s(CR2)

= 4× 1(︁
42
)︁s H s(C(4))

1 = 4× 1
(4s)2 .

(D.3)

Eq. ( D.3) implies that H s(CL1) = H s(CL2) = H s(CR1) = H s(CR2) = 1/22.

(c) At construction level 3, the Hausdorff measure of the intersection of each closed interval

with C(4) equals 1/23 since the scaling ratio is 1/33.

(d) Continuing inductively, then at construction level n, the Hausdorff measure of the intersec-

tion of each closed interval in the union C(4)
n with C(4) equals 1/2n since the scaling ratio is

1/4n.

At construction level n, section 3.2.2 concluded to the uniform distribution of the unit mass,

assigning a mass of 1/2n to each closed interval giving mass distribution measure of 1/2n.

Clearly, the mass of each of these closed intervals U in C(4)
n equals the Hausdorff measure of

the intersection of each of these closed intervals with C(4), 1/2n and this ∀n ∈ N. So, we obtain

that H (U ∩C(4)) = µm(U) for every closed interval U arising in the construction of C(4) where

by definition of E in eq.( 3.44), U ∈ E Also, the mass of the subsets of the complement of

C(4) is 0 which implies the Hausdorff measure of these subsets is 0. This leads to the following

proposition:

Proposition 8. For any closed interval [0,a] ⊂ [0,1], the Hausdorff measure, restricted to C(4),

is given by H ([0,a]∩C(4)) =W (a) and for half open interval (a,b], we have H ((a,b]∩C(4)) =

H ([0,b]∩C(4))−H ([0,a]∩C(4)) =W (b)−W (a) for every 0 ≤ a < b ≤ 1.
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Proof.

With every closed interval U arising in the construction of C(4) contained in E , we have es-

tablished that H (U ∩C(4)) = µm(U) ∀U ∈ E . So the proof of Proposition 8 is exactly the same

as that of Proposition 4, since all that proof uses is the knowledge of µm(U) for such U .
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Appendix E

Completeness of (B([0,1],∥·∥∞)

In this appendix, we show the completeness of (B([0,1],∥·∥∞), the space of all uniformly bounded

real-valued functions on [0,1].

Theorem E.0.1. The space of bounded functions on [0,1] with the supremum norm ∥·∥∞ is

complete. That is

B([0,1],∥·∥∞) = { f : [0,1]→ R with f bounded}

∥ f∥∞ = supx∈[0,1]| f (x)|< ∞

(E.1)

is complete.

Proof.

A set X is said to be complete if every Cauchy sequence in X converges in X .

Step 1 We assume the sequence { fn} in B is Cauchy in ∥·∥∞, that is ∥ fn− fm∥∞ → 0 as n,m → ∞

with ∥ fn − fm∥∞ = supx∈[0,1]| fn(x)− fm(x)|.

Step 2 By assumption, we have that ∀x∈R, | fn(x)− fm(x)|→ 0 pointwise as n,m→∞. Therefore,

for each x ∈ [0,1], the sequence { fn(x)} is a sequence of numbers that is Cauchy in R.
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Step 3 Since R is complete, it implies that ∀x, lim
n→∞

fn(x) exists in R. From this, let f (x) =

lim
n→∞

fn(x), then fn → f pointwise on [0,1].

Step 4 We need to show that fn → f uniformly on [0,1], that is, in ∥·∥∞. Explicitly, we need to

show that ∥ fn − f∥∞ → 0 as n → ∞

Step 5 From the assumption in Step 1, let ε > 0 be given. There exists N ∈N such that ∀n,m≥N

we have ∥ fn − fm∥∞ < ε . This implies that ∀x, | fn(x)− fm(x)|< ε since by definitions of

∥·∥∞ and of supremum we have

∀x, | fn(x)− fm(x)| ≤ ∥ fn − fm∥∞ < ε ∀n,m ≥ N (E.2)

Step 6 Key step: We fix x and n and we let m → ∞ to obtain

lim
m→∞

| fn(x)− fm(x)|= | fn(x)− f (x)| ≤ ε (E.3)

The “< ε” in eq. ( E.2), becomes “≤ ε” in taking the limit m → ∞. That limit can be

taken inside by the continuity of the absolute function.

Step 7 In Step 6, the choice of x ∈ [0,1] is arbitrary. Therefore ∀n ≥ N and ∀x ∈ [0,1], | fn(x)−

f (x)| ≤ ε giving that ∥ fn− f∥∞ ≤ ε . Since ε > 0 was arbitrary, we have shown that fn− f

converges to 0 in the norm ∥·∥∞ so, fn → f converges uniformly.

Step 8 There remains to show that f ∈ B([0,1],∥·∥∞). Let ε = 1, then we choose N ∈ N such

that for n ≥ N, ∥ f − fn∥∞ ≤ ε = 1. Taking n = N, we have ∥ f − fN∥in f ty ≤ 1. Then, by the

triangle inequality we can write that ∥ f∥∞ ≤∥ f − fN∥∞+∥ fN∥∞. Since fN ∈B([0,1],∥·∥∞),

there exists a positive real constant A such that ∥ fN∥∞ ≤ A. Then, we can write that

∥ f∥∞ ≤ 1+A. Therefore f is bounded and f ∈B([0,1],∥·∥∞).
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Appendix F

Banach contraction principle

F.1 Banach contraction principle

Theorem F.1.1. (Banach contraction principle) If (X ,d) is a complete metric space and f : X →X

is a contraction, i.e. for some 0 < α < 1, d( f (x); f (y)) ≤ αd(x;y) for all x,y ∈ X , then f has a

unique fixed point in X .

Proof.

Step 1 We take x1 ∈ X , (x1 arbitrary), x2 = f (x1), x3 = f (x2), …, xn+1 = f (xn).

Step 2 Let a > 0 and let d(x1,x2) = a where

d(x2,x3) = d( f (x1), f (x2)) ≤ αd(x1,x2) = α ·a

d(x3,x4) = d( f (x2), f (x3)) ≤ αd(x2,x2) = α2 ·a
... ... ...

d(xn,xn+1) ≤ αn−1 ·a

(F.1)
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Step 3 Applying the triangular inequality many times to d(xn,xn+k) we have:

d(xn,xn+k) ≤ d(xn,xn+1)+d(xn+1,xn+2)+ · · ·+d(xn+k−1,xn+k)

≤ a(αn−1 +αn +αn+1 + · · ·+ ·αn+k−2)

≤ aαn−1(1+α +α2 + · · ·+αk−1)< aαn−1

1−α

(F.2)

Let ε > 0. With 0 < α < 1, there exists n0 ∈ N such that for n ≥ n0, aαn−1/(1−α)< ε .

Given that ε > 0 is arbitrary, then from ineq. ( F.2) we have that for every ε > 0,

there exists n0 ∈N such that if n ≥ n0 and n+k ≥ n0 (k > 0), we get that d(xn,xn+k)< ε

Therefore {xn} is a Cauchy sequence.

Step 4 Then, we get that xn −→
n→∞

x0 where by completeness of X , x0 ∈ X .

Step 5 Since f is a contraction, it is continuous and

xn+1 = f (xn)

↓ ↓

x0 = f (x0)

(F.3)

giving that x0 is a fixed point.

Step 6 We have to show that x0 is unique, that is, there are no more fixed points. We assume

that x0,x1 are fixed points. Thus

d(x0,x1) = d( f (x0), f (x1))≤ αd(x0,x1) (F.4)

Since 0 < α < 1, the only value for d(x0,x1) to be ≤ αd(x0,x1) is d(x0,x1) = 0 so x0 = x1

and x0 is unique.
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F.2 Applications of Banach contraction principle

In the applications of the Banach contraction principle (Theorem F.1.1), in Propositions 1

and 2(Chapter 2) we have that that X =B([0,1]) and d is the supremum norm ∥·∥∞ = supx∈[0,1]|·|.

They take the form of applications of contraction mappings given in Chapter 2, by eqs. (2.55)

and (2.71) for respectively the ternary and quaternary Cantor sets where in both cases the

initial function f0(x) is the following bounded and increasing step function:

f0(x) =

⎧⎪⎨⎪⎩ 0 for 0 ≤ x < 1
2 ,

1 for 1
2 ≤ x ≤ 1

(F.5)

We observe that in both cases, the graphs of the functions fn(x) in the sequence resemble each

other more and more, which is another way of saying that it is a Cauchy sequence. This quick

convergence of fn(x) implies that fn(x) for n = 100,000 is graphically close to the limit functions,

namely the Cantor-Lebesgue functions, F (Figure F.1) and W (Figure F.2), respectively for the

ternary and quaternary Cantor sets. F and W cannot actually be graphed as each of them is a

theoretical limit.

We include the additional case to contrast the increasing step function in eq. ( F.5) used

for f0. We use the following decreasing step function for f0:

f0 =

⎧⎪⎨⎪⎩ 1 for 0 ≤ x < 1
2 ,

0 for 1
2 ≤ x ≤ 1

(F.6)

Again we observe convergence in both cases similar to an increasing step function for f0. This

convergence of fn(x) implies that fn(x) for n = 100,000 is graphically close to the theoretical

limit functions, namely the Cantor-Lebesgue functions, F (Figure F.3) and W (Figure F.4),

respectively for the ternary and quaternary Cantor sets. Being theoretical limit functions, F

and W cannot actually be graphed. However, the rate of convergence appears to be slower

than with the increasing step function used for f0. This could be explained by observing in
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the proof of Theorem F.1.1, how far in the metric, namely the sup norm, the initial function

f0 and f1 = H( f0) are from each other. For the increasing step function, the initial distance

d( f0, f1 = H( f0)) = a = 1/2. Similarly, for the decreasing step function, the initial distance

d( f0, f1 = H( f0)) = a = 1. Thus, for a given ε > 0, the inequality aαn−1

1−α
< ε would be satisfied

with a smaller value of n for a = 1/2 than the value of n for a = 1. Another argument for this

slower convergence with the step down initial function f0 could be that it has a discontinuity,

a sharp bounded decrease, of the first kind at x = 1/2 but the theoretical limit functions F and

W are increasing over [0,1].
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Figure F.1: Graph of the functions fn(x) for n = 0,1,2,5,100,100,000 for the ternary Cantor
set

137



0

0.2

0.4

0.6

0.8

1

1.2
n=0

α=1/6 β=2/3

1/4 1/2 3/4

n=1

0

0.2

0.4

0.6

0.8

1

1.2

α=1/6 β=2/3

1/4 1/2 3/4

C
a
n
to
r-
Le
b
e
sg
u
e

Fu
n
ct
io
n

n=2

α=1/6 β=2/3

1/4 1/2 3/4

n=5

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

α=1/6 β=2/3

1/4 1/2 3/4
x

n=100

0 0.2 0.4 0.6 0.8 1

α=1/6 β=2/3

1/4 1/2 3/4
x

n=100000

Figure F.2: Graph of the function fn(x) for n = 0,1,2,5,100,100,000 for the quaternary Cantor
set
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Figure F.3: Graph of the functions fn(x) for n = 0,1,2,5,100,100,000 for the ternary Cantor
set
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Figure F.4: Graph of the function fn(x) for n = 0,1,2,5,100,100,000 for the quaternary Cantor
set
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Appendix G

Orthogonal projection for Mercedes frame

This appendix gives details on the meaning of the Mercedes frame being “the orthogonal projec-

tion of a certain orthonormal basis for R3 onto a two-dimensional plane”. The Mercedes frame

is defined by

x1 = (0,1), x2 = (−
√

3
2

,−1
2
), x3 = (−

√
3

2
,−1

2
) (G.1)

and lies in the xy-plane as shown in Figure G.1.

x

y
1

1

x1

x2 x3

Figure G.1: The three vectors of the Mercedes frame with blue dashed unit circle for comparison.

We observe that ∥x1∥ = ∥x2∥ = ∥x3∥ = 1. The orthonormal basis for R3 whose orthogonal

projection yields the Mercedes frame has to be at an angle θ with respect to the xy-plane. So, we
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start by finding two orthogonal vectors, both at angle θ with respect to the xy-plane, in R3 whose

projection on the xy-plane has the same direction as x2 = (
√

3/2,−1/2) and x3 = (−
√

3/2,−1/2)

respectively. Being orthogonal, their dot product must be equal to 0:

(︄
−
√

3
2

,−1
2
), tanθ

)︄
•

(︄√
3

2
,−1

2
, tanθ

)︄
= 0 (G.2)

to obtain that tanθ = 1/
√

2 giving two orthogonal vectors in R3. Using the definition of tanθ

we can calculate that sinθ = 1/
√

3 and cosθ =
√︁

2/3.

v2 =
(︂
−

√
3

2 ,−1
2 ,

1√
2

)︂
v3 =

(︂√
3

2 ,−1
2 ,

1√
2

)︂ (G.3)

where the specifications of the first two coordinates of v2 and v3 ensure that their respective

orthogonal projection on the xy-plane has the same direction than their corresponding Mercedes

frame elements x2 and x3 respectively. From eq.( G.3) we have that ∥v2∥= ∥v3∥=
√︁

3/2. Using√︁
3/2 as normalization factor, we obtain, e2 and e3, the two first orthonormal elements of the

basis in R3 we are looking for:

e2 =
√︂

2
3v2 =

(︂
− 1√

2
,− 1√

6
,1/

√
3
)︂

e3 =
√︂

2
3v3 =

(︂
1√
2
,− 1√

6
,1/

√
3
)︂ (G.4)

with ∥e2∥= ∥e3∥= 1.

The cross product of e2 × e3 gives e1, the third orthogonal element of the basis in R3:

e1 = (0,
√︁

2/3,1/
√

3) with ∥e1∥= 1. If we do the orthogonal projection onto the xy-plane of the

orthonormal basis {e1,e2,e3}, we would obtain vectors in the xy-plane with the same direction

as the one in the Mercedes frames but with a length of
√︁

2/3 which is not what is required as the

length of the orthogonal projection must be 1. As illustrated in the figure below, it results that

the Mercedes frame can be recovered by the orthogonal projection from the orthogonal basis

{v1,v2,v3}. We obtain the third element v1 of the orthogonal basis {v1,v2,v3} by multiplying
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e1 by
√︁

3/2 giving v1 = (0.0,1.0,1/
√

2). So, the phrase “certain orthogonal projection from the

orthonormal basis in R3” needs to be amended to read “certain orthogonal projection from the

orthogonal basis in R3”

x axisy axis

 0
 0.2
 0.4
 0.6
 0.8

 1

x1
x2

x3

v1
v2

v3

-2 -1.5-1 -0.5 0  0.5 1  1.5 2
-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

z axis

Orthogonal projection onto the xy-plane of a certain 
 orthogonal basis in 3D

Figure G.2: Mercedes frame and the orthogonal basis {v1,v2,v3} in R3

This concludes the explanation of the meaning of “a certain orthogonal projection from the

orthonormal basis in R3” for the recovery of the Mercedes frame.
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Appendix H

Convergence of infinite products

H.1 Introduction

In this Appendix we show that the infinite product in the formula of µ̂4 converges. For conve-

nience, we give again the formula for µ̂4 below:

µ̂4(t) = ei π2t
3

∞

∏
n=0

cos
(︂

πt
2 ·4n

)︂
(H.1)

We established in Chapter 4, that the zero set of µ̂m4
(t) is Z(µ̂4) = {4n(1+2Z)} ⊂ Z with

n ∈ N∪ {0}. The existence of this zero set precludes using the log function on the infinite

product to create a series and study its convergence. Moreover, in a neighbourhood of each of

these these zeros, the corresponding factor in the product will take positive and negative values

with the latter incompatible with the log function.

Apostol[1, p. 207] gives a useful definition of infinite product that we quote:

Definition H.1.1. Given an infinite product ∏
∞
n=1 un, let pn = ∏

n
k=1 uk.

(a) If infinitely many factors un are zero, we say the product diverges to zero.

(b) If no factor un is zero, we say the product converges if there exists a number p ̸= 0 such
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that {pn} converges to p. In this case, p is called the value of the product and we write

p = ∏
∞
n=1 un. If {pn} converges to zero, we say the product diverges to zero.

(c) If there exists an N such that n > N implies un ̸= 0, we say ∏
∞
n=1 un converges, provided that

∏
∞
n=N+1 un converges as described in (b). In this case, the value of the product ∏

∞
n=1 un is

u1u2 · · ·uN

∞

∏
n=N+1

un. (H.2)

(d) ∏
∞
n=1 un is called divergent if it does not converge as described in (b) and (c).

Also, Apostol[1, p. 207] provides the following note that we quote: The value of a convergent

infinite product can be zero. But this happens if and only if, a finite number of factors are zero.

The convergence of an infinite product is not affected by inserting or removing a finite number

of factors, zero or not.

H.2 Convergence of the infinite product

Apostol[1, p. 207] gives the Cauchy condition in the form of theorem that we quote:

Theorem H.2.1. The infinite product ∏
∞
n=1 un converges if, and only if , for every ε > 0 there is

an N such that n > N implies

|un+1un+2 · · ·un+k −1|< ε, for k = 1,2,3, . . . (H.3)

Apostol[1, p. 208] offers the following observation, useful in the sequel that we quote: Taking

k = 1 in eq. ( H.3), we find that convergence of ∏
∞
n=1 un implies that lim

n→∞
un = 1. For this reason,

the factors of a product are written as un = 1+ an. Thus convergence of ∏
∞
n=1(1+ an) implies

that lim
n→∞

an = 0.

According to Apostol[1, p. 209], for some products, the factors could be written as un = 1−an

and Apostol[1, p. 209] gives the following theorem on the convergence of such products that we
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quote:

Theorem H.2.2. Assume that each an ≥ 0. Then the product ∏(1−an) converges if, and only

if, the series ∑an converges.

It is this latter theorem that we use to show the convergence of the product in the formula

for µ̂4. Using the identity cos2α = 1−2sin2
α , each factor of the product in eq. ( H.1) can be

written as follows:

un(t) = cos
(︂

πt
2 ·4n

)︂
= 1−2sin2

(︂
πt

4n+1

)︂
(H.4)

where we note the notation un(t) for the nth factor in the product. Each n ∈N∪{0} corresponds

to a factor in the product and to a subset of the zero set Z(µ̂4). For instance, n = 1 corresponds

to the factor cos
(︁

πt
2·4
)︁

and to {4(1+2Z)} ⊂ Z(µ̂4). We observe that the subset {4(1+2Z)} is

not the subset of zeros for any of the factors for n ̸= 1. Then, the study of the convergence of

the product reduces to two cases:

(a) t fixed with t ∈ R \ {4n(1+ 2Z)} ∀n ∈ N∪ {0} so in eq.( H.4), 2sin2
(︂

πt
4n+1

)︂
> 0 and by

Theorem H.2.2, we only need to study the convergence of the series

∞

∑
n=0

2sin2
(︂

πt
4n+1

)︂
. (H.5)

For all x > 0, we have the inequality sinx < x = |x|. Since |sinx| and |x| are even functions,

we can write that |sinx|< |x| ∀x ∈ {R\{0}}. We have that |sinx| ≤ 1 then |sinx|2 = sin2 x ≤

|sinx| < |x| to get that sin2 x < |x| ∀x ∈ {R \ {0}} since at x = 0, sin2 0 = 0 and we have

that µ̂4(0) = 1. That is, the product in eq. ( H.1) converges to 1. We then focus on the

convergence ∀t ∈ {R\{0}}. We can then write

∞

∑
n=0

2sin2
(︂

πt
4n+1

)︂
<

∞

∑
n=0

| πt
4n+1 |= 2

π|t|
4

∞

∑
n=0

1
4n = 2

π|t|
3

< ∞ (H.6)

So the series in ( H.5) converges by the Comparison test Apostol[1, p. 190] and by

Theorem H.2.2 the product converges. Since t is arbitrary, the product converges ∀t ∈
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R\{4n(1+2Z)} ∀n ∈ N∪{0}.

(b) For a given N ∈ N∪{0}, N corresponds to the factor uN(t) = cos
(︁

πt
2·4N

)︁
. t fixed with t ∈

{4N(1+2Z)}, then uN(t) = 0 with all the other factors of the product different from 0. So,

Part (c) of Definition H.1.1 applies and we have

u1u2 · · ·uN−1 ·0 ·
∞

∏
n=N+1

un. (H.7)

where the product converges to 0, provided ∏
∞
n=N+1 un converges. Similarly as in Case 1,

we have
∞

∑
n=N+1

2sin2
(︂

πt
4n+1

)︂
< 2

∞

∑
n=N+1

| πt
4n+1 |= 2

π|t|
4N+1

∞

∑
n=0

1
4n = 2

π|t|
3 ·4N < ∞ (H.8)

So the series in ( H.8) converges by the Comparison test Apostol[1, p. 190] and by Theo-

rem H.2.2 the product converges. Since t and N are arbitrary, the product converges to 0

∀t ∈ {4n(1+2Z)} with n ∈ N∪{0}.

We then conclude that the product in eq. ( H.1) converges ∀t ∈ R.
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Appendix I

Relation between Fourier transforms of measure
and Cantor-Lebesgue function

I.1 Introduction

In this Appendix, we derive the relation between the Fourier transform of the measures µ3 and

µ4, and the Fourier transform of their corresponding Cantor-Lebesgue function. This gives an

alternate way for the following formulae obtained in Ch. 4, repeated here for convenience:

1. for the ternary Cantor set (eq. ( 4.52))

µ̂3(t) =
1
2

(︂
1+ eiπ 4t

3

)︂
µ̂3(

t
3
) (I.1)

2. for the quaternary Cantor set (eq. ( 4.11)):

µ̂4(t) =
1
2
(︁
1+ eiπt)︁

µ̂4(
t
4
) (I.2)

These formulae are the respective starting point of an iterative process leading to the formulae

for the Fourier transform of ternary and quaternary measures in the form of an infinite product.
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Proposition 4 in Ch. 3 shows for the ternary measure that for any closed interval [0,x]⊂ [0,1],

µ3([0,x]) =F(x) where F is the C-L function for the ternary Cantor set. Similarly, Proposition 5,

shows for the quaternary measure that µ4([0,x]) = W (x) where W is the C-L function for the

quaternary Cantor set. With these relations, F and W can be called as distribution functions

of respectively µ3 and µ4 [16, p. 33]. Both F and W are monotone increasing, bounded and

continuous on the closed interval [0,1]. Also, the function et = e2πtx is continuous and bounded

on [0,1].

Following Apostol [1, Ch. 7], the Riemann-Stieltjes integral calls for two bounded functions

f and α on a closed interval [a,b] and is denoted by the symbol
∫︁ b

a f (x)dα(x). If such an integral

exists, we quote Apostol [1, p. 141]: we say that f is Riemann-integrable with respect to α on

[a,b], and we write f ∈ R(α) on [a,b]. For integrating by parts
∫︁ b

a f (x)dα(x), we quote Apostol

[1, p. 144, Thm 7.6]: if f ∈ R(α) on [a,b], then α ∈ R( f ) on [a,b] and we have

∫︁ b
a f (x)dα(x)+

∫︁ b
a α(x)d f (x) = f (b)α(b)− f (a)α(a)∫︁ b
a f (x)dα(x) = −

∫︁ b
a α(x)d f (x)+ f (b)α(b)− f (a)α(a)

(I.3)

Using Rudin [26, Thm. 6.30, p. 122], we can apply eq.( I.3) in the case of f ∈ C[a,b] and α

of bounded variation on [a,b] or more specifically, α monotone on [a,b]. We use the formula

in eq.( I.3) with the continuous function f = et = e2πitx and the monotone functions, F and W

to obtain a relation between the Fourier transforms of the measure and its corresponding C-L

function. These three functions are defined and bounded on [0,1]. In fact they are more than

that, which is even better.

I.1.1 Ternary measure

By calling F a distribution function of µ3 and Proposition 4, giving µ3([0,x]) = F(x), we have

that dµ3 = dF . Using integration by parts (eq.( I.3)), we can write the formula for the Fourier
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transform of µ3 as

µ̂3(t) =
∫︁ 1

0 e2πitxdµ3 =
∫︁ 1

0 e2πitxdF

= −2πit
∫︁ 1

0 F(x)e2πitxdx+ F(x)e2πitx
⃓⃓1
0

= −2πitF̂(t)+ e2πit

(I.4)

where t ∈ Z and by definition of Fourier transform

F̂(t) =
∫︂ 1

0
F(x)e2πitxdx (I.5)

with t ∈Z.We then have the relation between the Fourier transforms of µ3 and the corresponding

C-L function F . Can we obtain eq. ( I.1) without having to use the methodology exposed in

Ch. 4 i.e. eq. ( 4.9)? We can answer in the affirmative as shown below.

By Lemma 2.1.15, the following identity holds:

F(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2F(3x) for 0 ≤ x ≤ 1

3 ,

1
2 for 1

3 < x < 2
3 ,

1
2F(3x−2)+ 1

2 for 2
3 ≤ x ≤ 1.

(I.6)

with F(y) = 0 for y < 0 and y > 1. Then we write

F̂(t) =
∫︁ 1

0 F(x)e2πitxdx

=
∫︁ 1

3
0

1
2F(3x)e2πitxdx+

∫︁ 2
3

1
3

1
2e2πitxdx+

∫︁ 1
2
3

(︁1
2 +

1
2F(3x−2)

)︁
e2πitxdx

= F̂(t/3)
6 + 1

4πit

(︂
e

4πit
3 − e

2πit
3

)︂
+ 1

4πit

(︂
e2πit − e

4πit
3

)︂
+ e

4πit
3

F̂(t/3)
6

=
(︂

1+ e
4πit

3

)︂
F̂(t/3)

6 + 1
4πit

(︂
e2πit − e

2πit
3

)︂
(I.7)

but from eq. ( I.4) we have

F̂(t/3) =
e

2πit
3 − µ̂3(t/3)

2πit
3

(I.8)
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Introducing eq. ( I.8) in eq. ( I.7) we obtain:

F̂(t) =

(︄
1+ e

4πit
3

6

)︄(︄
e

2πit
3 − µ̂3(t/3)

2πit
3

)︄
+

1
4πit

(︂
e2πit − e

2πit
3

)︂
(I.9)

Introducing eq. ( I.9) in eq. ( I.4), we obtain the desired result:

µ̂3(t) =
1
2

(︂
1+ eiπ 4t

3

)︂
µ̂3(

t
3
) (I.10)

This confirms the answer by the affirmative the question asked above.

I.1.2 Quaternary measure

By calling W a distribution function of µ4 and Proposition 5, giving µ4([0,x]) =W (x), we have

that dµ4 = dW . Using integration by parts (eq.( I.3)), we can write the formula for the Fourier

transform of µ4 as

µ̂4(t) =
∫︁ 1

0 e2πitxdµ4 =
∫︁ 1

0 e2πitxdW

= −2πit
∫︁ 1

0 W (x)e2πitxdx+ W (x)e2πitx
⃓⃓1
0

= −2πitŴ (t)+ e2πit

(I.11)

where t ∈ Z and by definition of Fourier transform

Ŵ (t) =
∫︂ 1

0
W (x)e2πitxdx (I.12)

with t ∈Z. We then have the relation between the Fourier transforms of µ4 and the correspond-

ing C-L function F . Can we obtain eq. ( I.2) without having to use the methodology exposed

in Ch. 4 i.e. eq. ( 4.9)? We can answer in the affirmative as shown below.
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By Proposition 2, the following identity holds:

W (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2W (4x) for 0 ≤ x ≤ 1

4 ,

1
2 for 1

4 < x < 1
2 ,

1
2 +

1
2W (4x−2) for 1

2 ≤ x ≤ 3
4 ,

1 for 3
4 ≤ x ≤ 1.

(I.13)

with W (y) = 0 for y < 0 and y > 1. Then we write

Ŵ (t) =
∫︁ 1

0 W (x)e2πitxdx

=
∫︁ 1

4
0

1
2W (4x)e2πitxdx+

∫︁ 1
2

1
4

1
2e2πitxdx

+
∫︁ 3

4
1
2

(︁1
2 +

1
2W (4x−2)

)︁
e2πitxdx+

∫︁ 1
3
4

e2πitxdx

= Ŵ (t/4)
8 + 1

4πit

(︂
eπit − e

πit
2

)︂
+eπit Ŵ (t/4)

8 + 1
2πit

(︂
e2πit − e

3πit
2

)︂
=

(︁
1+ eπit)︁ Ŵ (t/4)

8 + 1
4πit

(︂
e

3πit
2 − e

πit
2

)︂
+ 1

2πit

(︂
e2πit − e

3πit
2

)︂

(I.14)

but from eq. ( I.11) we have

Ŵ (t/4) =
4

2πit

(︂
e

πit
2 − µ̂4(t/4)

)︂
(I.15)

Introducing eq. ( I.15) in eq. ( I.14) we obtain:

Ŵ (t) =
(︁
1+eπit)︁

8
4

2πit

(︂
e

πit
2 − µ̂4(t/4)

)︂
+ 1

4πit

(︂
e

3πit
2 − eπit

)︂
+ 1

2πit

(︂
e2πit − e

3πit
2

)︂ (I.16)

Introducing eq. ( I.16) in eq. ( I.11), we obtain the desired result:

µ̂4(t) =
1
2
(︁
1+ eiπt)︁

µ̂4(
t
4
) (I.17)
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This confirms the answer by the affirmative the question asked above.
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Appendix J

One dimension: Fourier transform of measures
of odd and even scales

J.1 Introduction

Chapter 4 presents the derivations in one dimension of the Fourier transform of the ternary and

quaternary measure, µ3 and µ4. That is of scale 3 and 4 respectively. In this Appendix, we

extend these results to odd and even scales higher than 3 and 4. The key element in doing so is

to establish general Iterative Function Systems (IFSs) that each leads to a Cantor set C ⊂ [0,1]

of Lebesgue measure m(C) = 0.

J.2 IFSs for higher odd and even scales Fourier transform

The IFSs for the

(i) ternary Cantor set:

T0(x) = x
3

T1(x) = x
3 +

2
3

(J.1)
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(ii) quaternary Cantor set:

τ0(x) = x
4

τ1(x) = x
4 +

1
2

(J.2)

From these IFSs, we propose the following general IFSs applicable for all odd and even

scales:

(i) odd scale:

O0(x) = x
2k+1

O1(x) = x
2k+1 +

2
2k+1

(J.3)

for k ∈ N,

(ii) even scale:

E0(x) = x
2k

E1(x) = x
2k +

k
2k =

x
2k +

1
2

(J.4)

for k ∈ N.

For example, for k = 1 we recover the IFS for the ternary (odd) Cantor set given in eq. ( J.1)

and for the binary (even) Cantor set in eq. (B.1. Also, for k = 2 we recover the IFS for the

quaternary (even) Cantor set eq. ( J.2). We are interested in odd scales for k ≥ 2 and even

scales for k ≥ 3, for instance,

(i) odd scale k = 2, we obtain the IFS for a particular quinary Cantor set:

O0(x) = x
5

O1(x) = x
5 +

2
5

(J.5)

(ii) even scale k = 3, we obtain the IFS for a particular senary Cantor set:

E0(x) = x
6

E1(x) = x
6 +

3
6

(J.6)
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although the fraction 3/6 could be simplified it is kept intact. It ensure the proper form

of the inverse IFS.

This results in Figure J.1 displaying few steps in the construction of this quinary Cantor set

and this senary Cantor set. We observe that in both cases, the construction will lead to Cantor

sets skewed towards left as for the quaternary Cantor set. Also, the construction is according

to a self similar binary tree as for the ternary and quaternary Cantor sets.

C(5)
1

C(5)
2

C(5)
3

0
1
5

2
5

3
5

4
5 1

C(5)
0

(a) Quinary

C(6)
1

C(6)
2

C(6)
3

0
1
6

1
3

1
2

2
3

5
6 1

C(6)
0

(b) Senary

Figure J.1: Few construction levels of a quinary and a senary Cantor sets

Total length of the intervals removed:

(a) for the quinary Cantor set each parent closed interval is divided in five equal subintervals.

The two child closed subintervals result from removing the second open subinterval and

the last two open subintervals for a total of three open subintervals of equal length. Total
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length removed is then given by

3
5 +2 3

52 +4 3
53 + . . . = 3

5 +21 3
52 +22 3

53 + . . .

= 3
5

(︂
1+ 2

5 +
22

52 + . . .
)︂

= 3
5

1
1− 2

5
= 3

5
5
3 = 1.

(J.7)

Since the total length removed is 1, the construction process leads to a quinary Cantor set

C(5) ⊂ [0,1] of Lebesgue measure m(C(5)) = 0. We note the quinary Cantor set corresponds

to k = 2 and the construction process implies the removal of k+ 1 = 3 equal subintervals

from each parent interval to obtain the two closed child subintervals.

(b) for the senary Cantor set each parent closed interval is divided in six equal subintervals. The

two child closed subintervals result from removing the second and third open subintervals

and the last two open subintervals for a total of four open subintervals of equal length.

Total length removed is then given by

22
6 +22 2

62 +23 2
63 + . . . = 2

3 +
2
32 +

2
33 + . . .

= 2
3

(︂
1+ 1

3 +
1
32 + . . .

)︂
= 2

3
1

1− 1
3
= 2

3
3
2 = 1

(J.8)

Since the total length removed is 1, the construction process leads to a senary Cantor set

C(6) ⊂ [0,1] of Lebesgue measure m(C(6)) = 0. We note the senary Cantor set corresponds

to k = 3 and the construction process implies the removal of k+ 1 = 4 equal subintervals

from each parent interval to obtain the two closed child subintervals.

We then repeat the above for the general cases of odd and even scale where it suffices to

show the total length removed is 1. We have:

(a) for the (2k+1)-ary Cantor set, given k ∈ N, each parent closed interval is divided in 2k+1

equal subintervals. The two child closed subintervals result from removing the second open

subinterval and the last 2k− 2 open subintervals for a total of 2k− 1 open subintervals of
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equal length removed. Total length removed is then given by

2k−1
2k+1 +2 2k−1

(2k+1)2 +4 2k−1
(2k+1)3 + . . . = 2k−1

2k+1 +21 2k−1
(2k+1)2 +22 2k−1

(2k+1)3 + . . .

= 2k−1
2k+1

(︂
1+ 2

2k+1 +
22

(2k+1)2 + . . .
)︂

= 2k−1
2k+1

1
1− 2

2k+1
= 2k−1

2k+1
2k+1
2k−1 = 1

(J.9)

Since the total length removed is 1, the construction process does lead to a 2k+ 1 (odd

scale) Cantor set C(2k+1) ⊂ [0,1] of Lebesgue measure m(C(2k+1)) = 0.

(b) for the 2k (even scale) Cantor set, given k ∈ N, each parent closed interval is divided in

2k equal subintervals. The two child closed subintervals result from removing k− 1 open

subinterval(s) after the very first subinterval and the last k−1 open subintervals for a total

of 2k−2 open subintervals of equal length removed. Total length removed is then given by

2 k−1
2k +22 k−1

(2k)2 +23 k−1
(2k+1)3 + . . . = k−1

k + k−1
k2 + k−1

k3 + . . .

= k−1
k

(︂
1+ 1

k +
1
k2 + . . .

)︂
= k−1

k
1

1− 1
k
= k−1

k
k

k−1 = 1

(J.10)

Since the total length removed is 1, the construction process does lead to a 2k (even scale)

Cantor set C(2k) ⊂ [0,1] of Lebesgue measure m(C(2k)) = 0.

Since the IFSs in eq. ( J.3) (odd scale) and in eq. ( J.4) lead to Cantor sets of Lebesgue

measure m(C(2k+1)) = 0 and m(C(2k)) = 0 (k ∈ N)), we can obtain the Fourier transforms of

measure of odd and even scales.
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J.3 Fourier transform of measures of odd and even scales

J.3.1 Odd scale measure

We denote the odd scale measure by µ2k+1 with k ∈ N. Hutchinson’s theorem (Thm 3.3.2)

states the existence of the measure µ2k+1 with support in C(2k+1) with respect to the IFS in eq.

( J.3) and the corresponding integral recursive relation, analogous to eq. ( 4.9). Since ei2πtx is

continuous, we can write using that analogous relation:

µ̂2k+1(t) =
∫︁

ei2πtxdµ2k+1(x) = 1
2

(︂∫︁
ei2π

t
2k+1 xdµ2k+1(x)+

∫︁
ei2π

t
2k+1 x+i2πt 2

2k+1 dµ2k+1(x)
)︂

= 1
2

(︂∫︁
ei2π

t
2k+1 xdµ2k+1(x)+ eiπ 4t

2k+1
∫︁

ei2π
t

2k+1 xdµ2k+1(x)
)︂

= 1
2

(︂
1+ eiπ 4t

2k+1

)︂∫︁
ei2π

t
2k+1 xdµ2k+1(x)

= 1
2

(︂
1+ eiπ 4t

2k+1

)︂
µ̂2k+1(

t
2k+1)

(J.11)

From eq.( J.11) (last line), we define for the 2k+1-ary Cantor set:

χ2k+1(t) =
1
2

(︂
1+ eiπ 4t

2k+1

)︂
. (J.12)

Then eq.( J.19) can be written as follows:

µ̂2k+1(t) = χ2k+1(t)µ̂2k+1(
4t

2k+1
) (J.13)

From eq. ( J.11) we can write:

µ̂2k+1(
t

2k+1
) =

1
2

(︃
1+ e

iπ 4t
(2k+1)2

)︃
µ̂2k+1(

t
(2k+1)2 ) (J.14)

For t = 0, eq. ( 4.8) becomes for p = 2k+1

µ̂2k+1(0) =
∫︂

1dµ2k+1 =
∫︂

χC(2k+1)dµ2k+1 = µ2k+1(C(2k+1)) (J.15)
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From the fact that µ2k+1(C(2k+1)) = 1, we get that µ̂2k+1(0) = 1. Then, we iterate the relation

in eq. ( J.14) N times to obtain:

µ̂2k+1(t) =

[︄
N

∏
n=0

χ2k+1(
t

(2k+1)n )

]︄
µ̂2k+1(

t
(2k+1)N+1 ) (J.16)

Taking N → ∞ and using the continuity of µ̂2k+1(t) at t = 0, we can write

µ̂2k+1(t) =
[︂
∏

∞
n=0 χ2k+1(

4t
(2k+1)n )

]︂
lim

N→∞
µ̂2k+1(

t
(2k+1)N+1 )

= ∏
∞
n=0 χ2k+1(

t
(2k+1)n )

= ∏
∞
n=1

1
2

(︂
1+ ei 4πt

(2k+1)n
)︂ (J.17)

where we used the definition of χ2k+1(t) (eq. ( J.12)) to obtain the last line of eq. ( J.17) which

can be written as follows:

µ̂2k+1(t) = ∏
∞
n=1

1
2

(︂
1+ ei 4πt

(2k+1)n
)︂
= ∏

∞
n=1

1
2

(︂
ei 4πt

2·(2k+1)n −i 4πt
2·(2k+1)n + ei 4πt

2·(2k+1)n +i 4πt
2·(2k+1)n

)︂
= ∏

∞
n=1 ei 2πt

(2k+1)n

(︃
e

i 2πt
(2k+1)n +e

−i 2πt
(2k+1)n

)︃
2

= ∏
∞
n=1 ei 2πt

(2k+1)n cos
(︂

2πt
(2k+1)n

)︂
= e∑

∞
n=1 i 2πt

(2k+1)n ∏
∞
n=1 cos

(︂
2πt

(2k+1)n

)︂
= e

i2πt
2k+1 ∑

∞
n=0

1
(2k+1)n ∏

∞
n=1 cos

(︂
2πt

(2k+1)n

)︂
= e

iπt
k ∏

∞
n=1 cos

(︂
2πt

(2k+1)n

)︂

(J.18)

With t ∈ R, µ̂2k+1(t) in eq.( J.18) is a continuous function in t. We have shown that we can

obtain the Fourier transform of (2k+1)-ary measure (odd scale) for scale larger than 3.

160



J.3.2 Even scale measure

In the same way, we denote the even scale measure, given by Hutchinson’s theorem for the IFS

in eq. ( J.4), by µ2k with k ∈ N. Since ei2πtx is continuous, then by the analogue of eq.( 4.9) we

can write:

µ̂2k(t) =
∫︁

ei2πtxdµ2k(x) = 1
2

(︂∫︁
ei2π

t
2k xdµ2k(x)+

∫︁
ei2π

t
2k x+i2πt 1

2 dµ2k(x)
)︂

= 1
2

(︂∫︁
ei2π

t
2k xdµ2k(x)+ eiπt ∫︁ ei2π

t
2k xdµ2k(x)

)︂
= 1

2

(︁
1+ eiπt)︁∫︁ ei2π

t
2k xdµ2k(x)

= 1
2

(︁
1+ eiπt)︁ µ̂2k(

t
2k)

(J.19)

From eq.( J.19) (last line), we define for the 2k-ary Cantor set:

χ2k(t) =
1
2
(︁
1+ eiπt)︁ . (J.20)

Then eq.( J.19) can be written as follows:

µ̂2k(t) = χ2k(t)µ̂2k(
t

2k
) (J.21)

From eq. ( J.19) we can write:

µ̂2k(
t

2k
) =

1
2

(︂
1+ eiπ t

2k

)︂
µ̂2k(

t
(2k)2 ) (J.22)

For t = 0, eq. ( 4.8) becomes for p = 2k

µ̂2k(0) =
∫︂

1dµ2k =
∫︂

χC(2k)dµ2k = µ2k(C(2k)) (J.23)

By mass distribution µ2k(C(2k)) = 1 and we get that µ̂2k(0) = 1. Then, we iterate the relation

in eq. ( J.22) N times to obtain:
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µ̂2k(t) =

[︄
N

∏
n=0

χ2k(
t

(2k)n )

]︄
µ̂2k(

t
(2k)N+1 ) (J.24)

Taking N → ∞ and using the continuity of µ̂2k(t) at t = 0, we can write

µ̂2k(t) =
[︂
∏

∞
n=0 χ2k(

t
(2k)n )

]︂
lim

N→∞
µ̂2k

(︂
t

(2k)N+1

)︂
= ∏

∞
n=0

1
2

(︂
1+ ei πt

(2k)n
)︂ (J.25)

Eq. ( J.25) can be written as follows:

µ̂2k(t) = ∏
∞
n=0

1
2

(︂
1+ ei πt

(2k)n
)︂
= ∏

∞
n=0

1
2

(︂
ei πt

2·(2k)n −i πt
2·(2k)n + ei πt

2·(2k)n +i πt
2·(2k)n

)︂
= ∏

∞
n=0 ei πt

2·(2k)n

(︃
e

i πt
2·(2k)n +e

−i πt
2·(2k)n

)︃
2

= ∏
∞
n=0 ei πt

2·(2k)n cos
(︂

πt
2·(2k)n

)︂
= e∑

∞
n=0 i πt

2·(2k)n ∏
∞
n=0 cos

(︂
πt

2·(2k)n

)︂
= ei πt

2 ∑
∞
n=0

1
(2k)n ∏

∞
n=0 cos

(︂
πt

2·(2k)n

)︂
= ei πt

2
2k

2k−1 ∏
∞
n=0 cos

(︂
πt

2·(2k)n

)︂
= eiπt k

2k−1 ∏
∞
n=0 cos

(︂
πt

2·(2k)n

)︂

(J.26)

Clearly, with t ∈R, µ̂2k(t) in eq.( J.26) is a continuous function in t. For k = 3 in eq.( J.26),

we get the Fourier transform of senary measure:

µ̂6(t) = eiπt 3
5

∞

∏
n=0

cos
(︂

πt
2 ·6n

)︂
(J.27)

Similar as for µ̂4(t), we apply the same steps as in Lemma 4.3.2 and Lemma 4.3.3 for µ̂6(t)

where we let P6 = {ℓ0 +6ℓ1 +62ℓ2 + · · ·+6kℓk : ℓ j ∈ L6, finite sums } with L6 = {0,1}, then the
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functions {eλ : λ ∈ P6} are mutually orthogonal in L2(µ6) where

eλ (x) := ei2πλx (J.28)

Table J.1 gives the first 15 elements of P6 where for example, for λ5, {ℓ0, ℓ1, ℓ2, ℓ3}= {1,0,1,0}

and λ5 = 60 ·1+61 ·0+62 ·1+63 ·0 = 37

n {ℓ0, ℓ1, ℓ2, ℓ3} λn
0 {0,0,0,0,} 0
1 {1,0,0,0,} 1
2 {0,1,0,0,} 6
3 {1,1,0,0,} 7
4 {0,0,1,0,} 36
5 {1,0,1,0,} 37
6 {0,1,1,0,} 42
7 {1,1,1,0,} 43
8 {0,0,0,1,} 216
9 {1,0,0,1,} 217
10 {0,1,0,1,} 222
11 {1,1,0,1,} 223
12 {0,0,1,1,} 252
13 {1,0,1,1,} 253
14 {0,1,1,1,} 258
15 {1,1,1,1,} 259

Table J.1: Value of λn ∈ P6 for finite sums of four elements (ℓi : i = 0,1,2,3)

From Eq.( J.27), the set of zeros of µ̂6(t) is:

Z(µ̂6) = {6n(1+2Z)} ⊂ Z (J.29)

Similar as for µ̂4, we observe that the difference between elements of P6 are in Z(µ̂6). In

fact all those differences are in Z(µ̂6) and since 0 ∈ P6, we have that {P6 \ {0}} ⊂ Z(µ̂6) ⊂ Z.

An illustration of that fact is given in Table J.2.

We note the similarities between Table 4.2 for µ4 and Table J.2 for µ6 where the elements of

the respective spectrum are at the same position. For the entry “λ9 minus each of λ8 down to
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Operations on elements of P6 Some elements of Z(µ̂6)
as differences between elements of P6

λ1 minus each of λ0 down to λ0 {1}
λ2 minus each of λ1 down to λ0 {5,6}
λ3 minus each of λ2 down to λ0 {1,6,7}
λ4 minus each of λ3 down to λ0 {29,30,35,36}
λ5 minus each of λ4 down to λ0 {1,30,31,36,37}
λ6 minus each of λ5 down to λ0 {5,6,35,36,41,42}
λ7 minus each of λ6 down to λ0 {1,6,7,36,37,42,43}
λ8 minus each of λ7 down to λ0 {173,174,179,180,209,210,215,216}
λ9 minus each of λ8 down to λ0 {1,174,175,180,181,210,211,216,217}
λ10 minus each of λ9 down to λ0 {5,6,179,180,185,186,215,216,221,222}
λ11 minus each of λ10 down to λ0 {1,6,7,180,181,186,187,216,217,222,223}
λ12 minus each of λ11 down to λ0 {29,30,35,36,209,210,215,216,245,246,251,252}
λ13 minus each of λ12 down to λ0 {1,30,31,36,37,210,211,216,217,246,247,252,253}
λ14 minus each of λ13 down to λ0 {5,6,35,36,41,42,215,216,221,222,251,252,257,258}
λ15 minus each of λ14 down to λ0 {1,6,7,36,37,42,43,216,217,222,223,252,253,258,259

Table J.2: λ ’s (in red) among the elements of the Zero Set

λ0” in both tables, we start with one λ (λ1 = 1), followed by six zeros that are in turn followed

by two λ ’s. While Jorgensen and Pedersen prove Theorem 3.4 [20, p. 190] in one dimension

and only for R = 4, their general approach and tools deployed for that proof, [20, Sec. 4, p.

192], apply in much generality. So, we conjecture that the same proof as for R = 4 will hold for

R = 6 or more generally for even R.
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