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Abstract

Lightweight Authentication for Edge Computing

Mouna Nakkar, Ph.D.

Concordia University, 2024

Edge computing (EC) is one of the most promising decentralized network paradigms

in the proliferation era of the Internet of Things (IoT). Although this paradigm has high

potential in terms of performance and de-centralization, it carries several security con-

cerns. One of the most important security properties for the EC paradigm is authenticity.

It allows different edge computing entities to verify each other through cryptographic

means. Additionally, authenticity regulates access control to different edge computing

resources and data. There are several types of authentications, one-way authentication,

mutual authentication, broadcast authentication, group authentication, and others. In our

thesis, we focus on designing security protocols for different edge computing applications

that require either mutual authentication, broadcast authentication, or group authentica-

tion. In all our proposed protocols we utilize lightweight security primitives suitable for

the three-tier cloud-edge-IoT architecture.

In the first protocol, we utilize lightweight cryptographic primitives to design mu-

tual authentication for EC broadcast messages. Specifically, the used primitives are only

hash-based one-way chain, symmetric-key cryptography, and a hash function. The proto-

col establishes key-agreement for group and individual nodes in each session. The achieved

security properties for our protocol are mutual-authentication for broadcast messages,
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message secrecy, message integrity, and forward secrecy. We formally define and prove

the main security properties of our protocol theoretically using the indistinguishablity

game. We compare our protocol to other lightweight protocols in terms of security and

performance to prove its advantages in terms of computations, communication overhead,

and storage.

Motivated by the fact that mass authentication is one of the desirable security

features in the edge computing paradigm, our second proposed protocol is a lightweight

group authentication scheme (GAS) with session key-agreement. The protocol utilizes

lightweight cryptographic primitives, namely, Shamir’s secret sharing (SSS) scheme and

aggregated message authentication code (Aggregated-MAC). Unlike other group authen-

tication schemes, our protocol provides multiple asynchronous authentications. Further-

more, we implement a simple key refreshing mechanism such that in each session, a new

session-key between group nodes and the authenticating server is established without the

need for redistributing new shares. Our security analysis includes proving that our pro-

tocol provides group authenticity, message forward secrecy, and prevents several attacks.

Extending our group authentication design, our third security protocol is a flex-

ible GAS based on Physical Unclonable Function (PUF) and Shamir’s secret sharing

scheme. Specifically, we apply PUFs on SSS and utilize the SSS-homomorphic property

to achieve multiple-time group authentications with the same set of shares. Our scheme

is lightweight, establishes a new group key-agreement per session, and supports efficient

node-evicting mechanism. Furthermore, in our protocol, the group nodes do not store

any shares; instead, the nodes derive their secret-shares from their PUF-responses. We

formally analyze our protocol theoretically and with automated tools, Automated Valida-

tion of Internet Security Protocol and Applications (AVISPA), to prove that our scheme

achieves message secrecy and authenticity.

Finally, we propose a lightweight symmetric-key based protocol which provides

edge-IoT mutual authentication, forward secrecy, backward secrecy, and anonymity. The

security primitives used in our fourth protocol are pseudo-random function (PRF), random

number generation, a hash function, and xor. We prove the security goals of the protocol

and compare it to other lightweight authentication protocols.
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Chapter 1

Introduction

1.1 Overview

One of the most prominent de-centralized paradigms is edge computing (EC). EC

offers abundance of services and advantages such as, efficiency, mobility, scalability of

supporting large number of nodes, computation offloading, data streaming, enhancing

wireless access, and others. With the migration into the de-centralized Internet-of-Things

(IoT) smart applications and the accelerated adoption of the edge-computing paradigm,

security remains a big concern. Indeed, new security issues are arising such as user’s pri-

vacy, location privacy, anonymity, untraceability, and confidentiality due to the increasing

dependency on sensors, cameras, and smart phones in the EC smart applications. On

the other hand, the limited resources of the edge devices render the implementations of

traditional cryptography solutions useless.

1.2 Motivation

Authentication is one of the major security goals in edge computing. However,

designing authentication solutions for the EC-paradigm is more challenging than the typ-

ical centralized cloud computing. This is because authenticating nodes from delegated

1



EC severs increases the attack surface from the typical cloud-node authentication. Also,

most of the edge-computing authentication solutions proposed in the literature are heavy-

weight, require large storage, or consume large communication bandwidth. Additionally,

most authentication solutions do not support multiple-nodes authentications or mass au-

thentication; instead, the edge server authenticates one IoT node at a time. This puts a

burden on the edge server and may jeopardize security.

In our research, we study the security of the edge computing paradigm and propose

lightweight authentication and key-agreement solutions. We propose several solutions for

mass authentication in which the edge server authenticates a large number of nodes in

one authentication step. Also, we propose a lightweight authentication solution for mes-

sage broadcast EC applications. In our proposed security protocols, we also focus on

the efficiency and performance of the schemes. Specifically, most of our solutions utilize

lightweight cryptographic primitives such as symmetric-key encryption, Shamir’s secret

sharing (SSS), Physical Unclonable Function (PUF), hash function, hashed-based mes-

sage authentication code (HMAC), one-way hash chain, Pseudo-random Function (PRF),

and the xor gate. For group and mass authentication, we propose efficient share re-

distributions and updates.

1.3 Contributions

We study the security of the edge computing paradigm. Specifically, our security

goals are focused on providing authentication, group authentications, and key-agreement

for edge computing applications in the three-tier cloud-edge-IoT architecture. Because

of the low-end IoT devices, we utilize different lightweight cryptography primitives. The

following summarize our contributions:

• We propose a lightweight authentication scheme for the edge computing applications

that requires messaging broadcast [126]. The protocol utilizes lightweight primitives

2



such as symmetric encryption, hash function, and one-way hash-chain. The semantic

security of the protocol is formally proven using theoretical indistinguishable game

analysis.

• We propose a group authentication scheme (GAS) for edge computing applica-

tions [128]. The scheme utilizes Shamir’s secret sharing scheme, Yang’s secret-

sharing [191], Aggregated-MAC [83], and symmetric encryption to providing mass

authentication for a group of an IoT nodes, and key-agreement for the individual

edge nodes. The security protocol is formally proven using theoretical and auto-

mated analysis.

• We extend our work of designing group authentication schemes utilizing physical

security primitive, namely, PUFs [129]. The protocol provides group authentication

for a group of IoT nodes and individual IoT node key-agreement. The protocol uses

the node’s PUF responses as the shares for Shamir’s secret sharing. The security

protocol is formally proven using theoretical and automated analysis.

• We propose a lightweight authentication and key-agreement protocol for the edge

computing paradigm that provides forward and backward secrecy [127].

Other research works conducted during the tenure of this Ph.D. have been published

in [156].

1.4 Thesis Outline

• Chapter 2 provides background on the edge computing paradigm architecture and

security.

• Chapter 3 presents lightweight broadcast authentication protocol for the edge com-

puting applications.
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• Chapter 4 presents lightweight group authentication scheme using Shamir’s Secret

Sharing.

• Chapter 5 presents a lightweight group authentication scheme leveraging Shamir’s

Secret Sharing and physical unclonable devices.

• Chapter 6 presents a lightweight authentication and key agreement protocol for edge

computing applications.

• Chapter 7 presents the concluding remarks for the thesis and future work.
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Chapter 2

Background and Preliminary

We provide an overview of the edge computing paradigm and its related security

issues.

2.1 Edge Computing Paradigm

Since its introduction in 2016 [163], the “edge computing paradigm” term has

been interchangeably mixed with other terms and paradigms. Consequently, our goal in

this section is to clarify the intermingled terms, review the concept of edge computing,

state its advantages, present closely related de-centralized cloud-extension paradigms,

and highlight their differences. We also present, herein, several smart applications related

to the edge computing paradigm. Fig. 2.1 shows the general framework of different

computing paradigms.

2.1.1 Related De-centralized Paradigms

Edge Computing

The OpenEdge consortium defines edge computing as the processing and compu-

tations of data at the edge-layer of the network and close to the end-user [198]. Shi et
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Figure 2.1: Framework of Computing Paradigms

al., on the other hand, define edge computing as any enabling technology that allows

computations on the downstream data on-behalf-of the cloud [162]. The motivation of

edge computing is that the computation and storage should be closer to the source. It

could have been intended initially for edge computing to provide storage and computa-

tions only one-hop away from the device generating the data; however, it could be more

than one-hop [192]. Nevertheless, the edge layer is a closer point to the end devices than

the fog nodes. Edge computing provides more efficiency, less latency, service availability,

and control than fog computing due to its location. Edge nodes could be static or mobile;

examples of edge computing nodes include, smartphones, small edge servers, WiFi access

points, or gateways [88]. In the literature, edge computing may also be referred to as,

edge-assisted IoT architecture [8], or edge-centric IoT architecture [158], but in this thesis,

we use the term “edge computing.”
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Fog Computing

Proposed by Cisco in 2012, Bonomi et al. argue that fog computing (FC), a vir-

tualized network platform, is advantageous to several IoT applications such as smart

cities, smart vehicles, smart grid, and others [36]. They delineate the characteristics of

fog computing to include real-time interactions, edge location awareness, scalability, mo-

bility, geographical distribution, heterogeneity, dominant wireless accessibility, and oth-

ers [36]. Initially fog computing was intended to be a mere extension to Cloud Computing

(CC); however, it fast became a paradigm. Moreover, the OpenFog consortium which is

the collaboration of industry and academic institutions, later defined fog computing as

“A horizontal, system-level architecture that distributes computing, storage, control and

networking functions closer to the users along a cloud-to-thing continuum,” [135]. The

definition implies that fog computing provides all benefits of CC services, functionality,

manageability, and virtualization closer to the user in the cloud-to-thing infrastructure.

Fog computing can be implemented in several layers of the IoT-fog-cloud network topol-

ogy; nevertheless, it is a layer between the cloud and the edge layer [88]. Mistakenly, fog

computing may be called “edge computing,” however the OpenFog consortium in [135]

delineates the key differences of both architectures as follows, 1) FC works closer to the

cloud while edge computing is isolated from the cloud, 2) FC is a hierarchical paradigm

whereas EC works only with few layers close to the end-user IoT-devices, and 3) FC

services are not limited only to computations, instead it highly matches the CC services

such as networking, manageability, acceleration, and control. On the other hand, Shi et

al. state that fog computing is focused on the infrastructure side while edge computing

is focused on the low-end devices side [162]. Fog nodes could be either static or mo-

bile; examples of fog nodes are small fog servers, access points (AP), controllers, routers,

switchers, and others.
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Mobile Edge Computing (MEC)

The Internet of Things vision of “anywhere, anytime, and accessibility around the

world,” concurrently with the advancement of communication devices and ICs, created

a myriad of smart applications on smart phones and Internet devices. To efficiently ser-

vice the massive number of devices connected to the Internet, mobile edge computing

was introduced as an extension to cloud computing amalgamated with cellular network

technology. Since its creation, MEC has been endorsed by both academia and leading

communication and mobile businesses such as Huawei, Intel, Nokia, Vodafone, IBM, and

others [5, 74, 88, 139]. In 2014, the European Telecommunications Standards Institute

(ETSI) with the Industry Specification Group (ISG) standardized multi-access edge com-

puting (MEC) and defined it as follows: “Mobile Edge Computing provides an IT service

environment and cloud-computing capabilities at the edge of the mobile network, within

the Radio Access Network (RAN) and in close proximity to mobile subscribers,” [74].

The edge nodes in this paradigm could be cellular network (4G/5G) base stations, In-

ternet Service Provider (ISP), or Radio Access Network (RAN). MEC allows for a wide

range of applications including, autonomous vehicles, retail, healthcare, smart cities, and

others [139].

2.1.2 Edge Computing Advantages

In what follows, we list some of the advantages of the edge computing paradigm as

shown in the literature.

Computation

The devices at the IoT application layer are mostly low-end devices with small

processing capacities, low storage, and short battery-lifetime. Consequently, these small

devices are not capable of storing and processing the data they produce. One of the

major advantages of edge computing is computation offloading. Conceptually speaking,
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data offloading speeds up the computation process for the low-end IoT-devices. The

concept of computation offloading was introduced earlier for other computing paradigms

such as mobile-cloud computing (MCC), and the performance has been reported in several

publications. However, the early offloading mechanism was concerned with caching the

data such as in the Content Delivery Network (CDN) paradigm [162]. On the other hand,

in edge computing, both data and operations are offloaded to nearby edge servers. There

are several types of offloading, local execution, full offloading, and partial offloading which

all are advantageous to the computation process [162].

Communication

One of the most important network performance measures is communication band-

width. Computation offloading reduces bandwidth consumed by the cloud. Indeed, it

is inconceivable for CC to maintain high bandwidth rate with the proliferation of smart

applications and IoT-devices.

For example, for a smart camera system in a local neighborhood area, traversing

the huge amount of data to the cloud without processing it first, creates a communication

bottleneck and consumes large cloud network bandwidth. Thus, having edge nodes close

to the vicinity of the rolling-cameras to process and store the data enormously improves

performance and saves energy.

Storage

There is a massive amount of data generated at the edge in the three-layer cloud-

edge-IoT setting especially with the wide spread of sensors and other low-end devices.

With data offloading, edge nodes store the excessive data and process it before traversing

it to the cloud. As an example, in [12], the Microsoft research group describes a live

Video-analytic project utilizing the edge computing paradigm. The idea of their project

is to employ EC nodes to collect, filter, store, process, and analyze live streaming data
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received from a significant number of cameras placed around a local area in real-time. The

edge nodes in this project are well-equipped and widely distributed in several geographical

areas close to the cameras. Consequently, the edge nodes efficiently store and process the

massive amount of data, e.g. up to 30 frames/second generated from the cameras [12].

2.1.3 Edge Computing Applications

In this subsection, we discuss smart applications and emphasize their edge com-

puting role.

Cyber-Physical System (CPS)

It is perceived that the cyber-physical system (CPS) and edge computing are two

independent paradigms; however, from our study, we see proximity in terms of applica-

tions, security, and design. We clarify our findings as follows. First, there tend to be new

directions in the scientific research community for incorporating CPS with edge comput-

ing to gain design autonomy and security [72]. For example, in a recent publication [205],

Zhou et al. put forward a framework for energy-trading which integrates CPS with edge

computing and blockchain security. On the other hand, Liu et al. review research op-

portunities for autonomous driving and edge computing [115]. Second, edge computing is

becoming an integral part of the CPS applications [41,109,124,168]. Indeed, we see large

CPS and EC integration especially in the smart grid and transportation applications.

Moreover, Zhou et al. [205], refer to a new paradigm called, Vehicle to Grid (V2G) which

is also an application where CPS and edge computing meet. Finally, we tend to see inter-

sections and overlap between edge computing, IoT, and CPS paradigms [110]. This is due

to the fact that CPS is anticipated to be the new generation of embedded-systems that

monitor physical objects, and wireless edge computing connects these objects [72]. Thus,

we conclude that CPS and EC intersect in the physical world connectivity, applications,

design, and security goals.
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IoT & IIoT

Similarly, the industrial IoT (IIoT) is very closely related to edge computing and

IoT paradigms; IIoT is a subset of the IoT paradigm. Although in the literature, we see

the terms, CPS, IIoT, and Industry 4.0, interchangeably used; however, they are different.

In [167], Sisinni et al. roughly sketch the differences between those three paradigms. For

example, consumer-IoT is similar to edge computing, and the end devices are consumer

related ones such as smart phones, tablets, and other electronic devices connected to the

Internet. Industrial IoT, on the other hand, integrates all aspects of industrial manufac-

turing with the information technology (IT) that is associated with the business process.

Finally, Industry 4.0 main goal is to employ the Internet through smart applications to

efficiently expedite the manufacturing process. In the literature, we see edge comput-

ing providing optimal solutions for the IIoT/Industry 4.0 in terms of decision-making

latency, communication bandwidth, cost reduction, transmission, and privacy improve-

ments [85, 108, 143].

Internet of Autonomous Vehicles

Automatons driving is becoming one of the most attractive research areas in the

development of future intelligent transportation systems (ITS). A holistic vision for the

smart transportation system is that it lowers traffic deathrate, increases public safety, in-

creases traffic management, and improves public/traffic security. Furthermore, employing

edge computing in the Internet of Vehicles framework is necessary for servicing, managing,

processing, and storing data produced from the large number of connected vehicles [195].

The framework of this smart transportation is highly heterogeneous. On the one hand,

cars are equipped with many embedded devices, sensors, computing nodes, specialized

software that connect to the Internet. On the other hand, roadside units, pedestrians,

and traffic lights also have their own devices connecting with the Internet. Thus, the

infrastructure of all components to operate with each other is highly complicated.
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Smart Cities

Urban cities are exploiting all the recent technological and communication advances

to raise the quality of living for their citizens. The pervasive Internet devices are now

employed to facilitate public services accessibility. There are several challenges to the

design of smart city edge computing applications such as, the heterogeneous architecture,

the inevitable use of sensors, and the huge data collected from end-devices raise many

performance, privacy, and security concerns [120, 197].

2.2 Edge Computing Security

In this section, we classify the edge computing security model into four catego-

rizes, namely, extended EC-security properties, security attacks, countermeasure security

primitives, and security protocols analysis methods.

2.2.1 Security Properties

The triad of Confidentiality, Integrity, and Availability (CIA) shown in Fig. 2.2 is a

well-known security model defined by Menezes et al. [121]. However, in the literature, we

see additional security properties for the edge computing paradigm. For example, we find

privacy, anonymity, unlinkability, and untraceability which are not included in the CIA

security model; nevertheless, these security properties are imperative to the user’s privacy

in some EC smart applications. Furthermore, there are certain mechanisms that ensure

the satisfaction of each property. In what follows, we analyze the EC-security properties

and mechanisms.

Integrity

In the three-tier cloud-edge-IoT paradigm, the communication medium among en-

tities in all layers is wireless. Thus, the exchanged messages are easily accessed to all
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curious listeners. This exchanged information could be credit-card numbers, social in-

surance number, or any private confidential information belonging to individuals, govern-

ments, or businesses. Consequently, message security is an imperative security property.

To guarantee the satisfaction of data integrity designers may utilize, message authentica-

tion code (MAC), hash with encryption, HMAC, digital signature, and error correction

code [37, 172].

We note here that there are two types of integrity, data origin authentication and

data integrity [37]. For simplicity, in this thesis, we use the term authentication for data

origin authentication, and for the data integrity we refer to it as message authentication

as shown below.

Authentication

Definition 1 Data Origin Authentication: The cryptographic property of data origin au-

thentication provides assurance that the true identity of the source is as claimed [37].

In the context of edge computing, authentication could be for mobile-devices, en-

tities, applications, or humans. There are several concerns in edge computing authenti-

cation. First, low-end devices have limited resources such as processing power, storage

capacity, and battery-lifetime. On the other hand, the edge servers are equipped with

good resources. Thus, any EC authentication solution must be lightweight in terms of
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both computations and storage requirements to suit the low-end devices regardless of the

edge server powers. Second, the standardized communication protocols such as Message

Queue Telemetry Transport (MQTT), Transport Layer Security (TLS), and IPsec are

resource intensive, and may not be suitable to specific smart applications [172]. Finally,

the newly proposed state-of-the-art protocols may have implementations or other secu-

rity flaws that render them unsuitable for wide usage. In what follows, we list a few

authentication mechanisms found in the literature.

i. Mutual-authentication and Key-agreement: The early versions of authenticated-

key-exchange (AKE) protocols are not suitable for edge computing because of the

low-end IoT-devices. However, to suit the EC framework, we see AKE protocols

expand in several directions as follows. First, the initial authentication protocols

designed to provide mutual authentication for two parties; however, as the cloud-

edge-IoT paradigm exponentially pervaded in the last few years, multiple parties

AKE protocols have been proposed to suite authentication for several nodes in the

system. Second, we also found recent AKE proposals designed to guarantee other

security properties such as forward secrecy and anonymity [2, 19, 173,182,187].

ii. Group authentication: In many edge computing smart applications, we see sce-

narios of large number of IoT-nodes connecting to one edge server. To this end,

group authentication schemes was introduced in which a large number of entities

gets authenticated all at the same time [20, 51, 71, 105, 128]. Group authentication

is suitable for machine-to-machine type of communications and also for massive

authentications in MEC and 5G networks [27, 98, 149].

iii. De-centralized delegated authentication: De-centralization is the heart of edge com-

puting. In [190], Yang et al. propose a delegated authentication for the vehicle

network framework in which the main server delegates edge nodes to collaboratively

authenticate vehicles.
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iv. Password-based authentication: Other scientific researchers propose password-based

authentication suitable for the edge computing paradigm.

Message Authenticity (Data Integrity)

Definition 2 Data Integrity: The cryptographic property of data integrity provides assur-

ance that the data has not been changed by unauthorized users, entities, or processors [37].

To guarantee message data integrity, several mechanisms are applied.

i. Message authentication code (MAC): MAC guarantees both the integrity of the

data as well as the origin data authenticity [35, 83,96]. In MAC, both parties share

the same key. Another method to ensure data integrity is the hash function with

encryption or a Hashed-MAC (HMAC) which is a key-ed hashing [96].

ii. Aggregated-MAC: As an answer to the commonly expected scenario of many nodes

requiring authentication from one server, Katz et al. in [83] propose Aggregated-

MAC. The implementations of aggregated MAC on the edge computing paradigm

works as follows. The main server shares a MAC key with each node in the system,

and consequently each node uses a regular MAC to authenticate its message. The

edge computing server collects the different MAC-tags from each node and aggre-

gates them into one tag using xor operations. Once the main server receives the

aggregated message, it can verify all the individual IoT-nodes MAC tags using their

shared keys. The aggregated MAC primitive is utilized for group authentication

especially in the MEC, LTE, 5G networks [97, 98,144], respectively.

iii. Message broadcast authentication: With this primitive, each receiver efficiently au-

thenticate broadcast messages without overburdening or communicating with the

main server [126, 137,148,156].
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Confidentiality

Definition 3 Confidentiality: The cryptographic property of confidentiality provides as-

surance that the data is accessed only by authorized users, entities, or processors [37].

Forward and Backward Secrecy

Definition 4 Forward Secrecy: A protocol is said to provide forward secrecy if the leakage

of the long-term key for any participant in the protocol does not compromise the previously

established session keys [37].

In some literature, this definition is extended to include the leakage of long-term and

short-term secrets [38]. Furthermore, for group authentication, the definition is reversed

by Kim et al. in [93] as follows.

Definition 5 Group Forward & Backward Secrecy:

Group Forward Secrecy: It is infeasible for an adversary to derive future group keys from

a leaked group key.

Group Backward Secrecy: It is infeasible for any adversary to recover previous group keys

from the current leaked group keys.

For edge computing applications, forward secrecy is a crucial security property.

This is because any leakage of session information should not leak any previous or future

session keys. For example, a scenario of an IoT-device theft, should not leak any pre-

vious communications. Kaur et al. [86] proposed a protocol for mobile edge computing

which protects privacy and forward secrecy. Similarly, Jangirala et al. [79], utilized the

blockchain technology to design authentication and forward secrecy protocol for the RFID

edge computing paradigm. Additionally, Zhang et al. [199] proposed an authentication

protocol with forward secrecy for the edge computing vehicle networks.
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Privacy Protecting the privacy of user’s information, transferred data, and messages is

a crucial part of edge computing smart applications security. Privacy is a major concern

to users and private entities especially in the consumer-IoT edge applications. There are

several classifications to privacy such as, user’s privacy, data privacy, trajectory privacy,

and industrial privacy for the IIoT paradigm [59, 81]. On the other hand, there are

several developing mechanisms to ensure privacy such as differential privacy [72,81,82,202],

location privacy [174], and local differential-privacy obfuscation [189].

Anonymity With the proliferation of edge computing smart applications, anonymity is

becoming an important security feature especially for the openly accessed wireless commu-

nications. This is because it protects the real identification of the user. Many protocols

address mutual authentication and anonymity for the edge computing paradigm. For

example, Wang et al. [179] proposed an n-times mutual authentication scheme for edge

offloading service payments. To protect user’s identity in the wide-open wireless medium,

they use a fresh pseudo-identity for each communication. Similarly, others use hash-based

approaches to protect user’s real identity [49, 65, 127, 152,159].

Untraceability/unlinkability In the same context, unlinkability prevents adversaries

or eavesdroppers from linking messages to originators real identities or pseudo-identities.

Specifically, in untraceability, 1) any message cannot be linked to the real sender’s identity,

and 2) any two messages sent in two different times cannot be linked to same origin. We

can say that anonymity is a byproduct of unlinkability but the opposite is not true.

For example, Wang et al. achieve unlinkability by providing a fresh pseudo-identity

in each message communication, and this pseudo-identity is the hash of the original

pseudo-identity with the new timestamp [179]. Jia et al. [80] use identity-based PKC

mutual-authentication scheme that ensures anonymity and untraceability.
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2.2.2 Threat Model & Attacks

The edge computing paradigm faces several security threats. We list a few factors

that are the root-cause of attacks. First, the wireless communication medium in all edge

computing paradigm layers makes all exchanged messages easily accessible to all curious

listeners. Second, low-end IoT devices such as sensors and mobile devices are physically

accessible to adversaries. Third, there may be several vulnerabilities in the communication

protocol itself or the implementation of it. In what follows, we summarize the possible

attacks and the security threat model for the edge computing paradigm. We classify the

attacks into two types, passive and active.

Passive Attacks, Sniffing, or Eavesdropping

In this type of attack, the adversary just passively listens to all edge communica-

tions in the system without interacting with the edge nodes or altering the exchanged

messages. However, in weak security protocols, the attacker may infer information or

breach user’s privacy just by eavesdropping on the communications.

Active Attacks

Man-in-The-Middle (MiTM) Attack In this type of attack, the adversary stands

in the middle between two honestly communicating edge nodes and maliciously modifies

messages. Each honest edge node receives messages from the adversary thinking they

are from the other honest node. Protocols that are based on PKC are more susceptible

towards this type of attack than symmetric-based security protocols.

Impersonation Attack There are two types of impersonations, the adversary may

impersonate a valid edge node in the system to pass the edge-server authentication test,

or the adversary may impersonate an edge-server to pass the node’s authentication test.
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Tampering The attacker may take advantage of the wireless communication medium

and tamper with message delivery by either delaying or dropping the messages to degrade

the quality of service of the network.

Replay Attack This is also called a freshness attack in which a malicious adversary

records messages for a period of time and replays these messages at a later time. Com-

munication protocols that lack freshness guarantee are vulnerable to this attack.

Distrusted Denial-of-Service (DDoS) attack There are several types of DDoS at-

tacks, but the traditional one works as follows. A malicious attacker sends streams of

legitimate dispensable packet-requests that jam the target edge server or flood the edge

node to exhaust all its hardware resources such as battery and storage space. Some types

of DDoS include, battery draining attack which attempts to drain the power/battery re-

sources of the edge node. On the other hand, in the DDoS-outage attack, the adversary

hinders the affected nodes from operating regularly.

Node Take-over The low-end devices in the edge computing paradigm like sensors,

wearable devices, and mobile devices are physically accessible to the attacker. Thus,

the attacker may steal these devices to obtain network information such as shared keys,

tamper with the integrated circuit (IC), modify the operating system, change the running

software, or access cryptography information [125]. These attacks usually corrupt the

whole device but gain information to attack the network.

Side-Channel-Attack (SCA) In this attack, the adversary depends on the correlation

between the publicly accessible information and the private information. The differential

analysis of encrypted data consequently deduces parts or all of the user’s private secrets.

Kocher et al. in [95] use differential power analysis to recover private secrets from pro-

tected devices. One of the SCA countermeasure solutions is solving multivariate equations
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signature scheme [130].

Collusion Secret sharing schemes are vulnerable to collusion in which several edge nodes

collude with each other to retrieve the shared secret.

Hardware-Trojan This is a physical attack on edge devices in which the attacker

physically accesses the IC of the edge node to retrieve its data or run malicious software.

Privacy-leakage This represents the leakage of data that carries private information of

the user.

Node-replication This attack is done by injecting a malicious node in the system with

the same ID as an existing node. This enables the adversary to redirect packages, steal,

and corrupt information received to the original edge node.

Corrupted/malicious-nodes Corrupted/malicious edge nodes are those that can ob-

tain un-authorized access to the edge server or other edge nodes in the network [125].

Consequently, the attacker can direct these to control the network, inject malicious mes-

sages, or block messages.

2.2.3 Cryptography Primitives

Un-keyed Primitives

Un-keyed primitives play a vital role in edge computing security solutions. This is

because un-keyd functions are considered lightweight and require no shared keys between

parties. Indeed, a pre-shared key maybe liable to leakage especially in the low-end devices

such as sensors and mobile devices. For example, in a node-take-over attack, the adversary

may access all the stored data in the device’s memory including long-term keys and
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session keys. Examples of unkeyed primitives are the one-way functions such as the Hash

functions; SHA-1, SHA-256, and SHA-128 [64].

Keyed Primitives

There are two types of encryption algorithms, symmetric-key based and public-key

based.

Symmetric-key Based Primitives In symmetric-key cryptography, both communi-

cating parties share the same key, and this key is used for both encryption and decryp-

tion. For the edge computing paradigm, symmetric-key based protocols are lighter than

public-key based protocols in terms of computations and communication overhead. This

is because they depend on simpler encryption algorithms such the Advanced Encryption

Standards (AES) and others.

Public-key Based Primitives Public-key based algorithms such as RSA, DH Key

exchange (DHKE), and El-Gammal encryption, require large number of computations

and storage capacity which render them unsuitable for low-end devices. Nevertheless,

Elliptic Curve Cryptography (ECC) [70] is considered a lightweight in comparison to the

other algorithms. Hence, for edge-computing, several lightweight schemes based on hash

function in combination with ECC are proposed. For example, Wazid et al. [181] propose

an xor-based ECC lightweight scheme for Internet of Vehicle paradigm; while Amor et al.

in [11] propose an ECC based mutual authentication scheme for the edge/fog computing

environment. Furthermore, Khan et al. in [88] conduct a survey comparing lightweight

protocols suitable for the IoT-paradigm.

Secret Sharing Schemes

The fundamental idea of secret-sharing schemes introduced independently by both

Shamir and Blakely in [30, 160], respectively in the same year, 1997. It is basically based
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on the security of polynomial interpolation over a finite field. It is called (t, n) threshold

Shamir secret-sharing scheme, and the mechanism works as follows. A trusted dealer

selects a (t-1)-degree polynomial, and the secret is the intersection of this polynomial

with the x-axis. The polynomial is kept secret, and the dealer generates the secret-shares

which are points on the polynomial and distributes them through a secure channel to each

group member. To reconstruct the secret, at least t shareholders must reveal their shares

and apply Lagrange’s interpolation formula.

Access Control

One of the fundamental mechanisms for attack prevention and assurance of the

confidentiality property is access control. It is the process of restricting and manag-

ing resource/access to only privileged users or entities. In the setting of the three-tier

cloud-edge-IoT computing paradigm, access control faces several challenges. First, ac-

cessing the storage and computational cloud resources require policies and privileges.

Second, the edge or fog nodes need to have the same privileges and policies as the cloud.

Third, virtual machines (VM) also require access control policies to avoid attacks, [200].

There are several access control models proposed in the literature. Aleisa et al. [6], re-

view and discuss the different access control models, aspects, and challenges for the fog

computing paradigm. They present the different access control models such as attribute-

based-access-control, discretionary-access-control, role-based access-control, access-policy-

access-control, identity-based-access-control, task-based-access-control, rule-based-access-

control, mandatory-access-control, and state-of-the-art access control model for fog-computing.

2.2.4 Security Protocols Analysis Methods

There are several types of formal security analysis used for the EC-paradigm. How-

ever, in what follows, we provide an overview of the ones used in our thesis to formally

prove proposed protocols.
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Theoretical Methods

CK Model: The Canetti-Krawczyk (CK) model is a comprehensive security threat

model which aims at formally analyzing communication security protocols to mimic real-

world attacks [38]. The attacker in the CK-model is a probabilistic-polynomial-time

(PPT) adversary which has full access to all communications between system’s entities.

Specifically, the adversary can listen, inject, drop, re-direct, and delay message delivery

for all communications in the system. Additionally, the CK-model allows the adversary

to obtain state session, session key, and internal memory through successful attacks. In

session-state-reveal, the adversary is able to access all the current state session informa-

tion except those which are directly related to accessing the long-term key. However,

the session-key-query enables the attacker to reveal old session keys. This resembles a

real-world attack of cryptanalysis or insecure old session key removal. Finally, the party-

corruption-attack, allows the adversary to access all the entity’s internal memory. This

resembles a real-world node theft.

On the other hand, the proof of semantic security of any cryptography primitive

is usually defined as an indistinguishability-game, also called an attack-game, played be-

tween two entities, namely, a malicious adversary and a decent challenger. The security

proof of the entire communication protocol is usually organized as a sequence-of-games

(SoG), [166]. Together, the CK-threat model and the SoG create a proof mechanism

approach that is widely adopted for proving protocol security. In [133], Odelu et al. for-

mally prove the security of their smart grid authenticated-key-agreement protocol using

both the CK-model with the SoG attack organization. Similarly, Lee in [102], formally

proves his anonymous authentication protocol for the distributed computer networks with

CK-model and SoG.

RoR Model Similarly, the Real-or-Random (RoR) model [4] is a formal security model.

It is similar to the CK-model. However, it is designed to prove the semantic security of
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exchanged messages in the three-party password-based authentication and key-exchange

(AKE) protocols. The following edge computing schemes combine RoR with SoG to prove

the semantic security of the protocols [46, 69,152,181,183].

Automated Methods/Tools

Additional to the above methods, protocol designers are using formal automated

tools for verification of their designs. The most used ones are the Automated Validation-of-

Internet Security Protocol and Applications (AVISPA) [18], Scyther [154], ProVerif [141],

Tamarin [171], VerifPal [94], and Alloy [7].

In what follows, we briefly present the automated tools used in this thesis.

AVISPA is an automated software widely used for security protocol verification [14,

18, 170]. The tool searches for potential attacks such as Man-in-The-Middle attack, re-

play attacks, impersonation, active and passive attacks according to the Dolev-Yao (DY)

intruder model [57]. For more details, the interested reader may refer to the following

references [15, 18, 26,170,175,177].

The flow of analyzing the security of a protocol in AVISPA is as follows.

A) The security protocol is first described in the High Level Protocol Specification

Language (HLPSL) [177] along with the specified security goals. HLPSL is a role

based description language in which each entity in the protocol is represented by a

sequence of defined states. The protocol session is described in two top-level roles

called the “session role” and “session role,” and the security goals are defined in a

special role.

B) Using the HLPSL2IF translator, AVISPA converts the HLSPL protocol code into

Intermediate Format (IF) to feed it into one of the four back-end protocol analyzers

integrated in the AVISPA software, namely, (i) On-the-Fly Model Checker (OFMC),

(ii) the Constraint-Logic-based ATtack SEarcher (CL-AtSe), (iii) SAT-based Model
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Checker (SATMC), and (iv) Tree-automated based on automatic Approximation

for Security Protocols (TA4SP). The back-end analyzers share some basic security

model, specifically the Dolev-Yao (DY) intruder model [57], however, they have

different attack searching mechanism. The details and functionality of these back-

end analyzers are available in [15, 18,26, 175].

C) The output format (OF) of the back-end simulation shows the result of the protocol

security analysis, specifically, SAFE, UNSAFE, or inconclusive for the set of the

specified security goals in the HLPSL protocol description. If the result is UNSAFE,

AVISPA provides an attack scenario. AVISPA comes with an animated software

tool, namely, Security Protocol ANimnator (SPAN)+AVISPA [170].

Verifpal is a formal verification tool [94] which is considered a spin-off ProVerif [31,32,

32]. Verifpal is a symbolic-model tool in which the adversary is a probabilistic-polynomial-

time process that runs in parallel with the protocol and has access to all system com-

munications. To find an attack, Verifpal employs searching mechanisms that look for

a trace inside the protocol which violates a specified security goal. The security goals

are modeled as queries to the security properties of specific traces in the protocol. All

the cryptographic build-in primitives in Verifpal are considered “perfect.” The verifica-

tion logic and semantics in VerifPal are based on Coq which is a formal mathematical

interactive-theory-prover [25]. ProVerif semantics are also based on Coq [31,32,32], while

AVISPA’s semantics are based on Lamport’s Temporal-Logic-of-Actions [101].

We note here that most of the automated tools have limited build-in cryptography

primitives. For example, to the best of our knowledge, the SSS primitive is only available

in VerifPal. Also, most of the automated tools do not support algebraic operations such

as addition and multiplication. Therefore, analyzing protocols with advanced and hybrid

security primitives using automated tools may not be possible. For these protocols, se-

curity analysis would be performed using some of the aforementioned models such as the

25



RoR-model.

2.3 Utilized Security Primitives

In what follows, we briefly present the security primitives used in our proposed

protocols.

2.3.1 Hash Function

Definition 6 A hash function must satisfy the following properties [151]:

• Preimage-resistance: For the hash function, y = H(x), it is infeasible to find any

input x
′
that hashes to the same y; i.e. knowing y, it is infeasible for an attacker to

find a preimage x
′
such that H(x

′
) = y.

• 2nd-preimage-resistance: It is infeasible to find any 2nd input, x
′
, such that H(x) =

H(x
′
) where x ̸= x

′
.

• Collision resistance: It is infeasible to find two different inputs x and x
′
that hash

to the same output.

2.3.2 Secret Sharing Schemes

In the (t, n) Shamir’s secret-sharing scheme [160], a trusted dealer splits a secret s

into n shares, n ≥ t, where n is the total number of shareholders and t is the threshold.

The mathematical principle of binding n shares is a (t-1)-degree polynomial P (x) =

s+ a1x
1 + · · ·+ at-1x

t-1, such that P (0) = s is the secret, and each shareholder obtains its

(xi, yi)-point secret-share on this polynomial via a secure channel. To recover the secret, at

least t out of n shareholders reveal their tokens and compute the Lagrange’s interpolating

polynomial.
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Definition 7 A secret-sharing scheme over Zq is composed of two algorithms, namely G

and C.

• G is a probabilistic algorithm that generates t-out-of-n shares of k. G is invoked as

G(n, t, k) R−→ (s1, s2, · · · , sn) where n is the number of shares, t is the threshold such

that 0 < t ≤ n, k is the secret, and si is the share for node i.

• C is a deterministic algorithm k ← C(s′
1, s

′
2, · · · , s

′
t). It is invoked to recover k using

the Lagrange’s interpolation formula.

• Correctness: For every t set of shares of k, C(s′
1, s

′
2, · · · , s

′
t) = k.

On the other hand, in the (n, t, β) multi-secret sharing schemes, a group of at least

t out of n participants share their secret-shadows to recover β secrets. Most of these

schemes [53, 73, 136, 161, 191,201] are based on Shamir ’s secret sharing scheme [160] and

a two-variable one-way function f(r, s) [73]. The properties of the two-variable one-way

function, as shown in [191], are as follows: 1) It is easy to compute the function, f(r, s)

given any values of r and s, 2) Having the knowledge of s and f(r, s), it is hard to find

the corresponding r, 3) Having the knowledge of r and f(r, s), it is hard to find the

corresponding s, 4) Without the knowledge of s, it is hard to find f(r, s) for any given

value of r, 5) Knowing s, finding f(r1, s) = f(r2, s) such that r1 ̸= r2 is hard, 6) Given

any number of pairs of f(ri, s) and ri, finding f(r′, s) such that r′ ̸= ri is hard.

In our second protocol, we utilize Yang’s et al. scheme [191] with k = 1 and the

two-variable one-way function to implement a group authentication scheme at the edge

of the network.

Secret Sharing Homomorphism

The homomorphism property for the SSS is defined as follows [28].
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Definition 8 Let S be the set of all possible-secrets, and let T be the set of all legitimate-

shares, respectively. Let FI : T → S be an induced function, such that s = FI(si1 , si2 , si3 , · · · , sit)

where I is any subset of T . Let ⊕ and ⊗ be two-binary functions conducted on the sets

of S and T , respectively. A (t, n) threshold scheme is (⊕,⊗)-homomorphic if (s ⊕ s
′
) =

FI((si1 ⊗ s
′
i1
), (si2 ⊗ s

′
i2
), (si3 ⊗ s

′
i3
), · · · , (sit ⊗ s

′
it)).

The (t, n) Shamir’s secret-sharing scheme is (+,+)-homomorphic. In our protocol,

we take advantage of this property which states, informally, the addition of the two

SSS-polynomial secrets, equals the Lagrange’s interpolation polynomial of the addition-

of-shares for the same subset I.

2.3.3 Aggregated Message Authentication Codes (Aggregated-

MAC )

In [83], Katz et al. propose an aggregated message authentication code, Aggregated-

MAC, and prove that its security properties are analogous to the security properties of

the standard MAC.

Definition 9 Aggregated MAC is a set of probabilistic-polynomial-time (PPT) algorithms,

namely, (MAC,Aggregated-MAC, V erify), defined as follows.

• MAC: Let κ ∈ {0, 1}λ be a key with a length equals to the security parameter, λ,

and let msg ∈ {0, 1}∗ be any arbitrary length message, MAC is constructed from

the standard keyed pseudo-random function, tag ← MACκ(msg) = Fκ(msg) where

F is a pseudo-random function.

• Aggregated-MAC: Let (msgi, di) and tagi be a message/identifier pair and its corre-

sponding tag for node i, respectively. The new message (M, tag) is the aggregation

of all l messages, i.e. M = {(msg1, id1), (msg2, id2), (msg3, id3), · · · , (msgl, idl)},

and the corresponding tag is constructed by simply XOR-ing all the messages tags,
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tag = tag1 ⊕ tag2 ⊕ tag3 ⊕ · · · ⊕ tagl.

• Verify: Given the set of all identifiers keys {κ1, κ2, κ3, · · · , κl}, and the message tag

pair, (M, tag), the verify algorithm, V erify(κ1,id1),(κ2,id2),··· ,(κl,idl)(M, tag) outputs 1

upon successful authentication; and 0 otherwise.

2.3.4 Physically Unclonable Functions

Introduced in 2002 by Gassend et al. [63], Physically Unclonable Functions aims

at creating a digital fingerprint to authenticate Integrated Circuits (IC) devices. Silicon

PUF relies on the fact that there are different natural variations in the IC manufactur-

ing process which makes each IC chip unique such that no two different IC devices can

identically have the same physical structure. In edge computing, PUF is used for authen-

tication, and the typical PUF-based authentication protocol relies on collecting a large set

of challenge-response pairs from different PUF-implanted nodes and stores them in the

authenticating server’s database. Specifically, when the authenticating server requires a

node authentication, it selects a challenge from its database and sends this challenge to the

IoT node. If the challenge-response pair matches the stored value in the server’s database,

the node is authenticated; otherwise, it is rejected. Because of the unique PUF response,

the probability to impersonate a node by predicting its PUF-response is highly unlikely;

thus, authentication is achieved. In a subsequent time, another challenge-response pair is

selected for authentication. In the literature, there are several proposals for lightweight

authentication protocols based on PUF, designed specifically for low-end devices which

are suitable for edge-IoT-devices.

Definition 10 Let C ∈ {0, 1}λ be a string of bits of length λ, and let PUF be a de-

terministic function such that R = PUF (C). We say that PUF is a secure physically

unclonable function if the following holds.

- A response to a challenge Ri = PUF (Ci) gives negligible information to another re-
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sponse Rj = PUF (Cj) where i ̸= j.

- Without physically having the PUF-device, it is infeasible to generate R
′
i = Ri where

Ri = PUF (Ci).

- If an adversary, A, tampers with the PUF-device, the PUF function is destroyed.

Noisy PUFs and Fuzzy Extractors

Using physical unclonable functions as the underlying security primitive in a pro-

tocol faces many challenges [61]. This is mainly because, ideally, anytime a PUF is

queried with a challenge, it is expected to produce the same response. However, in reality,

PUFs are susceptible to noise such as voltage fluctuation, temperature, and other oper-

ating/environmental conditions. Specifically, exciting a PUF with a challenge C may not

always return the same raw response Raw, the output could be a Raw
′
in which the error

is defined as e = Raw⊕Raw
′
. Consequently, using a PUF-response as a cryptography-key

may jeopardize the operation of the security protocol. To circumvent the PUFs inherent

noise problem, fuzzy extractors (FE) and (reverse) fuzzy extractors (rFE) are introduced

in the literature [56, 62,116,176].These solutions reconcile the bit-errors and stabilize the

PUF-responses. Additionally, some of these solutions are suitable for low-end devices such

as RFID-tags and wireless-sensors.

Fuzzy Extractors: Using Fuzzy-Extractors (FE) stabilizes noisy PUF-responses

to be reliably used as cryptographic keys. The FE model is composed of two algo-

rithms. Algorithm 1 is a key generation function and Algorithm 2 is a reconstruction

function, FE.Gen(.) and FE.Rec(.), respectively [56, 178]. The FE.Gen(.) is a prob-

abilistic function that takes the raw PUF-response Raw and generates a key and a

helper-data vector. The key in our protocol is the node’s secret-share in the Shamir’s

SS scheme R and the helper-data hd is a vector determined from the original PUF-

response Raw and a parity-check matrix of a linear-error-correction-code ECC, [62,178].
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Thus, < R,hd >= FE.Gen(Raw).

Algorithm 1: The Gen Algorithm FE.Gen(.)

Input: A challenge C.
Raw = PUF (C)

R
$←− Zn

hd = Raw ⊕ ECC(R)
return < R,hd >

On the other hand, the FE.Rec(.) is a deterministic function that uses the helper-

data hd with the noisy Raw
′
that is close to the original Raw to reproduce the key. The

reconstruction function applies error-decoding algorithm D to recoverR = D(Raw
′⊕hd).

Algorithm 2: The Rec Algorithm FE.Rec(.)

Input: C; helper-data string hd.
Raw

′
= PUF (C)

R = D(Raw
′ ⊕ hd)

return < R >

PUF Types

PUFs are typically classified in the literature in terms of their hardware fabri-

cation process and security strength. In terms of their construction methods, there

are two major types, silicon-based and non-silicon based PUFs. Taking advantage of

the Complementary-Metal-Oxide-Semiconductor (CMOS) discrepancies, the silicon-based

PUFs are constructed with the aid of different circuit architectures. As an example, the

Ring-Oscillator based PUFs, Arbiter (time-delay) based PUFs, SRAM based PUFs, But-

terfly (Bi-stable circuit ) based PUFs, and Delay PUFs are types of silicon-based PUFs

and optical PUFs are examples of non-silicon based PUFs [61, 118].

On the other hand, in terms of security levels, PUFs are classified into strong PUFs,

weak PUFs, and controlled PUFs. The threat model for this classification is based on the

adversary’s ability to access the PUF’s challenge and response space.
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1. Weak PUFs: They have very limited CRP space, and sometimes only one. The

response space may never be revealed. Weak PUFs are typically used for deriving a

protocol secret key. Examples of this types are SRAM-based PUFs, Ring-Oscillator-

based PUFs, Arbiter-based PUFs, and Buterfuly-based PUFs [178].

2. Strong PUFs: The CRP space is very large and impossible to collect in a rea-

sonable period of time. Thus, they are more robust and resist more attacks. They

are typically used for different cryptography applications such as authentications.

The bulky non-silicon-optical PUFs and the super-high-information-content SHIC-

PUFs are considered strong PUFs that have not reported any modeling attacks

vulnerabilities [61].

3. Controlled PUFs: Controlled PUFs are strong PUFs with additional control-logic

circuitry proceeding the core-PUF interface to implement more functionalities.
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Chapter 3

Lightweight Broadcast Protocol

3.1 Introduction

The need for improving city services is becoming a necessity and not a luxury as

previously perceived. For example, enhancing city emergency services saves lives and

mitigates physical damage. Numerous disastrous situations could have been prevented

with fast response to emergency calls. To provide better services, researchers are utilizing

the new rapidly booming technologies, IoT, FC, EC, and Fog/Edge Computing (FEC)

paradigm in smart applications. FEC is gaining a great momentum among researchers

for meeting performance requirements and eliminating communication delays for selected

applications [36, 134, 135, 162, 194]. This paradigm addresses the performance of real-life

scenarios of things connected to each other and to the Internet.

On the other hand, providing security for the FEC paradigm remains a challenging

problem. Fog/Edge paradigm entails connecting large number of things and ubiquitous

sensing components to a few fog/edge nodes. Furthermore, some of the entities in the

paradigm are low-end devices with small storage capacity, have low energy sources and

under-powered processors. Moreover, with the recent advances in physics that point

towards the eventual construction of large-scale quantum computers [16], most of the
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existing solutions will become insecure [42, 60, 164]. Precisely, broadcast protocols whose

security relies on the hardness of factoring and finding discrete logarithms in finite fields

are broken in polynomial time using Shor’s algorithm on quantum computers [165]. Thus,

applying conventional security solutions may not be suitable for these new smart city

paradigms. To this end, we propose a hash-based lightweight secure FEC-IoT broadcast

message protocol whose underlying cryptographic blocks have security properties that are

easily comprehensible, plausible, and are proven to be secure against quantum adversaries

[169]. Our case study in this chapter is a smart emergency application that can save lives

and prompt immediate smart emergency responses when needed.

3.2 Related Work

The main focus of our work is to provide authentication and security for commu-

nications between fog/edge devices with the end users, i.e. things. Our platform in this

proposed protocol is shown in Figure 3.1; the Fog/Edge architecture shows that the net-

work is divided into three layers: cloud servers, fog and edge devices, and things. Things

can be small sensor devices connected to different entities depending on the application.

Indeed, edge/fog computing is a recent network paradigm which has many security

concerns. Addressing these issues using classical design methodologies is not sufficient and

does not meet the required real-time constraints. For example, designing protocols which

achieve authenticity is a challenging problem. Public key-based solutions suffer from heavy

computations and large bandwidth requirements [42,140,147,164]. Solutions which utilize

time for asymmetry, such as µTESLA and its variants [111–113, 137], also suffer from

delays and vulnerability against DoS attacks. While one-Time-Signature (OTS) schemes

[44,106,123,131,138,150,180] are attractive in terms of computational requirements, they

suffer from scalability and large signature and public key sizes. Even though solutions

based solely on one symmetric key are very energy efficient, they have their obvious
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Figure 3.1: Fog/Edge Computing Architecture

security disadvantage: the compromise of a single node can compromise the security of

the entire network. Our solution mitigates this problem and ensures that a compromised

node affects only the confidentiality of a local cluster and not the entire network.

To the best of our knowledge, a solution for message authentication in the context

of the considered Fog/Edge broadcast scenario has not been considered before. However,

in here, we list some proposals in the authentication of edge computing in general. Kim et

al. [90–92] proposed a distributed scheme which uses local authorization entities based on

globally distributed trust among these entities. The locally centralized entities keep the

credentials of registered devices locally stored in its database. These entities manage the

authorization locally, which is achieved by distributing session keys and setting specific

access activities. In [76], the author used a symmetric-key based protocol for a dynamic

Fog/Edge paradigm. The scheme requires users to hold one long lived master key, and the

fog servers are required to store one secret key for each user. The approach is primitive

and requires a large communication overhead, especially for group broadcasting or mul-
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ticasting of a single message. Recently, Wang et al. [179] proposed a lightweight mutual

authentication scheme for edge offloading. However, the scheme is for smart card holders

and requires pre-shared keys and passwords. Similarly, Wazid et al. [181] proposed a key

management scheme for Internet of Vehicles (IoV) with very light computations, but also

requires pre-shared keys and passwords. Also, several key agreement protocols have been

recently proposed in the context of vehicle to grid (V2G) networks (e.g., see [3]). For the

purpose of comparison, we select from literature lightweight protocols designed for low-

end devices, specifically [1,42,60,104,106,114,140,164,179,181,206]. A brief summary of

each protocol, its advantages/disadvantages is summarized in Table 3.1.

In [60], Fouda et al. describe a lightweight hash-based message authentication

protocol for smart grid networks. Though their algorithm is a combination of PKC and

symmetric key based solution, we list it here for its related features. Their solution is

solely designed for unicast communication where smart grid meters inside Home Area

Networks (HAN) communicate with the station in Building Area Networks (BAN) using

hash-based authentication scheme. Their hardware platform is a smart meter with a

16 MHz processor and 8KB RAM capacity and the authentication protocol is based on

establishing a session key using DH key exchange. The computational complexity of

their approach is in establishing the session key through DH key-exchange protocol. The

messages, on the other hand, are delivered with regular AES encryption and authenticated

with MAC. The number of nodes in HAN is between 20-140 nodes. Similarly, Li et al. [104]

propose a smart grid secure HAN Merkel-Tree-Based authentication scheme where the

smart meters have the same specifications as described in [60]. Liu et al. propose a secure

key management scheme for Advanced Metering Infrastructure (AMI) which supports all

types of communications, unicast, mutlicast, and broadcast. They use a method similar

to ours where they group the nodes according to the Demand Request. In [106], the

protocol is a one-time-signature (OTS) based on HORS signature [150]. A recent efficient

advanced smart metering secure communication protocol is proposed in [1] where the
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mutual authentication is based only on hash function and random number generation;

however, the protocol has large communication overhead. Leap [206], on the other hand,

is a localized encryption authentication protocol with multi-keying symmetric key which

supports all communication types. The protocol involves four keys: a pair-wise key with

neighboring nodes, cluster key, group key, and individual keys with the base station. A

group key is used for broadcasting messages and pair-wise keys are used for a node to

communicate with its neighbors. The processor used is Mica2 Mote sensor processor [29],

with 8MHz CPU and 4KB RAM. One of the disadvantages of their scheme is the amount

of storage that each node has to hold. For example, if a node has 100 neighbors, then the

number of keys will be 100×Number of bytes for pair-wise keys. Porambage et al. [140]

present a Two-Phase authentication scheme based on Elliptic Curve Cryptography (ECC)

and a third-party certificate for authentication. IMBAS and εIBAS [42,164] are two ECC-

based PKC message broadcast authentication schemes using pairing-free ID-based, and

pairing-optimal ID-based BA, respectively. The sensors used for their design are also

based on Mica2 Mote and the number of nodes can scale up to thousands. Similarly, our

broadcast scheme is also independent of the number of nodes. Thus, the number of nodes

can scale up to a large number.

3.3 Protocol Applications

Our protocol is suitable for networks or systems that require lightweight compu-

tation, low energy, small storage, and high level of security. Particularly, the protocol is

based on a one-way hash function for session key generations which requires less compu-

tations than other protocols. Also, the symmetric key nature requires less computations

than the public key cryptography. Light computations are especially important for small

low-end devices that are limited in power such as portable devices and sensors. Fur-

thermore, most of the low-end devices have small under-powered processors with small
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Table 3.1: FEC-IoT Related Protocols Summary
Reference Application & Utilized Schemes Security Goals and Advantages Disadvantages

This work
– edge computing – authentication, confidentiality, – pre-shared key is required
– broadcast scheme integrity, forward secrecy
– symmetric key cryptography – light computation and storage

LAMANCO [179]
– edge computing offloading – authentication, confidentiality, – pre-shared key is required.
– unicast mutual authentication integrity, user anonymity
– Symmetric+ ID-Based + bilinear
map

– light computation and storage

LWMA [60]
– smart grid network – authentication, confidentiality, – large computation in DH key exchange
– unicast scheme integrity, forward secrecy
– DH+hash-based function – small storage

ULSS [1]

– smart grid network – authentication, confidentiality, – large communication overhead
– bi-directional comm. scheme integrity
– Hash and XOR functions – very light computations

– small storage

M-Tree [104]
– smart grid network – authentication, confidentiality, – large storage
– unicast scheme integrity – large communication overhead
– Merkel-Tree based authentication – light computation – no forward secrecy

KMS-AMI [114]

– AMI – authentication, confidentiality, – large number of keys
– all types communication scheme integrity, forward secrecy – large communication overhead
– Hash and XOR functions – light computation – large cost in key distribution

– broadcast-key leak comprises network
– security properties not formally proven

LEAP [206]

– Localized Encryption and – authentication, integrity – large number of pair-wise keys
Authentication Protocol – light computation – no forward secrecy
– supports all types comm. – low communication overhead

TSV [106]

– Tunable signing and verification – authentication, integrity – large signature
– One-Time-Signature scheme – light computation – large public key size

– fast verification – low security level, 80 bits
– not scalable

IMBAS [42]

– authentication protocol for WSN – authentication, integrity – computationally intensive
– broadcast communication – scalable – no confidentiality
– ID-Based multi-user – secure Schnorr signature – large communication overhead

– low security level, 112 bits.

εIBAS [164]

– authentication protocol for WSN – authentication, integrity – computationally intensive
– broadcast communication – scalable – no confidentiality
– ID-Based pairing-optimal – reduced communication overhead – low security level, 112 bits.

2-Phase [140]
– authentication protocol for WSN – authentication, confidentiality – third-party certificate
– unicast communication integrity – computationally intensive
– 2-phase authen. certificate-based – large communication overhead
– based on secure ECC

AKM-IoV [181]

– Internet of Vehicle (IoV) network – authentication, confidentiality, – large computation in initialization phase
– authen. key management scheme integrity, user anonymity
– ECC + ID-Based + XOR – very light computations

– authentication using Hash only

memory which makes them incapable of executing complex algorithms. IoT and Indus-

trial IoT (IIoT) applications can also benefit from our lightweight protocol in scenarios

where the IoT device has limited processing capabilities. Thus, even if edge-nodes have

advanced capabilities, the low-end IoT nodes need a lightweight algorithm for extended

battery and energy lifetime. Examples of networks that can benefit from our lightweight

authenticated broadcast protocol are smart grid networks where the smart meters in the

HAN and GW are usually composed of micro-controllers such as MSP430F471xx with ∼

16MHz CPU, 8KB RAM, and 120KB flash memory. Although the GWs in the Neigh-

borhood Area Network (NAN) GW have more processing capabilities, their counterpart

smart meters have limited computational resources. Therefore, our protocol can be used

in the broadcast between NAN GW and HAN GW in smart grid networks. Our protocol

can also be used in smart transportation fleet management systems who’s expected effi-
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ciency, in terms of response time, can benefit from the decentralized fog/edge computing

paradigm. Edge entities can download the traffic management data from cloud servers,

carry out location-based processing, then broadcast the processed data to the intended

fleet member. We henceforth present a smart medical emergency application as a case

study to illustrate our protocol.

Case Study: Smart Medical Emergency Application

The considered FEC application scenario is depicted in Figure 3.2, where we provide

a secure authenticated broadcast message to the different groups shown in the Figure. In

particular, we consider an edge device connected to several areas, i.e. neighborhoods, in a

city as well as different officials or related personnel such as police officers or family doctor.

Several of these edge-emergency systems can be spread around in different neighborhoods

where all edge entities connect to the main cloud server. To gain performance, the edge

entities act immediately to an emergency incident, however, all emergencies and incidents

are later reported to the main cloud. In this model, sensor nodes mounted on streetlights,

intersections, public parks, vehicle parking lots, nursing homes, buildings, and residential

housing area, continuously stream recorded data to the edge entity. In addition, sensor

tracking devices can be distributed to citizens with special needs, for example, patients,

elderly people, and those who have permanent or temporary disabilities. The edge entity

will process these data and if needed will send information securely to one of the service

groups such as medical groups, firefighter department groups, law enforcement groups,

volunteer or social worker groups. There could be other groups; however, as an illustrated

example, we list only four in Figure 3.2. For example, if a patient or a disabled person

accidentally falls on the street or at her home, the edge entity will send the patient’s

information to the medical group. Subsequently, the medical group which consists of

nearby hospitals, family doctors, clinics and ambulances will be notified. The medical

group members will then search for the patient’s records and send the appropriate team
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Figure 3.2: Smart Medical Emergency FEC Application

to the patient’s location. Another scenario is at a street intersection. If an accident

occurs, the edge will notify different groups to act to the scene of the accident. By

notifying different groups, the closest law enforcement unit or ambulance can respond to

this accident to prevent life losses.

Figure 3.2 shows several nodes connected to the system where these nodes are

classified as streaming nodes and receiver nodes. Streaming nodes are those connected

to the edge entity and constantly streaming recorded data to the edge. For example,

CCTVs, security cameras mounted on street intersections, monitoring devices held by

patients and those with special needs are considered streaming nodes. The other type

of nodes are receiver nodes, and they are, for example, entities representing officials at

different institutes such as hospitals, clinics, or police stations. In our application, there

could be a scenario where one incident requires communication with several different

groups.

The edge entity groups the receiver nodes based on the preferential interest of the

end user. For example, all nearby clinics, hospitals, or volunteer healthcare providers are

grouped into one group for a patient with a tracking device. Similarly, all nearby registered

police stations or police vehicles are grouped into one group for a street intersection. Table
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Table 3.2: Examples of Grouping

End user Associated Groups

Elderly person Medical group, Family group

Street intersection Law enforcement, Firefighter groups

Medical, Social worker groups

Natural park reserve Firefighter, Law enforcement groups

School Medical, Law enforcement,

Firefighter, Social worker, Family groups

3.2 shows examples of grouping based on preferential interest. In what follows, we provide

the assumptions and mechanism of our protocol to provide secure authenticated and

confidential communication in application scenarios similar to the one described above.

Unlike other networks such as WSN and ad-hoc networks, our edge entity is not

independent from the cloud; there need to be initial communications setup between the

cloud and edge in order to manage the number of registered nodes such as patients and

responsible personnel. In addition, all the information for involved citizens, such social

insurance numbers, identities, and locations, are part of a trusted cloud system such as

governmental institutes. Furthermore, all emergency incidents need to be reported to the

main cloud to update the system’s database. The presence of an edge entity here aims to

off-load computation and mitigate communications delay to meet real-time requirements.

Problem Statement. The problems associated with our smart city application

are similar to general Fog/Edge paradigms. Indeed, the nature of our case study of

emergency and medical application requires meeting both high performance and security.

In terms of performance, the challenging design issue is the low-end IoT devices associated

with this network structure. While the edge entity is expected to have adequate resources

and a sustainable power source, the streaming and receiver nodes, on the other hand, are

assumed to have small computational power and low storage capacity (e.g., in the same

range of Mica2 Mote [29], with 8MHz CPU and 4K RAM capacity). Thus, providing
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secure broadcast communication which meets all real-time requirements between the edge

entity and different groups requires special design. The conventional public cryptography

approach provides a secure broadcast; however, it can be very expensive in terms of time

and energy. The large number of computations will consume all the energy of the receivers.

In terms of security, the broadcast message for our application is intended to cer-

tain groups and may contain confidential data such as patients’ information and locations.

Furthermore, some information pertaining to the medical history of the patients including

medical records and/or previous incidents may be also sent in these broadcasts. Thus,

keeping confidential and private information of the involved participants is extremely im-

portant. Our design requires meeting both confidentiality and forward secrecy, especially

because old-reported accidents may contain private medical records of a patient. In addi-

tion, if these broadcast messages are not authenticated, attackers can easily create false

emergencies or deny the services of real ones.

3.4 Network Model, Security Assumptions, and De-

sign Goals

In what follows, we explain the assumptions regarding our Fog/Edge computing

IoT (FEC-IoT) and its network components.

3.4.1 Network Model

The edge network is composed of Access Points (APs) providing communication

links to the edge IoT devices. Further, these APs are provisioned with computation

resources to carry out the computation tasks of the edge devices. The radio access is

assumed to follow any of the modern cellular radio access technology (e.g. New Radio or

LTE). The aim of our protocol is to secure the downlink broadcast traffic that is sent from

the edge entity to IoT devices. Our network model follows the three-layer hierarchy for
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edge computing paradigm which is composed of cloud, edge, and IoT layers [134,162,179],

also see Figure 3.1.

3.4.2 Security Assumptions and Adversarial Power

The edge entity is the center of information processing where it collects data from

streaming sensor nodes. Then, based on this information, it sends messages to groups

and communicates with receiver nodes. We assume the edge entity to be trusted. We

also assume that each receiver node shares a permanent key and two seeds with the

edge prior to deployment. We consider a probabilistic-polynomial-time (PPT) attacker

having full control of the communication link between the edge entity and the group

nodes such that the attacker can intervene in the message delivery or just eavesdrop on

this communication. The attacker can also know when the message is received by the

node and it can inject its own message or even tamper with the current message or replay

old messages. Furthermore, we give the attacker additional power in knowing the secrets

stored in the node’s memory, indicating a compromised node, i.e., the attacker may take

over a node (such as a bracelet worn by an authorized officer or a nurse in our case study)

and know all its secrets. We also assume full synchronization between nodes and the edge

entities in all their communications.

We assume static network for our smart city FEC-IoT application. There are sev-

eral types of communication in our Fog/Edge paradigm, unicast, multicast, group broad-

cast, and general communication. The focus of this study is to secure group broadcast

communication between the edge entity and receiver nodes. Specifically, we provide a hy-

brid hash-based keying protocol that secures the edge entity broadcast messages to group

nodes.

3.4.3 Design Goals

The main security proprieties and performance goals provided in this design are:
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• Authentication, integrity, and confidentiality with limited resources: Our

proposal is a hybrid lightweight protocol that utilizes a one-way hash function to

generate session keys. Confidentiality is provided from encryption while the authen-

tication is provided from the OTS scheme used. The OTS scheme used is a one-way

chain which provides both authentication and performance efficiencies.

• Forward secrecy: If any key is leaked, none of the previous communications should

be exposed. To achieve this, we use hash based keying scheme to encrypt messages

using temporary session keys which, if leaked, will not reveal previous secured com-

munications. In addition, we do not deliver the session key using the permanent

long-term key.

• Efficiency: Due to the limited computational power and limited storage capacity

in FEC-IoT paradigm, secure protocols which provide authentication, confidential-

ity, and forward-secrecy must be light, efficient, and meet real-time requirements.

Indeed, we use a hybrid hash based keying protocol with light computational and

storage requirements that should support all types of such communications.

3.5 Protocol Specifications

The protocol is composed of three phases. The first phase is the initialization phase

where the edge entity registers all active nodes into the system. The second phase is the

session key agreement phase, and the third phase is the authenticated group broadcasting

communication phase.

There are two types of keys used in this protocol, permanent and temporary. The

use of temporary session keys provides confidentiality and forward secrecy which protects

against compromising previously secured communications. The node’s permanent key, on

the other hand, is used in the initialization phase only to deliver the initial temporary

keys. The initial temporary keys are destroyed and not used after the first communication
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session, and the permanent key is used only in the initialization phase. In addition, two

initial seeds are embedded in each node and edge entity prior to deployment.

Even though the edge entity is expected to have better resources, nevertheless,

the protocol used for communication must be lightweight with limited communication

bandwidth requirements to fit the requirements of the other side of the communication.

These receiver nodes have various constraints such as under-powered processors, limited

battery lifetime, small storage capacity, and limited bandwidth.

Our protocol clusters the network nodes into groups based on the preferential in-

terest of end users. Each end user will have one or several groups associated to it, see

examples shown in Table 3.2. Each group will have one temporary group key, and one

temporary session key used during message delivery. It is reasonable to assume that the

number of nodes per group is not fixed. Even though groups are isolated from one another,

the edge entity must identify the nodes in each group and must have a shared permanent

key with each node. Once all groups have been established, the edge entity communicates

with individual groups using temporary group and session keys. The notations used in

this proposed protocol are shown in Table 3.3.

Each node holds three keys, one permanent key and two temporary keys. Addi-

tionally, there are two seeds embedded in each node prior to deployment. The list of all

keys is:

• Individual keys: Each node, u, in a given group shares an individual key with the

edge entity, Keu. These keys are set prior to deployment into the network. Keu is a

permanent key and is used to transfer the initial keys to each member of the group.

In addition, Keu can be used to deliver any other special instructions to individual

nodes in the group.

• Sub-session keys: These keys, Kegi, are temporary keys, and they are part of a

hash-based one-way chain [100], where i represents the index of the chain. The chain

is set by the edge entity, and it is unique to each group. The commitment of this
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Table 3.3: Notation used in FEC-IoT protocol specification and security analysis

Notation Description

IDu Identity of node u

IDGroup Identity of group

IDe Identity of edge entity

A Adversary

ϵ(.) Negligible function

N Total number of nodes in the network

NGroups Total number of nodes in group

F1 Long-tem key ( Keu) reveal

F2 Session key ( KSi) reveal

F3 Ephemeral key (KAi, KBi, Kegi, KGroupi) reveal

R(x) Random function

EK Underlying encryption scheme with a key K

MK MAC scheme with a key K

π random permutation

Ti Time of session

M Number of messages

{Message}Key Authenticated encryption

Mi Message at Ti

Keu Long-term key shared between edge and node

Kegi Temporary key used to derive session key at Ti

KAi Seed KAi = H(KA(i−1))

KBi Seed KBi = H(KB(i−1))

KSi Session key at Ti

KGroupi Group key at Ti

chain, Keg0, is delivered during the initialization phase to each node in the group

using the permanent individual key, Keu. The keys of the hash-based one-way chain

are delivered to each group in reverse order in order to provide authentication of

the edge messages to each node in the group. Each key in the sub-session key chain

is used by the edge entity and group nodes to derive both the group and session

keys. Each group has its own chain; thus, assuming l groups in the network, the
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edge entity will carry l one-way chains.

• Initial seeds: Edge entity and all nodes will have two initial seeds pre-loaded prior

to deployment, KA and KB. These seeds are used for generating both the session

and group keys.

• Group keys: During each communication session, each group will have its own

unique group key, KGroup, where the edge entity uses this key to encrypt the sub-

session key and delivers it to nodes in the group. Furthermore, the edge entity

and nodes derive the subsequent group key from the seed, KBi
, and the current

sub-session key, Kegi as

KGroupi = H(Kegi|KBi
), (3.1)

• Session keys: Each message is encrypted with its own unique session key, KSi.

The ith session key, KSi, is derived from the seed, KAi
as follows:

KSi = H(Kegi|KAi
) (3.2)

Both the session and group keys are temporary, and they are both generated during

the key agreement phase of our FEC-IoT protocol. The session key is used by the edge

entity to encrypt the message while the group key is used by the edge entity to encrypt

the sub-session key. Figure 3.3 shows the generation of the session and group keys on the

one-way chain where this chain is produced by the edge entity and M represents the total

number of messages. The sub-session keys, i.e., the one-way chain, is referred to as the

authentication chain. Note that the authentication chain keys are delivered in the reverse

order.

To broadcast a message to a particular group, the edge entity first delivers the

message encrypted with the session key. For the node to derive this session key, it needs the
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Keg0 Keg1 Keg2 Keg3 Keg4 Keg5 KegM

Authentication chain

Commitment Root

KSi = H(Kegi∥KAi
)

KGroupi = H(Kegi∥KBi
)

Figure 3.3: Session and Group Key Generation

current sub-session key in the chain. To this end, the edge entity delivers the sub-session

key encrypted with the group key as shown in the following subsections. For example,

if an elderly person fell the stairs, the edge entity starts a new communication with the

medical group. The edge entity selects the next sub-session key in the authentication

chain and delivers it to the medical group encrypted with its group key. In the same

packet, the message also is encrypted with the session key. Subsequently, the nodes in the

medical group derives the session key from the seed chain, KA stored in the node, and the

delivered sub-session key, Kegi, as shown in equations (3.1) and (3.2). In what follows, we

give a detailed description of the three phases of the protocol.

3.5.1 Phase I: Initialization and grouping

Each node, u, has a shared permanent key with the edge entity and a unique identi-

fication, Keu and IDu, respectively. The edge entity communicates with nodes during this

phase to establish groups and assigns each group a unique identification and the initial

group key, KGroup0. It also creates a one-way sub-session key chain for each group and

delivers the commitment of this chain, Keg0, to all group nodes. There are two steps to

the initialization phase as described below.

Finding active receiver nodes: After the cloud-edge setup, the edge broadcasts its,

IDe, to discover receiver nodes in the network. Then the edge entity broadcasts a HELLO

message to everyone, and each active node responds to this call by providing the edge en-

tity with its own identification, IDu. This step is depicted in Figure 3.4 and outlined as
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follows.

Edge→ ∗ : IDe

u→ Edge : IDu, {IDu∥T0}Keu

where IDe and IDu are the identities of the edge entity and node, respectively. The

encryption, {IDu∥T0}Keu , and henceforward in this chapter, represents an authenticated

encryption. The edge entity receives responses from all nodes and verifies their identities

as shown in Figure 3.4.

Assigning groups: In step 2 of the initialization phase, the edge entity divides

nodes into groups based on the preferential interest of the end user. Prior to deployment,

the edge entity has knowledge of all the end users’ interests. The edge entity sends each

node its initial group key and group identification, KGroup0 and IDGroup, respectively. In

addition, it sends the commitment of the sub-session key chain, Keg0, to the group. The

edge entity delivers the keys and IDs with authenticated encryption to individual nodes

using the nodes permanent keys as shown below and depicted in Figure 3.4.

Edge→ u : IDu, {IDGroup∥KGroup0∥Keg0∥T0}Keu

After this phase is finished, the individual key for each node, Keu, is not used in

message delivery.

3.5.2 Phase II: Key Agreement

The key agreement phase starts when the group nodes derive the keys needed to

decrypt the message. The packet delivered from the edge entity contains the following

two messages.
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Edge Group Nodes

Step 1

Edge→ ∗ : IDe

IDe, IDu, {IDe∥IDu∥T0}Keu

Step 2

IDu, {IDGroup∥KGroup0∥Keg0∥T0}Keu

Figure 3.4: Phase I: Initialization and grouping

Edge→ group : IDGroup, {Mi∥Ti}KSi
, {Kegi∥Ti}KGroup(i−1)

The first part is the sub-session key chain, Kegi, encrypted with the current group key,

KGroup(i−1), where i represents the index of the communication session. It should be noted

that the current group key is initialized prior to this communication session. Thus, the

edge entity delivers the sub-session key, Kegi, encrypted with KGroup(i−1). The second

part of the message is the payload encrypted with the session key, KSi. Each node derives

the subsequent group key and the current session keys from Equations (3.1) and (3.2),

respectively.

Edge Group Nodes

IDGroup, {Mi∥Ti}KSi
,

{Kegi∥Ti}KGroup(i−1)

Figure 3.5: Phases II&III: Key Agreement and Authenticated Broadcasting

3.5.3 Phase III: Authenticated Broadcasting

In this phase, each node in the group decrypts the authenticated message. A given

node first decrypts the sub-session key, Kegi, with the current group key, KGroup(i−1).

Then, the node verifies the authentication of the sub-session key by feeding it to a verify

function given by:
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V erifyEdge(Kegi, Keg(i−1))

=

 1, H(Kegi) = Keg(i−1)

0, Otherwise


(3.3)

The verification is simply done by hashing the received Kegi and comparing it to

the previous stored sub-session key, Keg(i−1). If the verification passes, the node will

generate the session key, KSi, from equation (3.2) to decrypt the message. Subsequently,

the node derives the next group key, KGroupi, from equation (3.1) and saves it for the next

communication session. Finally, the node erases the current session key, KSi, and group

key, KGroup(i−1). The destroyed keys are no longer needed for future communications and

keeping them may reveal a previously encrypted message if one node out of the group

got completely comprised. Thus, we require each node to erase the previous group key

and current session key after being used. The sequential steps followed for deriving and

erasing the keys at a given period, Ti, are shown below:

1. Decrypt {Kegi∥Ti}KGroup(i−1)
with KGroup(i−1)

2. V erifyEdge(Kegi, Keg(i−1))
?
= 1

3. Derive KSi = H(Kegi∥KAi
)

4. Decrypt {Mi∥Ti}KSi
with KSi

5. Derive KGroupi = H(Kegi∥KBi
)

6. KAi+1
= H(KAi

)

7. KBi+1
= H(KBi

)

8. Erase KSi and KGroup(i−1)
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The session key expires after this one-time use. To conduct another session, the

edge entity again selects the next sub-session key from the authentication chain and uses

it to encrypt the message. Then the edge entity repeats the process. Figure 3.6 shows a

summary of the whole protocol indicating the authentication steps for each time slot, Ti.

It should be noted that the sub-session key, Kegi, is a temporary key stored in the node

for a one time period, Ti, and used for two purposes, authenticating the edge device and

deriving the actual session key as shown in Equation (3.2).

edge entity

Keg0

KGroup0

Initialization Phase, T0

s0. initial values
{Keg0, KGroup0∥T0}Keu

KA0 , KB0

Time, T1

Keg1

KA1 , KB1

s1. obtain Keg1 from
{Keg1∥T1}KGroup0

s2. verify
Keg1 No

reject

Yes

s3. obtain KS1

H(Keg1∥KA1)

s4. verify
MAC No

reject

Yes

s4. obtain M1

{M1∥T1}KS1

s5. obtain KGroup1

H(Keg1∥KB1)

Time, T2

Keg2

KA2 , KB2

s1. obtain Keg2 from
{Keg2∥T2}KGroup1

s2. verify
Keg2No

reject

Yes

s3. obtain KS2

H(Keg2∥KA2)

s4. verify
MACNo

reject

Yes

s4. obtain M2

{M2∥T2}KS2

s5. obtain KGroup2

H(Keg2∥KB2)

Hash

Hash

Figure 3.6: Summary of the proposed Protocol

3.6 Security Analysis

In what follows, we formally prove the security of the edge broadcast messages

with respect to the claimed security goals, namely, confidentiality, integrity and forward

secrecy. Without loss of generality, we assume that the FEC-IoT protocol implements

an ideal authenticated encryption scheme using Encrypt-then-MAC where the underlying

encryption scheme E is semantically secure under chosen plaintext attacks and the MAC

scheme, M, is unforgeable under chosen message attacks. Thus, both the generated
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ciphertext and authentication tag are indifferentiable from that generated from a random

permutation and random function, respectively.

Theorem 1 The FEC-IoT protocol provides edge message broadcast integrity and confi-

dentiality.

Proof:

First, we start by proving the message integrity. Assume the existence of a PPT

adversary A which is able to deliver a message such that an honest group node accepts

it as an authenticated message from the edge entity. We build a distinguisher D which

simulates the FEC-IoT protocol between the edge and nodes for A. D queries a black-box

function g with chosen inputs x, and is challenged to tell with non-negligible probability

if g(x) =Mk(x), whereMk(.) is the MAC’s psuodorandom function and k is a random

secret key, or if g(x) = R(x), where R is a random function. For a security parameter n,

the proof depicts the advantage of A in forging the MAC of a challenger message.

- D selects at random b ∈ {1 . . .M} where M is the length of the edge authenticating

chain

- D sends the initialization phase broadcast {Keg0, KGroup0∥T0}Keu to A, the regular

broadcast FEC-IoT encrypted messages and tags, {Mi∥Ti}KSi
, {Kegi∥Ti}KGroup(i−1)

,

1 < Ti ≤ b − 1, where the authentication tag of a given message X is evaluated by

MKSi
(X)

- At Ti = b, D sends to A a broadcast message with the exception that D replaces the

tag which is originally evaluated byMKSb
(Mb∥Tb) with g(Mb∥Tb).

- D inspects the message broadcast to group nodes and if A creates {M ′

b∥Tb}K′
Sb

where

M
′ ̸= Mb with a valid tag with respect to g, then D, concludes that g is runningMk,

otherwise, g is running R.
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Let λ(.) be a function such that the probability that A is able to forge the MAC,

with length n, is given by:

Pr[AMk(1n) = 1] = λ(n).

Since it is always possible for A to succeed in forging the MAC with probability 1
2n

by producing the tag randomly, then the advantage of A is given by: | 1
2n
− λ(n)|.

We will prove that λ(n) is negligible (A function λ is negligible if for every polyno-

mial p(·), there exists an N such that for all integers n > N , it holds that λ(n) < 1
p(n)

[84]).

Considering another MAC scheme running a truly random function, i.e., equivalent to g

running R, then A has only negligible probability to successfully forge any message, m,

because the value R(m) is uniformly distributed in {0, 1}n from the point of view of A.

Thus, we have

Pr[AR(1n) = 1] ≤ 1

2n
.

It follows that if g is running R then D makes the wrong decision only with negligi-

ble probability. However, if the authentication is done using Mk, then A forges with

probability λ(n), and D makes the right decision with probability λ(n)
b
. Formally,

Pr[DMk(1n) = 1] =
1

b
Pr[AMk(1n) = 1] =

λ(n)

b
,

and

Pr[DR(1n) = 1] =
1

b
Pr[AR(1n) = 1] ≤ 1

b2n
,

Therefore, we have

|Pr[DMk(1n) = 1]− Pr[DR(1n) = 1]| ≥ 1

b
(λ(n)− 1

2n
).

Under the semantic security assumption of the utilized MAC scheme where Mk

is modelled as a pseudorandom function, 1
b
(λ(n) − 1

2n
) must be negligible, and hence it

follows that λ(.) must be a negligible function. This implies that A succeeds in forging
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the FEC-IoT broadcast messages with at most negligible probability and consequently

the advantage of A is also negligible.

For proving message confidentiality, the above game is repeated. However, in this

case, A is assumed to be able to decrypt ciphertexts generated by Ek, and g is assumed to

be running either Ek or π, where π is a random permutation. At the 3rd step, D replaces

the ciphertext which is originally evaluated by EKSb
(Mb∥Tb) with g(Mb∥Tb), passes it to

A, and waits for the decrypted message, M ′. If M ′ ̸= Mb, then we conclude that g is

running π, otherwise, g is running Ek, both with block length m. Let γ(.) be a function

such that the probability that A is able to decrypt the ciphertext is given by:

Pr[AEk(m) = 1] = γ(m).

Proceeding similar to the above proof of the integrity property, we get

|Pr[DEk(1m) = 1]− Pr[Dπ(1m) = 1]| ≥ 1

b
(γ(m)− 1

2m
).

Again, under the semantic security assumption of the utilized encryption scheme

where Ek is modelled as pseudorandom permutation, 1
b
(γ(m) − 2−m) must be negligible,

and hence it follows that γ(.) must be a negligible function. This implies that A succeeds

in breaking the confidentiality of the FEC-IoT broadcast messages with at most negligible

probability. Thus, the advantage of A is negligible.

Table 3.4: Adversarial Power
Query Keys Revealed Adversary Gain Security Breach

Long-Term Key Reveal (F1) Keu Keg0, KGroup0 none

Session Key Reveal (F2) KSi Mi confidentiality and
integrity of Mi

Ephemeral Key Reveal (F3) KA, KB ,Kegi,
Kgroup(i−1)

Mi, Mi+1, Mi+2,
. . .

confidentiality of
Mi, Mi+1, Mi+2,
. . .
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Effect of adversarial powers: In addition to basic adversarial capabilities of

the attacker, we let the attacker obtain secret information stored in the nodes memories

via attacks modelled by three explicit queries [38]: Long-Term Key Reveal, Session Key

Reveal, and Ephemeral Key reveal (see Table 3.4). In what follows, we show the effect of

this adversarial powers on the view of A described in the proof of Theorem 1.

- Revealing the long-term key. By calling F1, Keu is compromised which enables A

to decrypt {Keg0, KGroup0∥Ti}Keu . However, the compromise of Keu does not enable A

to derive the session key, KS1, or the next group key, KGroup1, because both require the

knowledge of the seed values, KAi and KBi, respectively. Thus, the view of A is the

same as its view in the above game, and the proof of ensuring the message integrity

and confidentiality proceeds in the same way.

- Session key Reveal: Calling F2 at Ti, enables A to recover KSi and decrypt only

[{Mi∥Ti}KSi
, {Kegi∥Ti}KGroup(i−1)

] which enables the attacker, A, to reveal any message,

Mi, during the selected session, Ti. However, the attacker is not able to derive the

session and group keys at Tj where i ̸= j. In what follows, we show that such an

adversary has the same view as A during any session other than the i-th one.

1. Case j > i: Assuming the use of one-way function for generating the authen-

tication chain described in Section 3.5, the adversary, A, cannot forge another

message [{Mj∥Tj}KSj
, {Kegj∥Tj}KGroup(j−1)

] where j > i due to the lack of knowl-

edge of Kegj, see Equations (3.1) and (3.2), respectively, and finding Kegj such

that Keg(j−1) = H(Kegj) has a negligible success probability.

2. Case j < i: Similarly, A, cannot derive previous session key, KS(j−1) (see Equa-

tion (3.2)) because this requires the knowledge of previous KA(j−1)
value. Since

finding the previous KA(j−1)
such that KAj

= H(KA(j−1)
) contradicts the one-

wayness assumption of hash functions, therefore, deriving the previous session key

is infeasible.
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- Ephemeral key reveal: By invoking F3 at Ti , A recovers Keu, KAi, KBi, Kegi, and

KGroupi which compromise the security of all future messages because now A has the

current seeds KAi, KBi which are required to generate future session and group keys

through forward hashing. This function corresponds to a node’s total compromise.

However, at time j < i, under the assumption of the one waynerss of the employed

hash function, the view of this adversary is the same as the view of A in the above

game for all sessions at Tj. It is infeasible for A to evaluate KAj and KBj by evaluating

the preimage of KAi, KBi. Accordingly, A cannot derive any previous session keys or

group keys in order to break the confidentiality of earlier broadcast messages. Hence,

we claim that FEC-IoT protocol provides forward secrecy.

3.7 Comparative Evaluation

In this section, we first present the computational, communication overhead, and

memory requirements of our protocol, then we compare it to other lightweight protocols,

specifically [1, 42, 60, 104, 106, 114, 140, 164, 179, 181, 206]. For our analysis, to maintain

a security level of 128 bits, we assume that all keys used in this protocol including the

long-term key, Keu, and ephemeral session keys, i.e., Kegi, KAi
, KBi

, KSi, and KGroupi to

be 128 bits. We assume that the time stamp is 32 bits and the message is of arbitrary

length. The authenticated encryption MAC tag is of length 160 bits. Thus, the total

extra bytes for delivering the sub-session key, {kegi∥Ti}KGroup(i−1)
= 128 bits for Kegi + 32

bits for Ti + 160 bits for MAC Tag = 320 bits = 40 Bytes. Additionally, there could be

extra 16 Bytes from {Mi∥Ti}KSi
, thus, the total communication overhead totals 56 Bytes.

As shown in Figure 3.6, our protocol is composed of eight steps, and in order to

broadcast a message to a group, the edge entity is required to perform two encryption op-

erations for encrypting the sub-session key and the message. Subsequently, upon receiving

the broadcast message, the node is required to decrypt the sub-session key, message, and
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derive group and session keys. Thus, in all steps of the protocol the node is required to

perform two decryption operations; however, because of the timestamp overhead added

to the message delivery, i.e. {Mi∥Ti}KSi
, we consider the total number of decryption op-

erations to be 3 for decrypting both the sub-session key and the message. In addition, we

need 2 HMAC, and 5 hash-based computations for deriving keys and verification. Fur-

thermore, each node is required to store the following keys, one permanent key with the

edge entity, Keu, two seeds, KA & KB, sub-session key, Keg, two temporary session related

keys, KGroup & KS. Assuming 16 Bytes for each key, this totals to 96 Bytes. The edge

entity, on the other hand, is required to store individual key for each node in the network

along with the two seed values. In addition, the edge entity must generate a one-way

chain to each group. Thus, the total storage space is (2+N +NGroups)× 16 Bytes, where

N is the total number of nodes in the network and NGroup is the total number of groups.

Table 3.6 shows a performance comparison of our protocol with the protocols pre-

sented in [1,42,60,104,106,114,140,164,179,181,206]. As indicated in the table, our proto-

col requires less computational requirements and has less communication and storage over-

heads. In order to have a fair comparison between the studied protocols, we computed the

execution times based on two different benchmarks, a high end Intel Core 2 Due CPU@2.4

GHz [179], and a low-end micro-controller ARM Cortex-M0 48MHz ATECC508A HW ac-

celerated [186]. Our high-end benchmark is adopted from LAMANCO [179] while ARM

Cotex-M0 is a low-end micro-controller of only 48MHz processor speed. However, both

benchmarks do not include the operations used in [42, 106, 140, 164] of ID-Based pairing,

ECC, and OTS signature verification; thus, for these protocols we list the execution times

reported in the corresponding original publications. It should also be noted that both IM-

BAS and εIBAS are broadcast schemes where the computational delays are independent

of the number of nodes. However, their listed computational run-time is, 6.6s and 3.4s,

respectively. The computational delays in IMBAS and εIBAS are high due to the large

computational requirements for PKC ECC ID-Based pairing algorithms.
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Table 3.5: Protocol Performance
Description Type

Computational complexity-edge 2 Encryption

Computational complexity-node 3 Decrypt + 2 HMAC + 5 Hash

Communication overhead 56 Bytes

Storage requirements-edge (2 +N +NGroups)

Storage requirements-node 96 Bytes

Table 3.6: Performance Comparisons
Ref Comm.

Overhead
Storage Re-
quirements

Computations Benchmark ✮ ✽ LAMANCO [179] ❇ ✧

This work 56 Bytes 96 Bytes 3 Dec. + 2 HMAC
+ 5 Hash

(3 × 0.113 + 2 × 0.722 + 5 ×
0.361) = 3.588 msec

(3×107.4+2×16.7+5×6.0) =
385.6 µsec

LAMANCO [179] NA 55 Bytes 15 Hash+ 2 MAC (15 × 0.361 + 2 × 0.722) =
6.859 msec

(15 × 6.0 + 2 × 16.7) =
123.4 µsec

LWMA [60] DH Key
Exch.

64 Bytes DH+ HMAC (1 × 134.2 + 1 × 0.722) =
134.922 msec

(1×33.49 ms+1×16.7 µsec) =
33.5 msec

ULSS [1] 7.87 KBytes 32 Bytes 200 Hash+ 96 R-
GEN

(200 × 0.361 + 96 × 2.0) =
264.2 msec

(200 × 6.0 µsec + 96 ×
66.8µsec) = 7.6 msec

M-Tree [104] 112 Bytes ∼ 2K Bytes Dec. + Hash (1 × 0.113 + 1 × 0.361) =
0.474 msec

(1 × 107.4 + 1 × 6.0) =
113.4 µsec

KMS-AMI [114] NA (4+Nmeters, 4+
2 × Nmeters) ∼
1K Bytes

2 HMAC (2 × 0.722) = 1.444 msec (2 × 16.7) = 33.4 µsec

LEAP [206] NA (48 + 16 ×
Nneighbor) Bytes

MAC (1 × 0.722) = 0.722 msec (1 × 16.7) = 16.7 µsec

TSV [106] 80 Bytes PK∼ 10 KBytes Signature verify 0.138 sec✦

IMBAS [42] 198 Bytes NA ID-Based + pairing 6.6 sec ✦

εIBAS [164] 101 Bytes NA ID-Based+ pairing 3.4 sec✦

2-Phase [140] NA 1, 530 Bytes ECC-based cetifi-
cate

8.444 sec ✦

AKM-IoV [181] 128 Bytes NA 13 Hash (13 × 0.361) = 4.693 msec (13 × 6.0) = 78 µsec

.
NA: Not available in the publication.
✮: Based on ARM Cortex-M0 48MHz ATECC508A HW accelerated. AES 16 Bytes, Hash 64 Bytes, and RGN 64 Bytes.
✽: Based on HMAC ∼ 2 Hash
❇: Based on Intel Core 2 Duo CPU@2.4 GHz.
✧: Based on RGN ∼ 4 HMAC [132]
✦: Execution times from original publication.

3.8 Summary

We proposed a protocol for smart medical emergency applications to be mounted

on an edge device closer to the source of the data. All emergency incidents are addressed

at the edge level leveraging the decentralized nature of edge computing. Our protocol pro-

vides edge broadcast message authenticity, confidentially, integrity, and forward secrecy.

We have defined and proved the security properties of authentication and forward secrecy

of our protocol. The computational complexity of our protocol is low and mostly based

on hash functions and the required storage for each node is only 96 Bytes. On the other

hand, the edge entity is required to store a permanent key for each node in the network,
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and the chain of each group. The communication overhead is only 56 Bytes per session

required for delivering the sub-session key. We compared our protocol to other lightweight

broadcast protocols in terms of security and cryptography primitives. For future work, we

will consider other efficiently computable and quantum resilient mechanisms to mitigate

desynchronization issues. In other words, since both the edge and nodes have to maintain

the same updated state in order to successfully verify the authenticity of received mes-

sages, a lost/dropped message interrupts this process and results in verification failure.

However, if such a state can be derived from the encrypted message, then receiving nodes

can self-synchronize. Accordingly, we plan to exploit the literature on stateless hash-based

signatures to achieve that result in our future work.
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Chapter 4

Lightweight Group Authentication

Scheme

4.1 Introduction

Group authentication for the three-tier cloud-edge-IoT computing paradigm is gain-

ing a lot of attention among the scientific research community. This is because massive

machine type communication (mMTC) is an expected scenario in the EC smart appli-

cations, for example, a large number of IoT-nodes connecting to a single edge server,

say thousands of nodes connecting to one edge computing server. In this scenario a

de-centralized mass/group authentication is more efficient than authenticating one node

at a time, because it reduces communication bandwidth on both authenticating server

(AS) and IoT-nodes. Furthermore, in group authentication, each group member can au-

thenticate other group members independent of the main edge server and without any

certificates. However, the existing group authentication schemes are heavyweight with

large communication overhead. Furthermore, most of these solutions are not applicable

for multiple-authentication and do not support any mechanism for refreshing the node-

shares. We note here that the term multiple-authentication in GAS refers to a scheme that
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supports multiple group authentication without re-distributing new shares or re-running

the set-up phase as described in [20, 51, 71,105].

We propose a lightweight group authentication scheme based on secret-sharing,

and symmetric-key cryptography. Our group authentication scheme at the edge (GASE )

provides asynchronous multiple-authentication, key agreement, and forward secrecy. Also,

it provides an efficient session key refreshing mechanism without re-distribution of the

shares.

4.2 Related Work

In this section, we provide a brief summary of the development of group authen-

tication schemes in the literature, and in a later section, we compare the most related

research to our proposed protocol.

4.2.1 Group Authentication by Secret-sharing

Based on SSS, Harn proposed the first group authentication scheme in 2013 [71].

GAS allows group members to authenticate each other in a many-to-many group authen-

tication style. In his paper, Harn presented three (n, t,m) group authentication schemes

based on SSS: 1) basic, 2) asynchronous, and 3) asynchronous multiple authentications.

Harn’s schemes 1 and 2 are basic SSS and allow for only one-time group authentica-

tion. However, Harn’s scheme-3 allows a group of n members to authenticate each other

multiple times, where m is the number of participants in the authentication process and

t is the number of secure users. Harn’s scheme-3 prevents t-users collusion and allows

many-to-many authentications. Although flexible and based on SSS, Harn’s scheme-3 is

heavyweight in terms of computations. To be precise, each member must compute an

exponential modular operation which is equivalent to RSA operation in addition to the

Lagrange’s formula computed in GF (q) field.
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To reduce computational complexity, [20, 51, 105] propose their group authentica-

tion schemes based on Harn’s scheme-1 or 2. For example, Aydin’s et al. [20], use Elliptic

Curve Cryptography (ECC) to securely reveal the node’s share multiple times. Thus, each

user in Aydin’s scheme computes only one ECC multiplication in a centralized group au-

thentication setting. On the other hand, Li et al. [105], utilize Harn’s scheme-2 and ECC-

pairing for group authentication and key agreement, respectively, for the LTE network.

Similarly, Chien [51] uses Harn’s scheme-2, ECC, and pairing for multiple-group authenti-

cations. However, these proposed GAS schemes [20, 51, 105], do not have any mechanism

to refresh the secret session keys. Indeed, the GAS schemes proposed by [20, 51, 105]

are closely related to our scheme, and these schemes provide key agreement; however, in

these schemes the session key is not refreshed, and thus, the forward secrecy property is

not ensured. In our study, we propose a lightweight group authentication scheme with

multiple authentications and a key refreshing mechanism that provides forward secrecy.

Similar to the above proposed schemes, other researchers propose group authentica-

tion based on threshold cryptography or Lagrange’s interpolation. For example, Shabisha

et al. [159], propose a fog-centred group authentication in which they use ECC, Schnorr

signature scheme, and Lagrange’s polynomial for group authentication and group key

construction, respectively. On the other hand, Kaya et al. [87], scheme relies on Paillier

threshold cryptography and requires public key cryptography (PKC) encryption and car-

ries large computations. Similarly, Yang et al. [190] use bi-linear pairing and threshold

cryptography to implement a delegated authentication in the vehicle network framework,

namely, the scheme allows the edge servers to collaboratively authenticate vehicles. Be-

cause of the computational complexity, Yang’s scheme is not suitable for low-end IoT-

devices.
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4.2.2 Group Authentication by Aggregated-MAC

Aggregated-MAC [83], is excessively used for group authentication in the mMTC

paradigm such as long-term evolutionary-advanced (LTE-A) or fifth generation 5G net-

work. In these network paradigms, group authentication is an essential security prim-

itive. For example, [97] propose a LGTH group authentication designed for machine-

type-communication (MTC) in the LTE networks. Specifically, the mobile management

entity (MME) aggregates all MAC codes from all machine type communication devices

(MTCDs) and sends them to the home subscriber server (HSS) for authentication. Sim-

ilarly, [99] and [144] use the aggregated MAC for Third Generation Partnership Project

(3GPP) and 6LoWPAN networks, respectively.

4.2.3 PUF-Based Group Authentication

Researchers utilized physical unclonable function devices for group authentication,

group key agreement, and communication. For example, Yildiz et al. [196], propose a

PLGAKD scheme which is based on PUF, CRT, and factorial tree security primitives

to ensure group authentication and key distribution. On the other hand, [149] propose

a group authentication scheme for the Narrow-Band IoT 5G framework which is simply

based on PUF, hash, and xor functions. Other PUF-based proposals [58,75] are concerned

with group communication and key distribution; however, they do not provide group au-

thentication. A recent proposal by Chen et al. [48] utilizes PUF for mutual authentication

leveraging Shamir secret sharing for availability and reliability. However, the scheme is

not for group authentication or group communication.

4.2.4 Group Authentication Based on Multi-variate Polynomial

Other types of group authentication schemes proposed in the literature are based

on symmetric multi-variate-polynomial security primitive [50, 68, 107]. Unlike the SSS
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and Harn’s schemes, the multi-variate polynomial is in the form of f(x1, x2, · · · , xn) such

that if any of the variables, say xi and xj, are interchanged, the polynomial remains the

same. For example, Li et al. [107], propose a secret-sharing scheme based on bi-variate

polynomial in which the scheme reduces the group manager computational complexity.

However, the communication complexity remains the same as Harn’s. Similarly, [50]

propose a multi-variate-polynomial scheme for group membership authentication for the

wireless sensor network (WSN) which reduces the authentication from O(n2) to O(n)

where n is the group size.

4.2.5 Other Approaches Based on ECC

There are several proposals for massive machine-type communication device au-

thentication in the literature. For example, Cao et al. [40], propose a massive narrow-band

fast authentication scheme for the 3GPP 5G network. Their scheme is based on certificate-

less aggregate Signcryption public key cryptography scheme. Similarly, [27,98] use group

authentication and key agreement based on ECC-cryptography and bi-linear pairing for

the LTE and 5G framework, respectively, while [39] base their group authentication on

Chebyshev-chaotic maps-based cryptography primitive. Chien [52] proposes an aggre-

gated authentication-key-agreement (AKE) scheme for the group-oriented-range-bound

which provides lesser authentication overhead when compared to its counterparts. On

the other hand, group signatures schemes, such as [33, 34, 47] are heavyweight with large

overhead. Thus, we base our protocol on secret-sharing and aggregated MAC only.

Similarly, other group authentication schemes proposed in the literature are based

on Chinese Reminder Theorem (CRT) [17,54,77]. However, because of the computational

complexity and large communication overhead, we base our protocol on SSS instead of

CRT. Table 4.1 shows summary of related protocols.

Finally, in terms of edge computing authentication protocols, only few proposals

are found in the literature [76, 126, 156]. However, none of the cited proposals addresses

65



Table 4.1: GASE Related Protocols Summary
Reference Application & Utilized Schemes Security Properties and Features Security Primitives

This work

– edge computing paradigm – group authentication & confidentiality, – multi-secret sharing
– GAS scheme – forward secrecy – aggregated MAC
– key agreement – key update mechanism

– multiple group authentication

Harn [71]
– three GAS schemes – group authentication – SSS scheme
– no key agreement – multiple authentication – exponential modular operation

Aydin [20]
– edge computing paradigm – group authentication & confidentiality – SSS sharing
– GAS scheme – no secret update mechanism – ECC cryptography
– key agreement

Li [105]
– LTE network – group authentication & confidentiality, – Harn’s scheme 2
– GAS scheme – single authentication – ECC cryptography
– key agreement – MAC

Chien [51]
– GAS scheme – group authentication, – SSS scheme
– no key agreement – single authentication – bi-linear pairing

Shabisha [159]
– fog computing paradigm – group authentication & confidentiality, – ECC Cryptography
– group key agreement – single authentication – Schnorr signature
– pairwise fog-node key agreement – Lagrange interpolation

Yang [190]
– edge computing paradigm – delegated mutual authentication – bi-linear pairing
– de-centralized vehicle network – node joining/revoking mechanism – threshold cryptography

– fast handover mechanism – Identity-based signature

LGTH [97]
– LTE network – massive MTC authentication – aggregated MAC
– massive machine type comm. – single authentication

GLARM [99]
– 3GPP network – massive M2M authentication – aggregated MAC
– massive machine-2-machine
comm.

– single authentication

Qiu [144]
– 6LoWPAN network – group authentication – aggregated MAC
– Proxy Mobile IPv6 – group handover – encryption
– group mobility – single authentication – hash + xor

PLGAKD [196]
– group comm. for IoT framework – group authentication – PUF-based devices
– smart lighting application – node joining/revoking mechanism – CRT + encryption
– key distribution – factorial tree + hash

Ren [149]
– 5G network – massive authentication – PUF-based devices
– NB-IoT framework – secure data transmission – Hash + XORs
– key agreement – truncated & aggregated authen.

code

Li [107]
– GAS scheme – group authentication & communication – SSS scheme
– no key agreement – single authentication – Bi-variate polynomial

Cheng [50]
– many-to-many group comm. – membership authentication – SSS scheme
– WSN paradigm – group forward/backward secrecy – multi-variate polynomial
– group key agreement – updated group key mechanism – hash

Cao [40]
– 5G network – access authentication & data transmission – encryption ,
– massive narrow-band IoT (NB-
IoT)

– secure data transfer – certificateless aggregate signcryp-
tion

SE-AKA [98]
– LTE network – group authentication – ECDH exchange
– group temporary key (GTK)
agreement

– single authentication – MAC

LEGA [27]
– 5G network – group authentication & confidentiality – bi-linear pairing
– mMTC – forward/backward secrecy – aggregate certificateless signature

– single authentication mechanism

LSSA [39]
– 3GPP mobile devices – access authentication – Chebyshev chaotic maps
– mMTC – forward/backward secrecy – encryption
– key agreement – single authentication – MAC

Chien [52]
– group-oriented-range-bound – aggregated & delegated authentication – bilinear pairing
– Authenticated-key-agreement – homogeneous trust & authorization – hash function

edge group authentication.

4.3 System Model and Design Objectives

4.3.1 System Model

The system model for our proposal is shown in Fig. 4.1. We have three network

layers, the cloud layer, the edge or gateway layer, and the low-end IoT layer. We consider

that the group leader and members communicate in a wireless medium in which each

node, including the group leader, broadcasts its message to all group members. We
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further assume that the group members are within the same vicinity and have strong

short-range communication protocol such as Zigbee, in which all broadcast messages are

accessible to all nodes. The group leader authenticates group members and relays their

messages to the edge entity using say mobile broadband communication. The details of

each entity in our model are described as follows.

• Authenticating Server AS: The authenticating server (AS) is located in the

cloud layer. The AS is responsible for the IoT-node and edge entities registrations

and system initialization. Specifically, during initialization, the AS randomly selects

two long-term secret-shadows for each node in the system and distributes them to

each node using a secure channel. These secret-shadows are long-term secrets for

each node and are independent from each other. On the other hand, for mass

authentication and session key agreement, the AS divides the registered system

nodes into L groups such that all group nodes share the same geographical proximity

or common ownership. For each group, the AS assigns an edge entity, and several

related IoT-nodes.

• Edge Entity: The edge entity is a middle intermediate layer between the cloud

and the IoT-nodes layer. In our model, one edge entity can be associated with

several groups. In the authentication process, the edge entity acts as an aggregator

of messages received from each group to the authenticating server. The edge entity

has better computational capabilities compared to the IoT-nodes.

• Group Leader GL: The authentication server initially groups the registered nodes

according to their geographical proximity, and for each group, the AS assigns a

group leader. The group-leader selection could be based on different parameters

such as available resources, distance from other nodes, communication range, or

density [52, 89]. However, in our system the AS selects a group leader that has

an adequate processing, power resources, and mobile broadband communication
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Figure 4.1: Group authentication in the three-tier cloud-edge-IoT framework

range. This is because the group leader has to be active to authenticate all group

members and sends the authenticated IDs to the edge server entity, and this requires

sufficient device resources and communication range. Other nodes in the group may

have short-range communication like Zigbee. Furthermore, the group leader needs

to be available and active all the time. In case the group leader is inactive, the

authentication process is not conducted. Alternatively, the authentication server

may assign another back-up group leader such that if the main group leader is

inactive, the back-up group leader conducts the authentication process.

• IoT-nodes: In each group, there are a number of registered IoT-nodes which are

low-end devices with small storage capacity. After authentication, each IoT-node

shares a session key with the AS, and consequently all messages between AS and

the IoT-node get encrypted with this key.

4.3.2 Threat Model

We assume that AS is a trusted entity that communicates with the edge and the

IoT-nodes during initialization phase through a secure channel. We also assume that the

edge is a trusted gateway. However, the IoT-nodes in our model are vulnerable to small

devices that are physically accessible to the attacker. If the IoT-node gets compromised,
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the attacker can access all its secrets. We assume that the adversary is not able to compro-

mise more than ⌊(t− 1)/2⌋ nodes. Because the communication between the group leader

and members is through wireless medium, the adversary may attempt several attacks such

as eavesdropping, intercepting packets, re-directing packets, or injecting packets.

For our group setting, we consider two types of adversaries, an outside adversary,

and an inside adversary. In what follows, we describe the attacks that could be conducted

in our framework.

1. Outside adversary impersonation attack: The outside adversary is not a registered

node in the system and does not have valid shares. The aim of this adversary is

to impersonate a valid registered node in the system; perhaps to receive free access

to paid services. Additionally, the outside adversary may try to access confidential

communications between IoT-nodes and the server.

2. Inside adversary impersonation attack: The inside adversary, on the other hand, is a

registered node in the system and has valid shares; thus, the inside adversary passes

the authentication process. However, similar to the outsider, the inside adversary

tries to impersonate a valid registered node to perhaps obtain paid-services and send

the charges to this valid registered node. The inside attacker may also try to access

confidential messages between IoT-nodes and server. We also assume that both

types of adversaries have access to all communications between the cloud, edge, and

IoT-devices including the public values from the AS.

3. Asynchronous-release attack: Harn [71] describes an asynchronous-release attack in

which the adversary takes advantage of the time of the released shares. Specifically,

the adversary may wait for all participants to reveal their shares and recover the

(t-1)-degree polynomial and reveal its good share afterwords. This attack could be

conducted by both types of adversaries, the outside attacker and the inside attacker.

4. IoT-node collusion: Another possible attack for the group secret-sharing setting is
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the node collusion. Namely, in the (t-1)-degree polynomial, the attacker requires t

shares to recover the entire polynomial and its secret. The inside or outside attacker

may collude with other IoT-nodes to obtain the necessary shares to recover the secret

polynomial.

5. Replay attack: Either the outsider or the insider adversary may eavesdrop on the

communications between the IoT-nodes, edge entities and the authenticating server.

The attacker may take advantage of un-secured communications and conduct a

replay attack in which the adversary re-run old sessions.

6. Token-forgery attack: The inside or outside adversary may try to forge “good”

shares to pass the authentication process and access the services provided by the

system.

7. Overtaking-IoT-node: The attacker may try to physically access the IoT-node and

obtain all its secrets including the long-term key and the secret shares.

4.3.3 Protocol Goals

The goals of our GASE scheme are listed as follows.

1. Group authentication and confidentiality: The main objective of our proposal

is to mass authenticate the IoT-nodes without congesting the authenticating server.

Indeed, there could be a million nodes associated with a single AS, and if each IoT-

node communicates with the sever at the same time, this creates congestion and large

traffic on the server. Thus, our goal is to provide lightweight low communication

overhead mass authentication protocol to prevent server congestion and keep the

confidentiality of the message exchange between IoT-nodes and AS.

2. Asynchronous share-release: In this type of share-release, the participants re-

lease their shares asynchronously, i.e. not at the same time. This creates a possible

70



asynchronous-release attack as described by Harn [71] in which the attacker waits

for all participants to release their shares and releases its “good” share afterwords.

Our goal is protecting against this type of asynchronous-release attack.

3. Key agreement: Most of the GAS schemes proposed in the literature do not

support key agreement. This goal aims to realize both primitives within the same

protocol.

4. Updated session keys and forward secrecy: We aim to provide efficient key

refreshing mechanism so that AS distributes the secret-shadows to each node only

once during the initialization phase. Nevertheless, the secret shares get refreshed

with every session without the need to re-run the initialization phase, thus achieving

forward secrecy where old encrypted messages are protected if either the current

session key or long-term key is leaked [37].

5. Lightweight and efficiency: Low-end devices at the edge inherently have small

computational power and limited memory capacity. Thus, our goal is to present an

authentication protocol that is lightweight, requires low storage, and supports low

communication bandwidth.

The aforementioned features are not all included in other schemes found in the literature.

Table 4.2 shows a comparison of the most relevant schemes [20,51,71,105], where Harn-3

refers Harn’s Scheme #3.

4.4 Edge Group Authentication Scheme

In this section, we present our lightweight group authentication scheme designed

for the edge computing paradigm. Our protocol is composed of four phases, namely,

initialization and setup phase, hashed-shares reveal phase, group leader authentication
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Table 4.2: Comparison with relevant schemes

Parameters Harn-3 [71] Aydin [20] Li [105] Chien [51] Ours

Initial share
delivery

Secure-
channel

Secure-
channel

Secure-
channel

Secure-
channel

Secure-
channel

Security-
primitive

SSS SSS & ECC SSS &
ECC

SSS & par-
ing

MSS &
AggMAC

Arbitrary
group leader

✓ ✓ ✗ ✓ ✓

Asynchnous
share-release

✓ ✓ ✓ ✓ ✓

Key agreement ✗ ✓ ✓ ✗ ✓

Key update ✗ ✗ ✗ ✗ ✓

and secret recovery phase, and server authentication phase. The used notations are shown

in Table 4.3.

4.4.1 Overview

Our main objective is to efficiently mass authenticate the low-end IoT-devices in

the three-tier cloud-edge-IoT framework without overloading the authenticating server.

To this end, we utilize security primitives related to the secret sharing schemes and the

Agg-MAC presented in Section 2.3. Specifically, we divide the total number of registered

IoT nodes in the system, N , into L groups. Each group has at least t number of secret-

shadow holders. In each group there is one edge entity and a group leader (GL) as shown

in Fig. 4.1. The authentication process occurs in three stages. First, the group leader

authenticates all group members using Yang’s multi-secret-sharing scheme, presented in

Section 2.3. Then, the group leader sends the edge entity all group members identifications

IDs authenticated with a standard MAC. Finally, the edge entity aggregates all tags

received from each group leader and sends it to the authenticating server for verification.

72



Group Members Group Leader Edge Entity Authenticating Server

I. Initialization and Setup Phase
• random (s1, ss1), (s2, ss2), · · · , (sN , ssN)
• pick random r,
• xi=f(r, si), xsi=f(r, ssi) i = {1, · · · , N}
• divide into L groups
• random (t-1)-degree polynomial/group.
• d(x)=k0 + k1x

1 + · · ·+ kt−1x
t−1 mod q

• yi=d(f(r, si)), ysi = d(2× f(r, si))
• h=H(k0){(s1, ss1), (s2, ss2), · · · , (sN , ssN)}, secure channel

publish < r, IDGL, (y1, ys1), · · · , (yn, ysn), h >Group Members

II. Hashed-shares Reveal Phase

• compute xi = f(r, si)

< IDGL, IDi, TS, yi, ysi, H(TS∥IDi∥xi∥xsi) >,

∀ {i=1, · · · ,m}

• verify m
?
> t

• select random (t-1) nodes

< IDgroup, ID1, · · · , IDt-1, TS,H(TS∥ID1, · · · , IDt-1) >

III. Group Leader Authen. Phase

< IDGL, (IDi, xi, yi) >, ∀ {i=1, · · · , t-1}

• compute d(x) =
t∑

i=1

yi
t∏

j=1,j ̸=i

x−f(r,sj)

f(r,si)−f(r,sj)
mod q

• check H(k′
0)

?
= h

• derive Ski = f(k′
0, LTKni

)

< IDGL, (idi, tagi) >, ∀ {i=1, · · · ,m}

IV. Server Authentication Phase

• compute SkGL = f(k′
0, LTKGL)

• GLMl =
{(id1, tag1), · · · , (idm, tagm), (idGL, tagGL)}

< IDedge, (GLM1) >

• M = {(id1, tag1), · · · , (idN , tagN)}
• aggregate tag = tag1 ⊕ tag2 ⊕ · · · ⊕ tagN

< IDAS, (M, tag) >

• verify tag

IDni
, {authentication token}Ski

Figure 4.2: Multi-Authentication Group Authentication Scheme at the Edge.
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Table 4.3: Notations used for GASE
Notation Description

AS Authentication Server

GL Group leader

A A polynomial-time adversary

si Secret-shadow for node i

ssi Second secret-shadow for node i

t Threshold of secret recovery

n Total number of nodes in the group

m Total number of participants

N Total number of nodes in the system

r Random number

w Time window

TS Time stamp

f(r, si) Two-variable one-way function for r and si

(xi, yi) a secret share, yi = d(xi) = d(f(r, si)) for node i

(xsi, ysi) a second share, ysi = d(xsi) = d(f(r, ssi))

k0 k-secret, k0 = d(0)

h Hash of secret, h = H(k0)

θ Number of polynomials in the scheme

< data > Un-encrypted data packet

{message}key Authenticated encryption for message with key

Ski Session key between node i and AS

LTKi Long-term key between AS and node i

LTKiH Long-term key between AS and node i for HMAC

GLMl group message={(msg1, id1), · · · , (msgn, idn)}
tagl Group tagl ←MACk{GLMl}
H(.) One-way hash function

4.4.2 Grouping and Asynchronous Share-release

In our model, AS is responsible for grouping the IoT-nodes and edge entities during

the initialization and registration phase. The grouping could be based on geographical

proximity or common ownership. Thus, the groups may have different sizes, and they
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may be independent from each other. Nevertheless, the size of a group at any given time

must be greater or equal ≥ t, where t is the degree of the group polynomial. Furthermore,

the group size could change upon adding new IoT-nodes or revoking existing IoT-nodes

from the group. However, during the authentication process, we require that the group

nodes remain static. Specifically, when m participants in a group join the authentication

process, we require no changes to the group, namely, no adding nor revoking of nodes.

Furthermore, even though, the m participants may reveal their shares asynchronously,

our protocol protects against the asynchronous-release attack described by Harn [71]; the

details of the asynchronous-release attack are shown in Section 4.5.2.

4.4.3 Initialization and Setup Phase

In our protocol, the authenticating server AS acts as the secret dealer (D), and

initially it sets the environment for the group authentication. The details are as follows,

and a summary is given in Fig. 4.2.

a. AS randomly generates 2N secret-shadows, namely (s1, ss1), (s2, ss2), · · · , (sN , ssN),

and distributes them securely to each registered IoT device in the system such that

each node has two secret-shadows, (si, ssi).

b. AS divides the registered nodes in the system into L groups where each group has

one edge entity. The grouping mechanism is described in Section 4.4.2.

c. For each group, AS generates a unique (t-1)-degree polynomial in the format,

d(x) = k0 + k1x
1 + · · ·+ kt−1x

t−1 mod q (4.1)

where q is a large prime and 0 < k0, k1, · · · , kt−1 < q, and k0 = d(0) is the secret

used for authentication and node session key derivation.
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d. AS randomly chooses r and computes the two secrets, xi = f(r, si) and xsi =

f(r, ssi), and their corresponding yi = d(xi) = d(f(r, si)) and ysi = d(xsi) =

d(f(r, ssi)) for {i = 1, · · · , N}.

e. AS computes h = H(k0) where H(·) is a one-way hash function.

f. For each group, AS selects the group leader for the current session and publishes

the following values.

< r, IDGL, (y1, ys1), (y2, ys2), · · · , (yn, ysn), h >

4.4.4 Hashed-shares Reveal Phase

In this phase, the m participating nodes communicate with the group leader in

which only (t-1) members reveal one of their secret-shares to the group as follows.

i. Each one of the m participants computes its tokens from the public random number

r and its two stored shadow-secrets, xi = f(r, si) and xsi = f(r, ssi), respectively.

ii. All m participants release the hash of their shares as follows.

nodei → GL :

< IDGL, IDgroup, IDi, TS, yi, ysi, H(TS∥IDi∥xi∥xsi) >

where {i = 1, · · · ,m}. The hash is used to protect against insider impersonation

attacks as discussed in Section 4.5.

iii. After receiving all m participants hashed-shares, the group leader checks the number

of participants. If

- m < t, the group leader waits for other participants to join the authentication

process for a given time window w, and if
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- m ≥ t, the group leader randomly selects (t-1) nodes and requests them to

reveal only one of their two shares as follows:

GL→ IDgroup :

< ID1, · · · , IDt-1, TS,H(TS∥ID1, · · · , IDt-1) >

In this phase, it is important for each node to send its hashed-share in a given time

window, w. Specifically, the group leader does not accept a participant to send its hash

share after the time window w elapses. A discussion as to why this is necessary to prevent

some possible attacks is provided in Section 4.5.

We note here that in the (n, t) threshold secret-sharing schemes, there must be

at least t participants to recover the secret. Thus, in our protocol, if the number of

participating nodes m is less than t and the time window w elapses, the group leader

aborts this current authentication session and requests the authentication server to assign

lower degree polynomial which allows lesser number of nodes to conduct the authentication

protocol.

4.4.5 Group Leader Authentication Phase

i. The selected (t-1) members reveal one of their (xi, yi) token-pairs un-encrypted as

follows.

nodei → GL : < IDGL, IDgroup, (IDi, xi, yi) >

The number of revealed secrets at this point is only (t-1).

ii. Using Lagrange’s interpolation formula, given in Equation (4.2), the group leader,
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GL, and all other group nodes recover the polynomial and the secret k0.

d(x) =
t∑

i=1

yi
t∏

j=1,j ̸=i

x−f(r,sj)

f(r,si)−f(r,sj)
mod q

= k0 + k1x
1 + · · ·+ kt−1x

t−1 mod q

(4.2)

Here, we note that the (t-1) nodes which reveal their shares recover the (t-1)-degree

polynomial from their second shares, while the other nodes which did not reveal

their shares recover the (t-1)-degree polynomial using one of their shares. On the

other hand, an eavesdropper accesses only the (t − 1) shares which is not sufficient

to recover the (t-1)-degree polynomial secret.

iii. After recovering the (t-1)-degree polynomial and the secret k0, the group leader and

all group members are able to authenticate the (t-1) members by verifying:

H(k′
0)

?
= h (4.3)

We note here that if Equation (4.3) holds, then all (t-1) nodes are authenticated

by the group leader; otherwise, the entire (t-1) nodes are not authenticated. In the

latter case, the group leader aborts the current authentication process and requests

the authentication server to refresh the share’s random number. Selecting a new

set of nodes to reveal their shares; i.e. returning back to Step 4.4.4-iii., causes more

than (t-1) nodes to reveal their shares and this exposes the (t-1)-degree polynomial.

iv. As for authenticating the rest of the (m-t) nodes, these nodes deliver their secret

shares using the recovered session key {xi, xsi}k0 . The group leader can verify the au-

thenticity of these shares by checking them against their hashed values as described

in Section 4.4.4-ii.

v. Each node derives its session key with the AS as follows
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Ski = f(k′
0, LTKni

) (4.4)

where LTKni
is the long-term key between node i and the authenticating server

AS. Finally, each participating node sends to the GL its (idi, tagi) where the tag is

a standard MAC using the node’s session key, tagi = MACSKi
(idi).

4.4.6 Server Authentication Phase

After authenticating all group members, the group leader follows these steps to

complete the AS authentication.

vi. The group leader, GL, combines all m group tags and appends its tag into, GLMl =

{(id1, tag1), · · · , (idm, tagm), (idGL, tagGL)}. GL sends this message to the edge en-

tity. The key used for the GL-tag MAC is derived from the latest recovered secret,

SkGL = f(k′
0, LTKGL), where LTKGL is the long-term key between the group leader

and the AS.

GL→ Edge : < IDedge, GLMl >

vii. The edge entity collects all group leaders’ tags and aggregates them into one tag.

Specifically, M={(id1, tag1), (id2, tag2) · · · , (idN .tagN)} and tag=tag1⊕ tag2⊕· · ·⊕

tagN .

Edge→ AS : < IDAS, (M, tag) >

viii. The server receives the Agg-MAC and verifies the tag using the new session key for

each group leader.
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4.4.7 Key Updates

To refresh the session keys, the AS randomly generates a new r, a new group

leader, and a new polynomial for each group, and publishes a new set of public values.

For example, the new set for session b is

< rb, IDGLb, (y(b,1), ys(b,1)), · · · , (y(b,n), ys(b,n)), hb >

Each node i in the group computes only the new x-tokens points using its secret-

shadow shares, the new random variable, xi = f(rb, si) and xsi = f(rb, ssi), and without

the need for new secrets, and without secure channel nor re-distribution nodes secret-

shares.

4.5 Security Analysis

In what follows, we analyze the security of our protocol and prove its resilience

against impersonation, reply, and asynchronous-release attacks.

4.5.1 Achieved Security Goals

We prove that ourGASE scheme is a secure secret-sharing scheme over Zq according

to Definition (7), [35].

Theorem 2 The GASE(G, C) scheme is a secure secret-sharing scheme over Zq in which

for every k, k
′ ∈ Zq, and for every (t-1) subset, the distribution of G(n, t, k) is identical to

the distribution of G(n, t, k′
).

Proof: To conduct the proof, we show that GASE is a secure sharing scheme in which

the distribution of G(n, t, k) is identical to the distribution of G(n, t, k′
) for every (t-1)

subset of {1, · · · , n}, where k, k′
are two random secrets out of the key space. This implies
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two facts, 1) k is indistinguishable from k
′
for ∀ k, k

′ ∈ Zq, and 2) the (t-1) set of shares

reveals nothing about the secret k. We prove this by the following argument. Let G(n, t, k)

choose randomly a set (a1, a2, · · · , at−1)
R←− Zq such that the (t-1)-degree polynomial is

f(x) = k+a1x+a2x
2+a3x

3+· · ·+at−1x
t−1 ∈ Zq[x] and f(0) = k. Then G chooses arbitrary

(x1, x2, x3, · · · , xn) and computes their corresponding (y1, y2, y3, · · · , yn) and distributes

si = (xi, yi) as a secret-share for node i = {1, 2, 3, · · · , n}. We note here that since the set

(a1, a2, · · · , at−1) is chosen uniformly over Zt−1
q , then the set (y1, y2, y3, · · · , yt−1) is also

uniformly distributed over Zt−1
q .

In what follows, we show that the algorithm G which sends (a1, a2, a3, · · · , at−1) ∈

Zt−1
q to (y

′
1, · · · , y

′
t−1) ∈ Zt−1

q which is the y-coordinates that their corresponding x-

coordinates are (x
′
1, · · · , x

′
t−1) ∈ Zt−1

q is a one-to-one map.

We prove this by way of contradiction, suppose that the map is not a one-to-

one map. This implies the existence of two distinct polynomials d(x), p(x) ∈ Z[x] of

degree at most (t-2) such that the polynomial k + xd(x) and k + xp(x) agree at the (t-1)

non-zero points of (x
′
1, · · · , x

′
t−1). However, this then implies that the two polynomials

d(x) and p(x) agree on these same (t-1) which is a contradiction of the fundamentals of

polynomial interpolation theorem; which specifically states that given (t) distinct-points

on the x-axis plane, (x1, x2, · · · , xt) and their corresponding values on the y-axis plane,

(y1, y2, · · · , yt), there exist only one unique (t-1)-degree polynomial that interpolates the

data set {(x1, y1), · · · , (xt, yt)}. Thus, given that the map is a one-to-one map, implies

that the generated (t-1) shares are uniformly distributed over Zq. It follows that the

(t-1) set reveals nothing about the secret k, and that k and k
′
are indistinguishable for

∀ k, k
′ ∈ Zq.

Theorem 3 The GASE protocol achieves message authenticity.

Proof:

We prove the authenticity of GASE by contradiction. We show that if there exists

81



a PPT -adversary A that can pass the AS authentication phase, then we can create a

distinguisher D to break the indistinguishability of the underlying MAC primitive with

non-negligible probability. We assume A controls the communication channel between

AS and the m registered group nodes in which A may pick any (idi, tagi) message, 1 ≤

i ≤ m and replace it by (id′i, tag
′
i) which passes AS authentication with non-negligible

probability. i.e. A succeeds in authenticating itself as a registered node. We further

assume a distinguisher D which interacts with a challenger C who provides it with access

to a black-box oracle O. More precisely, D sends some x to C who flips a coin and

instantiates O by either MACk where k is known only to C, or a random function R.

Then, C challenges D with O(x). D wins the challenge if it is able to determine with

non-negligible probability whether O(x) = MACk(x), or O(x) = R. In what follows, we

show that if A exists, then D wins the challenge.

1. We let D simulate the GASE protocol for A where D runs the initialization phase,

i.e. Steps V-C-{a-f} for A. Specifically, D selects a random (t-1)-degree polynomial,

a random r, several m nodes, a group leader. We further let the long-term key

LTKni
of the i-th node be known only to C, so that it is the only entity which can

evaluate SKi.

2. D also runs the protocol’s Steps V-D-{i-iii} and Steps V-E{i-v}. In other words, at

this stage of the protocol, the group leader (GL) authenticates all “selected” nodes.

3. In Step V-F{vi}, D simulates the transmission of all nodes IDs with their associated

MAC to the group leader, i.e. {(id1, tag1), (id2, tag2), · · · , (idm, tagm)}. However, for

the i-th node, 1 ≤ i ≤ m, D queries C with idi and lets (idi, tagi) = (idi,O(idi)). D

hopes that A forges the authentication message of the i-th node.

4. D inspects the messages between A and AS. If A replaced the message (idi, tagi)

with (id′i, tag
′
i) and AS authentication succeeds, then D concludes that the challenge

O(idi) = MACSKi
; otherwise, O(idi) = R.
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Let the probability of A forging MAC -tag be δ(b) where b is the length of the

MAC -tag, then the probability of A forging MAC -tag for the i-th tag is given by

Pr[AMACki(1b) = 1] =
1

m
δ(b).

Let the probability of creating a MAC -tag at random be

Pr[AR(1b) = 1] ≤ 1

2b

If we assume another MAC algorithm running a truly random function similar to

O running R, then the probability of A forging the i-th message is 1
m
ϵ, where ϵ is the

negligible function, because the output of R is uniformly distributed in {0, 1}b from the

point of view of A. From the construction of D and the probability of A success, it follows

that:

Pr[DMACk(1b) = 1] = Pr[AMACki(1b) = 1] =
1

m
δ(b),

and

Pr[DR(1b) = 1] =
1

m
Pr[AR(1b) = 1] ≤ 1

m2b
,

Therefore, we have

|Pr[DMACk(1b) = 1]− Pr[DR(1b) = 1]| ≥ 1

m

(
δ(b)− 1

2b

)
.

Under the semantic-security assumption that the MAC scheme is modelled using

a pseudorandom function, See Definition (9), 1
m
(δ(b) − 1

2b
) must be negligible. It follows

that δ(b) is negligible, which implies that A does not exist.
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4.5.2 Other Attack Analysis

The following is a list of prevented attacks of our GASE protocol.

- Outsider impersonation attack: In this attack, the outside adversary, A, tries

to impersonate a valid registered node to access its services. It is infeasible for A to

succeed in this attack for the following reasons.

1. There are only (t-1) revealed shares in each session, and thus an outsider A

knows only these revealed shares. Theorem 2 proves that our GASE protocol

achieves SSS security, and A requires the knowledge of t shares to recover the

(t-1)-degree polynomial. Thus, it is infeasible for A to create a tuple

< IDA
i , TS, yi, ysi, H(TS∥IDA

i ∥xA
i ∥xsAi ) > that passes authentication process

with a fake, IDA
i .

2. To manipulate the list of authenticated group nodes, the attacker A may

try to add its fake IDA
l in the GLM MACs, < GLMl > where GLMl =

{(id1, tag1), · · · , (idm, tagm), (idGL, tagGL)}, as described in Step 4.4.6-vi. This

requires the knowledge of the node’s session key, SKi, and it is infeasible to

brute-force the group leader session key for key length ≥ 128 bits.

3. The attacker may try to access an IoT-node’s i services by obtaining its session

key, Ski. This is because all messages exchanged between the IoT-node i and

the AS are encrypted using the node’s session key, Ski = f(k′
0, LTKni

) as

shown in Equation (4.4). Thus, to obtain this key, A need the knowledge of

k0, LTKi, and it is infeasible to brute-force this key for key length ≥ 128 bits.

• Insider impersonation attack: Similar to the outsider, inside attacker tries to

impersonate another valid group member to access its services. Specifically, A may

try to access the services for free. It is infeasible for A to succeed in this attack

for the following reason. The inside attacker has valid shares, and thus, A pass
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the authentication process and successfully retrieve the secret k0 as described in

Section 4.4. This enables the inside attacker to access the services. However, it is

not feasible for A to dodge the charges, because the authenticating server AS sends

the charges to the IoT-node i after the authentication process using the IoT-node

i session key, Ski = f(k′
0, LTKni

). Furthermore, even though A knows k0, it is

infeasible for A to derive the session key of another IoT-node i or brute force the

IoT-node long-term key, LTKni
. Thus, inside attacker A has the same advantages

as the outside attacker in impersonating a valid registered group member.

• Asynchronous-release attack: In the group secret sharing setting, the adversary

may conduct an asynchronous-release attack in which the attacker waits for all

group participants to reveal their shares, and present the adversary’s “good” share

afterword as described in Section 4.3-3. Our protocol is protected against this type

of attack for the two types of adversaries.

– The outside attacker: Only (t-1) shares are revealed in the authentication pro-

cess, see Section 4.4.4. Thus, an outside attacker cannot recover the polynomial

secrets with only (t-1) shares.

– The inside attacker: All m participants must commit their two hashed-shares

at the beginning of the authentication process, as see in Step 4.4.4-ii.; <

IDi, TS, yi, ysi, H(TS∥IDi∥xi∥xsi) >. Since the group leader does not accept

any node to participate in the authentication process by sending its hashed-

shares after a given time window, w, therefore the inside attacker cannot suc-

ceed in this attack.

• IoT-node collusion attack: The group leader recovers the secret k0 from substi-

tuting the group shares in the Lagrange’s formula given in Equation (4.2). For a

(t-1)-degree polynomial, it is necessary to obtain t unique (xi, yi) pairs to recover

k0 using the Lagrange’s formula. Because in our scheme, each IoT-node has two
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valid shares, thus, the inside attacker needs only (t-2) other shares to recover the

polynomial. On the other hand, the outside attacker needs t shares to recover the

polynomial. Consequently, the inside attacker needs only ⌈(t-2)/2⌉ other collud-

ing IoT-nodes in addition to itself, while the outside attacker needs ⌈t/2⌉ colluding

IoT-nodes. It follows that our scheme resists up to ⌊(t-1)/2⌋ node collusion.

• Replay Attacks: We use automated verification tool to formally prove that our

proposed protocol is robust against these attacks.

• Token-forgery attack: It is infeasible for an insider/outsider adversary to forge

two shares to pass the authentication process for the following reason. To pass

authentication, the IoT-node must commit both its two shares in a hash function

as seen in Step 4.4.4-ii. The group leader does not accept any participants to join

after the time window w elapses. In Theorem 2, we prove that our GASE protocol

is a secure sharing scheme. Thus, it is infeasible for an attacker to forge two shares

without knowing the (t-1)-degree polynomial.

• Overtaking-IoT-node: If an attacker is able to physically compromise an IoT-

node, the compromised device cannot be used to recover any secrets related to other

devices. Once discovered, the cloud admin can revoke this device from the list so

that it does not pass the AS authentication phase.

4.5.3 Analysis with Verifpal

Among formal protocol verification tools such as ProfVerif [31, 32, 32], Tamarin

[146], AVISPA [18, 170, 177] EasyCrypt [24], and Verifpal [94], the latter has a built-in

Shamir-secret-sharing primitive. Thus, we find it the most suitable one to model our

protocol. In this subsection, we present a brief background on Verifpal, and we show our

protocol’s implementation and verification.
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Figure 4.3: Verifpal Simulation Results

Our advantage of using Verifpal is to verify the security of our protocol utilizing the

tool’s build-in security primitives. Specifically, we use the Verifpal-Shamir’s SSS build-in

function for (n, t) = (3, 2), namely, “SHAMIR SPLIT(k)” and “SHAMIR JOIN(sa, sb),”

where k is the key and (sa, sb) are the shares, to model and verify our GASE protocol.

Our Verifpal-session has three nodes and an authentication server, namely, NodeA, NodeB,

NodeGL, and AuthS, respectively. The authentication server generates the SSS secret and

distributes it securely to each group node using their long-term keys. In the authentica-

tion phase, group nodes recover SSS secret which enables each node to derive its session

key and tag. Finally, the authentication server generates the “authentication token,”

and sends it to the node. The security goals are the confidentiality and authenticity of

the “authentication token” generated by the authentication server. Fig. 4.3 shows the

simulation results of GASE on Verifpal.

4.5.4 Notes on Untrusted GL/IoT-nodes Assumptions

In what follows, we present the consequences of having “untrusted” group leader

or IoT-nodes on the security of our GASE protocol.

• If a group leader is not a trusted entity, e.g., an adversary is able to compromise it,

the only attack that can be conducted in this scenario is a denial-of-service (DoS)

attack. Specifically, let us assume an “untrusted” group leader and two types of
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attacks, passive or active. In both passive and active attacks, the group leader can-

not decrypt any secure communications between the nodes and the authentication

server. This is because the group leader does not have access to the nodes long-term

keys and cannot derive or duplicate any group node’s session key even after recov-

ering the SSS secret. Note that the node’s session key is derived from the recovered

SSS secret and the node’s long-term key, Ski = f(ko, LTKni
), Equation (4.4). Thus,

a compromised group leader cannot break the confidentiality of any node’s message

nor impersonate any group node. A compromised group leader can only drop the

authentication process for group nodes, similar to DoS or dropping packet attacks,

and no cryptographic technique can protect against packet dropping attacks.

• Similarly, more than ⌊(t−1)/2⌋ colluding IoT-nodes can recover the SSS secret, but

they cannot derive any node’s session key. Consequently, these colluding nodes can-

not impersonate any node nor break the confidentiality of any node’s communication

with the authentication server.

• Field-deployed IoT-devices in the three-tier cloud-edge-IoT architecture are com-

monly considered as untrusted entities. This is because most of the IoT-devices are

small, lightweight, and vulnerable to physical attacks. However, in our protocol,

although a node-take-over physical attack mentioned in Section 4.3-B exposes all

node’s secrets to the attacker, the latter cannot access any other secrets or session

keys. Specifically, in the take-over-node attack, the attacker only recovers the SSS

secret and exposes the compromised node’s communications, but not any other node

in the network.

4.6 Comparative Evaluation

Similar to [155], we ran the following operations, Tmul,q,Tadd,q, ECCmul, ECCadd,

HMAC with SHA-256, and they are, modular multiplication, modular addition, ECC
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multiplication, ECC addition, HMAC, Hash, respectively, on Raspberry Pi 4 Model

B/8GB/Broadcom-BCM2711, Quad core Cortex-A72-1.5GHz (ARM v8) 64-bit SoC pro-

cessor, Python-library pblib [145]. Table 4.4 shows the operations simulated on Raspberry

Pi-Model 4. We note here that we presented in Section 4.2 several group authentication

protocols; however in the section we compare the most relevant schemes that are based on

SSS with our scheme, specifically [20, 51, 71, 105], and present it in Table 4.5. We follow

the theoretical analysis and notations given by Chein [51] to determine the computational

complexity for users and the group leader in our GASE scheme. Unlike other schemes,

we require modular addition and multiplication operations in GF (q). On the other hand,

Harn’s scheme-3 uses addition and multiplication operations in modular field GF (q) as

well as computing the modular exponentiation in another modular field, GF (p) [71]. Also,

Aydin et al. use GF (q) operations as well as ECC multiplications and additions for au-

thentication and key agreement.

Table 4.4: Raspberry Pi Simulation Results

Operation Symbol Avg. execution
time

Hash function1 Th 0.0482 msec.

HMAC function2 TMAC 0.0815 msec.

Modular multiplication3 Tmul,q 9.7 µsec.

Modular addition3 Tadd,q 6.7 µsec.

Symmetric-key
encryption/decryption4

Tenc 0.043 msec.

ECC multiplication5 ECmul 0.38 msec.

ECC addition5 ECadd 0.089 msec.
1: SHA-256 with data size= 1024 Bytes.
2: HMAC-SHA25 with data size= 1024 Bytes.
3: Modulus size= 256 bits
4: AES-128-CBC with data size= 1024 Bytes and key-size= 128-bits.
5: Barreto-Naehrig Curve P-256.

.

Computational complexity: For m participants in the authentication process,

each user computes the shares, xi = f(r, si) and xsi = f(r, ssi) and sends them to

the group leader for authentication. We assume that the two-variable one-way function is
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Table 4.5: Performance Comparisons Group Authentication Phase
Ref Comm

(user)
Shares
(user)

Computations/user Complexity/ET♦ Key-agreement/ user

Proposed (t + m) 2 shadows
[
(2(m−2)+2)×Tmul,q+1×
Tinv,q

]
+(m−1)×Tadd,q +

(m + 2) × hash

∼= (2m + 238)Tmul,q
∼=

2.7 msec ✥

= 2 × hash ∼= 5.8µsec

Harn-3✳ [71] 2×(m-1) 2 shares 2
[
(2(m − 2) + 3) × Tmul,q +

1 × Tinv,q
]

+ 1 × Texp,p +
(m − 1) × mulp + 1 × hash

∼= (45m + 1418)Tmul,q
∼=

22 msec
NA ✫

Aydin-1 [20] (m-1) 1 share 1 × ECmul
∼= (1189)Tmul,q

∼= 12 msec✭ (m-1)×ECDH+
[
(2(m−2)+

2)×Tmul,q +Tinv,q +(m−
1) × Tadd,q + 1 × hash

] ∼=
17.572 msec

Aydin-2 [20] (m-1) 1 share
[
(2(m − 2) + 1) × Tmul,q +

1 × Tinv,q
]

+ 1 × ECmul +
(m − 1) × ECadd

∼= (7m + 1421)Tmul,q
∼=

15 msec ✪

= (m−1)×ECDH+
[
(2(m−

2) + 2) × Tmul,q + Tinv,q +

(m−1)×Tadd,q +1×hash
]

∼= 17.572 msec

Li [105] (m-1) θ shares θ
[
(2(m−2)+3)×Tmul,q+1×

Tinv,q
]
+(m−1)×Tadd,q +

1 × hash

∼= 41θ(2m + 239)Tmul,q
∼=

222 msec
1×ECmul +1× hash+1×
MAC ∼= 0.78 msec

Chien [51] (m-1) 1 share
[
(2(m − 1) + 2) × Tmul,q +

1 × Tinv,q
]

+ 1 × ECmul +
m × ECadd + 2 × Tpair

∼= (7m + 6785)Tmul,q
∼=

67 msec
NA ✫

✥: For case of GL authenticating rest of (m-t) nodes, we have extra encryption. Specifically, ET ∼=
[
(2(m−2)+2)×Tmul,q +1×Tinv,q

]
+

(m − 1) × Tadd,q + (m + 2) × hash + (m-t) × Tenc ∼= (2m + 238)Tmul,q + (m-t) × Tenc ∼= 2.71 msec
✳: Harn’s scheme-3 [71].
✭: Aydin case 1: Group manager confirming group members [20].
✪: Aydin case 2: Any group member confirming other group members [20].
♦: Based on Chien’s approximation [51]; parameters are t = 10,m = 20, θ = 2.
♦: All execution times listed in Table IV are scaled to 32-byte data blocks.
✫: not available in the scheme.

equivalent ∼= 1 hash operation. For authentication, the group leader computes Lagrange’s

formula given in Equation (4.2). The group leader and all other members compute, =

2×hash+
[
(2(m−2)+2)×Tmul,q+1×Tinv,q

]
+(m−1)×Tadd,q, where Tmul,q, Tinv,q and Tadd,q

are multiplication, multiplicative inverse, and addition in q, GF (q), respectively. Finally,

the group leader authenticates the recovered secrets by performing (m + 1) × hash for

hashing and verifying nodes original shares and IDs, see Equation (4.3) and Step 4.4.4-ii.

For a fair comparison with [20,51,105], we follow Chien’s approximation of ignoring hash

and field-addition operations, and considering Tinv,q
∼= 240Tmul,q. Thus, our approximated

time complexity for the group leader is ∼= (2m− 4+ 2+240)×Tmul,q
∼= (2m+238)Tmul,q.

On the other hand, Aydin’s scheme has two different authentication processes, one

with group manager confirming all group members, and one with any group member

confirming other members, case 1 and 2 in Table 4.5, respectively. In the first case, each

user computes only one ECC multiplication, specifically f(xi) × P , and sends it to the

group manager for authentication. Thus, based on Chien’s approximation, the complexity

per user for Aydin case 1 is = 1 × ECmul
∼= 29Tmul,P

∼= 29(41)Tmul,q
∼= (1189)Tmul,q. In
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Aydin case 2, the authenticating node in the group computes all shares from each other

node and verifies it with the public quantity Q = sP . Thus, the authenticating node must

perform elliptic curve field multiplications and additions, and the approximated time is

=
[
(2(m−2)+1)×Tmul,q+1×Tinv,q

]
+1×ECmul+(m−1)×ECadd

∼= (7m+1421)Tmul,q

where ECmul and ECadd are the ECC multiplication and addition, respectively. Note that

Aydin case 2 is the generic case where any node can be GL, and hence, it is the case that

is closely related to our protocol.

Table 4.5 shows comparisons between our scheme and other related schemes [20,

51, 71, 105] in terms of the computation complexity per user, approximated complexity

per user, and group key agreement complexities. Fig. 4.4, on the other hand, shows

the approximated number of multiplications per number of group users, m. We note

here that we selected the range of group size from 1-350 for the sake of comparisons with

other schemes; specifically, Adyin’s scheme [20] have the group size 1-10, Li’s scheme [105]

have group size 1-180, and Chien’s scheme [51] have group size 1-350. Nevertheless, our

scheme can support larger group sizes. Our scheme has the least computations per user.

Furthermore, our node key agreement requires the least amount of computations when

compared to others; specifically, Aydin scheme requires = (m − 1) × ECDH +
[
(2(m −

2)+2)×Tmul,q+Tinv,q+(m−1)×Tadd,q+1×hash
]
per user and also Li’s scheme requires

= 1× ECmul + 1× hash+ 1×MAC per user.

Communication per user: Unlike other schemes, we refresh secrets in each ses-

sion. TheAS, publishes a new set of public values, (r, IDGL, (y1, ys1), (y2, ys2), · · · , (yn, ysn), h),

in each session. Thus, assuming each parameter is 32 Bytes, then in each session,

the AS publishes = 32 × (2n + 2) Bytes. For authentication, there are three pack-

ets exchanged in the group; specifically, Pkt1= < IDi, TS, yi, ysi, H(TS∥IDi∥xi∥xsi) >,

Pkt2= < ID1, · · · , IDt-1, TS,H(TS∥ID1, · · · , IDt-1) >, and Pkt3= < (IDi, xi, yi) >.

Assuming TS = 4 Bytes, ID = 3 Bytes, SHA-256 = 32 Bytes, xi = 32 Bytes, and

yi = 32 Bytes, the total communication overhead per group is ((m+ 2t− 2)× 3 Bytes+

91



Figure 4.4: Number of multiplications per user for different schemes

3× 4 Bytes+ 2t× 32 Bytes+ (m+ 1)× 32 Bytes = (35m+ 70t+ 18) Bytes. The com-

munication overhead per user is m+ t. Other schemes [20,51,71,105], on the other hand,

require less communication, because they do not support any key update mechanism.

Number of shares per node: In our scheme, we require two secret shadows

per node, say 2 × 32 Bytes. All other schemes require each group node to store only

one secret-share, except for Harn’s scheme-3, where each node is required to store two

secret-shares, each corresponding to a different polynomial. Similarly, Li’s scheme also

requires each node to store θ-polynomials secrets.

4.7 Summary

We proposed a lightweight group authentication scheme suitable for edge computing

paradigm and massive node authentications. The protocol is based on Yang’s multi-secret

sharing scheme and Katz’s Agg-MAC. The scheme provides multiple authentication and

key agreement to a group of nodes in the three-tier cloud-edge-IoT framework. In addition,

our scheme allows for session key refreshing and provides forward secrecy. We presented

the security analysis of our scheme which includes proof of the security properties and

a discussion of prevented attacks. We compared our GASE protocol to other recent
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proposals and showed that it has lesser run-time than others.
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Chapter 5

Lightweight Physically Unclonable

Function Group Authentication

Scheme

5.1 Introduction

In this chapter, we extend our group authentication design leveraging Shamir’s-

secret-sharing scheme and low-cost physical primitives, PUFs, for flexibility and efficiency.

Indeed, there are many limitations to the current proposed GAS schemes, and in this

proposal we address these challenges as follows.

1. Most of the proposed GAS schemes in the literature are valid for one-time authen-

tication [20,71,105]. For multiple-time authentications, it is required to have a new

re-distribution of the shares in a secure environment. This may reduce the efficiency

and flexibility of GAS schemes. To eliminate this, we use SSS-homomorphism prop-

erty to support multiple-time group-authentications with the same set of shares.

2. Most of the GAS schemes require share storage at the nodes [20, 71, 105, 128]. The

leakage of shares and node’s secrets, say due to node’s theft/capture, may jeopardize

94



the GAS security. To mitigate this threat, we utilize physically-unclonable-functions

(PUFs) in our scheme such that the node’s challenge-response-pair (CRP) is utilized

to derive the node’s secret-share instead of storing it.

3. Many GAS schemes proposed in the literature do not support key-agreement such as

group session key [20, 71,105,128]. However, this is an important feature especially

for some EC smart applications that require computations offload between group

members. In our scheme, after the many-to-many group-authentication, we support

establishing group session key as well as an individual session key for each node with

the authenticating-server. This allows group members to offload tasks among them

and individually communicate with the authenticating-server.

4. Most of the proposed GAS schemes do not support node-evicting/joining mechanism

[20, 71, 105, 128]. However, in our proposal, using PUFs with SSS-homomorphism

simplifies share-redistribution, node-joining, and node-evicting mechanisms.

5. Most of the proposed solutions using PUFs are vulnerable to modeling attacks [153].

In our proposal, we utilize the Shamir’s SS (+,+)-homomorphic property to design

an authentication protocol resistant to modeling attacks.

5.2 Related Work

To the best of our knowledge, PUFs are not utilized in the SSS GAS scheme

in literature. Chen et al. [48] propose a PUF-based authentication scheme leveraging

Shamir’s-secret-sharing scheme; however, the proposal is for mutual authentication and

not a group authentication. Also, their scheme requires large computations in the de-

vice and the authenticating server. Additionally, there are other group-authentication

schemes using PUFs, but they are not based on secret sharing and require large amount

of computations, e.g. [149, 188,196]. Millwood et al. put forward a proposal for an Intra-
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Group-based Authentication using DRAM-PUFs [122]. On the other hand, the literature

has a plethora of PUF-based authentication schemes, e.g. [10, 23, 103, 117]. However, the

scope of our work is group authentication using PUFs.

We note here that Chen et al. in [48] propose a PUF-based privacy-preserving

authentication scheme which resists machine learning attacks. They employ a mechanism

to randomly shuffle the mapping between challenges and responses in which the verification

process is unaffected by the shuffling. However, their protocol is a mutual authentication

scheme and not a group-authentication-scheme. Similarly, Mahalat et al. propose a

mutual authentication scheme using PUFs and Pedersen’s Verifiable secret-sharing (VSS)

[117] for wireless sensors network. Also, Aman et al. propose a scalable authentication and

privacy-preserving scheme using PUFs and special layered architecture for the Internet of

vehicles [10]. However, these solutions are not GAS schemes. Finally, Lee et al. propose

a group-authentication key-agreement scheme; however, their design requires a special

Barrel-shifter PUF [103].

In the literature, we see edge-computing applications concerned with grouping and

clustering which require authentication. For example, Aydin et al. [21] propose a group-

authentication-scheme for swarm-based authentication as a direct application of their

group-authentication-scheme proposed in [20]. On the other hand, for a group-oriented-

range-bound, Chien [52] puts forward a delegated authentication-key-agreement (AKE)

scheme which uses bi-linear pairing PKC and hash functions. In [23], Banasal et al.

put forward a scheme for UAVs that utilizes SSS and PUFs, however, their scheme is a

mutual authentication and not a group-authentication. Similarly, Pu et al. propose a

mutual authentication, privacy-preserving, and key-agreement utilizing PUFs and chaotic

systems for Internet of drones [142]. A scalable authentication location-aware clustering

for the Internet of drones is proposed in [22]. Similarly, Yu et al. in [193] propose a

lightweight PUF-based scheme for the Internet of drones in smart cities. Additionally,

lightweight solutions are proposed in the literature for edge-computing broadcast and
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Table 5.1: PUF-GASE Related Protocols Summary
Reference Application Security Primitives Advantages Disadvantages

This work

– GAS – SSS – lightweight – PUF sensitivity
– edge-computing – SSS-homorphism – group authen. – requires PUF-FE
– de-centralized – PUF – integrity, FWD secrecy

– hash & xor – multiple-time authen.

Harn-3 [71]
– GAS – SSS – group authen. – heavyweight
– de-centralized – SSS-homorphism – multiple-time authen. – no key-agreement

– mod-exponentiation – no share-update

Li [105]
– GAS – SSS – group authen. – no share-update
– LTE – ECC – key-agreement – one-time authen.
– MTC – bi-linear pairing

Aydin [20]
– GAS – SSS – group authen. – no share-update
– IoT - ECC – key-agreement – one-time authen.
– de-centralized – ECDH – integrity

GASE [128]
– GAS – SSS – lightweight – no node revoking
– edge-computing – MAC – group authen. mechanism
– de-centralized – integrity

Chien [51]
– GAS – SSS – group authen. – no key-agreement

– ECC – multiple-time authen.

Kaya [87]
– threshold Cryp. – Asmuth–Bloom SS – group authen. – heavyweight

– Pailliar threshold

Shabisha [159]
– fog-computing – Schnorr signature – group authen. – heavyweight

– ECC – key-agreement

Yildiz [196]
– IoT – PUF – group authen. – large overhead
– smart lighting – CRT – node evicting – PUF sensitivity
– de-centralized – factorial-tree

Xia [188]
– smart home – PUF – group authen. – PUF sensitivity
– IoT-applications – CRT – key-agreement – latge overhead
– VANET – multi-device authen. – dynamic join/leave – no share-update

Ren [149]
– Narrowband-IoT – PUF – group authen. – PUF sensitivity
– data-transmission – Aggregated MAC – mutual authen. – one-time authen.
– 3GPP 5G – key-agreement

Lee [103]
– Medical IoT – Barrel-Shifter PUF – dynamic group authen. – PUF sensitivity
– sensors – SHA256 – key-agreement – Specific to BS-PUFs

– anonymity

Chien [52]
– IoT – Bilinear pairing – group authen. – heavyweight
– 5G, LTE,& UMTS – BDHP & BPI – key-agreement

Millwood [122]
– modified CNN – DRAM PUF – group PUF authen. – specific to DRAM
– low-end devices – PUF-Phenotype – no helper-data

others [126, 127, 155], but not for group-authentication.

Table 5.1 shows comparisons of all related authentication schemes presented in this

section. The table compares authentication protocols in terms of applications, utilized

security primitives, advantages, and their disadvantages.

5.3 Applications, Security Issues, and Design Goals

5.3.1 Applications

Our new PUF-GAS scheme is suitable for an edge-computing grouping scenario

that requires low run-time, small communication overhead, and high security levels. In-

deed, it is a common case in the three-tier cloud-edge-IoT smart applications to have low-

end IoT-devices that cannot support heavyweight computations. The IoT-devices maybe

equipped with under-powered processors in the range of few MHz, have low battery-
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Figure 5.1: PUF-based SSS Group Authentication Scheme

lifetime, and have small storage capacity [88]. It is also a common case in the edge-

computing paradigm to have several nodes attached to one edge-server. Authenticating

all of these nodes at the edge of the network is more efficient than authenticating one node

at a time from the cloud server. In this work, we propose a scheme that supports group-

authentication and allows group-key-agreement. The general scenario for our grouping

system is shown in Fig. 5.1.

As an example, our PUF-GAS scheme is suitable for a swarm-based unmanned

aerial vehicles (UAVs) system authentication. The UAV system could be composed of

a main-server (MS), base stations, and several UAVs/drones. All registered drones in

the system initially get divided by the main-server into swarms/fleets according to their

capacity and tasks. Thereafter, the fleets get deployed to execute their specific missions

and may enter into one or more registered base station zones. Each fleet flying into

a registered base station zone gets authenticated, recovers a group key, and establishes

individual session keys with the base station edge-server. Consequently, the authenticated

fleet-drones communicate with each other and with the base station without referring to

the main-server.
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5.3.2 Security Issues: Assumptions and Attack Model

We assume that the main-server and the edge-server are trusted entities, and all

communications between them are also secure. On the other hand, the group nodes are

accessible to the attacker and vulnerable to capture or physical theft. To mitigate this

vulnerability, we require all group-nodes to have PUFs such that the shares are not stored

in the nodes; instead, shares are derived from their PUFs. Thus, even if a node got

captured, it does not leak its shares. The communications between the edge-server and

group nodes are not secure and subject to eavesdropping. For our system, we consider

the following threats.

• Node-impersonation attack: In this type of attack, the adversary tries to forge a

communication between a valid group-member and an edge-server. We show in

Section 5.6 that the adversary’s advantage in this attack is equivalent to that of a

brute-force attack.

• Node-collusion: Our (t, n)-secret-sharing scheme is resistant against (t-1) node col-

lusion. This is because in order to recover the (t-1)-degree polynomial, the attacker

must corrupt t valid nodes and retrieve their shares.

• Asynchronous-share-release: For a (t-1)-degree polynomial, an adversary who does

not have a valid share waits for all t participants to reveal their shares and then

recovers the polynomial and generates a valid share. In our scheme, this threat does

not exist, because the group nodes never reveal any of their shares.

• Node-capture/theft: In a typical node theft, the attacker physically accesses the node

and retrieves all its secrets. However, in our scheme, shares are not stored, instead

they are derived from the nodes PUF-devices. Thus, the adversary who captures a

node cannot leak its shares or any other node’s share.

• Replay-attack: Our scheme is protected against reply attacks, because we always
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ensure freshness in both authentication sessions and group key recovery sessions.

5.3.3 Design Goals

The goals of our scheme are as follows.

1. Multiple-time group authentication and key-agreement: The primary advantage of

our protocol is the multiple-time group-authentication. Specifically, the typical PUF

protocols require the server to store a large number of CRPs for each node in the

system, and each CRP is used for only one authentication. On the other hand,

our scheme allows for multiple-time group-authentication for the same set of CRPs.

After each authentication session, the edge-server and the group-nodes derive group-

session key which allows all parties to communicate with each other independently

from the main-server.

2. Node-evicting mechanism and flexibility: The second primary advantage of our pro-

tocol is the simple node-evicting mechanism. Indeed, if one or more nodes got

captured, the edge-server manages to authenticate the other group-nodes without

re-initialization or new share re-distribution. The node-evicting mechanism is ex-

plained in details in Sections 5.4 and 5.5. Additionally, the authentication process

is flexible to allow any m group-nodes to participate in the authentication process

provided that m ≥ t.

3. Lightweight and secure storage: The security primitives used in our protocol are sim-

ple and lightweight which make them suitable for the low-end devices. Specifically,

we use SSS and hash functions. Also, using PUFs mitigates any insecure storage of

shares inside the nodes.

4. Forward and backward secrecy: The breach or leakage of a session key should not

affect previous or future session keys, and this defines forward and backward secrecy,
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respectively. Specifically, if an adversary somehow leaks a group-key associated with

a session x, previous (x-j) and future (x+j) group-session keys are not leaked. This

mitigates the adversary’s advantages in breaching the confidentiality of encrypted

messages. In our protocol, we support forward and backward secrecy. Specifically,

our PUF-GAS protocol provides session key-agreements that are independent of

future and previous sessions.

5.4 Constructing SSS Using PUF

Our main goal for using PUFs with Shamir’s secret-sharing-scheme is to mitigate

possible attacks resulting from insecure storage. The straightforward solution for applying

PUFs in SSS for a group of n nodes is to have each node’s CRP act as its hidden share

then construct a polynomial from the n CRPs. While this solution assures no-share

storage at the node, it breaks the definition of threshold sharing-scheme. Specifically, the

constructed polynomial for the straight-forward solution must be fixed to (n-1)-degree,

and this requires all group members to participate in the authentication process; thus, any

subset of the shares does not recover the secret. In what follows, we show a construction

of a SSS using PUFs which achieves multiple-time asynchronous group-authentication

without restricting the number of participants.

5.4.1 Assumption

We assume that the edge-server (ES) authenticates a group of n nodes on behalf

of the distant main-server (MS). We also assume that each node is equipped with a PUF

and derives its own unique challenge. The PUF-response to this unique challenge is the

member’s SSS share in which no storage of the secret-share is required. The underlying

security property of PUFs, see Definition (10), states that it is infeasible for any adversary

to generate R
′
i = Ri without having the physical device. Thus, it is infeasible for an
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attacker to generate a valid share and impersonate a node.

5.4.2 Construction

In what follows, we show the construction of K SSS-polynomials using PUFs, and

Fig. 5.2 shows an illustrative example of K = 5 and a cubic-polynomial formation.

1. Collecting CRPs:

(a) The main-server sends K challenges to the group of n nodes, in which each

node is equipped with a PUF. Each node derives its PUF-responses and its

helper-data, as shown in Table 5.2, and sends them back in a secure channel.

(b) The main-server receives

{(C1, R(1,1), hd(1,1)), · · · , (CK , R(1,K), hd(1,K))}, · · · ,

{(C1, R(n,1), hd(n,1)), · · · , (CK , R(n,K), hd(n,K))}

2. Polynomial constructions:

(a) For each node, the main-server hasK different CRPs (Ck, R(i,k)), and translates

each CRP to an (x, y)-point in the xy-plane. The main-server stores the helper

data for each node.

(b) The main-server creates upto K polynomials. The degrees of the polynomials

varies from n-degree to (t-1)-degree polynomials where t < n.

(c) Fig. 5.2 shows an example ofK = 5 and the construction of a cubic-polynomial,

e.g. degree = 3. In the example, the polynomial has 4 xy-points laying on the

curve and 1 xy-point laying outside the curve.

3. Storage and delivery:

(a) For the (n-t) xy-points laying outside the curve, the offsets of these points are

stored along with the polynomial.
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𝟏.𝑲 𝒄𝒉𝒂𝒍𝒍𝒆𝒏𝒈𝒆𝒔

Group of 𝒏 nodes

𝒏 nodes

𝐼1

𝐼5

𝐼𝑛
𝐼3

𝐼2

𝐼4

𝐼6
𝐼7

𝐼8

𝐼9

𝑆𝑒𝑐𝑢𝑟𝑒 𝐶𝑜𝑚𝑚.

2. 𝑷𝑼𝑭 𝑹𝒆𝒔𝒑𝒐𝒏𝒔𝒆𝒔

3. 𝑹𝒆𝒄𝒆𝒊𝒗𝒆𝒅 𝑷𝑼𝑭 − 𝑪𝑹𝑷𝒔

Main Server

𝐶1, 𝑅(1,1) 𝐶1, 𝑅(2,1) 𝐶1, 𝑅(3,1) 𝐶1, 𝑅(4,1) 𝐶1, 𝑅(5,1)

𝐶2, 𝑅(1,2) 𝐶2, 𝑅(2,2) 𝐶2, 𝑅(3,2) 𝐶2, 𝑅(4,2) 𝐶2, 𝑅(5,2)

𝐶3, 𝑅(1,3) 𝐶3, 𝑅(2,3) 𝐶3, 𝑅(3,3) 𝐶3, 𝑅(4,3) 𝐶3, 𝑅(5,3)

𝐶4, 𝑅(1,4) 𝐶4, 𝑅(2,4) 𝐶4, 𝑅(3,4) 𝐶4, 𝑅(4,4) 𝐶4, 𝑅(5,4)

𝐶5, 𝑅(1,5) 𝐶5, 𝑅(2,5) 𝐶5, 𝑅(3,5) 𝐶5, 𝑅(4,5) 𝐶5, 𝑅(5,5)

4. 𝑷𝒐𝒍𝒚𝒐𝒏𝒎𝒊𝒂𝒍 𝑪𝒐𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏

a.Consider 
< 𝐻(𝐶1|𝐼𝐷1), 𝑅 1,1 , 𝐻(𝐶1|𝐼𝐷2), 𝑅(2,1) , 𝐻(𝐶1|𝐼𝐷3), 𝑅(3,1)
, 𝐻(𝐶1|𝐼𝐷4), 𝑅(4,1) , 𝐻(𝐶1|𝐼𝐷5), 𝑅(5,1) >≡

< 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , 𝑥3, 𝑦3 , 𝑥4𝑦4 , 𝑥5, 𝑦5 >
b.Pick random 𝑡 = 4 𝑝𝑜𝑖𝑛𝑡𝑠
c.Linearly determine 𝑃 𝑥 = 𝑠 + 𝑎1𝑥

1 + 𝑎2𝑥
2 + 𝑎3𝑥

3

5. 𝑪𝒖𝒃𝒊𝒄 − 𝒑𝒐𝒍𝒚𝒏𝒐𝒎𝒊𝒂𝒍 𝑪𝒖𝒓𝒗𝒆

𝑥

𝑦

Point outside curve
Point on curve
Offset from curve

3rd degree-polynomial plotEdge Server

6. 𝑻𝒓𝒂𝒏𝒔𝒇𝒆𝒓 𝒑𝒐𝒍𝒚𝒏𝒐𝒎𝒊𝒂𝒍𝒔 & 𝒐𝒇𝒇𝒔𝒆𝒕𝒔

𝑆𝑒𝑐𝑢𝑟𝑒 𝐶𝑜𝑚𝑚.

Figure 5.2: Example of PUF SSS Polynomial Construction, K = 5, t =
4, Cubic-polynomial

(b) The main-server sends a copy of the K polynomials, the helper data, and the

offsets to the edge-server in a secure channel.

Table 5.2: Node-responses for different challenges

Challenge Node i response for kth challenge helper-data

1 R(i,1) = PUF (C1) hd(i,1)

2 R(i,2) = PUF (C2) hd(i,2)
...

...
...

K R(i,K) = PUF (CK) hd(i,K)

5.4.3 Node-evicting mechanism

Finally, the mechanism of evicting a group-member is done locally at the edge-

server, and without any share-redistribution from the main server. Simply in this case,

the edge-server creates a new (t-1)-polynomial in which the evicted member does not have

any shares, and the rest of the nodes are not affected. Similarly, updating the group shares

requires only changing the group challenge.
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5.5 Proposed Scheme Specifications

In what follows, we list the used notations in Table 5.3 and then give the details of

the PUF-GAS scheme shown in Fig. 5.3.

Table 5.3: Notations used for PUF-GAS
Notation Description

N The total number of nodes in the system

K Total number of polynomials per group

k Polynomial/challenge index #

L Total number of groups

l Group index

m Number of participating nodes in the group

n Number of nodes in the group

t Threshold of SSS-polynomial for the group

b The secondary polynomial index and number of hashes

IDi Node i identification

Ck Group Challenge for session k

Ci Challenge of node i, Ci = H(IDi∥Ck)

P(k,l)(x) Polynomial k of the l-th group

P(k,l,b)(x) Secondary b polynomial k of the l-th group

R(i,k) PUF response of node i of kth polynomial

na Nonce

Tkn Session token for the group

SKi Session key for node i

GK(k,b) Group key for authentication session k

H(.) One-way hash function

5.5.1 Overview

We use PUFs with SSS and its (+,+)-homomorphism property for K authentica-

tion sessions as follows.

- Initially, the main-server (MS) divides the total number of registered nodes, N , into L
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Start Registration 

Collect nodes PUF CRPs  

End Reg. 

No 

Yes 

Initialization Phase 

Authentication Phase 

Send polynomial set to ES 

ES requests group IDs 

  Available  𝑚 ≥ 𝑡  

No 

Yes 

ES sends obfuscated Tkn to nodes. 

ES broadcasts Hash(secrets-sum). 

Nodes broadcast their sum-of-two-shares 

Group key-agreement 

𝐴𝑢𝑡ℎ𝑒𝑛. ? 

Authen. fails 

Yes 

Start new session, + + 𝑏 

No 

Construct polynomial set. 

Figure 5.3: Flow diagram of PUF-GAS

different groups based on given criteria such as resources, capacities, or missions. To

build the polynomial reservoir, the main-server creates K unique polynomials for each

group.

- Each group hasK polynomials, and each polynomial is constructed from the CRPs to its

kth group challenge, Ck where k ∈ {1, · · · , K}. Specifically, the CRP is (C(i,k), PUF (C(i,k))),

respectively for each node in the group, where C(i,k) = H(IDi∥Ck), H(.) is a one-way

hash function, and i is the node index. From the collection of n CRPs, the main-server

selects a (t-1)-degree polynomial, P(k,l)(x), for each authentication-session k, where the

threshold is t ≤ n.

- The total number of polynomials for the system isK×L, and after building the reservoir,

the main-server transfers the entire polynomials to the edge-server via a secure channel.

These polynomials are used for de-centralized authentication at the edge.
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- In order to achieve multiple-time authentication, we utilize the SSS (+,+)-homomorphic

property. Specifically, when the edge-server needs to authenticate a group, it uses one

of the K polynomials and derives its secondary polynomial. The secondary polynomial

is constructed from the available (m ≥ t) participating nodes and has the same x-axis

points as the original group polynomial; thus, the secondary-CRP is (C(i,k), H
b(PUF (C(i,k)))),

respectively for each node in the group, where b is the number of hashes, and the sec-

ondary polynomial index.

- Finally, the shares for the two polynomials, P(k,l)(x) and P(k,l,b)(x), are never revealed.

Instead, each node sends its sum-of-shares xor-ed with a group token Hb(Tkn). Thus,

the total number of authentications per group is K × b.

The steps are shown in the following two phases, namely, the registration and

initialization phase and the group-authentication and key-agreement phase.

5.5.2 Registration & Initialization Phase

The main-server first divides the registered nodes into L groups and sets up the

polynomial reservoir.

• Step I:

a. The main-server sends K unique challenges to the registered nodes in the sys-

tem. Each kth-challenge corresponds to the kth-polynomial.

MS → Nodes : {(C1, · · · , CK)}

b. Each node i derives its unique PUF challenge, C(i,k) = H(IDi∥Ck) for each k ∈

{1, · · · , K} respectively, and then obtains the corresponding PUF-responses as

shown in Equation (5.1).
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R(i,k) = PUF (Ci) = PUF (H(IDi∥Ck)) (5.1)

c. Each node i sends its PUF-responses, see Table 5.2, back to the main server

via a secure channel.

Nodei →MS : {IDi, R(i,1), · · · , R(i,K)}

• Step II:

The main server constructs K (t-1)-degree polynomials for each group as follows.

1. To construct a single polynomial for a group, the main-server randomly selects

t out of the {(x1, y1), (x2, y2) · · · , (xn, yn)} points. The (t-1)-degree-polynomial

is in the format of Equation (5.2).

2. To compute the polynomial’s coefficients {a1(k,l), . . . , at−1(k,l)}, the main-server

uses the linear a = (xT.x)−1xT.y where x is the Vandermonde matrix of x-

points, y is the vector of y-points, and a is the vector of the polynomial’s

coefficients.

3. To reserve the rest of the (n-t)-points, which have their (x, y)-points laying out-

side the polynomial-curve, the main-server stores them. This is because, in the

authentication phase, any of the n points can participate in the authentication

process regardless of the selected t-points for the polynomial P(k,l)(x).

P(k,l)(x) = sa(k,l) + a1(k,l)x
1 + · · ·

+at-1(k,l)x
t-1 mod q

(5.2)

where k is the polynomial/challenge index and l is the group index.
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Group Nodes Main Server Data Base

Step I

{(C1, · · · , CK)}

Poly. Node Responses
1 R(i,1) = PUF (IDi∥C1)
2 R(i,1) = PUF (IDi∥C1)
...

...
K R(i,1) = PUF (IDi∥C1)

{IDi, R(i,1), · · · , R(i,K))} , secure channel

• Main-server dividesN Nodes into L groups

Step II

• Main-server createsK polynomials for L groups
• P(k,l)(x) = sa(k,l) + a1(k,l)x

1 + · · ·+ at-1(k,l)x
t-1 mod q

• Main-server stores (n− t) points for each l

Step III

Poly. Poly. per group Stored (x, y) offset points
1 {P(1,1), · · · , P(1,L)} Offset points for {P(1,1), · · · , P(1,L)}
2 {P(2,1), · · · , P(2,L)} Offset points for {P(2,1), · · · , P(2,L))}
...

...
...

K {P(K,1), · · · , P(K,L)} Offset points for {P(K,1), · · · , P(K,L)}

Edge Server

{(P(k,l)), k ∈ {k = 1, · · ·K}}, secure channel

Figure 5.4: Phase I: Registration & Initialization Phase

• Step III: At the end of the initialization phase, the main server has a reservoir of

K × L polynomials as shown in Table 5.4. The main-server sends the edge-server a

copy via a secure channel. The initialization process is shown in Fig. 5.4.

Table 5.4: Polynomial Set Reservoir

Poly. Poly. per group Stored (x, y) offset points

1 {P(1,1), · · · , P(1,L)} Offset of {(P(1,1), · · · , P(1,L))}
2 {P(2,1), · · · , P(2,L)} Offset of {(P(2,1), · · · , P(2,L))}
...

...
...

K {P(K,1), · · · , P(K,L)} Offset of {(P(K,1), · · · , P(K,L))}

5.5.3 Group Authentication & Key-agreement Phase

The details for the authentication process are shown in Fig. 5.5 and as follows.
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• Step I:

a. When the edge-server is required to authenticate a group, it sends the selected

polynomial challenge Ck, an index b that represents the authentication session,

and a request for nodes’ IDs. Also, the edge-server generates a random group-

token for this session, Tkn and sends its H(Tkn).

ES → Nodes : < Ck, b,H(Tkn), IDs Request >

Harn [71] defines a t-Secure m-User n-Group Authentication Scheme (t,m, n)-GAS

to have the following two properties:

(a) the scheme must resist up-to (t-1) colluding group-members, i.e. t is the

threshold,

(b) m users can determine whether these Users belong to the group with n

members.

Furthermore, Harn states that the correctness of GAS scheme is positive if all

Users are group-members; otherwise, Users are not group-members.

b. Each m participating node sends its ID back to the edge-server.

Nodei → ES : < IDi >

c. The edge-server checks if all IDs belong to the same group. If yes, the edge-

server continues; otherwise, it rejects the foreign IDs. Then, the edge-server

checks if the number of participating nodes in the authentication process is

greater than the polynomial threshold, i.e. m
?

≥ t. If the check passes, the

edge-server moves to the second step; otherwise, it requests more nodes to join

the authentication process. The edge-server halts the authentication process
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until it has at least t participating node.

• Step II:

a. The edge-server sends each participating node its hashed response xor-ed with

this token. The edge-server also sends the nodes that have offsets their values

xor-ed with the group-token.

ES → Nodes : [IDi, OTi, hdi, (IDj , Oj , H(Offsetj))]

where OTi = Tkn ⊕ H(R(i,k)), hdi is the helper-data vector, Oj = Tkn ⊕

offset-to-poly, and j is the index for nodes with polynomial offsets.

b. Each participating node first recovers the group-token, Tkn
′
= OTi⊕H(R(i,k)).

Then, each node checks the integrity of Tkn by H(Tkn
′
)

?
= H(Tkn). Also,

for nodes with Offset
′

j = Oj ⊕ Tkn, the nodes check the integrity of Offset

by H(Offset
′

j)
?
= H(Offset). Consequently, each node is able to compute its

P(k,l)(x) share by applying Equation (5.1). All participating nodes can com-

pute the group-token, and the nodes which need the offset received from the

edge-server add the offsets to their PUF-responses, respectively, as shown in

Equation (5.3).

R(k,i,j) = PUF (H(IDi∥Ck)) +Offsetj (5.3)

c. The construction of the secondary polynomial is similar to the construction of

the first polynomial P(k,l)(x), except that the y-points of the m-participating

nodes are derived from the hashes of the nodes original CRPs. The coefficients

{c1(k,l), . . . , cm−1(k,l)} are also computed linearly by c = (xT.x)−1xT.yb where x
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is the Vandermonde matrix of x-points, yb is the vector of hashed-y-points, and

c is the vector the polynomial’s coefficients. The format is shown in Equation

(5.4).

P(k,l,b)(x) = sb(k,l) + c1(k,l)x
1 · · ·+

cm-1(k,l)x
m-1 mod q

(5.4)

d. Similarly, each participating node computes its two shares of the two polyno-

mials, P(k,l) and P(k,l,b), according to Equations (5.5) and (5.6), respectively.

y(i,k,l) = R(i,k,l) = PUF (H(IDi∥Ck)) +Oj (5.5)

y(i,k,l,b) = Hb(R(i,k,l)) = Hb(PUF (H(IDi∥Ck))) (5.6)

e. The edge-server computes the sum of the two polynomials secrets as shown in

Equation (5.7) corresponding to group l.

Sum(k,l) = sa(k,l) + sb(k,l)
(5.7)

f. The edge-server sends the group-nodes the following broadcast which includes

the session nonce na, and H(Sum∥na), respectively.

ES → Nodes : [na, S=H(Sum(k,l)∥na)]

g. Each group-node broadcasts the sum of its two shares xor-ed with the hash of

the current token as follows.

Nodei → ES,Group :

{Ci, (y(i,k,l) + y(i,k,l,b))⊕Hb(Tkn)}
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• Step III:

a. Each group-node first retrieves other nodes sum-of-shares by xor-ing H(b)(Tkn)

from their broadcasts, applies Lagrange’s interpolation polynomial to compute

the Sum(k,l), and checks if the sum matches the ES broadcast, see Equation

(5.8). If the check passes, then the many-to-many group authentication is

successful; otherwise, the edge-server communicates with the main-server of a

failed authentication.

Sum
′

(k,l) =
m∑
i=1

(Di)
m∏

j=1,j ̸=i

xj

xi−xj
mod q

where Di = (y(i,k,l) + y(i,k,l,b))

H(Sum
′

(k,l)∥na)
?
= S

(5.8)

b. Both the edge-server and group-nodes compute their session keys as shown

below.

SKi = H(na∥Sum(k,l)∥y(i,k,l,b)) (5.9)

c. The group-nodes also derive the session’s group key as given in Equation (5.10).

GK(k,b) = H(na∥Sum(k,l)∥Hb(Tkn)) (5.10)

d. The edge-server communicates with the group using the sessions group-key.

ES → Group : {Msg}GK(k,b)
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Group Nodes Edge Server

Step I
< Ck, b,H(Tkn), IDs Request >

< IDi, · · · , IDm >

• Check

IDi

?
∈ group l, ∀i ∈ {1, · · · ,m}

• Check m
?
> t

Step II
< IDi, OTi, hdi, (IDj, Oj, H(Offsetj))

★ >

• Nodes recover Tkn
′
= OTi ⊕H(R(i,k))

• Check H(Tkn
′
)

?
= H(Tkn)

• For nodes with Offset
′

j = Oj ⊕ Tkn★

• Check H(Offset
′

j)
?
= H(Offset)

• Nodes compute their (x, y)-points for P(k,l)(x) and P(k,l,b)(x)
• x(i,k,l) = H(IDi∥Ck),
y(i,k,l) = R(i,k,l) = PUF (H(IDi∥Ck)) + Offsetj

★

• x(i,k,l,b) = H(IDi∥Ck),
y(i,k,l,b) = Hb(R(i,k,l)) = Hb(PUF (H(IDi∥Ck)))

• ES picks nonce na

• ES creates a secondary polynomial of
(m-1)-degree

• P(k,l,b)(x) =
sb(k,l) + c1(k,l)x

1 · · ·+ cm-1(k,l)x
m-1

mod q
• Sum(k,l) = sa + sb

< na, S=H(Sum(k,l)∥na) >

Node Action
ID1 (y(1,k,l) + y(1,k,l,b) ⊕Hb(Tkn))
ID2 (y(2,k,l) + y(2,k,l,b) ⊕Hb(Tkn))
...

...
IDm (y(m,k,l) + y(m,k,l,b) ⊕Hb(Tkn)) (y(1,k,l) + y(1,k,l,b) ⊕Hb(Tkn)), · · · , (y(m,k,l) + y(m,k,l,b) ⊕Hb(Tkn))

Step III

• Sum
′
=

t∑
i=1

(Di)
t∏

j=1,j ̸=i

xj

xi−xj
mod q

• where Di = (y(i,k,l) + y(i,k,l,b))

• Check H(Sum
′

(k,l)∥na)
?
= S

• SKi = H(na∥Sum(k,l)∥y(i,k,l,b))
• GK(k,b) = H(na∥Sum(k,l)∥Hb(Tkn))

• SKi = H(na∥Sum(k,l)∥y(i,k,l,b))
• GK(k,b) = H(na∥Sum(k,l)∥Hb(Tkn))

{Msg}GK(k,b)

★ Applicable only for nodes with Offsets

Figure 5.5: Phase II: Mutual Edge-Node Group Authentication & Key-agreement.

For each subsequent authentication with this group, the edge-server may use the

same kth polynomial with another b secondary polynomial, or pick another kth polyno-

mial and another secondary polynomial. After authentication, the group may transfer to

another zone to get authenticated with another edge-sever.

5.5.4 Integrity Check and Session-Key Synchronization

To circumvent adversary’s attempts to tamper with protocol’s randomly generated

values, namely, Tkn, Offset, and na, the edge-server sends the hash of these values. Specif-

ically, at the beginning of each new session, Step I, the edge-server sends H(Tkn) along

with the session-challenge Ck and session-index b. Later, when each node sends its ID,

the edge-server delivers to each node its OTi = Tkn ⊕ H(R(i,k)). Upon receiving OTi,

each node computes Tkn
′
and compares its hash to the received H(Tkn); if matched,
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then integrity check on Tkn is passed, otherwise, the session is terminated. The integrity

check for the value Tkn also ensures the integrity of OTi. Similarly, to ensure the integrity

of Offsetj, the edge-server sends the nodes that have offsets both Oj and H(Offsetj); this

enables these nodes to verify the value of Offsetj after computing it from Oj. Specifically,

each node compares the hash of its computed Offsetj with the received H(Offsetj). The

integrity check for the value Offsetj also ensures the integrity of Oj. Finally, to verify

session-key synchronization, each node checks the value of Sum and na by comparing the

calculated Sum
′
and the received na with the published H(Sum|na), Step II.

5.6 Security Analysis

5.6.1 Threat Model

Our security analysis is based on the CK-adversary model [38]. In the model, an

adversary A is given access to oracle-machines which emulate real life attacks such as

eavesdropping, impersonating nodes, leaking keys, and corrupting nodes. Let Π denote

the protocol and let Γ denote two participants: the edge server E and a group node Ni.

The CK-threat model queries are listed in Table 5.5.

5.6.2 Security Proofs

Theorem 4 Let polynomial, P1, that defines the secret sa be of (t-1)-degree, and let poly-

nomial, P2, that defines the secret sb be of (m-1)-degree, for t ≤ m ≤ n. The polynomial

P(x) = P1 + P2(x) is a Shamir’s secret-secret polynomial that is a secure against up to

(m-1) colluders.

Proof:

Because our scheme has two different polynomials with two different sizes, we prove
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Table 5.5: Queries Descriptions

Query Description

Init(Π) This query initializes a new protocol instance. The initialization in-
clude setting-up the group IDs, PUF-responses, and generating the
polynomial-set.

Execute(Ni, E) This query emulates A’s ability to eavesdrop on any communication
between any group node Ni and the edge-server E . This is equivalent to
a passive attack.

Send(m,Γ) This query models A’s ability to launch an active attack. It allows A to
impersonate any participant Γ. Specifically, it allows A to impersonate
E by sending a message m to any group node Ni. It also, allows A’s to
impersonate any group node Ni by sending a message m to E . The im-
personated participant responds with m

′
according to the real protocol

description.

Corrupt(Ni) When A uses this query, the oracle returns the state information for a
node Ni of the current session. This include revealing the node’s token
and sum-of-two shares.

SKReveal(Ni) This emulates A’s ability to leak node Ni session key.

Test(Ni) A can use this query only once on a fresh session. Fresh implies that
SKReveal(Ni) has not been queried in this session. In this query, the
Test oracle-machine flips a coin to determine the value of B ∈ {0, 1}.
If B = 1, it returns Nj SK session key; otherwise, it returns a random
number of the same length.

the theorem by satisfying two conditions [28]. 1) The knowledge of m or more sum-of-

shares, recovers the sum-of-secrets, sa + sb. 2) The collusion of up to (t-1) participants,

does not give the adversary, A, any information about the two polynomials secrets, sa+sb.

1. Let sd be the “super-secret”, i.e., the sum of the two polynomial secrets sa+ sb, and

let {di1 , di2 , · · · , din} be the set of “super-shares” which defines sd, and P(x) is its

polynomial. Let sa be the secret defined by the set of {ai1 , ai2 , · · · , ain} shares for

polynomial P1 described in Equation (5.2), and let sb be the secret defined by the

set of {bi1 , bi2 , · · · , bin} shares for polynomial P2 described in Equation (5.4). Table

5.6 shows the secrets, sa, sb, and sd, and their corresponding sets and polynomials.

Let S, T be the sets of possible secrets and legitimate shares, respectively. Let the in-

duction function be, FI : T → S, of the (t, n) SSS, such that s = FI(si1 , si2 , si3 , · · · , sit)
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Table 5.6: Polynomials used in PUF-GAS

Polynomial Degree Secret Set of all shares

P (m-1) sd {di1 , di2 , · · · , din}
P1 (t-1) sa {ai1 , ai2 , · · · , ain}
P2 (m-1) sb {bi1 , bi2 , · · · , bin}

where I is any subset of T , I ⊆ {1, 2, · · · , n} with ∥I∥ = t. We select the induction

function to be the Lagrange’s interpolating polynomial, P (0) =
t∑

i=1

yi
t∏

j=1,j ̸=i

xj

xi−xj

mod q, where t is the threshold. To recover the super-secret sd, we require m-shares,

because P is at most (m-1)-degree polynomial. We apply the formula directly to

show that the Lagrange’s interpolation polynomial of the sum-of-shares equals to

the sum of secrets.

sd = sa + sb

= P1(0) + P2(0)

=
m∑
i=1

y(i,k,l)
m∏

j=1,j ̸=i

xj

xi−xj
+

m∑
i=1

y(i,k,l,b)
m∏

j=1,j ̸=i

xj

xi−xj

=
m∑
i=1

(y(i,k,l) + y(i,k,l,b))
m∏

j=1,j ̸=i

xj

xi−xj

2. Assume that there are up to (t-1) conspirators collude to gain information on sa or

sb. Without loss of generality, we assume that these conspirators are the first (t-1)

shareholders, say {ai1 , ai2 , · · · , ai(t-1)} and {bi1 , bi2 , · · · , bi(t-1)}. By the definition of

(t, n) threshold SSS [160], the adversary, A, cannot leak any information on sa

or sb even with the knowledge of (t-1) “sub-shares”. However, A can determine

{di1 , di2 , · · · , di(t-1)}. Let us assume further that A is an inside-attacker who knows

sd. Thus, A is able to determine {dit , di(t+1)
, · · · , din}. However, even with this

knowledge, A’s probability of leaking sa or sb is negligible.

It follows that the P polynomial used in PUF-GAS is at most (m-1)-degree polynomial,

and the knowledge of m “super-shares” recovers sd. Also, the two polynomials’ secrets sa

and sb and the “sub-shares” of the two polynomials are not revealed to the adversary.
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We define Semantic-security, Entropy-Smoothing, and Decisional-Uniqueness-Problem

(DUP) Assumption, respectively, as follows [166, 203].

Definition 11 (Semantic-security) Let Win be a winning-event in which A executes

Test(Ni) on a fresh protocol instance and outputs B
′
. If B

′
= B, A is able to break the

semantic-security of Π. We define the advantage of A in breaking the semantic-security

of PUF-GAS as

AdvPUF -GAS
A = |Pr[Win0]−

1

2
| = |Pr[B

′
= B]− 1

2
|

Definition 12 (Entropy Smoothing) Let H be a family of hash-functions. It is hard

to distinguish between (k,Hk(δ)) and (k, h) where k is a random number of K, δ is a

random element of a finite-cyclic-group G, and h is a random element {0, 1}l. Formally,

|Pr[k
R←− K, δ ← G : A(k,Hk(δ)) = 1]−

Pr[k
R←− K,h← {0, 1}l : A(k, h) = 1]| ≤ ϵes

where ϵes is a negligible function.

Definition 13 (Decisional-Uniqueness-Problem (DUP) Assumption ) Given a chal-

lenge C, an arbitrary PUF-instance PUFAdv which outputs an l-bit response, and a random

number z which is uniformly distributed from z ∈ {0, 1}l, it is infeasible to distinguish be-

tween the tuples (C,PUFAdv, z ← {0, 1}l) and (C,PUFAdv, z = PUFt(C)) where PUFt is

the targeted PUF-instance to forge. Formally,

|Pr[(C,PUFAdv, z ← {0, 1}l) = 1]−

Pr[(C,PUFAdv, z = PUFt(C)) = 1]| ≤ ϵpuf

where ϵpuf is a negligible function.
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Lemma 1 (Difference Lemma) Let A, B, and F be events defined in a some probability-

distribution. If A and B are identical without the occurrence of a failure-event F , i.e.

A ∧ ¬F ⇐⇒ B ∧ ¬F , then | Pr[A]− Pr[B] ≤ Pr[F ] |.

Theorem 5 The advantage of breaking the semantic-security of the PUF-GAS session-

key for a probabilistic-polynomial-time adversary A is

AdvPUF -GAS
A ≤ 12ϵes + 2ϵpuf +

q2H + (qsnd + qexe)
2 + qsnd

2l

where qH , qsnd, and qexe are the number of Hash, Send, and Execute queries, respectively.

l is the length of hash-output, PUF-response, and session-key.

Proof: We conduct our proof by the method of sequence-of-games, also referred

to as game-hopping [166, 203]; the games are Gamei, i ∈ {0, 1, 2, 3, 4}. Let Wini, i ∈

{0, 1, 2, 3, 4} be the event of A’s guessing the bit B correctly in the Test oracle for Gamei,

and let Pr[Wini] represent the probability of winning the game. The details are as follows.

• Game0: This game represents the real-attack performed by A against PUF-GAS.

By definition, A’s advantage in breaking the semantic-security of PUF-GAS protocol

is,

AdvPUF -GAS
A = |Pr[Win0]− 1

2
| (5.11)

• Game1: In this game, the Hash-queries and PUF-queries are simulated from the

random-oracle-model. In other words, the PUF-responses and the hash-function

outputs are generated randomly and uniformly from {0, 1}l.

– Hash-oracle: The hash-function is modeled as a truly-random function ob-

tained from a uniformly distributed sequence from {0, 1}l. The random-oracle

can be viewed as a black-box in which a list of (query, answer) LH is main-
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tained. When this black-box is queried with an input, the list LH is checked

to see if the input already exists. If yes, the same previous output is given;

otherwise, a new random-sequence uniformly generated from {0, 1}l is given,

and the new (query, answer)-pair is augmented to the LH list.

– PUF-oracle: Similar to the Hash-oracle, a Lpuf list is also maintained by the

PUF-oracle. The exception is that adversary A does not have a direct access to

the PUF-oracle. This is because A is not able to leak the PUF-response even

if the PUF-instance is captured, see Definition (10). Additionally, we assume

that the PUF-instances are ideal and stable and thus Fuzzy-Extractors are not

needed.

We note that the transition from Game0 to Game1 is only by the use of the Hash-

oracles and PUF-oracles instead of hash-function and PUF-instances, respectively.

Thus, the two games are indistinguishable except for the Entropy-Smoothing of

Hash function and DUP Assumption given in Definition (12) and (13), respectively.

Because PUF-GAS protocol has 12 Hash-queries and 2 PUF-queries, we have

|Pr[Win1]− Pr[Win0]| ≤ 12ϵes + 2ϵpuf (5.12)

• Game2: In this game, the assumptions of Game1, i.e. using Hash-oracles and PUF-

oracles, are maintained but with the exclusion of collisions possibilities. According

to the birthday-paradox, if at most q queries are requested from a random-oracle

of l-bits, then the probability of collision is q2

2l+1 . The collision may occur in our

transcript if two honest instances select the same random number. Specifically,

if E picks a previously used Tkn in MSG1 : [IDi, OTi, hdi, (IDj, Oj, H(Offsetj))]

there may be a transcript collision. Similarly, if E picks previously used na in

MSG2 : (na, H(Sum(k,l)∥na)), there may be a transcript collision. Given that there

could be at most (qsnd + qexe)-pairs of random numbers generated in the transcript,
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the probability of collision is (qsnd+qexe)2

2l+1 . Also, the output of the Hash-queries could

cause collision. Using the Difference-Lemma (1), we get,

|Pr[Win2]− Pr[Win1]| ≤
q2H
2l+1 +

(qsnd+qexe)2

2l+1
(5.13)

• Game3: In this game, we keep the assumptions of Game2, i.e. all random numbers

used in the sessions are fresh and have not been used before. However, in this

game, we exclude the probability of A getting lucky in guessing the session-key.

The probability for this to occur is qsnd

2l
. Thus, using the Difference-Lemma (1), we

get

|Pr[Win3]− Pr[Win2]| ≤ qsnd

2l
(5.14)

• Game4: In this game, we are able to finally tie the semantic-security of the PUF-

GAS protocol with the hardness of the Hash-function. Specifically, the derivation of

the session-key, SK = H(na∥Sum(k,l)∥yi) requires the knowledge of three random

values, na, Sum(k,l), and yi. In Game1, we showed that the PUF-responses are

simulated based on the random-oracle-model; thus, yi is random-sequence of bits

of length l. In Game2, we excluded the possibilities of collisions on Sum(k,l) or na.

Thus, all randomly generated nonces are fresh in each session. Also, in Game2, we

showed that all Hash-queries are generated using the random-oracle-model. Thus,

when A is challenged in the Test(Ni) oracle, A cannot distinguish between the

protocol’s SK from a random-sequence of bits of the same length, because from the

point view of A, they are both random-numbers. Thus,

|Pr[Win4]| = 1
2

(5.15)

Using the triangular-inequality reduction on Equations (5.11) to (5.15), we get:
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AdvPUF-GAS
A = |Pr[Win0]−

1

2
|

= |Pr[Win0]− Pr[Win4]|

≤ 12ϵes + 2ϵpuf +
q2H + (qsnd + qexe)

2 + qsnd
2l

5.6.3 Analysis with AVISPA

AVISPA is an automated software widely used for security protocol verification

[14, 18, 170]. The tool searches for potential attacks such as Man-in-the-Middle attack,

replay attacks, active and passive attacks.

The details of our PUF-GAS AVISPA implementation are as follows.

1. We implemented a group of four IoT-nodes, an edge-server, and a main-server,

namely A, B, C, D, ES, and MS, respectively.

2. We abstracted the construction of the PUF-device and considered the node’s PUF-

response as an internal secret exchanged between the node and the main-server.

Specifically, the PUF-responses associated with the four nodes, Pa, Pb, Pc, and

Pd are locally generated pseudo-random numbers in response to the main-server

challenge, Ck.

3. We also considered the group-token as a secret initially delivered from the main-

server to the four IoT-nodes and the edge-server.

4. It is proven that reconstructing a (t-1)-degree polynomial requires the knowledge of

t points [30, 34, 160]. Consequently, since AVISPA has several limitations including

the lack of algebraic operation support, we model such a polynomial reconstruction

by a variable X whose value is equal to the xor of t values {x1, x2, . . . , xt}, i.e.,
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X = x1 ⊕ x2 ⊕ · · · ⊕ xt, because similar to recovering (t-1)-degree polynomial,

recovering X requires the knowledge of all the t xi values.

5. The recovered secret is used to derive the group-session-key, GK. Msg is encrypted

using the derived group-session-key, and delivered from ES to node A.

6. The security goals in the HLPSL code are the secrecy and authenticity of

{Pa, Pb, Pc, Pd and Msg}. Specifically, Pa, Pb, Pc are secrets delivered from IoT-nodes

to the main-server, and Msg is a message delivered with the derived group-session-

key. Note that since the message Msg is encrypted with the derived group-session-

key GK, therefore, the secrecy of Msg implies the secrecy of the group-session-key.

We ran the protocol under CL-AtSe and OFMC AVISPA back-end simulator, and

with successful results. Please note that other back-end AVISPA simulators, SATMC and

TA4SP, do not support xor operation, and thus we cannot run our protocol under these

two back-ends [170]. The result of the AVISPA CL-AtSe back-end analyzer simulation

is shown in Table 5.7 and for AVISPA OFMC is in Table 5.8.

Modeling Attack: PUF-GAS resists PUF modeling attacks. This is because our

PUF-GAS protocol does not reveal any of the node’s CRPs, instead, only the node’s

sum-of-two-shares xor-ed with the session token is revealed. Because the revealed value

is a random value sampled uniformly from {0, 1}λ, the protocol is resistant to modeling

attacks.

5.7 Experimental Results and Comparative Evalua-

tion

In this section, we present our experimental results and show a comparative eval-

uation of our protocol in terms of security features, computational cost, communication

overhead, and storage.
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Table 5.7: AVISPA CL–AtSe Simulation Results
Description AVISPA Simulation Results

SUMMARY

SAFE

DETAILS

BOUNDED NUMBER OF SESSIONS

TYPED MODEL

PROTOCOL

/home/span/span/testsuite/results/PUF-GAS 4 3.if

GOAL

As Specified

BACKEND

CL–AtSe

STATISTICS

Analysed : 67 states

Reachable : 13 states

Translation: 2831.55 seconds

Computation: 2831.55 seconds

We implement the following security operations on Arduino-Mega, an 8-bit RISC-

based micro-controller ATmega2560, 8KB SRAM, and 16MHz clock-speed using the

Arduino Cryptography Libraries [13, 185]. Table 5.9 shows execution times of Crypto-

operations and SRAM-PUF measurements based on BCH (63, 7, 31) error correction code

[157]. To compute the results shown in Table 5.10, and for a fair comparison with other

protocols, we adopt Chien’s [105] assumption of considering Tinv,q
∼= 240Tmul,q. On the

other hand, for our (128-bit Arbiter) SRAM-PUF computations, we scale Setyawan’s [157]

results of reconstructing an SRAM-PUF key of 256 bits to suit our 128-bits key.

The comparative evaluations are shown in Table 5.10 and Table 5.11 for secu-

rity and performance, respectively. Table 5.10 shows a comparison between our scheme

and other related schemes in terms of performance. In what follows, we show our

comparative analysis for computation complexity, communication overhead, and storage

with [21, 23, 48, 105, 117, 128] in which only [21, 105, 128] are GAS schemes, and oth-
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Table 5.8: AVISPA OFMC Simulation Results
Description AVISPA Simulation Results

SUMMARY

SAFE

DETAILS

BOUNDED NUMBER OF SESSIONS

TYPED MODEL

PROTOCOL

/home/span/span/testsuite/results/PUF-GAS 4 3.if

GOAL

As Specified

BACKEND

OFMC

COMMENTS

STATISTICS

parseTime: 0.00s

searchTime: 28.54s

visitNodes: 285 nodes

depth: 25 piles

Table 5.9: Arduino-Mega ATmega2560 Simulation Results

Operation Symbol Execution time

Hash SHA-2561 Th 5.34624msec

Symmetric-key encryption2 Tenc 1.14432msec

Symmetric-key encryption2 Tdec 2.17056msec

Modular multiplication3 Tmul,q 1.3863msec

Modular addition3 Tadd,q 93.10µsec

Modular exponentiation 3 Texp 1.470816sec

ECC multiplication4 ECmul 32.308msec

ECC addition 4 ECadd 24.047msec

Key-reconstruction SRAM-PUF 5 TRec 488.97msec

SRAM-access 6 Tsram 0.277msec
1: SHA-256 over 32-bytes data.
2: AES-128-ECB, key-size= 128-bits.
3: Modulus size= 256 bits.
4: ECC Curve-25519.
5: Based on [157] Stage 3 SRAM-PUF key reconstruction using BCH=(63, 7, 31)=977.97msec for 256-bits key.
6: Time accessing 256-bytes on Arduino-Mega internal memory.

.
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Table 5.10: Comparative Evaluation
Type Ref Storage-

Node
Storage-

Server▼
Computation Complexity-Node▲ Computation Complexity-S▲▼

G
A
S

This work None n [1×Trec+(2b+4)×Th+(m)×Tadd,q+
[2(m − 1) + 2] × Tmul,q + Tinv,q ] ∼
0.91104sec

[(2b + 4) × Th + (m) × Tadd,q +
[2(m − 1) + 2] × Tmul,q + Tinv,q ] ∼
0.422146sec

Aydin [21] 1 share n
[
(2(m−1)+2)×Tmul,q+1×Tinv,q

]
+

3×ECmul + (m− 1)×ECadd + 1×
Th ∼ 0.9473sec

[
(2(m−1)+2)×Tmul,q+1×Tinv,q

]
+

3×ECmul + (m− 1)×ECadd + 1×
Th ∼ 0.9473sec

GASE [128] 2 shares n
[
(2(m−1)+2)×Tmul,q+1×Tinv,q

]
+

(m − 1) × Tadd,q + (m − 2) × Th ∼
0.4862sec♠

[
(2(m−1)+2)×Tmul,q+1×Tinv,q

]
+

(m − 1) × Tadd,q + (m − 2) × Th ∼
0.4862sec♠

Li [105] θ shares n θ
[
(2(m − 1) + 2) × Tmul,q + 1 ×

Tinv,q
]
+(m−1)×Tadd,q +1×Th ∼

1.1858sec

θ
[
(2(m − 1) + 2) × Tmul,q + 1 ×

Tinv,q
]
+(m−1)×Tadd,q +1×Th ∼

1.1858sec

M
u
tu

a
l
A
u
th

. Chen [48]✦ None n × Ψ ✦ (m − 1) × [Ψ × TRec] ∼ 185.81sec (m− 1)× [Cm+1
Ψ × [(m− 1)×Tadd +

[2(m − 1) + 2] × Tmul,q + Tinv,q +

Th]] ∼ 157.7sec■

Mahalat [117]✦ None n × Ψ (m − 1) × [1 × TRec + 3 × Texp +
4× Tmul,q + 2× Tadd,q + 2× PV ] ∼
94.24sec✪

(m − 1) × [1 × TRec + 3 × Texp +
4× Tmul,q + 2× Tadd,q + 2× PV ] ∼
94.24sec✪

Bansal [23]✦ 1 key n × Ψ (m − 1) × [Ψ × TRec] ∼ 185.81sec (m−1)× [(m−1)×Tadd+[2(m−1)+
2]× Tmul,q + Tinv,q + Th] ∼ 7.51sec

.
▼: S is for edge-server, main-server, sink-hole, or group-leader of the protocol.
▲: Computations for authentication and key-agreement. Parameters are m = 20, θ = 3, and b = 1.
✦: For mutual-authentication-scheme, we multiply by (m-1). Ψ is the number of CRPs deployed for one node.
✪: Based on PV Pedersen’s VSS ∼ (m-1) × Tmul,q
■: For the combination formula of the protocol Cm+1

Ψ , we selected values form the publication [48] for m and Ψ Such that m+1 = 21 and

Ψ = 20 such that Cm+1
Ψ = 21.

♠: PUF-GAS requires no share-storage at the node, in which if a node is stolen, the shares are never leaked. Also, [128] does not have
group-key-agreement.

Table 5.11: Summary Comparison with related schemes
Parameters Chen [48] Aydin [21] Mahalat [117] Bansal [23] GASE [128] Li [105] This work

Initial share delivery Secure-
channel

Secure-
channel

Secure-channel Secure-
channel

Secure-
channel

Secure-
channel

Not required

Security-primitive SSS &
Shuffle

SSS & ECC VPSS & PUF SSS & PUF SSS & Ag-
MAC

SSS &
ECC

SSS & PUF

Group Authentication ✗ ✓ ✗ ✗ ✓ ✓ ✓

Revoking/joining ✗ ✓ ✗ ✗ ✗ ✗ ✓

Key agreement ✗ ✓ ✗ ✗ ✓ ✓ ✓

Group-key agreement ✗ ✗ ✗ ✗ ✗ ✗ ✓

Shares update ✗ ✗ ✗ ✗ ✓ ✗ Not required

ers [23,48,117] are mutual authentication schemes. Table 5.11 shows that our PUF-GAS

scheme is the only scheme that does not require any initial secure share-delivery or share-

update mechanism. Additionally, PUF-GAS is among the few schemes that are based on

symmetric-key cryptography.

Computation complexity: We show the computation complexity for both the

group-node and the edge-server in Table 5.10. For m participants to compute Sum
′

(k,l),

shown in Equation (5.8) similar to Chien [51], each m node must perform [(m − 1) ×

Tadd,q+[2(m−1)+2]×Tmul,q+Tinv,q] operations, where Tadd,q, Tmul,q, and Tinv,q represent,

respectively, addition, multiplication, and multiplicative inverse in q, GF (q). Also, each
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node must compute its two polynomial shares and add them together which equals [1 ×

Trec+(2b+3)×Th+1×Tadd,q] where Th and Trec represent hash and PUF call operations,

respectively. Thus, the total operations for each node in our PUF-GAS is [1×Trec+(2b+

4)× Th + (m)× Tadd,q + [2(m− 1) + 2]× Tmul,q + Tinv,q]. The computation complexity for

the edge-server is [(2b+ 4)× Th + (m)× Tadd,q + [2(m− 1) + 2]× Tmul,q + Tinv,q].

On the other hand, in Aydin et al. key-agreement, each node computes the same

basic operations for the computing the Lagrange’s interpolation polynomial as well as

3× ECmul and (m− 1)× ECadd, but without the PUF operation. Similarly, Li’s scheme

also requires for each node to store θ-polynomials secrets to compute θ- Lagrange’s inter-

polation formula. Thus, our scheme has less computations than the latter. GASE [126]

has (m+ 2) hashes which increases the execution time.

Communication overhead: We compute the communication overhead for the

steps shown in Section 5.5.3, I-III as follows. We assume that the na = 32 bytes, ID=

3 bytes, SHA-256 = 32 bytes, hdi is (37 × 63 = 292 bytes), and all other parameters

such as Ck, b, OTi, Oj are 32 bytes each. Thus, the total communication overhead is

computed as [2 × 32 + (m × 3) + (m × 3) + (m × 32) + (m × 292) + ϕ × (3 + 2 × 32) +

(3 × 32) = (160 + 330m + 227ϕ) bytes. where ϕ is the number of offset points. On

the other hand, both Aydin and Li’s schemes has communication overhead of (m-1);

however, both of their schemes are valid for one-time group-authentication in which any

subsequent authentication requires refreshing the secret, while PUF-GAS scheme is valid

for multiple-time group-authentications.

Storage requirements: Our scheme does not require any share storage at the

node; instead, each node derives its share from its PUF-response. The schemes in [21,105,

128] require to store at least one-share. However, the edge-server in our scheme is required

to store K secret polynomials for each group and the offset points; this is equivalent to

storing n points for each polynomial.

126



5.7.1 Discussion

To the best of our knowledge, our PUF-GAS scheme is the only protocol that uti-

lizes Shamir’s SS and PUFs for group-authentication. To have a fair comparison between

our scheme and others, we chose from the literature, only protocols that are designed for

either group-authentication using SSS or mutual-authentication using PUFs and SSS. The

comparison shown in Table 5.10 is based on our experimental results of running cryptog-

raphy security operations on a low-end 8-bit RISC-based micro-controller ATmega2560,

8KB SRAM, and 16MHz clock-speed. The comparative result shows that our PUF-

GAS out-performs Aydin’s, Li’s, Mahalat’s schemes, [21, 105, 117], respectively, for both

IoT-group nodes and edge-server. On the other hand, PUF-GAS does not out-perform

GASE ’s performance at the node; however, PUF-GAS does not require any share-storage

at the node while GASE protocol requires two-shares storage for the same polynomial.

Indeed, this is an advantageous security issue for PUF-GAS, because if a node is stolen,

the shares are never leaked. Additionally, GASE does not support a group-key agreement

or a flexible node evicting mechanism while PUF-GAS derives a group-key and has a sim-

ple node-evicting/joining the group due to the PUF and SSS-homomorphism. Further-

more, PUF-GAS supports simple multiple-time group-authentication with the same set

of shares by utilizing PUFs and SSS-homorophism. On the other hand, both Chen’s and

Bansal’s schemes [23,48] are mutual authentication schemes and not group-authentication

schemes.

5.8 Summary

We presented a construction of Shamir’s secret-sharing scheme using PUFs to

avoid storing secret-shares. We used this construction to design a lightweight group-

authentication-scheme utilizing SSS (+,+)-homomorphism property. Our PUF-GAS scheme

is suitable for three-tier cloud-edge-IoT authentication applications. We reported AVISPA
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analysis to prove that PUF-GAS achieves both message security and authenticity. We

also proved that our scheme is secure against group-key leakage and impersonation attack.

We presented a comparative evaluation of our scheme with other schemes proposed in the

literature, in which we showed that our PUF-GAS out-performs other schemes in terms

of execution time. We showed our scheme is efficient and does not require share-storage

or share re-distributions for any group node.
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Chapter 6

Lightweight

Pseudo-random-function-based

Authentication and Key Agreement

Protocol

6.1 Introduction

In this chapter, we propose a symmetric key mutual edge-IoT authentication and

key agreement protocol based on pseudo-random function which provides anonymity with

respect to any external adversary, forward secrecy, and backward secrecy. We prove

the security properties of our protocol and present an evaluation of Pseudo-Random-

Function Symmetric-based authentication and Key Agreement PRF-SAKE in terms of

run-time, communication overhead, and memory space requirements, and compare it to

other lightweight protocols.
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6.2 Related Work

Most of the current security solutions are not suitable for edge computing paradigms

for two reasons. First, most of the solutions are based on Public Key Cryptography

(PKC) such as ECC (Elliptic Curve Encryption), DHKE (Difffie-Hellmen key exchange)

and IBE (Identity Based encryption) (e.g., see [43, 45, 78, 80, 184]), and these solutions

are not suitable for low-end limited resources devices. Second, even with symmetric key

cryptography protocols, some imperative security properties such as forward and backward

secrecy are not satisfied. For example, Ibrahim [76] proposed a symmetric-key based

protocol in which fog-users are required to hold a long term key with the fog-server where

the session keys are delivered and encrypted with this long-term key. However, the leakage

of this long-term key compromises past and future messages. Wang et al. [179] proposed

a mutual authentication edge computational offloading protocol which uses a hash chain

to track the charges and the number of usage; nevertheless, forward and backward secrecy

are not applicable in this protocol. Additionally, their protocol does not establish a session

key. Other lightweight protocols such as [9,67], which use Physical Unclonable Functions,

achieve mutual authentication but not backward secrecy. In addition, these solutions rely

on the installation of PUF units inside all IoT devices which may require special hardware

manufacturing processes. Also, PUFs are sensitive to environment factors and noise which

require the use of additional security primitives such as fuzzy extractors [63,66]. In [126],

the authors propose an edge computing group key agreement protocol; however, it is

designed for broadcast communication and does not address backward secrecy. Similarly,

the protocol in [156] is designed for roaming computation offloading services.

In this work, we propose a lightweight symmetric key authentication and key agree-

ment protocol based on pseudo random functions which provides anonymity, backward

secrecy, and forward secrecy.
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6.3 System Model, and Design Goals

In our model, each edge has several static IoT devices associated with it. The

assignment of IoT devices to edge entities is based on geographical proximity during the

registration and initialization phase. Furthermore, the IoT nodes in the network are

considered to be low-end devices with small capabilities such as small sensors, medical

implanted devices, and video streaming CCTV. We further assume the existence of a

trusted authority (TA) which assigns IoT nodes to its proper edge and initializes the

protocol parameters. Additionally, the IoT devices or edge entities communications with

the TA occur only in the initialization and registration phase. Thereafter, all edge-IoT

communications are independent of the TA. Nevertheless, the TA can trace the commu-

nication and recover session keys for any disputable situations. In this chapter, we focus

on mutual authentication and key agreement between IoT devices and their edge owner

to offload excess data/computation. Because of the nature of target applications of our

edge model, the communication between the IoT devices and their edge owner needs to

be private and anonymous. Our design and security goals are summarized as follows: (i)

Mutual authentication and integrity; in our protocol, we require IoT-edge mutual authen-

tication in order to establish secure decentralized communication. (ii) Confidentiality; in

the three-tier cloud-edge-IoT network, the ubiquitous things can carry confidential infor-

mation such as identities, medical insurance number, bank account, and location. (iii)

Backward and forward Secrecy; forward secrecy specifies that the leakage of current ses-

sion or long-term secrets does not affect the old-encrypted messages. On the other hand,

if the leakage of current session key or long-term secrets does not reveal future encrypted

messages, this achieves backward secrecy [19, 37]. Even though both properties are im-

perative to privacy, only a few schemes consider backward secrecy. In our protocol, we

consider both forward and backward secrecy. (iv) Anonymity and conditional traceability,

these security objectives are important in static network model in which the adversary

can easily trace repeated communications between an IoT device and its edge owner if
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real identities are disclosed. Thus, we implement a fresh pseudo-identity for each IoT

node in each new session. (v) Efficiency, because IoT devices have limited resources,

our main objective is to achieve the aforementioned security goals using simple security

primitives. Our lightweight protocol is based on symmetric key encryption such that its

execution consumes low energy, reduces communication bandwidth, and occupies small

memory space.

6.4 Proposed Scheme

6.4.1 System Overview

There are three major entities in our network, central trusted authority (TA) asso-

ciated with the cloud server, authenticating edge, and several ubiquitous IoT devices. To

achieve mutual authentication between the edge and the IoT device, we have one PRF-

chain shared between the edge and the IoT node as shown in Fig. 6.1, where AKi,t is

the authentication key for node i at time t, DKj,t is the delivery key for edge j at time

t, and IVi is the initial chain value for node i. We run our protocol in three phases, the

registration phase, the authentication and key agreement phase, and the data offloading

phase.

t = 0 t = 1 t = 2 t = 3

IVi AKi,1 AKi,2 AKi,3 AKi,4

Initial value

AKi,t = PRFDKj,t
(AKi,t−1)

Figure 6.1: Authentication PRF-chain

The keys in our protocol are described below.

1. Long-term key/Seed: The long-term key in the network is the seed which is pre-

loaded in all network entities and nodes. Nevertheless, the leakage of this seed does
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not breach security properties as shown in later sections.

2. Temporary keys: The temporary keys in our protocol evolve with each new session

[19].

• Delivery Key (DK): The initial delivery key, DK0, is generated by the TA and

delivered to both the edge and IoT device via a secure channel. However, all

subsequent delivery keys are generated by the edge and encrypted with the

previous delivery key.

• Authentication Key (AK): The initial value, IV , is generated by the TA and

delivered to the edge and the IoT device via a secure initializing channel. How-

ever, in subsequent sessions, the edge generates this key and delivers it to the

IoT node to compute the current authentication key as follows.

AKi,t = PRFDKj,t
(AKi,(t−1)), (6.1)

where i indicates the node index, j indicates edge index, and t is the time

index.

• Session Key (SK): The session key is derived from random values newly gen-

erated in each session from the edge and the IoT device.

SKi,t = eRj,t ⊕ nRi,t (6.2)

where i indicates the node index, j indicates the edge index, and t is the time

index. eRj,t and nRi,t are random numbers generated by the edge and the IoT

device, respectively.

• IoT Pseudo-identity: On each new session, the IoT device presents a new
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IoT Device Offloading Edge Trusted Authority

Step 1

Reg. Req.

IDTA,{TS∥IDedgej∥location}

Step 2

Reg. Req.

IDTA,{TS∥IDnodei∥location}

IDnodei, {TS∥(IVi, P IDi, Cntri, DKj,0)}

Step 3

IDedgej , {TS∥(IVi, P IDi, Cntri, DKj,0)}

Figure 6.2: Phase I: Registration & Initialization Phase - Secure Channel

pseudo-identity to the edge based on a counter established between them.

PIDi,t = h(Cntri,t∥PIDi,(t−1)) (6.3)

where h(.) is a one-way hash function and Cntr is the counter set in the ini-

tialization phase between the edge and the IoT node.

6.4.2 Registration & Initialization Phase

In this phase, both the edge and the IoT node register with the TA which assigns

each node its edge owner based on its geographical proximity. Additionally, the TA

generates the initial values such as the initial counter, Cntri,0, initial delivery key, DKj,0,

and starter chain value, IVi, and delivers them in a secure channel. The details of each

step are shown in Fig. 6.2 where TS stands for the time stamp.

6.4.3 Authentication and Key Agreement Phase

After the registration phase, both edge and IoT node have the initial copies of

the delivery key, the pseudo-identity, and the counter. In the authentication and key

agreement phase, edge and IoT node mutually authenticate each other as well as establish
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IoT Device Offloading Edge
Step 1

a) Compute PIDi,t = h(Cntri,t∥PIDi,(t−1))

b) Encrypt EncNRi,t = nRi,t ⊕ h(TS∥AKi,t∥Seed)

c) Determine NTi,t = h(TS∥PIDi,t∥nRi,t∥AKi,t)

IDedgej, < TS∥PIDi,t∥EncNRi,t∥NTi,t >

Step 2
d) Identify PIDi,t from Equation 6.3

e) Retrieve nRi,t = EncNRi,t ⊕ h(TS∥AKi,t∥Seed)

f) Verifies NT
′
i,t

?
= NTi,t

g) EncERj,t = eRj,t ⊕ h(TS∥AKi,t)

h) SKi,t = eRj,t ⊕ nRi,t

i) EncDKj,t = DKj,t ⊕ h(TS∥DKj,(t−1)∥Seed)

j) ETj,t = h(TS∥PIDi,t∥eRj,t∥DKj,t∥SKi,t)

k) Update AKi,(t+1), Cntri,(t+1), P IDi,t+1

PIDi,t, < TS∥EncERj,t∥EncDKj,t∥ETj,t >

Step 3

l) Compute eRj,t = EncERj,t ⊕ h(TS∥AKi,t)

m) Compute DKj,t = EncDKj,t ⊕ h(TS∥DKj,(t−1)∥Seed)

n) Derive SKi,t = eRj,t ⊕ nRi,t

o) Verifies ET
′
j,t

?
= ETj,t

p) Update AKi,(t+1), Cntri,(t+1), P IDi,t+1

Figure 6.3: Phases II: Key Agreement & Authentication Phase

a session key for their future communications. The steps are described in Fig. 6.3.

6.4.4 Authenticated communication Phase

After authentication and session key agreement, both IoT devices and their edge

owners communicate without going back to the trusted authority or the cloud.

6.5 Security Analysis

In what follows, we analyze the security properties of our PRF-SAKE protocol;

specifically, we prove that our protocol provides mutual authentication between edge and

IoT-node, forward secrecy, backward message secrecy, and anonymity with respect to any

external adversary.

Definition 14 (One-way function) A function f : {0, 1}λ × {0, 1}∗ → {0, 1}γ is a

one-way function if, for all probabilistic-polynomial-time adversary, A, the advantage

Advf (A) = Pr[x′ ← A(f(x)) : x′ ∈ f−1(f(x))] ≤ ϵ(λ) where ϵ(λ) is a negligible function.

135



Definition 15 (Mutual Authenticity of PRF-SAKE) We say that the PRF-SAKE

protocol provides mutual authentication between an IoT-node i and an edge j if at any given

time t and for any probabilistic-polynomial-time adversary A that can inject messages in

the network, A cannot impersonate any IoT-node or edge , formally,

Pr[{EAi/j,t, T
A
i/j,t} ← A(1

λ, DKj,t, Seed) : (T A
i/j,t = Ti/j,t)] ≤ ϵ(λ)

where i is the IoT-node index, j is the edge index, Ei/j,t represents either IoT-node or edge

encryption, EncNRi,t and EncERj,t, respectively, Ti/j,t represents IoT-node or edge test,

NTi,t and ETj,t, respectively, λ is the security parameter, and ϵ(λ) is a negligible function.

Theorem 6 PRF-SAKE achieves mutual authenticity under Definition 15.

Proof: We prove Theorem 6 by considering the following two IoT-node and edge

impersonations scenarios:

1. Case 1- Impersonating IoT-node: Suppose that A is able to obtain the network seed,

e.g., by compromising an IoT-node in the network. In order to impersonate another

IoT-node with pseudo identity PIDi,t, A should create a (EncNRA
i,t, NTA

i,t) pair

such that it passes the edge authentication test shown in Section 6.4. Specifically,

NTA
i,t

?
= NTi,t where NTA

i,t = (TS∥PIDi,t∥nRA
i,t∥AKi,t) and EncNRA

i,t = nRA
i,t ⊕

h(TS∥AKi,t∥Seed). To this end, A has the following options:

(a) Suppose that A is able to obtain the edge delivery key DKj,t at time t. Hav-

ing the current edge delivery key DKj,t, A needs to break the one-way PRF

function given in Equation 6.1 to obtain the current authentication key AKi,t

in order to create a matching (EncNRA
i,t, NTA

i,t) pair. In this option, A′s ad-

vantage is = Advf (A).

(b) A obtains AKi,t by exhaustive search to create matching (EncNRA
i,t, NTA

i,t)

pair. The probability of A′s success is = 1
2la

where la is the length of AKi,t.
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2. Case 2- Impersonating Edge: Similar to case 1, suppose that A is able to obtain

the network seed, by comprising an IoT-node in the network, and is able to leak

the edge delivery key DKj,t at time t. In order to impersonate an edge, A should

create a (EncERA
j,t, EncDKA

j,t, ETA
j,t) tuple such that it passes the IoT-node au-

thentication test shown in Section 6.4. Specifically, ETA
j,t

?
= ETj,t where ETA

i,t =

(h(TS∥PIDi,t∥eRA
j,t∥DKA

j,t∥SKA
i,t)), EncDKA

j,t = DKA
j,t ⊕ h(TS∥DKj,(t−1)∥Seed),

and EncERA
j,t = eRA

j,t ⊕ h(TS∥AKi,t). To this end, A has the following options:

(a) Having the current edge delivery key DKj,t, A needs to break the one-way PRF

function given in Equation 6.1 to obtain the current authentication key AKi,t

in order to decrypt the current EncNRi,t to retrieve nRi,t. Once the adversary

has nRi,t, he derives his own matching (EncERA
j,t, EncDKA

j,t, ETA
j,t) shown in

Section 6.4. In this option, the adversary’s advantage is = Advf (A).

(b) A obtains AKi,t by exhaustive search in order to decrypt the current EncNRi,t

to retrieve nRi,t, and hence, derives his own matching (EncERA
j,t, EncDKA

j,t, ETA
j,t).

The probability of A′s success is = 1
2la

where la is the length of AKi,t.

From the above two cases, it follows that the adversary’s advantage in impersonating an

IoT-node or edge is:

AdvauthPRF -SAKE ≤ ( 1
2la

+ Advf (A))

Definition 16 (Forward & Backward Secrecy of PRF-SAKE) We say that thePRF-

SAKE protocol provides forward and backward message secrecy if for any given time t,

and any probabilistic-polynomial-time adversary A that has records of previously encrypted

network messages, A cannot learn previous or future session keys SKl where l ̸= t if the

long-term key or the current session key, Seed or SKt, respectively, are exposed. Formally,

Pr[SKA
i,l ← A(1λ, SKi,t, Seed) : Sk

A
i,l = SKi,l ∧ (l ̸= t)] ≤ ϵ(λ)
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where λ is the security parameter, and ϵ(λ) is a negligible function.

Theorem 7 PRF-SAKE achieves forward and backward message secrecy under Defini-

tion 16.

Proof: We prove Theorem 7 by examining a scenario where A is able to leak both

the current session key and the network seed, SKi,t and Seed, respectively. To reveal old

or future session keys, KSi,l where l ̸= t , A has the following options:

- A obtains the authentication key AKi,l by exhaustive search in order to decrypt

EncNRi,l and EncERj,l shown in Section 6.4, to obtain nRi,l and eRj,l, respectively,

in order to derive the session key given in Equation 6.2, Section 6.4. Consequently,

A′s advantage is = 1
2la

.

- A obtains SKi,l by exhaustive search where the probability of A′s success is = 1
2ls

where ls is the length of session key.

It follows that the adversary’s advantage in obtaining old or future session keys is AdvfsPRF -SAKE ≤

( 1
2ls

)

Definition 17 (Anonymity of PRF-SAKE) We say that the PRF-SAKE protocol

provides anonymity with respect to any probabilistic-polynomial-time external adversary

A that has access to all network messages if A cannot link any message at any given

time, t, to the IoT-node originator. Formally,

Pr[PIDA
i,l ← A(1λ, P IDi,t) : PIDA

i,l = PIDi,l ∧ (l ̸= t)] ≤ ϵ(λ)

where λ is the security parameter, and ϵ(λ) is a negligible function.

Theorem 8 PRF-SAKE achieves anonymity with respect to any external adversary under

Definition 17.
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Proof: We prove Theorem 8 by assuming that the adversary A has access to all

messages exchanged in the network. A cannot link a particular message to previous or

future IoT-node messages, because in each new session, the IoT-node generates a new

pseudo-random ID using the sequence counter, PIDi,t = h(Cntri∥PIDi,(t−1)) as shown

in Section 6.4- Equation 6.3. Consequently, the only option that A has to link IoT-node

messages is to brute force the counter Cntri,t. Thus, the adversary’s advantage in linking

messages is AdvlinkPRF -SAKE ≤ ( 1
2lc

) where c is the length of Cntri.

6.6 Protocol Evaluation

In this section, we evaluate our PRF-SAKE protocol in terms of run-time, storage

requirements, and communication overhead. The computational run-time for the edge-

IoT mutual authentication and key agreement phase is evaluated as follows. In each new

session, both the IoT device and the edge compute 2×(5 hash+1 PRF+1 RNG+4XOR)

where we consider a 1 PRF evaluation to be equivalent to one encryption operation. For

memory storage, the IoT device needs to store five temporary values, and they are, the

counter Cntr, pseudo-identity PID, authentication key AK, and derivation key DK.

Additionally, there is a long-term key seed shared between each IoT device and the edge.

Assuming all secrets are 256 bits = 32 Bytes, we require a total of 5 × 32 = 160 Bytes

memory space for each IoT device. On the other hand, the edge is required to store the

same set of temporary keys for each node. Assuming N nodes owned by a particular edge,

the total storage requirements for one edge = (N × 128)+ 32 Bytes. The communication

overhead in the authentication and key agreement phase is computed for the following

two packets, Pkt1 = IDedgej , < TS∥PIDi,t∥EncNRi,t∥NTi,t > and Pkt2 = PIDi,t, <

TS∥EncERj,t∥EncDKj,t∥ETj,t >. Assuming TS size = 4 Bytes, ID size = 3 Bytes,

SHA-256 = 32 Bytes, and all other values to be 32 Bytes, the communication overhead
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is (3 + 2× 4 + 3× 32 + 2× 32) = 171 Bytes.

Table 6.1: Performance Comparisons Authentication Phase
Ref Description Com. Over-

head
Storage Req. Computations Benchmark ✧

Proposed - Symmetric authenti-
cation key agreement
(SAKE)

- IoT & edge

171 Bytes 160 Bytes 5 hash +
1 PRF evl +
1 RNG + 4 XOR

(5×0.451+1×0.226+
1 × 1.0) = 3.481 msec

Ibrahim [76] - Mutual authentication

- IoT & Fog sever

NA 32 Bytes 1 hash +
1 sym enc. +
1 sym dec.

(1 × 0.451 + 1 ×
0.226 + 1 × 0.226) =
0.903 msec

Wang [179] - Mutual authentication

- Computation offloading

- IoT & edge

NA 56 Bytes ♦ 15 hash+2 MAC (15 × 0.451 + 2 ×
0.902) = 8.569 msec

Aman [9] - Mutual authentication
key agreement

- IoT & edge

17 Bytes ✪ 42 Bytes ✪ 2 hash +
3 MAC +
2 sym enc +
2 PUF

(2×0.451+3×0.902+
2 × 0.226 + 2 × 1.0) =
6.06 msec

Gope [67] - Mutual authentication
key agreement

- IoT & edge

17 Bytes ✪ NA 5 hashes+2 PUF 5 × 0.451 + 2 × 1.0 =
4.255 msec

NA: Not available in the publication.
✧: Based on ARM Cortex-M0 48MHz ATECC508A HW accelerated. AES 16 Bytes, Hash 32 Bytes, and RGN 32 Bytes. Also, based on
HMAC ∼ 2 Hash
♦: based on secrets= 16 Bytes
✪: Based on longest message, and ID= 1Byte, MAC = 4Bytes, Nonce = 6Bytes. Based on < C,R >= 16Bytes. Based on ideal PUF.
Also, based on PUF = RNG.

Comparative Evaluation: Up to our knowledge, no authentication protocols to

support offloading for static three-tier cloud-edge-IoT has been proposed in the literature

before. However, we compare our PRF-SAKE protocol to other symmetric edge protocols

such as [76, 179]. Additionally, we include similar lightweight protocols such as [9, 67].

The performance comparisons are shown in a Table 6.1, and the achieved security goals

comparisons are shown in Table 6.2. In Ibrahim protocol [76], the fog-user and fog-server

achieve mutual authentication; however, the protocol uses real identities for both fog-

server and fog-user. Thus, the attacker can trace the communication to both user and

server. Additionally, the protocol relies on having a long-term key between the fog-user

and the for-server which if leaked all previous and future session keys will be leaked. Thus,

forward and backward secrecy are not achieved in [76]. In terms of performance, Ibrahim’s

protocol requires the fog-server to store N×32 Bytes, assuming the long-term shared key

is 32 Bytes. On the other hand, the fog-user is required to store only the current session

key and the long-term shared key, 32 Bytes.
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Wang et al. [179], is a mutual authentication scheme with light computation re-

quirements. The objective of the scheme is to compute the offloading charges; thus, the

forward and backward secrecy are not applicable in the protocol. Nevertheless, the pro-

tocol achieves anonymity and untraceability with respect to the attacker. In [9, 67], the

authors present mutual authentication protocols which require the installation of PUFs

inside the IoT devices. Both protocols are lightweight and achieve mutual authentication

between servers and IoT devices, anonymity with respect to any external adversary, and

forward secrecy. However, both schemes do not provide backward secrecy. Furthermore,

the PUF are subject to noise and a special hardware which can be expensive. On the

other hand, our PRF-SAKE protocol does not require the installation of PUF devices and

achieves mutual authentication, anonymity with respect to any external adversary, for-

ward secrecy, and backward secrecy using symmetric key cryptography with light storage

requirements and low communication overhead as shown in Tables 6.1 and 6.2.

Table 6.2: Security Goals Comparisons

Security Goals Proposed Ibrahim [76] Wang [179] Aman [9] Gope [67]

Mutual authentication ✓ ✓ ✓ ✓ ✓

Anonymity ✓ ✗ ✓ ✓ ✓

Trace-ability ✓ ✗ ✓ ✓ ✓

Forward secrecy ✓ ✗ NA ✓ ✓

Backward secrecy ✓ ✗ NA ✗ ✗

6.7 Summary

We proposed a lightweight symmetric-key authentication and key agreement pro-

tocol for edge computing offloading applications. In our protocol, the IoT devices and

edge entities are static and enrolled in the network upon registration in which the IoT

devices are assigned to their edge owner based on geographical proximity. Our protocol is

designed specifically for IoT-edge computational and storage offloading from IoT device
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to edge. We analyzed the security of the protocol and showed that it provides anonymity

with respect to external adversaries, forward secrecy, and backward secrecy. We also

showed that our protocol is lightweight when compared to other protocols.
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Chapter 7

Conclusion and Future Work

7.1 Summary

Security is one of the major concerns in the edge computing paradigm. First,

the de-centralization process of having several distributed servers instead of one central

server increases the chances of security attacks. Second, in all three layers of the edge

computing paradigm, wireless communication is used which opens the door for various

attacks such as eavesdropping, intercepting messages, injecting messages, reply attacks,

or DoS attacks. The generic PKC security solutions are not suitable for the edge comput-

ing paradigm, especially because the majority of IoT devices are characterized by small

processors, confined memory space, and low battery lifetime. To this end, we proposed

several lightweight security protocols, and in what follows, we give a brief summary of the

contribution accomplished in this thesis.

In Chapter 2, we presented the architecture of EC, the different related de-centralized

paradigms such fog computing and mobile edge computing, and highlighted their differ-

ences. We presented the EC security model which includes threat model, security prop-

erties, security primitives, and analysis tools. We also presented background information

on the utilized security primitives used in our proposed protocols.
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In Chapter 3, we proposed a lightweight broadcasting authentication protocol for

edge computing applications. Specifically, the edge entity broadcast messages using ses-

sion keys which are derived securely from a hash function. The protocol utilizes hash

chains and authenticated encryption which makes it resilient to quantum attacks. More-

over, entities are not required to hold a permanent master key, and all session keys are

derived securely from a hash function. As a use case, we presented a smart emergency sys-

tem where an edge application broadcasts alert messages for individual responder groups

when specific events occur. We formally defined and proved the main security properties

of our protocol and compared it to other lightweight protocols in terms of security and

performance.

In Chapter 4, we proposed a lightweight group authentication protocol with a

session key-agreement. Most of the previously proposed GASs are heavyweight and do

not support multiple authentications or key-agreement. On the other hand, our protocol,

which is based on secret sharing scheme and Aggregated-MAC, is lightweight and provides

multiple asynchronous authentications. Furthermore, we implemented a simple key re-

freshing mechanism in which, in each session, a new session-key between an IoT-node and

the authenticating server is established without the need for re-distributing new shares.

In our security analysis, we showed that our protocol provides group authentication, mes-

sage forward secrecy, and prevents several attacks. Additionally, we presented a formal

automated verification using Verifpal tool and showed that our scheme has better per-

formance than other relative schemes in terms of communication complexity, secret-share

re-distribution, and session key derivations.

In Chapter 5, we exploited the advantages of two security primitives, physically

unclonable functions and Shamir’s secret sharing scheme to design a lightweight group

authentication scheme for edge-computing applications. Specifically, we applied PUFs on

SSS and utilize the SSS-homomorphic property to achieve multiple-time group-authentications

with the same set of shares. Our PUF-GAS scheme is lightweight, establishes a new group
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key-agreement per session and supports efficient node-evicting mechanism. Furthermore,

in PUF-GAS, the group nodes do not store any shares; instead, the nodes derive their

secret-shares from their PUF-responses. We formally analyzed our protocol theoretically

and with AVISPA to show that our scheme achieves message secrecy and authenticity.

Additionally, we evaluated our scheme in terms of storage, run-time, and communication

overhead. We also presented a comparative evaluation of our scheme with others in terms

of security and performance.

In Chapter 6, we proposed a lightweight symmetric key pseudo-random-function-

based protocol which provides edge-IoT mutual authentication, forward secrecy, backward

secrecy, and anonymity. We proved the security goals of the protocol and compared it

to other lightweight authentication protocols. Also, we showed that the computational

complexity of our protocol is only 1 pseudo-random function evaluation, 1 random number

generation, 5 hash, and 4 xor operations.

7.2 Future Work

Further in-depth studies and security solutions for the EC paradigm are needed. In-

deed, it is anticipated that the next few years will witness a change in the edge computing

architecture, framework, and its applications. Specifically, researchers are taking advan-

tage of the unprecedented breakthroughs in artificial intelligence (AI), machine learning

(ML), deep learning (DL) models and algorithms and utilize them in the EC-paradigm.

This resulted a merge between edge computing and artificial intelligence referred to Edge

Intelligence (EI) [204]. Deng et al. put forward two classifications for the usage of AI

in edge computing, AI for Edge and AI on Edge [55]. The former method utilizes AI

algorithms to grant edge more intelligence perhaps to solve optimization problems or im-

prove performance. On the other hand, AI on Edge applies training and inference of

AI models and handling massive generated data on edge servers. Indeed, both of these
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methods increase the need for security analysis and investigations. Finally, new security

technologies have been developing, and further in-depth studies and security analysis are

needed to verify their feasibility and application on EC, blockchains (BC) as an example.

In this section, we shed light on the changes in the EC-paradigm that can extend the

contribution of this thesis.

• Intelligence-enabled Edge Computing: AI-for-Edge is a classification in which

the AI, ML, or DL models provide the technology to find optimal solutions to key EC

problems. For instance, the EC offloading or resource allocation problem in different

layers can be solved or improved by applying AI algorithms and models. Addition-

ally, the new EI-paradigm creates many application-scenarios ranging from personal

applications to large governmental sectors. For example, smart city applications,

personalized assistants, video surveillance, and other applications implement AI to

improve employees’ productivity and raise the standards of living. However, the fast

EI-development creates several security concerns, and in-depth security studies and

analysis are required for its applications and frameworks.

• Intelligence on Edge (big data and mass secure solutions): The proliferation

of smart devices, mobile computing, and IoT made EC very efficient de-centralized

solution. Indeed, processing data at the edge of the network is more efficient than

traversing it to the mega-scale cloud datacenters. The fast adoption of AI sup-

ported applications concurrently with the billions of edge data bytes production

tremendously increase the demand on edge data processing and optimization [55].

However, the AI implementation on edge creates several novel application scenarios,

security concerns, performance issues, and novel training and inference implemen-

tation frameworks. For example, Zhou et al. propose several training and inference

models from cloud-edge co-inference (level 1) to on-device (level 6) [204]. On the

other hand, the introduction of Federated Learning by McMahan et al. [119] allows

the distribution of machine model training among local devices while protecting
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against data leakage. With Federated Learning several security techniques can be

applied to protect shared data; for example, secure multiparty computations, zero-

knowledge proof, homomorphic encryption, and differential privacy.

On the other hand, a common scenario in the future EI-paradigm is having large

number of AI nodes, i.e. large groups, with large volume of data in which groups

may disseminate the big data or share training. Although we have proposed two

group authentication protocols in our thesis, but more mass secure solutions for

AI nodes that address a wide spectrum of security goals need to be investigated.

Finally, most of the EI devices are lightweight and accessible to attackers, and this

creates big security concerns especially for the node-theft attacks. Thus, security

solutions must address these threats and mitigate them.

• Blockchain: BC technology is currently being integrated in many EC smart ap-

plications such smart grid, autonomous driving, mobile edge computing, vehicle-

to-grid, and others. Additionally, many smart applications utilize BC to meet au-

thentication, access control, key management protocol requirements, and to prevent

several denial-of-service attacks. However, BC comes with two main trade-offs, se-

curity with efficiency and transparency with privacy. Additionally, many BC-based

solutions are not suitable for the low-end devices. For example, Zero-Knowledge-

Proofs are not suitable for the low-end devices. Thus, further security analysis and

investigations are needed for this newly introduced technology.
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