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Abstract

Comparative Analysis of Vision Transformers and CNNs in Melanoma Classification

Farnaz Haghshenas

The increasing number of skin cancers underscores the critical importance of early detection

and accurate classification to improve treatment outcomes. Melanoma, a malignant skin cancer,

has the highest mortality rate among all skin cancer types. Early detection of melanoma signif-

icantly enhances the chances of effective treatment and survival rates. This research presents a

comparative analysis of cutting-edge deep learning methodologies in medical imaging, specifically

focusing on Vision Transformers (ViT) and Convolutional Neural Networks (CNNs) for melanoma

cancer detection. This study further examines the influence of domain-specific transfer learning

on improving melanoma detection accuracy by pre-training these deep learning models on various

datasets, such as ImageNet, BreakHis, and ISIC 2019. The models are then meticulously fine-tuned

using a private annotated dataset of melanoma dermoscopic images. In addition, we employed the

k-fold cross-validation technique to evaluate the reliability of our models. Our experimental results

highlight the significant performance of advanced deep learning methodologies and transfer learn-

ing approaches, with the ViT-B16 model achieving an exceptional diagnostic accuracy of 97.97%,

outperforming other models, specifically the pre-trained CNNs models. Moreover, This study high-

lights the critical role of large, diverse datasets in transfer learning, demonstrating their effectiveness

in improving model performance for melanoma detection.
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Chapter 1

Introduction

In this chapter, we discuss our research topic and the key motivations underlying our work (Sec-

tion 1.1), emphasizing the critical need for advancements in melanoma detection. Following this,

Section 1.2 summarizes the primary goals of the study, which aim to enhance diagnostic accuracy

through innovative methodologies. Section 1.3 highlights the novel contributions made to this re-

search. Next, Section 1.4 provides an overview of the thesis structure, and Section 1.5 lists the

related published articles.

1.1 Motivation

In recent years, the increasing number of cancer cases has highlighted the critical importance of

early detection and effective treatment strategies. The year 2020 alone recorded nearly 10 million

deaths worldwide due to various forms of cancer, prompting the global health community to escalate

its efforts in utilizing advanced technologies to improve diagnostic and treatment protocols Sung et

al. (2021). Among the various types of cancer, skin cancer is notably widespread. Melanoma, in

particular, is a life-threatening form of skin cancer, yet it is treatable when detected and treated in

its early stages Geller, Swetter, Brooks, Demierre, and Yaroch (2007).

The last decade has marked a significant transformation in the landscape of cancer diagnosis,

primarily driven by advancements in the integration of Artificial Intelligence (AI) in medical imag-

ing analysis. The introduction of Convolutional Neural Networks (CNNs) has been a cornerstone
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of this evolution by automating the detection process and achieving more accurate results. CNNs

have been particularly effective in analyzing medical images for the detection of various cancers,

including skin, prostate, and breast cancers A. A. Abbasi et al. (2020); Bardou, Zhang, and Ahmad

(2018); Brinker et al. (2018).

More recently, Vision Transformers (ViT) have introduced a new paradigm by adapting the

transformer model, initially developed for natural language processing, to computer vision tasks Doso-

vitskiy et al. (2020). ViT employs a self-attention mechanism that allows it to weigh the importance

of various parts of an image. This approach has shown promising results in different image classi-

fication tasks, including skin cancer detection Azad et al. (2024); Xin et al. (2022).

Despite these technological leaps, adopting Deep Learning (DL) techniques, such as CNNs and

ViT, within the medical domain is challenging. One of the primary obstacles is the necessity for ex-

tensive datasets to train these models effectively and ensure their reliable performance in real-world

applications Aljabri, AlAmir, Al Ghamdi, Abdel-Mottaleb, and Collado-Mesa (2022). Furthermore,

the absence of such datasets often leads to overfitting, where models perform well on training data

but underperform on new, unseen data Mutasa, Sun, and Ha (2020). The necessity for high levels

of expertise for manual annotation and the resource-intensive nature of medical data collection in-

tensifies the difficulty in securing sufficient medical images for specific health conditions. Another

significant hurdle is the computational expense and the requirement for extensive memory resources

to train CNNs and ViT from scratch. These challenges highlight the complexities involved in in-

tegrating CNNs and ViT technologies into practical medical diagnostics and underscore the need

for innovative solutions to navigate these obstacles. In response to these challenges, transfer learn-

ing (TL) emerges as a valuable strategy. Transfer learning involves utilizing models pre-trained on

large, diverse datasets, such as ImageNet, and adapting these models to specific medical diagnos-

tics tasks with fewer data and less computational demand Hosny, Kassem, and Foaud (2018). This

approach addresses the challenge of data scarcity and significantly reduces the risk of overfitting,

making it a cornerstone of modern medical imaging research. These challenges motivated us to find

an effective method to enhance the precision of melanoma detection. Consequently, we performed

a comparative analysis of seven advanced deep learning models using three distinct TL approaches.
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Our research utilized a private dataset of real-world dermoscopic images of melanoma and non-

melanoma cases, created at the Warsaw Maria Skøodowska-Curiebreak National Research Institute

of Oncology, Department of Soft Tissue/Bone Sarcoma and Melanoma Gil, Osowski, Swiderski,

and SøowiÂnska (2023).

1.2 Main Goals

The main objective of this study is to develop a precise diagnostic framework for melanoma

detection. To achieve this, we conducted a comparative analysis of seven advanced deep learning

models using three distinct TL approaches. In this study, we rigorously evaluated the performance

of various CNNs and two variations of ViT model, in addition to two hybrid models. Our assess-

ment used TL, with each model initially trained on a range of datasets. In this research, we utilized

the well-known ImageNet dataset alongside two specialized medical datasets, including BreakHis,

which contains histopathological images of breast cancer, and ISIC 2019, which focuses on skin

cancer Codella et al. (2017); Hernandez et al. (2024); Spanhol, Oliveira, Petitjean, and Heutte

(2016); Tschandl, Rosendahl, and Kittler (2018). We primarily evaluated seven distinct models

across three scenarios based on different TL approaches:

• General-purpose dataset (ImageNet): We assessed how transfer learning with ImageNet, a

large, general-purpose dataset, influences model performance.

• Different medical domain dataset (BreakHis): We examined the effectiveness of transfer

learning from the BreakHis dataset, which belongs to a different medical domain, to see

how it impacts the models.

• Domain-specific medical dataset (ISIC 2019): We investigated the impact of specific domain

transfer learning using the ISIC 2019 dataset, which is directly related to skin cancer, on the

performance of the models.

The deliberate choice of BreakHis and ISIC 2019 aims to investigate the efficacy of applying TL

within medical domains instead of relying solely on general-purpose datasets like ImageNet. By

systematically evaluating these scenarios, this study aims to provide a robust diagnostic framework
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that enhances the accuracy and reliability of melanoma detection using advanced deep learning

techniques.

1.3 Novel Contributions

The main novel contributions of this thesis can be summarized as follows:

(1) Comprehensive comparative analysis of seven advanced deep learning models for melanoma

detection, including three CNNs, two variations of Vision Transformers, and two hybrid mod-

els.

(2) Examination of the potential benefits of hybrid models that use the strengths of both CNNs

and ViT architectures for melanoma diagnosis.

(3) Evaluation of the performance of two ViT variations using our private target melanoma

dataset, providing insights into their efficacy for melanoma detection.

(4) Systematic evaluation of three distinct transfer learning approaches using datasets from dif-

ferent domains:

• General-purpose dataset (ImageNet)

• Medical domain dataset (BreakHis)

• Domain-specific medical dataset (ISIC 2019)

(5) Investigation of the impact of domain-specific transfer learning on model performance using

a subset of the ISIC 2019 dataset.

(6) Assessment of cross-domain transfer learning effectiveness by employing a breast cancer

histopathology dataset (BreakHis) for melanoma detection.

These contributions collectively aim to advance the field of automated melanoma diagnosis by

providing a comprehensive understanding of how different deep learning architectures and transfer

learning strategies can be optimized for improved detection accuracy. We will compare our findings

with previous studies that utilized the same private dataset to demonstrate the effectiveness of the

proposed method in this research.
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1.4 Thesis Structure

This thesis is organized into five chapters, each addressing specific aspects of our research on

melanoma detection using advanced deep learning techniques.

• Chapter 1 introduces the motivation behind our study, outlines the main goal, and highlights

the novel contributions of our work. It also provides an overview of the thesis structure and

lists relevant publications.

• Chapter 2 provides a comprehensive background on skin cancer, with a focus on melanoma’s

characteristics, risk factors, and diagnostic challenges. It reviews computer-aided diagno-

sis (CAD) systems developed for melanoma detection, highlighting relevant studies utilizing

machine learning (ML), deep learning (DL), and ViT models in this area. Additionally, the

chapter examines the role of TL in medical imaging, specifically its application to melanoma

classification.

• Chapter 3 offers a detailed description of our proposed method, meticulously explaining each

step of the framework developed for the three melanoma detection scenarios. This chapter

also includes a comprehensive description of the datasets used, explaining their relevance,

structure, and preprocessing steps.

• Chapter 4 is dedicated to presenting and analyzing the results of all three scenarios. This

chapter provides a comprehensive discussion of our findings, offering analytical insights into

the outcomes of our research.

• Chapter 5 concludes the thesis by summarizing our study’s main findings and discussing

their implications. It also outlines potential directions for future work in this area.

Through this structure, we aim to provide a clear and logical progression of our research, from

its conceptual foundations to its practical outcomes and future prospects.
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1.5 Publications
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2024. Lecture Notes in Computer Science(), vol 15154, pp. 121±131. Springer, Cham.

https://doi.org/10.1007/978-3-031-71602-7 11 Haghshenas, Krzyżak, and Osowski (2024).
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Chapter 2

Background and Literature Review

2.1 Introduction

This chapter is divided into two main sections. The first section (Section 2.4) provides an

overview of cancer and skin cancer. It then defines melanoma, detailing its characteristics and global

statistics. Additionally, it discusses the risk factors associated with melanoma and the methods used

for its diagnosis. In Section 2.5, we review the latest research on computer-aided diagnosis (CAD)

systems for melanoma detection. This includes using Machine Learning (ML), Deep Learning, and

Vision Transformers in melanoma detection. We also delve into the utilization of transfer learning

in medical image analysis.

2.2 Cancer: An Overview

Cancer is a complex group of diseases characterized by the uncontrolled growth and spread of

abnormal cells. It can develop in almost any organ or tissue of the body, resulting from genetic mu-

tations that disrupt normal cell growth and division processes Hanahan and Weinberg (2011). The

transformation of normal cells into cancer cells is a multistep process, typically requiring multiple

genetic alterations. These changes can be triggered by various factors, including:

• Environmental exposures (e.g., UV radiation, tobacco smoke)

• Lifestyle factors (e.g., diet, physical inactivity)
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• Inherited genetic mutations

• Certain infections (e.g., human papillomavirus, hepatitis B virus)

As cancer progresses, it can invade surrounding tissues and metastasize to distant parts of the

body, making treatment more challenging Fidler (2003).

2.3 Skin Cancer: A Growing Concern

Skin cancer is the most common form of cancer globally. It primarily develops in sun-exposed

areas of the body, although it can occur anywhere on the skin. Skin cancer is broadly categorized

into two main types: non-melanoma skin cancer (NMSC) and melanoma skin cancer. In this re-

search, we focus specifically on melanoma detection, given its potential for rapid progression and

the critical importance of early diagnosis in improving patient outcomes Gordon (2013).

2.3.1 Non-Melanoma Skin Cancers

Non-melanoma skin cancers primarily include Basal Cell Carcinoma (BCC) and Squamous Cell

Carcinoma (SCC).

Basal Cell Carcinoma

Basal cell carcinoma is the most common type of skin cancer, accounting for approximately

80% of non-melanoma skin cancers Marzuka and Book (2015). BCCs originate in the basal cells

of the epidermis and are typically slow-growing. They rarely metastasize but can cause significant

local tissue damage if left untreated. Common characteristics of BCCs include:

• Pearly, waxy bumps

• Flat, flesh-colored or brown lesions

• Bleeding or scabbing sores that heal and return

8



Figure 2.1: Characteristics of basal cell carcinoma. Source: Mayo Clinic (2024a)

Squamous Cell Carcinoma

Squamous cell carcinoma is the second most common type of skin cancer, arising from the

squamous cells in the epidermis. SCCs demonstrate a higher tendency to invade deeper layers of

the skin and spread to other parts of the body compared to BCCs, although such cases are relatively

rare Que, Zwald, and Schmults (2018).

Figure 2.2: Characteristics of squamous cell carcinoma. Source: Mayo Clinic (2024c)
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2.3.2 Melanoma Skin Cancer

Melanoma is the most lethal form of skin cancer, developing from melanocytes, which are the

cells responsible for producing skin pigment. Melanoma is responsible for the majority of skin

cancer deaths due to its aggressive nature and tendency to metastasize Schadendorf et al. (2018).

2.3.3 Prevention and Early Detection

Prevention strategies focus on reducing UV exposure and promoting skin awareness. Early

detection remains crucial for improved prognosis, particularly for melanoma. Regular skin self-

examinations and professional screenings are recommended, especially for high-risk individuals Wernli

et al. (2016).

2.4 Melanoma: A Deeper Dive

2.4.1 Melanoma: Definition and Characteristics

Melanoma originates in melanocytes, the pigment-producing cells in the skin. It can develop

anywhere on the body but is most often found on areas exposed to sunlight. What sets melanoma

apart is its potential to spread quickly if not caught early Rastrelli, Tropea, Rossi, and Alaibac

(2014).

Figure 2.3: Characteristics of melanoma. Source: Mayo Clinic (2024b)
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2.4.2 Global Statistics and Epidemiology

Melanoma is a significant health concern worldwide, especially in fair-skinned populations. Ac-

cording to GLOBOCAN 2020, there were an estimated 325,000 new melanoma cases and 57,000

deaths globally in 2020. Incidence rates vary greatly across regions. Australia and New Zealand

have the highest rates, followed by Western Europe and North America. In contrast, melanoma

is less common in most African and Asian countries Ferlay et al. (2021). In the United States,

the American Cancer Society estimates about 100,640 new cases of invasive melanoma will be

diagnosed in 2024, with approximately 8,290 expected deaths. The lifetime risk of developing

melanoma differs among racial and ethnic groups. For White individuals, it’s about 3% (1 in

33), while for Black individuals, it’s 0.1% (1 in 1,000), and for Hispanic individuals, 0.5% (1 in

200) American Cancer Society (2024).

2.4.3 Risk Factors for Melanoma

Several factors increase the risk of developing melanoma:

• UV radiation exposure: The most significant environmental risk factor, including both nat-

ural sunlight and artificial sources like tanning beds Gandini et al. (2011).

• Genetic factors: Certain genetic mutations can increase melanoma risk Read, Wadt, and

Hayward (2016).

• Skin type and characteristics: Fair skin, light hair, and light eyes are associated with higher

risk Olsen, Carroll, and Whiteman (2010a).

• History of sunburns: Severe sunburns, especially during childhood or adolescence, increase

the risk of melanoma later in life Dennis et al. (2008).

• Number of moles: Having many moles or atypical moles increases the risk Gandini et al.

(2005).

• Personal or family history: A personal history of melanoma or a first-degree relative with

melanoma increases the risk Olsen, Carroll, and Whiteman (2010b).
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Figure 2.4: Age standardized (World) incidence rates, melanoma of skin, males, all ages. Source:

International Agency for Research on Cancer (2022)

Figure 2.5: Age standardized (World) incidence rates, melanoma of skin, females, all ages. Source:

International Agency for Research on Cancer (2022)
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2.4.4 Screening and Diagnosis Methods

Early detection is crucial to improve the outcomes of melanoma. Common screening and diag-

nostic methods include:

• Self-examination: The ABCDE criteria (Asymmetry, Border irregularity, Color variation,

Diameter > 6 mm, Evolution) is a widely used tool N. R. Abbasi et al. (2004).

• Full-body skin examinations: Regular check-ups by healthcare professionals can help detect

melanoma early Watts et al. (2015).

• Dermoscopy: This non-invasive technique uses a handheld device to visualize structures in

the skin not visible to the naked eye, improving diagnostic accuracy Argenziano and Soyer

(2012).

• Biopsy: The gold standard for diagnosis, where the suspicious lesion is removed and exam-

ined under a microscope Swetter et al. (2019).

• Imaging techniques: For advanced cases, imaging techniques such as CT scans, MRI, or

PET scans may be used to assess the extent of the disease Mohr, Eggermont, Hauschild, and

Buzaid (2009).

2.5 Computer-Aided Diagnosis of Skin Cancer

The timely and accurate detection and classification of melanoma are critical for effective treat-

ment and improving patient survival outcomes. In response to this need, the field has seen signif-

icant advancements in CAD systems. These systems, powered by AI and ML algorithms, analyze

skin images to identify unusual tissue patterns and differentiate between malignant and benign skin

lesions. Such AI-empowered technologies have markedly improved the precision of diagnosis, sur-

passing the sensitivity achieved by experienced dermatologists, who demonstrate 76.9% sensitivity

with clinical examinations and 85.7% when using dermoscopy Barros et al. (2020); Chen et al.

(2024).
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Figure 2.6: The ABCDE criteria for melanoma detection. Source: The Skin Cancer Foundation

(2024)

CAD systems utilize various image processing techniques to enhance the visualization of skin

lesions that are not visible to the naked eye. By integrating these techniques with AI, along with im-

ages obtained from dermoscopy, CAD systems can provide dermatologists with valuable diagnostic

insights. One of the key advantages of CAD systems is their ability to handle large volumes of data

and learn from vast datasets. This capability enables the development of highly accurate models

that can generalize well to new, unseen cases.

Recent research has shown that CAD systems can reach diagnostic accuracy levels similar to

those of experienced dermatologists. For example, a study by Esteva et al. (2017) demonstrated

that a deep learning algorithm could classify skin cancer with accuracy comparable to that of board-

certified dermatologists. These results highlight the significant impact of AI in the field of der-

matology. Moreover, Hekler et al. (2019) underscores that CAD systems can assist in reducing

inter-observer variability, a common issue in dermatological assessments. By providing consis-

tent and objective evaluations, these systems can improve the reliability of diagnoses and support

dermatologists in making informed decisions.
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2.5.1 Machine Learning and Deep Learning Application in Skin Cancer Detection

ML and DL techniques have revolutionized skin cancer detection, offering substantial enhance-

ments in diagnostic accuracy, especially when applied to dermoscopic images. Recent studies have

demonstrated the potential of these advanced computational methods to augment clinical decision-

making and improve patient outcomes. Monika, Arun Vignesh, Usha Kumari, Kumar, and Lydia

(2020) developed a machine learning-based system for skin cancer detection and classification us-

ing dermoscopic images. The preprocessing stage involved using the Dull Razor method to remove

hair and Gaussian and Median filters for image enhancement and noise reduction. The segmenta-

tion was performed using color-based k-means clustering. Feature extraction utilized the ABCD

method and Gray Level Co-occurrence Matrix (GLCM) to capture statistical and texture features.

The classification was conducted using a Multi-class Support Vector Machine (MSVM), achieving

an accuracy of 96.25% on the ISIC 2019 Challenge dataset. This study highlights the effectiveness

of combining various preprocessing, segmentation, and feature extraction techniques with MSVM

for accurate skin cancer detection. Kassem, Hosny, Damaševičius, and Eltoukhy (2021) conducted

a comprehensive review of machine learning and deep learning methods for skin lesion classifica-

tion and diagnosis. The study analyzed 53 articles utilizing traditional machine learning techniques,

including those based on the ABCDE rule, and 49 articles employing deep learning approaches,

assessing their contributions, methodologies, and outcomes. The findings underscore that deep

learning approaches outperform traditional machine learning, particularly when large datasets are

available or when data limitations are addressed through augmentation techniques. Pre-trained deep

learning models, combined with handcrafted methods based on deep learning, have demonstrated

promising results, achieving high-precision accuracy in melanoma detection. The research con-

ducted by Gouda, Sama, Al-Waakid, Humayun, and Jhanjhi (2022) explores the application of deep

learning techniques for the detection of skin cancer using skin lesion images. This study utilizes con-

volutional neural networks (CNNs) to classify skin lesions as either benign or malignant, using the

ISIC2018 dataset. The innovative aspect of this study is the use of Enhanced Super-Resolution Gen-

erative Adversarial Networks (ESRGAN) for image preprocessing, which enhances image quality
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before classification. The CNN model achieved an accuracy of 83.2%, while transfer learning mod-

els like Resnet50, InceptionV3, and Inception Resnet showed slightly higher accuracies of 83.7%,

85.8%, and 84% respectively. These findings suggest that deep learning models, particularly when

combined with advanced preprocessing techniques, can significantly improve the accuracy of skin

cancer detection from lesion images. Shimizu, Iyatomi, Celebi, Norton, and Tanaka (2015) pro-

posed a novel computer-aided method for classifying four types of skin lesions: melanoma, nevi,

basal cell carcinomas (BCCs), and seborrheic keratoses (SKs). Their approach utilized a layered

model with task decomposition strategy, outperforming flat models in classification accuracy. The

study employed 964 dermoscopy images and extracted 828 features categorized into color, subre-

gion, and texture. Notably, the layered model with 25 features achieved a 90% detection rate for

melanoma, 82.51% for nevi, 82.61% for BCC, and 80.61% for SK. This research is significant for

its comprehensive approach to multi-class skin lesion classification, addressing both melanocytic

and non-melanocytic lesions, which is crucial for enhancing the capabilities of computer-aided skin

cancer detection systems. The research by Ali, Shaikh, Khan, and Laghari (2022) explores the ap-

plication of EfficientNets in multiclass skin cancer classification, utilizing the HAM10000 dataset.

Their study demonstrates the effectiveness of EfficientNet models, particularly EfficientNet B4,

which achieved an F1 Score of 87% and a Top-1 Accuracy of 87.91%. The authors highlight the

significance of transfer learning and fine-tuning pre-trained ImageNet weights to enhance model

performance on this imbalanced dataset. The findings suggest that intermediate complexity models

like EfficientNet B4 offer a balanced approach, outperforming both simpler and more complex vari-

ants in handling the nuanced task of skin cancer classification. This study underscores the potential

of EfficientNets in advancing automated diagnostic systems in dermatology.

2.5.2 Machine Learning and Deep Learning Applications in Melanoma Detection

Machine learning algorithms have significantly advanced the field of skin cancer detection, of-

fering substantial improvements in diagnostic accuracy and efficiency. These algorithms have the

capability to analyze complex patterns in medical images, thereby aiding in the early detection

and classification of skin lesions. Jafari et al. (2016) developed an efficient system for the auto-

matic detection of melanoma using digital images captured by general-purpose cameras, including

16



smartphones. The method involves preprocessing to reduce noise and illumination effects, followed

by segmentation using k-means clustering in the HSV color space. Morphological operations and

guided filtering are applied to enhance the segmentation mask and accurately extract the lesion’s

border. The system then extracts ten features based on the ABCD rule of dermatology, focusing

on asymmetry, border irregularity, and color attributes. The extracted features are classified using

a Support Vector Machine (SVM), achieving a diagnostic accuracy of 90%, with an area under

the curve (AUC) of 0.9794. This approach demonstrates the potential of using advanced image

processing techniques and feature extraction to improve melanoma detection accuracy in a com-

putationally efficient manner suitable for smartphone applications. Kruk et al. (2015) developed

a novel system for melanoma recognition using dermoscopic images, employing an extended set

of image descriptors and classifiers. The study utilized descriptors such as Haralick, Kolmogorov-

Smirnov, and fractal texture analysis to generate diagnostic features. Feature selection methods,

including Fisher discrimination, correlation feature selection, and fast correlation-based filter, were

applied to enhance classification accuracy. The SVM classifier, combined with Fisher-selected fea-

tures, achieved the highest accuracy of 93.8%, with a sensitivity of 95.2% and specificity of 92.4%.

This approach demonstrates the potential of advanced image descriptors and robust feature selection

in improving melanoma detection accuracy. Gil et al. (2023) proposed an ensemble of classifiers

for medical image recognition, leveraging deep learning techniques. The study examined various

CNN architectures for recognizing melanoma in dermoscopic images and breast cancer in mam-

mograms. Two ensemble approaches were introduced: one combining feature selection methods

with classical classifiers like SVM, Random Forest (RF), and softmax, and another using diverse

CNN structures directly. The ensemble system integrating multiple classifiers via majority voting

significantly improved classification performance. The best results were achieved using the deep en-

semble approach, with an accuracy of 98.6% and an AUC of 0.9996 for melanoma recognition. This

demonstrates the efficacy of combining different CNN architectures and feature selection methods

to enhance diagnostic accuracy in medical imaging.

In the context of skin cancer detection, deep learning algorithms, particularly CNNs, have shown

remarkable performance. CNNs are especially effective in image classification tasks, making them

well-suited for analyzing dermoscopic images and identifying potential malignancies Esteva et al.
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(2017); Yu, Chen, Dou, Qin, and Heng (2017). CNNs, with their deep learning capabilities, have

been instrumental in automating the detection and classification of skin cancers. Their architecture,

designed to mimic the human visual system, excels in extracting hierarchical features from dermo-

scopic images, offering substantial improvements over manual diagnostic methods. In the evolving

landscape of melanoma diagnosis utilizing deep learning, Belattar, Adjadj, Bakir, and Ait Mehdi

(2022) conducted a comprehensive comparison of seven CNN models, including Baseline CNN,

InceptionV3, ResNet50, VGG16, Xception, MobileNetV2, and DenseNet201, for melanoma ver-

sus nevus classification using a balanced subset of the ISIC 2019 dataset. The study is notable

for its thorough evaluation of different architectures, showing that models like Baseline CNN,

DenseNet201, and Xception outperformed others. Interestingly, both simpler models like the Base-

line CNN and more complex ones such as DenseNet201 achieved high performance, suggesting

that model effectiveness is not solely dependent on architectural complexity. Hosseinzadeh Kassani

and Hosseinzadeh Kassani (2019) presented a comprehensive analysis comparing several advanced

CNNs for melanoma detection using dermoscopic images. By employing diverse preprocessing

steps and data augmentation techniques like horizontal and vertical flipping to address class imbal-

ance, this study sought to enhance image quality and model accuracy. Through their experimental

evaluation, they assessed the performance of state-of-the-art CNN architectures. The study demon-

strated that preprocessing and data augmentation could significantly improve detection accuracy,

underscoring the potential of deep learning in early and accurate melanoma diagnosis. Kim, Gai-

bor, and Haehn (2024) developed a comprehensive melanoma classification framework that inte-

grates 54 combinations of 11 datasets and 24 advanced deep learning models, resulting in 1,296

experimental comparisons. Their study introduces Mela-D, a lightweight model optimized for web

deployment, which achieves a 33x increase in processing speed and a 24x reduction in parame-

ters while maintaining an accuracy of 88.8%, comparable to ResNet50. This model is designed for

efficient, real-time melanoma detection on consumer-grade hardware. The study by Faghihi, Fathol-

lahi, and Rajabi (2024) presents an innovative approach to melanoma skin cancer detection using

customized transfer learning models based on VGG16 and VGG19 architectures. The researchers

trained their models on a subset of 2,541 skin lesion images from the International Skin Imaging
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Collaboration (ISIC) dataset, employing dropout and early stopping techniques to prevent overfit-

ting. Notably, using k-fold cross-validation, the models achieved average accuracies of 97.51% for

VGG16 and 98.18% for VGG19, demonstrating significant improvement over existing approaches

without resorting to data augmentation techniques. Mousa, Taha, Kaur, and Afifi (2024) conducted

a comprehensive evaluation of five pre-trained deep learning models for melanoma classification

using the International Skin Imaging Collaboration (ISIC) dataset. The study compared VGG-16,

ResNet50, InceptionV3, DenseNet-121, and Xception models across four experiments with vary-

ing hyperparameters and layer configurations. The research is notable for its systematic approach

to optimizing model performance through transfer learning and hyperparameter tuning. ResNet50

consistently outperformed other models, achieving exceptional accuracy and F1 scores of around

93% in the third experiment. This study highlights the potential of deep learning in enhancing

melanoma diagnosis. The research by Yu et al. (2017) presents a novel approach to automated

melanoma recognition using very deep CNNs to address challenges such as low contrast, visual

similarities between lesions, and artifacts in dermoscopic images. Their method integrates a fully

convolutional residual network (FCRN) for lesion segmentation and a deep residual network (DRN)

for classification. The authors demonstrate that substantially deeper networks (more than 50 lay-

ers) can acquire richer and more discriminative features, leading to improved recognition accuracy.

Their proposed FCRN, which integrates multi-scale contextual information, achieves first rank in

classification and second first in classification and second in segmentation tasks performance in both

segmentation and classification tasks on the ISBI 2016 Skin Lesion Analysis Towards Melanoma

Detection Challenge dataset. This study highlights the potential of very deep CNNs in addressing

complex medical image analysis tasks, even with limited training data.

2.5.3 Usage of Vision Transformers in Melanoma and Non-Melanoma Skin Cancer

Detection

Despite the excellent performance of CNNs, the advent of ViT has introduced a paradigm shift

in the field, particularly in the context of distinguishing between closely resembling skin lesions.

Unlike traditional CNNs, which rely on local receptive fields and hierarchical feature extraction,

ViT utilizes self-attention mechanisms to capture global contextual information within images. This
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ability to process global relationships among visual features is crucial for tasks that require a com-

prehensive understanding of the entire image, such as differentiating between skin lesions that may

appear similar Deininger et al. (2022); Pu, Xi, Yin, Zhao, and Zhao (2024). Yang, Luo, and Greer

(2023) introduced a novel ViT-based model for skin cancer classification using clinical skin images.

The proposed method involves four key stages: class rebalancing, image preprocessing, transformer

encoding, and classification. The model was pretrained on the ImageNet dataset and fine-tuned

using the HAM10000 dataset. The ViT model processes images by splitting them into patches,

which are then flattened and passed through a transformer encoder. The best configuration of the

ViT model achieved a classification accuracy of 94.1%, outperforming the current state-of-the-art

model IRv2 with soft attention. This approach demonstrates the efficacy of Vision Transformers

in enhancing diagnostic accuracy for skin cancer classification by effectively modeling long-range

spatial relationships within images. Several studies have explored the use of ViT for melanoma skin

cancer detection. The study by Arshed et al. (2023) underscores the growing importance of ViT

models in skin cancer classification. Their research highlights the superiority of pre-trained vision

transformers in achieving an accuracy of 92.14%, surpassing CNN-based transfer learning models

across several evaluation metrics for skin cancer diagnosis. This comparative analysis suggests that

while traditional CNNs remain valuable, ViTs offer a compelling alternative that could redefine the

landscape of medical image classification, especially in the context of skin cancer detection. The

paper by Flosdorf, Engelker, Keller, and Mohr (2024) explores the application of ViTs in the classifi-

cation of skin lesion images, highlighting their potential to improve diagnostic accuracy in skin can-

cer detection. The study compares two configurations of pre-trained ViTs, ViT L32 and ViT L16,

against traditional models like tree classifiers and k-nearest neighbors, as well as CNNs. The ViT

L16 model achieved an accuracy of 92.79%, while ViT L32 reached 91.57%. Despite these high

accuracy rates, the recall for melanoma detection was lower, with ViT L16 and ViT L32 achieving

56.10% and 58.54% recall, respectively. These findings highlight the potential of ViTs in enhancing

diagnostic accuracy in medical imaging. Cirrincione et al. (2023) introduced a ViT-based model for

melanoma detection using dermoscopic images. The study utilized the ISIC 2017 Challenge dataset

to train and evaluate the model, focusing on classifying melanoma versus non-cancerous lesions.

The proposed ViT architecture effectively models long-range spatial relationships within images,

20



enhancing classification performance. The best configuration of the ViT model achieved an accu-

racy of 94.8%, with a sensitivity of 92.8%, specificity of 96.7%. This approach demonstrates the

potential of ViTs in improving diagnostic accuracy for melanoma detection. Xie, Wu, Zhu, and Zhu

(2021) introduced a novel Swin-SimAM network for melanoma detection using dermoscopic im-

ages. This approach integrates the Swin Transformer with the SimAM attention module to enhance

feature extraction and focus on critical parts of skin lesions. The model addresses class imbalance

using focal loss, which reduces the impact of non-melanoma classes. Experiments conducted on

the ISIC-2017 dataset demonstrated that the Swin-SimAM network achieved superior performance,

with an accuracy of 90.0% and an AUC of 0.900. This study highlights the effectiveness of com-

bining Swin Transformer and SimAM for improving melanoma detection accuracy.

2.6 Transfer Learning in the Medical Domain

A pivotal aspect of the evolution of AI in medical imaging is the exploration of TL techniques,

which use pre-existing models trained on large datasets to improve the accuracy and efficiency of

models in medical diagnostics. The integration of TL techniques with CNNs and ViT, employ-

ing pre-trained models, has further enhanced their diagnostic accuracy, mitigating the challenges

posed by the limited number of annotated medical datasets and the computational intensity of train-

ing models from scratch. Menegola et al. (2017) explored transfer learning with deep learning for

melanoma screening, evaluating the use of models pre-trained on ImageNet and Retinopathy. They

focused on the benefits of fine-tuning and using deeper models for enhanced diagnostic perfor-

mance. Their findings highlighted a preference for deeper, fine-tuned models trained on ImageNet,

demonstrating significant improvements in accuracy with AUC scores of up to 84.5% on skin lesion

datasets. This study underscores the potential of utilizing transfer learning to improve melanoma

detection through deep learning. Shamshiri, Krzyzak, Kowal, and Korbicz (2023) have extended

the scope of transfer learning research by applying a compatible-domain transfer learning approach

for the classification of breast cancer. They proposed the use of a pre-trained model on a histopatho-

logical image dataset for the classification of breast cancer cytological biopsy samples. By utilizing

a dataset that is more compatible with the target medical domain, they demonstrated that features
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learned during the pre-training phase are more relevant and thus significantly improve the model’s

accuracy. Their findings indicate an impressive enhancement in classification accuracyÐby 6% to

17% over traditional machine learning techniques and about 7% over deep learning methods that did

not employ compatible-domain transfer learning, achieving up to 98.73% validation accuracy and

94.55% test accuracy. Inspired by the work of Shamshiri et al. (2023), our research seeks to explore

the application of compatible-domain transfer learning to the task of melanoma cancer detection.

We plan to employ a range of computational models, including CNNs, ViTs, and hybrid models, to

investigate whether the pre-training on domain-relevant datasets can similarly improve the accuracy

of melanoma classification. To the best of the authors’ knowledge, this study represents the first at-

tempt to apply compatible-domain transfer learning to melanoma detection, potentially pioneering

a new direction in the field and setting a precedent for future research.

2.7 Summary

In summary, this chapter is organized into two primary sections. The first section of this chapter

provides a comprehensive overview of cancer, with a focus on skin cancer, including a detailed ex-

amination of melanoma. It covers melanoma’s characteristics, global statistics, risk factors, and di-

agnostic methods. The second section reviews recent advancements in CAD systems for melanoma

detection. It highlights the application of ML, DL, and ViT in enhancing diagnostic accuracy. Ad-

ditionally, this section highlights the necessity of using TL techniques in medical image analysis to

improve the accuracy and efficiency of diagnostic models. It also reviews different TL approaches,

such as domain-specific transfer learning in medical analysis. All the reviewed research confirms

that CAD systems utilizing CNNs, ViTs, and TL approaches can significantly assist dermatologists

in detecting melanoma accurately and quickly.
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Chapter 3

Methodology

3.1 Introduction

In this chapter, we thoroughly explain the methodology used in our research on melanoma

cancer diagnosis. To thoroughly value our proposed approach and the most accurate model for

melanoma detection, we took a series of essential steps. Section 3.2 provides an overview of our

proposed method, outlining the strategic framework we developed for the comparison between dif-

ferent approaches in this study, we will explain each step separately. In section 3.3, we delve into

the datasets selected for this study, explaining the criteria and reasoning behind their choice. This

section focuses on the target melanoma dataset used for fine-tuning and also elaborates on the three

distinct datasets used during the pre-training phase, highlighting their characteristics. In section 3.4,

we describe the preprocessing steps undertaken, including how the data was divided into training,

validation, and test subsets. Lastly, section 3.5 presents the deep learning architectures utilized,

detailing their implementation and relevance to our study.

3.2 Overview

This research thoroughly evaluates and compares seven distinct deep learning models for the bi-

nary classification of melanoma cancer using a private annotated dataset of melanoma dermoscopic
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images. The models under investigation include VGG16, Inception-V3, MobileNet, two varia-

tions of the ViT model (ViT-B16 and ViT-B32), and two innovative hybrid modelsÐone combining

ViT-B16 with VGG16, and the other integrating ViT-B16 with Inception-V3. Our methodology is

implemented through three carefully crafted scenarios, each designed to assess the models’ perfor-

mance under different transfer learning conditions. Transfer learning is crucial for melanoma cancer

detection due to the limited size of our target melanoma dataset. The following sections provide a

detailed explanation of each scenario.

• First scenario: The first scenario investigates the models’ performance utilizing transfer

learning from the ImageNet dataset, a widely used resource. This scenario explores how

transfer learning from a large, general-purpose dataset can impact our models’ accuracy. All

seven models are initially pre-trained on ImageNet and then meticulously fine-tuned on our

targeted melanoma dataset. This phase is crucial for evaluating the models’ capacity to adapt

and apply transfer learning from a large and general dataset to a specific medical imaging

task.

• Second scenario: In the second scenario, we shift to a more specialized domain for transfer

learning, utilizing the BreakHis dataset, which is focused on breast cancer histopathology.

The models are pre-trained on the BreakHis dataset before fine-tuning on the target melanoma

dataset. The goal of this scenario is to evaluate the effectiveness of transfer learning between

distinct medical domains, investigating whether the knowledge acquired from breast cancer

histopathology can be used to improve melanoma diagnosis.

• Third scenario: For the third and final scenario, we apply domain-specific transfer learning

for Melanoma detection. In this scenario, we pre-train our models on a subset of the ISIC

2019 dataset, which shares the dermatological focus of the target dataset, before fine-tuning

with the target Melanoma dataset. This scenario is designed to assess the impact of trans-

fer learning within the same medical domain on the precision and efficiency of melanoma

detection.

Fig. 3.1 illustrates the difference between the typical TL approach for classifying melanoma
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cancer by using ImageNet dataset and our proposed TL approaches. The typical TL approach high-

lights the effectiveness of using well-known datasets like ImageNet to enhance binary classification

results. To build on this, we propose two methods: medical-domain and domain-specific transfer

learning approaches. For the medical-domain approach, we selected the BreakHis dataset, which

focuses on breast cancer histopathology. This choice explores whether knowledge from a distinct

medical domain can improve melanoma diagnosis accuracy. For the domain-specific approach, we

utilized a custom-made subset of the ISIC 2019 dataset. This strategy investigates whether learning

from the same domain can enhance melanoma diagnosis. To evaluate these proposed TL strate-

gies, we will assess the performance of the seven DL models across all three TL approaches. Our

ultimate goal is to identify the most effective model and transfer learning approach for melanoma

binary classification. This comprehensive methodology allows us to evaluate each model’s potential

and determine the best strategy for improving melanoma diagnosis. All models were developed in

Python using the Keras and TensorFlow libraries.

The method pipeline for addressing the binary classification of melanoma cancer is illustrated

in Fig. 3.2. Our proposed TL approaches are integrated into this pipeline. We utilized three

datasetsÐImageNet, BreakHis, and ISIC 2019Ðfor pre-training our models. In the first step, we

prepared a subset of the ISIC 2019 dataset for binary classification and selected images with 400X

magnification from the BreakHis dataset. Next, we applied data preprocessing steps, including nor-

malization, augmentation, and resizing, to the subsets from BreakHis and ISIC2019, as well as our

target melanoma dataset. In the third step, we pre-trained the models using ImageNet, BreakHis,

and ISIC 2019. Finally, we fine-tuned the models with our target melanoma dataset to perform the

binary classification task. In this study, we applied complete fine-tuning, updating the weights of all

layers throughout the process.

3.3 Datasets

This section provides an in-depth review of each dataset used in this research and its character-

istics. Furthermore, we explain the reasoning behind each dataset selection. This study is structured

around two key phases: pre-training and fine-tuning. Accordingly, the datasets are categorized into
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Figure 3.1: Illustrates both the typical transfer learning approach and our transfer learning approach.
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Figure 3.2: Method pipeline for binary classification of melanoma cancer. The process involves

pre-training models using ImageNet, BreakHis (400X magnification), and a custom-made subset of

ISIC 2019 datasets, followed by fine-tuning with the target melanoma dataset.
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pre-training datasets, used during the initial phase, and the target dataset, employed in the fine-

tuning stage. The pre-training phase utilizes three diverse datasetsÐImageNet, BreakHis, and ISIC

2019Ð each originating from a different domain, which lays the groundwork for our model de-

velopment. The target melanoma dataset, on the other hand, is specifically used in the fine-tuning

phase to refine the model’s accuracy.

3.3.1 Target Dataset

The melanoma dataset was developed at the Warsaw Maria Skøodowska-Curiebreak National

Research Institute of Oncology, Department of Soft Tissue/Bone Sarcoma and Melanoma Gil et

al. (2023). It features 112 RGB images of verruca seborrhoica as non-melanoma examples and

134 images of basal cell carcinoma categorized as melanoma. These images were captured at a

20× magnification using dermoscopy from various body areas. Expert dermatologists annotated the

target dataset using the ABCDE criteria, with confirmation by exact pathomorphological inspection.

The images, stored in JPEG format, were taken at different times and with various resolutions,

leading to a range in image sizes from 767×576 to 4273×2848 pixels. Fig. 3.10 shows some

examples of melanoma and non-melanoma cases in the target dataset.

Figure 3.3: Sample images from the melanoma dataset. From left to right, the first three samples

(a,b, and c) belong to non-melanoma cases, and the next three samples belong to melanoma cases.

3.3.2 Pre-train Datasets

ImageNet

ImageNet is renowned for its extensive collection of approximately 14 million high-resolution

images representing over 21,000 categories. This dataset contains a diverse range of general images,

from common items and animals to more abstract concepts, offering a rich visual foundation Deng
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et al. (2009). The versatility of ImageNet makes it an ideal option for TL, allowing us to fine-tune

our models on a more specialized melanoma dataset, which contains a limited amount of annotated

data. By using the wide variety and large number of images in ImageNet, our models become better

at generalizing, making it a valuable resource for the initial training phase. In Fig. 3.4, you can find

samples of ImageNet images.

Figure 3.4: Sample images from the ImageNet dataset.

BreakHis

BreakHis dataset is a specialized collection of histopathological images for breast cancer re-

search. This dataset is divided into two primary categories: benign and malignant. The benign

category consists of 2,480 samples, while the malignant category comprises 5,429 samples. Each

sample is available at four magnification levels: 40X, 100X, 200X, and 400X. Moreover, this dataset

includes eight subcategories, with the benign and malignant categories each further classified into

four distinct types. The benign category contains adenosis (A), fibroadenoma (F), phyllodes tu-

mor (PT), and tubular adenoma (TA), and the malignant category subgroups are ductal carcinoma

(DC), lobular carcinoma (LC), mucinous carcinoma (MC) and papillary carcinoma (PC). In this

dataset, each image has three RGB channels and a dimension of 700×460 pixels Spanhol et al.

(2016). For the purpose of this study, we selected a subset of 1,820 images for analysis, including
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588 benign and 1,232 malignant samples, all captured at a magnification of 400X. The BreakHis

dataset, like our target melanoma dataset, originates from the medical domain but represents a dif-

ferent form of cancer. By using the BreakHis dataset for the initial training of our models, we are

investigating the efficacy of transfer learning across related yet distinct medical domains; we aspire

to use domain-specific insights derived from breast cancer histopathology for improving melanoma

detection. Fig. 3.5 shows a sample from each sub-category in this dataset.

Figure 3.5: Example images from the BreakHis dataset. Adenosis, Fibroadenoma, Phyllodes Tu-

mor, and Tubular Adenoma are benign while Ductal Carcinoma, Papillary Carcinoma, Mucinous

carcinoma, and are malignant.

ISIC 2019

The ISIC 2019 challenge dataset is a widely used dataset in dermatological diagnosis, including

a vast collection of 25,331 dermoscopic images. This dataset consists of nine diagnostic categories:

Melanoma (MEL), Melanocytic nevus (NV), Basal cell carcinoma (BCC), Actinic keratosis (AK),

Benign keratosis (BKL), Dermatofibroma (DF), Vascular lesion (VASC), Squamous cell carcinoma

(SCC), and an unspecified category (UNK) Codella et al. (2017); Hernandez et al. (2024); Tschandl

et al. (2018). Given the computational demands of training on the entire dataset, we selected six

categories for our study. The Melanoma (MEL) category was chosen due to its direct relevance to
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our research focus in melanoma detection. We grouped together BKL, AK, DF, VASC, and SCC

into a collective non-melanoma category. BKL was included as it aligns with the non-melanoma

lesions present in our target dataset. Additionally, to maintain a balance between melanoma and

non-melanoma samples and to introduce a variety of skin lesion types into our pre-training dataset,

we included AK, DF, VASC, and SCC. Consequently, our dataset comprises 4,522 samples catego-

rized as melanoma and 4,611 samples categorized as non-melanoma. The reason behind utilizing

the ISIC dataset for pre-training lies in assessing the potential benefits of domain-specific transfer

learning. Specifically, we investigate how TL from a dataset within the same domain can affect the

model’s performance when subsequently fine-tuned on our designated target dataset for melanoma

recognition. Fig. 3.6 presents images from the ISIC dataset, providing an example for each category.

Figure 3.6: Representative images from the ISIC dataset illustrating the nine categories: Ac-

tinic keratosis (AK), Basal cell carcinoma (BCC), Benign keratosis (BKL), Dermatofibroma (DF),

Melanoma (MEL), Melanocytic nevus (NV), Squamous cell carcinoma (SCC), Vascular lesion

(VASC), and an unspecified category (UNK).
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3.4 Preprocessing

For this study, three preprocessing steps were implemented to enhance the models’ performance

and generalization ability. The following sections provide a detailed explanation of each step.

3.4.1 Normalization

In our approach, we used normalization for our dataset. We applied normalization to adjust the

pixel values of images to a range of [0, 1], which is crucial for facilitating model convergence during

the training phase. This process can be mathematically represented as follows

x
′
=

x− xmin

xmax − xmin

(1)

where x
′ represents the normalized value, x represents the original pixel value, xmin represents

the minimum pixel value in the dataset, and xmax represents the maximum pixel value in the dataset.

3.4.2 Augmentation

Recognizing the importance of model robustness and generalization, we utilized a data augmen-

tation step exclusively for the training data in our datasets. We first split the data using a stratified

sampling approach to ensure that each subset maintained the same class distribution as the original

dataset. Specifically, we divided the dataset into training, validation, and test sets. Initially, we allo-

cated 20% of the data to the test set. The remaining 80% of the data was then split again, with 20%

of this subset assigned to the validation set and the remaining 80% used for training. After split-

ting the data, we applied data augmentation techniques exclusively to the training set to enhance

the model’s generalization capabilities. For each training example, we generated three augmented

examples using a variety of transformations. These transformations included rotation, width and

height shifts, shear, zoom, and horizontal flips. These augmentations artificially expand the variety

of training data, simulating real-world variations in image orientation, scale, and perspective. This

approach significantly enhances the model’s ability to generalize from the training data to unseen

images.
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3.4.3 Resizing

One of the common challenges in medical image analysis is diversity in image sizes. This

is particularly evident in our target melanoma dataset, which contains dermatoscopic images of

varying dimensions. To address this issue, a critical preprocessing step involves resizing the images

to ensure they meet our models’ input requirements. For this purpose, all images are standardized to

a resolution of 224×224 pixels. This step is vital for facilitating batch processing and ensuring that

the network is trained on a consistent input format, thereby reducing the likelihood of bias towards

specific image sizes.

3.5 Deep Learning Models

Deep learning has significantly impacted the field of skin cancer detection, particularly melanoma,

by enabling more accurate and early diagnosis. These models replicate the neural networks of the

human brain, allowing them to learn complex patterns from extensive datasets. This capability is

crucial for identifying subtle differences in skin lesions that may indicate melanoma. In our study,

we evaluated the performance of seven DL models: VGG16, Inception-V3, MobileNet, two varia-

tions of the ViT model (ViT-B16 and ViT-B32), and two innovative hybrid modelsÐone combining

ViT-B16 with VGG16, and the other integrating ViT-B16 with Inception-V3. Each model offers

unique advantages in terms of architecture and feature extraction capabilities, which are essential

for handling the variability in skin lesion images. Our primary objective is to identify the most pre-

cise model for melanoma detection. The following sections provide detailed explanations of each

model’s architecture and performance, highlighting their contributions to improving melanoma de-

tection. By comparing these models, we aim to advance the development of automated systems that

can assist dermatologists in diagnosing melanoma more accurately and efficiently.

3.5.1 VGG16

Introduced by Simonyan and Zisserman (2015), the VGG16 model represented a major leap

forward in the field of computer vision during the 2014 ImageNet Large Scale Visual Recognition

Challenge (ILSVRC). It set itself apart from earlier models like AlexNet by implementing several
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key innovations. One of the primary advancements of the VGG16 model was its use of multiple 3 x

3 convolutional filters, replacing the larger 11 x 11 and 5 x 5 filters used in previous architectures.

This change allowed for a reduction in computational complexity by decreasing the number of pa-

rameters, while simultaneously enhancing the model’s ability to capture intricate features from input

images. By adopting these smaller filters, VGG16 was able to construct a deeper network, extend-

ing its architecture to between 16 and 19 layers compared to the 8 layers present in AlexNet. This

increased depth allowed the model to learn more complex patterns and hierarchical representations,

which significantly improved its performance in image classification tasks. The uniform structure

of VGG16, characterized by consistent use of convolutional layers followed by max-pooling layers,

contributed to its effectiveness and ease of implementation. Moreover, VGG16 utilized Rectified

Linear Unit (ReLU) activation functions, which played a crucial role in addressing the vanishing

gradient problem, thereby facilitating faster and more efficient training of the deep network. This

combination of architectural choices made VGG16 a foundational model in the realm of deep learn-

ing, influencing subsequent research and development in the field. Its design principles have been

widely adopted and adapted in various applications, underscoring its lasting impact on the advance-

ment of convolutional neural networks.

Figure 3.7: VGG16 Architecture.
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3.5.2 Inception-V3

Inception-V3, introduced by Szegedy et al. (2016), marks a significant advancement in the de-

velopment of Inception networks. This architecture is renowned for its innovative design, which

improves computational efficiency while maintaining high accuracy in image classification tasks.

The model is distinguished by the integration of Inception modules, which consist of parallel con-

volutional layers with filters of varying sizes, such as 1×1 and 3×3, along with max-pooling layers.

Notably, Inception-V3 replaces the 5×5 convolutions used in earlier versions with two consecu-

tive 3×3 convolutions to reduce computational complexity. These modules enable the network

to perform diverse convolution operations efficiently, optimizing parameter usage and minimizing

memory consumption.

Inception-V3 incorporates several improvements over its predecessors. One such enhancement

is the use of factorized convolutions, which break down larger convolutions into smaller, more man-

ageable operations. This approach reduces computational cost and improves the model’s ability to

generalize from the training data. Additionally, Inception-V3 employs batch normalization, which

helps stabilize the learning process and accelerates convergence. Another significant feature of

Inception-V3 is the use of label smoothing, a regularization technique that reduces overfitting by

preventing the model from becoming too confident about its predictions. This technique contributes

to improved generalization performance on unseen data. The architecture also includes an auxil-

iary classifier, which provides additional gradient signals during training, further aiding the learning

process. Overall, Inception-V3’s design reflects a careful balance between model complexity and

computational efficiency, making it a powerful tool for image classification tasks. Its architectural

innovations have set a benchmark in the field of deep learning, influencing subsequent research and

development in convolutional neural networks.

3.5.3 MobileNet

MobileNet, introduced by Howard et al. Howard et al. (2017) in their 2017 paper titled ºMo-

bileNets: Efficient Convolutional Neural Networks for Mobile Vision Applicationsº represents a
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Figure 3.8: Inception modules where each 5×5 convolution is substituted with a pair of 3×3 con-

volutions. Source: Szegedy et al. (2016)

Figure 3.9: Inception modules following the factorization of the n×n convolutions. Source: Szegedy

et al. (2016)
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notable advancement in neural network design specifically tailored for mobile and embedded de-

vices. This architecture is outstanding for its use of depthwise separable convolutions, which dras-

tically reduce the model’s size and computational demands while maintaining robust performance.

Depthwise separable convolutions decompose the standard convolution process into two distinct

stages: a depthwise convolution, which applies a single filter to each input channel independently,

followed by a pointwise convolution that combines these outputs through a 1×1 convolution.

This method significantly lowers the computational burden and the number of parameters, mak-

ing MobileNet highly efficient for applications where computational resources are limited. More-

over, MobileNet introduces a width multiplier, a hyperparameter that allows the model to trade-off

between latency and accuracy, providing flexibility for deployment on devices with varying capabili-

ties. The architecture also includes a resolution multiplier, which adjusts the input image resolution,

further enabling control over the trade-off between speed and accuracy. These innovations make

MobileNet particularly well-suited for real-time applications on mobile and embedded platforms,

where efficiency is paramount. Its design principles have influenced a range of subsequent models,

underscoring its impact on the development of lightweight neural networks.

Figure 3.10: The standard convolutional filters shown in (a) are substituted with two layers: (b)

depthwise convolution and (c) pointwise convolution, which together create a depthwise separable

filter. Source: Howard et al. (2017); Wang et al. (2020)
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Figure 3.11: MobileNet Architecture. Source: Wang et al. (2020)

3.5.4 Vision Transformers

In our study, we employed the ViT architecture, which represents a substantial shift from tra-

ditional CNNs. The ViT architecture introduces a groundbreaking approach by leveraging self-

attention mechanisms, a technique originally designed for natural language processing, and adapt-

ing it for image classification tasks. This innovative method involves dividing images into smaller

segments, referred to as patches, which allows the ViT to evaluate and prioritize the significance

of various regions within an image. This approach enables a more detailed and context-aware ex-

amination of visual information, allowing the model to capture complex and intricate relationships

within the data Dosovitskiy et al. (2020). The Vision Transformer operates by first converting each

image into a sequence of flattened patches, similar to the way words are processed in a sentence.

Each patch is then linearly embedded and combined with positional embeddings to retain spatial

information. These embeddings are processed through a series of transformer layers, which apply

self-attention to model the dependencies between patches. This mechanism allows the ViT to focus

on different parts of the image dynamically, enhancing its ability to recognize patterns and features

across the entire image.

In our research methodology, we implemented two distinct configurations of the Vision Trans-

former: ViT-B16 and ViT-B32. The ViT-B16 configuration divides images into 16×16 pixel patches,

while the ViT-B32 configuration processes images using larger 32×32 pixel patches. These config-

urations allow for flexibility in balancing computational efficiency with the level of detail captured
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from the images. By employing these configurations, our study aims to explore the effectiveness of

the Vision Transformer in capturing complex patterns and relationships in visual data, contributing

to advancements in melanoma detection.

Figure 3.12: Vision transformers model overview. Source: Dosovitskiy et al. (2020)

3.5.5 Hybrid models

In our research, we developed two hybrid models to explore their effectiveness in detecting

melanoma. The goal of creating these models is to combine the strengths of CNNs with ViT archi-

tectures, using the advantages of both approaches. By integrating the feature extraction capabilities

of CNNs with the self-attention mechanisms of ViTs, these hybrid models aim to enhance diagnostic

accuracy and robustness. These models are part of a broader set of architectures in our comparative

analysis. We will assess their performance against other well-established models to validate their

diagnostic capabilities and determine their potential benefits in melanoma detection.
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ViT-B16-VGG16

The first hybrid model in our study, ViT-B16-VGG16, represents an innovative integration of

the ViT-B16 and VGG16 architectures. This model is designed to harness the strengths of both

architectures, combining the sophisticated self-attention mechanism of ViT-B16, known for its ef-

fectiveness in image classification tasks, with the robust feature extraction capabilities of VGG16.

The ViT model’s self-attention mechanism allows it to focus on different parts of the image, captur-

ing complex relationships and dependencies effectively.

To adapt these architectures for our binary classification task, we made specific modifications.

We removed the top layers of both models to customize them for our needs. The outputs from each

model were then flattened to create a unified feature set. These features were subsequently merged

and passed through a dense layer with ReLU activation, which enhances the model’s ability to learn

complex patterns by introducing non-linearity. To mitigate the risk of overfitting, a dropout layer

was incorporated, which randomly deactivates a portion of the neurons during training. The final

layer of the model employs a sigmoid activation function, which is ideal for binary classification

tasks.

Figure 3.13: ViT-B16-VGG16 Model architecture.

ViT-B16-Inception-V3

In this study, we present ViT-B16-Inception-V3 as our second hybrid model, designed to merge

the capabilities of Inception-V3 with the ViT to improve image analysis. Inception-V3 is cele-

brated for its ability to efficiently and accurately process visual information, employing a network
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of convolutional layers and inception modules that effectively extract key features from images. On

the other hand, the ViT is adept at identifying intricate patterns using its self-attention mechanism,

which enables it to concentrate on various segments of an image and discern complex relationships

within the data.

To develop this hybrid model, we started by eliminating the top layers of both Inception-V3 and

ViT, customizing them for our binary classification objective. The outputs from these architectures

were then flattened and integrated to create a unified feature representation. This combined output

was fed into a dense layer with ReLU activation, which adds non-linearity and boosts the model’s

capacity to learn sophisticated features. To reduce the likelihood of overfitting, a dropout layer was

incorporated, which randomly disables a portion of neurons during training, enhancing the model’s

robustness and ability to generalize. The last layer of the ViT-B16-Inception-V3 model uses a

sigmoid activation function, which is particularly suited for binary classification tasks as it outputs

probabilities that can be interpreted as class predictions.

Figure 3.14: ViT-B16-Inception-V3 model architecture.

3.6 Summary

In this chapter, we presented a detailed explanation of the methodology utilized in this study.

Our research focused on comparing three distinct TL techniques for melanoma binary classification,

each implemented in a separate scenario. To evaluate these TL techniques, we utilized seven DL

models, carefully explaining each scenario and its corresponding TL approach. We used real-world

41



dermoscopic melanoma images to ensure an effective and realistic evaluation of these scenarios and

models. Section 3.2 presents a detailed pipeline of our melanoma detection process, outlining all the

steps involved in our study. This section also includes a comparison of the different TL approaches

we investigated. In section 3.3, we discuss the datasets used for both pre-training and fine-tuning

stages, providing insight into the data that formed the foundation of our research. Then in section

3.4, we have meticulously described all processing steps undertaken in this study. Furthermore,

Section 3.5 offers an in-depth explanation of each deep learning model employed in our research.

This includes a discussion of their architectures and key features.
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Chapter 4

Experimental Results

4.1 Introduction

This chapter presents the results from our comprehensive study on melanoma detection using

various DL models and TL techniques. Our research aimed to evaluate the effectiveness of different

approaches in accurately classifying melanoma from dermoscopic images. As mentioned earlier, we

explored three distinct TL scenarios, each implemented with seven DL models, to identify the most

effective method for this crucial medical imaging task. In the following sections, we will present

our experimental results and provide a thorough analysis of each model’s performance across the

different scenarios. We will examine key metrics like accuracy, loss, precision, and recall to evaluate

how well the models detect melanoma. Additionally, we will compare our results with recent studies

that used the same dataset. By sharing these findings, we hope to contribute valuable insights to the

field of automated melanoma detection and lay the groundwork for future research in this area.

4.2 Results

In this section, we analyze the outcomes of melanoma detection using seven widely recog-

nized deep learning architectures: Inception-V3, VGG16, MobileNet, and two versions of the Vi-

sion Transformer, ViT-B16 and ViT-B32, and two hybrid models, ViT-B16-VGG16 and ViT-B16-

Inception-V3. This study, along with certain parts of its findings, has been published in Haghshenas
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et al. (2024).

In our research, we employed a 5-fold cross-validation technique to ensure a comprehensive and

reliable assessment of our models. This method allowed us to maximize the use of our dataset for

training, validation, and testing purposes. In our implementation of the 5-fold cross-validation, we

divided our dataset into five segments. Our training process involved five iterations, where we used

four segments for training and the remaining segment for testing. We added an additional step by

randomly allocating 20% of the training data for validation in each iteration. This approach ensures

that every data sample serves as a test sample once and contributes to the training process four times.

The 5-fold cross-validation method proved particularly valuable in evaluating the consistency of our

models’ performance and their ability to generalize to novel data. By implementing this technique,

we aimed to minimize overfitting risks and achieve a more accurate estimation of our models’

capabilities. Furthermore, it enabled us to identify potential variations in our results, which is

essential for assessing the robustness of our methodology.

Table 4.1 presents an overview of the advanced CNNs utilized across our three experimental

scenarios. These models are arranged in ascending order based on their parameter count, providing

insight into their relative complexity. We selected a diverse range of CNNs, varying in complexity

and depth, to identify the most effective model for melanoma detection. Additionally, Table 4.2

provides a comprehensive overview of the ViT models examined in this study. To further explore

the potential of combining different architectures, we also investigated two hybrid models: ViT-

B16-VGG16 and ViT-B16-Inception-V3. Each of these architectures brings unique strengths to the

task of melanoma detection. By comparing their performance across various metrics, we aimed to

identify the most effective approach for this critical medical imaging task. Detailed descriptions of

all these architectures are provided in the methodology chapter.

Table 4.1: The details of the cutting-edge CNNs investigated in our research.

Model Parameters Depth Size

MobileNet 4.2 M 28 16 MB

Inception-V3 23.9 M 48 92 MB

VGG16 138.4 M 16 528 MB
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Table 4.2: The details of the Vision Transformer models we used in this study.

Model ViT Variant Patch Size Parameters Layers Heads Hidden Size MLP Size

ViT-B16 ViT-Base 16×16 86M 12 12 768 3072

ViT-B32 ViT-Base 32×32 86M 12 12 768 3072

Table 4.3 presents a detailed overview of the experimental configuration and training parame-

ters utilized in this study. This comprehensive table includes essential information such as batch

sizes, learning rates, and optimization techniques implemented across our various model archi-

tectures. To ensure consistency and facilitate meaningful comparisons, we maintained a uniform

experimental setup for all models throughout our research. We selected the Adam optimizer for its

adaptive learning rate capabilities, with an initial learning rate of 10−5. This choice allowed for

efficient optimization across different network structures. For all training iterations, we employed

binary cross-entropy as the loss function, which is particularly well-suited for our binary classi-

fication task of distinguishing between melanoma and non-melanoma cases. To mitigate the risk

of overfitting, we implemented an early stopping mechanism with a patience of 10 epochs. Addi-

tionally, we incorporated a learning rate scheduler that reduced the rate by 10% every 10 epochs.

This gradual refinement of the learning rate allowed for more precise optimization as training pro-

gressed. The models underwent training for up to 20 epochs, with the training process executed on

GPU-accelerated environments to enhance computational time.

Table 4.3: The experimental settings employed.

Parameters Values

Optimizer Adam

Learning Rate 10−5

Loss Function Binary Cross-Entropy

Batch Size 32

Epochs 20

Early Stopping Patience 10

Execution Environment GPU
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4.2.1 Performance Metrics

To evaluate our models’ performance, we employed a diverse set of performance metrics that

are standard in medical image analysis research. These carefully chosen metrics offer a comprehen-

sive view of each model’s capabilities, allowing for a thorough examination of their effectiveness

in melanoma detection tasks. By utilizing these well-established evaluation metrics, we ensure a

balanced analysis of our models’ performance, providing insight into various aspects of their per-

formance. The performance metrics we used are accuracy, area under the curve(AUC), precision,

and recall. In the following sections, we offer a detailed explanation of each metric

Accuracy:

This metric reflects the ratio of correctly identified cases to the total cases evaluated, offering a

general overview of the model’s effectiveness.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Area Under the Curve (AUC):

This metric assesses the model’s ability to discriminate between classes, with an AUC of 1.0

indicating perfect classification and 0.5 suggesting no discriminative power.

Precision:

Precision calculates the proportion of true positive findings out of all positives predicted by the

model, indicating the reliability of positive classifications. The precision score ranges from 0 to 1,

where a score of 1 indicates that all positive predictions were correct, and a score of 0 indicates that

all samples labeled as positive are negative.

Precision =
TP

TP + FP
(3)
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Recall:

Recall evaluates the percentage of true positives, highlighting its ability to detect all true in-

stances. The range of recall is from 0 to 1. A recall score of 1 means the model correctly identified

all positive cases. In contrast, a score of 0 means the model did not correctly identify any positive

cases.

Recall =
TP

TP + FN
(4)

F1-score:

The F1-score represents the harmonic mean of precision and recall, providing a balanced mea-

sure of model performance. This metric is particularly useful for imbalanced datasets, as it considers

both false positives and false negatives. The F1-score ranges from 0 to 1, with 1 indicating optimal

performance.

F1-score = 2×
Precision × Recall

Precision + Recall
(5)

4.2.2 Attention Visualization in Vision Transformer Architecture

To gain a deeper understanding of the decision-making process in the ViT model, we generated

attention map plots for a selection of melanoma and non-melanoma images from our target dataset.

Using the ViT-Keras library in Python, we visualized the regions within each input image that the

model identified as most influential for classification. The process of creating these attention maps

involves several key steps, utilizing the self-attention mechanism fundamental to transformer archi-

tectures. Initially, the input image is divided into a grid of fixed-size patches, which are then linearly

embedded and combined with position embeddings. These embedded patches are processed through

a series of transformer encoder layers, each containing a multi-head self-attention mechanism. To

generate the attention map, we focus on the attention weights from the final layer of the transformer

encoder, as these weights represent the model’s assessment of each patch’s relevance to the overall

classification decision. The attention map generation process involves the following steps:

47



(1) Extraction of attention weights from each TransformerBlock in the model.

(2) Reshaping of the weights to separate layers, heads, and attention matrices.

(3) Averaging of weights across all attention heads to obtain a single set of attention scores.

(4) Addition of an identity matrix to the attention matrix to account for residual connections,

followed by re-normalization of the weights.

(5) Recursive multiplication of weight matrices, starting from the last layer, to combine attention

information from all layers.

(6) Extraction and resizing of the final attention map to match the original image dimensions.

The resulting attention map is then applied to the input image, with brighter areas corresponding to

regions of higher importance and darker areas indicating less relevant regions. This visualization

technique enables us to identify the areas of the image that the model considers most important for

classification. Our analysis revealed that the ViT model successfully identified key features crucial

for distinguishing between melanoma and non-melanoma cases. Fig. 4.1 presents three sample skin

lesion images from our target dataset, with the top two samples representing non-melanoma cases

and the third sample illustrating a melanoma case. These attention maps demonstrate the model’s

remarkable precision in locating the lesions and its ability to distinguish these lesions from non-

relevant background elements, such as hair. This illustrates the model’s proficiency in highlighting

crucial diagnostic indicators while effectively filtering out irrelevant background elements. Beyond

showcasing the model’s precise decision-making, these visualizations offer valuable insights into its

internal processes, providing essential interpretability crucial for medical applications. By examin-

ing these attention maps, dermatologists and researchers can not only validate the model’s decisions

against established diagnostic criteria for melanoma but also gain new insights into subtle patterns

and features that may inform future diagnostic practices or research.

4.2.3 Results for the First Scenario

In our first experimental scenario, we evaluated the performance of models pre-trained on Im-

ageNet and subsequently fine-tuned on our private annotated melanoma dataset. This approach
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Figure 4.1: Attention Visualization in Vision Transformer Architectures: The top two samples rep-

resent non-melanoma cases, while the third sample illustrates a melanoma case.
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allowed us to use the general feature extraction capabilities developed on a large-scale dataset and

adapt them to our specific melanoma detection task.In this study, we employed a complete fine-

tuning strategy. In this approach, we adjusted all layers of the networks, allowing the models to

fully adapt to the characteristics of melanoma images. This comprehensive fine-tuning process was

applied consistently across all architectures to ensure a fair comparison.To ensure the robustness of

our results, we utilized k-fold cross-validation. This technique provides a more reliable estimate of

model performance by reducing the impact of data partitioning bias. The results presented in Table

4.4 reflect the average performance across all folds, offering a comprehensive view of each model’s

capabilities. Among the various architectures tested, the Vision Transformer, ViT-B16, emerged as

the top-performing model in this scenario. It achieved an impressive average accuracy of 97.97%

across the k-fold cross-validation, surpassing the performance of other models, including traditional

CNNs. The performance metrics for all models are detailed in Table 4.4, providing a comprehensive

overview of the outcomes in this first scenario. Additionally, Fig. 4.3 illustrates the progression of

accuracy and loss metrics over the course of training epochs.

Table 4.4: The classification results of models pre-trained on the ImageNet and fully fine-tuned (all

layers) on the private annotated melanoma dataset.

Model Ave. Accuracy AUC Precision Recall F1-Score Loss

ViT-B16 97.97% 0.9925 0.9857 0.9772 0.9814 0.0976

ViT-B16-Inception-V3 96.74% 0.9911 0.9712 0.9698 0.9705 0.1193

ViT-B16-VGG16 96.33% 0.9907 0.9519 0.9852 0.9683 0.1243

ViT-B32 95.76% 0.9974 0.9575 0.9653 0.9614 0.1623

VGG16 90.24% 0.9567 0.8993 0.9256 0.9123 0.2896

Inception-V3 87.39% 0.9469 0.8689 0.9100 0.8890 0.2796

MobileNet 85.49% 0.9492 0.9058 0.8212 0.8614 0.3132

4.2.4 Results for the Second Scenario

In our second experimental scenario, we explored the impact of medical domain pre-training on

model performance. Table 4.5 presents the classification results for models initially pre-trained on

histopathological images from the BreakHis dataset before being fine-tuned on our private annotated

melanoma dataset. This approach allowed us to assess the potential benefits of using a more closely

related pre-training dataset for melanoma detection. Maintaining consistency with our first scenario,
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Figure 4.2: Accuracy of models (first scenario).

Figure 4.3: Loss and accuracy curves plotted against the number of epochs, corresponding to the

training fold with the highest performance in the first scenario.
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we applied complete fine-tuning to all model layers and employed 5-fold cross-validation to ensure

result reliability. All the results are based on the unseen test set data, providing a robust evaluation of

the models’ generalization capabilities. This methodology ensures that our findings are both reliable

and applicable to real-world scenarios. The results reveal interesting patterns in model performance.

Once again, the Vision Transformer architecture, specifically the ViT-B16 model, demonstrated

superior performance. It achieved an average accuracy of 86.59% across the 5-fold cross-validation,

outperforming other tested models. The performance metrics for all evaluated models are detailed

in Table 4.5, offering a comprehensive view of the results in this second scenario. Fig. 4.5 presents

the evolution of accuracy and loss metrics across the training epochs for the second scenario. These

graphs offer a visual representation of the models’ learning processes, revealing important trends in

their performance as training advances.

Table 4.5: The classification results of models pre-trained on BreakHis and fully fine-tuned (all

layers) on the private annotated melanoma dataset.

Model Ave. Accuracy AUC Precision Recall F1-Score Loss

ViT-B16 86.59% 0.9336 0.8857 0.8735 0.8796 0.3959

ViT-B32 85.07% 0.9541 0.9145 0.8148 0.8618 0.5051

Inception-V3 84.59% 0.9176 0.9104 0.7991 0.8511 0.5271

ViT-B16-Inception-V3 84.58% 0.9028 0.9083 0.7974 0.8492 0.5138

ViT-B16-VGG16 83.33% 0.9308 0.8662 0.8444 0.8552 0.4130

MobileNet 80.18% 0.8661 0.8357 0.795 0.8148 0.4598

VGG16 77.62% 0.8565 0.8188 0.7530 0.7845 0.4973

4.2.5 Results for the Third Scenario

In our final experimental scenario, we investigated the impact of pre-training on a domain-

specific dataset closely related to our target task. Table 4.6 presents the classification results for

models initially pre-trained on the ISIC 2019 dataset before fine-tuning on our private annotated

melanoma dataset. Consistent with our previous scenarios, we employed complete fine-tuning

across all model layers and utilized 5-fold cross-validation to ensure robust evaluation. All reported

results are based on unseen test set data, providing a reliable measure of the models’ generaliza-

tion capabilities. In this scenario, the Vision Transformer, ViT-B32, out performed other models,

achieving an impressive average accuracy of 90.95% across the 5-fold cross-validation, surpassing
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Figure 4.4: Accuracy of models (second scenario).

Figure 4.5: Loss and accuracy curves plotted against the number of epochs, corresponding to the

training fold with the highest performance in the second scenario.
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the performance of other tested architectures. Figure 4.7 illustrates the progression of accuracy and

loss metrics over the training epochs for this scenario.

Table 4.6: The classification results of models pre-trained on the ISIC 2019 dataset and fully fine-

tuned (all layers) on the private annotated melanoma dataset.

Model Ave. Accuracy AUC Precision Recall F1-Score Loss

ViT-B32 90.95% 0.9548 0.9220 0.9169 0.9194 0.3835

ViT-B16-VGG16 87.83% 0.9440 0.9257 0.8510 0.8868 0.3686

ViT-B16 87.81% 0.9345 0.9606 0.8140 0.8812 0.4782

Inception-V3 86.99% 0.9456 0.9266 0.8282 0.8746 0.3392

ViT-B16-Inception-V3 85.42% 0.9256 0.8761 0.8507 0.8632 0.4282

VGG16 81.27% 0.9082 0.9141 0.7308 0.8122 0.4485

MobileNet 73.58% 0.7983 0.8466 0.6366 0.7267 0.5860

Figure 4.6: Accuracy of models (third scenario).

4.3 Discussion

In the field of medical image classification, particularly for melanoma detection, the limited

availability of large-scale annotated datasets cause a significant challenge for training deep learning
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Figure 4.7: Loss and accuracy curves plotted against the number of epochs, corresponding to the

training fold with the highest performance in the third scenario.

models from scratch. To address this limitation, transfer learning has emerged as a popular and

effective strategy. Traditionally, models pre-trained on the ImageNet dataset have been widely

adopted for various computer vision tasks, including medical image analysis. However, our study

takes a novel approach by exploring the potential of domain-specific transfer learning in melanoma

detection. We propose and evaluate two innovative transfer learning strategies using specialized

medical datasets: the BreakHis dataset, and the ISIC 2019 dataset.

We conducted a comprehensive evaluation of seven deep learning models across three different

TL approaches. This multifaceted methodology allows us to compare the effectiveness of different

TL strategies and also facilitates the identification of the most effective model for melanoma diagno-

sis. The performance metrics presented in Table 4.8 offer significant insights into the efficacy of the

three transfer learning approaches applied to melanoma detection. These approaches utilize models

pre-trained on ImageNet, BreakHis, and ISIC 2019, providing a comprehensive comparison across

different domains. The differences in pre-train dataset size, as outlined in Table 4.7, play a crucial

role in the models’ ability to generalize and perform well in the target melanoma classification task.

ImageNet, with its vast dataset size of 14 million samples, offers a highly diverse range of im-

ages, enabling models pre-trained on it to develop a broad understanding of visual patterns. This
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Table 4.7: Number of samples in pre-training datasets.

Dataset Number of samples

ImageNet 14 Million

BreakHis 2259

ISCI 2019(Custom-made subset) 9133

advantage is clearly reflected in the performance of models like ViT-B16, which achieved an av-

erage accuracy of 97.97%, an AUC of 0.9925, and precision of 0.9857. The extensive size of the

ImageNet dataset likely enhances the generalization abilities seen in this scenario, especially for

transformer-based models like ViT-B16. The hybrid models, such as ViT-B16-Inception-V3 and

ViT-B16-VGG16, also performed well, indicating that combining Vision Transformers with tradi-

tional CNN architectures can be beneficial when using such a large-scale dataset. These findings

confirm the effectiveness of using ImageNet pre-training for medical image analysis, particularly

melanoma detection.

In contrast, the BreakHis dataset, with only 2,259 samples, represents a much smaller and more

domain-specific dataset focused on breast cancer histopathological images. Despite its smaller size,

pre-training on BreakHis allowed the ViT-B16 model to maintain competitive performance, achiev-

ing an accuracy of 86.59% and an AUC of 0.9336. The relatively smaller size of BreakHis likely

limited the ability of certain models, such as VGG16, which only achieved 77.62% accuracy and

an AUC of 0.8565. This suggests that while medical domain pre-training has its merits, it can also

be constrained by the limited data available for certain diseases. Nonetheless, transformer-based

models appear to benefit even from limited-sized medical domain datasets like BreakHis, further

highlighting their robustness across different dataset sizes and domains.

The custom-made subset of ISIC 2019 dataset, with 9,133 samples, falls between ImageNet

and BreakHis in terms of size, yet it is closely aligned with the target task of melanoma detection.

Pre-training on ISIC 2019 led to strong results, particularly for ViT-B32, which achieved the highest

accuracy of 90.95% and an AUC of 0.9548. The recall of 0.9169 for ViT-B32 suggests that pre-

training on a domain-specific dataset greatly enhances the model’s sensitivity to melanoma cases.

While the dataset is significantly smaller than ImageNet, the domain alignment between ISIC 2019
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and melanoma detection likely contributed to the model’s ability to generalize well on the target

task. The performance of hybrid models, particularly ViT-B16-VGG16, further underscores the

value of specialized pre-training, as this model achieved an AUC of 0.9440 and precision of 0.9257,

demonstrating strong performance across key metrics.

Overall, this analysis underscores the critical importance of dataset size and domain relevance

in enhancing transfer learning for melanoma detection. ImageNet, as a large-scale and diverse

dataset, provides models with the ability to capture complex and varied visual patterns, facilitat-

ing strong generalization across a wide range of tasks. This adaptability makes it an excellent

choice for pre-training in transfer learning applications. In contrast, BreakHis, a dataset focused on

histopathological images of breast cancer, is the smallest among the three datasets utilized across

three distinct transfer learning scenarios in this study. As a result, it achieved the lowest performance

across all scenarios. Moreover, while BreakHis is a medical dataset, its limited domain relevance

to melanoma detectionÐdue to substantial differences between histopathological and dermoscopic

imagesÐsignificantly diminishes its effectiveness. This lack of domain alignment, combined with

its small size, further constrains its utility as a pre-training dataset for melanoma diagnosis. On the

other hand, ISIC 2019, a domain-specific dataset focused on dermoscopic images of skin lesions,

is closely aligned with the target task of melanoma detection. Its stronger domain relevance and

larger sample size compared to BreakHis enable models to extract domain-specific features more

effectively, resulting in superior performance for melanoma detection compared to BreakHis. Ad-

ditionally, the results suggest that vision transformers demonstrate exceptional performance across

all scenarios, underscoring their potential as a powerful tool for melanoma classification tasks.

Table 4.10 compares the findings of this study with previous research using the same dataset. A

prior study, Gil et al. (2023), achieved an accuracy of 98.6% on the same private target dataset using

a deep ensemble method comprising nine CNN models: GoogleNet, Inceptionv4, DenseNet201,

ResNet50, InceptionResNetv2, NasNetlarge, EfficientNetb0, AlexNet, and ShuffleNet. Although

our study’s best accuracy of 97.97% is slightly lower than the 98.6% achieved by the ensemble

approach in Gil et al. (2023), it is noteworthy for utilizing a single model rather than an ensem-

ble of nine complex CNN models. This highlights the efficiency of our approach, which requires

significantly fewer computational resources, making it highly practical for real-world applications.
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Table 4.8: Summary of results from three transfer learning scenarios: 1) Models pre-trained on

ImageNet, 2) Models pre-trained on BreakHis, and 3) Models pre-trained on ISIC 2019. All models

were fully fine-tuned on the target melanoma dataset.

TL Approach Model Ave. Accuracy AUC Precision Recall F1-Score Loss

ImageNet
ViT-B16 97.97% 0.9925 0.9857 0.9772 0.9814 0.0976

ViT-B16-Inception-V3 96.74% 0.9911 0.9712 0.9698 0.9705 0.1193

ViT-B16-VGG16 96.33% 0.9907 0.9519 0.9852 0.9683 0.1243

ViT-B32 95.76% 0.9974 0.9575 0.9653 0.9614 0.1623

VGG16 90.24% 0.9567 0.8993 0.9256 0.9123 0.2896

Inception-V3 87.39% 0.9469 0.8689 0.9100 0.8890 0.2796

MobileNet 85.49% 0.9492 0.9058 0.8212 0.8614 0.3132

BreakHis
ViT-B16 86.59% 0.9336 0.8857 0.8735 0.8796 0.3959

ViT-B32 85.07% 0.9541 0.9145 0.8148 0.8618 0.5051

Inception-V3 84.59% 0.9176 0.9104 0.7991 0.8511 0.5271

ViT-B16-Inception-V3 84.58% 0.9028 0.9083 0.7974 0.8492 0.5138

ViT-B16-VGG16 83.33% 0.9308 0.8662 0.8444 0.8552 0.4130

MobileNet 80.18% 0.8661 0.8357 0.795 0.8148 0.4598

VGG16 77.62% 0.8565 0.8188 0.7530 0.7845 0.4973

ISIC2019

ViT-B32 90.95% 0.9548 0.9220 0.9169 0.9194 0.3835

ViT-B16-VGG16 87.83% 0.9440 0.9257 0.8510 0.8868 0.3686

ViT-B16 87.81% 0.9345 0.9606 0.8140 0.8812 0.4782

Inception-V3 86.99% 0.9456 0.9266 0.8282 0.8746 0.3392

ViT-B16-Inception-V3 85.42% 0.9256 0.8761 0.8507 0.8632 0.4282

VGG16 81.27% 0.9082 0.9141 0.7308 0.8122 0.4485

MobileNet 73.58% 0.7983 0.8466 0.6366 0.7267 0.5860
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Figure 4.8: Comparison of models across scenarios.
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Table 4.9: Detailed Overview of State-of-the-Art Studies.

Author Method Best Performed

Model

Dataset Classification Best

Results

(ACC.)

Belattar et al.

(2022)

Baseline CNN, In-

ceptionV3,ResNet50,

VGG16, Xception, Mo-

bileNetV2, DenseNet201

Baseline CNN ISIC 2019 Binary

(Melanoma/Nevus)

98.9%

Hosseinzadeh

Kassani and

Hosseinzadeh

Kassani

(2019)

AlexNet,VGGNet16, VG-

GNet19,ResNet50, Xcep-

tion

ResNet50 ISIC 2018 Multi-class 92.08%

Faghihi et al.

(2024)

VGG16, VGG19 VGG19 ISIC Binary

(Melanoma/Benign)

98.1%

Arshed et al.

(2023)

ViT,ResNet50,

ResNet101,ResNet152,

ResNet50V2,VGG16,

ResNet101V2,VGG19,

ResNet152V2,

DenseNet121,

DenseNet169

ViT HAM10000

& ISIC

Multi-class 92.14%

Kruk et al.

(2015)

SVM and RF SVM Private

Melanoma

dataset

Binary

(Melanoma/Benign)

93.8 %

Gil et al.

(2023)

Shallow Ensemble (SVM,

RF, Softmax) and deep

ensemble including nine

deep CNN models

Deep ensemble Private

Melanoma

dataset

Binary

(Melanoma/Benign)

98.6%

Proposed ViT-B16,ViT-B32,

Inception-V3,VGG16,

MobileNet, and two

hybrid models, ViT-B16-

VGG16 and ViT-B16-

Inception-V3

ViT-B16 Private

Melanoma

dataset

Binary

(Melanoma/Benign)

97.97%

60



Table 4.10: Comparison of this study with previous research using the same dataset.

Author Classification Method Evaluation Method Best Results

(ACC.)

Kruk et al. (2015) SVM and RF K-fold CV 93.8 %

Gil et al. (2023) Shallow Ensemble (SVM, RF, Softmax)

and deep ensemble including nine deep

CNN models

Mean of 10 experiments 98.6%

Proposed ViT-B16, ViT-B32, Inception-V3,

VGG16, MobileNet, and two hybrid

models, ViT-B16-VGG16 and ViT-B16-

Inception-V3

K-fold CV 97.97%

4.4 Summary

This chapter presents a comprehensive analysis of our research on melanoma detection using

advanced deep learning models and transfer learning techniques. Our study explored three distinct

transfer learning scenarios, each implemented across seven different deep learning architectures, to

identify the most effective approach for accurate melanoma classification from dermoscopic images.

We begin by introducing the performance metrics used to evaluate our models, including accuracy,

precision, recall, and AUC. These metrics provide a detailed view of each model’s capabilities in

distinguishing between melanoma and non-melanoma cases. A unique aspect of our study is the

attention maps visualization in Vision Transformer architectures, offering insights into the model’s

decision-making process and highlighting the areas of focus during image analysis. The results are

presented for each of the three scenarios: models pre-trained on ImageNet and fine-tuned on our

private melanoma dataset; models pre-trained on histopathological images (BreakHis) before fine-

tuning; and models pre-trained on the ISIC 2019 dataset prior to fine-tuning. Each scenario’s results

are thoroughly analyzed, comparing the performance of different architectures and highlighting the

best-performing models. We observe that the Vision Transformer models consistently demonstrate

superior performance across scenarios, with the ViT-B16 model achieving particularly impressive
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results. The chapter concludes with a discussion section, where we interpret our findings in the con-

text of existing literature and explore the implications for future research in automated skin cancer

detection. We also address the strengths and limitations of our approach, providing a balanced view

of our contribution to the field.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The early and precise detection of melanoma is crucial for improving patient survival rates.

In this research, we explored three distinct transfer learning scenarios across seven different deep

learning architectures to evaluate the effectiveness of various TL approaches for melanoma diagno-

sis using a private dataset of dermoscopic melanoma images. We applied meticulous pre-processing

techniques, including normalization, resizing, and augmentation, to prepare the dataset. To en-

sure robustness, we employed k-fold cross-validation, which provided reliable measures of model

performance. Our results reveal that the Vision Transformer model, ViT-B16, demonstrated ex-

ceptional performance in the first scenario when pre-trained on ImageNet, achieving an accuracy

of 97.97% and an AUC of 0.9925. Another Vision Transformer variant, the ViT-B32 model, also

showed strong results in the first scenario with an accuracy of 95.76%, outperforming traditional

CNN models such as Inception-V3, VGG16, and MobileNet in both accuracy and AUC. These

findings underscore the potential of Vision Transformers to enhance melanoma detection, surpass-

ing traditional CNNs, which generally exhibited lower accuracy and higher loss rates. Furthermore,

our findings highlight the critical importance of pre-training dataset selection in determining model

effectiveness. Models pre-trained on the large-scale, diverse ImageNet dataset demonstrated strong

generalization capabilities, with ViT-B16 achieving the highest accuracy. In contrast, models pre-

trained on the domain-specific ISIC 2019 dataset excelled in recall and precision metrics compared
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to those pre-trained on the BreakHis dataset. The ISIC 2019 dataset’s closer alignment with the task

of melanoma detection, combined with its larger sample size relative to BreakHis, enabled models

to extract more relevant features. These results highlight the significance of dataset size and domain

relevance in pre-training datasets, particularly for improving performance in specialized tasks such

as melanoma classification.

5.2 Future Work

Future research should focus on optimizing ViT models by fine-tuning hyperparameters to im-

prove precision and recall in melanoma detection. Although ViT models have already demonstrated

outstanding performance, further investigation into hyperparameter adjustments could lead to even

greater improvements in accuracy. Additionally, a detailed study of the impact of preprocessing

techniques, such as image resizing, would offer valuable insights for enhancing model performance.

Future studies could also explore using Generative Adversarial Networks (GANs) to create artifi-

cial melanoma images, addressing the challenge of limited annotated data and potentially enhancing

model generalizability. Furthermore, incorporating ensemble learning techniques, such as majority

voting, to aggregate predictions from multiple deep learning models could provide a more robust

and accurate melanoma classification system. Incorporating these advanced models into clinical ap-

plications could revolutionize melanoma diagnostics, ultimately leading to better patient outcomes

and care.
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Haghshenas, F., Krzyżak, A., & Osowski, S. (2024). Comparative study of deep learning models

in melanoma detection. In Artificial Neural Networks in Pattern Recognition (ANNPR) (pp.

121±131). Springer, Cham. doi: https://doi.org/10.1007/978-3-031-71602-7 11

Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5),

646-674. doi: https://doi.org/10.1016/j.cell.2011.02.013

Hekler, A., Utikal, J. S., Enk, A. H., Solass, W., Schmitt, M., Klode, J., . . . Brinker, T. J.

(2019). Deep learning outperformed 11 pathologists in the classification of histopathological

melanoma images. European Journal of Cancer, 118, 91-96. doi: https://doi.org/10.1016/

j.ejca.2019.06.012

Hernandez, C., Combalia, M., Podlipnik, S., Codella, N., Rotemberg, V., Halpern, A., . . . Malvehy,

J. (2024). Bcn20000: Dermoscopic lesions in the wild. Scientific Data, 11(1), 641. doi:

https://doi.org/10.1038/s41597-024-03387-w

Hosny, K. M., Kassem, M. A., & Foaud, M. M. (2018). Skin cancer classification using deep

learning and transfer learning. In 9th Cairo International Biomedical Engineering Conference

(CIBEC) (pp. 90±93). doi: https://doi.org/10.1109/CIBEC.2018.8641762

Hosseinzadeh Kassani, S., & Hosseinzadeh Kassani, P. (2019). A comparative study of deep

68



learning architectures on melanoma detection. Tissue and Cell, 58, 76±83. doi: https://

doi.org/10.1016/j.tice.2019.04.009

Howard, A., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., . . . Adam, H. (2017).

Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861. doi: https://doi.org/10.48550/arXiv.1704.04861

International Agency for Research on Cancer. (2022). Globocan 2022: Estimated cancer

incidence, mortality and prevalence worldwide in 2022 - melanoma of skin fact sheet.

Retrieved from https://gco.iarc.who.int/media/globocan/factsheets/

cancers/16-melanoma-of-skin-fact-sheet.pdf (Accessed: 2024-08-04)

Jafari, M. H., Samavi, S., Karimi, N., Soroushmehr, S. M. R., Ward, K., & Najarian, K. (2016).

Automatic detection of melanoma using broad extraction of features from digital images.

In 38th Annual International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC) (p. 1357-1360). doi: https://doi.org/10.1109/EMBC.2016.7590959
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