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ABSTRACT 

 

Detection, Identification and Isolation of Cyber-Attacks using Enhanced Long 

Short-Term Memory in Single and Network of Quadcopters 

Erfan Afshar 

    The cybersecurity of cyber-physical systems (CPS), particularly quadcopters, is critical due to their 

reliance on communication networks, which makes them vulnerable to cyber-attacks. This thesis 

addresses the security of quadcopters by introducing a novel framework for the simultaneous detection, 

identification, and isolation of cyber-attacks using Long Short-Term Memory (LSTM) networks. Unlike 

previous research that primarily focuses on detection, this work advances the field by integrating attack 

type identification and target isolation, enhancing overall security capabilities. 

    A contribution of this thesis is the emphasis on sequence generation as a pre-processing step for time-

series data in LSTM models. By optimizing sequence length, overlap, and labeling methods, the proposed 

approach ensures the effective capture of temporal dependencies, substantially improving model 

performance for attack detection, identification, and isolation. 

    The study introduces a novel multi-output (MO) model for single quadcopters, utilizing a shared LSTM 

backbone with three output heads. This framework is extended to a network of quadcopters through a 

Multi-Input, Multi-Output (MIMO) architecture, which incorporates a flexible number of input heads for 

each quadcopter, enhancing scalability. The model supports both centralized and decentralized 

topologies, accommodating networks of varying sizes, ranging from 2 to 5 quadcopters. 

   Simulation results for Denial of Service (DoS), False Data Injection (FDI), and Replay attacks 

demonstrate the robustness of the proposed framework. The single quadcopter model achieved over 

95% accuracy in attack detection, along with high precision in identifying attack types and locations. In 

networked setups, the centralized MIMO model delivered superior performance, while the decentralized 

approach also yielded promising results. These findings highlight the adaptability and effectiveness of 

the proposed approaches, paving the way for broader CPS applications and further advancements in 

sequence generation techniques. 
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Chapter 1 

1. Introduction 
 

 

The increasing integration of cyber-physical systems (CPS) into various sectors, including smart grids and 

autonomous vehicles, underscores the critical need for robust cybersecurity measures. As CPSs become 

more prevalent, their vulnerability to cyber-attacks escalates, necessitating comprehensive security 

frameworks to safeguard these systems. Unmanned aerial vehicles (UAVs), particularly quadcopters, 

exemplify this trend due to their diverse applications in surveillance, disaster response, and delivery 

services. The reliance on intricate communication networks and control systems renders quadcopters 

susceptible to cyber threats, which can result in severe operational failures if not adequately addressed 

[1; 2; 3]. 

The unique dynamics of quadcopters present significant challenges for cybersecurity. Unlike many CPSs 

that can be modeled using linear approximations, quadcopters require sophisticated nonlinear models to 

accurately reflect their complex movement and control mechanisms. This necessity is highlighted in the 

literature, where nonlinear dynamics are emphasized as critical for understanding quadcopter behavior 

under both normal and attack conditions [4; 5]. The development of a nonlinear mathematical model for 

quadcopters not only enhances the simulation of their behavior but also provides insights into potential 

vulnerabilities that could be exploited during cyber-attacks [5]. 

Addressing the nonlinear control challenges inherent in quadcopters is vital for maintaining stability, 

especially when faced with cyber threats. Implementing effective control systems that manage the 

quadcopter's six degrees of freedom while ensuring resilience against disruptions is a primary concern. 

The design of six Proportional-Integral-Derivative (PID) controllers tailored for altitude, position, yaw, 

and attitude control exemplifies an adaptive approach to maintaining stability during both normal 

operations and cyber-attacks. Although PID controllers are traditionally associated with linear systems, 

their adaptation for nonlinear dynamics is crucial for ensuring operational reliability [6]. 

In the realm of CPS cybersecurity, a multi-faceted approach that encompasses detection, identification, 

and isolation of cyber-attacks is essential. Detection involves recognizing when a system is under attack, 

while identification focuses on determining the nature of the attack, be it Denial of Service (DoS), False 

Data Injection (FDI), or Replay attacks. Isolation further refines this process by pinpointing the specific 

compromised component, such as a sensor or actuator. While much of the existing research has 

concentrated on detection alone, a comprehensive solution that addresses all three aspects is 
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imperative for effective defense against cyber threats [7; 8]. This holistic approach not only enhances the 

resilience of quadcopters but also contributes to the overall security of CPSs. 

To achieve this, the study introduces a novel multi-output (MO) framework using Long Short-Term 

Memory (LSTM) networks, which can handle the temporal nature of time-series data generated by 

quadcopter sensors and actuators. The LSTM network serves as the backbone for simultaneously 

detecting, identifying, and isolating various types of cyber-attacks. This multi-output approach improves 

the system’s responsiveness to attacks, allowing for quicker and more accurate mitigation strategies. The 

emphasis on LSTM-based models is due to their ability to retain long-term dependencies in time-series 

data, which is crucial for capturing patterns that indicate attacks. 

Another key contribution of this thesis is the focus on sequence generation as a pre-processing step for 

LSTM-based models. In time-series data, how the data is split into sequences can have a significant 

impact on the model's performance. This study is the first to emphasize the importance of this step in 

the context of quadcopter cybersecurity. By optimizing sequence generation, the LSTM network is better 

able to learn from the data, resulting in more accurate detection, identification, and isolation of attacks. 

This improvement in the pre-processing phase helps the model outperform similar approaches in the 

literature, offering a more robust defense mechanism for UAVs. 

In addition to handling individual quadcopters, this thesis extends the multi-output approach to a 

network of quadcopters, referred to as the Multi-Input, Multi-Output (MIMO) model. The MIMO 

framework introduces LSTM-based input heads for each quadcopter in the network and new output 

heads for detecting, identifying, and isolating attacks across multiple units. This approach is designed to 

be adaptable, allowing it to scale from single quadcopters to networks of varying sizes, whether 

operating in centralized or decentralized configurations. This flexibility enables the system to be 

deployed in a variety of real-world applications where multiple quadcopters are used in coordinated 

operations. 

By using both a single quadcopter and a network of quadcopters, this research is the first to introduce a 

dataset that captures cyber-attacks in multi-UAV systems. The MIMO model’s adaptability, combined 

with the robust LSTM architecture, allows for superior performance in detecting, identifying, and 

isolating cyber-attacks across both configurations. Simulations conducted in this study demonstrate the 

model’s ability to manage attacks such as DoS, FDI, and Replay across various quadcopter maneuvers, 

offering a comprehensive cybersecurity solution that can be applied to future UAV operations. 

 

1.1 Problem Statement 
The primary goal of this work is to enhance the security of nonlinear cyber-physical systems under cyber-

attacks, with a focus on quadcopters, a use case that has gained significant attention in recent years. 

Quadcopter systems are connected to a Ground Control Station (GCS) that supervises their operation 

and sends desired reference points. Cyber-attacks targeting the communication link between the 

command and control and the quadcopters compromise their security, potentially leading to severe 

consequences.  

This study employs enhanced Long Short-Term Memory (LSTM) models for the simultaneous detection, 

identification, and isolation of cyber-attacks on both single and networked quadcopters. To effectively 
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train and test the proposed machine learning models, two datasets were created by applying three types 

of cyber-attacks: Denial of Service (DoS), False Data Injection (FDI), and Replay attacks. The first dataset 

involves a single quadcopter, while the second extends to a network of five quadcopters, addressing the 

unique challenges of multi-unit implementation. Each dataset includes 50 distinct movement scenarios, 

with sensor and actuator data for each packet labeled in three ways: first, with a detection label 

indicating whether the data is normal or under attack (0 for normal, 1 for attack); second, with an 

identification label specifying the type of attack, such as Denial of Service, False Data Injection, or 

Replay; and third, with an isolation label identifying the specific target of the attack, such as a sensor or 

actuator. These detailed labels facilitate comprehensive detection, identification, and isolation of cyber-

attacks. 

 

1.2 Literature Review 
This section reviews literature related to the cybersecurity of quadcopters, divided into three parts: 

Cybersecurity of CPS, exploring foundational studies on security in cyber-physical systems; Cybersecurity 

of Quadcopters, covering research specific to quadcopter systems; and RNNs for Cybersecurity of 

Quadcopters, examining works that apply recurrent neural networks to address cybersecurity challenges 

in these systems.  

1.2.1 Cyber-security of CPS 
In this section, papers related to the cybersecurity of cyber-physical systems (CPS) are evaluated and 

explained. These studies encompass different systems, attack types, and methodologies, reflecting the 

diverse landscape of research in this critical field. Each paper contributes unique insights and approaches 

to enhancing the security and resilience of CPS against an array of cyber-attacks, highlighting the ongoing 

challenges and advancements in protecting interconnected infrastructures. 

Haider et al. [9] developed a deep CNN ensemble framework to enhance the detection of Distributed 

Denial of Service (DDoS) attacks within Software Defined Networks (SDNs). Their approach leverages 

CNN ensemble models trained on the CICIDS2017 dataset, a Flow-based benchmark suited for SDN 

environments, achieving high accuracy (99.45%) with minimal computational complexity. The framework 

was benchmarked against existing ensemble and hybrid deep learning approaches, demonstrating 

improved performance in detecting diverse, flow-based DDoS attack patterns. The research highlights 

the importance of adaptive machine learning frameworks in SDNs, which separate control and 

forwarding layers to optimize network resource allocation. By focusing on Flow-based features, this 

approach efficiently handles SDN traffic patterns, proving both scalable and cost-effective. This study 

contributes a CNN-based approach for DDoS defense, which could be foundational for future network 

security in SDN environments. 

Mousavi et al. [10] presented a distributed neural network-based method for detecting false data 

injection (FDI) cyber-attacks in discrete-time, nonlinear multi-agent systems, focusing on agent sensors, 

actuators, and inter-agent communication channels. They employ a radial basis function neural network 

(RBFNN) observer to generate a residual signal for attack detection and use Lyapunov stability analysis to 

ensure the system's stability, establishing conditions for uniform ultimate boundedness (UUB) of 

residuals and formation error. This work distinguishes itself by addressing simultaneous attacks across 

multiple communication channels within a formation control context, where agents only share data with 
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neighbors. Through simulations, they demonstrate the efficacy of the proposed observer-based 

approach in maintaining stable formations, even under unknown nonlinearities in system dynamics. The 

method adds a robust layer of security for multi-agent systems by detecting and mitigating potential 

disruptions in real-time. 

Bitirgen and Filik [11] proposed a hybrid deep learning model combining particle swarm optimization 

(PSO) with CNN-LSTM networks to detect false data injection attacks (FDIAs) and distinguish between 

physical disturbances in smart grids (SGs). Using phasor measurement unit (PMU) data, the model 

optimizes hyperparameters with PSO for high detection accuracy and speed, improving upon standalone 

LSTM and CNN-LSTM models. Testing on a diverse dataset, the hybrid approach achieved robust 

performance in binary, three-class, and multiclass classifications, showing promise as a scalable SG 

security mechanism. Their research emphasizes the significance of machine learning in cybersecurity for 

SGs, particularly for FDIA detection across interconnected communication and power networks. By 

leveraging CNN-LSTM architectures and PSO optimization, the model enhances reliability in SGs, 

demonstrating a powerful tool for real-time security in cyber-physical systems with multiple disturbance 

types. 

Bharathi and Kumar [12] proposed an ensemble classifier-based framework for real-time cyber-attack 

detection in healthcare cyber-physical systems (HCPS), focusing on securing patient data in IoT-

connected healthcare devices. Using a wise greedy routing technique for sensor node configuration, the 

model applies agglomerative clustering for data grouping and multi-heuristic cyber ant optimization to 

identify anomalies. Finally, an ensemble crossover XGBoost classifier detects attacks with high accuracy, 

improving true positives and reducing false positives. Simulations validate the model's effectiveness, 

highlighting its potential to enhance cloud-based healthcare security and real-time patient monitoring. 

This approach addresses the unique security challenges in HCPS by integrating cloud architecture for 

decentralized security and employing machine learning for rapid data analysis, ensuring minimal delays 

and low communication costs. The framework demonstrates the viability of ensemble learning in 

safeguarding sensitive medical information and supporting uninterrupted, secure healthcare services. 

Yin et al. [13] proposed a privacy-preserving, subgrid-oriented framework using a spatial-temporal neural 

network for false data injection attack (FDIA) detection in smart grids. Unlike previous methods that 

focus on temporal data alone, their approach models both spatial and temporal relationships between 

measurement points across bus and line data, as well as interactions between subgrids. Using a 

microservice-based architecture, the framework enhances data privacy, supports parallel processing, and 

ensures low latency. The spatial-temporal network architecture captures interdependencies within the 

smart grid, facilitating robust FDIA detection. By employing fully connected layers for spatial 

relationships and long short-term memory layers for temporal aspects, this model achieves high 

detection accuracy in ac-model power systems, as demonstrated with the SimBench benchmark dataset. 

This method represents an improvement over existing centralized detection frameworks in terms of 

privacy, performance, and adaptability. 

Li et al. [14] introduced an adaptive hierarchical framework for cyber attack detection and localization in 

active distribution systems with distributed energy resources (DER). Their approach uses electrical 

waveform analysis combined with a sequential deep learning model to detect attacks, even minor ones. 

A two-stage localization method first identifies the general sub-region of an attack using modified 

spectral clustering, then pinpoints the attack location with a normalized impact score based on 
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waveform properties. This framework provides high-fidelity detection and localization, accommodating 

the complex topology of DER networks. Extensive testing across multiple scenarios demonstrates 

improved detection accuracy compared to traditional methods, showcasing its adaptability and precision 

in real-world applications. 

Sun et al. [15] proposed the CNN-LSTM with Attention Mechanism (CLAM) model for enhancing anomaly 

detection in in-vehicle networks, addressing the security gaps in the CAN bus protocol. The model 

leverages convolutional layers to extract key features, bidirectional LSTM for temporal dependencies, 

and an attention mechanism to focus on significant time steps, making it adaptable across different 

vehicle models without requiring CAN message parsing. By processing time-series data from CAN frames 

and reducing redundancy, CLAM achieves efficient, high-performance detection with low error rates. 

Extensive testing reveals that the model’s design offers rapid response times and improved accuracy 

over comparable approaches, demonstrating its capability for real-time in-vehicle security applications. 

Goh et al. [16] presented an unsupervised anomaly detection model for cyber-physical systems (CPS), 

utilizing a Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) to predict time-series data 

patterns within a water treatment system. By modeling the typical behavior of CPS sensor data, the 

LSTM-RNN captures temporal sequences, enabling it to distinguish anomalies, with anomaly detection 

enhanced by the Cumulative Sum (CUSUM) technique. This combined approach allows the model not 

only to detect attacks but also to identify the specific sensor compromised, achieving low false positive 

rates. The proposed method was validated on the Secure Water Treatment (SWaT) testbed, replicating 

real-world CPS challenges, particularly in critical water infrastructure. By employing LSTM-RNN and 

CUSUM for anomaly detection, this model addresses CPS security effectively without requiring labeled 

attack data, making it suitable for real-time monitoring where abnormal events are rare. The approach’s 

precision in identifying specific compromised sensors further strengthens its utility in critical 

infrastructure security. 

Baul et al. [17] proposed a hybrid model, XTM, that combines transformer and LSTM architectures to 

detect and locate False Data Injection (FDI) attacks in smart grids. The model leverages real-time sensor 

data analysis to identify FDI attacks by detecting anomalies in data patterns without relying on system 

parameters. It introduces a new threshold-based method for attack detection and a multilabel classifier 

to pinpoint attack locations. Baul’s unique approach allows it to manage both hourly and minutely data, 

achieving high detection accuracy on the IEEE-14 bus system. Comparative analysis shows that XTM 

outperforms other deep learning models, showcasing its adaptability and effectiveness in real-world 

smart grid scenarios. 

Namavar Jahromi et al. [18] proposed a two-stage ensemble deep learning framework for detecting and 

attributing cyber-attacks in IoT-enabled cyber-physical systems (CPS), with a focus on industrial control 

systems (ICS). The first stage uses a decision tree combined with deep representation learning to detect 

attacks, even within imbalanced data environments. In the second stage, deep neural networks classify 

attack types, enhancing attribution accuracy. This model’s ability to detect previously unseen attacks 

makes it robust in real-world applications, as shown in tests on gas pipeline and water treatment 

datasets. Their approach leverages automated feature learning, addressing the data imbalance common 

in ICS environments. By focusing on both detection and attribution, the model enhances cybersecurity 

resilience in critical infrastructure, with computational efficiency similar to other DNN-based solutions 

but improved performance. 
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Lu et al. [19] introduced a representation-learning-based CNN (RL-CNN) model for detecting and 

localizing multiple cyber-attacks in cyber-physical power systems (CPPS). The RL-CNN treats the 

localization of diverse cyber-attacks, such as false data injection (FDI), denial of service (DoS), jamming, 

and hybrid attacks, as a multilabel classification problem, using representation learning to improve 

attack detection. Once attack locations are identified, a minimum mean-squared-error estimator 

(MMSE) supports system recovery by filtering compromised measurements and providing accurate state 

estimations for real-time CPPS stability. This approach addresses both detection and recovery in CPPS, 

providing a comprehensive solution to maintain system integrity amid complex attack scenarios. 

Extensive simulations demonstrate RL-CNN’s efficiency in accurate attack localization and effective 

system recovery, outperforming traditional multilabel classifiers in CPPS environments. 

Ravi et al. [20] proposed a recurrent deep learning-based ensemble meta-classifier to enhance network 

intrusion detection in cyber-physical systems (CPS). The approach employs recurrent neural networks 

(RNN, LSTM, GRU) to extract hidden-layer features, then applies kernel principal component analysis 

(KPCA) to select the most relevant features. These optimal features are fused to build an ensemble 

meta-classifier, achieving improved detection accuracy on various network intrusion datasets. Their 

model demonstrates effective detection and classification of network attacks, with performance 

exceeding traditional machine learning and deep learning methods. Visualization using t-SNE further 

confirms the relevance of learned feature representations, offering a robust, data-driven approach to 

CPS security. 

Sakhnini et al. [21] introduced an ensemble deep learning approach for detecting and localizing physical-

layer cyber-attacks in smart grids. The model addresses vulnerabilities arising from the integration of IoT 

and communication networks, with specific attention to attacks on the physical layer, an area that has 

received limited focus. The method utilizes representation learning to enhance attack pattern 

recognition, leveraging multiple machine learning classifiers and the chi-square algorithm to pinpoint 

attack sources and correlate them with specific system features. The ensemble model demonstrated 

high accuracy in both attack detection and localization when evaluated on a smart grid dataset. By 

incorporating chi-square-based localization, the model provides insights into attack-specific 

measurements, a critical capability for cyber-physical grid security. This research marks a step in 

advancing smart grid cybersecurity by combining multi-attack classification with precise localization of 

attacks within the operational layer, filling a gap in existing security solutions. 

Shen et al. [22] presented a method for localizing False Data Injection Attacks (FDIAs) in smart grids using 

a CNN optimized by a Sparrow Search Algorithm (SSA). Recognizing that many current FDIA solutions 

struggle with localization precision and computational complexity, this model leverages measurement 

vectors to pinpoint the specific attacked buses or lines within smart grids, thereby enhancing localization 

accuracy and reducing false alarms. The proposed SSA-CNN approach efficiently adjusts CNN 

hyperparameters, achieving optimal localization performance across both IEEE 14-bus and IEEE 118-bus 

systems. The authors highlighted their method’s comparative success in localization accuracy by testing it 

on simulated FDIA datasets and contrasting it with other advanced localization techniques. This SSA-CNN 

approach introduces a flexible, data-driven solution that addresses both invisible FDIAs and traditional 

localization limitations, underscoring its applicability for real-world smart grid security. This research 

notably advances the accuracy and applicability of FDIA localization in larger, complex power systems. 
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Panigrahi et al. [23] proposed a hybrid intrusion detection model combining Decision Table and Naive 

Bayes (DTNB) to enhance security in cyber–physical systems (CPS). Their approach leverages Multi-

Objective Evolutionary Feature Selection (MOEFS) to isolate five critical features from the CICIDS2017 

dataset, targeting efficiency in detecting various network attacks, including DoS, DDoS, and Brute Force. 

The model addresses issues in traditional intrusion detection, such as feature overload and class 

imbalance, achieving high accuracy by using only essential data features to streamline detection and 

reduce false alarms. Through their hybrid model, the authors demonstrate enhanced detection of 

complex attacks like GoldenEye, Heartbleed, and SQL Injection. By effectively balancing performance for 

binary and multiclass scenarios, this approach addresses both high-class imbalance and signature-based 

challenges, providing a robust IDS that achieves a detection accuracy of 96.8% on the CICIDS2017 

dataset. The study emphasizes the model’s capability for real-time network defense in complex CPS 

environments. 

 

1.2.2 Cyber-security of Quadcopters 
In this section, papers focused on the cybersecurity of quadcopters are evaluated and explained. This 

focus on quadcopter-related research serves as the primary use case for this work, examining different 

attack scenarios, methodologies, and security challenges specific to these aerial systems. Each study 

provides valuable insights into enhancing the security and resilience of quadcopters against a range of 

cyber threats, underscoring the importance of effective defense mechanisms in safeguarding these 

increasingly prevalent technologies. 

Heidari et al. [24] proposed a secure intrusion detection platform tailored for the Internet of Drones 

(IoD), leveraging blockchain technology and Radial Basis Function Neural Networks (RBFNNs) to enhance 

data integrity and network resilience. The platform's decentralized structure, powered by blockchain, 

enables trust, transparency, and security across drone interactions, which is essential for public 

acceptance and operational safety in IoD applications. By integrating RBFNN, the authors address the 

challenges of detection accuracy and efficiency within the IoD's dynamic environment, where traditional 

intrusion detection methods often fall short. They also introduce a novel IoD architecture that facilitates 

secure data transfer through both drone-to-drone (D2D) and drone-to-X (D2X) communication, with a 

zero-knowledge proof protocol for enhanced registration and verification. Transfer learning is employed 

to reduce model convergence time, a critical feature for real-time IoD scenarios. Through experimental 

validation, the study demonstrates that the blockchain-based model surpasses existing methodologies in 

specificity, recall, precision, F1-score, and accuracy, offering a robust cybersecurity framework for IoD 

systems amid rising cyber threats. 

Xiao and Feroskhan [25] presented a cyber-attack detection and isolation approach for quadrotor UAVs, 

focusing on vulnerabilities in unmanned aerial vehicles’ cyber-physical systems (CPS). They propose the 

Modified Sliding Innovation Sequences (MSIS) detector, a novel state-estimation-based method that uses 

extended Kalman filtering to detect and isolate cyber-attacks in real time. This detector is optimized to 

handle random attacks, False Data Injection (FDI) attacks, and Denial-of-Service (DoS) attacks on both 

sensors and actuators. MSIS utilizes the operator norm of normalized innovation sequences within a 

sliding window, triggering alerts when values exceed a predefined threshold, which helps maintain 

accuracy even during rapid UAV maneuvers. The MSIS detector introduces an iterative calibration 

process to mitigate false alarms, especially during complex trajectories involving rapid rotation. Unlike 
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prior models limited to simplified linear scenarios, Xiao and Feroskhan’s model addresses a full-state, 

nonlinear quadrotor, accounting for translational and rotational dynamics. By isolating attack types 

through statistical analysis of mean and covariance, their approach enables more accurate detection in 

high-speed, dynamic scenarios. Simulation results affirm that the MSIS detector outperforms previous 

state estimation-based detectors, providing a comprehensive solution tailored to the unique security 

demands of UAVs in real-time operations. 

Alferaidi et al. [26] introduced a distributed intrusion detection model tailored for IoT-based vehicles, 

which combines deep convolutional neural networks (CNN) with long short-term memory (LSTM) 

networks within the Apache Spark framework. This model addresses the need for high-speed, high-

accuracy detection on the Internet of Vehicles, where traditional methods struggle due to the complex 

data flow and varying intrusion patterns. The CNN-LSTM structure is designed to process large-scale 

network traffic efficiently, distinguishing between normal and abnormal behavior with accuracy and 

speed. Using Spark, the system enables real-time parallel processing of data, which is critical in the 

dynamic and large-scale environments typical of IoT-based vehicle networks. Through experimentation 

on benchmark datasets like NSL-KDD and UNSW-NB15, Alferaidi et al. demonstrate that their distributed 

model achieves high detection accuracy while reducing detection time. This setup is particularly effective 

in identifying complex, multidimensional cyber threats specific to IoT vehicle networks. By integrating 

distributed processing with deep learning, the proposed approach addresses the limitations of existing 

machine learning techniques in handling extensive datasets, offering a scalable, robust solution for 

securing the Internet of Vehicles against evolving cyber threats. 

Eshmawi et al. [27] proposed a machine learning ensemble approach to secure small UAVs from GPS 

spoofing attacks, focusing on the vulnerabilities inherent in GPS-dependent navigation. Their model 

utilizes a stacked ensemble technique, combining traditional machine learning with deep learning 

models to enhance detection accuracy without the need for additional hardware, a practical solution 

given the limited capacity of small UAVs. The model relies on a dataset of 13 GPS signal characteristics, 

preprocessed with z-score normalization, and validated through controlled simulations, achieving an 

impressive detection accuracy. This ensemble-based framework addresses the need for robust GPS 

spoofing detection in scenarios where UAVs play critical roles, such as security and logistics, without 

requiring complex or hardware-intensive solutions. To tackle the challenges posed by sophisticated 

spoofing techniques, the proposed model applies ensemble learning for superior performance over 

conventional machine learning approaches, which often falter under complex spoofing conditions. The 

study's contributions include an in-depth methodology for dataset acquisition, data preparation, and 

comparative model evaluation, which highlights the advantages of ensemble classifiers in recognizing 

and categorizing GPS spoofing incidents. Their approach presents a scalable, efficient intrusion detection 

framework for small UAVs, capable of enhancing operational reliability in crucial sectors like delivery and 

surveillance, where GPS spoofing can pose significant security risks. 

Ramadan et al. [28] proposed a deep learning-based intrusion detection framework specifically for the 

Internet of Drones (IoD), leveraging Recurrent Neural Networks (RNN) and Long Short-Term Memory 

(LSTM) architectures to address the rising security concerns in Flying Ad Hoc Networks (FANET). The 

framework consists of two main RNN modules: a distributed module installed on each drone to locally 

monitor communication traffic and a centralized module at the base station for comprehensive attack 

verification and response coordination. This dual-module setup allows for efficient detection of 

suspicious activities within individual drones and across the entire IoD network, enabling real-time 
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response to various cyber threats. The architecture's use of big data analytics aids in anomaly detection 

by processing large volumes of real-time data for accurate threat identification. The study demonstrates 

the proposed framework's robustness and efficiency through extensive experiments using multiple 

datasets, showing that the LSTM-RNN configuration offers superior intrusion detection performance 

over traditional methods. The real-time, distributed setup provides a scalable solution for FANETs, where 

drones operate in complex, dynamic environments vulnerable to sophisticated intrusion attempts. Their 

approach addresses the need for effective anomaly-based intrusion detection within IoD, showing 

improvements in detection accuracy and response time, thereby enhancing network resilience in critical 

applications such as surveillance, delivery, and communication. 

Li et al. [29] explored jamming detection and classification in OFDM-based UAVs using a machine 

learning (ML) approach that combines feature-based and spectrogram-based models. Focusing on four 

types of jamming attacks, barrage, protocol-aware, single-tone, and successive-pulse. the authors utilize 

software-defined radio (SDR) to simulate attacks and collect data from UAVs. Their feature-based model 

uses conventional ML techniques, drawing on parameters like signal-to-noise ratio and OFDM 

characteristics, while the spectrogram-based model employs convolutional neural networks (CNNs) to 

analyze jamming spectrums through spectrogram images. Experimental results show that the 

spectrogram-based CNN model outperforms the feature-based model, achieving a classification accuracy 

of 99.79% with a false alarm rate of just 0.03%, compared to 92.2% accuracy and 1.35% false alarm for 

the feature-based model. This dual-model framework offers a practical, high-performance solution for 

jamming detection in UAVs without requiring hardware modifications, making it well-suited for real-

world implementation. By providing an additional dataset of spectrogram images for ML model training, 

they enhance the resources available for UAV cybersecurity research. Their approach allows for the 

reliable classification of jamming types, essential for developing adaptive countermeasures to protect 

UAVs from interference-based threats. This work highlights the advantages of spectrogram-tailored deep 

learning in UAV cybersecurity, particularly in detecting subtle attack patterns that feature-based 

methods may miss, thereby improving UAV operational security in sensitive applications. 

Gasimova et al. [30] conducted a comparative study on ensemble learning techniques for detecting GPS 

spoofing attacks on UAVs, focusing on three models: bagging, stacking, and boosting. With GPS spoofing 

posing a significant threat to UAV navigation and safety, particularly due to unencrypted civilian GPS 

signals, the authors aim to enhance detection accuracy and reduce misdetection rates through ensemble 

models. Each model combines the predictions of multiple classifiers to improve performance, leveraging 

hyperparameter tuning with Grid search and Pearson’s Correlation Coefficient for optimal feature 

selection. The study evaluates the models across seven metrics, including accuracy, detection and false 

alarm probabilities, memory size, and processing and prediction times, finding that the stacking model 

outperforms bagging and boosting across all metrics. The study highlights the limitations of existing GPS 

spoofing detection techniques, many of which rely on hardware solutions or traditional machine learning 

methods without hyperparameter optimization. By utilizing ensemble models, Gasimova et al. provide a 

robust detection mechanism that offers high accuracy and computational efficiency, making it suitable 

for UAVs with limited processing capabilities. This research contributes to UAV cybersecurity by providing 

an efficient and scalable machine learning framework for GPS spoofing detection, emphasizing ensemble 

learning’s ability to enhance detection reliability in UAV navigation systems. 
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Basan et al. [31] introduced a data normalization technique for detecting cyber-attacks on UAVs by 

analyzing the unique cyber-physical parameters of these systems. UAVs, as cyber-physical systems (CPS), 

face threats that impact their functionality rather than just information integrity. To enhance UAV 

cybersecurity, Basan et al. propose a normalization framework that processes and standardizes various 

UAV data inputs, allowing for more effective detection of anomalies and attacks. This normalization 

approach supports the integration of different types of data into a consistent format, which aids in 

identifying abnormal changes in parameters, potentially signaling attacks. The model also formalizes UAV 

subsystems and parameter relationships, laying the groundwork for developing a CPS-based digital twin 

for UAV cybersecurity research. The study further contributes by presenting an experimental analysis of 

the effects of specific attack types, such as integrity, availability, confidentiality, resource exhaustion, and 

access attacks, on UAV parameters. By developing a software module to collect and normalize data, the 

authors create a system that supports intrusion detection and improves the consistency of UAV attack 

datasets. This standardized format facilitates future machine learning applications for UAV cybersecurity, 

enabling the classification of attack patterns and enhancing real-time detection capabilities in UAV 

systems. 

Almotery [32] explored the potential of blockchain technology as a solution for enhancing cybersecurity 

in drone systems, particularly in the context of Industry 4.0, where drones are increasingly integrated 

into various sectors such as healthcare, military, and e-commerce. With the rise of the Internet of 

Drones, the demand for secure communication and data exchange between UAVs and other devices has 

intensified. Blockchain, with its decentralized structure and tamper-resistant features, is posited as an 

effective method for improving data integrity, authentication, and communication security in drone 

networks. Almotery emphasizes that blockchain can support secure coordination among drones by 

ensuring traceability, transparency, and autonomy, which are essential as UAV usage expands beyond 

centralized control. In addition to outlining blockchain’s potential benefits, the study surveys 

perspectives from industry experts on integrating blockchain into UAV systems, providing qualitative 

insights into its viability. The findings suggest that blockchain could address various drone security 

challenges, such as data tampering, unauthorized access, and system malfunctions, particularly in 

sensitive applications like medical deliveries and battlefield operations. By demonstrating blockchain’s 

applicability to UAV security, Almotery’s research highlights a scalable approach to building trust within 

IoT ecosystems, encouraging further exploration and experimentation with blockchain as a cybersecurity 

solution in the UAV industry. 

Talaei Khoei et al. [33] presented two dynamic selection techniques: Metric Optimized Dynamic (MOD) 

and Weighted Metric Optimized Dynamic (WMOD), for detecting GPS spoofing attacks on UAVs. GPS 

spoofing, which involves transmitting counterfeit signals to mislead UAVs, presents significant risks in 

both military and civilian UAV applications. The authors propose MOD and WMOD as adaptive classifier 

selection methods that dynamically identify the optimal classifier for detecting spoofing attacks in real 

time. Both methods employ ten machine learning models, including Support Vector Machine, Decision 

Tree, and Random Forest, to identify attack patterns based on a dataset comprising 13 GPS signal 

features derived from real-time experiments and MATLAB simulations. MOD and WMOD outperform 

traditional ensemble methods, achieving detection accuracy of 99.6%, with low probabilities of 

misdetection (1.09%) and false alarm (1.56%). The study highlights the limitations of existing GPS 

spoofing detection methods, such as cryptographic, signal processing, and external UAV characteristic-

based techniques, which often require additional hardware or extensive computation. The dynamic 
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selection methods MOD and WMOD, by contrast, adaptively optimize model selection, reducing 

processing time and improving detection precision. The authors’ work advances UAV cybersecurity by 

providing a flexible, high-performance approach for real-time GPS spoofing detection that is suitable for 

resource-constrained UAVs, offering a robust alternative to traditional static and hardware-dependent 

methods. 

Aissou et al. [34] evaluated five instance-based machine learning models for detecting GPS spoofing 

attacks on Unmanned Aerial Systems (UAS), specifically focusing on K-Nearest Neighbor (KNN), Radius 

Neighbor, Linear SVM, C-SVM, and Nu-SVM. The study addresses the vulnerabilities of unencrypted GPS 

signals, which are susceptible to spoofing attacks that pose severe risks, such as hijacking or redirecting 

UAS. Using software-defined radio units, the authors collected GPS data and simulated three spoofing 

attack types: simplistic, intermediate, and sophisticated. Their results demonstrate that Nu-SVM 

achieved the highest performance in accuracy, detection probability, and computational efficiency, 

making it particularly suitable for real-time GPS spoofing detection in UAS. Hyperparameter tuning was 

applied to ensure optimal model performance across key metrics, including probability of false alarm, 

misdetection rate, processing time, and memory usage. The study highlights the limitations of existing 

GPS spoofing detection techniques, such as reliance on additional hardware, which may be impractical 

for lightweight UAS. The instance-based models evaluated offer a software-based alternative that aligns 

well with the Size, Weight, and Power constraints of UAS. By identifying optimal features for spoofing 

detection and leveraging instance-based learning, Aissou et al. provide an efficient approach for robust 

GPS spoofing mitigation, contributing valuable insights to the development of lightweight, real-time 

cyber defense mechanisms for UAS in both civilian and military applications. 

Bouhamed et al. [35] proposed a lightweight intrusion detection and prevention system (IDPS) for UAV 

networks based on Deep Reinforcement Learning (DRL) with a focus on energy-efficient and periodic 

offline learning to enhance security. Utilizing Deep Q-Learning (DQN), the IDPS module is designed to 

autonomously detect and respond to cyber threats, while a custom reward function addresses the class 

imbalance in intrusion data, ensuring minor classes are effectively identified. Given the resource 

constraints of UAVs, the framework leverages a periodic offline learning approach to update the IDPS 

model, enabling UAVs to adapt to new attack patterns without relying on continuous real-time learning, 

which would otherwise be energy intensive. In contrast to online learning, which updates models based 

on individual UAV data, the offline learning approach aggregates recent data from multiple UAVs, 

training a robust global model at a central station. This global model is then deployed to individual UAVs 

during docking, allowing consistent and up-to-date threat detection across the network. The study’s 

results indicate that this periodic DRL approach outperforms classical machine learning and online 

learning methods, providing higher accuracy in intrusion detection and lower energy consumption. By 

enabling autonomous and adaptive cybersecurity for UAVs, the proposed framework strengthens 

network security with minimal resource expenditure, effectively safeguarding UAV operations across 

various environments. 

Whelan et al. [36] explored a novel approach to intrusion detection for Unmanned Aerial Vehicles (UAVs) 

using one-class novelty detection methods. This strategy leverages UAV flight logs, which typically lack 

attack labels, allowing the system to learn normal sensor behavior without relying on labeled attack 

data. They employ three one-class classifiers: One-Class Support Vector Machine (SVM), Autoencoder 

Neural Network, and Local Outlier Factor to monitor deviations in sensor data that may indicate 

potential security threats, such as GPS spoofing. To manage high-dimensional data from UAV sensors, 
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Principal Component Analysis (PCA) is applied for dimensionality reduction before classifier training, 

optimizing the system's performance. This study showcases high F1 scores, with results reaching up to 

99.73% for detecting malicious sensor readings across various UAV platforms, highlighting the 

adaptability and effectiveness of this approach. By focusing on novelty rather than anomaly detection, 

the model sidesteps the need for labeled intrusion data, making it adaptable across multiple UAV 

configurations and sensor types. This methodology provides a promising direction for IDS in UAV 

applications, especially in unpredictable, high-stakes environments like military or industrial control 

settings, where rapid adaptation to novel threats is essential. 

Baig et al. [37] proposed a machine learning-based approach to detect cyber threats against drones 

operating within smart city environments. With the increasing adoption of drones for services like 

surveillance and traffic monitoring, the vulnerability of these unmanned aerial vehicles (UAVs) to cyber 

attacks has become a pressing concern. The authors focus on detecting three specific types of attacks: 

hijacking, GPS signal jamming, and denial of service (DoS) attacks. The study utilizes a dataset derived 

from the DJI Phantom 4 drone, encompassing both normal flight behaviors and malicious attack 

signatures. The authors employ various machine learning algorithms to classify the synthesized data, 

demonstrating effective detection capabilities. Their results indicate high classification performance, 

achieving F1 scores of up to 99.56% for benign sensor readings and 99.73% for malicious readings. This 

research emphasizes the critical need for robust cybersecurity measures in UAV operations, especially as 

smart cities increasingly integrate drone technology. By leveraging machine learning techniques, the 

proposed method aims to enhance the safety and reliability of drone services, ultimately contributing to 

the overall resilience of smart city infrastructures against cyber threats. The paper is structured to cover 

the problem background, dataset acquisition, the proposed detection framework, and a detailed analysis 

of simulation results, concluding with insights into future research directions. 

Aldaej et al. [38] discussed the vulnerabilities and privacy concerns associated with the integration of the 

Internet of Things (IoT) into drone technology, particularly focusing on small drones. They emphasize the 

need for a secure network of drones (NoD) to mitigate risks such as interception and intrusion. The study 

proposes a hybrid machine learning approach, combining logistic regression and random forest 

techniques, to classify data instances effectively and enhance cybersecurity within drone networks. The 

proposed framework aims to address the security challenges faced by drone systems, leveraging 

advanced machine learning models to ensure reliable operation in various applications, from industrial 

surveillance to disaster response. The authors present a comprehensive modular framework that 

includes essential components such as a drone module, edge computational module, and security 

module, each playing a crucial role in maintaining data integrity and privacy. Their approach utilizes IoT 

sensors and drone data to manage security attacks effectively. The framework is evaluated using two 

challenging datasets, demonstrating impressive performance metrics, including an accuracy of 98.58% 

and a precision of 97.68%. The study highlights the potential for implementing machine learning 

techniques in securing drone operations and addresses the importance of adapting to evolving security 

threats in the rapidly advancing field of drone technology 

 

1.2.3 RNNs for Cyber-security of Quadcopters 
This section explores the application of recurrent neural networks (RNNs) which is the focus of this work 

in enhancing the cybersecurity of quadcopters. The focus is on studies that leverage RNN architectures 
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to address various cyber threats faced by these aerial systems. Each paper examines unique 

methodologies and approaches, highlighting how RNNs can improve detection, isolation, and response 

to cyber-attacks. The insights gained from this body of research underscore the potential of RNNs as 

effective tools for safeguarding quadcopters in an increasingly complex cyber landscape. 

Hassler et al. [39] proposed a novel intrusion detection system (IDS) specifically designed for unmanned 

aerial vehicles (UAVs), addressing the critical issue of cybersecurity in these increasingly utilized systems. 

The authors highlight the limitations of current IDSs, which typically focus on either cyber or physical 

features but fail to integrate both dimensions, leading to suboptimal detection capabilities. To tackle 

this, they developed a comprehensive testbed that includes a UAV, controller, and data collection tools, 

enabling the execution of various cyber-attacks such as denial-of-service and false data injection. 

Additionally, they created and publicly shared a dataset capturing both cyber and physical data under 

normal and attack conditions, facilitating further research in the field. The study examines the impact of 

fusing cyber and physical features on the effectiveness of IDSs trained using different machine learning 

techniques, including support vector machines and convolutional neural networks. The authors conduct 

extensive experiments to determine whether this fusion enhances detection performance, particularly 

when the models are trained on a single attack type and tested on unseen attacks of varying 

complexities. The findings aim to provide insights into the capabilities of IDSs that incorporate a holistic 

view of UAV systems, emphasizing the need for methodologies that balance model complexity with 

detection performance. 

Viana et al. [40] addressed the critical challenge of attack identification in 5G unmanned aerial vehicle 

(UAV) communications, proposing a novel deep learning architecture called Deep Attention Recognition 

(DAtR). Recognizing the inherent vulnerabilities in UAV operations despite robust 5G security features, 

the authors focus on detecting jamming attacks using two key parameters: Signal to Interference plus 

Noise Ratio (SINR) and Received Signal Strength Indicator (RSSI). Their approach involves a deep network 

that can effectively identify attacks under various conditions, including Line-of-Sight (LoS) and Non-Line-

of-Sight (NLoS). By leveraging these parameters, which reflect channel variations and wireless 

conditions, the DAtR model aims to provide reliable attack detection even in complex urban 

environments where additional terrestrial users may interfere with communication. The study 

contributes to the field by introducing innovative methods such as Time Series Augmentation (TSA) and 

Majority Voting Algorithm (MVA) to enhance classification accuracy and reduce false alarms. The authors 

also explore the integration of Long Short-Term Memory (LSTM) and Attention layers within the deep 

network architecture, demonstrating its effectiveness in recognizing jamming attacks compared to 

traditional machine learning classifiers. Through extensive evaluation, the DAtR architecture achieves 

superior accuracy, even outperforming well-known classifiers, while maintaining efficiency in resource-

constrained UAV environments. The findings emphasize the potential of deep learning techniques to 

bolster UAV security in 5G networks, paving the way for safer UAV operations amid evolving cyber 

threats. 

Miao et al. [41] proposed a deep-meta-heuristic system for intrusion detection in unmanned aerial 

vehicles (UAVs), addressing the increasing vulnerability of UAV communications to various cyber threats. 

Recognizing the critical role of UAVs in applications such as emergency management and wildlife 

conservation, the authors highlight the significance of an effective Intrusion Detection System (IDS) that 

monitors and identifies suspicious activities within UAV communication networks. Their approach 

combines a Greedy-based Genetic (GG) algorithm for optimal feature selection with a modified Deep 
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Convolutional Neural Network and Bi-Long Short-Term Memory (CNN-BiLSTM) model enhanced by an 

attention mechanism. This architecture aims to improve classification accuracy by emphasizing relevant 

data while suppressing noise, ultimately addressing limitations in traditional IDS approaches that often 

struggle with accuracy, computational speed, and noise handling. The study's contributions are 

multifaceted, including the development of an effective feature selection process using the GG algorithm 

to enhance the classification capabilities of the IDS. The proposed modified CNN-BiLSTM architecture is 

designed to efficiently detect intrusions, leveraging the strengths of both deep learning and machine 

learning methodologies. The authors evaluate their system using various performance metrics, including 

accuracy, sensitivity, and precision, demonstrating its effectiveness in comparison to conventional 

intrusion detection methods. By establishing a comprehensive framework for UAV intrusion detection, 

this work underscores the need for advanced algorithms that can adapt to the complex and dynamic 

nature of UAV communications while ensuring robust security against potential attacks. 

Tlili et al. [42] introduced a hybrid adaptive framework for detecting faults and attacks in unmanned 

aerial vehicles (UAVs), addressing the growing need for robust security measures as UAV applications 

expand across various sectors. The authors note that while numerous artificial intelligence techniques 

have been applied to enhance UAV security, there has been a lack of comprehensive studies focusing on 

hybrid frameworks that integrate both fault and attack detection. Their proposed framework operates 

on centralized and decentralized architectures, utilizing two distinct input flows to learn high-level 

features from data related to faults and attacks. The empirical results demonstrate that their framework 

achieves over 85% accuracy for fault detection and an impressive 96.7% accuracy for attack detection. 

The study emphasizes the importance of identifying abnormal behaviors in UAV operations, particularly 

in environments where multiple UAVs operate collaboratively. By leveraging deep learning architectures, 

the proposed hybrid adaptive framework aims to enhance UAV resilience against cybersecurity threats 

and operational failures. The authors advocate for a comprehensive approach that encompasses both 

types of detection to improve overall UAV security, making a contribution to the existing literature on 

UAV cybersecurity. Through their framework, they aim to provide solutions that ensure the integrity of 

UAV operations, thus supporting the safe and efficient deployment of UAVs in complex environments. 

Hickling et al. [43] presented a novel approach to detect adversarial attacks on uncrewed aerial vehicles 

(UAVs) employing explainable deep reinforcement learning (DRL). As UAVs increasingly utilize AI 

techniques, the authors highlight the associated risks posed by adversarial attacks that can confuse the 

decision-making processes of these autonomous systems. The paper proposes a DRL-based guidance 

and planning framework that utilizes a Deep Deterministic Policy Gradient (DDPG) algorithm, augmented 

by Prioritized Experience Replay (PER) and an Artificial Potential Field (APF) to enhance training 

efficiency and obstacle avoidance. A simulated environment is created to evaluate the UAV's 

performance under various adversarial attacks generated by the Basic Iterative Method (BIM), which 

significantly reduces the UAV's operational success rate. To counter these adversarial attacks, the 

authors propose two detection mechanisms: a Convolutional Neural Network Adversarial Detector (CNN-

AD) achieving 80% detection accuracy and a Long Short-Term Memory (LSTM) network reaching 91% 

accuracy with faster computing times. These detectors leverage explainability techniques, specifically 

SHapley Additive exPlanations (SHAP), to provide insights into the UAV's decision-making process. By 

monitoring slight variations in these decision processes, the proposed system aims to enable real-time 

detection of adversarial attacks, thereby ensuring the safe and reliable operation of UAVs in the presence 
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of potential threats. The study underscores the importance of integrating explainability into AI systems, 

particularly in the context of autonomous vehicles, to foster trust and reliability in critical applications. 

Wu et al. [44] introduced a highly interpretable framework for detecting attacks on unmanned aerial 

vehicles (UAVs), focusing on the challenges posed by increasing cyber threats. Their proposed model, a 

CNN-BiLSTM-Attention (CBA) architecture, leverages real-time sensor data, including GPS and inertial 

measurement unit (IMU) readings, to detect various types of attacks such as denial-of-service (DoS) and 

GPS spoofing. The study emphasizes the limitations of existing detection methods, which often lack 

transferability and interoperability, and introduces the SHapley Additive exPlanations (SHAP) technique 

to enhance the interpretability of the detection model. This approach enables UAV security experts to 

better understand the model’s decision-making process, thus improving trust and usability in practical 

applications. The authors reveal important insights into the relationships between UAV sensor data and 

different attack types through both local and global SHAP explanations. This understanding aids in 

identifying the most effective features for timely attack detection while operating within the limited 

computational resources of small commercial UAVs. The results demonstrate the CBA model’s 

effectiveness and stability, showcasing its potential as a robust solution for UAV attack detection. The 

study highlights the importance of interpretability in AI-driven security systems, paving the way for more 

reliable UAV operations in the face of evolving cyber threats. 

Ahmad et al. [45] explored the pressing need for robust cybersecurity measures in unmanned aerial 

vehicles (UAVs) by presenting a novel deep learning-based network intrusion detection system (NIDS). As 

UAVs increasingly rely on network connectivity for various applications, they become susceptible to 

cyber threats that can compromise their operational integrity and data confidentiality. The authors 

propose a hybrid model that utilizes convolutional neural networks (CNNs) for effective feature 

extraction and recurrent neural networks (RNNs) for sequence modeling, enabling the system to detect 

and classify network intrusions efficiently. Their approach is validated using a comprehensive dataset 

that simulates various attack scenarios, demonstrating high detection accuracy and low false-positive 

rates. The study emphasizes the adaptability of the proposed NIDS, showcasing its capability to learn and 

improve in response to evolving attack techniques. By leveraging deep learning methodologies, the 

system enhances the cybersecurity of UAVs and contributes to the overall safety and reliability of UAV 

operations. The authors underscore the critical importance of developing advanced NIDS tailored 

specifically for UAVs, particularly as these devices become increasingly integrated into critical 

infrastructure and autonomous systems. This research represents an advancement in ensuring the 

integrity and security of UAV networks, addressing a critical gap in the current literature on UAV 

cybersecurity. 

Wang et al. [46] proposed an intelligent detection algorithm to combat GPS spoofing attacks on 

unmanned aerial vehicles (UAVs), a growing concern given the reliance of these systems on GPS for 

navigation and positioning. The study highlights the vulnerabilities of UAVs to spoofing attacks, where 

malicious actors can transmit false GPS signals, leading UAVs to deviate from their intended flight paths. 

The authors critique existing detection methods, which often suffer from low efficiency, limited 

application scenarios, and the need for costly equipment upgrades. To address these challenges, they 

introduce a novel approach utilizing Long Short-Term Memory (LSTM) networks, a machine learning 

technique that allows for the accurate detection of spoofing attacks. The proposed algorithm consists of 

two main components. First, it employs LSTM to predict the UAV's flight trajectory based on historical 

data, capturing key variables such as speed and direction. Second, it utilizes predefined flight paths to 
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validate the UAV's current GPS data against expected values. If discrepancies arise, the algorithm can 

swiftly identify potential GPS spoofing attacks. This method is particularly advantageous as it does not 

require significant computational resources or updates to existing GPS equipment, making it highly 

applicable in various UAV scenarios. Experimental results indicate that this approach effectively detects 

GPS spoofing attacks in a timely manner, marking an advancement in UAV security methodologies and 

the application of machine learning in this context. 

 

1.3 Thesis Contributions 
This thesis makes several significant contributions to the cybersecurity of quadcopters, particularly in 

developing multi-output deep learning models for cyber-attack detection, identification, and isolation. 

First, this work introduces a novel multi-output (MO) approach that simultaneously addresses the 

detection, identification, and isolation of cyber-attacks on quadcopters. Using a shared LSTM backbone 

with three output heads dedicated to these specific tasks, the model efficiently manages multiple 

outputs to produce comprehensive threat detection. Unlike previous studies, this approach enables a 

single model to handle all three functions, enhancing the performance and implementation flexibility in 

cyber-physical security systems. 

Another unique aspect of this research is its pioneering use of sequence generation as a pre-processing 

task for time-series data, tailored specifically for LSTM-based models. The proposed sequence 

generation approach optimizes the data preparation stage, allowing for improved model accuracy and 

better handling of complex quadcopter data. This method outperforms existing implementations in the 

field, providing a foundation for future advancements in sequence-based cyber-attack detection 

methods for time-series data. Moreover, this study introduces the detection of three different types of 

cyber-attacks: False Data Injection (FDI), Denial of Service (DoS), and replay attacks, demonstrating the 

robustness of the proposed approach under diverse threat scenarios. 

Expanding beyond a single-quadcopter model, this research extends the multi-output (MO) approach to 

support a network of quadcopters, introducing an adaptable LSTM-based architecture designed to 

process data from multiple quadcopters simultaneously. The proposed architecture includes an LSTM 

input head for each quadcopter in the network and adds three new output heads dedicated to cyber-

attack detection, identification, and isolation. This multi-input multi-output (MIMO) framework allows 

the model to accommodate varying numbers of quadcopters, making it adaptable for both centralized 

and decentralized network topologies. Notably, the MIMO model has been successfully tested on 

networks of two to five quadcopters, demonstrating scalability and applicability in a range of operational 

environments. 

This work introduces two extensive datasets to support cyber-attack research on quadcopters, 

enhancing the scope and applicability of this study. The first dataset focuses on a single quadcopter and 

includes 50,000 data points, capturing 10 sensor and actuator features with three labels dedicated to 

detection, identification, and isolation tasks. This single-quadcopter dataset provides a streamlined, 

focused resource for investigating attack scenarios on individual drones. The second dataset, designed 

for a network of quadcopters, also comprises 50,000 data points collected from five quadcopters, with 

50 sensor and actuator features and 15 labels. This comprehensive network dataset is particularly 

valuable for training and testing models suited to multi-quadcopter setups, supporting both centralized 
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and decentralized network configurations. Both datasets are useful, with the single-quadcopter dataset 

optimizing model performance in individual attack scenarios and the network dataset enabling complex 

model development.  

A key feature of the MIMO model is its ability to manage output complexity by using output reduction, 

decreasing the output count from 15 to 3, which significantly improves model manageability and 

learning capacity. This reduction approach streamlines the training process while maintaining high model 

performance. Furthermore, the MIMO model is uniquely capable of supporting simultaneous attacks, a 

feature does not present in previous MO models. This capability significantly enhances the system’s 

resilience by allowing it to recognize to multiple concurrent threats, a critical requirement for ensuring 

the cybersecurity of modern drone networks in dynamic environments. 

The proposed MIMO model, with its novel LSTM-based input heads, shared backbone, and flexible 

architecture, provides a new benchmark for cyber-attack detection and management in multi-drone 

networks. By supporting centralized and decentralized network topologies, this model offers practical 

flexibility and can adapt to diverse operational requirements. Moreover, the research findings suggest 

that centralized topologies yield the highest performance, though the model is sufficiently adaptable to 

function effectively in decentralized settings. This adaptability makes it highly suitable for real-world 

applications where network configurations may vary. 

In summary, this thesis contributes a novel and comprehensive framework for cybersecurity in 

quadcopter networks, from dataset creation and model architecture to the implementation of a robust 

detection, identification, and isolation approach. These advancements lay the groundwork for future 

research in multi-drone cyber-attack resilience and represent a meaningful step forward in the 

integration of deep learning for the security of cyber-physical systems. 

 

1.4 Thesis Outline 
This thesis is structured into five chapters, each addressing a specific component of the research in 

cyber-attack detection, identification, and isolation within quadcopter systems and networks. Chapter 2 

begins by presenting essential background information, covering the modeling and control mechanisms 

of quadcopters, which are fundamental to understanding the impact of cyber-attacks on these systems. 

This chapter also includes an overview of the types of cyber-attacks relevant to this study, such as False 

Data Injection (FDI), Denial of Service (DoS), and replay attacks.  

Chapter 3 delves into cyber-attack detection, identification, and isolation specifically within a single 

quadcopter context. This chapter describes the process of dataset creation, focusing on capturing attack 

and normal scenarios for effective model training. It introduces the novel multi-output (MO) approach, 

leveraging LSTM architecture to detect, identify, and isolate cyber-attacks simultaneously. Detailed 

explanations of sequence generation and its role as a pre-processing step for time-series data are 

provided, emphasizing its impact on model accuracy and robustness. The chapter terminates with a 

thorough evaluation of the proposed methodology, using multiple experiments to assess its efficacy in 

handling single-quadcopter attack scenarios. 

Chapter 4 extends the MO approach to a more complex environment, a network of quadcopters. This 

chapter addresses the new challenges that arise in multi-quadcopter systems, such as handling increased 
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data complexity. It introduces the Multi-Input, Multi-Output (MIMO) model, which accommodates 

multiple quadcopters within a shared framework for detecting, identifying, and isolating cyber-attacks 

across a network. This chapter presents a detailed explanation of the MIMO model architecture, 

highlighting how it leverages input heads for each quadcopter and a shared backbone to produce 

outputs. Experimental results are provided, demonstrating the model’s effectiveness in networked 

environments and showcasing its adaptability to both centralized and decentralized topologies. 

Finally, Chapter 5 concludes the thesis by summarizing the key findings from each chapter and discussing 

their implications for the cybersecurity of quadcopters networks. This concluding chapter also proposes 

directions for future research, including potential improvements to the model architecture, the 

exploration of additional attack scenarios, and the application of the proposed methodology to other 

types of cyber-physical systems. 
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Chapter 2 

2. Background Information 
 

2.1 Cyber-Physical System Overview 
Cyber-Physical Systems (CPS) represent a convergence of embedded computing and communication 

technologies designed to monitor, control, and interact with physical elements. These systems integrate 

physical infrastructure such as sensors and actuators, communication networks for data transmission, 

and computational frameworks for processing and decision-making. A commonly used framework for 

representing CPS divides them into three interconnected layers. The physical layer includes components 

like sensors, actuators, and plants that facilitate the monitoring and execution of physical processes. The 

network layer serves as the intermediary, transmitting data between the physical and computational 

layers, enabling seamless communication. At the top lies the cyber layer, which abstracts, processes, and 

analyzes received data to make intelligent decisions and issue control commands [47]. 
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Figure 2.1: Overview of CPS. 

 

As depicted in the Figure 2.1, the architecture of CPS emphasizes the interplay between these layers. 

Sensors in the physical layer gather data from the plant and relay it to the cyber layer through the 

network layer. The cyber layer, in turn, processes this information to generate control commands, which 

are transmitted back through the network layer to actuators in the physical layer for execution. This 

layered structure ensures efficient real-time operation and control. However, the interconnected nature 

of CPS also introduces vulnerabilities, particularly in the network layer, which is often the target of cyber-

attacks. This highlights the importance of robust designs to safeguard these systems, ensuring both their 

functionality and security. 

 

2.1.1 CPS Use-Case Selection 
Cyber-Physical Systems (CPS) represent a transformative integration of computational elements with 

physical processes, enabling real-time monitoring and control across various domains. This integration 

facilitates seamless interaction between physical systems and their digital counterparts, allowing for 

enhanced functionality and efficiency. CPS encompasses a wide array of applications, including smart 

grids, autonomous vehicles, healthcare systems, and unmanned aerial vehicles (UAVs), each leveraging 

the synergy between physical and cyber components to improve performance and reliability [48; 49]. 

In the context of smart grids, CPS enhances the management and distribution of electricity by integrating 

information and communication technologies with traditional power systems. This integration enables 

two-way communication between utilities and consumers, facilitating real-time monitoring, demand 

response, and improved grid reliability. The Cyber-Physical Power System (CPPS) allows for advanced 
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functionalities such as automated fault detection and self-healing capabilities, which are crucial for 

maintaining the stability and efficiency of modern energy systems [48]. 

Autonomous vehicles are another prominent application of CPS, where the interplay between sensors, 

control algorithms, and physical dynamics is critical for safe navigation. These vehicles utilize a network 

of sensors and communication technologies to perceive their environment, make real-time decisions, 

and interact with other vehicles and infrastructure. The development of Cooperative Open Cyber-

Physical Systems (CO-CPS) in this domain emphasizes the importance of wireless communication and 

collaboration among multiple stakeholders to ensure safety and efficiency in dynamic driving conditions 

[50]. 

In healthcare systems, CPS plays a vital role in patient monitoring and management, particularly 

highlighted during the COVID-19 pandemic. The integration of IoT devices, cloud computing, and 

machine learning within CPS frameworks enables real-time health monitoring, data collection, and 

analysis, facilitating timely interventions and personalized care. This approach not only enhances patient 

outcomes but also optimizes resource allocation within healthcare facilities [51]. 

Lastly, UAVs exemplify the application of CPS in aerial operations, where the combination of physical 

flight dynamics and cyber capabilities allows for a wide range of functionalities, from surveillance to 

delivery services. The system-of-systems approach in UAVs enables the coordination of multiple drones 

to perform complex tasks collaboratively, enhancing operational efficiency and effectiveness in various 

applications, including disaster response and environmental monitoring [52]. 

The selection of Unmanned Aerial Vehicles (UAVs), particularly quadcopters, as a use case for Cyber-

Physical Systems (CPS) is driven by their versatility, maneuverability, and the growing demand for 

autonomous operations in various sectors. Quadcopter UAVs are characterized by their ability to perform 

complex aerial maneuvers and operate in diverse environments, making them suitable for applications 

ranging from surveillance and disaster response to delivery services and agricultural monitoring. Their 

reliance on advanced communication systems for navigation and control underscores their role as a 

quintessential CPS, where the integration of physical flight dynamics with cyber capabilities is essential 

for real-time decision-making and operational efficiency [53; 54]. Moreover, the increasing sophistication 

of wireless technologies enhances the potential for quadcopters to communicate and collaborate, 

further solidifying their relevance in CPS frameworks [54]. 

Quadcopters can be deployed in two primary formats: as single units or as networks of multiple units. A 

single quadcopter operates independently, utilizing onboard sensors and control algorithms to navigate 

and perform tasks autonomously. This format is particularly effective for applications requiring localized 

data collection or targeted interventions, such as aerial photography or environmental monitoring [55]. 

In contrast, a network of quadcopters, often referred to as a swarm, leverages cooperative strategies to 

execute complex missions that would be challenging for a single unit. This networked approach 

enhances operational capabilities, allowing for coordinated tasks such as search and rescue operations, 

where multiple UAVs can cover larger areas more efficiently and share data in real-time to improve 

situational awareness [31]. The integration of multiple quadcopters into a cohesive system exemplifies 

the potential of CPS to enhance performance and reliability through collaboration and communication 

among distributed agents [56]. 
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2.2 Quadcopter Modeling 
2.2.1 Modeling of the Nonlinear Quadcopter 
This section introduces the nonlinear model of quadcopter kinematics and rigid-body dynamics. 

Quadcopters are underactuated systems with four control inputs and six degrees of freedom. The 

quadcopter rigid body dynamics is analysis and simplified to develop a control system at equilibrium 

point. The modeling of quadcopter is based on following assumptions [57; 58]. 

• The range of pitch movement and roll movement is small. 

• The quadcopter frame is symmetrical. 

• The whole quadcopter is a rigid body. 

• The inertia of the motor is small and neglected. 

• The center of frame matches the center of mass. 

Kinematics 

There are two primary configurations for quadcopter frames: the "X" configuration and the "+" 

configuration, as illustrated in Figure 2.2. In pitch or roll maneuvers, quadcopters with the "+" 

configuration use only two rotors, while those with the "X" configuration engage all four rotors. The "X" 

configuration is used in this work to maximize the available torque for roll and pitch movements by 

utilizing all four rotors [57]. 

 

Figure 2.2: Two different quadcopter frame setups [57]. 

 

Table 2.1 presents the mathematical symbols employed within the modeling. 

 

Table 2.1: Mathematical symbols for modeling [57]. 

Symbol Meaning 
[𝒙, 𝒚, 𝒛] Position of quadcopter in the inertial frame. 

[𝒙𝒃, 𝒚𝒃, 𝒛𝒃] Position of quadcopter in body frame. 

[𝒗𝒙, 𝒗𝒚, 𝒗𝒛] Velocity of the quadcopter in the inertial frame. 

[𝜱,𝜽,𝜳] Angular position of the quadcopter in the inertial frame. 
[𝒑, 𝒒, 𝒓] Angular rate of the quadcopter in body frame. 



23 
 

 

In inertial frame, x axis points east, y axis points north, and z axis points up. Roll angle (𝛷) represents 

rotation along x axis. Pitch angle (𝜃) represents rotation along y axis. Yaw angle (𝛹) represents rotation 

along z axis. 

 

Figure 2.3: Quadcopter coordinate diagram in body and inertial frame [57]. 

 

Rotation matrix is based on Z-Y-X Euler angles to present rigid-body vector that rotates from body frame 

to inertial frame as demonstrated in Figure 2.3. 

Rotation about z axis is given by: 

 𝑅𝜓 = [
cos(𝜓) sin(𝜓) 0

− sin(𝜓) cos(𝜓) 0
0 0 1

]. (2.1) 

  

Rotation about y axis is given by: 

 𝑅𝜃 = [
cos(𝜃) 0 sin(𝜃)
0 1 0

− sin(𝜃) 0 cos(𝜃)
]. (2.2) 

 

Rotation about x axis is given by: 

 𝑅𝜙 = [

1 0 0
0 cos(𝜙) − sin(𝜙)

0 sin(𝜙) cos(𝜙)
]. (2.3) 

 

Then the rotation matrix from body coordinate to inertial coordinate is given by: 

 

 𝑅𝐸→𝐵 = 𝑅𝜙𝑅𝜃𝑅𝜓, (2.4) 
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This is equivalent to: 

[

cos(𝜃) cos(𝜓) cos(𝜃) sin(𝜓) sin(𝜃)

− cos(𝜙) sin(𝜓) + cos(𝜓) sin(𝜙) sin(𝜃) cos(𝜙) cos(𝜓) + sin(𝜙) sin(𝜃) sin(𝜓) − cos(𝜃) sin(𝜙)

− cos(𝜙) cos(𝜓) sin(𝜃) − sin(𝜙) sin(𝜓) cos(𝜓) sin(𝜙) − cos(𝜙) sin(𝜃) sin(𝜓) cos(𝜙) cos(𝜃)
]. 

 (2.5) 

 

The above matrix is orthonormal. So, the rotation matrix from body coordinate to inertial coordinate can 

be calculated by taking its transpose.  

 𝑅𝐵→𝐸 = 𝑅𝐸→𝐵
𝑇 , (2.6) 

 

 

This is equivalent to: 

[

cos(𝜓) cos(𝜃) −cos(𝜙) sin(𝜓) + cos(𝜓) sin(𝜙) sin(𝜃) −cos(𝜙) cos(𝜓) sin(𝜃) − sin(𝜙) sin(𝜓)

cos(𝜃) sin(𝜓) cos(𝜙) cos(𝜓) + sin(𝜙) sin(𝜓) sin(𝜃) cos(𝜓) sin(𝜙) − cos(𝜙) sin(𝜓) sin(𝜃)

sin(𝜃) − cos(𝜃) sin(𝜙) cos(𝜙) cos(𝜃)
].  

(2.7) 

 

Therefore:  

 [
𝑥
𝑦
𝑧
] = 𝑅𝐵→𝐸 [

𝑥𝑏
𝑦𝑏
𝑧𝑏

]. (2.8) 

 

  

The Euler rates of the quadcopter is same as other aircrafts. It can be used to calculate the attitude of 

the quadcopter [57]. The relation between the Euler rates and the body angular rates is: 

 

[
𝑝
𝑞
𝑟
] = [

�̇�
0
0

] + 𝑅𝜙 [
0
�̇�
0
] + 𝑅𝜙𝑅𝜃 [

0
0
�̇�
] = Ω𝐸→𝐵 [

�̇�

�̇�
�̇�

]. 

 

   (2.9) 

 

In which: 
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Ω𝐸→𝐵 = [

1 0 sin(𝜃)

0 cos(𝜙) − sin(𝜙) cos(𝜃)

0 sin(𝜙) cos(𝜃) cos(𝜙)
]. 

 

(2.10) 

 

Additionally:  

 

   

Ω𝐵→𝐸 = Ω𝐸→𝐵
−1 =

[
 
 
 
1 sin(𝜙) tan(𝜃) − cos(𝜙) tan(𝜃)

0 cos(𝜙) sin(𝜙)

0 −
sin(𝜙)

cos(𝜃)

cos(𝜙)

cos(𝜃) ]
 
 
 

. (2.11) 

 

Finally: 

[

�̇�

�̇�
�̇�

] =

{
 

 
𝑝 + sin(𝜙)tan(𝜃)𝑞 − cos(𝜙)tan(𝜃)𝑟,

cos(𝜙)𝑞 + sin(𝜙)𝑟,

−
sin(𝜙)

cos(𝜃)
𝑞 +

cos(𝜙)

cos(𝜃)
𝑟,

 (2.12) 

 

 

Dynamics 

Based on Newton's second law of motion, the mass center dynamic equation of quadcopter is given by: 

  

 𝑑(𝑚�⃗� )

𝑑𝑡
= 𝐹 , (2.13) 

 

The thrust generated by each motor is 𝑇𝑖 (𝑖 =  1, 2, 3, 4). Therefore, the total thrust is given by: 

 

 𝑇 = 𝑇1 + 𝑇2 + 𝑇3 + 𝑇4, (2.14) 
 

The differential thrust generated by 4 motors generates pitch moment and roll moment.  

𝑙 is the distance between each motor and the center of the frame. 

Roll Movement: For moving in positive y direction, the rotation speed of motor 1 and 4 is increased and 

that of motor 2 and 3 is decreased as illustrated in Figure 2.4. 
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Figure 2.4: Roll movement [57]. 

Pitch Movement: For moving in positive x direction, the rotation speed of motor 2 and 4 is increased and 

the rotation speed of motor 1 and 3 is decreased as illustrated in Figure 2.5. 

 

Figure 2.5: Pitch movement [57]. 

 

Yaw Movement: For moving quadcopter around z axis in body frame, the rotation speed of motor 1 and 

2 is increased and that of motor 3 and 4 is decreased as illustrated in Figure 2.6. 
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Figure 2.6: Yaw movement [57]. 

 

Therefore:  

 𝜏𝜙 =
√2

2
𝑙(𝑇2 + 𝑇3 − 𝑇1 − 𝑇4), (2.15) 

 

Additionally, 

 𝜏𝜃 =
√2

2
𝑙(𝑇1 + 𝑇3 − 𝑇2 − 𝑇4), (2.16) 

 

The inverse torque required to generate yaw moment is generated by each motor, where 𝑚𝑖 (𝑖 =

 1, 2, 3, 4). The total inverse torque generated by four motors is given by: 

 

 𝜏𝜓 = 𝑚1 +𝑚2 −𝑚3 −𝑚4, (2.17) 
 

The dynamics equation of motion is given by:  

 𝑚[

�̇�𝑥
�̇�𝑦
�̇�𝑧

] = 𝑚𝑔 [
0
0
−1
] + 𝑅𝐵→𝐸𝑇 [

0
0
1
], 

 

(2.17) 

Therefore, position movement of the quadcopter can be expressed as: 
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[
�̈�
�̈�
�̈�
] = [

�̇�𝑥
�̇�𝑦
�̇�𝑧

] =

[
 
 
 
 
 
𝑇

𝑚
(− 𝑐𝑜𝑠(𝜓) 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜙) − 𝑠𝑖𝑛(𝜓) 𝑠𝑖𝑛(𝜙))

𝑇

𝑚
(𝑐𝑜𝑠(𝜓) 𝑠𝑖𝑛(𝜙) − 𝑠𝑖𝑛(𝜓) 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜙))

𝑇

𝑚
𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠(𝜃) − 𝑔 ]

 
 
 
 
 

.   (2.18) 

 

 

The rotation kinematics equation of quadcopter is given by: 

 

 
𝑑(𝐽𝜈)

𝑑𝑡
= 𝑀, (2.19) 

 

In the above equation, 𝐽 = diag[𝐽𝑥 , 𝐽𝑦, 𝐽𝑧] is quadcopter moments of inertia for 3 axes of body 

coordinate system. M is the moment applied on the quadcopter.  

Body torque generated by rotors is given by: 

 [

𝜏𝜙
𝜏𝜃
𝜏𝜓
] =

[
 
 
 
 
 √2

2
𝑙(𝑇2 + 𝑇3 − 𝑇1 − 𝑇4)

√2

2
𝑙(𝑇1 + 𝑇3 − 𝑇2 − 𝑇4)

𝑚1 +𝑚2 −𝑚3 −𝑚4 ]
 
 
 
 
 

. (2.20) 

 

Aerodynamic drag torque is given by: 

 𝜏𝑎𝑓 = 𝐾𝑎𝑓𝜈, (2.21) 

 

where 𝐾𝑎𝑓 = diag[𝑘𝑎𝑓𝑥, 𝑘𝑎𝑓𝑦, 𝑘𝑎𝑓𝑧]. 

Therefore, dynamics equation of torque is given by: 

𝑀 = [

𝑀𝑥
𝑀𝑦
𝑀𝑧

] = [

�̇�𝐽𝑥 + 𝑞𝑟(𝐽𝑧 − 𝐽𝑦)

�̇�𝐽𝑦 + 𝑝𝑟(𝐽𝑥 − 𝐽𝑧)

�̇�𝐽𝑧 + 𝑝𝑞(𝐽𝑦 − 𝐽𝑥)

] = [

𝜏𝜙 − 𝜏𝑎𝑓𝑥
𝜏𝜃 − 𝜏𝑎𝑓𝑦
𝜏𝜓 − 𝜏𝑎𝑓𝑧

]. (2.22) 

 

Finally, the equations of angular movement of the quadcopter are given by: 
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[
�̇�
�̇�
�̇�

] =

[
 
 
 
 
 
 
𝐽𝑦 − 𝐽𝑧

𝐽𝑥
𝑞𝑟 +

𝜏𝜙

𝐽𝑥
−
𝜏𝑎𝑓𝑥

𝐽𝑥
𝐽𝑧 − 𝐽𝑥
𝐽𝑦

𝑝𝑟 +
𝜏𝜃
𝐽𝑦
−
𝜏𝑎𝑓𝑦

𝐽𝑦
𝐽𝑥 − 𝐽𝑦

𝐽𝑧
𝑝𝑞 +

𝜏𝜓

𝐽𝑧
−
𝜏𝑎𝑓𝑧

𝐽𝑧 ]
 
 
 
 
 
 

. (2.23) 

 

Then the whole nonlinear quadcopter equations of kinematics and dynamics given by: 

 

�̇� =

[
 
 
 
 
 
 
 
 
 
 
 
 
�̇�
�̇�
�̇�
�̇�𝑥
�̇�𝑦
�̇�𝑧
�̇�

�̇�
�̇�
�̇�
�̇�
�̇� ]
 
 
 
 
 
 
 
 
 
 
 
 

=

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

�̇� = 𝑣𝑥,
�̇� = 𝑣𝑦,

�̇� = 𝑣𝑧,

�̇�𝑥 =
𝑇

𝑚
(−cos(𝜓) sin(𝜃) cos(𝜙) − sin(𝜓) sin(𝜙)),

�̇�𝑦 =
𝑇

𝑚
(cos(𝜓) sin(𝜙) − sin(𝜓) sin(𝜃) cos(𝜙)),

�̇�𝑧 =
𝑇

𝑚
(cos(𝜙) cos(𝜃)) − 𝑔,

�̇� = 𝑝 + sin(𝜙) tan(𝜃) 𝑞 − cos(𝜙) tan(𝜃) 𝑟,

�̇� = qcos(𝜙) + rsin(𝜙) ,

�̇� = −
sin(𝜙)

cos(𝜃)
𝑞 +

cos(𝜙)

cos(𝜃)
𝑟,

�̇� =
(𝐽𝑦 − 𝐽𝑧)

𝐽𝑥
𝑞𝑟 +

𝜏𝜙

𝐽𝑥
,

�̇� =
𝐽𝑧 − 𝐽𝑥
𝐽𝑦

𝑝𝑟 +
𝜏𝜃
𝐽𝑦
,

�̇� =
𝐽𝑥 − 𝐽𝑦

𝐽𝑧
𝑝𝑞 +

𝜏𝜓

𝐽𝑧
,

 (2.24) 

 

This system is nonlinear, it should be linearized for controller design in the next section. The linearization 

should be at a near-hover state where 𝜙, 𝜃, 𝜓 are close to zero.  

 

2.2.2 Quadcopter Modeling Linearization 
Original nonlinear or linearized model of the quadcopter can be employed, following is a comparison 

between using linear or nonlinear model of quadcopter. 

Linear Models: Linear models are favored due to their ease of comprehension and implementation. 

Controllers required for linear models are relatively simpler to tune and design. Their straightforward 

nature facilitates better understanding and straightforward implementation within the system. 
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Nonlinear Models: Contrarily, nonlinear systems provide more accurate representations of real-world 

scenarios. However, their complexity poses challenges in understanding and implementation, 

particularly in formulating these intricate models. Controllers designed for nonlinear systems are notably 

more complex and demand a deeper understanding of their design and implementation. 

In this work, while the nonlinear model of the quadcopter is considered, the complexity of designing a 

full controller for this system necessitates the use of a linearized model for controller design. The 

controller, developed based on the linearized system, is then applied to control the actual nonlinear 

system. The nonlinear model of quadcopter is represented as follows: 

 �̇� = 𝑓(𝑋, 𝑈), (2.25) 

 

 𝑋 =

[
 
 
 
 
 
 
 
 
 
 
 
𝑥
𝑦
𝑧
𝑣𝑥
𝑣𝑦
𝑣𝑧
𝜙
𝜃
𝜓
𝑝
𝑞
𝑟 ]
 
 
 
 
 
 
 
 
 
 
 

. (2.26) 

 

 𝑈 = [

𝑈1
𝑈2
𝑈3
𝑈4

] = [

𝑇
𝜏𝜙
𝜏𝜃
𝜏𝜓

]. (2.27) 

 

where 𝑋 represents the state vector and 𝑈 represents the input vector. 

 

Linearization is performed around steady-state operating conditions, that is trim points, where the 

quadcopter is in equilibrium. At these trim points: 

 𝑋𝑡𝑟𝑖𝑚 = [0,0,0,0,0,0,0,0,0,0,0,0]𝑇 , (2.29) 
 

 𝑈𝑡𝑟𝑖𝑚 = [𝑚𝑔, 0,0,0]𝑇, (2.30) 
 

 𝑓(𝑋𝑡𝑟𝑖𝑚, 𝑈𝑡𝑟𝑖𝑚) = 0, (2.31) 
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where 𝑋𝑡𝑟𝑖𝑚 is state variable and 𝑈𝑡𝑟𝑖𝑚 is control inputs in equilibrium point, and the equation 

represents steady state condition.  

 

The characteristic matrix 𝐴 and the input matrix 𝐵 are calculated as follows: 

 

 𝐴 =
𝛿𝑓

𝛿X
|X=Xequil,U=Uequil

, (2.32) 

 

 𝐵 =
𝛿𝑓

𝛿U
|X=Xequil,U=Uequil

, (2.33) 

 

𝐴 and 𝐵 matrixes are represented as follows: 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 −𝑔 0 0 0 0
0 0 0 0 0 0 𝑔 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 
 
 

. (2.34) 

 

 

𝐵 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1

𝑚
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0
1

𝐽𝑥
0 0

0 0
1

𝐽𝑦
0

0 0 0
1

𝐽𝑧]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. (2.35) 
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Therefore, the linearized quadcopter rigid-body state-space formula is given by: 

 

�̇� =  

[
 
 
 
 
 
 
 
 
 
 
 
 
�̇�
�̇�
�̇�
�̇�𝑥
�̇�𝑦
�̇�𝑧
�̇�

�̇�
�̇�
�̇�
�̇�
�̇� ]
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑣𝑥
𝑣𝑦
𝑣𝑧
−𝑔𝜃
𝑔𝜙
𝑇

𝑚
− 𝑔

𝑝
𝑞
𝑟
𝜏𝜙

𝐽𝑥
𝜏𝜃
𝐽𝑦
𝜏𝜓

𝐽𝑧 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

= 𝐴X + 𝐵U, (2.36) 

 

C and D matrixes are represented as follows: 

 

𝐶 = 

[
 
 
 
 
 
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0]

 
 
 
 
 

. (2.37) 

 

𝐷 =  

[
 
 
 
 
 
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0]

 
 
 
 
 

. (2.38) 

 

Therefore, output of the system will be position and angular position of quadcopter in inertial frame.  

 𝑌 =

[
 
 
 
 
 
𝑥
𝑦
𝑧
𝜙
𝜃
𝜓]
 
 
 
 
 

= 𝐶X + 𝐷𝑈, (2.39) 
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Table 2.2 presents the constant values utilized to configure the quadcopter. 

 

Table 2.2: Quadcopter configuration values [57]. 

Parameter Definition  Value 

𝑱𝒙 Moment of Inertia in x axis 0.0019005  
𝑱𝒚 Moment of Inertia in y axis 0.0019536 

𝑱𝒛 Moment of Inertia in z axis 0.0036894 
𝒎 Mass 0.551  
𝒈 Gravity constant 9.8 

 

 

2.3 Control System Design 
2.3.1 Determine Control System Objective 
The control of a nonlinear quadcopter to follow simple trajectories around a designated start point (0, 0, 

0) involves several critical control objectives, namely attitude control, altitude control, position control, 

and yaw control. Each of these components plays a vital role in ensuring the quadcopter maintains 

stability and executes its flight patterns effectively. 

1) Attitude Control: This aspect focuses on managing the quadcopter's orientation along its three 

axes: roll, pitch, and yaw. Effective attitude control is essential for maintaining stability during 

flight and is often achieved through various control strategies, including PID (Proportional-

Integral-Derivative) controllers. The complexity of quadcopter dynamics, characterized by high 

maneuverability and nonlinearity, necessitates sophisticated control algorithms to ensure 

precise orientation management [59]. Research indicates that optimal PID control methods can 

significantly enhance the quadcopter's ability to maintain its desired attitude during various 

maneuvers [59]. 

2) Altitude Control: Regulating the quadcopter's vertical position is crucial for achieving desired 

flight characteristics. This is accomplished by adjusting the thrust produced by the rotors, 

allowing the quadcopter to ascend, descend, or maintain a specific altitude. The altitude control 

system must respond dynamically to changes in weight and environmental conditions, which can 

affect lift and stability [60]. The integration of sensors such as accelerometers and inertial 

measurement units (IMUs) is vital for accurate altitude measurement and control [60]. 

3) Position Control: Position control governs the quadcopter's movement in horizontal space, 

ensuring it follows a predetermined trajectory or remains in a specific location. This control 

objective is closely linked to both altitude and attitude control, as maintaining a stable position 

requires coordinated adjustments across all axes. The implementation of waypoint navigation 

systems has been shown to enhance position control, allowing quadcopters to autonomously 

navigate to specified coordinates [61]. The use of advanced algorithms and real-time feedback 

from sensors is critical for achieving high accuracy in position control [62]. 

4) Yaw Control: While yaw control is not the primary focus of this work, it is still an important 

aspect of quadcopter dynamics. Managing the yaw angle involves tuning input values to the 
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actuators to ensure the quadcopter can turn smoothly and maintain its intended flight path. 

However, for the purpose of following simple trajectories, the emphasis remains on altitude and 

position control, as these are more critical for basic flight operations [63]. 

The distinction between simple and complex trajectories is also significant in the context of quadcopter 

control. Simple trajectories involve straightforward maneuvers such as hovering, ascending, or following 

straight paths. These predictable flight patterns require less sophisticated control algorithms, making 

them suitable for initial training and basic operations [63]. In contrast, complex trajectories demand 

advanced control strategies due to their intricate nature, which includes sharp turns and high-speed 

navigation through obstacles. Mastering these complex trajectories enhances the quadcopter's 

capabilities for specialized applications, such as aerial surveillance [62]. 

 

2.3.2 Controller Type Selection 
Quadcopters utilize a variety of control mechanisms to effectively manage their flight dynamics, with 

several prominent controllers designed to enhance their stability and maneuverability. Among these, the 

Proportional-Integral-Derivative (PID) Controller, the Linear Quadratic Regulator (LQR) Controller, and the 

State Feedback Controller are widely recognized for their respective advantages and applications in 

quadcopter control.  

1) Proportional-Integral-Derivative (PID) Controller: The PID controller is a fundamental component 

in quadcopter control systems, operating by adjusting the output based on proportional, 

integral, and derivative terms. The proportional term addresses the current error, the integral 

term accumulates past errors, and the derivative term anticipates future errors. This 

combination makes the PID controller both versatile and effective, particularly in maintaining 

stable flight characteristics [64]. Its simplicity and ease of implementation have made it a 

preferred choice among researchers and practitioners in the field of drone technology [64]. 

Furthermore, the ability to stack PID controllers into cascaded configurations allows for 

enhanced control over complex flight dynamics [65]. 

2) Linear Quadratic Regulator (LQR) Controller: The LQR controller is primarily applied in linear 

systems and is designed to compute optimal control gains that minimize a quadratic cost 

function while ensuring system stability. Although the LQR controller is effective in controlling 

quadcopters, its reliance on a linear system model and the complexity of its implementation can 

limit its widespread application [66]. Research indicates that LQR can be effectively combined 

with other control strategies, such as backstepping control, to enhance performance in 

quadcopter applications [66]. This adaptability allows for improved control in various flight 

conditions, although it may require more computational resources compared to simpler 

controllers like PID. 

3) State Feedback Controller: This controller leverages feedback from the entire system's state 

variables, providing enhanced flexibility and performance by directly accessing the system's state 

space for control law design. While the State Feedback Controller can offer superior 

performance, its complexity and higher computational demands may restrict its use in some 

quadcopter applications [66]. The integration of state feedback with LQR methods has been 

explored to optimize control strategies further, demonstrating the potential for improved 

maneuverability and stability in quadcopter flight [66]. 
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In summary, the PID controller remains the most widely utilized control mechanism in quadcopter 

applications due to its simplicity, effectiveness, and ease of tuning. The LQR and State Feedback 

Controllers, while offering advanced capabilities, present challenges in terms of implementation 

complexity and computational requirements. As quadcopter technology continues to evolve, the 

integration of these control strategies will play a crucial role in enhancing flight performance and 

expanding the operational capabilities of these versatile aerial vehicles. 

 

2.3.3 Controller Design 
The designed controller comprises three primary components: 

1) Altitude Controller: This controller regulates the height of the quadcopter. It employs a single PID 

controller, which gets the difference between the actual altitude (z) and the reference altitude 

(z_ref) as input to determine the necessary thrust output. 

2) Yaw Controller: This component adjusts the yaw angle, or rotation around the z-axis, of the 

quadcopter. Although controlling the yaw angle is not a primary objective of this work, it utilizes 

a PID controller that receives zero input, thereby maintaining a constant yaw value. The desired 

yaw angle is consistently set to zero. 

3) Position Controller: This controller manages the quadcopter's x, and y coordinates and 

represents the most complex aspect of the overall control system. It employs a cascaded control 

structure consisting of four PID controllers. The outer controller functions as the position 

controller, while the inner controller serves as the attitude controller. Tuning is conducted first 

on the inner controller, followed by the outer controller. 

a. Attitude Controller: This component consists of two parts: the first gets the difference 

between the roll angle and the roll reference as input, outputting the required torque 

for roll; the second does the same for pitch. The roll and pitch reference inputs are 

provided by the outer loop position controller. 

b. Position Controller: This part also contains two components: the first gets the difference 

between the actual x position and the reference x position as input, producing a pitch 

reference output; the second calculates the difference for y, producing a roll reference 

output. The outputs from this controller feed into the inner attitude controller. 

These PID controllers are crucial for achieving precise control over the quadcopter's movements, 

enabling stable flight and the execution of desired trajectories.  

The PID parameters are optimized using the Simulink auto-tuner tool, without the need for specific 

criteria related to system response, such as rise time, settling time, peak overshoot, or steady-state error. 

Simulink automatically identifies the optimal response for the specified variable, eliminating the 

necessity for manual adjustments. To fine-tune each controller, all other controllers are temporarily set 

to a zero reference, allowing for precise tuning of the specified PID controller using a step input as a 

reference. Experimental results indicate that these controllers are functioning effectively. 

The controller design and tuning are initially conducted on a linearized system, facilitating easier control 

and adjustment of the six PID controllers. Following the tuning process, the overall controller exhibits 

adequate control over the linearized quadcopter around the equilibrium point, defined as (0, 0, 0). 
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Subsequently, the same controller is applied to the nonlinear quadcopter, yielding satisfactory results 

across all designed test trajectories.  

Given that the designed controller transitions from a linearized to a nonlinear system, it presents certain 

limitations, such as an inability to perform complex maneuvers and a tendency to drift far from the trim 

point. In simulations, the quadcopter is allotted 10 seconds to transition to the next position and is 

constrained to a maximum deviation of 5 units along each axis from the trim point. 

Values of controller gains are demonstrated in Table 2.3. 

 

Table 2.3: Gain values of PID controllers. 

Number Controller Output Proportional Integral Derivative 

1 Thrust 0.995151437850186 0.128436617904908 1.76652121748459 

2 Torque Roll 0.00283727985172173 0.000300746607233676 0.00592713753900793 

3 Torque Pitch 0.00376352907272366 0.000541941810599823 0.00599672187002239 

4 Torque Yaw 0.00651371850229212 0.000840676044468491 0.0115626843326264 

5 Reference Roll 0.0344011339376346 0.00030706355489176 0.0770084502146799 

6 Reference Pitch -0.0353666022144165 -0.000286794158433156 -0.0628063352706131 

 

Figure 2.7 depicts the designed controller for the quadcopter system.  

 

 

Figure 2.7: Designed PID controller. 
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2.4 Cyber-Attacks  
2.4.1 Cyber Security of Cyber-Physical Systems 
Cyber-physical systems (CPS) represent a convergence of computational and physical processes, 

necessitating robust cybersecurity measures to protect against a range of vulnerabilities. The inherent 

complexity of CPS, which includes interconnected sensing, computation, and actuation components, 

exposes them to sophisticated cyber threats that can lead to significant physical damage. Notable 

incidents such as the StuxNet attack and the Maroochy Shire sewage control incident exemplify the 

catastrophic consequences of cyber-attacks on industrial systems, highlighting the urgent need for 

effective cybersecurity strategies [67]. Furthermore, as the security landscape evolves, the focus has 

shifted from traditional physical security concerns to a more integrated approach that considers both 

cyber and physical layers of security [68]. This transition underscores the necessity for comprehensive 

security frameworks that can address the unique challenges posed by the tight coupling of cyber and 

physical elements within CPS [69]. The growing reliance on Internet of Things (IoT) technologies within 

CPS further amplifies these vulnerabilities, necessitating advanced detection systems capable of 

identifying and mitigating cyber-physical threats [70]. 

Cyber-attacks on cyber-physical systems pose significant risks, particularly in critical infrastructures such 

as the smart grid, where the interplay between cyber and physical components can lead to cascading 

failures [71]. The nature of these attacks can vary widely, from denial-of-service attacks that disrupt 

system operations to more sophisticated intrusions aimed at manipulating control objectives [67]. 

Research indicates that the detection of such attacks is crucial for maintaining the safety and reliability of 

CPS, as traditional monitoring methods may not suffice in identifying complex threats that exploit both 

cyber and physical vulnerabilities [68]. The integration of hardware-in-the-loop simulations has proven 

effective in evaluating the impact of cyber-attacks on CPS, revealing the necessity for a dual-layered 

security approach that encompasses both cyber defenses and physical safeguards [68]. As the landscape 

of cyber threats continues to evolve, a comprehensive understanding of the attack vectors and potential 

defenses is essential for securing CPS against emerging risks [71].  

Five distinct types of cyber-attacks are defined as follows: 

1) Denial-of-Service (DoS) Attack: A Denial-of-Service attack aims to disrupt the normal functioning 

of a system by overwhelming it with excessive requests or by jamming communication channels. 

This results in the inability of legitimate users to access the services provided by the system, 

effectively blocking the exchange of information between system components. DoS attacks can 

lead to significant operational failures, particularly in critical infrastructures such as smart grids 

and industrial control systems. The necessity for robust security measures to ensure 

uninterrupted service delivery is underscored by the prevalence of DoS attacks in CPS [72]. 

2) False Data Injection (FDI) Attack: False Data Injection attacks involve the malicious manipulation 

of data inputs to a system, which can lead to erroneous control actions. In smart grids, for 

instance, FDI can cause the control center to execute incorrect commands, potentially resulting 

in system instabilities and even blackouts. This type of attack is particularly concerning because 

it can go undetected while causing significant damage to the operational integrity of the system. 

The implications of FDI attacks highlight the need for effective detection and mitigation 

strategies in CPS [73]. 
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3) Replay Attack: Replay attacks involve the interception and subsequent retransmission of valid 

data messages. This can mislead the system into believing it is receiving legitimate information, 

thus allowing an attacker to manipulate system responses without detection. Such attacks 

exploit the temporal nature of data communication in CPS, making them a significant concern 

for system security. The stealthy nature of replay attacks necessitates the implementation of 

robust authentication and timestamping mechanisms to mitigate their impact [74]. 

4) Zero Dynamic Attack: Zero dynamic attacks are a sophisticated form of attack that targets the 

system's control dynamics. By exploiting the system's response characteristics, attackers can 

manipulate the system's behavior without raising alarms. This stealthy approach can lead to 

severe consequences, as the system may operate under false assumptions of safety and stability. 

The complexity of zero dynamic attacks necessitates advanced detection techniques that can 

identify subtle deviations in system behavior [75].  

5) Covert Attack: Covert attacks are designed to be stealthy and undetectable, allowing attackers to 

manipulate system operations without triggering alarms or detection mechanisms. The Stuxnet 

malware is a prime example, as it was engineered to damage specific physical systems while 

remaining hidden from operators. Such attacks pose a critical threat to the security of CPS, as 

they can lead to catastrophic failures without any immediate indication of compromise. The 

need for comprehensive monitoring and anomaly detection systems is paramount to counteract 

covert attacks [76]. 

 

2.4.2 Applied Cyber-Attacks 
This study focuses on three attack types: Denial of Service (DoS), Replay, and False Data Injection (FDI) 

attacks, which are applied to the quadcopter system. These attacks were selected due to their 

prevalence and significant impact on Cyber-Physical Systems (CPS), particularly in quadcopter 

applications, where ensuring reliable operation and security is critical. In contrast, Zero Dynamic and 

Covert Attacks were not considered in this work as the primary focus was on more commonly occurring 

and impactful attack types. While these excluded attack types are important, their analysis is beyond the 

scope of this study and has been identified as a potential direction for future research to further 

enhance CPS security. 

The nonlinear quadcopter model can be formulated as: 

 {
�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)),

𝑦(𝑡) = 𝐶𝑥(𝑡),
 (2.41) 

 

where x is the state variable, u is the input, y is the output and is a C constant matrix. 

 

DoS: DoS attacks, when implemented in control systems, disrupt communication by either blocking 

sensor and actuator data entirely or by replacing missing data with previously received values. In the 

zero-input strategy, all sensor and actuator data are set to zero, simulating a complete data loss. This 

approach can be formulated as: 
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 {
�̃�(𝑡) = 0,
�̃�(𝑡) = 0,

 (2.42) 

 

where �̃� is outputs of the system after attack. and �̃� is input of the system after attack.   

Alternatively, in the hold-input strategy, the last known values of the sensor or actuator data are retained 

and fed back into the system. These strategies simulate the effects of DoS attacks on control systems by 

either completely interrupting communication or causing delayed responses through data retention. This 

approach can be formulated as: 

 {
�̃�(𝑡) = 𝑦𝜏𝑦 ,

�̃�(𝑡) = 𝑢𝜏𝑢 ,
 (2.43) 

 

where 𝑦𝜏𝑦 denotes the most recent actuator data before the attack, and 𝑢𝜏𝑢 denotes the most recent 

sensor data before the attack [77]. 

In this work the second approach is used to apply DoS on the system.  

 

FDI: In the implementation of False Data Injection (FDI) Attacks, an attacker injects malicious data into 

sensor measurements to mislead the state estimation process. This can be modeled by modifying the 

system's sensor outputs as according to following formula: 

 {
�̃�(𝑡) = 𝑦(𝑡) + 𝑦𝑎 ,

�̃�(𝑡) = 𝑢(𝑡) + 𝑢𝑎 ,
 (2.44) 

 

where 𝑦𝑎  represents the injected malicious sensor data and 𝑢𝑎 represents the injected malicious 

actuator data [77]. 

 

Replay: In the implementation of replay attacks, an adversary intercepts and records real-time sensor 

measurements or control actions, and later replays this recorded data to mislead the system. The attack 

occurs in two stages: 

• Data Collection (Eavesdropping): Initially, the attacker collects sensor data without altering it 

allowing the system to function normally while gathering information. This can be formulated as:  

{
�̃�(𝑡) = 𝑦(𝑡),

�̃�(𝑡) = 𝑢(𝑡),
      𝑡0 ≤ 𝑡 ≤ 𝑡0 +𝑤. (2.45) 

 

where 𝑡0 is start of record time and 𝑤 is record duration.  

• Replay Stage: The attacker then replays the recorded data to replace real-time sensor 

measurements and manipulates actuator control signals. This allows the attacker to disguise the 

attack while preventing the system from detecting anomalies. 
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{
�̃�(𝑡) = 𝑦(𝑡 − 𝑡1 + 𝑡0),

�̃�(𝑡) = 𝑢(𝑡) + 𝑢𝑎,
      𝑡1 ≤ 𝑡 ≤ 𝑡1 +𝑤. (2.46) 

 

where 𝑡1 is start of replay time and 𝑤 is record duration [77].  

 

2.4.3 Cyber-Attacks Implementation 

Three different types of attacks are applied on the system which are DoS, replay, False Data Injection 

(FDI). Specifically, they are all applied on communication networks between quadcopter plant and 

controller. These attacks can be applied on different sensors or actuators.  

All potential attack targets from sensors and actuators are as follows: 

 

Table 2.4: Attack targets of quadcopter. 

Number Type Target effects 

1 Actuator T z 
2 Actuator 𝜏𝜙 y 

3 Actuator 𝜏𝜃 x 
4 Actuator 𝜏𝜓 x, y 

5 Sensor x x 
6 Sensor y y 
7 Sensor z z 
8 Sensor 𝜙 y 
9 Sensor 𝜃 x 

10 Sensor 𝜓 x, y 

 

Cyber-attacks are applied on all 6 sensors and 4 actuators. 

The following assumptions and rules govern the application of cyber-attacks on the system: 

• Each attack is applied individually on either a single sensor or actuator.  

• The severity of each attack is carefully calibrated to ensure that the system maintains stability 

and does not experience a complete loss of control. 

• The duration of each attack can be 1, 2, or 3 seconds. 

• The detector is located within the command-and-control unit, receiving only sensor data 

transmitted through the communication link and actuator data sent from the controller. 

 

The implementation of each attack is described as follows: 

• Denial of Service (DoS): This attack is executed using a zero-order hold block in Simulink. The 

block retains its output value constant, updating only at specific sampling intervals, effectively 

preventing the transmission of new data. 

• False Data Injection (FDI): The FDI attack is implemented by modifying the original signal 

through the addition of a constant value during the designated attack period, thereby altering 

the data being communicated. 
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• Replay Attacks: This attack involves the use of a memory block to initially record sensor data. 

Subsequently, a delay block is employed to replay the recorded sensor data at the specified time 

during the replay attack. During this process, the FDI attack is concurrently applied to the 

actuators as described above. 

 

2.5 Conclusion  
This chapter presents the comprehensive modeling, control, and simulation of cyber-attacks on a 

quadcopter system. The quadcopter is modeled based on a full nonlinear dynamic representation, 

ensuring a detailed and realistic simulation of its behavior. To control the system, a Proportional-Integral-

Derivative (PID) controller is implemented. The PID controller is initially designed using the linearized 

version of the quadcopter's model but is subsequently applied to the nonlinear system to maintain 

control robustness. Six PID controllers are utilized in three distinct control loops to manage altitude, 

position, and yaw. The system is then subjected to three different types of cyber-attacks: Denial of 

Service (DoS), False Data Injection (FDI), and replay attacks. In the DoS attack, data transmission is 

delayed during the attack period. The FDI attack involves injecting false data into the system's actual 

values, while the replay attack records sensor data and replays it, concurrently applying the FDI on 

actuators.  
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Chapter 3 

3. Detection, Identification, and Isolation of 

Cyber-Attacks in Single Quadcopter 
 

3.1 Introduction 
3.1.1 Cyber-Attack Detection, Identification and Isolation 
Cyber-attack detection is a critical component of cybersecurity, particularly in the context of critical 

infrastructures such as smart grids. The ability to detect cyber-attacks in real-time is essential for 

maintaining the reliability and resilience of these systems. Various methodologies have been proposed 

for effective detection, including machine learning techniques that can analyze large datasets for 

anomalies indicative of cyber threats. For instance, a deep and scalable unsupervised machine learning 

system has been developed to enhance cyber-attack detection capabilities in large-scale environments, 

emphasizing the need for continuous monitoring to identify targeted attacks promptly [78]. 

Furthermore, the literature highlights the importance of developing detection mechanisms that can 

operate effectively even in the presence of sophisticated attack strategies, such as quasi-covert attacks, 

which are designed to evade detection [79]. This underscores the ongoing challenges in the field, where 

the sophistication of cyber threats necessitates advanced detection strategies that can adapt to evolving 

tactics. 

Once a cyber-attack has been detected, the next critical step is the identification of the specific type of 

attack that has occurred. This process involves analyzing the characteristics of the detected anomalies to 

classify the nature of the attack, which can range from data injection to replay attacks. Various 

techniques have been proposed for this purpose, including statistical classifiers and machine learning 

algorithms that can differentiate between different attack vectors based on their signatures [80]. For 

example, the identification of malicious URLs has been studied extensively, showcasing how spatial 

analysis can aid in recognizing patterns associated with specific types of cyber threats [80]. Additionally, 

the identification process is complicated by the emergence of undetectable attacks, such as covert and 

zero dynamics attacks, which do not produce observable effects on system outputs, thereby 

complicating the identification process [8]. This highlights the necessity for robust identification 

frameworks that can accurately classify attacks even when they are designed to remain hidden. 
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Following the identification of a cyber-attack, the isolation of the affected parts of the system is crucial 

to mitigate damage and prevent further exploitation. Isolation involves determining which components 

of the cyber-physical system (CPS) are under threat and implementing measures to contain the attack. 

Research has shown that effective isolation strategies must account for both malicious cyber activities 

and machine-induced faults, as both can compromise system integrity [8]. The challenge lies in 

developing methodologies that can distinguish between the effects of genuine faults and those induced 

by cyber-attacks, particularly in systems lacking robust security mechanisms [3]. This necessitates the 

integration of advanced fault detection and isolation techniques that can operate in real-time to ensure 

that only the compromised components are isolated, thereby maintaining overall system functionality 

while addressing security concerns. The ongoing development of these methodologies is vital for 

enhancing the resilience of CPS against a diverse array of cyber threats. 

 

3.1.2 Machine Learning for Cyber-Attack Detection, Identification and Isolation 
Machine learning algorithms have emerged as powerful tools in cyber-attack detection, offering the 

ability to analyze vast amounts of data to identify patterns indicative of malicious activity. These 

algorithms can be trained on historical data to learn the characteristics of normal and attack traffic, 

enabling them to detect anomalies in real-time network traffic. Supervised learning algorithms, such as 

Random Forest and Long Short-Term Memory (LSTM), are commonly used for this purpose, as they can 

classify network packets into normal and attack categories with high accuracy. Additionally, unsupervised 

learning algorithms, like k-means clustering and autoencoders, can be employed to detect unknown or 

novel attacks by identifying patterns that deviate significantly from normal behavior. The integration of 

machine learning techniques has significantly improved the efficiency and effectiveness of cyber-attack 

detection, enabling organizations to better protect their networks and systems from cyber threats [81]. 

Artificial Neural Networks (ANNs) come in various forms, each suited for different types of data and tasks 

in cyber-attack detection. Recurrent Neural Networks (RNNs), known for their ability to handle 

sequential data, are effective in analyzing time-series sensor and actuator data to detect anomalies 

indicative of cyber-attacks. Feedforward Neural Networks (FNNs) are well-suited for pattern recognition 

tasks and can classify network traffic data into normal and attack categories based on learned features. 

Convolutional Neural Networks (CNNs) excel in extracting spatial patterns from complex data, making 

them valuable for detecting attacks that exhibit spatial characteristics in network traffic. The versatility of 

these different types of ANNs allows for a more comprehensive approach to securing Cyber-Physical 

Systems (CPS) and other critical systems, as highlighted in recent studies that emphasize the importance 

of deep learning methods in enhancing cybersecurity measures [82]. 

Neural networks and deep learning techniques have shown great promise in cyber-attack detection, 

particularly in their ability to automatically learn and extract features from complex datasets. CNNs have 

been effectively utilized to analyze spatial patterns in network traffic data, making them well-suited for 

detecting attacks that exhibit distinct patterns. RNNs, particularly LSTM networks, are effective for 

analyzing sequential data, such as time-series sensor and actuator data in CPS, enabling them to capture 

temporal dependencies and detect subtle attack behaviors. Additionally, hybrid models that combine 

CNNs and RNNs, such as the LSTM-CNN approach, have been proposed to leverage the strengths of both 

architectures for improved attack detection accuracy. The ongoing evolution of neural networks and 
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deep learning in cyber-attack detection continues to be a focal point of research, with novel 

architectures and techniques being explored to enhance detection capabilities [83]. 

Recurrent Neural Networks (RNNs) have evolved to address various challenges in sequential data 

analysis, including cyber-attack detection. One popular variant is the Long Short-Term Memory (LSTM) 

network, designed to mitigate the vanishing gradient problem in traditional RNNs. LSTMs are well-suited 

for capturing long-term dependencies in time-series data, making them effective in identifying subtle 

patterns indicative of cyber-attacks. Another variant, the Gated Recurrent Unit (GRU), offers a simplified 

architecture compared to LSTM while maintaining similar performance, making it a more 

computationally efficient choice for some applications. Additionally, Bidirectional RNNs combine 

information from both past and future time steps, allowing for a more comprehensive understanding of 

temporal patterns in data. These advancements in RNN architectures provide valuable tools for cyber-

attack detection in CPS and other critical systems, as they enhance the ability to model complex 

sequential data [84]. 

Among various approaches, Long Short-Term Memory (LSTM) networks have emerged as a prominent 

choice for cyber-attack detection in CPS. LSTM networks are specifically designed to model sequential 

data with long-range dependencies, making them well-suited for analyzing time-series sensor and 

actuator data common in CPS. The ability of LSTMs to retain and selectively update information over 

time enables them to capture complex patterns indicative of cyber-attacks, such as anomalies in system 

behavior or unexpected sensor readings. Additionally, LSTMs can handle variable-length sequences, 

allowing them to adapt to different scenarios and effectively model the dynamic nature of cyber threats. 

Their capability to learn from historical data and identify evolving attack patterns makes LSTM networks 

a powerful tool for enhancing the security of CPS against cyber threats [85]. 

 

3.1.3 Problem Formulation  
The aim of this work is the detection, identification, and isolation of cyber-attacks on a quadcopter. 

Sensor and actuator data from the quadcopter's movement across various trajectories are utilized to 

develop a model for detecting, identifying, and isolating cyber-attacks. 

The first step involves modeling the quadcopter and designing a controller. The quadcopter is then flown 

along different trajectories while recording data packets from the communication network between the 

controller and the quadcopter. This data is subsequently used to create the dataset. 

A common approach to addressing this type of problem is training a machine learning model on the 

data, which is then applied to detect, identify, and isolate cyber-attacks. Since the recorded data is in 

time-series format, Recurrent Neural Networks (RNNs), particularly Long Short-Term Memory (LSTM) 

networks, are well-suited for this task. 

Two LSTM-based approaches can be employed for cyber-attack detection on a quadcopter: 

1) Signature-based detection: In this approach, cyber-attacks are introduced during the 

quadcopter's flight, and data packets are labeled as normal or under attack. An LSTM model is 

then trained to classify the packets, learning to distinguish between normal and attack data. This 

trained model is used to classify new data packets. 
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2) Anomaly-based detection: In this approach, the quadcopter moves along its trajectories without 

any cyber-attacks. The recorded data is used to train an LSTM model to predict the next data 

packet. If the difference between the predicted and actual packet exceeds a certain threshold, 

an attack is flagged. 

This work adopts the first approach. 

LSTM models require sequences of data as input, rather than individual packets. Therefore, data packets 

need to be reformatted into sequences, and the sequence is labeled based on the labels of its 

constituent packets. As a result, this problem is framed as a sequence classification task for time-series 

data. 

Key characteristics of this machine learning problem include: 

1) Classification: The objective is to classify new data packets as either normal or under attack, 

making this a binary classification problem. 

2) Imbalanced dataset: The majority of the data consists of normal packets, with only a small 

proportion representing attacks, leading to an imbalance between the classes. 

3) Time-series data: The dataset is derived from the recorded communication network data during 

the quadcopter’s flight. As the data follows a temporal sequence, methods that account for this 

time-series nature are essential for optimal performance. 

The problem of cyber-attack identification closely resembles that of detection, except that the output is 

a label specifying the type of attack: DoS, FDI, or replay, thus making it a multi-class classification task. 

Cyber-attack isolation, on the other hand, is a more challenging extension of the identification problem, 

where the number of classification outputs increases from 3 to 10, further complicating the task. 

This study introduces an enhanced Long Short-Term Memory (LSTM) network specifically tailored for the 

unique cybersecurity challenges associated with quadcopters. Although LSTM networks are widely 

recognized for their ability to model sequential dependencies, this work goes beyond conventional 

applications by focusing on three interconnected tasks: detection, identification, and isolation of cyber-

attacks within a unified multi-output framework. This approach addresses gaps in current methodologies 

that typically target only detection, often disregarding the critical steps of identifying the attack type and 

isolating the impacted component, such as sensors or actuators. 

The proposed LSTM-based architecture leverages a shared backbone with dedicated output heads for 

each of the three tasks, enabling a more efficient and cohesive response to cyber threats compared to 

traditional single-output models. Unlike prior works, which often limit sequence processing to basic 

detection, this study emphasizes the importance of sequence generation and optimization, treating it as 

a foundational pre-processing step. By fine-tuning sequence length, overlap, and labeling techniques, 

the model achieves a deeper understanding of temporal dependencies, critical for robust cyber-attack 

detection in complex quadcopter systems. This holistic approach not only enhances detection accuracy 

but also provides precise identification of attack types and isolation of affected areas, thereby setting a 

new benchmark for comprehensive UAV cybersecurity. 
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3.2 Methodology 
In this section the proposed methodology is explained in detail.  

 

3.2.1 Data Preprocessing 
The generated dataset is loaded at this step and used for machine learning model training and test.  

Removing the time column in a time-series dataset when using LSTM can be a strategy to prevent the 

model from learning patterns that are based solely on the timestamp and not on the actual features of 

the data. Including the time column could lead the model to learn time-related patterns that might not 

be relevant for the task at hand, potentially introducing bias or "cheating" in the model. By removing the 

time column, the model is forced to focus on the features that are more directly related to the problem, 

which can lead to a more accurate and generalizable model. Therefore, in this work time column is 

removed from features.  

StandardScaler is used to standardize features by removing the mean and scaling them to unit variance. 

This means that each feature will have a mean of 0 and a standard deviation of 1, making the data more 

suitable for machine learning models that are sensitive to the scale of input features. Standardization 

helps improve model performance and ensures that no single feature dominates due to differences in 

scale. 

After converting the data into sequences, it is partitioned into training and testing sets, with 75% of the 

data allocated for training and the remaining 25% reserved for testing. This split ensures that the model 

has sufficient data for learning while leaving a portion for performance evaluation. 

 

3.2.2 Proposed Sequence Generation Preprocessing 
Focusing on appropriate sequence generation preprocessing step is one of the contributions of this 

work.  

There are three main questions to answer about sequence generation:  

1) How to split time series data into sequences appropriately? 

2) How to label the sequence properly? 

3) What is the optimal sequence size?  

Each of the questions will be answered using appropriate explanations or experiments.  

 

There are two main approaches to split time series data: 

• No overlap: Sequences are entirely distinct, ensuring that there is no shared data between 

consecutive sequences. 

• Full overlap: The full overlap approach allows for the generation of sequences that fully utilize 

available data by creating overlapping segments. 

 

These approaches are demonstrated in Figure 3.1. 
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Figure 3.1: Two approaches to split time series data into sequences. 

 

In this work, the second approach, full overlap, is adopted to leverage the richness of the available 

dataset. By generating overlapping sequences, the model can learn from a more extensive array of 

temporal patterns and relationships within the data. This is particularly beneficial in the context of LSTM 

networks, which excel at capturing dependencies across time. The full overlap strategy not only 

enhances the amount of training data but also facilitates improved model performance by allowing the 

LSTM to recognize and learn from repeated patterns that may occur in different contexts throughout the 

dataset. 

There are different approaches to label sequences: 

1) Last Packet Label: The label for a sequence 𝑆 is assigned based on the label of the last packet in 

the sequence: 

 

 𝐿𝑎𝑏𝑒𝑙(𝑆) = 𝐿𝑎𝑏𝑒𝑙(𝑃𝑛), (3.1) 
 

where 𝑃𝑛 is the label of the last packet in sequence 𝑆 = {𝑃1, 𝑃2,  … ,𝑃𝑛}. 

 

2) Threshold-based: The sequence 𝑆 is labeled as an attack if the number of packets labeled as an 

attack exceeds a predefined threshold 𝑇: 

 

𝐿𝑎𝑏𝑒𝑙(𝑆) = {
𝐴𝑡𝑡𝑎𝑐𝑘 𝑖𝑓∑1[𝐿𝑎𝑏𝑒𝑙(𝑃𝑖) = 𝐴𝑡𝑡𝑎𝑐𝑘] > 𝑇,

𝑛

𝑖=1

𝑁𝑜𝑟𝑚𝑎𝑙 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 (3.2) 
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where 𝑇 is the threshold value and 1[⋅] is an indicator function that equals 1 if the condition is 

true, and 0 otherwise.  

 

3) Majority Voting: The label for a sequence 𝑆 is determined by the most frequent label among its 

packets: 

 

𝐿𝑎𝑏𝑒𝑙(𝑆) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑙∑1[𝐿𝑎𝑏𝑒𝑙(𝑃𝑖) = 𝑙]

𝑛

𝑖=1

 (3.3) 

 

where 𝑙 is a possible label (e.g., normal or attack).  

 

 

4) Weighted Voting: The label for sequence 𝑆 is determined by a weighted sum of the labels of 

individual packets, with weights 𝑊𝑖  considering their position or importance: 

 

 

𝐿𝑎𝑏𝑒𝑙(𝑆) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑙∑𝑊𝑖 . 1[𝐿𝑎𝑏𝑒𝑙(𝑃𝑖) = 𝑙]

𝑛

𝑖=1

 (3.4) 

 

 where 𝑊𝑖 represents the weight assigned to packet 𝑃𝑖. 

 

 

In this work, the label of the last packet is used as the sequence label. The goal is to utilize information 

from previous samples, along with the current sample, to classify it as normal or an attack. This 

approach allows the model to incorporate past information, enabling it to detect changes in the time-

series data that may indicate an attack, thereby improving detection performance. 

Optimal sequence size will be determined based on experiments in the next section. It can have different 

values such as 10, 20, 40, 100. Its candidate values should set based on the specific problem and dataset.  

Subsequent data packets are grouped to form sequences, with each scenario containing 1000 data 

packets. These packets are combined to serve as input to the LSTM network based on the specified 

sequence length. For instance, with a sequence length of 5, the packets are organized as [0, 4], [1, 5], 

and so on, continuing until [996, 1000]. Finally, the sequences from all scenarios are aggregated to form 

the complete dataset of data sequences.  

 

3.2.3 LSTM Architecture 
In this section, the architecture of the proposed LSTM-based multi output model is outlined, beginning 

with a detailed explanation of the initial LSTM block. The overall architecture of the model is illustrated 

in Figure 3.2, providing a high-level overview. A more in-depth discussion of the internal architecture of 

the LSTM will follow in subsequent sections. 
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Figure 3.2: LSTM network [86]. 

 

The core component of Long Short-Term Memory (LSTM) networks is the cell state, which is represented 

by the horizontal line running through the top of the network diagram. The cell state propagates 

throughout the entire sequence with minimal linear modifications, allowing information to be 

transferred with limited alteration. This architecture enables the LSTM to selectively retain, remove, or 

incorporate information into the cell state, facilitating the network's ability to manage long-term 

dependencies in sequential data [86]. Cell state is demonstrated in Figure 3.3. 

 

Figure 3.3: LSTM block Cell state [86]. 

 

The initial step in an LSTM network involves determining which information should be discarded from 

the cell state. This decision is governed by a sigmoid activation layer known as the "forget gate." The 

forget gate evaluates both the previous block's output and the current input, producing a value between 

0 and 1 for each element in the cell state. An output value of 1 indicates that the information should be 

fully retained, while a value of 0 signifies that the information should be entirely discarded. This 



50 
 

mechanism allows the LSTM to regulate the flow of information effectively across time steps [86]. Forget 

gate is demonstrated in Figure 3.4. 

 

Figure 3.4: LSTM block forget gate [86]. 

 

 𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓), (3.5) 

 

The next step in the LSTM process is to determine which new information will be stored in the cell state. 

This process has two parts. First, a sigmoid activation layer, referred to as the "input gate," selects which 

values should be updated. Following this, a tanh activation layer generates a vector of potential 

candidate values, which represent the new information that may be incorporated into the cell state. In 

the final step, these two outputs are combined to update the cell state, allowing the LSTM to integrate 

relevant new information while maintaining long-term dependencies [86]. Input gate is demonstrated in 

Figure 3.5. 

 

 

Figure 3.5: LSTM block input gate [86]. 

 

 �̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐), (3.6) 
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 𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖), (3.7) 

 

 

At this stage, the previous cell state is updated to form the new cell state, based on the decisions made 

in earlier steps. The process begins by multiplying the previous cell state by the forget gate output, 

effectively removing the information deemed unnecessary. Following this, the candidate values 

generated by the current cell block are added to the state, scaled according to the input gate's decision 

on how much to update each state value. This results in the formation of the updated cell state, which 

integrates both preserved and new information [86]. The cell state update process is demonstrated in 

Figure 3.6. 

 

 

Figure 3.6: LSTM block cell state update [86]. 

 

 𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × �̃�𝑡 , (3.8) 
 

The final step involves determining the output, which is a filtered version of the cell state. This is 

accomplished by first applying a sigmoid layer, which selects the relevant parts of the cell state to 

output. Subsequently, the cell state is passed through a tanh activation function, which compresses the 

values to a range between -1 and 1. The result is then multiplied by the output of the sigmoid gate, 

ensuring that only the selected portions of the cell state are output. This process allows the LSTM to 

produce a controlled and refined output based on the current cell state [86]. Output gate is 

demonstrated in Figure 3.7. 
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Figure 3.7: LSTM block output gate [86]. 

 𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜), (3.9) 
 

 

 

 

 ℎ𝑡 = 𝑜𝑡 × tanh (𝐶𝑡) (3.10) 

 

3.2.4 Proposed MO LSTM-based Architecture 
This section describes the architecture of the multi-output LSTM model, highlighting its shared backbone 

and dedicated output heads for detection, identification, and isolation tasks. 
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Figure 3.8: Proposed MO LSTM-based architecture. 

 

The data flow in the model is described as follows. The model begins with an input sequence 𝑃 = [𝑃1, 
𝑃2, … , 𝑃𝑛] and this process is identical for all subsequent sequences. The input sequence has a length of 

𝑛 and 𝑚 features. Each time step of the sequence is fed into the shared LSTM network, with each time 

step processed by an LSTM block according to its index. Specifically, each time step is fed into the LSTM 

network as 𝑃1 = 𝑋1, 𝑃2 = 𝑋2, …  𝑃𝑛 = 𝑋𝑛 , where 𝑋𝑖  represents the input at each time step. The data 

moves through the LSTM network step-by-step, from left to right, at each time step, as explained in 

Section 3.2.3 (LSTM Architecture). 

At the final time step, the output of the last LSTM block contains information about all previously 

learned patterns, as the data has flowed through the network using the cell state. The output from the 

shared LSTM network, represented by ℎ𝑛 is fully connected to each of the three separate heads. Each 

head is dedicated to a different task, producing values between 0 and 1 for the output neurons, which 

are used for detection, identification, and isolation. 

The architecture presented in Figure 3.8 highlights a novel adaptation of LSTM within a multi-output 

(MO) framework, structured to handle the tasks of detection, identification, and isolation 

simultaneously. This design employs a shared LSTM backbone, enabling the system to efficiently process 

temporal dependencies in time-series data and leverage shared weights across tasks. This integration is 
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distinct from existing single-task or binary detection models, enhancing both computational efficiency 

and predictive accuracy in a unified model. 

1) Input Configuration: The model processes sequential sensor and actuator data, structured into 

pre-processed input sequences to retain critical temporal patterns. By designing the input in this 

way, the model captures temporal dependencies that reflect the dynamic behaviors of 

quadcopters under both normal and attack conditions, crucial for robust detection, 

identification, and isolation. 

2) Shared LSTM Backbone with Shared Weights: The backbone consists of LSTM blocks with 

shared weights that process features from the input data, forming a single vector that serves all 

three tasks: detection, identification, and isolation. This design is computationally efficient and 

enables cohesive learning across tasks by generalizing common patterns. Since the problem is 

formulated to generate a single label or set of labels per sequence, only the output from the last 

LSTM block is required. Outputs from intermediate blocks are unnecessary, as they are used in 

hierarchical LSTM structures, which are not applicable here. The backbone efficiently processes 

time-series data, emphasizing long-term dependencies and sequential patterns critical for multi-

task cyber-attack analysis.  

3) Three Distinct Output Heads for Detection, Identification, and Isolation: 

• Detection Head: Positioned as the first output, the detection head is a binary classifier 

using a single neuron with sigmoid activation, allowing the model to classify sequences 

as either normal (0) or under attack (1). This approach simplifies the initial decision-

making layer, making it quick and effective for attack presence identification. 

• Identification Head: The identification head comprises three neurons with softmax 

activation, classifying the attack type into one of three categories: Denial of Service 

(DoS), False Data Injection (FDI), or replay attacks. This head is critical for specifying the 

type of cyber-attack and serves as a secondary analysis. 

• Isolation Head: The third output layer contains ten neurons, each linked to a target 

within the system, with softmax activation to isolate the specific component under 

attack (e.g., sensor or actuator). By linking neurons to individual targets, the isolation 

head enhances the precision of threat isolation. 

In contrast to prior LSTM-based models referenced in literature, which tend to focus on a single 

detection task, the proposed architecture integrates multi-task learning, effectively managing multiple 

outputs from a shared LSTM backbone. This structure supports comprehensive threat assessment in a 

single model, advancing cybersecurity in drone systems by achieving high accuracy in detection, specific 

attack identification, and precise target isolation, functionality that is typically achieved only through 

separate models or with limited output versatility. 

 

3.2.5 Training and Optimization 
Loss Function 
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In this architecture, three distinct task detection, identification, and isolation are handled by specialized 

output heads that leverage tailored loss functions, each designed to optimize performance for its 

respective objective.  

1) Detection Output (Binary Classification): The detection head functions as a binary classifier 

aimed at distinguishing between normal and attack conditions. Binary Cross-Entropy (Equation 

3.11) is used as it aligns with the binary nature of the detection task, where each prediction is 

either normal (0) or attack (1). The function effectively captures the deviation between 

predicted and true labels, optimizing the model’s ability to discern an attack presence at a high-

level classification without additional specifics about type or location. 

𝐿𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 = −
1

𝑁
∑[𝑦𝑖 log(�̂�𝑖) + (1 − 𝑦𝑖) log(1 − �̂�𝑖  )]

𝑁

𝑖=1

, (3.11) 

where 𝑦𝑖  is the true label (0 or 1) and �̂�𝑖  is the predicted probability. 𝑖 is the index of sample in 

batch and 𝑁 indicates the number of samples in each batch [87]. 

 

  

2) Identification Output (Multi-Class Classification): For identification, the model aims to classify 

attack types among multi-class categories such as Denial of Service (DoS), False Data Injection 

(FDI), and Replay attacks. To address this multi-class classification requirement, Sparse 

Categorical Cross-Entropy is applied, which is designed to handle integer-encoded labels 

effectively and to encourage precise attack-type classification through minimized categorical 

prediction errors. Unlike detection, which requires only binary accuracy, identification demands 

differentiation across multiple classes. 

 

𝐿𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = −
1

𝑁 ×𝑀
∑∑𝑦𝑖,𝑗 ∙ log(�̂�𝑖,𝑗)

𝑀

𝑗=1

𝑁

𝑖=1

, (3.12) 

 

where 𝑦𝑖,𝑗 denotes the true label (0 or 1), and �̂�𝑖,𝑗 represents the predicted for output neuron 𝑗. 

𝑀 refers to the number of output neurons, which corresponds to the number of attack types 

that is 3. 𝑖 is the index of sample in batch and 𝑁 indicates the number of samples in each batch 

[87]. 

  

 

3) Isolation Output (Multi-Class Classification): The isolation objective is to locate the specific 

component affected by the attack, operating as a multi-class classifier with each output neuron 

corresponding to a different system component, such as a specific sensor or actuator. Sparse 

Categorical Cross-Entropy is again employed here to support this multi-class setup, ensuring 

efficient and accurate isolation by optimizing across categorical probabilities. 
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𝐿𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = −
1

𝑁 × 𝑃
∑∑𝑦𝑖,𝑗 ∙ log(�̂�𝑖,𝑗)

𝑃

𝑗=1

𝑁

𝑖=1

, (3.13) 

where 𝑦𝑖,𝑗 denotes the true label (0 or 1), and �̂�𝑖,𝑗 represents the predicted for output neuron 𝑗. 

𝑃 refers to the number of output neurons, which corresponds to the number of attack targets 

that is 10. 𝑖 is the index of sample in batch and 𝑁 indicates the number of samples in each batch 

[87]. 

 

Weights Update 

The Adam approach is employed for model optimization. This approach calculates derivative of loss 

function at each step and update weight based on its rules. The total loss function is calculated as 

follows: 

 

𝐿𝑡𝑜𝑡𝑎𝑙  = 𝛼 ∙ 𝐿𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 + 𝛽 ∙ 𝐿𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + 𝛾 ∙ 𝐿𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛, (3.14) 

 

𝛼, 𝛽 and 𝛾 are weights assigned to each task's loss, controlling the contribution of each task to the 

overall loss. Currently 𝛼, 𝛽 and 𝛾 are set to 1 to contribute equally for model training.  

The shared LSTM layer in the model has weights that are used across all three tasks. Therefore, with only 

one LSTM backbone three different tasks are accomplished.  

The gradient for use in Adam optimizer is calculated as follows.  

∂𝐿𝑡𝑜𝑡𝑎𝑙
∂𝑊

= 𝛼 ∙
∂𝐿𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

∂𝑊
+ 𝛽 ∙

∂𝐿𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

∂𝑊
+ 𝛾.

∂𝐿𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛
∂𝑊

, (3.15) 

 

Adam Optimizer  

The Adam optimizer is an adaptive optimization algorithm. In Adam, two moving averages are used for 

each weight's gradient: the first moment (mean) and the second moment (variance), allowing for more 

efficient updates. Here are the steps of the algorithm [88].  

Step 1: Given Gradient 

The gradient calculated above will be denoted as 𝑔ₜ and used in the subsequent calculations for the 

Adam optimizer. This gradient indicates the direction and magnitude of change needed for each weight 

to reduce the loss. 

Step 2: First Moment Estimate (m) 
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Adam calculates an exponential moving average of the gradients, known as the first moment estimate. 

This average captures the direction and the speed of the gradient, providing a smoother update over 

time. The formula for updating the first moment 𝑚ₜ at time step 𝑡 is given by: 

𝑚𝑡 = 𝛽1.𝑚𝑡−1 + (1 − 𝛽1). 𝑔𝑡 , (3.16) 

 

where 𝛽1 is a decay rate which is set to 0.9, that controls the impact of previous gradients. This creates a 

moving average of the gradient values. 

Step 3: Second Moment Estimate (v) 

The second moment estimate 𝑣ₜ  is an exponential moving average of the squared gradients, which helps 

to regulate updates based on gradient variability. The second moment estimate is calculated as: 

𝑣𝑡 = 𝛽2. 𝑣𝑡−1 + (1 − 𝛽2). 𝑔𝑡
2, (3.17) 

 

 

where 𝛽₂ is another decay rate which is set to 0.999. This estimate stabilizes the update by adapting to 

the magnitude of the gradient. 

Step 4: Bias Correction for m and v 

To correct for initialization bias, especially in early training steps, Adam introduces bias-corrected 

versions of the first and second moment estimates: 

�̂�𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡    , (3.18) 

 

𝑣𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡  , (3.19) 

 

Step 5: Weight Update 

Finally, each weight 𝑤 is updated using the corrected moment estimates. The formula for updating each 

weight is: 

𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 − 𝛼.
�̂�𝑡

√𝑣𝑡 + 𝜀
   , 

(3.20) 
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Here, 𝛼 is the learning rate, and 𝜀 is a small constant (often 10⁻⁸) to prevent division by zero. This update 

rule allows each weight to adaptively adjust based on the historical gradient information and the 

gradient magnitude. 

 

3.2.6 Implementation 
The implementation was carried out using the Python programming language within the Google Colab 

environment. Python is widely regarded as the most popular language for developing machine learning 

algorithms due to its versatility and robust libraries. Google Colab, a widely used online platform, offers 

free access to powerful computational resources such as GPUs and TPUs, making it highly suitable for 

machine learning tasks. Additionally, the platform simplifies development by minimizing challenges 

related to library dependencies and delays, thereby facilitating a more efficient implementation process. 

Various machine learning libraries were employed for the implementation of the proposed model, each 

serving specific purposes: 

• Pandas: Pandas is a robust Python library for data manipulation and analysis, offering versatile 

data structures and tools for working with structured datasets. In this work, it was utilized for 

reading the dataset files in CSV format. 

• NumPy: NumPy is a foundational package for scientific computing in Python, providing support 

for large, multi-dimensional arrays and matrices, along with a wide range of high-level 

mathematical functions. In this study, NumPy was used for reformatting arrays and converting 

data types, such as transforming Pandas DataFrames into NumPy arrays, which can serve as 

inputs for other libraries. 

• Scikit-learn: Scikit-learn is a comprehensive machine learning library that offers tools for 

classification, regression, clustering, dimensionality reduction, and more, built on NumPy, SciPy, 

and Matplotlib. In this work, it was used for randomly splitting the data into training and test 

sets, as well as calculating evaluation metrics such as accuracy, precision, recall, and F1-score. 

• Keras (TensorFlow): Keras is a high-level neural network API, written in Python, and capable of 

running on top of TensorFlow, CNTK, or Theano. It is designed to facilitate easy and fast 

experimentation with deep learning models. In this work, Keras was employed to construct the 

neural network architecture, compile it with appropriate loss functions and optimizers, and to 

conduct model training and testing using its built-in tools. 

 

3.3 Dataset Creation 
3.3.1 Cyber-Security Datasets 
Cybersecurity datasets play a crucial role in the development and evaluation of intrusion detection 

systems (IDS) and other security mechanisms. These datasets provide researchers and practitioners with 

the necessary data to train and test machine learning models, enabling the detection of various cyber 

threats. The effectiveness of these models heavily relies on the quality and diversity of the datasets 

used, as they must encompass a wide range of attack types and normal behavior patterns to ensure 
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robust performance in real-world scenarios [89]. Among the most notable cybersecurity datasets are 

SWaT, CICIDS 2017, and UNSW-NB15, each contributing unique characteristics and challenges for 

cybersecurity research. 

• The SWaT (Secure Water Treatment) dataset is designed to simulate a water treatment facility's 

operational data, including both normal and attack scenarios. It contains time-series data that 

reflects the system's behavior under various conditions, making it particularly valuable for 

testing anomaly detection algorithms in critical infrastructure settings. The dataset includes 

multiple attack types, such as denial of service and data manipulation, providing a 

comprehensive environment for evaluating IDS performance [89]. 

• CICIDS 2017, developed by the Canadian Institute for Cybersecurity, is another significant 

dataset that encompasses a wide variety of network traffic scenarios. It includes both benign 

and malicious traffic, with a focus on modern attack vectors. The dataset is notable for its 

realistic simulation of network environments, capturing a diverse array of attack types, including 

DDoS, brute force, and web attacks. This variety allows researchers to assess the effectiveness of 

different detection techniques across multiple attack scenarios [90]. 

• The UNSW-NB15 dataset, created by the Australian Cyber Security Centre, is distinguished by its 

comprehensive feature set and the inclusion of nine different attack types. It was generated 

using the IXIA tool to simulate normal behavior and various modern attacks, resulting in a 

dataset that includes 49 features. This dataset is particularly valuable for evaluating machine 

learning models, as it provides a rich source of data for training and testing intrusion detection 

systems [91]. The UNSW-NB15 dataset has been widely used in research to benchmark the 

performance of various classification algorithms, making it a cornerstone in the field of 

cybersecurity research [92]. 

A review of the literature reveals no widely recognized dataset specifically for UAVs. The datasets 

commonly referenced are primarily those used in research on cybersecurity for cyber-physical systems, 

networks, or UAVs. While some studies have generated UAV-related data from real-world 

implementations, these datasets have not been made publicly available. 

In the field of data science and machine learning, datasets can be broadly categorized into real-world 

and simulated datasets:  

• Real-world datasets are derived from actual observations and measurements, reflecting the 

complexities and variabilities present in real-life scenarios. These datasets are invaluable for 

training models that need to perform under realistic conditions, as they encapsulate the noise 

and unpredictability inherent in real-world data [93].  

• simulated datasets are generated through computational models and algorithms, allowing 

researchers to create controlled environments where specific variables can be manipulated. 

While simulated datasets can provide insights into theoretical scenarios and allow for extensive 

experimentation without the constraints of real-world data collection, they may not always 

capture the full complexity of real-world situations [94].  

Since the necessary equipment for this study was unavailable, it was not possible to collect a real-world 

dataset. Instead, simulated datasets offer a practical alternative. Simulation tools, such as MATLAB and 

Simulink, are widely recognized for their effectiveness in generating these datasets. Their flexibility and 



60 
 

ease of use make them ideal for academic research, including this study, where they enabled the 

creation of detailed and controlled datasets, supporting reliable research results. 

Features of a good dataset include: 

• Diversity: A good dataset should encompass a wide range of scenarios and conditions to ensure 

that models trained on it can generalize well to unseen data. 

• Quality: Data should be accurate, consistent, and free from errors or biases that could skew 

results. 

• Size: A sufficiently large dataset is essential to provide enough examples for training, validation, 

and testing of models, which helps in achieving statistical significance. 

• Relevance: The dataset should be relevant to the specific problem domain, containing features 

and labels that directly pertain to the task at hand. 

• Accessibility: Datasets should be easily accessible to researchers and practitioners, ideally with 

clear documentation on how to use them effectively. 

• Balance: A good dataset should have a balanced representation of different classes or categories 

to prevent model bias towards more prevalent classes [95]. 

 

3.3.2 Dataset Design 
The dataset for this study was designed with the following key criteria: 

• Diversity: Multiple scenarios with varying conditions were included. 

• Size: Enough samples were generated to support the deep learning model. 

• Relevance: The data relates entirely to quadcopter behavior, with proper labels for normal and 

attack data. 

• Balance: Approximately 10-20% of the data consists of attack samples, ensuring a reasonable 

class balance. 

The dataset consists of multiple scenarios representing the quadcopter's movements. In each scenario, 

the quadcopter follows a trajectory, during which cyber-attacks are applied. 

Features of the dataset are demonstrated in Table 3.1. 

 
Table 3.1: Features of dataset. 

Feature Description 

Number of samples 50,000 (including both normal and attack data) 
Number of scenarios 50 (simulation-based quadcopter movement scenarios) 
Number of features 10 (actuator and sensor data) 

Data type Time series 
Features type Numerical (sensor readings and actuator commands) 

Class distribution 15% attack data / 85% normal data 
Labels 3 labels: detection (binary), identification (multiclass), isolation (multiclass)  

 

 

Scenarios are generated using the Monte Carlo approach by randomly selecting variables, as defined in 

Table 3.2, for each scenario. 
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Table 3.2: Monte Carlo variables. 

Variable Description 

Trajectory points Reference points that define the quadcopter's path during its movement 

Attack targets Set of specific sensors and actuators targeted during the scenario 
Number of targets 5-10 (Number of individual attacks applied in the scenario) 

DoS start Start time of the Denial of Service (DoS) attack 
DoS duration  1-3 seconds (Duration of DoS attack) 

FDI start Start time of the False Data Injection (FDI) attack 
FDI duration  1-3 seconds (Duration of FDI attack) 

FDI value The false value injected into the system during the FDI attack 

Record start Start time of data recording in the simulation 

Replay start Start time of the replay attack 

Replay duration 1-3 seconds (Duration of replay attack) 

 

  

Variables of the simulation for each scenario are defined in Table 3.3. 

 

 

 
Table 3.3: Simulation variables. 

Variable Value 

Simulation time (seconds) 100 
Step value (seconds) 0.1 

Number of trajectory points 10 
Time interval between setpoints (seconds) 10 

 

 

The attack column labels are demonstrated in Table 3.4. 

 
Table 3.4: Attack column labels. 

Variable Values 

Attack label 0 (Normal), 1 (Attack) 
Attack Types 1 (DoS), 2 (FDI), 3 (Replay) 

Attack Targets  𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓, 𝑇, 𝜏𝜙 , 𝜏𝜃 , 𝜏𝜓  

 

 

Overview of Dataset: 

The dataset comprises sensor and actuator readings from a quadcopter system, designed to detect 

various types of cyber-attacks. Key features include spatial coordinates (𝑥, 𝑦, 𝑧), orientation angles 

(𝜙, 𝜃, 𝜓), and control actuator inputs (𝑇, 𝜏𝜙, 𝜏𝜃, 𝜏𝜓). These measurements capture both the sensros of 

the quadcopter and the applied control signals over time, allowing for comprehensive monitoring of the 

system’s behavior. 

The dataset includes three label columns: label, type, and target. The label column indicates whether the 

data instance corresponds to normal operation or an attack, supporting the detection objective. The 

type column specifies the type of the cyber-attack, aiding in identifying which attack is applied. Lastly, 
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the target column designates the particular target of the attack within the quadcopter system, 

facilitating precise localization of the compromised component.  

 

3.3.3 Implementation 
Data generated from the Simulink simulations were transferred to MATLAB using the Data Inspector tool. 

This dataset consists of 4 actuator variables and 6 sensor variables. In MATLAB, additional columns, 

including time, attack labels (label, type, and target), were incorporated. The time variable, also sourced 

from the Simulink Data Inspector, underwent further refinement within MATLAB. Due to the simulation's 

time range (0 to 100 seconds with a 0.1 second interval), an extra data point (at time 100) was included, 

resulting in 1001 data points per scenario. To prevent inconsistencies during the attack detection phase, 

the last row of each simulation was removed, reducing the dataset to 1000 data points per scenario. 

Finally, the data was formatted and exported as a CSV file. 

 

3.4 Simulation Results 
3.4.1 Evaluation Metrics for Model Performance 
In the context of classification models, evaluating performance is crucial to understanding their 

effectiveness in predicting outcomes. Different metrics provide insights into various aspects of model 

behavior, particularly how well the model handles both positive and negative cases. Each metric 

emphasizes a unique facet of performance, ensuring that the model is evaluated from multiple angles. 

Accuracy measures overall correctness, while precision focuses on the correctness of positive 

predictions. Recall assesses the model's ability to identify all positive instances, and the F1-score 

provides a harmonic balance between precision and recall. Additionally, macro and weighted averages 

offer a way to evaluate performance across multiple classes, considering both class balance and the 

distribution of instances. A comprehensive evaluation using these metrics allows for a deeper 

understanding of the model’s strengths and weaknesses in different contexts, which is essential for 

model optimization and deployment. 

Definitions of Terms: 

• True Positives (TP): The number of instances correctly predicted as positive (i.e., the model 

correctly identifies a positive class). 

• True Negatives (TN): The number of instances correctly predicted as negative (i.e., the model 

correctly identifies a negative class). 

• False Positives (FP): The number of instances incorrectly predicted as positive (i.e., the model 

incorrectly classifies a negative class as positive). 

• False Negatives (FN): The number of instances incorrectly predicted as negative (i.e., the model 

incorrectly classifies a positive class as negative) [96]. 

 

Performance Metrics:  

• Accuracy: Accuracy measures the overall correctness of the model, representing the proportion 

of total predictions that are correct. 
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 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3.21) 

 

 

 

• Precision: Precision quantifies the model's ability to correctly identify positive instances, 

considering how many predicted positives are actually positive. 

 

 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.22) 

 

• Recall: Recall measures the model's ability to find all actual positive instances in the dataset. 

 

 

 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.23) 

 

 

 

• F1-Score: The F1-score is the harmonic mean of precision and recall, providing a balanced 

measure when precision and recall need to be equally weighted [96]. 

 

 

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 (3.24) 

 

 

Average Metrics: 

• Macro Average: The macro average computes the metric for each class independently and then 

averages the results. It treats all classes equally, regardless of the number of instances in each 

class.  

 

 𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑔 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
1

𝑁
∑𝑀𝑒𝑡𝑟𝑖𝑐𝑖

𝑁

𝑖=1

 (3.25) 

 

 

where 𝑁 is the number of classes and 𝑀𝑒𝑡𝑟𝑖𝑐𝑖 is precision, recall or f1-score for class 𝑖. 
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• Weighted Average: The weighted average takes the support (the number of true instances) of 

each class into account, giving more weight to classes with more samples. 

 

 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑔 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑ (𝑀𝑒𝑡𝑟𝑖𝑐𝑖 ∙  𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑖)
𝑁
𝑖=1

∑ 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑖
𝑁
𝑖=1

 (3.26) 

 

where 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑖 is the number of true instances for class 𝑖 and 𝑀𝑒𝑡𝑟𝑖𝑐𝑖 is precision, recall or f1-

score for class 𝑖 [96] 

 

3.4.2 Model Preprocessing and Configuration 
In this section, the primary focus is on optimizing the performance of the model through careful 

preprocessing and tuning. Three key elements are explored: Normalization and Standardization, 

Optimizer Selection, and Loss Function Configuration. First, normalization and standardization 

approaches are applied to ensure the input features are scaled consistently, which is critical for 

enhancing the convergence speed and stability of the neural network. This involves experimenting with 

techniques such as Min-Max scaling and Z-score standardization to evaluate their impact on model 

performance. 

Next, multiple optimizers, including popular options like Adam, RMSprop, and Nadam are tested to find 

the most effective method for minimizing loss during training. Each optimizer is evaluated based on how 

well it handles gradient descent and improves model learning. Finally, different loss functions, such as 

binary cross-entropy and binary focal cross-entropy, are considered for binary classification and different 

loss functions, such as sparse categorical cross-entropy, categorical cross-entropy, and Kullback-Leibler 

Divergence are considered for categorical classification to ensure the most appropriate metric is used for 

the classification task. By evaluating these configurations, this section aims to establish the most suitable 

preprocessing and optimization setup for the subsequent model training stages. Table 3.5 demonstrates 

other parameters of the model during these experiments.  

 

Table 3.5: Parameters for preprocessing and configuration experiments. 

Parameter Value 

Number scenario 20 
Sequence length 20 

Sequence overlap Full 
LSTM block 64 

Epoch 50 
Batch 128 

 

  

1) Normalization and Standardization: In this section, three distinct preprocessing techniques were 

applied to the data to evaluate their impact on model performance. The first experiment utilized 

raw, unprocessed data, serving as a baseline for comparison. In the second experiment, data 
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normalization was implemented to scale the features within a specific range, improving 

comparability across features. The third experiment employed standardization, specifically Z-score 

transformation, to rescale the data to have a mean of zero and a standard deviation of one. Table 3.6 

provides detailed parameters related to these experiments, highlighting the configurations used in 

this case. Figure 3.9 illustrates the results of experiments.  

 

The results of the three data preprocessing approaches reveal a notable impact on model 

performance. Using raw data yielded an accuracy of 94%, with a precision of 87.4%, but recall 

remained low at 60.5%, indicating that the model struggled to detect all positive instances. 

Normalization, while intended to improve feature scaling, performed poorly in this case, with an 

accuracy drop to 87.7% and zero values for precision, recall, and F1-score, suggesting a complete 

failure in classification under this transformation. In contrast, standardization outperformed the 

other approaches, achieving the highest accuracy of 95.3%, with improved precision 90.2% and 

recall 69.9%, leading to an F1-score of 78.8%. This suggests that standardization effectively enhanced 

the model's ability to generalize and balance precision and recall better than raw data and 

normalization. 

 

Table 3.6: Parameters for normalization and standardization experiments. 

Parameter Value 

Optimizer Adam 
Loss detection Binary crossentropy 

Loss identification Sparse categorical crossentropy 
Loss isolation  Sparse categorical crossentropy 

 

 

 

Figure 3.9: Normalization and standardization experiment results. 

 

2) Optimizer: In this section, three distinct optimization algorithms were employed to assess their 

influence on model performance. The first experiment utilized the Adam optimizer, known for its 

adaptive learning rate and effectiveness in handling sparse gradients, making it a popular choice for 

various neural network architectures. The second experiment incorporated the RMSprop optimizer, 

which adjusts the learning rate based on the moving average of squared gradients, thus addressing 
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the vanishing learning rate issue commonly encountered in deep learning. The final experiment 

employed Nadam, a combination of Adam and RMSprop that incorporates Nesterov momentum, 

providing a more responsive and robust optimization strategy. Table 3.7 outlines the detailed 

parameters associated with these optimization techniques, while Figure 3.10 illustrates the results of 

these experiments. 

 

The results from the experiments using different optimizers: Adam, RMSprop, and Nadam, indicate 

strong performance in the context of intrusion detection. Adam achieved the highest detection 

accuracy at 95.6%, alongside impressive precision 91.5% and F1-score 79.8%, demonstrating its 

effectiveness in optimizing model training and managing complex gradients. RMSprop followed 

closely, with a detection accuracy of 95.1% and a notable precision of 86.2%, while maintaining a 

solid recall of 71.4% and an F1-score of 78%. Nadam also performed competitively with a detection 

accuracy of 95.5%, precision of 90.5%, and a similar recall to RMSprop at 70.7%, resulting in an F1-

score of 79.4%. The results suggest that while all three optimizers yield high accuracy and precision, 

Adam's performance stands out in terms of overall effectiveness, likely due to its adaptive learning 

rate mechanism and momentum incorporation, which helps navigate the optimization landscape 

effectively. These findings underline the importance of selecting appropriate optimization 

techniques to enhance the performance of machine learning models in cybersecurity applications. 

 

Table 3.7: Parameters for optimizer experiments. 

Parameter Value 

Normalization and standardization Standardization 
Loss detection Binary crossentropy 

Loss identification Sparse categorical crossentropy 
Loss isolation  Sparse categorical crossentropy 

 

 

 

Figure 3.10: Optimizer experiment results. 
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3) Loss function: This section evaluates the influence of various loss functions on model performance 

across three heads: detection, identification, and isolation. For binary classification tasks associated 

with detection, both binary cross-entropy and binary focal cross-entropy are utilized. The binary 

cross-entropy loss effectively measures the disparity between predicted probabilities and actual 

binary labels, while binary focal loss places greater emphasis on hard-to-classify instances, helping to 

mitigate class imbalance issues. In the case of the identification and isolation heads, which deal with 

multi-class classification, sparse categorical cross-entropy and categorical cross-entropy are 

employed. Sparse categorical cross-entropy is advantageous for handling integer-encoded labels 

efficiently, whereas categorical cross-entropy is suited for one-hot encoded labels. Additionally, 

Kullback-Leibler Divergence is utilized to assess the divergence between predicted and true 

probability distributions, aiding in the model's capacity to distinguish between different categories. 

Table 3.8 summarizes the parameters associated with these experiments. 

 

Table 3.8: Parameters for loss function experiments. 

Parameter Value 

Normalization and standardization Standardization 
Optimizer Adam 

 

a) Detection head: The experimental results comparing binary cross-entropy and binary focal 

cross-entropy for the detection head are illustrated in Figure 3.11. The comparison of binary 

cross-entropy and binary focal cross-entropy in the detection head reveals notable performance 

metrics. The model utilizing binary cross-entropy achieved an accuracy of 95.1%, with precision, 

recall, and F1-score values of 83.2%, 76%, and 79.4%, respectively. In contrast, the binary focal 

cross-entropy approach yielded an accuracy of 94.8%, with precision at 84.1%, recall at 71.7%, 

and an F1-score of 77.4%. These results indicate that while both loss functions produced 

comparable accuracies, the binary cross-entropy exhibited slightly better overall performance in 

terms of recall and F1-score. However, binary focal cross-entropy provided improved precision, 

suggesting its potential for scenarios where false positives are particularly critical. This analysis 

underscores the importance of selecting the appropriate loss function based on specific model 

objectives and the trade-offs between precision and recall in detection tasks. 
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Figure 3.11: Detection head Loss function experiment results. 

 

 

 

b) Identification head: The experimental results comparing categorical cross-entropy, Kullback-

Leibler Divergence, and sparse categorical cross-entropy for the identification head are 

illustrated in Figure 3.12. The comparison of loss functions: categorical cross-entropy, Kullback-

Leibler Divergence, and sparse categorical cross-entropy, demonstrates comparable performance 

in the identification head. The identification accuracy was 94.5% for both categorical and sparse 

categorical cross-entropy, while Kullback-Leibler Divergence achieved a slightly higher accuracy 

of 94.8%. These findings suggest that while Kullback-Leibler Divergence may have a slight edge in 

modeling probability distributions, all three loss functions effectively support the identification 

task. The choice among them can depend on specific model requirements and dataset 

characteristics, underscoring the importance of selecting an appropriate loss function for 

optimal classification performance. 

 

 

 

Figure 3.12: Identification head Loss function experiment results. 
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c) Isolation head: The experimental results comparing categorical cross-entropy, Kullback-Leibler 

Divergence, and sparse categorical cross-entropy for the isolation head are illustrated in Figure 

3.13. The evaluation of loss functions for the isolation head revealed varying levels of accuracy 

among categorical cross-entropy, Kullback-Leibler Divergence, and sparse categorical cross-

entropy. Specifically, Kullback-Leibler Divergence yielded the highest accuracy at 94.6%, while 

categorical cross-entropy and sparse categorical cross-entropy achieved accuracies of 94.0% and 

93.7%, respectively. These results indicate that Kullback-Leibler Divergence may provide a slight 

advantage in effectively capturing probability distributions for isolation tasks, though all three 

loss functions demonstrated considerable efficacy in classification accuracy. 

 

  

 

 

Figure 3.13: Isolation head Loss function experiment results. 

 

 

Key Findings and Analysis: Based on the results from these experiments, the optimal approach for data 

preprocessing and model configuration has been identified. Data standardization proves to be the most 

effective method for adjusting the input data, ensuring consistent scaling and improved model 

performance. Among optimizers, the Adam optimizer emerged as the best choice, offering superior 

performance in terms of convergence speed and accuracy compared to other optimization algorithms. 

For the binary classification task of cyber-attack detection, the binary cross-entropy loss function 

provided the most favorable results. This loss function is well-suited for binary classification, effectively 

distinguishing between normal and attack conditions. In multi-class classification problems, which are 

attack identification and isolation, the Kullback-Leibler Divergence loss function demonstrated optimal 

performance. This function is particularly useful when dealing with probabilistic models and multi-class 

scenarios, leading to more accurate identification and isolation of different types of attacks. 
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3.4.3 Comparison between Sequence Labeling Approaches 
In this section, two sequence labeling approaches are compared within the second set of experiments. 

The first approach assigns the label of a sequence based on the last packet in the sequence; if the last 

packet is an attack, the entire sequence is labeled as an attack, otherwise, it is labeled as normal. The 

second approach introduces a threshold mechanism, where the sequence is labeled as an attack if the 

number of attack packets within the sequence exceeds a predefined threshold; otherwise, it is labeled as 

normal. In this experiment, the threshold value for labeling the sequence as an attack is determined 

based on percentages of the sequence length, with thresholds set at 10%, 25%, and 50%. The sequence 

length itself varies across different experiments, being set at 10, 20, and 40. This variation allows for a 

comprehensive evaluation of how different threshold percentages and sequence lengths influence the 

labeling process and subsequent model performance. Table 3.9 outlines the parameters used in this 

experiment, and Figure 3.14 presents the experimental results.  

 

 

Table 3.9: Parameters for sequence labeling experiments. 

Parameter Value 

Number scenario 50 
Sequence overlap Full 

LSTM block 128 
Epoch 100 
Batch 128 

Normalization and standardization Standardization 
Optimizer Adam 

Loss detection Binary crossentropy 
Loss identification Kullback-Leibler Divergence 

Loss isolation Kullback-Leibler Divergence 
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Figure 3.14: Sequence labeling approaches comparison experiments results. 
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a) Last Packet: When using the "Last Packet" approach, the model's decision depends entirely on 

the label of the last packet within each sequence. This method showed reasonable performance, 

with accuracy improving as the sequence length increased. At a sequence length of 10, the 

detection accuracy was 96.2% and the F1-score was 0.844, but with longer sequences, these 

values rose to 97.9% and 0.921, respectively. While effective, this approach may miss early 

attack signs and is more sensitive to the final packet in each sequence. 

 

b) Threshold (10%): The "Threshold (10%)" method performed better than the "Last Packet" 

approach across all sequence lengths, as it considers multiple packets in a sequence. For a 

sequence length of 10, it achieved an F1-score of 0.871, which increased to 0.960 at a length of 

40. This approach enhances the model’s sensitivity by labeling sequences based on 10% of 

packets being classified as attacks, significantly improving recall without sacrificing precision. 

 

c) Threshold (25%): The "Threshold (25%)" approach also outperformed the "Last Packet" method 

but lagged slightly behind the 10% threshold. For example, at a sequence length of 40, the 

accuracy was 97.2% and the F1-score reached 0.946. This method strikes a balance, considering 

a higher percentage of attack packets within the sequence, which tends to result in more 

conservative labeling, thus slightly lowering recall compared to the 10% threshold. 

 

d) Threshold (50%): With the "Threshold (50%)" approach, the model showed a similar trend, 

though performance metrics such as recall slightly decreased. At a sequence length of 40, 

accuracy was the highest at 98.1%, and the F1-score remained strong at 0.923. This approach 

increases precision by requiring a higher threshold of attack packets, though it may occasionally 

overlook attacks that occur earlier in a sequence. 

 

2) Effect of Changing Sequence Length: 

a) Sequence length 10: For a sequence length of 10, the last packet labeling approach yielded an 

accuracy of 96.2%, a precision of 90.5%, a recall of 79.1%, and an F1-score of 84.4%. With the 

threshold approach, results improved incrementally as the threshold increased. At 10%, the 

threshold achieved a 95.4% accuracy and an F1-score of 87.1%, while the 25% and 50% 

thresholds resulted in similar levels of performance, with accuracy at 95.5% and 96.4%, 

respectively. The precision, recall, and F1-scores showed a stable increase, indicating the 

potential benefit of higher thresholds for shorter sequence lengths. 

 

b) Sequence length 20: Increasing the sequence length to 20 packets, the detection performance 

improved across all approaches. The last packet approach showed a higher accuracy of 97.4%, 

along with improved precision and recall (92.7% and 85.9%, respectively), ending in an F1-score 

of 89.2%. The threshold-based labeling approaches performed better, particularly at 10%, where 

accuracy increased to 96.6%, and the F1-score reached 92.4%. The 25% and 50% thresholds 

maintained competitive performance, with accuracies of 97.1% and 97.1%, and F1-scores 

surpassing 92%. 
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c) Sequence length 40: At a sequence length of 40 packets, the models demonstrated the highest 

detection accuracy across the board. The last packet method reached 97.9% accuracy with an 

F1-score of 92.1%. For the threshold-based labeling, the accuracy peaked at 98.1% for the 50% 

threshold, which also resulted in the highest F1-score of 92.3%. Similarly, the 10% and 25% 

thresholds performed exceptionally well with accuracies of 97.5% and 97.2%, respectively, 

indicating that longer sequence lengths combined with higher thresholds can enhance detection 

accuracy and precision. 

 

Key Findings and Analysis: Based on the experimental results, the threshold-based labeling approach 

demonstrates overall better performance when compared to the last-packet labeling approach. 

However, it is important to highlight that the threshold approach differs significantly from similar works 

in the literature, as it addresses the labeling problem in a fundamentally different way. While the last-

packet labeling method leverages the temporal information from the entire sequence to determine the 

final label, aligning with more conventional methods the threshold approach operates by assessing the 

number of attack packets within a sequence, thus tackling a different classification challenge. Although 

the threshold method yields superior results in this context, it is not an ideal approach for the rest of the 

experiments due to its distinct methodology, which does not align with the typical problem framework in 

related studies. Therefore, it is used here primarily to illustrate that when sequences are input into an 

LSTM model, multiple labeling strategies can be considered, each with its own implications for model 

behavior and performance. 

 

3.4.4 Comparison between Different Sequence Lengths 
In this section, in the third set of experiments the focus is on comparing different configurations of LSTM 

blocks (64, 128, and 256) in relation to varying sequence lengths (20, 40, and 100). The objective is to 

evaluate how the number of LSTM units impacts model performance when applied to sequences of 

different lengths. The LSTM block size directly influences the model's capacity to capture temporal 

dependencies within the data, while the sequence length affects the amount of temporal information 

available for learning. The combination of these factors provides a comprehensive understanding of the 

trade-offs between model complexity and input sequence granularity. Table 3.10 lists the parameters 

employed in this experiment, and Figure 3.15 illustrates the experimental outcomes. This analysis 

highlights the relationship between LSTM block size and sequence length in optimizing model 

performance for time series data. In Figure 3.16, the training times for these models are compared to 

illustrate the computational cost incurred with increasing model complexity. 

 

 

 

 

 



74 
 

Table 3.10: Parameters for sequence lengths experiments. 

Parameter Value 

Num scenario 50 
Sequence overlap Full 

Epoch 100 
Batch 128 

Sequence labeling Last packet 
Normalization and standardization Standardization 

Optimizer Adam 
Loss detection Binary crossentropy 

Loss identification Kullback-Leibler Divergence 
Loss isolation  Kullback-Leibler Divergence 
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Figure 3.15: Sequence length and LSTM blocks experiments results. 
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Figure 3.16: Sequence length and LSTM blocks experiments training time. 

 

Observations: This section provides a comprehensive analysis of the results from comparing different 

sequence length and LSTM blocks. The first part examines the impact of altering sequence lengths, while 

the second part explores the effects of varying LSTM blocks on model performance and training time.  

1) Effect of Changing Sequence Length: 

a) Sequence length 20: 

• Performance: With sequence length 20, the performance improves as LSTM block size 

increases. For 64 blocks, the detection accuracy is 0.963, with an F1-score of 0.846. The 

performance increases with 128 blocks (accuracy of 0.968, F1-score of 0.870) and peaks with 

256 blocks, achieving 0.974 accuracy and an F1-score of 0.893. The recall and precision 

metrics follow a similar trend. 

• Training time:  As expected, training time increases with the number of LSTM blocks. For 64 

blocks, training time is 183.5s, while for 128 blocks, it rises slightly to 184.5s. The training 

time increases more significantly with 256 blocks, reaching 202.9s. 

b) Sequence length 40: 

• Performance: Sequence length 40 yields higher performance across the board. For 64 

blocks, detection accuracy is 0.971 with an F1-score of 0.888. The performance with 128 

blocks is even better, reaching 0.981 accuracy and an F1-score of 0.927. Performance peaks 

with 256 blocks, providing accuracy of 0.979 and an F1-score of 0.918. 

• Training time: The training time continues to rise with increased LSTM blocks and sequence 

length. The model with 64 blocks takes 197.0s, and 128 blocks increase this time to 199.6s. 

For 256 blocks, training time grows to 268.8s, reflecting the added complexity. 

c) Sequence length 100: 

• Performance: At sequence length 100, the model performance plateaus. Both 128 and 256 

blocks achieve very similar detection accuracy (0.983 and 0.982, respectively), with F1-

scores of 0.935 and 0.931. However, despite good performance, the gains from increasing 

LSTM blocks become marginal compared to the shorter sequence lengths. 
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• Training Time: Training time increases considerably for sequence length 100. For 64 blocks, it 

is 241.8s, while for 128 blocks, it reaches 277.4s. The highest training time, 418.4s, occurs 

with 256 blocks, showing the computational cost of handling longer sequences with a more 

complex model. 

 

2) Effect of Changing Number of LSTM Blocks: 

a) 64 Blocks:  

• Performance: The model with 64 blocks performs adequately, with the best performance 

achieved at sequence length 40 (accuracy of 0.971, F1-score of 0.888). However, 

performance decreases at sequence length 100 (accuracy of 0.948, F1-score of 0.792), 

indicating that 64 blocks struggle with longer sequences. 

• Training Time: Training time for 64 blocks ranges from 183.5s (sequence length 20) to 241.8s 

(sequence length 100), highlighting a moderate increase in computation time as sequence 

length increases. 

b) 128 Blocks: 

• Performance: The 128-block model shows improved performance across all sequence 

lengths. For sequence length 100, it achieves its highest accuracy (0.983) and F1-score 

(0.935). This block size offers a strong balance of performance across various sequence 

lengths. 

• Training Time: Training time for 128 blocks increases with sequence length, ranging from 

184.5s for sequence length 20 to 277.4s for sequence length 100. Although the performance 

gains are significant, the computational cost rises accordingly. 

c) 256 Blocks: 

• Performance: The 256-block model consistently delivers high performance, with its best F1-

score (0.931) achieved for sequence length 100 and strong performance across the board. 

Despite these gains, the model's advantages over 128 blocks become less pronounced at 

longer sequence lengths. 

• Training Time: Training time grows steeply with 256 blocks, particularly for sequence length 

100, where it reaches 418.4s. This highlights the computational burden of using a more 

complex model, particularly when handling longer sequences. 

 

Key Findings and Analysis: After analyzing the performance metrics from the latest experiments, the 

model with 128 LSTM blocks and a sequence length of 40 stands out as the optimal configuration. This 

model achieves a detection accuracy of 0.981, precision of 0.943, recall of 0.912, and an F1-score of 

0.927, striking a solid balance between high performance and computational efficiency. 

The training time for this setup is 199.6 seconds, which is reasonable given its consistently high detection 

capabilities. Although configurations with longer sequence lengths (e.g., 100) or more LSTM blocks (e.g., 
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256) offer marginal improvements in performance, the corresponding increase in computational cost 

does not justify these gains. For instance, the model with 256 blocks and a sequence length of 100 

achieves a slightly higher accuracy of 0.982, but its training time jumps to 418.4 seconds more than 

double that of the optimal configuration, with only minimal performance improvement. 

In contrast, the 128-block model with a sequence length of 40 provides a significant step up from smaller 

models, such as those with 64 blocks, in both performance and efficiency. This setup delivers an ideal 

trade-off between high precision, recall, and F1-score while keeping training time relatively low, making 

it the optimal choice for this cyber-attack detection problem. 

 

3.4.5 Model Performance Analysis and Comparison with Existing Approaches 
The fourth set of experiments focuses on evaluating the final model configured with optimal parameters 

and comparing its performance to similar works in the existing literature, thereby demonstrating its 

superiority. This section details the results achieved by the proposed model in the detection, 

identification, and isolation of cyber-attacks. While the detection performance will be compared to other 

existing studies in the following section, it is noteworthy that the identification and isolation results are 

unique to this research, as it represents the first work addressing these specific aspects. The comparative 

analysis reveals that the proposed detection method outperforms two analogous studies in literature, 

confirming its superiority in this domain. This section also includes an experiment to measure the real-

time detection capability of the model. The detection time will be evaluated to assess the model’s 

efficiency and suitability for real-time applications. Table 3.11 provides an overview of the model 

parameters utilized in these experiments. Additionally, the results for detection, identification, and 

isolation are presented in a heatmap format, as depicted in Figures 3.17, 3.18, and 3.19, respectively. 

 

 

Table 3.11: Parameters for comparative analysis experiments. 

Parameter Value 

Num scenario 50 
Sequence overlap Full 

Epoch 100 
Batch 128 

Sequence labeling Last packet 
Sequence size  40 
LSTM blocks 128 

Normalization and standardization Standardization 
Optimizer Adam 

Loss detection Binary crossentropy 
Loss identification Kullback-Leibler Divergence 

Loss isolation  Kullback-Leibler Divergence 
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Figure 3.17: Proposed model detection results. 

 

 

Figure 3.18: Proposed model identification results. 
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Figure 3.19: Proposed model isolation results. 

 

Observations:  

1) Detection: The heatmap showcases the detection results of the proposed model, revealing a 

commendable performance in classifying cyber-attacks. Specifically, the model achieved a precision 

of 0.99 for class 0 (normal traffic) and 0.91 for class 1 (attack), indicating a high accuracy in correctly 

identifying normal data while maintaining a strong capability in detecting attacks. The recall rates of 

0.98 for class 0 and 0.91 for class 1 further highlight the model's effectiveness, suggesting that it 

successfully identifies a significant portion of actual attacks. With an overall accuracy of 0.98, the 

proposed model demonstrates a robust performance in distinguishing between normal and attack 

classes, affirming its potential for practical applications in cyber-attack detection.  

 

2) Identification: The heatmap showcases the exceptional performance of the proposed cyber-attack 

identification model. Specifically, the model achieved precision scores of 0.99 for normal traffic, 0.91 

for DoS attacks, 0.92 for FDI attacks, and 0.94 for replay attacks, respectively. These results 

demonstrate the model's ability to accurately identify each type of attack, highlighting its 

effectiveness in detecting various cyber threats. Additionally, the recall rates for each class were 

consistently high, indicating that the model successfully identifies a significant portion of actual 

attacks. The recall scores were 0.98 for normal traffic, 0.91 for DoS attacks, 0.92 for FDI attacks, and 

0.94 for replay attacks. Finally, the F1-scores, which combine precision and recall into a single metric, 
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further reinforce the model's overall performance. The F1-scores for each class were 0.98 for normal 

traffic, 0.91 for DoS attacks, 0.92 for FDI attacks, and 0.94 for replay attacks.  

The comparative analysis of attack identification reveals notable variations in precision across 

different types of attacks. Specifically, the precision for Denial of Service (DoS) attacks is significantly 

lower than that of other attack types, while the precision for Replay attacks is marginally higher 

compared to False Data Injection (FDI) attacks. In terms of recall, all attack types exhibit similar 

performance levels, indicating that the model maintains consistent detection capabilities across the 

board. Lastly, the F1 scores highlight that the model performs better in identifying Replay and FDI 

attacks compared to DoS attacks.  

 

3) Isolation: The results of the proposed model for the isolation of cyber-attacks demonstrate 

impressive performance across all metrics, showcasing its effectiveness in accurately identifying 

various attack classes. The model excels in precision for the "No Attack" class, achieving a 

remarkable score of 0.98, which highlights its capability to minimize false positives effectively. Other 

classes also show strong results, particularly Class 4 and Class 7, with F1-scores of 0.94 and 0.91, 

respectively, indicating that the model can reliably identify these specific attacks. Recall scores are 

generally robust, suggesting the model effectively captures true positives across most attack types, 

with all classes performing admirably around the 0.85 mark. The overall accuracy of 0.89 signifies 

the model's reliability and its contribution to the field of cyber-attack detection and isolation.  

The results for the isolation of cyber-attacks indicate that the overall F1-scores of the models are 

comparable, averaging around 0.87 across most targets. However, two specific targets, namely 1 and 

7, achieved higher F1-scores exceeding 0.90, demonstrating their superior identification capabilities. 

Analyzing precision and recall reveals a nuanced performance; many targets exhibit a trade-off 

where models excel in either precision or recall but not both. For instance, targets 5, 6, 8, and 10 

show better precision than recall, indicating a propensity to minimize false positives, while targets 2, 

3, and 4 achieve higher recall than precision, suggesting a focus on capturing true positives. Notably, 

targets 1, 7, and 9 excel in both precision and recall, highlighting the effectiveness of the proposed 

model in accurately identifying these specific attack targets. Overall, these findings underscore the 

robustness of the model in addressing the challenges of cyber-attack isolation and emphasize its 

contribution to advancing the understanding of performance metrics in this domain. 

 

Comparative analysis of detection performance: This section presents a comparative analysis of the 

detection performance of the proposed model against two similar works that employed preprocessing 

techniques alongside LSTM. The objective is to evaluate the efficacy of the proposed model in relation to 

these established approaches. By implementing a specialized preprocessing strategy, the proposed 

LSTM-based approach demonstrates superior detection capabilities compared to the referenced 

literature. It is important to note that the results pertaining to identification and isolation cannot be 

directly compared to existing works, as no studies have focused on these specific tasks in the current 

literature. This emphasizes the novelty of the proposed model in addressing these aspects of cyber-

attack detection. Figure 3.20 illustrates the results of comparative analysis experiments.  
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The comparative results presented in the Table demonstrate the significant superiority of the proposed 

model over two existing works in literature. The proposed model achieved an impressive accuracy of 

98%, with a precision, recall, and F1-score of 91%, indicating a robust capability for effective cyber-attack 

detection. In contrast, the first model reported an accuracy of 88.5%, with a lower precision of 54.2%, 

and an F1-score of 64.9%, suggesting limitations in its ability to identify true positive instances. The 

second model showed improved performance, achieving an accuracy of 94% and an F1-score of 79%, yet 

still fell short of the proposed model's metrics. These results not only affirm the efficacy of the proposed 

approach but also highlight its enhanced ability to balance precision and recall effectively. This 

advancement is crucial in practical applications where accurate detection of cyber threats is paramount, 

reinforcing the value of the proposed methodology in the field of cyber-attack detection.  

The results obtained from this section's experiments indicate that the proposed model demonstrates a 

high level of performance, achieving metrics around 90% or above across all tasks, including detection, 

identification, and isolation. This consistent level of excellence in performance metrics signifies that the 

proposed model not only excels in its specific tasks but also surpasses existing methods in the literature, 

affirming its superiority in cyber-attack detection capabilities. Thus, the proposed model represents a 

valuable contribution to the advancement of knowledge in this field, highlighting its potential to 

enhance existing methodologies and provide more effective solutions for cybersecurity challenges. 

 

 

 

Figure 3.20: Comparative analysis experiments results. 

 

Detection Time: To evaluate the feasibility of the proposed model for real-time applications, an 

experiment was conducted to measure its detection time. Detection time refers to the total time 

required by the model to process an input sequence and perform the tasks of detection, identification, 

and isolation. The real-time detection capability of the model was assessed by measuring the time 

required to generate predictions for 50 randomly selected test samples. Each prediction was performed 

on a CPU, as this closely approximates the computational limitations of embedded processors used in 

quadcopters. The detection time was measured for each sample individually, and the results were 

averaged to obtain a reliable estimate of the model's performance in a real-time setting. The measured 

average detection time was 0.053 seconds (53 ms), demonstrating the computational efficiency of the 

model and its suitability for deployment in real-time scenarios of single quadcopter. 
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3.5 Conclusion and Contributions 
This chapter addressed the critical tasks of cyber-attack detection, identification, and isolation within a 

single quadcopter system, framing it as a machine learning problem. The methodology introduced here 

leveraged Long Short-Term Memory (LSTM) networks to handle the temporal nature of sensor and 

actuator data. A primary contribution of this work is the integration of a shared LSTM backbone within a 

multi-output framework, which allows simultaneous handling of detection, identification, and isolation 

tasks. This approach contrasts with traditional models that typically address only one of these tasks, 

enhancing both computational efficiency and predictive accuracy.  

By incorporating a novel preprocessing step focused on sequence generation and labeling, the proposed 

model was able to outperform existing approaches in the literature, particularly in the detection task. 

The ability to generate sequences from the quadcopter’s time-series data allowed the model to capture 

long-term dependencies, a key factor in detecting subtle attack behaviors that might otherwise go 

unnoticed. 

In addition to advancing detection techniques, this work is the first to introduce identification and 

isolation tasks for cyber-attacks in the context of quadcopters using machine learning. The identification 

head of the model accurately classified attack types, including Denial of Service (DoS), False Data 

Injection (FDI), and replay attacks, while the isolation head effectively identified the specific components 

(sensors or actuators) under attack. This multi-task capability is significant, as it demonstrates the 

model's potential to not only detect an attack but also provide valuable information for mitigating its 

effects. 

Overall, the results presented in this chapter show that the proposed LSTM-based model, with its 

shared-weight architecture and multiple output heads, offers a robust solution for cyber-attack 

detection, identification, and isolation. By achieving high performance across these tasks, this work sets 

the stage for future research aimed at improving the security of autonomous systems. The findings 

underscore the importance of integrating machine learning techniques for enhancing the resilience of 

cyber-physical systems against a wide range of cyber-attacks. 
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Chapter 4 

4. Detection, Identification, and Isolation of 

Cyber-Attacks on Centralized and 

Decentralized Network of Quadcopters 
 

4.1 Introduction  
4.1.1 Problem Formulation 
The field of cyber-attack detection in networks of quadcopters using machine learning is currently 

underexplored. To the best of the author's knowledge, a few prior works have fully addressed the unique 

aspects of networked quadcopter systems, including clear topology design and data collection specific to 

such networks. Most existing studies rely on general datasets like UNSW-NB15 or CICIDS-2017, which are 

not specifically designed for quadcopters and only approximate single-drone attack scenarios. For 

studies generating their own data, the focus remains on single quadcopters rather than networked 

systems. Although some studies suggest expanding to networked quadcopters as a potential future 

direction, none have pursued this yet. Moreover, while many works reference cyber-attack detection in 

the context of an "Internet of Drones," they often utilize general-purpose datasets not tailored to 

networked quadcopter configurations. Given the lack of prior research on cyber-attack detection, 

identification, and isolation in multi-quadcopter networks, this work represents a valuable contribution 

to the literature. 

This chapter addresses the problem of cyber-attack detection, identification, and isolation in a network 

of quadcopters, focusing on attacks such as Denial of Service (DoS), False Data Injection (FDI), and Replay 

attacks. These attacks have the potential to compromise both sensor and actuator data across all 

quadcopters in the network, thereby impacting the network’s stability and functionality.  

The primary objectives within this problem scope are threefold: 

1) Detection: Identifying the presence of any cyber-attack within the network. 

2) Identification: Classifying the specific types of detected attack. 

3) Isolation: Pinpointing the exact quadcopter(s) affected within the network.  

To tackle these objectives, this work introduces a Multi-Input, Multi-Output (MIMO) LSTM-based 

architecture designed specifically for scalability in networked quadcopter systems. Unlike single-purpose 
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or single-quadcopter models, this MIMO framework accommodates centralized and decentralized 

configurations, extending the flexibility and resilience of the system across various network topologies. 

By employing a shared LSTM backbone with adaptable input heads for each quadcopter, the proposed 

model scales across networks of multiple quadcopters, from two to five in current tests. This multi-task 

architecture allows for simultaneous detection, identification, and isolation, consolidating three 

traditionally separate models into a single, unified framework in Network Topology: The architecture is 

adaptable to both centralized and decentralized topologies, where the choice of topology impacts the 

model. In centralized configurations, the model centralizes data from multiple quadcopters, enabling 

efficient processing at a central node. In contrast, decentralized setups distribute detection tasks across 

nodes, enhancing network-wide resilience to attacks on specific quadcopters. 

 

4.1.2 Network of Quadcopters 
Table 4.1 presents a summary of key aspects related to the network of quadcopters, including various 

options for network topology, cyber-attack detection locations, movement strategies, network 

configurations, data transmission methods, and inter-quadcopter communication. 

 

 

Table 4.1: Different aspects for a network of quadcopters. 

Aspect Options 

Network Topology Centralized, Decentralized, Distributed 
Cyber-attack Detection Location Single Quadcopter, Subset of Quadcopters, All Quadcopters 

Movement Strategy Stochastic, Consensus, Formation, Coverage, Hovering 
Network Configuration Independent Quadcopters, Leader-Follower 

Data Transmission Sensors and Actuators, Sensors Only 
Inter-quadcopter Communication Between Different Quadcopters, With Leader Only 

 

Network Topology: The network topology of quadcopters significantly influences their operational 

effectiveness and resilience to cyber-attacks. Three primary configurations are typically considered: 

centralized, decentralized, and distributed. In a centralized topology, all quadcopters transmit their data 

to a central control point, such as a ground control station (GCS) or a designated quadcopter. While this 

model simplifies management and coordination, it introduces vulnerabilities by making the central node 

a potential target for cyber-attacks. In a decentralized topology, a subset of the quadcopters possesses 

detection capabilities, with the remaining quadcopters sending their data to these nodes and relying on 

them for detection. In contrast, in a distributed topology, every quadcopter has independent detection 

capabilities. Each topology offers distinct advantages and challenges, particularly in terms of scalability, 

resilience, and response time in the face of cyber-attacks. 

Cyber-attack Detection Location: The location of cyber-attack detection plays a vital role in the overall 

security of the quadcopter network. Detection can be performed at a single quadcopter, a subset of 

quadcopters, or all quadcopters within the network. Detecting attacks at a single quadcopter allows for 

quicker response times but may leave the system vulnerable if that quadcopter fails or is compromised. 

Detection at a subset of quadcopters can provide a balanced approach, leveraging the strengths of 
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certain quadcopters while maintaining a decentralized structure. Finally, implementing detection across 

all quadcopters enhances overall system security and provides comprehensive monitoring but may 

introduce significant computational overhead and communication challenges. 

Movement Strategy: The movement strategy of quadcopters significantly impacts their ability to operate 

effectively in dynamic environments. Several strategies exist, including stochastic, consensus, formation, 

coverage, and hovering. The stochastic approach introduces randomness into movement patterns, which 

can help avoid predictable behaviors that attackers might exploit. The consensus strategy requires 

quadcopters to reach a common agreement on movement goals, fostering collaboration but potentially 

leading to delays in decision-making. Formation strategies enable quadcopters to maintain specific 

spatial arrangements for enhanced functionality or aesthetics. The coverage strategy aims to monitor a 

designated area effectively, while hovering allows quadcopters to maintain a fixed position, facilitating 

detailed data collection. Each strategy has implications for mission success, energy efficiency, and 

vulnerability to attacks. 

Network Configuration: The configuration of the quadcopter network can be characterized as either 

independent or leader-follower. In an independent configuration, quadcopters operate autonomously, 

making decisions based on local information and reducing reliance on a central authority. This approach 

increases resilience, as the failure of one unit does not compromise the entire network. In contrast, a 

leader-follower configuration designates specific quadcopters as leaders, which guide the movement and 

actions of their followers. This can enhance coordination and efficiency but may create vulnerabilities if 

the leader is targeted by an attack. The choice of configuration influences the system's overall flexibility, 

robustness, and ability to respond to cyber threats. 

Data Transmission: Data transmission in a quadcopter network can occur via two primary methods: 

through sensors and actuators or sensors only. Utilizing both sensors and actuators allows quadcopters 

to transmit comprehensive information, enabling better decision-making and operational responses. 

However, this approach may increase the complexity of data management and processing. Conversely, 

sensors only transmission focuses on collecting environmental and operational data, potentially 

streamlining communication and reducing processing overhead. The choice of data transmission method 

can significantly affect the network's responsiveness and resilience to cyber-attacks, necessitating a 

careful balance between data richness and system efficiency. 

Inter-quadcopter Communication: Inter-quadcopter communication can be structured either between 

different quadcopters or with the leader only. Communication between different quadcopters fosters a 

collaborative environment where multiple units can share information and support each other's 

operations, enhancing situational awareness and collective decision-making. On the other hand, 

communication with the leader only centralizes the information flow, simplifying coordination but 

potentially creating a bottleneck and single point of failure. The chosen communication strategy 

influences the network's resilience to attacks, the efficiency of operations, and the ability to adapt to 

changing conditions in real-time. 

 

4.1.3 Selected Network Cases 
Two network configurations are selected for further analysis in this study, each representing distinct 

topological and operational characteristics: 
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Case 1: Centralized Network with Single Quadcopter Detection 

In this configuration, a centralized topology is employed where a single quadcopter is responsible for 

cyber-attack detection. The quadcopters follow a stochastic movement strategy, operating 

independently from each other. Data transmission is considered in two approaches: sensor-only data and 

combined sensor and actuator data, enabling a comparison of their impact on detection performance. 

Inter-quadcopter communication occurs between different quadcopters, allowing them to relay their 

data to the central node. This configuration emphasizes simplicity in network management but 

introduces potential vulnerabilities at the central detection point, which, if compromised, could impact 

the entire network's integrity. 

 

Case 2: Decentralized Network with Subset of Quadcopters Detection 

In the second configuration, a decentralized topology is utilized, where a subset of the quadcopters has 

detection capabilities, while the remaining quadcopters send their data to these nodes for analysis. Like 

Case 1, the quadcopters employ a stochastic movement strategy and operate independently. Data 

transmission is considered in two approaches: sensor-only data and combined sensor and actuator data, 

enabling a comparison of their impact on detection performance. Communication occurs between 

different quadcopters, enabling data-sharing for cyber-attack detection. This decentralized model 

provides more resilience compared to the centralized approach, as the reliance on multiple detection 

nodes reduces the risk of total system failure in the event of an attack. 

 

4.2 Methodology 
4.2.1 Data Preprocessing 
The dataset generated for the network of quadcopters is loaded at this stage and used for training and 

testing the machine learning models. As a pre-processing step, the time column is removed from the 

features to prevent the model from learning patterns based on time rather than the actual feature data. 

The features are then standardized using the StandardScaler, which removes the mean and scales the 

features to unit variance. This process ensures that each feature has a mean of 0 and a standard 

deviation of 1, making the data more suitable for machine learning models that are sensitive to feature 

scaling. Standardization is crucial for improving model performance and ensuring that no single feature 

dominates due to differences in scale. 

Sequences are generated for all quadcopters using the same approach. The method involves creating 

sequences from time-series data with full overlap to maximize the use of available data. For labeling the 

sequences, the "last packet label" approach is applied, where the label of the last packet in each 

sequence is assigned as the label for the entire sequence. This method leverages the temporal 

information from previous packets in the sequence to assist in determining whether the last packet 

represents an attack or not. 

Once the data has been converted into sequences, it is split into training and testing sets. 75% of the 

data is allocated for training, with the remaining 25% reserved for testing, ensuring that the model has 
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enough data to learn from while maintaining a separate set for performance evaluation. Finally, each 

sequence's packets are separated into independent components corresponding to the features of each 

quadcopter, allowing them to be used in the appropriate input head of the multi-input deep learning 

model. 

 

4.2.2 Output Heads Reduction 
The dataset for the network of 5 quadcopters provides 50 features, with 10 features corresponding to 

each quadcopter, and 15 labels, 3 for each quadcopter. In total, there are 15 distinct labels that the 

machine learning model must predict. However, solving 15 separate machine learning tasks using a 

single model with shared weights is impractical and inefficient. Therefore, a process is required to reduce 

the number of outputs from 15 to a more manageable number that the model can handle effectively. 

The primary objectives of this problem are the detection, identification, and isolation of cyber-attacks. To 

achieve these goals, three labels are sufficient, with each label specifically tuned to its corresponding 

purpose. The structure of each newly created label is outlined as follows: 

• Detection label: This output is a binary label (0 or 1) representing the presence or absence of an 

attack. It is derived from the detection labels of individual quadcopters. If any quadcopter's 

detection label equals 1, indicating an attack, the overall detection label is set to 1. 

• Identification label: This output identifies the type of attack, distinguishing between Denial of 

Service (DoS), False Data Injection (FDI), and Replay attacks. The label has three components, 

each corresponding to one type of attack, and each can be either 0 or 1. For example, if a DoS 

attack is detected, the first component is set to 1, and similarly for FDI and Replay attacks. This 

label is constructed by iterating over the identification labels of each quadcopter and assigning 

the appropriate values based on the attacks present. 

• Isolation label: This output isolates the attack by identifying which quadcopter(s) is under 

attack. It has five components, one for each quadcopter, and each component can be either 0 or 

1. For instance, if quadcopters 2 and 4 are under attack, the isolation label will be [0, 1, 0, 1, 0]. 

This label is directly derived from the detection labels of the individual quadcopters, with a value 

of 1 indicating that a specific quadcopter is compromised. 

Once the new labels are created, the original labels are removed and replaced with the newly defined 

ones. The following Figure demonstrates the newly created labels for the extended problem in the 

network of quadcopters. Figure 4.1 demonstrates how new network labels are created from individual 

quadcopters labels for a network with 5 quadcopters. 
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Figure 4.1: Output heads reduction process for 5 quadcopters. 

 

 

4.2.3 Proposed MIMO LSTM-based Architecture 
In this section, the architecture of the proposed Multi-Input Multi-Output (MIMO) model is presented. 

This model is designed to accommodate both centralized and decentralized topologies, demonstrating 

its versatility in various network configurations. Furthermore, the MIMO model is adaptable and can be 

effectively utilized in networks consisting of two to five quadcopters. While it is capable of handling 

varying quantities of quadcopters, careful tuning of the model enhances its performance while 

minimizing computational complexity across different scenarios. The MIMO model architecture for 

network with 5 quadcopters is depicted in Figure 4.2. 
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Figure 4.2: MIMO model architecture for network with 5 quadcopters. 

 

The data flow in the model is described as follows. The model begins with five input sequence 𝑃 = [𝑃1, 
𝑃2, … , 𝑃𝑛] which are different for each quadcopter 1 to 5. The input sequence for each quadcopter has a 

length of 𝑛 and 𝑚 features. Each time step of the sequence is fed into the input LSTM network, with 

each time step processed by an LSTM block according to its index. Specifically, each time step is fed into 

the LSTM network as 𝑃1 = 𝑋1, 𝑃2 = 𝑋2, …  𝑃𝑛 = 𝑋𝑛 , where 𝑋𝑖  represents the input at each time step. 

The data moves through the LSTM network step-by-step, from bottom to up, at each time step, as 

explained in Section 3.2.3 (LSTM Architecture). 

The outputs of all LSTM blocks, represented by ℎ1 to ℎ𝑛 for each input head are inputs to concatenation 

layer. This concatenation preserves the sequence length and combines the outputs of each input head to 

form the input for the shared LSTM backbone. The shared LSTM network has a significantly higher 

capacity compared to the input heads, as it contains more neurons within each LSTM block. The output 

from the shared LSTM network, represented by ℎ𝑛, is fully connected to each of the three separate 

heads. Each head is responsible for a different task, producing values between 0 and 1 for the output 

neurons, which are used for detection, identification, and isolation. 
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The adaptive multi-input multi-output (MIMO) network comprises three principal components: 

Adaptive Input Heads: This component consists of an adaptable number of input heads, which are 

configured according to the number of quadcopters for which data is available for cyber-attack 

detection. Each input sequence, formed from packets, consists of concatenated features from the 

respective quadcopter. Each packet's features are separated based on the specific quadcopter they 

belong to and are then directed to their respective input head. Each input head incorporates a single-

layer LSTM network with a predetermined number of blocks, which will be established through 

experimental trials.  

Shared LSTM Backbone: This section consists of a specified number of LSTM blocks arranged in a single 

layer, the quantity of which will be determined during the experimental phase. It receives outputs from 

the input heads, concatenates them, and forwards this data into the LSTM backbone, which then 

transmits its output to three distinct output heads responsible for detection, identification, and isolation. 

The input LSTM network processes the input sequence and outputs a sequence of the same length, 

preserving temporal information at each time step. In contrast, the shared LSTM network only outputs 

the final hidden state, which is then used for detection, identification, and isolation, capturing the overall 

sequence's learned features. 

Static Output Heads: This component includes three distinct output heads designed for the detection, 

identification, and isolation of cyber-attacks. The detection head comprises one neuron utilizing a 

sigmoid activation function, with its binary output indicating whether an attack has occurred within the 

system. The identification head contains three neurons, also employing sigmoid activation functions. 

Each neuron outputs a binary signal (0 or 1) that signifies the type of attack present in the system: if the 

first neuron outputs 1, a Denial of Service (DoS) attack is identified; if the second neuron outputs 1, it 

indicates a False Data Injection (FDI) attack; and if the third neuron outputs 1, it denotes a replay attack. 

Finally, the isolation head features five neurons, each with a sigmoid activation function. The output of 

these neurons indicates whether the corresponding quadcopter (based on its index) is under attack, 

producing a binary output for each quadcopter. 

 

 

4.2.4 Training and Optimization 
Loss Function 

The proposed MIMO model architecture incorporates three distinct output heads, each necessitating a 

separate loss function. Since all output heads are performing binary classification tasks, binary cross-

entropy is used for the detection, identification, and isolation heads. However, the loss functions for 

each head differ based on the number of neurons involved in their respective outputs. The mathematical 

formulations of these loss functions are provided in the following section. 

 

1) Detection Head (Single Binary Output): The detection head in the MIMO model is structured to 

perform a binary classification that discerns whether any quadcopter system in the network is 

under attack or operating normally. Leveraging a single output neuron with binary cross-entropy, 

this head provides a direct indication of abnormal network behavior, allowing for rapid detection 

of compromised states.  
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𝐿𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 = −
1

𝑁
∑[𝑦𝑖 log(�̂�𝑖) + (1 − 𝑦𝑖) log(1 − �̂�𝑖  )]

𝑁

𝑖=1

, (4.1) 

 

where 𝑦𝑖  is the true label (0 or 1) and �̂�𝑖  is the predicted probability. 𝑖 is the index of sample in 

batch and 𝑁 indicates the number of samples in each batch [87]. 

 

 

2) Identification Head (Multiple Binary Outputs): The identification head is tasked with 

determining the specific types of cyber-attacks impacting the network. It uses multiple binary 

outputs, each representing a distinct attack type, and applies a binary cross-entropy loss 

function per output neuron. This setup allows the head to simultaneously identify various 

attacks such as Denial of Service (DoS) and False Data Injection (FDI). The overall identification 

loss value is calculated as the average of the loss values from each of the three neurons. 

𝐿𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = −
1

𝑁 ×𝑀
∑∑[𝑦𝑖,𝑗 log(�̂�𝑖,𝑗) + (1 − 𝑦𝑖,𝑗) log(1 − �̂�𝑖,𝑗 )]

𝑀

𝑗=1

𝑁

𝑖=1

, (4.2) 

 

where 𝑦𝑖,𝑗 denotes the true label (0 or 1), and �̂�𝑖,𝑗 represents the predicted for output neuron 𝑗. 

𝑀 refers to the number of output neurons with Sigmoid activation function, which corresponds 

to the number of attack types that is 3. 𝑖 is the index of sample in batch and 𝑁 indicates the 

number of samples in each batch [87]. 

 

3) Isolation Head (Multiple Binary Outputs): The isolation head focuses on pinpointing the specific 

quadcopter(s) under attack within a networked environment. Its multi-output design, tailored 

for binary classification per unit, enables it to isolate affected quadcopters accurately by 

signaling which specific nodes within the network are compromised. This head's binary cross-

entropy approach per output supports multi-target localization. The overall isolation loss value is 

calculated as the average of the loss values from each of the three neurons. 

 

𝐿𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = −
1

𝑁 × 𝑃
∑∑[𝑦𝑖,𝑗 log(�̂�𝑖,𝑗) + (1 − 𝑦𝑖,𝑗) log(1 − �̂�𝑖,𝑗 )]

𝑃

𝑗=1

𝑁

𝑖=1

, (4.3) 

 

where 𝑦𝑖,𝑗 denotes the true label (0 or 1), and �̂�𝑖,𝑗 represents the predicted for output neuron 𝑗. 

𝑃 refers to the number of output neurons with Sigmoid activation function, which corresponds 

to the number of quadcopters that can be any value from 2 to 5. 𝑖 is the index of sample in batch 

and 𝑁 indicates the number of samples in each batch [87]. 

 

Weights Update 
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The Adam optimizer is utilized for model optimization, computing the derivative of the loss function at 

each step and adjusting the weights according to its algorithm. The overall loss function is determined as 

follows: 

𝐿𝑡𝑜𝑡𝑎𝑙  = 𝐿𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 + 𝐿𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + 𝐿𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛, (4.4) 

 

The shared LSTM layer within the model utilizes a single set of weights that are applied across all three 

output heads. As a result, this single LSTM backbone efficiently facilitates the execution of three distinct 

tasks simultaneously, enabling the model to detect, identify, and isolate cyber-attacks without the need 

for separate LSTM networks for each task. This architectural design not only reduces computational 

complexity but also enhances the model's ability to learn shared patterns from the input data. 

The gradient for use in Adam optimizer is calculated as follows.  

∂𝐿𝑡𝑜𝑡𝑎𝑙
∂𝑊

=
∂𝐿𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

∂𝑊
+
∂𝐿𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

∂𝑊
+
∂𝐿𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛

∂𝑊
, (4.5) 

 

To avoid redundancy, the full explanation of the Adam optimizer provided in section 3.2.5 will not be 

repeated here. 

 

 

4.2.5 Implementation 
The implementation of the proposed multi-input multi-output (MIMO) model for the network of 

quadcopters was conducted using the Python programming language within the Kaggle online 

notebooks environment. The Kaggle platform, known for its user-friendly interface, provides access to 

powerful computational resources, enhancing the efficiency of machine learning tasks. Additionally, the 

platform alleviates challenges associated with library dependencies and execution delays, thereby 

streamlining the implementation process for the MIMO model in a multi-quadcopter context. 

TensorFlow is an excellent library utilized for implementing the multi-input multi-output (MIMO) model, 

providing robust tools for building and training complex neural networks.  

Unlike many studies that simply apply popular libraries like TensorFlow or Keras, this work goes beyond 

basic usage by carefully designing models, preparing data, and formulating the problem. The specific 

configuration of machine learning tasks, such as detection, identification, and isolation, is tailored to the 

unique needs of quadcopter networks. Moreover, the precise and transparent use of these libraries 

distinguishes this approach from others, ensuring clarity and providing a solid foundation for future 

research. 
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4.3 Dataset Creation 
4.3.1 Dataset Design 
The dataset for this study is designed with the following key criteria: 

• Diversity: Multiple scenarios of network with varying conditions such as simultaneous attacks 

were included. 

• Size: Enough samples of network data were generated to support the deep learning model. 

• Relevance: The data relates entirely to network of quadcopter behavior, with proper labels for 

normal and attack data. 

• Balance: Approximately 10% of the network data consists of attack samples. 

 

The dataset consists of multiple scenarios representing the network quadcopters movements. In each 

scenario, each quadcopter follows a trajectory, during which cyber-attacks are applied. 

Features of the dataset are demonstrated in Table 4.2. 

 

 
Table 4.2: Features of dataset. 

Feature Description 

Number of samples 50,000 (including both normal and attack data) 
Number of scenarios 50 (simulation-based network of quadcopters movement scenarios) 

Number of quadcopters 5 (number of quadcopters in the network) 
Number of features 50 (actuator and sensor data of quadcopters) 

Data type Time series 
Features type Numerical (sensor readings and actuator commands) 

Class distribution 10% attack data / 90% normal data 
Labels 15: detection (binary), identification (multiclass), isolation (multiclass) for each quadcopter  

 

 

Scenarios are generated using Monte Carlo approach by randomly selecting variables at each scenario. 

These variables are defined in Table 4.3 which will be set differently for each quadcopter in the network.  

 
Table 4.3: Monte Carlo variables. 

Variable Description 

Trajectory points Reference points that define the quadcopter's path during its movement 

Attack targets Set of specific sensors and actuators targeted during the scenario 
Number of targets 3-6 (Number of individual attacks applied in the scenario) 

DoS start Start time of the Denial of Service (DoS) attack 
DoS duration  1-2 seconds (Duration of DoS attack) 

FDI start Start time of the False Data Injection (FDI) attack 
FDI duration  1-2 seconds (Duration of FDI attack) 

FDI value The false value injected into the system during the FDI attack 

Record start Start time of data recording in the simulation 

Replay start Start time of the replay attack 

Replay duration 1-2 seconds (Duration of replay attack) 

 

  

Variables of the simulation for each scenario are defined in Table 4.4. 
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Table 4.4: Simulation variables. 

Variable Value 

Simulation time (seconds) 100 
Step value (seconds) 0.1 

Number of trajectory points 10 
Time interval between setpoints (seconds) 10 

 

 

The attack column labels for each quadcopter are demonstrated in Table 4.5. 

 
Table 4.5: Attack column labels. 

Variable Values 

Attack label 0 (Normal), 1 (Attack) 
Attack Types 1 (DoS), 2 (FDI), 3 (Replay) 

Attack Targets  𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓, 𝑇, 𝜏𝜙 , 𝜏𝜃 , 𝜏𝜓  

 

 

4.3.2 Dataset Implementation 
The data generated from the Simulink simulations were transferred to MATLAB using the Data Inspector 

tool. This dataset contains 4 actuator variables and 6 sensor variables per quadcopter, totaling 50 

variables for the network. In MATLAB, additional columns such as time, attack labels (including label, 

type, and target) were added for each quadcopter. The time variable, originally from the Simulink Data 

Inspector, was further refined in MATLAB. Given the simulation's time range (0 to 100 seconds at 0.1-

second intervals), an extra data point at time 100 was included, resulting in 1001 data points per 

scenario. To ensure consistency in the attack detection process, the last row of each simulation was 

removed, reducing the dataset to 1000 data points per scenario. The final dataset was then formatted 

and exported as a CSV file. 

 

4.4 Simulation Results 
4.4.1 Comparison between Different Sequence Lengths  
In this section, the focus is on comparing different configurations of paired LSTM blocks (16, 64), (32, 

128), and (64, 256) across varying sequence lengths (20, 40, and 100). These experiments aim to 

evaluate how the combination of smaller LSTM units in the initial layers, followed by larger LSTM units in 

the shared layer, impacts model performance when processing sequences of different lengths. The 

MIMO LSTM architecture allows for more granular temporal processing at the input stage, with each 

input being fed into its respective LSTM block before being merged into a shared LSTM layer. The paired 

LSTM block sizes influence the model’s ability to capture both localized and more extensive temporal 

dependencies in the data, while the sequence length dictates how much temporal information the 

model can leverage. The interplay between these factors offers insights into how different LSTM 

configurations and sequence lengths affect the model’s ability to learn and generalize temporal patterns.  
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The experiments and comparisons cover all three critical tasks: detection, identification, and isolation, 

ensuring a comprehensive evaluation of the model's performance across different attack-handling 

capabilities. Due to the large number of metrics in the experiments, the comparison focuses on two key 

metrics: F1-score and accuracy. These metrics were selected for their balanced assessment of both 

prediction quality and overall performance, making them ideal for evaluating the trade-off between 

precision and recall, as well as general correctness. Table 4.6 lists the experimental parameters, and 

figures 4.3, 4.4 and 4.5 present the results for detection, identification, and isolation respectively. 

Additionally, Figure 4.6 compares the training times across these configurations, highlighting the 

computational trade-offs introduced by increased model complexity. 

 

Table 4.6: Parameters for sequence lengths experiments. 

Parameter Value 

Num scenario 30 
Num quadcopter 4 
Sequence overlap Full 

Epoch 50 
Batch 128 

Sequence labeling Last packet 
Normalization and standardization Standardization 

Optimizer Adam 
Loss detection Binary crossentropy 

Loss identification Binary crossentropy 
Loss isolation  Binary crossentropy 

Average approach Macro 
Data transferred Both sensors and actuators 
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Figure 4.3: Cyber-attack detection performance in experiments with different sequence length and LSTM blocks. 

 

 

Figure 4.4: Cyber-attack Identification performance in experiments with different sequence length and LSTM blocks. 
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Figure 4.5: Cyber-attack isolation performance in experiments with different sequence length and LSTM blocks. 

 

 

Figure 4.6: Training times in experiments with different sequence length and LSTM blocks. 

 

 

Observations: This section presents a detailed analysis of the results from the comparison of different 

sequence lengths and LSTM configurations in the context of cyber-attack detection, identification, and 

isolation for a network of quadcopters. 

1) Effect of Changing Sequence Length: 

a) Sequence Length 20: At a sequence length of 20, the models show varied performance, with the 

architecture (64, 256) demonstrating the highest detection accuracy at 0.963 and an F1-score of 

0.925, closely followed by (32, 128) with 0.962 accuracy and an F1-score of 0.924. The (16, 64) 

model shows slightly lower performance, achieving an accuracy of 0.958 and an F1-score of 

0.914. In terms of identification, the (32, 128) model leads with an accuracy of 0.955 and an F1-
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score of 0.906, whereas the (16, 64) model has the lowest identification accuracy at 0.930 and 

an F1-score of 0.849. Isolation performance also reflects a similar trend, with the (64, 256) 

model achieving an accuracy of 0.954 and an F1-score of 0.906, while the (16, 64) model ranks 

lowest with an accuracy of 0.904 and an F1-score of 0.780. The training times for this length vary 

slightly, with the (16, 64) model at 160.2 seconds and (32, 128) model taking 175.1 seconds, 

compared to the (64, 256) model at 164.7 seconds. 

 

b) Sequence Length 40: At sequence length 40, there is a noticeable consistency in performance, 

with the (64, 256) model achieving the highest detection accuracy of 0.965 and an F1-score of 

0.927, reflecting a significant improvement from the previous length. The (32, 128) architecture 

follows closely with an accuracy of 0.960 and an F1-score of 0.919. Meanwhile, the (16, 64) 

model shows slightly lower performance with an accuracy of 0.959 and an F1-score of 0.916. In 

identification, the (64, 256) model again leads with an accuracy of 0.959, while the (32, 128) 

model scores 0.953, demonstrating competitive performance. Isolation performance remains 

stable across the models, with the (64, 256) architecture achieving the highest accuracy of 0.960 

and an F1-score of 0.918. Training times increase across the board, with the (16, 64) model 

taking 215.0 seconds, the (32, 128) model at 222.9 seconds, and the (64, 256) model at 230.8 

seconds. 

 

c) Sequence Length 100: With a sequence length of 100, the detection accuracy and F1-scores 

reach their peak, with the (64, 256) architecture achieving the highest detection accuracy of 

0.964 and an F1-score of 0.927, indicating a slight improvement compared to the previous 

length. The (32, 128) model also shows strong performance with an accuracy of 0.960 and an F1-

score of 0.919. The (16, 64) model's performance remains stable, with an accuracy of 0.959. In 

identification, the (64, 256) model again leads with an accuracy of 0.959, while the (32, 128) 

architecture records 0.954, showcasing robust performance across the sequence lengths. 

Isolation performance sees slight variations, with the (64, 256) model achieving 0.955 accuracy, 

closely followed by the (32, 128) model at 0.951. However, this sequence length incurs a higher 

training time, with the (64, 256) model taking the longest at 420.5 seconds, reflecting the 

increased complexity of processing longer sequences. The (16, 64) model takes 299.0 seconds, 

while the (32, 128) model records 286.9 seconds. 

 

2) Effect of Changing LSTM Blocks: 

a) (16, 64) Configuration: In the (16, 64) configuration, the model exhibits varying performance 

metrics across different sequence lengths. At a sequence length of 20, the detection accuracy 

stands at 0.958, accompanied by an F1-score of 0.914. For identification, the model achieves an 

accuracy of 0.930 and an F1-score of 0.849, while isolation performance is slightly lower, with an 

accuracy of 0.904 and an F1-score of 0.780. Training time for this configuration is relatively 

efficient, at 160.2 seconds. With sequence lengths of 40 and 100, the performance remains 

stable but demonstrates slight improvements, particularly in detection and identification 

accuracy. The training times increase progressively, with the model taking 215.0 seconds at 40 

and 299.0 seconds at 100, indicating a balance between performance gains and processing time. 
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b) (32, 128) Configuration: The (32, 128) configuration shows a notable enhancement in 

performance across all metrics compared to the (16, 64) setup. At a sequence length of 20, 

detection accuracy rises to 0.962, with an F1-score of 0.924. Identification performance also 

improves, achieving an accuracy of 0.955 and an F1-score of 0.906. Isolation metrics reflect 

similar gains, with an accuracy of 0.950 and an F1-score of 0.898. Training time for this 

configuration is slightly higher than (16, 64), recorded at 175.1 seconds. As sequence lengths 

increase to 40 and 100, the (32, 128) model continues to perform competitively, maintaining an 

accuracy of 0.960 at 40 and slightly increasing to 0.960 at 100. However, the training times also 

increase more substantially, reaching 222.9 seconds at 40 and 286.9 seconds at 100, highlighting 

a trade-off between model complexity and training duration. 

 

c) (64, 256) Configuration: The (64, 256) configuration showcases the best performance metrics 

among the three architectures, particularly at longer sequence lengths. At a sequence length of 

20, the model achieves a detection accuracy of 0.963 and an F1-score of 0.925, indicating a clear 

advantage over both (16, 64) and (32, 128). The identification performance follows suit with an 

accuracy of 0.958 and an F1-score of 0.911. Isolation metrics are also impressive, with an 

accuracy of 0.954 and an F1-score of 0.906. Training time is optimized at 164.7 seconds, making 

it the most efficient among the configurations for this sequence length. With a sequence length 

of 40, the performance further improves, with detection accuracy reaching 0.965 and an F1-

score of 0.927. The training time increases slightly to 230.8 seconds. At a sequence length of 

100, the model achieves peak performance with a detection accuracy of 0.964 and an F1-score 

of 0.927, although this comes at a significant training time of 420.5 seconds, suggesting the 

model's complexity leads to better outcomes but requires more computational resources. 

 

Key Findings and Analysis: The models utilizing a sequence length of 40 demonstrated the best and 

most reliable performance while maintaining manageable training times. In comparison, models with a 

sequence length of 20 exhibited lower performance levels, while those with a sequence length of 100 

offered similar results but at a higher training cost. Among the models with a sequence length of 40, the 

configuration (16, 64) produced relatively poor results. Conversely, both the (32, 128) and (64, 256) 

configurations yielded promising performance metrics. Notably, the (64, 256) configuration 

outperformed the (32, 128) model by approximately 1-2% in F1-score, indicating a slight yet meaningful 

enhancement in performance. 

Consequently, both configurations (32, 128) and (64, 256) with a sequence length of 40 are deemed 

optimal for deployment. The smaller configuration (32, 128) is particularly suited for scenarios involving 

2 to 3 quadcopters, which often operate within decentralized network topologies. In contrast, the larger 

configuration (64, 256) is preferred for applications involving 4 to 5 quadcopters, where the increased 

model complexity can enhance overall performance, typically observed in centralized network 

topologies. 
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4.4.2 Comparison between Sensor-Only and Sensor-Actuator Data Transmission 
In the second set of experiments, a comparative analysis is conducted between two distinct data 

transmission approaches: sensor-only transmission and sensor-actuator transmission. In the sensor-only 

scenario, only sensor data is transmitted between the quadcopters, which is utilized for cyber-attack 

detection, identification, and isolation. Conversely, in the sensor-actuator configuration, both sensor and 

actuator data are transmitted among the quadcopters, enhancing the system's capacity for 

comprehensive cyber-attack detection, identification, and isolation. The experiments are designed to 

evaluate the performance of the models under varying configurations of quadcopters, specifically with 2-

3 quadcopters using the (32, 128) LSTM block configuration, and with 4-5 quadcopters utilizing the (64, 

256) LSTM block configuration. This approach enables a detailed comparison of data transmission 

methods across different scenarios, while also assessing the models' performance with varying numbers 

of quadcopters. 

A comprehensive evaluation is conducted across all three critical tasks: detection, identification, and 

isolation, ensuring a thorough assessment of the models' capabilities in handling various types of cyber-

attacks. Given the extensive range of performance metrics collected during the experiments, the analysis 

primarily focuses on two key metrics: F1-score and accuracy. These metrics were selected for their ability 

to provide a balanced evaluation of prediction quality and overall performance, making them particularly 

suited for assessing the trade-offs between precision and recall, as well as general correctness. Table 4.7 

presents the experimental parameters, while Figures 4.7, 4.8, and 4.9 illustrate the results for detection, 

identification, and isolation, respectively. Additionally, Figure 4.10 compares the training times across 

these configurations, thereby highlighting the computational trade-offs associated with increased model 

complexity. 

 

Table 4.7: Parameters for different data transmission experiments. 

Parameter Value 

Num scenario 30 
LSTM blocks input 32-64 

LSTM blocks shared 128-256 
Sequence length 40 

Sequence overlap Full 
Epoch 50 
Batch 128 

Sequence labeling Last packet 
Normalization and standardization Standardization 

Optimizer Adam 
Loss detection Binary crossentropy 

Loss identification Binary crossentropy 
Loss isolation  Binary crossentropy 

Average approach Macro 
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Figure 4.7: Cyber-attack detection performance in experiments with different transmitted data and number of quadcopters. 

 

 

Figure 4.8: Cyber-attack identification performance in experiments with different transmitted data and number of quadcopters. 
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Figure 4.9: Cyber-attack isolation performance in experiments with different transmitted data and number of quadcopters. 

 

 

 

Figure 4.10: Training times in experiments with different transmitted data and number of quadcopters. 
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for detection improved to 0.900, while the identification and isolation scores also increased to 

0.880 and 0.874, respectively, despite the slightly longer training time of 124.9 seconds. In 

configurations with 4 and 5 quadcopters, the F1-scores continued to rise, reaching 0.916, 0.903, 

and 0.897 for detection, identification, and isolation tasks in the 4 quadcopters scenario, and 

0.925, 0.915, and 0.900 in the 5 quadcopters scenario, with training times of 189.5 and 223.9 

seconds, respectively. Overall, while the accuracy remained relatively stable across these 

configurations, the consistent increase in F1-scores indicates an improvement in the model's 

capability to balance precision and recall, thereby enhancing its overall effectiveness in cyber-

attack detection and handling.  

 

b) Both sensors and actuators data: In contrast, the experiments incorporating both sensor and 

actuator data demonstrated superior performance across all tasks. For the configuration with 2 

quadcopters, the model achieved an F1-score of 0.911 for detection, 0.895 for identification, and 

0.903 for isolation, with a training time of 103.6 seconds. As the number of quadcopters 

increased to three, the F1-scores remained strong at 0.921 for detection, 0.918 for identification, 

and 0.904 for isolation, albeit with a slight increase in training time to 127.0 seconds. In the 4 

quadcopters scenario, the model maintained high performance, achieving F1-scores of 0.935, 

0.919, and 0.921 for detection, identification, and isolation tasks, with a training time of 191.7 

seconds. The trend continued for the 5 quadcopters configuration, where the F1-scores were 

0.929, 0.918, and 0.912, with the training time reaching 223.9 seconds. Overall, the inclusion of 

actuator data significantly enhanced the model's performance across all evaluation metrics, as 

evidenced by the higher F1-scores, indicating improved precision and recall in cyber-attack 

detection and handling tasks. The results underscore the value of incorporating both sensor and 

actuator data for more effective and reliable system performance. 

 

2) Effects of change in number of quadcopters: 

a) 2 Quadcopters: With two quadcopters, using sensor-only data results in F1-scores of 0.874 for 

detection, 0.849 for identification, and 0.858 for isolation. When actuator data is added, these 

scores improve to 0.911, 0.895, and 0.903, respectively. The addition of actuator data shows a 

clear improvement. Compared to larger quadcopter cases, this setup has slightly lower 

performance, especially as the F1-scores rise with more quadcopters, but still shows solid gains. 

Training time is almost equal for both configurations, with 104.5 seconds for sensor-only and 

103.6 seconds for sensor-actuator, indicating efficiency with two quadcopters. 

 

b) 3 Quadcopters: For three quadcopters, F1-scores in the sensor-only case improve to 0.900 for 

detection, 0.880 for identification, and 0.874 for isolation. With sensor-actuator data, these rise 

to 0.921, 0.918, and 0.904, respectively. The improvement with actuator data remains clear 

across all tasks. When comparing with two quadcopters, the F1-scores are slightly better, 

especially in identification and isolation, showing the model benefits from more quadcopters. 

Training times are also close, with 124.9 seconds for sensor-only and 127.0 seconds for sensor-

actuator data, slightly higher but acceptable. 
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c) 4 Quadcopters: In the case of four quadcopters, sensor-only F1-scores for detection, 

identification, and isolation are 0.916, 0.903, and 0.897, respectively. With both sensor and 

actuator data, these improve to 0.935, 0.919, and 0.921. The improvement is consistent but 

smaller compared to the jump seen between two and three quadcopters, especially in detection. 

Compared to the three quadcopters, both configurations show better performance, particularly 

in isolation. Training time increases moderately to 189.5 seconds for sensor-only and 191.7 

seconds for sensor-actuator, showing scalability with added complexity. 

 

d) 5 Quadcopters: With five quadcopters, the sensor-only configuration gives F1-scores of 0.925 for 

detection, 0.915 for identification, and 0.900 for isolation, while the sensor-actuator 

configuration improves to 0.929, 0.918, and 0.912. The performance here is almost equal to the 

four-quadcopter case, with slight improvements across all tasks. Compared to previous cases, 

the gains are smaller, suggesting a performance plateau with higher numbers of quadcopters. 

Training time remains unchanged at 223.9 seconds for both configurations, which is higher than 

earlier cases but stable when using more quadcopters. 

 

Key Findings and Analysis: Based on the experimental results, the use of both actuator and sensor data 

consistently improves performance across all tasks: detection, identification, and isolation in every 

scenario. The improvement is particularly pronounced when fewer quadcopters are involved, 

highlighting the added value of actuator data in less complex configurations. As the number of 

quadcopters increases, the training time shows a clear upward trend, reflecting the increased complexity 

of the problem. For sensor-only data, the results show noticeable improvement with a larger number of 

quadcopters. In contrast, when both sensor and actuator data are used, the performance remains 

similar, with results remaining relatively stable across different quadcopter configurations. Notably, the 

performance is slightly lower with two quadcopters for both data types, indicating that more data 

diversity contributes to stronger model outcomes. 

 

4.4.3 Comparison between Centralized and Decentralized Topologies 
In the third set of experiments, the performance of the proposed Multiple-Input Multiple-Output 

(MIMO) model is evaluated under two distinct network topologies: centralized and decentralized. These 

experiments focus on cyber-attack detection, identification, and isolation within a network of five 

quadcopters. The primary goal is to assess how the different topologies influence the model's 

performance and computational requirements across the three key tasks. For this comparison, the 

centralized topology involves four quadcopters transmitting their sensor and actuator data to a single 

central quadcopter responsible for handling cyber-attack detection, identification, and isolation. In 

contrast, the decentralized topology splits the detection capabilities between two quadcopters. 

Specifically, quadcopters 1 and 4 are responsible for detection, while quadcopters 2 and 3 send their 

data to quadcopter 1, and quadcopter 5 sends its data to quadcopter 4. Figures 4.11 and 4.12 provide a 

visual representation of these centralized and decentralized topologies, respectively. 

In the decentralized configuration, the two sets of results from quadcopters 1 and 4 are averaged for 

performance metrics such as accuracy, precision, recall, and F1-score. Meanwhile, the total training time 
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for the decentralized approach is calculated by summing the individual training times of the two models 

used by quadcopters 1 and 4. To ensure a comprehensive evaluation, the comparison covers all three 

critical tasks: detection, identification, and isolation, across both topologies. The performance metrics 

accuracy, precision, recall, and F1-score are used to assess the overall effectiveness of the models in 

handling various types of cyber-attacks. Table 4.8 provides a summary of the experimental parameters, 

while Figures 4.13 illustrate the performance results for detection, identification, and isolation. 

Furthermore, Figure 4.14 compares the training times for both centralized and decentralized 

approaches, shedding light on the computational trade-offs associated with increasing model 

complexity. 

 

Table 4.8: Parameters for comparison centralized and decentralized topologies experiments. 

Parameter Value 

Num scenario 30 
LSTM blocks input 32-64 

LSTM blocks shared 128-256 
Sequence length 40 

Sequence overlap Full 
Epoch 50 
Batch 128 

Sequence labeling Last packet 
Normalization and standardization Standardization 

Optimizer Adam 
Loss detection Binary crossentropy 

Loss identification Binary crossentropy 
Loss isolation  Binary crossentropy 

Average approach Macro 
Data transferred Both sensors and actuators 

 

 

 

Figure 4.11: Centralized network topology with 5 quadcopters. 
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Figure 4.12: Decentralized network topology with 5 quadcopters. 
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Figure 4.13: Cyber-attack detection, identification, and isolation performance in experiments between decentralized and 
centralized topologies.  

 

 

Figure 4.14: Training times in experiments between decentralized and centralized topologies. 
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Observations:  

1) Detection Performance: In the detection task, the centralized approach outperformed the 

decentralized configuration, especially when considering the F1-score, which is the key metric for 

balancing precision and recall. The centralized system achieved a higher F1-score of 0.928, compared 

to 0.902 in the decentralized approach. Although the decentralized approach had a slightly better 

accuracy (0.972 vs. 0.959), the F1-score indicates that the centralized system is more reliable in 

handling detection, offering a better trade-off between precision (0.932) and recall (0.924). 

Therefore, the centralized system is clearly superior in detection performance. 

 

2) Identification Performance: For identification, the centralized approach also shows better 

performance, with an F1-score of 0.919, significantly higher than the decentralized system’s F1-score 

of 0.865. While the decentralized system achieved higher accuracy (0.965 vs. 0.953), the lower F1-

score indicates a weaker balance between precision and recall. The centralized system also had 

higher precision (0.929) and recall (0.910) than the decentralized approach (precision: 0.903, recall: 

0.834), making it more effective at identifying attacks with fewer false positives and false negatives. 

 

3) Isolation Performance: When it comes to isolation, the centralized approach again performs better, 

with an F1-score of 0.913 compared to 0.888 for the decentralized configuration. Although the 

decentralized system had slightly higher accuracy (0.967 vs. 0.949), the F1-score once more 

highlights that the centralized system strikes a better balance between precision and recall. The 

centralized system’s precision (0.926) and recall (0.900) are both slightly higher than the 

decentralized approach (precision: 0.925, recall: 0.855), further confirming its superiority in isolation 

tasks. 

 

4) Training Time: In terms of training time, the centralized approach was also more efficient, taking 

224.8 seconds compared to 230.8 seconds for the decentralized system. Although the difference is 

minimal, it still highlights the centralized system’s efficiency, especially since it consistently performs 

better across all tasks. The slightly higher training time in the decentralized approach adds 

complexity without providing better performance, making the centralized topology the clear winner 

both in terms of computational efficiency and detection accuracy. 

 

Key Findings and Analysis: The overall results indicate that the centralized approach consistently 

achieved superior F1-scores across all tasks, including detection, identification, and isolation. This 

improvement in F1-score highlights the centralized system's enhanced ability to maintain a balance 

between precision and recall, which is crucial for effectively identifying cyber threats. Additionally, the 

centralized approach demonstrated a slightly lower training time compared to the decentralized 

configuration. 

Conversely, while the decentralized approach exhibited marginally higher accuracy in all tasks, this 

metric alone may not adequately reflect the system's overall performance. Accuracy can be misleading in 

scenarios where the class distribution is imbalanced or where false positives and false negatives carry 

different consequences. The higher F1-scores in the centralized model indicate a more reliable and 



110 
 

robust performance, as this metric considers both precision and recall, providing a comprehensive 

assessment of the model's effectiveness. 

Ultimately, these findings suggest that the proposed MIMO model operates more effectively with a 

higher number of quadcopters, particularly in a centralized topology. The ability to optimize detection 

and response capabilities while minimizing training time underlines the advantages of the centralized 

approach in managing complex networks of quadcopters in cyber-attack scenarios. 

 

4.4.4 Model Performance Analysis and Comparison with Existing Approaches 
The fourth set of experiments is dedicated to evaluating the final model configured with optimal 

parameters and comparing its performance against similar works in the existing literature. This analysis 

aims to demonstrate the superiority of the proposed model in detecting, identifying, and isolating cyber-

attacks. Notably, there is currently no research in the literature that addresses the detection of cyber-

attacks within networks of quadcopters, making this study pioneering in its field. Consequently, the 

identification and isolation of cyber-attacks presented herein also represent unique contributions to the 

domain. This section also includes an experiment to measure the real-time detection capability of the 

model. The detection time will be evaluated to assess the model’s efficiency and suitability for real-time 

applications. Table 4.9 summarizes the model parameters employed during this experiment. 

Furthermore, the results for detection, identification, and isolation are illustrated in heatmap format, as 

shown in Figures 4.15, 4.16, and 4.17, respectively. 

 

Table 4.9: Parameters for comparative analysis experiments. 

Parameter Value 

Num scenario 50 
Num quadcopter 5 

LSTM blocks input 64 
LSTM blocks shared 256 

Sequence length 40 
Sequence overlap Full 

Epoch 50 
Batch 128 

Sequence labeling Last packet 
Normalization and standardization Standardization 

Optimizer Adam 
Loss detection Binary crossentropy 

Loss identification Binary crossentropy 
Loss isolation  Binary crossentropy 

Average approach Macro 
Data transferred Both sensors and actuators 
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Figure 4.15: Proposed MIMO model detection results. 
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Figure 4.16: Proposed MIMO model identification results. 
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Figure 4.17: Proposed MIMO model isolation results. 

 

 

Observations: 

1) Detection: The detection performance results indicate that the proposed model demonstrates 

exceptional capability in detecting cyber-attacks. For the "no attack" class, the model achieves a 

precision and recall of 0.98, reflecting a robust ability to accurately classify non-attack scenarios with 

very few false positives. In contrast, the "attack" class shows precision and recall values of 0.95, 

suggesting that while the model is proficient in detecting actual attacks, there may be a slight 

increase in false negatives in this category. The macro average scores for precision, recall, and F1-

score, all at 0.97, further underscore the model's balanced performance across both classes. Overall, 

these results highlight the model's effectiveness in maintaining high accuracy in detecting cyber-

attacks, positioning it as a reliable solution for enhancing security in quadcopter networks. 

 

2) Identification: In the identification task, the model demonstrated consistent performance across 

various attack types, with precision, recall, and F1-scores showing only minor variations. For Denial 

of Service (DoS) attacks, the model achieved a precision of 0.94, recall of 0.94, and F1-score of 0.94, 

indicating a robust capability in detecting this type of attack. Similarly, for False Data Injection (FDI) 

attacks, the metrics remained unchanged at 0.94 for precision, recall, and F1-score, suggesting that 

the model's performance is stable across these attack categories. Notably, the model performed 

slightly better on Replay attacks, achieving a precision of 0.96, a recall of 0.95, and an F1-score of 

0.95. This trend indicates that while the model maintains a high level of performance across all 
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attack types, it demonstrates a marginally enhanced ability to identify Replay attacks compared to 

the other categories. Overall, these results reflect the model's effectiveness in identifying different 

cyber-attack scenarios with consistent accuracy. 

 

3) Isolation: The isolation performance results reveal the model's effectiveness in identifying which 

specific quadcopter within the network is under attack. Each class corresponds to a different 

quadcopter, with Class 0 indicating an attack on the first quadcopter, Class 1 on the second, and so 

forth. The model achieves strong performance metrics across all classes, with precision, recall, and 

F1-scores averaging at 0.94. Notably, the model performs consistently well, demonstrating its ability 

to accurately isolate attacks across the network. While there are minor differences in performance, 

particularly with Class 1 achieving an F1-score of 0.94, the overall results underscore the model's 

robustness in ensuring effective isolation of compromised quadcopters, enhancing the overall 

security of the network. 

 

Comparative analysis: This section aims to compare the performance of the proposed MIMO model in 

the tasks of detection, identification, and isolation of cyber-attacks with similar studies in the literature. 

Based on a comprehensive review of the literature, no existing study has clearly addressed cyber-attack 

detection in a network of quadcopters using well-defined topologies and deep learning approaches like 

LSTM. Most of the existing research has predominantly concentrated on the detection of cyber-attacks, 

leaving a gap in the literature regarding the identification and isolation of such threats, particularly 

within a network of quadcopters employing a specific topology. Consequently, the absence of work on 

detection implies that there is also a lack of studies addressing identification and isolation. As such, this 

study represents an advancement in the field, establishing itself as the first to utilize a novel 

methodology for all three tasks. 

The experimental results underscore the exceptional performance of the proposed MIMO model in 

detecting, identifying, and isolating cyber-attacks. Specifically, the model achieved an average f1-score of 

approximately 97% in detection, 94% in identification, and 94% in isolation. These results highlight the 

model's efficacy in safeguarding networked quadcopters against cyber threats.  

 

Detection Time: To assess the practicality of the proposed model for real-time scenarios, an experiment 

was conducted to determine its detection time. This metric represents the duration required by the 

model to process an input sequence for each quadcopter and complete the tasks of detection, 

identification, and isolation for the network of quadcopters. The experiment evaluated the real-time 

capability of the model by calculating the time needed to make predictions on 50 randomly selected test 

samples. All predictions were performed on a CPU to closely simulate the computational constraints 

typically encountered in embedded processors within quadcopters. The detection time for each sample 

was measured individually, and the average was computed to provide an accurate estimation of the 

model's real-time performance. The measured average detection time was 0.083 seconds (83 ms), 

highlighting the model's efficiency and its suitability for real-time applications involving a network of 

quadcopters. 
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4.5 Practical Implementation 
4.5.1 Experimental Implementation for Academic Purposes 
The paper [39] offers a comprehensive framework for implementing cyber-physical intrusion detection 

systems in UAVs. This work stands out as a valuable resource due to its detailed methodology, including 

the setup of a UAV testbed, application of realistic cyber-attacks, and creation of a correlated cyber-

physical dataset. 

The paper’s systematic approach to data collection, attack simulation, and machine learning-based 

intrusion detection provides a practical template for addressing challenges in cyber-physical system 

security. The methodologies and tools outlined align closely with the requirements of this research, 

making it an excellent reference for guiding implementation strategies. 

Type of Quadcopter: The implementation described in the paper uses the DJI Tello EDU drone, a 

lightweight (80g), programmable UAV. The drone’s features include a front-facing 720p camera, vision 

positioning system, 3D infrared sensors, a ToF distance sensor, IMU, and barometer. Communication with 

the drone is established via a 2.4GHz 802.11n WiFi connection using the UDP protocol. These features 

make it particularly suitable for research, as they provide ample data points for both cyber and physical 

analysis [39]. 

Control Mechanism: The UAV is controlled using Python scripts developed with the Tello SDK. The scripts 

enable precise maneuverability, allowing the drone to follow a predefined path with randomized actions, 

such as flips or hovering. These movements were designed to simulate real-world tasks like smart 

farming (e.g., inspecting crops) or surveillance. Throughout its operation, the UAV continuously sends 

physical measurements (e.g., roll, pitch, yaw, speed, temperature) to the controller, demonstrating how 

control mechanisms can be integrated with real-time data collection [39]. 

Application of Attacks: Four types of cyber-attacks were simulated during the drone’s operations, 

demonstrating practical methods for testing intrusion detection systems: 

1) De-Authentication Attack: Exploits vulnerabilities in the IEEE 802.11 protocol to disconnect the 

UAV from its controller by sending spoofed de-authentication frames. 

2) Replay Attack: Captures valid communication packets between the UAV and the controller, then 

replays them to manipulate the UAV’s actions. 

3) Evil Twin Attack: Establishes a rogue wireless access point mimicking the UAV’s legitimate 

network to intercept and manipulate communications. 

4) False Data Injection (FDI) Attack: Injects falsified sensor readings or control commands, causing 

deviations in the UAV’s operations. 

 

These attacks were implemented using tools like Aircrack-ng, Tcpdump, and Wireshark, combined with 

custom Python scripts [39].  
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Detection Methodology: The detection system in the paper was implemented as an offline analysis 

process, using machine learning models trained on a dataset collected during UAV flights. Data from the 

UAV's sensors and communication network were logged and analyzed post-flight to detect cyber-attacks. 

Real-time detection was not part of the implementation, as the focus was on evaluating the models' 

accuracy using pre-collected data [39]. 

Overall, paper [39] provides a clear explanation of the appropriate quadcopter selection and its control 

approach. Additionally, the implementation of DoS, FDI, and Replay attacks is well-documented. Similar 

to the current work in [39], the detection system operates offline, with no information provided about 

the implementation of a real-time detection system. This limitation is consistent with other similar 

papers in literature. 

 

4.5.2 Real-World Implementation for Industrial Purposes 
To adapt and extend the proposed work for practical use in real-world industrial applications, several 

critical questions must be considered. These questions encompass aspects such as data generation, 

computational feasibility, model scalability, and real-time detection capabilities, which are essential for 

transitioning from academic research to industrial deployment. The answers provided are based on the 

authors’ understanding, supplemented by general knowledge, insights from reliable web searches, and 

academic references where applicable, ensuring a comprehensive and well-informed discussion. 

How should the data/scenarios be generated? In real-world applications, data and scenarios should be 

generated by operating the quadcopter in diverse environments while applying various cyber-attacks 

during its operation. These scenarios should simulate realistic use cases, such as surveillance, delivery, or 

inspection tasks, while incorporating attacks like DoS, replay, or false data injection. The quadcopter’s 

movement should include both structured paths and randomized actions to mimic industrial settings, 

ensuring the collected data captures the full spectrum of normal and attack conditions. This approach 

provides a robust foundation for training and validating intrusion detection systems. 

How much data/scenarios are required for reliable detection module? For industrial usage, a reliable 

detection module requires a dataset significantly larger than academic setups. This should include 

1,000–5,000 flights per class, translating to 500,000–5,000,000 samples, assuming 500–1,000 samples 

are generated per flight. The scale is crucial to capture diverse operational conditions, attack variations, 

and environmental factors, ensuring the model can generalize effectively and minimize false positives. 

For comparison, the CICIDS2017 dataset, widely used for network intrusion detection, contains over 3 

million samples across various attack types and normal traffic, highlighting the necessity of large-scale 

data for robust intrusion detection systems in real-world applications [90]. 

How can the proposed MIMO model be extended for real-world applications? The proposed MIMO 

model is well-suited for networks with up to approximately 10 quadcopters. However, for larger 

networks, the computational complexity of the LSTM-based input heads could become a bottleneck. To 

address this, it is suggested to replace LSTM with a lighter feature extractor, such as a Temporal 

Convolutional Network (TCN) or a GRU (Gated Recurrent Unit), both of which are known to be 

computationally more efficient while maintaining the ability to process sequential data. Additionally, 

dimensionality reduction techniques, such as autoencoders or PCA (Principal Component Analysis), could 

be applied to further optimize the input features, making the model scalable for larger UAV networks. 
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What computational complexity is feasible for quadcopter? Quadcopters can handle lightweight 

computational complexity, typically requiring optimized algorithms with linear or near-linear complexity 

to balance performance and resource constraints like processing power, memory, and battery life. 

However, medium-capability quadcopters, commonly used in critical applications such as surveillance or 

industrial inspections, can support more demanding models like LSTM-based networks, which process 

sequential data effectively. These drones' enhanced hardware capabilities make them suitable for tasks 

requiring higher computational loads. 

How should each sequence be labeled in real-time application? In real-time applications, the label is 

dynamically generated as the output of the deep learning model, meaning sequences do not require 

pre-labeling. Instead, the model processes incoming data streams and classifies each sequence in real 

time, identifying whether it corresponds to normal operation or an attack scenario. This approach 

eliminates the need for manual or pre-assigned labels during runtime, as the detection system itself 

generates the classifications. 

How can the detection system detect attacks beyond the three current types? The deep learning model 

excels at detecting attacks it has been trained on with high accuracy. To extend its capabilities for real-

world usage, the model must be trained on a comprehensive dataset that includes all known attack 

types at the time of training. Additionally, to detect novel or evolving attacks, the system can incorporate 

techniques like anomaly detection, where the model identifies deviations from normal behavior as 

potential threats.  

What is the process for generating sequences in real-world applications? In real-world applications, 

data samples are continuously sent to the detection system. These samples are grouped into sequences 

based on a predefined sequence length, where overlapping or non-overlapping windows of data are 

stacked to form input sequences for the model. The detection model processes these sequences in real 

time, with its output indicating whether the system is operating normally or under attack. This process 

ensures efficient and continuous monitoring of the quadcopter’s network and physical state. 

 

4.6 Conclusion and Contributions 
This chapter introduces valuable contributions to cyber-attack detection, identification, and isolation 

within centralized and decentralized quadcopter networks. The proposed MIMO model supports 

adaptable topologies, effectively handling various network configurations. By simulating key cyber-

attacks: Denial of Service (DoS), False Data Injection (FDI), and Replay, the model demonstrates robust 

performance across single and networked quadcopters. This work sets a foundation for future research 

on optimizing LSTM-based sequence generation in networked environments and expands MIMO’s 

applicability to broader cyber-physical systems. 

Extensive experiments reveal substantial improvements in model accuracy and robustness, particularly 

in complex multi-quadcopter setups. Results indicate that this framework achieves high detection rates 

and effectively isolates attacks, with slightly better performance in centralized topologies, underscoring 

the model’s adaptability and resilience across configurations. 

To achieve the primary objective of detecting, identifying, and isolating cyber-attacks in a network of 

quadcopters, a novel MIMO (Multi-Input, Multi-Output) model was developed. This model is highly 
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adaptable and scalable, utilizing a shared LSTM backbone to process concatenated data from multiple 

input heads, allowing it to accommodate varying numbers of quadcopters. The model outputs three 

results: detection, identification, and isolation of cyber-attacks. The detection head provides a binary 

output, the identification head specifies the attack type (DoS, FDI, Replay), and the isolation head 

identifies which quadcopters are under attack. 

A dataset of 50,000 data points, representing five quadcopters, was used, with features organized for 

efficient data management through output reduction, simplifying the label columns from 15 to 3. 

Experiments optimized sequence length and LSTM blocks, with two configurations identified as ideal: 

one tailored for decentralized setups with 2-3 quadcopters and another for centralized setups with 4-5 

quadcopters. The model was tested with sensor-only data and with combined sensor and actuator data, 

with the latter providing slightly better results. The MIMO model demonstrated strong performance 

across various network sizes and topologies. 
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Chapter 5 

5. Conclusions and Future Work 
 

5.1 Conclusion 
This thesis presented a framework for cyber-attack detection, identification, and isolation within both 

single and networked quadcopter systems, addressing an area of cybersecurity in cyber-physical systems 

(CPS) that has gained attention with the increased use of UAVs. Using Long Short-Term Memory (LSTM) 

networks, this study explored a model that could perform multiple tasks essential to UAV security. 

Covering single-quadcopter scenarios and extending to networked configurations, the thesis aimed to 

provide a structured approach adaptable to real-world drone applications. 

In the single-quadcopter analysis, the study tested an LSTM-based multi-output model for detecting 

attacks such as Denial of Service (DoS), False Data Injection (FDI), and Replay attacks. The optimized 

model configuration, using a 128-block LSTM with a sequence length of 40, reached a detection accuracy 

of 0.981 with precision at 0.943 and an F1-score of 0.927. This setup provided a balance between 

detection performance and computational efficiency, completing training within a practical timeframe of 

approximately 200 seconds. Higher configurations showed minimal performance gains but increased 

training times significantly, indicating that the 128-block model was suitable for UAV applications that 

require efficient response times. 

Sequence generation preprocessing played a pivotal role in ensuring the model effectively handled time-

series data for cyber-attack detection. Optimal sequence lengths allowed the model to capture temporal 

dependencies within the data, improving the detection of subtle patterns associated with specific attack 

types. This preprocessing step, by segmenting time-series data into meaningful sequences, contributed 

to the model's ability to distinguish between normal and anomalous behavior more accurately. 

Additionally, threshold-based labeling during sequence generation was tailored to refine attack 

sensitivity, an approach that enhanced detection precision and allowed the model to respond more 

reliably across diverse operational scenarios. These preprocessing techniques are critical for CPS 

applications, as they improve model resilience and adaptability in environments where attack timing and 

sequence structure are variable. 

For networked quadcopters, the study developed a Multi-Input, Multi-Output (MIMO) model, tested 

under both centralized and decentralized network topologies. Centralized configurations showed an F1-

score of 0.913 for isolation and precision of 0.926, with a consistent balance between precision and 
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recall. The decentralized setup, while slightly lower in certain metrics, provided flexibility for applications 

where distributed decision-making is valuable. Including both sensor and actuator data in network 

configurations also improved detection, identification, and isolation scores to 0.929, 0.918, and 0.912, 

respectively, across a five-quadcopter setup. Training times for this setup remained manageable, even 

with the increased data complexity, indicating that the model could scale to larger CPS environments. 

The MIMO model further used a reduction approach to simplify outputs from 15 labels to three, which 

streamlined the model’s training and testing phases. This reduction allowed the model to process high-

dimensional data without excessive computational load. By using shared LSTM layers that capture 

temporal dependencies across the network, this architecture facilitated effective training times and 

allowed for more rapid inference without sacrificing accuracy.  

In addition to methodology, the thesis included a comparative analysis with existing approaches. 

Although similar frameworks have achieved moderate success in cyber-attack detection, this study’s 

approach incorporated detection, identification, and isolation into one framework, allowing a 

coordinated response in CPS environments. Multi-task learning capabilities were demonstrated in both 

single and networked quadcopter setups, suggesting potential applications of this framework in fields 

such as autonomous vehicles and smart grids where similar security needs exist. 

The thesis also produced two datasets specifically designed for cyber-attack scenarios in UAVs: a single-

quadcopter dataset with 50,000 data points labeled for detection, identification, and isolation, and a 

network dataset with similar data size but expanded to five quadcopters. These datasets provide 

resources for testing UAV security protocols in realistic conditions, supporting various network 

configurations and labeling approaches. 

In summary, this thesis offered an approach to UAV network cybersecurity that explored both centralized 

and decentralized network topologies, used data reduction to manage output complexity, and examined 

sequence preprocessing in LSTM-based models for CPS environments. The findings suggest centralized 

configurations are effective for high-precision tasks, while decentralized setups can maintain resilience in 

distributed settings. These contributions indicate that machine learning and LSTM architectures can 

support CPS applications requiring resilience against cyber threats, and the MIMO model’s architecture 

offers potential for future research in adaptable security solutions. 

 

5.2 Future Work 
One area for future work is to explore the impact of multiple concurrent attacks, particularly in 

networked quadcopter setups where the system may face simultaneous threats to both sensors and 

actuators. Although concurrent attacks are incorporated in the current network experiments, most 

scenarios involve a single attack type at any given time. Expanding the focus to scenarios where multiple 

attacks occur simultaneously would provide deeper insights into the system’s resilience and help 

evaluate how well the model can distinguish and manage multiple, overlapping threats. 

Another potential research area involves incorporating feature selection techniques. Integrating these 

approaches could help optimize the model by focusing on the most relevant data features, possibly 

enhancing detection accuracy and reducing computational load. Additionally, refining the sequence 

generation preprocessing approach could unlock further performance gains, not only within the 
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quadcopter domain but also in broader CPS applications. By fine-tuning sequence length, overlap, and 

labeling strategies, the LSTM-based framework could adapt to various sectors such as smart grids, 

autonomous vehicles, and healthcare, thus expanding its utility in securing critical infrastructure. 

Expanding the range of attack types applied to the system, such as zero-dynamic or covert attacks, could 

also be beneficial for increasing the model's robustness. These types of attacks, often more challenging 

to detect, would add a layer of realism to the model’s evaluation, testing its response to more subtle 

cyber threats. In addition, introducing disturbances or variations in flight paths for the quadcopter would 

better simulate real-world conditions, making the model more adaptable and responsive to varied 

operational settings. 

For networked quadcopter applications, several enhancements can be explored. Future research could 

assess the performance of the Multi-Input, Multi-Output (MIMO) model under network conditions 

where communication links are subject to cyber-attacks, as these are common points of vulnerability in 

multi-quadcopter systems. Additionally, applying the MIMO model to problems like consensus and 

formation control, where multiple units operate in a coordinated manner, could yield insights into its 

effectiveness within dynamic, team-based UAV operations. Investigating leader-follower topologies could 

further improve network management strategies, especially in scenarios requiring one quadcopter to 

guide others while handling complex attack patterns. 

Incorporating attention mechanisms into the MIMO model is another promising direction. By weighting 

input from each quadcopter, attention layers could enable the system to prioritize critical data, 

potentially enhancing detection, identification, and isolation accuracy. This approach may also improve 

efficiency in larger networks or in handling complex scenarios where the model must selectively process 

high volumes of data across multiple units. 

Lastly, addressing data imbalances through preprocessing steps tailored to the quadcopter datasets 

would be valuable, especially as these imbalances may affect the model’s performance in detecting rare 

or subtle attacks. Exploring hybrid models, combining LSTM with other architectures, could also 

strengthen the model’s adaptability. These improvements would support the model’s broader 

applicability and help meet the evolving cybersecurity needs of increasingly interconnected CPS 

environments. 
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