
EFFICIENT EXPLAINABLE AI AND ADVERSARIAL

ROBUSTNESS USING FORMAL METHODS

Amira Jemaa

A thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Master of Applied Science

(Electrical and Computer Engineering) at

Concordia University

Montréal, Québec, Canada

November 2024

© Amira Jemaa, 2024

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Amira Jemaa

Entitled: Efficient Explainable AI and Adversarial Robustness us-

ing Formal Methods

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Chair
Dr. Nizar Bouguila

External Examiner
Dr. Nizar Bouguila

Internal Examiner
Dr. Moataz Chouchen

Supervisor
Dr. Sofiène Tahar

Approved by
Dr. Yousef R. Shayan, Chair

Department of Electrical and Computer Engineering

2024

Dr. Mourad Debbabi, Dean

Faculty of Engineering and Computer Science

Abstract

Efficient Explainable AI and Adversarial Robustness using

Formal Methods

Amira Jemaa

Concordia University 2024

Artificial Intelligence (AI) systems are increasingly used in critical applications,

but their lack of transparency often hinders trust and reliability. Explainable AI

(XAI) addresses this by making machine learning models more understandable and

interpretable. Current XAI approaches, however, lack consistency or theoretical guar-

antees. Formal methods, which are rigorous mathematical reasoning tools, could play

a significant role in overcoming these limitations by providing sound and consistent

explanations for model decisions. This thesis builds upon an existing formal XAI tool,

XReason, which uses logical reasoning to generate explanations for individual predic-

tions. The contributions of this work are threefold. First, the tool is extended to

support a powerful tree based model, Light Gradient Boosting Machine (LighGBM),

which offers improved scalability and performance for large datasets. Second, it in-

troduces explanations at the class level, enabling the analysis of general patterns in

model behavior across different prediction categories. This provides insights into the

factors shaping model decisions for each class and helps identify biases or inconsisten-

cies in predictions. Third, adversarial robustness is explored by integrating methods

to generate and detect adversarial examples. These adversarial samples expose vul-

nerabilities in the model by identifying subtle input changes that lead to incorrect

predictions. Detection mechanisms are then developed to identify such inputs, en-

hancing the model’s reliability. Experiments on a variety of datasets from different

domains demonstrate that the extended framework produces consistent and robust

explanations, both at the individual prediction level and across broader trends. By

integrating formal methods, this work provides a practical formal XAI framework

applicable to areas where trust in AI systems is essential.

iii

To my beloved parents, Ali and Souad, my ever-supportive brother,

Wassim, and my incredibly caring sisters, Takwa, Imen, and Ines, whose

support and care have shaped who I am today.

iv

Acknowledgments

First and foremost, I am profoundly thankful to Allah for His guidance and blessings

to overcome challenges and see this work to fruition.

I would like to express my sincere gratitude to my supervisor, Dr. Sofiène Tahar,

for giving me the opportunity to pursue my Master’s degree under his guidance.

His constant support, feedback and encouragement throughout this journey were in-

valuable in shaping both this thesis and my perspective on academic research. His

expertise and availability helped me overcome many challenges and made this ex-

perience enriching and rewarding. I am also grateful to Dr. Adnan Rashid for his

mentorship, technical support and feedback during my research. Special thanks to

Dr. Mäıssa Elleuch, who helped with the choice of the research topic at the start of

my thesis.

I sincerely thank Dr. Nizar Bouguila and Dr. Moataz Chouchen for agreeing to

serve on my thesis examining committee and taking the time to review my work.

I am very fortunate to have been part of the Hardware Verification Group (HVG),

which provided a supportive and motivating environment. I would like to thank my

colleagues Nour, Oumaima, Kubra, Elif and Alain who made this journey easier and

more enjoyable.

I owe so much to my family, my parents and my siblings for their love, encour-

agement and unwavering belief in me. Their constant support has been the backbone

of all my achievements. I am also incredibly grateful to my relatives in Montreal,

especially my uncle Naceur and his family, for their generosity, which made a huge

difference during this time. I am also deeply thankful to my friends Asma, Azza, and

Omaima, whose support reached me across borders, to my roommate Imen for her

kindness and and to my friends in Montreal who made my time there more enjoyable.

This work is the result of the collective support, guidance and encouragement I

have received from these amazing people. Thank you for being a part of this journey.

v

Table of Content

List of Figures ix

List of Tables x

List of Acronyms xi

1 Introduction 1

1.1 Explainable AI . 2

1.2 Formal XAI . 6

1.3 Adversarial Examples . 8

1.4 Formal XAI Tools . 10

1.4.1 XReason . 10

1.4.2 Silas . 11

1.4.3 PyXAI . 12

1.5 Problem Statement . 14

1.6 Proposed Methodology . 14

1.7 Thesis Contributions . 16

1.8 Thesis Organization . 17

2 LightGBM Model Encoding 18

2.1 Gradient Boosting Tree Models . 18

2.1.1 Function Representation . 19

2.1.2 Logical Foundations and Notations 20

2.1.3 Classification Problem Setup 22

2.1.4 Decision Tree Structure for Encoding 24

2.2 Algorithm for LightGBM Encoding 25

2.2.1 Overview of LightGBM . 25

2.2.2 Key Features of LightGBM 27

vi

2.2.3 Formal Encoding Algorithm 27

2.3 Experimental Evaluation . 28

2.3.1 Correctness of Encoded Models 29

2.3.2 Performance Metrics . 29

2.3.3 Experimental Results . 30

2.4 Summary . 31

3 Class-wise Explanation 32

3.1 Use of SAT and MaxSAT Solvers in Explanations 32

3.1.1 Propositional Encoding as a Foundation 32

3.1.2 SAT Solvers for Satisfiability Queries 33

3.1.3 Optimization with MaxSAT Solvers 33

3.1.4 Formal Guarantees of Explanations 34

3.1.5 Benefits and Challenges . 34

3.2 Local Explanations . 34

3.2.1 Workflow for Generating Local Explanations 34

3.2.2 Advantages of the Formal Local Explanations 36

3.2.3 Example of a Local Explanation 36

3.3 Class-wise Explanations . 37

3.4 Experimental Results . 38

3.4.1 Analysis of Local Explanations 38

3.4.2 Analysis of Class-wise Explanations 43

3.5 Summary . 44

4 Adversarial Examples 45

4.1 Adversarial Example Generation using Formal Methods 45

4.2 Detection of Adversarial Examples using Formal Explanations 49

4.3 Experimental Results . 52

4.3.1 Dataset and Experimental Setup 52

4.3.2 Generation of Adversarial Examples 52

4.3.3 Detection of Adversarial Examples 54

4.4 Summary . 55

5 Case Study: Network Security Application 56

5.1 Dataset Overview . 56

vii

5.2 Model Performance . 57

5.3 Robustness and Correctness of Formal Explanations 58

5.4 Adversarial Examples Generation and Detection 61

5.4.1 Adversarial Examples Generation 61

5.4.2 Results and Comparison . 64

5.4.3 Detection of Adversarial Examples 65

5.5 Summary . 65

6 Conclusion 66

6.1 Summary of Contributions . 66

6.2 Future Directions . 67

Bibliography 69

Biography 78

viii

List of Figures

1.1 XAI Taxonomy . 2

1.2 Overview of the XReason Tool . 11

1.3 Overview of the Silas Tool . 12

1.4 Overview of the PyXAI Tool . 13

1.5 Proposed Methodology . 15

2.1 Function Representation . 19

2.2 Decision Path . 22

3.1 Features Frequency for Different Cases for the Segmentation Dataset 40

3.2 Explanation Length Frequency for the Segmentation Dataset 41

3.3 Features Frequency for Different Cases for the Ecoli Dataset 42

3.4 Feature Value Distributions Across Classes for the Iris Dataset . . . 43

4.1 Fooled Samples (%) and Avg. Distance Over 10 Runs 54

5.1 Comparison of SHAP and LIME Rankings with XReason+ 60

ix

List of Tables

2.1 Performance Metrics of the Encoded Model 30

4.1 Adversarial Examples Generation . 53

5.1 Description of the Customized CICIDS-2017 Dataset 57

5.2 Model Performance Metrics . 58

5.3 Comparison of Adversarial Generation Methods 64

x

List of Acronyms

AI Artificial Intelligence

ALE Accumulated Local Effects

AUC Area Under the Curve

CICIDS Cybersecurity’s Intrusion Detection System

CNF Conjunctive Normal Form

CW Carlini and Wagner Attack

DNN Deep Neural Networks

DNF Disjunctive Normal Form

FCE Feature Contribution Explanation

FGSM Fast Gradient Sign Method

FN False Negative

FP False Positive

FPR False Positive Rate

GAM Generalized Additive Models

HSJ HopSkipJump Attack

IDC International Data Corporation

LightGBM Light Gradient Boosting Machine

LIME Local Interpretable Model-Agnostic Explanations

ML Machine Learning

MUCs Minimal Unsatisfiable Cores

PDP Partial Dependence Plot

PGD Projected Gradient Descent

RBO Rank-Biased Overlap

ROC Receiver Operating Characteristic

SHAP SHapley Additive exPlanations

SMT Satisfiability Modulo Theories

xi

SVM Support Vector Machine

TN True Negative

TP True Positive

TPR True Positive Rate

WSL Windows Subsystem for Linux

XAI Explainable Artificial Intelligence

XGB eXtreme Gradient Boosting

ZOO Zero-Order Optimization

xii

Chapter 1

Introduction

Artificial Intelligence (AI) has been deeply embedded in our everyday lives, driv-

ing innovation across numerous industries and reshaping business models worldwide.

According to the International Data Corporation (IDC), which is a global provider

of market intelligence and analysis on the technology industry, global investment in

AI is projected to reach nearly $630 billion by the year 2028, demonstrating a drastic

increase from $12 billion in 2017 [1]. Meanwhile, Statista, which is a platform that

consolidates and provides the statistical data and insights across various sectors, in-

cluding technology, finance, and consumer behavior, anticipates that the broader AI

market could exceed $1.8 trillion by 2030 [2]. As a result, the AI’s widespread adop-

tion in every sector is having a profound effect on society. AI is now omnipresent with

systems making decisions for us every day from recommending products on Amazon

to suggesting friends on Facebook and displaying targeted advertisements on Google

search results. Moreover, the application of AI extends beyond consumer services to

some critical sectors like cybersecurity and finance.

In cybersecurity, AI is used to detect and prevent security breaches, identify pat-

terns of malicious activity and respond to threats in real time, helping to safeguard

sensitive data and networks. Similarly, in finance, AI plays a key role in fraud detec-

tion, algorithmic trading and credit scoring, where AI-driven systems analyze a vast

amount of data to make high-speed data-driven decisions. In such high-stakes environ-

ments, where the consequences of errors can be severe, understanding the reasoning

behind AI’s decisions is of utmost importance, where the opacity of many advanced

models, often termed as black boxes, restricts users from comprehending how specific

1

decisions are reached. This highlights a need for explainability and transparency in

AI, ensuring that its decisions, particularly in critical applications are well understood

and can be trusted. Explainable AI (XAI) [3] can address this issue by opening up

these black boxes, making it possible for humans to follow and validate the model’s

behavior.

1.1 Explainable AI

XAI refers to a set of methods and techniques designed to make the outcomes

of machine learning models understandable to humans. Figure 1.1 illustrates the

taxonomy of XAI, categorizing models into two types, such as interpretable models

and the ones requiring post-hoc analysis methods to provide explanations after the

training [3]. In the following, we elaborate on each of these methods.

Global

ICE Anchors SHAP Global
Surrogate

Feature
InteractionALEPDP

Permutation
Feature

Importance

Functional
Decomposition

LIME
(Local

Surrogate)

Counter-
factual

 Examples

XAI

Post-hoc Explanation Interpretable Models

Other modelsModel-Specific Methods Linear Models Rule-based models

Local

Decision TreesModel-Agnostic Methods

Figure 1.1: XAI Taxonomy

Interpretable Models

A machine learning model (ML) [4] is often deemed interpretable if its predictions

can be easily understood [5]. Examples of interpretable models include linear/logistic

regression [6, 7], decision trees [8, 9, 10], and rule-based learning models [11, 12].

In addition to these well-known interpretable models, there exist other models that

exhibit varying degrees of interpretability. For instance, generalized additive models

(GAMs) provide interpretability by combining linear terms with smooth functions,

while prototype-based models such as k-nearest neighbors offer intuitive explanations

2

by comparing new instances to stored examples. These models often serve as a mid-

dle ground between inherently interpretable models and complex black-box models,

depending on their design and application. While each of these models provides

interpretability through its design, their real-world applicability can be limited by

complexity and scalability. This includes issues like computational cost for training

or inference and difficulties handling large datasets or high-dimensional features. For

example, rule-based models may not perform well with complex data, and decision

trees can become too large to manage effectively with large-scale datasets.

To be considered interpretable, a model should ideally meet one of the properties

such as simulatability, decomposability, or algorithmic transparency. However, these

properties are often narrowly defined and can vary significantly across different model

types.

• Simulatability: It refers to the property that a person can follow the model’s

steps and comprehend each decision made. Although linear/logistic models,

decision trees, rule-based models and Bayesian models are generally deemed

interpretable, these models may become opaque if they are overly complex. For

instance, a decision tree with many nodes may hinder interpretability, making

it difficult to follow or understand each decision path.

• Decomposability: It tests interpretability through a model’s components. For

example, decision tree predictions are more comprehensible when each node

represents a clear, known factor. However, decomposability often depends on

whether individual components themselves are easily understood, which may

not always be achievable in a complex real-world data.

• Algorithmic Transparency: It means the model’s processes and decisions

are clear and understandable to humans. Although transparent models like

linear/logistic and Bayesian models utilize mathematical methods that theo-

retically improve interpretability, their transparency can diminish when these

models rely extensively on abstract or high-dimensional representations.

Post-hoc Explanation

Post-hoc interpretation [13] refers to methods used to explain the predictions or

behavior of a ML model after it has been trained, particularly for complex models

3

that are not inherently interpretable. These methods aim to provide insights into how

models make decisions without modifying their internal structures. Simple models

like linear/logistic regression and decision trees inherently offer good interpretability

but often lack sufficient accuracy when applied to complex data. For more com-

plex models, post-hoc interpretation techniques are frequently employed. There are

two categories of post-hoc explanations, namely model-specific and model-agnostic

methods.

Model-Specific Methods: Some explanation techniques are designed specifi-

cally for certain types of ML models and are referred to as model-specific methods.

These methods exploit the internal structure and characteristics of the model to

provide explanations tailored to its design. For example, rule-based approaches for

support vector machines (SVM) [14] aim to extract decision rules, while layer-wise

relevance propagation explains predictions in deep neural networks (DNN) [15] by

tracing the contribution of individual inputs. Although these techniques can provide

detailed insights into specific models, their applicability is often constrained to the

model they are designed for and may not generalize across other types of models.

Model-Agnostic Methods: Model-agnostic methods are explanation techniques

that can be applied to any ML model, as they do not rely on the internal structure of

the model. Instead, they focus on understanding the relationship between the inputs

and outputs. These methods are versatile and can be used with both simple and

complex models, making them particularly useful in scenarios where model trans-

parency is needed without modifying the model itself. These methods can further

be classified based on the scope of their explanations into two categories: local and

global approaches.

• Local Model-Agnostic Methods: These methods explain individual predic-

tions. Examples include:

◦ LIME (Local Interpretable Model-Agnostic Explanations) [16]: LIME in-

terprets specific predictions by approximating a complex model with a

simpler, interpretable model around the instance.

◦ SHAP (SHapley Additive exPlanations) [17]: SHAP is a game-theoretic

approach using Shapley values to allocate feature importance.

4

◦ ICE (Individual Conditional Expectation) [18]: ICE plots are visualiza-

tion tools that illustrate how a feature affects the model’s predictions for

individual instances, highlighting unique response patterns.

◦ Counterfactual Examples [19]: Counterfactuals identify minimal changes

needed to change a prediction.

◦ Anchors [20]: Anchors identify stable regions in the input space where

predictions hold, providing interpretable if-then rules.

• Global Model-Agnostic Methods: These methods provide an overall un-

derstanding of the model’s behavior across the dataset. Examples include:

◦ PDP (Partial Dependence Plot) [21]: PDPs show the average effect of a

feature on the model prediction, assuming independence from other fea-

tures.

◦ Feature Interaction [22]: It highlights interactions between features,

giving insights into feature dependencies.

◦ ALE (Accumulated Local Effects) [23]: ALE plots account for feature

interactions and provide a more accurate alternative to PDPs in non-linear

models.

◦ Global Surrogates [24]: They approximate the black-box model with an

interpretable one, allowing for an overall view of decision patterns.

◦ Functional Decomposition [25]: It breaks down model predictions into

interpretable components based on feature functions.

◦ Permutation Feature Importance [26]: It assesses feature importance

by permuting feature values and measuring the impact on model perfor-

mance.

Despite the existence of a plethora of XAI methods that greatly help understanding

and interpret AI outcomes, they are inherently heuristic, relying on simplifications

that may not fully capture model behavior. These methods can introduce biases or

inaccuracies, particularly in critical applications, and should be applied with caution.

One emerging technology to address these issues is the use of formal methods [27],

which are rigorous techniques and tools used to model complex systems as mathe-

matical entities.

5

1.2 Formal XAI

Concise explanations are widely recognized as crucial for human decision-makers

to understand and debug the systems. Decision trees have traditionally exemplified

interpretable ML models due to their path-based explanations, which offer transpar-

ent reasoning for each prediction. This apparent clarity has driven significant interest

in optimizing decision trees, despite the NP-hard challenge of finding the minimal

tree structures [28]. However, recent research has revealed some fundamental issues

with the assumption that decision trees are inherently interpretable. Studies, such

as [29, 30, 31, 32], show that decision tree paths frequently incorporate non-essential

features, even in supposedly optimal or sparse trees. This revelation challenges the

traditional view of decision trees as naturally interpretable models and highlights a

broader issue in ML: the need for genuinely concise and meaningful explanations.

As presented in the previous section, the current landscape of XAI is dominated

by traditional heuristic methods. While these methods offer flexibility across different

model architectures, they suffer from the following critical limitations.

• Reliability Concerns: XAI methods frequently produce inconsistent explana-

tions for the same predictions. These methods, relying on local approximations,

can generate significantly different explanations under minimal input changes,

undermining their trustworthiness in critical applications.

• Complexity and Redundancy: Heuristic methods often generate overly de-

tailed or redundant explanations, making it difficult for users to identify the

truly relevant features. This excess information can lead to misinterpretation

or decreased trust in the AI system’s decisions.

• Lack of Mathematical Foundations: Without rigorous mathematical un-

derpinnings, these approaches cannot guarantee the completeness or accuracy

of their explanations. This absence of formal guarantees makes it impossible to

ensure that explanations align with the model’s actual decision-making process.

Formal XAI approaches [29] have emerged as a powerful solution to address the

limitations of the traditional explainability methods. Formal XAI provides structured

frameworks for addressing both why and why not questions about the model decisions,

fostering accountability and enabling a thorough analysis of the model behavior.

6

Formal XAI refers to methods that provide precise, logically grounded explanations

for model predictions.

They are mainly based on powerful mathematical logic and solvers, such as satisfi-

ability (SAT)[33] and Satisfiability Modulo Theory (SMT) [34] solvers. Satisfiability

is the problem of determining whether there exists an interpretation that satisfies

the formula. It establishes whether the variables of a given Boolean formula can be

assigned in such a way as to make the formula evaluate to true. SAT solvers are used

for Boolean formulas while SMT solvers can handle formulas that involve multiple

theories, such as natural and real numbers.

Generally speaking, formal XAI offers the following key advantages in contrast to

the traditional XAI approaches.

• Mathematical Rigor: Formal XAI methods are grounded in logic and op-

timization, producing explanations that accurately reflect the model’s reason-

ing process. This mathematical foundation ensures consistency and reliability

across similar instances.

• Minimal Explanations: A key strength of formal XAI is its ability to generate

explanations using only the essential features needed for a decision, leaving

out unnecessary details. This minimalism eliminates extraneous information,

improving clarity for decision-makers and reducing the risk of misinterpretation.

• Logical Consistency: Techniques, such as abductive explanations [35] and

minimal hitting sets [29] guarantee logical consistency across explanations, al-

lowing stakeholders to verify reasoning patterns without any concern for arbi-

trary variations.

Formal XAI represents a significant advancement in making AI systems more trust-

worthy and deployable in high-stakes environments. By providing mathematically

sound, minimal and consistent explanations, it addresses the key limitations of both

traditional interpretable models and non-formal XAI methods. While the funda-

mental tension between accuracy and interpretability persists, formal XAI offers a

promising framework for developing more transparent and reliable AI systems. This

approach not only meets regulatory requirements but also provides users with a con-

fidence needed to deploy AI systems in the critical applications. The continued devel-

opment of formal XAI methods will be crucial in bridging the gap between the model

7

complexity and human understanding, ensuring that AI systems can be effectively

and safely deployed across diverse high-stakes domains.

1.3 Adversarial Examples

As ML models become more integral to critical applications, their vulnerability

to adversarial attacks [36] raises substantial concerns. Some approaches focus on ma-

nipulating input data through adversarial examples, which involve subtly altering the

input to deceive models when making predictions. In contrast, other methods target

the model itself, such as model poisoning [37], where malicious data is introduced

during the training phase to disrupt the model’s learning process. This approach

fundamentally differs from input-level attacks. The concept of adversarial examples

was introduced in the year 2013 which describes these carefully crafted inputs de-

signed to exploit weaknesses in the behavior of the model [38]. Initially demonstrated

in image data, adversarial examples showed that even small, targeted changes could

cause models to make highly confident misclassifications.

Two main types of adversarial methods have emerged, namely white-box [39] and

black-box attacks [40]. White-box attacks use the model’s parameters and gradients,

allowing the highly targeted manipulations. For example, the Fast Gradient Sign

Method (FGSM) [41] generates adversarial examples by perturbing the input data

in the direction of the model’s gradient, specifically targeting the regions where the

model is most sensitive. Similarly, Projected Gradient Descent (PGD) [42] enhances

this approach with iterative adjustments to optimize the maximum misclassification

probability. These white-box techniques have become standard for studying and test-

ing model robustness, revealing where models are most vulnerable when the internal

access is available.

In contrast, black-box attacks operate without any internal model information,

relying solely on the input-output observations. A notable black-box method, Zeroth

Order Optimization (ZOO) [43] approximates gradients by querying the model repeat-

edly with small input changes. This approach enables adversarial example generation

for proprietary or inaccessible models by using only the input-output feedback. Black-

box attacks have demonstrated that adversarial vulnerabilities can be exploited even

in closed systems, proving that the detailed model knowledge is not always necessary.

8

As adversarial analysis extended beyond images, new methods, such as [44, 45, 46],

emerged to handle text, audio and the tabular data, each requiring specific adapta-

tions. In text, adversarial attacks typically involve small changes to words or tokens,

while in audio, subtle waveform distortions can mislead the speech recognition sys-

tems, although the perturbations remain unnoticed by human listeners. Tabular

data, often used in applications like fraud detection and healthcare, pose unique chal-

lenges when researchers attempted to apply image-based adversarial analysis meth-

ods. Tabular data is composed of structured fields, such as categorical, Boolean, and

continuous variables that are often domain-specific and require adherence to realistic

constraints. For instance, certain fields in tabular data, like credit history or age, may

be fixed by the application and not modifiable. To create realistic adversarial exam-

ples, researchers implemented constraints on which fields can be changed, ensuring

that only editable, plausible fields are modified.

As adversarial examples became more diverse and their implications more com-

plex, the need for methods to understand and mitigate these vulnerabilities grew.

This led to the parallel development of XAI techniques and adversarial defenses,

with XAI playing a crucial role in addressing adversarial challenges. Methods, such

as LIME and SHAP explaining which features influence model decisions, have since

been instrumental in the adversarial research. For example, in the structured data,

XAI-driven insights guide perturbations towards the significant yet subtle features,

making adversarial examples harder to detect while maintaining their effectiveness

[47]. To further refine this process, custom norms have been introduced to prioritize

perturbations on features that are less likely to be reviewed by human observers,

enhancing the stealth of attacks in the real-world scenarios.

The integration of XAI into the adversarial workflows highlights the need for

robust, transparent and reliable explainability methods that support both the gener-

ation and defense against adversarial attacks. By clarifying the model behavior and

revealing decision boundaries, XAI helps researchers and practitioners build more

resilient ML systems, prepared to withstand increasingly sophisticated adversarial

threats.

9

1.4 Formal XAI Tools

In the recent past, only a few formal XAI tools have been introduced to provide

concise formal explanations. In the sequel, we will elaborate on three prominent

formal XAI tools, namely, XReason [48], Silas [49], PyXAI [50].

1.4.1 XReason

XReason [48] is an advanced analytical tool developed in 2019 to provide compre-

hensive abductive explanations of eXtreme Gradient Boosting model (XGBoost) clas-

sifer [51] model decisions. The tool initially employed SMT-based solvers to generate

precise, minimal explanations that ensure logical consistency in the model interpre-

tation. The tool’s capabilities were substantially enhanced through the introduction

of MaxSAT-based encoding for extracting explanations [52, 53, 54]. MaxSAT solvers

extend classical SAT solvers by finding solutions that satisfy the maximum number of

clauses [52]. These solvers are used to compute explanations by identifying minimal

sets of feature values necessary for a model’s prediction. This improvement proved

particularly effective in analyzing large-scale tree ensembles, offering increased com-

putational efficiency while maintaining the ability to generate minimal explanations.

XReason is also compatible with established explanation tools, such as Anchor, LIME

and SHAP. This integration allows researchers to validate and enhance the quality

of the heuristic explanations. The framework demonstrates considerable versatility,

effectively processing both the continuous and categorical data types. To ensure

a scientific reliability, XReason includes detailed experimental configurations in its

repository [48]. These setups enable researchers to reproduce essential performance

measurements, including explanation size, processing speed, and memory require-

ments. Figure 1.2 depicts the flow of XReason. XReason supports both binary and

multiclass classification tasks. Through these features, XReason has established itself

as a valuable resource in the research area of formal model interpretation.

XReason has made notable contributions in the domain of formal XAI, but also

has key limitations:

• XReason supports only XGBoost models, which limits its use in tasks requiring

efficient handling of large datasets.

10

• The XReason tool provides only local explanations, lacking support for global

interpretability.

• The current XReason framework does not handle adversarial example genera-

tion or detection.

Trained Model

SMT

Computing a local
heuristic explanation

Computing a local formal
based explanation

MaxSAT

SHAP Anchor LIME

Analyser

Dataset

XGBoost

Validation

Repair

Figure 1.2: Overview of the XReason Tool

1.4.2 Silas

Introduced in 2021, Silas [49] is a data mining and predictive analytics software

built using a customized Random Forest model [55], capable of handling the struc-

tured data. It is designed for binary classifiers built from tabular data and is available

in both a free version and a commercial version. As shown in Figure 1.3, Silas has

two unique features [56]:

• Model Insight: This tool adopts an SMT (Satisfiability Modulo Theories)

[34] automated reasoner, which extends traditional satisfiability (SAT) solvers

[33] by incorporating theories such as arithmetic, bit-vectors, and arrays. SMT

reasoners enable efficient handling of logical formulas with constraints from

these theories. In this context, the SMT reasoner is used to identify the key

features involved in the model’s decision-making by simplifying the forest and

deriving only a small set of decision rules. One rule is extracted for each class.

• Model Audit: This feature uses SMT to mathematically prove that the predic-

tion model conforms to the user’s specifications. Users can also re-train models

with predefined constraints to ensure they are correct.

11

Trained Model Silas Analyser

Silas VerifierSpec

Insight

Silas Model Insight

Silas Model Audit

Trained
ModelDataset

Random Forest

Certificate

Figure 1.3: Overview of the Silas Tool

Recently, the developers of Silas extended the tool by introducing adversarial samples

using insights from Minimal Unsatisfiable Cores (MUCs) [57], which are the smallest

sets of features that, when altered, change the model’s decision [58]. This approach

turns the model’s decision-making process into logical statements, helping to identify

features that, if modified, can alter the model’s prediction. The process involves

defining a search area around the original input, where each feature is assigned a

threshold specifying the extent of the allowable change.

While Silas has notable strengths, it also comes with some limitations:

• Silas only works only with a single model type (Random Forest), which limits

its flexibility for other machine learning architectures.

• It supports only binary classifiers, making it unsuitable for multi-class tasks.

• Silas is computationally intensive for large datasets or high-dimensional models

due to the use of SMT solvers.

• It is not open-source, which restricts customization and broader use by re-

searchers.

1.4.3 PyXAI

PyXAI (Python eXplainable AI) [50] is a Python library recently introduced in

2024 that provides formal explanations using SMT for tree-based ML models [59]

12

including DecisionTreeClassifier (DT) [60], RandomForestClassifier (RF) [55], and

gradient boosting models (BT) such as XGBClassifier [51], XGBRegressor [51] and

LGBMRegressor [61]. The explanations generated by PyXAI are local and post-

hoc. As shown in Figure 1.4 [50], the types of explanations PyXAI supports include:

(1) Abductive explanations: These provide insights into why a particular instance

was classified in a specific way by the model, addressing the Why? question. In

regression, they explain why the model’s output for the given instance lies within a

specified range; (2) Contrastive explanations: These answer the Why not? question

by clarifying why the instance was not classified in an expected way according to the

user’s perspective. PyXAI also includes functionality for correcting tree-based models

when their predictions conflict with the specific user knowledge.

Figure 1.4: Overview of the PyXAI Tool

PyXAI is designed for general applications involving classification and regression

tasks [59]. Although PyXAI offers valuable functionality, it has some limitations:

• PyXAI generates only local, post-hoc explanations, which may not be sufficient

for users seeking global insights.

• It relies on SMT solvers, which can lead to scalability issues when dealing with

large models or datasets.

13

• PyXAI does not handle adversarial example generation or detection.

• It is relatively new, with lack of extensive documentation or community support.

1.5 Problem Statement

Artificial Intelligence (AI) has become integral to various industries, including crit-

ical domains like cybersecurity, transportation and medicine. However, the reliance

on complex ”black-box” models raises significant concerns about trust. To address

this, Explainable AI (XAI) methods provide transparency, making AI decisions more

interpretable. Despite significant progresses, existing XAI approaches are heuristic in

nature, often lacking consistency and guarantees, limiting their reliability in critical

scenarios.

Formal XAI methods overcome these issues by offering mathematically rigorous,

minimal, and logically consistent explanations. Among the few existing tools, XRea-

son stands out by addressing classification problems. XReason provides abductive

formal explanations [62] for XGBoost models using a SAT solver. It explains why

an XGBoost model makes a particular prediction for a given sample by identifying a

minimal subset of features responsible for the decision.

This thesis addresses these gaps by extending XReason with support for the scal-

able and high-performance Light Gradient Boosting Machine model (LightGBM) [61],

class-level explanations, adversarial examples generation and adversarial examples

detection. These enhancements create a comprehensive formal XAI framework that

ensures transparency, reliability, and robustness in diverse applications. We call the

extended version of XReason: XReason+.

1.6 Proposed Methodology

In this Master’s thesis, we propose to enhance XReason’s capabilities in several

key areas:

• Model Support: We expand XReason to support LightGBM [61] in addition

to XGBoost, enabling formal reasoning and explanations across multiple ML

models.

14

• Class-wise Explanations: We introduce class-wise explanations, which create

intervals for the most important features defining each class. This provides

a broader view of model behavior compared to instance-based explanations,

offering insights into how features contribute to predictions for each class.

• Adversarial Sample Handling: Using formal explanations, we implement

an adversarial attack mechanism that can both generate and detect adversarial

samples. Detection is based on calculating the probability of a sample being

adversarial by analyzing changes in explanations in response to small input

perturbations.

Figure 1.5 presents our proposed methodology in extending the XReason tool. The

XReason+ process begins by training either XGBoost or LightGBM models on the

provided training data. Once the model is trained, the test data is processed to

compute both instance-level and class-wise formal explanations using the MaxSAT

solver. These explanations are then used to produce class predictions for the test

data, accompanied by formal explanations. Moreover these explanations are used as

input for the adversarial attack unit, which can either generate adversarial samples

from the test data or detect the probability of the test data being adversarial by

analyzing explanation changes in response to small perturbations.

MaxSAT Solver
Machine
Learning

Model

XGBoost

LightGBM

Computing a
Local Formal

Based
Explanation

XReason+

Trained ModelTraining
Data

Class
Prediction with

Explanations

Testing
Data

Computing a
Class Formal

Based
Explanation Probability of

Being
Adversarial

Adversarial
Attack Unit

Generating
Adversarial

Sample

Figure 1.5: Proposed Methodology

The XReason+ tool is available as an open-source project on GitHub [63]. To

15

validate the effectiveness of the proposed methodologies, a series of experiments were

conducted using various datasets, including the CICIDS-2017 dataset [64] for net-

work security applications, the Breast Cancer Wisconsin dataset [65] for healthcare

classification tasks, the Banknote Authentication dataset [66] for evaluating adver-

sarial detection methods, as well as the Image Segmentation [67], Ecoli [68], and

Iris [69] datasets to assess class-wise explanations and their effectiveness in capturing

class-specific feature patterns. These datasets provide a diverse range of applications,

ensuring a comprehensive evaluation of the proposed methodologies in different con-

texts.

All experiments were conducted on a machine running Windows Subsystem for

Linux (WSL) with Python 3.10 [70], utilizing Windows 10 with WSL (Ubuntu 20.04),

an Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz (1.80GHz, 4 cores, 8 logical proces-

sors), and 8 GB of physical RAM.

1.7 Thesis Contributions

The contributions of this thesis can be summarized as follows where the publica-

tions for these contributions can be found in the Biography section at the end of the

thesis document.

• Encoding LightGBM Models: Implemented an encoding for LightGBM

models, enabling efficient reasoning and explanation generation. The encoding

approach allows the formalization of LightGBM models into a logical format

suitable for MaxSAT solvers. Experimental results, validated on the Breast

Cancer dataset, demonstrated 100% correctness of the encoding by matching

predictions from the encoded and original models [Bio-Cf1,Bio-Cf2].

• Class-wise Explanations: Introduced class-level formal explanations in XRea-

son+, enabling a comprehensive understanding of model behavior for specific

prediction classes. Experiments on datasets such as Image Segmentation, Ecoli,

and Iris demonstrated the effectiveness of these explanations in capturing class-

specific feature patterns and outperformed heuristic methods in explanation

consistency [Bio-Cf1, Bio-Cf2].

16

• Generation and Detection of Adversarial Examples: Developed meth-

ods for generating adversarial samples and detecting them using formal expla-

nations. Experiments on tabular datasets showed that the adversarial gener-

ation approach effectively exposed model vulnerabilities, while the detection

mechanism identified adversarial samples with high accuracy, enhancing model

security [Bio-Cf1].

• Tool Development: Implemented the new XReason+ tool in Python, ex-

tending the original XReason tool with new functionalities, including support

for LightGBM models, class-wise explanations, and adversarial example han-

dling. The tool is available as an open-source project, available online on github

[Bio-T1].

1.8 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 describes the propo-

sitional encoding of LightGBM models, starting with gradient boosting concepts,

logical foundations, and a formal algorithm for encoding decision trees. Correctness

and performance of the encoded model are validated experimentally.

Chapter 3 focuses on class-wise explanations, presenting methods for generat-

ing both local and class-wise explanations using MaxSAT solvers, with experimental

evaluations demonstrating the effectiveness of these explanations in capturing class-

specific feature patterns and comparing them to heuristic approaches like SHAP.

Chapter 4 discusses adversarial robustness, detailing techniques for generating and

detecting adversarial samples using formal explanations, with experimental evalua-

tions that assess the robustness of the proposed methods and their effectiveness in

identifying adversarial vulnerabilities.

Chapter 5 presents a case study on network security using the CICIDS-2017

dataset, evaluating the robustness and correctness of formal explanations and com-

paring adversarial generation and detection results. Chapter 6 concludes the thesis

with a summary of contributions while proposing future research directions.

17

Chapter 2

LightGBM Model Encoding

This chapter covers the encoding of LightGBM models into formal logical rep-

resentations. It includes an overview of Gradient Boosting Tree Models, the logical

foundations for encoding, a detailed algorithm for the process and experimental re-

sults validating the correctness and performance of the encoded models on the Breast

Cancer dataset [65].

2.1 Gradient Boosting Tree Models

Gradient boosting [71] is a powerful ensemble learning technique that builds a

model in a stage-wise fashion by sequentially adding decision trees to minimize a

specified loss function. LightGBM [61] is a widely used gradient boosting framework

designed for efficiency and scalability. Unlike traditional tree-based models that use

a level-wise growth strategy, LightGBM employs a leaf-wise growth strategy. This

approach prioritizes growing the leaf with the highest potential to reduce loss, re-

sulting in deeper and more complex trees. In [72], the authors have shwon that

LightGBM is much faster in training compared to XGBoost. The study also high-

lights that LightGBM handles large datasets effectively and is well-suited for tasks

requiring fast computational performance. While this design enhances training speed

and predictive accuracy, it introduces challenges in model interpretability due to the

unbalanced and intricate tree structures.

18

2.1.1 Function Representation

To formally represent the structure of LightGBM models, we begin by defining

functions that map feature inputs to outputs. In LightGBM, the ensemble model

consists of multiple decision trees, each acting as a function that contributes to the

final prediction. Each tree can be viewed as a function f : D → C, where D is the

domain of feature values and C is the codomain of predictions or classes. As shown

in Figure 2.1, each tree function f(d) = c, with d ∈ D and c ∈ C, encapsulates the

mapping from feature inputs to outputs based on the decision rules specified at its

nodes [29].

f: D C
{x1,
 x2,
x3,
...}

Feature Vectors

Input Domain D Output Codomain C

{prediction, class}

f(d)=c, where
d∊D (input features)

c∊C (prediction/class)

Figure 2.1: Function Representation

Parameterization of Functions

Each decision tree in LightGBM is defined by a set of parameters representing

the thresholds or conditions for feature splits. By parameterizing these functions, we

can represent different paths within a tree, where each path corresponds to a unique

combination of conditions. The LightGBM model can thus be represented as a family

of parameterized functions, with each function’s parameters specifying the thresholds

and feature values at each node [29].

In this context, a parameterized function can be represented as:

f(d; π1, π2, . . . , πn)

where π1, π2, . . . , πn denote the split thresholds or conditions specific to each tree. This

parameterization enables LightGBM to represent complex mappings by adjusting

conditions across multiple trees in the ensemble.

19

Piecewise Function Representation

Building on the parameterized functions, each decision tree in LightGBM can be

considered as a piecewise function over the feature space. Each path of the tree corre-

sponds to a unique region defined by the feature splits along that path. Within each

path (region), the function is constant and leads to a specific prediction. As an ensem-

ble of such piecewise functions, LightGBM captures complex decision boundaries by

aggregating outputs across multiple trees. This piecewise approach allows LightGBM

to model non-linear relationships between features and predictions by iteratively refin-

ing each path based on the prediction error. Thus, the ensemble effectively produces

a refined, accurate mapping from D to C.

2.1.2 Logical Foundations and Notations

To systematically encode the structure of LightGBM’s decision trees, we establish

logical foundations and notations that frame each decision tree as a set of logical

expressions. By representing decision paths using logical formulas, we create a con-

sistent framework that supports interpretability tasks.

Encoding Split Conditions as Propositional Variables

In the context of LightGBM, each split condition is an inequality involving a

feature, such as xi > t or xi ≤ t, where xi is a feature and t is a threshold. To

represent these conditions in propositional logic, we introduce propositional variables

corresponding to these conditions. For example, let:

pi,t =

True, if xi > t

False, otherwise

Each propositional variable pi,t captures the truth value of the split condition. The

logical expressions along a path are then constructed using these variables [29].

Literals and Propositional Formulas

A literal is a propositional variable or its negation. In our encoding, literals

represent the truth or falsity of split conditions. For example, pi,t is a positive literal

20

representing xi > t, while ¬pi,t represents its negation, i.e., xi ≤ t. By combining

literals using logical connectives, we form propositional formulas that express the

conditions along a path within a decision tree.

Conjunctive Normal Form (CNF) and Disjunctive Normal Form (DNF)

Propositional formulas can be represented in either Conjunctive Normal Form

(CNF) or Disjunctive Normal Form (DNF):

• Conjunctive Normal Form (CNF): A formula is in CNF if it is a conjunction

of one or more clauses, where each clause is a disjunction of literals. For example:

(p1,5 ∨ ¬p2,3) ∧ (¬p3,1 ∨ p4,2)

CNF is useful for representing global constraints in a model.

• Disjunctive Normal Form (DNF): A formula is in DNF if it is a disjunction

of one or more terms, where each term is a conjunction of literals. For instance:

(p1,5 ∧ ¬p2,3) ∨ (p3,1 ∧ p4,2)

DNF is particularly useful for representing the entire set of paths leading to a

prediction, as each term corresponds to a unique path.

Path Representation using Propositional Logic

Each path from the root to a leaf in an LightGBM tree can be represented as

a conjunction of literals, forming a logical expression that captures the sequence

of conditions defining the path as shown in Figure 2.2. For instance, a path with

conditions x1 > 5, x2 ≤ 3 and x3 = 1 can be encoded as:

p1,5 ∧ ¬p2,3 ∧ p3,1

Alternatively, these conditions can also be expressed explicitly as:

(x1 > 5) ∧ (x2 ≤ 3) ∧ (x3 = 1)

21

Figure 2.2: Decision Path

Here, each condition corresponds to a decision rule and their conjunction defines a

specific region in the feature space that leads to a particular prediction. By represent-

ing all paths leading to a particular prediction and combining them using disjunctions,

we can express the tree’s overall decision logic in Disjunctive Normal Form (DNF).

This structured encoding approach provides a basis for analyzing and interpreting

individual paths and their contribution to the model’s predictions.

By establishing these logical foundations and notations, we provide the framework

needed to represent LightGBM’s decision trees in a formalized logical structure that

supports interpretability tasks.

2.1.3 Classification Problem Setup

To encode the LightGBM model effectively, we formalize the elements of the clas-

sification problem, including features, domains, classes and the classification function.

This structured representation provides a consistent framework for the encoding pro-

cess.

Problem Definition

A classification problem is defined as a 4-tuple:

M = (F,D,K, κ)

22

where

• F = {f1, f2, . . . , fn} is the set of features.

• D = D1 ×D2 × . . .×Dn is the domain, where Di is the domain of feature fi.

• K is the set of possible classes or outcomes.

• κ : D → K is the classification function that maps feature vectors to class

labels.

Feature Domains

Each feature fi has an associated domain Di ⊆ R (for numerical features) or a

finite set of categories (for categorical features). The domain defines the range of

possible values that the feature can take. When encoding the model, we consider

these domains to ensure that the logical expressions accurately represent the feasible

conditions.

Output Classes

The set K represents all possible class labels for the classification task. In binary

classification, K = {0, 1}, while in multiclass classification, K includes multiple class

labels. Each leaf node in an LightGBM tree is associated with a prediction that

corresponds to a class label or a probability score.

Classification Function

The classification function κ maps feature vectors to class labels based on the

aggregated decisions of all trees in the LightGBM model. For an instance d ∈ D,

the prediction κ(d) is determined by summing the contributions from each tree and

applying a decision rule, such as selecting the class with the highest score.

Instance Representation

An instance d = (d1, d2, . . . , dn) is a vector of feature values, where di ∈ Di. In

the encoding process, we represent the instance’s traversal through the decision trees

using logical expressions based on the truth values of the split conditions at each

node.

23

2.1.4 Decision Tree Structure for Encoding

To encode LightGBM’s decision trees formally, we define the tree structure in

terms of nodes and edges that represent feature-based splits leading to predictions at

the leaf nodes. Each path from the root to a leaf encapsulates a series of conditions

that must be satisfied for an instance to reach a particular prediction.

Tree Representation

A decision tree T is represented as a pair T = (V,E), where:

• V = Vinternal ∪ Vleaf is the set of nodes, including internal (split) nodes and leaf

nodes.

• E is the set of directed edges connecting nodes, representing the flow of decisions

based on split conditions.

Each internal node v ∈ Vinternal is associated with a split condition on a feature

and each leaf node v ∈ Vleaf contains a prediction.

Split Conditions and Nodes

At each internal node, a split condition xi > t divides the data into two branches:

• Left child node: corresponds to ¬pi,t (i.e., xi ≤ t).

• Right child node: corresponds to pi,t (i.e., xi > t).

These conditions are used to construct logical expressions representing the paths

an instance can take through the tree.

Paths and Leaf Nodes

A path from the root to a leaf node is a sequence of split conditions represented by

a conjunction of literals. Each path defines a unique combination of feature conditions

leading to a specific prediction at the leaf node. By enumerating all such paths, we

can represent the entire decision logic of the tree.

24

Encoding the Tree Structure

To encode the tree structure, we represent each path πj leading to a leaf node vleaf

as a logical formula:

πj = l1 ∧ l2 ∧ · · · ∧ lm

where lk are literals corresponding to the split conditions along the path. The entire

tree can then be expressed as a disjunction of these path formulas:

T = π1 ∨ π2 ∨ · · · ∨ πp

This DNF formula represents all possible paths that result in a prediction within the

tree.

2.2 Algorithm for LightGBM Encoding

2.2.1 Overview of LightGBM

LightGBM follows the gradient boosting framework, where an ensemble of decision

trees is built sequentially to minimize a loss function. Each tree corrects the residual

errors of its predecessors by optimizing the gradient of the loss function. The steps

of the LightGBM algorithm are outlined below [61]:

(1) Input Data and Preprocessing:

• Input: A dataset D = {(xi, yi)}ni=1, where xi is a feature vector and yi is

the corresponding label.

• Preprocessing: Features are binned into discrete values using a histogram-

based technique, reducing memory usage and computation.

(2) Initialization:

• Initialize the model F0(x) with a constant value, typically the mean of the

target values for regression or the log-odds for classification.

• Define the loss function L(y, F (x)) based on the task (e.g., mean squared

error for regression, cross-entropy for classification).

25

(3) Iterative Tree Construction: For t = 1 to T (number of boosting iterations):

(a) Compute Gradients and and Second-Order Derivatives:

gi =
∂L(yi, F (xi))

∂F (xi)
, hi =

∂2L(yi, F (xi))

∂F (xi)2
.

(b) Feature Histogram Construction: For each feature, calculate his-

tograms of gradients and Hessians using the binned feature values. This

step aggregates statistics to determine the best split points.

(c) Split Point Selection: For each feature, identify the split point that

maximizes the gain in the objective function:

Gain =

(∑
i∈left gi

)2∑
i∈left hi + λ

+

(∑
i∈right gi

)2∑
i∈right hi + λ

−
(∑

i∈all gi
)2∑

i∈all hi + λ
,

where λ is a regularization parameter.

(d) Leaf-wise Tree Growth: Grow the tree by selecting the leaf with the

highest potential gain (leaf-wise growth strategy). This strategy produces

deeper trees compared to level-wise growth, enhancing accuracy for com-

plex patterns.

(e) Update Tree Structure: Add the split to the tree and assign predictions

to the new leaves based on the aggregated gradients and Hessians.

(4) Model Update: Update the model by adding the predictions of the newly

built tree, weighted by the learning rate η:

Ft(x) = Ft−1(x) + η · ft(x),

where ft(x) is the function represented by the t-th tree.

(5) Termination: Stop if the number of iterations T is reached, or if the improve-

ment in the loss function falls below a predefined threshold.

26

2.2.2 Key Features of LightGBM

• Histogram-based Splitting: Features are discretized into bins, reducing the

computational cost of finding split points.

• Leaf-wise Growth: By focusing on the most promising leaf, LightGBM achieves

deeper trees and better accuracy compared to traditional level-wise growth.

• Support for Categorical Features: Categorical features are directly handled

by optimizing the split points for their unique values.

• Regularization Techniques: Includes Lasso (L1) and Ridge (L2) regulariza-

tion [73] and feature importance pruning to avoid overfitting.

2.2.3 Formal Encoding Algorithm

Building on the principles outlined in Section 2.1, we now translate the decision-

making process of LightGBM into a formal representation suitable for explanation

generation. We propose a formal encoding of LightGBM to produce precise explana-

tions capturing the model’s decision-making process. Each decision tree in LightGBM

can be represented as a series of logical constraints that encode the conditions (splits)

at each node. For instance, a split condition like f1 > 0.5 is encoded as a Boolean

variable, where f1 = 1 if the condition holds and f1 = 0 otherwise. Each path through

the tree represents a conjunction of these Boolean variables and each leaf node con-

tains the prediction. Formally, encoding a tree is a logical formula representing the

conjunction of feature conditions leading to a particular leaf.

Algorithm 2.1 outlines the steps to encode a decision tree into a logical represen-

tation. The algorithm starts by receiving a decision tree as input, which includes its

features, thresholds (the values used to split data) and branches. The first step is to

collect all the thresholds used in the tree for each feature. Then, for each of these

thresholds, the algorithm assigns logical variables that represent the decision points

in the tree where the data is split. Once the thresholds and logical variables are

assigned, the algorithm moves to the branches of the tree. For each branch, it creates

a logical path, which describes how the features and thresholds lead to a specific

decision.

27

These paths are then expanded into a set of logical rules or constraints that

represent how the decision-making process works in the tree. If the tree splits further

and creates new paths, the algorithm applies the same process to these additional

paths. In the final steps, the algorithm ensures that the order of decisions in each path

matches the structure of the tree and that the feature values are encoded correctly.

Algorithm 2.1 Propositional Encoding of Decision Tree

1: Input: Decision tree with nodes, features fi, thresholds ti and branches bi.

2: Output: Encoded paths P with logical constraints.

3: Initialize Thresholds← ∅, Lvars← ∅, Paths← ∅
4: for each feature fi do

5: Extract thresholds ti and add to Thresholds(fi)

6: Assign logical variables Li for splits and add to Lvars(fi)

7: end for

8: for each branch bi do

9: Traverse and extract constraints, form path pi from Lvars and add to Paths

10: end for

11: for each path pi in Paths do

12: Expand pi into logical constraints [L1, L2, ..., Ln, 0] and add to final set

13: end for

14: for each new path from further splits do

15: Repeat the previous steps for new paths

16: end for

17: Ensure paths respect tree order and encode feature domains with logical variables

18: Return: Encoded paths P

2.3 Experimental Evaluation

We evaluated the encoded LightGBM on various datasets, whereas in this chapter,

we only present the results obtained using the Breast Cancer dataset [65], a well-

known dataset for binary classification. This dataset contains 569 samples with 30

numerical features, representing cell nuclei attributes from digitized images. The

target variable distinguishes between two classes: malignant and benign. The dataset

was split into 70% for training and 30% for testing, maintaining the class distribution.

28

2.3.1 Correctness of Encoded Models

Ensuring the correctness of the encoded model is an important step to verify

that the logical representation matches the decision-making process of the original

LightGBM model. Predictions from the encoded model were compared to those of

the original model across both training and test datasets. This validation would

demonstrate that the encoding process accurately represents the model’s behavior for

the evaluated data. The encoding approach directly translates the structure and logic

of the LightGBM model into a formal representation. By systematically encoding

decision paths and split conditions, it captures the key elements of the model.

The predictions of the encoded model were compared with those of the original

LightGBM model on both training and test datasets. The encoded model achieved

100% agreement with the original model for all training and test samples, confirming

the correctness of the encoding process. This consistency demonstrates that the

encoded model accurately replicates the original model’s behavior across both seen

and unseen data.

2.3.2 Performance Metrics

Both the trained ML model (original) and its representation in propositional logic

(encoded) were evaluated using standard classification metrics. The results were

identical, demonstrating the reliability of the encoding process. The consistent results

across both seen and unseen data provide confidence in the encoding’s ability to

replicate the original decision logic. Below, we define each metric [74]:

• Precision: Precision quantifies the proportion of correctly identified positive

samples, i.e., true positives (TP), among all samples predicted as positive. False

positives (FP) are incorrectly predicted positive samples. It is given by:

Precision =
TP

TP + FP

• Recall (Sensitivity): Recall measures the proportion of actual positive sam-

ples correctly identified by the model. It considers true positives (TP) and

false negatives (FN), where (FN) are positive samples incorrectly classified as

29

negative. It is defined as:

Recall =
TP

TP + FN

• F1-Score: The F1-score balances precision and recall, providing a harmonic

mean of the two. It is calculated as:

F1 = 2 · Precision · Recall
Precision + Recall

• Accuracy: Accuracy represents the proportion of correctly classified samples

to the total number of samples. Mathematically:

Accuracy =
TP + TN

TP + TN + FP + FN

where TP and TN are the true positives and true negatives, while FP and FN

are the false positives and false negatives, respectively.

2.3.3 Experimental Results

The previous sections thoroughly address the experimental process by detailing

the evaluation of the encoded LightGBM model on the Breast Cancer dataset, using

XReason+ to ensure the encoding accurately replicates the original model. We have

collected experimental results by comparing predictions on testing datasets, with per-

formance metrics calculated to validate the process. The performance metrics of the

encoded model, including Precision, Recall, F1-Score, and Accuracy, are summarized

in Table 2.1.

Table 2.1: Performance Metrics of the Encoded Model

Metric Value

Precision 0.9243

Recall (Sensitivity) 0.9240

F1-Score 0.9241

Accuracy 0.9240

These metrics confirm that the predictive capabilities of the encoded model are

30

preserved, with no loss in performance compared to the original model. This consis-

tency validates the accuracy and reliability of the encoding process.

2.4 Summary

This chapter details the encoding process for LightGBM models, starting with

an overview of Gradient Boosting Tree Models and their functional representations.

Logical foundations were introduced to frame decision trees as formal structures using

propositional logic, CNF and DNF representations. An algorithm for encoding these

structures was presented, showcasing how decision paths are systematically translated

into logical constraints.

We have implemented LightGBM model encoding as part of the XReason+ tool

(Figure 1.5). Thereafter, we have conducted experiments using the Breast Can-

cer dataset. The experimental results demonstrated the correctness of the encoded

model, achieving perfect agreement with the original LightGBM model across both

training and test datasets. Standard performance metrics confirmed that the encod-

ing preserves the model’s predictive capabilities.

The next steps of our proposed XReason+ tool include developing class-wise ex-

planations and integrating adversarial example generation and detection, which are

addressed in the following chapters. The next chapter specifically focuses on class-

wise explanations.

31

Chapter 3

Class-wise Explanation

This chapter discusses the generation of formal local explanations for LightGBM

models using SAT and MaxSAT solvers. It covers local explanations for individual

predictions and class-wise explanations that summarize intervals of key features for

each class. Experimental results validate the approach and compare formal local

explanations with heuristic methods like SHAP, using several datasets, including the

Image Segmentation dataset [67], the Ecoli dataset [68], and the Iris dataset [69].

3.1 Use of SAT and MaxSAT Solvers in Explana-

tions

We propose to use the MaxSAT solver in generating formal local explanations for

predictions made by LightGBM models, as it identifies the smallest set of features

responsible for a prediction while maintaining computational efficiency. Building on

the propositional encoding methodology detailed in Chapter 2, this section focuses

on the computational processes and optimization strategies enabled by these solvers,

ensuring the extraction of minimal, sufficient explanations with formal guarantees.

3.1.1 Propositional Encoding as a Foundation

The encoding of LightGBM models into CNF, as explained in Chapter 2, serves

as the foundation for using SAT and MaxSAT solvers. This encoding represents

the decision logic of tree ensembles in terms of propositional variables and clauses,

32

capturing the paths and thresholds that lead to predictions. Each decision tree is

expressed as a set of hard clauses, ensuring that the logical constraints governing the

model’s behavior are satisfied.

3.1.2 SAT Solvers for Satisfiability Queries

SAT solvers are employed to verify whether a given subset of feature values is

sufficient to guarantee a specific prediction. This involves checking the satisfiability

of the CNF formula representing the LightGBM model, augmented with constraints

enforcing the candidate feature subset. A satisfiable result indicates that the specified

subset is enough to ensure the model’s output, while an unsatisfiable result implies

that additional features are necessary.

3.1.3 Optimization with MaxSAT Solvers

To identify minimal explanations, we use the MaxSAT solver which extends the

capabilities of SAT solvers by allowing the inclusion of soft clauses with associated

weights. Soft clauses represent conditions that are preferred but not mandatory to

satisfy, enabling optimization in scenarios where not all constraints can be met [75].

For formal local explanations, the objective is to minimize the number of features

included in the explanation while preserving the model’s prediction.

The optimization process involves the following steps:

(1) Input Preparation: The CNF encoding of the LightGBM model is combined

with a candidate feature subset, represented as soft clauses.

(2) Objective Function Construction: The MaxSAT solver is tasked with max-

imizing the satisfaction of soft clauses while ensuring all hard clauses, which are

mandatory constraints that must always be satisfied, are upheld.

(3) Iterative Refinement: The solver iteratively evaluates and adjusts the can-

didate subset until a minimal set of features sufficient for the prediction is

identified.

(4) Output: The result is a subset-minimal explanation that formally guarantees

the prediction.

33

3.1.4 Formal Guarantees of Explanations

By employing MaxSAT solver, the approach ensures that the explanations are

both sound and minimal. Soundness implies that the identified feature subset is

always sufficient to guarantee the model’s prediction, while it minimally ensures that

no smaller subset can achieve the same result. This distinguishes MaxSAT-based

methods from heuristic explainability techniques, which lack such formal guarantees.

3.1.5 Benefits and Challenges

The use of SAT and MaxSAT solvers offers several advantages:

• Scalability: The propositional encoding avoids computationally expensive lin-

ear constraints, making the approach efficient for large ensembles.

• Precision: Formal methods provide exact explanations, avoiding the inaccu-

racies often associated with heuristic methods.

• Flexibility: The optimization framework can adapt to a variety of LightGBM

configurations and datasets.

3.2 Local Explanations

Local explanations aim to provide a detailed understanding of why a specific

prediction was made for an individual instance. These explanations are generated

by identifying the minimal subset of feature-value pairs sufficient to guarantee the

model’s output, leveraging the propositional encoding of the LightGBM model and

the optimization capabilities of SAT and MaxSAT solvers.

3.2.1 Workflow for Generating Local Explanations

The process of generating local explanations involves three key steps: determining

the predicted class for the instance, obtaining a consistent model for the instance and

extracting the minimal explanation.

34

Step 1: Determining the Predicted Class

The first step of the process starts by determining the class predicted by the

LightGBM model for the given instance. The respective steps are as follows [52] :

(1) The inputs to the process are the instance’s feature values and the thresholds

of all decision trees in the LightGBM model.

(2) The paths taken by the instance through the tree ensemble are analyzed to

identify the relevant splitting features and their associated values.

(3) A hypothesis is generated, consisting of a minimal set of feature-value con-

straints that ensure the instance follows the correct paths through the trees.

(4) The hypothesis, along with the propositional formulas encoding the LightGBM

model, is input into a SAT/MaxSAT solver.

(5) The output of the process is a model (truth value assignments for the proposi-

tional variables) representing the logical consistency of the hypothesis and the

encoded model.

The solver’s output is then used to identify the specific leaf nodes reached by the

instance and the sum of the leaf outputs determines the predicted class.

Step 2: Obtaining a Consistent Model

The second step involves verifying the consistency of the hypothesis with the

encoded model:

(1) The input to the process is the hypothesis and the LightGBM model encoding

in CNF.

(2) A MaxSAT solver processes the input to find a model, which is an assignment

of truth values that satisfy the hypothesis and all constraints of the encoding.

(3) The output of the process is a model that ensures the hypothesis is consistent

with the decision paths and the predicted class.

35

Step 3: Extracting the Explanation

The final step is to compute the minimal explanation:

(1) The input to the process is the propositional encoding of the LightGBM model

for the predicted class and the tree thresholds.

(2) The MaxSAT solver evaluates subsets of features to determine the most critical

features required for the prediction. This is done iteratively, removing features

and verifying whether the remaining subset still guarantees the prediction.

(3) The output of the process is the minimal subset of features sufficient to explain

the prediction.

The solver ensures that the explanation is both sound (it guarantees the prediction)

and minimal (it includes the smallest number of necessary features).

3.2.2 Advantages of the Formal Local Explanations

The use of formal methods for local explanations provides several benefits:

• Soundness: The generated explanations are guaranteed to be sufficient for the

prediction, avoiding inaccuracies often present in heuristic methods.

• Minimality: The explanations include the smallest set of features required for

the prediction, ensuring interpretability.

• Scalability: The use of efficient SAT and MaxSAT solvers enables the gener-

ation of explanations for complex models and large datasets.

3.2.3 Example of a Local Explanation

Consider an instance with the following feature values:

Feature 1: x1 = 5.3,

Feature 2: x2 = 2.8,

Feature 3: x3 = 1.2.

36

Suppose the LightGBM model predicts Class A for this instance. By applying the

proposed method, the following explanation is generated:

• The minimal subset of features, {x1, x3}, is sufficient to justify the prediction.

• Feature 2 (x2) is deemed irrelevant for this specific instance, as removing it does

not change the model’s decision.

3.3 Class-wise Explanations

The notion of class in ML refers to the distinct categories or labels that a clas-

sification model predicts. Each class represents a specific group of data points with

shared characteristics as defined by the target variable in the dataset. For instance, in

a binary classification task, the classes could represent “positive“ and “negative“ out-

comes, while in multiclass problems, the classes may correspond to multiple categories

like different species of flowers or types of network intrusions.

The Class-wise Explanation constructs explanations for each class in the model

by aggregating important features from training instances that belong to a specific

class. This process helps identify the common characteristics that define each class

and can be used to understand the behavior of the model at the class level.

Algorithm 3.1 details the procedure for building the class-wise explanations. The

algorithm begins by iterating over all classes in the trained model M . For each class

c, it creates an empty set Ec to store the important features. It then analyzes each

instance xi in the training dataset Dtrain, where the model predicts the class c (i.e.,

M(xi) = c).

For each instance, a formal local explanation method is used to extract the impor-

tant features Fi. These latter highlight the key input features that contributed to the

model’s decision for that particular instance. The important features of each instance

xi are added to the class-wise explanation set Ec, which accumulates the significant

features for the entire class.

Once the important features for all instances belonging to the class c have been

collected, the algorithm identifies the key ranges of values for each feature. For each

important feature f in Ec, it collects all values V c
f observed across the instances. Using

a clustering technique, the algorithm determines an interval [acf , b
c
f], which represents

the typical range of feature values for the class c.

37

These intervals provide a condensed representation of the features that are most

relevant for each class, offering insights into how the model differentiates between

classes based on specific feature ranges.

Algorithm 3.1 Class-wise Explanation Building

Require: Trained model M , training dataset Dtrain

Ensure: Class-wise explanations Ec for each class c

1: procedure BuildClassLevelExplanations

2: for each class c in model M do

3: Initialize Ec as an empty set

4: for each instance xi in Dtrain where M(xi) = c do

5: Extract important features Fi from formal local explanation of xi

6: Ec ← Ec ∪ Fi

7: end for

8: for each important feature f in Ec do
9: Collect all values V c

f of feature f in Ec
10: Determine interval [acf , b

c
f] using clustering on V c

f

11: end for

12: end for

13: end procedure

3.4 Experimental Results

This section evaluates the reliability and robustness of our explanation methods

using three datasets: Image Segmentation [67], Ecoli [68], and Iris [69]. By compar-

ing feature frequencies, explanation lengths, and class-level explanations, we aim to

understand how well the methods work across different models and domains.

3.4.1 Analysis of Local Explanations

In our experiments, we utilized the Image Segmentation dataset from the UCI

ML Repository [67] and the Ecoli dataset [68] from the same repository. The Image

Segmentation dataset consists of instances drawn from a database of outdoor images,

where each instance represents a 3x3 region characterized by 19 high-level features

38

such as contrast, intensity and various color metrics, with the goal of classifying these

regions into different terrain types (e.g., grass, sky, foliage). The Ecoli dataset, on the

other hand, consists of instances representing the cellular localization sites of proteins

in Ecoli, characterized by 7 features such as the amino acid composition, with the

goal of classifying the protein’s localization site. We trained XGBoost and LightGBM

models using the same hyperparameter settings to ensure a fair comparison of their

explanations. Specifically, both models were trained with a maximum tree depth of 3

and 20 trees. For all generated explanations corresponding to correct predictions, we

carefully checked for counterexamples, instances where the feature values identified

as important would lead to a different class prediction and did not find any. This

observation reinforces the reliability of the explanations.

Comparison of XGBoost and LightGBM for the Segmentation Dataset

We conduct a comparison of feature frequencies in explanations generated by XG-

Boost and LightGBM for the segmentation dataset. Figure 3.1 presents a comparative

analysis of feature frequency in the generated explanations across both models. The

results reveal interesting patterns in how these models prioritize different features in

their explanations. While both models show similar overall trends for certain features

(e.g., Feature 10, Feature 16 and Feature 19 maintaining high importance across both

models), there are notable divergences in others. The intersection analysis (shown

in green) provides particularly valuable insights, as it highlights features that consis-

tently appear in explanations regardless of the underlying model. This consistency

across different models strengthens the reliability of our formal XAI approach, while

the differences underscore the importance of model-agnostic explanation methods.

For instance, Feature 10 shows the highest frequency in both models with significant

overlap, suggesting its fundamental importance to the underlying problem rather than

being an artifact of any particular model’s architecture. The rightmost bars repre-

sent the average number of times each feature appears in the explanations, showing

that both XGBoost and LightGBM have similar averages (70-72 appearances per fea-

ture), with an intersection of about 40 appearances. This similar average frequency of

feature appearances suggests that both models exhibit comparable patterns in their

explanations, despite their architectural differences, further supporting the robustness

of our formal XAI approach across different model architectures.

39

Figure 3.1: Features Frequency for Different Cases for the Segmentation Dataset

To further analyze the explanation characteristics, we examined the distribution

of explanation lengths generated by both models, as shown in Figure 3.2. The graph

reveals that both XGBoost and LightGBM predominantly generate explanations us-

ing 3 to 11 features, with a clear peak at 4 features for both models (approximately

50 occurrences). This preference for relatively concise explanations aligns with the

goal of interpretability in XAI, as shorter explanations are generally more compre-

hensible to human users. Interestingly, while both models show similar patterns for

shorter explanations (3-4 features), they exhibit some divergence in their behavior

for medium-length explanations (5-8 features). LightGBM maintains a more gradual

decline in frequency across these lengths, suggesting a more uniform distribution of

explanation complexities. In contrast, XGBoost shows a steeper decrease in frequency

for longer explanations, indicating a stronger preference for more concise explanations.

The relatively low frequency of explanations with 9-11 features for both models sug-

gests that highly complex explanations are rare, regardless of the underlying model

architecture. This consistency in explanation length patterns further supports the

robustness of our formal XAI approach across different model implementations.

40

Figure 3.2: Explanation Length Frequency for the Segmentation Dataset

Comparison of Formal Explanation and SHAP for the Ecoli Dataset

Figure 3.3 shows the frequency of features identified as important in explanations

for the Ecoli dataset. For each instance, we compared the features identified by

the Local Explanation method with the top features selected using SHAP’s feature

importance rankings. This comparison helps highlight the differences in how the two

methods prioritize features.

When two features are marked as important by the Local Explanation method, we

selected the top two features ranked by SHAP for the same instance. The goal here is

to demonstrate that while SHAP sometimes identifies highly ranked features, it can

lead to counterexamples where altering these features changes the prediction class. In

contrast, the Local Explanation method ensures that no such counterexamples occur,

providing correctness in the explanations.

For example, the Feature mcg was identified 305 times by the Local Explanation

method, compared to 259 times by SHAP. This shows that SHAP may overlook

important features in some cases. On the other hand, the Feature gvh appeared

325 times in SHAP explanations but only 109 times in Local Explanation, with an

intersection of 108 occurrences. This indicates areas where the two methods agree

and differ.

41

These results demonstrate that SHAP lacks robustness, as it can select features

that lead to counterexamples, making its explanations less reliable compared to the

Formal Local Explanation method.

Figure 3.3: Features Frequency for Different Cases for the Ecoli Dataset

Out of the 210 explanations generated, we found that there were 0 identical ex-

planations between the Formal Local Explanation method and SHAP. This finding

highlights that SHAP often identifies different features as important, some of which,

when altered, can lead to counterexamples where the prediction class changes. In

contrast, the Formal Local Explanation method guarantees correctness by ensuring

that the features identified are consistent with maintaining the prediction’s validity.

By using the top n features from SHAP for comparison, we demonstrated that

Formal Local Explanation offers a more robust and reliable approach. The differences

observed further emphasize the value of Formal Local Explanation in applications

requiring explanations that are not only insightful but also free from errors caused

by potential counterexamples.

42

3.4.2 Analysis of Class-wise Explanations

The class-wise explanations were analyzed for their ability to capture the most

representative features for each class. Using the Iris dataset [69], a well-known bench-

mark in classification tasks, we examined how features like sepal length, sepal width,

petal length, and petal width contributed to distinguishing between the three flower

species. Figure 3.4 illustrates the frequency of features appearing in explanations

across different classes. For each class, the most frequent features typically align with

the domain knowledge, indicating that the formal local explanation method success-

fully identifies the core drivers of predictions. Certain features appear exclusively in

the explanations for specific classes, reinforcing their role as distinguishing factors for

those classes. This analysis demonstrates how the class-wise explanations provide a

high-level understanding of the model’s decision boundaries, while also ensuring that

the identified features are interpretable and actionable.

Figure 3.4: Feature Value Distributions Across Classes for the Iris Dataset

To assess the stability of the generated explanations, we compared the intervals of

feature values across classes. For features shared between multiple classes, there was

no overlap in their intervals, suggesting that the explanation method accurately cap-

tures class-specific patterns. For example, petal length has distinct, non-overlapping

43

ranges for each class: Class 0 with values clustered between 1.0 and 2.0, Class 1 be-

tween 3.5 and 4.8 and Class 2 above 5.4. Similarly, petal width differentiates Class 1

(1.0–1.6) and Class 2 (around 4.9). These results validate the precision of the formal

local explanations in differentiating classes based on their feature distributions.

The analysis of class-wise explanations uncovered several key insights:

• Feature Importance Across Classes: Features such as petal length and

petal width are consistently important across classes, with distinct value inter-

vals reflecting their critical role in classification.

• Model Robustness: The lack of overlap in feature intervals between classes

indicates that the model maintains clear boundaries, enhancing robustness.

• Interpretability: Aggregating feature intervals offers a concise, interpretable

summary of what defines each class, aiding domain experts in understanding

model decisions.

We implemented the functionality of computing class-wise explanations in the

XReason+ tool, enabling users to generate and analyze these explanations efficiently

for various datasets.

3.5 Summary

This chapter describes methods for generating local and class-wise explanations.

Local explanations use SAT and MaxSAT solvers to identify minimal feature subsets

needed for individual predictions, ensuring they are sound and interpretable. We pro-

posed an algorithm that outlines the process for constructing class-wise explanations

by aggregating important features from training instances per class and computing

feature value intervals. We have implemented a functionality for computing class

formal based explanations, that is part of the XReason+ tool (Figure 1.5). Exper-

imental results confirmed the reliability of these explanations, showing consistency

with model predictions and highlighting the benefits of formal methods over heuristic

ones like SHAP. The chapter demonstrates that formal local explanations are robust

and offer reliable insights into LightGBM model behavior. The next chapter will

explore how these explanations are leveraged for generating and detecting adversarial

examples.

44

Chapter 4

Adversarial Examples

This chapter focuses on adversarial examples, a critical challenge in ML where

small input perturbations can lead to incorrect predictions. In the context of XAI,

such attacks not only alter predictions but also compromise the integrity of model

explanations. We introduce a framework for generating adversarial examples using

formal explanations and detecting them based on discrepancies in class-wise explana-

tions. Experimental results validate the approach using the Banknote Authentication

dataset [66]. The potential effects of the adversarial attacks can be described in two

main contexts: (1) attacks, which affect both predictions and explanations; (2) at-

tacks, which manipulate explanations without changing the output predictions. Our

proposed framework focuses on the first context, where we use the formal explana-

tions to create adversarial perturbations that impact both the model’s predictions

and its explanations.

4.1 Adversarial Example Generation using Formal

Methods

Adversarial example generation is a critical process in evaluating the robustness

of ML models. This process involves crafting examples that are minimally perturbed

but are sufficient to alter the model’s prediction. In this section, we describe in

detail the steps involved in generating adversarial examples using formal methods.

The approach is outlined in Algorithm 4.1, which consists of two primary phases: (1)

analyzing the training data to extract key features and their value ranges for each class

45

and (2) generating adversarial examples by perturbing these features under specific

constraints.

Algorithm 4.1 Adversarial Example Generation

Require: Trained model M , test input xtest, class-wise explanations Ec, training

dataset Dtrain

Ensure: Adversarial example xadv

1: procedure GenerateAdversarialExample(xtest)

2: ytest ←M(xtest) ▷ Predict label of test input

3: Extract Etest for xtest ▷ Extract most important features and values

4: xadv ← xtest ▷ Initialize adversarial example

5: for each (f, vf) in Etest do
6: Retrieve [aytestf , bytestf] from Eytest
7: Retrieve [fmin, fmax] from Dtrain

8: Find minimal ϵ ̸= 0 such that:

9: v′f = vf + ϵ

10: v′f ∈ [fmin, fmax]

11: v′f /∈ [aytestf , bytestf]

12: Update f in xadv to v′f

13: if M(xadv) ̸= ytest then ▷ Check if prediction changed

14: break ▷ Stop perturbation if adversarial

15: end if

16: end for

17: return xadv

18: end procedure

The following subsections elaborate on each step of the process outlined in Algo-

rithm 4.1.

Feature Extraction and Interval Definition

The first phase of the adversarial example generation process focuses on under-

standing the characteristics of the training data, specifically the most important fea-

tures and their values that contribute to model predictions. This is achieved by

utilizing formal explanation techniques, which identify the features and their values

46

necessary to preserve the model’s decision for a given instance. Unlike traditional

feature importance methods, this approach treats all extracted features equally, as

any change to these features can potentially alter the prediction.

In our work, we focus exclusively on continuous data. This means that the features

extracted through formal explanations are numerical and can take on a range of values,

which is essential for defining meaningful intervals for perturbation.

The formal explanation mechanism is applied to instances from the training

dataset Dtrain that belong to each class c in the set of all classes C. The explanation

of each instance provides a minimal set of feature-value pairs:

Ex = {(f1, v1), (f2, v2), . . . , (fk, vk)},

where fi represents a feature and vi is its value for the instance x. The union of these

explanations over all instances of class c forms the set Fc, which contains all most

important features for the class. These features and their values are key to capturing

the model’s behavior for class c.

To aggregate these feature values across multiple instances, we use K-means clus-

tering [76] to group similar values. K-means is a widely used clustering algorithm that

partitions data points into K clusters by minimizing the sum of squared distances

between data points and their respective cluster centroids. Specifically, for a feature

f and its values Vc
f observed in Dtrain for class c, the K-means algorithm operates as

follows:

• Initialization: Randomly initialize K cluster centroids within the range of

feature values.

• Assignment Step: Assign each value v ∈ Vc
f to the nearest centroid based on

the Euclidean distance.

• Update Step: Recalculate the centroids as the mean of all values assigned to

each cluster.

• Convergence: Repeat steps 2 and 3 until the cluster assignments no longer

change or a predefined number of iterations is reached.

The resulting clusters are used to define intervals [acf , b
c
f] for each feature f in class

c. These intervals represent the typical value ranges for the feature within the class.

47

Formally:

acf = min(cluster bounds of f), bcf = max(cluster bounds of f).

The use of K-means ensures that the intervals capture natural groupings of feature

values, which helps improve robustness to noise or outliers in the data. These intervals

serve as the foundation for generating adversarial examples.

Generating Adversarial Examples

The second phase involves crafting adversarial examples for a given test input

xtest. The process begins by extracting the features and their values from the formal

explanation of xtest. This explanation, denoted as Etest, contains the most important

feature-value pairs for the prediction of xtest. These pairs are used to determine which

features need to be perturbed to generate an adversarial example.

Each feature f in Etest is perturbed according to a set of constraints. The goal is

to modify the value vf of feature f to a new value v′f such that the prediction of the

model changes. However, the perturbation must satisfy the following conditions:

• Data Range Constraint: The perturbed value v′f must lie within the overall

range of feature f observed in Dtrain, i.e., v
′
f ∈ [fmin, fmax].

• Class Range Constraint: The perturbed value v′f must fall outside the typical

interval [aytestf , bytestf] associated with the predicted class ytest. This ensures that

the perturbation moves vf into a region of the feature space that does not

typically align with the predicted class.

The algorithm iteratively applies perturbations to the features in Etest until the

model’s prediction changes. Once the prediction changes (i.e., M(xadv) ̸= M(xtest)),

the process stops to ensure minimal perturbation.

Evaluation of Adversarial Example Generation

To assess the effectiveness of the adversarial example generation approach, we

define these evaluation metrics:

• Success Rate: The percentage of adversarial examples that successfully change

the model’s prediction. This metric quantifies the ability of the method to fool

48

the model:

Success Rate =
Number of successful adversarial examples

Total number of test inputs

• Perturbation Magnitude: The average L2 distance, also known as the Eu-

clidean distance, between xtest (the original test sample) and xadv (the cor-

responding adversarial example) measures the subtlety of the perturbations.

Smaller distances indicate more realistic adversarial examples:

Perturbation Magnitude =
1

N

N∑
i=1

∥xadv ,i − xtest ,i∥2

where N is the total number of adversarial examples, xtest ,i represents the i-th

test sample, and xadv ,i is the corresponding adversarially perturbed version of

that sample.

4.2 Detection of Adversarial Examples using For-

mal Explanations

The process of detecting adversarial examples involves leveraging formal expla-

nations to compare the features of an input sample with the class-wise explanations

derived from the training data. The detection process evaluates whether the input

sample’s features align with the characteristics expected for the predicted class. This

is done by performing two checks: (1) verifying that the features identified in the in-

put explanation are relevant to the predicted class and (2) ensuring that their values

fall within the typical intervals defined in the class-wise explanations.

The detection process starts by predicting the label of the input sample xinput

using the trained model M . Once the label is determined, the important features and

their values are extracted from the formal explanation of xinput. For the predicted

class yinput, the class-wise explanations Eyinput , which include important features and

their typical intervals, are retrieved.

Algorithm 4.2 outlines the process of detecting adversarial examples. For each

feature in the explanation of xinput. Algorithm 4.2 performs the following checks:

49

(1) Feature Relevance Check: The algorithm starts by checking if the feature

f is part of the class-wise explanations Eyinput . If it turns out that f /∈ Eyinput ,
then the feature is considered irrelevant for the predicted class yinput. In this

case, the discrepancy count d is increased by 1, and the algorithm moves on to

check the next feature.

(2) Value Range Check (if relevant): If f ∈ Eyinput , the algorithm retrieves the

interval [a
yinput
f , b

yinput
f], which defines the expected range for f in the predicted

class. It checks whether the input feature value Vinput(f) lies within this interval;

if not, then the discrepancy count d is incremented by 1.

If either of the above checks fails for a feature, it is considered a discrepancy. The

total number of discrepancies is accumulated, and the adversarial likelihood score sadv

is calculated as the ratio of discrepancies to the total number of features in the input

explanation Finput , where Finput represents the set of features used to generate the

explanation:

sadv =
Number of discrepancies

Total number of features in Finput

.

To improve efficiency, the algorithm halts further checks if the adversarial like-

lihood score exceeds a predefined threshold τ , indicating that the sample is highly

likely to be adversarial.

50

Algorithm 4.2 Adversarial Sample Detection Using Class-Wise Explanations

Require: Trained model M , class-wise explanations {Ec}, input sample xinput,

threshold τ

Ensure: Adversarial likelihood score sadv

1: yinput ←M(xinput) ▷ Predict label of input sample

2: Extract important features Finput and their values Vinput from explanation of xinput

3: Retrieve class-wise explanations Eyinput
4: Initialize discrepancy count d← 0

5: for each feature f in Finput do

6: if f is not in Eyinput then
7: d← d+ 1 ▷ Feature not expected to be important

8: else

9: Retrieve interval [a
yinput
f , b

yinput
f]

10: if Vinput(f) /∈ [a
yinput
f , b

yinput
f] then

11: d← d+ 1 ▷ Value outside expected interval

12: end if

13: end if

14: Compute interim adversarial likelihood score:

sadv ←
d

|Finput|

15: if sadv ≥ τ then ▷ Stop if likelihood exceeds threshold

16: break

17: end if

18: end for

19: return sadv

51

4.3 Experimental Results

This section presents experiments on detecting adversarial examples in Banknote

Authentication Dataset to assess the reliability and robustness of the proposed meth-

ods. It examines the success rate and perturbation magnitude of adversarial genera-

tion and evaluates the detection method to ensure accurate identification of manipu-

lated instances.

4.3.1 Dataset and Experimental Setup

The Banknote Authentication Dataset, sourced from the UCI ML Repository

[66], consists of features extracted from digital images of banknotes. These features

include variance, skewness, kurtosis of the wavelet-transformed image and entropy.

The dataset is commonly used for binary classification tasks, with labels indicating

whether a banknote is authentic (class 1) or forged (class 0).

The dataset contains 1,372 samples, with each sample described by four numerical

features and a binary target variable. For the experiments, 138 samples were used,

with 70% allocated for training and 30% for testing. The training dataset was used to

train the LightGBM model, while the test dataset was used for adversarial generation

and detection experiments.

4.3.2 Generation of Adversarial Examples

The main goal of this process was to slightly modify the input features from the

test dataset, keeping the altered instances as close as possible to the original ones

while causing the model to misclassify them. This method emphasizes generating

adversarial examples that remain realistic and within the bounds of the dataset’s

feature distribution.

The generation process was repeated ten times using the same perturbation thresh-

old for all runs. This setup made it possible to assess variations caused by the inherent

randomness of the adversarial generation algorithm. Each run resulted in a unique set

of adversarial examples, varying in the number of samples that fooled the model, the

transitions between classes (e.g., from class 0 to class 1 and vice versa) and the extent

of the applied perturbations, quantified by the average Euclidean distance between

the original and adversarial samples.

52

Table 4.1 provides a comprehensive summary of the results across the ten runs.

For each run, the table reports the percentage of samples that fooled the model. It

also provides a breakdown of class transitions, showing the percentage of samples

initially classified as 0 (authentic banknotes) that were misclassified as 1 (forged

banknotes) and vice versa. On average, 34.52% of the samples successfully fooled the

model, with an average Euclidean distance of 13.70 between original and adversarial

examples. The average runtime for generating adversarial examples across all runs

was 3.67 seconds.

Table 4.1: Adversarial Examples Generation

Run Fooled (%) 0 to 1 (%) 1 to 0 (%) Avg. Euclidean Distance

1 40.48 34.48 53.85 16.155

2 30.95 24.14 46.15 11.100

3 33.33 10.34 84.62 16.901

4 26.19 13.79 53.85 11.970

5 33.33 27.59 46.15 9.201

6 40.48 24.14 76.92 15.482

7 30.95 20.69 53.85 13.898

8 38.10 20.69 76.92 16.554

9 28.57 10.34 69.23 13.804

10 42.86 27.59 76.92 11.892

In addition to the numerical details provided in the above table, Figure 4.1 offers a

visual representation of key metrics across the ten runs. The graph plots both the per-

centage of samples that fooled the model and the average Euclidean distance for each

run. This visualization highlights the variability in the adversarial generation process,

illustrating how random seeds may affect the outcomes. It is observed that the largest

average Euclidean distances do not always result in the input fooling the model. For

example, the highest percentage of samples that fooled the model (42.86%) had an

average Euclidean distance of 11.89 between the generated adversarial examples and

the original test samples, which is below the overall average.

53

Figure 4.1: Percentage of Fooled Samples and Average Euclidean Distance Across 10
Runs

4.3.3 Detection of Adversarial Examples

The detection framework was tested on adversarial samples generated in the Ban-

knote Authentication dataset. Out of the test dataset, the adversarial generation

process resulted in:

• Samples that changed from 0 to 1: 8 out of 29 original class 0 samples

(27.59%).

• Samples that changed from 1 to 0: 10 out of 13 original class 1 samples

(76.92%).

All 18 adversarial samples were used as input for the detection framework, achieving

a detection accuracy of 100%, with all 18 samples correctly identified as adversarial.

The detection mechanism successfully flagged all adversarial samples by identifying

feature value discrepancies against the expected class-wise explanation intervals. For

the 8 samples changing from class 0 to class 1, feature values were outside the typical

54

intervals for class 0 and aligned with class 1’s feature space. Similarly, the 10 samples

changing from class 1 to class 0 showed perturbations that moved them out of class

1’s expected intervals. This approach proved particularly effective for the Banknote

Authentication dataset, where feature distributions and their impact on predictions

could be explicitly captured through formal explanations.

4.4 Summary

This chapter addresses the challenge of adversarial examples, focusing on their

dual impact on model predictions and explanations. We introduced approaches for

the generation of adversarial examples using formal explanations and detect them

by analyzing discrepancies in class-wise explanations. The generation process en-

sured minimal yet effective perturbations, altering both predictions and associated

explanations. The detection mechanism leverages class-wise explanations to identify

inconsistencies between the expected and observed feature values, enabling precise

identification of adversarial samples.

As part of XReason+ (Figure 1.5), we implemented the adversarial example gen-

eration and detection components. Experimental evaluations using the Banknote

Authentication dataset demonstrated the methods’ effectiveness in generating subtle

adversarial examples and achieving high detection accuracy, highlighting its poten-

tial for enhancing model robustness against adversarial attacks. The next chapter

presents a case study based on network security demonstrating the application of all

components of XReason+ .

55

Chapter 5

Case Study: Network Security

Application

This chapter presents a case study showcasing the application of the proposed

XReason+ tool in the field of network security. Using a customized version of the

CICIDS-2017 dataset [64], the study evaluates the tool’s capabilities in explaining

and enhancing the robustness of LightGBM models. The chapter covers the dataset’s

characteristics, model performance metrics, robustness of explanations compared to

SHAP and LIME and the use of formal explanations for adversarial example genera-

tion and detection.

5.1 Dataset Overview

As a case study for our proposed XReason+ tool, we utilize a customized ver-

sion of the Canadian Institute for Cybersecurity’s Intrusion Detection System 2017

(CICIDS-2017) dataset [64], which is widely used for network security research. The

original dataset simulates both normal network traffic and various types of network

attacks, making it highly representative of real-world conditions. It contains over 3

million records, 80 network features and 14 attack types, with an imbalanced class

distribution. This dataset is particularly suitable for classification tasks, as it in-

cludes a labeled target variable indicating whether each instance represents normal

traffic or an attack. We adopt the modified version of CICIDS-2017 proposed by Li

et al. [77], which reduces the feature set to 19 essential attributes, selected for their

56

relevance to network traffic patterns. Table 5.1 summarizes the features utilized from

the customized CICIDS-2017 dataset for analysis [77].

Table 5.1: Description of the Customized CICIDS-2017 Dataset

Feature Description

Flow Duration Duration of the flow in microseconds.

Total Length of Fwd Packets Total length of packets sent in the forward direction.

Fwd Packet Length Max Maximum size of packets in the forward direction.

Fwd Packet Length Mean Average size of packets in the forward direction.

Bwd Packet Length Max Maximum size of packets in the backward direction.

Bwd Packet Length Min Minimum size of packets in the backward direction.

Flow IAT Mean Average inter-arrival time between packets within the flow.

Flow IAT Min Minimum inter-arrival time within the flow.

Fwd IAT Min Minimum inter-arrival time of forward packets.

Fwd Header Length Total length of headers in the forward packets.

Bwd Header Length Total length of headers in the backward packets.

Fwd Packets/s Number of packets sent per second in the forward direction.

Bwd Packets/s Number of packets sent per second in the backward direc-

tion.

Min Packet Length Minimum size of packets within the flow.

URG Flag Count Count of packets with the URG (urgent) flag set.

Down/Up Ratio Ratio of bytes sent in the forward direction to bytes received.

Init Win bytes forward Initial window size in bytes for the forward packets.

Init Win bytes backward Initial window size in bytes for the backward packets.

min seg size forward Minimum segment size observed in the forward packets.

Label Binary label indicating normal (0) or attack (1) traffic.

5.2 Model Performance

We trained an LightGBM model on the training set and evaluated its performance

on the testing set, following the recommendations of Li et al. [77]. The evaluation

was conducted using key metrics: Accuracy, Precision, Recall, F1 Score, and Area

Under the Receiver Operating Characteristic (ROC) Curve (AUC). The ROC curve

illustrates the trade-off between the True Positive Rate (TPR) and False Positive Rate

57

(FPR) at various thresholds, while the AUC quantifies the model’s overall ability to

distinguish between attack and non-attack samples. Table 5.2 summarizes the metrics

and the corresponding values obtained, which range from 90% to 93%.

Table 5.2: Model Performance Metrics

Metric Definition Value

Accuracy The overall proportion of correct predictions

for both attack and non-attack samples.

0.920

Precision Measures the proportion of correctly identi-

fied attacks out of all samples classified as

attacks.

0.930

Recall Measures the proportion of actual attacks

that were correctly identified by the model.

0.924

F1 Score The balance between Precision and Recall,

showing how well the model detects attacks

without missing or misclassifying them.

0.923

AUC Indicates how well the model can distinguish

between attacks and non-attacks.

0.909

5.3 Robustness and Correctness of Formal Expla-

nations

Many previous studies have used SHAP and LIME to explain models trained on

CICIDS-2017 data (e.g., [78, 79]). While these methods provide valuable insights

into feature importance, they are prone to instability and lack formal guarantees.

In contrast, our formal explanation method provides consistent and provably correct

explanations.

Robustness of Explanations

To assess the robustness of these methods, we applied SHAP, LIME and our

formal approach on the same instances twice. This comparison helps to evaluate

the consistency of the feature values and rankings across both runs. We obtained

58

following results:

• SHAP demonstrated 100% consistency when run twice on the same instance.

Both the feature importance scores and the resulting features rankings were

identical in each run.

• LIME showed 0% consistency between runs. The feature rankings and impor-

tance scores changed each time, indicating that LIME’s explanations are highly

variable and not reliable.

• XReason+: Our formal explanation approach is fully deterministic, producing

identical explanations and rankings in both runs. Given the same instance, the

method consistently identifies the same features and assigns the same ranks,

demonstrating robustness across repeated runs.

Correctness of Explanations

The formal explanation method in XReason+ provides 100% correct explanations

by identifying minimal sets of features that are guaranteed to be responsible for

the prediction. We aim to evaluate how closely the rankings of the most important

features for a given instance, as determined by SHAP and LIME, align with the

rankings produced by the formal explanation method.

• Ranking in Formal Explanations: Features included in our formal explana-

tion are assigned rank 1, while all other features are assigned the next following

rank.

Example: For this instance with values:

[0.05230066, -0.71498734, -0.59981065, -0.0993616, -0.24724035,

-0.32174034, 0.903657, -0.20532016, 0.18419513, 0.61847005,

0.45396074, 0.25984816, -0.2581599, -0.17959084, 0.67872539,

-0.11816232, 0.39183229, 1.5487759, -0.05288477]

the features Bwd Packet Length Max (0.05230066) and Fwd Packet Length Max

(0.61847005) represent the maximum sizes of packets in the backward and for-

ward directions, respectively. Our formal explanation was:

59

"IF Bwd Packet Length Max == 0.05230066

AND Fwd Packet Length Max == 0.61847005 THEN 0"

In this case, we assigned rank 1 to the features included in the explanation:

Bwd Packet Length Max and Fwd Packet Length Max. Since these two features

are included, all other features were ranked 3.

• Comparison with SHAP and LIME: SHAP and LIME generate feature

importance scores and we generated the rankings based on the absolute scores,

with the most important feature receiving rank 1, the next receiving rank 2

and so on. To compare these ranks with XReason+, we used Spearman’s Rank

Correlation [80], Kendall’s Tau [81] and Rank-Biased Overlap (RBO) [82] to

evaluate the results. Spearman and Kendall range from -1 to 1, where higher

values indicate stronger agreement between ranks. RBO ranges from 0 to 1,

with higher values representing greater overlap between ranked lists.

Figure 5.1: Comparison of SHAP and LIME Rankings with XReason+

The results for each metric are summarized as follows:

◦ Spearman’s Rank Correlation:

∗ For SHAP, the Spearman values range from -0.2818 to 0.5892, with

an average of 0.1352.

∗ LIME exhibited greater variability, with Spearman values ranging from

-0.6983 to 0.7201 and an average of 0.1811.

60

◦ Kendall’s Tau:

∗ SHAP’s Kendall Tau values range from -0.2361 to 0.4936, with an

average of 0.1133.

∗ LIME’s Kendall Tau values ranged from -0.5850 to 0.6032, with an

average of 0.1517.

◦ Rank-Biased Overlap (RBO):

∗ SHAP and LIME exhibited moderate overlap in the top-ranked fea-

tures compared to the formal method, with RBO values ranging from

0.1849 to 0.6684. SHAP had an average RBO of 0.3885, while LIME

had an average of 0.3715.

Figure 5.1 shows the variability and averages of Spearman’s Rank Correlation, Kendall’s

Tau, and RBO metrics for SHAP and LIME, comparing their alignment with the for-

mal method.

In summary, the formal explanation method for LightGBM predictions in XRea-

son+ proves to be more robust and correct compared to SHAP and LIME. Given this

strong foundation of reliability and correctness, we leveraged our formal explanations

to explore their utility in generating and detecting adversarial examples. By using

the key features identified through our method, we can craft and detect adversarial

examples that exploit the model’s vulnerabilities.

5.4 Adversarial Examples Generation and Detec-

tion

5.4.1 Adversarial Examples Generation

To evaluate the robustness of our approach, we applied adversarial example gen-

eration techniques across the entire test set, consisting of 8,853 samples. Our formal

explanation-based method demonstrated notable effectiveness, successfully fooling

the model in 2,821 cases (31.86%). To provide context for these results, we compared

our approach against two widely recognized adversarial generation methods, Hop-

SkipJumpAttack (HSJ) [83] and Carlini Wagner (CW) attacks [84], both of which

have been applied to network traffic in recent studies [85].

61

HopSkipJumpAttack (HSJ)

The HopSkipJumpAttack (HSJ) is a decision-based adversarial attack designed

to craft adversarial examples for black-box ML models [83]. It focuses on gener-

ating perturbations without requiring access to the model’s internal parameters or

gradients.

Key characteristics of the HSJ attack include:

• Black-Box Methodology: Operates exclusively on model decision outputs,

making it suitable for models where gradients or internal architectures are in-

accessible.

• Iterative Boundary Search: Utilizes a systematic search strategy involving

“hop,” “skip,” and “jump” steps to efficiently navigate the input space and

identify the decision boundary.

• Minimal Perturbation Principle: Produces adversarial examples with min-

imal modifications, ensuring semantic similarity to the original input.

• Computational Efficiency: Designed to be less computationally intensive

than other black-box attack techniques, facilitating practical adversarial testing.

The attack can be formulated as the following optimization problem [83]:

min
δ
∥δ∥p subject to f(x+ δ) ̸= f(x), (5.1)

where x is the input, δ the perturbation, f the model’s decision function and ∥δ∥p
the p-norm of the perturbation.

The HSJ algorithm employs a unique strategy involving:

(1) Hop: Random sampling of initial candidate perturbations.

(2) Skip: Directional estimation of the decision boundary.

(3) Jump: Refined search towards the decision boundary.

This approach makes HSJ effective against models with complex decision bound-

aries.

62

Carlini & Wagner (CW)

The Carlini & Wagner (CW) attack is a white-box adversarial attack renowned

for its ability to produce high-quality adversarial examples [84].

Key features of the CW attack include:

• Custom Optimization Formulation: Uses a tailored optimization objective

to minimize perturbation while achieving misclassification.

• Flexible Distance Metrics: Supports L0, L2, and L∞ distance metrics, which

are commonly used to measure perturbations in adversarial example generation.

L0 counts the number of features modified, L2 measures the Euclidean distance

between original and perturbed inputs, and L∞ captures the maximum change

to any feature, enabling tailored generation strategies based on specific require-

ments.

• Provable Effectiveness: Demonstrates superior performance across various

neural network architectures.

• Theoretical Robustness: Provides a strong foundation for understanding

and exploiting model vulnerabilities.

The attack’s optimization problem is expressed as [84]:

min
δ
∥W (δ)∥p + c ·max(0, loss(f(x+ δ), t)), (5.2)

where W (δ) constrains the perturbation, c controls the balance between perturbation

size and adversarial strength, f is the model, x the input and t the target class.

The attack involves:

(1) Reformulating the constrained optimization problem into an unconstrained form.

(2) Using optimization techniques such as Adam [86] or L-BFGS [87].

(3) Iteratively refining the adversarial example.

CW attacks have been instrumental in identifying vulnerabilities across various

domains, including image classification and malware detection.

63

5.4.2 Results and Comparison

We run experiments to compare the adversarial example generation methods:

XReason+, HSJ, and CW. The experiments were conducted using a trained Light-

GBM model and evaluated on the same CICIDS-2017 dataset. For each method, we

calculated the percentage of samples that successfully fooled the model, the misclassi-

fication rates for each class (Class 0 to 1 and Class 1 to 0), and the average Euclidean

distance of adversarial perturbations. The results are shown in Table 5.3.

Table 5.3: Comparison of Adversarial Generation Methods

Method Fooled Samples (%) Class 0 to 1 (%) Class 1 to 0 (%) Avg. Distance

XReason+ 31.86 13.41 66.84 1.670

HSJ 8.27 2.54 19.13 0.275

CW 1.14 1.09 1.24 0.11

From the above table, it becomes clear that XReason+ achieves the highest suc-

cess rate, with 31.86% of samples successfully fooling the model. This performance

significantly surpasses that of HSJ (8.27%) and CW (1.14%), underscoring its effec-

tiveness in exposing vulnerabilities within the model. The results clearly position

XReason+ as the most effective method among the three.

Building on this, XReason+ also reveals a striking disparity in class-specific mis-

classifications. It misclassifies 66.84% of samples from Class 1 to Class 0, a much

higher rate than the 13.41% observed for misclassifications from Class 0 to Class 1.

This asymmetry may be attributed to intrinsic dataset properties. By comparison,

HSJ and CW exhibit lower misclassification rates. Specifically, HSJ shows 19.13%

misclassifications from Class 1 to Class 0 and 2.54% in the opposite direction, while

CW maintains balanced but minimal rates of 1.24% and 1.09%, respectively.

The effectiveness of XReason+ is further characterized by the magnitude of ad-

versarial perturbations. On average, XReason+ generates perturbations with a Eu-

clidean distance of 1.670, indicating substantial modifications to input data. This

likely contributes to its high success rate. In contrast, HSJ achieves smaller pertur-

bations, averaging 0.275, while CW produces the most imperceptible perturbations

at 0.11. These differences reflect distinct priorities in balancing effectiveness against

imperceptibility.

Taken together, these findings illustrate the unique strengths and trade-offs of each

64

method. XReason+ emerges as the most effective for generating adversarial examples,

making it well-suited for robustness evaluation. However, its larger perturbations

highlight a trade-off between success rate and subtlety.

5.4.3 Detection of Adversarial Examples

Using our formal explanation detection mechanism, as described in Algorithm 4.2,

we identified 1,731 out of the 2,821 adversarial examples generated by our approach

as likely adversarial, resulting in a detection rate of 61.36%. While methods like

HSJ and CW are commonly used for adversarial generation, they are not directly

applicable to adversarial detection, particularly in the context of tabular data.

5.5 Summary

This chapter demonstrated the application of XReason+ in network security using

the customized CICIDS-2017 dataset. The LightGBM model achieved strong perfor-

mance, with metrics like Accuracy and F1 Score exceeding 90%. Formal explanations

in Xreason+ proved more robust and reliable than SHAP and LIME, showing 100%

consistency and correctness in identifying critical features for predictions.

The adversarial examples were generated with minimal perturbations, achieving

a misclassification rate of 31.86%. The detection mechanism based on formal expla-

nations identified 61.36% of adversarial examples, underscoring its effectiveness in

addressing model vulnerabilities. This case study highlights the utility of XReason+

in real-world applications, ensuring both interpretability and robustness.

65

Chapter 6

Conclusion

6.1 Summary of Contributions

Machine Learning models are widely used in critical domains like cybersecurity,

where transparency and trust are essential. Despite their effectiveness, the reliance on

complex black-box models raises significant concerns, as their opaque nature limits

interpretability. Explainable AI (XAI) methods aim to address these issues, but

heuristic approaches often lack consistency and guarantees, making them unreliable

in critical scenarios.

Formal XAI methods provide a solution by offering mathematically rigorous, log-

ically consistent, and minimal explanations. Among the existing tools, XReason

stands out for its formal approach but is limited to supporting XGBoost models,

providing only local explanations, and lacking mechanisms for adversarial example

generation and detection. This work extends XReason to address these gaps, in-

troducing support for LightGBM models, class-level explanations, and methods for

generating and detecting adversarial examples. These contributions create a compre-

hensive framework that ensures transparency, reliability, and robustness.

A propositional encoding was developed for LightGBM models, achieving perfect

agreement with the original models across training and test datasets. This encoding

preserves predictive performance while enabling formal explanations. Local explana-

tions use SAT/MaxSAT solvers to identify minimal feature subsets needed for individ-

ual predictions, ensuring they are interpretable and sound. Class-level explanations

aggregate important features across instances, capturing class-specific patterns and

66

enabling global interpretability. Experimental results confirmed that these formal ex-

planations are consistent with model predictions and outperform heuristic methods

like SHAP.

Adversarial robustness was addressed by generating adversarial examples with

minimal perturbations, which altered both predictions and associated explanations.

Detection mechanisms were implemented to analyze discrepancies in class-wise expla-

nations, successfully identifying adversarial samples. Experiments using the Banknote

Authentication dataset demonstrated the generation of subtle adversarial examples

and high detection accuracy, highlighting the robustness of the approach.

We have implemented the above development in an extended version of XRea-

son, named XReason+, which is freely available on-line as a GitHub repository. We

validated the combined functionalities of our XReason+ tool using the CICIDS-2017

dataset, demonstrating strong performance in a network security context. The Light-

GBM model achieved over 90% accuracy and F1 scores, and formal explanations

showed 100% consistency with model predictions. Adversarial examples were gener-

ated with a misclassification rate of 31.86%, and 61.36% of these were successfully

detected, confirming the effectiveness of the proposed methods in addressing model

vulnerabilities.

This work presents a comprehensive extension of XReason, combining formal ex-

planations with adversarial robustness techniques. The resulting framework provides

a reliable solution for high-stakes applications, ensuring consistent interpretability

and enhanced security in AI-driven decision-making.

6.2 Future Directions

In following we discuss several research directions aiming to build upon the foun-

dations established in this work in order to advance even more the field of Formal

XAI :

• Support for other ML and Deep Learning Models: Adding support

for other ML models, such as SVM [88] and Deep Learning models, would

make the approach more versatile. Deep learning is used in many areas like

image processing and language models, where explanations are still challenging.

Expanding to these models could help apply the method in more real-world

67

situations.

• Exploring Other Solvers: Investigating the use of different solvers, beyond

MaxSAT, could improve the scalability and efficiency of the approach. This

would open up new possibilities for tackling more complex problems in decision-

making and optimization tasks.

• Robustness to Concept Drift: Investigating how formal explanations handle

concept drift [89] would be useful. Concept drift occurs when data distributions

change over time, which can affect the local formal explanations and class-

wise explanation intervals. Exploring the stability of these explanations under

evolving data and developing adaptive methods is an important next step.

• Experimenting with High-Dimensional Datasets: Exploring the use of

datasets with higher dimensions, such as those with 100 or more features, could

provide valuable insights into the scalability of the approach. This would al-

low for an assessment of the model’s performance and the potential need for

optimization in the encoding process to handle such data efficiently.

• Contrastive Explanations: The current explanations focus on identifying

the most important features for a prediction, but they do not address why a

specific outcome occurred instead of another. Contrastive explanations can

provide insights into what needs to change for an alternative decision, which is

particularly helpful in domains like healthcare or finance, where understanding

decision boundaries is critical for actionable insights.

• Better Adversarial Detection: Current detection methods could be en-

hanced by exploring alternative strategies tailored to adversarial scenarios.

These improvements could make the detection process more robust and ac-

curate, ensuring better identification of adversarial examples across different

datasets and applications.

68

Bibliography

[1] Mariana Fang. A deep dive into IDC’s global AI and generative AI spending .

https://blogs.idc.com/2024/08/16/a-deep-dive-into-idcs-global-a

i-and-generative-ai-spending/. Accessed: [2024].

[2] Bergur Thormundsson. Artificial intelligence (AI) worldwide - statistics facts.

https://www.statista.com/topics/3104/artificial-intelligence-ai-w

orldwide/#topicOverview. Accessed: [2024].

[3] Alejandro Barredo Arrieta, Natalia Dı́az-Rodŕıguez, Javier Del Ser, Adrien Ben-

netot, Siham Tabik, Alberto Barbado, Salvador Garćıa, Sergio Gil-López, Daniel

Molina, Richard Benjamins, et al. Explainable Artificial Intelligence (XAI): Con-

cepts, taxonomies, opportunities and challenges toward responsible AI. Infor-

mation Fusion, 58:82–115, 2020.

[4] Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspectives,

and prospects. Science, 349(6245):255–260, 2015.

[5] Riccardo Guidotti and Salvatore Ruggieri. On the stability of interpretable mod-

els. In Neural Networks, pages 1–8. IEEE, 2019.

[6] Zoran Bursac, C Gauss, D Williams, and David Hosmer. A purposeful selection

of variables macro for logistic regression. Source Code Biology and Medicine,

3:173, 2007.

[7] Joanne Peng, Kuk Lee, and Gary Ingersoll. An introduction to logistic regression

analysis and reporting. Journal of Educational Research, 96:3–14, 2002.

[8] John Ross Quinlan. Induction of Decision Trees. Machine Learning, 1(1):81–106,

1986.

69

https://blogs.idc.com/2024/08/16/a-deep-dive-into-idcs-global-ai-and-generative-ai-spending/
https://blogs.idc.com/2024/08/16/a-deep-dive-into-idcs-global-ai-and-generative-ai-spending/
https://www.statista.com/topics/3104/artificial-intelligence-ai-worldwide/#topicOverview
https://www.statista.com/topics/3104/artificial-intelligence-ai-worldwide/#topicOverview

[9] Steven M. Rovnyak, Stein Kretsinger, James Thorp, and Donald Brown. Decision

trees for real-time transient stability prediction. IEEE Transactions on Power

Systems, 9(3):1417–1426, 1994.

[10] Paul E. Utgoff. Incremental induction of decision trees. Machine Learning,

4(2):161–186, 1989.

[11] Ulf Johansson, Rikard König, and Lars Niklasson. The truth is in there - Rule

extraction from opaque models using genetic programming. In International

Florida Artificial Intelligence Research Society Conference, volume 2, pages 658–

–663. AAAI press, 2004.

[12] John Ross Quinlan. Generating production rules from decision trees. In In-

ternational Joint Conference on Artificial Intelligence, pages 304–307. Morgan

Kaufmann Publishers Inc., 1987.

[13] Zachary C Lipton. The mythos of model interpretability: In Machine Learning,

the concept of interpretability is both important and slippery. Queue, 16(3):31–

57, 2018.

[14] Nahla Barakat and Andrew Bradley. Rule extraction from support vector ma-

chines: A sequential covering approach. IEEE Transactions on Knowledge and

Data Engineering, 19:729–741, 2007.

[15] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for

deep networks. In Machine Learning, volume 70, pages 3319 – 3328, 2017.

[16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust

you? explaining the predictions of any classifier. In International Conference on

Knowledge Discovery and Data Mining, pages 1135–1144. ACM, 2016.

[17] Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model

predictions. In Advances in Neural Information Processing Systems, pages 4765–

4774, 2017.

[18] Alex Goldstein, Adam Kapelner, Justin Bleich, and Emil Pitkin. Peeking inside

the black box: Visualizing statistical learning with plots of individual conditional

expectation. Journal of Computational and Graphical Statistics, 24:44–65, 2013.

70

[19] Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual expla-

nations without opening the black box: Automated decisions and the GDPR.

Harvard Journal of Law Technology, 31:841–887, 2017.

[20] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-

precision model-agnostic explanations. In Conference on Artificial Intelligence,

volume 32, pages 1527–1535. AAAI press, 2018.

[21] Jerome H. Friedman. Greedy function approximation: A gradient boosting ma-

chine. Annals of Statistics, 29(5):1189 – 1232, 2001.

[22] Andreas Henelius, Kai Puolamäki, Henrik Boström, Lars Asker, and Panagiotis

Papapetrou. A peek into the black box: exploring classifiers by randomization.

Data Mining and Knowledge Discovery, 28(5–6):1503–1529, 2014.

[23] Daniel W. Apley and Jingyu Zhu. Visualizing the effects of predictor variables

in black box supervised learning models. Journal of the Royal Statistical Society.

Series B: Statistical Methodology, 82(4):1059 – 1086, 2020.

[24] Vida Panitch. Global surrogacy: Exploitation to empowerment. In Gender

Justice and Development: Vulnerability and Empowerment, pages 97–112, 2017.

[25] Dingmar van Eck, Daniel A McAdams, and Pieter E Vermaas. Functional decom-

position in engineering: a survey. In International Design Engineering Technical

Conferences and Computers and Information in Engineering Conference, volume

48043, pages 227–236, 2007.

[26] Philip Adler, Casey Falk, Sorelle A. Friedler, Tionney Nix, Gabriel Rybeck,

Carlos Scheidegger, Brandon Smith, and Suresh Venkatasubramanian. Auditing

black-box models for indirect influence. Knowledge and Information Systems,

54(1):95 – 122, 2018.

[27] Gerard O’Regan. Concise guide to formal methods. Springer, 2017.

[28] Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary decision trees

is NP-complete . Information Processing Letters, 5(1):15–17, 1976.

71

[29] Yacine Izza, Alexey Ignatiev, and Joao Marques-Silva. On tackling explana-

tion redundancy in decision trees (extended abstract). In International Joint

Conference on Artificial Intelligence, pages 6900 – 6904. ACM, 2023.

[30] Joao Marques-Silva and Xuanxiang Huang. Explainability Is Not a Game. Com-

munications of the ACM, 67(7):66–75, 2024.

[31] Joao Marques-Silva. Logic-Based Explainability in Machine Learning. In Rea-

soning Web. Causality, Explanations and Declarative Knowledge, volume 13759

of LNCS, pages 24–104. Springer, 2023.

[32] Joao Marques-Silva and Alexey Ignatiev. No silver bullet: interpretable ML

models must be explained. Frontiers in Artificial Intelligence, 6:1–15, 2023.

[33] Armin Biere, Marjin Heule, Hans van Maaren, and Toby Walsh, editors. Hand-

book of Satisfiability. IOS Press, 2021.

[34] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Tools

and Algorithms for the Construction and Analysis of Systems, volume 4963 of

LNCS, pages 337–340. Springer, 2008.

[35] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. Abduction-based

explanations for Machine Learning models. In AAAI Symposium on Educational

Advances in Artificial Intelligence, volume 33, pages 1511–1519. AAAI Press,

2019.

[36] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and

Debdeep Mukhopadhyay. Adversarial attacks and defences: A survey. arXiv

preprint arXiv:1810.00069, 2018.

[37] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Local

model poisoning attacks to byzantine-robust federated learning. In USENIX

Conference on Security Symposium, pages 1623 – 1640. USENIX Association,

2020.

[38] Christian Szegedy. Intriguing properties of neural networks. arXiv preprint

arXiv:1312.6199, 2013.

72

[39] V Porkodi, Murugan Sivaram, Amin Salih Mohammed, and V Manikandan.

Survey on white-box attacks and solutions. Asian Journal of Computer Science

and Technology, 7(3):28–32, 2018.

[40] Chuan Guo, Jacob Gardner, Yurong You, Andrew Gordon Wilson, and Kilian

Weinberger. Simple black-box adversarial attacks. In International conference

on machine learning, pages 2484–2493. PMLR, 2019.

[41] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and

harnessing adversarial examples. CoRR, abs/1412.6572, 2014.

[42] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and

Adrian Vladu. Towards Deep Learning Models Resistant to Adversarial Attacks.

ArXiv, abs/1706.06083, 2017.

[43] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. ZOO:

Zeroth Order Optimization based black-box attacks to deep neural networks

without training substitute models. In Workshop on Artificial Intelligence and

Security, pages 15–26. ACM, 2017.

[44] Han Xu, Yao Ma, Hao-Chen Liu, Debayan Deb, Hui Liu, Ji-Liang Tang, and

Anil K Jain. Adversarial attacks and defenses in images, graphs and text: A

review. International Journal of Automation and Computing, 17:151–178, 2020.

[45] Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang. TextBugger: Gener-

ating Adversarial Text Against Real-world Applications. CoRR, abs/1812.05271,

2018.

[46] Tianyu Du, Shouling Ji, Jinfeng Li, Qinchen Gu, TingWang, and Raheem Beyah.

Sirenattack: Generating adversarial audio for end-to-end acoustic systems. In

Asia Conference on Computer and Communications Security, pages 357–369.

ACM, 2020.

[47] Aditya Kuppa and Nhien-An Le-Khac. Adversarial XAI methods in cyberse-

curity. IEEE transactions on information forensics and security, 16:4924–4938,

2021.

73

[48] XReason. https://github.com/alexeyignatiev/xreason. [Online; accessed

2024].

[49] Silas. https://www.depintel.com/silas_download.html. [Online; accessed

2024].

[50] PyXAI. https://www.cril.univ-artois.fr/pyxai/. [Online; accessed 2024].

[51] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system.

In International Conference on Knowledge Discovery and Data Mining, pages

785–794. ACM, 2016.

[52] Alexey Ignatiev, Yacine Izza, Peter J. Stuckey, and Joao Marques-Silva. Us-

ing MaxSAT for Efficient Explanations of Tree Ensembles. In Conference on

Artificial Intelligence, volume 36, pages 3776–3785. AAAI, 2022.

[53] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. On validating, re-

pairing and refining heuristic ML explanations. CoRR, abs/1907.02509, 2019.

[54] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. On formal reasoning

about explanations. In Knowledge Representation and Automated Reasoning,

2020.

[55] Leo Breiman. Random forests. Machine Learning, 45:5–32, 2001.

[56] Gelin Zhang, Zhe Hou, Yanhong Huang, Jianqi Shi, Hadrien Bride, Jin Dong,

and Yongsheng Gao. Extracting optimal explanations for ensemble trees via

automated reasoning. Applied Intelligence, 53:14371–14382, 2022.

[57] Inês Lynce and Joao Marques-Silva. On Computing Minimum Unsatisfiable

Cores. In International Conference on Theory and Applications of Satisfiability

Testing, pages 305–310, 2004.

[58] Shucen Ma, Jianqi Shi, Yanhong Huang, Shengchao Qin, and Zhe Hou. MUC-

driven Feature Importance Measurement and Adversarial Analysis for Random

Forest. arXiv preprint arXiv:2202.12512, 2022.

[59] Gilles Audemard, Jean-Marie Lagniez, Pierre Marquis, and Nicolas Szczepan-

ski. PyXAI: An XAI Library for Tree-Based Models. In International Joint

Conference on Artificial Intelligence, pages 8601–8605, 2024.

74

https://github.com/alexeyignatiev/xreason
https://www.depintel.com/silas_download.html
https://www.cril.univ-artois.fr/pyxai/

[60] Rasoul Safavian and David Landgrebe. A survey of decision tree classifier

methodology. IEEE Transactions on Systems, Man, and Cybernetics, 21(3):660–

674, 1991.

[61] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,

Qiwei Ye, and Tie-Yan Liu. LightGBM: A Highly Efficient Gradient Boosting De-

cision Tree. In Advances in Neural Information Processing Systems, volume 30.

Curran Associates, Inc., 2017.

[62] Alexey Ignatiev, Nina Narodytska, Nicholas Asher, and Joao Marques-Silva.

From contrastive to abductive explanations and back again. In Advances in

Artificial Intelligence, volume 12414 of LNCS, pages 335–355. Springer, 2020.

[63] XReason+. https://github.com/hvg-concordia/XReasonP. [Online; accessed

2024].

[64] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. Toward gener-

ating a new intrusion detection dataset and intrusion traffic characterization. In

International Conference on Information Systems Security and Privacy, pages

108–116, 2018.

[65] Matjaz Zwitter and Milan Soklic. Breast Cancer. https://doi.org/10.24432

/C51P4M, 1988.

[66] Volker Lohweg. Banknote Authentication. UCI Machine Learning Repository,

2012. DOI: https://doi.org/10.24432/C55P57.

[67] Image Segmentation. UCI Machine Learning Repository, 1990. DOI:

https://doi.org/10.24432/C5GP4N.

[68] Kenta Nakai. Ecoli. UCI Machine Learning Repository, 1996. DOI:

https://archive.ics.uci.edu/dataset/39/ecoli.

[69] Ronald Aylmer Fisher. Iris. UCI Machine Learning Repository, 1936. DOI:

https://doi.org/10.24432/C56C76.

[70] WSL. https://documentation.ubuntu.com/wsl/en/latest/. [Online;

accessed 2024].

75

https://github.com/hvg-concordia/XReasonP
https://doi.org/10.24432/C51P4M
https://doi.org/10.24432/C51P4M
https://documentation.ubuntu.com/wsl/en/latest/

[71] Alexey Natekin and Alois Knoll. Gradient boosting machines, a tutorial. Fron-

tiers in Neuro Robotics, 7:1–12, 12 2013.

[72] Candice Bentéjac, Anna Csörgő, and Gonzalo Mart́ınez-Muñoz. A compar-

ative analysis of gradient boosting algorithms. Artificial Intelligence Review,

54:1937–1967, 2021.

[73] Tim Hesterberg, Nam Choi, Lukas Meier, and Chris Fraley. Least Angle and L1

Regression: A Review. Statistics Surveys, 2:61–93, 2008.

[74] David MW Powers. Evaluation: from precision, recall and F-measure to ROC, in-

formedness, markedness and correlation. arXiv preprint arXiv:2010.16061, 2020.

[75] Alexey Ignatiev, António Morgado, and João Marques-Silva. RC2: an efficient

MaxSAT solver. Journal on Satisfiability, Boolean Modeling and Computation,

11(1):53–64, 2019.

[76] Aristidis Likas, Nikos Vlassis, and Jakob J Verbeek. The global K-means clus-

tering algorithm. Pattern Recognition, 36(2):451–461, 2003.

[77] Yang Li and Shami Abdallah. IoT data analytics in dynamic environments:

From an automated machine learning perspective. Engineering Applications of

Artificial Intelligence, 116:105366, 2022.

[78] Thi-Thu-Huong Le, Haeyoung Kim, Hyoeun Kang, and Howon Kim. Classifica-

tion and Explanation for Intrusion Detection System Based on Ensemble Trees

and SHAP Method. Sensors, 22:1154–1182, 2022.

[79] Shruti Patil, Vijayakumar Varadarajan, Siddiqui Mohd Mazhar, Abdulwodood

Sahibzada, Nihal Ahmed, Onkar Sinha, Satish Kumar, Kailash Shaw, and Ke-

tan Kotecha. Explainable Artificial Intelligence for intrusion etection system.

Electronics, 11(19):3079–3102, 2022.

[80] Charles Spearman. The proof and measurement of association between two

things. The American Journal of Psychology, 15(1):72–101, 1904.

[81] Maurice George Kendall. A new measure of rank correlation. Biometrika, 30(1-

2):81–93, 1938.

76

[82] William Webber, Alistair Moffat, and Justin Zobel. A similarity measure for in-

definite rankings. ACM Transactions on Information Systems, 28(4):1–38, 2010.

[83] Jianbo Chen, Michael Jordan, and Martin Wainwright. HopSkipJumpAttack: A

Query-Efficient Decision-Based Attack. In Symposium on Security and Privacy,

pages 1277–1294. IEEE, 2020.

[84] Nicholas Carlini and David Wagner. Towards Evaluating the Robustness of

Neural Networks. In Symposium on Security and Privacy, pages 39–57. IEEE,

2017.

[85] Lisa-Marie Geiginger and Tanja Zseby. Evading Botnet Detection. In Symposium

on Applied Computing, pages 1331 – 1340. ACM, 2024.

[86] Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[87] Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large

scale optimization. Mathematical Programming, 45(1-3):503 – 528, 1989.

[88] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learn-

ing, 20:273–297, 1995.

[89] Gerhard Widmer and M. Kubat. Learning in the presence of concept drift and

hidden contexts. Machine Learning, 23:69–10, 1994.

77

Biography

Education

• Concordia University: Montreal, Quebec, Canada.

M.A.Sc., Electrical & Computer Engineering (January 2023 - December 2024)

• École Nationale des Sciences de l’Informatique: Manouba, Tunisia.

Engineering Diploma, Computer Science (September 2019 - October 2022)

• Institut Préparatoire aux Etudes d’Ingénieurs de Tunis: Tunis, Tunisia.

(September 2017 - August 2019)

Awards

• Mitacs Globalink Graduate Fellowship, Canada (January 2023-August 2023)

• Special Entrance Award, Concordia University, Canada (January 2023-August

2023)

• Split Merit Scholarship, Concordia University, Canada (January 2023-December

2023)

Work History

• Research Assistant, Hardware Verification Group, Department of Electrical

and Computer Engineering, Concordia University, Montreal, Quebec, Canada

(2023-2024).

78

• Data Scientist Intern, École de Technologie Supérieure, Montreal, Quebec,

Canada (2022).

Publications

Conference Papers

• [Bio-Cf1] Amira Jemaa, Adnan Rashid, and Sofiène Tahar. Extending XRea-

son: Formal Explanations for Adversarial Detection. In International Congress

on Information and Communication Technology (ICICT), Lecture Notes in Net-

works and Systems (LNNS). Springer, 2025. To appear.

• [Bio-Cf2] Amira Jemaa, Adnan Rashid, and Sofiène Tahar. Leveraging Formal

Methods for Efficient Explainable AI. In Women in Formal Methods Workshop,

Conference on Intelligent Computer Mathematics, Montreal, Canada, August

2024.

Tools

• [Bio-T1] Amira Jemaa, XReason+, GitHub Repository: https://github.com/hvg-

concordia/XReasonP

79

https://github.com/hvg-concordia/XReasonP
https://github.com/hvg-concordia/XReasonP

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Explainable AI
	Formal XAI
	Adversarial Examples
	Formal XAI Tools
	XReason
	Silas
	PyXAI

	Problem Statement
	Proposed Methodology
	Thesis Contributions
	Thesis Organization

	LightGBM Model Encoding
	Gradient Boosting Tree Models
	Function Representation
	Logical Foundations and Notations
	Classification Problem Setup
	Decision Tree Structure for Encoding

	Algorithm for LightGBM Encoding
	Overview of LightGBM
	Key Features of LightGBM
	Formal Encoding Algorithm

	Experimental Evaluation
	Correctness of Encoded Models
	Performance Metrics
	Experimental Results

	Summary

	Class-wise Explanation
	Use of SAT and MaxSAT Solvers in Explanations
	Propositional Encoding as a Foundation
	SAT Solvers for Satisfiability Queries
	Optimization with MaxSAT Solvers
	Formal Guarantees of Explanations
	Benefits and Challenges

	Local Explanations
	Workflow for Generating Local Explanations
	Advantages of the Formal Local Explanations
	Example of a Local Explanation

	Class-wise Explanations
	Experimental Results
	Analysis of Local Explanations
	Analysis of Class-wise Explanations

	Summary

	Adversarial Examples
	Adversarial Example Generation using Formal Methods
	Detection of Adversarial Examples using Formal Explanations
	Experimental Results
	Dataset and Experimental Setup
	Generation of Adversarial Examples
	Detection of Adversarial Examples

	Summary

	Case Study: Network Security Application
	Dataset Overview
	Model Performance
	Robustness and Correctness of Formal Explanations
	Adversarial Examples Generation and Detection
	Adversarial Examples Generation
	Results and Comparison
	Detection of Adversarial Examples

	Summary

	Conclusion
	Summary of Contributions
	Future Directions

	Bibliography
	Biography

