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Abstract

Proof Recommendation for the HOL4 Theorem Prover

Nour Dekhil
Concordia University 2024

Interactive theorem proving is a complex process that often requires significant ex-
pertise, user intervention and deep domain knowledge, making it challenging for users
to construct valid proofs. The HOL4 theorem prover, while a powerful tool in formal
verification, presents usability challenges due to the intricate nature of proofs and the
cognitive load placed on users. This thesis proposes an innovative solution to enhance
the accessibility and efficiency of interactive theorem proving through the develop-
ment of an Al-driven Proof Recommendation System that leverages Large Language
Models. The proposed methodology focuses on two primary tasks: proof step rec-
ommendation and complete proof generation. For the proof step recommendation,
models such as BERT, RoBERTa, and T5 were fine-tuned on datasets derived from
HOLA4 theories to predict the next logical step(s) in the proof construction. This capa-
bility aims to guide users through the proof process, making it less daunting and more
manageable, especially for those with a limited experience. In the proof generation
task, sequence-to-sequence models, including MarianMT and T5, were utilized to gen-
erate complete proof sequences based on the given theorem statements. This task is
particularly challenging due to a need to capture complex logical patterns and ensure
the validity of the generated proofs. The training involved rigorous hyper-parameter
tuning and evaluation to optimize the performance of models. Experimental results
demonstrate that our proposed approach not only reduces the cognitive load on the-
orem provers but also enhances the efficiency and accessibility of interactive theorem
proving compared to related work. The tool, called HOL4PRS, achieves significant
accuracy in recommending proof steps and generating proof sequences, facilitating
more widespread adoption of HOL4 in critical verification tasks across various indus-
tries. This thesis contributes to the field by showcasing how integrating Al into formal
verification processes can significantly advance the capabilities and applications of the

interactive theorem provers.
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Chapter 1

Introduction

1.1 Motivation

We depend today upon technology in all walks of life. The reliability and correctness
of the software and hardware systems have become extremely critical. In fact, high
stake industries, including aerospace, automotive, medicine and finance, need flawless
systems to prevent very expensive failures or even potentially disastrous outcomes
(e.g., [1, 2, 3]). Formal verification [4] is a computer-based method in which the
correctness of systems is mathematically proved and is rapidly becoming one of the
most important ways of validating such systems. One of the most widely used formal
verification method is theorem proving [5], which is based on developing a computer-
based mathematical model of a system and ensures by using deductive reasoning that
the given system behaves according to specifications under any condition. It offers
mathematical assurance of correctness for proving that software or hardware behaves
as it should according to its specification, thus becoming quite crucial in safety-critical
settings.

Theorem proving is the process of establishing the correctness of a statement by
a sequence of logical deductions from a set of pre-defined axioms and inference rules.
Theorem proving thereby provides a mathematical framework to ensure that systems
satisfy their specifications under all possible conditions. In contrast to empirical test-

ing, which justifies system behavior under certain conditions for a bounded set of



inputs, theorem proving provides a universal and rigorous approach to verify proper-
ties of correctness, in particular for systems belonging to the most critical domains.

There are two broad categories of theorem proving [5]: Automated Theorem
Proving (ATP) and Interactive Theorem Proving (ITP). ATP involves the use of
algorithms and software to automatically generate proofs for given theorems without
human intervention. This approach is typically faster and can handle large search
spaces efficiently, making it suitable for problems where quick verification is essential.
However, its reliance on predefined strategies can limit its effectiveness in tackling
complex theorems that require nuanced reasoning or creative problem-solving. On
the other hand, I'TP supports powerful reasoning logics, such as higher-order-logic
(HOL) [6] but involves a more hands-on approach where users actively participate in
the proof construction process. Users select and apply tactics, guiding the proof de-
velopment through a series of logical steps. This method allows for greater flexibility
and an ability to tackle intricate proofs.

Various ITP systems/tools have gained wide acceptance in academia and industry
over time. To that end, systems like HOL4 [7], Coq [8], Isabelle [9], Lean [10], PVS
[11], Mizar [12], and Metamath [13] have become integral parts of efforts needed
to establish the correctness of complex systems. For instance, PVS has been used
by NASA for several decades in the formal verification of aerospace systems, such
as the pioneering work on the formalization of space shuttle software requirements
[14]. HOL4 has also been widely used to perform hardware verification [15, 16, 17],
where it ensures that processors and all such important components behave correctly
before deployment. Similarly, Coq has been applied in compiler certification (e.g.,
[18, 19]), while Isabelle has been used in the protocol verification of security systems
(e.g., [20, 21]). These tools are designed to develop proofs that are accurate and
trustworthy; therefore, they are applied in cases where a single failure may have
disastrous consequences. While this is going on, all these capabilities make I'TP prone
to some challenges too, turning the process of theorem proving quite hard in general,
and only experts can do it. It requires significant user involvement and expertise,
which can make the process more time-consuming and challenging for novice users.
Ultimately, the choice between ATP and ITP hinges on the specific requirements of
the task at hand, balancing the need for efficiency with the depth of understanding

and engagement in the verification process. This demand for expertise and time, in



the context I'TP, pose challenges, particularly for those new to the field or in industrial
settings where resources may be limited. As systems grow in complexity, the need
for effective support mechanisms to assist users in managing this intricate process
becomes increasingly crucial.

Recent advances in Artificial Intelligence (AI) open promising avenues toward
supporting and enhancing ITP to meet these challenges [22]. Instead of relieving
expertise, Al tools are being designed more and more to complement human insight
with targeted assistance that can reduce the burden of proof construction. The Al-
driven models learn patterns from large datasets of previously completed proofs so
that the next-logical-step prediction can be easier and less time-consuming to generate
such a proof, even with a limited theorem-proving experience.

Through the use of advancements in Machine Learning (ML) [23] new pathways
have opened for automating and supporting the proof construction process in ITP. By
providing intelligent suggestions and automating repetitive tasks, these innovations
aim to reduce the manual effort required in I'TP, thereby making it more accessible
to a broader audience. Consequently, I'TP may continue to be recognized as one of
the most powerful proof assistants, poised to play a pivotal role in advancing formal

verification across various industries.

1.2 Problem Statement

In interactive theorem proving, theorems often require intricate, multistep proofs
that demand a deep understanding of both the underlying theory and the specific
characteristics of the system in question. This complexity not only makes the proof
construction process time-consuming but also increases the likelihood of errors, as
users must navigate vast search spaces of potential proof strategies. Consequently,
the reliance on human expertise becomes a significant barrier, limiting the accessibility
of theorem proving tools to a select group of highly skilled individuals.

Existing theorem proving environments, such as HOL4, Isabelle, and Lean, while
powerful, often lack the necessary support mechanisms to assist users in efficiently
constructing proofs. The interactive nature of these systems requires users to select
and apply various tactics, which can be overwhelming, particularly for those with

limited experience. As a result, the learning curve associated with theorem proving



can discourage new users and slow down the verification process, ultimately impacting
the development timelines of critical systems.

There exist various theorem provers that have been applied with a great success
in the fields of hardware verification, software certification and cryptographic pro-
tocol analysis, where correctness is a major concern. The most pioneering among
them is HOL4, which belongs to a lineage of theorem provers that traces its ori-
gins to the LCF (Logic for Computable Functions) theorem prover, developed in the
1970s. HOL4 has been instrumental in the formal verification of significant theories
and systems, such as the seL4 microkernel [29], which is renowned for its safety and
security in critical applications, the CompCert C compiler [32], which guarantees the
correctness of compiled code, and more recently critical smart grid systems [24] and
distributed multiprocessor systems [25]. These accomplishments not only showcase
HOLA4’s effectiveness in high-assurance domains, particularly in hardware design, but
also highlight its superiority over other interactive theorem provers in tackling com-
plex engineering verification challenges.

At the Hardware Verification Group (HVG)!' of Concordia University, we have
been using HOL4 for the past 25 years on projects spanning from microelectronics
hardware to embedded systems and software. HOL4 was also used for the formal reli-
ability analysis of safety-critical and cyber-physical systems. Moreover, a considerable
amount of effort has been spent in developing fundamental libraries of intricate math-
ematics such as measure, probability and information theories. One common feature
we have learned from these works is the repetitive nature of many proofs conducted
in HOL4 interactively. The expertise gained in our laboratory over the years as well
as the availability of a large corpora of proof scripts provides us with a unique source
of datasets that is ideal for applying Al-driven methods on HOLA4.

Despite the remarkable progress in AI and machine learning, there remains, how-
ever, a significant gap in their effective integration within the HOL4 theorem prover.
Current strategies in HOL4 fall short in automating the proof construction process
and providing meaningful guidance to users in selecting optimal tactics. This lack
of automation not only intensifies the challenges of accessibility and efficiency but
also restricts the broader adoption of HOL4 in critical applications. Consequently,

users with limited experience often find the intricacies of proof construction daunting,
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which can discourage their engagement with this powerful verification tool. To fully
realize the potential of HOL4 in formal verification, it is imperative to address these
shortcomings, thereby enhancing its usability and fostering its application across a
wider range of industries.

This thesis builds on these developments by creating a system specifically de-
signed for the HOL4 theorem prover that goes beyond mere proof recommendations
to enable both proof sequence generation based on a given theorem statement and
suggestions for the next tactics within an ongoing proof. Leveraging Large Language
Models (LLMs) [26], this system provides targeted recommendations for the next
steps in a proof sequence by analyzing the theorem statement and applying previ-
ously established tactics. The model learns complex proof patterns specific to HOL4
by training on large libraries of HOL4 proof scripts. It can thus predict appropriate
optimal tactics with much accuracy and consistency. The approach proposed here
analyzes the current state of a proof, comprising the sequence of tactics applied so far
in order to suggest various possible next tactics to move the proof toward completion.
Additionally, given a theorem statement, the system can propose a sequence of tac-
tics that could be used to construct a proof, offering a broader and more automated
solution to assist interactive theorem provers.

The research work aimed in this thesis would contribute to the rapidly developing
landscape of Al-assisted theorem proving with a view toward ongoing advancement of
innovations in many safety-critical domains where correctness is paramount, seeding
ground for future innovation at the crossroads of Al and formal methods. In the next
section, we provide an extensive review of related work in the domain in order to

position the context of the proposed thesis research.

1.3 Related Work

There has been significant interest in the integration of Al into theorem proving in
the past few years, with researchers investigating a variety of ways to automate and
improve the process. These efforts are concerned with automating proof construction,
reducing manual labor, and increasing efficiency in interactive and automated theorem
proving systems. Among the explored techniques, proof step prediction and proof

search are the most important approaches to help users build proofs or even partially



automate building proofs. This section will give an overview of some of the important
works contributed in this regard, focusing on how machine learning, reinforcement
learning [27], and other computational techniques have improved tackling challenges

in formal verification and theorem proving.

1.3.1 Proof Step Prediction

Proof step prediction focuses on streamlining the theorem proving process by
suggesting the optimal tactic(s) or proof step(s) within a given context. This approach
enhances automation in interactive theorem proving by reducing the cognitive load
and manual input required from users. Here, we review the significant contributions
to the field, detailing various methodologies and models developed to automate and

improve the tactic prediction.

Coq Proof Assistant

e Huang et al. [28] developed GamePad, a system that integrates machine learn-
ing with interactive theorem proving using the Coq proof assistant. This system
advances the automation of theorem proving by predicting the next proof step
and assessing how many steps remain to complete the proof, a process termed
as evaluating the position within a proof. Specifically, GamePad inputs proof
states from the Coq environment and outputs tactic predictions and step evalua-
tions using a structured representation of proofs encoded as Python dictionaries
and lists. The approach employs LSTM networks trained on a dataset which
consists of 1,602 lemmas and expands into 83,478 proof states derived from
the formalization of the Feit-Thompson theorem [29]. The GamePad system
achieved a tactic prediction accuracy of 58.23% and a position evaluation ac-
curacy of 65.30% on a testing dataset of 8,348 proof states, demonstrating its

effective performance in automating theorem proving tasks.

e Yang et al. [30] developed CoqGym, a large-scale dataset containing 71,000
human-written proofs from 123 projects using the Coq proof assistant. Their
goal was to assist theorem proving by predicting next proof steps and relevant
lemmas. They introduced a deep learning-based model, ASTactic, which gen-

erates tactics as programs in the form of abstract syntax trees (ASTs). This



model was trained to transform input goals and premises into a series of tactical
commands in Coq’s language, aiming to automate the generation of proof steps
traditionally crafted by human experts. ASTactic’s approach was evaluated
on a testing dataset comprising 13,137 theorems, where it successfully proved
12.2% of them, demonstrating its effectiveness in automating theorem proving

processes.

Sanchez et al. [31] developed Proverbot9001 specifically for the Coq proof
assistant to reduce the manual effort typically required in proving software cor-
rectness by employing machine learning models to predict next proof steps.
Proverbot9001 operates by taking theorems as input and outputs proofs, in-
corporating Feed-forward Neural Networks for tactic prediction and Recurrent
Neural Networks (RNNs) for argument prediction. Additionally, the system
employs advanced tree pruning techniques and a depth-first search strategy,
guided by model predictions, to efficiently navigate the search space. Trained
and tested on proofs from the CompCert C compiler, Proverbot9001 success-
fully automated proofs for 28% of theorem statements in a test dataset that

included 501 theorems.

Blaauwbroek et al. [32] developed a tactic prediction method for the Coq
proof assistant with the aim to simplify the process of theorem proving by
means of automatically predicting suitable proof steps. The system takes proof
states as input and predicts suitable tactics to apply, therefore reducing man-
ual effort in interactive theorem proving. Their approach combines a k-Nearest
Neighbors (K-NN) [33] algorithm with Locally Sensitive Hashing (LSH) [34] to
efficiently search a database of tactic applications to retrieve the most appro-
priate tactic for any given proof state. This system was evaluated on the Coq
Standard Library using a dataset of 10,416 lemmas. The results showed the top
predicted tactic accuracy to be 23.4% and an overall success rate of 39.3% in
automatic lemma proving. Furthermore, together with CoqHammer [35], which
is an external automated system, the success rate was 56.7%, which shows that
learning-based tactic prediction really works well for enhancing automation in

Coq.



e First et al. [36] developed TacTok, a tool to improve the automation of the-
orem proving in the Coq proof assistant through semantic-aware synthesis of
proof scripts. The primary goal of TacTok is to enhance the interactive theorem
proving process by predicting the next proof tactics based on both the partial
proof script already written and the current proof state. The input to TacTok
consists of these partial proof scripts and proof states, and the output is the
next predicted tactic, effectively streamlining proof development. TacTok em-
ploys a beam search strategy [37], combined with a LSTM network, to utilize
both proof state and proof script information. This method allows the system
to explore multiple tactical possibilities efficiently, selecting the most promis-
ing paths for proof completion. Evaluated on a dataset of 26 software projects
comprising over 10,782 theorems, TacTok demonstrated its robustness by out-
performing existing tools and successfully proving 115 theorems that previous

tools could not.

e Luan et al. [38] developed a framework for predicting tactics in the Coq proof
assistant to automate proof step selection, reducing the manual effort required
in constructing proofs. Their goal was to improve the proving process by using
a Long Short-Term Memory (LSTM) neural network to predict appropriate
tactics based on the current proof state. The input to their model includes
hypotheses and proof goals, while the output is the predicted tactic to apply
next. Recognizing the importance of a consistent proof style, they created a new
dataset with a novice-proof approach, containing 31 theorems and lemmas in
830 lines of code. In their evaluation, top-1 accuracy refers to the percentage of
times the model’s first tactic suggestion was correct, achieving 58%, while top-3
accuracy indicates the model correctly predicted the tactic within its first three
suggestions 87% of the time. These accuracies reflect significant improvements
over the baseline methods with enhancements of 15.2% and 12.8% for top-1 and

top-3 accuracies, respectively.

e Wenda Li et al. [39] proposed a benchmark called IsarStep for furthering au-
tomated theorem proving by predicting intermediate proof steps, namely gener-
ating missing propositions inside proofs. They aimed to mimic human reasoning
in theorem proving by training models to infer such intermediate propositions

that fill logical gaps between the given proof steps and conclusions. Given the



surrounding proof steps, the system is to output the intermediate propositions,
which are necessary for continuity in proof. They implemented this by uti-
lizing the Hierarchical Transformer Model (HTM), which has both local and
global layers that learn intricate mathematical relations. Trained on a dataset
of 204,000 lemmas from the Archive of Formal Proofs and evaluated on a test-
ing dataset of 34,000 lemmas, HTM achieved top-1 accuracy rates of 15-25% in
generating intermediate propositions, demonstrating its potential in proof step

prediction within formal logic environments.

PVS

e Yeh et al. [40] developed CoProver, a recommender system for enhancing user
interaction with I'TP systems by applying proof step and lemma prediction. In
this context, the system is meant to assist users in proof construction by sug-
gesting appropriate commands and lemmas based on proof context. The input
to CoProver consists of proof steps in sequences taken from the PVSLib-a [41]
NASA database containing more than 184,000 polished proof steps-featurized
into token sequences for training. For command prediction, CoProver uses a
transformer-based RoBERTa model that encodes these proof states to capture
prior proof command history for better prediction accuracy. It achieved an
accuracy of 48% on command prediction, outperforming traditional baseline

classifiers by a wide margin.

HOL Light

e Bansal et al. [42] developed a benchmark and learning environment to en-
able the automated formalization of large mathematical theories, utilizing the
HOL Light theorem prover integrated within a reinforcement learning frame-
work. The system, named DeepHOL, inputs theorem statements and outputs
generated proofs. It employs a deep reinforcement learning strategy [43] com-
bined with a neural architecture specifically designed for predicting theorem
proving tactics and their arguments. The dataset used comprises 29,462 theo-
rems and lemmata, derived from the formal proof of the Kepler conjecture and
other foundational mathematics areas. Initial results of their system, DeepHOL,

demonstrated proof success rates of up to 38.9%.



HOL4

e Gauthier et al. [44] developed an automated tactical prover named TacticToe
within the HOL4 interactive theorem prover framework. This system learns
from historical human proofs to predict and apply effective tactics in given proof
states. The input to TacticToe consists of proof states, represented as sequences
with sets of assumptions and conclusions, and the output is a sequence of proof
tactics that lead to a theorem being proven. The approach combines K-NN
for predicting tactics, theorems, and goal lists, with Monte Carlo tree search
(MCTS) [45] to dynamically explore and optimize the proof search strategy. The
dataset comprises 7,164 theorems from the HOL4 standard library. TacticToe
demonstrates a significant ability to automate theorem proving, achieving a

success rate of 66.4% on this dataset.

e Wu et al. [46] developed a reinforcement learning environment for HOL4 de-
signed to predict effective tactics during proof searches. By framing theorem
proving as a Markov Decision Process (MDP) [47], their system, TacticZero,
enables efficient backtracking to abandon unproductive derivation paths and
explore more promising alternatives. The model receives proof states as in-
put and generates tactics and arguments to progress toward proving theorems.
Trained on a dataset of 1,342 provable theorems from the HOL4 core library,
with an 80-20 split between training and testing, TacticZero showed strong re-
sults. It notably outperformed traditional automated theorem provers, such as

hammers [48], successfully proving 132 theorems.

Table 1.1 summarizes existing approaches to proof step prediction have made
significant strides but reveal notable gaps when considered in the context of HOL4
and LLMs. While tools like TacticToe and TacticZero focus on HOL4, they rely on
traditional methods like K-NN and reinforcement learning, which lack the contex-
tual depth and sequence modeling capabilities of LLMs. Moreover, LLMs remain
underexplored in interactive theorem proving, despite their proven ability to capture
long-range dependencies and context in sequence-to-sequence tasks. Many works de-
pend on limited or narrowly focused datasets, which constrain generalization and

scalability, particularly for data intensive models like LLMs.

10



Table 1.1: Summary of Related Work in Proof Step Prediction

Tool ML Approach Dataset Size Experimental Results
Coq

GamePad (2019) LSTM 1.6K lemmas 58.23% tactic accuracy

CoqGym (2019) DL 71K proofs 12.2% success

Proverbot9001 (2020) FNN 501 theorems 28% success

Blaauwbroek et al. (2020) K-NN, LSH 10.4k lemmas 23.4% accuracy
TacTok (2020) LSTM, Beam Search 26 projects 115 new proofs
Luan et al. (2021) LSTM 31 theorems 58% top-1 accuracy
IsarStep (2021) HTM 204K lemmas 15-25% acc.
HOL Light

DeepHOL (2019) DRL 29.5K theorems 38.9% success

HOL4
TacticToe (2020) K-NN, MCTS 7.2K theorems 66.4% success
TacticZero (2024) RL, MDP 1.3K theorems 132 proofs

PVS
CoProver (2023) RoBERTa 184K proof step 48% command accuracy

1.3.2 Proof Search

Proof Search aims to learn from existing proofs to generate potential proof paths

for given theorems. It uses advanced techniques to search sequences of tactic applica-

tions and logical steps in building complete proofs automatically. In the following, we

reviewed some of the most prominent works that have been done in advancing proof

search, highlighting different approaches and how effective these have been toward

enhancing automated theorem proving.

Isabelle/HOL

e First et al. [49] developed Baldur, a tool designed to improve proof synthesis

in theorem proving within the Isabelle/HOL theorem prover by generating en-

tire proofs at once rather than using traditional step-by-step search methods.

The goal of Baldur is to simplify and enhance the automation of formal proof

verification, using LLMs like Minerva [50] to generate full proofs from theorem

statements and, if needed, repair failed proofs based on error feedback. The in-

put to Baldur’s proof generation model is a theorem statement, and the output

11



is a complete proof. Using a dataset of 183,000 Isabelle/HOL theorems, includ-
ing a test set of 6,336 theorems, the tool demonstrated strong results. Baldur
achieved a proof success rate of 47.9% in generating correct proofs, outperform-
ing previous search-based methods and further improving to a success rate of
65.7% when combined with the search-based tool Thor. This study illustrates
the efficiency of using LLMs for whole-proof generation in automated theorem

proving.

Metamath

e Whalen et al. [51] developed Holophrasm, an automated theorem prover
designed to improve proof search for higher-order logic in the Metamath frame-
work. The primary goal of Holophrasm is to generate formal proofs by effi-
ciently exploring proof trees using deep learning without relying on hand-crafted
features. The system inputs a theorem statement in Metamath’s formal lan-
guage and outputs a complete proof. Holophrasm employs a neural network
augmented bandit algorithm, based on Upper Confidence Bounds applied to
Trees (UCT) [52], to navigate the search space of partial proof trees, alongside
a sequence-to-sequence model for action enumeration. The dataset used for
training consists of the Metamath [53] set.mm module, with 21,786 theorems
in the training set, 2,711 for validation, and 2,720 for testing. Holophrasm
achieved a 14.3% success rate on its test set, demonstrating the potential of

neural networks in guiding proof search within automated theorem proving.

e Lample et al. [54] developed Evariste, a system aimed at automating the-
orem proving in Lean, Metamath, and a custom environment by generating
proof sequences with high efficiency. Their goal was to enhance the automation
of formal proof synthesis. Evariste uses the HyperTree Proof Search (HTPS)
algorithm [54], inspired by AlphaZero [55], to navigate proof trees. Inputs to
the system consist of theorem statements, while outputs are generated proofs
or tactics leading to solutions. Evariste’s training involved over 37,000 theo-
rems from Metamath’s set.mm library and additional supervised training data
for Lean, which allowed the system to achieve state-of-the-art results with a

success rate of 82.6% on Metamath’s held-out set of theorems.
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Lean

e Yang et al. [56] presented LeanDojo, a system for automating theorem proving
in the Lean proof assistant by improving proof search using retrieval-augmented
language models. The focus of LeanDojo is to make the premises selection pro-
cess easier and faster to find and use, with the goal of being able to perform
theorem proving, which is a major bottleneck in the automation of proofs. The
system takes the statements of theorems as input and returns a sequence of
tactics that can be used in constructing a formal proof. LeanDojo uses the
ReProver model, which is a retrieval-augmented language model that depends
on the Dense Passage Retriever (DPR) [57] model for premise selection and an
encoder-decoder Transformer model for tactic generation. The dataset for Le-
anDojo consists of 98,734 theorems and their corresponding proofs from Lean’s
math library, which was used to train and evaluate ReProver. Experimental
results showed that ReProver proved 51.2% of theorems in a test set, outper-
forming non-retrieval baselines and achieving competitive results compared to

state-of-the-art methods.

e Song et al. [58] developed Lean Copilot, a framework to assist in automated
theorem proving within the Lean interactive theorem prover. The main goal
of Lean Copilot is to enhance proof automation through tools that assist users
in tactic suggestion, proof search, and premise selection. The system takes a
theorem statement and proof goals as input and outputs a sequence of tactics or
premises relevant for proof construction. Lean Copilot uses the ReProver model,
based on the By'T5 encoder-decoder Transformer, with beam search to improve
tactic suggestions and proof step prediction. The authors trained and evaluated
Lean Copilot on Lean’s math library, which contains over 98,000 theorems. In
experiments on a subset of theorems from the Mathematics in Lean book, Lean
Copilot’s search proof tool demonstrated notable effectiveness by automating
64% of proofs autonomously and assisting users in automating 81.2% of proof

steps, significantly outperforming existing rule-based tools.
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Table 1.2: Summary of Related Work in Proof Search

Tool ML Approach Dataset Size Experimental Results
Isabelle/HOL
Baldur (2023) LLMs 183K theorems 47.9% proved, 65.7% with
Thor
Metamath
Holophrasm (2016) NN, UCT, Seq2Seq 21.8K theorems 14.3% success rate
Evariste (2022) HTPS 37K theorems 82.6% success
Lean
LeanDojo (2023) DPR, Transformer 98.7K theorems 51.2% success
Lean Copilot (2024) ByT5, Beam Search 98K theorems 64% automation, 81.2%

assisted steps

Table 1.2 provides an overview of existing proof search approaches, highlighting
significant advancements while uncovering notable gaps, particularly in the context of
HOL4 and LLMs. However, current proof search methods, while showing promising
advancements, face limitations in adapting to HOL4 and usage of LLMs effectively.
Many existing algorithms focus on proof tree exploration or retrieval augmented tech-
niques, which are effective in systems like Lean or Metamath but are not directly

applicable to the sequential and tactic-driven nature such as HOLA4.

1.3.3 Premise Selection

Premise selection involves identifying the most relevant theorems or lemmas from a
knowledge base to assist in proving a new conjecture. It reduces the complexity of
theorem proving by narrowing down the search space for proof construction. Several
approaches have been proposed in the literature, leveraging machine learning and

deep learning techniques to improve the efficiency and accuracy of premise selection.

HOL Light

e Kaliszyk et al. [59] developed a method integrating machine learning with
automated theorem proving within the Flyspeck project using the HOL Light
proof assistant, with a focus on advancing the automation of theorem proving
by predicting relevant premises for proofs. Specifically, their system inputs de-

pendencies from a database of Flyspeck proofs and outputs premise selections to
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assist ATPs in automated theorem proving tasks. The approach employs various
machine learning techniques trained on a dataset that consists of 14,185 theo-
rems, structured as proof dependencies within the vast mathematical knowledge
encoded by the Flyspeck project. The learning-assisted system was evaluated
on its ability to facilitate the proving process by selecting optimal premises,
where it demonstrated a significant capability, managing to automatically prove
39% of the theorems in a push-button mode on a fourteen-CPU workstation,
illustrating its effective performance in automating large-scale theorem proving
tasks.

Mizar

e Alemi et al. [60] employed a two-stage deep learning framework that leverages
neural sequence models to enhance the effectiveness of premise selection without
relying on traditional hand-engineered features. Utilizing the Mizar Mathemati-
cal Library (MML), which contains 57,917 proved theorems organized into 1,147
articles, they implement the E prover as their ATP tool to facilitate the proof
process. The first stage of their approach focuses on character-level models
that treat mathematical formulas as sequences of characters, while the second
stage builds upon these results with word-level models to capture more complex
relationships. Their experiments reveal a success rate of 40% in automatically

proving theorems, showcasing a significant advancement over previous methods.

Premise selection methods have contributed significantly to automating theorem
proving by narrowing the search space for constructing proofs. However, in this thesis,

we only focus on tactic prediction and proof step generation.

1.4 Proposed Methodology

The goal of this thesis is to develop an Al-driven system to enhance theorem proving
in the HOL4 environment by addressing two main tasks: proof step recommendation
and proof generation. This approach aims to make the theorem proving process
less daunting and more accessible, especially for users who may not have extensive

expertise in formal verification.
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Figure 1.1: Proposed Methodology

Figure 1.1describes the details of the proposed methodology to realize the goals of
this thesis. The proposed methodology begins with the construction of datasets de-
rived from HOL4 theories which are comprehensive compilations of formalized math-
ematical proofs and theorems. These theories provide the raw material from which
two datasets will be constructed. The first dataset consists of Proof State-Future
Step Pairs, which represent the relationship between a proof state at a given point
and the subsequent proof step needed to progress toward the proof goal. These
pairs are crucial for training models that recommend the next proof steps, as they
encapsulate the decision-making process involved in theorem proving. The second
dataset comprises Theorem-Proof Pairs, which map each theorem to its correspond-

ing proof sequence. This dataset provides the foundation for training models capable
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of generating complete proofs. The creation of these datasets involves a meticulous
extraction and preprocessing phase, ensuring that the data accurately reflects typical
scenarios encountered during theorem proving, thus enhancing the models’ training
effectiveness.

Following the dataset preparation, appropriate LLMs were trained to address the
two tasks. For the Proof Step Recommendation task, we fine-tune and use the BERT,
RoBERTa, and T5 models. These models were selected for their ability to analyze
textual and contextual data due to their underlying transformer architectures, which
are specifically designed to capture deep contextual relationships within text, mak-
ing them highly effective for tasks requiring nuanced text interpretation like proof
step recommendation. The selected models offer capabilities specifically suited to
interactive theorem proving, a fundamentally natural language problem that requires
identifying textual patterns to grasp the progression of the proof. This ability is cru-
cial to effectively guiding the theorem proving process. The training process involved
experimenting with different model configurations, hyperparameters, and evaluation
metrics to determine the most effective approach. The recommendation system aims
to assist users by analyzing the current proof state and suggesting the next logical
steps or tactics to progress the proof.

In contrast, the Proof Generation task employs the sequence-to-sequence models,
MarianMT and T5 in order to generate complete proof sequences based on theorem
statements. These models are particularly adept at modeling complex dependencies
and maintaining coherence over long text sequences, essential for the structured na-
ture of formal proofs. These models were configured to generate proof sequences with
a maximum length of 512 tokens, aligning with their typical sequence length capac-
ity. This task is particularly challenging due to the complexity of the proofs and the
need to capture intricate logical patterns. The training process for proof generation
involved rigorous hyperparameter tuning and extended training periods to refine the
models’ ability to produce proof sequences that are both valid and logically coherent,
meeting the rigorous standards required for theorem proving. The proof generation
functionality represents a higher level of automation, allowing users to input a theo-
rem statement and receive a complete sequence of proof steps required to construct

a valid proof.
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After identifying the best-performing models for each task, these models were
integrated into a Proof Recommendation System that offers two main functionalities.
Firstly, the system provides Proof Step Recommendations by analyzing the current
proof state and suggesting the next tactic to progress the proof. Secondly, the system
enables Proof Generation by taking a theorem statement as input and producing a
complete sequence of proof steps required to construct a valid proof. This integration
not only streamlines the process but also enhances the accessibility and efficiency of
theorem proving in the HOL4 environment.

We have developed a tool called HOL4PRS (HOL4 Proof Recommendation Sys-
tem) [61], implemented in Python [62] and deployed on Google Colab [63]. HOL4PSR
is freely available on GitHub, making it accessible for users. This cloud-based deploy-
ment allows users to interact with the system without the need for local installations,
facilitating ease of use and accessibility. The HOL4PRS tool assists users by analyzing
the current proof state and suggesting the next HOL4 tactics to advance the proof.
Furthermore, HOL4PRS facilitates Proof Generation by taking a theorem statement
as input and producing a complete sequence of proof steps necessary to construct a
valid proof. This integration not only streamlines the proof process but also enhances
the accessibility and efficiency of theorem proving within the HOL4 environment. The
evaluation of the proof step recommendation task revealed that the best-performing
model, RoBERTa, achieved a top-3 accuracy of 77.3% and a top-7 accuracy of 89.88%
on the combined dataset. In the proof generation task, the T5 and MarianMT models
were assessed on a randomly selected theorem statement, resulting in the generation
of a complete proof sequence with a Levenshtein Similarity Percentage (LSP) [64] of
78%.

1.5 Thesis Contributions

This thesis presents a practical approach to improving the accessibility and ef-
ficiency of the HOL4 theorem prover through the integration of Large Language
Models. The main contributions of this work are as follows, where the publication

references are available in the Biography section at the end of the thesis document:

e The thesis explores the use of LLMs, specifically BERT, RoBERTa, and T5,

for predicting tactics in theorem proving. These models were fine-tuned on a
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dataset of HOL4 theorems and their corresponding proofs, achieving reasonable
accuracy in suggesting the next steps in proof construction. This work highlights
the potential of LLMs to assist in understanding and predicting sequences in
formal reasoning tasks [Bio-Cf1, Bio-Cf-2].

In addition to tactic prediction, this thesis employs T5 and MarianMT for proof
searching, framing theorem proving as a sequence-to-sequence task. These mod-
els generate sequences of proof tactics, allowing for the exploration of different
proof paths. This approach aims to enhance the system’s ability to provide

effective proof strategies.

We have implemented a tool called HOL4PRS for proof step recommendation
and proof generation. This tool is designed to assist users in constructing proofs
within the HOL4 environment and is made freely available online in a public
GitHub repository [61]. HOL4PRS aims to support users by recommending
suitable tactics, thereby reducing the cognitive load and improving the efficiency

of proof construction [Bio-T1].

By integrating LLMs into proof recommendation and sequence generation, this
thesis contributes to the ongoing efforts to incorporate Al into formal verifi-
cation. While the integration with HOL4 is still in progress, the insights and
methodologies presented here provide a foundation for future exploration in Al-
driven theorem proving. This work emphasizes the role of LLMs in supporting
formal methods and highlights the potential for further development in various

applications within the field of formal verification.

1.6 Thesis Organization

The rest of the thesis is organized as follows: In Chapter 2, we delve into the

foundational concepts of theorem proving, providing a comprehensive overview of its

principles and significance. We also introduce the HOL4 theorem prover, highlighting

its capabilities and applications in formal verification. Additionally, we explore the
role of large language models, such as BERT, RoBERTa, T5, and MarianMT, in

enhancing theorem proving processes.
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Chapter 3 focuses on proof step recommendation. We begin with an introduction
to the problem statement, outlining the challenges faced in this area. Following this,
we present our proposed methodology for addressing these challenges, detailing the
dataset utilized for training and evaluation, and the process of model fine-tuning.
We then discuss the experimental results obtained from our approach, concluding the
chapter with a summary of the key findings.

In Chapter 4, we shift our attention to proof generation. This chapter starts
with an introduction to the relevant challenges and methodologies associated with
generating proof sequences. We provide a detailed description of the dataset used,
the model fine-tuning process, and the experimental results that demonstrate the
effectiveness of our proposed methods. The chapter concludes with a summary of the
insights gained from our experiments.

Finally, Chapter 5 concludes the thesis by summarizing the primary findings and
reflecting on the contributions made to the field of Al-assisted theorem proving. It
also discusses potential directions for future research, highlighting opportunities for

further exploration and development in this evolving area.
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Chapter 2
Preliminaries

This chapter lays the groundwork by explaining the core concepts related to the-
orem proving, the HOL4 theorem prover, and Large Language Models (LLMs). It
explores how LLMs such as TH, BERT, RoBERTa, and MarianMT can be applied
to enhance the theorem proving process. These preliminaries provide essential back-
ground and context for the methodologies and experiments presented in subsequent

chapters.

2.1 Theorem Proving

Theorem proving is the process of establishing the correctness of a statement by a
sequence of logical deductions from a set of pre-defined axioms and inference rules.
Theorem proving thereby provides a mathematical framework to ensure that systems
satisfy their specifications under all possible conditions. In contrast to the empirical
testing, which justifies system behavior under certain conditions, theorem proving
provides a rigorous approach to verify properties of correctness, in particular for
systems belonging to the most critical domains.

One can view theorem proving as a collection of conclusions derived from for-
malized representations of problems. To reason about specifications at a high level,
it requires translating them into logical statements, along with the development of
proofs that demonstrate their validity. Theorem proving is thus based on the rig-
orous mathematical reasoning and therefore capable of eliminating ambiguity which

can never be achieved by traditional testing methods.
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The development of theorem provers, specialized software tools aimed at helping
users construct and verify proofs, has considerably advanced the field. Such envi-
ronments are provided by tools like HOL4 [7], Coq [8], Isabelle [9], Lean [10], PVS
[11], Mizar [12], and Metamath [13], where formalization of a problem, application
of logical tactics, and proof steps are all verified at once. These theorem provers
have been applied with a great success in the fields of hardware verification, soft-
ware certification and cryptographic protocol analysis, where correctness is a major
concern. These are very powerful tools, but effective use of them does require deep
knowledge/understanding of the underlying mathematical theories and detailed ac-
quaintance with the specific logic frameworks used by the underlying theorem prover.

The process of theorem proving involves several key components and steps that
work together to establish the validity of a given statement or theorem. At the outset,
a proof goal is defined, which represents the statement that needs to be proven. This
goal is expressed in formal mathematical language, such as first-order logic (FOL)
[65] or higher-order logic (HOL) [6], allowing for precise reasoning and manipulation.
For instance, a theorem might assert that “if P and @) are true, then P A () is true”.
The challenge lies in constructing a proof that rigorously demonstrates this assertion.

To achieve this goal, theorem provers utilize a set of axioms and definitions that
serve as the foundational building blocks of the proof. Azioms are statements ac-
cepted as true without proof, while definitions provide the necessary context and
meaning for the terms used in the theorem. The theorem prover operates within
a specific theory, which is a collection of axioms, definitions, and previously proven
theorems that are relevant to the proof at hand. For example, we might define P A Q)
(the logical conjunction of P and @) as being true if both P and @ are true. Theo-
rems are statements that can be proven based on axioms, definitions, and previously
established theorems. In our example, the statement “if P and @) are true, then PAQ
is true” can be considered a theorem that we want to prove.

The proving process typically involves the application of tactics, which are strate-
gies or rules that guide the proof construction. In the context of HOL4, for example,
tactics might include simplification, assumption introduction, or contradiction. Each
application of a tactic results in a proof step, which transforms the current state of
the proof into a new state. The sequence of proof steps taken to reach the proof goal

constitutes the proof itself.
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The proof construction is inherently iterative and often requires a sequence of
tactics to navigate through the complexities of the proof. For example, consider a
simple proof goal: proving that if P and @) are true, then P A @ is true. The proof
begins with the goal P A (). The first step involves applying the tactic of assumption
to introduce P and () as true premises. This leads to the current state where we
assume P is true and @) is true. Next, we use the tactic of conjunction introduction,
which allows us to combine the two assumptions. From P and (), we can conclude

P A Q. At this point, the proof goal P A @ is successfully proven.

2.2 HOL4 Theorem Prover

HOL4, an abbreviation for Higher-Order Logic version 4, belongs to a lineage of
theorem provers that traces its origins to the LCF (Logic for Computable Functions)
theorem prover, which was developed in the late 1970s at Stanford and Edinburgh.
The LCF framework [66] pioneered the use of a meta-language, ML, enabling the inter-
active construction of proofs while ensuring soundness by embedding logical inference
rules directly into the programming environment. HOL4 enhances this foundational
design, offering a powerful platform for theorem proving in the context of higher-order
logic.

As part of the HOL family, HOL4 has evolved from its predecessors, beginning
with HOLSS in 1980s, followed by HOL90 in the 1990s, and has unddegone numerous
improvements aimed at to enhance its functionality, user interface, and overall appli-
cability. Today, it is recognized as one of the leading interactive theorem provers in
both academic and industrial settings, especially in the area of formal verification.

The system is based on classical higher-order logic, a complex formalism that ex-
tends first-order logic by allowing functions and predicates to be treated as first-class
entities. This expressive framework facilitates reasoning about abstract concepts, such
as sets of functions or relationships between predicates, making HOL4 particularly
adept at specifying and verifying complex systems. The underlying logic is contained
within a small kernel, which guarantees that all proofs produced by the system are
sound. This architecture ensures that any theorem proven in HOL4 adheres to its
axioms and inference rules, providing a high level of confidence in the correctness of

its results.
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2.3 Large Language Models

In recent years, Large Language Models (LLMs) have emerged as powerful tools in
Natural Language Processing (NLP) [67] and beyond, demonstrating unprecedented
capabilities in understanding, generating and transforming the text. These models,
based on transformer architectures, leverage self-attention mechanisms to model com-
plex relationships within input sequences, enabling them to perform a wide variety
of tasks with remarkable accuracy and efficiency.

LLMs are pre-trained on vast corpora of text data, capturing patterns, semantics
and structures in the language. This pretraining equips them with a deep under-
standing of linguistic and contextual nuances, which can be fine-tuned for specific
applications across diverse domains. Their flexibility and generalization capabilities
have made them indispensable not only in traditional NLP tasks, such as translation,
summarization, and question answering, but also in more specialized applications
requiring structured reasoning and formal verification.

The selection of T5, BERT, RoBERTa, and MarianMT for this thesis stems from
their proven ability to handle tasks requiring deep understanding, structured rea-
soning, and adaptability. These models represent a diverse range of architectures
and training paradigms, making them particularly suitable for addressing the multi-
faceted challenges of interactive theorem proving. Their foundation in transformer-
based architectures ensures that they can efficiently model contextual dependencies
and sequence relationships, which are critical in theorem proving tasks. Furthermore,
their extensive pretraining on large corpora equips them with a robust understanding
of linguistic patterns and structures, allowing them to generalize effectively to new
domains, such as formal reasoning. The flexibility of these models, combined with
their scalability and performance across various NLP tasks, makes them ideal candi-
dates for exploring and automating complex tasks in formal verification, particularly
when framed as sequence-to-sequence problems. These general attributes underscore
their transformative potential in advancing Al-driven solutions for interactive theo-
rem proving.

In the following, we review the prominent LLMs relevant to the research contri-
bution presented in this thesis, with a particular focus on their architecture, training
objectives, and applicability to interactive theorem proving. By framing the inter-

active theorem proving tasks as sequence-to-sequence problems, the selected models
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bring unique strengths to automating proof construction and addressing the inherent

challenges in formal verification.

2.4 T5

Text-to-Text Transfer Transformer (T5) [68] is a state-of-the-art language model,
introduced by Google Research, that aims to combine all NLP tasks into one simple
framework. Unlike existing models optimized for specific tasks, TH reformulates any
NLP problem-such as translation, summarization, and classification-into a text-to-
text task. This innovative methodology has resulted in the simplification of task
representation and allows the same model architecture and training objectives across
a wide range of applications.

At its core, T5 is a transformer architecture, a very powerful architecture of neural
networks that relies on self-attention mechanisms for modeling contextual relation-
ships in the input. T5 uses an encoder-decoder structure, where an encoder processes
input text and a decoder generates the corresponding output text. This architecture
particularly suits T5 for tasks related to conditional text generation, which may in-
clude generating sequences based on input or producing translations of given content.

The diversity in T5 stems from its training objective-that of a denoising autoen-
coder. It masks large portions of the input text while training and asks the model
to reconstruct the original text. This objective implies that T5 would learn robust
representation in language patterns and generalize effectively on unseen tasks. Fur-
ther, T5 is pre-trained on a huge corpus of text that allows it to learn deep structures
and semantic subtlety. Fine-tuning then on task-specific datasets further improves
its performance, making it adaptable to a wide variety of domains.

This capability of handling text-to-text transformations makes T5 highly suitable,
in the context of this thesis, to tackle challenges in the interactive theorem proving.
By framing the interactive theorem proving tasks, such as the prediction of proof
steps or the generation of proof sequences-into text generation problems, T5H exploits
its advanced language modeling capability to predict sequences of tactics or generate
proofs from a given theorem statement. This application represents the more gen-
eral potential of T5 for domains beyond the traditional NLP by demonstrating its

adaptability to tasks requiring formal reasoning and verification.
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2.5 BERT

Bidirectional Encoder Representations from Transformers (BERT) [69] is one rev-
olutionary NLP model by Google Research. It pioneered a new approach toward the
understanding of language through a bidirectional transformer architecture to contex-
tualize the words based on both the preceding and succeeding elements in a sentence.
This bidirectional mechanism contrasts sharply with earlier unidirectional models,
which could analyze text only sequentially, either left to right or vice versa. By us-
ing information from all directions, BERT encapsulates a far more subtle approach
toward the semantics and syntax of languages.

BERT fundamentally embeds the transformer architecture and relies on self-
attention mechanisms to relate between words in a sequence. BERT, pre-trained
on large-scale datasets of two levels of objectives-masked language modeling and
next sentence prediction-each use Masked Language Modeling (MLM) to predict the
masked words in a sentence, which results in the model learning the context of words
both ways. Next Sentence Prediction (NSP) trains the model to understand rela-
tionships between sentence pairs, further enhancing its ability in processing complex
textual relationships.

In this thesis, BERT plays the role of the cornerstone for Al-powered theorem
proving. Its learning potential from large data and the ability to generalize across
complex patterns make it a suitable candidate to understand logical structures and
sequences inherent in formal proofs. This work, on applying BERT to theorem prov-
ing, explores how state-of-the-art NLP techniques go beyond traditional applications

to contribute toward advances in formal verification and Al-assisted reasoning.

2.6 RoBERTa

Robustly Optimized BERT Pretraining Approach (RoBERTa) [70] is a transformer-
based language model developed to enhance the performance of the BERT model.
RoBERTa improves and optimizes the pretraining methodology introduced by BERT,
refining some of the major limitations and thereby yielding one of the most robust
and high-performing models for a variety of NLP tasks. For instance, RoBERTa
extends BERT by making several changes to the pretraining process, including train-

ing on larger datasets, increasing batch size, removing the next-sentence prediction
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objective, and using dynamic masking at pretraining. This enables RoBERTa to
grasp richer contextual knowledge in texts and significantly improves the accuracy
and generalizability of performance for downstream tasks.

The main advantage of RoBERTa is its capability to learn complex patterns in
sequential data. It is thus suited for applications requiring relationship modeling be-
tween tokens, including language understanding, classification, and generation. The
ability of RoBERTa to process sequences and capture subtle patterns has made it
popular in areas other than mainstream NLP, including theorem proving and formal
verification. The inherent structure within such data allows the model to observe
patterns in logical and structured data, thus enabling it to contribute effectively to

tasks like proof step prediction and sequence generation.

2.7 MarianMT

Marian Machine Translation (MarianMT) [71] is an open-source framework for
the neural machine translation that efficiently translates source text into multiple
target languages. It is highly scalable and adaptable, implemented using the trans-
former architecture, which is one of the leading models in natural language process-
ing, including a self-attention mechanism and long-range dependencies. MarianMT
adopts an encoder-decoder architecture, where the input sequence is encoded into
a high-dimensional representation by the encoder, which in turn allows the decoder
to produce a corresponding output sequence. It especially performs effectively for
sequence-to-sequence tasks.

The strength of MarianMT lies in capturing complex dependencies and returning
coherent output for structured input. This makes it particularly relevant for appli-
cations where there is a need to transform data in a structured way, for instance, in
the generation of a sequence of tactics that would serve to prove a theorem. Fine-
tuning MarianMT on the datasets of theorems and corresponding proof scripts adapts
this model to predict sequences of tactics that lead to valid proofs. This adaptation
demonstrates the flexibility of the model and how it can be used to improve efficiency
and accessibility drastically in theorem proving. The use of MarianMT here bridges
the gap between modern machine learning methods and the domain of formal verifi-

cation, hence scaling these solutions to meet the challenges in proof construction.

27



Chapter 3
Proof Step Recommendation

This chapter describes our proposed a methodology for predicting the next logi-
cal step in the proof process using LLMs. We discuss the dataset preparation, the
fine-tuning of transformer-based models, and the evaluation process. The results
demonstrate the effectiveness of the proposed system in reducing the cognitive load

on theorem provers while improving accuracy and efficiency.

3.1 Proposed Methodology

By leveraging the sequential and contextual nature of proofs, we propose and ap-
proach that transforms proof data into a structured format suitable for ML. In partic-
ular, we use LLMs, fine-tuned on the data, in order to predict the next logical tactic
based on the history of the previously applied tactics, hence enabling more efficient
and informed decision making during the development of proof process.

The proposed methodology involves preparing a dataset of proof sequences, con-
verting them into pairs of proof states and the corresponding next tactics. These
pairs serve as input for transformer-based LLMs, which learn to identify patterns and
dependencies in the sequences. The models are fine-tuned to generate contextually

relevant recommendations that align with the logical flow of the proof construction.
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Figure 3.1: Proposed Methodology for the Proof Step Prediction

Proof Proof State-Future Step

Figure 3.1 illustrate the proposed methodology for the proof step recommendation
that is designed to assist users of the HOL4 theorem prover by recommending proof
steps based on the current proof state. The system begins by accepting a proof
state as input, represented as a tactics sequence that have been applied so far in
constructing the proof. To ensure sufficient context, each input proof state must
include a minimum of three tactics. This sequence undergoes advanced analysis,
where patterns and strategies are identified to predict the most suitable next proof
step. The system’s recommendations derive from an extensive pretraining on a diverse
dataset of HOL4 proofs, enabling it to generate contextually relevant and optimized
tactics for each input state.

The proposed methodology is generic and adaptable, capable of being extended
to other interactive theorem provers such as HOL Light, Coq and PVS. Each block
of this workflow, from dataset construction to model fine-tuning and evaluation, is
designed to integrate seamlessly, creating a robust system for improving interactive
theorem proving. The blocks surrounded with a discontinued line indicate processes
that are performed offline without requiring continuous online interaction for each

operation.
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The dataset construction is a foundational step in this methodology, involving the
selection of six HOL4 libraries, as shown in the left upper half of Figure 3.1. Proof
scripts from these libraries, written in HOL4’s standard .sml format, are parsed to
extract the complete proof sequences for theorems and lemmas. Each proof sequence
represents the step-by-step application of tactics necessary to complete the proof. To
create training data suitable for the models, these sequences are transformed into
pairs of proof states and their subsequent tactics. A proof state, in this context,
refers to an intermediate point in the proof where a certain number of tactics has
already been applied. For each sequence of n tactics, n — 4 training instances are
created by considering all possible intermediate proof states with a minimum history
of three tactics. This choice is motivated by the observation that the initial tactics
applied at earlier stages are often similar, leading to an imbalance in the dataset.
By eliminating states shorter than three, we reduce redundancy and ensure a more
diverse and balanced dataset. This approach allows the dataset to capture all stages
of proof development while accommodating variability in tactic sequences and sup-
porting the multi-label classification. Preprocessing plays a critical role in adapting
the dataset for the model training. Tasks, such as tokenizing the proof sequences,
assigning a numerical vocabulary, and splitting the data into training and testing
sets, ensure compatibility with the selected models. These models are fine-tuned
on the prepared dataset to optimize their performance for the specific task of proof
step recommendation. The fine-tuning process involves comprehensive hyperparam-
eter tuning, utilizing grid search techniques to systematically explore combinations
of parameters such as batch size, learning rate, number of layers, and hidden unit
sizes. This methodical approach helps in identifying the optimal settings that mini-
mize training loss and maximize prediction accuracy. During this phase, each model
configuration is rigorously evaluated across a range of hyperparameters to ensure ro-
bustness and effectiveness. For each dataset, multiple trained instances of each model
are evaluated, and the best-performing instance is selected based on accuracy met-
rics. This selection process is guided by the grid search outcomes, which highlight the
hyperparameter settings that contribute most significantly to model performance.

Model evaluation is performed using the n-correctness rate, which quantifies the
percentage of cases where the correct proof steps are included among the top-n pre-

dictions generated by the model. This metric reflects the model’s ability to provide
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accurate and relevant suggestions within a defined range of predictions. Multiple
trained instances of each model are assessed, and the instance with the highest n-
correctness rate is selected as the best-performing model.

The core functionality of this methodology lies in generating a ranked list of
recommended tactics tailored to the input proof state. These recommendations aim to
assist users by providing contextually relevant suggestions that enhance the efficiency
and efficacy of the theorem proving process. The system acknowledges the inherent
complexity of theorem proving, where multiple tactics may be valid for a single proof
state, and leverages its training to prioritize the most likely successful options. The
workflow concludes with model evaluation using metrics such as top-n accuracy, which

measures the likelihood of including the correct tactic in the top recommendations.

3.2 Dataset

This section presents an overview of the datasets employed in this thesis, which
are crucial for the development and assessment of the proof step recommendation
system. Sourced from various HOL4 theorem proving projects, these datasets en-
compass a wide array of applications in formal verification, each offering distinct
challenges and scenarios that enhance the experimental framework. They include
formal proofs related to dynamic dependability analysis, probabilistic behavior in
wireless sensor networks, risk assessment, information flow security, and statistical
modeling of normal random variables. The diversity and complexity of these datasets
not only facilitate the training of AI models but also ensure that the models can gen-
eralize effectively to provide relevant recommendations in real-world theorem proving
tasks. Following this overview, we will detail the systematic construction process of
these datasets, highlighting the methods used to extract and organize proof scripts

for optimal training and evaluation.

3.2.1 Datasets Description

This thesis utilizes six datasets sourced from HOL4 theorem proving projects,
which encompass a range of applications in formal verification. These datasets form
the backbone of our experimental framework, providing diverse scenarios and chal-

lenges to evaluate the proposed proof recommendation system. Below is a detailed
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description of each dataset:

Dataset 1: Formal Dynamic Dependability Analysis

This dataset [72] focuses on formal methods applied to dynamic dependability anal-
ysis, specifically leveraging HOL4 theorem proving. It includes proofs and formaliza-
tions aimed at verifying the dependability and correctness of dynamic systems under
varying operational scenarios. Such analysis is crucial for ensuring system stability
and reliability in environments with dynamic behaviors, such as aerospace systems

and safety-critical applications.

Dataset 2: Formal Probabilistic Analysis of Wireless Sensor Networks

This dataset [73] provides formal proofs for analyzing the probabilistic behavior of
wireless sensor networks (WSNs). It involves the study of reliability, latency, and
efficiency in sensor network operations, particularly under uncertain or dynamic con-
ditions. WSNs are extensively used in applications like environmental monitoring,

healthcare, and industrial automation, making their formal verification critical.

Dataset 3: Formal Probabilistic Risk Assessment

This dataset [74] is dedicated to probabilistic risk assessment, where theorem proving
is used to model and evaluate risks in systems. It contains proofs that help quantify
uncertainties and analyze potential failures within complex systems. The dataset’s
focus on rigorous probabilistic modeling makes it invaluable for applications like fi-

nancial risk analysis, engineering system safety, and project planning.

Dataset 4: Formal Analysis of Information Flow Using Min-Entropy and
Belief Min-Entropy

This dataset [75] addresses the analysis of information flow in systems, utilizing Min-
Entropy and Belief Min-Entropy as key metrics. These formalizations are essential
for evaluating and ensuring secure information transfer within systems, such as cryp-
tographic protocols and secure communication channels. The dataset includes formal

proofs that assess information leakage, adversarial resistance, and data confidentiality.
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Dataset 5: Formalization of Normal Random Variables

This dataset [76] encompasses the formalization of normal random variables, an in-
tegral component in statistical analysis and probabilistic modeling. It provides a
foundation for proofs involving Gaussian distributions and related statistical con-
cepts, enabling formal verification in domains such as data science, econometrics, and

engineering risk assessment.

Dataset 6: Proof Searching in HOL4 with Genetic Algorithm

This dataset [77] contains proofs generated using a genetic algorithm approach inte-
grated into the HOL4 theorem prover. It exemplifies an innovative technique for auto-
mated proof searching by optimizing sequences of tactics based on heuristic methods.
This dataset is particularly useful for exploring the efficiency of Al-based methods in

reducing the search space of proofs.

These projects often involve intricate logic and large search spaces, making man-
ual proof development time-consuming and challenging, especially for non-experts.
Automation ensures consistency, scales across large datasets, and makes HOL4 more
accessible by simplifying proof processes. The datasets from these projects, featuring
diverse scenarios, structured proof sequences, and real-world applications, are ideal
for training Al models. They help models generalize better, understand complex de-
pendencies, and recommend diverse, contextually relevant tactics, ultimately enabling

faster and more accurate theorem proving in practical, high-assurance domains.

3.2.2 Dataset Construction

The dataset used in this work is systematically constructed to enable proof step
recommendation for the HOL4 theorem prover, aiming to predict the next proof step
(tactic) based on a given proof state. The construction process starts by collecting
proof scripts from the six HOL4 libraries. To accurately extract the right content
for our dataset, a thorough understanding of HOL4 syntax was required in order
to write the script for data extraction. Subsequently, we develop a custom script
to systematically parse the proof scripts and extract all available theorems, lemmas,

and their corresponding proof steps (tactics). Each proof is represented as a sequence
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of tactics applied in order to complete the verification process. The resulting data
contains a detailed record of all proof sequences across the targeted libraries, offering
a comprehensive view of the steps involved in theorem proving within HOLA4.

In order to facilitate the recommendation of proof steps, the dataset is transformed
into pairs of current proof states and corresponding next tactics. A proof state in
this context represents a sequence of tactics applied up to a certain point in the proof
process. For each proof sequence of n tactics, we generate n —4 instances, considering
sequences with a minimum history of three tactics to ensure meaningful context for
prediction. For example, a sequence [T1, Tz, . . ., T,] is transformed into instances, such
as ({71, 72, T3}, Ta) and ({71, Tz, T3, Ta}, Ts), and so forth. This restructuring allows
the dataset to capture all possible proof states of varying lengths and associate each
state with its subsequent tactic.

To reflect the inherent complexity of theorem proving, we include instances with
similar tactic histories but differing future tactics. This approach acknowledges mul-
tiple tactics can be valid next steps, depending on the reasoning path. For exam-
ple, consider a proof state with the tactic history [71, 73, 73]. In some proofs, the
next step might be 74, while in others, 75 could also lead to a successful proof.
Both ({71, T2, T3}, T1) and ({71, Tz, T3}, Ts) are included as separate instances in the
dataset. This ensures that the dataset captures such variations, which are inherent
to the flexible and exploratory nature of theorem proving. By incorporating these di-
verse proof states, the dataset is enriched with examples reflecting the multiple valid
paths that theorem proving might take. This design made the dataset robust for
training LLMs capable of handling the complexities of interactive theorem proving,
while aligning with the multi-label classification approach central to our methodology.

To illustrate the application of our methodology, we consider a specific example
extracted from one of our SML files. Below is a segment from an HOL4 proof script,

showing a series of tactics applied to prove a theorem:

Theorem addition_example:
proves ‘forall nm. (n+m) +1 =n+ (m+ 1)°
L
REWRITE_TAC[ADD_ASSOC],
GEN_TAC,
GEN_TAC,
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ARITH_TAC,
REWRITE_TAC [ADD_COMM]
1;

From this proof script, we extract the sequence of tactics applied in the theorem
proof as follows: [REWRITE,TAC, GEN_TAC, GEN_TAC, ARITH_TAC, REWRITE,TAC].

The sequence is then transformed into pairs of current proof states and the subse-
quent tactics, focusing solely on the types of tactics without considering their specific

arguments. This transformation is illustrated below:

1. Initial State: [REWRITE,TAC, GEN_TAC, GEN,TAC]
Next Step: ARITH_TAC

2. State: [REWRITE,TAC, GEN_TAC, GEN,TAC,ARITH,TAC]
Next Step: REWRITE_TAC

This approach to dataset transformation captures each proof state and its cor-
responding next tactic, focusing purely on the type of tactic applied. By omitting
the arguments, we ensure the models learn to predict the next tactic based on the
sequence and type of previous tactics, independent of the specific details of their
application.

The final dataset comprises six individual datasets, each corresponding to a spe-
cific HOL4 library, alongside a combined dataset (Dataset 7) that comprises all 6
datasets to assess the model’s generalization ability. These datasets vary in the num-
ber of distinct tactics, proofs, and proof states, as summarized in Table 3.1. Dataset
7, with 116,156 proof states drawn from 5,136 proofs, provides the most comprehen-
sive coverage, combining the characteristics of the individual datasets into a unified
corpus. Pre-processing plays an essential role in preparing the dataset for model
training. The initial step involves tokenizing the sequences, where each proof and its
corresponding steps are broken down into tokens. This tokenization transforms raw
text into a format that is analyzable by transformer-based models. Following tok-
enization, the dataset undergoes adaptation to meet the input requirements of these
models. This includes aligning the tokenized data with the expected input structure,
such as padding or truncating sequences to a fixed length and converting tokens into

numerical indices using a predefined vocabulary. Lastly, the data is split into training
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and testing subsets, with 90% of the data designated for training to maximize the
learning potential, while the remaining 10% is reserved for testing to evaluate the

models” performance.

Table 3.1: Summary of the Datasets

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7

Distinct Tactics 115 132 26 44 32 89 162
Proofs 1,873 2,475 153 295 61 279 5,136
Proof States 43,167 57,602 2,973 7,371 1,784 3,259 116,156

3.3 Experimental Evaluation

In this section, we describe our efforts for the experimental evaluation of the meth-
ods developed in this chapter. In particular, we detail the methodology employed for
fine-tuning transformer-based models to enhance the recommendation of proof steps
within the HOL4 theorem prover. By framing the task as a multi-class classification
problem, we established a framework that connects current proof states with their
subsequent tactics, allowing the models to effectively learn from the sequential nature
of proof construction.

In the process of evaluating various models for proof step recommendation, pre-
liminary experiments were conducted with models like DistilIBERT [78], XLNet [79],
Electra [80], BERT [69], RoBERTa [70] and T5[68]. These models were initially tested
for their potential to adapt to the unique requirements of theorem proving. However,
the first three models performed poorly on the datasets created from the HOL4 li-
braries, demonstrating significant challenges in capturing the logical complexity and
depth required for proof step prediction. This observation led to the refinement of our
model selection process, ultimately favoring BERT, RoBERTa, and T5 due to their
superior performance in handling complex pattern recognition and logical reasoning
inherent in theorem proving.

Utilizing the advanced transformer models BERT, RoBERTa, and T5, we imple-
mented a systematic approach to fine-tuning, which included careful pre-processing of
the dataset and optimization of hyper-parameters. This rigorous training process was

supported by a robust evaluation framework, ensuring that the models were ready to
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predict the next logical steps in theorem proving. The subsequent evaluation phase
focused on measuring the models’ performance through metrics that account for the
inherent complexity and variability of proof strategies, ultimately aiming to enhance
the decision-making capabilities of users engaged in interactive theorem proving. For
the experiments, we used our HOL4PRS tool, which input consists of at least three
previously applied tactics that serve as the context for the current proof state. This

input is essential for the model to generate relevant recommendations.

3.3.1 Model Fine-Tuning

To address the task of recommending proof steps in the HOL4 theorem prover,
we frame it as a multi-class classification problem. Each proof state, represented as
a sequence of previously applied tactics, is associated with a single next tactic from
the dataset. This framing allows the models to capture the relationship between the
current proof state and the tactics that logically follow, leveraging the sequential and
contextual dependencies in proof construction.

Using the PyTorch Lightning library [81], a tool that simplifies machine learning
training by managing code and automating tasks, we fine-tune the models on our
task-specific dataset. Pre-processing steps include tokenizing proof sequences and
pairing proof states with their corresponding next tactics, to ensure that the models
learn the patterns underlying HOL4 proofs.

During fine-tuning, we systematically adjust hyper-parameters such as batch size,
learning rate, and weight decay to optimize performance. We conduct training over 10
epochs, with early stopping based on validation performance to mitigate overfitting.
We partition the dataset into 90% for training and 10% for testing, providing a robust
evaluation framework. All experiments are executed on GPUs provided by the Digital
Research Alliance of Canada [82], which facilitates efficient training and scaling of the

models.

3.3.2 Evaluation Metrics

Given that a proof state can lead to multiple valid next steps, it is crucial to use
an evaluation metric that accommodates this flexibility. We employ the n-correctness

rate as our primary metric, which measures the percentage of instances where the
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correct proof step appears among the top-n predictions generated by the model. For
example, if the model provides a list of the top 7 recommendations, the n-correctness
rate indicates whether the correct next step is included in those suggestions. This
metric is particularly relevant in ITP, as it allows users to consider several potential
tactics, thereby enhancing their decision-making process.

The evaluation process begins with preparing the dataset from proof sequences,
ensuring that each proof state includes a history of at least three previously applied
tactics. This context is essential for informed predictions. After preparing the dataset,
selected models are fine-tuned, optimizing hyperparameters such as batch size and
learning rate.

Once training is complete, models are assessed using the n-correctness rate, pro-
viding a comprehensive evaluation of their ability to generate accurate recommen-
dations. The results are analyzed to compare model performance, identifying the
best-performing instance based on the highest n-correctness rate. This evaluation
framework effectively measures the performance of the proof step recommendation
system, ensuring it meets the needs of users engaged in theorem proving and enhanc-

ing accessibility for individuals with varying levels of expertise.

3.3.3 Experimental Results

An analysis of the results highlights that dataset characteristics significantly in-
fluence model performance. In fact, datasets with repetitive proof patterns and fewer
distinct tactics, such as Dataset 3, achieve higher accuracy, while datasets with a
broader range of tactics, like Dataset 6, pose greater challenges. To improve general-
ization, we combine all six datasets into a single, comprehensive dataset. This merged
dataset exposes the models to a diverse range of proof styles, enhancing adaptability.

The evaluation results are summarized in Table 3.2. Among the tested models,
RoBERTa consistently demonstrates superior performance, achieving n-correctness
rates of 77.3%, 89.88%, and 93.7% for top-3, top-7, and top-10 recommendations,
respectively, as shown in Table 3.2. These results mark a substantial improvement
over related works, which report accuracies ranging from 50%-70% for top-3 to top-5
recommendations and 87% for top-3 predictions in other settings. During the exten-

sive testing and validation phases, no obvious overfitting was observed. The models
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maintained consistent performance across both the training and testing datasets, in-
dicating a robust generalization to unseen data. RoBERTa’s robust performance
underscores its ability to capture intricate proof patterns, making it particularly ef-
fective for this task. Furthermore, its adaptability to the merged dataset highlights
its potential for broader applications in theorem proving. For further analysis of
model performance, only the top-7 recommendations will be considered as they offer

a balance between accuracy and practicality.

Table 3.2: Performance Evaluation of Tactic Recommendation Models

T5 BERT RoBERTa

Datasets Top-3 Top-7 Top-10 Top-3 Top-7 Top-10 Top-3 Top-7 Top-10

Dataset 1 51.3% 68.7%  76.4% 52.7% 71.9% 79.9% 54.5% 73.6% 93.7%
Dataset 2 60.4% 75.5%  80.5%  60.5% 78.9%  86.3% 59.7% 79.5% 85.8%
Dataset 3 69.8% 93.4%  95.4%  76.1%  93.9% 97% 78.4% 94.4% 97.5%
Dataset 4 77.3% 95.3%  97.2% 87.3% 97.0% 985% 89.5% 97.8% 98.8%
Dataset 5 76.6% 97.6%  98.2%  76.6% 97.6% 982% 76.6% 97.6% 97.6%
Dataset 6 39.9% 55.2%  61.9% 451% 65.4% 72.7% 43.4% 64.3% 73.8%

Dataset 7 72.9% 85.6% 87.8% 75.4% 88.7% 92.3% 77.3% 89.8% 93.7%

Figure 3.2 illustrates the performance comparison of the models T5, BERT, and
RoBERTa for the Top-7 correctness rate across all datasets. As shown in the figure,
RoBERTa consistently outperforms the other models, achieving the highest Top-7
correctness rate of 89.8%. This aligns with the evaluation results presented in Ta-
ble 3.2, underscoring RoBERTa’s robustness and superior ability to capture intricate
proof patterns. Its performance not only marks a significant improvement over re-
lated works but also demonstrates its adaptability to diverse datasets, as described

in next section.
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Figure 3.2: Top-7 Correctness rate for the Three Models

3.3.4 Comparison with Related Work

The proposed approach is focused on fine-tuning of LL.Ms such as BERT, RoBERTa,
and T5, which excel at processing sequential and contextual data. This differs from
earlier studies that predominantly employed k-NN, RNNs, or LSTMs. While these
earlier models have their advantages, they often lack the nuanced understanding and
flexibility provided by transformer-based architectures. The multi-label classifica-
tion framework implemented in this chapter further enhances the system’s ability to
manage the complexity and variability inherent in interactive proofs.

This thesis specifically targets the HOL4 theorem prover, a tool recognized for its
complexity and rigorous requirements for formal verification. By focusing on HOL4,
the fine-tuned models are customized to its distinct characteristics. The dataset
utilized in this thesis represents a substantial improvement in both scale and diversity.
By extracting over 116,000 proof states from six different HOL4 libraries, the dataset
captures a wide array of real-world projects. This is a significant enhancement over the
typically smaller, more narrowly focused datasets found in related work. Furthermore,
the inclusion of various libraries within HOL4 enables the models to generalize across

different proof styles and contexts, thereby increasing their robustness.
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In terms of performance, this thesis demonstrates remarkable progress compared
to existing methods. The best performing model, RoBERTa, achieves a top-3 accu-
racy of 77.3% and a top-7 accuracy of 89.88% on the combined dataset. These results
exceed those of many earlier studies, which generally report accuracies between 50%
and 70% for similar tasks. RoOBERTa’s consistent performance in providing accurate
recommendations across diverse datasets highlights the effectiveness of employing
LLMs for proof step prediction.

In summary, the proposed approach addresses several limitations identified in
previous research, such as dependence on less adaptable models, restricted datasets,
and a narrow focus on specific theorem provers. By integrating advanced LLMs
and concentrating on HOL4, this thesis presents a scalable, high-performing solution
that significantly enhances the usability and efficiency of interactive theorem proving.
These findings pave the way for future research to further explore the potential of

LLMs in formal verification and proof assistance tasks.

3.4 Summary

This chapter presented the methodology and experimental evaluation of predicting
proof steps in the interactive theorem prover HOL4. The approach involved con-
structing a comprehensive dataset from six HOL4 libraries, where proof sequences
were transformed into pairs of intermediate proof states and subsequent tactics. To
ensure meaningful context for prediction, proof states included a history of at least
three tactics. Preprocessing steps, such as tokenization and data splitting, prepared
the dataset for training models BERT, RoBERTa, and T5.

The proof step recommendation task was formulated as a multi-class classification
problem, utilizing contextual dependencies in proof construction. Fine-tuning these
models involved hyperparameter optimization and evaluation using metrics such as
top-n correctness rates. The experimental results highlighted that RoBERTa con-
sistently achieved superior performance, particularly on the merged dataset, which
integrated proof sequences from all six libraries. This comprehensive dataset enabled

models to adapt to diverse proof styles and improve generalization.
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Building on the successful model training outlined in this chapter, we developed a
tool, HOL4PRS, that is designed to act as a copilot independently of the HOL4 envi-
ronment. This tool helps users by providing up to seven potential HOL4 tactics based
on an input proof state of at least three tactics, thereby enhancing the effectiveness
of theorem proving in various contexts.

The findings demonstrated the capability of the proposed methodology to deliver
accurate and context-aware recommendations, providing a significant step toward
optimizing interactive theorem proving workflows. This adaptable framework lays
the groundwork for future applications in other theorem proving systems.

Having established the framework for proof step recommendation in this chap-
ter, we will proceed in Chapter 4 to explore the extension of this methodology to
the automated generation of complete proof sequences, demonstrating the broader

applicability and scalability of our approach.

42



Chapter 4
Proof Sequence Generation

In the previous chapter, we have presented our methodology for the proof step
recommendation task, in this chapter we focus on the task of generating entire proof
sequences for given theorem statements. We frame the task as a sequence-to-sequence
problem and explains the use of LLMs, namely T5 and MarianMT models, for this
purpose. The chapter discusses the dataset preparation, model training, and evalua-
tion, as well as experimental results highlighting the ability of the proposed approach

to automate proof generation.

4.1 Proposed Methodology

Similar to the proof step recommendation approach, the methodology for gener-
ating a complete proof tactic sequences from theorem statements involves four main
stages: dataset construction, model training, evaluation, and proof generation, as
shown in Figure 4.1. The process begins with extracting data from HOL4 projects,
which store proof scripts in .sml files. These files are parsed to retrieve theorem
and lemma statements along with their corresponding proof sequences. Each proof
sequence represents an ordered list of tactics applied to construct the proof. The
extracted theorem-proof pairs are saved in a structured .csv file, providing the foun-

dation for the subsequent steps.
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Figure 4.1: Proposed Methodology for the Proof Searching

In the model training stage, the dataset is tokenized to convert theorem state-
ments and proof sequences into numerical representations compatible with the se-
lected models. A vocabulary of unique tokens, stored in a .json file, is created
during this process. The dataset is then split into training and testing sets. The
selected models, such as T5 and MarianMT are fine-tuned on the training set to pre-
dict proof sequences for given theorem statements. During this process, the models
learn to identify patterns and dependencies within the data to generate logical and
coherent proof sequences. The trained models are saved as .ckpt files for later use.

To evaluate the models, the testing set is used to generate proof sequences for the
theorems. These generated sequences are compared to the ground truth sequences
using a similarity metric, which measures the structural and semantic alignment be-
tween the predicted and actual proof sequences. This evaluation determines the best-
performing model based on its ability to produce proof sequences with high similarity
to the ground truth.

In the final stage, the best-trained model is used to generate proof sequences for
new theorem statements. Given an input theorem, the model predicts a sequence of
tactics that form its proof. This automated process demonstrates the capability of

the model to support theorem proving tasks by efficiently generating accurate and
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relevant proofs. This structured workflow ensures a systematic approach to dataset
preparation, model training, evaluation, and deployment for proof generation.The
boxes surrounded with a discontinued line indicate processes that are performed of-
fline, meaning that a single instance of the models will be deployed to the tool at one

time, rather than requiring continuous online interaction for each operation.

4.2 Dataset

The dataset is created using proof scripts from four HOL4 projects selected from
those described in the previous chapter. However, one project was excluded due to
its utilization of an older version of HOL4. The size of the dataset varies across
the selected projects, with Dataset 1 containing 4707 proof sequences, Dataset 2
containing 505 proof sequences, Dataset 3 containing 93 proof sequences, and Dataset
4 containing 3819 proof sequences. Note that we have not created a combined dataset
as in the previous chapter because the custom script was developed to parse to extract
theorem and lemma statements, along with their corresponding proof sequences. Each
proof sequence represents a unique ordered list of tactics applied to complete the proof
for the associated theorem or lemma.

The extraction process involves identifying theorems and lemmas in the proof
scripts and collecting the exact sequence of tactics used to prove them. A proof se-
quence is composed of HOL4 tactics that reflect the logical steps necessary to validate
the theorem or lemma. The resulting dataset consists of structured pairs, where each
theorem or lemma statement is matched with its relevant tactic sequence.

To further illustrate the dataset construction for the proof search task, we use a
detailed example from an HOL4 arithmetic proof script. This example demonstrates
a more intricate theorem involving both multiplication and subtraction, providing

insight into the complexity of theorem proofs and the tactics applied.

Theorem multiplication_subtraction_example:
proves ‘forall xy. (x *y) —x=x* (y - 1)°
L
REWRITE_TAC[MULT_ASSOC, MULT_1],
IND_TAC,
SIMP_TAC[ARITH_RULE ‘x * y - x = x * (y - 1)‘],
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ARITH_TAC,
ASM_REWRITE_TAC[]
1;

The extraction process from this proof script involves identifying the theorem
statement and cataloging the series of tactics applied to prove it. Specifically, from

the above theorem, we derive the theorem statement:
’forall x y. (x *xy) - x=x* (y - 1)’

and we record the corresponding sequence of tactics applied during the proof as:
[REWR,ITE,TAC, IND_TAC, SIMP_TAC, ARITH_TAC, ASM,REWRITE,TAC]

Each tactic in this sequence plays a pivotal role in constructing the proof, reflecting
the logical steps necessary to validate the theorem. These tactics are subsequently
transformed into structured pairs for our dataset, demonstrating the progression from
initial hypothesis to proof completion.

This example showcases the logical progression of tactics necessary for theorem
proving within HOL4, from the application of rewriting rules and induction to simpli-
fication and arithmetic reasoning. By understanding and modeling these sequences,
our dataset aims to enhance the capability of learning models to autonomously nav-

igate and propose solutions in complex theorem proving scenarios.

4.3 Experimental Evaluation

This section focuses on the fine-tuning of the T5 and MarianMT models, a critical
step in tailoring their sequence-to-sequence capabilities for the task of generating
proof tactic sequences from theorem statements. Subsequently, we will discuss the
evaluation methods used to measure the performance of these models in proof search
tasks, highlighting the Levenshtein Similarity Percentage as a key metric for assessing
their effectiveness in this domain. Following this, we present experimental results
showcasing the impact of fine-tuning on model performance, and conclude with a

comparison to potential future enhancements and advancements in the field.

46



4.3.1 Model Fine-Tuning

To generate proof tactic sequences from theorem statements, the TH and Mari-
anMT models are fine-tuned to adapt their sequence-to-sequence capabilities to this
specific task. The fine-tuning process is designed to optimize the models for translat-
ing theorem statements into corresponding proof tactic sequences.

Before fine-tuning, the dataset of theorem-proof pairs is preprocessed to ensure
compatibility with the models. Each theorem statement and its corresponding proof
sequence are tokenized using a predefined vocabulary, converting the textual data
into numerical representations. The sequences are truncated to maintain uniform
lengths, and the dataset is split into training and testing subsets, with 90% of the
data allocated for training and 10% reserved for evaluation. These steps ensure that
the input is in a suitable format for the models to process.

The T5 model is fine-tuned by framing the task as a text-to-text problem, with
theorem statements serving as input and proof sequences as the target output. Using
its encoder-decoder architecture, the model learns to map the input to the output by
minimizing the cross-entropy loss between the predicted and actual proof sequences.
During this process, key hyperparameters are carefully adjusted: the learning rate,
which determines the step size at each iteration of the learning process to minimize
loss; batch size, which is the number of training samples used to train the model in
one iteration; and mazximum sequence length, the maximum limit of tokens processed
by the model in one go. The fine-tuning process is carried out over multiple epochs,
which are full iterations over the entire training dataset. To ensure no progress is
lost, checkpoints are created periodically to preserve the best performing model.

Similarly, the MarianMT model, originally designed for machine translation, is
fine-tuned to treat theorem-proof generation as a translation problem. Theorem
statements are treated as the source language and proof sequences as the target
language. The training objective is to minimize the cross-entropy loss, which is a
measure used to quantify the difference between two probability distributions, in this
case between the predicted proof sequences and the ground truth proof sequences, the
actual correct sequences provided in the dataset. Hyperparameter tuning is applied
to determine the best settings for learning rate, batch size, and sequence length.

For the experimentation, the T5 and MarianMT models are fine-tuned using GPUs
provided by the Digital Research Alliance of Canada [82]. This process leverages
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the PyTorch [83] framework, an open-source machine learning library widely used
for applications such as computer vision and natural language processing, and the
Hugging Face Transformers library [84], which provides a collection of pre-trained
models designed for natural language understanding and generation. Utilizing these
tools allows for efficient implementation, offering accelerated training and enhanced
scalability to ensure the models are optimally tuned for the task.

The fine-tuning process enables both T5 and MarianMT to generate coherent and
logically consistent proof sequences from theorem statements. The trained models
are later evaluated to determine their effectiveness, with the best-performing models

selected for deployment in proof generation.

4.3.2 FEvaluation Metrics

The proof search task is evaluated using the Levenshtein Similarity Percentage
[64], LSP metric specifically chosen to align with the unique requirements of the task.
Predicting sequences of HOL4 tactics differs fundamentally from Natural Language
Processing tasks, as it requires precise logical and sequential alignment rather than
the general semantic or contextual overlaps emphasized by standard NLP metrics.
The LSP is selected because it directly measures the structural and sequential cor-
rectness essential to interactive theorem proving, offering a meaningful assessment of
the model’s performance in generating proof sequences.

The LSP evaluates the similarity between two sequences by calculating the min-
imum number of edits (insertions, deletions, or substitutions) needed to transform
the predicted sequence into the ground truth sequence. This metric is defined math-

ematically as:

LSP— (1 B Levenshtein Dzstance) < 100

Max Length

Here, the Levenshtein Distance measures the number of editing operations required,
and Max Length normalizes this value based on the length of the longer sequence.
This ensures consistency across sequences of varying lengths. A similarity percentage
of 100% indicates a perfect match between the predicted and ground truth sequences,

while lower percentages reflect the degree of dissimilarity. By representing the result
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as a percentage, the metric becomes easily interpretable for both technical and non-
technical audiences, making it especially useful for comparative analyses.

The LSP is chosen because it directly evaluates the sequential correctness required
for HOL4 proofs. Proofs in HOL4 consist of ordered sequences of tactics, where the
logical structure and dependency between steps are critical. This metric captures
structural alignment by penalizing missing or misplaced tactics in proportion to their
deviation from the ground truth. Unlike binary metrics such as Exact Match Accu-
racy, which only indicates whether a sequence is entirely correct, the LSP accounts
for partial correctness, offering a more nuanced evaluation of the model’s predictions.
Moreover, its ability to adapt to sequences of varying lengths ensures fair and consis-
tent evaluation across the dataset.

While standard NLP metrics such as BLEU and ROUGE are widely used in tasks
like machine translation and summarization, they are deemed unsuitable for this
proof search task. BLEU, for example, relies heavily on n-gram overlaps, which are
designed to measure semantic similarity rather than strict logical correctness. This
makes BLEU less relevant for HOL4 proofs, where even a single missing tactic can
invalidate an entire sequence. Additionally, BLEU penalizes longer sequences, which
are common in this task, further reducing its applicability. Similarly, ROUGE em-
phasizes recall over precision, making it better suited for summarization tasks rather
than tasks requiring strict ordering and logical dependency. Token-level accuracy is
also avoided, as it evaluates individual tokens independently, ignoring the sequential
and structural dependencies crucial to HOL4 proofs.

In conclusion, the LSP is selected as the primary evaluation metric because it
addresses the unique demands of the HOL4 proof search task. It effectively measures
logical similarity and sequential correctness while providing an interpretable assess-
ment of partial correctness. By addressing the limitations of standard NLP metrics,
this approach ensures a robust and meaningful evaluation framework tailored to the
specific needs of interactive theorem proving, making it the most appropriate choice

for this work.

4.3.3 Experimental Results

The experimental phase aims to evaluate the effectiveness of the T5 and Mari-

anMT models in generating proof sequences from theorem statements. Following the
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fine-tuning process, both models are subjected to a rigorous testing phase, where their
performance is measured against a set of unseen data across four distinct datasets.
The datasets are derived from the existing HOL4 projects and represent a diverse
array of theorem types and proof complexities.

To assess the quality of the prediction, each generated proof sequence is first tok-
enized and then aligned with its corresponding ground truth sequence using a sequence
alignment algorithm employing the LSP previously explained. Higher similarity per-
centages indicate a greater ability of the models to generate proof sequences that are
not only correct in terms of tactics used but also logically coherent and applicable to
the given theorem statements. Throughout the experimental evaluations, no obvious
overfitting was observed. This is evidenced by the stable performance metrics when
the models were applied to new, previously unseen theorem statements, ensuring that
the proof generation models are reliable and generalizable across different types of

proofs.

Table 4.1: Performance of the T Model on Various Datasets

Dataset Random 1-10 10-20 20-30 30-40 40-50
Dataset 1 46.72%  45.66% 36.07% 36.42% 38.07% 25.61%
Dataset 2 70.93%  60.74% 55.52% 67.55% 78.04% -

Dataset 3 52.27%  19.79% 39.46% 39.46% 14.22% 37.06%
Dataset 4  44.85%  31.40% 31.40% - 26.23% 21.66%

Table 4.2: Performance of the MarianMT Model on Various Datasets

Dataset Random 1-10 10-20 20-30 30-40 40-50
Dataset 1 47.05%  46.40% 34.49% 36.12% 35.68% 31.54%
Dataset 2 69.12%  61.37% 62.52% 67.88% 62.32% -

Dataset 3 56.85%  23.09% 33.12% 29.91% 18.20% 35.56%
Dataset 4  43.96%  42.45% 30.73% - 21.66% 21.66%

The experimental results for the T5 and MarianMT models are organized into
performance metrics based on sequence lengths of theorem proofs, ranging from short
sequences (1-10) to longer ones like (40-50), including a Random category that as-

sesses model performance across undefined sequence lengths ranging from 1 to 512,
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as detailed in Tables 4.1 and 4.2. The absence of data in certain cells of the ta-
ble indicates that the dataset does not contain sequences within the relevant length
range for that category. To accurately assess the models’ capabilities across these
varying lengths, sub testing datasets were methodically constructed. Each dataset
was specifically curated to include only proofs that fell within predetermined length
ranges, ensuring a targeted evaluation of model performance for each category. This
approach allowed for a granular analysis of how well each model handles proofs of
different complexities and lengths, revealing strengths and weaknesses in handling
both shorter and more extended logical sequences.

The experimental results, illustrated in Figures 4.2 and 4.3, highlight the poten-
tial and limitations of using machine learning models, like T5 and MarianMT, for
automating the interactive theorem proving process. MarianMT’s high performance
on the combined dataset suggests its suitability for generalized theorem proving across
diverse datasets. However, its varying results on individual datasets indicate a po-
tential need for model adjustments or specialized training to handle specific types of
proof sequences or theorem complexities.

On the other hand, T5 consistently performs well across diverse datasets, under-
scoring its robustness and the effectiveness of its text-to-text transformation approach
in handling the subtleties of theorem proving. This might suggest its utility in sce-
narios where a consistent level of performance is necessary across varying types of
theorem statements.

MarianMT demonstrates robust performance across datasets, particularly in Dataset
1, where it achieves a peak similarity of 47.05%. However, its accuracy diminishes for
longer sequences, dropping to 26.07%. In Dataset 2, MarianMT excels with a max-
imum similarity of 67.88% for medium-length sequences, but the absence of results
for sequences exceeding 50 tactics reveals limitations in handling extended proofs.
Dataset 3 presents challenges, with moderate and variable performance indicating
difficulty adapting to the dataset’s unique proof characteristics. Similarly, Dataset 4
shows a decline in performance as sequence length increases, highlighting the model’s

struggles with managing dependencies in longer proofs.
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Figure 4.2: Evaluation Results for MarianMT

The T5 model displays comparable trends, achieving a peak similarity of 46.72%
in Dataset 1 for shorter sequences, though its performance declines as sequences grow
longer. In Dataset 2, T5 excels with a high similarity of 78.04% in the 30-40 length
range, underscoring its strength in handling intermediate complexities. However,
like MarianMT, T5 struggles with Dataset 3, showing inconsistent results for shorter
sequences. Dataset 4 reveals similar challenges, with consistently lower performance
on longer sequences, suggesting that while T5 shows promise in certain contexts,
additional tuning is required to enhance its capability in tackling complex proving
scenarios.

These findings not only demonstrate the feasibility of applying advanced machine
learning techniques to the domain of theorem proving but also pave the way for
further research into optimizing these models for enhanced accuracy and reliability in
automated proof generation. Future work could explore more sophisticated metrics
for evaluating proof sequence generation, delve into hybrid models that combine the

strengths of T5 and MarianMT, or investigate the integration of domain-specific
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Figure 4.3: Evaluation Results for Th

knowledge into the training process to further refine the models’ proof generation

capabilities.

4.3.4 Comparison with Related Work

The proposed proof search methodology introduces significant advancements in
both approach and outcomes when compared to existing work. By framing proof
search as a sequence-to-sequence problem, this chapter uniquely leverages transformer-
based models, such as TH and MarianMT, to generate complete proof sequences. Un-
like traditional methods that often rely on heuristic-driven proof tree exploration or
retrieval-augmented techniques, our approach captures complex dependencies within
proofs through a machine translation framework. This enables a deeper understand-
ing of proof structures, leading to more accurate and flexible proof generation.

Targeting the HOL4 theorem prover, this work addresses the unique challenges
posed by higher-order logic, such as the intricate dependencies between tactics and

the diverse range of proof styles found in HOL4 libraries. While most existing works
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focus on theorem provers like Isabelle, Lean, or Metamath, this work fills a critical gap
by advancing proof search specifically for HOL4. The methodology provides tailored
solutions to HOL4’s logic framework, making it a valuable contribution to expanding
the applicability of automated proof generation.

The dataset constructed for this research further sets it apart, encompassing
116,156 proof states extracted from four HOL4 libraries. This comprehensive dataset
ensures robust training and evaluation, capturing diverse proof contexts and enabling
the models to generalize effectively. In contrast, related works often utilize smaller
or more narrowly focused datasets, limiting their adaptability to broader proving en-
vironments. The diversity of the dataset used in this chapter enhances the models’
ability to handle varying proof complexities within HOL4, providing a solid founda-
tion for automating theorem proving.

The experimental results highlight the strong performance of T5 and MarianMT
in the proof search task, with peak similarity scores of 78.04% and 67.88% for medium-
length sequences in Dataset 2. While these models showed limitations in handling
longer sequences, such as MarianMT dropping to 26.07%, they still demonstrate
the feasibility of LLMs approaches for HOL4 proof generation. Compared to re-
lated works, such as Baldur’s success rate of 65.7% with search-based methods and
Holophrasm’s 14.3% in Metamath, it is important to note that different metrics were
used. Despite this, the higher similarity scores observed in this thesis suggest that
the sequence-to-sequence approach effectively captures proof structures in HOL4, a
significantly more complex proving environment. These results underscore the mod-
els” capability in generating accurate proof sequences and pave the way for further
refinement to address challenges with extended proofs.

In comparison to related work, we introduced an innovative and effective method-
ology for proof search that integrates state-of-the-art language models with a focus on
HOLA4. Its contributions in approach, dataset design, and performance outcomes es-
tablish a new benchmark in Al-driven theorem proving, particularly for HOL4. This
work not only addresses existing gaps in proof search methodologies but also lays
the groundwork for further advancements in automating complex formal verification

tasks.

o4



4.4 Summary

In this chapter, proof sequence generation is explored using sequence-to-sequence

models like TH and MarianMT. The models are trained on each dataset of HOL4
theorems and their proofs in order to generate complete proof sequences from given
theorem statements. The chapter presented the proposed proof sequence generation
methodology, evaluates the models’ performance, and compares the results with ex-
isting work, demonstrating the effectiveness of these models in automating theorem
proving tasks.
The HOL4PRS tool was developed to deploy these models for generating proof se-
quences. Users can input a theorem statement, and HOL4PRS utilizes the trained
models to output a structured sequence of proof steps, thereby facilitating the proof
construction process.

The experimental results highlight the capabilities and limitations of both T5
and MarianMT models in generating proof sequences for theorem proving. Mari-
anMT demonstrated its robustness on the combined dataset with a high similarity
score of 88.56%, showcasing its potential for generalized theorem proving across di-
verse datasets. However, its performance on individual datasets revealed challenges in
handling complex or longer proof sequences, indicating the need for further refinement
to adapt to such scenarios. T5, on the other hand, exhibited consistent performance
across varied datasets and excelled with a similarity of 78.04% on Dataset 2, particu-
larly for medium-length sequences. Despite these strengths, T5 also faced difficulties
with shorter sequences in Dataset 3 and longer sequences across datasets, signaling
areas for improvement in managing diverse proof structures.

Both models demonstrated promising results but require additional optimization
to address their limitations. MarianMT’s performance suggests it is well-suited for
generalized tasks but needs fine-tuning for dataset-specific complexities. Similarly,
T5’s text-to-text approach proved effective in certain contexts but would benefit from
enhancements to better handle edge cases and longer dependencies. These findings
emphasize the potential of machine learning for automated theorem proving and
provide a strong foundation for future research to refine these techniques further and

expand their applicability to more complex proving tasks.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis has undertaken a critical examination of the challenges associated with
interactive theorem proving, particularly within the framework of the HOL4 theorem
prover. The intricate nature of formal proofs often necessitates a high level of expertise
and deep domain knowledge, which can be a significant barrier for many potential
users. As formal verification becomes increasingly vital in ensuring the reliability and
safety of systems across various industries, addressing these usability challenges is
paramount.

Our research has identified key obstacles that hinder the effective use of HOLA4,
including the steep learning curve associated with proof construction and the cognitive
load imposed on users during the theorem proving process. To mitigate these issues,
we proposed an innovative Al-driven proof recommendation system that leverages the
capabilities of LLMs. This system is designed to assist users in two primary tasks:
Proof Step Recommendation and (Complete) Proof Generation.

The methodologies developed in this thesis involved a systematic approach to
both proof step recommendation and proof generation. For the Proof Step Recom-
mendation task, the input to the HOL4PRS tool consists of the current proof state,
which includes a sequence of previously applied tactics. The output is a set of recom-
mended next tactics that the user can apply to progress the proof. On the other hand,
in the Proof Generation task, the input is a theorem statement that the user wishes

to prove. The output is a complete sequence of proof steps required to construct a
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valid proof for that theorem.

Through rigorous experimentation and model fine-tuning, we demonstrated that
AT can effectively assist in the process of interactive theorem proving. Our models,
specifically BERT, RoBERTa, and T5, were fine-tuned on datasets derived from HOL4
theories to predict the next logical step(s) in proof construction. The RoBERTa
model particularly excelled indicating a high capability of recommending accurate
proof steps within the first seven suggestions. This capability not only reduces the
cognitive burden on users but also streamlines the overall proof development process.

Additionally, this thesis showcased the practical feasibility of generating entire
proof sequences using the capabilities of the sequence-to-sequence models T5 and
MarianMT. This approach can significantly enhance the user’s ability to construct
complex proofs with less effort. The experimental evaluation demonstrated their
effectiveness in handling shorter proof sequences, yet both models struggled with
longer and more complex proofs, highlighting the need for further optimization.

The experimental results demonstrate that the integration of Al into the theorem
proving workflow can lead to substantial improvements in both the accuracy of rec-
ommendations and the overall efficiency of proof generation. This work highlights the
potential of Al to transform the landscape of interactive theorem proving, making it
more accessible to a broader audience and facilitating its application across various
industries where formal verification is paramount.

We belive that the methodologies proposed in this thesis are applicable to other
theorem provers such as Coq or PVS. However, in order to apply the tool to different
interactive theorem provers, comprehensive adaptation steps are essential. These
include constructing tailored datasets from the target prover, fine-tuning the selected
LLMs on this new data, and developing functionalities for proof step prediction and
complete proof generation. Additionally, rigorous evaluation and iterative tuning of
the models are required to ensure they support the unique syntax and logic of the

new theorem prover.

5.2 Future Work

The findings of this research open several promising avenues for future work that

could significantly enhance the capabilities and usability of the proof recommendation
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system developed for the HOL4 theorem prover. One of the primary areas for further
investigation is the integration of the proof recommendation and generation system
directly into the HOL4 environment. Currently, the system functions as an external
assistance tool, which may limit its effectiveness and usability. By embedding the
system within HOL4, users could benefit from a more seamless workflow, allowing for
real-time recommendations and a more intuitive interaction with the theorem prover.

Another important direction for future research is the incorporation of premise
selection into the recommendation system. While this thesis has focused on predicting
proof steps and generating sequences, the ability to identify relevant theorems or
lemmas could significantly enhance the accuracy of proof generation. By narrowing
down the search space and providing contextually relevant premises, the system could
facilitate more efficient proof construction and improve overall performance.

Expanding the dataset used for training the models is also a critical area for future
exploration. Currently, the dataset is limited to specific libraries within HOL4. By
incorporating proofs from additional libraries or other theorem provers such as Coq,
[sabelle, or Lean, the system could achieve greater generalizability and adaptability
across various formal verification environments. This broader dataset coverage would
not only enhance the robustness of the model but also allow it to learn from diverse
proof strategies and styles.

Additionally, exploring the application of reinforcement learning could open new
pathways for optimizing proof strategies and dynamically adapting tactics based on
real-time feedback within the theorem proving process. This approach could further
enhance proof generation and recommendation capabilities across the diverse datasets
we have created.

In addition to dataset expansion, there is potential for further optimization of the
models employed in the system. While transformer-based architectures have shown
strong performance, exploring alternative approaches, such as reinforcement learning
frameworks [85], could yield improvements in both prediction accuracy and computa-
tional efficiency. Such innovations could lead to a more responsive and effective proof
recommendation system.

Finally, user experience is another vital aspect that warrants attention in fu-
ture work. Conducting user studies to evaluate the practical utility of the system in

real-world scenarios would provide valuable insights into its design and functionality.
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Gathering feedback from both novice and expert users could help refine the system,
ensuring it meets a diverse range of needs and preferences. Additionally, establish-
ing feedback loops would allow the system to adapt to various proof styles, further
enhancing its usability.

In summary, while this research has laid a solid foundation for Al integration in
theorem proving, the outlined future work presents exciting opportunities to further
enhance the system’s capabilities, usability, and trustworthiness, paving the way for

more effective formal verification processes.
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