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Abstract

Personalized Visual Dubbing through Virtual Dubber and Full Head Reenactment

Bobae Jeon

Visual dubbing aims to modify facial expressions to ”lip-sync” a new audio track. While

person-generic talking head generation methods have made significant progress in expressive lip

synchronization across arbitrary identities, they usually lack person-specific details and fail to gen-

erate high-quality results. On the other hand, person-specific approaches enable realistic identity

preservation and high lip-sync quality but require extensive training, limiting their adaptability in

real-world applications.

Our method combines the strengths of both approaches to generate balanced results in lip syn-

chronization and visual quality while achieving training efficiency. To this end, our pipeline in-

corporates a virtual dubber, a person-generic talking head, as an intermediate representation. This

simplifies identity swapping, enhances efficiency, and improves both visual quality and expression

accuracy.

Key innovations include full-head identity swapping and reenactment, eliminating artifacts such

as the double chin effect while ensuring temporal stability. Through extensive quantitative and

qualitative evaluations, we demonstrate that our approach achieves a superior balance between lip-

sync accuracy and realistic facial reenactment.

Furthermore, we validate the robustness of our method with experiments in challenging real-

world scenarios, including tilted head poses and facial occlusions. Notably, our pipeline operates

effectively with short video clips, emphasizing its efficiency and practicality.
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Chapter 1

Introduction

Visual dubbing is a video synthesis task that aims to synchronize the facial expression of an actor

with arbitrary audio, such as translated speech. While traditional dubbing only replaces the original

audio, visual dubbing addresses the mismatch between mouth movements and the new audio. It is

highly applicable to real-world scenarios such as movies, news broadcasts, and advertisements to

ensure a more natural viewing experience by aligning the visual and audio components.

The ultimate purpose of visual dubbing is to generate a natural-looking “lip-sync” video in these

practical scenarios. Specifically, the output videos must retain the original actor identity and pose,

while preserving the background and matching the production-level visual quality of the original

actor videos, only modifying mouth expressions to follow the dubber speech. Achieving these goals

presents significant challenges, as the synthesized video must balance lip synchronization, visual

quality, temporal consistency, and person-specific details.

Recent advancements in lip-syncing have been driven by person-generic talking head generation

methods that generalize across multiple identities. These approaches are typically trained on diverse

datasets with various identities and expressions. This training enables generalization on arbitrary

identities and these methods have shown great performance in generating expressive mouth move-

ments. However, the outputs of these methods often fail to achieve the high visual quality required

for real-world videos. Moreover, they struggle to preserve person-specific details, often resulting in

uncanny or unnatural facial features. Furthermore, many of these methods rely on a single-image

as input, focusing on synthesizing the face. This inherently results in static backgrounds and body
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parts, making it challenging to preserve the dynamic pose and background from the original video.

This limitation makes it challenging to directly adapt these techniques to real-world visual dubbing

scenarios, where maintaining all parts of the video except for the mouth expressions as original is

crucial.

In contrast, person-specific methods aim to train customized models tailored to specific individ-

ual. Previously, they have shown realistic identity preservation and good lip-sync quality, but often

require large amounts of person-specific data for training. This presents a significant drawback to

be applied to many real-world scenarios. For example, TV ads are typically less than 30 seconds

long, which is insufficient for training such models.

To address these limitations, we propose a novel pipeline that combines the strengths of both

person-generic and person-specific approaches. Our method introduces a virtual dubber, a static

background talking head generated from a person-generic talking head method, as an intermediate

representation. This virtual dubber captures the dubber’s expressive mouth movements while pre-

serving the actor’s identity. Although the virtual dubber is not suitable as a final output due to pose

differences, static backgrounds, and occasional uncanny facial features, it serves as a powerful inter-

mediate step. By leveraging the expressiveness of person-generic methods while reducing the need

for extensive data typically required for person-specific model training, the virtual dubber bridges

the gap between the two approaches.

Building on the work of Patel et al. [1], we use an autoencoder-based identity swapping network

to transfer the actor’s identity onto the virtual dubber frame-by-frame. The virtual dubber provides

a closer representation of the desired output as it already retains some aspects of the actor iden-

tity, simplifying the identity swap and making the overall process more efficient. Conversely, the

approach by Patel et al. requires a second identity transfer pass to address the mismatch between

the actor’s mouth style and the dubber expressions in their initial output. This additional step not

only significantly adds complexity to the pipeline, but also tends to average expressions, leading

to less expressive results. Furthermore, we perform identity swap in a full head, including the hair

and neck, rather than limiting it to the face. This extended identity swap not only allows better

preservation in identity and visual quality, but also enables adjusting the size of the face parts, such

as jaws, helping avoid undesirable artifacts such as the double chin as discussed next.
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The face reenactment step of Patel et al. relies on landmark-based compositing of the mouth

region, which introduces temporal inconsistencies (e.g., jittering) due to alignment errors. Addition-

ally, when the original actor face has an open mouth and a wider jaw, but the synthesized face has

closed mouth, the mismatch between facial geometry results in unnatural appearance, resembling a

double chin. These issues arise because landmark-based compositing does not allow adjustments to

facial features. To address these challenges, we reenact the extended head region generated by the

identity swapping network. Our method synthesizes and directly reenacts the full head, eliminating

the need for mouth-region compositing. As a result, we resolve the double chin effect and improve

temporal consistency.

Figure 1.1 illustrates challenges in earlier approaches: pose and background preservation (SadTalker

[2]), visual quality– blurred face (Wav2Lip [3]), identity preservation with unnatural eyes (LivePor-

trait [4]), and double chin effect– the jaw is too large in the synthesized image (Patel et al. [1]).

Figure 1.1: Challenges of earlier approaches. Note that ideally, the synthesized faces should appear
natural, with only the expressions modified from the original. (a) pose and background preservation
(SadTalker [2]), (b) visual quality (Wav2Lip [3]), (c) identity preservation (unnatural eyes) (Live-
Portrait [4]), (d) face artifacts– double chin (Patel et al. [1])

We introduce several novel strategies to achieve high-quality and realistic visual dubbing, ad-

dressing these limitations. Our contributions can be summarized as follows:

(1) Introduction of a virtual dubber: An expressive intermediate representation that accelerates
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identity swap while preserving expression.

(2) Full-head identity swap: Effectively preserves identity and visual quality.

(3) Full-head reenactment: Ensures temporal consistency and eliminates artifacts such as the

double chin effect.

(4) Extensive evaluation on real-world videos: We demonstrate our method achieves balanced

results in lip syncing and visual quality, outperforming the competitive approaches.
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Chapter 2

Background

2.1 Visual Dubbing

Dubbing is a post-processing step in video production that replaces the audio, often with a trans-

lation into another language. It allows the production of a video with various languages, without

affecting the original video. Therefore, it is convenient for viewers who speak different languages as

it eliminates the need to read subtitles. Voice actors record the translated speech in another language,

and it replaces the original speech later in the post-production. However, only the audio is altered

in traditional dubbing, so the mouth expressions remain the same as the original language. Due to

this discrepancy in mouth motion and audio, the viewers can find the dubbed video unnatural.

Visual dubbing is introduced to address the ”unmatched mouth” problem of traditional dubbing.

It involves synthesizing mouth and lip motion to follow the new speech. Early works [5,6] map the

audio features to the facial features of the original video and find particular phonemes to match the

new audio. Since they rearrange the original video sequence and match the expression, they can only

reconstruct the mouth expression from the original video. Later, [7] introduced a learnable approach

to synthesize unseen facial expressions using mouth appearance and shapes. More recently, deep

learning-based approaches have become dominant as they have shown the ability to generate unseen

expressions more effectively.

Visual dubbing is a complex task that requires syncing the facial expression to the new speech,

ensuring viewers can process the video naturally. Therefore, it is required to have realistic and
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expressive mouth motion synchronized to the audio while preserving the original actor’s identity

and maintaining the production quality of the video.

2.2 Image Generative Models

Image generative models are fundamental to facial synthesis, offering the ability to generate

unseen photorealistic faces and enabling face manipulation. Here, we introduce the most prominent

architectures in this domain.

2.2.1 Autoencoders (AE)

Encoder-Decoder Models

In encoder-decoder models, the encoder E processes the input x, converting it to a high-

dimensional latent vector z that retains only the most essential information. This compressed rep-

resentation passes through a bottleneck or submodules S that adapt the latent representation for

specific tasks. The decoder D then processes the output of S to generate the final output.

This architecture serves as a common backbone for many generative models. It is highly flexible

and adaptable for a wide range of different tasks, as its modularity allows submodule integration

with different functionalities between the encoder and decoder.

F (x) = D(S(E(x))) (1)

Standard Autoencoders

While general encoder-decoder models are not restricted to having the same input-output do-

main, autoencoders are a specific type of encoder-decoder architecture designed to reconstruct the

input. In the face generation context, the encoder learns the high-level features of the face, and

the bottleneck lowers its dimensionality. Then the decoder maps the latent representation from the

bottleneck to re-generate the input face. Although it can reconstruct input faces, the latent space is

too compressed to generate unseen faces.
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Variational Autoencoders (VAE)

Variational autoencoders (VAE) [8] are one of the AE modifications designed to improve the

generation capabilities. Unlike standard AE, the encoder in VAE encodes the input x into mean µ

and standard deviation σ parameters of a Gaussian distribution:

E(x) −→ (µx, σx) (2)

The model uses a probabilistic latent space, which is regularized to approximate a standard normal

Gaussian distribution during training. From the latent space, the latent representation z is sampled

using the encoded parameters, where ϵ ∼ N (0, 1):

z = µx + ϵ · σx (3)

Since it uses a continuous latent space, unseen data can be generated by sampling new latent vectors

from the prior Gaussian distribution and passing them through the decoder.

Typical AE-based approaches are relatively easy to train because of the straightforward archi-

tecture. Although they generally produce stable outputs, their outputs are less expressive and prone

to averaging. In addition, they typically generate low-quality images, lacking fine details.

2.2.2 Generative Adversarial Network (GAN)

Generative Adversarial Networks (GAN) [9] consist of two main components: a generator and a

discriminator. The generator learns to create realistic images from a latent vector z, and the discrim-

inator learns to distinguish between real images from the training dataset and synthetic images from

the generator. The term ”adversarial” refers to the training process where the goal of the generator

is to output highly realistic images to fool the discriminator, while the discriminator is trained to

label the real and generated images. Formally, we can consider the generator and the discriminator

to be minimax game players with a value function V (D,G).

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[1− logD(G(z))] (4)
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StyleGAN

StyleGAN [10] enhances the generator in GANs to produce photorealistic images with improved

disentanglement and control. Unlike the vanilla GAN generator, StyleGAN uses a mapping network

to transform the input into a latent code w in an intermediate latent space W . This intermediate

latent space is more disentangled than that of traditional GANs, enabling the generator to create

more realistic images effectively. The output of the mapping network is affine-transformed into a

style vector, which controls the generator through the Adaptive Instance Normalization (AdaIN)

layer formulated as:

AdaIN(xi, y) = ys,i
xi − µ(xi)

σ(xi)
+ yb,i (5)

The AdaIN operation normalizes each feature map, and then applies scaling and bias based on the

style vector. Additionally, StyleGAN introduces noise inputs to generate stochastic details, such

as variations in hair and skin. This design successfully separates high-level features (styles) from

stochastic details. This separation also enables style mixing during inference by injecting different

latent codes w, improving controllability in face synthesis.

Although StyleGAN yields high-resolution photorealistic image synthesis, it has shown charac-

teristic artifacts in its results– such as “blob”-like artifacts. To address these issues, StyleGAN2 [11]

has been introduced. It modifies the generator to replace AdaIN which introduces artifacts. Instead,

they apply demodulation operation to the weights of convolutional layers. These changes result in

an improvement in the output image quality with fewer artifacts.

Building on StyleGAN2, StyleGAN3 [12] has shown further improvements. It solves the “tex-

ture sticking” problem from StyleGAN2, in that the face details are fixed to the same pixel position

when interpolating the latent code. It redesigns the architecture alias-free, using continuous signal

interpretation. It has shown improved geometric consistency in the generated images, especially

under transformations.

GANs have demonstrated a remarkable ability to generate high-resolution, photorealistic im-

ages. However, their adversarial training scheme makes them more challenging to train and prone

to dramatic failures, often resulting in uncanny or unrealistic outputs compared to autoencoders.
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2.2.3 Diffusion Models

Diffusion models [13] are one of the most promising methods in face manipulation, along with

GAN. They work by gradually adding Gaussian noise to the input data according to a variance

schedule β1, ..., βT , where x1, x2, ..., xT is a generation sequence, in the forward diffusion process:

q(x1:T |x0) =
T∏︂
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√︁

1− βtxt−1, βtI) (6)

The model learns to reverse this by removing the noise to recover the original data.

pθ(x0:T ) = p(xT )
T∏︂
t=1

pθ(xt−1|xt), pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (7)

Recently, diffusion models have gained a reputation for generating high-fidelity results in image

synthesis, often outperforming GANs in visual quality [14, 15]. They also allow for flexible con-

ditioning, such as text or audio guidance, through integrating the embeddings. However, they are

slower in generation because of the iterative denoising process during inference. In addition, they

require large datasets to train, making them less accessible.

Among generative models, we leverage an autoencoder-based model due to their ease of training

and stable results. However, as discussed earlier it has limited generation ability in unseen faces. To

address this, we incorporate a StyleGAN-based submodule.

2.2.4 3D Face Representation

Some face synthesis frameworks leverage 3D face representation techniques along with genera-

tive models. In this combination, 3D face representation provides controllability for facial attributes

to generative models. By parameterizing and modeling the facial features in the 3D space, they

enable modifications in the face, which is difficult to achieve in the original 2D image. The most

prominent 3D face representation methods include 3D face reconstruction and neural radiance field

(NeRF) [16]. In our framework, we utilize 3D face reconstruction as an intermediate representation,
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which produces a face mesh to enable head pose transfer.

3D Face Reconstruction

3D face reconstruction is a process of generating the 3D face model from the 2D image. Many

approaches predict the camera pose and aim to reconstruct the face in the 3D space. Common

outputs include face meshes and depth maps, which explicitly encode facial geometry. This disen-

tanglement in facial geometry enables facial editing. One of the most common approaches within

3D face reconstruction is 3D morphable models (3DMM) [17]. 3DMM represents a face by a pa-

rameterized model. It encodes the facial attributes such as shape, expression, and texture, which

are not easily measured. These coefficients define a 3D facial geometry, typically represented as a

mesh. In face synthesis and reenactment, 3DMM provides a controllable framework, allowing the

manipulation of facial attributes.

Neural Radiance Fields

Neural radiance fields (NeRF) [16] represent 3D scenes in a continuous parameterized space us-

ing a neural network for volume rendering. It is typically used in the neural rendering process rather

than as an intermediate representation. While earlier works on 3D face representation typically

focus on monocular 3D reconstruction (single-view), NeRF allows multi-view synthesis, which en-

ables rerendering images from novel views of input images. Unlike traditional 3D face models that

use explicit representations such as meshes, it implicitly represents the shape and appearance of the

face in a continuous 3D space. This neural rendering technique demonstrated high-fidelity output

with fine details and complex lighting effects [16, 18, 19].

2.3 Face Reenactment

Face reenactment is a conditional face synthesis task where the target face is manipulated to

change specific facial attributes such as expressions, eye gaze, and head pose. Early works utilize

encoder-decoder architecture and disentangle facial features in the latent space to interpolate them

[20, 21]. However, they failed to produce photorealistic results.
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More recently, some methods have leveraged 3D face models. They typically render the image

in 3D space, deform face features, and re-render the synthesized face. For instance, Face2Face [22]

uses 3D Morphable Model (3DMM) coefficients to parameterize facial attributes. They employ

deformation transfer to transfer the expression components from the source to the target. Similarly,

Ma et al. [23] utilize facial geometry from the input for reenactment.

Another prominent line of work is GAN-based methods, following the remarkable success of

GANs in generating realistic synthetic images. Some methods [24, 25] learn facial boundaries and

transfer them to the target face. FSGAN [26] employs landmarks to train a recurrent neural network

and uses segmentation information to complete the reenactment. Similarly, FReeNet [27] performs

landmark-guided face reenactment by utilizing a landmark converter. Unlike those methods based

on 2D landmarks, MarioNETte [28] transforms detected 3D landmarks into identity-independent

to reenact arbitrary faces. Meanwhile, ICface [29] uses head pose and action units (AU) [30] to

control face attributes. On the other hand, Yao et al. [31] propose a method that preserves the source

identity by learning the appearance adaptive parameters. Furthermore, other approaches [32, 33]

use 3DMM coefficients as guidance to warp the face features.

With recent advances in GANs, several methods have leveraged pretrained GAN models, partic-

ularly StyleGAN2 [11]. Some approaches [34, 35] disentangle head pose, expression, and identity

from the source and target latent codes from pretrained StyleGAN2. Based on the disentangled

facial features, new latent code is generated to synthesize an image that transfers the head pose and

expression of the target to the source. Alternatively, Bounareli et al. [36] disentangle the appearance

and pose features but updates the weights of the StyleGAN2 generator, instead of the latent codes.

These methods are simple and effective in one-shot settings; however, they require GAN inversion

when applied to real-world images, which often struggles to faithfully reconstruct the input image.
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Chapter 3

Related Work

Visual dubbing approaches can be classified into two categories: person-generic and person-

specific methods. A summary of these approaches is provided in Table 3.1.

Visual Quality Lip Synchronization Identity Preservation Efficiency
Person Generic Methods ✗ ✓ ✗ ✓

Person Specific Methods ✓ ✓ ✓ ✗

Ours(Combined Method) ✓ ✓ ✓ ✓

Table 3.1: Summary of visual dubbing methods

3.1 Person Generic Methods

In person-generic methods, a universal model is trained on multiple identities. These approaches

have gained popularity for their ability to process arbitrary identities without further training.

One line of methods utilizes GAN [3,37–42] . Wav2lip [3] leverages reconstruction-based learn-

ing to align arbitrary speech with lip movements, achieving highly accurate lip synchronization.

TalkLip [41] incorporates a lip-reading module that transcribes image sequences into text, allowing

the generator to be penalized for generating incorrect facial images. More recently, DaGAN [39]

has utilized facial keypoints derived from the 3D geometry of the face to generate image-driven

talking heads.

Recent works based on diffusion models have shown remarkable success in audio-driven talking

head generation [42–46]. DiffDub [45] employs a diffusion-based autoencoder [47] to utilize latent
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representations rather than explicit ones like blendshapes or landmarks for image reconstruction. It

builds on the person-specific method DAE-Talker [48] as its backbone and extends it to generalize

across unseen identities. AniPortrait [42], in contrast, uses a 2D projection of a 3D facial mesh and

head pose extracted from audio as an intermediate representation.

Other prominent approaches use 3D geometry as an intermediate representation for audio-driven

talking head generation [2, 49–52]. While most of these methods rely on 3DMM [53] coefficients

to disentangle facial features, approaches like HiDe-NeRF [49], GeneFace [51], and SyncTalk [52]

also incorporate NeRF [16] for 3D geometry modeling.

Some methods leverage keypoints– either explicit or implicit– to guide facial animation [4, 42,

54–58]. Explicit keypoint-based methods typically rely on facial landmarks [42,54–57] as interme-

diate representation. Meanwhile, other approaches, such as LivePortrait [4] and MCNet [58], utilize

implicit keypoints. Specifically, LivePortrait builds upon Face Vid2Vid [59], employing a canonical

keypoint detector and transforming the output into implicit keypoints with extracted head pose and

expression.

While these methods are generally expressive and generalizable, they often fail to preserve

the unique talking style of the original actor. Particularly image-driven, “one-shot” methods [2,

4, 42, 50, 54, 57, 60] are prone to this as a single image lacks sufficient information to synthesize

a full video. For example, when driven by an image with a closed mouth, these methods cannot

accurately generate the specific mouth interior of an unseen actor. Moreover, they are inherently

restricted to static backgrounds and often unable to replicate the original movement. Furthermore,

these methods are often pretrained on low-resolution datasets, which restricts their ability to handle

high-resolution real-world videos, leading to low-quality outputs.

3.2 Person Specific Methods

Person-specific methods focus on building a specialized model for each identity. A common

approach involves synthesizing faces based on audio input.

Suwakanakorn et al. [61] use a recurrent neural network (RNN) to map audio to mouth shapes.

While this methods allows for generating decent lip sync and restores the original identity, it requires
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enormous amounts of data (e.g., 17 hours of Obama video). The study emphasizes that having a

large training dataset is critical. Additionally, it involves the composite in the lower face, which

leads to the occasional double chin effect due to 3D geometry failures.

Thies et al. [62] propose a two-stage training scheme to employ generalized audio-expression

mapping from multiple identities and personalize it to the target identity. By using the linear map-

ping of the audio-expression blendshapes, the method employs neural face rendering for face reen-

actment with generated expressions. The neural face rendering network is fine-tuned on the target

video.

LipSync3D [63] follows an encoder-decoder architecture that predicts a 3D mesh from audio,

generating output by rendering the mesh and blending the lower face region. This method disen-

tangles the 3D information of the image, enabling normalization of lighting and pose for better

audio-to-mouth expression mapping.

These approaches utilize 3D models as an intermediate representations. Although they can

capture face dynamics and abstract them, they lack fine facial details. In contrast, AD-Nerf [64]

introduces an approach that directly feeds input audio into the neural radiance field. Using two

neural radiance fields, it not only generates the head but also synthesizes the torso accordingly. This

approach effectively addresses unnatural talking face animations where only the head moves.

SyncTalkFace [65] generates talking heads in an end-to-end manner with an encoder-decoder

architecture. By leveraging lip and audio features generated from respective encoders, its memory

network learns to map audio to lip expressions. Their facial decoder generates synthesized faces

based on the identity and audio features.

More recently, DAE-Talker [48] utilizes a diffusion autoencoder to predict latent representations

from speech, which are used to generate images through an autoencoder.

Audio-based models can generate unseen expressions to synchronize the speech. However, their

expressions are often not realistic enough since they have to rely only on actor videos.

On the other hand, methods like [66, 67] synthesize the original actor video with target expres-

sions directly from dubber video. Both methods first disentangle the 3D model parameters and

use a recurrent generative adversarial network to translate facial expression parameters into video
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frames. Along with translated expressions, the 3D model parameters are used to generate the full-

head synthesized video. These methods achieve photorealistic result with well-maintained target

expressions.

Person-specific models require training per person. This identity-specific training enables greater

faithfulness to the original identity and visual quality on which they are trained. However, the

main drawback of these methods is their typically high data requirements, ranging from a few min-

utes [62, 64, 67] to hours [61] of video, even when they are pretrained on various identities [62, 64].

Despite their ability to preserve the original identity and generate photorealistic frames, these high

data requirements make such methods impractical in many real-world situations. Unlike these meth-

ods, our work follows a person-specific architecture while significantly reducing the required train-

ing data to just a few seconds.

3.3 Combined Methods

Some methods combine these approaches to address the limitations by pretraining a model on

a large dataset to generalize facial features, followed by fine-tuning it for a specific identity. They

typically aim to synthesize an original video from the given audio.

DFRF [68] is based on NeRF and uses 3D-aware reference image features to condition a dy-

namic facial radiance field, which improves generalizability of typical NeRF-based methods.

Dubbing for Everyone [69] adapts a prior deferred neural rendering network. It uses 3DMM

parameters to generate a 3D representation of the face, modifying the expression parameters based

on the given audio. Fine-tuning is performed using neural textures, leveraging both person-generic

and person-specific data to balance generalizability and person-specific details.

StyleSync [70] modifies StyleGAN2 [11], using masked target frames, with the training objec-

tive to recover the unmasked target image. This method encodes both audio dynamics and facial

information into the style space.

While these methods are highly generalizable and capable of preserving the identity of the

original video, they share a common issue with other audio-based methods: unrealistic expressions.

Loosely inspired by these methods, our pipeline targets person-specific visual dubbing while
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leveraging a person-generic method. We utilize a video-based approach, ensuring more realistic

synthesized expressions while maintaining a balance between expressiveness, visual quality, and

identity preservation.
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Chapter 4

Methodology

We leverage the visual dubbing pipeline from Patel et al. [1] as a backbone, since their modular

approach to disentangle the visual dubbing components has shown the capability to produce high-

quality outputs that faithfully preserve actor identity. Our enhancement of this pipeline focuses on

improving lip synchronization and temporal consistency while maintaining the identity-preserving

qualities and high-quality results.

Following Patel et al., we parameterize visual dubbing task as follows: head pose, background,

identity, expression, and image quality. Our pipeline consists of three main stages that handle

different parameters: preprocessing, a full-head identity swapping, and postprocessing.

In the preprocessing stage, we first create a “virtual dubber” using a static talking head to contain

dubber expression with actor identity. Sequentially, we disentangle head pose and background, then

transfer them from actor to virtual dubber.

This is followed by full-head identity swapping, where we disentangle identity and expression

parameters. Our identity swapping network transfers the actor identity to the virtual dubber, with a

goal of synthesizing frames with actor identity and dubber expression.

Finally, the postprocessing stage addresses image quality. In this stage, we focus on enhancing

resolution and preserving identity-specific details to achieve production-quality results. The overall

pipeline is illustrated in Figure 4.1.
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Figure 4.1: Our pipeline

4.1 Preprocessing

4.1.1 Virtual Dubber

For the generation of virtual dubber, we use LivePortrait [4] which generates a talking head

given a driving video and a reference image. We have chosen this method because their pretrained

model has shown to generate high-quality images with accurate lip sync in a one-shot setting. While

we simply utilize real dubber video as driving video, we particularly choose an actor frame with a

frontal face and neutral expression, due to the constraint of this method. As a result, we obtain

virtual dubber video that has actor identity with dubber expression. Meanwhile, the head pose

follows the real dubber video, and the background remains fixed as the reference image. Figure 4.2

shows frames of the real dubber and the corresponding virtual dubber, which is generated from the

real dubber on the left.

4.1.2 3D Face Alignment

We next perform 3D face alignment to transfer the actor’s head pose to the virtual dubber by

utilizing 3D face reconstruction method PRNet [71], following the methodology proposed by Patel

et al. Although PRNet may not be the current state-of-the-art in 3D face reconstruction, it still

has advantages for our work. The dominant line of face reconstruction methods, such as [72–78],
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Figure 4.2: (left) Real dubber, (right) virtual dubber

neglects the mouth interior. In contrast, PRNet provides full-face representation including the inner-

mouth, which is critical for our approach to generating realistic faces.

PRNet outputs a 3D mesh of the face with 43,867 vertices from a single-view image along

with the canonical and original 68 3D facial keypoints. Similar to Patel et al.’s approach, we apply

temporal smoothing to the generated mesh vertex positions, helping to reduce jitters introduced by

frame-by-frame reconstruction. Specifically, we employ Savitzky–Golay filter [79] with a window

size of 5.

Using the adjusted 3D face mesh and landmarks, we rigid align the canonical virtual dubber

object to match the actor’s original head pose. Unlike Patel et al., where the dubber’s face is rendered

on a black background, we render the actor and the virtual dubber face directly onto the original

actor frames. This allows us to include the hair and neck, which is important in the later stages of

training where we aim to generate not only the face but the hair and neck as well. By doing so, we

achieve consistent actor components in pose-aligned virtual dubber frames: background, hair, and

neck with differences only in faces. Lastly, despite using the virtual dubber with the actor identity,

inconsistencies in the color space may still exist between the actor and virtual dubber videos. To

mitigate this, we adopt the color transfer step from Patel et al., which aligns the color space of the

dubber video with the actors. Figure 4.3 shows actor frame with the corresponding virtual dubber

and final pose-aligned virtual dubber frames.

We observe that PRNet occasionally introduces minor errors in face reconstruction and land-

mark detection, resulting in head pose misalignment. This misalignment includes jitters, a loose

alignment of the reconstructed face with empty spaces around it, and inconsistency in face scales
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between consecutive frames. However, we address this issue later in face reenactment to keep the

temporal consistency in the final output.

Figure 4.3: 3D face alignment. (left) Original actor frame, (middle) virtual dubber frame, (right)
aligned virtual dubber frame

4.2 Full-Head Identity Swapping

4.2.1 Identity Swapping Network

Architecture

We adopt the identity transfer network from Patel et al. as our main architecture, which lever-

ages an autoencoder with a shared encoder and dual decoder. This network combines identity-

shared and identity-specific architectures to synthesize realistic actor faces while containing dubber

expressions. In particular, input images are passed through 4 main components: encoder, parallel

fully-connected layers, GAN block (G-Block), and decoder.

We use Xception [80] for the encoder E. Xception architecture has depthwise separable con-

volution layers and residual connections. These operations reduce computational complexity while

maintaining good performance, simplifying our architecture. Given an RGB color channel image

(176x176x3), it outputs the feature map with a size of 6x6x2048. This is followed by the fully

connected layer bottleneck for dimension reduction that results in 512-dimensional latent code.

The processed latent code is passed through two parallel fully-connected layers, referred as the

identity extractor Fi and the style extractor Fs. This divided architecture aims to generate distinct

embeddings with specialized information:

(1) Identity Extractor: Captures local features, preserving high-dimensional spatial information
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that retains identity-specific details, resulting in the identity embedding.

(2) Style Extractor: Captures global features, focusing on low-dimensional abstract represen-

tations to ensure global consistency and enable expression synthesis, resulting in the style

embedding.

While style extractor does not change the dimensionality of the input, we leverage the upsam-

pling technique for identity extractor in order to decompress the encoded feature map. This dis-

entangled design is inspired by StyleGAN [10], which has demonstrated that the separation of the

global and local features improves style manipulation and synthesis quality.

The disentangled embeddings are processed by a GAN block(G-Block) g. Incorporating Style-

GAN, the style embedding is refined through multiple fully connected layers. Concurrently, Gaus-

sian noise is injected into the identity embedding. g applies Adaptive Instance Normalization

(AdaIN) to normalize the identity embedding using the style embedding, followed by convolution

layers. This process enables g to produce outputs with finely detailed features, preserving identity

while effectively transferring the style.

Lastly, the decoder D learns to generate faces from the shared latent space. We have separate

decoders per identity so that they learn subject-specific information. The final output is a 256x256

image with 3 color channels.

Figure 4.4 illustrates the overall architecture, with detailed views of each component provided

in Figures 4.5, 4.6, and 4.7. The specification of the Xception architecture is shown in Figure A.1.

Training

In order to feed images to our network, we first detect and crop faces to 512x512 from a full-size

frame using a pretrained face detector S3FD [81]. Next, we extract masks for training. Particularly,

we utilize two types of mask: segmentation-based mask and landmark-based mask.

For the segmentation mask, we leverage a pretrained face parsing network BiSeNet [82] due to

their computational efficiency and accuracy. We mask hair, face, ear, and neck from each original

actor, virtual dubber, and pose-aligned dubber videos.

We also mask eyes and mouth to assign different importance in those regions as they are crucial

21



Figure 4.4: Overview of identity swapping network architecture

Figure 4.5: Details of encoder and parallel fully connected layers. (a) encoder, (b) identity extractor,
(c) style extractor.

Figure 4.6: Details of G-Block.
Figure 4.7: Details of decoder (a) upsample
block(n), (b) decoder– ”n” refers to the size.
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to generate realistic, expressive images. We utilize FAN [83] to detect facial landmarks, then define

masks of eyes and mouth using them. Note that we apply a slight blur on the edge of the mask to

soften the transitions and exclude any poorly masked edges. Finally, we resize the preprocessed

face and masks to 176x176.

During training, we feed the cropped faces concatenated with the generated masks as input.

The overall objective is to generate a face, with a focus on the masked region. To accelerate con-

vergence, we leverage pretraining on the CelebA-HQ dataset [84]. Using pretrained weights for

initialization, we train the model with not only the original actor and virtual dubber faces but also

pose-aligned virtual dubber faces. This training enables: 1) the direct learning of original features

such as identity and expression through the original actor and virtual dubber faces, without the need

for an intermediate step, and 2) a focus on identity swap without compensating for pose variations,

through pose-aligned virtual dubber faces.

Since information from both the actor and dubber is essential, we train separate decoders for

each by feeding the corresponding images into the network. For each actor and virtual dubber,

the network predicts I ′ = G(I), aiming to reconstruct the input image. To achieve this, we use

the Structural Similarity Index Measure (SSIM) as a reconstruction loss complemented by a Mean

Squared Error (MSE) regularization term. The reconstruction and regularization terms are balanced

to ensure effective learning.

SSIM(I, I ′) =
(2µIµI′ + C1)(2σII′ + C2)

(µ2
I + µ2

I′ + C1)(σ2
I + σ2

I′ + C2)
(8)

We introduce separate loss terms for specific face regions, defined by predefined masks: Mface,

Meyes, and Mmouth. We formulate the overall face regional loss Lface combining pixel-level re-

construction loss Lrecon and MSE regularization Lreg terms. Leyes and Lmouth are defined using

the same architecture as Lface but with a different mask applied to the respective regions (eyes or

mouth). This cascade of loss terms effectively balances identity preservation and expressiveness.

Lrecon =
1

2
(1− SSIM(I ⊙Mface, I

′ ⊙Mface)) (9)
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Lreg =
1

N

N∑︂
i=1

(︁
Mfacei ⊙ (Ii − I ′i)

)︁2 (10)

Lface = Lrecon + λfaceLreg (11)

Since we train shared encoder with split decoders, we separate the loss per decoder. The actor

loss Lactor incorporates the face, eyes, and mouth loss terms. The virtual dubber loss Lactor follows

the same structure. Total loss Ltotal is defined as the sum of the actor and virtual dubber losses.

Lactor = Lface + λ1Leyes + λ2Lmouth (12)

Ltotal = Lactor + Ldubber (13)

4.2.2 Full-Head Reenactment

Once the training is complete, the identity of the actor is transferred to each frame of the pose-

aligned virtual dubber video by the trained model through the actor decoder, while retaining the

expression of the dubber. However, misalignments in 3D face alignment can lead to significant

temporal inconsistencies in the output. To address this, we composite the lower part of the pose-

aligned virtual dubber faces onto the actor frames and use them as inference input. By compositing,

we leverage the natural temporal consistency of the actor frames for the majority of the image, while

allowing for the realignment of the pose-aligned virtual dubber frames to correct errors introduced

by 3D face alignment.

This approach is inspired by the second identity pass from Patel et al. Patel et al. first perform

the identity swap with the pose-aligned dubber and composite the result with the actor. Then they

process this composite output through the same network the second time. This method produces

more realistic and temporally consistent frames, demonstrating that the identity swapping network

can correct minor misalignment in input faces. Similarly, we hypothesize that compositing pose-

aligned virtual dubber frames with actor frames will reduce alignment errors and preserve temporal
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consistency, while generating realistic results.

To preserve the actor identity while maintaining the mouth expression from the virtual dubber,

we composite the lower half of the face, starting from the nose downward, using a landmark-based

mask. Unlike the landmark-based mask used in training, we utilize a pretrained 2D landmark detec-

tor from SLPT [85] with 98 landmarks. This detector is more robust than PRNet and provides better

alignment for the virtual dubber’s face region. Although this composite step may still introduce

minor misalignments, these can be effectively corrected by the trained network, ensuring the final

output is both realistic and temporally consistent. The processing of the inference input is shown in

Figure 4.8.

Figure 4.8: Processing the inference input

After the network processes the input, we apply a face segmentation mask to place the gen-

erated face back into the same region in the frame. We use the same full-head segmentation as

during training. This full-head reenactment eliminates the need for additional compositing using

landmarks, which may cause jittering due to small landmark errors. Additionally, by including the

hair in reenactment, we can mitigate artifacts or missing details introduced when reenacting only

the face, such as details in the forehead. Moreover, reenacting the neck along with the face helps
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address the double chin problem, as it can reduce the size of the chin.

4.3 Postprocessing

4.3.1 Identity-specific super resolution

We adapt the fine-tuned super-resolution step from Patel et al. The output of the identity swap-

ping network (256x256) is lower in quality and resolution compared to the original actor video,

hence we upscale it to match the original resolution and the high image quality. However, pretrained

super-resolution networks do not preserve identity-specific details or the actual quality of the actor

video. For example, when the actor has facial wrinkles and folds, pretrained super-resolution often

results in overly smooth faces. Moreover, the faces can be excessively enhanced, which gives a

“plastic” look.

To address these issues, we fine-tune the pretrained super-resolution method GPEN [86] to be

actor-specific. Inspired by Patel et al., we use a training set of both the original actor faces and self-

converted faces through the network, using actor decoder. Starting from the input frames with a size

of 256x256, we produce outputs at 512x512 with enhanced faces retaining actor-specific details.

While we acknowledge that this output size is smaller than the typical original resolution, full HD

(1920x1080), we find it sufficient since the face occupies only a portion of the frames. Figure 4.9

illustrates the effect of fine-tuning. Without fine-tuning, the result appears too sharp. Meanwhile,

our method closely matches the quality of the original actor, with a minimal blurriness and color

difference.

Figure 4.9: Identity-specific super resolution. (left) Original actor frame, (middle) super resolution
without fine-tuning, (right) super resolution with fine-tuning
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Chapter 5

Results

In this section, we present the evaluation of our experimental results. Our work aims to perform

well in practical, real-world scenarios. To this end, we use videos of prominent public figures,

including Obama, Macron, Kovind, and Merkel, ranging from 10s to 37s in length. They are paired

with professional dubber videos, speaking another language with the translated script.

In addition, we assess our method in more challenging scenarios, such as TV commercials.

Unlike the relatively stable head poses and neutral expressions typically seen in public speaking

videos, TV commercials exhibit dynamic head movements and expressive facial expressions, and

may contain occlusions that cover part of the face. These characteristics significantly increase the

complexity of face synthesis. By including such challenging scenarios, we aim to evaluate the

robustness and adaptability of handling real-world videos. The details of each video clip can be

found in Table 5.1.

FPS # Frames
Obama 30 300
Macron 25 818
Kovind 30 1112
Merkel 25 650
Contrave 24 456
Crest 24 198

Table 5.1: Details of video clips used in experiments
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Implementation Details

We utilize open source FaceSwap [87] framework for model building and training. First, the

identity swapping network is pretrained on the CelebA-HQ dataset [84] for 150k iterations using

the Adam optimizer [88] with a learning rate of 0.0001 and batch size of 12. After initializing with

the pretrained weights, the person-specific identity swapping model is trained on the original actor

and virtual dubber frames for 30k iterations, followed by additional 30k iterations on the original

actor and pose-aligned virtual dubber frames. Finally, we fine-tune the model with original actor

and virtual dubber frames for 5k iterations, without data augmentation. This training strategy is

shown to effectively transfer the fine details and color consistency of the actor faces. We use a batch

size of 64 and a learning rate of 5e-5 with the Adam optimizer. Additionally, we set λmouth and λ2 to

0.01 and 4, respectively, while the other λ values (λface, λeyes, λ1) are set to 1. The person-specific

training takes approximately 2.5 days on four NVIDIA V100 32GB GPUs.

For identity-specific super-resolution, we utilize the pretrained model on 512x512 resolution and

training code from GPEN with a batch size of 4 and a learning rate of 2e-2, keeping the remaining

hyperparameters as specified in their original paper.

Baselines

We compare our method with state-of-the-art both audio-driven and video-driven lip-syncing

approaches. While there are other recent methods, many do not publicly share their code or pre-

trained models, which is crucial to replicate their work. Moreover, some methods are limited to

cropped videos, making them less suitable for real-world scenarios. Therefore, we focus on meth-

ods capable of handling full-frame videos, aligning more closely with our target application.

Our comparison includes Wav2Lip [3] and TalkLip [41] for audio-driven methods, and Patel

et al. [1] and LivePortrait [4] as video-driven methods. For Wav2Lip, TalkLip and LivePortrait,

we used their official implementations. Specifically, as LivePortrait provides both image-based and

video-based lip-sync video generation, we utilized the video-based lip-syncing script. In addition,

note that TalkLip is strictly limited to 25fps videos, hence we convert the frame rate from original

video to 25fps and reconvert it to original after generation.
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Benchmarks

We evaluate our method using two criteria: generation visual quality and lip-sync quality, adopt-

ing the most commonly used metrics. To measure generation visual quality, we use Peak Signal-to-

Noise Ratio (PSNR), Fréchet Inception Distance (FID) [89], and Learned Perceptual Image Patch

Similarity (LPIPS) [90], with the original actor video as the reference. For lip-sync quality, we

compute Landmark Distance (LMD) [91] within the mouth region, using the dubber’s landmarks as

the ground truth. All metrics are computed frame by frame and averaged.

5.1 Quantitative Evaluation

Obama Macron Kovind Merkel
Method PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓

Wav2Lip 35.07 8.53 0.10 38.41 1.71 0.06 36.79 4.34 0.07 38.61 6.73 0.07
TalLlip 32.55 13.77 0.15 33.98 7.81 0.15 34.04 5.40 0.10 32.72 17.51 0.19

Patel et al. 38.92 2.74 0.06 48.89 0.23 0.01 54.19 0.28 <0.01 49.37 1.66 <0.01
LivePortrait 31.72 9.95 0.23 39.54 3.31 0.04 38.64 7.19 0.04 39.93 5.16 0.05

Ours 37.56 3.71 0.06 47.56 0.29 0.01 46.44 1.15 <0.01 48.63 0.96 0.01

Table 5.2: Visual quality evaluation. Bold indicates the best, and underline indicates the second
best.

Method Obama Macron Kovind Merkel
Wav2Lip 1.55 0.79 1.04 1.49
TalkLip 1.44 0.80 1.00 1.68

Patel et al. 1.42 0.82 1.07 1.30
LivePortrait 1.78 0.80 0.79 2.34

Ours 1.21 0.54 0.96 1.25

Table 5.3: Lip syncronization evaluation (LMD). The lower the value, the closer to the dubber
mouth expression (GT).

Quantitative evaluations are presented in Tables 5.2 and 5.3. Table 5.2 demonstrates that Patel et

al.’s method achieves superior results across most metrics for the tested video sequences. Especially

in the Kovind sequence, their method significantly outperforms others in PSNR and FID metrics,

indicating higher visual quality.

We attribute this difference to the design of their approach, as it focuses on compositing the

mouth region while leaving the rest of the video untouched. By restricting reenactment to a smaller

area, their method only makes changes inside the mouth region, resulting in higher visual quality
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metrics.

In contrast, our method reenacts a larger portion of the video. This introduces a higher pos-

sibility of not only actually degrading the visual quality but also slight numerical divergence in

metrics due to broader modifications. Despite the added “risk” of modifying a broader region, our

method achieves competitive scores. For example, we achieve the second-best performance overall

and present the best LPIPS score for the Obama and Macron sequences. This indicates that our

results are perceptually closest to the original videos, demonstrating the robustness of our approach

in preserving actor specific details and overall consistency. Similarly, although PSNR score for the

Merkel sequence is behind the best, we achieve a lower FID score and a close second-best LPIPS

score with a small difference. While PSNR might suggest more noise, both FID and LPIPS show

that our method excels in generating realistic and perceptually accurate output.

Table 5.3 evaluates lip-syncing accuracy using the Landmark Distance (LMD) metric. Our

method consistently outperforms other approaches across most test cases, demonstrating superior

alignment between the generated lip movements and the dubber’s ground-truth expressions. How-

ever, in the Kovind sequence, LivePortrait achieves the best LMD score. While LivePortrait presents

the highest lip synchronization accuracy with the dubber, its generated head pose occasionally dif-

fers from the original actor’s pose. This observation validates the importance of our method, which

balances accurate lip synchronization with correct head pose alignment, a critical requirement for

visual dubbing tasks.

While these quantitative metrics provide valuable insights, we emphasize that qualitative eval-

uations are critical for real-world applications, as they better capture subjective visual quality and

lip synchronization. We highly recommend referring to supplementary videos to assess temporal

consistency.

5.2 Qualitative Evaluation

Qualitative comparisons further highlight the strengths and limitations of our method. For eval-

uation, we process full-frame videos and crop the results to the face region for direct comparison.

Overall, although Wav2Lip achieves quite accurate lip-sync, the visual quality is lower. Similarly,
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TalkLip generates blurry results and, more critically, shows a noticeable lag compared to the original

actor video. LivePortrait produces high-quality output; however, the head poses are not consistently

aligned with the actor’s, rather following the dubber’s sometimes, which is not desired. Moreover,

it occasionally generates uncanny-looking eyes. Patel et al.’s method delivers comparable results,

but they are not as expressive as ours and sometimes introduce artifacts.

Expressiveness

Our method demonstrates superior expressiveness in reconstructing dubber expression, com-

pared to other methods. For instance, as shown in Figure 5.1 (left), our method effectively recre-

ates challenging expressions like mouth puckering, which other methods fail to capture adequately.

Moreover, our method effectively captures the expression even under challenging head poses. In

Figure 5.1 (right), where the dubber’s head is tilted downward, our approach accurately extracts

and generates the expressions with minimal loss of detail. TalkLip also captures the puckering

expression, but the right corner of the lips is not moving, which is unrealistic.

Handling Jaw Artifacts

Since our method reenacts the full head, including the neck and jaw, artifacts such as the double-

chin effect can be addressed, as illustrated in Figure 5.2. In comparison, Patel et al. preserves the

original jaw size and only composite the mouth. Unlike their method, our approach generates and

reenacts full head, enabling subtle adjustments to the jawline.

Although our results are slightly more blurry than those of Patel et al., which achieves the best

sharpness among tested methods, we argue that this trade-off results in a more balanced output that

achieves both lip-sync accuracy and realistic facial reenactment.

5.3 Evaluation on Commercial Videos

We further evaluate our method on commercial videos which typically contains dynamic head

poses and often occlusions. In these scenarios, qualitative results are more relevant than numerical

metrics, as they better illustrate the robustness of our approach in real-world conditions.
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Figure 5.1: Qualitative results on Obama and Macron.

Figure 5.2: Handling jaw artifacts. (left) Original, (middle) ours, (right) Patel et al. Even trained
from the same dubber video, due to the difference in training schema, the generated expression may
not completely match.

As shown in Figure 5.3 (first row), our method effectively handles dynamic head poses. For

example, in a tilted pose, our method successfully reenacts the new expression without introducing

artifacts, maintaining visual quality.
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Furthermore, in the second row of Figure 5.3 demonstrates the ability of our method to han-

dle occlusions, such as objects partially covering the mouth. We can conclude that our approach

generates realistic frames without introducing visible artifacts, even under challenging conditions.

Additionally, the identity-specific super-resolution allows high-quality output to closely match

the original, ensuring production quality with only minimal blurriness and color change. These

capabilities make our method practical in dynamic industry-level video content.

Figure 5.3: Results on commercial videos

5.4 Limitations

Despite the advantages, our method has limitations. The most notable issue is the slightly

blurred output with slightly shifted color space. As we perform reenactment in entire head and

neck, it is quite noticeable. This could be addressed by improving the super-resolution module

within the pipeline.

In addition, the lack of explicit postprocessing for temporal consistency may lead to minor

inconsistencies. For instance, temporal inconsistencies are visible in the Kovind video sequence,
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which are small scale differences in the face (i.e. face becomes slightly bigger/smaller in consec-

utive frames). Although we indirectly maintain the temporal consistency by using actor and pose-

aligned virtual dubber combined frames in inference, the current pipeline lacks a mechanism to

correct the inconsistent frames generated by the network. It could be dealt with manual corrections

or incorporating a temporal consistency module.

Another limitation is our dependence on a talking head generation method. If the underlying

talking head model fails, the performance of our method is significantly affected. However, this can

be easily addressed by using other talking head generation methods.
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Chapter 6

Ablation Study

To further evaluate the necessity of incorporating the virtual dubber, we performed an ablation

study using a commercial video sequence (Contrave). In this experiment, we removed the virtual

dubber in an intermediate step and only used original dubber video. While the output retains actor

identity in a comparable way, the result without the virtual dubber shows noticeably degraded lip

synchronization. For example, Figure 6.1 illustrates a frame where teeth are incorrectly generated,

while the ground truth is a closed mouth. In addition, the result is more blurry. This highlights the

importance of the virtual dubber in capturing facial expressions and producing high-quality output.

Figure 6.1: Ablation study. (left) dubber, (middle) result without virtual dubber, (right) result with
virtual dubber (ours). Dubber shows ground truth expression.
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Chapter 7

Conclusion

In this thesis, we have introduced a visual dubbing pipeline that leverages a virtual dubber, a

talking head that maintains the actor identity while mimicking the dubber’s expressions, as an in-

termediate representation that helps significantly enhancing lip synchronization and visual quality.

Our method performs identity swapping and reenactment in an extended head region including hair

and neck, ensuring realistic, temporally consistent output without requiring additional postprocess-

ing steps. Furthermore, our person-specific super-resolution allows for high-quality outputs that

retain the quality of the original actor video. Overall, our method is able to generate videos that are

visually fairly close to the original actor with only the expressions being synthesized.

Our quantitative and qualitative comparisons against competitive methods demonstrate that our

method achieves a superior balance between visual quality and lip synchronization, outperforming

other tested approaches.

Finally, our experiments on short TV commercial videos confirm the robustness of the pipeline

under challenging real-world conditions, as well as the efficiency even with limited data.
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Appendix A

Xception Network

Figure A.1: Xception [80] architecture
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